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ABSTRACT 

This thesis reports the design and evaluation of multi-representational 
learning environments that teach aspects of number sense. COPPERS is 

concerned with children's belief that mathematical problems can have only a 

single correct answer. CENTS addresses the skills and knowledge required for 

successful computational estimation. 

Although, there is much multi-representational software and a significant 
body of research which suggests that learning with multiple external 

representations (MERs) is beneficial, little is known about the conditions 

under which MERs promote effective learning. To address this, a framework 

was proposed for considering MERs. It consists of a set of dimensions along 

which multi-representational software can be described and specifies learning 

demands of MERs. This framework was used to generate predictions about the 

effectiveness of different multi-representational systems. 

Experiments investigated children's performance in multiple solutions and 

computational estimation before they received direct teaching and tested 

whether the learning environments could help children develop these skills. 

Each experiment examined how specific aspects of the learning environments 

contributed to learning outcomes. 

Experiments with COPPERS showed that children's pre-test performance was 

generally poor. Improved post-test performance on multiple solutions tasks 

occurred when children gave substantially more answers on the computer than 

their pre-test base-line. They rarely chose this strategy for themselves. It was 
found that providing a tabular representation of solutions in addition to the 
familiar row and column representation improved learning. 

Estimation is difficult for primary school children, but limited teaching led to 

substantial improvements in strategies and accuracy of estimates. Three 

experiments with CENTS addressed the effects of MERs on learning. When 

representations were too difficult to co-ordinate, then either children did not 
improve at understanding the accuracy of estimates, or focused their attention 

upon a single representation. Additionally, varying how information was 
distributed across representations influenced how representations were used. 

These experiments show that when considering learning with MERs, it is not 
sufficient to consider the effects of each representation in isolation. 
Behaviour with representations changes depending on how they are combined. 
These findings are discussed in terms of their implications for the design of 
multi-representational learning environments. 
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CHAPTER ONE 

Introduction 

This thesis is concerned with the design of computer-based learning environments in 

relation to the issue of how different combinations of representations affect learning. 

The domain explored is an aspect of mathematical understanding - number sense. 

Although difficult to define, number sense is commonly associated with certain 

mathematical skills and beliefs. Two pertinent areas have been addressed in this thesis. 

The first is how children's belief that mathematical problems have only a single 

correct answer can act as a barrier to the development of number sense. The second is 

computational estimation. Flexible estimation is seen as depending heavily on number 

sense. It is also thought that by helping children to become flexible estimators they 

further develop their number sense. Computer-based learning environments for both 

multiple solutions and computational estimation were designed, implemented and 

evaluated during the course of this research. 

This thesis also addressed how the use of multiple external representations (MERs) 

influences learning. In recent years, there has been a large growth in the number of 

multi-representational learning environments. There is also an increasing body of 

research which suggests that providing MERs can confer significant benefits for 

learners. However, little is known about the conditions under which MERs promote 

effective learning. Consequently, designers and educators have few principles to guide 

their use of MERs. 

A framework for considering MERs is proposed which consists of a set of dimensions 

(specific to MERs) along which multi-representational software can be described. In 

addition, the different learning demands of MERs are analysed. This framework was 

used to predict the conditions under which particular MERs facilitate learning. 

Empirical studies focused on two of these dimensions, the similarity of format and the 

degree of informational redundancy between representations. 



Experiments performed with the learning environments had three basic aims: (1) to 

examine children's performance in multiple solutions and computational estimation 

before they had received direct teaching; (2) to test the claims that the learning 

environments could help children develop the skills they were designed to teach and; 

(3) to examine in detail how specific aspects of the learning environments 

contributed to learning outcomes. An important aspect of this research was the 

detailed quantitative measurement of children's actions upon the representations used 

within the learning environments. This was collected in order to explain how 

different combinations of representations affected the way that children met the 

various learning demands of the systems. 

The remainder of this chapter gives an overview of the following eight chapters 

which describe the design of the learning environments and the experiments that were 

conducted with the systems. 

Chapter Two begins by introducing examples of people solving mathematical 

problems in ways that demonstrate number sense and provides other examples that 

suggest the problems were solved with little regard to number sense. It then describes 

approaches to defining number sense. Mathematical skills and beliefs most closely 

associated with number sense are reviewed. The two areas of number sense that are 

addressed in this thesis are then discussed in detail. First, research on the generation of 

multiple solutions to mathematical problems is reviewed and then instruction aimed at 

developing this knowledge is discussed. The next section considers the conceptual and 

procedural aspects of computational estimation, along with related mathematical 

skills. Then, research that describes how children's knowledge of estimation develops 

is outlined. This section ends by considering approaches to the teaching of 

computational estimation. Finally, Chapter Two reviews the existing computer-based 

approaches to instruction in this area. 

Chapter Three describes research on the role of MERs in learning. It begins by 

locating interest in learning with MERs within the context of research in how 
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external representations influence learning and problem solving. In order to consider 

the effects of combining different representations, a review of some of the 

approaches to classifying representations is provided. The next section considers the 

advantages that MERs bring to learning, placing them in a framework which outlines 

the different purposes for which MERs can be used. The learning demands that must 

be met if MERS are to be used effectively are considered. The next sections describe 

in more detail a learning demand that is unique to MERS - translation between 

representations. It also describes previous approaches to measuring and assessing such 

translation. This chapter ends by proposing a set of dimensions which could serve as a 

framework for considering the design of multi-representational software. 

Chapter Four describes the first learning environment, COPPERS. COPPERS sets 

children coin problems such as `What is 3x 20p +4x 10p ?' which must be 

answered by providing alternative decompositions of the total (e. g. `20p + 20p + 10p 

+ 50p, or 10p + 2p + 2p + lp + 5p + 10p + 10p + 5p + 5p + 50p' or `50p + 50p'). 

The design of this system is related to instructional methods in primary mathematics. 

Three aspects of the system design are considered in detail: problem representation 

and generation, the means by which problems are answered and representations used 

for feedback on answers. 

Chapter Five reports two experiments with COPPERS. Experiment One examined 

three issues: (a) whether children need to be taught to give multiple solutions to 

mathematical problems; (b) whether COPPERS meets its educational objectives and; 

(c) how aspects of system design contributed to this goal. Two aspects of design were 

considered; the number of answers per question and the role of additional tabular 

feedback in supporting learning. This experiment found that children's pre-test 

performance was low, but that limited teaching led to substantial improvement. It also 

showed that children who saw an additional tabular representation of their answers 

performed significantly better at post-test than those who did not. Only lower 

performing children were found to benefit from giving multiple answers to problems 

during the computer intervention. Experiment Two addressed this issue further by 
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asking children to give substantially more answers per question than they had at pre- 

test and by examining how many answers per question they would provide if they 

were given free choice during the intervention. The experiment suggested that to 

maximise learning outcomes children should be required to provide multiple 

decompositions on the computer and that they rarely invent or choose this learning 

strategy for themselves. 

LL" r Six introduces CENTS -a computer-based learning environment that teaches 

aspects of computational estimation. It is also designed to provide experimenters with 

a large degree of flexibility about how information is presented and combined in 

multi-representational systems. The design of the system is discussed in relation to 

the research on computational estimation reviewed in Chapter Two and a detailed 

description of the representations provided by the system is given. 

Chapter Seven presents the first experiment with CENTS. This study examined 

children's untaught estimation performance and was designed to establish whether 

CENTS could help children develop these skills. However, the primary focus of this 

experiment was on how multi-representational systems that differed in the way they 

displayed information influenced learning outcomes. This study confirmed that 

experience with CENTS did improve estimation performance. However, it showed 

that certain combinations of representations were better than others for teaching 

aspects of this knowledge. In particular, it was shown that representations of different 

formats were difficult to co-ordinate. The difficulties children had translating between 

representation on the computer were found to affect their subsequent post-test 

performance. An analysis of the different representations was performed to explain 

this result. 

Chapter Eight reports experiments that examine the effects of presenting different 

combinations of representations over longer periods and also explores how varying 

the redundancy between representations influences learning outcomes. Experiment 

Four showed that children given representations that differed in format ultimately 
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concentrated their attention upon only one of the representations presented. It was 

suggested that this strategy is highly adaptive when there is sufficient redundancy 

between representations so that one representation can carry all the necessary 

information. Therefore, Experiment Five examined what would happen when this was 

not the case. Representations were used which, in addition to manipulating similarity 

of format, also varied in redundancy (full redundancy between representations or no 

redundancy). There was no overall effect of redundancy on final learning outcomes, 

but some evidence that limiting redundancy aided initial task performance. 

Chapter Nine begins by summarising and integrating the research reported in this 

thesis. It considers children's untaught performance at multiple solutions tasks and 

computational estimation and considers how the computer-based learning 

environments improved this performance. The next section reviews the aspects of 

system design examined by the experiments, concentrating primarily on the effects 

of different MERs. The limitations of the computer-based learning environments and 

the experiments are considered along with suggested improvements. The general issue 

of the design of multi-representational learning environments is discussed in terms of 

the dimensions first proposed in Chapter Three. In chapter nine, these are now 

reviewed in the light of the results from the experiments and the methods used to 

analyse them. Implications for future work are considered. The chapter ends with a 

short summary of the thesis. 
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CHAPTER TWO 

Number Sense - Computational Estimation and Multiple Solutions 

Focus in mathematics teaching has shifted from the learning of formal procedures and 

accepted facts to an emphasis on mathematics as flexible, insightful problem solving. 

Schoenfeld (1992) describes mathematics as a `science of patterns' where the goal is 

to systematically study and explain the nature and principles of regularities in pure 

and applied systems. Consequently when solving mathematical problems, people 

should do so with a disposition to make sense of the problem - they should have 

number sense. Indeed, the development of number sense has been identified as the 

major objective of primary school mathematics in the U. S. A. (National Research 

Council, 1989). This chapter will review research on number sense and introduce two 

areas seen as important for this aspect of mathematical understanding - knowledge of 

multiple solutions and computational estimation. These aspects of number sense have 

been the focus of the two computer-based learning environments developed and 

evaluated during the course of the research conducted for this thesis. 

The concept of number sense is introduced by providing examples of the types of 

solution which demonstrate both proficiency and lapses in number sense. Then, 

although a definition of number sense remains problematic, some approaches to 

describing it are presented. The remainder of the introductory section discusses 

mathematical skills and knowledge proposed as most pertinent to number sense. Two 

of these areas are then considered in detail. One barrier to the development of number 

sense is children's belief that mathematical problems have a single correct solution. 

Section 2.4 reports research that has examined knowledge and instruction in multiple 

solutions and strategies. Another key component of number sense is the ability to 

flexibly estimate answers to mathematical problems. The procedural and conceptual 

components are outlined along with related mathematical skills. Then research that 

has examined the development of computational estimation abilities and instruction 
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in estimation is reviewed. The final section considers the potential of the computer 

for teaching these aspects of number sense. 

2.1 WHAT IS NUMBER SENSE 

There is much disagreement about what constitutes an adequate definition of number 

sense. However, number sense can be recognised when it occurs in response to 

mathematical problems. To provide a framework for the following discussion, five 

answers to problems are presented which most people would agree show a 

demonstrated lack of understanding and sense of number, and five that demonstrate 

number sense are given. 

(1) `Estimate 789 x 0.52' (quoted in Threadgill-Sowder, 1984) 

Common responses were either 800 `0.52 is nearly 1,1 x 789 is roughly 800' or 0 

`0.52 is very small call it zero, 0x 789 = 0' 

(2) `Which of the following is an estimate of 
9+ 11 

(1,2,19,21,1 don't know)' 
10 12 

(quoted in Sowder, 1995) 

This question formed part of the large scale National Assessment of Education 

Progress (NAEP) in the USA - only 24% of 13-year-olds and 37% of 17-year-olds 

correctly selected 2. 

(3) `How many buses will be required to take 1228 soldiers if each bus hold 36 

soldiers? ' (another NAEP problem quoted in Schoenfeld, 1988). 

This is commonly answered with 31 remainder 12. 

(4) `15.24 x 4.5 is 6858, but the decimal point is missing from the solution. Place 

the decimal point where it should be. ' 

Markovits (1989) reports that out of a sample of 49 trainee elementary school 

teachers, 79% responded with 6.858. 
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(5) The literature on buggy procedures (e. g. Young & O'Shea, 1981; Brown & 

Burton, 1978) in subtraction abounds with responses which demonstrate little sense of 

the numbers being operated on. For example, the infamous O-N= N bug. 

230 
-236 

6 

There are also example from a wide range of areas which demonstrate people acting 

on mathematical tasks with number sense. 

(1) `Estimate 482 X 51.2' 

Dowker's studies of expert mathematicians (e. g. Dowker, 1992) yielded responses 

such as '482 x1x 100' 
2 

(2) `Add 159 and 142' (presented orally) 

Resnick's (reviewed in Resnick, 1992) longitudinal analysis of one seven-year-olds 

performance illustrates the flexibility of some children's informal arithmetic. The 

child's answer to this problem involved the following steps: 2x 100 = 200; 50 + 40 

= 90; 9+2= 11; 11 + 90 = 101; 200 + 101 = 301. 

(3) `200 - 35 = ?' 

Using problems such as these research in the ethnomathematic tradition also provides 

plenty of examples of unschooled children and adults operating on numbers in ways 

that demonstrate their number sense. One example, described by Nunes (1992) is in 

response to the above problem "if it was 30, then the result would be 70, but it is 35. 

So, its 65,165". 

(4) `5 x 29 = ?' 

Problem such as these can be solved by using well known numbers to figure out facts 

(Resnick, 1989). This problem might be solved remembering that "I can buy 5 comics 

at 30 pence each with my pocket money of £1.50. So five less than is £1.45, 

therefore 5x 29 = 145" 
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(5) `4+g 

If children have rational number sense, they should see that 
3 

can be expressed as 
g 

or 
g 

as 
I, 

thus, making the problem of adding these fractions much simpler. On 

others occasions, fractions could be converted to decimals or percentages in order to 

allow numbers to be operated on flexibly. 

2.2 DEFINING NUMBER SENSE 

Number sense has been defined as involving: a sound understanding of the meaning 

of a number and of relationships between numbers, a good understanding of the 

relative magnitudes of numbers and awareness of numbers used in everyday life 

(National Council of Teachers of Mathematics, 1989). Sowder (1989) characterises 

number sense as a well organised conceptual network that enables a person to relate 

numbers and operation procedures. It can be recognised in the ability to use number 

magnitude, both relative and absolute, when making qualitative and quantitative 

judgements necessary for, but not restricted to, number comparison, recognition of 

unreasonable results for calculation and the use of non-standard algorithms for 

mental computation and estimation. It is demonstrated by flexible and creative ways 

of solving numerical problems. She warns that it is neither easily taught or measured. 

One further definition is given by Reys et al. (1991) who describe number sense as an 

intuitive feeling for numbers and their various uses and interpretations; an 

appreciation for various levels of accuracy when figuring; the ability to detect 

arithmetical errors; and a common sense approach to using numbers (quoted in 

Sowder, 1995). 

These definitions have common aspects showing some convergence of thought about 

number sense. At the same time, there is still doubt that such definitions have as yet 

captured the necessary and sufficient features that define number sense (Sowder, 

1989). Resnick (1989) doubts that any traditional approach to defining number sense 

is possible. As number sense is inherently contextualised, there will be no possibility 
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of producing a definition that is decontextualised. Therefore by comparison to a 

characterisation of higher order thinking, she proposes the following dimensions of 

number sense: 

" Number sense is non-algorithmic 

" Number sense tends to be complex 

" Number sense often yields multiple solutions, each with costs and benefits, rather 

than unique solutions 

" Number sense involves nuanced judgement and interpretation 

" Number sense involves the application of multiple criteria 

" Number sense often involves uncertainty 

" Number sense involves self regulation of the thinking process 

" Number sense involves imposing meaning 

" Number sense is effortful 

As many researchers have pointed out number sense is not a discrete quality (e. g. 

Reys, 1989). It will not be possible to state that a learner does or does not have 

number sense. Instead number sense is a continuous quality that could be apparent at a 

number of different levels. It is possible to exhibit number sense for some aspect of 

mathematics and not for others (e. g. when dealing with fractions children's behaviour 

often exhibits less number sense than when dealing with whole numbers). This has 

implications for the teaching of number sense. Instruction in number sense, as all the 

participants of the 1989 conference on Number Sense agreed, must not be restricted 

to discrete lessons. It should be applied to the whole of mathematics learning. 

2.3 KNOWLEDGE AND BELIEFS ASSOCIATED WITH NUMBER SENSE 

Certain aspects of mathematical skills and knowledge seem more intimately tied to 

the development of number sense than others. In particular, the following areas are 

often identified as both leading to improved number sense and also to depend most 
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heavily on number sense: numeration, number magnitude, mental computation and 

computational estimation (Sowder, 1992b). A few examples of the relation between 

these areas and number sense are discussed. 

Numeration is fundamental to number sense. Sowder (1992b) identifies cardinal, 

ordinal and place value understanding as the most important components. Studies 

performed by a number of researchers have demonstrated that children often have 

sophisticated competencies in counting and additive composition when they enter 

school. For example, Nunes & Bryant (1996) describe a study that showed that nearly 

40% of Brazilian pre-school children could use the principle of additive composition 

when using coins. Given four 10 cents coins and four 1 cents coins (a total of only 

eight coins), these children understood how to buy an item costing 13 cents. 

Place value is more complex and children often fail to develop a competent 

understanding of it. Resnick (1983) identifies three levels of understanding of place 

value. At stage one, children can identify tens, units, etc., in relation to concrete 

objects and then can progress to mental computation. At stage two children are 

capable of producing non-canonical decompositions (e. g. 22 =I ten and 12 ones). 

Again this is dependent on a physical representation, such as Dienes blocks. The final 

stage of place value development is the semantic linking of this partitioning ability 

with written algorithms. Resnick & Omanson (1987) show that even when children 

are given mapping instruction which explicitly addresses this issue, they still can have 

problems with written arithmetic (described in more detail in section 3.5). 

A number of studies have shown that children who appear to have an intuitive grasp 

of aspects of the number system, can fail to apply them to school mathematics (e. g. 

Nunes, Schielerman & Carraher, 1993). One of the problems facing teaching aimed at 

developing numeration and number sense is how to get children apply their out of 

school mathematical competencies and build upon these to develop more 

sophisticated mathematical understanding. 
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Number magnitude can be either relative or absolute. Relative magnitude involves the 

ability to compare and order number. It is ultimately dependent on a good 

understanding of place value. For example, a common problem is demonstrated when 

children identify 
. 1814 as larger than 0.9 (the first number has more digits and so 

must be bigger). Analysis of school textbooks suggests that although a sense of 

relative number magnitude is very closely linked to successful performance in a wide 

range of mathematical areas (e. g. fractions, decimals, place value) only limited 

attention is paid to this topic (Sowder, 1992b). Absolute number magnitude involves 

understanding what a number might `mean'. Sowder (1992b) reports a task asking 

children (4th, 6th 8th and 10th grades) which of the following was a good estimate of 

the number of people at a concert; `65,380,40,000 5,000,000'. Each was selected as 

reasonable by 35% of 8-9 year-old children (i. e. some selected more than one as 

reasonable). This type of knowledge is often poor even in adults and is more obvious 

with larger numbers. Hofstader (1985) refers to this failing as `number numbness'. His 

suggestion for encouraging people's sense of large numbers involves developing 

prototypes in a number of domains (populations, budgets, ants, coins, etc. ). 

Mental computation involves number sense when students use and invent strategies 

that take advantage of numerical and operational properties rather than relying on 

rote learned procedures or mental versions of written symbolic manipulation. 

Markovitz & Sowder (1988) showed that when instruction in mental calculation did 

not involve rote learning or rule memorisation, children abandoned analogues of pen 

and paper techniques (impossibly unwieldy for mental calculation) and used more non- 

standard procedures (e. g. a left to right strategy, decomposition, counting up rather 

than subtracting). This approach to mental calculation has been said to have 

developed children's number sense. 

Computational estimation can be defined as the process of simplifying an arithmetic 

problem using some set of rules or procedures to produce an approximate but 

satisfactory answer through mental calculation (Dowker, 1992). The crucial aspects 

of computational estimation in relation to number sense involve flexible approaches 
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to approximation rather than reliance of simple inappropriate algorithms. It is also 

necessary for recognising when an estimate is satisfactory (Sowder 1992a). A further 

study by Sowder and Markovits (Markovits & Sowder, 1994) using a similar approach 

to that of the mental calculation study showed that children could develop flexible 

estimation skills. 

In addition to these mathematical skills, learners' beliefs about the nature of 

mathematics have been identified as influencing their ability to develop number sense. 

Teachers have identified learners' mathematical beliefs as the biggest barrier to 

encouraging number sense in the mathematics curriculum. The teachers interviewed 

by Phillip, Flores, Sowder & Schappelle (1994) worry that the children in their classes 

believe in, and practise, a mathematics that is devoid of questioning, creativity and of 

sense making. They suggest that children believe that there is a single right answer to 

a mathematical problem, there exists only one right way to obtain that answer and 

that teachers should provide them with the appropriate rule. 

Schoenfeld's review of children's mathematical beliefs (Schoenfeld, 1992) suggests 

that typically, pupils believe that: 

" Mathematics problems have one and only one right answer 

" There is only one correct way to solve any mathematics problem - usually the 

rule that the teacher has most recently demonstrated 

" Ordinary students cannot expect to understand mathematics; they expect to 

simply memorise and apply what they have learned mechanically and without 

understanding 

" Mathematics is a solitary activity done by individuals in isolation 

" Students who have understood the mathematics they have studied will be able to 

solve any assigned problem in five minutes or less 

" The mathematics learned in school has little or nothing to do with the real world 

" Formal proof is irrelevant to processes of discovery or invention 
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Baroody (1987) identifies four ways that children's beliefs about mathematics 

impinges upon their views of themselves: 

" An inability to learn facts or procedures quickly is a sign of inferior intelligence 

and character 

" An inability to answer quickly or use a procedure efficiently indicates ̀slowness' 

" An inability to answer correctly denotes a mental deficiency 

" An inability to answer at all signals real stupidity 

These mathematical beliefs also have a behavioural corollary. For example, 

Schoenfeld (1992) reports that students would give up on problems quickly even 

though perseverance may well have led to a successful answer. 

Yet these beliefs and mathematical behaviour seem at odds with children's pre-school 

behaviours. Fuson (1992) reports that pre-school children appear to naturally use 

multiple approaches to answer simple arithmetic problems. Nunes & Bryant (1996) 

review an impressive range of pre-school competencies. These researchers conclude 

that it is the school and cultural environment that shapes children's overall beliefs 

about the nature of mathematics. Baroody (1987) proposes that it is classroom 

emphasis of getting the right answer using the correct procedure that creates what 

could be termed the `right answer hypothesis': children commonly believe that all 

problems must have a correct answer, that there is only one correct way to solve a 

problem, and that inexact answers (such as estimates) or procedures (trial & error 

problem solving) are undesirable. 

In this section, number sense has been associated with a variety of mathematical skills 

and beliefs. Aspects of mathematics such as mental calculation, numeration, relative 

and absolute magnitude and computational estimation have been related to number 

sense. One of the barriers to the development of number sense i. e. children's beliefs 

about mathematics, has been briefly reviewed. The learning environments developed 

and evaluated during the course of this research have examined two aspects of a 
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number sense approach to mathematics. They have focused on challenging the right 

answer hypothesis and have been concerned with developing understanding that 

mathematical problems can have many correct solutions and that inexact answers 

(estimates) are an important part of mathematics. In the following sections, research 

in these areas is reviewed in more detail. 

2.4 MULTIPLE SOLUTIONS AND STRATEGIES 

Little research has specifically addressed the role of multiple solutions in 

mathematics. However, encouraging children to believe that there can be multiple 

answers and ways to solve a mathematical problem has been identified as crucial for 

performance in a number of areas and for developing number sense. 

The term multiple solutions can have a number of different meanings. Firstly, it can 

mean that there are multiple correct outcomes to a mathematical problem. The 

computational estimation domain is an obvious case where there can be lots of `right' 

answers. Indeed, Sowder & Wheeler suggested that understanding that problems can 

have multiple answers was crucial for developing estimation abilities. A second 

meaning is where there may be a single correct answer, but multiple strategies for 

obtaining that answer. For example, an integral calculus problem such as 
5X dx 

x2 -9 

could be solved in a variety of ways with varying degrees of complexity. The third 

type of multiple solutions problem is where although there might be a single correct 

answer, there could be lots of ways of expressing that answer. Thus, `what's 2 +7? ' 

always equals nine, but could be expressed as ̀ 1 + 8', '3 + 6', `4 +5', etc. For clarity, 

the first case will be referred to multiple answers, the second, multiple strategies and 

the third, multiple solutions. A further example of multiple answers/solutions, where 

different representations are used, is reviewed in depth in Chapter Three. 

2.4.1 Multiple Answers 

There are multiple right answers to estimation problems. For example, given `442 X 

362', reasonable answers include but are not limited to 12,000,20,000 16,000, 

15,000, etc. Values in equations often have multiple correct answers. For example, 

15 



given a problem such as: `find a value for x that makes the following equation true, 

x2+14=18'; this can obviously be true for x=2 and x= -2. The CSMS Mathematics 

Team (1981) suggest that children may interpret letters in algebraic expressions in six 

different ways, but in only two of these do they understand that a letter can represent 

more than one value. 

2.4.2 Multiple Strategies 

Research that has examined the role of multiple strategies in mathematics includes 

Tabachneck, Koedinger & Nathan (1994). They examined the role of multiple 

strategies in solving word algebra problems and identified four broad classes of 

category: algebra where the problem statement is translated into algebraic 

assignments and equations; guess and test involving translating into calculation 

statements; verbal-math where the original statement is recoded into another verbal 

statement and; diagrammatic where the problem statement in translated into a 

diagrammatic representation. They found no difference between the success rates of 

different individual strategies, but that multiple strategy use was about twice as 

effective as any single strategy. They propose that this effect occurs because these 

different strategies were associated with different types of errors. This allowed 

impasses to be bypassed or overcome. 

Santos (1994) gave 14 to 15-year old children problem solving tasks which had 

various methods of solution. For example, one problem was to decide if two whole 

numbers whose product is one million could have factors that did not include a number 

containing a zero. He found that (different) children used either trial divisors, prime 

factors or simple problems to obtain a solution. Individual children, however, did not 

consider multiple strategies easily. They stuck primarily to an algebraic re-statement. 

Thus, the multiple strategy effect observed by Tabachneck et al. could not operate 

and these children did seem to arrive at impasses. Similarly, Stacey & MacGregor 

(1995) found evidence that children may have difficulty in adjusting their solution 

strategy over the course of a set of problems. They may get fixed on solution 
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methods which worked with earlier problems, rather than adjusting their solutions to 

the problem in hand. This result accords with the psychological literature on 

functional fixedness (Duncker, 1945; Luchins & Luchins, 1950). Stacey & MacGregor 

conclude that students need to know that there are alternative models of a situation 

and that their initial perception of underlying structure may not be the most useful 

The problem is not only limited to primary mathematics. It has been demonstrated 

by much older students working in more complex domains. For example, Schoenfeld 

(1987) reports that his students would commonly pick difficult techniques to solve 

calculus problems when much simpler ones existed that would have allowed faster 

solutions. It would seem his students failed to consider whether alternative (simpler) 

solutions existed and that this failure was not due to poor mathematical knowledge 

since these more difficult techniques showed that students had proficient mastery of 

the domain. 

2.4.3 Multiple Solutions 

`How many different ways can you? ' problems seem relatively common in the 

primary mathematics classroom, yet little research seems to have been done of them. 

As part of the PrIme project, Price and Foreman (1989) developed a number of 

different problems that asked this question. `Ice cream cone problems' required 

children to make cones with different combinations of flavours. They were told to 

explore how many solutions could be found and to find out what the effect on price 

would be of various combinations. A similar problem was the `Witch's spell problem': 

`animals in the cupboard had different number of legs and the witch need's 24 legs in 

her pot, how many spells could she create from spiders, lizards, bats?. ' This study was 

not formally evaluated but there was informal evidence that children responded well 

to these problems. In particular, some children poor at `normal' mathematics 

responded well to these problems. Children's attention span on these problems was 

also good. One extension to this type of work would be to set problems where 
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children could not be expected to find all the solutions. This would mean that `the 

right answer' in these cases is not all of the possible correct solutions. 

Lampert (1986a, b) set her students `how many different ways' problems using 

money. Lampert's aim was to teach principled knowledge about multiplication (e. g. 

additive composition, commutativity of addition and multiplication) by linking it to 

operations on familiar objects. She favours collaborative teaching where students and 

teacher work together to make sense of mathematical problems. A typical question 

set to her pupils was to find out how many different combinations of nickels and 

pennies can make 82 cents. Children were encouraged to record all their different tries 

(not just correct ones) and were rewarded for this. She proposes that this approach 

allows children to develop strategies which can then be discussed with a class. She 

reports that practice with these types of problems resulted in children becoming more 

inventive in seeking out different decomposition and recomposition strategies. 

2.4.4 Instruction in Multiple Solutions and Methods 

Baroody (1987) has suggested that current classroom practice does not encourage 

children to consider multiple solutions to mathematical problems as legitimate. A 

number of researchers have considered how the teaching of mathematics might be 

adapted to consider multiple solutions. Two proposals are (a) to consider a wider 

variety of problems which require or invite different methods of solution and (b) to 

consider a variety of solutions to a single problem. 

Fuson (1992), in the context of addition and subtraction, and Greer (1992), for 

multiplication and division, review the wide range of situations that problems 

involving these operations can model. They show how superficially similar problems 

invite different conceptualisations. Differences in semantic structure, mathematical 

structure, numbers and children's intuitive models have all been related to different 

solution methods (e. g. Bell et al., 1989; De Corte & Verschaffel, 1987; Fischbein et 

al., 1985; Mulligan, 1992). An example given by Greer is (a) A painter mixes a colour 

by using 3.2 times as much red as yellow. How much red does he need with 4.6 pints 
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of yellow? or (b) A painter mixes a colour by using 3.2 pints of red for each pint of 

yellow. How much red should he use with 4.6 pints of yellow? The first is biased 

towards a multiplicative comparison and the second a rate conceptualisation. Equally, 

the numbers used in the situations can bias interpretation of the problem. One 

common finding (e. g. Bell et al., 1989) is that when the multiplier is a decimal less 

than 1, children and adults are much less likely to accept that the situation calls for 

multiplication. However, as a number of researchers point out, children in Western 

classrooms are rarely exposed to the full variety of these different situations and are 

not given the opportunity to work with problems that provide counter-examples to 

their misconceptions (e. g. Nesher, 1987). This contrasts with approaches to word 

problems within the Soviet Union which cover a much broader range of types and mix 

the type of problems within a page (Fuson, 1992). 

Other research has examined different methods of solution to the same problem. 

Cross-cultural comparisons suggest that in contrast to British and American 

classrooms Japanese and Taiwanese classrooms emphasise multiple solutions and 

strategies to a single problem (reviewed in Fuson, 1992). Schoenfeld (1992) reports 

that students in an American high school class were expected to work through 25 

problems in a 54 minute class (just over two minutes per problem). Western 

approaches to teaching often involve a large number of different problems each to be 

solved by a single method. Japanese teachers spent much longer on a single problem 

and emphasised a variety of solutions. Individuals or groups of students were also 

often invited to present their solutions to problems to the class. This approach is 

similar to the one favoured by Lampert (described above). 

This section has considered research on the generation of multiple solutions/answers 

to mathematical problems and has reviewed how this might best be taught. Section 2.6 

considers how computer-based learning environments can teach children to consider 

multiple solutions. In the next section, the second aspect of number sense explored by 

this thesis is discussed 
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2.5 COMPUTATIONAL ESTIMATION 

To successfully perform computational estimation a wide range of mathematical 

knowledge is required. LeFevre, Greenham & Waheed (1993) propose that three 

types of knowledge are necessary for computational estimation - conceptual, 

procedural and factual. The factual knowledge required for mental calculation includes 

knowledge of place-value and memorised number facts. Conceptual knowledge is 

needed to choose an estimation strategy that will produce approximate numbers to 

facilitate computation. Procedural knowledge is required to perform the 

approximation. 

The following two sections describe procedural and conceptual knowledge necessary in 

estimation. Further aspects of mathematics that have been related to computational 

estimation are reviewed in section 2.5.3. The final parts of this section discusses the 

development of computational estimation and previous approaches to instruction in 

estimation. 

2.5.1 Conceptual Components 

Research into the conceptual knowledge necessary for successful estimation has been 

limited. An exception is a study by Sowder & Wheeler (1989) who examined how 

conceptual understanding develops through the school years without explicit 

instruction. They gave children descriptions of situations involving computational 

estimation. Children were shown responses by hypothetical students and then 

interviewed about these tasks. For example, to examine whether children recognised 

the need for approximate numbers, the subjects were presented with the problem of `9 

x 52', together with alternative solutions of either `10 x 50 = 500', or `9 x 52 = 

468 round to 500' (these were actually given in cover stories e. g. 9 boxes of candy 

which contain 52 pieces). 

Their study outlined three main concepts which are directly implicated in successful 

performance of computational estimation: the role of approximate numbers, multiple 
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processes and outcomes and appropriateness of estimates. All of these concepts have 

two aspects: the process of estimation and the outcome of an estimation procedure. 

The first concept is the role of approximate numbers. Students must accept that 

approximate numbers are used to compute and recognise that the outcome of the 

computation can be approximate. For example, children were judged to lack this 

conceptual knowledge if they accepted that a viable estimation strategy was to use the 

exact numbers and then round (e. g. `19 x 31 = 589' so the answer is roughly 600). 

The majority of 7 to 8-year old children accepted approximate answers as valid. 

However, even 13 to 14-year-old children still preferred to compute an answer and 

then round it. 

The second concept identified by Sowder & Wheeler is that of multiple processes and 

outcomes. To understand estimation thoroughly, students must accept that there can 

be more than one process for obtaining an estimate and more than one value for an 

estimate. To test this, Sowder & Wheeler gave children two different estimates to 

problems and asked them about the acceptability of these estimates. Their results 

suggest a dissociation between outcome and process. The majority of children 

accepted that there could be alternative right methods to solve a problem, but only a 

minority accepted that there could be different correct answers (one from twelve at 

ages 7 to 8 rising to six from twelve by age 14). 

The final concept is appropriateness. Students should recognise that the 

appropriateness of the process depends on the context. Furthermore, the 

appropriateness of the estimate depends on the desired accuracy. Sowder & Wheeler 

identified this concept but did not examine it empirically. 

Conceptual Principles 

LeFevre et al. (1993) propose that there are two principles that summarise the 

conceptual knowledge required for estimation: proximity and simplicity. Proximity 

reflects the knowledge that the estimation should be reasonably close to the answer. 

Simplicity refers to knowledge of the best way to modify a given problem to produce 
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a solvable intermediate solution. These two principles are interesting in that they will 

often be antagonistic - the simplest solution will not always be the closest. 

LeFevre et al. gave estimation problems to children of various ages (8 to 9 year-olds, 

10 to 11 year-olds and 12 to 13-year-olds) and also to adults. Amongst other aspects 

of this research, they looked for evidence of the conceptual principles in subjects' 

answers to problems and in their descriptions of estimates. Even the youngest 

children seemed aware of the simplicity principle of estimation. However, proximity 

was much less apparent at all ages. This could be due to a less developed awareness of 

this concept. Alternatively, limitations of processing abilities or other mathematical 

skills may have prevented application of this conceptual principle. Evidence that this 

is at least partly due to under-developed conceptual knowledge is provided by 

children's descriptions of estimation which rarely mentioned proximity. In contrast, 

adults showed awareness of both principles. Proximity seemed more important than 

simplicity. It guided their choice of strategy and was mentioned in their definitions of 

estimation. 

2.5.2 Procedural Components 

A number of studies have examined strategies that are used by successful estimators 

(e. g. Dowker, 1992; Reys et al., 1991). The principal study is that of Reys, Rybolt, 

Bestgen & Wyatt (1982) who gave computational estimation tests to 1200,11-17 

year-old children. They selected the children who scored in the top 10% of each year 

group for further interviews. They presented these subjects with further problems and 

attempted to classify their strategies. These were categorised into three broad classes - 

reformulation, translation and compensation. 

Reformulation involves altering numerical data to produce a more mentally 

manageable form without altering the structure of the problem. A number of 

reformulation strategies have been observed, the most common of which is rounding, 

but truncation, averaging and changing the numerical form are all common. An 

example of each is given below: 
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Rounding: where the number is transformed to the nearest multiple of 10,100, etc. 

e. g. estimate ̀283 x 178' 

283 is closest to 300,178 is closest to 200 

so 300 x 200 = 60000 

Truncation: where the right-most digits are ignored 

e. g. estimate ̀283 x 178' 

283 is changed 200,178 is changed to 100 

so 200 x 100 = 20000 

Averaging: noticing that a set of multiplicands are all close to one number and then 

using that number. 

e. g. estimate ̀ 253 x 168' 

200 is roughly halfway between 253 and 168 

so 200 x 200 = 40000 

Compatible numbers: transforming a number to one more compatible with others in 

the problem. 

e. g. estimate ̀  
347 x 6, 

43 

350 347 is roughly 350,43 to 42 so that you can cancel leaving 
7 

Changing the form: using an approximately equivalent form of a number e. g. 

conversion between decimal and fraction 

e. g. `0.3 x 100' could be changed to a percentage - 30% of 100 

Translation strategies are the second kind of processes noted by Reys et al. (1982) 

This refers to the action of changing the mathematical structure of the problem to a 

more mentally manageable form. This form is then used computationally. 

Order Changing: changing the order in which the numerical values are processed 
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e. g. estimate ̀  
347 x 6' 

43 

divide the 6 and 43 first and get 7, so 347 divided by 7 is about 50 

Operation Changing: changing the operations in a problem 

e. g. estimate ̀8700 + 9200 + 9500' 

9000 x3= 27000 

The final strategy identified is compensation, where adjustments are made during or 

after computation. 

Intermediate compensation: adjustments are made during compensation 

e. g. estimate ̀2500 + 2100+ 2600 + 2500' 

3000 + 3000 + 3000 = 9000 "round them all up except 2100 which is 

dropped to make up for the rounding" 

Final compensation: adjustments are made after computation 

e. g. estimate ̀3.2 + 2.7 + 1.3' 

=3+2+I=6 but then add a final 1 to get 7 

Levine (1982) gave college students estimation problems involving multiplication and 

division. Her classification of strategies included: 

" use of fractional relationships, e. g. `482 x 51.2' is transformed to 
, 482 x1x 1001. 

2 

0 exponents, e. g. `0.47 x 0.26' becomes ̀(5 x 10-1) x (3 x 10-1)' 

0 rounding both numbers 

0 rounding one number 

" powers of ten (e. g. `76 x 89' is `100 x 100') 

0 known numbers 
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" incomplete partial products/quotients (where '25410-+-65' would be changed to 

`25400=60'and `10=5') 

" proceeding algorithmically, i. e. using known algorithms to calculate roughly, 

estimate and then combine all partial products or quotients 

She found that rounding both numbers and using algorithms were the most common 

strategies. This probably reflects the lack of instruction in estimation reported by her 

subjects - commonly they reported either no instruction or just instruction in 

rounding. 

Dowker (1992) examined a class of people who would be expected to be good 

estimators. She gave Levine's battery of multiplication and division problems to 44 

academic mathematicians. In addition to the examples already given, she also 

identified a number of more unusual strategies. For example, she noted the use of the 

powers of 2 where each number is converted to 2 raised to a given power. So the 

problem `64.6 X 0.16' becomes `26 X 24 = 1024' and then adjusted to give 10.24. 

Another is to use the rule (a + b) (a-b) = a2 - b2. The problem `12.6 x 11.4 = ?' is 

converted to (12 + 0.6) (12 -0.6) = 122-0.62 = 144-0.36. 

Her results suggest that indeed academic mathematicians are excellent estimators, 

both flexible and accurate (1030 from 1270 solutions scored within 10% of the 

correct answer). The most common strategies were to exploit fractional relations and 

the use of known and nice numbers. However, the mathematicians also used a wide 

range of strategies. Upon re-testing a portion of the subjects, this flexibility was 

noticeable, as many used different strategies to those they had used originally. They 

also had much less reliance on school taught strategies than Levine's sample. 

2.5.3 Related Components 

A number of concepts and skills have been related to ability in computational 

estimation. These can be characterised as those concerned with mathematical skills 

and those concerned with affect and beliefs. 
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Rubenstein (1985) was interested in the relation between estimation and other 

mathematical skills. She developed a number of different tasks - an open-ended 

estimation scale, a reasonable vs. unreasonable estimation scale, a reference number 

estimation scale and an order of magnitude estimation scale. These tasks included 

whole numbers and decimals, numerical or verbal descriptions and all four operations 

(addition, subtraction, multiplication and division). A test designed to examine factors 

related to computational estimation looked at selection of the right operator, relative 

number magnitude, known number facts, operating with tens and multiple of tens, 

place value and rounding. She also used the Iowa Problem solving test which involves 

three separate subtasks: getting to know the problem, solving the problem and 

looking back. 

Rubenstein gave these tests to 309 12 to 13-year-old children. She found no 

difference in performance depending on how the estimation tasks were described (i. e. 

verbal, numerical). This result differs from that of Morgan (1990) who found that 

estimation problems were generally answered more successfully if presented in a 

context as this encouraged children to abandon algorithmic strategies. Rubenstein did 

find that decimal numbers and multiplication and division increased the difficulty of 

problems. This replicates Bestgen et al. (1980) study of pre-service primary teachers. 

When examining the relation between estimation performance and other 

mathematical skills, she found that the most important dimensions were operating 

with tens, number magnitude and getting to know the problem scales. Surprisingly, 

place value, operating with multiples of ten, number facts and rounding were found to 

have almost no relation to estimation performance. 

Other research has examined affective components that influence performance at 

computational estimation. Reys et al. (1982) identified confidence in one's own 

ability to do mathematics and estimation as important for successful performance in 

estimation. Another key dimension is the belief that estimation is useful. Morgan 

(1990) found that many children thought estimation pointless, almost invariably 

preferring an exact solution. This attitude was also prevalent amongst the younger 
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children in Sowder & Wheeler's study. A final component identified is tolerance for 

error. Good estimators in Reys et al. 's study were more comfortable with some error 

and did not see inexact solutions as wrong. Dowker's study of academic mathematics 

also indicated that they were tolerant of error. She believes that mathematicians were 

comfortable with deviation because they were confident that they would be able to 

solve any problems caused by such error. Reys et al. (1992) in a study of Japanese 

children's estimating abilities found that tolerance for error was low and as a result the 

children in their study tended to use algorithmic approaches to exact computation 

rather than estimation strategies. One encouraging finding is that instruction in 

estimation strategies has been shown to increase favourable views of estimation 

(Bestgen et al. 1980). Again, the prevalence of these beliefs has been linked to 

common classroom practice stressing the importance of exact computation in order 

to calculate the right answer. 

2.5.4 The Development of Computational Estimation 

A number of researchers have been interested in the development of computational 

estimation abilities. Some of the research already discussed has a developmental 

component (Sowder & Wheeler, 1989; LeFevre et al., 1993). Dowker has looked at 

very young children's estimation strategies (Dowker, 1989; Dowker, 1996). She 

showed that children as young as five can give reasonable estimates to simple addition 

problems that are just beyond what they could calculate (Zone of Partial Knowledge 

in her terms). However, these young children often gave unreasonable estimates; 

producing answers that are less than one of the addends or more than twice their sum. 

This tendency became much more pronounced as they were given sums that were 

further from their calculation competencies (as they moved through the zone of 

partial knowledge). The educational implications of such a result seem to agree with a 

Vygotskian approach to instruction. It would seem profitable to set children problems 

of a level of difficulty just beyond where they perform without help. 
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Case & Sowder (1990) used Case's theory of cognitive development (Case, 1985) to 

make predictions about the types of estimation tasks that could successfully be 

undertaken by children of different ages who had not been taught estimation. Case's 

theory extends from age 0 to age 19, but the two periods relevant to school age 

children are the dimensional stage (age 5-10) where children can only focus on one 

dimension at a time and the vectorial stage (ages 11 to 18) where children can co- 

ordinate two or more dimensions of a task simultaneously. Each of these periods 

involves three stages. Case & Sowder examined computational estimation and 

identified two subcomponents: (a) the ability to convert an exact multidigit number 

into an approximate number and; (b) the ability to add a reasonably large column of 

numbers. 

They made a series of predictions concerning how children at different substages 

should perform at various mathematical tasks. At stage one of the dimensional period 

children should be able to compute single-digit sums and make single column nearness 

judgements. At stage two, they should be able to extend this to two digit problems. At 

stage three, children should be capable of computing two digit problems which require 

carrying or regrouping. At stage one of the vectorial stage, children should be capable 

of multi-digit estimation. This predictions rests on the premise that estimation 

requires co-ordinating double-digit rounding with double-digit calculation and as such 

requires vectorial competence. At stage two, some compensation should be possible. 

The final stage suggests that adolescents should have generalised competence at 

estimation. 

Case & Sowder then gave theoretically appropriate tasks based on these predictions to 

children at ages, 6,8,10,12,14.5 and 16.5 who were judged by their teachers to have 

average mathematical ability. These children had not received specialised instruction 

in estimation. They found that performance on these tasks was very close to that 

predicted both in terms of the tasks that the majority of subjects passed at each level 

and in that the same tasks could not be passed by children at the previous level. For 

example, a task at the second dimensional stage asked children `which is $25.85 
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closer to $20 or $30 ?' which 83% of 10-year-olds but only 33% of 8-year-olds 

passed. Problems at the first vectorial stage asked children to estimate `$2.25 + $3.42 

+ $1.25'. No ten-year-olds passed this test; they attempted to calculate the answer 

exactly but 83% of 12-year-olds did. The authors conclude that these results should 

signal caution for the teaching of estimation. They propose that if estimation is 

taught too early, it may become divorced from meaning. 

2.5.5 Instruction in Computational Estimation 

Curriculum developers in many countries are calling for instruction in computational 

estimation (e. g. USA National Council of Mathematics 1989; Japan Ministry of 

Education 1989). In the UK, the National Curriculum (1994) also recognises its 

importance. The second (of five) attainment targets is Number. The National 

Curriculum states that pupils should come to understand and use number, including 

estimation and approximation, interpreting results and checking for reasonableness. 

The first mention of estimation is at Level 3 (within Keystages 1,2 and 3). It has 

two components: the first is measurement estimation and the second computational 

estimation. For computational estimation, the National Curriculum states that 

children should recognise that the first digit is the most important in indicating the 

size of a number and children should approximate to the nearest 10 or 100. At level 

4, children are expected to be able to check the validity of addition and subtraction 

calculations and at level 6, multiplication and division, by estimation. At level 7, 

children must accept that measurement is approximate and choose the appropriate 

degree of accuracy. At level 8, children should check that the magnitude of answers to 

problems are in order. 

Little research has been published which describe how computational estimation might 

be taught. Schoen, Freisen, Jarret & Ursbatch (1981) describes two studies with 8 to 9- 

year-old children that taught front-end estimation and rounding. These researchers 

developed worksheets which teachers administered and the analogy of shooting at a 

target was used. Schoen et al. found that children could use the strategies that they 
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were taught (as measured by pre-test to post-test performance) and that they retained 

these skills. However, only the skills of estimation were taught, concepts and beliefs 

were not addressed. 

Trafton (1986) is concerned with how estimation might be taught to encourage an 

estimation mind-set. Essentially, these are the concepts and affective components 

related to estimation (described above). For example, he suggests that instruction 

should include accepting that estimation is useful, recognising when an estimate is 

appropriate and tolerance of error. He states that developing children's thinking and 

reasoning ability in estimation is as important as teaching estimation strategies. He 

proposes six routes by which this may be achieved: introduce estimation with 

examples where estimated amounts are used; emphasise situations where only an 

estimate is required; use real world application extensively; use easy examples in the 

early stages avoiding precision; emphasise the language of estimation; accept a 

variety of estimates; use oral work and group discussion and; emphasise estimation 

regularly. Other important aspects are to encourage children to have a sense of the 

relationship between the estimate and the exact answer; develop flexible thinking and 

decision making abilities by presenting situations where students can analyse what 

type of estimate should be used; and show them different approaches to the same 

problem. 

Markovits & Sowder (1994) taught estimation skills to children in grade 7 (11 to 12 

year-olds) as part of an on-going program to develop number sense (the other units 

were mental computation, fractions and number size). The estimation component 

consisted of seven lessons and work extended over nine class periods. They addressed 

a number of issues including the appropriateness of an estimate, degree of accuracy 

required in particular situations, absolute and percentage errors, compensation and 

reasonableness of an answer. Units included multiplication and division by numbers 

greater than and less than one. Lessons were led by a class teacher and were designed 

to allow children to actively question and explore their knowledge. 
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They found a number of positive effects of instruction. For example, before the study 

children had little understanding of relative error. If two estimate produced the same 

absolute error, they were considered identical even if the relative errors differed. After 

the intervention, 60% of children were able to judge relative error. They used 

compatible numbers strategies when estimating and many had overcome the pervasive 

`division means make smaller' belief. This understanding was still present at a 

retention interview six months later. 

This research suggests that while computational estimation may be difficult for 

children, that appropriate instruction can help them develop effective and flexible 

estimation skills. The next section considers how computer-based learning 

environments might be used to teach computational estimation. 

2.6 COMPUTER-BASED APPROACHES 

Little research has directly addressed the role that computer-based learning 

environments could play in supporting these aspects of number sense. This section 

will briefly review some relevant systems and consider the advantages that computer- 

based learning environments can bring to learning in these areas. In doing so, it is 

important to emphasise what computers do badly - and that is provide the discussion 

of concepts, strategies and solutions that teachers and peers do. However, they can be 

used as a tool to stimulate such discussion. Thus, the systems developed for this thesis 

are not intended to be used as stand-alones. They are designed to supplement 

classroom teaching, rather than replace it. 

Some computer-based learning environments have implicitly supported the 

development of understanding that there can be multiple correct solutions to single 

problems. The main purpose of Shopping on Mars (Hennessy, O'Shea, Evertsz & 

Floyd, 1989) is to help children realise that different types of problems are 

sometimes best solved using different methods. It takes the form of a (non-violent) 

adventure game, in which two players land on Mars with no fuel and must negotiate a 

series of obstacles before reaching a fuel shop. Obstacles can be overcome by means 
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of items purchased from nearby shops. The computer acts as shopkeeper and controls 

the level of difficulty. It can also intervene to encourage the use of efficient 

calculation tools and informal methods of calculation. Broken Calculator 

(Xploratorium 1991) asks children to solve calculations when various keys on the 

calculator are `broken'. It keeps logs of the various problem solutions that learners 

attempt. 

Chapter four describes COPPERS -a computer-based learning environments which 

looks at the simplest of the multiple solutions/answers/strategies problems. It is based 

on aspects of Lampert's teaching (reviewed above) and asks children to find different 

solutions to simple coin problems. Chapter Five reports two evaluation studies that 

examined whether COPPERS could effectively teach six to nine-year-old children to 

give multiple solutions to coin problems. 

In the realm of computational estimation, it has been shown that children can 

respond well to developmentally appropriate instruction. However, with the 

exception of a few studies (e. g. Schoen et al., 1981), little has been done to exploit 

the computer as a tool for developing children estimation skills. Yet, computer-based 

learning environments have a number of properties which make them highly 

appropriate for developing understanding of computational estimation. Computers 

can differentiate problems given to children adjusted through their zone of partial 

knowledge. They can log estimates of current and previous users allowing 

comparisons between different methods. Different solutions to the same problems can 

be presented allowing comparisons between estimation strategies. They can show the 

relation between an estimate and an exact answer and highlight differences between 

absolute and relative error. They can support other mathematical demands such as 

number facts and order of magnitude correction so that children can be prevented 

from failing due to slips which might otherwise be internalised as "I'm bad at 

estimating". Learning environments that are based on a guided discovery approach 

(Elsom-Cook, 1990) can also fade this support as children's competencies develop. 
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Chapter six reports on how a computer based learning environments - CENTS was 

designed and implemented by drawing on the research on computational estimation. 

Chapters seven and eight report on evaluation studies with CENTS. 

2.7 CONCLUSION 

This chapter has reviewed research which addresses the role of number sense in 

mathematical understanding. Two areas considered central to developing number 

sense are computational estimation and understanding that mathematical problems 

can have multiple correct solutions. Research on these aspects of mathematics has 

been described in detail. This research will be related to the design of two learning 

environments that have been developed and evaluated during the research conducted 

for this thesis (Chapters Four and Six). The second aspect of the design of these 

environments is the use of multiple external representations in supporting learning. 

Chapter Three describes research in this area. 
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CHAPTER THREE 

Learning with Multiple External Representations 

The use of multiple external representations (MERs) to support learning does not 

begin with the advent of computer-based learning environments. Teachers use MERs 

explicitly in order to make abstract situations more concrete. For example, children 

are often given a percentage such as 33% alongside a drawing of a pie chart with one 

third shaded. MERs may be used implicitly such as when a book contains pictures or 

explicitly, as with algebra word problems when learners must translate from one 

representation to another. 

In addition, software that employs MERs has become increasingly available at all 

levels of education. For example, geometry packages such as Geometry Inventor 

(LOGAL / Tangible Math) allow tables and graphs to be dynamically linked to 

geometrical figures. Function Probe (Confrey, 1992) provides graphs, tables, algebra 

and calculator keystroke actions and allows students to act upon any of these 

representations. One of the biggest areas of expansion in educational software is with 

multi-media technologies. By definition, these systems involve MERs, often including 

video and spoken text. Even traditional classroom uses of MERs, such as using an 

equation to produce a table of values which can then be plotted as a graph, have been 

significantly altered by the introduction of graphical calculators. 

Given this growth of multi-representational software, it is appropriate to ask what 

evidence is there that providing learners with MERs facilitates understanding. There is 

an increasing body of research which suggests that MERs can confer significant 

benefits when learning. However, much less is known about the conditions under 

which MERs are beneficial. Consequently, designers and educators have few principles 

to guide their use of MERs. One aim of this thesis is to identify under what conditions 

particular MERs facilitate learning. 

This chapter will review the research on learning with MERs. This research is first 

discussed in relation to the basic premise of learning with external representations - 
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that the way information is represented has significant consequences for learning. In 

order to predict the effects of a particular representation or combinations of 

representations upon learning, we need a means of analysing particular 

representations. Hence, different approaches to classifying representations will be 

discussed in section 3.2. The role of MERs in supporting learning is reviewed and 

synthesised and considers both their advantages and disadvantages. Particular 

attention is paid to translation between representations as this issue is unique to 

learning with MERs. Finally, this chapter will end by proposing a set of core issues 

which could form the basis of a framework for designing multi-representational 

learning environments. 

3.1 LEARNING WITH AN EXTERNAL REPRESENTATION 

Interest in MERs has followed from the abundant evidence that the way in which 

information is presented in a single representation affects learning and problem 

solving. It is known that different representations of the same information can result 

in different inferential processes. Larkin & Simon (1987) contrasted interpretation of 

diagrammatic and sentential representations in terms of search, recognition and 

inference. Analysing a physics pulley example, they show how search processes are 

considerably more efficient in diagrammatic rather than sentential representations. 

With a more complex geometry example, the representations differ in terms of cost 

of recognition. They propose that sentential representations have a high cost of 

perceptual enhancement when compared to the diagrammatic representations. 

Many studies have found that how information is presented affects what people learn. 

For example, Bibby & Payne (1993) studied the effect of different instructional 

representations (table, procedure, diagram) upon learning to use a simple control 

panel device. They found that users could learn to perform certain tasks more easily 

with one representation than another. Furthermore the effects of the different 

representations continued even after substantial practice (Bibby & Payne, 1996). 
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External representations have been shown to influence the efficiency of problem 

solving. Zhang & Norman (1994) manipulated different representations of the Tower 

of Hanoi problem. In some cases subjects needed to internalise the rules for 

manipulating the problem, in others they were embedded in the external 

representation. The fewer rules that needed to be internalised the better the subjects 

performed. 

In general, there has been much research showing that the nature of an external 

representation can facilitate learning and problem solving - although there is still 

much debate about exactly how and why this effect occurs (for a recent critique of the 

arguments, see Scaife & Rogers, 1996). 

Research on learning with an external representation has examined many different 

issues. Some of the dimensions that have been considered include: (a) the relation 

between the modality of the representation and learning (e. g. Larkin & Simon, 1987; 

Stenning & Oberlander, 1995); (b) the learner's expertise and experience with 

particular representations (e. g. Anzai, 1991); (c) whether representations with certain 

fundamental properties better support learning (e. g. Law Encoding Diagrams - Cheng, 

1996c; representations at intermediate levels of abstraction - White, 1993); (d) 

whether representations are self-constructed or presented to learners (see Cox, 1996 

for a review) (e) the media in which a representation was instantiated - such as 

computer-based or physical manipulables (e. g. Thompson, 1992), etc. The research 

reviewed in this chapter builds upon this to address a further issue - learning with more 

than one representation. 

3.2 CLASSIFYING REPRESENTATIONS 

Descriptions of representations are commonly based upon Palmer's analysis (Palmer, 

1978). He proposes that any particular representation should be described in terms of 

(1) the represented world, (2) the representing world, (3) what aspects of the 

represented world are being represented, (4) what aspects of the representing world 

are doing the modelling and (5) the correspondence between the two worlds. Using 
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this definition of a representation, a number of different approaches have been 

developed to classify representations. Although modality (i. e. graphical or 

propositional representations) is most commonly considered, there are many other 

ways of distinguishing representations. These different approaches can be described in 

terms of three alternative methods: (a) to identify equivalences between 

representations; (b) to propose taxonomies of representations and; (c) to distinguish 

fundamental properties of representations. These approaches are, to a large extent, 

complementary. 

3.2.1 Equivalence 

One fundamental property of representations already touched upon is the notion of 

equivalence. Two representations are said to be informationally equivalent if all the 

information provided by one representation is available from the other. Each could be 

constructed from the other. Two representations are said to computationally 

equivalent if the information directly inferable from one is as easily and quickly drawn 

from the other (Larkin & Simon, 1987). Representations such as graphs, tables and 

equations can therefore be said to be informationally equivalent (given a graph, one 

could construct the equation, given a table of value, one could construct a graph, etc. ). 

However, there are obvious differences between the inferences they support. For 

example, variation is more implicit in the equation `y=x2+6' than in the resulting 

graph where all values for x and y can be seen. A graph automatically orders values, a 

table need not order the values it contains. 

Another form of equivalence identified by Kaput (1987) is that of semantic and 

syntactic equivalence. Two entities can be said to be semantically equivalent if they 

correspond to the same element of a reference field. If their equivalence can be 

defined solely in terms of the symbol scheme and its syntactic rules, then they are 

said to be syntactically equivalent. This allows us to distinguish between 'y=2x+3' and 

6u=2v+3' (syntactically equivalence) and 'y=2x+3' and `2y=4x+6' (semantically 

equivalent). 

37 



3.2.2 Taxonomies 

An alternative way of analysing representations is to produce a taxonomic 

description of representation types. For mathematics, Lesh, Post & Behr (1987) 

have identified five distinct types of representation system 

" experience-based `scripts' - real world events serve to structure knowledge so that 

it serves as general contexts for interpreting other kinds of problem situations; 

" manipulable models (e. g. Dienes blocks, number lines) which have `built in' 

relations and operators which fit everyday situations; 

" pictures and diagrams - static models that can be internalised as images; 

" spoken languages, including specialised sub-languages like logic and; 

" written symbols such as `x+3 =7'. 

At a higher level of granularity, Kaput (1987) identifies four classes of 

representation: (a) cognitive and perceptual representations, (b) explanatory 

representation involving models, (c) mathematical representations and (d) external 

symbolic representations. Taxonomies such as these two are based upon analyses of 

domains and, presumably, the authors' intuitions. 

An alternative approach to producing a taxonomy of representations was taken by 

Lohse, Biolsi, Walker & Rueler (1994). They selected 60 different graphical 

representations and asked subjects to rate them on ten scales of properties (previously 

identified by subjects as relevant dimensions) such as attractiveness, difficulty, 

numerical, etc. These items were classified into eleven major clusters: graphs, 

numerical and graphical tables, time charts, cartograms, icons, pictures, networks, 

structure diagrams, process diagrams and maps clusters. Cox (1996) asked subjects to 

sort 87 different representation and identified 18 principle clusters. Similar categories 

to those of Lohse et al emerged allowing for the different corpora used (e. g. the 

addition of musical notation in Cox's study). 
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These sorts of taxonomies may be useful within a particular community to provide a 

commonly agreed set of terms. However, descriptions based upon analysis of visual 

similarity alone ignores function. Classifying steering wheels with Venn diagrams 

becomes much more sensible if the task given is to represent circularity. Completely 

different classifications might emerge if the task emphasised the function of the 

representations in relation to particular tasks. Cox's task emphasised problem solving 

and hence may be more useful for instructional situations, whereas Lohse et al's 

concerned visual display. In addition, there will almost certainly be novice-expert 

differences in how these representations are perceived and used (e. g. Anzai, 1991; 

Koedinger & Anderson, 1990). This is particularly important when representations 

are used to support learning. 

3.2.3 Fundamental Properties 

Another approach to classifying representation is to isolate fundamental properties 

which define representations and then describe each representation in these terms. 

For example, Lohse et al (1994) analysed words and phrases people used when sorting 

representations and produced 10 different clusters of properties. These were spatial, 

temporal, difficulty, concreteness, continuous, attractive, part-whole emphasis, 

numeric, static, informationally rich. 

All of Lohse et al's representations were used to display information. However, Kaput 

considers whether a representation is used for action or display to be a further 

fundamental property. This difference is due not to absolute properties, but to 

features that evince different patterns of use. Display representations are not 

intended to be acted upon by users, except to build them initially. Action notations 

support a variety of transformations and actions. For example, transforming 

equations, substituting values for variables and extending tables are all examples of 

actions upon representations. The medium in which a representation is instantiated 

also affects the degree to which it can be used for display or action. The computer 

offers the potential to use traditional display notations with new forms of actions. 
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One of the most widely applied approaches to describing fundamental properties of 

representations is Green's Cognitive Dimensions (e. g. Green, 1989; 1990; Green & 

Petre, 1996). A cognitive dimension of a notation is a characteristic of the way that 

information is structured and represented. It interacts with the human cognitive 

architecture to influence the way people use the notation for a given activity. 

Examples include: 

" Hidden/Explicit dependencies which describes the extent to which a 

representation hides important relationships between states 

" Viscosity captures how much a notation resists change 

" Abstraction gradients describes the maximum and minimum levels of abstraction 

" Role Expressiveness describes how much the structures of the notations display 

their functional role 

" Secondary notation concerns cues such as colour and layout that are not described 

by the formal semantics of a representation 

" Diffuseness is a measure of the number of symbols per idea 

Green proposed cognitive dimensions as discussion tools, available to the non- 

specialist as well as the HCI expert. The aim is to make clear the cognitive 

consequences of design choices. Green shows that representations designed to be ideal 

on one dimension (e. g. reduced viscosity) will have consequent effects on another 

(e. g. increased abstraction). This point in interesting in the context of MERs as one 

potential (partial) solution to a problem (e. g. hidden dependencies) may be to provide 

an alternative representation which makes this information salient. 

A very different approach to analysing properties of representation is that of 

Stenning & Oberlander (1995). They identify specificity as a fundamental property of 

a representation that has direct ramifications for processing efficiency. Specificity is 

the demand by a system of representation that information in some class be specified 

in any interpretable representation. The specificity of a representation determines 
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the extent to which the representation permits expression of abstraction. Based upon 

this property, Stenning and Oberlander propose that there are three main classes of 

representation: Minimal Abstraction Representational Systems (MARS), Limited 

Abstraction Representational Systems (LARS) and Unlimited Abstraction 

Representational Systems (UARS) (in increasing order of expressiveness). 

MARS are representations in which there is exactly one model for each 

representation in the system, under the intended interpretation. An example of a 

MARS is a tabular representation where each object must be described as possessing or 

not possessing each property listed. To be minimally abstract the representation must 

always represent each of the objects and dimensions and must assign each object 

exactly one value on each dimension. Such representations are extremely restricted in 

their expressive power. LARS allow for more than one model for each representation. 

They remain limited in that abstraction is only permitted over models which differ 

with regard to an object's value on one dimension. So, for the table example, an 

object need not be described as possessing / not possessing a value (say by leaving a 

cell blank). Stenning & Oberlander propose that most graphical representations could 

be considered as examples of LARS. A representation can be classified as an UARS if 

its expressiveness depends upon equations or arbitrary dependencies. So a value in a 

table could now be expressed by an equation. 

It is proposed that the class that each representation belongs to will allow us to 

predict their cognitive computational properties, with a LARS being more 

computationally effective than a UARS as these systems are syntactically constrained 

and limit the number of cases that must be computed over. This analyses have been 

used to describe the effectiveness of Euler Circles for solving syllogisms (Stenning & 

Oberlander, 1995) and to explain the failure of certain VCR interfaces (Williams, 

Duncomb & Alty, 1996). 

This approach represents one of the most principled approaches to specifying how a 

fundamental property of a representation affects cognitive processes. It provides a 
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idealised model from which to make predictions about how particular representations 

will support understanding. A remaining concern for learning and instruction, 

however, is how useful an analysis of the intended interpretation will be when learners 

will almost certainly have completely different interpretations of the given 

representation. 

Palmer (1978) identifies three fundamental properties of non informationally 

equivalent representations. The type of information is simply the dimension(s) of the 

represented world that a representation encode. Resolution refers to the grain size of 

a representation. If a dimension describes n relations, the higher the value of n, the 

higher the resolution and the smaller the grain size. For example, some could be 

described as either short or tall (2 relations) or 5 feet 2 inches, 6 feet inch, 5 feet II 

inches, etc. Uniqueness refers to whether the representation directly supports the 

required inference or whether additional information is needed to construct the right 

interpretation. Palmer uses the example of a map where city size is either given by 

the size of black dots (the former case) or whether it is given using colour codes (the 

latter). 

The final approach considered is that of Cheng's functional roles analysis (Cheng 

1996a). Functional roles are capacities or features that a diagram may possess which 

can support particular forms of reasoning or specific problem solving. They do this 

by making the relevant information salient such that little computation has to be 

done. Examples of such roles are: showing spatial structure and organisation, 

capturing physical relations, displaying states or values and encoding temporal 

sequences. This level of analysis (between consideration of a diagram as a whole 

entity and analysis of elementary diagrammatic components) seems ideally suited to 

the task of designing external representations to support learning. 

Given the breadth of the previous discussion, it is obvious that there is no single 

`correct' way of classifying representations. Yet, in order to make predictions about 

combining different representations, it is necessary to describe the dimensions that 
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makes each representation different. This thesis will utilise these three different 

approaches describing representations in terms of equivalence, taxonomy and 

property. In particular, representations will be described in terms of informational and 

computational equivalence. This has been manipulated over experiments to explore 

cases when representations that are fully, partially or non informationally redundant. 

Taxonomies of representations are used to identify each representation as belonging 

to a particular class of representations, in particular Kaput's and Lesh's models are 

used to distinguish between mathematical and pictorial representations. At more fine- 

grained level, reference is made to Lohse et al's taxonomy. Four experiments have 

been concerned with the effects of combining representations of different types. 

Finally, properties of representations are considered along the relevant dimensions of 

Palmer's and Cheng's analysis. These approaches were considered to be the most 

appropriate to the fairly simple representations used within the learning 

environments and have been used to ensure constancy across representations that 

vary along other dimensions. Further detailed description of the representations used 

in COPPERS can be found in section 4.4.3 and those for CENTS in section 6.5. 

The effects of providing MERs on learning will be discussed in depth in the next two 

sections. Firstly, by considering the advantages that may be provided by MERs and 

secondly by analysing the difficulties learning with MERs presents. 

3.3 ADVANTAGES OF LEARNING WITH MFRS 

It is proposed that one significant factor hampering the development of generalised 

principles for learning with MERs has been the failure to recognise that MERs are 

used for quite distinct purposes. Consequently, while there has been much research on 

individual examples and some theoretical explanation, an integrative framework has 

been slow to develop. This section will review the evidence which suggests that the 

use of MERs can provide a number of benefits for learning. In order to begin to 

specify such a framework, research reviewed will be characterised in terms of three 

fundamental uses of MERs. These are proposed and discussed in turn: 
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0 MERs support different ideas and processes 

0 MERs constrain interpretations 

" MERs promote a deeper understanding of the domain 

3.3.1 Different Ideas and Processes 

Essentially, the basis of this assertion is that by combining representations that differ 

in either informational or computational properties, we can exploit the advantages of 

each representation in the representational system. 

A common use of MERs is when the information varies between the representations 

in the multi-representational system. Thus, quite simply, each representation serves a 

distinct purpose. Sometimes, information is partially redundant between 

representations, in other cases, there is no redundancy between the information 

expressed by each representation. Tarski's World (Barwise & Etchemendy, 1992) 

provides a graphical display of elements of world (tetrahedrons, spheres, cubes) and a 

sentential representation of the logical description of the world. 'MoLE', Oliver & 

O'Shea (1996) expands on this by providing one representation to express the 

relation between different modal worlds, and another to illustrate each world's 

content (illustrated in Figure 3.1). In this case, there is no redundancy between the 

two representations. 
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Figure 3J The relation and world descriptions representations in MoLE 
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Within the Internet Software Visualisation Laboratory (Mulholland & Domaigne, in 

press), one representation shows the search path that a PROLOG interpreter takes 

when satisfying a subgoal. A second textual representation describes the detail of each 

predicate in turn. 

These approaches to using MERs are ideal if a single representation would be 

insufficient to carry all the information about the domain or would be too 

complicated for people to interpret if it did so. 

A second use of MERs follows from Larkin & Simon's analysis that representations 

that are informationally equivalent still differ in their computational properties. For 

example, they proposed that diagrams exploit perceptual processes, by grouping 

together relevant information, and hence make processes such as search and 

recognition easier. Further research has shown that other common representations 

differ in their inferential power (e. g. Cox & Brna, 1995; Kaput, 1989). For example, 

tables tend to make information explicit, emphasise empty cells (thus directing 

attention to unexplored alternatives) and highlight patterns and regularities. The 

quantitative relationship that is compactly expressed by the equation `y=x2+5' fails 

to make explicit the variation which is evident in an (informationally) equivalent 

graph. Therefore, MERs can be used to obtain the different computational properties 

of the individual representations. 

Research stemming from Human-Computer Interaction tradition has emphasised that 

a notation is never absolutely good, but only good in relation to certain tasks (Green, 

1989). This point was made by Gilmore & Green (1984) who proposed the match- 

mismatch conjecture - that performance will be facilitated when the form of 

information required by the problem matches the form provided by the notation. 

This analysis has subsequently been applied to a number of domains (e. g. comparing 

visual and textual programming languages; Green, Bellamy & Petre, 1991). Bibby and 

Payne (1993) examined how different, informationally equivalent, representations 

(table, procedure, diagram) supported acquisition of various aspects of device 
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knowledge. Looking at performance on a simple control panel device, they found 

cross over effects. Subjects given tables and diagrams identified faulty components 

faster. However, those given procedures were faster at deciding which switches were 

mispositioned. 

Therefore, a further reason for using MERs is when a learning goal requires different 

tasks to be undertaken. MERs can be designed so that an appropriate representation 

could be supplied for each of the tasks. 

Research that examined the relation between different representations and strategies 

has also provided support for the use of multiple representations. Tabachneck, 

Koedinger & Nathan (1994) showed that the different representations used to solve 

algebra word problems were associated with different strategies. No single strategy was 

more effective than any other, but the use of multiple strategies was about twice as 

effective as any strategy used alone. As each strategy had inherent weaknesses, 

switching between strategies made problem solving more successful by compensating 

for this. Cox (1996) observed a similar effect when students solved analytical 

reasoning problems. He found that subjects tended to switch between representations 

at impasses and on difficult problems. 

A further rationale often provided for the use of MERs is that there are individual 

differences in representational and strategic preference. Thus, if two alternative 

representations are provided, users could act upon the representation of their choice. 

Research examining the impact of various personality or cognitive factors in relation 

to learning with external representations has proposed differential effects of IQ, 

spatial reasoning, locus of control, field dependence, verbal ability, vocabulary, gender 

and age (see Winn, 1987). A common (although by no means invariant finding) is 

that learners defined as showing less aptitude in the domain benefit from graphical 

representations of the task (see Cronbach & Snow, 1977; Snow & Yalow, 1982). 

This explanation for using MERs is often given by those who believe in distinct 

cognitive styles. However, cognitive style remains somewhat of a contentious issue as 
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there are noted intra-individual differences as well as inter-individual differences. 

Furthermore, preferred style may not directly relate to task performance. Roberts, 

Wood, & Gilmore (1994) showed that when solving problems which involved spatial 

reasoning (e. g. mentally working out compass points in a route planning task), people 

high on spatial reasoning were more successful than people who scored low on spatial 

reasoning. Contrary to the simple prediction, this effect occurred as high spatial 

subjects typically used non-spatial strategies whereas people with low spatial ability 

struggled unsuccessfully to solve problems by mentally constructing spatial images. 

However, cognitive style is not the only reason why individuals may prefer certain 

representations. An account based simply on the proposition that learners will often 

having varying experience and expertise with different representations would also 

suggest that MERs would be beneficial. 

It can be seen that there may be considerable advantages for learning with MERs. By 

combining representations with different informational and/or computational 

properties, learners are no longer limited by the strengths and weaknesses of one 

particular representation. 

3.3.2 Constraints on Interpretation 

A second use of MERS is to help learners develop a better understanding of a domain 

by constraining interpretation. This can be achieved in three ways. 

Firstly, an additional representation may be employed to support the interpretation 

of a more complicated, abstract or unfamiliar representation. Thus, the second 

representation can provide support for a learner's missing or erroneous knowledge. 

For example, microworlds such as DM3 (Henessey et al., 1995) provide a simulation 

of a skater alongside a velocity-time graph (amongst other representations). Two 

misconceptions common to children learning Newtonian mechanics are that a 

horizontal line on a velocity-time graph must represent a stationary object and that 

negative gradient must entail negative direction. These misinterpretations of the line- 

graph are not possible, however, when the simulation shows the skater still moving 
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forward. ReMIS-CL (Cheng, 1996b) teaches about the physics of elastic collisions. 

Law Encoding Diagrams (LEDs) are presented for learners to reason with and act 

upon. User's reasoning about information presented in the LEDs (e. g. initial and final 

velocities) can be debugged by comparison to an animated simulation of the collision. 

A further example is that of Yerushalmy (1989) who describes a multi- 

representational learning environment for teaching algebraic transformations. It 

presents users with an algebraic window where they transform algebraic expressions. It 

also provides three graphs: the first displays a graph of the original expression; the 

second displays the current transformed expressions and; the third describes any 

difference between the two expressions. Consequently, learners are encouraged to 

check that their transformations are correct as graphs should not change if a 

transformation was legal. 

Multimedia systems often exploit this aspect of MERs (e. g. Millwood, 1996), for 

example, by providing written and spoken text simultaneously. If children are 

developing reading skills and find the written text difficult, or if the spoken text is 

hard to understand (e. g. Shakespearean language, speech with a broad regional accent), 

then presence of the second representation may help support understanding of the 

first. 

A second use of MERs to constrain interpretation is when one of the representations 

permits less expression of abstraction. To use an example based on Johnson-Laird's 

research (e. g. Ehrlich & Johnson-Laird, 1982), the ambiguity in the propositional 

representation ̀the knife is beside the fork' is completely permissible. However, an 

equivalent image would have to picture the fork as either to the left or to the right of 

the knife. Thus, when these two representations are presented as a multi- 

representational system, interpretation of the first representation must be 

constrained by the second when the representational system is considered as a whole. 

Finally, information expressed in each representation in a multi-representation 

system could describe different aspects of the same situation. Together this 

48 



information may constrain interpretation about a domain. For example, the 

representation of an abstract sentence `L(a) or L(b)' permits three valid 

interpretations (e. g. Adam is by the lake, or Bill is by the lake or both are by the 

lake). The second representation denotes `L(a) or not L(b)' (e. g. Adam is by the lake, 

or Bill is not by the lake, or Adam is by the lake and Bill is not by the lake). 

Together, the representations constrain the interpretations about the situation. By 

reasoning about the conjunction of the representations, we know that the only 

situation that makes both these sentences true is L(a), (i. e. Adam is by the lake). 

Thus, there are a variety of ways that MERs may constrain interpretation either by 

supporting missing knowledge, through providing representations which permit 

different interpretations, or through providing representations which provide 

mutually constraining information. The first use of constraint is likely to be the most 

common in learning environments. 

3.3.3 Deeper Understanding of the Domain 

Kaput (1989) proposed that multiple linked representations may allow learners to 

perceive complex ideas in a new way and to apply them more effectively. By 

providing a rich source of representations of a domain, learners can be provided with 

opportunities to build references across these representations. Such knowledge can be 

used to expose the underlying structure of the domain represented. On this view, 

mathematics knowledge can be characterised as the ability to construct and map 

across different representations. Similarly, Resnick & Omanson (1987) suggested that 

mapping between representations plays an important role in developing a more 

abstract representation that encompasses both. When they describe the process of 

abstracting over Dienes blocks and written numerals, it is the quantities that both 

representations express that permit mapping. Schwartz (1995) provides interesting 

converging evidence that multiple representations can generate more abstract 

understanding. In this case, the multiple representations are provided by different 

members of a collaborating pair. With a number of tasks (the rotary motion of 
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imaginary gears, text from biology tasks where inferences must be made), he showed 

that the representations that emerge with collaborating peers are more abstract than 

those created by individuals. One explanation of these results is that the abstracted 

representation emerged as a consequence of requiring a single representation that 

could bridge both individual's representation. 

Therefore, although research with this aspect of MERs seems more speculative than 

research on the first two purposes of MERs, evidence from both individuals and pairs 

suggest that an abstracted understanding can result from working with MERs. 

3.3.4 Summary 

There are many different reasons why MERs should be beneficial for learning. 

Research was reviewed and it was suggested that MERs are commonly used for one of 

three main purposes (i. e. that MERs support different ideas and processes, can 

constrain interpretations and promote a deeper understanding of the domain). For 

each of these uses, multiple sub-components were identified. For example, three 

different mechanisms by which MERs could support constraint were outlined. 

Furthermore, MERs used in a single system may fulfil two or more of these purposes 

simultaneously. For example, representations used to describe different aspects of a 

domain may also encourage abstraction if learners can map over them. 

However, for these objectives to be met, learners must meet a number of significant 

learning demands. These are discussed in the next section. 

3.4 DISADVANTAGES OF LEARNING WITH MERS 

These potential advantages of MERs do not come without associated costs. Learners 

are faced with three learning tasks when they are presented with MERs. Firstly, they 

must learn the format and operators of each representation. Secondly, learners must 

come to understand the relation between the representation and the domain it 

represents. Finally, and uniquely to MERs, learners must come to understand how the 

representations relate to each other. 
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The following section will give examples of each of these learning demands and the 

problems associated with them. 

3.4.1 Learning to Understand a Representation 

The first learning task facing any user of a representation is to ensure that they 

understand each representation. They must understand how a representation encodes 

and presents information (the `format'). In the case of a graph, the format would be 

attributes such as lines, labels, and axes. They must also learn what the `operators' are 

for a given representation. For a graph, operators to be learnt include how to find the 

gradients of lines, maxima and minima, intercepts, etc. At least initially, such learning 

demands will be great, and will obviously increase with the number of representations 

employed. 

Petre (1993) provides evidence for the effects of learning to understand a 

representation in regard to visual interfaces - countering the notion that graphical 

representations are inherently better than textual ones as they require no learning in 

order to use them. In observing differences between novices and experts, she showed 

that novices lack proficiency in secondary notation (i. e. perceptual cues that are not 

described by the formal semantics of a representation). Novices may find navigation 

of graphical representations difficult as they don't have the required reading and 

search strategies. In contrast to expert performance, they tend not to match 

strategies to the available representations. 

3.4.2 Learning the Relation Between the Representation and the Domain 

Learners must also come to understand the relation between the representation and 

the domain it is representing. This task will be particularly difficult for learning with 

MERs as opposed to problem solving or reasoning, as learners will also have 

incomplete domain knowledge. 

Brna (1996) provides details from a numbers of domains about the difficulties learners 

face when attempting to relate a representation to a domain. For example, even 
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fairly competent programmers who had received information about the elements of a 

new (visual programming) representation failed to clearly map the format of the new 

representation onto their existing domain knowledge. 

Learners will not just have problems relating the format of a representation to the 

domain; they must also learn which operators to apply to the representation to 

retrieve the relevant domain information. To return to the graph example, children 

must learn when it is appropriate to examine the slope of a line, the height of a line, 

or the area under a line. For example, when attempting to read the velocity of an 

object from a distance-time graph, children often examine the height of line, rather 

than the gradient. 

Laborde (1996) discusses the difficulties that students had in connecting geometrical 

properties to spatial properties when learning with Cabri-geometre. Encouragingly, 

though, she believes that the computer environment acted to help children learn 

these relations by enlarging the range of visual phenomena possible (for example by 

dragging circles, tangents, etc. ) whilst at the same time constructing these 

visualisations in a theoretically meaningful way. 

Additionally, the operators of one representation are often used inappropriately to 

interpret a different representation. A representation of graph may be interpreted 

using the operators for pictures. This behaviour is seen when children are given a 

velocity-time graph of a cyclist travelling over a hill. Children should select aU 

shaped graph, yet they show a preference for graphs with a hill shaped curve (e. g. 

Kaput, 1989). 

These problems do not only arise with abstract representation such as graphs, visual 

programming languages or geometric objects. Boulton-Lewis & Halford (1990) point 

out that even concrete representation such as Dienes blocks and fingers still need to 

be mapped to domain knowledge. Processing loads may still be too high for children 

to obtain the anticipated benefits of such apparently simple representations. 
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3.4.3 Learning to Understand the Relation between Representations 

The final learning demand, unique to multi-representational situations, is that when 

MERs are presented together, learners must come to understand how representations 

relate to each other. Without abstraction across representations, any invariances of 

the domain may remain hidden. 

Some multi-representational software has been designed expressly to teach such 

relations. For example, Green Globs (Dugdale, 1982) provides opportunities for 

learners to relate graphs to equations. A computer displays co-ordinate axes and 13 

`green globs'. Students must generate equations that hit as many of these points as 

possible. This type of learning environment is common when the relation between 

representations is difficult. Grapher (Schoenfeld, Smith & Arcavi, 1993) consists of 

three micro-worlds: (a) Black Globs (similar to Green Globs described above), (b) 

Point Grapher which allows students to define function (e. g. `y = 2x + 3') and 

produces tables and graphs and, (c) Dynamic Grapher, where families of function (e. g. 

`y = mx + b') can be explored graphically. The instructional goal of the micro-world 

is essentially to develop the complex set of mappings that describe the relation 

between graphs and algebraic expressions ('the Cartesian Connection' in Schoenfeld's 

terms). A further example from the function domain is Confrey's Function Probe 

(e. g. Confrey & Smith, 1992). This provides students with graphs, tables and 

equations, plus a calculator keystroke representation which allows buttons to be built 

to generalise procedures. Again, the stated instructional aim of this program is to 

teach students to co-ordinate their actions on these different representations. 

Other environments have been designed to exploit translation to some other 

instructional end. One example for the primary classroom is that of the Blocks World 

(Thompson, 1992) which combines Dienes blocks with numerical information. Users 

act in one notation (such as the blocks) and see the results of their actions in another 

(numbers). Thompson found that average and above average students developed 

better understanding of the number system structure and algorithms than students who 
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had used a non-computerised version. Kaput (1992) proposed that the automatic 

translation provided by the learning environment supported the development of this 

knowledge by reducing cognitive load. MathsCar (Kaput, 1994) presents learners with 

a vehicle whose motion is mapped onto a variety of representations (e. g. distance- 

time and velocity-time graphs, odometers, clocks, auditory feedback). The aim of the 

system is to support understanding of calculus by making accessible core ideas such as 

the relation between change and accumulation. Again, the key idea is that translation 

over these representation will develop understanding when supported (for example, by 

making translation activities time-independent). 

Not all researchers are optimistic about the potential for using multi-representational 

software to teach about translations between representations. Pimm (1995) warns 

that linking representations may not be neutral. He suggests that one representation 

will come to predominate and that by doing so it will no longer be viewed as a 

representation. Thus, meaning will not be associated with the relation between 

representations, but with the one dominant representation. 

In addition, a number of researchers have noted the problems that novices have in 

learning the relation between representations. Tabachneck, Leonardo & Simon 

(1994) report that novices learning with MERs in economics did not attempt to 

integrate information between line graphs and written information. Students' 

performance on quantitative problems, where answers could be read off from graphs, 

was good, but it was poor on problems requiring explanation and justification. A 

similar pattern of results was found for graph generation as well as interpretation. 

This contrasted with expert performance where graphical and verbal explanations 

were tied closely together. Similarly, Yerushamly (1991) examined 35 fourteen year 

olds understanding of functions after an intensive three month course with multi- 

representational software. In total, he found that only 12% of students gave answers 

which involved both visual and numerical considerations. Lesh, Post & Behr (1987) 

provide more examples of the difficulties that children have in translating between 

representations. In an apparently simple problem of choosing which of three pictures 
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showed 1/3rd shaded, grade school pupils' and even college students' performance was 

surprisingly poor. For example, only 25% of 12 to 13-year-old children could select 

the right answer. 

Borba (1994) emphasises the importance for competent performance with MERs of 

noticing both regularities and discrepancies between representations. Confrey (1994) 

also highlights the importance of contrasts in addition to convergence between 

representations. Yet, Yerushamly (1991) found that the few children in his study who 

used two representations were just as error prone as those who employed a single 

representation. He found that students seemed unaware of contradictions between 

answers in the different representations. DuFour-Janvier, Bednarz & Belanger (1987) 

report a similar phenomenon. When children were asked to subtract using both an 

abacus and conventional written symbols, they commonly did not recognise the 

correspondence between the two representations and were unconcerned if they 

obtained different answers from each representation. 

Research on the components of expertise is physics, chess, programming, etc. is also 

relevant to this debate. Generally, it has been shown that learners tend to characterise 

problem representations by their surface features, not their deep structure (e. g. Chi, 

Feltovich & Glaser, 1981; Adelson, 1981). Consequently, learners may find it difficult 

to translate between two representations of the same or similar information, if the 

surface features differ. 

Thus, there is considerable evidence that learners find translating between 

representations difficult. They frequently do not use more than one representation, 

even after extensive training with multi-representational software. Even when they 

are required to do so, they seem to treat each representation in isolation, not noticing 

the regularities and discrepancies between the representations which would have aided 

their understanding. 

Three different learning demands of presented MERs have been described. It is 

obvious from this discussion that learners will not be able to benefit from the 
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proposed advantages of MERs if they can not meet these demands. Each time a new 

representation is introduced to a multi-representational system, these demands 

increase. In all cases, the format and operators of a representation must be understood 

as must the relationship between the representation and the domain. In addition, as 

translation between the different representations is required for many of the uses of 

MERs, increases in learning demands will not be simply additive. 

These first two learning demands are present when any external representation is used 

to support problem solving or learning. However, translation between representations 

is unique to MERs. In the next section, this learning objective will be discussed in 

greater depth. 

3.5 TRANSLATION IN MORE DETAIL 

A number of researchers in the field of mathematics have stressed the importance of 

translation between different representations for understanding. For example, Kaput 

(1987) argues that meaning in mathematics is constructed in four ways: 

" via translation between mathematical representation systems; 

" via translation between mathematical and non-mathematical systems; 

" via a pattern of syntax learning through transformations within and operations 

upon the notations of a particular representational system; 

" via mental entity building through the re-ification of actions, procedures, and 

concepts into phenomenological objects. These can serve as the basis for new 

actions, procedures, and concepts at a higher level of organisation. 

Meaning is said to be developed in different ways by the four activities: the first two 

are said to promote `horizontal growth' by extending referential meaning; whilst the 

second two promote `vertical growth' by transforming actions at one level into 

objects and relations that serve as inputs for a higher level. Kaput claims that while 

the third form of learning is the most shallow, it receives the most attention within 

the school curriculum. 
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Behr, Harel, Post & Lesh (1992) proposed a model based in part on Bruner's 

enactive, iconic and symbolic modes of representation (Bruner, 1966). Figure 3.2 

describes these relationships. The representations were originally described in section 

3.2) Arrows denote translations between modes (translation within modes are 

obviously also possible but have not been represented in this diagram for the sake of 

clarity). At the moment, as the researchers note, this model does not specify which 

paths are necessary or crucial to developing meaning. It also does not attempt to 

describe the nature of the translation between different representations. 

Figure 3.2 Lesh's model for translations amongst representations (adapted from Behr. 

Resnick & Omanson (1987) examined the mapping between two of these 

representations in detail when considering instruction in arithmetic. They looked at 

the written symbols of subtraction (in the canonical row and column notation) and 

the manipulatives, Dienes blocks. Mapping instruction was given to nine to twelve 

year-old children which aimed to link principled knowledge of mathematics (e. g. 

composition, partitioning, compensation) to symbolic manipulation through 

manipulation of Dienes blocks. Children were required to keep a step by step 

correspondence between their manipulation of the blocks and written symbols as they 

solved problems. The aims of this instruction were summarised by Schoenfeld (1986). 

57 



An understanding of the meaning of 
number representations, base 10, 
and of subtraction as a symbolic 

operation operating on a symbolic 
representation 

II 

Dienes Blocks 

Syntatic 
Coherence 

Physical Entities F 

Operations on entities 

Base 10 Arithmetic 

___f 
Syntatic 

Coherence 

- --- Symbols 
Procedures on symbols 

Figure 3.3 Abstraction over Dienes blocks and base 10 arithmetic (adapted from 

Resnick & Omanson found that contrary to prediction this instruction was not 

successful at eradicating children's buggy procedures, but that it did lead to improved 

understanding of their knowledge of principles. They propose this finding rests on the 

fact that understanding how these principles may apply to borrowing does not mean 

that children will then apply them when performing borrowing operations. The 

children who were successful were those who had explicitly made verbalisations about 

the quantities involved in borrowing during the intervention phase -a result 

consistent with research into the self-explanation effect (Chi, Bassok, Lewis, 

Reimann, & Glaser, 1989). In conclusion, they note how the automated performance 

of symbolic manipulation does not easily allow for application of principled 

knowledge. This has strong implications for the timing of instruction in translation 

between representations. There may be little point helping children learn some aspect 
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of mathematics by teaching them to translate between the representations if they 

have already achieved automated performance with one of the representations. 

Janvier (1987) provides a description of the nature of the translations between 

different representations (figure 3.4). He also indicates that translations between two 

representations are commonly achieved via a third (for example, formulae through 

tables to graphs). Interestingly, this may be changing with the advent of computer 

tools for manipulating representations; whether this change is beneficial or not is yet 

to be resolved. Using this table as an analytic tool, he also argues that when teaching 

translation between representations, that processes should be considered as 

complementary pairs (e. g. the interpretation of graphs as situations and verbal 

descriptions and the complement of sketching graphs from verbal descriptions). 

To Situations 

From 
Verbal Tables Graphs Formulae 
Descriptions 

Situations 
Verbal Measuring Sketching Modelling 
Descriptions 

Tables Reading Plotting Fitting 

Graphs Interpretation 
Reading 

Off 

Formulae Parameter Computing ketching Recognition 

Fig ure 3 .4 Janvie r's mode l of transl ation process between differ ent repr esentat ions 

(adapted from Janvier . 1987) 

Research that has found that learners may not be able to integrate information from 

different representations presented in multi-representation software is not surprising 

given the complexity of translation between representations. 

3.6 MEASURING TRANSLATION BETWEEN REPRESENTATIONS 

Before leaving the issue of translation between different representations, two further 

studies will be discussed which illustrate different approaches to assessing translation 
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between representations. The first illustrates a qualitative approach and the second, a 

quantitative approach. 

Schoenfeld, Smith & Arcavi (1993) examined micro-genetically one student's 

understanding of function using the Grapher environment (described above). They 

described in detail the mappings between the algebraic and graphical representation in 

this domain. For example, figure 3.5 illustrates just one of these connections (not all 

branches are shown). 

2-Dimensional 

Graphs 
The Cartesian Connection Algebra 

Slope is inclination, The slope of the line segment that If (xl-yI) & (x2- 

relative steepness. passes through the point (xl-yl) & Y2) are co-ordinates 
(x2-Y2) is given by the ratio of the on the line L, then 

line segments's vertical distance m=(y2-yi)1(x2-x1) 

VD/HD = (Y2-Y1)/(x2-xl) 

Figure 3.5 An aspect of the Cartesian Connection (adapted from Schoenfeld. Smith & 

Arcavi. 1993) 

Working with one student over a number of sessions, they showed from a detailed 

analysis of her transcript how a student could appear to have mastered fundamental 

components of a domain both in terms of algebra or graphs. However, as some of the 

connections between these modes of representation were missing, her behaviour with 

the representations was often misguided . For example, she could generate the slope- 

intercept equation for a line, yet not realise that the x value in `y =x+ 8' would give 

the y value. Schoenfeld et al. 's analysis reveals the complexity of the mappings that 

can exist between representations. 

Schwartz & Dreyfus (1993) examined how individuals integrated information between 

different representations designed to teach the concept of function. They used the 

TRM microworld which allows users to switch between algebraic, tabular and graphical 

modes. They defined two measures of students' performance with the software, a 

convergence index and a passage index. The former describes the efficiency with 
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which a learner users available information to progress towards a solution. If a learner 

progress towards a right answer quickly, then they will have a high convergence index 

and will be assumed to have correctly interpreted the information at each stage in the 

solution. The passage index describes the extent to which a students keeps track of 

the available information when switching between representations. Thus, a student 

might be described as `Pg = (4 2+ 2-)', which states that they switched representation 

four times, twice transferring all the available information successfully, and twice not. 

Using these measures they describe four prototypical students who differed in the 

success of their problem solving. For example, a student with high passage and 

convergence indexes was shown to be able to use the presented information 

successfully and keep track of it through the different representations. Another 

student who did not switch between representations `Pg = (0 0+ 0-)' converged 

quickly on a solution through knowledge of algebraic representations alone. In 

contrast, less successful students had much lower convergence indices and did not pass 

information between representations successfully. Schwartz & Dreyfus conclude that 

such measures of representation use will provide useful insights into the design and use 

of learning environments. 

One worry about the application of the passage index is whether it distinguishes 

between learners who understand how the representations relate to each other from 

those who understand how each representation relates to the domain. Transfer of 

information between two representations could be mediated through the domain or 

could occur by directly transferring information from one representation to another. 

It seems difficult to tell from the passage index which of these processes has occurred 

or, which seems more likely, how these processes were combined to translate 

information. (This issue is discussed further in section 7.4.3. ) 

3.7 A FRAMEWORK FOR LEARNING WITH MERS 

A goal of this thesis is to identify some of the conditions under which MERs facilitate 

learning. It was argued that an integrative framework is currently missing and that one 
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of the reasons for this was that not enough attention has been paid to the different 

purposes of MERs. 

In this section, an initial set of dimensions will be proposed that are unique to learning 

with MERs. It is argued that these dimensions need to be addressed when designing 

multi-representational software for these different purposes. The different multi- 

representational learning environments discussed above vary along these dimensions, 

although descriptions of the systems often leave some of these dimensions unstated. 

No consideration is given to choices facing designers of all computer-based leaning 

environments in this framework (e. g. nature of help, whether representations should 

be constructed or given, etc. ) as the focus is on the issues unique to learning with 

MERs. 

These dimensions fall into two main classes: the nature of the representational 

system employed (points 1,2 and 3 below) and the way these representations are 

implemented in an environment (points 4 and 5). These dimensions are only 

concerned with the nature of representations and how they are utilised and supported. 

For each particular learning goal, they would need to be applied in relation to tasks 

(e. g. learning, problem solving, communication) and to different users (experts, 

novices, children or adults). 

(1) the amount of information per representation 

(2) the similarity of representations 

(3) how many representations should be used 

(4) automatic translation between representations 

(5) the ordering and sequencing of representations 

Three broad types of use of MERs in learning environments were identified in section 

3.1. These were (a) that MERs support different ideas and processes; (b) MERs can be 

used to constrain interpretations and (c) that MERs promote a deeper understanding 

of the domain. MERs may be used to fulfil one or a number of these different 
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purposes within learning environments. It is argued that in order to achieve these 

different purposes, multi-representational systems should be analysed along the 

proposed dimensions. The learning environments discussed in earlier sections of this 

chapters did differ in terms of these dimensions. However, it is difficult to tell exactly 

how they could be defined as often these sorts of design decisions have not been made 

explicit. It is also difficult to avoid the conclusion that too often these decisions have 

not been made in a systematic, principled way. Each of the proposed dimensions will 

now be considered in turn. 

One obvious difference between learning with one representation and learning with a 

multi-representational system. is in the way that information may be distributed in 

the MERs system. At one extreme, each representation could express the same 

information. Here, the only difference would be in their computational properties 

(Larkin & Simon, 1987). At the other extreme, each representation could convey 

completely different information. MERs may also be partially redundant, so that 

some of the information is constant across the representations. Thus, one important 

dimension to consider is the redundancy of information between representations. 

A second difference with MERs is that they can also be presented in a wide variety of 

formats. The classic distinction is that of modality, but in section 3.2 a number of 

other ways of distinguishing between representations were discussed. Consequently, to 

achieve the identified purposes of MERs, they may be best served by different 

combinations of representations (e. g. graphs, tables, and equations; mathematical and 

non-mathematical representations). 

A further necessary question facing designers of multi-representational learning 

environments is how many representations to employ. By definition, a multi- 

representational environment should use at least two representations, but many use 

more than that. A related issue is how many representations to use simultaneously? 

Many learning environments do not employ all the available representations at once. 
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In addition to decisions about the nature of the representational system, an additional 

consideration is how these representations are used and supported within a learning 

environment. For example, with the advent of computer technology, it is now 

possible to automatically link representations in a way that was not possible with pen 

and paper techniques. So, the fourth issue that should be considered is whether to 

provide automatic translation between representations such that a learner would act in 

one representation and see the results of these actions in another. As discussed above 

(sections 3.4.3,3.5), learners have difficulty in translating between representations. 

However, it does not necessarily follow that we should provide this translation for 

users. It may be possible to over-automate and so not provide learners with the 

opportunity to construct knowledge of how to translate between representations 

themselves. 

The final dimension is concerned with the ordering and sequencing of representations. 

If the MERs in a system are not presented simultaneously, two further issues arise. 

The first issue is the order in which representations should be presented. When an 

order has been determined, then decisions still have to made about when to add a new 

representation or switch between representations. Additionally, we need to consider 

whether these decisions should be under learner or system control. 

These different dimensions will of course interact with each other. For example, 

without some degree of redundancy between representations, automatic translation is 

not possible. If all representations are co-present, then there is no need to consider 

the order that representations are presented in. Each decision taken about a 

dimension must take these interactions into account. In all cases, these issues should 

be considered in relation to the learning demands of MERs (discussed in section 3.3). 

3.8 CONCLUSION 

This chapter has reviewed research on learning with MERs. It has considered different 

approaches to classifying representations. These classifications are needed in order to 

describe representations used in a multi-representational systems and also to make 
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comparisons between different multi-representational systems. The advantages that 

MERs can bring were outlined, but it was made clear that the use MERs within 

learning environments increase learning demands which must be met if these 

advantages are to be felt by learners. This chapter ended by proposing a set of 

dimensions which can be used to describe multi-representational software. 

These dimensions will be applied to the descriptions of the design and evaluations of 

the two multi-representational learning environments which form the basis of the 

research conducted for this thesis. This research has focused on how the nature of the 

representational system may influence learning and has manipulated both the 

similarity of format and redundancy across representations. These have been 

considered in relation to the learning demands of representations, especially the 

demands of translating between representations. The number of representations has 

been restricted throughout the experiments to the simplest case of two 

representations. They are always co-present, so the issue of ordering and sequencing 

of representations does not apply. Chapter Four describes the first learning 

environment, COPPERS. A description of the goals and design of the system is given 

in relation to multiple solutions (reviewed in section 2.4) and learning with MERs. 
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CHAPTER FOUR 

COPPERS: A Computer-Based Learning Environment for 

Multiple Solutions 

This chapter describes COPPERS*, a learning environment that has been designed to 

teach children to produce multiple solutions to coin problems. Research reviewed in 

Chapter 2 described the general rationale for this instructional goal. One aspect of 

mathematical understanding identified by a number of researchers (e. g. Baroody, 

1987; Schoenfeld, 1992) that is seen as a barrier to developing number sense was 

understanding that mathematical problems can involve multiple solutions. In this 

chapter, a more detailed description of how this research informed the design of 

COPPERS is given. The instructional goals of this system are considered and the 

features designed to support these goals discussed. Discussion will primarily avoid the 

implementational level - section 4.2, provides a brief description of these issues. 

4.1 INSTRUCTIONAL GOALS 

The domain taught by COPPERS involves arithmetic problems such as ̀ What is 3x 

20p +4x l0p ?' Users must answer this question by providing alternative 

decompositions of this total. One way to answer the problem is to calculate the total 

to this sum (i. e. (3 x 20p = 60p) + (4 x 10p = 40p) = £1.00) and then provide 

multiple decompositions to this total (e. g. £1.00 = `20p + 20p + 10p + 50p', or `10p 

+ 2p + 2p + Ip + 5p + 10p + 10p + 5p + 5p + 50p', etc. ). An alternative is to 

decompose the sub-totals (e. g. 3x 20p = `20p + 10p + 5p + 5p + lOp', 4x 10p = 

`1p+ 2p + 2p + 5p + 5p + 5p + 20p'). To successfully solve these problems, children 

* COPPERS was originally designed and implemented as partial requirement for an MSc in 

Knowledge Based Systems at the University of Sussex. A detailed description of the system 
implementation can be found in Ainsworth (1992). This chapter will provides an overview of the 

system in order to provide a background for the experiments based on COPPERS. Where additional 
implementation was conducted for this thesis, it will be indicated. COPPERS 1 is used to refer 

specifically to the MSc system, COPPERS2 to the current version of the system. 
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must demonstrate a number of skills and have certain conceptual knowledge. They 

must (at least) know: 

" the meaning of the symbols 'X' and 

" how to perform the operations of multiplication and addition 

" that the order in which the operations are performed is important 

" that there are multiple decompositions to these problems 

" how to calculate multiple decompositions 

The educational goals of the system primarily concentrate upon the latter two 

aspects of these problems. 

4.2 IMPLEMENTATION OF COPPERS 

COPPERS was created for the Apple Macintosh computer using SuperCardTM 1.6, and 

written primarily in Supertalk. SuperCardTM is a variant of the more common 

HyperCardTM programming environment. To give an indication of the scope of the 

project, COPPERS1 contains three windows, 15 cards, one dedicated menu, and many 

fields, graphics, buttons and icons. This is supported by around 2000 lines of code. 

COPPERS2 includes three extra windows and 400 extra lines of code. 

The design and implementation of COPPERS1 included feedback from children and 

primary school teachers throughout the development phase. Children helped to 

develop appropriate wording of questions and contributed to the design of the 

interface. Teachers' advice was particularly sort in designing the feedback on answers. 

COPPERS2 was developed after the first intervention study (sections 5.3), and was 

designed to make certain aspects of the system more salient (e. g. tabular feedback) 

and to inhibit poor interaction strategies by children (discussed in more detail later). 

4.3 INSTRUCTIONAL APPROACH 

Many of the educational principles underlying the design of COPPERS are based on a 

system for teaching multiplication in the classroom described by Lampert (1986a, 
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1986b). Two objectives of her scheme have been implemented in COPPERS. The 

first goal is to develop understanding that there can be multiple routes to the solution 

of mathematical problems. COPPERS serves this objective by providing questions for 

which there is one right total, but requires this total to be decomposed in a number of 

different ways. The second goal is the importance of allowing children's concrete and 

everyday knowledge to support the learning of other types of understanding such as 

principled and computational knowledge. 

Both Lampert's approach and the COPPERS environment can be placed in a wider 

context of general mathematical pedagogy. Analysis of the nature of mathematical 

understanding (e. g. Schoenfeld, 1992; Lampert, 1990) and cross-cultural comparisons 

have prompted calls for revised approaches to mathematics instruction. For example, 

Fuson (1992) proposes that mathematics learning should involve: 

0 situations that are meaningful and interesting to children 

0 alternative solutions 

0 sustained engagement in mathematical situations, rather than on quickly finding 

answers 

" analysis and acceptance of errors 

Each of these dimensions will be discussed in relation to the design of COPPERS. 

Meaningful Situations 

The domain chosen by Lampert and adapted for use in COPPERS is that of coin 

problems. Lampert aimed to support the acquisition of principled and computational 

knowledge by emphasising connections to children's concrete and everyday 

knowledge. In order to do this, the mathematical situation must be both relevant and 

familiar to children. There is evidence that young children can benefit from 

presenting problems in which numbers refer to meaningful situations (e. g. Hughes, 
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1986), even if these situations are imaginary. However, it is not sufficient to simply 

present concrete manipulables (e. g. Schoenfeld, 1986). 

It was proposed that money problems satisfy many of these criteria. They are 

familiar and meaningful to children. Furthermore, there is evidence that pre-literate 

children and unschooled adults can apply relevant concepts such as additive 

composition and place value when dealing with coin problems (Nunes & Bryant, 

1996). Finally, computation is involved in dealing with money in everyday life. This 

should encourage children to frame the problem as a mathematical one and hence 

facilitate understanding (Kaput & Maxwell-West, 1994). 

Alternative solutions 

As discussed in section 2.3, children's beliefs about the nature of mathematics 

contrast strikingly with current views on the nature of mathematics. One aspect of 

this belief identified by, (amongst others), Phillip et al. (1994), Schoenfeld (1992) 

and Baroody (1987) is that there is only one correct way to solve a problem. Thus, 

the primary educational goal addressed in COPPERS is on finding alternative ways to 

solve money problems. Each problem has a single correct answer, but there are many 

different ways to produce this (e. g. £1.00 = `20p + 20p + 10p + 50p', or `10p + 2p + 

2p +lp+ 5p + 10p + 10p + 10p + 50p', etc. ). In section 2.4, understanding that one 

answer can be composed in different ways was identified as the simplest aspect of 

developing understanding of multiple solutions and strategies in mathematics. As such 

it seems appropriate to encourage children in their earliest formal education in 

mathematics to consider different solutions. This aspect of COPPERS' curriculum has 

been the subject of two experiments (see Chapter Five). 

Sustained Engagement in Mathematical Situations 

COPPERS is designed to ask children only few questions per session, so that the focus 

is upon generating many answers to a single problem. Lampert believed that such an 

approach to coin problems would encourage reflection upon strategy. In addition, 

COPPERS is designed so that there is no single best answer. Many comments made 
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about the system during development suggested that the least number of coins 

solution should be presented as a model of the best way to solve a problem. However, 

this suggestion was resisted and a three coin solution is no more or less acceptable 

than a laboriously constructed 25 coin answer. When answers to problems are 

demonstrated by the system, they also deliberately avoid giving the quickest solution. 

Analysis and acceptance of errors 

In Lampert's classroom method, children were encouraged to record all of their 

answers in a `summary table' to allow reflection upon why some answers were 

successful and some not. This has been implemented in COPPERS. After each 

question, a detailed breakdown of an answer is given in terms of all the number and 

types of coins used by children. In addition, a tabular representation is used to 

summarise this information for all the answers (right or wrong) given for each 

question. This has been the subject of one experiment with COPPERS (see section 

5.2), and these representations are discussed in more detail later. 

These four features of mathematics instruction were described by Fuson in the 

context of classroom teaching. However, they are obviously applicable to the design 

of computer-based learning environments. The following section discusses how 

COPPERS attempts to achieve these objectives by considering the design of the 

system in more detail. 

4.4 SYSTEM DESIGN 

This section will give a brief account of some of COPPERS' more important features. 

The following issues will be discussed: (a) problem representation and generation, (b) 

how problems are answered and, (c) feedback on answers. These areas are covered as 

they are key features of the environment and were selected for empirical analysis. 

Further details of the environment are discussed briefly in section 4.4.4, and at length 

in Ainsworth (1992). 
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4.4.1 Problem Representation and Generation 

The common aspect to all problems is the addition, or addition and multiplication, of 

coins. However, the way this is represented can be varied, as can the complexity of 

the problem. In total, there are six stages of abstraction, with three levels of difficulty 

within each level. 

The first two stages involve a single type of coin,. Level I requires addition, and level 

2, multiplication. 

2 2iß 

3X ýý 
2 

Figure 4.1 Example problems at level one. two and three 

All the other stages include different types of coin. Level three presents pictures of 

coins that must be added to produce a total. Levels four to six involve multiplication 

and then addition of the partial products. The only difference between these levels is 

the way the problem is represented: at level four, the representation involves a 

mixture of text and graphics; at level five representation is solely textual and; at level 

six an algebraic notation is introduced. 

G 
3E 

3x 20p + + 2K 2x 5p +2x5p 

Figure 4.2 Example problems at level four. five and six 

The difficulty of each problem is governed by three components. The first factor 

describes the number of different types of coins in a problem. If problems are 

represented using only pictures of coins, then they can be solved by addition alone. 

However, with two or more types of coin in multiplication problems, both 

multiplication of partial products and then addition of these subtotals is required. The 

second factor is the maximum number of each type of coin used (i. e. the multiplier). 

71 



Finally, the system can limit the range of coins used in problems (the multiplicand). 

In early stages, for example, the maximum value coin is 50p. All of these factors can 

be manipulated to meet a desired teaching objective. 

4.4.2 Answering the Question 

QUESTIONS 
How much does this make ? 

ZX 

2X dop 

EL 

ANSWERS 

CLEAR 64 p TOTAL 

Figure 4.3 The `coin' calculator (RHS) and example question (LHS) 

In order to answer her questions, Lampert's pupils used pen and paper. The method 

chosen for COPPERS is the `coin calculator', (illustrated in figure 4.3), where 

standard calculator buttons are replaced by coins. The `coin calculator' has a number 

of properties that make it a desirable interface for primary school children: 

" It is a simple to explain and use (pilot work found that even when the designer 

and user did not share a common language that its role was easily conveyed). 

" It provides a familiar form of interface. The majority of children are now 

introduced to calculators during the primary schools years. 

0 It acts to reduce the burden of remembering number facts. 

0 Coins can be removed. For example, this can make the problem more difficult or 

to encourage more unusual decompositions. 

72 



4.4.3 Representations used for Feedback* 

PREVIOUS ANSWERS 
You're right 

a correct answer to t his 
lp 2p Sp 1Op 20p 50p £1 TOTAL problem is 

231 60p 
11 60p IH 20 pence = 20p + 

12 32 
3 

60p 
60p 5H2 pence = t Op + 

5 221 60p 2H 10 pence = 20p + 
2H5pence= lOp 

60p 

GO BACK 

Figure 4 
.4 

Feedback with row and column (RHS) and table (LHS) representations 

Computers have the ability to provide immediate feedback on answers. This 

capability is exploited in COPPERS as students are told whether their answers are 

correct and are shown their answers broken down into partial products. This is 

performed in two ways and, by highlighting, the system encourages students to map 

between the different representations (Figure 4.4). 

The first representation (RHS figure 4.4) is a common one in the primary classroom, 

and will be referred to as the column and row representation. The user is reminded of 

how many of each type of coin they used. The operations of multiplication and 

addition needed to produce the total are made very explicit in the column and row 

representation, making the arithmetical operations one of the most salient aspects of 

the representation. 

The second representation (LHS figure 4.4) is tabular and similar to the one described 

by Lampert. In contrast to the row and column representation, the summary table is 

* Re-implementation of feedback was performed before Experiment One to make the mapping 

between representations clearer. 
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less familiar to the children and the arithmetical operations are implicit. To 

understand and make use of the information, children must decide what processes are 

involved and perform them for themselves, hence practising their multiplication and 

addition skills. The table also displays previous answers to the question. This allows 

students to compare their answers with those already given and, it is hypothesised, 

prompt pattern seeking and reflection. 

Following the framework for considering the design of multi-representational 

software described in section 3.7, the purpose of the different representations should 

be identified. These representations are primarily used to make different information 

salient. In addition, we propose that the second tabular representation will be 

constrained by children's understanding of the first representation. The familiarity of 

the row and column representation in COPPERS constrains the possible 

interpretations of the unfamiliar table representation by indicating the appropriate 

format and operators for the table representation. There is a second way that these 

two representations can constrain interpretation - by exploiting differences in the 

level of abstraction of the representations. Coin problems such as `5p, 10p, 5p, lop' 

and `5p, 5p 10p, lop' may appear very different to a young child if they do not 

understand commutativity. The tabular representation coin values used in COPPERS 

does not express ordering information. Therefore, if children translate between the 

representations, the equivalence of the two different orderings in the row and column 

representation is more likely to be recognised. 

The classifications of representations introduced in section 3.2 can also be applied to 

these representations. The first approach identified was equivalence (e. g. Larkin & 

Simon, 1987). The two representations are informationally equivalent (when 

considering one answer) given the column and row notation, the table could be derived 

and vice versa. However, as described above, they differ in their computational 

properties. Both representations are mathematical according to Kaput's taxonomy. 

Applying Lohse et al. 's taxonomy, the row and column representation would be 

considered as a written symbol system and the tabular representation of coin values as 
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a table. When considering the modality of the representations, it can be seen that the 

row and column representation is propositional; tabular representations are 

commonly referred to as semi-graphical. Thus, as described above these 

representations do not have identical formats. In COPPERS, both of the 

representations are used for display not action as they provide feedback on answers. 

The other dimensions described in section 3.7 were number of representations, 

automatic translation and sequencing of representation. There are just two 

representations used for feedback and translation between the representations is 

signalled by means of highlighting. As both representations are presented 

simultaneously, the issue of ordering and sequencing of representations does not 

apply. 

Learning demands were kept to a minimum with these representations. One 

representation is familiar (even if the place value concept it embodies is not) to 

children of the intended age range for COPPERS. The second representation is likely 

to be less familiar, but learning demands of interpreting the table may be supported by 

presenting it alongside the familiar representation. Signalling how the representations 

relate to each other should hopefully reduce the third translation demand. However, it 

is possible that the additional learning demands associated with the tabular 

representation will mean that it will not support the desired learning outcomes for 

children of this age. This question was addressed empirically in the Experiment One 

(Chapter Five). 

4.4.4 Other System Details 

The following section gives brief details of a number of other system features. These 

have not been evaluated in the thesis and are described simply to give readers a fuller 

summary of the design of the learning environment. 

COPPERS include a very simple student model based on performance measures. This 

technique assumes that in order to describe students' knowledge, it is sufficient to 

measure how well they solve problems in that area - an obvious simplification. 
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However, the major advantage of this technique is that this information is readily 

available. Performance measures taken include number of right answers, number of 

wrong answers and the number of correct multiple solutions. These are used to govern 

such factors as problem difficulty and changes in representation. For example, if a 

student scored a number of wrong answers (this number can be set by anyone 

interacting with the computer who has `teacher' status) then the system responds by 

offering help or by making the problem easier. 

COPPERS has a limited number of teaching actions. One action it can take is to ask 

students whether they would like help. This strategy is a compromise between 

intrusive tutoring and help based purely on request, and is based on information in the 

student model. As the complexity of the problems is directly related to the notation 

used to display them, an obvious source of help is to rephrase the question (as many 

times as required or possible) in progressively more concrete terms. For example, if a 

student was working with a problem involving both addition and multiplication, then 

the question could be re-represented as a purely addition problem. Another form of 

help is to demonstrate a solution to a problem. This is the option taken when it is not 

possible to present the question at a lower level of abstraction. A further type of help 

offered is for questions presented with an algebraic notation, which simply reminds 

students of their letter to coin mappings. 

The second teaching action that can be taken is to alter the difficulty of the problems 

in a domain contingent fashion. Poor performance will lead to users being given a 

problem that is easier than the one they have just completed, and good performance, 

harder. Again, how the parameters used to make these decisions can be adjusted by 

anyone with teacher status. 

COPPERS teaching style is fairly directive. Students may only answer questions or 

quit the system. However, they retain some freedom of choice. Users share 

responsibility with the system for deciding whether the next question is harder or 
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easier than the previous ones. Users are given this choice on roughly one in every 

three occasions. 

4.5 COPPERS2 

After a limited amount of formative evaluation and a larger scale experiment with 40 

infant school children (Experiment One, Chapter Five), aspects of the interface 

underwent substantive re-implementation. In this section, the changes to the 

interface will be detailed, with only a limited explanation of these changes. Much 

fuller details of the experimental findings that motivated these changes can be found 

in Chapter Five. 

Answers Left 
12 

Ip 2p 5p )OP 20p 50p LI Total 

6 4 26 p 
1 1 1 26p 
1 5 26 p 
6 1 26 p 
1 1 2 26 p 

Figure 4.5 The new interface for COPPERS? 

4.5.1 Answering the question 

In the original system, users generated answers by pressing coins on the `coin 

calculator'. Children of six to nine years had found this interface feature simple to use 

and understand. However, after the results of the first evaluation it was decided to 

modify the interaction metaphor to change some of the actions allowed to the user. 
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The principal motivation was to stop children producing an answer to a problem by 

simply copying the coins given in the question (e. g. if the question was `2 X 50p +3 

x 5p' pressing two 50p and then three 5ps). To inhibit this strategy, access to coins 

used in the question should be restricted. However, it was felt that the metaphor of 

calculator implies a limitless amount of coins and so therefore it was abandoned. To 

this end, the calculator was replaced by tubes of money that could either be full or 

empty. When children `click' on a coin tube, a coin falls from the slot and into a 

money box that has a total indicator on the side (illustrated in figure 4.5). The new 

interface stops users from copying the question format by leaving one of the tubes of 

coins empty. 

4.5.2 Representations used for Feedback 

A second change in COPPERS2 is to make the summary table used for feedback a 

more prominent aspect of the interface. To this end, the table is now present during 

all interactions with the system, rather than just after an answer is completed. As 

children select coins, the table automatically updates. This should benefit users in a 

number of ways. Firstly, the calculator interface only gave the total score. It did not 

allow users to check how many coins of a particular type had been used. It was not 

uncommon to hear comments such as `How many lOp's was that? '. Secondly, it is 

easier for children to check whether they have already given their current answer if 

the table is always visible. 

After each question is completed, the row and column representation is still used to 

indicate whether an answer is correct. The mapping between this representation and 

the table continues to be made more explicit by means of highlighting the relevant 

portions of the table. 

Another form of feedback was added to the interface to provide more information to 

the user about their performance. Specifically, children wanted to know how well they 

were doing. This was provided by adding a score window with a visual pointer and 

numerical score. The score reflects how many correct answers users had given. To 
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encourage users to give multiple answers for each question, the score is biased so that 

a single answer on a question is worth I point, but a second answer on the same 

question is worth 2 points, etc. This window also displays how many answers users 

have left to give before they completed a session. These features allow learners to 

keep better track of their progress throughout a session. 

A number of other minor changes were made to the interface including the provision 

of a navigation window and changes to the introduction that made the task demands 

more obvious and involved less reading. 

4.6 CONCLUSION 

This chapter has described COPPERS, a learning environment designed to teach 

children to consider multiple solutions to coin problems. It has described the principal 

features of the environment and how those features were re-implemented during the 

course of this thesis. Particular attention has been placed on the representations used 

in COPPERS. The following chapter describes two experiments that were designed to 

examine three questions: (a) whether children need to be taught to give multiple 

solutions to mathematical problems, (b) whether COPPERS met its educational 

objectives and, (c) what aspects of the system contributed to this goal. 
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CHAPTER FIVE 

Experiments One and Two (COPPERS) 

In this chapter, two experiments with COPPERS are discussed. These experiment had 

three main aims. The first aim was to explore children skills at producing multiple 

solutions to coin problems before intervention with COPPERS. The second goal of 

the experiments was to evaluate the effectiveness of COPPERS at supporting the 

development these skills. The final aim was to determine which aspects of the system 

design contributed to successful learning outcomes. 

Experiment One 

5.1 AIMS 

5.1.1 Pedagogical Aims 

There were two basic questions that needed to be addressed in relation to COPPERS: 

can young children easily produce multiple answers to coin problems? and if not, does 

the COPPERS environment provide appropriate support for them to develop the 

required knowledge and skills? 

Learners' beliefs about the nature of mathematics have been identified as influencing 

the development of number sense. One belief that has concerned both researchers and 

teachers is children's belief that mathematical problems only have one correct answer 

(e. g. Baroody, 1987; Phillip, et al., 1994; section 2.3). If these concerns also apply 

to English primary school children, it would be expected that the apparently simple 

task of producing multiple answers to coin problems would prove difficult. A review 

of the literature revealed little examination of these types of problems. Hence, one of 

the primary goals of the experiment was to examine how many solutions children 

could be expected to give before receiving teaching directly addressed at this issue. 

The second goal was to examine whether COPPERS successfully met its objectives 

and could teach the skills and knowledge described in section 4.1 Consequently, 

children were pre-tested with types of problems set by the computer before the first 
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intervention session. Two further multiple solutions tests were given following the 

intervention, one immediately after and one six weeks later. 

5.1.2 Design Aims 

The second goal of the evaluations was to treat COPPERS as a research laboratory to 

examine what features of a computer environment would help teach children to 

consider multiple solutions. Hence, the aim was not to compare a computer 

environment with others forms of teaching (e. g. teachers, pen and paper, real coins). 

Instead, detailed within system evaluations were conducted to identify which features 

contribute most to learning. 

An analysis of the most important system features was undertaken to identify a series 

of predictions. For example, what would be the effect of the presence or absence of 

on-line help, immediate feedback, type of feedback, or learner control on a student's 

performance? As it is obviously not possible to evaluate all aspects of a system in a 

single study, a smaller list was selected for empirical testing. This focused upon two 

main issues that were considered central to the design of COPPERS: (a) how many 

solutions per question provides sufficient practice to develop this aspect of children's 

mathematical knowledge and; (b) how important are (multiple) external 

representations in supporting the development of this knowledge. 

COPPERS' goal is to support multiple answers, hence the design of the system must 

consider how many solutions should be given for each answer. Thus, the first feature 

evaluated was the consequence of requiring multiple correct answers per question 

rather than just a single answer. Pilot work suggested that most users could be 

persuaded to give four answers per question, so users giving a single answer per 

question were contrasted with those giving four. It was proposed that practising 

multiple solutions would result in better learning outcomes. 

The second aspect of the system that was evaluated was the representation of 

feedback. There is abundant evidence that the way information is presented affects 

how people reason (section 3.1). In addition, it has been claimed that presenting 
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multiple representations can improve learning (section 3.3) either by supporting 

different processes, through constraining interpretation or by supporting abstraction. 

COPPERS shows users whether their answers are correct and displays these answers in 

terms of partial products (Figure 4.4). This information is presented in two ways and, 

by using highlighting, the system encourages students to map between the different 

representations (described in detail in section 4.4.3). The first representation is a 

standard row and column representation. The second representation is a table similar 

to the one described by Lampert (section 4.4.3). The analysis of the role of these 

representations proposed in section 4.4.3, suggested that children who saw the 

additional tabular representation of their answer would have better learning outcomes 

than those who saw only the row and column representation. However, this will only 

be the case if learners can successfully meet the learning demands inherent in the 

addition of the second representation. It is known that young children have difficulty 

in working with tabular representations and often fail to use them successfully (e. g. 

Underwood & Underwood, 1987; Hoz & Harel, 1995). Chapter Three described in 

some detail the extra demands faced by a learner with more than one representation 

(sections 3.4,3.5). Hence, it is proposed that these benefits will only be found if the 

children in the study could meet the learning demands of this additional, tabular 

representation. 

5.2 METHOD 

5.2.1 Design 

The impact of these features (multiple answers and table feedback) was examined by 

producing several forms of the program which varied the presence of these elements. 

A three factor mixed design was used. The first factor was the presence of a summary 

table in addition to the row and column notation (table, notable). The second was the 

number of answers required for each question (multiple, single). Half the children were 

required to give four correct novel answers to four questions and half to give a single 

answer to 16 questions. The third factor was a within groups measure, time (pre-test, 
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post-test, delayed-test). This resulted in four experimental groups, with ten subjects in 

each group. Subjects were assigned to conditions using a randomised block design by 

mathematical ability. Each had the same number of boys and girls and the mean age 

of the subjects did not differ. 

A number of different measures were used to analyse children's performance. The 

first measure examined was the number of novel (i. e. no duplicate) correct solutions 

children gave to the three pen and paper tests. This measures both the children's skill 

at performing the arithmetic correctly and the accuracy and number of the 

decompositions. The second measure of performance is the number of solutions given 

irrespective of accuracy. This score includes incorrect answers created either because 

the initial calculation was in error or because of a mistake in the decomposition (e. g. 

a slip such as writing 41 rather than 42 one pence coins). The final performance 

measure examined was the percentage accuracy of the solutions, i. e. (total correct 

solutions / (total correct solutions + total errors)). Together, these variables permit 

analysis of whether any improvement in performance was due to increase in an 

accuracy, number of decompositions or a combination of both factors. 

5.2.2 Subjects 

Forty mixed ability year two pupils from a state infant school took part in the 

experiment. Their ages ranged from 6 years 10 months to 7 years 9 months; mean 7 

years 3 months. All children were experienced with calculators and computers. 

5.2.3 Materials 

General mathematical Test 

A general test of mathematical concepts and skills for seven to eleven year olds was 

given to all the subjects (Basic Number Screening Test - Gilham and Hesse, 1976). 

Pre-test and Post-test Material 

These tasks examined children's ability to give multiple solutions to the sorts of coin 

problems generated by COPPERS. The tests consisted of three problems, although it 
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should be noted that there are many more possible answers. The problems were very 

similar to the ones the computer generates (see Figure 5.1 for an example and 

Appendix One for a complete test and all the possible solutions for one of these 

questions). Three parallel versions of the forms were created and children seated 

together were given different versions to prevent copying. In order to answer the 

question, the children were given blank pieces of paper and instructed to draw coins 

that would make the same total as the one in the question. 

Figure 5.1 An example coin problem 

5.2.4 Procedure 

Pre-tests 

Subjects were given the Basic Number Screening Test (BNST) in groups of five. The 

instructions for the test were given verbally following the recommendations for group 

administration. The test took approximately 20 minutes. 

Multiple solutions pre-tests were given the following day. Again children were taken 

from the classroom in groups of five. In addition to the problem sheets and blank 

pieces of paper, children were given pictures of British coins to remind them of their 

values. Children were encouraged to give as many answers as they could for each 

question and not to start on the next question until they could not think of any more 

answers. The importance of working individually was stressed. 

Computer Intervention 

Subjects used the computer individually in a quiet corridor. The experimenter was 

present to help explain the instructions and how to use a mouse driven computer. To 

ensure sufficient practice with the system, each child used COPPERS twice (the time 
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they spent on the computer was between 60 and 90 minutes), separated by 

approximately two weeks. 

Although there were four different versions of the computer program, each one had 

the same basic structure. The user was greeted by a screen welcoming them to 

COPPERS. If necessary, subjects were given instructions by the experimenter about 

how to use a mouse. They were then given control of the mouse and worked through 

the instructions at their own pace. The instructions explained what the task was, how 

users should answer the question and described the functions of some of the interface 

features. Subjects were given the opportunity to see the computer generate a question 

and then demonstrate an answer. Users must read the instructions the first time they 

use the system, but this is optional on subsequent sessions. 

COPPERS asks questions requiring addition, multiplication, or addition and 

multiplication of coins. All the problems set in this study required both addition and 

multiplication. All questions presented were generated dynamically, hence the 

problems each child was set were different. However, they were all generated 

according to the same rule: the highest value coin used was 50p, the largest allowed 

multiple was 3, and there were either 2 or 3 partial products. 

Each subject was required to give sixteen correct answers. The subjects in the multiple 

answers condition gave four novel correct answers to each of four questions. The 

subjects in the other condition were required to give a single correct answer to each of 

the 16 problems they were set. All answers were generated using the `coin calculator'. 

Two further multiple solutions pen and paper tests were administered to the subjects 

within a) ten days of their second computer trial and b) six weeks after that. 

5.3 RESULTS 

To examine the effects of the intervention, a number of [2 by 2 by 3] ANOVAs were 

carried out on the pre-test, post-test and delayed post-test data. The design for the 
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analyses was 2 (table, no-table) by 2 (multiple, single) by 3 (pre-test, post-test, 

delayed post-test). The first two factors (feedback and practise) were between groups 

and the third, time, a within group repeated measure. The results from one subject 

were dropped. He was an extreme outlier scoring nearly six standard deviations above 

the mean at pre-test. Four children were unavailable to take the delayed post-test. All 

the data is presented per test. The average number of solutions per question can be 

found by dividing this total by three. 

5.3.1 Multiple Solutions 

A number of different measures were used to analyse the children's performance. The 

first measure examined was the number of novel (i. e. no duplicate answers) correct 

solutions children gave to the pen and paper tests. This can be seen in Table 5.1 *. 

Table 5.1. Number of correct novel multiple solutions by feedback, practice and time 

Table No Table 

Multiple Single Multiple Single 

Pre-test 2.60 1.78 1.88 4.38 

(2.12) (1.20) (2.03) (3.2) 

Post-test 14.70 10.22 8.13 8.38 

(5.54) (6.20) (6.31) (4.87) 

Delayed 8.50 8.44 7.88 9.63 

test (5.21) (5.88) (7.02) (10.10) 

There was a significant main effect of time for the number of correct solutions 

(F(2,62)=30.69, p<0.001). The only significant interaction was for feedback and time 

(F(2,62)=3.70, p<0.030) (Figure 5.2). There was no significant interaction between 

practising multiple solutions (four versus one answer on the computer) and time 

(F(2,62)=1.61, p=0.207). 

* Throughout the whole thesis, results are given as the average scores per test; figures in brackets 

are the standard deviations. 
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A simple main effects analysis showed that there were significant differences between 

the table and no-table at the post-test (F(1,93)=5.479, p<0.0214); subjects in the 

table condition produced significantly more correct solutions. This was the only 

occasion when the groups differed significantly. Tukey's unplanned comparisons 

showed that both the table and no tables groups improved from pre-test to post-test 

and from pre-test to delayed-test: 

" table groups (q=10.53, p<0.01 & q=6.36, p<0.01) 

" no-table groups (q=4.78, p<0.01 & q=5.24, p<0.01). 

However, the table group's scores also decreased significantly from post-test to the 

delayed post-test (q=4.17, p<0.05), although remaining significantly above pre-test 

performance. 
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Children's pre-test performance differed widely. There was a great deal of variability 

in the number of solutions given at the pre-test (2 to 37), the median being 5. Hence, 

it was decided to perform an aptitude by treatment analysis, but due to small cell sizes 

it was not possible to split the data by the median. It was decided to look at those 

subjects who had most to learn and so higher performers at pre-test were removed 

from the sample and the results re-analysed. Twenty-nine of the subjects gave seven 

or less answers over the whole of the pre-test and the remaining eleven gave nine or 

more answers (this is displayed in table 5.2). 
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Table 5.2. Number of correct novel multiple solutions by feedback, practice and time 

Lower performing subjects 

Table No Table 

Multiple Single Multiple Single 

Pre-test 2.43 1.87 2.00 3.00 

(1.92) (1.25) (1.94) (2.45) 

Post-test 14.00 8.50 8.11 5.00 

(6.30) (5.78) (4.65) (1.87) 

There were insufficient numbers of subjects at the delayed post-test, so only the pre- 

test and post-test scores were examined. When an [2 by 2 by 2] ANOVA was 

performed, the significant interaction between table and time remained (F(1,25)=5.50 

p<0.03). However, in contrast to the analysis of practice and time with all subjects, 

the interaction between multiple and time was significant (F(1,25)=4.44 p<0.045). 
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Analysis showed that the groups only differed at post-test (F(1,50)=5.912 p<0.019), 

and that both conditions improved significantly: multiple (q=8.51, p<0.01) and single 

(q=4.37, p<0.01). This is illustrated in figure 5.3. 

The second measure of performance is the number of solutions given irrespective of 

accuracy. Table 5.3 shows the results for all subjects expressed as the mean number of 

novel solutions for the three questions per test. 
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Table 5.3. Number of novel multiple solutions by feedback, practice and time 

Table No Table 

Multiple Single Multiple Single 

Pre-test 7.60 6.67 4.50 7.63 

(4.62) (5.05) (1.42) (3.34) 

Post-test 15.30 12.44 9.50 9.63 

(5.81) (7.95) (4.96) (6.30) 

Delayed 10.80 9.33 10.25 11.00 

test (4.29) (6.97) (6.39) (9.39) 

There was a main effect of time (F(2,62)=16.20, p<0.001), and a significant 

interaction between feedback and time (F(2,62)=3.54, p<0.035) (Figure 5.4). Again, a 

simple main effects analysis revealed a single significant difference between the 

groups which occurred at post-test (F=3.542 p<0.035). Both groups also improved 

significantly from pre-test to post-test: table (q=7.63, p<0.01) and no-table (q=4.71, 

P<0.05). However, the table group's performance dropped significantly from post- 

test to delayed post-test (q=4.31, p<0.0 1) 
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The final performance measured examined was the percentage accuracy of the 

solutions. This can be seen in Table 5.4 
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Table 5.4. Percentage accuracy by feedback, practice and time 

Table No Table 

Multiple Single Multiple Single 

Pre-test 41.56 35.96 35.51 57.32 

(32.64) (26.71) (34.01) (29.67) 

Post-test 96.07 84.49 85.73 78.48 

(5.52) (16.61) (13.23) (18.32) 

Delayed 77.98 92.22 70.98 77.20 

test 
L- 

(29.47) 
L 

(10.42) (32.81) (29.96) 

Analysis revealed a single significant effect, that of time (F(2,62)=31.24, p<0.001). 

5.3.2 Types of Solution 

A preliminary analysis of the types of solutions children produced was performed. 

The number of coins per solution, and the number of different types of coin per 

solution were examined at both pre-test and post-test. 

Table 5.5. Number of coins per question by feedback, practice and time 

Table No Table 

Multiple Single Multiple Single 

Pre-test 7.29 6.05 4.41 4.63 

(5.05) (5.60) (2.25) (1.57) 

Post-test 12.34 9.71 8.69 8.78 

(4.99) (5.13) (5.63) (3.87) 

The number of coins per answer increased from an average of 5.76 at pre-test to 

10.94 at post-test (F(1,35)=22.46, p<0.001). There were no interactions. 

The final analysis was on the number of types of coins per question (Table 5.6). 

Minimally, there must be type of one coin per question. The maximum number of 

coins is seven (1p, 2p, 5p, 10p, 20p, 50p, £ 1.00). 
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Table 5.6. Number of types of coins per question by feedback, practice and time 

Table No Table 

Multiple Single Multiple Single 

Pre-test 2.3 2.13 1.99 2.10 

(0.69) (0.70) (0.55) (0.21) 

Post-test 2.58 2.56 2.79 2.75 

(0.27) (0.31) (0.55) (0.32) 

Again, there was a single main effect of time (F(1,35)=31.84, p<0.001). An average 

of 2.09 types of coins per question was given at pre-test which increased significantly 

to 2.67 by post-test. 

5.3.3 Interaction Strategies 

Subjects in all conditions had the task of adding and multiplying the coins in the 

problem regardless of whether they were then required to produce multiple depositions 

of this total. They commonly used two types of strategy to reach this total. The first 

strategy that the children employed was to use the `coin calculator' to copy the 

format of the question. For example, if the question asked ̀ what is 2x 20p +3x 

lOp? ' they would enter two 20 pences and three 10 pences. This approach is unlikely 

to be associated with learning new flexible approaches to decomposition. The second 

type of strategy was to calculate either part or whole of the sum and then press 

different coins to reach this total. For example, users might say `2 X 20p = 40p', and 

then press four 10 pences to make the total. 

The opportunity for using these strategies to calculate the total differs between the 

multiple and single conditions. In the single answer condition, subjects were set 16 

different problems and so had 16 opportunities to use this strategy. In the multiple 

solutions condition, subjects gave four different answers per question and so had only 

to perform the initial calculation four times. To allow comparisons between the 

groups, the percentage of answers that were generated by the copying strategy has 

been expressed as a ratio of the number of different questions set. Only a few children 
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used a single strategy throughout all of their interactions. The mean percentage of 

(first) answers generated by the copying strategy was 31%. The percentage of times 

that subjects used this strategy to obtain an answer to the multiplication problem was 

significantly negatively correlated with the total number of correct solutions at the 

post-test (r=-0.3561 p<0.05) and the total number of answers irrespective of 

accuracy (r--0.3472, p<0.05). It would seem that the more times a student used this 

strategy on the computer, the poorer their subsequent performance on the pen and 

paper tests 

5.3.4 General Mathematical Ability 

Subjects had been given a general mathematics test (Basic Number Screening Test) at 

the beginning of the study. No significant correlation was found between the number 

of correct multiple solutions and the BNST at pre-test (r=0.130). However, the 

correlation between BNST and the total number of solutions (irrespective of 

accuracy) was significant (r=0.334, p<0.05). The BNST seems to predict the ability 

to produce multiple decompositions of an answer but not to ensure these 

decompositions are correct. The BNST scores did not correlate with any of the 

measures taken at the post-test. 

The only other measure that correlated with the BNST was the subject's strategy for 

producing the initial total (i. e. percentage of the time the question format was copied) 

(r--0.4583, p<0.01). The higher the BNST score, the less likely a subject was to copy 

the question format. 

5.4 DISCUSSION 

The aims of this first experiment were to a) examine children's base-line 

performance; (b) determine whether COPPERS could be used to successfully teach 

children to produce multiple solutions to coin problems and; c) to evaluate the role of 

various system components on learning outcomes. Specifically, this study examined 

the effects of practising giving multiple solutions for one problem and of presenting 

information about a user's performance in a summary table. 
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5.4.1. Multiple Solutions Performance 

The first goal of the experiment was to investigate children's initial performance at 

producing multiple answers to coin problems. Given the research on the nature of 

children's beliefs about mathematics (e. g. Schoenfeld, 1992; section 2.3), it was 

proposed that children would initially perform poorly on this task. This hypothesis 

was supported by the experiments. At pre-test, the 6-7 year old children produced an 

average of 2.66 correct answers across three questions, i. e. less than I correct answer 

per problem. Even if errors are included, the children's scores do not improve 

substantially. Children produce an average of 2.2 answers per question. This 

experiment showed that primary school children do not easily produce multiple 

answers to these problems upon demand. 

COPPERS appears to support the development of these skills. Subjects improved 

upon their pre-test scores by nearly 400% to produce an average of 3.5 correct novel 

solutions per question. Although there was a drop in performance to 2.9 answers per 

question at delayed post-test, scores remained significantly higher than pre-test. In 

addition, delayed testing took place in the last week of the summer term - less than 

ideal circumstances. Other measures of performance showed a similar effect: children 

increased the total number of solutions and increased the accuracy of the results. 

Thus, the improvement at post-test was not due to the development of a single 

aspect of the necessary skills and knowledge. 

Due to limited number of subjects available, this study lacked a non-intervention 

control (subjects who took the pen and paper tests but did not experience the 

computer trials). Hence, it is impossible to state with complete certainty that the 

increase in the number of correct solutions was due to the computer intervention. It is 

conceivable that the subjects' continuing general mathematical education led to this 

improvement (although no classroom teaching specifically addressed this problem 

during the two months of the study), or that the subjects' progress was due to the 

effects of repeated testing. 
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Although COPPERS appears effective at teaching children to produce multiple 

solutions in this domain, replication with a non-intervention control is necessary 

before this claim can be made with complete certainty. 

5.4.2. Types of solution 

In addition to the increased number of solutions, the nature of these solutions may 

have changed after the intervention. However, it is difficult to perform detailed pre- 

test to post-test comparison. The number of correct solutions was very low at pre- 

test, and the main aim of the study was to test the effectiveness of the learning 

environment, not to probe children's strategies. 

Both the average number of coins per question and the average number of different 

types of coins per question increased from pre-test to post-test. The vast majority of 

decompositions at pre-test were very routine. For example, the most common 

correct answer to `2 X Ip +2X 20p' was 'I Op +I Op +l Op +l Op + 2p'. Eleven out 

of the 18 children who gave a correct answer to this problem, generated this solution. 

The second most common was `20p + 20p+ 2p' given by nine of these children. 

Given the limited number of correct answers at pre-test, these two solutions 

accounted for the majority of correct answers. In total, only 15 different 

decompositions were identified for this question at pre-test from a possible total of 

271. 

At post-test, there was a completely different pattern of results. There was much 

greater variety of solutions, both within and between individuals, although there were 

still some preferred responses ('2 x 20p +3x 2p' =`lp+ 5p + lop + lop + 20p', 

and `l p+ 5p + lop + lop + lop + lop'). These two decompositions were given by 

eleven and twelve children respectively out of a possible 39. Together they accounted 

for 15% of the solutions. From the 151 total answers generated for question one, 46 

different decompositions were identified. In addition, solutions tended to be much less 

routine, such as`1p+2p+2p+2p+2p+2p+5p+ lop+lop+lop' or`ip+lp+ 

lp+lp+lp+lp+lp+lp+lp+ 2p + 5p + lop + 20p'. The performance of the 
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children at post-test suggests a much more flexible and inventive approach to 

decomposing numbers. Rather than learning a few common approaches to these 

problems from the computer, the range of solutions given suggests that children were 

generating their own decomposition strategies. 

5.4.3. Representations Used for Feedback 

The first aspect of COPPERS' design that was examined was the presence or absence 

of a summary table. This provided information about the current and, where relevant, 

previous answers to a question. It had been proposed that if children could learn to use 

the tabular representation, then its presence would improve performance. This 

hypothesis was supported by the study. The children who used the versions of 

COPPERS with the summary table produced significantly more novel correct 

solutions and more solutions in total at post-test compared to children who did not 

see the summary table. 

There are a number of plausible explanations for the better performance of children 

in the table conditions. Lampert (1986a) proposed that such a table would be 

primarily useful for allowing subjects to compare their previous answers, especially 

those that had been in error, and to provide a record of work for their teacher to 

analyse. A further possibility was that the table served to remind students of answers 

they have already given. This may reduce repeat answers, either because of memory 

lapse or because of misunderstandings of commutativity of addition (the order that 

addition of the partial products is done is unimportant). However, these functions 

were proposed by Lampert and for the original computer system in the context of 

multiple solutions; the current study found that the presence of a table led to better 

performance regardless of the number of answers the children gave on the computer. 

While the table would allow students to compare wrong answers with right answers 

regardless of the multiple/single manipulation, only subjects in the multiple condition 

would be able to compare different right answers. Therefore it would seem that the 

table serves as more than a reminder of answers already given. 

95 



The table could serve a number of different functions in promoting the generation of 

multiple solutions. However, none of the records of computer use show any 

significant differences between the conditions (e. g. number of different coins used per 

question, numbers of buttons pressed, etc. ) nor do subjects choose spend any longer 

looking at the feedback, although feedback does takes longer in the table condition. 

The table may have affected generation of solutions in many ways and a number of 

different approaches were observed: children tried to use as few columns as possible or 

as many as possible; they aimed to get high numbers in particular columns; made 

patterns across the columns, etc. For example, one subject noted his answer read like a 

palindrome across the table, `its the same backwards as forwards' and tried to create 

another palindrome on his next go. It is therefore impossible with the granularity of 

information available from the computer records to distinguish these proposed 

different strategies unless a single one was used consistently. However, given recent 

emphasis on mathematics as `the science of patterns', it is encouraging that children 

were beginning to seek and generate patterns in their answers. 

Analysis of the different format and operators of the table and the row and column 

representations was conducted to explain the better performance of children in the 

table conditions. Tables tend to make information explicit, emphasise empty cells 

and hence direct attention to unexplored alternatives, highlight patterns and 

regularity, and represent variability (e. g. Cox & Brna, 1995). In this case, the table 

also emphasised order. Hence, the table representation makes different information 

salient. In addition, the table serves as a symbolic representation of the multiplication 

and addition procedures involved in finding solutions to the problems. Numbers in the 

columns must be multiplied by the column heading and then added together to get the 

total amount of money. The operators used to interpret a table therefore require 

children to practise multiplication and addition, skills that COPPERS attempts to 

teach. 

The table and row and column representations simultaneously provide information on 

the same problem in different ways. Recently, a number of researchers have argued 
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for the benefits of employing MERs (see section 3.3). Hence, the improved learning 

outcomes of the table groups may be due to the combination of row and column, and 

table representations used. It was proposed in section 4.4.3 that these two 

representations supported different inferences and could be used to constrain 

interpretations of the representation and the domain. Thus, the improved 

performance of the table group could be due to either of these reasons. Again, the 

granularity of information available from the computer records does not allow this 

question to be answered. 

The framework proposed in Chapter Three suggested that children would only be able 

to take advantage of MERs if they could meet their learning demands. In addition, 

there is evidence that table representations may be hard for young children to 

understand and use (e. g. Underwood & Underwood, 1987). In this case, it did seem 

that children in this study were able to meet these additional learning demands. This 

success may be due to the way that the table was used within the system. A number of 

researchers (e. g. Kaput, 1992) have suggested that unfamiliar, abstract 

representations should be used for display before action and should be supported by 

more familiar or concrete representations. This suggestion matches the use to which 

the table is put within COPPERS. Translation between representations is known to be 

difficult (see section 3.4), again COPPERS attempts to support this learning demand 

by the use of highlighting to make clear the mapping between the representations. A 

number of researchers (e. g. Barwise & Etchemendy, 1992; Cox, 1996) have argued 

for mixed modality representations to support learning. As tabular representations are 

considered semi-graphical and the row and column representation is obviously 

propositional, this combination of representation comes close to achieving this 

objective. 

Hence, although there are many explanations of the improved performance of the 

table group, the current experiment does not allow us to isolate which one(s) caused 

the observed improvement. These results do indicate the importance of (multiple) 

external representations for learning in this domain. 
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5.4.4. Practising Multiple Solutions 

One of the central instructional issues in the design of COPPERS was the requirement 

to give more than one answer per question. This was examined by contrasting subjects 

who were required to give one correct novel answer per question with those who gave 

four answers per question. Preliminary analysis suggested that the hypothesis that 

practising multiple solutions would positively influence learning outcomes was not 

supported. Subjects who practised multiple solutions did not produce more correct 

solutions at post-test, nor was their performance better on any of the other measures 

taken such as accuracy of their solutions. However, when the (initially) lower 

performing subjects' scores were analysed separately, then practising multiple 

solutions was found to be important. For this group, children who had given four 

answers on the computer produced significantly more correct solutions at the post- 

test. 

It would seem that children who already had some skills at producing multiple 

solutions did not show further improvement if they practised multiple decompositions 

but for children who initially had poorer performance, practising multiple solutions 

was important. 

This obviously raises the question of why only the lower performing children were 

influenced by practice. One explanation considered is the nature of children's beliefs 

about mathematics. It is known that children of this age have difficulty accepting 

there can be multiple ways to solve problems (Baroody 1987; reviewed in section 

2.3). The conditions in which subjects practised multiple solutions to one problem 

may not only have given them skills to perform multiple decompositions but also 

have legitimised the concept of multiple correct answers to a question. Higher 

performing subjects who gave some multiple solutions at pre-test demonstrated an 

understanding of this concept, although their skills could still improve. Lower 

performing subjects needed support to develop both the concept and the skills 
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Another potential explanation which could be tested empirically, is that the number 

of solutions that the computer requested was not sufficiently stretching for the high 

performing subjects. The computer asks for four answers per question; these subjects 

had produced an average of four answers initially. It would be possible to test this 

prediction by setting the number of solutions required to a higher value (e. g. eight). If 

four answers had not been sufficiently stretching, then this higher value should 

positively affect learning outcomes. 

5.4.5. Interaction strategies 

The way in which the children used the computer was related to the number of correct 

multiple solutions that they gave at the post-test, regardless of the experimental 

condition. As described above, there are a number of ways in which an answer to the 

initial calculation can be reached. The first way is to calculate the answer to the whole 

problem and then choose which buttons to press to reach this total. This provides 

practice in addition and multiplication, and decomposing a total. The second strategy 

involves multiplying each partial product and then decomposing that subtotal by 

pressing coin buttons. This strategy still involves practising decompositions and 

multiplication, but reduces the demands of the problem. A third strategy is to simply 

press the coins that are in the question. This means that not only are no 

decompositions made upon a total (and in the single answer condition no 

decompositions made at all), but also that subjects neither practice multiplication nor 

addition. It might therefore be expected that children who used this strategy would 

not show the same amount of improvement as children who commonly used either of 

the other two strategies. 

The percentage of times that children copied the question when calculating the initial 

total was significantly negatively correlated with their scores at the post-test. They 

produced less correct novel multiple solutions and fewer solutions in total. This 

indicated that these subjects were not simply less accurate (as they had not practised 

multiplication and addition on the computer) but produced fewer decompositions 
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overall. Subjects in the multiple conditions would still have practised decompositions 

but those in the single answer condition would have had no opportunities to do so. 

It appears from these results that the `copying' strategy may be detrimental to the 

process of learning to produce correct multiple solutions. It would therefore seem wise 

to ensure that students are not able to use this strategy. This concern motivated the 

new design for the interface discussed in section 4.5. 

5.4.6 General Mathematics Ability 

The primary motivation for testing children's more general mathematical knowledge 

and skills was to ensure an even distribution of these skills across the different 

conditions. However, it was possible to use these results to speculate about the 

relation between pre-existing mathematical knowledge and abilities to produce 

multiple solutions to coin problems. There were few significant correlations between 

scores on the BNST and either pre-test or post-test measures. The only significant 

correlation at pre-test was with the number of total solutions. This may suggest that 

children with higher maths scores were more likely to accept that there could be 

multiple answers for problems without necessarily having the mathematical skills to 

produce multiple correct decompositions. There was no correlation between post-test 

scores and the BNST. The intervention seems to have weakened this relation. 

However, the BNST did correlate with the percentage of time that children used the 

`copying' strategy. This strategy was related to poorer post-test performance. Thus, 

there is no simple relation between mathematics skills as measured by the BNST and 

multiple solutions performance. This is consistent with the informal evidence of 

Price and Forman whose work on `how many different ways' problems such as the 

Witch's Spell (reviewed in section 2.4) suggested that children who are not normally 

considered good at mathematics found these sorts of problems interesting. 

5.5 CONCLUSION 

Children's pre-test performance on multiple solutions was consistent with the 

research on children's mathematical beliefs. On average, children gave less than one 
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right answer per question before receiving direct teaching. The improvement in 

children's scores from pre-test to post-test suggested that COPPERS could 

successfully teach children to give multiple solutions to coin problems. However, in 

order to claim that COPPERS was responsible for the improvement in performance 

comparison with a non-intervention control is necessary. 

Providing learners with an extra tabular representation of their answers during the 

intervention improved post-test scores. This suggested that children had overcome 

the learning demands of this extra representation and were able to use it successfully. 

There was no overall relation between giving multiple rather than single answers 

during the computer intervention and learning outcomes. However, children with low 

initial scores performed better at post-test when they had practised multiple solutions 

on the computer. This issue motivated the design of the second experiment. 

Experiment Two 

5.6 AIMS 

This experiment was designed to address some of the issues raised in Experiment One. 

In particular the question investigated was how to decide upon the right number of 

answers per question to improve learning outcomes. 

5.6.1 Pedagogical Aims 

The primary pedagogical aim of the experiment was to determine whether the 

effectiveness of COPPERS at supporting the development of multiple solutions 

understanding could be replicated. Experiment One had found nearly 400% 

improvement from pre-test to post-test. However, without a non-intervention 

control, it was impossible to determine how much of this improvement was due to the 

effects of repeated testing and how much from the intervention. Hence, the design of 

this experiment introduced a non-intervention control. Additionally, the children in 

this experiment were older than those in Experiment One. Experiment One used 

children from year two (six to seven years). The subjects in this experiment were 
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from year four (eight to nine years). This provides the opportunity to examine 

whether the results of the first study were only applicable to infant school children. 

5.6.2 Design Aims 

The previous study had found only lower performing subjects benefited from giving 

four answers per question. One of the proposed explanations for this was that the 

higher performing children had not been stretched sufficiently on the computer. 

Consequently, this experiment further examined the issue of how to set children the 

`right' number of solutions per question. 

This was approached in two ways. It was hypothesised that in order to improve the 

performance of high performers, they needed to give more answers per question. 

Hence, an eight answer per question condition was included. This was far beyond the 

average number that children gave during the pre-test. However, this selection was 

still arbitrary. There was little to motivate this decision rather than say nine or 

twelve solutions. A second possible solution to this problem was to examine if users of 

the system would be able to set sensible numbers of multiple solutions for themselves. 

Hence, a second condition was introduced to provide learners with this degree of 

control. 

The issue of learner control is a difficult one. There has been little theoretical basis 

for the use of high learner control, although some attempt has been made (Milheim & 

Martin, 1991). Although most researchers agree that control and perceived control is 

important for motivation (e. g. Lepper, Woolverton, Mumme, & Gurtner, 1993), it is 

difficult to draw robust conclusions from the learner control literature. Reeves (1993) 

states that control can mean very different things in different systems. For example, 

does it affect pace, content, representation or sequencing of instruction, with or 

without advice? Steinberg (1989) suggests that giving learners control will only be 

effective to the extent that they then chose a successful learning strategy. Results 

from the previous study suggested that an effective strategy would maximise the 
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number of answers per question. Hence, it was proposed to examine what strategies 

learners choose and any effects on learning outcomes. 

5.7 METHOD 

5.7.1 Design 

A two factor mixed design was used. There were four levels to first factor (condition) 

which varied the number of answers children were required to give to each problem 

they were given on the computer. The first group were required to give four answers 

to four question (four), the second group eight answers to two questions (eight), the 

third group could choose how many answers they gave per question (limited to 16 

answers) (autonomous) and the fourth group were a no-treatment control group. This 

resulted in four experimental groups, with ten subjects in three groups and 20 in the 

autonomous group. This condition had more subjects as the style of interaction with 

the computer was examined to see if it was affected by previous ability or was related 

to learning outcomes. The second factor, time, was within groups. Each group had 

similar number of boys and girls. The mean age of the subjects and their scores on a 

maths test did not differ significantly. Dependent variables were identical to those 

used in the previous experiment. 

5.7.2 Subjects 

Fifty mixed ability year four pupils from a state junior school took part in the 

experiment. They ranged in age from 8 years 4 months to 9 years 2 months; the 

mean age was 8 years 9 months. All the children were experienced with calculators 

and mouse driven computers were present in their classrooms. 
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5.7.3 Materials 

General Mathematical Tests 

A general test of mathematical concepts and skills for seven and 8 year olds was given 

to all the participants; the Y1, Young (1979). This replaced the BNST used in 

Experiment One as it was deemed more appropriate to the age group. 

Pre and Post-test Material 

These were identical to those described for Experiment One. 

5.7.4 Procedure 

Pre-tests 

Subjects were given the Y1 in groups of a ten and a second experimenter was present. 

The test took approximately 30 minutes. The multiple solutions pre-tests were 

identical to those used in Experiment One. 

Computer Intervention 

COPPERS was re-implemented before Experiment Two (see section 4.5 for full 

details). To recap, the following changes had been made: 

" The coin calculator was replaced by coin tubes. One tube is empty, corresponding 

to part of the question. This is designed to prevent the `copying' strategy. 

0 The table is now visible continuously and is updated as each coin is selected. 

"A `score' indicator was added which consisted of a pointer and a numerical score. 

This gives one point for the first answer, two for a second answer, etc. 

The procedure of the computer intervention was identical to Experiment One. The 

only difference was that children in the autonomous group were told that they had to 

give 16 answers to the computer, but that they could give as many answers as they 

liked to as many questions as they chose and the scoring mechanism was explained to 

them. 
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Post-test 

Two further multiple solutions pen and paper task were administered to the subjects 

within ten days of their second computer trial and again five weeks after that. 

5.8 RESULTS 

To examine the effects of the intervention a number of [4,3] ANOVAs were carried 

out on the pre-test, post-test and delayed post-test data. The design of the analyses 

was of the form 4 (control, four answers, eight answer, autonomous) by 3 (pre-test, 

post-test, delayed post-test). The first factor (practice) is between groups and the 

second a within group measure. The results from two subjects have been excluded 

from the analysis. One child was recognised as having special educational needs and 

the task seemed outside her abilities. A second was discounted as he scored 

significantly higher than all the other subjects at pre-test. 

5.8.1 Multiple Solutions 

The first measure examined was the number of novel correct solutions given for the 

three item pen and paper tests (see Figure 5.5 and Table 5.6). 

Table 5.6. Number of correct novel multiple solutions by practice and time 

Control Autonomous Four Eight 

Pre-test 3.20 4.32 3.22 3.90 

(3.23) (3.85) (3.11) (3.67) 

Post-test 3.10 8.05 6.67 11.80 

(3.70) (3.10) (2.92) (3.52) 

Delayed 3.50 7.42 7.44 12.00 

test (4.12) (4.21) (3.84) (3.56) 

There were significant main effects of time (F(2,88)=33.03, p<0.001) and practice 

(F(3,44)=9.08, P<0.001). The interaction between practice and time was also 

significant (F(6,88)=3.75, p<0.002) (Figure 5.5). Simple main effects showed 

significant differences at post-test (F(3,132)=5.14, p<0.002) and delayed post-test 
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(F(3,132)=5.44, p<0.002). All but one of the experimental groups showed significant 

increase in performance from pre-test to post-test and from pre-test to delayed-test: 

" autonomous (q=5.23, p<0.01 & q=4.34, p<0.01) 

" four (q=3.32 & q=3.37, p<0.05) 

0 eight (q=8.02, p<0.01 & q=8.22, p<0.01) 

There was no significant change from post-test to delayed post-test in any condition. 

Although the differences in the means seems large, there were a limited numbers of 

subjects and high variances, therefore the only significant differences found were 

between the control & eight group at post-test (q=6.44, p<0.01) and four and eight 

groups (q=3.80, p<0.05). At delayed post-test the only significant difference was 

between the eight and control group (q=6.29, p<0.01). 
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Another measure of performance examined was the number of solutions subjects 

produced irrespective of accuracy of the solutions (see Table 5.7 and Figure 5.6). 
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Table 5.7. Number of novel multiple solutions by practice and time 

Control Autonomous Four Eight 

Pre-test 7.80 6.74 8.89 8.70 

(3.49) (3.75) (4.14) (3.60) 

10 6 8 48 8.56 13.30 Post-test . . 
(2.84) (2.92) (5.22 (2.41) 

Delayed 6.70 8.79 8.56 13.3 

test (3.10) (4.03) (2.41) (3.16) 

There was a trend for a main effect of time (F(1,45)=3.63, p<0.063) and a significant 

main effect of practice (F(3,44)=7.23, p<0.001). There was a significant interaction 

between practice and time (F(6,88)=3.08 p<0.009). Simple main effects analysis 

showed that there were no significant differences between the four conditions at pre- 

test but that there were at post-test (F(3,32)=8.023, p<0.00I) and delayed post-test 

(F(3,132)=8.023, p<0.001). Tukey's unplanned comparisons revealed that subjects in 

the four, control and autonomous conditions did not differ in the number of solutions 

they produced on any occasion. However, subjects in the eight condition produced 

significantly more solutions at post-test and delayed post-test than they had at pre- 

test (q=5.23, p<0.01 & q=5.23, p<0.01). They also produced significantly more 

answers than students in the control group (q=5.49, p<0.01 & q=5.03, p<0.01). 
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The final dependent variable discussed is percentage accuracy (total correct 

solutions/(total correct solutions + total errors) x 100) . This was independent of the 

number of answers that were given (Table 5.8). 

Table 5.8. Percentage accuracy by practice and time 

Control Autonomous Four Eight 

Pre-test 44.98 56.84 42.16 48.81 

(42.34) (40.16) (37.14) (35.25) 

Post-test 51.30 93.81 81.57 87.07 

(48.50) (9.84) (19.87) (14.77) 

Delayed 45.55 81.41 84.72 89.78 

test (48.13) (27.81) (34.11) (14.55) 

Analysis identified two significant main effects; time (F(2,88)=10.833, p<0.001) and 

practice (F(3,44)=6.176, p<0.0013). Unplanned comparisons revealed that all 

experimental groups performed significantly more accurately at post-test and at 

delayed post-test compared to their pre-test performance: 

0 autonomous (q=5.24, p<0.05 & q=3.38, p<0.05) 

0 four (q=3.84, p<0.05 & q=4.15, p<0.05) 

0 eight (q=3.93, p<0.05 & q=4.21, p<0.05) 

There were no significant changes for the control group. 

There were no significant differences between any of the conditions at pre-test but 

after the intervention, the experimental groups tended to be more accurate than the 

control group; autonomous v control at post-test (q=3.87 p<0.05) and eight v control 

(q=4.03, p<0.05). There were no significant differences between the experimental 

conditions. 
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5.8.2 Interaction strategies 

The number of answers per question that children in the autonomous condition chose 

to give during the intervention sessions was examined. Children in the autonomous 

group answered an average of 9.6 questions during their interaction with the computer 

and therefore produced an average of 1.66 answers per question. However, the 

variability was very large: some children answered 16 different questions and one gave 

16 different answers to the same question. The children were very consistent in their 

strategy of interacting with the computer. The correlation between the number of 

questions answered on their first and second interaction was significant (r=0.76, 

p<0.00I ). 

The number of questions the autonomous subjects chose to answer (and therefore 

number of answers per question) was not related to general maths ability, as measured 

by the Yl (r=-0.063). There was also no correlation between the strategy used and 

the number of correct solutions at pre-test (r=-0.078), post-test (r=-0.108) or delayed 

post-test (r=-0.382). Nor was there significant correlations with total number of 

solutions at either pre-test or post-test. However, the strategy children used on the 

computer did significantly correlate with delayed post-test performance (r=-0.391, 

p<0.05). It would seem if there is any relation between the strategy children in the 

autonomous group chose to use on the computer and their performance, it is weak. 
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5.8.3 General Mathematical Ability 

The Y1 is proposed to provide an indication of junior school children's general maths 

ability. It correlated significantly with the number of correct solutions generated by 

the subjects at pre-test (r=0.40, p<0.01) but not at post-test or delayed post-test 

(r=0.253 & r=0.235). The correlation with the number of solutions (irrespective of 

accuracy was also significant at pre-test (r=0.330, p<0.025) but not after the 

intervention (r=0.165 & r=0.172). It would seem therefore that general maths ability 

was related to children's initial ability to produce multiple solutions for coin problems 

but that intervention with COPPERS reduced this relation. 

5.9 DISCUSSION 

5.9.1. Multiple Solutions Performance 

One of the motivations for this study was to examine whether the improvements in 

performance found in Experiment One could be replicated. Experiment Two found 

significant improvement from pre-test to post-test for the experimental groups. At 

pre-test, these subjects were producing an average of 1.27 correct answers per 

question and at post-test 2.95 answers per question, an improvement of 231%. This 

can be compared to the control group who produced 1.07 correct answers per question 

at pre-test and 1.03 correct answers at post-test. This difference in performance is 

evidence that it is the computer intervention that leads to improved performance and 

not simply the effects of repeated testing. Additionally, there were no significant 

differences from post-test to delayed post-test for experimental or control groups. 

Therefore, the improved performance for experimental groups seems reasonably 

robust. 

5.9.2 Practising Multiple Solutions 

It had been predicted that there might be a relationship between the number of 

answers per question students were required to give on the computer, and those they 

chose to give subsequently at post-test. However, Experiment One showed that this 

relationship was not as strong or as simple as had originally been predicted. The only 
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children to benefit from practising multiple solutions were lower performing children. 

Experiment Two examined this further by adding an extra condition requiring eight 

answers, as well as the four answer and the autonomous condition. The hypothesis 

that getting children to produce eight answers per question would lead to better 

performance was supported by the study. All the experimental groups had 

significantly better performance at post-test but the eight answer group had 

significantly more correct answers than the four answer and control groups at post- 

test, and than the control group at delayed post-test. 

The ability to give a number of correct solutions is based on the two different skills of 

calculation and correct multiple decompositions. To examine whether improvement in 

performance is due to increased competence in either or both of these skills, the total 

number of solutions (irrespective of accuracy) was examined. For this measure, the 

prediction that children in the experimental groups would produce more answers than 

children in the control group was not supported; only children in the eight group 

improved. It would appear that the significant improvement for total correct solutions 

observed for all the experimental groups had different causes. The four and autonomous 

groups improved for the most part because the accuracy of their calculations increased. 

However, the increase for the eight group was also due to the increase in the total number 

of decompositions. 

The accuracy of the solutions produced by all experimental group was significantly better 

at both post-test and delayed post-test. There was no significant differences amongst 

these groups; they all approached ceiling. All the experimental groups were significantly 

better than the control group after the intervention. 

These results suggest that if the goal of the computer use is to encourage children's 

skills at addition and multiplication or accuracy of calculation and decomposition 

then any of the experimental conditions will be sufficient. However, children will 

only produce more correct decompositions if in the eight answer condition. 
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It is suggested that the reason only eight answers (as opposed to four) proved 

effective is related to the zone of proximal development, (Vygotsky 1978). This is 

the region of activity in which learners can perform successfully given the aid of 

supporting context, in this case that of the computer. Taking this view, it is 

necessary to set problems on the computer that would be out of reach for children 

without support. However, to diagnose the dimensions of the zone of proximal 

development is a difficult task. Nevertheless, it should be possible to identify its lower 

boundary by analysing the child's unaided performance. With this information, 

problems could be set that are out of reach for the unsupported child and which 

therefore fall within their zone of proximal development. 

5.9.3 Computer v Learner Control 

The decision to give learners limited control over aspects of their interaction with 

the computer was examined in the current study. One group of children were given 

control over the number of answers they had to give per question while the others 

were given predetermined limits. The decision to give learners some control over 

their choice of numbers of solutions was motivated by the difficulty in deciding upon 

how to determine the `right' number of solutions. If children chose to maximise the 

number of answers per question themselves, then the decision could be made by each 

user in the context of their own knowledge. However, by drawing on the research on 

children's beliefs about mathematics (see section 2.3), it might be predicted that they 

would not chose to do this. 

The most immediately striking result is the small number of answers per question that 

autonomous children gave while on the computer; an average of 1.66 answer per 

question. This is perhaps surprising given that the children knew that they would 

receive more points if they gave more answers per question. The simple explanation 

that they either did not understood the points system, or else did, but were not `falling 

for it' seems unlikely given their comments. They were concerned to know how well 

they were doing (and how well their friends were doing! ). In fact many of the children 
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seemed to be caught between the lure of the points and that of the new question 

making audible bargains with themselves (e. g. "I'll have a new one, but I'll answer 

three on the next one"). It would be interesting to know quite why they wanted to 

answer a new question so much. Some of the reasons could be: 

" that they still believed that more than one answer on a question was `cheating' 

" that they thought that answering a new question would be harder 

" that answering a new question would be easier 

" that answering a new question is more interesting 

Unprompted comments to the experimenter indicated that the children might be 

choosing their strategy for any of these reasons but more in-depth interviews are 

needed to tell for certain. It was also interesting to observe that even children who 

continuously chose to answer new questions rather than re-answer old ones would 

spontaneously re-answer a question if they had got it wrong. 

The range of answers per question was very large, ranging between the maximum and 

minimum possible values. One child gave 16 answers on one question on both 

interactions with the computer, while four others answered 16 different questions. 

There was a high correlation between children's behaviour on their first and second 

time on the computer. This would suggest that children had some deliberate strategy 

and were not just randomly pressing for new questions. However this strategy was not 

related either to general maths ability or to measures taken at pre-test or after 

intervention. There was no significant correlation either between strategy and general 

maths ability, total number of correct solutions or total solutions at pre-test. 

There was also almost no relation between how many questions the subjects answered 

on the computer and post-tests measures. The hypothesis that children in the 

autonomous condition who had given more answers per question on the computer 

would have better learning outcomes was only supported at delayed post-test for total 

number of solutions. However, the majority of children gave very few answers per 
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question; 79% gave on average less than two answers per questions. Only two of the 

children consistently gave four or more answers per questions (the fewest number of 

solutions that the computer demanded in this experiment). The one subject who gave 

16 answers to one question, however, showed the greatest improvement of all the 

subjects in the autonomous group. Given the similarity of behaviour on the computer, 

it does not seem surprising that there were no differences between the users' learning 

outcomes. 

The results for giving learner's control over the choice of number of solutions 

suggests that this is not an effective approach to teaching children to give multiple 

solutions. These results are consistent with Steinberg's (1989) view that learners will 

benefit from more control only if they are capable of selecting an appropriate 

learning strategy. In this case, they did not do so. This is not surprising given the 

research already reviewed on how children's mathematical beliefs lead them to expect 

a single correct answer for mathematical problems (Baroody, 1987). If learners can 

not abandon this belief, they are highly unlikely to chose an effective strategy. 

5.9.4 General Mathematics Ability 

Again no simple pattern was found of relations between general mathematical 

aptitude and the production of multiple solutions. It was not the case that children 

who scored better on the general mathematics tests were better at this task. There 

were significant correlations at pre-test with accuracy and correct solutions but none 

at post-test. Nor did ability predict interaction strategy with the computer. There was 

no relation between mathematical ability and strategy in the autonomous group. 

It is tempting to speculate that one of the reasons for these results is that children 

with better mathematics skills have already stabilised their beliefs about the nature of 

mathematics (e. g. one correct answer per question as quickly as possible). These 

children have been exposed to a primary mathematics curriculum where the goal is to 

answer many problems in a short time using a single solution (see Fuson, 1992). 

Giving multiple solutions to a single problem will therefore be an uncommon 
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experience and it easy to see why these children would not want to abandon a strategy 

which has previously led to success. Thus, the mathematical skills and knowledge that 

they could use on these problems are under-utilised. 

5.10 CONCLUSION 

This results of this Experiment Two confirmed and extended the finding that 

COPPERS could successfully teach children to give multiple solutions to coin 

problems. Relative to a non-intervention control, experimental subjects improved 

significantly and this enhanced performance remained stable to delayed post-test. It 

was argued that if the goal of using a system such as COPPERS is to support the 

accuracy of mathematical calculation, then any number of answers of question may be 

sufficient. However, in order to develop knowledge of multiple solutions then it is 

necessary to set this number to be beyond that given without the aid of supporting 

context. Furthermore, learners in this domain are unlikely to choose this strategy 

unless the computer requires them to do so. 

5.11 GENERAL CONCLUSION 

These experiments have evaluated a computer-based learning environment that 

support children's skill and understanding for producing multiple solutions for a single 

problem. Based on research that described the relation between children's number 

sense and mathematical beliefs, it was predicted that children would find producing 

multiple solutions difficult. In line with this prediction, children were found to 

produce a very low number of solutions, but, with a limited amount of teaching, they 

show impressive and sustained improvement. Two aspects of the computer system 

were found to be strongly positively related to learning outcomes. The first required 

children to produce (with support) more solutions than they would naturally give. The 

second was the benefit of providing a extra, tabular representation of users' answers. 

In order to further explore how to support children's understanding of alternative 

ways to answer mathematical problems and the role of (multiple) external 

representations in supporting such learning, a new system was designed and 
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implemented. It was created to address a further aspect of the `right answer' 

misconception by focusing on inexact answers and procedures - estimates. The 

proposed users of the system were older children allowing a richer repertoire of 

representations to be used. The design of the system is discussed in the next chapter. 
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CHAPTER SIX 

CENTS: A Computer-Based Environment for Computational Estimation 

Computational estimation is seen as dependent upon good number sense and it is also 

proposed that developing children's estimations skills will lead to better number sense 

(Sowder, 1992a) (reviewed in section 2.3). In this chapter, a detailed description of 

how research in this area informed the design of CENTS is given. The instructional 

goals of this system are considered. The execution of these goals is discussed in terms 

of the general instructional approach and specific support. In particular, a detailed 

description of the representations available in CENTS is provided. Discussion will 

primarily avoid the implementational level. Section 6.2 provides a brief description 

of these issues. 

6.1 INSTRUCTIONAL GOALS 

To successfully perform computational estimation a wide range of mathematical 

knowledge is required. LeFevre et al. (1993) proposed that three types of knowledge 

are necessary for computational estimation - conceptual, procedural and factual. The 

factual knowledge required for mental calculation, for example, would include 

knowledge of place-value and memorised number facts. Conceptual knowledge is 

needed to choose an estimation strategy that will produce approximate numbers to 

facilitate computation. Procedural knowledge is required to perform the 

approximation. CENTS was primarily designed to support the development of the 

procedural and conceptual aspects of estimation. No attempt is made to teach aspects 

of mental calculation such as place value. This is considered to be essential pre- 

requisite knowledge. 

The educational goals of the system are to 

0 teach children strategies that they can use to estimate problems 

0 encourage children's understanding of how transforming numbers to produce an 

intermediate solution affects subsequent accuracy 
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" support the development of the required underlying conceptual knowledge 

" encourage users to consider estimation in terms of LeFevre et al. 's conceptual 

principles of simplicity and proximity. 

The following sections describe how each of these issues is addressed in the system. 

6.2 IMPLEMENTATION OF CENTS 

CENTS was created for the Apple Macintosh computer using SuperCardTM 2.0, and 

written primarily in Supertalk. The system (presently) contains 15 windows, three 

dedicated menus, 30 text fields, and 40 graphics. Numerous buttons, backgrounds, 

icons, cursors and sound resources were created. CENTS is run by around 4,500 lines 

of code. 

Teachers and children were involved in all stages of the design and implementation of 

CENTS. Many of their suggestions have been incorporated, although not all were 

considered appropriate (particularly those that included monsters, street fighters, 

etc.! ). Changes to the system after the initial development phase were commonly 

based upon children's comments. In total, programming and development took 

around nine (part-time) months. 

6.3 INSTRUCTIONAL APPROACH 

6.3.1 General Instructional Method 

The general pedagogical approach taken by CENTS (figure 6.1) is to encourage the 

children to consider estimation in a flexible and thoughtful way. To this end, the 

metaphor of an experiment is used. Users make predictions about a particular 

estimate, perform the estimation, and then have the opportunity to examine the 

results of the estimation process in the light of their predictions. After each problem, 

children log the results of (at least) two different estimation strategies in an on-line 

work book. They describe how they transformed the numbers, how accurate each 

estimate was, and how difficult they found each estimate. At the end of a session, 

children are encouraged to review the log book to investigate patterns in their 
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estimates. For example, that truncation will always give you an estimate that is lower 

than the exact answer, rounding using intermediate compensation will generally be the 

most accurate strategy, etc. 

Estimate 28 x 48 

oQ " 0© AL 
Zeros 

mX0 jr 

1S 00 

Answer 
1500 

Estimate 128 X 4b 
4yc 

W ZerosW 
X0 Fo-I © 

oa 
Answer 

800 

Higher 

Spot or 

Lower 

hro 

Roundn9 Tnr on 
1500 800 

;, _ I Tnrncaion 

Figure 6.1 An illustration of a completed problem with CENTS 

This produces the predict-test-explain cycle that has been found to promote 

understanding in science education (e. g. Howe, Rodgers & Tolmie, 1990). In CENTS, 

the prediction and analysis stages are supported by multiple representations of the 

underlying conceptual principles. Hence, a session involves the following stages: 

Given the problem - estimate 387 x 123 

1. Produce the intermediate solution. 

round to 400 x 100 

2. Predict the accuracy of your estimate based on the intermediate solution 

not very close to the exact answer 

lower than the exact answer 
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3. Produce the estimate 

40000 

4. Compare how well the answer matched the predictions. 

The system is designed to be contingent on users' performance. As they become more 

experienced, CENTS can fade the support it offers until users take responsibility for 

the majority of the process (see section 6.3.2). If children experience difficulties, 

then the support can be re-introduced. 

6.3.2 Procedural Knowledge 

The design of support for the procedural aspects of computational estimation was 

based on a process model of estimation and descriptions of strategies used by good 

estimators. LeFevre et al. (1993) described a process model of computational 

estimation, based on Siegler's model of strategy selection (see figure 6.2). 

Encode 

Post 
Compensation 

Retrieval 
Attempt Adjust Place 

Value 

Evaluate Exact 
Answer Sucess 

Mental 
Algorithm 

Reformulation 4 

Intermediate I 
Soluion 

Response 

Figure 6.2 LeFevre et al. 's (1993) process model of estimation (0 1 

The first step in the model is an attempt at retrieval. A familiar pair of numbers may 

automatically activate a potential solution. The next stage would be to consider 
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whether one should calculate an exact answer solution. This will involve knowledge 

both of the complexity of the sum and knowledge about your own mathematical 

capabilities. Note that this process does not insist on formal algorithms. If an exact 

answer is not produced, then reformulation (which includes intermediate 

compensation) should be attempted. The next step in the model is to use the 

intermediate solution produced by the reformulation to generate an answer either by 

retrieval or by mental calculation. The final stages in the process include adjustment 

of place-value and post-compensation which should occur if the earlier reformulation 

was tagged as needing some adjustment. 

Reys et al. (1982) identified three types of estimation strategy: reformulation, 

translation and compensation. Reformulation involves altering numerical data to 

produce a more mentally manageable form without altering the structure of the 

problem. Translation refers to the action of changing the mathematical structure of 

the problem to a more mentally manageable form. Finally, compensation involves 

adjustments to numbers either during or after computation. 

CENTS teaches children strategies for performing estimation of multiplication sums. 

A number of different strategies were prototyped and two fully implemented. These 

two strategies are rounding and truncation, both examples of reformulation strategies. 

No attempt was made to support translation strategies. These are highly idiosyncratic 

and require reformulation as a subprocess. The final kind of strategy, compensation, is 

supported by encouraging children to consider intermediate compensation when 

rounding. Post compensation is predicated upon informed insight into the proximity 

of an estimate. Thus, CENTS attempts to support the initial development of this skill 

by encouraging reflection upon the accuracy of an estimate. 

Rounding was the most common strategy found in Reys et al. 's study. Interviews with 

teachers during the design and implementation phase of CENTS suggested that it is 
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also the one most likely to be taught in British primary schools. An example of 

rounding is given below. 

Rounding: the factor is transformed to the nearest multiple of 5,10,100, etc. 

e. g. estimate 323 X 48 

323 is closest to 300,48 is closest to 50 

so 300 x 50 = 15000 

In order to consider how to support the acquisition of rounding, LeFevre et al. 's 

(1993) process model was used to describe the steps necessary for successful rounding. 

For example: estimate `323 X 48' by rounding. 

(1) - try to retrieve answer NO 

(2) - round larger number to 300 (tag 00) 

(3) - try to retrieve 3X 48 NO 

(4) - round smaller number to 50 (tag 0) 

(5) - try to retrieve 3x5 YES = 15 

(6) - add three tagged zeros = 15,000 

(7) - respond 

However, neither LeFevre's process model or Reys et al. descriptions of successful 

estimators describe how the numbers are rounded to create the intermediate solution. 

Hence, a small informal study based on observation and interviews with successful 

estimators was conducted in order to examine this process. This suggested for 

rounding that the following steps must be conducted (note, steps a and b are not 

necessarily performed in this order). 

For each number to be rounded to create an intermediate solution: 

(a) decide whether to round to the nearest 5,10, or 100 etc. 

(b) decide whether to round up or down 

(c) round number 

(d) tag in working memory direction and magnitude of the rounding. 
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Thus, these two accounts were combined to produce a description of the stages 

involved in rounding. These form the basis of the support that CENTS provides (see 

figure 6.3). The system provides a lot of structure when children are inexperienced 

with estimation. When users improve, the support fades leaving children with more 

decisions and responsibility. The following system description will concentrate on the 

entry level support. 

Stage 1. Rounding the number. Sowder & Wheeler (1989) found that children 

often do not round to a 'right' number, for example, rounding 461 to 300, or rounding 

461 to 460 without the ability to multiply by 46. In problems such as `63 X 42', 

children have been known to round the first number to 100 and the second to 0. This 

stage is supported in CENTS by a `slot and fill' approach. The required number of 

zeros are already in place, children must enter the front end digits. They are given a 

hint about which direction might be the best to round (an arrow pointing in the 

suggested direction). Initially, this is to the closest answer without considering the 

principle of intermediate compensation. It is possible to ignore this hint and round to 

a different number. However, if children choose a solution that is further than away 

than any of the computer's preferred solutions, (e. g. rounding 448 to 300 rather than 

400 or 500), then this is corrected. As users' experience grows, more choice is made 

available (e. g. they could choose to round 448 to 450). To help children keep track 

on the numbers in the problem, the first factor is represented with red text and 

graphics and the second in blue. 

Stage 2. Noting the direction and magnitude of the transformation. Case & 

Sowder (1990) proposed that primary school children would not be able to keep track 

of `how far off their estimate was due to overloaded working memory. The system 

supports memory load by providing a simple representation of the direction and 

magnitude of the transformation in the form of a proportionally sized triangle 

pointing either up or down. It should be stressed that this in based on relative not 

absolute transformation. Hence, transforming 18 to 20 would result in a much larger 

arrow than 88 to 90. 
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Stage 3. Front end extraction After transforming the numbers, the next stage is to 

extract the digits to be multiplied. Initially, CENTS performs this stage for the 

student. 

Stage 4. Place value tagging When the digits are extracted, the `zeros' are 

collected together and stored for subsequent place value correction. As children 

become more experienced, they take responsibility for tagging the number of zeros 

they will need. The original factor from which the `zeros' come is indicated by their 

colour, either red or blue. 

Stage 5. Multiplying the extracted digits. Users must enter the product of the 

extracted digits. In the event of a wrong answer, CENTS either displays a number 

square or, for solutions with factors that are greater than 12, suggests that users begin 

their answer again. This is to ensure that children don't fail at the task because they 

can't recall their `timetables', but also serves to discourage them from rounding to 

numbers that they subsequently cannot multiply. The text colour for stages five and 

six now changes to purple to indicate that the two factors have been combined. 

Stage 6. Final Answer. The product of the front end extraction is combined with 

the tagged zeros in order to correct for place value and the estimate is displayed. 
Rounding 

Estimate 86 X 84 

T ®o 9 
9Q0 A J1 V 

Zeros 
0x® 0El 

7? V 

Answer 
7200 
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Truncation 

Truncation normally produces a less accurate estimate than rounding. Nonetheless, it 

is an important approach to teach children as it is a particularly easy strategy. Sowder 

& Wheeler found younger children showed a preference for rounding, but did not have 

adequate skills to carry it out. An example of truncation is: 

Truncation where the right-most digits are ignored 

e. g. estimate 323 X 48 

323 is changed 300,48 is changed to 40 

so 300 x 40 = 12000 

Truncation simply requires extraction of the front digits. Consequently, children do 

not need to work out which is the closest ̀ nice number'. In addition, load on working 

memory should be reduced as is it not necessary to remember the direction of the 

transformation. 

For example: estimate 323 X 48 by truncation. 

(1) - try to retrieve answer NO 

(2) - truncate larger number to 3 (tag 00) 

(3) - try to retrieve 3x 48 NO 

(4) - truncate smaller number to 4 (tag 0) 

(5) - try to retrieve 3x4 YES = 12 

(6) - add three tagged zeros = 12,000 

(7) - respond 

Again, interviews with successful estimators were used in order to examine this 

process of producing the intermediate solution. This provided the following 

description for truncation. 

To truncate numbers to produce the intermediate solution 

(a) decide whether to truncate to 1 digits, 2 digits, etc. 

(b) truncate number 
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(c) tag magnitude of truncation 

Again, these two levels of description were combined to produce the structure and 

support provided by CENTS. The support for truncation is necessarily very similar to 

that provided for rounding (see figure 6.4). The only difference between the strategies 

that is predicted by the process model occurs when producing the intermediate 

solution. 

Stage 1. Truncating the number. Although superficially the actions of rounding 

down and truncation appear similar, they result from different processes. In order to 

emphasise this, CENTS employs a different metaphor for truncation to that of 

rounding. For truncation, children are encouraged to consider how to remove the 

needed digits from the unwanted ones. Users must place scissors in the correct 

position in order to `chop off' the non-essential digits. Again, as users experience 

grows, they are given more choice over how many digits to extract. 

Stage 2. Noting magnitude of the transformation. This is represented using the 

triangles to record the change. In the case of truncation the transformation is always 

down. Again, it is the proportional change on the number that is represented. This 

can result in very striking differences. For example, truncating 17 to 10 is a far 

greater proportional change that 87 to 80. 

Stages 3 to 6 are identical to those described for rounding. 
tr uJic tiOi1 
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Figure 6.4 A solution created by truncation 
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Compensation 

The use of intermediate compensation is indirectly supported by CENTS. The 

problem generation routine is designed to provide some problems which would most 

accurately be solved by intermediate compensation. It was also hoped that when 

children review the logbook for patterns in their estimates, that they will see that 

intermediate compensation normally results in a very accurate answers. As discussed 

above, post-compensation requires children to have sense of how their estimate 

differs from the exact answer. The development of this skill receives a great deal of 

attention in CENTS and is discussed in section 6.3.4. 

6.3.3 Problem Generation 

The estimation problems given by CENTS are dynamically generated. A number of 

factors can be manipulated to determine problem complexity. The first is the number 

of digits in the problem. CENTS can set two (digit) by two problems, two by three, 

three by two problems and three by three problems. A wider range of problems could 

easily be supported but would require some reprogramming of the interface. A second 

dimension of problem complexity is the size of adjustment to be made to each factor. 

LeFevre et al. used two (absolute) definitions, small and large. A small adjustment on a 

2 digit problems would be 2 or less, i. e. 12 to 10 or 18 to 20. A large adjustment 

involves changing the number by 4 of more. These proportions are scaled up for the 

three digit problems. Thus, there are four types of adjustment available, `s(mall) and 

s', `l(arge) and 1', `1 and s' `s and 1'. These factors can be manipulated in order to alter 

the complexity of the problems for users of the system. They can be programmed to 

alter through the session. Users could be introduced to CENTS with `2 by 2' `s and s' 

problems and then given more difficult problems when more experienced with the 

system. 

An alternative to the adjustment size aspect of problem generation is also provided. It 

is designed to provide questions which, when rounding, would be best solved by either 

rounding up, rounding down or intermediate compensation. This was included to 
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ensure that children could be given the opportunity to explore the whole space of 

possibilities for rounding. This might be particularly desirable if the aim was to expose 

children to differences between the supported strategies. 

6.3.4 Insight into Accuracy 

In order to become flexible and accurate estimators, children need to develop 

understanding of how their estimate relates to an exact answer (Trafton, 1986). This 

means that they need to consider how transforming numbers to create an 

intermediate solution affects the accuracy of the final outcomes. This is necessary if 

post-compensation is to be used. The sense of `reasonableness' of answer is a 

fundamental component of the appropriateness of an estimate. Under-estimating the 

price of goods in a shopping trolley could prove much more embarrassing at the 

checkout than over-estimating! 

A review of the literature revealed little research in this area. Hence, an analysis of 

this knowledge was undertaken. What follows is therefore speculative and will require 

further research to be undertaken. 

There are two aspects of insight into accuracy. The first component is the direction 

of the estimate - is it under or over the exact answer? The second is the magnitude of 

the difference between the estimate and the exact answer. For example, is your 

estimate close, far away, within 10%, 30%, etc. of the right answer. Further 

complications are introduced by the requirement to reason about relative rather than 

absolute transformations. Children need to understand that transforming 25 to 20 (a 

change of 20%) is much greater than changing 95 to 90 (5.2%). 

It seems plausible that there are a number of different levels for understanding 

accuracy. Some examples for deciding whether a solution is an over or underestimate 

are given below, but this is not meant to be interpreted as a stage model of insight 

into accuracy: 
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" If both factors have been transformed down then the estimate must be lower 

" If both factors have been transformed up then the estimate must be higher 

" If one factor has been transformed down and the other up then consider the 

absolute differences in the transformation to decide if the estimate is higher or 

lower than the exact answer 

" If one factor has been transformed down and the other up then consider the 

relative differences in the transformation to decide if the estimate is higher or 

lower than the exact answer 

Accuracy of estimates therefore receives considerable attention in CENTS. It forms 

the basis of predict-test-explain cycle discussed above. Children must predict the 

accuracy of an estimate and then test and compare this with the actual accuracy and 

other estimates. This is performed upon multiple representations of accuracy (see 

section 6.5). In addition, support for interpreting and remembering transformation of 

numbers is provided by the proportionally sized arrows which represent this process 

(described above). 

6.3.5 Conceptual Knowledge 

The system attempts to support the development of the three areas of conceptual 

knowledge outlined by Sowder & Wheeler (1989) (this was first discussed in section 

2.5). 

The Role of Approximate Numbers 

The knowledge that the process of estimation necessitates approximate numbers is 

supported by requiring children to perform this approximation. It is not possible to 

continue with the estimation until numbers have been transformed into an 

intermediate solution. As a result, the answer to the problem will also be approximate. 

Additionally, the exact answer is never seen in the system. The representations used 

to display the accuracy of estimates are designed such that there is no `right' answer 
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to compare against. For example, the archery target (discussed in more detail below) 

deliberately has a central area representing ̀0-10%' away rather than a `bullseye'. 

Students have difficulty accepting that you can use a variety of procedures and that 

different answers can be correct (Baroody, 1987; Sowder & Wheeler, 1989; Chapter 

Five). This knowledge is supported in the system by requiring children to answer 

problems using (at least) two different strategies. This often (but not necessarily) 

results in two different estimates. Requiring multiple solutions allows for subsequent 

discussion of why different processes are acceptable and a comparison of the accuracy 

of different answers to the same problem. 

The Role of Appropriateness 

This involves recognition that the appropriateness of an estimate depends upon the 

context or desired accuracy. Of the three principles, this is probably the least well 

addressed in CENTS. The system was designed to set problems simply as 

computational sums without context. Research on the benefits of context is mixed 

and there is evidence that different contexts affect children's strategies (Forrester, 

Latham & Shire, 1990). It was decided that too little is known about the affects of 

context to implement this. 

As the appropriateness of an estimate is dependant primarily on its context, this 

obviously limits the system. However, children were encouraged to consider their 

estimate in terms of its accuracy and simplicity. This may help to provide children 

with a language with which to consider appropriateness, something that Sowder and 

Wheeler found to be lacking in primary aged children (Sowder, personal 

communication). 

LeFevre et al. (1993) proposed that the conceptual knowledge necessary to perform 

estimation could be summarised by the two conceptual principles of proximity and 
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simplicity. CENTS places considerable emphasis on these principles as it is predicted 

that by doing so children will come to understand more about the conceptual 

knowledge underpinning estimation. 

Proximity receives the most attention in CENTS as it is the one most implicated in 

insight into accuracy. LeFevre et al. found that children rarely mention this principle 

- adults on the other hand seem guided by it. Proximity is supported in the system by 

the use of representations which describe children's estimates in terms of percentage 

deviation from the exact answer. Children predict what they think the accuracy of 

their estimate will be. Subsequently, they are shown the actual accuracy of their 

estimate and can compare their predictions to the results. This is designed to 

encourage children to think about estimation as entailing proximity, and should help 

them start to develop the skills needed to decide how to best reformulate numbers in 

order to achieve an accurate estimate (see above). 

Simplicity is the knowledge of the best way to modify a problem to produce a solvable 

intermediate solution. Conceptual understanding of this principle was found even in 

the youngest children in the LeFevre et al. study, yet to operationalise this principle 

is far from easy. Firstly, simplicity depends upon a child's knowledge and their 

judgement about such knowledge. A reasonable heuristic for reformulation strategies is 

to assume that the more numbers left after rounding the more complicated the 

problem. However, knowledge of simplicity must be strongly situated. If you know 

that 7 packets of your favourite sweets which cost 35p can be bought for £2.45, then 

you can directly retrieve this solution (7 x 35 = 245) and hence making it is very 

simple solution. In addition, the different strategies themselves are more or less 

difficult. Some strategies involve less steps and less demand on working memory than 

others. As discussed above, truncation requires less decisions and working memory 

demands than rounding. Finally, some strategies are more familiar to the children 

than others. For example, rounding is the most commonly taught strategy in the 

United Kingdom. This will serve to make rounding comparatively easier for children 

until they have had considerable experience with other strategies. 
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Given these difficulties of defining and operationalising simplicity, it was decided to 

let the children judge for themselves the relative difficulty of producing each 

estimate. CENTS currently gets children to describe how difficult they found each 

estimate when completing the log book. This obviously results in a less than balanced 

approach to the two principles, since more emphasis is placed on accuracy. However, 

for the age group of the proposed users of the system, LeFevre et al. found that it is 

the proximity principle that is undeveloped, while simplicity is already understood. 

6.4 ANALYSIS OF REPRESENTATIONS 

Many advantages have been proposed for learning with MERs (discussed in section 

3.3). However, the learning demands associated with MERs were reviewed at length 

(section 3.4) to show that using MERs is not unproblematic. CENTS has been 

designed to address how different combinations of representations affect the process 

and outcomes of learning. As described above (section 6.3.3), their role in CENTS is 

to express the accuracy of estimation in relation to an (hidden) exact answer. As 

CENTS is designed to investigate issues in the use of MERs, a number of different 

representations of proximity are available to an experimenter or teacher. 

All representations are based on the percentage deviation of the estimate from the 

exact answer ((exact answer - estimate / exact answer) X 100). This is a commonly 

used measure to analyse the accuracy of an estimate (Levine, 1982; Dowker, 1992). 

No matter how the nature of surface features of the representations differ, the deep 

structure is always based on this relationship. They are used both for display (how 

accurate the estimate was) and also for action (children's prediction of how accurate 

the estimate will be, given the intermediate solution). 

A number of features of the representations can be manipulated. In section 3.2, 

various approaches to describing the different properties of representations were 

introduced. These included taxonomic approaches and attempts to define fundamental 

properties (equivalence is obviously not relevant until comparing two or more 

representations). The following sections will review the nature of the representations 
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based on these approaches. The first dimensions considered are based on two of 

Palmer's (1978) classification for describing information presented in a 

representation - the type of information ('amount of information' will be used in the 

thesis for clarity) and the resolution of the information. Secondly, the modality of 

the representation is described as this remains the most common way of classifying 

representations. Finally, Kaput's distinction between mathematical and non- 

mathematical representations is used to categorise the representations used in two 

broad classes. 

In addition, these features can differ across the representations that are presented 

together. This allows properties of multi-representational systems to be varied along 

the dimensions of redundancy between representations and the similarity of format. 

Each of these dimensions will be discussed in turn. 

Amount of Information 

It was proposed (section 6.3.3) that there are two different dimensions to accuracy of 

estimates - direction and magnitude. Hence, the representations used in CENTS can be 

chosen either to display direction or magnitude separately or can display both 

dimensions simultaneously. This is particularly interesting when considering multi- 

representation systems because it allows for different levels of (informational) 

redundancy across representations. In the case of CENTS, three levels of redundancy 

are possible - no redundancy, partial redundancy and full redundancy. 

In no redundancy situations, each representation expresses a different dimension of 

accuracy. Thus, one representation is used to display direction (either higher or lower 

than the exact answer) and one to express magnitude (either continuously or 

categorically). When MERs are fully redundant, then the same information is 

derivable from both of them. For example, both representations could express 

direction and (continuous) magnitude. Finally, MERs could be partially redundant. In 

this case, there is some overlap between the information derivable in the 

representations. For example, one representation could express magnitude only, while 
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the other both magnitude and direction. This flexibility allows predictions to be tested 

about how redundancy between representations affects learning. 

Two types of resolution of proximity information were created for use in CENTS. 

The first is to present the accuracy of estimates in a categorical system. Thus, two 

estimates, one 12% away from the right answer, the other 16% away might be 

considered to fall into the same category. Descriptions such as `close', `10-20%', 

`2nd band of the target' might all be labels for this category. In the case of the 

representations used in CENTS, the categories depicted represented 10% deviation 

bands. Evidently, this choice is, to some extent, arbitrary. 

The second granularity of information chosen for use in CENTS was a continuous 

one. For the given example, it would be possible to discriminate between the two 

different estimates of 12% and 16% away, (e. g. higher up the splatwall). It should be 

noted that the exact percentage deviation was not expressed. For example, if the 

estimate was 11.85% away from the answer, the system displays 12% away. 

These two different resolutions were to chosen to express different views on 

accuracy. It is often convenient to think of estimates in a categorical manner. There 

can be few occasions when even sophisticated estimators would need to discriminate 

between 12% and 16% inaccurate. However, children tend to view categories as 

having hard boundaries and to consider themselves as wrong if they predict a category 

adjacent to the `right' one. 

CENTS can therefore offer two different views on the proximity of representations. 

Hence, when providing MERs these can either be at the same level of granularity or 

at different ones. 

Modality of Representations 

Perhaps the most common distinction between representations is whether they are 

graphical or propositional (e. g. Barwise & Etchemendy, 1992). Many researchers 
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have found that in different situations representation of one modality may be more 

effective than another, (e. g. Larkin & Simon, 1987; see section 3.1). Although, this 

was not a primary aspect of this thesis, the representations used were constructed to 

differ in modality (about 70% were graphical and 30% propositional). 

Type of Representations. 

There are a large number of taxonomies of representations (for a review see section 

3.2). Each field concerned with the role of external representation seems to have 

created at least one (but normally many) of their own. One very useful one for the 

design of CENTS (although not sufficient to describe all the features of the 

representations) was the distinction proposed by Kaput (1987) between ambient 

symbol systems such as pictures and natural language and other, normally school 

taught, representations such as graphs, tables, schematic diagrams (referred to as 

mathematical representations). The intended age group of CENTS (late primary 

school children) are considerably more familiar with pictures than they are with 

mathematical representations. Given the research into the role of expertise in 

understanding external representations (e. g. Petre & Green, 1993), this may be a 

crucial dimension. 

6.4.1 Representation Descriptions 

If each single representation differed along the dimensions of amount of information, 

resolution, modality and type, then 24 different representations of proximity would 

be needed. However, some of these cells may be empty. It may not be possible to 

have a representation that is pictorial but not graphical. Not all 24 proposed 

possibilities were created, altogether a total of eight different representations have 

been used in CENTS to date (Table 6.1). The choice of representation implemented 

was primarily dictated by the experimental questions that the evaluations with 

CENTS addressed (see Chapters Seven and Eight). Each representation will be briefly 

described in turn. 
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Table 6.1. Representations currently available in CENTS 

Type Modality Resolution Amount 

Splatwall pictures graphical continuous D&M 

Archery Field pictures graphical continuous D&M 

Target pictures graphical categorical M 

Hoops pictures graphical categorical D 

Marbles pictures graphical continuous M 

Numerical D&M maths propositional continuous D&M 

Histogram maths graphical categorical M 

Numerical M maths propositional continuous M 

key: D= direction M= magnitude 
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Figure 6.5 Splatwall 

The underlying analogy for all the pictorial representations that express magnitude 

information is based on distance from a goal. The `splatwall' operates by throwing 

`paintballs' at a wall to indicate percentage deviation of the estimate in continuous 

terms. It expresses both magnitude and direction. Thus, in terms of Cheng's 

functional roles of diagrams, (Cheng, 1996a; see section 3.2) it depicts both states and 
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values and allows for comparisons to be made. The states in Cheng's terms for this 

representation are either under or over-estimates. The values as these are continuous 

representations is the deviation away from the right answer. 

This representation was created to emphasise that being in the middle is best and is 

therefore unlike most common representations of distance which are biased so higher 

is better. Children act upon the representation by marking on the wall how close they 

believe their final estimate will be to the exact answer. Hence, this representation 

supports a direct manipulation interface. The accuracy of the estimate is indicated by 

throwing a paint ball at the wall to leave a `splat'. A compromise was made between 

space and precision, so that the wall represents accurately deviations of ±50%. 

Deviations of above this amount (and there are very few) are represented by placing 

the `splat' on the limit. 

Archery field 

Figure 6.6 Archery 
, 

Field 

The archery field is a direct analog of the splatwall representation. It expresses 

continuous direction and magnitude information. The only significant difference is 

that the representation is turned through 90 degrees. Hence, estimates that are 

'higher than the exact answer' must be mapped onto to the right of the centre and 

'lower than the exact answer' to the left of the centre. 
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Numerical display - direction and magnitude 

Percentage Avay 

t -10ý -10ý 

Rounding Truncefie 
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Figure 6.10 Numerical Display 

Both prediction and display with the numerical representation express percentage 

deviation in digits. The direction of the deviation is given by `+' and `-' signs. The 

function roles assigned to this representation are identical to those proposed for the 

splatwall and archery field. Children act upon the representation using the keyboard. 

Accuracy is given to the closest 1%. Although space and precision constraints do not 

affect this representation in the same way they do for the pictorial representations, 

consistency is maintained by keeping to a ±50% range. 

Archery target 

Figure 6.7 Archery Target arget 

The design for the archery target representation of accuracy is based on real archery 

target. Hence, it represents magnitude information in a ordered categorical fashion. 

Cheng's functional roles analysis would suggest that the archery target depicts states 

as it expresses ordered categorical data. Accuracy can be read off in terms of distance 
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from the centre. Comparable to a real archery target, the high/low dimension is 

meaningless. It is categorised into bands of 10% deviation represented by different 

tones. The centre represents 0-10% deviation, the next 10-20%, etc. and the last 

above 40%. The decision to have an outer band represent all values greater than 40 

rather than 40-50% was taken to ensure that the subject never `missed' the target. 

Children act upon the representation by clicking on a circle to indicate their 

prediction of accuracy. This colours a flag the same colour as the band they have 

selected, so that users can compare their prediction to the answer. The accuracy of 

the estimate is indicated by firing an arrow at the target. Note, that there is a central 

wide area rather than a `bulls eye' on the target as these representations are designed 

to de-emphasise the `right' answer. 

hall' 
For off 77! 

roll 

Spot 
on 

'"' Rounding Tnnca ien 

3600 2500 

The marbles representation like the archery target is a pictorial magnitude 

representation. However, the marbles express continuous rather categorical 

information. Thus, in Cheng's terms it allows for representing and comparing values. 

The metaphor used is that of rolling balls along a road. The further a marble rolls, the 

greater the magnitude of the deviation. This representation was particularly 

complicated to design as it was difficult to devise a magnitude representation which 

was not contaminated by direction interpretations. 
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Children act upon the representation by clicking on the road to indicate their 

prediction of accuracy. Hence, like all the pictorial representations, it is accessed via 

a direct manipulation interface. A ball is rolled along the road to express the accuracy. 

The representation is sensitive to deviations of up to 50%. 

Numerical display - magnitude 
percent gesH s 

Percentage Avay 
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Fieure 6.11 Numerical Display - magnitude only 

This representation is identical to the numerical direction and magnitude 

representation except that all values are given without an indication of direction, i. e., 

without a `+' or `-' sign. It could be said to allow comparison of the different values 

of magnitude information. 

Histogram 
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Figure 6.12. Histogram 

This representation is analogous to the archery target. It expresses magnitude 

information in a categorical system. The histogram is divided in bands of 10% from 

0% up to 40+% (figure 6.12). The numerical values are available from the 

representation. The functional roles provided to this representation are the same as 
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those assigned to archery target. To predict how accurate their estimate will be, 

children simply click on the graph to mark it. Accuracy is represented by shading the 

histogram. This representation therefore differs from the other mathematical 

representations as it exploits perceptual processes to a greater extent. 

Hoops 

Figure 6.9 Hoops 

The hoops representation uses a similar metaphor to the magnitude representations 

by providing distance feedback by throwing balls into hoops. These simply represent 

whether the estimate is higher or lower than the exact answer. Therefore, even 0.1% 

above an exact answer would be represented as higher than the right answer. 

Consequently, this representation could be said to depict just two states. Children 

select a hoop by clicking on it. The computer throws a ball into the hoop to indicate 

the correct direction. 

6.5 CONCLUSIONS 

This chapter has attempted to describe the theoretical rationale for the design of 

CENTS. The research first presented in Chapter Two concerning the knowledge and 

skills required for computational estimation was related to the support provided for 

the development of strategic and conceptual knowledge. Secondly, a description of 

the representations used in CENTS was given in terms of the four of the dimensions 

they differed upon: 
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0 the amount of information expressed 

" the resolution of information 

0 the modality of the representation 

" the type of representation 

The primary purpose of the MERs is therefore simply to support different ideas and 

processes by allowing a variety of different views on the task to be displayed. 

However, they may also help children to come to understand the domain more fully if 

children can translate between or abstract over them in the ways discussed in section 

3.4.3 and 3.5. At this stage, no prediction has been made about how each 

representation may support understanding. Nor has the different learning demands of 

the representations been considered. The argument being developed in this thesis is 

that when considering MERs, it may not be sufficient to examine the properties of 

individual representations. Thus, these issues are addressed in the next two chapters 

which describe three evaluation studies with CENTS. These concentrate upon three 

primary questions: (a) what is the baseline performance of children who have not 

been taught computational estimation; (b) whether CENTS is a useful tool for 

learning computational estimation and, (c) how combining different representations 

contributes to the development of this understanding? 
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CHAPTER SEVEN 

Experiment Three (CENTS) 

The first experiment with CENTS had three main goals. The first aim was to examine 

strategies and knowledge involved in computational estimation. The second goal was 

assess how effective CENTS was at teaching children this knowledge. The final aim 

was to explore whether different combinations of MERs affected what children learnt. 

7.1 AIMS 

7.1.1 Pedagogical Aims 

Two basic questions were addressed: (a) what was the nature of children's (untaught) 

computational estimation performance and; (b) could CENTS successfully support 

learning of the aspects of computational estimation that it was designed to teach ? 

These were: 

0 to teach children strategies that they can use to estimate solutions to problems 

0 to encourage children's understanding of how transforming numbers to produce an 

intermediate solution affects subsequent accuracy 

0 to support the development of the required underlying conceptual knowledge 

This evaluation study concentrated upon the first two aspects of computational 

estimation. Therefore, data were collected to examine: 

" the accuracy of estimates 

" the appropriateness estimation strategies 

0 insight into how close an estimate was to the exact product of the factors (e. g. a 

little lower, a lot higher). 

7.1.2 MERs Aims 

CENTS uses MERs of proximity. As discussed in section 6.4, these can be displayed in 

many ways. One dimension of the design of multi-representational software that was 
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introduced in section 3.7 was the similarity of format between representations. The 

aim of this experiment was to examine how children used MERs which varied the 

format of representations. 

For each multi-representational system, two representations were used to emphasise 

different aspects of proximity. The first representation was categorical and conveyed 

only magnitude information (referred to as the categorical representation). The 

second representation was continuous and expressed both magnitude and direction 

information (continuous representation). Thus, the MERs for all the different 

formats were partially redundant. This level of redundancy was chosen so that the 

representations provided different views on the phenomenon, but still had some 

information in common. The representations were presented simultaneously and so 

the issue of how to sequence representations was not relevant. No automatic 

translation was provided by the system as the experiment aimed to analyse how 

difficult children would find mapping across representations that differed in format. 

This experiment employed two different representational formats - pictorial and 

mathematical. Thus, three different types of MERs are available, two pictorial 

representations (picts, Figure 7.1) two mathematical representations (maths, Figure 

7.2) or one pictorial and one mathematical (mixed, Figure 7.3). Each pictorial 

representation was graphical, but the maths and mixed systems employed one 

graphical and one propositional representation. 

Figure 7 .1 Pictorial representations: splatwall and target 
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Figure 7.2 Mathematical representations: numerical display and histogram 
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Figure 7.3 Mixed representations: numerical display and target 

The existing literature on the properties of individual mathematical and pictorial 

representations was examined to derive a series of predictions about the properties of 

the different multi-representational systems and their affect on learning. 

Pictorial representations are easy to understand and use. They require little 

mathematical knowledge, can be considered as ambient symbol systems (Kaput, 1987) 

and make use of perceptual processes to support inferences (Larkin & Simon, 1987). 

In addition, children with lower mathematical aptitude may be able to use these 

representations more successfully than the other types of representations (Cronbach 

& Snow, 1977). 
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By the same token, mathematical representations will be less easy to understand. 

They require more specialist knowledge and make less use of perceptual processes. 

Compared with pictorial representations, they should take longer to be used 

successfully. 

Mixed representational systems combine the properties of both pictorial and 

mathematical representations. Hence, the advantages of both these representation 

should be available in this system. In addition, Dienes (e. g. Dienes 1973) argues for 

the multiple embodiments in mathematics education - the linking of imagery and 

symbolism. The mixed representations come the closest to achieving this. 

However, these predictions assume that when representations are combined the 

effects are simply additive. In addition, these proposals only account for the first two 

of the learning demands of MERs (discussed in section 3.4), the format and operators 

of a representation and the relation between the representation and the domain. It 

was argued that the learning demand of translating between MERs should also be 

considered. Thus, for each system, an attempt was made to analyse how easy children 

would find it to translate across the representations. 

The pictorial representations are based on the same analogy, `distance from target' 

and are of the same type (classified according to Lesh et al,. 1987 and Lohse et al. 's, 

1994, typologies). Prediction on both representations involves `clicking' to select 

some of the representation. Feedback is given by identifying a part of the 

representation. Therefore, the format and operators of the representations are 

similar. Translation between the pictorial representations should be easily learnt. 

The mathematical representations are of different types (Lohse et al., 1994) and, in 

addition, mix modality as the graph exploits perceptual processes whilst the numerical 

display is propositional. Thus, the format and operators of the representations are 

quite different. However, both representations employ numbers. Children find it easy 

to recognise the similarities between representations if they contain the same 
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numbers (DuFour-Janvier et al., 1987). Although learning each representations may 

be difficult, it should be relatively easy to translate across representations. 

Mixed representations are often used in the hope that pictures will act as a bridge to 

the less easily understood mathematical representations. However, these 

representations mix modality, use different format and operators and have no 

numbers in common. This situation is also the only one of the three that Lesh's 

model of translation (described in section 3.5) would describe as requiring a translation 

across representation types, rather than within types. Translation across these 

representations was therefore expected to be difficult. 

This experiment was designed to examine the effects of these combinations of 

representations in light of these different predictions. 

7.2 METHOD 

7.2.1 Design 

A two factor mixed design was used. The first factor varied representations of 

accuracy of the estimates. This resulted in four groups of 12 subjects consisting of 

subjects who received `picts' (target and splatwall), `maths' (histogram and numerical) 

and `mixed' (target and numerical) representations. The final group were simply a no- 

intervention control who just took the pen and paper tests. The second factor, time, 

was within groups. A randomised block design was used and children were assigned to 

the different conditions on the basis of their scores on a mental maths test. Each 

group had similar numbers of boys and girls and the mean age of the subjects did not 

differ significantly. 

A number of measures of children's performance were examined. These can be divided 

into two main groups: pen and paper tests given at pre-test and post-test, and 

computer traces which examine the users' behaviour during their sessions with 

CENTS. Paper measures examined the accuracy of children's estimates (answer 

accuracy), the prediction of the accuracy of an estimate (prediction accuracy) and the 

strategies they use. Prediction and answer accuracy are, in principle, independent. 
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Trace measures assessed behaviour with the representations. Answer accuracy was 

constrained by the system as it would not allow `wrong' intermediate solutions, but 

prediction accuracy with the two different representations can be measured. This gave 

an indication of children's developing domain knowledge and their understanding of 

the representations. To examine whether children were learning to translate across 

representations, the similarity of users' behaviour across the different representations 

was measured (representational co-ordination). If children see the relation between 

representations, then their prediction on each representation should be the same, 

even if this prediction is incorrect. Thus, over a time, a trend towards increasing 

convergence should be observed. Finally, as predictions about representation use call 

for differential affects of ability, aptitude by treatment interaction were examined. 

7.2.2 Subjects 

48 mixed ability year five pupils from a state junior school took part in the 

experiment. They ranged in age from 9: 9 to 10: 8 years. All the children were 

experienced with mouse driven computers. 

7.2.3 Materials 

Mental Maths Test 

A general test of mental mathematics was devised by combining exercises from books 

two and three of `Think and Solve Mental Maths' (Clarke and Shepherd). It was 

piloted with a parallel class which was not taking part in the experiment. 

Pre-test and Post-test Material 

The task required children to estimate an answer to a multiplication problem. There 

were 20 questions, eight 3 digit by 3 digit problems (e. g. 213 x 789) and twelve 2 

digit by 2 digit problems (e. g. 21 X 78). Given the strategies taught, five of the 

problems would be most accurately solved by rounding down, five by rounding up and 

ten problems by intermediate compensation. To probe the depth of insight that 

children had into the accuracy of their estimate, they were required to state how they 

thought their estimate differed from the exact answer (see figure 7.4, Appendix 2). 
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1. Estimate: 64 x 56 my estimate is 3000 

very much less just less exactly just more much very 
much less the more more much 
less same more 

30% or 30% to 20% to 10% to 0% 0% to 10% to 20% to 30% or 
below 20% 10% 0% less 10% 20% 30% above 

less less more more more 

Figure 7.4 An example question (with answer) from the pen and paper test 

Categories were labelled in both percentages and natural language. It was recognised 

that knowledge of percentages is not very developed in this age group. However, it 

was felt important to label the categories in such a way that proportional reasoning 

was emphasised. In addition, it also provided a definition for the category, one 

person's `just less' may be another person's `less'. This is particularly true when the 

numbers involved different orders of magnitude. 

7.2.4 Procedure 

Pre-tests 

Children were given mental maths tests in their classroom. The class teacher read the 

items to the children and allowed them to query items if they had not understood a 

question. Children were allowed a short break after each block of ten items. In total, 

the test took about 30 minutes to complete. 

The estimation tests were given the following day. Again, testing took place in the 

classroom with the teacher present who helped explain the task to the children. 

Instruction stressed that exact answers were not required, encouraged guessing rather 

than leaving an answer blank and explained how to use the insight measure. Subjects 

were allowed to proceed at their own pace through the test and generally took 

between 20 and 40 minutes to complete it. One child was stopped after an hour. 

Three parallel versions of each test had been created and, to prevent copying, 

children seated together were given different versions. 
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Computer Intervention 

Subjects used the computer individually in a quiet corridor or classroom. The 

experimenter was present to help explain the instructions. To ensure sufficient 

practice with the system, each child used CENTS twice (the total time spent on the 

computer was between 80 and 100 minutes), separated by approximately two weeks. 

The three different versions of the program had the same basic structure. The user 

was greeted by a screen welcoming them to CENTS. Instructions explained what the 

task was and how they should answer the question. The experimenter demonstrated 

the task to the children and then stayed to provide support if they became confused 

about how to operate the system (but did not provide direct teaching). 

Children were set eight questions which they had to answer by truncation and by 

rounding. All questions presented were generated dynamically, hence the problems 

each child was set were different. Each child started with a two (digit) by two problem 

and gradually included larger problems (two by three and three by two) and ended with 

a three by three problem. After each problem, children filled in the log book 

recording details of their estimates. 

Post-test 

Children received a parallel version of the estimation test within 10 days of their 

second computer period. Interestingly, application of the test took longer than at 

pre-test, requiring between 20 and 80 minutes. 

7.3 RESULTS 

To examine the effects of the intervention, a number of [4 by 2] ANOVAs were 

performed on the pre-test and post-test data. The design for the analyses was 4 

(control, maths, mixed picts) by 2 (pre-test, post-test). The first factor, format. was 

between groups and the second, time, a within group repeated measure. In addition, 

trace logs from the two intervention sessions were analysed using [3 by 2 by 2] 

ANOVAs. Children gave two answers for each problem, hence the strategy used was 

included as a factor. The design was 3 (maths, mixed, picts) by 2 (rounding, 
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truncation) by 2 (time 1, time 2). The first factor was between groups and the last 

two (time and strategy) are within groups factors. 

7.3.1 Answer Accuracy 

A commonly used measure of estimation performance is the percentage deviation of 

the estimate from the exact answer. This was examined using an [4 by 2] ANOVA on 

the pen and paper data (Table 7.1). The results from one subject have been dropped. 

She was an extreme outlier scoring 10 standard deviations above the mean at pre-test. 

Table 7.1. Percentage deviation of estimate by format and time 

Control Mixed Maths Picts 

Pre-test 89.83% 88.99% 101.25% 102.95% 

(16.9) (9.5) (62.5) (55.7) 

Post-test 82.66% 60.71% 55.29% 57.56% 

(13.9) (24.6) (45.1) (34.1) 

As can be seen from Table 7.1, the pre-test performance of the children was very 

poor. The average percentage deviation from the correct answer was 96%. This 

created two problems. Firstly, the data were non-homogenous and no transform could 

solve the problem. Secondly, this measure has traditionally only been used on 

deviations of up to 40%. Consequently, other measures of performance were designed. 

One problem with using a percentage deviation is that a large number of children 

performed appropriate transformations, correct front-end extraction and 

multiplication, but failed at place value correction. To distinguish those children who 

only failed at the final step from those who used incorrect strategies or just guessed 

answers, the estimates were corrected for order of magnitude. A child answering 1200 

to `221 x 610' would therefore be corrected from 99% to i l% inaccurate by this 

measure. However, a guess of 2500 would remain 80% inaccurate. This should identify 

which children were generating plausible estimates, only failing at order of magnitude. 
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Table 7.2. Percentage deviation of corrected estimate by format and time 

Control Mixed Maths Picts 

Pre-test 38.58% 38.32% 38.08% 40.74% 

(10.6) (18.1) (15.6) (12.16) 

42.08% 27.08% 24.02% 27.84% Post-test 

(10.4) (14.5) (17.2) (19.1) 

Analysis using an [4 by 2] ANOVA showed a significant main effect of time 

(F(1,44)=10.84, p<0.002). The interaction between format and time was also 

significant (F(3,44)=3.006, p<0.040) (Figure 7.5). Simple main effects analysis found 

no significant differences between the groups at pre-test (F(3,88)=0.114), but there 

were differences at post-test (F(3,88)=4.57, p<0.02). The control groups 

performance did not change, but all three experimental groups improved significantly: 

" control (F(1,44)=0.84) 

" mixed (F(1,44)=4.58, p<0.038) 

" maths (F(1,44)=7.42, p<0.009) 

" picts (F(1,44)=7.025, p<0.011) 
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Order of magnitude corrections had been applied to identify children who had 

correctly produced an intermediate solution. However, when examining how many 

0 
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orders of magnitude were needed to correct the estimate, the degree of correction 

significantly decreased from pre-test to post-test (F(1,44)=22.014, p<0.001). 

Children did gain some understanding of place value correction during the study. 

7.3.2 Strategic Knowledge 

A second way of examining subjects' estimation skills was to code whether their 

estimates were produced using a recognised strategy. Estimates were identified as 

rounding up, rounding intermediate compensation, rounding down (or truncation), 

exact answer (or attempt to produce one), addition, or unknown. (The other 

strategies identified by Reys et al. (1982) were not found in these studies). Hence, 

strategies that involved front end extraction were coded as appropriate and all others 

as inappropriate*. The number of estimates generated by a recognised strategy was 

examined (Table 7.3). 

Table 7.3. Numbers of estimates generated by a recognised strategy by format and 

time (out of 20) 

Control Mixed Maths Picts 

Pre-test 1.91 6.58 4.33 2.75 

(3.8) (8.0) (5.1) (3.5) 

Post-test 2.83 12.25 13.33 10.58 

(4.8) (7.6) (8.3) (9.0) 

Analysis revealed significant main effects of time (F(1,44)=31.59, p<0.001) and 

format, (F(1,44)=3.98, p<0.014). There was also a significant interaction between 

format and time (F(3,44)=2.94, p<0.043) (Figure 7.6). A simple main effects analysis 

identified significant differences between the groups at post-test (F(3,88)=6.19, 

p<0.001), but not at pre-test (F(3,88)=1.16). The control group's scores did not 

change significantly, but all three experimental groups improved significantly: 

*A second coder examined 10% of the scripts. No formal inter-rater reliability was performed as 

over 97% of codes agreed. 
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" control (F(1,44)=0.19) 

" mixed (F(1,44)=7.44, p<0.01) 

0 maths (F(1,44)=7.97, p<0.001) 

0 picts (F(1,44)=4.67, p<0.001) 

Tukey tests showed that the picts group did not perform significantly better than the 

control group at post-test, although the other experimental groups did: mixed v 

control (q=4.17, p<0.05) and maths v control (q=4.64, p<0.05) (see figure 7.6). 
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The results for the analyses of accuracy and appropriate strategies can therefore be 

seen to be very similar. The control group did not significantly alter their 

performance and all the experimental groups showed significant improvement from 

pre-test to post-test. The performance of the different experimental groups was 

almost identical. It seems that children can learn to estimate with CENTS and that 

improvements in performance were not due to the effects of repeated testing. 

The tests were constructed such that in 25% of the cases rounding down (truncating) 

was the most accurate (taught) strategy to use, 25% rounding up and the remaining 

50% intermediate compensation. If children were picking the most accurate known 

strategy, then this pattern should be reflected in the scores. Analysis of the estimates 

at post-test found that intermediate compensation is the most common strategy 

accounting for 44.7% of appropriate estimates. However, there is also a very high 
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incidence of rounding down/truncation (42.8%). This indicates that some answers 

were generated by truncating as opposed to rounding down. Inspection of individual 

children's results suggested that some children invariably truncated. This is not 

necessarily to be discouraged. As it was suggested that truncation is an easier strategy 

than rounding, then this strategy can provide success where an attempt at rounding 

might lead to failure. Only 12.5% of answers were generated using a rounding up 

strategy. This is much less than would be expected if children were choosing the most 

accurate way to solve the problem. 

Aptitude Data 

Mental maths scores had been gathered from the children in order to control for 

mathematical ability within the conditions. It was possible to use this data to explore 

the effect of general mathematical ability upon estimation performance. This was 

examined using an [4 by 2 by 2] ANOVA upon the strategy data. It should be noted 

that with only six subjects per cell, this data should be considered cautiously. 

Table 7.4. Recognised strategies by format, ability and time 

(Higher mental maths scores) 

Control Mixed Maths Picts 

Pre-test 2.33 9.83 6.17 5.0 

(4.8) (8.3) (6.3) (3.75) 

Post-test 1.5 17.17 17.83 15.17 

(5.3) (2.76) (2.6) (7.7) 
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(Lower mental maths scores) 

Control Mixed Maths Picts 

Pre-test 3.17 3.33 2.51 0.05 

(2.7) (6.8) (2.8) (8) 

Post-test 2.50 6.17 8.83 6.01 

(4.7) (7.89) (9.8) (8.3) 

As before, there were main effects of format and time. There was also a main effect 

of ability (F(1,40)=16.49, p<0.0002) (Tables 7.4, Figure 7.7). There were no 

significant interactions with ability. Therefore, CENTS seems suitable for children of 

with wide ranges of mathematical knowledge. 
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7.3.3 Prediction Accuracy 

The above measures explored the improvement in the use and application of 

estimation strategies. However, they did not examine insights the children may have 

into the process of estimation and how the estimates differ from the exact answer. 

This was assessed using the tick boxes which subjects filled in to indicate how far away 

an estimate was from the exact answer. The responses were coded as the difference 

between the category that they should have selected given their estimate and those 

that they did which provides a score between 0 and 8 per answer. This was examined 

using an [4 by 2] ANOVA. 

o 
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Table 7.5. Difference between prediction and estimate by format and time 

Control Mixed Maths Picts 

Pre-test 3.26 3.06 3.06 3.46 

(0.91) (1.74) (0.91) (0.62) 

Post-test 3.58 2.67 2.28 2.44 

(1.18) (0.97) (0.81) (1.32) 

Analysis revealed a significant main effect of time (F(1,44)=8.25, p<0.007) and a 

significant interaction between format and time (F(3,44)=3.28, p<0.03) (Table 7.5 

and Figure 7.8). There were no significant differences between groups at pre-test 

(F(3,88)=0.456), only at post-test (F(3,88)=4.14, p<0.008). The performance of 

both the control group (F(1,44)=0.97) and mixed group did not change significantly 

(F(1,44)=1.34). However the maths group (F(1,44)=5.73, p<0.021) and the picts 

group (F(1,44)=4.67, p<0.003) did improve significantly. Tukey tests showed that at 

post-test, the maths condition scored significantly differently to the control 

condition (q=3.90, p< 0.05) 
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This is the only pen and paper measure where there is any difference between the 

experimental conditions. It is also the measure that is most directly related to the 

representations. In order to examine more closely how the different MERs may have 
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affected learning outcomes, the computer logs generated during the intervention 

session were examined. 

7.3.4 Process Data 

The first measure of performance examined was prediction accuracy. This is similar 

to the paper tests of prediction as children were asked to predict how far their 

estimate will be from the exact answer. Prediction was performed using different 

representations immediately after an intermediate solution was produced. This 

measure indicates how children are coming to understand the domain and 

representations. It is related to the first two learning demands of multi- 

representational software. Prediction accuracy is discussed separately for each 

representation. 

Continuous Prediction 

The continuous representations were the numerical display in the mixed and maths 

conditions and the `splatwall' in the picts condition. The data from the splatwall were 

recoded as percentage deviation scores using the underlying model which drives the 

representation. An [3 by 2 by 2] ANOVA was conduced upon the on-line data from 

the two trials with CENTS (see Table 7.6). 

Table 7.6. Difference between prediction and estimate by format, time and strategy 

Percentage deviation 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

18.85 19.92 20.56 21.39 13.94 13.75 Time 

1 (15.1) (10.4) (16.1) (11.0) (5.7) (5.6) 

16.85 19.17 10.18 13.32 11.82 11.65 
Time 

2 (8.5) (8.4) (5.5) (7.3) (4.02) (5.22) 

These data did not pass homogeneity of variance tests, so were transformed using a 

natural log function. There were significant main effects of time (F(1,33)=9.02, 
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p<0.005) and strategy (F(1,33)=4.29, p<0.046); answers generated by rounding were 

predicted more accurately. There was also significant interaction between time and 

format (F(2,33)=3.81, p<0.032) (Figure 7.9). Simple main effects showed no 

significant differences between the groups at time one, but there were at time two 

(F(2,66)=3.73, p<0.029). The maths condition demonstrated significant 

improvement in performance (F(1,33)=14.67, p<0.001). 
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The second type representation employed in this experiment was a categorical 

representation which represented magnitude (i. e. either histogram or archery target). 

The system logs which category the user predicted and this can be compared to the 

one they should have predicted given their estimate. This gave a difference score 

(between 0 and 4) that was analysed by an [3 by 2 by 2] ANOVA. 
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Table 7.7. Difference between prediction and estimate by format, time and strategy 

Category differences 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

Time 1.05 1.29 1.19 1.29 0.99 1.09 

1 (0.40) (0.30) (0.73) (0.29) (0.34) (0.46) 

Time 
1.12 1.15 0.77 0.95 0.85 1.01 

2 (0.51) (0.42) (0.47) (0.37) (0.37) (0.50) 

There was a significant effect of time (F(1,33)=6.62, p<0.015) and strategy 

(F(1,33)=5.02, p<0.032); again rounding was predicted more accurately. However, the 

interaction between format and time was not significant (F(2,33)=2.36, p<O. 11). 

(Table 7.7, Figure 7.10). However, the pattern of results are almost identical to those 

for the continuous representations described above. 
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Thus, for both representations, the poorer understanding demonstrated by children 

from the mixed condition was apparent by the second intervention session. 

ApWvAe_Measures 

The representations differed in terms of mathematical knowledge required to 

interpret them. Hence, it was predicted that there may be an effect of children's 
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mathematical ability. The continuous representations were examined and a median 

split by the mental maths scores was performed upon the data. This was then analysed 

using an [3 by 2 by 2 by 2] ANOVA. The design was 3 (mixed, maths, picts) by 2 

(high, low scores) by 2 (time 1, time 2) by 2 (rounding, truncation). The first two 

factors are between groups and the last two are within groups. 

Table 7.8. Difference between prediction and estimate by format, ability, time and 

strategy 

Higher mental maths scores 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

Time 11.36 17.07 8.75 14.91 10.93 12.00 

1 (6.22) (9.23) (2.91) (5.32) (4.91) (2.08) 

Time 15.91 12.06 6.54 7.58 10.54 12.27 

2 (9.18) (5.02) (2.21) (2.72) (6.03) (6.71) 

Lower mental maths scores 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

Time 26.33 22.77 32.37 27.87 16.94 15.27 

1 (18.19) (11.63) (15.17) (11.8) (5.12) (4.99) 

Time 17.79 25.10 13.84 19.04 13.04 12.23 

2 (8.63) (6.91) (5.59) (5.76) (5.53) (4.00) 

These data did not pass homogeneity of variance tests and so were transformed using 

a natural log function. As before, analysis revealed main effects of time and strategy 

and a trend for a main effect of format (F(1,30)=2.61, p<0.089) (Table 7.8). There 

was also a main effect of ability (F(1,30)=27.60, p<0.001). The students who had 

been judged to have greater mathematical ability (by mental maths scores) were 
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significantly better at predicting the accuracy of their estimates than those with lower 

scores. 

There proved to be a strong trend towards an interaction between format and ability 

(F(2,30)=2.980, p<0.066). A simple main effects analysis found the only significant 

differences between representation use were for children with lower mental maths 

scores (F(2,30)=3.462, p<0.044). The three different representations were 

differentially affected by ability. The mixed and maths conditions demonstrated a 

significant effect of ability on representation, mixed (F(2,30)=7.69 p<0.01) and 

maths (F(2,30)=23.65, p<0.001). Children with higher mental maths scores use these 

representations more successfully. However, there were no significant difference 

between higher and lower mathematical ability children for the picts condition 

(F(2,30)=2.18) (Figure 7.11). 
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All groups were significantly worse at predicting truncation estimates but there was 

also a three way interaction between time, task and ability, (F(1,30)=5.91, p<0.021) 

(see Figure 7.12). Simple simple main effects analysis showed that the high ability 

group significantly improved performance in truncation (F(1,30)=4.72 p<0.038), but 

not in rounding (F(1,30)=. 03). The lower ability group improved at rounding 

(F(1,30)=7.78, p<0.009) but not truncation (F(1,30)=0.687). 
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lt is also possible to repeat this analysis for the categorical representations (target and 

histogram). The pattern of results is very similar, although as for the previous 

analysis of categorical representations, it manifests as trends rather than as 

statistically significant results (e. g. ability and format (F(2,51)=2.36, p<0.098). 

Again, prediction with the pictorial representations showed the least difference 

between higher and lower mathematical aptitude children. 

Reprgsentation. I,., Gq-ordination 

Measures of prediction accuracy provide some insight into how students come to 

understand how the representation reflects the domain, but do not say whether or not 

children see the connections between the representations. As children's understanding 

of the representational system improves, their behaviour should become similar 

across both representations, even if this behaviour is still flawed with respect to the 

domain. For example, if a prediction of very close is made on the first representation, 

it should be made on the second representation as well. 

The first analysis correlated the predictions on the two different representations 

across each session. This was examined by an [3 by 2 by 2] ANOVA. 
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Table 7.9. Correlations between the representations by format, time and strategy 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

Time 0.46 0.28 0.49 0.44 0.32 0.42 

1 (0.39) (0.48) (0.39) (0.46) (0.42) (0.31) 

Time 0.27 0.34 0.59 0.74 0.56 0.58 

2 (0.33) (0.40) (0.44) (0.33) (0.37) (0.27) 

There is a noticeable trend for the correlations to be higher on the second use of the 

system although this difference is not significant (F(1,33)=3.629, p<0.065) (Table 

7.9, Figure 7.13). It was predicted that different conditions would differentially 

improve in co-ordination. Simple main effects showed improvement for the maths 

group (F(1,33)=3.73, p<0.062), and the picts group (F(1,33)=3.824, p<0.059). 

However, the mixed group showed no evidence of improved co-ordination 

(F(1,33)=0.345). 
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Correlations are insensitive to any rescaling of the representations by the children. 

For example, if children in the mixed condition had predicted `band a' (target) with 

1% (numerical), followed by `band b' (target) with 2% (numerical), `band c' (target) 

with 50% (numerical), they would be perfectly co-ordinated, but this obviously 

represent rescalings by the children. It is also likely that some multi-representational 

.o 
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systems are more likely to be resealed than others. Both the mathematical 

representations contain numbers which may inhibit rescaling. 

An alternative way to examine similarity of behaviour was to convert the continuous 

representation into the appropriate absolute category so that the two predictions 

could be compared (prediction A- prediction B). If both representations were used to 

predict the same answer, then the sum of the differences between the two groups 

should be 0. If the answers were maximally discrepant, the maximum average value is 

4 (as there were 5 categories in total). 

Table 7.10: Difference in prediction between the representations by format, time and 

strategy 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

1.05 0.93 0.91 0.90 0.74 0.81 
Time 1 

(0.50) (0.48) (0.56) (0.54) (0.38) (0.43) 

0.77 0.99 0.47 0.37 0.54 0.64 
Time 2 

(0.48) (0.39) (0.46) (0.38) (0.43) (0.34) 

Analysis revealed a single main effect of time (F(1,33)=9.36, p<0.004) (table 7.10, 

Figure 7.14). Unplanned comparisons showed that children in the maths condition 

improved significantly over the sessions (q=4.69, p<0.01) and that behaviour was 

significantly different to children in the mixed condition at time 2 (q=3.53, p<0.05). 

The apparent trend for children in the picts to start more co-ordinated was not 

significant. 
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The two different representational co-ordination measures provide a very similar 

account of children's ability to translate over representations. It would seem that 

children given mixed representations find it much more difficult to translate between 

the representations as they show no improvement in co-ordination over the two 

sessions. 

7.4 DISCUSSION 

The two primary goals of this evaluation were to examine whether CENTS could 

successfully teach computational estimation and to explore the effects of different 

combinations of representations on children's understanding of estimation. 

7.4.1 Computational Estimation Skills 

Children's estimation skills were examined in a number of different ways. The first 

analysis assessed whether an estimate had been generated using an appropriate 

strategy (in this case, one that involved front-end extraction). The children's 

knowledge of estimation at pre-test was generally low. An average 22% of answers 

were generated using an appropriate strategy. At post-test, children in the control 

group did not use more appropriate strategies (14%). Children in all experimental 

groups had improved significantly - 60% of post-test estimates were generated using 

an appropriate strategy. Hence, it would seem that the strategies that were taught to 
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children by CENTS were remembered and correctly applied by many of the 

experimental subjects. 

The other measure of performance that was examined was percentage accuracy. At 

pre-test, there was a mean percentage deviation of 95.5% from the right answer. This 

demonstrates that not only did children not know any estimation strategies, they also 

did not have a sense of a `ball park' estimate. It was not uncommon for children to 

estimate a solution that was less than one of the factors of the problem (much to 

their teacher's horror! ) 

The model of estimation proposed by LeFevre et al. (1993) suggests that estimation 

involves three main stages: production of an appropriate intermediate solution, then 

calculation of this value, and finally place value correction. Given the generally poor 

performance of children at pre-test, it was not possible with the percentage deviation 

measure to discriminate between children who had no idea about how to estimate and 

those who performed all stages but the final one correctly. The children's answers 

were corrected for order of magnitude (i. e. to include the final step) and the results re- 

examined. The three experimental groups' modified percentage deviation scores show 

a significant improvement from 39% to 26% after the intervention. The control 

group did not improve with 38% at pre-test and 42% at post-test. This measure 

confirms the strategy analysis which showed that children were becoming significantly 

better at estimating after using CENTS. In addition, although children remain 

relatively poor at producing the right place value correction, this did improve 

significantly over time. 

Further analysis had investigated whether general mental mathematical aptitude was 

related to learning outcomes. No strong claim is made about these data, as the mental 

mathematics was not measured with a standardised test. Children with higher mental 

maths scores were found to have performed better on the estimations tasks at both 

pre-test and post-test. Encouragingly, there was no interaction between aptitude and 
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time. This suggests that CENTS provides an appropriate learning environment for 

children of all abilities and is not only suited for higher ability students. 

One area of concern was the relatively poor order of magnitude correction performed 

by the experimental subjects at post-test. Although, performance had significantly 

improved from pre-test, children were often incorrect, especially on the three by 

three digit sums. As discussed in section 6.3, CENTS provides a variety of help 

settings - the higher the level of help, the more support provided by the computer. 

During the intervention, this parameter had been set relatively high for place value 

support. It was decided that in subsequent studies with CENTS, that users should be 

given responsibility for place value correction much earlier in the intervention. This 

would allow a longer period of time for children to practise these skills. 

The strategic support provided by CENTS was constant across all three conditions. 

Consequently, it had not been proposed that there would be any differences between 

the experimental groups on these measures. The prediction was supported by the data. 

The only differences found between the experimental groups were related to the use 

of representations and how these affected children's understanding of the accuracy of 

an estimate. 

7.4.2 Prediction Accuracy 

In order to become a flexible, accurate estimator, children need to understand how 

transforming numbers to produce an intermediate solution affects the accuracy of the 

subsequent estimate. The development of this skill is supported in CENTS by asking 

children to predict the accuracy of their estimate when they have produced an 

intermediate solution. They perform this action and receive feedback by using the 

different representations. 

Pen and paper measures of prediction accuracy showed that children in the maths and 

picts conditions made significant improvements in this skill. However, children in the 

mixed group became significantly more accurate estimators (answer accuracy) without 

becoming better at knowing how accurate their answers were (prediction accuracy). 
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This skill is the one most directly supported by the MERS. Hence, any differences in 

what children learnt from the different combinations of representations would be 

expected to manifest in this measure. Predictions based on analysis of the individual 

representations had suggested that the mixed representations should provide the best 

rather than the worst conditions for learning. However, analysis of the learning 

demands of mixed representations had identified translation across these 

representations as particularly difficult. Hence, the results from the pen and paper 

tests suggested that there was some affect of learning translation between MERS. This 

was further examined by analysing the intervention logs. 

One interesting analysis of the insight measure was to examine the number of times 

children indicated they thought their estimate was exactly right. This prediction was 

made equally across all three experimental conditions at post-test, it accounted 

between 11.5% and 14% of predictions in each condition. However, this prediction 

seemed to be associated with very different levels of understanding across children. 

Some children predicted exactly right on a high proportion of estimates and seemed 

to believe that an estimation provided the right answer. Other children, however used 

it in a very specific circumstance, for example, the problem `18 X 92' when 

transformed to `20 x 90'. These children appeared to reason in absolute terms and 

believed if one number was reduced by two and the other increased by two, then the 

changes cancelled out. This represents sophisticated, if flawed, reasoning on the part 

of these children. Hence, this particular prediction seems associated with children with 

the both the least and most knowledge of prediction accuracy. 

7.4.3 Representation Use 

This experiment was designed to examine how learning with MERs which differed in 

similarity of format influences learning. Two aspects of multiple representation usage 

were examined. The first analysis assessed how each of the representations was used 

with respect to the domain, i. e. prediction accuracy. The second analysis concerned 

the similarity of children's behaviour across both representations. The analysis of 
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similarity of behaviour was proposed to test representational co-ordination. These 

two analyses are related but independent. It is perfectly possible to fully understand 

how two representations relate to each other, but still have incomplete knowledge of 

the domain. Thus, the prediction accuracy is related to the first two learning demands 

of MERs - learning the format and operators of a representation and learning the 

relation between the representation and domain. Representational co-ordination is 

proposed to measure the third learning demand of MERs - translation between 

representations. 

These measures are similar in kind to the measures proposed by Schwartz & Dreyfus 

(1993) (described initially in section 3.6). They both attempt to distinguish domain 

and interpretation knowledge from knowledge of translation between representation. 

The most fundamental distinction between these measures and those of Schwartz & 

Dreyfus is that these researchers were interested in differences between how individual 

students used representations. Whereas this research aimed to explore how different 

types of representations influenced translation. Thus, the measures used in the thesis 

needed to be sensitive to the degree of similarity of use. Schwartz & Dreyfus's 

measure used a categorical system to describe whether all of the information was 

correctly transferred from one representation to another (+1 or -1). Another 

important difference is that by using the representations in the mixed condition that 

were also present in other conditions, it is possible to begin to separate out the two 

different processes of translation between different representations occurring directly, 

or through mapping onto domain knowledge as a mediating agent (first raised in 

section 3.6). If no direct translation was occurring between representation, then 

performance with an representation should not be affected by a second representation 

as interpretation of the representation should only be through the domain. If, 

however, translation between representation does occur, then it would be expected 

that the same representation would be used differently depending on other 

representations it was paired with. 
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Incidental differences between the two approaches are based more upon the nature of 

the domains. The function problems of Schwartz & Dreyfus require representations to 

be used at different stages of the problem as a solution is slowly converged upon. The 

estimation task uses representations once in each (much shorter) problem, and these 

representations are co-present rather than switched between. Consequently, while 

there is obvious similarity between representational co-ordination as defined in this 

thesis and the passage index of Schwartz and Dreyfus, it would not have been 

appropriate to use their approach to address the questions posed by this research. 

The two measures (prediction accuracy and representational co-ordination) used to 

examine children's performance are related to the benefits claimed for MERS 

discussed in section 3.3. The first measure relates to the proposals of a number of 

researchers (e. g. Tabachneck et al., 1995; Cox & Brna, 1995; Kaput, 1987) that one 

of the advantages of MERs is that they allow for different ideas and processes to be 

represented and supported. On this view of MERs, it is less important that users of 

MERs recognise the similarity of representations; instead the emphasis is on 

understanding how each representation reflects the domain. 

A second suggested advantage of MERs is that promote deeper understanding by 

allowing learners to abstract across representations to uncover invariances in a 

domain (Kaput, 1989). For this use of MERs, it is crucial that users are able to 

translate between the different representations. This was examined using 

representational co-ordination. 

The analysis of how the representations were used with respect to the domain showed 

that the two types of representation, (continuous and categorical) demonstrate a 

strikingly similar pattern of results across children's two interactions with the system. 

However, the only statistically significant interactions were for the continuous 

representation. The maths group became significantly better at predicting the 

accuracy of their estimates over time. It would seem (unsurprisingly) that there was a 

significant cost associated with learning how to use mathematical representations. 
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Once understood these representations were used successfully. Children in the picts 

group did not improve at predicting. However, at time one there was a demonstrable 

trend for better prediction accuracy than the other groups. At time two, the picts 

condition demonstrated almost identical performance to the maths groups. The 

mixed group did not improve and were significantly worse than the maths group at 

time two. Hence, it would seem that, relative to the other groups, the mixed group 

were worse at predicting accuracy using the representations. 

However, both representations that were used by the mixed group were also common 

to one of the other groups; the target was used by the picts group and the numerical 

representation was used by the maths group. When the representations were 

employed in these conditions, they were used successfully. Hence, it was proposed 

that the explanation of the poorer performance of the mixed group lies in the 

combination of the representations rather than in the individual representations. 

It was proposed that if users were able to translate across the different representations 

then their representation usage should be essentially identical, even if imperfect with 

respect to the domain. Hence, it was predicted that as experience with the system 

increases, there should be a trend towards increasing convergence. This convergence is 

seen with both the maths and picts group, but not with the mixed group. This failure 

to converge suggests that children are not successfully able to translate between the 

two mixed representations and hence don't construct the same degree of domain 

knowledge as the other groups. This is then reflected on their post-test performance. 

7.4.4 Properties of the MERS 

The properties of each multi-representational system were examined in order to 

explain why co-ordination occurred in picts and maths cases but not in the mixed 

condition. Many explanations could be provided for why the picts representations 

were successfully co-ordinated. In this particular case of target and `splatwall', both 

representations were based upon the same metaphor. Each represents proximity as 

physical distance from a goal. Children selected part of the representation to indicate 
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the accuracy of a representation. Feedback was provided by the computer `throwing a 

missile' at the representation. Thus, both the format and the operators for these 

representations were almost identical. Additionally, the interaction supported by the 

representations was very similar. A direct manipulation interface was used to act upon 

both representations. Obviously, these similarities need not necessarily apply to all 

combinations of pictorial representations. 

In addition to these factors, pictures (and natural language) are `ambient symbol 

systems' (Kaput, 1987). It is known that expertise is needed to successfully use 

external representations (e. g. Petre & Green, 1993). Children of this age will have 

had considerable opportunity to interpret language and pictures, but relatively little 

experience with other representations. Hence, it would be expected that translation 

between two familiar types of representations would be more easily achieved. 

Translation between the different mathematical representations also occurred 

successfully. This was initially more surprising. The histogram representation is 

graphical and exploits perceptual processes. By contrast, the numerical display is 

propositional. The interface to the representations is also different. The histogram 

was acted upon by direct manipulation and the numerical display via the keyboard. 

These representations are also relatively unfamiliar to children of this age. 

The explanation proposed is that mapping between the representation was facilitated 

as both representations use numbers. DuFour-Janvier et al. (1987) suggested that 

children only believed that two representations were equivalent if they both used the 

same numbers. Thus, the numbers could be used to help learners translate across the 

representations. 

The mixed representations differed in terms of modality - the archery target 

representation is graphical and the numerical display is propositional. The interface 

to the representations also mixed direct manipulation and the keyboard. This multi- 

representational system also combined mathematical and non-mathematical 

representations. Amongst others, Kaput has made a strong distinction between these 
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types of representation. Research on multimodal functioning when children are 

acquiring new mathematical concepts (e. g. Watson, Campbell & Collis, 1993) and 

research on word algebra problems (e. g. Tabachneck et al., 1994) suggest that 

different types of representation may also lead to completely different strategies. 

Finally, research on novice-expert differences (e. g. Chi et al., 1981) would predict 

that learners would find it more difficult to recognise the similarity between 

representations when their surface features differ. Thus, it can be seen for mixed 

representations that failure of overlap occurred at all levels. 

7.4.5 Mathematical Aptitude and Representation 

It was proposed that the representations require differential amounts of mathematical 

knowledge in order to be used successfully, hence there may be aptitude by treatment 

interactions in the children's use of representations. It was found that the measure of 

mathematical aptitude used (the mental maths scores) did interact with representation 

use. Prediction accuracy for the maths and mixed group was significantly affected by 

ability. Children with higher mental maths scores were significantly better at 

predicting than children with lower scores. This relation was not demonstrated for 

children in the picts group. There were no significant differences in prediction 

between high and low scoring children in this condition. Hence, for this task, it would 

seem children identified as have better existing mathematical knowledge and skills 

were not affected by the type of representation. Children measured as lower 

mathematical aptitude were found to benefit from pictorial representations. 

Previous research on the aptitude by treatment interactions and representations has 

been inconclusive. Although, many studies how found effects that lower aptitude 

subjects benefited from pictorial representations, others have found no effect (see 

Snow & Yalow, 1982; for a review). However, we might expect these differences to 

be particularly acute for young children. Pictures and natural language are by far the 

most commonly experienced representations for children of this age. They would 

174 



have had only limited experience with mathematical representations and diagrams. 

This may serve to increase any aptitude by treatment interaction. 

7.4.6 Strategies 

Two analyses found differences between the two different strategies available on the 

computer (rounding and truncation). For both the categorical and continuous 

representations, the accuracy of rounding estimates was predicted significantly better 

than the accuracy of the truncation estimates. In addition, there was a three way 

interaction between condition, ability and strategy for prediction accuracy. The high 

ability group significantly improved performance in truncation, but not in rounding, 

whereas the low ability group improved at rounding but not in truncation. Neither of 

these effects had been anticipated before the analysis. 

Observation of the children's behaviour provides an explanation of why truncation 

was predicted less accurately than rounding. The majority of children tended to 

underestimate rather than overestimate the inaccuracy of an estimate, especially on 

smaller numbers (e. g. 14 X 16). In addition, it is truncation which tends to produce 

the most inaccurate estimates, again, particularly on smaller numbers (e. g. the 

problem above solved by truncation to 10 X 10 is a massive 55% inaccurate, but by 

rounding to 10 x 20 is only 10% inaccurate). It was obvious by their comments to 

the experimenter that many children had difficulty with the concept that a procedure 

performed correctly could result in such an inaccurate result. 

This may provide an explanation of the observed three way interaction. Higher 

scoring children are better at rounding at time 1. At time 2, their prediction on 

truncation answers has improved to the same level as rounding. This suggests that 

predicting rounding is easier than predicting truncation, and that the higher ability 

children's performance on rounding is nearly at ceiling at time one. The same 

explanation serves for the lower ability children's performance. These children 

improve significantly at rounding but not at truncation. As rounding is the easier 

strategy, they are able to learn how to predict this strategy first. This explanation 
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would predict that if given more time, lower scoring children's performance on 

truncation would improve to be similar to that on rounding. 

7.5 CONCLUSION 

This experiment designed to examine: (a) children's untaught estimation 

performance, (b) whether using CENTS improves children's understanding of 

estimation and (c) how multi-representational systems that differed in similarity of 

format affect learning. In line with Case & Sowder's (1990) model of the 

development of estimation, pre-test performance was low. Children rarely knew (or 

invented) any appropriate estimation strategies and this was reflected in the 

inaccuracy of their estimates. However, with only limited teaching with CENTS (two 

session) children in all experimental groups improved significantly at performing 

estimation. They used more appropriate strategies and were more accurate. 

However, on the measure most strongly related to the representations, only children 

in the mathematical and pictorial groups improved at predicting how accurate an 

estimate would be. Children in the mixed group improved at estimating without 

improving at understanding the relation between their estimate and the right answer. 

Examination of computer records found systematic differences between how the 

MERs were used to predict the accuracy of estimates. In particular, it was argued that 

as children in the mixed condition did not converge their behaviour across the 

different representations over time, they were unable to recognise the similarities 

between the representations. 

Thus, this experiment found that the degree of similarity of format between 

representations did influence what children learned. Representations that were similar 

in format (pictures and mathematical representations) were associated with better 

learning outcomes for prediction accuracy than those that were dissimilar (mixed 

representations). However, it would be premature to conclude that mixed 

representations should be avoided in learning environments. One problem with this 

experiment is that due to time limitations it was not possible to fully balance the 
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conditions. A further mixed condition consisting of the histogram and the `splatwall' 

would have ruled out the possibility that these results were due to the individual 

representations used. It seems unlikely that the particular representations used would 

have been uniquely difficult to co-ordinate, but there will almost certainly be 

variations in this effect. 

Additionally, it is possible that if children in the mixed condition had been given more 

time and experience, they would have shown similar improvements to those in the 

other conditions. It could be the case that these representations take longer to 

understand, but eventually performance with them will reach or surpass that of the 

other representations. Experiment Four was designed to address this issue. 
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CHAPTER EIGHT 

Experiments Four and Five (CENTS) 

In this chapter two further experiments with CENTS are reviewed. Each addressed the 

concern raised by Experiment Three in regard to how users of multi-representational 

software learn to integrate information from representations. This issue was explored 

over longer periods of time (Experiment Four) and under conditions of varying 

information redundancy (Experiment Five). 

Experiment Four 

8.1 AIMS 

8.1.1 Pedagogical Aims 

In Experiment Three, CENTS was shown to be effective at teaching children 

computational estimation. After the intervention, the experimental subjects produced 

more accurate estimates and used more appropriate strategies. However, children's 

performance was not at ceiling. Only 60% of estimates were generated by an 

appropriate strategy and, in addition, place value correction remained relatively poor. 

As discussed in section 7.4.1, the support provided by CENTS for place value 

correction was altered in an attempt to improve learning outcomes. Additionally, this 

experiment also included two extra intervention sessions. This was also expected to 

improve learning outcomes. 

Thus, the pedagogical aim of this experiment was to see if children's improved 

estimation performance was replicated or even enhanced. 

8.1.2 MERs Aims 

Experiment Three showed that mixed representations resulted in poorer learning 

outcomes. It was argued in section 7.4.3, that this was because users had not been able 

to translate across the representations. However, both the task (computational 

estimation) and the learning environment were new to the children. This placed 

especially heavy learning and working memory demands upon children. This is 
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consistent with Sweller's cognitive load approaches to describing learning (e. g. 

Sweller, 1988; Chandler & Sweller, 1992). Cognitive load accounts suggest that the 

task demands are initially very high when learners are introduced to a problem. 

However, with practice aspects of the task become automated which frees resources 

for other aspects of the task. Therefore, one possible explanation of the results from 

Experiment Three was that co-ordinating mixed representations was only likely to be 

a short-term problem. When children become more experienced with the learning 

environments and with estimation problems, then mixed representations may be 

more easily co-ordinated. 

This hypothesis was tested by adding two further intervention sessions to the 

experiment, producing a total of four CENTS trials in all. Four sessions (about 200 

minutes in total) was chosen as a likely number of sessions over which children should 

become familiar with the environment and task. If convergence has still not occurred 

by the fourth session, then it is plausible to argue that mixed representations are more 

than just only an initial problem. In addition, for systems such as CENTS, it is highly 

unlikely that in normal classroom use children would be allowed more time than this 

to use a computer-based learning environment aimed at a single aspect of the 

curriculum. 

8.2 METHOD 

8.2.1 Design 

This experiment employed the same representations and design as Experiment Three. 

A two factor mixed design was used. The first factor had three levels which varied 

representations of accuracy of the estimates. This resulted in four groups of 12 

subjects consisting of subjects who received `picts' (target and splatwall), `maths' 

(histogram and numerical) and `mixed' (target and numerical) representations. The 

final group was a no-intervention control who took the pen and paper tests. A second 

factor, time, was within groups. A randomised block design was used and children were 

assigned to the different condition on the basis of their scores on a mental maths 
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tests. Each group had similar numbers of boys and girls and the mean age of the 

subjects did not differ significantly. 

8.2.2 Subjects 

48 year five and six pupils from a state junior school took part in the experiment. 

They had been selected by their teachers to be the best at mathematics in their 

(vertically grouped) classes, (the top 10 from 30). The children ranged in age from 

9: 5 to 11: 2 years. All the children were experienced with mouse driven computers. 

8.2.3 Measures 

The same measures of performance were used as for Experiment Three. Paper 

measures examined the accuracy of children's estimates (answer accuracy), the 

prediction of accuracy of the estimate (prediction accuracy) and the strategies used. 

Trace measures were used to examine use of the representations, both with respect to 

the domain (prediction accuracy) and with respect to other representations 

(representational co-ordination). As the children in this study were chosen from the 

highest performers in each class, no effects of ability were examined. 

8.2.4 Materials 

The materials were used were the same as those in Experiment Three. Wording of the 

mental maths tests was agreed with the school's maths co-ordinator. 

8.2.5 Procedure 

Pre-tests 

Children were given mental maths tests in groups of ten. The experimenter read the 

items to the children and allowed children to query items they had not understood. 

Children were allowed a short break after each block of ten items. In total, the test 

took about 30 minutes to complete. 

The estimation tests were given in class groups. Instruction stressed that exact 

answers were not required, encouraged guessing rather than leaving an answer blank 

and explained how to use the insight measure. Subjects were allowed to proceed at 
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their own pace through the test and took between 15 and 45 minutes to complete it. 

Three parallel versions of each test were used. Children seated close together were 

given different versions. 

Computer Intervention 

Two computers were set up in an spare classroom. Each child used CENTS a total four 

times, each session was separated by approximately one week. The total time they 

spent on the computer was between 150 to 220 minutes. Slightly different versions of 

the computer program were used across the session. For example, for the first two 

sessions included an introductory question that did not require prediction. The latter 

versions of the program handed more responsibility and freedom to the user. For 

example, they allowed three digit problems to be rounded to two significant figures 

(e. g. 132 to 120). The experimenter provided support if users became confused about 

how to operate the system, but did not provide direct mathematical teaching. 

Children were set eight questions which they had to answer by truncating and by 

rounding. All questions presented were generated on line, hence the problems each 

child was set were different. Each started with a2 (digit) by 2 problem, gradually 

moved on to larger problems (2 by 3 and 3 by 2) and ended with a3 by 3 problem. 

After each problem, the children filled in the on-line log book recording details of 

their estimates. 

Post-test 

Children received a parallel version of the estimation test within 7 days of their final 

computer period. 

8.3 RESULTS 

To examine the effects of the intervention, a number of [4 by 2] ANOVAs were 

carried out on the pre-test and post-test. The design for the analyses was 4 (control, 

maths, mixed, picts) by 2 (pre-test, post-test). The first factor was between groups 

and the second a within group repeated measure. Trace logs from the intervention 
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sessions were analysed. The first and last session were examined when the numbers of 

sessions was not the focus of the analysis. For representational co-ordination 

measures, where changes over the intervention were of particular interest, all four 

sessions were examined using [3 by 4 by 2] ANOVAs. The design was 3 (maths, 

mixed, picts) by 4 (time 1, time 2, time 3, time 4) by 2 (rounding, truncation). The 

first factor was between groups and the others within groups factors. 

8.3.1 Answer Accuracy 

Pen and paper measures were taken to examine whether the computer intervention 

successfully taught children to become accurate estimators. As before, both the 

accuracy of their estimates (uncorrected and corrected for place value) and the 

appropriateness of their estimation strategies were examined. 

The percentage deviation of the estimate from the exact answer was used to examine 

the accuracy of the estimates. 

Table 8.1. Percentage deviation of estimate by format and time 

Control Mixed Maths Picts 

Pre-test 89.20 83.59 92.28 84.26 

(14.83) (6.81) (24.22) (7.33) 

Post-test 85.78 27.79 20.10 36.74 

(11.87) (18.98) (15.42) (45.11) 

As can be seen from Table 8.1, the pre-test performance of the children was poor. 

There was an average 87% deviation from the correct answer. At post-test, the 

experimental groups were much closer with an average 28% deviation. Again no 

analysis is performed as the data were extremely non-homogenous. 
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A second measure of accuracy was the corrected percentage deviation. This adjusted 

children's answers to the correct order of magnitude and hence distinguished between 

children who performed appropriate transformations, but failed at final place value 

correction, from those who used inappropriate strategies or simply guessed an answer. 

Table 8.2. Percentage deviation of corrected estimate by format and time 

Control Mixed Maths Picts 

42 68 50.83 46.24 40.74 Pre-test . 

(4.48) (7.11) (8.85) (11.69) 

43.59 17.16 18.71 22.01 Post-test 

(11.07) (12.13) (7.73) (6.89) 

Analysis by an [4 by 2] ANOVA yielded significant main effects of format 

(F(1,42)=6.28, p<0.002) and time (F(1,42)=147.33, p<0.001). There was a 

significant interaction between format and time (F(3,42)=21.38, p<0.001). Tukey 

tests found that the significant differences between the experimental groups and the 

control group was at post-test: 

" mixed v control (q=8.72, p<0.001) 

" maths v control (q=8.21, p<0.001) 

0 picts v control (q=7.12, p<0.001) 
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In addition, all the experimental groups improved over time, mixed (q=14.7, 

p<0.001), maths (q=11.7, p<0.001), and picts (q=7.98, p<0.001). The control group 

did not improve. 
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8.3.2 Strategic Knowledge 

Subjects' estimates were coded into appropriate (rounding up, rounding down or 

truncation and intermediate compensation) and inappropriate strategies (as for 

Experiment Three). The number of estimates generated by a recognised strategy was 

examined (Table 8.3). 

Table 8.3. Numbers of estimates generated by an appropriate strategy by format and 

time (from 20) 

Control Mixed Maths Picts 

Pre-test 0.75 0.25 0.63 0.09 

(3.75) (1.25) (3.18) (0.46) 

Post-test 0 18.63 18.08 19.58 

(0) (1.80) (3.85) (0.68) 

As can be seen from the Table 8.3, the pre-test performance of all the children was 

very low. Only 2.15% of all answers were generated by an appropriate strategy. By 
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post-test, the experimental groups scored an average of 93.8%, effectively moving 

from floor to ceiling. The control group performance remained static. 

If children were selecting the most accurate (taught) strategy, then 25% of their 

answers should have been generated by rounding down (truncating), 25% by rounding 

up and 50% by intermediate compensation. Analysis of the post-test solutions showed 

that rounding down (truncating) was the most common strategy accounting for 62% 

of appropriate estimates. Intermediate compensation accounted for nearly 30% of 

appropriate estimates and rounding up provided only 8% of appropriate answers. 

The improvements in children's estimations skills after an intervention phase using 

CENTS was therefore replicated convincingly by this experiment. 

8.3.3 Prediction Accuracy 

Measures of answer accuracy allowed analysis of the improvement in the use and 

application of estimation strategies. However, they did not permit assessment of any 

insights that children may have into either the process of estimation or how an 

estimate differ from an exact answer. This was examined using the tick boxes which 

subjects filled in to indicate how far off they thought an estimate was from the exact 

answer. The responses were coded as the difference between the prediction and the 

category that should have been selected given the estimate. This was then examined 

using an [4 by 2] ANOVA. 

Table 8.4. Difference between prediction and estimate by format and time 

Control Mixed Maths Picts 

Pre-test 4.81 4.601 4.53 3.82 

(1.09) (0.87) (0.68) (0.94) 

4.04 1.99 2.07 2.27 Post-test 

(0.92) (0.79) (1.4) (1.1) 

There were main effects of format (F(1,42)=6,8, p<0.001) and time 

(F(1,42)=110.38, p<0.0001) and a significant interaction between time and format 
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(F(3,42)=6.04, p<0.002) (Figure 8.3). Simple main effects showed no differences 

between the conditions and pre-test but that there were differences at post-test 

(F(3,84)=11.37, p<0.001). The experimental groups were significantly better at 

predicting the accuracy of estimates than the control group at post-test: 

0 mixed v control (q=6.17, p<0.001) 

" maths v control (q=5.93, p<0.001) 

" picts v control (q=5.33, p<0.01) 

All the experimental groups improved significantly from pre-test to post-test: mixed 

(q=10.75, p<0.001), maths (q=9.70, p<0.001), and picts (q=6. l 1, p<0.001). 
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Analysis of prediction accuracy therefore differs from Experiment Three. Here, 

children in all the experimental conditions improved their performance over time. 

Such a result was consistent with the proposal that mixed representation are only 

problematic for short periods of time. In order to examine more closely how the 

different MERs may have affected learning, the computer logs generated during the 

intervention session were examined. 

8.3.4 Process Data 

To examine how the children's performance changed with experience on CENTS and 

the effects of the different conditions, a number of analyses were performed. Two 
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types of measures were examined: those that analyse how the children's understanding 

of the domain is reflected in their use of representations and those that measure 

children's understanding of how the representations relate to each other. 

This examined accuracy of prediction using the continuous representations which 

provide the percentage deviation of the estimate from the exact answer. The 

predictions were represented as numbers for mixed and maths and as a `splatwall' for 

picts condition. An [3 by 2 by 2] ANOVA was conducted with the on-line data from 

the subjects' first and last trials with CENTS. The design was 3 (mixed, maths, 

pictures) by 2 (time 1, time 4) by 2 (rounding, truncation) (see Table 8.5). 

Table 8.5. Difference between prediction and estimate by format, time and strategy 

Percentage deviation 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

Time 15.48 23.01 17.36 21.95 14.96 13.02 

1 (9.75) (5.05) (6.68) (7.96) (4.67) (4.83) 

Time 10.08 11.67 6.57 9.75 9.92 9.63 

4 (4.75) (6.06) (4.67) (4.91) (4.41) (4.15) 

Analysis revealed a main effect of time (F(1,31)=44.1, p<0.0001) and of strategy 

(F(1,31)=5.31, p<0.028); rounding solutions were predicted significantly more 

accurately than truncation solutions. There was also a trend towards a main effect of 

format (F(2,31)=2.99, p<0.065). A trend for an interaction between time and format 

(F(2,31)=2.87, p<0.07) was also observed (Figure 8.4). There were significant 

differences between the conditions after the first session on the computer 

(F(2,62)=4.79, p<0.012) but not after all four sessions (F(2,62)=0.98). At time one, 

the picts group were performing significantly better than the other groups: picts v 

maths (q=4.10, p<0.05) and picts v mixed (q=4.02, p<0.05). However by time four, 
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the other experimental groups had improved significantly, the picts group had not 

improved further (mixed (q=5.89, p<0.05) and maths (q=7.55, p<0.05). 
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There was also a trend for an interaction between format and strategy (F(2,31)=2.99, 

p<0.064) (Figure 8.5). Simple Main effects showed no differences between the 

conditions for rounding, but showed that there were for truncation (F(1,31)=5.91, 

p<0.01). The mixed and maths conditions predicted less accurately on truncation 

problems (F(1,31)=7.23, p<0.01), and (F(1,31)=3.99, p<0.05) respectively. However, 

there were no differences in prediction accuracy between truncation and rounding for 

the Picts group. 
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Categorical Representations 

This analysis was repeated for the categorical representations (the target 

representation in the case of mixed and picts conditions and the histogram in the 

maths condition). 

Table 8.6. Difference between prediction and estimate by format, time and strategy 

Category Differences 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

Time 0.92 1.37 1.27 1.36 0.85 0.96 

1 (0.31) (0.36) (0.48) (0.47) (0.28) (0.38) 

Time 1.01 1.17 0.58 1.00 0.75 0.93 

4 (0.31) (0.44) (0.25) (0.50) (0.40) (0.63) 

As with the continuous representations, there were main effects of time 

(F(1,31)=7.29, p<0.012) and strategy (F(1,31)=15.93, p<0.001); again, rounding was 

predicted significantly more accurately than truncation. There was also a trend 

towards a main effect of format (F(2,31)=3.27, p<0.051) with the picts group 

predicting significantly more accurately than the mixed (q=3.55, p<0.05). 

The only significant interaction was between format and time (F(2,31)=3.65, 

p<0.038) (Figure 8.6). Simple main effects analysis showed there were significant 

differences between the conditions at time I (F(2,62)=3.94, p<0.025) with the picts 

group demonstrating significantly better performance than the maths group (q=4.01, 

p<0.05). At time 4, there was a trend towards a difference between the conditions 

(F(2,62)=2.95, p<0.06). The only group to significantly change over time was the 

maths group (F(1,31)=13.78, p<0.001). 
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Unlike Experiment Three, differences were found in the use of categorical and 

continuous representations. In this experiment, both of the maths representations 

were associated with poorer performance initially, but improved significantly over 

time. Prediction with the picts representations demonstrated a tendency for better 

initial performance and by Time 4 had very similar performance to the maths 

representations. However, prediction with the continuous mixed representation 

showed improvement over time, whilst the categorical representation did not. Again, 

the way that individual representations are used seems to be affected by the other 

representation presented with it. 
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These analyses were designed to examine the similarity of subject's behaviour across 

the two representations. As students' understanding of the representational system 

improves, their behaviour should become similar across both representations. 

Although, their understanding of the domain could remain flawed. This was examined 

by correlating the predictions on the two different representations. Analysis was by 

an [3 by 4 by 2] ANOVA. 
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Table 8.7. Correlations between the representations by format, time and strategy 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

Time 0.06 0.27 0.39 0.36 0.26 0.28 

1 (0.41) (0.35) (0.38) (0.36) (0.38) (0.47) 

Time -0.01 0.27 0.35 0.51 0.44 0.49 

2 (0.35) (0.33) (0.41) (0.42) (0.44) (0.38) 

Time 0.17 0.21 0.65 0.43 0.58 0.66 

3 (0.38) (0.42) (0.26) (0.53) (0.35) (0.29) 

Time 0.05 0.16 0.77 0.66 0.51 0.81 

4 (0.45) (0.35) (0.25) (0.43) (0.43) (0.20) 

There were main effects of format (F(2,31)=9.45, p<0.001), and time (F(3,31)=5.78, 

p<0.0011). There was a slight trend towards a main effect of strategy (F(2,3 1)=3.23, 

p<0.08). There was a significant interaction between format and time (F(6,3 1)=2.27, 

p<0.043) (Figure 8.7). Simple main effects showed significant differences between the 

conditions at times two, three and four (F(2,124)=3.99, p<0.021; F(2,124)=6.32, 

p<0.0024; F(2,124)=13.499, p<0.0001). At time four, both maths and picts were 

significantly more co-ordinated than the mixed group (q=4.47, p<0.01; q=4.07, 

p<0.05). Both the maths and picts group improved over time (F(3,93)=4.05, p<0.01, 

& F(3,93)=5.76, p<0.002). The mixed group showed no evidence of improved co- 

ordination even after four trials on the computer. 
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An alternative way to examine similarity of behaviour was to convert the continuous 

representation into the appropriate absolute category so that the two predictions 

could be compared (prediction A- prediction B). 

Table 8.8. Difference in prediction between the representations by format, time and 

strategy 

Mixed Maths Picts 

Rounding Truncation Rounding Truncation Rounding Truncation 

Time 1.06 0.98 0.79 0.94 0.73 0.83 

1 (0.63) (0.48) (0.44) (0.49) (0.29) (0.44) 

Time 0.87 0.74 0.57 0.68 0.60 0.72 

2 (0.42) (0.26) (0.34) (0.31) (0.31) (0.35) 

Time 0.78 0.97 0.39 0.47 0.48 0.49 

3 (0.31) (0.31) (0.31) (0.32) (0.23) (0.25) 

Time 1.02 0.97 0.22 0.42 0.54 0.56 

4 (0.41) (0.31) (0.26) (0.37) (0.41) (0.25) 

This analysis revealed a very similar pattern of results to the other co-ordination 

measure with main effects of format (F(2,31)=10.668, p<0.001), time (F(2,31)=7.94, 

p<0.0001) and a trend towards a main effect of strategy (F(2,31)=3.33, p<0.078). 
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There was a significant interaction between format and time (F(6,31)=2.28, p<0.042) 

(Figure 8.7). Simple main effects showed that there were differences between the 

conditions at time 3 and time 4 (F(2,124)=6.28, p<0.0025; F(2,124)=13.989, 

p<0.0001). At time 3, the maths scores were significantly lower than the mixed 

scores (q=3.55, p<0.05), and at time 4, both maths and picts differed from mixed 

(q=5,74, p<0.001; q=3.80, p<0.05). The scores in the maths group improved 

significantly over time (F(3,93)=8.19, p<0.0001) and there was a trend for the picts 

group to improve (F(3,93)=2.43, p<0.07). The mixed group scores did not change 

over time. 
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This measure of representational co-ordination told a very similar story to that of 

the correlation data. Predictions by children in the mixed group on the two 

representations were no more similar to each other by the final session than they 

were at the first session. 

8.4 DISCUSSION 

The first goal of this experiment was to examine whether the improvement found in 

children's estimation skills after an intervention involving CENTS could be 

replicated. The second goal was to explore the effects of combining different 

representations over a longer period of time than that examined in Experiment 

Three. 
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8.4.1 Computational Estimation Skills 

The first measure of estimation skill examined was estimation accuracy. At pre-test, 

children's estimates were very inaccurate. The mean average percentage deviation 

was 87.3% away from the correct answer. Again, children showed little ability to 

produce even `ball park' estimates. This was particularly striking as school maths 

lessons before and during the time of the intervention were focusing on informal 

approaches to mental calculation of `large' numbers. 

The experimental groups demonstrated a significant increase in the accuracy of their 

estimates. At post-test, the average percentage deviation was 28.2%. In contrast, the 

control group's performance remained stable at 85.6% inaccurate. 

The estimates were corrected for order of magnitude and the results re-examined. The 

control groups performance did not change over the study, but the three experimental 

groups' modified percentage deviation scores show a significant improvement from 

46% to 19% after the intervention. 

Minor re-implementation of CENTS between Experiments Three and Four was aimed 

addressing the poor order of magnitude correction identified as an area of concern. No 

direct comparison was performed as the children in this experiment differed along a 

number of dimensions from children in the original study (e. g. age, catchment area). 

However, the post-test percentage deviation measure in this study seemed to indicate 

that the experimental subjects were better at producing the right place value 

correction than previously; post-test percentage deviation was 58% in Experiment 

Three compared to 28% in Experiment Four. It was proposed that this represented a 

combination in the change of the support and the additional numbers of sessions in 

this experiment. The final measure of strategic knowledge of estimation examined 

was whether the strategy used to estimate the answer was appropriate. At pre-test, 

very few recognised strategies could be determined. The vast majority of answers 

appeared to simply be guesses. There was also almost no attempt to calculate an exact 

answer. A total of 2% of pre-test answers were recognised as employing an estimation 
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strategy. At post-test, no control subject generated an answer using an appropriate 

strategy. However, experimental children produced an average of 94% of their 

answers by using a strategy that involved front-end extraction. This effectively 

represents a floor to ceiling improvement over the intervention. 

The improvement in estimation skills found in Estimation Three were convincingly 

replicated by this experiment. Therefore, it was concluded that CENTS provides 

appropriate support to learn strategies for computational estimation problems. 

8.4.2 Prediction Accuracy 

CENTS requires children to predict the accuracy of an estimate to support the 

development of insight into how transforming numbers is related to the answer. This 

is performed using multiple representations. 

Pen and paper measures of prediction accuracy showed that children in all 

experimental conditions improved at predicting the accuracy of their estimates. The 

control group did not improve significantly. This contrasted with Experiment Three 

which found that children in the mixed condition did not improve at prediction 

accuracy. The improvement in children's prediction accuracy in the mixed conditions 

was consistent with the hypothesis that mixed representations are only problematic 

for a short period of time when the initial task demands are great. Such an account 

would be predicted by cognitive load accounts of learning which would propose that 

with practice additional resources become available as aspects of the task become 

automated. The intervention logs were examined in order to assess whether this 

explanation was correct. 

8.4.3 Representation Use 

As in Experiment Three, two types of analyses were performed upon the data. 

Prediction accuracy on both representations was examined to identify children's 

developing understanding of the domain and the representations used. 

Representational co-ordination measures were used to assess children's knowledge of 

the relation between representations. 
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Prediction accuracy with the categorical representations showed a strikingly similar 

pattern of results to Experiment Three. Children in the picts condition were more 

accurate than children in the other conditions at Time 1. By Time 4, the maths group 

had significantly improved their predictions. The mixed group showed no 

improvement with this representation. 

However, the use of the continuous representations did not match Experiment Three 

so exactly. Again, the picts group were identified with better initial performance and 

the maths group significantly improved performance over time. However, in contrast 

to Experiment Three the mixed representations group also improved significantly. 

The picts and maths groups showed a very consistent use of representations, across 

both the representations in this experiment and with Experiment Three. The mixed 

group, however, used the representations differently. The numerical representation 

used as the continuous representation in both the maths and mixed conditions, was 

used similarly in both conditions. However, the archery target (the categorical 

representation in both mixed and picts cases) was used differently depending upon 

condition. Again, there was evidence that the way a representation was used was 

related to the other representation it was presented alongside. 

Finally, the two measures of representational co-ordination were examined. It was 

argued that if mixed representations were only problematic due to initial task 

demands, four sessions should have provided sufficient experience for co-ordination 

to occur. However, if disparate representations remain harder to co-ordinate, even 

when children were experienced with the learning environment, then by the fourth 

session on the computer children still may not co-ordinate representation use. 

It was shown that the maths and picts groups became significantly more converged 

over time. However, even after four sessions on the computer (a total of over three 

hours experience) the mixed group behaviour did not become more co-ordinated. The 

poor representational co-ordination demonstrated by children in the mixed condition 

in Experiment Three was therefore replicated in this experiment. Furthermore, it was 
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shown that this occurs even when children had gained considerable experience with 

the representations. Thus, even when children in the mixed condition had been given 

considerable practice with computational estimation problems and with the 

representations, they still failed to co-ordinate their representation use. This suggests 

that failure to co-ordinate representations is not solely due to the heavy demands of 

initial learning. 

The analysis of both types of representation use (with respect to the domain and to 

each other) provide an explanation of the learning outcome measures for the mixed 

condition. Unlike children in the maths and picts conditions, children in the mixed 

condition did not learn to translate across the representations. This led them to 

abandon their attempts to work with one of the representations (categorical) and to 

concentrate on the other representations (continuous). The second representation 

contains both the direction and the magnitude information and so provides all the 

information in the first representation plus more. Therefore, these children appeared 

to have made a highly sensible decision. It was not proposed that children would find 

it impossible to learn about proximity from one well chosen representation, so the 

mixed group improvement was perfectly consistent with their use of the 

representations. 

8.5 CONCLUSION 

This study replicated the finding that CENTS could be used to teach children aspects 

of computational estimation. The improvement in using appropriate estimation 

strategies went from floor to ceiling and the other measures of estimation 

performance also showed considerable improvement. Therefore, CENTS is proposed 

to have met its pedagogical objectives. 

The second aim of the experiment was to explore the effect of mixing 

representations when children were given much longer to use the learning 

environment. The results of Experiments Four replicated the finding that mixed 

representations were considerably more difficult to co-ordinate than either pictorial 
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and mathematical representations by themselves. However, this did not result in 

poorer performance overall as it did in Experiments Three. Unlike Experiment 

Three, where neither of the representations were used successfully by children in the 

mixed condition, in this experiment they appeared to concentrate upon a single 

representation and learnt to use it effectively. Thus, as the continuous representation 

contains all the necessary information, then children could learn to understand 

prediction accuracy without referring to the other representation. 

In this configuration of the system (partially redundant representations), there is no 

particular necessity to map across representations. However, if learners concentrate 

upon one representation and ignore both a second representation or the translation 

across representations, many of the proposed benefits of multiple representations will 

not occur (see section 3.3). Consequently, MERs could not be used to constrain 

interpretations or to support abstraction. 

In addition, one of the most common justifications for the use of MERs is that one 

representation may be insufficient to display all the needed information. Each 

representation in a MERs may be used to convey a different aspect of a domain. 

Thus, in this case there is no (informational) redundancy between representations. 

This issue of redundancy between MERs was explored in Experiment Five. CENTS 

allow designers three levels of redundancy of representation - full, partial and none. 

Experiments Three and Four addressed combinations of partial redundant 

representations. Experiment Five was designed to explore whether learners can 

integrate information from representations when they were either fully redundant or 

when they shared no information in common. 
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Experiment Five 

8.6 AIMS 

8.6.1 Pedagogical Aims 

This experiment had no new pedagogical aims. CENTS had been shown in two 

previous experiments to successfully teach aspects of computational estimation. It 

was predicted that this should be replicated by Experiment Five. 

8.6.2 MERs Aims 

The MERs used in Experiments Three and Four have some overlap as each conveyed 

information about the magnitude of an estimate. However, the resolution of 

magnitude information was different. The categorical representations displayed 

information to the nearest 10% whilst the continuous representations provided detail 

to the nearest 1%. The continuous representation also expressed the direction of the 

estimate (under or over-estimate). The continuous representation contained all the 

information present in the categorical representation plus the additional direction 

information. Consequently, the continuous representation contained all the 

information that was required to help learners refine their understanding. 

However, MERs are often employed when a single representation can not display all 

of the required information for a domain. Thus, each representation in the multi- 

representational system may convey a different part of the concept. For example, 

the MoLE learning environments for model logic, Oliver & O'Shea (1996) (described 

in section 3.3) presents users with two different representations - one of the worlds 

and one of the relation between worlds. In this situation, it is assumed that learners 

will be able to integrate information from all the MERs. However, the previous 

experiments had shown that in certain circumstances, children were unable to 

translate across representations. This resulted either in impoverished learning 

outcomes (Experiment Three) or on concentration upon a single representation 

(Experiment Four). These effects may have different consequences for learning 

depending upon how much unique information is conveyed by each representation. 
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Experiment Five therefore employed two different levels of redundancy. A fully 

redundant system allows the same information to be derived from both 

representations. In this case, both representations expressed direction and magnitude 

in a continuous fashion. Where there is no redundancy across representations, 

completely different information is derivable from each representation. 

Consequently, one representation was used to convey direction information and the 

other (continuous) magnitude. 

It was proposed that when it was difficult to integrate information between 

representations (i. e. mixed representations), then providing no redundancy MERs will 

result in poorer learning outcomes. When mixed representations are fully redundant, 

even if translation across representations does not occur, learning outcomes should be 

unaffected as each representation is sufficient to develop the required understanding. 

In addition, it was also expected that full redundancy would aid translation. It should 

be easier to see how two representations relate to each other if both convey exactly 

the same information. 

The mixed representations were contrasted with pictorial representations. The 

previous experiments had found that providing two pictures facilitated co-ordination. 

Hence, for both full and no redundant representations, it should be easier for learners 

to integrate information from pictorial representation. 

The last issue addressed was whether there would be any differences in how well 

prediction accuracy would be learnt across the different levels of redundancy. When 

each representation expresses a different aspect of the situation, initial learning may 

be facilitated as each dimension could be considered separately. Ultimately, learners 

will need to integrate these dimensions to build a full understanding of the domain. 

8.7 METHOD 

8.7.1 Design 

A three factor mixed design was used which varied both the format of representations 

(either picts or mixed) and the redundancy across the representations (either full or 
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none). This resulted in four groups of twelve subjects who received one of `picts - full' 

(splatwall and archery field see Figure 8.8), `mixed - full' (splatwall and numerical 

display, Figure 8.9), `picts - none' (hoops and marbles Figure 8.10) and `mixed - 

none' (hoops and numerical display, see Figure 8.11) (see section 6.4 for fuller 

descriptions of the representations). A final group was a no-intervention control who 

took the pen and paper tests. A third factor, time, was within groups. A randomised 

block design was used and children were assigned to the different condition on the 

basis of their scores on a mental maths tests. Each group had similar numbers of boys 

and girls and the mean age of the subjects did not differ significantly. 
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8.7.2 Subjects 

60 year five and six pupils from a state junior school took part in the experiment. 

The children ranged in age from 9: 9 to 11: 7 years. All the children were experienced 

with mouse driven computers. 

8.7.3 Material 

The pre-test and post-test material was identical to that used with the two previous 

CENTS experiments 

8.7.4 Procedure 

The procedure was identical to that used for Experiment Four, except that children 

received only two computer interventions sessions. 
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8.8 RESULTS 

Both pen and paper measures and computer logs were examined. Pen and paper 

measures were taken to examine whether the computer intervention successfully 

taught children to become accurate estimators. As before, the accuracy of their 

estimates (both uncorrected and corrected for place value) and the appropriateness of 

the estimation strategy were examined. Throughout the analyses, the scores for three 

children have been dropped as they were unavailable for one part of the intervention 

or testing phase (one each from the control, picts-full and mixed-full groups). 

Two types of analysis were used on the pre-test and post-test data. First, all the 

different groups' scores were analysed using an [5 by 2] ANOVA. The design was 5 

(control, picts - full, mixed - full, picts - none, mixed - none) by 2 (time 1, time 2). 

Subsequent analysis dropped the control group to analyse by format, redundancy and 

time. This design was 2 (picts, mixed) by 2 (full, none) by 2 (pre-test, post-test). The 

first two factors were between groups and the third within. 

8.8.1 Answer Accuracy 

The percentage deviation of the estimate from the exact answer was used to compare 

estimates given by the control group to those given by the experimental groups. 

Three additional extreme outlying subjects were removed from this analysis (the 

average percentage deviation for one of these subjects was 3696343.73% !) 

Table 8.8. Percentage deviation of estimate by condition and time (collapsed across 

experimental groups) 

Control group Experimental groups 

Pre-test 92.21 89.03 

(46.25) (33.32) 

Post-test 92.42 39.22 

(24.04) (39.28) 

There were main effects of condition (F(1,50)=9.16, p<0.004), and time 

(F(1,50)=12.69, p<0.001). 
1 
The interaction between time and condition was also 
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significant (F(1,50)=12.91, p<0.001). As can be seen from Table 8.8, the 

experimental groups improved significantly (F(1,50)=60.53, p<0.001), the control 

groups performance did not improve. Further analysis was conducted upon the 

experimental groups alone (Table 8.9). 

Table 8.9. Percentage deviation of estimate by format, redundancy and time 

Mixed Picts 

Full None Full None 

Pre-test 93.76 86.10 87.93 87.46 

(25.57) (27.45) (26.82) (17.26) 

Post-test 51.26 33.45 30.52 39.31 

(56.87) (27.30) (25.63) (37.54) 

The only significant effect was a that of time (F(1,38)=87.81, p<0.001). All 

experimental groups improved equally after the intervention. 

These analyses were repeated for the accuracy of the estimation after it had been 

corrected for order of magnitude. 

Table 8.10. Percentage deviation of estimate by condition and time (corrected for 

order of magnitude) (collapsed across experimental groups) 

Control group Experimental groups 

Pre-test 40.42 44.34 

(8.53) (8.38) 

Post-test 40.40 20.70 

(10.31) (11.69) 

As can be seen from Table 8.10, the experimental groups and the control group 

behaved very differently. When an [5 by 2] ANOVA was applied to the data, there 

were main effects of condition (F(1,4)=4.42, p<0.004), time (F(1,4)=109.6, 

p<0.001) and an interaction between time and condition (F(1,4)=7.43, p<0.001). 

Simple Main effects analysis demonstrated that there were no significant differences 
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between the conditions at pre-test (F(4,104)=1.41), but that there were at post-test 

(F(4,104)=9.92, p<0.001). The only group that failed to improve their scores were 

the control group, (F(1,52)=0.003). Subsequently, further analysis was performed 

upon the experimental groups alone. 

Table 8.11. Percentage deviation of estimate by format, redundancy and time 

(corrected for order of magnitude) 

Mixed Picts 

Full None Full None 

Pre-test 42.59 40.23 46.21 48.34 

(11.77) (11.82) (6.75) (9.23) 

21.72 16.58 17.46 26.90 Post-test 
(11.22) (9.35) (8.96) (14.58) 

There was a main effect of time (F(1,42)=121.49, p<0.001), and a trend for a main 

effect of format (F(1,42)=3.62, p<0.065). The only significant interaction was for 

format and redundancy (F(1,42)=4.21, p<0.05). Simple Main effects analysis revealed 

that the only difference between the levels of format was for no redundancy 

(F(1,42)=8.18, p<0.007). 

Analysis of the individual children's performance provided an explanation of this 

anomalous event. Altogether seven children demonstrably failed to learn how to 

estimate. At post-test, they produced less than 30% of their answers using an 

appropriate estimation strategy. These children were removed from the analysis (one 

from mixed-full, one from mixed-none, one from picts-full and four from picts- 

none), and the results re-analysed (Table 8.12). The only significant effect for this 

modified data was one of time (F(1,35)=185.45, p<0.001). 
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Table 8.12. Percentage deviation of estimate by format, redundancy and time 

(without non-learners) 

Mixed Picts 

Full None Full None 

Pre-test 41.73 38.61 46.62 47.22 

(12.04) (10.89) (6.93) (5.56) 

19.25 14.86 15.85 18.99 Post-test 
(8.10) (7.54) (7.70) (8.10) 

8.8.2 Strategic Knowledge 

As before, subjects answers were coded to see if they were produced by an appropriate 

strategy (i. e. one which involved front-end extraction). To this end, the subjects' 

estimates were coded into appropriate (rounding up, rounding down or truncation and 

intermediate compensation) and unrecognised strategies. The number of estimates 

generated by a recognised strategy was examined (Table 8.13). 

Table 8.13. Numbers of estimates generated by an appropriate strategy by condition 

and time (from 20) (cnllansed across exnerimental grouns) 

Control group Experimental groups 

Pre-test 0.09 0.17 

(0.30) (0.49) 

Post-test 3.64 16.44 

(6.23) (6.34) 

Initial analysis compared the control group to the experimental groups. An [5 by 1] 

ANOVA on the post-test data found a main effect of condition (F(4,52)=10.17, 

p<0.001). Tukey tests showed that all the experimental groups differed from the 

control group. There were no differences between the experimental groups. 

" mixed-full v control (q=7.0, p<0.001) 

0 mixed-none v control (q=7.41, p<0.001) 
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0 picts-full v control (q=7.63, p<0.001) 

0 picts-none v control (q=5.41, p<0.01) 

Further analysis on the experimental groups alone confirmed that there were no 

significant differences between the conditions. 

Table 8.14. Numbers of estimates generated by an appropriate strategy by format, 

redundancy and time (from 20) 

Mixed Picts 

Full None Full None 

Pre-test 0.0 0.17 0.27 0.25 

(0.0) (0.38) (0.64) (0.63) 

Post-test 16.72 17.50 17.91 13.75 

(6.25) (5.6) (4.39) (8.25) 

There were no main effects of either format or redundancy and no significant 

interactions between any of the variables (Table 8.14). 

As noted in the previous experiments, the tests were constructed such that in 25% of 

the cases rounding down (truncating) is the most accurate strategy, 25% rounding up 

and the remaining 50% intermediate compensation. Analysis of the types of solution 

(at post-test) confirmed that rounding down (truncating) was the most common 

strategy accounting for 55% of appropriate estimates. This indicated that some 

answers were generated by truncating as opposed to rounding down. Inspection of 

individual children's results suggested that some children invariably truncated. 

Intermediate compensation accounted for nearly 35% of appropriate estimates and as 

with the previous experiments rounding up was rare, providing only 10% of answers 

8.8.3 Prediction Accuracy 

The prediction accuracy data was also analysed. This was determined by calculating 

the difference between the prediction given by the subject using the tick boxes and the 

one they should have predicted. 
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Table 8.15. Prediction accuracy by condition and time (collapsed across experimental 

groups) 

Control group Experimental groups 

Pre-test 3.42 3.55 

(0.72) (0.97) 

Post-test 3.48 2.21 

(0.78) 1.15) 

A [5 by 2] ANOVA showed a main effect of time (F(1,52)=42.14, p<0.001), and an 

interaction between time and condition (F(4,52)=3.29, p<0.02). Simple Main effects 

analysis showed no differences between the conditions at pre-test (F(4,104)=1.20) but 

showed differences at post-test (F(4,104)=3.74, p<0.01). Again, the control group 

was the only condition where scores did not improve significantly (F(1,52)=0.01) 

Table 8.16. Prediction accuracy by format, redundancy and time 

Mixed Picts 

Full None Full None 

Pre-test 3.31 3.39 4.12 3.40 

(0.63) (1.19) (0.81) (1.02) 

Post-test 2.35 2.05 2.47 2.03 

(1.14) (0.97) (1.62) (0.86) 

Subsequent analysis of the experimental groups showed no differences between the 

conditions. Analysis by [2 by 2 by 2] ANOVA identified a main effect of time 

(F(1,42)=45.73, p<0.001) but yielded no main effects of either format or redundancy 

and no interaction between these variables. 

In this experiment, the redundancy factor manipulated whether the subjects' predicted 

magnitude and direction separately or together. Hence, the prediction of these 

measures was examined separately. Correctly predicted direction was scored one point 

each, resulting in a maximum possible value of 20. 
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Table 8.17. Direction accuracy by format, redundancy and time (out of 20) 

Mixed Picts 

Full None Full None 

Pre-test 9.00 8.92 8.45 10.08 

(3.28) (4.56) (3.26) (3.58) 

Post-test 9.91 10.17 7.45 11.75 

(7.34) (5.41) (4.54) (6.19) 

Analysis using a [2 by 2 by 2] ANOVA found no main effects or interaction. Hence 

according to this measure, children did not increase their skills at predicting the 

direction of an estimate after the intervention (Table 8.17). 

The magnitude of the prediction accuracy without direction was also examined. 

Again, this was scored by examining the difference between the category chosen and 

the one that should have been selected, ignoring direction. For example, a prediction 

of "very much lower" and "very much higher" were coded with the same score. 

Table 8.18. Magnitude accuracy by format, redundancy and time (category 

differences) 

Mixed Picts 

Full None Full None 

Pre-test 1.74 1.63 1.44 1.66 

(0.56) (0.70) (0.34) (0.58) 

1.48 1.15 1.06 1.36 
Post-test 

(0.57) (0.58) (0.58) (0.60) 

Analysis revealed a single significant effect, that of time (F(1,42)=10.74, p<0.002), 

(Table 11). Hence, the improvements seen in the general prediction measure must be 

primarily reflecting improvement in magnitude prediction. There was a trend for an 

interaction between format and redundancy (F(1,42)=3.56, p<0.066). Simple Main 
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effects identified a trend for a difference between the levels of format for the full 

redundancy condition, (F(1,42)=3.46, p<0.056). There was no interaction with time. 

8.8.4 Process Measures 

These analyses examined how the children used CENTS' representations. As before, 

two types of analyses were performed. First, the domain and representation 

knowledge as expressed through representation use (prediction accuracy) was 

considered. Secondly, the similarity of behaviour across the two representations 

(representational co-ordination) was analysed. 

Prediction Accuracy 

The analysis of prediction accuracy was more complicated in this experiment since 

redundancy as well as format was manipulated. Each level of redundancy must first be 

analysed separately. The no redundancy presentation provided a separate 

representation for direction and magnitude, so each these dimensions must be 

examined separately. Direction was measured by scoring a1 when the subject 

correctly identifies the direction of prediction. Hence, there was a maximum score of 

9 per session (Table 8.19) Magnitude was scored by percentage deviation without 

direction (Table 8.20). These data were examined using two [2 by 2 by 2] ANOVAs. 

The design for the analysis was 2 (mixed, picts) by 2 (time 1, time 2) by 2 (rounding, 

truncation). The first factor was between groups, the others within. 

No redundancy 

The first analysis concerned the direction scores for the no -redundancy 

representations. 
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Table 8.19. Direction accuracy for no redundancy representations by format, time 

and strategy 

Mixed (hoops) Picts (hoops) 

Rounding Truncation Rounding Truncation 

Time 1 7.58 7.75 7.58 7.92 

(0.99) (0.75) (1.16) (1.24) 

Time 2 7.83 8.83 7.42 8.25 

(0.72) (0.39) (0.90) (1.21) 

There was a main effect of strategy (F(1,22)=12.12, p<0.003); truncation was 

predicted more accurately than rounding. There was also an interaction between time 

and strategy (F(1,22)=4.82, p<0.04) (Figure 8.12). Simple Main effects indicated no 

significant differences between the conditions at time 1 (F(1,44)=0.75), though there 

were at time 2 (F(1,44)=10.08, p<0.001). Subjects did not improve over the two 

sessions at predicting rounding (F(1,44)=0.24) but did improve at predicting 

truncation (F(1,44)=6.87, p<0.02). 
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The analysis for the magnitude representations revealed a different pattern of results 

(Table 8.20). 

211 



Table 8.20. Magnitude accuracy for no redundancy representations by format, time 

and strategy 

Mixed (numbers) Picts (marbles) 

Rounding Truncation Rounding Truncation 

Time 1 8.48 15.98 10.92 14.72 

(3.71) (3.92) (4.33) (5.19) 

Time 2 7.26 10.98 8.14 11.83 

(2.92) (6.53) (3.18) (3.57) 

Both time (F(1,22)=12.75, p<0.002) and strategy (F(1,22)=54.23, p<0.001) yielded 

significant main effects. In contrast to the direction measure, however, it was 

rounding that was predicted more accurately. There were no interactions. 

The fully redundant representations, (i. e. the splatwall, and archery target for the 

picts format and the splatwall and numerical representations in the mixed condition) 

provide information about the percentage deviation of the estimate from the exact 

answer. They combine direction and magnitude information. 

These data were examined using an [2 by 2 by 2 by 2] ANOVA. The design for the 

analysis was 2 (mixed, picts) by 2 (time 1, time 2) by 2 (rounding, truncation) by 2 

(representation I- splatwall, representation 2- archery target or numerical display). 

The first factor was between groups, the others within. 
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Table 8.21. Percentage accuracy for fully redundant representations by format, time, 

strategy and representation 

Rounding 

Mixed Picts 

Splatwall Percentages Splatwall Archery 

Time 1 12.40 16.34 11.74 12.48 

(2.39) (7.72) (2.15) (3.15) 

Time 2 9.20 8.06 9.06 9.97 

(3.84) (4.86) (3.78) (4.94) 

Truncation 

Mixed Picts 

Splatwall Percentages Splatwall Archery 

Time 1 20.51 20.87 15.84 17.10 

(5.82) (7.20) (4.48) (3.83) 

Time 2 13.63 14.64 13.88 14.51 

(3.22) (7.53) (3.75) (3.92) 

There were main effects of time (F(1,20)=34.43, p<0.001) and strategy 

(F(1,20)=50.19, p<0.001); rounding was predicted more accurately than truncation. 

There was also an interaction between format and time (F(1,20)=6.44, p<0.02) 

(Figure 8.13). Simple Main effects showed that at time 1, there were differences 

between the conditions (F(1,40)=4.13, p<0.05), but found none at time 2 

(F(1,40)=0.09). This confirms the earlier studies that have found an initial advantage 

for pictorial representations. There was also a noticeable trend for a4 way 

interaction between condition, time, strategy and representation (F(1,20)=3.98, 

p<0.06) (see Table 8.23). 
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In order to compare the no redundancy and the full redundancy conditions more 

directly, the performance on each of the representations in the full redundancy 

conditions can be recoded to give separate direction and magnitude information. This 

was then analysed using two [2 by 2 by 2 by 2] ANOVAs on format, time, strategy 

and representation. 

Table 8.22. Direction accuracy for fully redundant representations by format, time 

and representation 

Rounding 

Mixed Picts 

Splatwall Percentages Splatwall Archery 

Time 1 6.45 6.9 6.18 5.45 

(0.93) (1.13) (1.08) (1.86) 

Time 2 
7.18 7.73 7.74 7.73 

(1.77) (1.79) (1.10) (1.27) 
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Truncation 

Mixed Picts 

Splatwall Percentages Splatwall Archery 

Time 1 7.54 8.54 7.18 7.18 

(0.82) (0.69) (2.14) (1.47) 

Time 2 8.64 8.64 8.64 8.55 

(0.51) (0.92) (0.51) (0.82) 

Analysis revealed main effects of time (F(1,20)=26.02, p<0.001) and strategy 

(F(1,20)=41.48, p<0.001); truncation was predicted more accurately than rounding. 

There was an interaction between format and time (F(1,20)=4.53, p<0.05) (Figure 

8.14). 
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Simple Main effects identified differences between the levels of format at time I 

(F(1,40)=4.84, p<0.04), but no differences at time 2 (F(1,40)=0.084). Initially, 

children in the picts condition predicted less well than mixed, but both levels of 

formats improved over time; mixed (F(1,20)=4.14, p<0.049) and picts 

(F(1,20)=26.14, p<0.001). There was also an interaction between format and 

representation (F(1,20)=5.45, p<0.03). (see figure 8.15) 
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Simple Main effects demonstrated that for the picts condition there was no difference 

between the representations (splatwall) (F(1,20)=0.93)). There was a difference 

between the representations for the mixed condition, (F(1,20)=5.58, p<0.03), i. e. 

between the splatwall and the numerical display. The splatwall was used similarly 

across both conditions (F(1,40)=0.004), but there were differences between the 

second representation in the system (archery field and numerical display) 

(F(1,40)=4.27, p<0.045). These results suggest that the archery field representation 

did not support the direction prediction as successfully as the other representations. 

The magnitude of the prediction error on the fully redundant representations was also 

examined (Table 8.23). This was coded by just scoring the absolute percentage 

deviation of the estimate. For example +25% and -25% would be coded as the same. 
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Table 8.23. Magnitude accuracy for fully redundant representations by format, time 

and representation 

Rounding 

Mixed Picts 

Splatwall Percentages Splatwall Archery 

Time 1 9.34 13.11 9.10 8.48 

(2.95) (6.45) (1.86) (2.41) 

Time 2 7.73 7.86 7.12 7.23 

(3.33) (4.61) (3.00) (3.69) 

Trani tinn 

Mixed Picts 

Splatwall Percentages Splatwall Archery 

Time 1 16.55 17.25 13.61 14.31 

(5.54)1 (4.77) (2.68) (3.28) 

Time 2 12.68 12.97 12.89 1 1.8 5 

(2.88) (4.42) (3.52) (4.08) 

There were main effects of time (F(1,20)=14.28, p<0.002) and strategy 

(F(1,20)=68.82, p<0.001); rounding was predicted more accurately than truncation. 

There was also a four way interaction between format, time, strategy and 

representation. This was examined further by splitting the data by strategy which 

indicated a three way interaction between format, time and representation for 

rounding (F(1,20)=5.20, p<0.040) but not for truncation (F(1,20)=0.33). Simple 

simple main effects analysis showed that the only representation on which prediction 

improved significantly over time was the mixed, numerical representation 

(F, (1,20)=13.78, p<0.002). This appears to be due to its initial disadvantage. 
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Full and no redundancy representations 

To compare the direction or magnitude of the prediction across all four experimental 

conditions, each of the fully redundant representations was examined separately. 

These analyses took the form of 2 (picts, mixed) by 2 (full, none) by 2 (time 1, time 

2) by 2 (rounding, truncation). The first two factors were between groups and the 

second two within. This analysis will discuss the direction dimension for the two 

different fully redundant representations (Tables 8.24,8.25). Magnitude is not 

reported as further analysis simply confirmed the main effects of time and strategy 

reported above. 

Table 8.24. Direction accuracy for representation I (splatwall) by format, redundancy 

and time Rounding 

Mixed Picts 

Full None Full None 

(Splatwall) (Hoops) (Splatwall) (Hoops) 

Time 1 6.45 7.58 6.18 7.58 

(0.93) (0.96) (1.08) (1.16) 

Time 2 7.18 7.83 7.73 7.42 

(1.78) (0.72) (1.10) (0.90) 
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Truncation 

Mixed Picts 

Full None Full None 

(Splatwall) (Hoops) (Splatwall) (Hoops) 

Time 1 7.55 7.75 7.18 7.92 

(0.82) (0.75) (2.14) (1.24) 

Time 2 8.64 8.83 8.64 8.25 

(0.51) (0.39) (0.51) (1.21) 

As before, there were main effects of time (F(1,42)=33.26, p<0.001), and strategy 

(F(1,42)=20.92, p<0.001). There was also a main effect of redundancy 

(F(1,42)=5.62, p<0.022). Prediction accuracy was higher for the no redundancy 

representations 
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The interaction between time and redundancy (F(1,42)=5.77, p<0.021) also proved 

to be significant (figure 8.16). Simple Main effects found that the only difference 

between the levels of redundancy was at time I (F(1,84)=11.35, p<0.002). The full 

redundancy group were the only ones to improve over time (F(1,84)=23.32 

p<0.00I ). 

This analysis was then repeated to compare the second representation in fully 

redundant conditions with the representations in the no-redundancy representations. 
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Table 8.25. Direction for representation 2 (numbers, archery) by format, redundancy 

and time 

Rnnndini 

Mixed Picts 

Full None Full None 

(Numbers) (Hoops) (Archery) (Hoops) 

Time 1 6.91 7.58 5.45 7.58 

(1.14) (0.96) (1.86) (1.16) 

Time 2 7.73 7.83 7.72 7.42 

(1.79) (0.72) (1.27) (0.90) 

Trimcatinn 

Mixed Picts 

Full None Full None 

(Numbers) (Hoops) (Archery) (Hoops) 

Time 1 8.54 7.75 7.18 7.92 

(0.69) (0.75) (1.47) (1.24) 

Time 2 8.63 8.83 8.55 8.25 

(0.92) (0.39) (0.82) (1.21) 

As above there were main effects of time (F(1,42)=20.79, p<0.001) and strategy 

(F(1,42)=48.56, p<0.001). In contrast to the analysis for representation 1, however, 

there was no main effect of redundancy, but a main effect of format (F(1,42)=4.46, 

p<0.041). The mixed representation was predicted more accurately than the picts. 

This appears to be due to the archery field representation (discussed above). 

There was an interaction between redundancy and time (F(1,42)=5.28, p<0.027). 

Simple Main effects showed that the levels of redundancy differed at time 1 

(F(1,84)=6.15, p<0.015), and that the full redundancy group improved over time 

(F(1,42)=22.53, p<0.001). (see Figure 8.17) 
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A further interaction between redundancy and strategy (F(1,42)=6.71, p<0.013) 

(Figure 8.18) was also found. Simple Main effects identified rounding as the only 

strategy to be influenced by redundancy (F(1,84)=6.31, p<0.014). 
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There were two three way interactions. The first was between format, redundancy and 

time (F(1,42)=8.63, p<0.006). Simple Main effects indicated that the only difference 

between levels of redundancy was for the picts format at time one (F(1,42)=10.43, 

p<0.003) where the fully redundant representation was associated with poorer 

performance. The second three way interaction was between redundancy, time and 

strategy (F(1,42)=7.09, p<0.011). At time 1, when performing rounding, the level of 

redundancy was important (F(1,84)=12.84, p<0.001). Again, it was the fully 

redundant representation that led to poorer performance. 
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Representational Co-ordination 

The similarity of representation usage was examined by correlating the predictions on 

the two fully redundant representations (Table 8.26). This was subjected to an [2 by 2 

by 2] ANOVA examining format, time and strategy, the first factor was a between 

groups factor, the rest were within groups factors. This analysis can only be 

performed upon the fully redundant representations, the can be no similarity of 

behaviour across the no redundancy representations. 

Table 8.26. Correlations between the representations by format, time and strategy 

Mixed Picts 

Rounding Truncation Rounding Truncation 

Time 1 0.27 0.32 0.65 0.54 

(0.52) (0.38) (0.29) (0.35) 

Time 2 0.41 0.40 0.77 0.77 

(0.51) (0.40) (0.21) (0.31) 

There was a main effect of format (F(1,20)=7.05, p<0.015) - the picts group were 

significantly more co-ordinated than the mixed group (Figure 8.20). There was a 

trend for a main effect of time (F(1,20)=3.90, p<0.062). 
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Representational co-ordination was also measured by examining the difference 

between the two measures, i. e. (prediction A- prediction B). If the representations 

were used to predict the same answer, then the sum of the differences between the two 

groups should be 0. This measure differs to the correlations as it does not allow for 

rescaling on the representations. 

Table 8.27 Difference in prediction between the representations by format, time and 

ctrateuv 

Mixed Picts 

Rounding Truncation Rounding Truncation 

Time 1 13.91 13.15 9.64 9.19 

(5.91) (4.72) (6.35) (6.59) 

Time 2 9.66 10.97 6.62 7.73 

(7.32) (6.08) (5.28) (6.07) 

This produced a very similar result to the other analysis, although both the effects 

manifest as trends. The picts group were more co-ordinated than the mixed group 

(F(1,20)=4.08, P<0.057) (Figure 8.21). There was a trend for a main effect of time 

(F(1,20)=3.70, p<0.069) 
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Both these analyses therefore confirm the results of Experiments Three and Four 

which found that pictorial representations were more co-ordinated than a mixed 

system combining of mathematical and pictorial representations. 

8.9 DISCUSSION 

8.9.1 Computational Estimation Skills 

The results of this experiment for the most part confirmed previous studies. 

Experimental groups produced more accurate estimates at post-test and used more 

appropriate strategies. The control group failed to improve upon any measure of 

performance. One result which was an exception to this general pattern of replication 

was that for percentage deviation (corrected for order of magnitude), where there was 

an interaction between format and redundancy, with the picts-none group performing 

worse than the other conditions. It is possible that this may be a genuine effect of 

representation type upon estimation performance. This interpretation is unlikely 

since this result would contradict the previous experiments in which representation 

had no affect upon strategic knowledge. Secondly, in all the experiments, a small 

proportion of children failed to learn, and they were equally balanced across the 

conditions. In this case, it seems that due to inadvertent sampling bias, more children 

who failed to learn were in the `picts-none' condition (four as opposed to one in all 

the others). 

8.9.2 Prediction Behaviour 

All experimental groups improved equally at predicting the accuracy of the estimate 

(the control group did not improve). However, as direction and magnitude had been 

examined separately for the no redundancy groups during the intervention, the 

separate contributions of direction and magnitude to the overall prediction scores 

were examined. This indicated that although there were still no differences between 

the experimental conditions, that the increased performance was primarily due to an 

improvement in predicting the magnitude rather than the direction of the estimate. 
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This was a surprising result. It was thought that direction would be easier to predict 

that magnitude. Children found the direction predictions easier than magnitude on the 

computer. By the second time on CENTS, the direction predictions were almost at 

ceiling, an average of 8.1 correct predictions from a total of 9. Examining the 

children's scores on the post-test in more detail, it can be seen that there was huge 

variability in the number of correct direction predictions (0% to 100%). Ten children 

got 75% or more of the prediction right, seven got none right (five of these seven 

were those who had failed to learn any estimation strategies). 

Strategies for predicting varied widely. Three children always predicted `above', while 

three others always predicted `below'. The former was rarely associated with high 

scores. However, invariable prediction of `below' was commonly very successful, as 

often these children were producing their answers by truncation. The majority of 

children did not stick to one type of prediction throughout but adjusted their 

prediction on each question, again with varying degrees of success. There were few 

answers generated by rounding up, but these were generally predicted very accurately. 

Predicting the direction of intermediate compensation is often very difficult as it 

rests on understanding that relative (not absolute) differences govern accuracy. In 

total, 57% of rounding down predictions were correct, 47% of intermediate 

compensations were correct and 71% of rounding up solutions were predicted 

accurately. 

One cause for concern was the number of children that indicated that they thought 

their estimate was exactly right. This, of course, serves to decrease the direction 

scores (but incidentally, especially in the case of intermediate compensation, will lead 

to a fairly accurate magnitude prediction). At pre-test, `exactly right' accounted for 

10% of the predictions given by the experimental groups. At post-test, however this 

accounted for nearly 25% of the answers. Two subjects predicted `exactly right' for 

all answers. These children acted as if they believed they had been taught a method 

for exact multiplication during the intervention (it should be noted that these children 

did not know a long multiplication algorithm). They may have based their judgements 
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upon introspection about the procedure rather than the outcome. If they were 

confident they had performed the process correctly, then the outcome should be 

`right'. 

A further proportion of children predicted `exactly right' whenever they performed 

intermediate compensation, but predicted higher or lower for other solutions. A small 

number of children predicted `exactly right' whenever their intermediate solutions 

appeared in absolute terms to cancel out, i. e., 18 x 42 = 20 x 40. This is strategy 

that is commonly demonstrated by adults and represents quite sophisticated, if flawed, 

reasoning on the parts of the children. 

These results suggest that both the intervention and the pen and paper measures could 

be improved. Given the high performance at direction prediction upon the computer, 

it might be that children had become complacent about this skill and were failing to 

reflect upon their prediction. There may be over reliance upon the support provided 

by the computer; perhaps the system needs to fade this support. However, it may be 

that this result represents working memory failure upon the children's part. Case & 

Sowder's (1990) model would certainly predict that due to limited capacity children of 

this age would perform poorly on this task. Children may fail to remember how they 

changed the numbers once the intermediate solution has been reached. There is some 

evidence for this interpretation since in at least one subject's results, the predictions 

would have been nearly perfect if the answers had been generated according to the 

most accurate strategy. However, the actual estimation strategy used was truncation. 

It would appear that this subject performed the prediction separate to the estimate 

and without remembering the strategy that he had used. 

A second cause for concern is a worry that children's beliefs about the nature of 

mathematics were interfering with successful performance on this task. It has been 

argued by many researchers and teachers that children beliefs about mathematics can 

negatively affect performance (e. g. Phillip et al. 1994; Schoenfeld, 1992; see section 

2.3 for a review). In this case, children are likely to view producing an answer as the 
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most important part of the task. However, by far the most complex part of the tests 

is to calculate the relation between the estimate and the right answer. If children 

viewed the estimation as the only important mathematical goal, and they may have 

paid only limited attention to the prediction tasks. 

Given these difficulties, it may be wise to adapt the tests. There is abundant evidence 

from the previous experiments that CENTS can teach estimation skills. Hence, there 

is less need to test this directly. Instead, children could be given semi-completed tests, 

where intermediate solution and final estimate would be given. Their sole task would 

be to calculate how accurate the given estimates were. This would both provide 

support for working memory and remove difficulties in comparison between children 

who used different types of estimation strategy. Only limited research as examined 

what children know about estimations that they have not produced (e. g. Dowker, 

1993). It would seem interesting to expand this work to older children using more 

complex estimation tasks than Dowker's children used. 

8.9.3 Representations 

Although there were no differences between the experimental conditions in the final 

outcomes, there were differences in how the representations were used during the 

intervention. Analysis of prediction behaviour with the representations produced a 

fairly complex pattern of results, many of which confirm the earlier studies, however 

there were some differences. The following discussion is structured to around each of 

the factors in the experiment: Format, redundancy, time and strategy. 

Format 

In this experiment, just two of the formats that have been used in previous 

experiments were selected; pictures, and a mix of pictures and mathematics. Some of 

the results confirmed those of earlier studies. For example, analysis of prediction 

accuracy on the fully redundant representations confirmed that pictures were initially 

used more successfully than mixed representations. The no redundancy 

representations did not show this effect, either for direction or magnitude. It will be 
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argued later that this was because the task of predicting accuracy was easier when each 

decision was made separately. When direction for the full redundancy representations 

was examined, the interaction between format and time was significant. In contrast to 

previous experiments and the above analysis, for the first intervention session, 

children in the picts condition performed worse than mixed representations. There 

was also an interaction between format and representation. The splatwall was used 

similarly across both formats, but the archery field produced significantly poorer 

performance than the numerical display. Thus, the archery field seemed to be 

successful for expressing magnitude, but supported direction poorly. This 

representation is effectively the splatwall turned through 90 degrees and emphasises 

that apparently small changes in presentation may have significant effects upon how 

well the representation supports learning. 

This point is interesting to consider in relation to the different approaches to 

classifying representations first discussed in section 3.2. Palmer's (1978) analysis 

could employ the principle of uniqueness (whether the representation directly 

supports the required inference or whether additional information is needed to 

construct the right interpretation) to explain the difference between the 

representations. In the case of splatwall, the direction of the estimate maps directly 

onto above and below on the splatwall. However, the archery field requires users to 

understand that left represents `under the exact answer' and right, `above the exact 

answer'. Thus, the additional inference seems likely to be the reason why this 

representation was used less successfully than the other pictorial representations. The 

other approaches to classifying representations such as modality and the taxonomic 

approaches, (e. g. Lohse et al., 1994) would not be able to make any distinction 

between these two representations. 

The numerical display seemed to support direction predictions well. One possible 

explanation is that this representation, as opposed to the others in the full 

redundancy groups, requires users to first state direction and then state magnitude. 

This turned prediction of the accuracy of an estimate into two separate decisions, 
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similar to the no redundancy representations where direction has been predicted more 

successfully than with full redundancy. This is not a fundamental property of the 

representation. It could have been implemented so that user's must select direction 

and magnitude simultaneously. This interpretation again suggests that caution should 

be taken about generalising from representations in too global terms. 

The numerical display representation was associated with poorer performance for 

magnitude predictions. It was also found that for composite predictions (i. e. those 

that collapse direction and magnitude into one score) mixed representations were 

worse for prediction accuracy at time I than pictorial representations. This finding 

replicates the previous two experiments with CENTS. The four way interaction 

between format, redundancy, time and strategy reported in section 8.8.4 was 

explained by the numerical representation supporting predictions of magnitude 

prediction poorly at time 1 when producing answers by rounding although not when 

estimating using truncation. In other words, when task demands were particularly 

hard, this representation was used less successfully. 

Redundancy 

This experiment manipulated redundancy over representations. It was proposed in 

section 3.7, that one dimension that is important in considering multi- 

representational software is how the information is shared over the representations. 

In this case two levels of redundancy were used, full redundancy where all the 

information derivable in one representation is also present in the other. Under 

conditions of no redundancy, each representation presents unique information. It was 

suggested in section 8.6.2, that limiting redundancy between representations may aid 

initial learning. 

An analysis of direction predictions which compared each of the fully redundant 

representations with the no redundancy representations was performed. The first 

representation in the fully redundant MERs was the splatwall, the second either the 

archery field or a numerical display. There was a fairly consistent effect of 
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redundancy. No redundancy was either generally better (compared to the splatwall) or 

better at time I (compared to the archery field and numerical display). Thus, the 

hypothesis that when each representation presented only a single dimension, it may 

be easier to learn about the effects of different dimensions, received some support. It 

was also found that the fully redundant representations were associated with poorer 

performance when the task demands were more complex, i. e. when predicting 

rounding, or using the archery field or at time 1. Thus, although much more research 

is needed, there does seem to be evidence that limiting redundancy over 

representations may be beneficial (at least in the short term). 

Strategy 

For fully redundant representations, prediction accuracy was higher for estimates 

produced by rounding. This replicates the effects of strategy in Experiments Three 

and Four which had found that prediction accuracy was higher for rounding than for 

truncation. When examining direction and magnitude predictions separately, both 

were influenced by strategy, but with different effects. Truncation estimates were 

predicted more accurately for direction, and rounding estimates were predicted more 

accurately when just considering magnitude. One explanation for these results was 

that as truncation invariably results in a lower answer, it was much simpler to predict 

the direction (lower! ) than it was for rounding, which can either be higher or lower. 

This result was discussed in section 7.4.6, when it was suggested that predicting 

magnitude may be easier for rounding solutions than truncation solutions as rounding 

tends to produce more exact answers. Children have difficulty believing that 

mathematical procedures that are `correct' can lead to inexact solutions. Again, this 

seems consistent with the `right answer hypothesis' proposed by Baroody (1987). 

It is particular difficult to predict direction on answers produced by intermediate 

compensation. Truncation, however, can produce highly inaccurate answers, in 

contrast to rounding which tends to produce more accurate answers. Hence, as 
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children have a tendency to overestimate the accuracy of their answer, rounding will 

normally be predicted more accurately. 

Time 

The vast majority of measures (e. g. composite predictions, predictions of the 

magnitude of estimates) showed simply a main effect of time, i. e. children were more 

successful on their second use of the system. The only exception to this was that 

direction predictions for the no redundancy representations showed no improvement. 

However, as an average of eight out of the nine answers given during the first 

intervention session were correct, this indicates a ceiling effect. This does not mean 

that learning did not occur within a session. For example, 68% of predictions for the 

first two questions were correct but 92% of the final two questions were answered 

correctly. 

8.9.4 Representation Co-ordination 

Representational co-ordination was examined across the fully redundant 

representations (this analysis obviously is not applicable to no redundancy 

representations). The results of this study replicated the previous ones in that 

predictions across pictorial representations were significantly more co-ordinated than 

across mixed representations. This confirms that the previous effects of 

representational co-ordination are unlikely to be due to the particular combination of 

representations. 

However, this time there was a trend for both groups to improve over time. In 

previous experiments with partially redundant representations, pictorial and 

mathematical representations had showed increased convergence with time, but mixed 

representations had not. The results of Experiment Five are in line with the 

prediction that full redundancy would help children learn to translate across the 

representations as it would increase the similarity between representations. 
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8.10 CONCLUSION 

Again, CENTS was shown to be successful at teaching primary school children aspects 

of computational estimation. Investigation of the effects of MERs showed that when 

the relation between co-ordination and learning outcomes was analysed, the results 

were in line with previous experiments - pictorial representations were more 

successfully co-ordinated than mixed representations. In addition, it had been 

predicted that a fully redundant system should aid representational co-ordination. 

Even for children who don't learn to co-ordinate, concentrating on one 

representation should provide them with all the information they need to know. 

Hence, we would not expect to see a difference in learning outcomes between the 

different formats for fully redundancy. 

However, it was predicted children in the mixed, no redundancy group should perform 

less well at post-test. It was argued that children in the mixed condition would be 

impeded in integrating information across the representations. Hence, as correct 

prediction requires both direction and magnitude to be related, then these children 

should be at a disadvantage. This prediction was not supported by the data. 

Two of the possible explanations for the performance of the children are as follows. 

The first explanation is based on the evidence that limiting the redundancy between 

representations may make aspects of the task easier. This allowed children to focus 

their attention on integrating information from both representations. Hence, the task 

of integrating information from mixed representations was supported by making 

others aspects of the learning goal easier. 

The second explanation concerns the nature of all subjects post-test performance. It 

was found that few of the children improved at both the magnitude and direction 

components of prediction accuracy, - the only significant improvement was for 

magnitude. As this was the case, less redundancy would not be implicated in children 

failing to integrate understanding of both dimensions. There is no evidence that any 

of the multi-representational systems supported this level of understanding. 
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Thus this experiment replicated the previous ones which found a) that CENTS can 

successfully teach estimation and; b) that mixed representations were less well co- 

ordinated than other representations. There was tentative support for the hypothesis 

that representations dedicated to a single aspect of a situation support initial concept 

acquisition more effectively. However, as none of the experimental conditions were 

associated with integration of these concepts, longer term consequences of less 

redundancy across representations remain unexplored. 

8.11 GENERAL CONCLUSION 

This chapter reported two further experiments aimed at exploring CENTS 

effectiveness at teaching computational estimation and at examining the effects of 

MERs on learning. In both experiments, all experimental subjects significantly 

improved their estimation performance. Different combinations of representations 

were manipulated to explore the effects of format and redundancy on learning. In all 

cases, mixed representations were associated with less co-ordination during the 

computer intervention. In Experiment Four, with four intervention sessions on the 

computer, children in the mixed condition appeared to concentrate upon a single 

representation. This is in contrast to children in pictures and mathematical 

representation conditions who learnt to effectively use both representations. Thus, it 

was suggested that in conditions of partial redundancy it is possible for children to 

learn about the domain if they concentrate upon a single complete representation. 

Experiment Five examined the effects of different levels of redundancy, either full 

redundancy where the same information is displayed in both representations or no 

redundancy where each representation presents different information. The influence 

of different levels of redundancy on learning with MERs is less clear cut, however it 

appears that there may be an initial advantage to be gained by limiting redundancy. 

The final chapter will discuss in more detail the implications of the results of the 

experiments with CENTS and COPPERS for the design of multi-representational 

software and primary mathematics teaching. 
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CHAPTER NINE 

Discussion and Synthesis 

This final chapter presents a summary and synthesis of the thesis. The research 

objectives are reviewed and the design of the learning environments are considered 

with respect to multiple representations and number sense. A brief summary of the 

more important experimental findings is given. Then, the limitations of the systems 

and the evaluation studies are considered, along with the potential for improvements 

in evaluation and design. The techniques and results of the empirical studies are used 

to address the question of design of multi-representational software. The final 

sections present suggestions for future work and provide a general summary of the 

thesis. 

9.1 AIMS AND OBJECTIVES 

This thesis has addressed the design of computer-based learning environments for 

primary mathematics. Evaluation of the systems focused on how different 

representations of the domain affect learning. Examination of the goals of primary 

mathematics teaching identified the `right answer' misconception as an important 

and under-researched domain. Children who hold this view believe that all problems 

must have a correct answer, that there is only one correct way to solve a problem and 

that inexact answers and procedures are undesirable. It was argued (Chapter 2) that 

such a misconception is implicated in children's failure to develop good number sense. 

Thus, one principal goal of this thesis was to design, implement and evaluate learning 

environments that successfully address these aspects of number sense. The first 

system, COPPERS, was designed to teach children that there can be many correct 

solutions to problems. The second system, CENTS, was designed to teach 

computational estimation. It supports the development of strategic and conceptual 

knowledge, and places considerable emphasis upon the development of insight into 

accuracy in estimation. 

234 



Furthermore, inspired by the possibilities inherent in computer-based environments 

for novel and interesting uses of representations, the second goal of this thesis was to 

explore issues in the successful use of multiple external representations (MERs). It 

was argued that comparatively little is known about how children use multi- 

representational learning environments. Consequently, little is known about how to 

achieve successful multi-representational software. To inform design, the research 

aimed to: 

" uncover and analyse different uses of MERS 

" examine the various learning demands of MERS 

" evaluate the influence of different combinations of representations on learning 

outcomes 

" consider the instructional implications of supporting such learning 

To this end, a literature review was performed upon many different domains. The 

issue of external representations in learning and problem solving has been considered 

in (at least) the following areas: Artificial Intelligence, Cognitive science, Cognitive 

Psychology, Developmental Psychology, Mathematics and Science Education, 

Human Computer Interaction, Instructional Science, Intelligent Tutoring Systems, 

and Visual Programming Languages. These areas were reviewed (although not all 

received equal attention) in order to develop a conceptual framework with which to 

consider the use of MERs in computer-based learning environments. 

Some of the issues raised by this analysis were selected for further empirical study, and 

systems were designed to allow exploration of these areas. The primary focus of this 

aspect of the research was on how nature of the multi-representational system may 

influence learning. This was considered in terms of the similarity of format and 

redundancy across representations. 

Both COPPERS and CENTS were designed to use MERs. COPPERS employed 

multiple representations (a) sequentially, to display questions in increasingly abstract 
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notations (from concrete to algebraic) and (b) in parallel to describe answers in two 

complementary representations. The role of the latter use of MERs was addressed 

empirically. 

CENTS was designed to assess how combining different types of representations 

influenced learning. Estimation accuracy was presented in MERS, and learners used 

them to predict the accuracy of their estimates. Combinations of representations 

were manipulated to alter redundancy of information and format of representations. 

Consequently, predictions concerning how to best combine representations to support 

learning could be tested. 

Thus, this thesis has been concerned with four main issues: 

" assessment of children's performance at computational estimation and multiple 

solutions tasks 

" the development and evaluation of learning environments that teach these areas 

" empirical analysis of how system features affected learning outcomes, specifically 

in relation to MERs 

" the creation of a framework and methodology to help inform design of multi- 

representational learning environments 

The following sections reviews the first three of these areas, which are directly based 

on the empirical research. The final, more general issue of the design of learning 

environments, is considered in section 9.6. 

9.2. NUMBER SENSE - MULTIPLE SOLUTIONS AND COMPUTATIONAL 

ESTIMATION 

Before each intervention study, data was collected on children's performance upon 

multiple solutions and computational estimation tasks. This served two functions: (a) 

it served as a baseline to compare with post-intervention performance and; (b) it 

justified the pedagogical goals of the systems by demonstrating that children in this 

age group are unlikely to possess these mathematical skills without direct teaching. 
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It was argued in Chapter Two that children aged six to eleven would demonstrate 

mathematical performance consistent with the `right answer' hypothesis (Baroody, 

1987; Lampert 1990). It was predicted that primary school children would 

demonstrate little proficiency at producing multiple answers for (apparently) simple 

mathematical problems and would have difficulty with inexact mathematical 

procedures such as estimation. This prediction was supported by the research 

conducted with both COPPERS and CENTS (described in Chapters Five, Seven and 

Eight). 

9.2.1 Multiple Solutions 

Experiment one examined the six to seven year old subjects' performance on the 

multiple solutions pre-test. These children produced an average of less than one 

correct solution per question. The eight to nine year old children demonstrated only 

slightly better performance with 1.2 correct solutions per question. In addition, 

Experiment Two showed that, without direct teaching, merely re-testing children (and 

thus it might be argued beginning to legitimise multiple solutions as a mathematical 

goal) did not improve performance. A non-intervention control group's performance 

remained constant across three pen and paper tests. 

The results of these experiments showed that primary school children do not easily 

produce multiple solutions to coin problems. This might appear counter-intuitive, as 

the mathematical skills to achieve this should be within the competence of children 

of this age (and indeed are after the intervention). This is consistent with worries 

about the nature of children's mathematical beliefs negatively influencing 

performance where multiple solutions are required. This was also supported by the 

weak relation between more general mathematical ability (as measured by the BNST 

and Y l) and multiple solutions performance. This poor performance provided 

support for COPPERS' pedagogical goal of teaching children to produce multiple 

answers for a single mathematical problem. 
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9.2.2 Computational Estimation 

Previous research on children's (and adult's) estimation abilities has examined both 

the skills and concepts of computational estimation (Reys et al., 1982; Sowder & 

Wheeler, 1989) and has included a developmental model (Case & Sowder, 1990). Such 

research predicts that children in the age group examined (10-11 years) will 

demonstrate only limited estimation skills. This prediction was supported by the 

evaluation studies (Chapters Seven and Eight). 

Three measures of children's estimation performance were taken: (a) analysis of the 

strategy used to produce the estimate, (b) assessment of the accuracy of the estimate, 

and (c) analysis of the insight children had into the accuracy of an estimate. 

At pre-test, children rarely applied an appropriate strategy (such as rounding or 

truncation). Averaged across all three experiments, only 7% of pre-test responses 

used an appropriate strategy. This was also reflected in the accuracy of the estimates. 

At pre-test, subjects' estimates were an average of 91.4% away from the right answer. 

For example, an estimate to `25 X 55' might be given as 118 when the exact answer 

is 1375. Frequently, the estimate was lower than one of the factors or less than the 

sum of the two factors. 

The final measure taken was insight into the estimate - i. e. whether children could 

recognise whether an estimate was higher or lower, close to or far from the exact 

answer. In all of the experiments, children demonstrated only a limited understanding 

of accuracy - for example, their prediction of the direction of an estimate was at 

chance. 

Children showed little understanding of either skills for producing estimates or the 

ability to generate or recognise ̀ ball park' responses. In addition, once again, non- 

intervention controls did not improve after repeated testing. It would seem that the 

skills and knowledge that CENTS was designed to support are not present in primary 

children before direct teaching. 
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Results of the investigations of children's understanding of multiple solutions to coin 

problems and computational estimation were consistent with previous research on the 

nature of children's beliefs about mathematics and computational estimation. These 

results show that primary school children have difficulties performing successfully on 

these sorts of problem and are unlikely to develop these skills without some teaching. 

This motivates the implementation of the two systems designed to support this type 

of mathematical understanding. 

9.3 DESIGN AND EVALUATION OF THE LEARNING ENVIRONMENTS 

COPPERS and CENTS were designed to support different aspects of number sense and 

to explore how different combinations of representations influenced the development 

of this understanding. This section will give a brief summary of the motivation for 

building these systems, and will assess whether the systems met their educational 

objectives. 

9.3.1 Motivation 

The arguments for teaching children to give multiple solutions to single questions and 

to accurately estimate the answers to multiplication problems were reviewed in 

Chapter Two. To briefly recap, these areas have been associated with the 

development of number sense. It was proposed that successful performance in these 

areas depends heavily on number sense and that be helping children to develop these 

skills they also gain a deeper sense of number. It was argued that children commonly 

hold beliefs that can be characterised as the `right answer' hypothesis. Furthermore, 

these beliefs are not compatible with current approaches to mathematics education 

which emphasise pattern seeking, number sense, hypothesis testing and active search 

for solutions (Schoenfeld, 1992). Thus, the systems were designed to address and 

challenge these beliefs by providing situations where multiple solutions and inexact 

procedures were required to solve mathematical problems, and by supporting the 

development of skills and knowledge fundamental to achievement of these 

mathematical goals. 
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9.3.2 Multiple External Representations 

There is considerable evidence that appropriate external representations can aid 

learning and problem solving. Recently, given the opportunities presented by 

computers as tools for learning, there have been many advantages proposed for 

providing MERs. Three broad classes of claims were identified in section 3.3: (a) that 

MERs support different ideas and processes, (b) that MERs constrain interpretation, 

and, (c) that MERs promote a deeper understanding of the domain. The evidence to 

support these proposals was reviewed in Chapter Three. Analysis of the learning 

demands of MERs with respect to these benefits was undertaken (section 3.4). One of 

aims of this thesis was to examine under what conditions MERs supported learning. 

The types of representations used by the systems varies. COPPERS uses different 

representations of coins - either pictorial, numerical or algebraic. It also employs two 

representations for feedback -a tabular representation and a row and column 

representation. CENTS offers users (and researchers) an even wider choice of 

representations. It can employ pictorial representations (such as the `splatwall' or 

archery target), or mathematical representations (histogram, numerical values) which 

can be displayed in any combination. The redundancy of information across displayed 

representations can also be varied - both representations can provide the same 

information, can provide completely different information, or have partial overlap. 

Thus, both COPPERS and CENTS were designed to exploit and explore the different 

inferential capabilities of external representations, either singly or in combination. 

9.3.3 Evaluation of the Learning Environments 

COPPERS 

The results of the evaluation studies conducted with COPPERS suggest that it can be 

used to teach young children to produce multiple solutions to coins problems. As 

discussed above, initial performance on this task was low - the majority of subjects in 

Experiment One and Two did not produce correct multiple solutions to the coin 

problems. After the intervention phase, (two sessions using one of the COPPERS 
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versions), all experimental subjects significantly improved the number of correct 

multiple solutions by the post-test. Averaged over the two experiments, children 

increased the number of correct solutions given by over 300%. 

In addition, a simple analysis of the types of solutions was performed. It was found 

that both the average number of coins per question and the average number of 

different types of coins per question increased from pre-test to post-test. An informal 

post-hoc analysis suggested that children were demonstrating less routine solutions 

after the intervention. 

COPPERS was shown to fulfil its desired educational function. Children taught with 

the system learnt to provide multiple solutions to coin problems and produced more 

complex and less canonical solutions after the intervention. 

CENTS 

CENTS was designed to teach the concepts, strategies and insight required for 

computational estimation. Only the latter two goals have been evaluated. Subjects 

were asked to estimate answers to twenty multiplication problems. Pre-test scores 

suggested that subjects effectively lacked the skills and knowledge necessary to 

perform this difficult mathematical task. The intervention studies showed that 

CENTS can be considered to be an effective environment for teaching some aspects 

of computational estimation. 

The accuracy of estimates is the most commonly used measure of performance (e. g. 

LeFevre et al., 1993; Rubenstein, 1985). All the studies with CENTS showed that 

experimental subjects significantly improved the accuracy of their estimates (answer 

accuracy). The mean percentage deviation was 91% at pre-test and 42% at post-test 

across the three experiments. However, although the pre-test means across the three 

experiments were similar (ranging from 87% to 98%), the post-test scores for the 

experimental groups were quite different (mean post-test scores: Experiment Three - 

58%, Experiment Four - 28% and Experiment Five - 39%). This range is primarily 

due to differences in order of magnitude correction, and may reflect a change in the 
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system after Experiment Three to emphasise place value correction. It should also be 

noted that in Experiments Three and Five, experimental subjects received two 

training sessions, whilst in Experiment Four, each subject used CENTS four times. 

Estimation performance was also scored for percentage deviation from the exact 

answer after an order of magnitude correction had been applied. It was argued in 

Chapter Seven that this represents a more useful measure of subjects' performance. It 

distinguishes children who guess answers from those that apply a correct strategy but 

fail at place value correction. For the three experiments, the mean percentage 

deviation (corrected for magnitude) was 91.2% at pre-test and 22.0% at post-test. 

Again, there was little difference between the experiments at pre-test averages, but 

for this measure the difference at post-test was also smaller (mean post-test scores: 

Experiment Three - 26%, Experiment Four - 19% and Experiment Five - 21%). 

Both performance measures showed that experimental groups became significantly 

more accurate after the intervention and provided support for the claim that CENTS 

can teach children to become more accurate estimators. 

An examination of the strategies used by the subjects to estimate their solutions was 

performed. Estimates were identified as rounding up, rounding intermediate 

compensation, rounding down (or truncation) or unknown. (The other strategies 

identified by Reys et al., 1982 were not found in these studies). Hence, strategies that 

involved front end extraction were coded as appropriate and all others as 

inappropriate. CENTS attempts to teach children rounding and truncation. 

Unsurprisingly, we can see that after the intervention, (experimental) subjects 

estimate problems using more appropriate strategies. At pre-test, the average score 

was 1.7 (from 20) and 15.8. at post-test. Again, there was some variation of 

outcomes across the experiments (mean percentage of appropriate estimates: 

Experiment Three - 61%, Experiment Four - 94% and Experiment Five - 82%). 

However, it can be seen that the majority of subjects were able to learn and correctly 

apply the strategies supported by CENTS. 
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Considerable emphasis was placed upon supporting insight into the accuracy of an 

estimate in CENTS (prediction accuracy). This skill is slow to develop (Case & 

Sowder, 1990), yet represents an important part of a sophisticated estimator's skills 

(Trafton, 1986). Hence, the system provides MERs of estimation accuracy and 

children used these representations for both prediction and display. 

Pen and paper post-tests of prediction accuracy revealed that these intervention goals 

received qualified support. The majority of experimental subjects improved 

significantly (differences between conditions will be discussed in section 9.4). Children 

were asked to indicate how accurate they thought their estimates were by indicating a 

category that described each estimate. These were labelled in both natural language 

and percentage deviations. A typical category was, `much less than: 20-30% below'. 

Thus, it was possible to score prediction accuracy independently of the accuracy of an 

estimate. At pre-test, the average difference between a child's prediction and the right 

prediction was 3.7 categories. At post-test, this had improved to 2.3 categories 

difference. 

However, closer analysis in Experiment Five revealed that whilst subjects were better 

at predicting the magnitude of the estimate, they did not improve at predicting its 

direction. Explanations that were considered in section 8.9.2 included the difficulty in 

predicting direction when answering using intermediate compensation, and children's 

complacency about their knowledge given their performance on the computer 

(ceiling). It was also suggested that a post-test which solely tested prediction accuracy 

might provide a cleaner result. 

In summary, CENTS and COPPERS have been shown to be able to teach primary 

school children much of the relevant skills and knowledge involved in multiple 

solutions and computational estimation. 

9.4 SYSTEM FEATURES 

The final aim of the experiments was to use the systems as laboratories to test more 

general predictions about how to support learning. The principal focus was on testing 
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claims for (multiple) external representations in computer-based learning 

environments. 

Two aspects of COPPERS design were examined: (a) the number of answers per 

questions required from users, and (b) the importance of providing an additional 

tabular representation. Experiments with CENTS built on a fundamental issue that 

arose from the COPPERS experiments and concentrated upon learning with multiple 

representations. Two aspects of MERs were examined: the format of the combined 

representations and the redundancy of information across the representations. 

9.4.1 Multiple Solutions 

In Experiment One, subjects who were required to give four rather than one solution 

per question did not generally produce more correct solutions at post-test. However, 

for the lower performing children, giving multiple answers did lead to significantly 

better performance. In Experiment Two, this was examined further by adding an eight 

answer condition and an autonomous condition where users could choose their own 

number of answers per question. A four answer condition was retained. It was found 

that all the experimental groups had significantly better performance at post-test. In 

addition, the eight answer group had significantly more correct answers than the four 

answer and control groups at post-test, and the control group at delayed post-test. 

However, closer analysis revealed that the four and autonomous groups improved 

solely because the accuracy of their answers improved. The eight group, in addition to 

becoming more accurate, also increased the total number of decompositions. 

This result was interpreted in terms of the zone of proximal development (Vygotsky 

1978). It was suggested (section 5.9.2) that the strategy employed by the computer 

should be to require a number of answers that was just beyond what a child could 

produce without support. 

Given the difficulty of diagnosing the region of the zone of proximal development, 

and the motivating effects of selecting one's own goals, it might be argued that 

children should be given the opportunity to select the number of answers per question 
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for themselves. However, children given this choice in the autonomous condition 

provided an average of 1.66 answer per question and did not increase their number of 

decompositions after the intervention. It was argued that this behaviour is in line with 

children's mathematical beliefs (reviewed in section 2.3). Thus, it would seem that the 

computer should at least decide upon a minimum number of solutions. Children could 

then give additional solutions if they wished. 

9.4.2 External Representations 

The representations used by COPPERS were examined in Experiment One. The 

system employs two types of representation for describing the answers that children 

give. A standard row and column representation is used to describe the partial products 

of an answer. In addition, a summary table of these partial products is employed to 

provide information about the current and (where relevant) previous answers to a 

question. The hypothesis that the table would improve the children's performance 

was supported. The children who were provided with the summary table in addition to 

the row and column representation produced significantly more solutions at post-test 

than children who were only given the row and column representation. 

A number of explanations were proposed (5.4.3) that could account for this result. 

Lampert (1986a) had suggested that such tables would be useful for allowing subjects 

to compare their previous answers, especially those that had been in error. The 

research on the computational properties of representations suggests that tables 

encourage pattern seeking and reflection on unexplored alternatives. Informal 

assessment of children's behaviour suggests that this was occurring, but given the 

granularity of information available from the computer records this can not be 

proved for certain. 

In addition, the table serves as a symbolic representation of the multiplication and 

addition procedures involved in finding solutions to the problems. Numbers in the 

columns must be multiplied by the numbers in the column heading and then added 
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together to get the total amount of money. The operators used to interpret a table 

therefore require children to practise the skills that COPPERS is attempting to teach. 

Finally, the table and row and column representations simultaneously provide 

information on the same problem whilst presenting it in different ways. Thus, the 

advantages proposed for translating across multiple representations may account for 

the improved learning seen in the tabular representation condition. 

This experiment does not isolate which one of these explanations account for the 

improved performance of the table group. Further research must be conducted to 

establish this. One possible future experiment would be to examine the table presented 

without the row and column representation. This would allow the role of multiple 

representations to be separated from the cognitive properties of the table 

representations per se. Further experiments could examine whether the table was 

promoting deeper mathematical exploration by gathering much more detailed 

accounts of children's behaviour. 

9.4.3 Combining Representations 

One dimension that was proposed as unique to learning with MERs was the need to 

consider the similarity of format across representations. Experiment Three examined 

this issue. The research literature was reviewed to derive a series of predictions about 

the relative advantages of different types of representations. This was firstly done by 

considering the properties of individual representations. For example, pictures may be 

beneficial initially and with lower performing children. Mathematical representations 

take longer to learn, but ultimately prove to be more effective. A mix of 

representations may offer the best solution, in that pictorial representations can be 

used to bridge understanding to the more symbolic ones. 

However, it was argued in section 3.4, that multi-representational software that aims 

to exploit abstraction across representations requires learners to understand three 

aspects of MERs: 

0 the format and operators of a representation 
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" the relation between a representation and a domain 

" the relation between the representations 

Thus, in section 7.1 a second set of predictions about the relative advantages of 

different representations was articulated, based upon considering the learning demands 

of MERs. In order to test these predictions, three different representational systems 

were created: pictorial (splatwall and target), mathematical (numerical and histogram) 

and mixed (numerical and target). Hence, each representation in the mixed 

representational system was also present in either the mathematical or pictorial 

system. In this way, the first two learning demands were constant for each 

representation, but the final learning demand was varied. 

To briefly summarise the argument in section 7.4., subjects in the pictures and 

mathematical conditions improved on measures of prediction accuracy from pre-test 

to post-test; the mixed group did not. An explanation was proposed by examining the 

process data. Learners' knowledge of the representations and their domain knowledge 

was reflected in their use of representations for prediction. By the second session on 

the computer, the maths and pictures conditions were performing significantly better 

than children with mixed representations. Thus the poorer understanding manifested 

on the post-test was also present during the computer interaction. 

To measure the final learning demand, the similarity of children's actions on both 

representations was assessed (representational co-ordination). It was argued that if 

learners understood the relation between the representations, their actions should be 

identical over both representations, even if their prediction is wrong with respect to 

the domain. It was found that over time the mathematical group and pictures group 

converged their behaviour across the representations, but that the mixed group did 

not. 

Consequently, it was argued that the learning demands of representational translation 

in the mixed condition were so great that children could not benefit from the support 

provided by these representations. Predictions based upon considering the learning 
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demands of MERs were supported over those that simply considered the properties of 

each representation in isolation. 

In order to explain this effect, a comparison of the properties of each 

representational system was performed. The pictorial representations are based on 

the same metaphor and have similar formats and operators. Pictures are also very 

familiar representations to children of this age. The mathematical representations 

have different formats and operators, as one representation is graphical and one is 

propositional. However, it was proposed that mapping between the representation 

was facilitated by the fact that both representations use numbers. The mixed 

representations differ in terms of formats and operators and have no obvious 

mechanism to support the mapping. In addition, they also mix mathematical and 

non-mathematical representations. Failure of overlap therefore occurs at all levels. 

However, before recommending that representations that are too difficult to co- 

ordinate are avoided in computer based learning environments, it was obviously 

necessary to replicate this effect. In addition, it might be argued that the negative 

effect of mixed representations is a temporary one caused by the excessive memory 

and learning demands at the initial stage of a task. Hence, this experiment was 

repeated with a further two intervention sessions. 

9.4.4 Representational Co-ordination over Time 

If failure to co-ordinate mixed representations is only short term problem, it was 

predicted that representational co-ordination should be seen to converge by the 4th 

session of the intervention. In addition, it would be expected that there would be no 

differences in learning outcomes between the experimental conditions. It might even 

be argued that the extra work needed to build links across the mixed representations 

would have led to a better understanding of the domain. 

The post-test results from Experiment Four showed that children in all experimental 

conditions had improved at both answer accuracy and prediction accuracy. Such a 

result was consistent with the prediction that mixed representation were only 
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problematic over short periods of time. However, this simple explanation was 

rejected when the process measures of prediction accuracy and representational co- 

ordination were examined. 

Prediction accuracy on the categorical representation showed a strikingly similar 

pattern of results to that of Experiment Three. Subject's use of the categorical 

representation in the mixed condition did not improve over time. However, 

prediction with the continuous representations was dissimilar to Experiment Three. 

In this case, pictures were initially associated with better performance as before, but 

prediction accuracy improved in all conditions. 

When representational co-ordination was examined, it was found that mathematical 

and pictorial representations converged over time. However, the mixed group again 

showed no evidence of co-ordination, even after four sessions. Therefore, the 

hypothesis that failure to co-ordinate in mixed conditions only occurs during a limited 

initial period was rejected. 

It was argued that children's continued failure to translate across the mixed 

representations ultimately lead them to abandon their attempts to work with one of 

the representations (categorical) and to concentrate on the other representations 

(continuous). This decision was highly strategic as the continuous representation 

contains both the direction and the magnitude information. Reliance solely on this 

one complete representation would account for the mixed group's improvement on 

the test. 

The results of the Experiments Three and Four suggested that mixed representations 

are considerably more difficult to co-ordinate than pictorial and mathematical 

representations. This may either result in poorer performance overall (Experiments 

Three) or concentration upon a single representation (Experiments Four). However, 

concentrating upon one representation and ignoring both a second representation and 

the translation across representations, means that many of the proposed benefits of 
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multiple representations cannot occur. Multiple representations could not be used to 

constrain interpretations or to support abstraction. 

In addition, one of the most common claims for the use of multiple representations is 

that one representation may be insufficient to display all the needed information. 

Consequently, MERs may be used to convey different aspects of a domain. The 

hidden assumption in this approach is that a learner can then integrate information 

from all of these representations in order to fully understand the domain. 

Experiment Five was therefore designed to address the affects of representational co- 

ordination under conditions of varying redundancy. 

9.4.5 Redundancy 

Integrating information across MERs is particularly important if the representations 

express different concepts. In the situations described above there was some overlap 

between the representations, as each involved magnitude. However, the granularity of 

magnitude information was different and the continuous representation also expressed 

direction. Hence, failure to integrate information across these representations will not 

necessarily result in impoverished learning. 

Two further levels of redundancy were employed to address this issue. For full 

redundancy, the same information is derivable from both representations. In this case, 

both representations expressed direction and magnitude in a continuous fashion. 

Where there in no redundancy, completely different information is derivable from 

each representation. Consequently, one representation was designed to convey 

direction information and the other (continuous) magnitude. 

The hypothesis tested was that when it is difficult to integrate information across 

representations (i. e. mixed representations), having no redundancy will lead to poorer 

learning outcomes. If mixed representations are fully redundant then translation 

should be facilitated. Even without translation however, learning should still occur as 

one representation expressed all the needed information. Full and none redundancy 

pictorial systems were included for comparison as an example of MERs where co- 
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ordination is facilitated. In addition, it was proposed to examine whether no- 

redundancy made the concepts easier to learn initially. 

There were differences in how the representations were used during the intervention 

phase. There was a fairly consistent effect of redundancy. For direction predictions, 

no redundancy was either generally better (compared to the splatwall) or better 

initially (compared to the archery field and numerical display). This would suggest 

that it may be easier to learn about the effects of different dimensions when they are 

presented separately. The fully redundant representations were particularly associated 

with poorer performance when the task demands were more complex, i. e. when 

predicting rounding or during the first intervention session. 

Analysis of the effects of format for the most part confirmed the results of earlier 

studies. For example, analysis of prediction accuracy on the fully redundant 

representations confirmed that pictures were initially used more successfully than 

mixed representations. The no redundancy representations did not show this effect. It 

was argued that this occurred as the task of predicting accuracy is easier when each 

decision is made separately. 

Analysis of representational co-ordination across the fully redundant representations 

replicates the results of previous studies. Pictures were significantly more co-ordinated 

than mixed representations. There was a trend for both groups to improve over time. 

This was in line with prediction that full redundancy should help children map across 

the representations, but that mixed representations will still hamper co-ordination. 

None of these differences in representation use on the computer were reflected in 

learning outcomes. Counter to the prediction, all experimental groups improved 

equally at prediction accuracy. It had been expected that there would be no differences 

between pictures and mixed representations under conditions of full redundancy. 

However, the results of Experiment Five contradicted the prediction that children in 

the `mixed - no redundancy' condition would be disadvantaged in their attempts to 

integrate information across the representations and so perform less well at post-test. 
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Two possible explanations of this effect were proposed. Firstly, no redundancy 

appeared to aid understanding. This may have aided children attempting to integrate 

information from the mixed MERs. Secondly, post-test measures showed that few of 

the children improved at both magnitude and direction components of prediction 

accuracy. The only significant improvement was for magnitude. Hence, no 

redundancy mixed MERs could not be particularly associated with lack of integration 

of both dimensions as there is no evidence that any of the MERs supported this. 

Further research is needed to clarify the effects of manipulating redundancy. Some 

suggestions for interesting directions in which to take this research are discussed in 

section 9.7 

9.4.6 Summary 

In brief, this research has identified a number of consistent effects. Primary school 

children do exhibit performance consistent with the `right answer' hypothesis. 

However, short intervention sessions with CENTS and COPPERS can impact upon 

these beliefs and their behavioural corollary. All children in an experimental 

condition (regardless of what condition they were in) improved their performance on 

some of the outcomes measures. No non-intervention control group was observed to 

improve on any measure of performance. These findings seem robust. All the 

experiments reported in the thesis support this claim. 

There is also considerable evidence that the external representations employed in the 

learning environments affect the process and outcome of learning. In COPPERS, 

providing an additional tabular representation provoked better learning outcomes. In 

CENTS, the way children used MERs was affected by the format and to some extent 

the redundancy of the representations. Pictures were normally associated with better 

initial performance and may aid lower ability children. Mathematical representations 

took longer to learn but were then used successfully during later computer sessions. 

Representational co-ordination was high in both these conditions. Mixed MERs were 

invariably associated with low levels of representational co-ordination. This was 
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predictive of poor outcomes in Experiment Three. This effect was replicated over a 

longer time (Experiment Four) and with different representations (Experiment Five). 

There was some tentative evidence to show that distributing information over 

representations made certain concepts easier to learn. The generality of these 

findings in considered in section 9.7. 

The results of these experiments show that when considering learning environments 

that use MERs, it is not sufficient to analyse each representation separately. The 

effects of representations will vary depending upon the way they are combined. 

9.5 CURRENT LIMITATIONS AND SUGGESTED IMPROVEMENTS 

9.5.1 Systems 

Both COPPERS and CENTS are prototype learning environments. A number of 

additional features would be required if these systems were to be used in an everyday 

classroom. Trivially, such features would include documentation, re-implementation 

on a platform supported in schools, teacher controls and the removal of many 

features which supported these systems as experimental devices (e. g. the mouse-click 

level logging). 

In addition, the experiments with children identified a number of aspects of system 

design which could be improved. Some of these were addressed by re-implementation 

during the course of the research, others remain to be undertaken. It was not possible 

during this research to evaluate all of the design features of the systems (e. g. the help 

provided has never been analysed). Consequently, the main focus of this brief review 

will be on aspects of the systems that were assessed. 

COPPERS 

One aspect of COPPERS underwent substantial modification during the course of the 

research - the way children select coins to answer the questions. In COPPERS2, the 

`coin calculator' was replaced by `coin tubes'. This was prompted by the finding in 

Experiment One, that some children simply copied the coins in the question in order 
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to provide an answer. This strategy was associated with poor learning outcomes. The 

`tubes' prevented the application of this strategy by allowing one of the `coin tubes' 

corresponding to an element of the question to be empty. 

This new metaphor also allows COPPERS to ask more interesting questions. `Coin 

tubes' could be presented which only contain a limited number of coins. COPPERS 

could set questions which would require users to provide as many solutions as possible 

within these restrictions. It would also be possible to implement an explicit `exchange 

facility', allowing users, for example, to change a 5p coin into five Ip coins. Thus 

COPPERS could be used to set harder and potentially more interesting questions - 

making it a more flexible classroom tool. 

The results of Experiments One and Two suggested that to improve performance, 

children should give more solutions per question on the computer than they produced 

before the intervention. This could affect the design of COPPERS in two ways: 

teachers could set minimum numbers of solutions, either on a per child or a per class 

basis or, more ideally, the system should monitor children's performance to adapt the 

minimum number of solutions as a user's expertise increases. 

COPPERS' instructional goal was to teach children to consider alternative ways to 

answer problems. However, for many types of maths problems, it is useful to consider 

how the solutions differ (e. g. more effective, elegant, simpler, interesting, etc. ). 

Indeed, as part of discussions with children after the studies, the experimenter often 

asked them questions about their solutions "What's your favourite? Which would be 

the teachers favourite? Which is the prettiest and ugliest? Which is the most fun? 

Which one would be best in a hurry" The majority of children responded with 

puzzlement to the possibility of judging solutions of any dimension other than right 

or wrong. To get students to recognise that there are many solutions to a problem is a 

necessary first step; the second is to encourage students to strategically choose 

solutions based upon reflection of their specific learning objectives. To encourage 
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such reflection it will be necessary to involve peers and teachers in the way 

recommended by Lampert's approach to collaborative teaching. 

Further issues in the design of COPPERS which have not been addressed by the 

evaluations studies include when to change the difficulty of a problem (currently 

governed by a simple performance measure student model and user choice), and what 

the major factors are that determine difficulty in these problems (currently defined as 

maximum number of partial products, maximum value of coin allowed and the 

maximum value of multiplier). These were primarily based on intuitive analysis of the 

domain. It seems likely that children would benefit from using COPPERS as a 

collaborative tool. This would allow them to share and discuss different solutions. 

There are some intuitively plausible ways to redesign it to support this approach to 

learning. For example, children could be given different money boxes and would need 

to exchange coins with one another. They could set challenges for each other. Such 

approaches would obviously require substantive re-evaluation. 

EN 

Fewer aspects of CENTS were changed during the research. The only change made as 

a result of an experiment was to adjust how much experience children received before 

the system required them to make the place value correction. Initially, this was 

required only after substantive experience with the system. However, given the poor 

order of magnitude results of the children in Experiment Three, the level of help was 

adjusted so that children were required to make this judgement much more often. This 

would appear to have been successful, as order of magnitude correction was much 

better in Experiments Four and Five. 

One aspect of CENTS that could be further addressed is the role of the log book. 

Although children completed this (e. g. describing problems and estimates, their views 

of proximity and simplicity, etc. ), no exercises were set which involved it directly. 

Thus, the `explain' aspect of the `predict-test-explain' cycle was under-utilised within 

CENTS. 
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Early in the design phase, it had been proposed to set questions using realistic 

contexts. However, this decision was not implemented as it was felt that too little was 

known about how the difficulty of estimates was affected by context. Further research 

would be needed before such a feature could be added. 

One obvious expansion to CENTS would be to support more estimation strategies. 

During prototyping, five different reformulation strategies were created for addition, 

and these could be integrated into the system. If more idiosyncratic strategies (e. g. 

translation strategies) were to be supported, a different approach would be needed. In 

this case, it might be more appropriate to get the system to occasionally demonstrate 

a different way to solve the problem. It seems both difficult and undesirable to step 

children in a rule based fashion through strategies such as 'nice numbers' and 

translation to a more appropriate form - numbers are only nice if one sees the 

relation, and the form is only more appropriate if you are comfortable with it. The 

granularity of description of children's knowledge needed in a student model would 

introduce CENTS to all the well-known problems of student modelling in ITS (e. g. 

Self, 1990). 

Introducing compensation strategies would be easier. Effective compensation is based 

upon accurate insight into the estimate -a skill much emphasised in CENTS. It would 

be possible to encourage children to post-compensate after they had seen the 

feedback from the computer in order to make their estimate more accurate. This 

feature could be reserved for older children whom Case & Sowder would predict would 

have the competencies to understand and use post-compensation. 

General Issues 

Key improvements to CENTS and COPPERS have been discussed. Even if these 

proposed new features were implemented, much further study would be required to 

assess whether the effects of these components had the desired effect upon learning. 

It should be re-stressed that COPPERS and CENTS are not intended as a stand-alone 

systems. Much of the important conceptual understanding would come from teaching 
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and discussion with teachers and peers. Ideally, to test the impact of these systems on 

children's understanding in a more realistic manner, the systems would be introduced 

as part of normal classroom teaching. Although follow up exercises were discussed 

with teachers, full integration was not attempted within this research due to the need 

to tightly control how the system was used. In addition, as no attempt was made to 

compare the system to other forms of teaching (each system acting as its own 

control), the aims of these experiments did not require such a comparison. 

9.5.2 Evaluation studies 

The evaluation studies were designed to assess the impact of system components upon 

learning outcomes. Thus, the granularity of information collected was appropriate to 

that level of analysis. The current data do not provide answers to questions about how 

children's conceptual understanding has changed as a result of the intervention. This 

task would be more easily achieved for CENTS than for COPPERS. Sowder and 

Wheeler (1989) identified the conceptual knowledge associated with successful 

performance of computational estimation. They also provide examples of 

measurement instruments. 

Assessing conceptual knowledge would be more difficult for coin problems. There does 

not appear to be an existing framework to describe this type of knowledge. It would 

be interesting to attempt a systematic analysis of the types of solutions children 

produce to these problems and the strategies they develop. A few strategies were 

obvious from the children's answers. A pre-test to post-test analysis was not possible 

as there were simply not enough right answers at pre-test. Examples of possible 

strategies include (illustrated for 46p): 

0a least coin strategy - use the minimum number of coins. e. g. `20p 20p 5p lp' 

"a trading strategy - trade a coin which was part of a previous answers for others, 

e. g. `10p 10p 20p 5p lp' 

0a least types of coin strategy - use the minimum number of types of coin e. g. `23 

x 2p' 

257 



"a factor approach - use a coin which is a factor of a close number e. g. `9 x 5p, lp' 

Further interview based research would be required to identify the strategies that 

children were using. It would be interesting to see whether types of answer are related 

to intervention measures and/or learning outcomes. 

The CENTS experiments used a fairly complicated pen and paper test which 

attempted to measure both estimation and prediction accuracy. Given the importance 

for this research of accurately measuring children's understanding of prediction 

accuracy and the problems highlighted by Experiment Five (see section 8.9.2), it was 

argued that a new post-test measure might be desirable. One possibility would be to 

provide children with the estimates (and intermediate solutions to demonstrate the 

process) and ask them to assess the accuracy of the estimates. This would have two 

advantages: variations in estimation accuracy would be eliminated and children could 

focus on the prediction task which is both more difficult than the original estimation 

and which also tends not to be viewed as a `real' mathematical task. A further 

possibility might be to initially only teach children the estimation strategies using 

CENTS. Subjects' estimation and prediction accuracy could then be measured as a 

baseline before further intervention which stressed insight into accuracy. 

9.6 THE DESIGN OF MULTI-REPRESENTATIONAL LEARNING 

ENVIRONMENTS 

This research has shown that learning with MERs will not always be effective. 

Consequently, in order to achieve the desired learning outcomes, design of multi- 

representational learning environments requires careful consideration. Designers of 

such software must first consider the same issues that any environment which intends 

to exploit external representations should evaluate (e. g. what representation should 

be used, what role it should play, how abstract it should be, whether should 

representations be constructed by users or provided, etc. ). In addition, there are 

additional design issues unique to MERs. 
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In section 3.7, a framework of questions that designers should address when creating 

multi-representational learning environments was proposed. Although research in this 

field is not sufficiently mature to provide general answers for specific cases, it is 

argued that by using the techniques developed within this thesis, these issues can begin 

to be addressed. The following issues will be considered in this section: 

" the purpose of MERS 

" the similarity of representations 

" the amount of information per representation 

" automatic translation between representations 

" how many representations should be used 

" the ordering and sequencing of representations 

9.6.1 Purpose of Multiple Representations 

An initial question that should be asked is, what are the goals of employing MERs? 

Three broad claims for the advantages of MERs were identified in section 3.3: that 

MERs can be used to support different ideas or process, they can be used to constrain 

interpretation and they can promote a deeper understanding of the domain. Each 

have different implications for the design of learning environments. This section will 

describe examples from each of these different uses of MERs in turn. 

Different Ideas and Processes 

Two main uses of MERs were identified in this category. The first was that MERs can 

be designed so that each representation in the multi-representational system conveys 

some different information. This use is common when one representation is 

insufficient to carry all the required information or would be too complicated if it did 

so. Sometimes, information may be partially redundant between representations, in 

other cases, there is no redundancy between the information expressed by each 

representation. 
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Representation 1 Representation 2 

9.1 Using MERs to convey (comnletely) different information* 

Figure 9.1 shows an abstract illustration of a learning environment that supports this 

form of MERs. Each representation in the system describes a different aspect of the 

domain. Note that there is no translation between the representations. The distance 

between the representation and the domain is intended to indicate the cognitive effort 

required to successfully use the representation. 

This design is based on analysis of the experiments with CENTS (especially 

Experiment Three). It was demonstrated that when one representation was sufficient 

to learn the desired aspects of a domain, that presenting it alongside a second 

representation could interfere with successful learning. It was argued that this was due 

to the learning demands of translating between representations. Therefore in cases 

where representations are used to convey different aspects of the domain and no 

translation between representations is required (see later examples on constraints and 

abstraction for contrast), then encouraging learners to co-ordinate representations 

may in fact decrease learning outcomes. Thus, the additional learning demand of 

translation could be reduced either by only presenting one representation at a time or 

by letting the computer do any translation that is needed. 

The second aspect of employing MERs to support different ideas and processes is 

when a designer aims to exploit the different computational properties of the 

alternative representations. For example, in some situations it may appropriate to 

* length of the lines suggests the amount work needed to map between the representations or the 

representation and the domain. The shorter the line, the less work needed to make the mapping. 
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exploit tabular representations to emphasise order and patterns in numbers; in 

another, graphs may help to show the continuous nature of a phenomenon being 

examined. 

Representation 2 

Representation 1 

domain 

Figure 9.2 Using MERs with different computational properties 

Again, based on the experiments with CENTS it is argued that the additional learning 

demand of translating between the representations could provide unnecessary load 

which would interfere with the designers aims (figure 9.2). Thus, if translation could 

be automatically provided by the system (e. g. tables automatically updating when 

graphs manipulated or vice versa) or if representations were presented sequentially 

rather than in a co-present fashion, learners should be less likely to be overburdened 

by the learning demands of translation. 

Generally, when using MERs to support different information or computational 

properties, it would seem wise to reduce the third learning demand of translation to a 

minimum. The properties of the individual representations can then be analysed with 

respect to the first two learning demands of representations (format and operators of 

the representation and relation between the representation and the domain). 

Constraining Interpretation 

The second broad class of purposes of MERs identified in the thesis is to constrain 

interpretations of a situation. One way this may be achieved is to use a second 

representation to support interpretation of a more complicated, abstract or less 

familiar representation. For example, microworlds such as DM3 (Henessey et al., 

1995) provide a simulation of a skater alongside a velocity-time graph. In such a 
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situation, a common misunderstanding is that a straight line means no motion. This 

interpretation is not possible when the simulation shows the skater still moving. In 

cases such as this, the second more familiar or concrete representation is not intended 

to provide new information about the domain, but bridges understanding of the more 

complicated representation. 

Representation 1% 

Representation 2 (constraining) 

domain 

Figure 9.3 Using MERs to constrain interpretation of a less familiar representation 

In contrast to the use of MERs to support different ideas and processes, it is crucial in 

this case that learners can co-ordinate the presented representations. Consequently, in 

order to achieve constraint on interpretation of a less familiar representation, 

designers need to ensure that complementary representations which aid translation 

are chosen. Again, there may be a case for the computer to support or to perform the 

translation between the representations in order to reduce the learning demands of 

translation. In addition the properties of the individual representations must be 

considered as the second representation should be easily understood in order to keep 

the learning demands of this representation as low as possible. 

COPPERS uses the combination of the tabular representation and the row and column 

representation in this way. Experiment One demonstrated that children had improved 

learning outcomes when the tabular representation was presented to learners in 

addition to the row and column representation. The row and column representation is 

familiar to children of the intended age-group, however, the tabular representation is 

less familiar and requires children to make explicit the implicit arithmetical 

operations that are needed to make a correct interpretation of the table. Thus, the 
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second constraining representation was chosen to be as familiar and easy to 

understand as possible. Translation between the representations was supported by the 

use of highlighting to signal the correspondences between the representations. 

A further use of constraint between representations first introduced in section 3.3.2 is 

when constraints inherent in one representation affect the interpretation of another. 

In contrast to the first constraint example however, it may not be possible to keep 

the learning demands of the second constraining representations low (Figure 9.4). 

Representation 2 (constraining) 

Representation 1 
ý1ý 

domain 

Figure 9.4 Using MERs to constrain interpretation by exploiting the properties of 

representations 

COPPERS again provides an example of this type of design goal. A property of the 

less familiar tabular representation (order irrelevance) could be said to constrain 

interpretation of the row and column representations (which is order sensitive). 

If learners are to be able to take advantage of this intended use, translation between 

the representations is crucial. Given the research with CENTS which showed that 

learners can have persistent difficulties in co-ordinating representations, then 

designers must consider how to support translation between representations. For 

example, this could be achieved by automatically translating between representations 

or by providing cues to help learners construct the appropriate mapping. 

The final use of MERs for constraining interpretation is when the MERs are partially 

redundant. Thus information presented in each representation, when integrated, 

mutually constrain interpretation. In this case, as the constraint exists in the domain 

rather than in the representations, translation between the representation is not 
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necessarily required. However, each representation must be fully understood: i. e. the 

first two learning demands must be met successfully (Figure 9.5). 

Representation 1 Representation 2 

Figure 9.5 Using MERs to constrain interpretation of the domain 

The third use of multiple representations identified in section 3.3, is that MERs can 

promote a deeper understanding of a domain by providing alternatives views which 

must be abstracted across to reveal its underlying structure (figure 9.6). 

9 
Representation 1 ý----º Representation 2 

_ /? ?\ 

domain 

Figure 9.6 Using MERs to support abstraction 

This goal provides designers with hard choices. If users fail to translate across 

representations, then abstraction can not occur. It was shown in Experiments 3 to 5 

that learners find translating over representations which are superficially dissimilar to 

be difficult. This effect was found over long periods of time and even when the 

information in one representation was completely derivable from the other 

representation. However, in contrast to the other cases when translation between 

representations is desired, in this case translation between representations should not 

be made to easy. If alternatives representations do not provide sufficiently different 

views on a domain, then abstraction of invariances can not occur. Additionally, if the 
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system performs all the translation for students, then they may not learn to translate 

for themselves. 

As yet, we do not know enough about what properties affect translation to be able to 

produce principles of how representations should be combined in order to support this 

type of learning. More research is needed to examine how abstraction over 

representations occurs and what can be done to support it. 

9.6.2 How much information each representation should express 

Another factor to be considered in the design of multi-representational software is the 

degree of redundancy across the representations. At one extreme, each representation 

could express the same information. Here, the only difference would be in 

computational properties. At the other extreme, each representation could convey 

completely different information. Multiple representations may also be partially 

redundant, so that some of the information is constant across the representations. 

The choice of which of these alternative to adopt will depend partially upon the 

intended use of MERs. If, for example, a second representation is used to display the 

actions of a first (e. g. the Blocks world; Thompson, 1992) then full redundancy is 

obviously required. Alternatively, MERs are used when one representation is not 

sufficient to clearly convey all of the desired information. In this case, there will 

almost always be less than full redundancy. 

However, when MERs are used to display aspects of complicated situation to learners, 

it would be possible to vary the amount of redundancy. For example, CENTS allows 

for full, partial and no redundancy. In this case, designers must decide which situation 

will best support learning. 

The level of redundancy which best supports learning seems to be an open research 

question. One possibility is that it is easier to learn complex ideas when each part is 

represented separately. Alternatively, it may be harder to learn with MERS that do 

not allow redundancy as the relation between representations (and therefore 

concepts) may be less obvious. The results of Experiment Five tentatively suggest 
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that the initial acquisition of concepts may be facilitated when each representation 

expresses a different aspect of the situation. However, this result requires replication 

and extension, especially as no information about integration of information could be 

gathered. 

It may also be the case that the information redundancy should change as a learner's 

expertise increases. For example, it may be better to use unique representations when 

first introducing them to concepts to allow learners to concentrate upon aspects of 

these concepts. Subsequently, we may wish to combine aspects of the domain within 

one representation so that interactions between the variables become more obvious. 

9.6.3 Similarity between Representations 

Multi-representational software can present representations in a variety of formats. 

Experiments reported in this thesis have involved representations that differ in terms 

of modality, amount and granularity of information. It was shown that when users 

were exposed to MERs with different formats, that behaviour with these 

representations changed. In particular, it was shown in Experiment Three that when 

failure of overlap between representations occurs at many different levels, then 

learning outcomes can be diminished. 

The choice for a designer of the degree of similarity between representations is 

obviously related to the different purposes of representations. Thus, when 

representations are needed because of their distinct computational properties, there 

are bound to be differences in the format of these representations. The two feedback 

representations in COPPERS are a case in point. Equally, when choosing 

representations in order to encourage abstraction over representations, again, some 

differences in format will be required. 

The primary consideration for a designer of multi-representation software is to 

balance the learning demands required by using representations of different format 

with the desired learning outcomes. Research on the way that different external 

representations support learning of specific tasks will obviously help to answer these 
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questions (e. g. Bibby & Payne, 1993). The experiments presented in this thesis that 

aimed to address what factors influenced the ease of translation between 

representations are also relevant to this debate and the paradigm could be extended to 

other types of representations, tasks and learners. In section 9.7.2 an initial set of 

factors that may affect ease of translation between representations is proposed. 

9.6.4 How many representations? 

All the experiments reported in this thesis kept to the simplest case of MERs - two 

representations at a time. However, multi-representational software has been created 

which uses many more. The `Visual Calculator' (Fox, 1988), for example, supplies 

five different representations simultaneously. A key question facing designers is how 

many representation should be employed in order to achieve a balance between the 

learning demands of the representations and the benefits they bring. 

Using empirical techniques similar to those employed in this thesis may help resolve 

this question during the formative evaluation of a system. If the measured learning 

demands on the intended users for a particular representation (or combination of 

representations) are high, then as few representations as possible should be used. Thus 

in many cases it may not be appropriate to use MERs, since one representation may 

be sufficient. For example, Experiment Four showed that when children were given 

partially redundant representations, a highly effective strategy was to concentrate 

upon a single useful representation. 

Another factor that must be considered is the purpose of the MERs. If MERs are used 

to constrain interpretation, one extra easily understood representation may be 

sufficient (see figure 9.3 above). Again, the more complicated situation arises when 

MERs are used to expose the structure of the underlying domain. Further domain 

specific research would be needed in order to analyse how MERs allow learners to 

begin to expose the domain invariances. This problem is reminiscent of the problem 

facing any learning situation where the aim is to support abstraction and 

generalisation, and as with these situations, finding out how learners come to 
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understand the structure of the domain is likely to prove difficult. One possible way to 

begin to answer this question would be to exploit measures of representational co- 

ordination. When learners faced with new representations of some aspect of the 

domain quickly converge their behaviour, this may be evidence they have abstracted 

over the representations to build a model of the domain. 

A further issue to consider is how many representations should be used simultaneously. 

For example, if the aim is to use different representation to support distinct ideas, 

learning demands would be reduced by using one representation at a time (Figure 9.1). 

Thus, each representation should be understood before introducing another 

representation. In addition, design in this area will be particularly affected by practical 

constraints. The monitors of most school machines are considerably smaller than 

those available to designers, and their resolution may not be as high. 

9.6.5 Automatic Translation 

Another question facing designers is whether to provide automatic linking between 

representations. Here, one acts in one representation and sees the results of these 

actions in another (e. g. the Blocks Microworld, Thompson 1992). This is currently 

an open research question. Kaput (1992) proposes that many benefits follow from 

dynamic linking as the computer reduces the cognitive load for the user. However, it 

may also be the case that over-automation does not encourage a user to actively 

translate across representations. 

Experiments measuring representational co-ordination may help to answer this 

question. One possibility would be to present two representations - either linked or 

unlinked. Then, children would be given a new representation to use. The children 

who have better understanding of how the core features of a domain could be 

expressed would be expected to converge their behaviour faster on this the new 

representation. 

When representations are not dynamically linked, then we may still want the system 

to support a user's mapping across the representations. COPPERS, for example, uses 
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highlighting to show users how two informationally redundant representations relate 

to each other. Mapping could either be automatic or under the learner's control. For 

example, given a table of values, users may wish to select a row and then be shown the 

equivalent location on a graph. 

Conditions for dynamic linking and mapping also vary with different degrees of 

redundancy. If there is less than full redundancy between representations, users would 

either have to work in the representation with the most information or provide the 

computer with extra information to disambiguate their intended action. 

Designing computer support for translation across multiple representations requires 

researchers to consider many different issues. The answers to some of these questions 

could be provided if designers knew how difficult users would find co-ordinating and 

integrating information across the representations. Thus, during formative evaluation 

of software, representational co-ordination could be measured. This could then be used 

to determine the degree of support given within the finished system. 

9.6.6 Ordering and Sequencing Representations 

In systems where all the MERs are not presented simultaneously (unlike COPPERS 

and CENTS), two further issues arise - in what order to present representations and 

when to add a new representation. Decisions about ordering representations may be 

based upon analysis of the domain. For example, Kaput (1994) uses MathsCar to 

support the development of calculus. He argues that understanding is best supported 

by introducing integration before differentiation, and hence proposes representations 

such as velocity-time graphs should be introduced before position-time graphs. 

Another common approach is to move from concrete representations to increasingly 

symbolic representations, mimicking Bruner's modes of representation (i. e. from 

enactive through iconic to symbolic). This approach has been often been taken 

literally, although Bruner did not intend it to be interpreted in this way (Behr, Harel, 

Post & Lesh, 1992). 
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A related issue is whether the redundancy of information should be increased or 

decreased as more representations are made available. Experiment Five provided 

tentative evidence to suggest that limiting redundancy may help when learning the 

initial aspects of a task or concept. Thus, it may be beneficial to increase the 

redundancy over representations as a learner's expertise grows. It could be the case 

that as long as children come to see fully understanding the MERs (format, operators 

and links between each other and the domain), the order in which they were 

introduced may be irrelevant. 

Even when this issue of how to order representations has been addressed, we are still 

faced with the question of when to change a representation or introduce a new one. 

One possible solution is to allow learners to make this choice. For example, the 

switchER system (Cox, 1996) allows users to move at will between their self-created 

representations. Cox argues that this can be beneficial as it can help learners to 

resolve impasses. However, there also is evidence to suggest that switching between 

representations can also be symptomatic of less understanding. 

Another possibility is that learners should switch when they have exhausted all of the 

information available in the representation they are currently using for problem 

solving - Graphs and Tracks (Trowbridge, 1989) exploits this technique to good 

effect. For example, it suggests that users should switch from a velocity-time to a 

distance-time graph in order to gain information about the represented object's 

starting position. 

Finally, the system may take responsibility for this decision. In this case, the task for 

the system is to determine when users have learnt all they can about the domain with 

the given representations, but not switch so soon (or so often) that the learning 

demands of the new representations overburden the user. One suggestion is to provide 

a new representation when the learner's behaviour is still flawed with respect to the 

domain but has converged over the current representations. This suggests that a new 

representation might be useful (to help debug or introduce domain knowledge), and 
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would not over burden users as they have already learnt about the representations. 

The empirical methods that have been used to examine effectiveness of learning 

environments in this thesis could also be used to monitor this understanding 

dynamically within multi-representational software. 

9.7 FUTURE WORK 

Many suggestions have already been given in the previous section for immediate 

directions in which to take this research. Expansions to the systems were also have 

also been considered (9.5). This section will concentrate upon some additional longer 

term research issues raised by this thesis. 

9.7.1 Multiple Solutions and Computational Estimation 

In section 9.5.2, it was proposed that one extension to the research with COPPERS 

would be to examine children's solution to coin problems in more detail. It was found 

that children used less simplistic solutions to problems after the intervention. 

Typically, they moved away from a least coins strategy. This is interesting in light of 

Resnick's suggestion that the place value understanding develops though 

understanding non-canonical decompositions (e. g. 22 =1 ten and 12 ones) (Resnick, 

1983). Thus, it would be interesting to see whether children who created more 

complicated coin problems, showed better understanding of place value. It might also 

be the case that experience with COPPERS helped children gain this understanding. 

As a consequence of collecting pre-test and post-test data to examine how CENTS 

influenced learning outcomes, a large amount of data was gathered on primary school 

children's understanding of computational estimation. This raised questions that 

would be interesting to follow up but which were beyond the remit of this thesis. For 

example, in all the experiments, children showed a disinclination to produce an 

estimate by rounding up the numbers to produce an intermediate solution. In addition, 

the author is not aware of any research which has examined children's insight into 

accuracy in estimation. The relation between answer and prediction accuracy deserves 

further study. 
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These studies also raised the question of what it means to understand computational 

estimation. The vast majority of research on computational estimation has simply 

examined estimation and mathematical skills - for example, what strategies are used, 

what mathematical skills are related to computational estimation. Sowder and 

Wheeler's (1989) assessed the conceptual and affective components of estimation. 

What children know about an estimate they have produced is unclear. 

9.7.2 Multiple Representations 

One of the major issues to emerge from this thesis has been the need to consider the 

factors that affect translation across representations. It was proposed in section 7.4 

that the more the format and operators vary across representations, then the more 

difficult learners would find translation over the representations. In the cases 

described in this thesis, the most important difference was between mathematical and 

pictorial representations. For any given task, other plausible candidates that may 

strongly influence co-ordination include: 

" the modality of the representations - propositional v graphical 

" whether representations are static or dynamic 

" including representations that differ in levels of abstraction 

" the degree of redundancy across representations 

" whether the representations encourage different strategies 

" any differences in labelling and symbols 

" alternative uses of representations e. g. display v action 

" variance between the resolutions of presented information 

However, a definitive statement of these factors would need to be predicated upon an 

integrative taxonomy of representations. As discussed in section 3.2, although there 

are many candidates for classifying representations but no one approach is as yet 

completely satisfactory. 
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In addition to the nature of the representations, the style of interface to the 

representation may also affect co-ordination. Recent research has demonstrated that 

different interfaces can influence what users learn. Consequently, some researchers are 

now arguing for a move from direct manipulation interfaces in educational 

technology (e. g. Gilmore, 1996) For example, Svendsen (1991) found that direct 

manipulation interfaces resulted in poorer performance that command lines interfaces 

for solving Tower of Hanoi problems. Churchill & Ainsworth (1995) argued that 

designers of computer-based learning environments often do not give sufficient 

attention to the way actions on representations are supported. 

In addition to properties of the representations, learner characteristics may influence 

co-ordination. For example: 

"a learner's familiarity with the representations 

"a learner's familiarity with the domain 

"a learner's cognitive style 

"a learner's general aptitude in that domain 

"a learner's age 

It seems probable that if learners know the format and operators of each of the 

representations they are given, then learning to translate across the representations 

will occur more rapidly. This is also true of their domain knowledge. Consequently, it 

is argued that lower the learning demands are on other parts of the task, the more 

attention can be focused on translation. 

Although this thesis studied children's understanding of MERs, it was not a 

developmental thesis in that it did not examine age related changes in this 

understanding. It is argued that children's performance can be seen as a characteristic 

of novices in a domain. However, it does not seem implausible that in general younger 

children will find co-ordinating representations particularly difficult. 
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Finally, the issue of cognitive style may well be relevant. Oberlander et al. (1996) 

suggest that one distinguishing characteristic of people who were classified as 

diagrammatic reasoners may in fact be able to translate information across 

representations more successfully. 

Thus, to predict how easy it will be for someone to understand the relation between a 

set of presented representations for a given task, both the individual and the 

representation's characteristics will need to be considered. 

Another question of particular concern is to identify what is different about learning 

with MERs. In particular, Kaput (1989,1992) makes the strong claim that learning 

with multiple representations generates a robust, flexible, deeper understanding of a 

subject. However, it is difficult to know how to evaluate whether children have 

developed a deeper understanding of the domain. In practise it may be very hard to 

separate this effect from when learning has occurred because of one 'perfect' 

representation. Equally, children may learn the relation between each representation 

and the domain without learning to translate across the representations. For example, 

children could learn in which situations to use a velocity-time graph rather than a 

distance-time graph to reason about motion, but they might never understand that if 

the distance graph was differentiated you would get the velocity graph. 

Identifying how this depth of understanding manifests itself and designing 

measurement instruments that examine this would allow us to both test these claims 

more precisely and provide insight into the development of expertise in an area. One 

approach may to examine when learners are able to map their knowledge onto a new 

representation, or even create a new representation to express their knowledge of a 

domain. This might show whether there were key features of the domain that children 

were missing. For example, in the case of CENTS, children might create a 

representation which expresses direction and magnitude but which is based on absolute 

rather than relative understanding. 
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A further significant issue for this thesis has been the importance of assessing 

children's understanding of the various learning demands they have faced when using 

multiple representations. Knowledge of the domain and of the representations have 

been considered separately to the knowledge of the relation among representations 

(representational co-ordination). These measures have been used to predict and 

explain learning outcomes. It has also been proposed as way of uncovering design 

principles for multi-representational software. Consequently, the generality of this 

approach needs to be evaluated. Using this method with learning environments which 

operate in different domains (such as chemistry and science) would extend this work. 

In addition, whilst it has been argued that children represent a general instance of 

novice performance, it would be useful to extend this framework to adult learning. 

Two different methods of assessing representational co-ordination were developed in 

this thesis. They were based on asking users to perform the same actions on two co- 

present representations and then measuring the similarity of their behaviour. 

Schwartz & Dreyfus (1993) proposed a third measure of integration which was to 

score when users translated all of the available information from one representation 

to a new one that replaced it (the passage index). However, all of these three 

techniques only work when there is some redundancy across representations and when 

the representations are used for action rather than display. Further ways of analysing 

co-ordination and integration of information from representations would be needed in 

order to cover alternative uses of MERs. Schoenfeld et al. (1993) examined this issue 

using detailed microgenetic analysis of one learner's understanding of the connection 

between representations. If research is interested in finding out how learners translate 

between representations rather than under what conditions translation can 

successfully be achieved, then this level of analysis will be crucial. 

A final fundamental issue raised by this thesis was how people learn the relationship 

between different representations. Experiments in this thesis have demonstrated 

conditions under which it is more or less easy to translate across representations. It 

has been argued that without any additional support it is the similarity between two 
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representations' format and operators that will influence ease of co-ordination. It is 

also expected that co-ordination will be affected by the learners' familiarity with the 

representations. However, these experiments have not allowed us to understand the 

processes children (and adults) use when learning the relation between MERs. A 

number of possible bases for exploring this question exist, for example, models of 

analogical reasoning (e. g. Gentner, 1989), Plötzner's SEPIA model of integrating 

information from qualitative and quantitative multiple (internal) representations 

(Plötzner, 1995). One possible future direction of this research is to use multi- 

representational learning environments as a base to collect protocol data which could 

subsequently inform the development of a computational model. 

9.8 GENERAL SUMMARY 

This thesis has reported the development and evaluation of two mathematical 

learning environments that are related to the development of number sense. The first 

concerned multiple solutions to mathematical problems and the second computational 

estimation. Both learning environments were shown to effectively teach children 

these aspects of primary mathematics. Experience with COPPERS significantly 

improved children's performance at producing multiple solutions to coin problems. 

CENTS was shown to improve children's computational estimation strategies and the 

accuracy of their estimates. 

The learning environments were developed to explore theories of instruction. Key 

design features were systematically altered, and children's computer use and learning 

outcomes measures were analysed. In particular, the effects of multiple external 

representations was examined. Initial research suggested that children as young as six 

could benefit from learning with multiple representations. Further research developed 

empirical techniques to analyse representation use which predicted and explained 

learning outcomes. Analysis of the roles and learning demands of multiple 

representations combined with these experimental findings generated a framework in 

which to consider the design of effective multi-representational software. 
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APPENDIX ONE 

A COPPERS Pen and Paper Test 

1) 

2) 

3) 

How many ways can you make this much money? 

2x 5p 

3x ®R 

3x ýp 
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Here are the 350 possible correct solutions for 
question one. 

[1p 2p 2p 2p 2p 2p 5p1Op20p] 
[l p 2p 2p 2p 2p 2p 5p lop lop lop] 
[lp2p2p2p2p2p5p5p5p10plop] 
[1 P 2p 2p 2p 2p 2p 5P 5p 5p 20P] 
[1p 2p 2p 2p 2p 2p 5p 5p 5p 5p 5p10p] 
[1 p 2p 2p 2p 2p 2p 5p 5p 5p 5p 5p 5p 5p] 
[1p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 5p 1OpiOp] 
[1P 2p 2p 2P 2P 2p 2P 2P 2p 2P 2P 5p 20p] 
[1p 2p 2p 2P 2P 2p 2P 2P 2p 2P 2P 5p 5P 5P10P] 
[1p 2p 2p 2p 2P 2P 2P 2P 2p 2P 2P 5p 5P 5P 5P 5p] 
[1p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2P 2P 2p 2P 5p 10p] 
[l p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 5p 5p 
5p] 
[l p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
2P2P2P5p] 
[l p 5p lop 10p 20p] 
[l p 5p 10p 10p 10p 10p] 
[1 p 5p 20p 20p] 
[1 p 5p 5p 5p 1 Op 20p] 
[1p 5p 5p 5p10p1Op10p] 
[1 p 5p 5p 5p 5p 5p 1Op 1Op] 
[1 p 5p 5p 5p 5p 5p 20p] 
[1p 5p 5p 5p 5p 5p 5p 5p1Op] 
[1 p 5p 5p 5p 5p 5p 5p 5p 5p 5p] 
[1p 1p2p2p5p5p 1Op20p] 
[1p 1p 2p 2p 5p 5p1Op1OpIOp] 
[1p 1p 2p 2p 5p 5p 5p 5p1Op10p] 
[1 p1p 2p 2p 5p 5p 5p 5p 20p] 
[1p 1p 2p 2p 5p 5p 5p 5p 5p 5p1Op] 
[1 p1p 2p 2p 5p 5p 5p 5p 5p 5p 5p 5p] 
[1 p1p 2p 2p 10p 1 Op 20p] 
[l plp 2p 2p lop 10p 10p 10p) 
[1p 1p 2p 2p20p2Op] 
[lp1p2p2p2p2p2p2p2p5p5p10plop] 
[l plp 2p 2P 2P 2P 2P 2P 2P 5P 5P 20P] 
[l plp 2P 2p 2P 2P 2P 2p 2p 5p 5P 5P 5p 10p] 
[lp 1p 2p2p2p2p2p2p2p5p5p5p5p5p5p] 
[l plp 2p 2p 2p 2p 2p 2p 2p 10p 20P] 
[1p 1p 2p 2p 2p 2p 2p 2p 2p lop lop lop] 
[1p 1P 2P 2P 2P 2P2P2P2p2P2P2P2P2P5p5plop] 
[lP1P2P2P2P2P2P2P2P2P2P2p2P2P5p5P5P5P] 
(l plp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 10p 10p) 
[1p 1P 2P 2P 2P 2P2P2P2P2P2P2p2P2P20p] 
[l plp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
2p 5p 5p] 
[1 plp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
2p 10p] 
[l plp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
2p 2p 2p 2p 2p 2P] 
[1P 1P 1P 2P 2P 2P 2P 5P10P2OP] 
[1p 1p 1p2p2p2p2p5p 1Op 10p 10p] 
[1 p1p1p 2p 2p 2p 2p 5p 5p 5p 10p 1 Op] 
[1 p1P1P 2p 2p 2p 2p 5p 5p 5p 20p] 
[1p 1p 1p 2p 2p 2p 2p 5p 5p 5p 5p 5p1Op] 
[1 p1p1p 2p 2p 2p 2p 5p 5p 5p 5p 5p 5p 5p] 
[1p 1p 1p 2p 2p 2p 2p 2p 2p 2p 2p 2p 5p1Op1Op) 
[I P1P1P 2p 2p 2p 2p 2p 2p 2p 2p 2p 5p 20Pl 
[1 p1p1p 2p 2p 2p 2p 2P 2p 2p 2p 2p 5P 5P 5p 10p] 
[1P 1P 1P 2P 2P 2P 2P 2p 2p 2P 2p 2p 5P 5P 5p 5p 5p] 
[Ip1p1p2p2P2P2p2P2P2P2p2p2P2P2P2P2p5P 
10p) 
[1 P1p1p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 5p 
5p 5p] 
[1p 1p 1p 2P 2P 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
2p 2p 2p 2p 5p] 

[1p 1p 1plp2p5p5p10p20p] 
[1pipiplp2p5p5ploploplop] 
[l plplp1p 2p 5p 5p 5p 5p 10p 10p] 
[1 plp1p1p 2p 5p 5p 5p 5p 20p] 
[l plplplp 2p 5p 5p 5p 5p 5p 5p lop] 
[1plp1plp2p5p5p5p5p5p5p5p5p] 
[1plp1plp2ploplop20p] 
[1plp1plp2ploploploplop] 
[1plp1plp2p20p20p] 
[1p 1p 1p 1p 2p 2p 2p 2p 2p 2p 5p 5p lop lop] 
[lp1p1p1p2p2p2p2p2p2p5p5p20p] 
[1plplplp2p2p2p2p2p2p5p5p5p5plop] 
[l plplplp 2p 2p 2p 2p 2p 2p 5p 5p 5p 5p 5p 5p] 
[1p 1p 1p 1p 2p 2p 2p 2p 2p 2p10p20p] 
[1pipipip2p2p2p2p2p2ploploplop] 
[1plplplp2p2p2p2p2p2p2p2p2p2p2p5p5plop] 
I1plplplp2p2p2p2p2p2p2p2p2p2p2p5p5p5p 
5p] 
[1p 1p 1p lp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p lop lop] 
[l plplplp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 20p] 
[1pipipip2p2p2p2p2p2p2p2p2p2p2p2p2p2p 
2p 2p 5p 5p] 
[1plplplp2p2p2p2p2p2p2p2p2p2p2p2p2p2p 
2p 2p 10p) 
[1plplplp2p2p2p2p2p2p2p2p2p2p2p2p2p2p 
2p 2p 2p 2p 2p 2p 2p] 
[1pip1p1p1p2p2p2p5p1Op20p] 
[1p 1p 1p 1p 1p 2p 2p 2p 5p 1Op 1Op 10p) 
[1p 1p 1p 1p 1p 2p 2p 2p 5p 5p 5p10pIOp] 
[1plplp1p1p2p2p2p5p5p5p20p] 
[1p1plp1p1p2p2p2p5p5p5p5p5p1Op] 
[1p1p1p1pIp2p2p2p5p5p5p5p5p5p5p) 
[1p1p1p1p1p2p2p2p2p2p2p2p2p5p1Op10p] 
[1plplp1p1p2p2p2p2p2p2p2p2p5p20p] 
[1p1p1p1p1p2p2p2p2p2p2p2p2p5p5p5p1Op] 
[1plplp1p1p2p2p2p2p2p2p2p2p5p5p5p5p5p] 
[lp1p1p1p1p2p2p2p2p2p2p2p2p2p2p2p2p2p 
5p 10p] 
[l p lp lp lp lp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
5p 5p 5p] 
I1plplplplp2p2p2p2p2p2p2p2p2p2p2p2p2p 
2p2p2p2p2p5p] 
[1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 2p 5p 5p lop lop] 
[1plplplp1p1p2p2p2p2p2p5p5p20p] 
[1p1p1p1p1p1p2p2p2p2p2p5p5p5p5plop] 
[1plp1p1p1plp2p2p2p2p2p5p5p5p5p5p5p] 
[1p1plplplplp2p2p2p2p2plop20p] 
[1p 1p 1plp1p1p2p2p2p2p2ploploplop] 
[1plplplplplp2p2p2p2p2p2p2p2p2p2p5p5p 
10p] 
[1pIp1pIpIpIp 2p 2p 2p 2p 2p2p 2p 2p 2p 2p 5p 5p 
5p 5p] 
I1plplplplplp2p2p2p2p2p2p2p2p2p2p1op 
10p] 
[1p lp lp lp lp lp 2p 2p 2p 2p2p 2p 2p 2p 2p 2p 20p] 
[l plplplplplp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
2p 2p 2p 5p 5p] 
[1plplplplplp2p2p2p2p2p2p2p2p2p2p2p2p 
2p 2p 2p 10p] 
[1plplplplp1p2p2p2p2p2p2p2p2p2p2p2p2p 
2p 2p 2p 2p 2p 2p 2p 2p] 
[1pIp1p1p1plp5p5plop20p] 
11 pIp lp IpIp lp 5p 5p lop lop lop) 
[1p 1plp1p1plp5p5p5p5p1Oplop] 
[1plplp1plplp5p5p5p5p20p] 
[1plplplp1plp5p5p5p5p5p5plop] 
[1plplplplplp5p5p5p5p5p5p5p5p] 
[1p1plplplplploplop20p] 

291 



[1p 1p 1p 1plp1ploploploplop] 
[1plplplplp1p20p20p] 
[1plplp1p1plplp2p2p5p10p20p] 
[1p 1p 1p 1plp1plp2p2p5ploploplop] 
[1plplplplplp1p2p2p5p5p5ploplop] 
[1p 1plplp1plplp2p2p5p5p5p20p] 
[1P 1P 1P 1P 1P 1P 1P 2P 2P 5P 5P 5P 5P 5p lop] 
[1plp1plplplp1p2p2p5p5p5p5p5p5p5p] 
[lp1p1p1p1p1p1p2p2p2p2p2p2p2p5p10plop) 
[1P 1P 1P 1P 1P1Plp2P2P2P2P2P2p2P5P20P] 
[1P 1P 1p 1P 1P 1P 1P 2P 2P 2p 2P 2P2P2P5P5P5Plop] 
[1P 1P 1P 1P 1P 1P 1P 2P 2p 2P 2P 2P 2P 2P 5P 5P 5P 5P 
5p] 
[1P 1P 1P 1P 1P 1P 1P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 
2p 5p 10p] 
[1P 1P 1P 1P 1P 1P 1P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 
2p 5p 5p 5p] 
[1P 1P 1P 1P 1P 1P 1P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 2P 
2P 2P 2P 2P 2P 2P 5P] 
[1p1plplpIp1p1pIp2p2p2p2p5p5p10plop] 
[1PlPlPlp p pIP1P2P2P2P2P5P5P20p] 
[1PiPlPlp p p1P1P2P2P2P2P5P5P5P5Plop] 
[1p1p1p1plplpIpIp2p2p2p2p5p5p5p5p5p5p] 
(1plplp1p1p1pIp1p2p2p2p2plop20P] 
[1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p lop1Op1Op] 
[1Plplplplplplplp2P2p2P2P2P2P2P2P2P5P 
5p 10p] 
[1P 1P 1p 1P 1P 1P 1P 1P 2P 2P 2P 2P 2p 2P 2P 2P 2P 5P 
5p 5p 5p] 
[1P 1P 1P 1P 1P 1P 1P 1P 2P 2P 2P 2P 2P 2P 2P 2P 2P10P 
10p] 
[1p1p p1p1p1p1PIP2p2p2p2p2p2p2p2p2p20p] 
[1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
2P2P2P2P5P5p] 
[1P1P1P1P1p p1P1P2p2P2P2P2P2P2P2P2p2P 
2p 2p 2p 2p 1 Op] 
[1P1P1P1P1p pIPIP2P2P2P2P2P2P2P2P2P2P 
2p 2P 2P 2P 2P 2P 2P 2P 2P1 
[1p 1p 1p 1p 1p1plp1p1p2p5p1Op20p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 5p lop lop lop] 
[1p1p1p1p1p1plp1pIp2p5p5p5ploplop) 
[1p1plp1p1p1p1p1p1p2p5p5p5p20p] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 2P 5P 5P 5P 5P 5p lop] 
(1p 1p1plpIp1p1p1pIp2p5p5p5p5p5p5p5p] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 2P 2P 2P 2P 2P 2P 5p lop 
10p] 
[1P1P1p pIP1P1P1PIP2P2P2P2P2P2P5P20P] 
[1P 1P 1p 1P 1P 1P 1P 1P 1P 2P 2P 2P 2P 2P 2P 5P 5P 5P 
IOp] 
[1P 1p 1P 1P 1P 1P 1P 1P 1P 2P 2p 2p 2P 2P 2P 5P 5P 5P 
5p 5p] 
[1P 1P 1P 1P 1P 1P 1p 1P 1P 2P 2P 2P 2P 2P 2P 2P 2P 2P 
2p2p5p1Op] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 2P 2P 2P 2P 2P 2P 2P 2p 2P 
2p 2p 5p 5p 5p] 
Ilplplplplplplplp1P2P2P2P2P2P2P2P2P2P 
2P 2P 2P 2P 2P 2P 2P 5P] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 5p 5p10p10p] 
[1p 1P 1P 1P 1P 1P 1P 1P 1P 1P 2P 2P 2P 5P 5p 20p] 
[1P 1P 1P 1P 1P 1P 1P 1p 1P 1P 2P 2P 2P 5P 5P 5P 5p lop] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 2P 2P 2P 5P 5P 5P 5P 5P 
5p] 
[1p1P1P1P1P1p p pIP1P2P2P2Plop 2OP] 
[1p 1p 1p 1p 1pIplplp1p1p2p2p2plop10plop] 
[1Plp p p1P1p1p p1P1P2P2P2P2P2P2P2P2P 
5p 5p 1 Op] 
[1P1P1p p1P1p p p1P1P2P2P2P2P2p2P2P2P 
5p 5p 5p 5p] 

(1plplplplplplplplplp2p2p2p2p2P2p2p2p 
lop lop] 
(1plplplp1P1P1plplplp2P2p2p2p2p2p2p2p 
20p] 
(1p 1P 1P 1p 1p1plplplp1p2p2p2p2p2p2p2p2p 
2p 2p 2p 2p 2p 5P 5p1 
(1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 2p 2p 2p 2p 
2p 2p 2p 2p 2p 1 Opt 
(1plplplplplplp1P1plp2p2p2p2p2p2p2p2p 
2p 2p 2P 2P 2p 2p 2p 2p 2p 2p1 
[1p1plpIp1p1p1pIp1p1p1p2p2P2p2p2p5p1Op 
lop] 
(1P1plpIp1plp1p1p1p1p1p2p2p2p2p2p5p20P1 
[1p1P1pIp1p1p1p1p1pIp1p2p2p2p2p2p5p5p 
5p 1 Op] 
[1P1plplplplplplp1P1plp2p2p2p2p2p5p5p 
5p 5p 5p] 
[1plp1P1plplplplp1P1plp2p2p2p2p2p2p2p 
2p2p2p5plop] 
(1plplplplplplplplplplp2p2p2p2p2p2p2p 
2p 2p 2p 5p 5p 5p] 
(1p 1p 1p 1P 1p 1p 1P 1p 1p 1p 1p 2p 2p 2p 2p 2p 2P 2p 
2p 2p 2p 2p 2p 2p 2p 2p 5p] 
[1p1plp1p1p1p1p1plplp1p5plop20p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 5p lop1Oplop) 
[1plplplplplp1p1plpIp1p5p5p5plop1Op] 
[Ip pp plplp1p1plp1pIp5p5p5p20p] 
[1p1plplplp1p1p1plp1p1p5p5p5p5p5p1Op] 
[1p1p1p1p1p1p1p1p1p1p1P5p5p5p5p5p5p5p1 
(1plp1P1plp1P1plplplplplp2p2p5p5p1op 
10p] 
[1p 1P 1p 1P 1p 1p 1p 1p 1P 1p 1p 1p 2P 2P 5p 5p 20p] 
(1plp1P1p1P1P1P1P1P1P1P1p2p2p5p5p5p5p 
lop] 
(1plplplplplplp1P1P1p1P1p2p2P5p5p5p5p 
5p 5p] 
[1p 1p 1p 1p 1p 1p 1p1plp1p1plp2p2plop20P1 
[1p1plp1p1p1p1p1plp1p1p1p2p2plop1oplop] 
(1plplplplplplp1P1P1p1P1P2p2p2P2p2p2p 
2p 5p 5p lop] 
(1plp1P1P1plp1P1P1plplplp2p2P2p2P2p2p 
2p 5p 5p 5p 5p] 
(1p 1P1plp1P1P1p1P1P1P1P1p2p2P2p2p2P2P 
2p lop lop) 
[1plplp1P1p1P1plplplplplp2p2p2p2P2p2p 
2p 20p] 
(1plplplplplp1P1plplplp1P2P2P2P2p2P2p 
2p 2p 2p 2p 2p 2p 5p 5p] 
[1P 1P 1p 1p 1P 1P1plplplplplp2p2P2P2p2P2p 
2p 2p 2p 2p 2p 2p1Op] 
(1plplplplplplp1P1P1plplp2p2P2P2P2P2p 
2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p] 
[1plplplplplplplplplplplplp2P2p2p2P5P 
lop lop] 
[1plplplplplplplplplplplplp2p2p2p2p5p 
20p] 
(1p 1P 1p 1P 1P1plplplp1P1P1plp2P2p2p2P5P 
5p 5p lop] 
(1plplplplplplplplplplplplp2p2p2p2p5p 
5p 5p 5p 5p] 
[1plplplplplplplplplp1plplp2p2p2p2p2p 
2p 2p 2p 2p 5p lop) 
[1plplplplplplplplplplplplp2p2p2p2p2p 
2p 2p 2p 2p 5p 5p 5p] 
[1plplplplplplplplplplplplp2p2p2p2p2p 
2p 2p 2p 2p 2p 2p 2p 2p 2p 5p] 
[1p1plplplplplpIp1P1pIp1P1p1p2P5p5P1Op 
lop] 
[1p1plplplplplpIp1pIp1p1pIp1p2p5p5P2Op1 
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[1p1p1plplplplp1plplplp1plplp2p5p5p5p 
5p lop] 
[1p 1p1plplplp1p1p1plplplp1p1p2p5p5p5p 
5p 5p 5p] 
[1p 1p1plp1p1plp1plplp1p1p1plp2plop20p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p lop lop 
10p] 
[1p 1p 1p 1p 1p Ip 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 
2p 2p 5p 5p 10p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 
2p 2p 5p 5p 5p 5p) 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 
2p 2p lop lop] 
[1plplp1plp1p1p1plplplplp1p1p2p2p2p2p 
2p 2p 20p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 
2p2p2p2p2p2p 2p5p5p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 
2p 2p 2p 2p 2p2p2p1Op] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 2p 
2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p) 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 
5p lop lop] 
[1p 1p 1p 1p 1p 1plplplplplplplp1plp2p2p2p 
5p 20p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 
5p 5p 5p 1 Op] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 
5p 5p 5p 5p 5p] 
[1p 1p 1p 1pIp1p1p1p1p1p1pIp1p1plp2p2p2p 
2p 2p 2p 2p 2p 5p1 0p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 
2p 2p 2p 2p 2p 5p 5p 5p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 
2p 2p 2p 2p 2p 2p2p 2p 2p 2p 5p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p1plp1p2p2p 
2p 2p 2p 5p 5p lop] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 
2p 2p 2p 5p 5p 5p 5p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p1plp1p2p2p 
2p 2p 2p lop lop) 
[1plplp1plplplplplplplplplplplplp2p2p 
2p 2p 2p 20p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 
2p 2p 2p 2p 2p 2p 2p 2p 5p 5p] 
[1plplplplplplplplplplplplplplplp2p2p 
2p 2p 2p 2p 2p 2p 2p 2p lop) 
[1p 1p 1p1plplplplplplp1plplp1plplp2p2p 
2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 5p 5p 
lop lop) 
[1plplplplplplplplplplplp1plplp1p5p5p 
20p] 
[1plp1p1plp1plplplplplplplplplplp5p5p 
5p 5p lop] 
[1plplp1plplplplplplplplplplplplp5p5p 
5p 5p 5p 5p] 
[1p lp lp 1p 1p lp 1p 1p 1p 1p lp 1p 1p 1p 1p 1p lop 
20p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p lop lop 
1 op] 
[1plp1p1p1plplplplplplplplplplplp1p2p 
2p 5p lop lop] 
[1plplplplp1plplplplp1plplplp1plplp2p 
2p 5p 20p] 
[1plplplplplplplplplp1plplplplplplp2p 
2p5p5p5plop] 
[1plp1p1p1p1plp1plplp1p1p1p1p1plplp2p 
2p 5p 5p 5p 5p 5p] 

[1p 1P 1P1plp1P1plp1P1P1p1P1P1plp1P1P2P 
2p 2p 2p 2p 2p 2p 5p lop] 
[1plplp1plp1p1p1plp1p1p1p1p1p1plplp2p 
2p 2P 2P 2p 2P 2P 5p 5P 5P] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p tp 1p 1p 1p 2p 
2p 2p 2P 2P 2P 2P 2p 2P 2P 2p 2P 5P] 
[1p 1P 1p 1P1plp1P1p1p1P1P1p1P1P1P1P1P1p 
2p 2p 2p 2p 5p 5p lop] 
[1P 1p 1P 1p 1p 1P 1P 1P1plplplp1p1P1plplp1P 
2p 2p 2p 2p 5p 5p 5p 5p] 
[1plp1plplp1p1plplplp1plp1plplplplplp 
2p 2p 2p 2p 10p 10p] 
[1p 1P 1P 1P1plp1P1p1p1P1plp1p1P1P1P1plp 
2p2p2P2p20p] 
[1P 1P 1P 1P 1p 1P 1P 1p 1P 1P 1P 1p 1P 1P 1P 1P 1P 1P 
2p 2p 2p 2p 2p 2p 2p 2p 2p 5p 5p] 
[1P 1P 1p 1P 1p 1P 1P1plp1P1P1p1P1P1P1plp1P 
2p 2p 2p 2p 2p 2p 2p 2p 2p 10p] 
lip lp1plplplp1plplplplplp1plplplplplp 
2p 2P 2p 2P 2P 2p 2P 2P 2p 2P 2P 2p 2P 2p] 
[1P 1P 1P 1p 1p 1P 1P 1p 1p 1P 1P 1p 1p 1P 1P 1P 1p 1p 
1p 2p 5p 1 Op 1 Op] 
lip lp1P1P1p1P1P1plp1P1plp1P1p1P1P1P1p 
1p 2p 5p 20p] 
[1P1plplplp1P1p1P1P1P1P1p1P1P1P1plp1P 
lp 2p 5p 5p 5p 10p] 
[1plplp1P1p1P1P1plp1P1P1plp1P1P1P1P1P 
lp 2p 5p 5p 5p 5p 5p] 
[1P1plp1P1p1P1P1plp1P1P1plp1P1P1P1p1P 
1p 2p 2p 2p 2p 2p 2p 5p lop] 
[1P 1P 1p 1P 1P 1P 1P 1P 1p 1P 1P 1P 1P 1P 1p 1P 1p 1p 
1p 2p 2p 2p 2p 2p 2p 5p 5p 5p] 
[1p 1P 1P 1P1plp1P1P1plplplp1P1P1P1P1p1P 
lp 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 5p] 
[1p 1P 1P 1P 1P1plplp1P1P1P1P1P1p1P1plp1P 
lp1p 2p 2p 2p 5p 5p 10p] 
[1P 1p 1P 1P1plp1P1P1p1P1P1P1p1P1P1P1P1p 
lp1P2P2P2P5P5P5P5P] 
[1P 1p 1P1plp1P1P1P1plp1P1p1P1P1P1plp1P 
lp lp2p 2p 2p lop lop] 
[1Plplplp1P1p1P1P1p1P1P1P1P1P1P1plplp 
1Plp2P2P2P2OP] 
lip lplplp1P1P1P1P1P1P1P1P1P1P1P1P1P1P 
lp 1P2P2p2P2p2P2P2P2P5P5p] 
[1P 1P 1P 1P 1p 1P 1p 1P1plp1P1P1P1P1P1P1P1p 
1p 1p 2p 2p2p2p2p2p2p2plop] 
[1P1plp1plp1P1P1P1plp1P1P1P1p1P1plp1P 
lp lp2p2p2p2p2p2p2p2p2p2p2p2p2p] 
[1P 1p 1P 1P 1p 1p 1P 1P 1P 1P 1P 1P 1P 1P 1p 1P 1P 1p 
lp lplp 2p2p2p2p2p5p lop] 
lip lplplplplp1P1P1p1P1P1P1plplplplplp 
1P 1P 1P 2P2P2P2P2P5P5P5P1 
[1p 1P 1P1plplp1P1plp1P1P1P1p1P1plp1P1P 
lplplp 2P 2P 2P 2p 2p 2P 2p 2P 2P 2P 5p] 
[1P 1p 1P 1P1plp1P1p1P1P1p1P1P1p1P1P1p1P 
lplplp5p10plop] 
lip lplplplp1plplplplp1plplplp1plplplp 
1p 1p 1p 5p 20p] 
lip lp1P1P1p1P1P1P1P1P1p1P1P1P1P1P1P1P 
1p1pip5p5p5plop] 
[1p 1P 1P 1P 1p 1P 1P 1P 1p 1P 1P 1P 1p 1P 1p 1P1plp 
1plpip5p5p5p5p5p1 
[1p 1p 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1p 1P 1P 1P 
lplplp1p2p2p5p5plop] 
[1p 1P 1P 1P 1P1plp1P1P1P1p1P1p1P1P1P1P1P 
lplp1pip2p2p5p5p5p5p] 
[1p 1P 1P1plplplp1P1P1p1P1P1P1p1P1P1plp 
1p 1p 1plp2p2ploplop] 
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[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p lp 1p 1p 1p 1p 1p 
1plplplp2p2p20p] 
[1plplplplplplplplplplplplplplplplplp 
1P 1P1Plp2P2P2P2P2P2p2P5P5P] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 
lp lp lp lp2p 2p 2p 2p 2p2p 2p lop] 
[1plp1plplplp1plp1plplplplplplplplplp 
1P 1P 1p1P2P2P2P2P2P2P2P2P2P2P2P2P] 
[1plplplplplp1plplplplplplplplplplp1p 
lplplplplp2p2p2p2p5plop) 
[1p lp 1p lp 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 
1P 1P 1P 1P1P2P2P2P2P5P5p5P1 
[1plplplplplplplplplplplplplplplplplp 
1P 1P 1P 1P 1P 2P 2P 2P 2P2P2P2P2P2P5P] 
[1plplplplplplplplplplplplplplplplplp 
1p 1p1plplp1p2p5p5plop] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p lp 1p 1p 
lplplplplplp2p5p5p5p5p] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1p 1P 1P 1P 
lplp1plplplp2ploplop] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 
lplplplplplp2p2Op] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1p 1P 1P 1P 
1P 1P 1P 1P 1P 1P2P2P2P2P2P2P5P5P] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 
1p 1p 1plp1plp2p2p2p2p2p2plop] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1p 1P 1P 1P 
1P 1P 1P 1P 1P 1P2P2P2P2P2P2P2P2P2P2P2P] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P1plp 
lplplplplplplp2p2p2p5plop] 
[1P 1P 1P 1P 1P 1P 1p 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 
1P 1P 1P 1P 1P1Plp2P2P2p5P5P5P] 
[1plp1plplp1plplplplplplplplplplplplp 
1P 1P 1P 1P 1P1Plp2P2P2P2P2P2P2P2P5P] 
[1p1plplplp1plplplplplplplplplplplplp 
1p1p1p1p1p1p1p1p2p2p2p2p2p5p5P] 
[1plplplplplplplplplplplplplplplplplp 
lplplplplplplplp2p2p2p2p2plop) 
[1P 1p 1P 1p 1P 1P 1P 1P 1P 1P 1p 1P 1P 1P 1p 1P 1P 1P 
1P 1P 1P 1P 1P 1P1Plp2P2P2P2p2P2P2P2P2P2P] 
Op lplplplplp1plplplplp1plplplp1plp1p 
lp1plplplplp1p1p5p5plop] 
Op lplplplplplplp1p1plplplplplplplplp 
lp lp lp lp lp lp lp lp5p5p 5p5p] 
[1P 1P 1P 1P 1P 1P 1P 1p 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 
lplplp1p1p1p1p1ploplop] 
[1plplplplplplplplplplplplplplplplplp 
1p 1p 1p 1p 1p lp 1p 1p 20p] 
[1plplplplp1plplplplplp1plplplplplp1p 
lp lp lp lp lp lp lp lp lp2p 2p5p lop] 
[1plplplplp1plplplplplplplplplp1plplp 
1p 1p1p1p1p1p1p1plp2p2p5p5p5p] 
[1plplplplp1plplplplplplplplplp1plp1p 
lplplplplplplplplp2p2p2p2p2p2p2p5p] 
[1plplplplp1plp1plp1plp1plp1plplplplp 
1P 1P 1P 1P 1p 1P 1P1plplp2p2P2P2P5P5P] 
[1plplplplplplplplplplplplplplplplplp 
lplplplplplplplplplp2p2p2p2plop] 
[1p 1P 1p 1P 1p 1P 1p 1P 1P 1p 1P 1P 1P 1P 1P1Plp1p 
lplplplplplplplplplp2p2p2p2p2p2p2p2p 
2P] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P1Plp1P1p1P1P1P1P1P 
1p 1p 1plplplp1plplplplp2p5plop] 
[1P 1P 1P 1P 1P 1P 1P 1P 1P1Plp1P1Plp1P1P1P1P 
1P 1P 1P 1P 1P 1P 1P 1P 1P1Pip2P5P5P5p] 
[1P 1P 1P1plp1P1P1P1P1p1P1p1P1p1P1P1P1P 
lp1P1P1P1P1P1P1P1P1Pip2P2p2P2P2P2P5P] 
[1plplplplplplplp1plplplplp1plplplplp 
1p 1plplplplplplplplplplp2p2p2p5p5p] 

[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 
1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p10p] 
[1plplplplplplplplplplplplplplplplplp 
lplplplplplplplplplplplp2p2p2p2p2p2p2p 
2p] 
[1plp1plplplplplplplplplplplplplplplp 
lplplplplplplplplplplplplp2p2p2p2p2p 
5p] 
[lplp1plplplplplplplplplplplplplplplp 
1p 1p1plp1p1p1plplplplplplp5pl0p] 
lip 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 
lp1p1p1p1p1p1p1p1p1p1p1p1p5p5p5p] 
[1plplplplplplplplplplplplplplplplplp 
lpiplplplplplplplplplplpiplp2p2p5p5p1 
[1plplplplplplplplplplplplplplplplplp 
lplplplplplplplplplplplplplp2p2pl0p] 
I1plplplplplp1plplplplplplplplplplplp 
1plplplp1plplplpiplplplplplp2p2p2p2p2p 
2p 2p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 
lplpiplplplplplp1plplpiplplp1p2p2p2p2p 
5p] 
lip 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p lp 
1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1plp2p5p 
5p] 
I1plp1plplplplplp1plplplplp1plplp1p1p 
lplplplplplplplpiplplp1plp1p1plp2pl0p) 
[1plplp1p1plplplplplplplp1p1p1plplplp 
1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 2p 2p 2p 
2p 2p 2p] 
I1plplp1plp1p1plplplplplplplplplplplp 
lp1plplplp1plplp1p1p1plplp1plplp1p2p2p 
2p 5p] 
[1plp1plplplplplplplp1plplplplplplplp 
1p 1p 1p 1p 1p 1p 1p 1plplplp1p1plplplplp1p2p 
2p 2p 2p 2p] 
[1plp1plplplplplplplplplplplplplplp1p 
1p1p1plplp1pip1plp1plplplplplptplp1p5p 
5p] 
[1p1plp1plp1plp1plplplplplplplplplplp 
lplplplplplp1plp1p1plplplplplp1plp1p 
1 Op] 
[lp1plplplplplp1plp1plplplp1p1plplplp 
lplplplplplplplp1plplplplplplp1plplplp 
2p 2p 5p] 
[1plplplplplplplplplplplplplplplplplp 
lp1plplplplplplplptplplp1plp1plplplplp 
lp 2p 2p 2p 2p] 
[1plplplplplplplplplplplplplp1plplplp 
lplplplplplplplplp1plplplplplp1plplplp 
lplp2p5p] 
[1piplpIplpipipipiplplpiplpipiplplpip 
lplplplplplplplplp1plplplplplplplplplp 
lplplp2p2p2p] 
[1plplplplplplplplplplplplplplplplplp 
1plp1p1plp1plp1plplplplplplplplplplplp 
lp1plplp5p] 
I1plplplplplplplplplplplplplplplplplp 
lplplplplplpiplplplpiplplplplplplplplp 
lplplplplp2p2p] 
[1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 1p 
lplplplplplpiplplplplplp1plp1plplplplp 
lplplplplplplp2p] 
[1plpipipipipiplplpiplplpipipipiplplp 
lp1p1plplplplplplplplplplplplplplplplp 
lplplplplplplpiplp] 
[2p 2p 2p 5p 5p 10p 20p] 
[2p 2p 2p 5p 5p 10p 10p 10p] 
[2p 2p 2p 5p 5p 5p 5p10p10p] 
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[2p 2p 2p 5p 5p 5p 5p 20p] 
[2p 2p 2p 5p 5p 5p 5p 5p 5p 10p] 
[2p 2p 2p 5p 5p 5p 5p 5p 5p 5p 5p] 
[2p 2p 2p1Op1Op20p] 
[2p 2p 2p 10p 10p 10p 10p] 
[2p 2p 2p 20p 20p] 
[2p 2p 2p 2p 2p 2p 2p 2p 5p 5p1Op1Op] 
[2p 2p 2p 2p 2p 2p 2p 2p 5p 5p 20p] 
[2p 2p 2p 2p 2p 2p 2p 2p 5p 5p 5p 5p 10p] 
[2p 2p 2p 2p 2p 2p 2p 2p 5p 5p 5p 5p 5p 5p] 
[2p 2p 2p 2p 2p 2p 2p 2p 10p 20p] 
[2p 2p 2p 2p 2p 2p 2p 2p 10p 10p 10p] 
[2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 5p 5p 1Op] 
[2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 5p 5p 5p 5p] 
[2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 10p 10p] 
[2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 20p] 
[2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
5p 5p] 
[2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
1 Op] 
[2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 2p 
2p 2p 2p 2p 2p] 
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APPENDIX TWO 

A CENTS Pen and Paper Test 

Estimation 

Name Class Date of Birth 

This booklet has 20 estimation questions. 

Can you tell me what estimation means ? 

I'm going to give you questions like this: 

Estimate 13 x 28 

my estimate is 

I think that my 
estimate Is .... 

very much 
less 

YW 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

than the 
exact answer 
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1 
Estimate: 17 x 34 my estimate is 

I think that my 
estimate Is 

.... 

2 
Estimate: 285 x 687 my estimate is 

I think that my 
estimate is .... 

3 
Estimate: 525 x 386 my estimate is 

I think that my 
estimate is .... 

very much 
less 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

0 
very much 
less 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

II 

than the 
exact answer 

than the 
exact answer 

very much 
less 

much less less dust ess exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

than the 
exact answer 
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4 
Estimate: 59 x 69 my estimate is 

I think that my 
estimate is .... 

0 
very much 
less 

muc ess ess just ess exact y 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

5 
Estimate: 17 x 33 my estimate is 

I think that my less 
estimate is .... 30% or 301 

below 20' 
estimate is .... I30%or I30` 

below 20' 

6 
Estimate: 613 x 521 

I think that my 
estimate is .... 

very much 
less 

muc ess ess just ess exact y 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

my estimate is 0 
very much 
less 

much less ess just ess exac y 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 
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7 
Estimate: 335 x 562 my estimate is 

than the 
exact answer 

than the 
exact answer 

than the 
exact answer 

very much much less less dust ess exac y just more more much very much 
less the same more more 
30% or 30% to 20% to 10% to 0% 0% to 10% to 20% to 30% or 
below 20% less 10% less 0% less 10% more 20% more 30% more above 

I think that my less the same more more than the 
estimate is .... 

I 30% or 30% to 20% to 10% to 0% 0% to 10% to 20% to 30% or exact answer 
below 20% less 10% less 0% less 10% more 20% more 30% more above 

8 
Estimate: 74 x 24 my estimate is 

I think that my 
estimate Is .... 

very much 
less 

muc ess less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

9 
Estimate: 27 x 46 my estimate is 

I think that my 
estimate is .... 

II 
very much 
less 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

than the 
exact answer 

than the 
exact answer 
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10 
Estimate: 16 x 33 my estimate is 

I think that my less 

estimate is .... 30% or 
below 

estimate is ... 30% or 
below 

11 
Estimate: 82 x 48 

I think that my less 

estimate is .... 30% or 30°i 
below 20° 

estimate is ... 1 30% or 30°i 
below 20° 

12 
Estimate: 867 x 356 

I think that my 
estimate is .... 

300 

13 
Estimate: 31 x 88 my estimate is 

I think that my 
estimate is .... 

very much 
less 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

my estimate is 

very much 
less 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

my estimate is 

very much 
less 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 1 
0% less 

0% 0% to 
10% more 

10°/a to 
20% more 

20% to 
30% more 

30% or 
above 

very much 
less 

muc less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

14 
Estimate: 745 x 234 

I think that my less 
estimate Is .... 30% or 

below 
estimate Is .. I 30% or 

below 

15 
Estimate: 16 x 34 

I think that my 
estimate Is .... 

my estimate is 

very much 
less 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

my estimate is 

than the 
exact answer 

than the 
exact answer 

than the 
exact answer 

than the 
exact answer 

than the 
exact answer 

very much 
less 

much less less dust less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

than the 
exact answer 
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16 
Estimate: 22 x 62 my estimate is 

I think that my less 
estimate is .... 30% or 30° 

below 20° 
estimate is .... 30% or 300, 

below 20° 

17 
Estimate: 491 x 209 

I think that my less 
estimate is .... 30% or 30' 

below 20° 
estimate is .... 130% or 130' 

below 20° 

18 
Estimate: 338 x 164 

I think that my 
estimate is 

.... 

very much 
less 

muc ess less just ess exact y 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

my estimate is 

very much 
less 

muc ess less just ess exact y 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

my estimate is 

very much 
less 

muc ess ess just ess exact y 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

than the 
exact answer 

than the 
exact answer 

than the 
exact answer 
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19 
Estimate: 23 X 66 my estimate is 

I think that my less 

estimate Is .... 30% orý 
below 

estimate Is ... I 30% or 
below 

20 
Estimate: 18 x 34 

I think that my 
estimate Is .... 

very much 
less 

muc ess 

_ 

ess just less exac y 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

my estimate is 

very much 
less 

much less less just less exactly 
the same 

just more more much 
more 

very much 
more 

30% or 
below 

30% to 
20% less 

20% to 
10% less 

10% to 
0% less 

0% 0% to 
10% more 

10% to 
20% more 

20% to 
30% more 

30% or 
above 

than the 
exact answer 

than the 
exact answer 
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Journal Articles 
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Multiple Representation: New Opportunities - New Problems. Journal of 
Information Technology for Teacher Education, b(1). 
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