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Abstract

Einstein’s General Relativity has been our best theory of gravity for nearly a
century, yet we know it cannot be the final word. In this thesis, we consider mod-
ifications to General Relativity, motivated by both high and low energy physics.

In the quantum realm, we focus on Hořava gravity, a theory which breaks Lorentz
invariance in order to obtain good ultraviolet physics by adding higher spatial
derivatives to the action (improving propagator behaviour in loops) but not tem-
poral (avoiding Ostrogradski ghosts). By using the Stückelberg trick, we demon-
strate the necessity of introducing a Lorentz violating scaleM? into the theory, far
below the Planck scale, M? �Mpl, to evade strong coupling concerns. Using this
formalism we then show explicitly that Hořava gravity breaks the Weak Equiva-
lence Principle, for which there are very strict experimental bounds. Moving on
to considering matter in such theories, we construct DiffF(M) invariant actions
for both scalar and gauge fields at a classical level, before demonstrating that they
are only consistent with the Equivalence Principle in the case that they reduce to
their covariant form. This motivates us to consider the size of Lorentz violating
effects induced by loop corrections of Hořava gravity coupled to a Lorentz invari-
ant matter sector. Our analysis reveals potential light cone fine tuning problems,
in addition to evidence that troublesome higher order time derivatives may be
generated.

At low energies, we demonstrate a class of theories which modify gravity to solve
the cosmological constant problem. The mechanism involves a composite metric
with the square root of its determinant a total derivative or topological invariant,
thus ensuring pieces of the action proportional to the volume element do not con-
tribute to the dynamics. After demonstrating general properties of the proposal,
we work through a specific example, demonstrating freedom from Ostrogradski
ghosts at quadratic order (in the action) on maximally symmetric backgrounds.
We go on to demonstrate sufficient conditions for a theory in this class to share a
solution space equal to that of Einstein’s equations plus a cosmological constant,
before determining the cosmology these extra solutions may have when present.
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Notation and conventions

‘High-energy physics units’ are employed in this thesis, such that c = 1 and ~ = 1.
However, in Chapters 2 and 3, factors of c are occasionally restored. In these units
G 6= 1. G is often rewritten as the Planck mass, Mpl = (16πG)−1 ∼ 1018GeV or
the Planck length lpl = 1/Mpl = 16πG. Note that alternative definitions of Mpl

use prefactors of 8π or unity.

Standard index notation and summation conventions are used throughout this the-
sis. Greek letters µ, ν, . . . denote spacetime (almost always 4D) indices and Latin
letters from the middle of the alphabet i, j, k, . . . denote purely spatial indices.
When summing over spatial indices with a flat metric gij = δij, the distinction
between upper/lower indices may be dropped for convenience. Letters from the
start of the Latin alphabet, a, b, c, . . . will be used to denote indices unrelated to
spacetime (e.g. labelling fields).

The mostly positive signature metric (− + ++) is used. The definition of the
Riemann tensor is Rµνα

β = −2∂[µΓβν]α + 2Γλα[µΓβν]λ, with the Ricci tensor cor-
responding to the contraction Rµν = Rµλν

λ. Except where explicitly stated, a
Levi-Civita connection is assumed.

We will refer to both curvatures of the full spacetime and spacelike hypersurfaces.
R is always used to denote the full spacetime curvature, while R(3) is the curvature
of a 3D spatial hypersurface.

A distinction is made in Chapters 5 and 6 between a physical (but composite)
metric g̃µν , to which matter couples and on which particles follow geodesics, and
a fundamental metric gµν . Quantities such as covariant derivatives (∇̃, ∇), Ricci
scalars (R̃, R) and scale factors (ã, a) will be tilded or untilded to denote the
metric from which they are built.
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Chapter 1

Introduction

Gravity is the fundamental force most familiar directly to our everyday lives. It
appears to be a quite different animal to the other forces, many order of mag-
nitude weaker and resisting attempts to be quantised on small scales, yet being
the dominating force on large scales in the universe! The theories of Newton and
Einstein are the most famous, with both experiencing great success and the latter
remaining our best theory of gravity even as we approach its centenary. In this
chapter, we will discuss the successes of General Relativity, then motivate the need
for its modification, before highlighting the problems which arise when attempting
to do so.

1.1 Newtonian gravity

Newton provided the first explanatory theory of gravity. He provided a simple
underlying model, with the same force governing falling apples on Earth and the
planets in the heavens [5]. He was able to explain previously purely empirical
relations such as Kepler’s law and the theory experienced particular success with
planetary orbits.

In the 18th century, astronomer William Herschel discovered Uranus. However,
comparing the orbit with a Newtonian calculation indicated additional perturba-
tions. It appeared that either another planet must exist further out or Newton was
wrong. John Couch Adams and Urbain Leverrier independently made predictions
for the existence of Neptune and shortly after, the observation by Galle confirmed
their predictions [6, 7], a great testament to Newton’s theory.

The success of this prediction meant later, when a discrepancy between observed
perihelion procession and that calculated from Newton’s theory for Mercury was
seen, Leverrier again conjectured a planet, ultimately dubbed ‘Vulcan’, as being
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Chapter 1: Introduction

responsible [8]. However, this ‘dark planet’, predicted to be even closer to the sun
than Mercury, would turn out not to exist. In fact, it transpired that to match
observations of Mercury, we did not need to find a new planet, but change the
theory of gravity.

Einstein demonstrated that his General Theory of Relativity solved the problem
of Mercury’s perihelion precession [9]. Not only this, but the theory also provided
a gravitational model solving the inconsistencies between Newtonian gravity and
Special Relativity, with gravity only propagating at a finite speed (allowing consis-
tency with locality and causality) and energy, mass and momentum being treated
on the same footing. The theory passed the key test of reducing to Newtonian
gravity in appropriate limits, ensuring that the successful observations resulting
from Newton were explained in the theory, but also made new and differing pre-
dictions, such as the extent to which light is bent by the Sun. This prediction of
the theory was confirmed by Eddington in 1919 [10].

1.2 General Relativity

Newton famously said of his theory hypotheses non fingo (‘I frame no hypotheses’)
[5], reflecting the fact that he understood no deeper meaning for the properties
of gravity and the inverse square law of his theory, despite their successes. By
contrast, General Relativity (GR) has a very powerful and beautiful interpretation
as arising from the dynamics of space itself. In GR, spacetime is described by
a pseudo-Riemannian manifold. Freely-falling particles follow geodesics on this
manifold, and these geodesics depend on the metric. The dynamics of this metric
are the dynamics of gravity, and Einstein’s field equations [11],

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν , (1.1)

describe how the metric is influenced by the presence of energy and momentum.
Note the interplay between matter being influenced by the metric and matter
influencing the metric, perhaps most elegantly encapsulated in the quote from
John Wheeler [12],

“Space tells matter how to move...matter tells space how to curve”

1.2.1 Formulations

While the Einstein equations in the form (1.1) are the original and most well-known
mathematical description of the theory, there exist other useful and powerful for-
mulations used in modern gravitational work.

2



Chapter 1: Introduction

Einstein-Hilbert Action

Much of modern theoretical physics is formulated in terms of actions. One great
advantage is that one can describe both the classical and quantum dynamics
through the action. The classical dynamics are obtained by extremising the func-
tional, while the quantum behaviour derives from the path integral

∫
DφeiS[φ].

In addition, the Lagrangian formulation allows theories to be constructed based
on their symmetries, and Noether’s theorem [13] can also be used to derive the
resultant conserved quantities.

The Einstein equations can be derived from the Einstein-Hilbert action[14],

SEH =
1

16πG

∫
d4x
√
−gR, (1.2)

where
√
−gd4x is the covariant volume element. Minimising S = SEH +Sm, where

Sm is some matter action, leads to (1.1) with T µν = 2√
−g

δSm
δgµν

. From this action,
one can show that energy momentum conservation, ∇µTµν = 0, is a result of the
diffeomorphism invariance.

The Einstein-Hilbert action, rather than the Einstein equations, is often the start-
ing point for modified theories of GR. The action (1.2) also shows that it is consis-
tent with all the symmetries to add a cosmological constant term −Λ

∫
d4x
√
−g

to the action. This will play an important role in our discussion in Section 1.3.2.

ADM formulation

An alternative formalism exists courtesy of Arnott, Deser and Misner [15]. By
making a clever splitting of the metric components, the spacetime can be viewed
as a collection of spatial hypersurfaces evolving in time. This turns out to be par-
ticularly convenient for canonical approaches to quantum gravity (since it allows
one to write a gravitational Hamiltonian), for numerical relativity, and as we shall
see, for certain modified theories of gravity.

We split spacetime into a one-parameter family of spacelike hypersurfaces, by
defining a timelike vector field nµ = (N,N i). The metric can be written

ds2 = −N2c2dt2 + γij(N
idt+ dxi)(N jdt+ dxj). (1.3)

γij is the spatial metric on the hypersurfaces and N(t,x), N i(t,x) are known
as the lapse function and shift vector respectively. In General Relativity, these
play the role of Lagrange multipliers, leading to the Hamiltonian and momentum
constraints respectively. All the dynamics are governed by the spatial metric.
Note that despite first appearances, this splitting retains full covariance (see the

3
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transformation properties of the metric components below), one can choose some
foliation of spacetime but you retain the the full ability to transform the coordi-
nates.

The Einstein-Hilbert action is written in this formalism as

S =
1

16πG

∫
dtd3x

√
γNc

[
KijKij −K2 +R(3)

]
, (1.4)

where R(3) is the 3D Ricci scalar, Kij is the extrinsic curvature of a slice, Kij =
1
2
£nγij = 1

2N

(
γ̇ij − 2D(iNj)

)
, Di is the covariant derivative on the slice and dots

indicate derivatives with respect to time. Note that all the time derivatives are
now contained within the extrinsic curvature while the Ricci scalar solely contains
spatial derivatives.

The Einstein-Hilbert action is invariant under diffeomorphisms xµ → xµ − ξµ,
which correspond to gµν → gµν + 2∇(µξν). The action (1.4) must clearly be in-
variant under the same transformations, however they take a different form. Con-
sidering the infinitesimal transformations xi → xi − ξi(t,x), t → t − f(t,x), the
metric fields transform as

N → N + ξj∂jN + ḟN + fṄ (1.5a)

Ni → Ni + ∂iξ
jNj + ξj∂jNi + ξ̇jγij + ḟNi + fṄi (1.5b)

γij → γij + 2∂(iξ
kγj)k + ξk∂kγij + fγ̇ij. (1.5c)

Note that the last of these can be written in the more familiar form γij → γij +

D(iξj) + fγ̇ij.

1.2.2 Properties of GR

GR has a number of interesting properties. We discuss some of these presently,
as they will become important for contrast when we discuss modified theories of
gravity.

The first property we note is the diffeomorphism invariance of the theory. This
is a stronger statement than just the coordinate independence of the theory. In
Special Relativity, one has already made an assumption about the geometry of
spacetime — it is Riemann flat, Riem(g) = 0. By contrast, the only a priori
imposition on spacetime in GR is that it can be described by a (smooth) metric.
One is then free to choose foliations or coordinates as desired, the physics will
remain the same.

Following on from this, GR is a pure tensor theory. This means that it is a theory
of a massless spin-2 particle — only the two transverse, traceless, tensor modes
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propagate. There are no scalar or vector fields involved in the gravitational sec-
tor. This follows from the diffeomorphism symmetry, in the same way that the
massless and transverse properties of the spin-1 photon follows from the U(1)

symmetry of electromagnetism (and again, only two modes propagate). In fact,
GR (plus a cosmological constant) corresponds to the only four-dimensional, rel-
ativistic, divergence-free second-order theory of a spin-2 particle of second order
in derivatives (generic theories will be fourth order) [16]. Alternatively, one can
start from a particle physics point of view and write down the action of a spin-2
particle on a background order-by-order, starting at quadratic order. It turns out
that conservation of energy-momentum implies that the only consistent way to do
this is to write down the linearised action for GR [17, 18]! This would seem to
provide another piece of evidence for the uniqueness of GR as a theory.

A key stage in the development of GR was Einstein’s “happiest thought”, the
realisation that the effects of gravity and the effects of acceleration were indistin-
guishable. This idea is a feature of GR and is known as the Equivalence Principle
(EP). In its weakest form, the Weak Equivalence Principle (WEP), this simply
states the equality of inertial and gravitational mass for test particles. This occurs
in Newton’s laws, resulting in the acceleration of freely-falling particles being inde-
pendent of mass. Einstein strengthened this to the Einstein Equivalence Principle
(EEP): in addition to the WEP holding, the local outcome of non-gravitational
experiments in free-fall is independent of the frame velocity and location in the
universe. In GR, the Strong Equivalence Principle (SEP) also holds, extending
the above ideas to gravitational experiments [19].

Einstein’s equations (1.1) are a complicated non-linear system of PDEs. Contrast
this with Newton’s single second-order ODE, from which the deterministic1 nature
follows from Picard’s theorem for the uniqueness of solutions of ODEs. We expect
any physical theory of this sort to be expressible as an initial value problem (IVP).
It is not immediately obvious this is possible for GR. Indeed, due to the diffeo-
morphism invariance and the fact one is trying to evolve the metric (including the
time components), the nature of the initial conditions are not readily apparent.
In fact, GR does admit a well-posed IVP [20], which can be expressed by working
in the previously mentioned ADM formalism and picking a gauge.

This is by no means an exhaustive list of GR’s properties and theoretical success.
For example, black holes are now widely important in astronomy, from stellar evo-

1This is the statement that the behaviour, in principle, completely follows from the initial con-
ditions (rather than necessarily being a statement about predictability). In particular, this does
not preclude the possibility of chaotic behaviour, a high sensitivity to initial conditions, which
occurs in the three-body gravitational problem. Obviously this does not apply to measurement
in quantum systems other than probabilistically.
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lution to galaxies to cosmology; the absence of ghostly or tachyonic instabilities in
the theory; the causal and local nature of the theory; and energy-momentum con-
servation. Many of these theoretical advantages no longer hold when considering
modified gravity theories.

1.2.3 Successes of GR

Several of the above properties can be considered theoretical successes of the
theory, demonstrating the internal consistency of the theory. GR has also enjoyed
remarkable successes in the observational realm, and we now discuss some of these.
These tests all indicate a strong agreement between GR and observations, which
we expect any modified theory of gravity to match.

Most results concerning the weak-field limit of the theory are described under the
heading of the ‘solar system tests’ of GR. All these weak-field tests derive from
considering perturbations about a Minkowksi background. The aforementioned
measurements of light bending by the sun and the Mercury’s perihelion advance are
categorised under this heading, as is Shapiro delay [21]: When light relays travel
through the gravitational field of a massive body (such as the sun), they experience
time dilation, introducing a time delay relative to the Newtonian prediction. While
the Newtonian prediction is not observable, one can measure the difference in time
taken for light to travel in different strength gravitiational fields; for example, the
difference between superior and inferior conjunction of the interior planets [19].
Recent measurements of all of these have resulted in strong evidence for the validity
of Einstein’s theory in this régime [22].

Precision testing of GR began with measurements of the gravitational redshift of
a photon. By making use of condensed matter effects [23], Pound and Rebka were
able to measure a frequency change of ∆ν/ν ∼ 10−15, in agreement with GR [24],
by comparing the frequencies over a height change of just 22m.

Gravitational lensing is a generalisation of the predictions of the sun’s light bend-
ing to larger scales. Light from a distant object can be distorted due to massive
objects in our line of sight, and under the right conditions can result in multiple
copies of the object appearing in the sky. This effect was first observed in 1979
[25] and today is used in cosmology to help investigate dark matter [26].

In addition to the weak field limits, GR has also been tested in a stronger field
régime. Binary pulsars can be highly relativistic [27] and so determination of their
orbits provides tests of a gravity system where relativistic effects are much larger
than in the solar system. Strong field systems are also important in terms of
gravitational waves, since more strongly gravitating systems produce larger gravi-

6



Chapter 1: Introduction

tational waves. Binary pulsar systems are again relevant for this and observations
of the decay of their orbital periods provide indirect evidence for the existence
of gravitational waves [28]. Directly detecting and determining the polarisations
of gravitational waves can provide very stringent tests on modifications of grav-
ity, but unfortunately they have not yet been detected (see [29] for a review of
gravitational waves and their detection).

There have been tests of all the different forms of the equivalence principle, all
returning results consistent with GR [22]. The WEP is measured by comparing
the rate at which objects of differing masses are affected by gravity, generally
using Earth based torsion balances (but also, famously, by dropping a hammer
and feather on the moon). The results are often expressed in terms of the Eötvos
parameter, defined as η ≡ 2

∣∣∣a1−a2a1+a2

∣∣∣ between two objects which experience an
acceleration a1 and a2. Experiments give very tight bounds on this parameter [30,
31]. Redshift experiments provide an alternative method to test the WEP. The
EEP can probed through tests of special relativity. Among the most precise are
Hughes-Drever experiments [32, 33], which place constraints on the existence of
a preferred frame from very precise measurements of the anisotropy of atoms or
nuclei. The EEP is also tested by attempting to measure variation of dimensionless
parameters (such as the fine-structure constant) [19]. It is conjectured that GR
is the only theory which can satisfy the SEP [19]2, so tests of the SEP are very
important in determining the correctness of GR. Violations of the SEP involve
searching for evidence of time or space variation of the gravitational constant, or
fall at a rate dependent on its self-gravity [35]. A particularly useful system for
carrying out these investigations is the Earth-Moon system by using a legacy of
the Apollo missions, Lunar Laser Ranging [36].

Most of the tests discussed so far apply on solar system scales or smaller, but
GR has also achieved success on the largest scales in the universe. Einstein’s
equations can be solved for homogeneous and isotropic universes to obtain cos-
mological solutions. The absence of stable, static cosmological solutions led to
Lemaître overthrowing the static model of the universe and predicting it should
be expanding [37]. Hubble’s confirmation of this prediction validated this GR ap-
proach. The modern cosmological model which has emerged from this early work
has been very successful, notably in predictions and observations of the cosmic
microwave background (CMB) and big bang nucleosynthesis (BBN). Increasingly
precise measurements suggest the modern day cosmological model, ΛCDM, in a
GR setting, is a very good description of our universe [38].

2Although it may turn out to be the case that the SEP is violated even in GR, hinted at by
calculations of the self-force of particles in highly curved backgrounds [34].
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Chapter 1: Introduction

1.3 The need to modify gravity

Despite the great successes of Einstein’s theory, all is not well. This is reminiscent
of Newton’s theory before it, with evidence that an otherwise very successful
theory must be modified. There are two main sources of motivation for these
modifications, occurring on the smallest and largest scales in our universe.

1.3.1 Small scales and renormalisability

The standard model (SM) of particle physics is a quantum field theory (QFT)
providing an excellent description of microscopic physics [39]. It incorporates the
strong, weak and EM forces and all the observed fundamental particles into our
best model of particle physics. However, despite modelling all the other particles
wonderfully, including predictions of the first 12 digits of the electron’s anamolous
magnetic moment, it neglects gravity, and so cannot be a full fundamental theory
of our universe.

It is natural to try and extend the SM to include gravity in the usual way, by
simply minimally coupling matter and adding the Einstein-Hilbert term to the
action. In fact, Feynman thought that since gravity was so much weaker3 than
EM, for which perturbative QED is an excellent description since αEM ∼ 1/137, a
QFT describing gravity would be even easier to work with as it was even weaker
[40]! However, for reasons I will now explain, the perturbative procedure breaks
down and gravity is perturbatively non-renormalisable.

QFTs, in general, contain infinities4. These arise from loop integrals, which cor-
respond to corrections to the propagator/vertices arising due to the interactions
in the theory. If only a finite number of these vertices contain divergences, then
the infinities can be absorbed by redefining a finite number of parameters in the
theory, meaning they are physically irrelevant. In this case the theory is said to
be power-counting renormalisable. The total number of loop integrals is generi-
cally infinite, since the expansions of the theory used generically have an infinite
number of terms. If loop diagrams of higher order exhibit better convergence
behaviour than those of lower order, it is possible that only a finite number of
integrals diverge.

We now obtain conditions on the theory for this to be possible. This treatment is
3Consider the force between two electrons due to electromagnetism and due to gravity. Then

FEM/Fgrav ∼ 1043.
4Couching the theory in the language of distributions rather than ill-defined integrals can

more formally make mathematical sense of the divergences [41].
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Chapter 1: Introduction

familiar from standard texts on QFT, e.g. [42]. Consider a scalar field theory in d
dimensions with an action5

S =

∫
ddx

(
−1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

n!
λnφ

n

)
.

The mass dimension of the field φ is [φ] = d/2 − 1, and [λn] = d + n(1 − d/2).
Consider corrections to the vertex with V legs, which we denote CV . Now the
dimension of CV is simply equal to that of the corresponding coupling constant,
[CV ] = [λV ] = d + V (1 − d/2) = V + d(1 − V/2). So for example C2, corrections
to the propagator, are of mass dimension 2 and C4, corrections to the 4-point
interaction, are of mass dimension 4− d.

But we can also look at the Feynman diagrams for this correction. A diagram at
loop order N from the interaction λn, with I internal legs and L independent loop
momenta, makes a contribution to CV of the form

CV ⊃ λNn

∫ ( L∏
i=1

ddli
(2π)d

)(
I∏
j=1

1

p2
j +m2

)
, (1.6)

with the pi some linear combinations of the loop momenta li and the external
momenta. From this we can also calculate the mass dimension of CV , [CV ] =

dL − 2I + N [λn]. It is also clear that the degree to which the above diagram
diverges depends on the powers of momentum appearing in the integral, and to
this end, we introduce the superficial degree of divergence, D ≡ dL − 2I. D > 0

corresponds to a power-law divergence, D = 0 to a logarithmic divergence, and
D < 0 to a non-divergence.

By combining our expressions for CV and D, we obtain

D = [CV ]−N [λn] with [CV ] = d− V (d/2− 1). (1.7)

What does this tell us? How many vertices do we expect to diverge? There
are potentially an infinite number of vertices, since vertices with arbitrarily many
numbers of legs, V , can be generated by quantum corrections. However, the
number of legs of a vertex, V , will not trouble us since it is clear that [CV ] will be
negative for all V ≥ 2d/(d − 2), becoming larger in magnitude for larger V . On
the other hand, each vertex has corrections going to arbitrarily high loop order,
N . These will only be well-behaved if [λn] ≥ 0. If [λn] < 0, D becomes positive for
high enough N and so one has an infinite number of diverging vertices, indicating
that the theory is not renormalisable by power counting.

5One can extend the idea to higher spin fields and to multiple interaction terms, but the basic
details go through essentially unchanged aside from additional indices and summations.
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Chapter 1: Introduction

Note that being renormalisable by power-counting is neither a necessary nor suf-
ficient condition for a theory to be renormalisabile (hence the ‘superficial’ degree
of divergence), but is reliable as a general guide [42].

This discussion of power-counting renormalisability brings us on to the issue of
quantum gravity. The coupling constant for gravity is obviously Newton’s con-
stant, G. Unfortunately, in d dimensions [G] = 2 − d, and this negative mass
dimension in d = 4 means that the perturbative theory is not viable — higher and
higher loop orders exhibit worse divergences.

However, doing the explicit calculation demonstrates that pure GR is, in fact,
renormalisable at one loop. The possible operators generated at one loop are R2,
R2
µν and R2

µναβ. The R2
µναβ terms can be converted into R2

µν and R2 terms since
the Gauss-Bonnet combination R2

µναβ−4R2
µν+R2 is a topological invariant in four

dimensions. The remaining terms are removed by using the equation of motion,
Rµν = 0 6. Thus all the non-renormalisable operators can be removed, rendering
the theory one-loop renormalisable [43].

Unfortunately, this pure GR one-loop result is an accident. Continuing the per-
turbative procedure for pure gravity, one finds that it is non-renormalisable at two
loops 7 [44, 45]. When coupled to matter, the quantum behaviour is even worse,
being non-renormalisable at one-loop due to the fact that Rµν 6= 0 [43].

This result is disastrous! Despite General Relativity’s great success at large dis-
tances and quantum field theory’s great success at small ones, trying to combine
the theories appears to lead to inconsistencies. Trying to consistently combine
gravity and quantum behaviour has been a big motivator in constructing replace-
ments for GR, including string theory and loop quantum gravity.

This does not mean we can say nothing about GR in the quantum realm. In
fact, we can make predictions about quantum gravity using GR, but only in the
context of effective field theory (EFT). Working below the Planckian cut-off it is
possible, for example, to predict the first-order corrections to Newton’s constant
[46]. However, an EFT is only valid in a given régime (here energies less thanMpl)
and we still require a UV completion.

Before moving on, we note an alternative interpretation. It may be possible that
these inconsistencies are only an effect of perturbative GR. Considering the full
theory non-perturbatively may reveal that the gravitational coupling constant

6This is sometimes expressed instead as a field redefinition gµν → gµν(1 + aR) + bRµν .
Considering the field equations, however, makes it more explicit why this procedure fails for the
case when Gµν 6= 0.

7One cannot just use Rµν = 0 from the equations of motion as before, since we are now
working at higher order we must be careful in that Rµν = 0 + one loop corrections.
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Chapter 1: Introduction

approaches a non-Gaussian fixed point in the ultraviolet. In this case, the theory
would, despite perturbative appearances, be asymptotically safe and valid up to
arbitrarily high energies [47, 48]. Since, as we have observed, there are an infinite
number of quantum corrections to the Einstein-Hilbert action generated (and thus
an infinite number of β functions), one does not know the bare action and so is
forced to consider a truncation of the full quantum action. The reliability of this
truncation can be checked by investigating the convergence behaviour of the fixed
points and critical exponents when higher order terms are added.

1.3.2 Large scales and cosmology

Having mentioned the great success of GR applied to cosmology, it may initially
seem odd that cosmology provides a motivation to alter GR. However, the success
of the standard ΛCDMmodel may not be all that it seems. Measurements indicate
that the universe is of nearly critical density, comprised mainly of pressureless
matter and energy in the form of a cosmological constant.

Consider the matter sector — observations such as galaxy rotation curves [49],
indicate that the observable matter cannot account for all the material in galaxies.
In fact, the most current data suggests that baryonic matter comprises only ∼5%
of the overall energy density. This only accounts for 1/6 of the pressureless matter
we can infer exists [38]. ‘Cold dark matter’, a new non-SM particle, has been
proposed to account for this discrepancy, with no shortage of candidates (see [50]
for a review), but at the time of writing, is still to be directly observed. One may
think this story sounds familiar from Newtonian gravity and the unseen ‘dark
planet’ Vulcan. Maybe, instead of new, unseen entities, it is really our theory of
gravity that is wrong. Models such as MOND [51] and TeVeS [52] have attempted
to explain dark matter (particularly galaxy rotation curves) by modifying gravity
rather than introducing dark matter. However, extra particles remain the most
popular paradigm for explaining the matter deficit, in part because colliding galaxy
clusters have provided evidence favouring dark matter over modifying gravity [26,
53], the evidence that MOND may need (potentially SM) dark matter to explain
observations [54], and also the fact that theories such as SUSY give a motivation
for the presence of additional particles in our universe.

However, this is not the end of the story for the ‘dark sector’. The current expan-
sion of the universe is accelerating [55, 56], a surprising result which indicates that
∼70% of the universe’s energy budget is in the form of a negative pressure fluid,
dark energy. This mysterious and unexpected fluid component is most commonly
explained by adding a constant term Λbaregµν to Einstein’s equations (1.1). At
a naïve level this seems perfectly reasonable — this term is consistent with the
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Chapter 1: Introduction

symmetries of the theory and so there is no reason to exclude it. In fact, if one
works with gravity as an effective QFT there are terms generated of the form
ΛSMgµν . These can be tuned with a bare cosmological constant appearing in the
Lagrangian Λbare, and summing all these contributions leads to the observed value
of Λ = Λbare + ΛSM .

So far, so good. What if we now try and calculate the contributions, ΛSM? They
arise from zero point energies of the fields, leading to the contribution [57]

1

2

∑
fields

∫
d3k

(2π)3

√
k2 +m2 ≈ M4

co

16π
=

ΛSM

8πG
, (1.8)

where Mco is some cut-off of your theory, where the EFT description breaks
down. We expect this cut-off to be of order Mpl ∼ 1018GeV. Unfortunately,
the observed value of the cosmological constant takes the approximate value
Λ ∼ H2

0 ∼ (10−33eV)2. In order to agree with the observed value, the bare
value must cancel this particle physics contribution to 120 decimal places, a hor-
rendous level of fine tuning! Choosing not to tune is not an option — without fine
tuning the particle physics contribution, the contribution from the electron alone
would be enough to ensure that the cosmological horizon “would not even reach
the moon”, as Pauli colourfully observed [58]. Models with supersymmetry reduce
the level of fine tuning8 above the SUSY breaking scale, but even taking TeV scale
breaking requires a sixty place cancellation. This problem is compounded by non-
perturbative effects, such as phase transitions in the early universe. Undergoing a
phase transition introduces another contribution to ΛSM , potentially resulting in
large changes in the observed value of Λ (since one can only pick the bare value
Λbare once). The cosmological constant problem9 is sizeable, and many feel that it
should not just be swept under the carpet as it is in the ΛCDM model.

There are two tacks taken to deal with this this: ignore it, or set the cosmological
constant to zero via some mechanism, and then generate the cosmological constant
via some new field or modification of gravity.

Ignoring the large vacuum energy can either be a completely blasé process as in
ΛCDM, or one may argue that the cosmological constant takes its value necessarily
by the anthropic principle [57], and so if it was not cancelled to a huge extent,
there would be no observers to measure it. This idea is sometimes upgraded to a
(speculative) model, rather than an accident, by working in a multiverse picture,

8Since all particles have a superpartner of opposite spin-statistics, and fermionic and bosonic
contributions differ in sign.

9We use this here to mean this large degree of fine tuning necessary to obtain viable physics.
Some authors also use this terminology to refer to the coincidence problem, the question of why
we happen to live in an era when ρm ∝ 1/a3 is of comparable size to ρΛ ∝ 1, which is mysterious
as it only happens over a very small period in time of the universe’s evolution.
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Chapter 1: Introduction

based around an eternally inflating universe and the string landscape [59].

One can attempt to set the cosmological constant to zero and then generate the
observed value by quantum fluctuations, new dynamical fields10 or thinking back
to the ‘dark planet’ Vulcan, and trying to modify gravity. This is often achieved by
considering higher dimensional physics, such as braneworld models, or by adding
additional curvature terms to the Einstein-Hilbert action. (See [60, 61] for a review
of relevant models.)

But finding a mechanism to set the cosmological constant to zero is less simple
than it might seem. Unbroken SUSY would lead to a vanishing cosmological
constant contribution from the SM sector, but this clearly does not describe our
universe. There exists a no-go theorem due to Weinberg [57], preventing Λ being
dynamically driven to zero. This is a big obstruction to model makers although, as
with all no-go theorems, the exceptions can point you towards possible resolutions
of the problem. This is expanded upon in Section 5.1.

As a final note, there are also ideas that it is our assumptions about cosmology that
are really what’s wrong, in particular the Copernican principle. Maybe, in fact
we are not in an ‘average’ place in the universe, instead residing in an underdense
void, and the apparent acceleration of the universe results from trying to fit the
round peg of a Copernican universe into the square hole of an inhomogenous one
[62]. Even in this picture though, one is still required to explain why the vacuum
energy does not lead to a large cosmological constant.

1.4 Modifying gravity

How do you go about modifying GR? Well, Lovelock’s theorem [16] about the
uniqueness of the Einstein equations is a useful starting point for a general con-
sideration, by considering the assumptions required by the theorem. Breaking
symmetries (or adding them in the case of SUGRA), working in higher dimen-
sions and adding higher derivatives all result in a theory with different physics to
Einstein’s. For a general review of modified gravity theories, see [63].

Yet, given GR’s great successes, attempting to modify gravity can be fraught with
dangers. Even seemingly minor changes to the theory, such as giving a mass to
the graviton [64] runs into severe difficulties [65]. In fact, we will regularly return
to this example as it highlights many issues in modified gravity theories today.

10For example, a scalar field φ with a flat potential has wφ = φ̇2−2V (φ)

φ̇2+2V (φ)
≈ −1
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1.4.1 Extra modes

General Relativity is a theory of a symmetric tensor with two tensor degrees of
freedom. A generic symmetric tensor (in 4D) has ten degrees of freedom, but the
gauge symmetries of the theory result in only two modes propagating, a property
unique to GR in 4D.

Considering almost any modification of gravity introduces extra degrees of free-
dom. For example, in massive gravity the linearised action does not retain the
symmetry hµν → hµν + 2∇(µξν) under the change xµ → xµ − ξµ, demonstrating
the absence of full diffeomorphism symmetry. Even theories such as f(R) gravity,
where the action is built from diffeomorphism invariant components, introduce
extra degrees of freedom, since the equations of motion do not just correspond to
the Einstein tensor. An extra scalar is the new degree of freedom in the case of
f(R), and the theory is often rewritten with the presence of this extra mode made
manifest.

So, these theories have new degrees of freedom in addition to the two transverse,
traceless tensor modes, and in 4D, this means that some of the 4-vector or scalar
modes in a general symmetric tensor gain dynamics. It is often very convenient
to study such modifications by splitting the theory into the two tensor modes
plus the new, additional scalar/vector degrees of freedom. This is the Stückelberg
trick [66]11 which we will make use of in Chapter 3. Very often, the behaviour
of the tensor modes is satisfactory and in agreement with GR, but it is the new,
additional modes responsible for the pitfalls in the theories.

These extra modes often suffer from theoretical disasters: instabilities, tachyons,
11A simpler (and the original) example is a massive photon,

L = −1

4
FµνFµν +

1

2
m2AµAµ + JµAµ.

Clearly, this has broken the U(1) gauge symmetry Aµ → Aµ + ∂µΛ. However, one can artifi-
cially restore the gauge invariance by introducing a new field Âµ = Aµ + ∂µφ, resulting in the
Lagrangian

L = −1

4
F̂µν F̂µν +

1

2
m2(ÂµÂµ + 2Âµ∂µφ+ ∂µφ∂

µφ) + Jµ(Âµ + ∂µφ).

This now does exhibit gauge symmetry, Ãµ → Ãµ + ∂µΛ, φ→ φ− Λ. How does the extra mode
behave as we take the limit m → 0? Well, if we canonically normalise, introducing φ̂ = mφ,
then

L = −1

4
F̂µν F̂µν +

1

2
m2ÂµÂ

µ +mÂµ∂µφ̂+
1

2
∂µφ̂∂

µφ̂+ JµÂ
µ +

1

m
Jµ∂

µφ̂,

and the gauge symmetry is Âµ → Âµ + ∂µΛ, φ̂→ φ̂−mΛ. Taking m→ 0, all the terms are well
behaved, except the final (non-conserved) current term in the action. This diverges, ruining the
chances of the usual photon results being recovered. As in gravity, it is the additional modes
which have led here to unacceptable behaviour.
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ghosts or superluminalities. Superluminal propagation of gravity modes can al-
low information to be broadcast faster than the speed of light, leading to causal
problems in the theory. We will discuss these issues, along with the observational
concerns presently.

1.4.2 Ghosts

Generically, modifications to the Einstein-Hilbert action introduce higher order
derivatives. These often sound the death-knell for a theory since they almost
always introduce ghostly instabilities in the theory. This is due to Ostrogradski’s
theorem [67, 68], which demonstrates that under very general conditions (non-
degeneracy of the symplectic structure12), the Hamiltonian of the system contains
more than two time derivatives and so is unbounded from below.

Classically this is a headache; quantum mechanically it is a nightmare! Ghosts lead
you to either abandon unitary (and thus quantum mechanics) due to the presence
of negative norm modes or otherwise accept that there are negative eigenvalues
of the Hamiltonian. Thanks to pair creation in quantum mechanics, the latter
option leads to a proliferation (in fact, a divergence in Lorentz invariant theories
[69]) of particles being pair produced, since lighter particles can decay into heavier
ones plus ghosts, or the vacuum into ghosts, to minimise their energy. There are
tight constraints on this rapid particle production, meaning only extremely weakly
coupled ghosts (which must also be Lorentz violating) can be considered to have
any chance of viability [69].

Ghosts arise not only due to higher derivatives. Since theories of canonical spin-
0 and spin-2 particles are always attractive [40], attempting to produce repulsive
forces (to mimic dark energy), often involves changing the sign of the kinetic piece,
leading to a ghostly spin-0 or spin-2 particle.

The presence of these ghosts is not always manifestly obvious. Boulware and Deser
[70] discovered that the sixth mode of Pauli-Fierz massive gravity, while hidden on
maximally symmetric backgrounds, reappears at higher order or on more general
backgrounds as a ghostly instability.

The ghost problem is a highly generic one of modified gravity, though there do
exist explicit theories where the ghost can be made safe [71]. See also [68] for a
discussion of common misconceptions about ignoring ghosts.

12Lagrangians constructed purely from polynomials of the Ricci scalar, f(R) theories, are de-
generate so do not necessarily contain ghosts. Of course, in accordance with Lovelock’s theorem,
they still contain higher derivatives.
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1.4.3 Strong coupling and non-linearities

Perturbative GR is well tested, notably binary pulsar system predictions, obser-
vations of which won Hulse and Taylor the Nobel Prize [27]. It is, of course, vital
that any theory seeking to replace GR should also replicate its successes. In order
to match these perturbative results, and indeed to retain predictability, a modified
gravity theory should have a well defined perturbative expansion, at least for low
energies. Unfortunately, this is not the case in many modified gravity theories.
For example, massive gravity exhibits strong coupling at energies of (m4Mpl)

1/5

[65]. Since m�Mpl, this cutoff is far below the Planck scale.

This is not only a classical issue, but also vital for gravitational theories which
claim to be perturbatively renormalisable. If the theory is strongly coupled at low
energies, the perturbative expansion has broken down, and there is no reason to
expect renormalisability! We will see an example of this in Chapter 3.

However, strong coupling can also bring unexpected benefits to a theory. For
example, in massive gravity, features such as light bending and solar system orbits
disagree between massless gravity and massive gravity, even in the limit m → 0.
This is the vDVZ discontinuity [72, 73] and arises because of the presence of
additional graviton modes for all m 6= 0. No matter how small the graviton
mass is made, you cannot reproduce the successful predictions of GR. But, as is
clear from the expression for the strong coupling scale, as m→ 0 then the strong
coupling scale also→ 0, so describing weak-field effects with the perturbative form
of the theory is not valid. In fact, Vainshtein showed [74, 75] that around a body

of mass M , there is a scale rV ∼
(

M
M2
plm

4

)1/5

within which the GR gravitational
results are reobtained. This is because this corresponds to a non-linear régime in
the theory, where the strongly coupled tensor and scalar gravitons form a bound
state mimicking the GR graviton. This is equivalent to resumming an all-order
perturbative expansion [76]. Dvali has conjectured that this mechanism always
‘saves’ theories of gravity which become strongly coupled at low energies [77].

Non-linear effects can be vital in masking modified gravity theories from violating
GR observations, particularly solar system tests. In addition to the Vainshtein
effect, Chameleon fields [78] also exhibit such behaviour. These are fields with
self-interactions resulting in an environment dependent mass. In more dense en-
vironments, such as inside the Earth or Sun, the chameleon has a large mass,
while in less dense environments, it has a small mass. This allows chameleons to
have order unity matter couplings, and be able to influence cosmology, but not
be observable to fifth force experiments, since the range of a force varies with its
mass.
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1.4.4 Other common pitfalls

The observational successes discussed in 1.2.3 has lead to a standard parametri-
sation to test post-Newtonian effects and their consistency with observation, the
Parametrised Post-Newton (PPN) framework [19]. In this, a theory can be as-
signed 10 parameters by its behaviour in the weak-field limit, and then the bounds
on these standard parameters can be compared to experiment. Since the observed
deviations from GR are small (all consistent with zero) [22], one requires the weak-
field limit to mimic this behaviour to a very high degree. As previously discussed,
one is often reliant on strong coupling effects to ensure that post-Newtonian ob-
servations can be matched in solar system tests.

The Equivalence Principle is also generically violated by modified gravity theo-
ries. Violations of the WEP and EEP are very stringently constrained, so one
must either ensure that extra modes do not couple directly to matter in a non-
universal manner, so they are not violated, or else kept very small. As previously
mentioned, only GR is thought to satisfy the SEP, so the inevitable deviations
must also be kept small. A helpful example is the case of Brans-Dicke gravity,
which promotes Newton’s constant to a dynamical field [79]. The theory contains
a new parameter ω, and in the limit ω →∞ the theory is equivalent to GR. Since
matter does couples universally to the Jordan frame metric, it does not violate the
EEP, but bounds on the SEP give lower bound for ω, which has been increasing as
experimental precision improves, resulting in a current 2σ lower bound of 40,000
[80]. While technically in a valid parameter régime in the theory, the fact it is
forced to deviate so little from GR has resulted in a loss of interest in the theory
as a promising alternative.

Cosmological data is able to place good constraints on the expansion history and
present content of the universe. Several approaches to try and parametrise the
effect of new theories exist, such as the Parameterised Post-Friedmann model [81].
The new cosmological equations of a theory can generally be written as those of a
FLRW universe in GR, plus an additional fluid. Depending on the modification,
it may be desired that this fluid mimics dark matter or dark energy, or that it
remains sufficiently subdominant to not affect the expansion rate and other ob-
servables. Not only can the background cosmological quantities be observed, there
is also hope that future measurements will enable the constraint of cosmological
perturbations in modified gravity [82, 83]. Another key ingredient in cosmological
physics, Big Bang Nucleosynthesis (BBN), places tight constraints on new rela-
tivistic degrees of freedom, such as extra gravitational fields, or alterations to the
universe’s expansion history [39].

Gravitational waves may prove to be a particularly fruitful testing bed. Currently,
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they have not been directly detected, however the decay of the orbit of binary
systems is well tested in GR and if, as in a modified theory, extra modes are
present, we expect the orbital decay period to alter, since the additional modes
can also carry away energy, generically producing different results to GR. Direct
detection is also particularly promising, since the polarisations of gravitational
waves (the type and number) can potentially tell us about the nature of the
gravitational degrees of freedom. This is analogous to observing EM waves and
noticing they are always transverse, backing up the description of a photon as only
having the transverse degrees of freedom.

Models attempting to explain the cosmological constant problem via modifying
gravity generally involve IR modifications, for example DGP [84]. Despite these
theories appearing local at first glance, they may contain ‘secret’ and non-obvious
violations of causality and locality in the models [85].

Alongside these issues there exist many others, including the difficulty of solving
the fields equations of many modified gravity theories. The trouble in computing
predictions in theories such as string theory is well known, and ideas such as
discrete spacetime models require one to do away with infinitesimal calculus.

1.5 Outline

Having demonstrated the successes and drawbacks of GR, and the benefits and
pitfalls of modified gravity, I will consider two particular theories for the majority
of this thesis.

Chapters 2, 3 and 4 will focus on Hořava gravity, a modification of gravity de-
signed to be renormalisable. Chapter 2 is a review of the ideas and previous work
in Hořava gravity. Chapter 3 discusses classical problems and the necessity of
introducing a hierarchy of scales into the theory, and is based on [1]. Chapter 4
considers adding classical and quantum matter into the theory, and is based on
[3].

Chapters 5 and 6 will focus on a new proposal to solve the cosmological constant
problem. Chapter 5 is based on [2] and contains details of the proposal, along
with a specific model which may be ghost-free. Chapter 6 is based on [4] and
involves understanding the behaviour of non-GR solutions present in the theory,
particularly their cosmology.

Discussion and conclusion will take place in Chapter 7. Additional calculational
details are contained in Appendices A and B.
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Chapter 2

Hořava gravity

Hořava gravity attempts to create a renormalisable theory of gravity by giving up
Lorentz invariance. The model, proposed in 2009, rapidly gained a large amount of
interest. Here, we review the theory and the associated literature, before moving
on to discuss original research in Chapters 3 and 4.

2.1 Motivation

Hořava gravity is a non-relativistic modification to gravity, proposed by Petr
Hořava in 2009 [86, 87]. To motivate the theory, consider why gravity is pertur-
batively non-renormalisable. As discussed in Section 1.3.1, the coupling constant
has negative mass dimension [GN ] = −2, and so the superficial degree of diver-
gence of each loop order increases. However, one can construct higher derivative
theories of gravity which appear to be power-counting renormalisable [88]. These
modify the propagator so that rather than falling off like 1/k2 it falls off with a
greater power of k. This means that loop integrals diverge less quickly1, and so
the superficial degree of divergence reduces — the theory becomes power-counting
renormalisable. Unfortunately, this comes at a cost. If one adds, for example,
fourth-order derivatives, the resulting propagator 1/(k2 ∓ λk4) can be re-written,

1

k2 ∓ λk4
=

1

k2
− 1

k2 ∓ λ−1
, (2.1)

explicitly revealing the presence of a ghost mode. This is unsurprising given
Ostrogradski’s theorem, discussed in Section 1.4.2, that theories with more than
two time derivatives generically result in such instabilities.

1Recall that the degree of divergence depends on the power of k in the numerator vs. that
in the denominator. The power of k in the denominator is affected by the propagator and so
increasing the powers of momentum in the propagator reduces the divergence of the diagrams.
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The question we ask is whether one can obtain the good (renormalisable) behaviour
of the theory while avoiding the bad (ghostly pathology)? Hořava’s proposal [87] is
to break Lorentz invariance, adding higher-order spatial derivatives but remaining
second-order in time derivatives. This gives a theory with the good propaga-
tor behaviour, while ensuring that there are no higher-order time derivatives to
introduce Ostrogradski ghosts.

Such a theory necessarily marks out time as a special ‘direction’ in spacetime, in
contrast with relativity which treats space and time on an equal footing. Hořava
drew inspiration from condensed matter models involving systems with preferred
directions, first worked on by Lifshitz [89]. Real world examples include ferrormag-
nets. For this reason, Hořava’s proposal is sometimes known as Hořava-Lifshitz
(or sometimes just Lifshitz) gravity.

These models make use of anisotropic scaling. This means that one of the di-
mensions scales differently to the others. In Hořava gravity, time and space scale
differently,

x→ bx t→ bzt, (2.2)

where b is constant. z is known as the ‘dynamical critical exponent’, and clearly
takes the value z = 1 in relativistic theories. Let’s illustrate how this anisotropic
scaling works with a free field theory example. The action

S =

∫
dtdDx

(
φ̇2 − φ (−c24)

z
φ

M2(z−1)

)
, (2.3)

where 4 ≡ ∂i∂i, M is a mass scale and factors of c have been restored, becomes
under the anisotropic scaling (2.2),

S =

∫
dtdDxb−z+D

(
φ̇2 − φ (−c24)

z
φ

M2(z−1)

)
. (2.4)

Thus, the theory has anisotropic scaling with critical exponent z. Clearly, this
breaks Lorentz invariance; but we can make the theory appear to be Lorentz
invariant at low energies by adding to the action

c2

∫
dtdDxφ4φ, (2.5)

which is relevant in the IR. At low energies, this will dominate over the φ42zφ term
(provided z > 1). At low energies, this deformation results in the theory looking
like the usual relativistic field theory, but at high energies it exhibits anisotropic
scaling. In such a model, its relativistic nature appears as an accidental symmetry
at low energies, rather than as a fundamental ingredient of the theory.

Thinking in terms of quantum theory, consider adding a potential term λnφ
n to

our action (2.3). Recall that in relativistic QFT, the dimension of the coupling
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constant is [λn] = D + 1 − n
2
(D − 1) in D + 1 dimensions, and so the theory

is power counting renormalisable for n ≤ 2D+1
D−1

since the coupling constant is
then non-negative. For example, in 3 + 1 dimensions, λφ4 is the highest power
renormalisable term. For a theory exhibiting anisotropic scaling, the appropriate
dimensions for time and space are [t] = −z, [x] = −1. The scaling dimension2 of
the coupling constant is [λn] = D + z − n

2
(D − z) instead, and the condition to

have a non-negative dimension of the coupling constant is

[λn] ≥ 0⇒


n ≤ 2D+z

D−z for D > z

n ≥ −2 z+D
z−D for z > D

alln for z = D,

or alternatively for a fixed n, the potential term is renormalisable ifD ≤ z
n
2

+1
n
2
−1

. For
example in 3+1 dimensions, if z = 2, potential terms up to φ10 are renormalisable.
If z = 4, potential terms of higher or equal power to φ−14 are renormalisable.
While for the critical case, z = 3, all possible polynomial potential terms are
renormalisable by power counting. Visser demonstrated some power counting
renormalisable anisotropic scalar field theories in more detail in [90, 91]. There is
also work pre-dating Hořava’s theory, considering the renormalisability of Lorentz
violating scalar and fermion fields [92].

2.2 Formulation

We now demonstrate how to incorporate these ideas into a model of quantum
gravity. We restrict ourselves to considering Hořava’s theory in 3 + 1 dimensions,
since this corresponds to a theory introducing as little extra baggage relative to
GR as possible.

The model is most easily formulated in terms of the ADM formalism, familiar
from Section 1.2.1. We write the metric in ADM form,

ds2 = −N2c2dt2 + γij(dx
i +N idt)(dxj +N jdt). (2.6)

This corresponds to a spacetimeM and a folation of spacelike hypersurfaces F .
In GR, the foliation is purely a choice, which can be made for convenience; but
in Hořava gravity the foliation is an additional structure in the theory — differ-
ent foliations are physically inequivalent. The symmetry group is broken down
from full spacetime diffeomorphisms to the subgroup which preserves the foliation
structure, DiffF(M) ⊂ Diff(M). This group is generated by the transformations

t→ t̃(t), xi → x̃i(t,x). (2.7)
2Note that scaling, rather than mass, dimension is the relevant dimension here.
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These foliations pick out a preferred time direction, and so one can separate into
temporal and spatial derivatives in the manner required to create a theory with
anisotropic scaling.

Under infinitesimal transformations of the form (2.7), xi → xi − ξi(t,x) and t →
t− f(t), the components of the ADM metric transform as

N → N + ḟN + fṄ (2.8a)

Ni → Ni + ∂iξ
jNj + ξj∂jNi + ξ̇jγij + ḟNi + fṄi (2.8b)

γij → γij + 2∂(iξ
kγj)k + ξk∂kγij + fγ̇ij. (2.8c)

At this stage, we note the different variants of Hořava’s proposal. One variant,
called the projectable theory restricts N = N(t), while the non-projectable theory
keeps N = N(t,x). The motivation behind the projectable theory lies in the fact
that Ni and N can be considered as the gauge fields of spatial diffeomorphisms and
time reparametrisations. It therefore seems reasonable to restrict the gauge field
N to be solely a function of time, to match the property of the time reparametri-
sations. The two variants have distinct advantages and disadvantages, which will
be discussed further when we review the literature in Section 2.3.

Using the transformations (2.8), we can determine the appropriate building blocks
for our action. We build our action with terms up to dimension 2z. For time
derivatives, Kij = 1

2N

(
γ̇ij − 2D(iNj)

)
is the only combination transforming ap-

propriately under (2.8). This term has dimension z. We thus build the kinetic
piece from various contractions of this with the inverse metric γij, leading to the
kinetic Lagrangian LK = KijK

ij−λK2, of dimension 2z. In GR, λ is unity — the
freedom for it to take on other values here is a direct consequence of the reduced
diffeomorphisms. This λ will turn out to play a key role in our analysis. Since
we are dealing with a quantum theory, we expect all parameters, including λ, to
run under the renormalisation group (RG) flow. To mimic GR, we need λ→ 1 in
the IR under the RG flow. We can now write the action for Hořava theory in the
ADM form,

Sgrav =
1

16πG

∫
dtd3x

√
γNc

(
KijK

ij − λK2
)

+ SV , (2.9)

where SV is an action for the potential, containing all terms consistent with our
symmetries up to dimension 2z. In GR, the symmetries force this to take the
unique form R(3) (the 3D Ricci tensor) as a result of the diffeomorphisms mixing
the kinetic and potential pieces. The weakened symmetry of foliation-preserving
diffeomorphisms means that is not the case here, as our time and spatial deriva-
tives transform completely separately, and so the potential piece transforms inde-
pendently of the kinetic piece. This extra freedom is precisely what we need to
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introduce higher spatial derivatives while remaining second-order in time deriva-
tives.

The building blocks for the potential are the 3D Ricci curvature3 of the spatial
slice R(3)

ij , along with covariant derivatives Di and contractions obtained with the
inverse metric γij. In addition, it is consistent with the symmetries of the non-
projectable theory to include the acceleration between spatial slices ai ≡ ∂i logN .
This was not included in the original formulation of the theory, and led to problems
we discuss in the literature review in Section 2.3.3. The dimension of these objects
is

[R
(3)
ij ] = 2 [ai] = 1 [Di] = 1 [γij] = 0.

To build a theory with anisotropic scaling z, one should include in the potential
Lagrangian all inequivalent combinations of terms built from these objects4, such
that the overall dimension of each is 2z. For example, with z = 3, R(3)

ij a
iDjR

is one possible combination of dimension 2z = 6. There are in fact a very large
number of such terms which can be written down (contrasting with the only one
possible term in GR). To avoid this plethora of terms, Hořava proposed ‘detailed
balance’ as an ad hoc ordering principle allowing one to only consider a few terms,
again by analogy with properties of condensed matter models. Detailed balance
is expanded upon in Section 2.3.1.

In addition to these terms of dimensionality 2z in the potential, one should also
add deformations which become important in the IR, of lower dimension. This is
vital, since without these terms, there is no way that our action is going to mimic
the action of GR. It is only possible to construct terms of even dimension from
contracting all the indices in our building blocks, so one must repeat the process
above for terms of dimension 2z, 2(z − 1), . . . , 4, 2, producing a potential action
which can be written SV =

∑z
p=1 S2p = S2 + S4 + · · ·+ S2z.

Note that the scaling dimension of the coupling constant G in (2.9) can be easily
determined to be [G] = z − 3. By analogy with the behaviour of the other 3
fundamental forces, we choose the marginal case z = 3 so the coupling constant
has a (scaling) dimension of zero in the UV. Since the coupling constant no longer
has negative mass dimension, it appears that the theory may be power counting
renormalisable! The price has been to give up Lorentz invariance as a fundamental
symmetry, but one approximately restored when looking in the deep IR. Naïvely
this does not appear to be too fanciful — even the LHC only probes energies many
orders of magnitude below the Planck scale [39].

3Note that since in 3D the Weyl tensor vanishes identically, the Riemann tensor contains no
extra information compared to the Ricci tensor.

4Since we are dealing with a quantum theory, we expect all terms consistent with the sym-
metry to be generated.
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Since we focus on the z = 3 case, we can write the potential action as

SV =

∫
dtd3x

√
γNc

(
M2

UV V2 + V4 +
V6

M2
UV

)
, (2.10)

where MUV is the energy scale associated with the theory of gravity, and V2, V4

and V6 are the potential pieces of dimension 2, 4 and 6 respectively. MUV is
usually taken to be the Planck scale MUV = Mpl. This is not necessarily the case,
however, as we will discuss in Chapter 3. The exact form of these potentials will
depend upon the vat of the theory we consider.

We now go on to review Hořava gravity and the associated literature. This will
also give us a chance to explore the different variations of the theory and their
relative merits.

2.3 Variants and viability

Hořava’s proposal of a power-counting renormalisability prompted a flurry of ex-
citement. But is it too good to be true? We now consider the viability of Hořava
gravity, and the pros and cons of variants existing in the literature.

The arguments relating to a scalar field differ for gravity in some important ways.
The most important is the fact that for the scalar field we broke Lorentz invari-
ance, a symmetry of the background. However, here we are breaking a dynamical
symmetry of the theory. In addition, it is a spin-2, not a spin-0 theory, and so
breaking this dynamical symmetry generically introduces new degrees of freedom,
as we discussed in Chapter 1. When we take the GR limit, how does this mode be-
have? In particular, does it decouple or become strongly coupled? The behaviour
of this extra mode will turn out to be key when we discuss the viability of the
several variants of Hořava’s theory.

Strong coupling is not only a problem in that it prevents us matching to GR
observations such as binary pulsars (depending on the scale at which strong cou-
pling occurs), but also it indicates a breakdown of the perturbative expansion
in the QFT. Hořava gravity assumes a valid perturbation expansion to argue for
renormalisability. Without one, there is no reason to believe the theory is renor-
malisable.

In order to match GR, we require the parameter λ→ 1 under the RG flow in the
IR. However, no calculation of the RG flow behaviour in Hořava gravity has been
performed, and there are other phenomenological results constraining the RG flow
[93]. The renormalisablity of the theory beyond power counting has never been
demonstrated, as it is generally more difficult to construct renormalisable theories
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of higher spin fields. This issue has not been discussed much in the literature,
though Chapter 4 does touch upon the question of renormalisability once matter
is included in the theory.

Lorentz invariance is well tested up to the Planck scale, as the effects of Lorentz
violation are expected to propagate down to low energies [94–97]. It also appears
that in order for apparent Lorentz invariance to return in the IR, one needs to fine
tune various co-efficients in the theory [98]. Not only must Hořava gravity explain
why gravity and light appear to have the same propagation speed, but fine tuning
seems to be required to explain why all particles observe the same limiting speed
c at low energies [99, 100]. This issue will be examined in more detail in Chapter
4.

A more theoretical issue related to Lorentz invariance is that conventionally, par-
ticles’ spins are determined via the representation of the Lorentz group they trans-
form under. With Lorentz invariance only an accidental symmetry it is not obvious
what particles’ ‘spin’ truly means in Hořava gravity.

Before we discuss the variants of the theory, note that while in this thesis we are
concerned with treating Hořava gravity as a fundamental theory of gravity, not all
of the literature has focused on this possibility. There is a proposal that Hořava
gravity is the continuum limit of a discrete model of quantum gravity, causal dy-
namical triangulations [101]. Evidence has been presented to promote this view,
including the similarity of the phase diagram [102] and numerical evidence that
both spacetimes exhibit the same spectral dimension behaviour [103]. In addition,
an analogue of the AdS-CFT correspondence in Hořava gravity has attracted in-
terest. In this case, Hořava gravity corresponds to the bulk gravity theory, with
an anisotropic QFT living on its boundary [104, 105].

2.3.1 Detailed balance

Hořava originally proposed the organising principle of ‘detailed balance’, to help re-
duce the number of terms appearing in the theory. Its motivation was the analogy
to condensed matter theories, which have detailed balance alongside anisotropic
scaling [87]. The potential is restricted to be of the form

EijGijklEkl

where Gijkl is the inverse of the DeWitt metric Gijkl = γi(kγl)j − λγijγkl, and Eij

is derivable from an action principle. This means that √γEij = δW
δγij

for some
action W . Hořava used this to argue that the appropriate form of the dimension
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six potential was

SV6 =

∫
dtd3x

√
γNc

(−M2
pl

w4

)
CijC

ij

where Cij is the Cotton tensor, Cij = εik
lDk

(
R

(3)
jl − 1

4
R(3)δjl

)
. The Cotton tensor

can be derived from the Chern-Simons action,

W =
1

w2

∫
Σ

Tr

(
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
.

This turns out to be the only suitable candidate satisfying detailed balance and
containing three spatial derivatives (and hence z = 3 scaling in the UV) [87].
One can add the term µ

∫
d3x
√
γ(R − 2Λ) to the action W to introduce relevant

deformations, allowing the z = 3 theory to mimic GR at low energies.

However, this principle has now been abandoned in most work due to a variety of
inconsistencies. Strong coupling at all scales appears to be an inevitable feature
of Hořava gravity if we assume detailed balance [106] and take the GR limit, pre-
venting us matching it to observations [27]. This also leads to problems in trying
to match the spherical solutions of the theory to general relativity in the infrared
limit; namely GR is not recovered at large distances [107, 108]. This is because
one cannot just neglect the higher order terms, due to the strong coupling [106].
In addition, one is forced to have a cosmological constant of the wrong sign, unless
either detailed balance is abandoned or certain parameters are analytically con-
tinued to complex values [107, 109, 110]. Without this, scale invariance is broken
in the cosmological perturbations [109]. Cosmology also strongly disfavours the
detailed balance scenario, with an extra fine tuning of the cosmological constant
necessary to match ΛCDM observations [111].

However, a more recent paper [112] has argued that many of the above issues
lie in projectability rather than detailed balance itself, and the non-projectable
theory with detailed balance is (mostly) healthy. However, the issue of the large,
negative cosmological constant required still results in problematic phenomenology
for detailed balance. There is no current candidate for a suitable replacement as
an ordering principle, and so abandoning detailed balance results in the theories
containing a plethora of potential terms, with arbitrary coefficients.

2.3.2 Projectable theory

As mentioned, there are two distinct variants of Hořava’s theory. The projectable
branch restricts N = N(t), to match the restriction of reparametrisations of time
to t→ t̃(t). This has the advantage of ensuring that the constraint algebra of the
theory closes, which did not occur for the original non-projectable theory [113], as
we will discuss below.
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Even with detailed balance abandoned, the restriction of N = N(t) is enough to
restrict the potential to just eight terms5,

SV =

∫
dtd3x

√
γNc

[
M2

plR+A1(R
(3)
ij )2+A2(R(3))2+

B1

M2
pl

(R(3))3+
B2

M2
pl

R(3)(R
(3)
ij )2

+
B3

M2
pl

R(3)i

jR
(3)j

kR
(3)k

i +
B4

M2
pl

R(3)4R(3) +
B5

M2
pl

(DiR
(3)
jk )2

]
, (2.11)

where Ai, Bj are dimensionless coefficients. This action is sufficiently simple that
it can be studied in generality [114].

However, the projectable theory faces a serious ghost and instability problem,
arising from the extra degree of freedom in the theory [115]. It turns out that one
is forced to make a choice between a ghost mode (for λ ∈ (1/3, 1)) or a tachyonic
instability (for λ < 1/3 or λ > 1)6 [116]. On theoretical and observational grounds,
the tachyonic instability is less problematic, provided that the instability is not
too strong [117]. However, it turns out that when the λ→ 1 (GR limit) is taken,
the theory becomes strongly coupled [116, 118], meaning that we require a lot
of fine tuning to avoid the instability spoiling the theory. However, on de Sitter
space the ghost free branch appears to be free of tachyonic instabilities [119]. This
is analogous to the situation in massive gravity, where the vDVZ discontinuity
disappears in a background with a non-vanishing cosmological constant, and when
we take m → 0 faster than the vacuum curvature Λ → 0 [120, 121]. However, in
Hořava gravity this still requires fine tuning to avoid the instability. The associated
constraints can be considered phenomenological constraints on the RG flow [93].

Recall from Section 1.4.3 that strong coupling can sometimes be considered bene-
ficial for theories due to the resulting Vainshtein effect. [122] performed a gradient
expansion, indicating the presence of a Vainshtein effect in this case. In addition,
[122] also argues that despite the theory becoming strongly coupled in the stan-
dard perturbative expansion, the existence of the valid gradient expansion may
mean that the arguments for power counting renormalisability still hold (though
the resulting action is non-local), though it is not clear that this is the case.

Forcing λ to be very close to one also results in problems with Čerenkov radiation7.
For λ ∼ 1, the phase velocity of the additional mode is given by v2 ≈ 1−λ. Clearly

5Strictly speaking it depends on when one imposes the projectability condition. If it is only
imposed via the equations of motion (i.e. on shell), then the potential can contain many more
terms, since the quantum mechanical path integral should consider off-shell fluctuations.

6One has to treat the cases λ = 0 and λ = 1/3 separately, however they are still not well
behaved.

7Recall that the most familiar case of Čerenkov radiation involves charged particles moving
through a medium faster than the phase speed of light in that medium. The particle produces a
shock wave analogous to that of a supersonic wave, producing distinctive radiation, losing energy
in the process.
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as λ → 1, v → 0. Therefore any high-speed particles moving through a region
where this scalar field is non-zero should Čerenkov radiate, yet we observe high
energy rays which travel vast distances without decaying away [123].

The cosmology of the projectable theory presents interesting features. Much of
present time cosmology is unchanged, since only the lowest order derivatives mat-
ter. However, the theory offers a candidate for dark matter, namely an integration
constant [124]. This possibility arises since the Hamiltonian constraint is no longer
H = 0, as in GR, but is instead non-local,

∫
d3xH = 0, so a homogeneous com-

ponent can be freely added to the Hamiltonian. This is a direct result of N only
being a function of time; the relevant δ-function only kills off the temporal rather
than spatial integrals.

Considering early universe cosmology results in significant changes to the stan-
dard model. The modifications to gravity can be interpreted as an effective fluid,
resulting in dark radiation (w = 1/3) and stiff matter (w = 1) contributions,
important in the early universe [125]. Hořava gravity is able to reproduce a scale
invariant spectrum without inflation: one needs only an expanding universe rather
than an accelerating one, as a result of the change in the dispersion relation at
high energies [126]. It is expected that O(1) oscillations ∝ kz will appear in the
cosmological perturbations, but the frequency of these is so high it is unlikely that
they will be observable in future experiments [127]. Bouncing and cyclic cosmol-
ogy models also arise in Hořava gravity, since the higher curvature terms become
important in the early universe [128].

The projectable theory can be considered as a ghost condensate model, demon-
strating the existence of issues with caustics — the theory breaks down in finite
time [118]. Mukohyama disputes this, arguing that the theory is free of caus-
tics due to higher derivative terms [129], but the authors of [118] argue that the
presence of higher derivatives does not affect their conclusions.

It is worth noting that the projectability condition means that while projectable
spacetimes cannot be converted into non-projectable ones and vice-versa, GR solu-
tions can always be locally made projectable and for the most interesting physical
solutions (Schwarzschild, Reissner-Nordström, Kerr, FLRW — all of which are
static or conformally static) this can be done globally [99].

It is, however, not clear how to directly link the IR limit of the projectable theory
and GR, due to the restriction of N to be a function solely of time [107]. In
addition, the non-locality of the Hamiltonian constraint indicates the absence of
local energy conservation in the theory.
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2.3.3 Non-projectable theory (original form)

The original formulation8 of the non-projectable theory neglected the ai terms, so
this section considers the theory in their absence, before discussing their presence
in Section 2.3.4.

In this case, the theory is sick. There are issues with the constraint algebra, in-
cluding the fact that the constraint algebra does not close, is five-dimensional [113]
(and so corresponds to two and a half degrees of freedom) and the lapse function
is over-constrained [130]. In addition, there are phenomenological concerns. The
theory becomes strongly coupled at all scales as one takes the GR limit [106, 118].
This is most simply seen in the relativistic Stückelberg formulation (which will be
discussed more fully in Section 3.2). In the IR limit, where the 4 and 6-dimensional
terms are not relevant, the theory can be written

S = SGR +
(1− λ)

l2pl

∫
d4x
√
−gK̂2. (2.12)

At this point, we can insert the Stückelberg field φ using (3.6). We then expand
φ as φ = x0 + χ on a Minkowski background, since the condition φ = const for
the hypersurfaces replaces t = const. To cubic order, one obtains [118]

S = SGR +
(1− λ)

l2pl

∫
d4x

[
(4χ)2 + 2χ̇

(
4χ)2 + 2∂iχ∂i4χ)

)]
. (2.13)

Canonically normalising this results in the strong coupling scale, Λ =
√
|1− λ|/lpl.

Clearly as the GR limit λ → 1 is taken, this strong coupling scale goes to zero.
However, it might be argued that the extra mode is non-dynamical, since no time
derivatives appear at quadratic order, and so it could be integrated out [131, 132].
If this were correct, then strong coupling is not an issue, but this is not the case.
[118] showed that if you expand on a nearly flat but non-trivial background (of
background curvature L), you obtain the schematic action,

S = SGR + Λ

∫
d4x

[
L2viχ̇∂iχ+ (4χ)2 + χ̇(4χ)2

]
, (2.14)

where vi is a unit vector along the extrinsic curvature gradient. This exhibits
strong coupling at a scale Λ′ = |1−λ|3/8/(L1/4l

3/4
pl ). This action now features time

derivatives at the quadratic level, and so is dynamical. This shows that the the
strong coupling scale not only tends to zero in the GR limit λ → 1, but also in
the Minkowski limit L→ 0.

8In some sense, the ‘original’ and ‘extended’ versions of Hořava’s theory are the same theory,
as ai terms will be generated by quantum corrections and so the ‘extended’ theory is just the
‘original’ theory written in a fully consistent way. However, we make the distinction here as it
is important in the context of the history and literature of the theory.
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It is also worth noting that the action (2.14) only contains one time derivative in
the quadratic piece, which is unusual. It has been conjectured that this is related
to the odd dimensionality of the phase space [118]. This is disputed by [113], who
question whether it is valid to perform direct comparisons of the perturbative and
exact degrees of freedom.

Because of these concerns, this variant of the theory is no longer considered con-
sistent, and so non-projectable Hořava gravity is now studied in the form of the
so-called ‘extended’ non-projectable theory, which we now discuss.

2.3.4 Extended non-projectable theory

As noted by [118], the above analysis of the non-projectable theory does not hold
if terms of the form ai ≡ ∂i logN are included in the theory. One can then add
a large number of extra terms to the theory, including the dimension two piece
αaiai (where α is constant). This provides an additional term in the IR limit
compared to (2.12). This ensures that unlike the projectable theory, there is a
region of parameter space where the extra mode is ghost-free and avoids tachyonic
instabilities, λ > 1 and α ∈ (0, 2) [117]. This region is consistent with the hope of
the RG flow restoring a GR-like régime via λ → 1, α → 0 in the IR. However, it
has been claimed that one needs λ < 1/3 (contradicting GR) to be ghost free and
have a stable vacuum from stochastic quantisation arguments [133].

It was further claimed in [117] that this suffices to make the theory free of strong
coupling, resulting in it being deemed a ‘healthy extension’ of Hořava gravity.
However, Sotiriou and Papazoglou [134] considered the low energy limit of this
theory and showed that it too suffered from problems with strong coupling, by
considering only the lowest-order derivatives. In response, the original authors
have argued that the strong coupling scale might exceed the cut-off scale for their
derivative expansion and thus be rendered meaningless [135]. Obviously, one could
force this to be the case by introducing a new scale in the theory. However
it is worth asking whether or not this is actually necessary, and if so, to what
degree — can the strong coupling scale be raised, or removed altogether, simply by
including higher-order interactions, but without introducing large dimensionless
parameters? One can also question the naturalness of the hierarchy of scales
introduced when one attempts this in the extended version of Hořava gravity. A
new lower energy scale will also result in Lorentz violating effects kicking in at lower
energies, potentially causing contradictions with experimental measurements. In
particular, the lowest scale of Lorentz violation in the gravity sector should not
induce violations at the same scale in the matter sector, due to constraints from
synchrotron radiation from the Crab Nebula [136].
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In Chapter 3 we consider these questions in more depth, addressing them in a
convenient limit where the extra modes and GR decouple.

The homogeneous and isotropic cosmology of the non-projectable theory coin-
cides with that of the projectable theory — FLRW corresponds to a projectable
spacetime and spatial derivatives of N vanish. However, since the Hamiltonian
constraint is now local, dark matter can no longer result from an integration con-
stant.

An interesting relation exists between Hořava gravity and Einstein-æther theory
[137]. Einstein-æther contains a unit timelike vector field in addition to the metric
tensor of GR. Restricting this vector to be hypersurface orthonormal recovers the
IR limit of the extended version of Hořava gravity. This allows a number of results
to be carried over from Einstein-æther theory, including spherical solutions [137]
and slowly rotating black holes [138].

2.3.5 Hořava gravity with an extra U(1) symmetry

A third variant of Hořava gravity was proposed in [139]. The starting point is
to note that for the projectable theory, the action (2.9) has an Abelian symmetry
present at the linearised level about Minkowski. With an expansion N = 1 + n,
Ni = ni, γij = δij + hij, the Abelian symmetry acts as

δαni = ∂iα, δαhij = δαn = 0. (2.15)

The symmetry is a global one, so α is constant in time, α̇ = 0. It will be denoted
U(1)Σ, since α corresponds to a symmetry for each slice Σ of the foliation.

Acting with (2.15) on (2.9) (with c = 1) results in the linearised action

δαSgrav = −2M2
pl

∫
dtd3x4α

[
(1− 3λ)ζ̇ − (1− λ)4β

]
, (2.16)

where ζ is the trace of the metric tensor γij and δiβ is the scalar perturbation
in Ni. If one sets λ = 1 and uses integration by parts to write the first term as
(1 − 3λ)ζ4α̇, then since α̇ = 0 this means that the linearised action is invariant
under this symmetry.

This linearised symmetry only appears when λ = 1, and so this symmetry may
help provide a mechanism to force this to one and hence have a GR-like action.
Not only this, but the gauging of this extra symmetry will help us to kill off the
non-tensor degrees of freedom, eliminating the pathological modes arising from the
loss of Lorentz symmetry. This is not in contradiction with Lovelock’s theorem
since we have broken Lorentz invariance.
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This is only, however, a linearised symmetry on a specific background. General-
ising the non-trivial pieces of the symmetry generators to arbitrary background
leads to an obstruction to the global symmetry — a piece of the action which does
not transform appropriately. This can be ‘undone’ by introducing a new scalar
field ν, which transforms as δαν = α. Having restored the global symmetry, one
is able to introduce a gauge field A and gauge the symmetry via the Noether
procedure.

One therefore obtains a theory consistent with Hořava’s original idea, but with only
two (tensor) propagating degrees of freedom, and λ ≡ 1. Maximally symmetric
and (projectable) Schwarzschild solutions solve the theory, which is favourable for
solar system tests.

Unfortunately for the theory, matter coupling is problematic [140]. The A equation
of motion forces R to be constant, which is fine in vacuum, but not with matter
present in the theory. Therefore, one cannot just minimally couple matter in the
usual approach to obtain consistent phenomenology; you are forced to introduce
a coupling between the gauge field A and matter. This coupling is particularly
problematic for cosmology since [A] = 2z − 2, while time derivatives correspond
to dimension z. Any coupling of the two will lead to a term of dimension 3z − 2,
which is an irrelevant operator in our case (z = 3). While relevant terms can
be built with spatial derivatives, in cosmology the isotropy and homogeneity of
FLRW geometry forces spatial derivatives to vanish, and the matter fields to
depend only on time. However, the matter and gravity sectors cannot be coupled
with time derivatives in the theory, ruling out usual FLRW cosmology (unless
H = 0). Extending the minimal substitution rule proposed in [140] for the theory
also indicates that Newtonian gravity is not restored in the weak-field limit [141].

In addition, it turns out that the scalar field ν is too good at its job [140]. The
symmetry of the linearised theory on Minkowski required λ = 1 and we then
introduced ν to allow the symmetry to appear on more general backgrounds. But
this trick actually results in the global symmetry being present for any λ — ν is
too powerful a tool for the job!

Despite this freedom in λ, the scalar modes are still eliminated by the gauge
symmetry. It would be an interesting exercise to perform a Stückelberg analysis
of the theory to understand what happens to the disappearing Stückelberg mode.
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2.4 Outlook

In a relatively short space of time, Hořava gravity has become a popular and
well-studied paradigm as a quantum gravity model. In this chapter, we have seen
why this theory may stand a hope of being renormalisable, before going on to
more precisely formulate the theory. After this, we looked into the viability of
the theory, reviewing the associated literature. We demonstrated that there were
dangerous shortfalls in several variants of theory. For the most part (but by no
means exclusively), these arose from the additional degree of freedom.

From this point onwards we concern ourselves with the ‘extended’ non-projectable
Hořava theory. This appears to have the greatest potential for being ‘healthy’ —
the extra mode can be ghost-free and stable, matter can be consistently coupled,
the cosmology is viable and there may be no strong coupling concerns. The fol-
lowing two chapters will further investigate this model. Mostly pure gravitational
aspects, including strong coupling and the necessity of introducing a hierarchy of
scales will be considered in Chapter 3. Hořava gravity plus matter content will be
considered in Chapter 4, including how to build DiffF(M) invariant actions and
the effect of quantum corrections on the matter sector.
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Extended Hořava gravity and the
Decoupling Limit

Having reviewed Hořava gravity generally, we now consider the ‘extended’ non-
projectable theory and discuss the properties of the extra degree of freedom. In
particular, we will focus on strong coupling and whether one is forced to introduce
a hierarchy of scales into the theory. This chapter is based on the paper [1].

3.1 Introduction

In the previous chapter, we discussed disputes surrounding strong coupling in
the ‘extended’ version of Hořava gravity [117]. Does strong coupling appear in
the theory, or is the derivative cutoff in [134] invalid [135]? In particular, can
strong coupling be avoided without introducing a new scale into the theory? Is
there a Vainshtein mechanism at work in Hořava gravity? Does it help with
phenomenology?

These questions revolve around scalar degrees of freedom in the theory. In this
chapter we address these and other issues directly by isolating the troublesome
extra degree of freedom and studying its properties. This can be done using the
Stückelberg trick to fully restore diffeomorphism invariance to all orders, along
the lines proposed in [118, 142]. To drastically simplify the analysis we will
take a limit in which the Stuckelberg field decouples completely from the spin-2
sector. The decoupled Stückelberg theory ought to capture most of the interesting
physics associated with strong coupling, as well as the possible presence of ghosts
and other pathologies1.

1Surprisingly, it turns out one cannot hope to capture the proposed resolution of strong cou-
pling presented in [135] unless one retains some coupling between the graviton and the Stuckel-
berg mode.
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Chapter 3: Extended Hořava gravity and the Decoupling Limit

Our starting point is the full action for Hořava gravity, which is given by2 [86, 87,
114, 117]

S = Sgrav + Sm, (3.1a)

Sgrav = l2pl

∫
dtd3x

√
γNc

(
KijK

ij − λK2
)

+ SV , (3.1b)

SV =

∫
dtd3x

√
γNc

(
1

l2UV
V2 + V4 + V6l

2
UV

)
, (3.1c)

with Sm is the generalised matter action. The potential terms are built from
R

(3)
ij and ai ≡ ∂i logN , plus derivatives and contractions. All possible terms of

dimension 2, 4 and 6 which are inequivalent (unrelated by integrations by parts,
Bianchi identity, etc.) and not total derivatives must be included in the action,
since this corresponds to the full set of terms satisfying our symmetries. The
dimension two and four potential pieces can be written explicitly,

V2 = α(aiai) + βR(3), (3.2a)

V4 = A1(aiai)
2 + A2(aiai)a

j
j + A3(aii)

2 + A4a
ijaij

+B1R
(3)aiai +B2R

(3)
ij a

iaj +B3R
(3)aii + C1(R(3))2 + C2(R

(3)
ij )2, (3.2b)

where we have introduced aij ≡ ∂i∂j logN . The dimension six piece contains of
order sixty terms, so will not be written down explicitly. Note that the term β is
not physically relevant — it can be set to any non-zero value by rescaling time.
We will use this freedom later to set it to a convenient value. Our full theory is
then (3.1) along with (3.2).

3.2 The Stückelberg formulation

The Stückelberg trick can be used to covariantise Hořava’s theory, allowing a 4D

formulation as opposed to the 3 + 1 ADM formalism [118, 142]. This covariant
Stückelberg formalism allows for very easy separation of the Stückelberg mode and
understanding of its dynamics. We start with the action of the ‘extended’ version
of Hořava’s theory (3.1).

The first (albeit trivial) step is simply to undo the anisotropic scaling in the coor-
dinates by introducing x0 = ct. We can now introduce spacetime coordinates and
four-vectors xµ = (x0,x). Each component now has the same scaling dimension.

The non-relativistic nature of the theory is also encoded in the fact that the
spacelike hypersurfaces in the theory are specified by t = const. We want to

2Note that we work with the Planck length, lpl = 1/Mpl and UV length lUV = 1/MUV in
this chapter.
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remove this explicit breaking of diffeomorphism invariance, and the price to pay
will be introducing the extra Stückelberg degree of freedom. The foliation is
redefined so that

t = const→ φ(x) = const. (3.3)

The foliation-preserving diffeomorphism condition implies that the action is invari-
ant under changes of the form φ(x)→ f(φ(x)). We can now construct a covariant
action, by making use of projection operators and the Gauss-Codazzi relations
[20].

To start, we introduce a unit normal to the foliation,

uµ =
∇µφ

X
, X =

√
−∇µφ∇µφ. (3.4)

Our indices are now full spacetime indices, and ∇µ is the full spacetime covariant
derivative.

We promote the induced metric on the spatial slices to a covariant 4D projector
onto the slices,

γij → γµν = gµν + uµuν . (3.5)

It is simple to promote the extrinsic curvature to a four tensor, by using the fact
that it is the Lie derivative of the metric along the normal,

1

c
Kij → Kµν =

1

2
£uγµν = γα(µγ

β
ν)∇αuβ. (3.6)

In order to promote the Riemann tensor, one uses the Gauss-Codazzi relation and
its contractions,

R
(3)
ijkl → Rµνρσ = γαµγ

β
ν γ

γ
ργ

δ
σRαβγδ −KµρKνσ +KνρKµσ, (3.7a)

R
(3)
ij → Rµν = R λ

µλν = γαµγ
γ
νγ

βδRαβγδ −KµνK +KµλKλν , (3.7b)

R(3) → R = γαγγβδRαβγδ −K2 +KµνKµν , (3.7c)

where we have introduced the 4D Riemann tensor Rαβγδ and a ‘covariant 3D

Riemann tensor’ R σ
µνρ .

We will also use the standard rules relating derivatives on embedded hypersurfaces
to those in the full space [20],

DkT
i1···im

j1···jn → DρT
µ1···µm

ν1···νn = γµ1α1
· · · γµmαmγ

β1
ν1
· · · γβnνn γ

σ
ρ∇σT

α1···αm
β1···βn ,

(3.8)
and these allow us to write

ai → aµ = uλ∇λuµ (3.9a)

aij → aµν = γα(µγ
β
ν)∇αaβ. (3.9b)
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Using this, one can rewrite the action (3.1) as

S =
1

cl2pl

∫
d4x
√
−g
[
R(4) + (1− λ)K2

]
+ SV

= SGR + ∆SK + ∆S2 + ∆S4 + ∆S6 + Sm (3.10)

where
SGR =

1

l2pl

∫
d4x
√
−gR(4) (3.11)

is the emergent GR piece, and the beyond GR terms are

∆SK =
1− λ
l2pl

∫
d4x
√
−g K2 (3.12a)

∆S2 =
1

l2UV

∫
d4x
√
−g αaµaµ +

(
β − l2UV

l2pl

)
R (3.12b)

∆S4 =

∫
d4x
√
−g V4 (3.12c)

∆S6 = l2UV

∫
d4x
√
−g V6 (3.12d)

where

V4 = A1(aµaµ)2 + A2(aµaµ)aνν + A3(aµµ)2 + A4a
µνaµν

+B1Raµaµ +B2Rµνa
µaν +B3Raµµ + C1R2 + C2RµνRµν . (3.13)

As before, we will not attempt to write down V6. At this stage we use the fact that
the precise value of β is physically irrelevant and set β =

l2UV
l2pl

, thereby eliminating
the last term in ∆S2. The matter coupling is Sm = Sm[gµν , φ; Ψ], whose form we
will now discuss.

3.2.1 Matter coupling

An important question for Hořava gravity is how matter couples to the theory.
In general relativity, the coupling is determined by demanding that the matter
action be invariant under spacetime diffeomorphisms. Obviously this argument
does not carry over to Hořava gravity, due to the reduced symmetry in the theory.
It should also be noted that the argument here holds in both the projectable and
non-projectable theory3, and was first performed in [1].

The calculation follows the same lines as it does in general relativity. The overall
action can be written S = Sgrav[gµν , φ] + Sm[gµν , φ; Ψ], where Ψ are the various
matter fields appearing in the matter action. The overall action is required to be

3However, it does not apply to the variant with the extra U(1), whose matter coupling differs.
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invariant under foliation-preserving diffeomorphisms. Sgrav is the Hořava gravity
action, invariant by construction and so δDiffFSgrav = 0. So to have δS = 0 overall4,
we require that δSm = 0. Varying Sm results in

δSm =

∫
d4x

(
δSm
δgµν

δgµν +
δSm
δφ

δφ+
∑
i

δSm
δΨi

δΨi

)

=

∫
d4x

(
1

2

√
−gT µνδgµν +

δSm
δφ

δφ

)
, (3.14)

where the energy-momentum tensor T µν takes it usual definition, and the final
term on the first line vanishes by the Euler-Lagrange equations for the matter
fields.

Under a diffeomorphism generated by a vector field ξµ, xµ → xµ − ξµ, the metric
and Stückelberg field5 transforms as

δgµν = £ξgµν = 2∇(µξν) δφ = £ξφ = ξµ∂µφ. (3.15)

Substituting into (3.14) and integrating by parts yields∫
d4x
√
−gξµ

(
−∇νTµν +

1√
−g

δSm
δφ

∂µφ

)
= 0, (3.16)

and so, since this must hold for arbitrary ξµ, we can see how matter couples to
the Stückelberg field

1√
−g

δSm
δφ

= −uν
X
∇µT

µν (3.17)

where we have used X2 = −∇νφ∇νφ and uν = ∇νφ/X. By substituting this
expression for 1√

−g
δSm
δφ

back into (3.16) and rearranging, one obtains

γλν∇µT
µν = 0. (3.18)

This expression explicitly demonstrates that we no longer have full energy-momentum
conservation in Hořava gravity. This is in line with the result from the pertur-
bative analysis carried out in [106]. We can explicitly see how it is violated —
it is only required that the projection of ∇µT

µν onto our spacelike hypersurfaces
vanishes. In the case where φ = x0 (our hypersurfaces are of constant time) the
relevant constraint on T µν is ∇µT

µi = 0. However, it is allowed that ∇µT
µ0 6= 0,

which has particular relevance for cosmology, since this affects the conservation of
energy equation for a perfect isotropic fluids, so ρ̇+ 3(ρ+ p) 6= 0.

4We drop the DiffF subscript for the rest of this section to avoid clutter.
5The change of coordinates xµ → xµ − ξµ will produce a shift δφ → δφ − ξµ∂µφ in the

Stückelberg field. This in general spoils the foliations, since they are defined by φ = const. Hence
we must undo this change. Thus, we require the transformation φ(x)→ φ̃(x̃) = φ(x̃) + ξµ∂µφ.
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3.3 Decoupling limit

Another common tool in analysing modified theories of gravity is taking a decou-
pling limit. One considers some limit in the theory such that the Stückelberg and
general relativistic fields decouple, allowing one to study the dynamics of the new
field independently of the known GR dynamics. It is reasonable to consider this
limit, since for compatibility with standard GR we expect at large distances that
gravity is mediated by a massless graviton propagating at the emergent speed of
light c seen by all other particle species.

An example of its use is in DGP gravity [84]. In that case there is a strongly
coupled scalar and the key physics can be seen by taking the decoupling limit in
which the Planck length is sent to zero, but the scale of strong coupling remains
fixed. This isolates the scalar mode from the standard gravitational piece [143,
144]. We will do the same for Hořava gravity shortly.

In Hořava gravity, we hope to recover GR in the limit λ→ 1, α→ 0, however other
studies [134] suggest that the Stückelberg field becomes strongly coupled in this
limit. However, a question remains whether the truncation of higher derivatives
leads one falsely to the conclusion that the theory is strongly coupled [135]. Taking
a decoupling limit allows us to investigate, while keeping terms of all relevant
orders.

We begin by assuming that the Lorentz symmetry breaking scale is roughly Planck-
ian, which is reasonable on the grounds of naturalness to avoid introducing a new
scale into the theory. So, without any further loss of generality, we will take
lUV = lpl for the remainder of this chapter. We now introduce two new length
scales

lλ =
lpl√
|1− λ|

, lα =
lpl√
|α|

. (3.19)

In the decoupling limit, lpl → 0, these scales will be held fixed. Of course, this
requires that λ→ 1 and α→ 0 which is consistent with their expected running in
the infra-red, and will ensure that only SGR contributes to the graviton dynamics.
However, by holding the scales (3.19) fixed we enable ∆SK and ∆S2 to contribute
to the Stückelberg dynamics, along with ∆S4. The two dynamical sectors com-
pletely decouple as lpl → 0, with all the interesting phenomenology appearing in
the Stückelberg sector.

We expand about Minkowski, in terms of a canonically normalised graviton, hµν ,

gµν = ηµν + lplhµν , (3.20)
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and now raise and lower indices with the Minkowski metric. It then follows that

SGR = −
∫
d4x

1

2
hµνEhµν +O(lpl) (3.21a)

∆SK =
sgn(1− λ)

l2λ

∫
d4x K̃2 +O(lpl) (3.21b)

∆S2 =
sgn(α)

l2α

∫
d4x ãµãµ +O(lpl) (3.21c)

∆S4 =

∫
d4x Ṽ4 +O(lpl) (3.21d)

∆S6 = O(l2pl) (3.21e)

Sm = Sm[ηµν , φ,Ψ] + lpl

∫
d4x

1

2
hµνT

µν +O(l2pl), (3.21f)

where Ehµν is the Einstein tensor linearised about Minkowski, and

K̃µν =

(
δαµ +

∂αφ∂µφ

X̃2

)(
δβν +

∂βφ∂νφ

X̃2

)
∂α∂βφ

X̃
, K̃ = ηµνK̃µν (3.22a)

X̃ =
√
−∂µφ∂µφ, (3.22b)

ãµ =

(
δαµ +

∂αφ∂µφ

X̃2

)
∂βφ∂α∂βφ

X̃2
(3.22c)

Ṽ4 = A1(ãµãµ)2 + A2(ãµãµ)ãνν + A3(ãµµ)2 + A4ã
µν ãµν

+B1(K̃µνK̃µν − K̃2)ãµãµ +B2(K̃µαK̃αν − K̃K̃µν)ãµãν

+B3(K̃µνK̃µν − K̃2)ãµµ + C1(K̃µνK̃µν − K̃2)2

+ C2(K̃µαK̃αν − K̃K̃µν)(K̃
µ
βK̃

βν − K̃K̃µν)

(3.22d)

ãµν =

(
δαµ +

∂αφ∂µφ

X̃2

)(
δβν +

∂βφ∂νφ

X̃2

)
∂(αãβ). (3.22e)

Variation of the matter action with respect to the Stückelberg field gives

δSm
δφ

= − ũν∂µT
µν

X̃
+O(lpl), (3.23)

where ũµ = ∂µφ/X̃. The violation of energy-momentum conservation has some
characteristic scale Γ, given by

Γ =

√
∇µT µν∇λTλν
TαβTαβ

, (3.24)

or schematically ∇T µν ∼ ΓT µν . We will typically take Γ to be much smaller than
the overall scale of the energy-momentum tensor. Indeed, by taking Γ . H0,
where H0 is the current Hubble scale it can be argued that violations of energy-
momentum conservation would not have been detected during the universe’s life-
time.
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We are now able to take our decoupling limit by simultaneously taking the follow-
ing limits,

lpl → 0, α→ 0, λ→ 1, T µν →∞, Γ→ 0, (3.25)

whilst keeping lα, lλ, lplT µν and ΓT µν finite. We thus arrive at the decoupled
Hořava action

S = Sgraviton + SStuckelberg (3.26)

where
Sgraviton = −

∫
d4x

1

2
hµνEhµν + lpl

∫
d4x

1

2
hµνT

µν (3.27)

and

SStuckelberg =

∫
d4x

[
sgn(1− λ)

l2λ
K̃2 +

sgn(α)

l2α
ãµãµ + Ṽ4

]
+ Sm[ηµν , φ,Ψ], (3.28)

where we use our t̃ilde notation to make explicit we are working with the decoupled
quantities. From this point onwards we take no interest in the graviton action
(3.27), since the dynamics are clearly identical to GR.

We can derive the equations of motion for the Stückelberg field from the action
(3.28),

∂ν

(
γ̃µν

ρµ

X̃

)
=
ũν∂µT

µν

X̃
, (3.29)

where γ̃µν = ηµν + ũµũν and

ρµ = λν∂µũν − ∂ν (ũνλµ)− ∂ν (µµν) + ãνµ
µν

+ 2λρσu(ργ̃σ)ν∂
µãν + 2λµσũ(αγ̃β)

σ ∂αãβ,
(3.30)

where for ease of reading the equation we leave ρµ written implicitly in terms of

λµ = ∂ν

(
∂Ṽ4

∂ãρσ
γ̃ν(ργ̃

µ
σ)

)
− 2

sgn(1− λ)

l2λ
K̃ũµ

− ∂Ṽ4

∂K̃µν
ũν − 2

sgn(α)

l2α
ãµ − ∂Ṽ4

∂ãµ
,

(3.31a)

λµν = − ∂Ṽ4

∂ãµν
, (3.31b)

µµν = −2
sgn(1− λ)

l2λ
K̃ηµν − ∂Ṽ4

∂K̃µν
. (3.31c)

The derivatives of the potential are given in Appendix A.1. The right-hand side
of (3.29) goes like ΓT µν and, as such, remains finite. Note further that the Stück-
elberg equation of motion (3.29) is invariant under φ → f(φ), as required by
foliation preserving diffeomorphisms. In principle one could use this equation to
study the response of the Stückelberg field to the presence of a non-trivial source.
In particular one can ask whether or not the Stückelberg field gets screened at
short distances due to the Vainshtein effect, and we will return to this issue later.
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3.4 Perturbations of the Stückelberg field

We now consider fluctuations of the Stückelberg field about the vacuum, φ = φ̄+χ,
where φ̄ = x0. This choice of vacuum corresponds to choosing a constant time
foliation of Minkowski space. To study the dynamics of vacuum fluctuations we
simply expand the action (3.28) order by order in χ. For now, we neglect the
contribution from the matter sector. The result is

Sχ =
∞∑
n=2

Sn[χ] (3.32)

where Sn[χ] is of order χn. On this background, āµ = āµν = K̄µν = 0. This
drastically reduces the number of terms that appear in the expansion especially
at low order. At quadratic and cubic order we find,

S2[χ] =

∫
d4x

{
sgn(1− λ)

l2λ
(∂2χ)2 +

sgn(α)

l2α
(∂iχ̇)2 + (A3 + A4)(∂2χ̇)2

}
, (3.33)

where dot is now ∂0, the spatial Laplacian is ∂2 ≡ ∂i∂i, and

S3[χ] =

∫
d4x

{
2

sgn(1− λ)

l2λ

[
−2(∂iχ̇)(∂iχ)(∂2χ)− χ̇(∂2χ)2

]
+ 2

sgn(α)

l2α

[
−χ̈(∂iχ)(∂iχ̇)− χ̇(∂iχ̇)2 − (∂iχ̇)(∂jχ)(∂i∂jχ)

]
− A2(∂iχ̇)2∂2χ̇

− 2A3

[
(∂iχ̈)(∂iχ)(∂2χ̇) + χ̈(∂2χ)(∂2χ̇) + (∂iχ̇)2∂2χ̇+ χ̇(∂2χ̇)2

+(∂2χ̇)(∂i∂
2χ)(∂iχ) + (∂i∂jχ)2∂2χ̇

]
− 2A4 [(∂iχ̈)(∂jχ)(∂i∂jχ̇) + χ̈(∂i∂jχ)(∂i∂jχ̇) + (∂iχ̇)(∂jχ̇)(∂i∂jχ̇)

+χ̇(∂i∂jχ̇)2 + (∂i∂jχ̇)(∂i∂j∂kχ)∂kχ+ (∂i∂kχ)(∂j∂kχ)(∂i∂jχ̇)
]

−B3

[
(∂i∂jχ)2∂2χ̇− (∂2χ)2∂2χ̇

] }
.

(3.34)

The quartic term also contains the following contribution

S4[χ] ⊃
∫

d4x
sgn(α)

l2α
[∂jχ∂i∂jχ]2 , (3.35)

which will prove to be of importance later.

We are now in a position to determine the conditions on λ and α to ensure the
theory is free from any number of pathologies — in particular ghosts (which vi-
olate unitarity), tachyons (which lead to instabilities), and superluminal mode
propagation (which violates causality). In addition, we will check the scale of
strong-coupling and compare it to the cut-off scale for the low energy effective
theory.
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3.4.1 Ghosts, tachyons and superluminal propagation

Let us begin by exorcising the ghost and throwing out the tachyon. To this end,
it is convenient to rewrite the quadratic action (3.33) as follows

S2[χ] =

∫
d4x

{
χ̇

(
sgn(α)

l2α
∆2 + (A3 + A4)∆4

)
χ̇+

sgn(1− λ)

l2λ
χ∆4χ

}
, (3.36)

where we have introduced the operator ∆ =
√
−∂2, which measures the magnitude

of momentum. To avoid a ghost, we require the kinetic term in the action to be
positive, and so

sgn(α)

l2α
+ (A3 + A4)∆2 > 0. (3.37)

At low energies, this means that we require α > 0 to avoid the ghost, whereas at
high energies we require A3 + A4 > 0. It now follows that a tachyonic instability
will kick in unless sgn(1 − λ) < 0, or in other words λ > 1. So, in summary to
avoid both ghosts and tachyons we require

α > 0 λ > 1.

This can be contrasted with the result obtained in [117], where the conditions were

0 < α < 2 λ > 1 or λ < 1/3.

The difference arises due to taking the decoupling limit, in which α → 0, λ → 1,
and so we only capture the behaviour near these values. Our results are clearly
consistent.

Let us now consider the possibility of superluminal propagation6. To get a handle
on the speed at which the Stückelberg mode propagates, consider the linearised
equation of motion

sgn(1− λ)

l2λ
∂2(∂2χ) +

sgn(α)

l2α
(∂2χ̈)− (A3 + A4)∂2∂2χ̈ = 0. (3.38)

Which leads to the dispersion relation

ω2 = −sgn(1− λ)

sgn(α)

(
lα
lλ

)2
k2

1 + (A3 + A4)sgn(α)l2αk
2
. (3.39)

At low energies k < 1/lα, the wave propagates with sound speed given by

c2
s = −sgn(1− λ)

sgn(α)

(
lα
lλ

)2

=
λ− 1

α
. (3.40)

6In a Lorentz violating theory, superluminal modes are not necessarily an issue. However, in
the far infra-red, our effective theory is designed to be approximately Lorentz invariant, so it is
desirable, if not essential, to prohibit superluminal propagation at low energies.
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Note that the sound speed is real in the absence of ghosts and tachyons. In
addition, to avoid superluminal propagation we also require cs ≤ 1, which gives

lα ≤ lλ =⇒ |λ− 1| ≤ |α| . (3.41)

Again, we can contrast (3.40) with the sound speed given in [117, 134],

c2
s|exact =

2− α
α

(
λ− 1

3λ− 1

)
. (3.42)

This expression was derived by working directly with the original action (3.1),
without any Stückelberg tricks. Once again we see that it is consistent with the
expression (3.40) derived here in the decoupling limit λ→ 1, α→ 0. This demon-
strates both the power and limitations of the Stückelberg trick in the decoupling
limit. It is clear that working directly with the Stückelberg action (3.28) reveals
the key physics more easily than working with the full Hořava action (3.1). This
truncation works perfectly well as long as we are happy to stay close to the limiting
values of λ and α.

From now on we will assume that λ > 1, α > 0 to avoid ghosts and tachyons, and
that the low energy speed of sound is given by cs ≡ lα/lλ ≤ 1.

3.4.2 Strong coupling

It was claimed by Blas et al that the so-called ‘healthy’ theory [117] might be
free from strong-coupling [135], contrary to the claims made in [134]. Their ar-
gument roughly goes as follows: The analysis of [134] only includes the lowest
order terms in the derivative expansion, corresponding to two-dimensional opera-
tors. Therefore, the effective theory is only valid at energies below some scale Λhd.
If the strong coupling scale derived by [134] exceeds this cut off, then it cannot
be taken seriously since higher-order operators should have been included in the
analysis [135]. They give a toy example in which an erroneous strong coupling
scale is derived in the effective theory, only to disappear when the higher-order
operators are included.

Of course, for the case of Hořava gravity, one can force a suitably low cut-off
in the derivative expansion by hand, by introducing a low energy scale, M∗, in
the higher derivative terms at quadratic order. This scale corresponds to the
new cut-off in the derivative expansion, and should lie below the would-be strong
coupling scale. In some sense this is reminiscent of string theory in that the
string scale is introduced just below the Planck scale where strong coupling would
otherwise occur in gravity. According to [134], the low energy effective theory
becomes strongly coupled at a scale 1

lα
∼
√
αMpl, so this suggests we should
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take M∗ <
√
αMpl. As experimental constraints require α . 10−7, this forces

M∗ to lie three to four orders of magnitude below the Planck scale [135]. If
the new scale appears at order 2z (in spatial derivatives), we must introduce a
dimensionless parameter of order B ∼ α(

Mpl

M∗
)2z−2 > α2−z. The proposal to avoid

strong coupling requires the scalar mode to enter a phase of anisotropic scaling,
with dispersion relation ω2 ∝ k6, below the strong coupling scale of the low energy
effective theory [135]. To get the right anisotropic scaling at the right scale, we
therefore need to introduce a large term at z = 3, with dimensionless parameter
B > 1

α
& 107.

This proposal corresponds to introducing a large dimensionless coefficient in the
potential (specifically, the six derivative piece, V6). We did not consider this possi-
bility when taking the decoupling limit, preferring instead to keep all dimensionless
coefficients of order one, on grounds of naturalness. However, even if we had in-
troduced some new scaleM∗ �Mpl and taken the limit lpl → 0 whilst holdingM∗
fixed, the dispersion relation for the Stückelberg mode would not have coincided
with the desired anisotropic scaling for the scalar mode in [135], ω2 ∼ k6/M4

∗ for
large k. To recover this behaviour using the Stückelberg approach, we need to
retain some coupling between the graviton and the Stückelberg mode, at least to
quadratic order. While this is beyond the scope of this thesis, it does illustrate
some of the limitations of the decoupling limit — the decoupling limit could never
have captured this.

Nonetheless, it is still worth asking whether or not this brute force approach is
absolutely necessary, and to what degree. Can the strong coupling scale be raised,
or removed altogether, simply by including higher order interactions, but without
introducing large coefficients? Whilst this might be possible in principle7 let us
demonstrate explicitly how it is not the case here, at least at the level of the
decoupled Stückelberg theory. To this end, and as we have already emphasised,
we will assume that all coefficients Ai, Bi and Ci are O(1), as are combinations
of these coefficients. This enables us to make definite statements in what follows,
but is also to be expected on grounds of naturalness. In contrast to [134], however,

7For example, consider the following toy model, in which we have a small kinetic term at low
energies, as in Hořava gravity, with no additional large parameters introduced,

S =

∫
d4x

(
1

2
ε2M2

pl

[
ψ̇2 − ψ∆2ψ

]
+ ψ∆4ψ +

1

M2
pl

(∆2ψ)3 +
1

M2
pl

ψ(∆2ψ)3

)
, ε� 1.

In the low energy theory, the relativistic kinetic term dominates, and the dominant interaction
becomes strongly coupled at the scale Λfalse ∼ ε2/3Mpl, which is above the low energy cut-
off at εMpl. By studying the theory at higher energies ∆ > εMpl (and canonically normalising
appropriately), it can be shown that the dominant interaction actually becomes strongly coupled
at the higher scale Λtrue ∼ ε1/3Mpl > Λfalse.

45



Chapter 3: Extended Hořava gravity and the Decoupling Limit

we will not necessarily restrict attention to the low energy effective field theory.

Now, the first thing to do is to perform a derivative expansion at quadratic order
in order to establish both the cut-off and the leading order terms in the effective
theory. We find that

S2[χ] =

∫
d4x

{
1

l2α
χ̇∆2χ̇− 1

l2λ
χ∆4χ

}(
1 +O(∆2l2α)

)
. (3.43)

Clearly then the cut off for the effective theory is given by

Λhd ∼
1

lα
. (3.44)

Cubic and quartic order interaction terms are given by (3.34) and (3.35). Generi-
cally, there are three types of terms appearing at order n, corresponding to each of
the first three terms in the Stückelberg action (3.28). Using dimensional analysis
one can easily show that these terms are schematically given by

Sα(n,a)[χ] =

∫
d4x

1

l2α
(∂0)a∆n+2−aχn (3.45a)

Sλ(n,a)[χ] =

∫
d4x

1

l2λ
(∂0)a∆n+2−aχn (3.45b)

SV(n,a)[χ] =

∫
d4x (∂0)a∆n+4−aχn, (3.45c)

where a controls the number of time derivatives and n, a are positive integers. To
estimate the scale at which these terms become strongly coupled (if at all) we first
need to canonically normalise the quadratic part of the action. To this end we set

x̂0 = csx
0, x̂i = xi, χ̂ =

√
cs
lα

χ

so that the quadratic part of the action becomes

S2[χ̂] =

∫
d4x̂

(
∂0̂χ̂∆2∂0̂χ̂− χ̂∆4χ̂

)
(3.46)

It follows that the interaction terms now go like

Sα(n,a)[χ̂] =

∫
d4x

(
1

Λα
(a,n)

)n−2

(∂0̂)a∆n+2−aχ̂n, (3.47a)

Sλ(n,a)[χ̂] =

∫
d4x

(
1

Λλ
(a,n)

)n−2

(∂0̂)a∆n+2−aχ̂n, (3.47b)

SV(n,a)[χ̂] =

∫
d4x

(
1

ΛV
(a,n)

)n

(∂0̂)a∆n+4−aχ̂n, (3.47c)

where

Λα
(a,n) =

1

lα
c

1
2

+ 2−a
n−2

s , Λλ
(a,n) =

1

lα
c

1
2
− a
n−2

s , ΛV
(a,n) =

1

lα
c

1
2

+ 1−a
n

s . (3.48)
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These scales are the scales at which the corresponding terms become strongly
coupled. However, it is important to note that not all of these terms actually
appear in the action, as one can immediately see by looking at the cubic term
(3.34). Given that cs ≤ 1, it turns out (see Appendix A.2) that the lowest of these
scales to appear in the action is given by

Λα
(1,3) = Λα

(0,4) =
1

lα
c3/2
s . (3.49)

This is the scale at which the largest interaction terms become significant and one
enters a strongly coupled régime. The strongly coupled terms correspond to the
cubic interaction,

− 2

∫
d4x

sgn(α)

l2α
(∂iχ̇)(∂jχ)(∂i∂jχ) (3.50)

and the quartic interaction given by (3.35). We therefore identify the lowest energy
strong coupling scale as being

Λsc ∼
1

lα
c3/2
s . (3.51)

Now, since cs ≤ 1, it follows that Λsc . Λhd ∼ 1/lα, which means that the derived
strong coupling scale does indeed lie below the cut off of the derivative expansion.
Of course, one may call into question this conclusion if cs ∼ 1, as then we have
Λsc ∼ Λhd.

To allay any possible concerns let us consider what happens at high energies
∆� 1/lα. Then the quadratic part of the action is given by

S2[χ] =

∫
d4x

{
(A3 + A4) χ̇∆4χ̇− 1

l2λ
χ∆4χ

}(
1 +O(1/∆2l2α)

)
. (3.52)

As expected x0 and xi scale differently in the UV,

xi → b−1xi, x0 → x0.

The fact that x0 does not scale makes sense given that the dispersion relation
(3.39) goes like ω ∼ constant for large k. Indeed, to quadratic order the system
reduces to a simple harmonic oscillator with fixed frequency of oscillation.

In order to keep S2[χ] invariant under the scaling, we must have

χ→ b−1/2χ.

It follows that the interaction terms scale like

Sα(n,a)[χ]→ b
n
2
−a−1Sα(n,a)[χ] (3.53a)

Sλ(n,a)[χ]→ b
n
2
−a−1Sλ(n,a)[χ] (3.53b)

SV(n,a)[χ]→ b
n
2
−a+1SV(n,a)[χ]. (3.53c)

47



Chapter 3: Extended Hořava gravity and the Decoupling Limit

These interactions become relevant in the UV whenever the exponent of b is pos-
itive in the above scaling. Interactions with many time derivatives (that is, with
large a), are irrelevant in the UV, whereas those with fewer time derivatives be-
come relevant. Indeed, the fourth-order interaction term given by (3.35) is clearly
relevant, as it scales like b3. Therefore there is no reason to expect that the theory
is UV finite, even for cs ∼ 1. To make sense of the perturbative theory we need to
introduce a cut-off given by the strong coupling scale. For cs ∼ 1, the only scale
we have available is 1/lα ∼ 1/lλ, so it follows that this corresponds to the scale at
which (3.35) becomes large.

In conclusion then, unless we introduce some new scales by brute force, the
‘healthy’ theory is unlikely to be UV finite since it becomes strongly coupled
at a scale

Λsc ∼
1

lα
c3/2
s =

(
lα
l3λ

)1/2

=
1

lpl

[
(λ− 1)3

α

]1/4

. (3.54)

This result agrees with [134], at least when cs ∼ 1, but is more robust, having
considered the effect of higher-derivative corrections and allowing for cs � 1. The
correct interpretation of this result is to realise that we must introduce new physics
by hand, below the scale Λsc. We can do this by explicitly introducing a new low
scale of Lorentz violation, M∗, in the higher derivative terms, as proposed in [135].
Experimental considerations actually push Λsc, and by association M∗, to well
below the Planck scale.

3.5 Matter sources and the Stückelberg force

It has been suggested that strong coupling problems in some versions of Hořava
gravity might be a blessing in disguise, at least from a phenomenological perspec-
tive. The claim is that a Vainshtein mechanism might occur, such that non-linear
interactions become important, helping to screen any additional force due to the
Stückelberg mode. In this section we will derive the size of the Stückelberg force,
and compare it to the size of the usual force mediated by the graviton.

Of course, we need a suitable source. To excite the Stückelberg mode, this must
violate the usual energy-momentum conservation law, as is clear from (3.29). A
simple choice is a time dependent point mass, with energy-momentum tensor

T µν = M(x0)δ(3)(x)uµuν . (3.55)

Recall that the violation of energy-momentum conservation is characterised by
some scale Γ, which we will take to be much less than overall scale of the energy-
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momentum tensor. In other words

Γ ∼ |∂0M |
M

�M.

We will consider the following simple cases: a slowing decaying point mass,

M(x0) = M∗ exp(−Γx0), (3.56)

or a slowly oscillating point mass,

M(x0) = M∗(1− sin(Γx0)). (3.57)

In the decoupling limit given by (3.25), we see that we must take M∗ → ∞,
Γ → 0 and lpl → 0, holding lplM∗ and ΓM∗ fixed. At this stage we could, in
principle, solve the Stückelberg equation of motion (3.29) to leading order, but we
can do better than that. We can take advantage of the strong coupling previously
discussed to simplify the full non-linear analysis.

Recall that fluctuations on the trivial vacuum become strongly coupled at a scale
Λsc, given by (3.54). All the features of this strongly coupled theory can be
captured by taking the limit lα → 0, lλ → 0, whilst holding Λsc fixed. This just
means that lpl → 0 faster than λ → 1 and α → 0, so in a sense it corresponds
to the case where deviations from General Relativity play a maximal role8. Note
that this implies that the speed of sound cs → 0. As regards the scaling of matter
in this limit, we will assume that both lplT µν/

√
cs and ΓT µν remain finite so that

both the graviton and the Stückelberg sector get non-vanishing source terms, as
we will show presently.

In this limit all but the largest interaction terms discussed in the previous section
go away, and the full theory is reduced to

Sχ̂ =

∫
d4x̂

[
∂0̂χ̂∆2∂0̂χ̂− χ̂∆4χ̂− 2

Λsc

∂0̂∂iχ̂∂i∂jχ̂∂jχ̂+
1

Λ2
sc

[∂jχ̂∂i∂jχ̂]2
]

−
∫

d4x̂
χ̂

Λsc

∂µT
µ0 (3.58)

where we have included the matter coupling, which is indeed finite. This is the
exact Stückelberg theory in this limit. Note that this action possesses a symmetry
χ̂ → χ̂ + f(x0), which is an artifact of foliation preserving diffeomorphisms. The
corresponding graviton theory goes like

Sgraviton = −
∫
d4x̂

1

2
ĥµνE ĥµν +

lpl√
cs

∫
d4x̂

1

2
ĥµνT

µν , (3.59)

8In the opposite limit, lλ → ∞, lα → ∞, there is no deviation from GR whatsoever at low
energies, since we might as well just set λ = 1, α = 0 from the outset.
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where ĥµν = 1√
cs
hµν . Again, the matter coupling is held finite.

The Stückelberg equations of motion are now given by

1

Λsc

∂µT
µ0 = 2∂2∂2

0̂
χ̂− 2∂4χ̂+

1

Λ2
sc

∂i
[
(∂iχ̂)∂2(∂jχ̂∂jχ̂)

]
− 2

Λsc

∂i
[
∂i∂j∂0̂χ̂∂jχ̂+ ∂i∂jχ̂∂0̂∂jχ̂+ ∂0̂∂

2χ̂∂iχ̂
]

(3.60)

whereas the graviton equations of motion are given by

E ĥµν =
lpl

2
√
cs
T µν . (3.61)

For our slowly varying point sources, we have

T µν →M∗δ
(3)(x)uµuν , ∂µT

µ0 → −ΓM∗δ
(3)(x), (3.62)

with ΓM∗ and lplM∗/
√
cs held fixed. We shall seek static spherically symmetric

solutions to (3.60) of the form χ̂ = χ̂(r). After being careful to express div, grad

and the Laplacian in spherical coordinates, and integrating over a sphere of radius
r centred on the origin, we find that

d

dr

(
1

r2

d

dr
r2u

)
− 1

2Λ2
sc

u

r2

d

dr

(
r2 d

dr
u2

)
=

1

Λsc

(
ΓM∗
8πr2

)
, (3.63)

where u = χ̂′(r). We can solve this equation as a power series in 1/Λsc. To all
orders in the expansion, the unique solution is given by

u = − 1

16π

ΓM∗
Λsc

=⇒ χ̂(r) = c− 1

16π

ΓM∗
Λsc

r, (3.64)

where c is some arbitrary integration constant. Owing to the foliation preserving
diffeomorphisms, the Stückelberg mode possesses a shift symmetry χ̂→ χ̂+const.
We use this symmetry to set c = 0, so that the final solution is given by

χ̂(r) = − 1

16π

ΓM∗
Λsc

r. (3.65)

Now consider the graviton (3.61). The solution to this equation is well known,
and most conveniently expressed in Newtonian gauge,

ĥ00 =

(
lplM∗√
cs

)
1

8πr
, ĥij =

(
lplM∗√
cs

)
1

8πr
δij. (3.66)

Now suppose we probe the field generated by the source using a second point mass,
with energy-momentum tensor satisfying

T̃ µν → M̃∗δ
(3)(x− y)uµuν , ∂µT̃

µ0 → −Γ̃M̃∗δ
(3)(x− y), (3.67)
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with Γ̃M̃∗ and lplM̃∗/
√
cs held fixed in the relevant limits. The potential energy

of the probe due to the Stückelberg interaction is given by

Vχ̂ =

∫
d3x

χ̂

Λsc

∂µT̃
µ0 =

1

16π

1

Λ2
sc

ΓM∗Γ̃M̃∗r. (3.68)

It follows that the Stückelberg field mediates a constant attractive force

Fχ̂ = −∇Vχ̂ = − 1

16π

1

Λ2
sc

(ΓM∗)(Γ̃M̃∗)r̂, (3.69)

between the two point masses. Thus we have confinement, and in particular, a
bound universe. There is no fall off with distance, and no way for the masses to
escape the mutual Stückelberg force on each other.

In contrast, the potential energy of the probe due to the graviton interaction is
just the Newtonian potential

Vĥ = − lpl√
cs

∫
d3x

1

2
ĥµνT̃

µν = −
l2pl

16π

(
M∗M̃∗
cs

)
1

r
, (3.70)

with the usual attractive force satisfying an inverse square law,

Fĥ = −∇Vĥ = −
l2pl

16π

(
M∗M̃∗
cs

)
r̂

r2
. (3.71)

Note that there is an additional factor of cs compared to the standard formula
owing to the fact that we are using x̂0 = csx

0 as our time coordinate. Now
let us compare the two forces, given by equations (3.69) and (3.71). They both
mediate an attractive force although they scale differently with distance. At large
distances the Stückelberg force dominates, while at smaller distances the graviton
force dominates. The two forces are equal at a distance of

req =
Λsclpl√
csΓΓ̃

=
λ− 1√

ΓΓ̃
. (3.72)

For r � req the Stückelberg force is irrelevant, and one should expect to recover
Newtonian gravity for a two particle system. However, we would like to stress
that this is not really a Vainshtein effect since it is not the case that non-linear
interactions screen the Stückelberg force above a certain scale. In fact, non-linear
interactions never become important in this particular example. It is simply the
case that the graviton force grows at short distances whereas the Stückelberg force
remains constant.

Nonetheless, we expect that provided we have a large enough crossover scale for
objects within the solar system, Newton’s law always should always hold at this
scale. Indeed, if we assume that Γ ∼ Γ̃ ∼ H0, then the crossover scale req ∼
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(λ−1)/H0. For λ−1 ∼ 10−10, we expect to recover Newton’s law within the Oort
cloud, at distances r � 1016 m. One might worry that that there are, in principle,
many many far away sources for the Stückelberg field that will exert a constant
long range force on the objects within the solar system. However, as long as we
assume homogeneity and isotropy at large scales, the effect of far away sources
should cancel one another out.

In summary then, for point sources, with slowly varying mass, there is a scale at
which the graviton force becomes dominant and one is able to recover Newtonian
gravity. However, this is not a Vainshtein effect as non-linear interactions never
play much of a role. Does this mean that strong coupling is not important?
Clearly this is unlikely to be the case in less symmetric configurations. It would
be interesting to consider alternative sources, in particular a binary system that
violates energy conservation. As was pointed out in [106], binary systems are
particularly relevant as they represent a direct test of perturbative GR.

Concluding on a much more troubling note, it is clear from (3.72) that the crossover
scale generically depends on the variation rate of the probe, Γ̃, as well as the rate
of the source, Γ. This illustrates the fact that the Stückelberg force violates
the (Weak) Equivalence Principle. Indeed, probe masses with different Γ’s will
experience different accelerations in the presence of a Stückelberg field generated
by a point source. Such violations will be of the order η ∼ (Γ1 − Γ2)/(Γ1 + Γ2)

for different probes with violation rates Γ1, Γ2. The violation will kick in at
large distances, beyond the lesser of the two crossover scales. We expect this
to be a generic feature for objects that source the Stückelberg field. Violation
of the Equivalence Principle can potentially be used to place phenomenological
constraints on Hořava gravity, a fact that had not been noticed previously (and
indeed some thought the EP would not be violated [125]).

3.6 Discussion

By taking an appropriate decoupling limit we have obtained new insights into
Hořava gravity and its suitability as a quantum gravity candidate. The analysis
here focuses on the ‘healthy extension’ of the theory [117], and specifically the
case where Lorentz violation occurs at the Planck scale. We have been particu-
larly interested in the behaviour of the Stückelberg field, the troublesome extra
degree of freedom arising from breaking full diffeomorphism invariance. Taking
the limit where this decouples from the gravity sector simplifies the calculations
significantly. Indeed, both the validity and simplicity of this approach were clearly
demonstrated in Section 3.4.1, where we recovered some known results [117, 134]
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with consummate ease. In particular, we reproduced the strong coupling result of
[134] in an elegant manner, and in some respects our analysis is more complete
since we do not restrict attention to the low energy effective theory. The correct
way to interpret our result is to realise that the only way to avoid strong coupling
is to explicitly introduce a new scale in the theory, below the would-be strong
coupling scale, giving rise to a much lower scale of Lorentz violation.

Indeed, it has already been proposed that strong coupling can be avoided if one
accepts this slightly ad hoc introduction of a new scale in the theory [135]. Since
this creates a hierarchy between the Lorentz breaking scale and the Planck scale,
we might wish to avoid this on grounds of naturalness9. Nevertheless it would be
interesting to consider some possible implications of this scenario, as will shortly be
discussed. Returning to the case of Planckian Lorentz violation, we find that the
strong coupling scale is smaller than the scale of the gradient expansion, confirming
the validity of the analysis in [134]. The largest interactions become strongly
coupled at the scale, Λsc ∼ 1

lα
c

3/2
s , which is less than the scale 1/lα corresponding

to the cut-off in the derivative expansion. Of course, this argument relies on
the fact that the Stückelberg field does not propagate faster than light (cs ≤ 1).
However, even if we allow superluminal propagation, which is not unreasonable
in a Lorentz violating theory, strong coupling is still a problem. To see this note
that the cubic term ∼ 1

l2α
χ̇(∂iχ̇)2 becomes strongly coupled at scale 1

lα
c
−1/2
s , which

is below the higher derivative cut-off for cs > 1.

Why is strong coupling so bad? In principle, it is not. It depends on the context.
QED becomes strongly coupled in the UV due to the presence of a Landau pole,
which merely indicates that we should not be considering QED in isolation, while
QCD becomes strongly coupled in the IR, but that just tells us we are using the
wrong perturbative degrees of freedom. In contrast, we have never known for sure
if Hořava gravity was a renormalisable theory. It was only ever suggested by a
dubious power counting argument, in which one wrongly infers a schematic form
for the action in terms of the perturbative degrees of freedom. The problem is that
the Stückelberg mode is essentially ignored. Indeed, if we assume that to leading
order one can schematically replace the curvatures with derivatives of the graviton
and that there is nothing else to worry about, one might expect the action to
resemble those discussed in [90, 91], which are power counting renormalisable. But,
of course, we should not ignore the Stückelberg mode. Typically, the Stückelberg
theory behaves nothing like the renormalisable actions described in [90, 91]. We
therefore have little reason to expect renormalisability and little reason to tout
Hořava gravity as a UV complete theory of gravity. To get the Stückelberg theory

9Note that we are not referring to technical naturalness in the sense of the stability of M?

against radiative corrections (see footnote 9 of [135] for a fuller discussion of this).
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to behave more appropriately in the UV, we need to introduce a new scale of
Lorentz violation by hand, and take it to be well below the Planck scale, as
suggested by [135].

Of course, even if it is not UV complete (losing much of the original motivation),
one could ask if Hořava gravity is a phenomenologically viable modification of
GR. What is the significance of strong coupling in this context? The strong
coupling scale is the scale at which quantum fluctuations on the vacuum start
to interact strongly. In the presence of a perturbative source, this scale can be
linked to the scale at which classical linearised perturbation theory breaks down10.
The original Hořava theory has been argued to not be viable [106] since it was
strongly coupled on all scales. This was a problem because it meant that there
was no scale at which one could apply the standard linearised theory around
a heavy source. Linearised General Relativity around a heavy source has been
well tested, at least indirectly, thanks to the Nobel Prize winning binary pulsar
observations of Hulse and Taylor [27]. In the extended version of Hořava gravity
with Lorentz violation at Planckian scales, strong coupling kicks in at a finite scale

Λsc ∼ 1
lα
c

3/2
s = 1

lpl

(
(λ−1)3

α

)1/4

. This suggests that linearised theory around a heavy
source is valid up to some finite scale, although one clearly ought to check that the
Stückelberg field does not spoil GR’s successful matching to Hulse and Taylor’s
observations (see [146, 147] for corresponding studies in Brans-Dicke gravity).

However, these arguments are not quite enough to rule out strongly coupled ver-
sions of Hořava gravity on phenomenological grounds, since they ignore any pos-
sible Vainshtein effect [74]. The Vainshtein effect typically occurs in modifications
of GR that exhibit strong coupling. Even if one has too many degrees of freedom
at the linear level to mimic General Relativity, non-linear interactions can save
the day. Because of strong coupling, bound states form, allowing extra degrees of
freedom to be screened and enabling one to recover GR at short enough distances.
To study any possible Vainshtein mechanism in Hořava gravity, it is important
to understand how the Stückelberg mode couples to matter. We have been able
to determine this coupling by making use of the reduced diffeomorphisms, as de-
scribed in Section 3.2.1. It turns out that one should include some violation of
energy-momentum conservation, measured by some scale Γ, to source the Stückel-
berg field. Note that this is not as crazy as it might sound! — energy-momentum
conservation is not required because we do not have full diffeomorphism invari-
ance. From a phenomenological perspective, we can assume that Γ . H0, so that

10In DGP gravity, the strong coupling scale is given by (MplH
2
0 )1/3 [143, 144]. This scale

can be linked to the scale at which classical perturbation theory breaks down around a heavy
source. Indeed, for a source of mass M , linearised perturbation theory breaks down at a scale
(MH2

0 )(1/3)[145].
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violations only become apparent on superhorizon scales.

In Section 3.5 we studied the interaction between two point particles, with slowly
varying masses. This is probably the simplest way to source the Stückelberg field,
in order to see if there is indeed any sort of Vainshtein mechanism at work. Using
our results from strong coupling, and taking the limit cs → 0 while keeping Λsc

finite, we were able to write down the exact action for this system. It turns out
that the Stückelberg field gives rise to a constant attractive force between the
two particles. This field dominates over the graviton force at large distances and
gives rise to confinement. At short distances the graviton force dominates and
one can recover Newtonian gravity. However this is not a Vainshtein effect since
non-linearities do not play any role in screening the Stückelberg force. In fact,
non-linearities play no role at all in this example, although we do not expect this
to be true in general. In fact, it is probably just an artefact of our taking the
(almost) static limit. It would be interesting to consider alternative sources for
the Stückelberg field, most notably a binary system that weakly violates energy-
momentum conservation.

In the absence of a Vainshtein mechanism in our example, perhaps the most im-
portant result of Section 3.5 is the realisation that Hořava gravity will inevitably
lead to violations of the Equivalence Principle. This is because the Stückelberg
force depends on the rate of energy-momentum conservation violation Γ of each
particle, as well as their masses. Different probes with different Γ’s will therefore
feel different accelerations. This gives a non-trivial Eötvös parameter, for which
we have very tight experimental bounds [30, 31]. Of course, one might hope to
evade this issue by imposing, without adequate motivation, that only conserved
sources are allowed in this theory. Whilst this can be achieved through a specific
choice of matter coupling in the classical Lagrangian, it is clear that loop effects
will introduce small corrections, suppressed by the scale of Lorentz symmetry
breaking. Even though the resulting “scale of non-conservation”, Γ, is small for a
generic source, it will crucially be non-zero. This can lead to large effects since the
violations of Equivalence Principle will be of the order η ∼ (Γ1−Γ2)/(Γ1 + Γ2) for
probes that violate energy-momentum conservation at different rates Γ1 6= Γ2. Of
course, the effect only kicks in beyond the lesser of the two crossover scales (3.72)
for each probe, so this phenomena could be used to place a lower bound on the
value of λ. This merits further investigation.

Although some of our results hold only in the “healthy extension” of the Hořava
gravity [117] with Planckian Lorentz violation, it is clear that all the analysis could
be repeated fairly simply for the original non-projectable theory, with roughly sim-
ilar conclusions. One might even consider extending our method to the projectable
theory, by adding a term Sgf =

∫
dtd3x

√
γNQia

i into the original action. Qi is a
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Lagrange multiplier, whose equations of motion enforce ai = 0⇒ ∂i logN = 0⇒
N = N(t).

Let us now turn to the issue of scales. Note that we have avoided the introduction
of additional scales into the theory on ground of naturalness. This manifests itself
through the absence of large dimensionless coefficients in the action, and a single
Lorentz violating scale lUV , taken to be Planckian. In [135], it is claimed that the
strong coupling problems discussed here can be avoided by introducing a dimen-
sionless coefficient B & 107. This means that Lorentz invariance is broken at much
lower scale M∗ � Mpl than one might expect. We could modify our decoupling
limit by holding M∗ fixed as we take lpl → 0, but this would still not give the de-
sired dispersion relation for the Stückelberg mode in the UV (ω2 ∝ k6) required to
‘cure’ strong coupling. The conclusion then is that this effect cannot be reproduced
in the decoupling limit – one needs to retain some coupling between the graviton
and the Stückelberg mode, even if it is just to quadratic order. What we can do is
ask what impact this low scale of Lorentz violation has on tests of the Equivalence
Principle. As we have discussed, even if one assumes conserved sources classically,
quantum mechanically we will get violations of energy-momentum conservation,
suppressed by some power of the Lorentz symmetry breaking scale. The lower
the scale, the less the suppression, and the larger the generic value of Γ. This
would raise the lower bound on λ derived from the crossover scale. It would be
interesting to see if this can be made compatible with tests of Lorentz violation
which place an upper bound on the value of λ (see for example, [135]).

In conclusion, making use of the powerful tools of the decoupling limit has allowed
us to demonstrate that one cannot avoid strong coupling problems in the ‘healthy’
extension of Hořava gravity if one assumes Lorentz violation at the Planck scale.
With additional pressure coming from experimental observation, one is forced
to introduce a much lower scale of Lorentz violation, along the lines proposed by
[135]. Perhaps surprisingly, the details of avoiding strong coupling in that scenario
cannot be captured by the decoupling limit. At the level of phenomenology, we
have studied the force between two point particles with slowly varying masses. We
have found no Vainshtein effect, but we have seen violations of the Equivalence
Principle. We believe the latter is a generic feature, but not the former. It is
possible that tests of Equivalence Principle will present a challenge to the low
scale of Lorentz violation designed to cure strong coupling [135], although a more
detailed study is clearly required.
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Chapter 4

Matter in Hořava gravity

Any realistic theory of gravity must also include matter fields, and so we now
extend our discussion of Hořava gravity to include matter fields, making both
classical and quantum considerations. Classically, we construct matter theories
consistent with the DiffF(M) symmetry. Quantum mechanically, we calculate
one-loop corrections to the matter propagators. This chapter is based on the
paper [3].

4.1 Introduction

Hořava gravity is conjectured to be a quantum theory of gravity, designed to
retain the good features of GR while also being power counting renormalisable.
However, much of the discussion has only concerned its properties in vacuum. By
contrast, our concern in this chapter will not be the pure gravity sector, but the
coupling of Hořava gravity to matter. Gravity theories coupled with matter tend
to have worse quantum behaviour than pure gravity theories [43], and so even if
pure Hořava gravity is renormalisable, does it remain so when coupled to matter?

Our main focus will lie in one-loop corrections to the matter propagator. Such
loops involving non-relativistic gravity fields will generically introduce Lorentz
violation in the matter sector. It is sometimes argued that supersymmetry can help
suppress radiative corrections that violate Lorentz invariance [148], although there
are doubts that it is possible to construct a supersymmetric extension of Hořava
gravity [149]. Since Lorentz Invariance is highly constrained by observation, it is
important to ask how much Lorentz violation will naturally occur. Furthermore,
as shown in Section 3.2.1, Lorentz breaking terms in the matter sector source the
Stückelberg mode in Hořava gravity and can then give rise to violations of the
Equivalence Principle.
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This chapter is made up of two main parts. In the first half we construct the
general form of matter Lagrangians consistent with the reduced symmetry group
of Hořava gravity. For example, for a scalar field, the breaking of diffeomorphism
invariance (Diff) down to foliation-preserving diffeomorphism (DiffF) allows one to
add terms to the Lagrangian such as ϕ∆2ϕ, where ∆ is the spatial Laplacian. The
relevant actions are written in both the ADM and Stückelberg formalisms. Phe-
nomenological difficulties, including Equivalence Principle violations, may arise
when matter couples directly to the Stückelberg field. To try and evade these
concerns, we establish the conditions for such couplings to be absent. It turns out
that they are only absent for the standard Lorentz invariant Lagrangians for both
the scalar and the gauge field.

The second half of this chapter focusses on one-loop corrections to the scalar prop-
agator. Quantum scalar fields have been studied in the context of Hořava-Lifshitz
gravity at the semi-classical level [150, 151], whereas here we will allow gravita-
tional fields to flow in the loops. We begin, as in [100], by assuming that the tree
level theory is Lorentz invariant, and minimally coupled to the full spacetime met-
ric. This is primarily because we do not want to face fine-tuning issues in the limit
that gravity decouples (see [100] for discussion on this point). Since the gravity
fields couple to the scalar they can flow in loops and this generically introduces
Lorentz breaking. Whilst there is some overlap with the analysis of [100], our
work differs in some important ways. In particular, [100] only consider constant
loop corrections to the light cone, whereas we also consider momentum dependent
corrections from the generation of higher-order derivatives. We also use a differ-
ent method: [100] fix the gauge and then compute one-loop diagrams involving
non-diagonal propagators. In contrast, we integrate out the constraints and work
with the propagating degrees of freedom directly. While this enables us to avoid
non-diagonal propagators, our method is not without some subtleties of its own.
Note that we also use dimensional regularisation so we only encounter logarithmic
divergences. The quadratic divergences found in [100] manifest themselves as large
momentum dependent corrections in our case [152].

Our loop calculations reveal a number of worrying features. The first is the large
renormalisation of the light cone ( ∼ 1/α & 107) at low energies and momentum.
This follows from the fact that the scalar graviton is so strongly coupled to matter.
However, it can probably be alleviated by modifying the gravitational part of the
action to include terms of the form (DiKjk)

2. The second issue is the generation of
higher derivatives with respect to both space and time. The former were expected,
and kick in at the Planck scale. It turns out that the UV scaling of the scalar
graviton feels Planckian suppression so this is the scale that controls the higher-
order corrections. The higher-order time derivatives come as more of a surprise,
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and not a pleasant one. They suggest the presence of a new heavy ghost degree of
freedom, spoiling the unitarity of the theory at high energies. The Lifshitz scaling
was designed to avoid introducing precisely these Ostrogradski modes. One finds
similar behaviour in perturbative General Relativity coupled to matter, but then
the resulting ghost can only propagate beyond the Planck scale, outside of the
régime of validity of the effective theory. By contrast, Hořava gravity is intended
as a UV complete theory, so if the heavy ghosts are indeed present, there is no
safety net offered by an effective field theory cut-off. It may be possible to resolve
this issue by extending the tree-level matter action to include non-relativistic terms
consistent with the Lifshitz scaling of the gravity sector. We discuss this question
in Section 4.6.

The rest of this chapter is arranged as follows: in Section 4.2, we explicitly state
the action for the Hořava gravity model we work with. We then embark on the
first of our two main topics in Section 4.3, constructing matter Lagrangians that
are consistent with the reduced symmetry group of Hořava gravity. In Section
4.4, the second of our topics is considered, focussing on the quantum effects of
a relativistic scalar coupled to Hořava gravity and picking out the interesting
features. The calculation is repeated for the case of a U(1) gauge field in Section
4.5. Discussion of our results takes place in Section 4.6.

4.2 Non-relativistic gravity

In this section, we make explicit the gravitational action we will be using for our
calculations. We will be considering the extended non-projectable Hořava theory,
and so our action is given by

Sgrav = M2
pl

∫
dtd3x

√
γN

(
KijK

ij − λK2
)

+ SV , (4.1)

whereMpl is the Planck mass and SV the gravitational potential. The gravitational
potential is built from objects satisfying the DiffF(M) symmetry, up to sixth order
in spatial derivatives. The exhaustive list of building blocks is the (inverse) metric
γij, the Ricci tensor of a slice R(3)

ij and ai ≡ ∂i logN [117], the acceleration of
spatial slices through the spacetime. We write this piece of the action as

SV = M2
pl

∫
dtd3x

√
γN

(
R(3) + αaia

i +
1

M2
pl

V4 +
1

M4
pl

V6

)
, (4.2)

where the four-derivative V4 and six-derivative V6 terms are given by

V4 = A1(R
(3)
ij )2 + A2(R(3))2 + A3R

(3)Dia
i + A4(Dia

i)2 (4.3a)

V6 = B1(DiR
(3)
jk )2 +B2(DiR

(3))2 +B34R(3)Dia
i +B4a

i42ai (4.3b)
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where 4 ≡ DiD
i and we only include terms which are inequivalent at quadratic

order around a Minkowski background1. To ensure the absence of strong coupling
in the theory (needed to ensure that perturbation theory remains valid and so
the power counting argument can hold), one needs to introduce a hierarchy of
scales by making the Bs large [1, 117]. For definiteness we assume Ai ∼ O (1)

and Bi ∼ 1/α [117]. Constraints on λ and α give roughly |1− λ| ∼ α . 10−7

[135], or B & 107. It turns out that two new scales are introduced, M? ∼
√
αMpl

and Mh ∼ α1/4Mpl [135], the former relating to the scalar graviton, the latter to
the tensor. Putting all these pieces together, one obtains our action for Hořava
gravity.

As discussed in Section 3.2, it is often more illuminating to write Hořava gravity
in a form using covariant 4D spacetime tensors. Our main concern regarding this
here is how matter should couple to gravity in this theory. Recall from (3.17) and
(3.18)

γαν∇µT
µν = 0

1√
−g

δSm
δφ

= − 1

X
∇µφ∇νT

µν , (4.4)

where T µν = 2√
−g

δSm
δgµν

is the energy-momentum tensor derived from the matter
action Sm. Note that matter sources the Stückelberg field directly when there is
some violation of energy-momentum conservation. Such violations can, in prin-
ciple, lead to violations of the Equivalence Principle. This equation will prove
useful later when deriving the conditions for our theory to attempt to evade EP
constraints.

4.3 Non-relativistic matter

We now consider the first main topic of this chapter: what is the general form of
matter Lagrangians consistent with the DiffF(M) symmetry of Hořava gravity?
Lorentz invariant matter actions, minimally coupled to the spacetime metric are
expected to receive quantum corrections via gravity loops that spoil the Lorentz
invariance. Indeed, we will later show explicitly that this is the case. For now,
however, let us try to formulate the relevant actions for a scalar and a U(1) gauge
field, consistent with the foliation of spacetime. Of course, these will differ from
the standard Lorentz invariant actions because extra terms are allowed due to the
reduced symmetry. If Hořava gravity plus matter is indeed renormalisable, we
expect these extra terms to be the only ones generated by quantum corrections.
The analysis here is similar to that of [110], but we also consider the possible effect
of ai terms. Note that in keeping with the philosophy of Hořava gravity we only

1Some of our expansions will go to higher order, but including just the terms here will capture
all the relevant physics.
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consider generalisations to the potential and assume the time derivatives enter as
in the relativistic theory. This ensures the absence of ghostly instabilities at tree
level, but as we will see later on, it is not guaranteed at the one loop level.

4.3.1 Scalar field

For a scalar field ϕ, the generic action with a DiffF(M) invariant potential can
be written in the ADM formalism as

Sϕ =

∫
dtd3x

√
γN

[
1

2N2
(ϕ̇−N i∂iϕ)2 − 1

2
γij∂iϕ∂jϕ− V (ϕ)− F [ϕ,Di, Rij, ai, γ

ij]

]
.

(4.5)
The symmetries of the Hořava framework permit additional terms in the theory
relative to GR, which F controls (F = 0 is the usual minimally-coupled diffeomor-
phism invariant action). Since we are matching the symmetry of the gravitational
sector, we will only consider terms up to scaling dimension 6. These terms can be
constructed from ϕ, Di, R

(3)
ij , ai and γij and make up a general F . We will enforce

P and T symmetries, neglect purely gravitational terms, and only consider terms
inequivalent at quadratic order on Minkowski. The result is

F =α1ϕD
iai + α2ϕ4ϕ+ α3R

(3)ϕ+
β1

M2
pl

Diai4ϕ+
β2

M2
pl

ϕ42ϕ+
β3

M2
pl

R(3)4ϕ

+
γ1

M4
pl

Diai42ϕ+
γ2

M4
pl

ϕ43ϕ+
γ3

M4
pl

R(3)42ϕ,

(4.6)

where 4 ≡ DiD
i. This list is exhaustive given our above restrictions, since terms

such R(3)
ij D

iDjϕ are equivalent to other terms via integration by parts (IBP) and
the Bianchi identity, and others such as R(3)DiϕD

iϕ are ignored since they vanish
at quadratic order on Minkowski space.

These expressions can also be re-written using the Stückelberg formulation. Again,
as with gravity, the action is simpler in this formalism, and can be written

Sϕ =

∫
d4x
√
−g
[
−1

2
gµν∇µϕ∇νϕ− V (ϕ)− F

]
. (4.7)

where F is now

F =α1ϕDµaµ + α2ϕDµDµϕ+ α3Rϕ+
β1

M2
pl

DµaµDνDνϕ+
β2

M2
pl

ϕ(DµDµ)2ϕ

+
β3

M2
pl

RDµDµϕ+
γ1

M4
pl

Dµaµ(DνDν)2ϕ+
γ2

M4
pl

ϕ(DνDν)3ϕ+
γ3

M4
pl

R(DνDν)2ϕ,

(4.8)

where we have introduced the spatially projected covariant derivative,

DiX
j1···jn → DµXα1···αn = γνµγ

α1
β1
· · · γαnβn∇νX

β1···βn . (4.9)
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In this formalism, the recovery of the usual minimally coupled scalar field in the
case F = 0 is clearer.

It is now possible to ask in what way the action must be constructed to avoid
any coupling to the Stückelberg field (which one may want to avoid for reasons of
e.g. Equivalence Principle [1] or Lorentz invariance violation). In fact, it is easy
to show that the only combination of terms which does not couple matter to the
Stückelberg field is the usual Lorentz invariant action with F ≡ 0.

To see this, we set δ
δφ

∫
d4x
√
−gF = 0. Strictly speaking we only require this to

vanish on-shell, but since ϕ can be coupled to a source independently of its coupling
to the Stückelberg field, it is clear that we need to impose δ

δφ

∫
d4x
√
−gF = 0 off-

shell in order to guarantee δSϕ
δφ

= 0 in all cases. Now, because the necessary
cancellation can only occur between terms with the same power of Mpl and the
same number of ϕ’s, it immediately follows that α2 = β2 = γ2 = 0, and that

δ

δφ

∫
d4x
√
−g [α1ϕDµaµ + α3Rϕ] = 0 (4.10a)

δ

δφ

∫
d4x
√
−g [β1DµaµDνDνϕ+ β3RDµDµϕ] = 0 (4.10b)

δ

δφ

∫
d4x
√
−g
[
γ1Dµaµ(DνDν)2ϕ+ γ3R(DνDν)2ϕ

]
= 0. (4.10c)

Consider equation (4.10a). Introducing ϕ̃ =
√
−g√
γ
ϕ, this implies that

α3
√
γ

[
Rµν −

1

2
Rγµν

]
ϕ̃+ terms with derivatives of ϕ̃ = 0. (4.11)

Since this should be true for any ϕ and γµν , we conclude that α3 = 0. Furthermore,
since δ

δφ

∫
d4x
√
−gϕDµaµ 6= 0, in general, it also follows that α1 = 0. Similar

arguments can be applied to equations (4.10b) and (4.10c) to conclude that β1 =

β3 = 0, and γ1 = γ3 = 0. It now follows that F ≡ 0, as previously stated.

4.3.2 Gauge field

We also consider a vector field Aµ invariant under a U(1) gauge symmetry2 (see
also [153]). Our analysis will run along much the same lines as for the scalar field.
The general action, invariant under DiffF(M) can be written in terms of ADM

2Considering a non-Abelian gauge field would introduce a internal index on the F , Fµν → F aµν
and thus also Bi → Bai . In the action one takes a trace over these indices. We choose to focus
on U(1) since (i) our results would not be substantially altered here aside from the clutter of
additional notation and (ii) we will consider quantum corrections only for the simplest case of
U(1) symmetries.
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variables as,

SA =
1

4

∫
dtd3x

√
γN

[
2

N2
γij(F0i − FkiNk)(F0j − FljN l)− FijFklγikγjl −G

]
,

(4.12)
where G = 0 in the familiar relativistic case and Fµν ≡ ∂µAν − ∂νAµ. There is an
additional constraint on the possible terms in G since we are demanding that the
theory remain gauge invariant with respect to the U(1). In order to add higher
spatial derivatives, it is convenient to write the higher-order terms containing the
vector field in terms of the magnetic field,

Bi =
1

2

εijk
√
γ
Fjk, (4.13)

where εijk is the Levi-Civita symbol. The magnetic field corresponds to the only
gauge invariant way that higher-order spatial derivatives of A can enter3. G can be
built therefore from Bi, Di, R

(3)
ij , ai, γ

ij. Assuming P and T symmetry again, the
terms inequivalent at quadratic level on Minkowski and up to scaling dimension 6
are

G = α1aiB
i + α2BiB

i +
β1

M2
pl

ai4Bi +
β2

M2
pl

Bi4Bi +
β3

M2
pl

(DiB
i)2 +

β4

M2
pl

R(3)DiB
i

+
γ1

M4
pl

Bi42ai +
γ2

M4
pl

Bi42Bi +
γ3

M4
pl

(DiDjB
j)2 +

γ4

M4
pl

R(3)4DiB
i.

(4.14)

In order to also write the vector field action in the Stückelberg approach, we need
a 4-vector expression for Bi. The appropriate expression is

Bµ =
1

2

ενµρσ√
−g

Fρσuν . (4.15)

The Stückelberg field couples here via the normal 4-vector uν . Proceeding as
before, our action is now the familiar

SA =

∫
d4x
√
−g
[
−1

4
F µνFµν −G

]
. (4.16)

By making the substitutions Bi → Bµ, Di → Dµ, ai → aµ, R
(3)
ij → Rµν and

γij → γµν into (4.14), the general expression forG can be written in this formalism.
In this case, the Stückelberg field couples through the projection operator to the
matter field, as well as to the magnetic field through the normal. As with the
scalar field, repeating the same procedure informs us that the only way to prevent
a coupling between the matter field and the Stückelberg field is to set G ≡ 0 in
our action.

3The electric field corresponds to time derivatives, so additional electric field terms result in
higher-order time derivatives.
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4.4 Quantum corrected scalar fields

We now turn to our second major topic in this chapter: quantum corrections to
relativistic matter Lagrangians. In particular, in this section we consider one loop
corrections to the relativistic scalar field action with mass m and a ϕ4 interaction,

Streeϕ =

∫
dtd3x

√
−g
[
−1

2
gµν∇µϕ∇νϕ−

1

2
m2ϕ2 − µ

4!
ϕ4

]
. (4.17)

Gauge fields are considered in Section 4.5.

Since we are interested in the role played by the Lorentz violating gravity sector,
we will include loops of gravity fields, and expect these to induce some Lorentz
violation in the scalar field theory. We will concentrate on corrections to the scalar
field propagator, including the contribution from higher-order spatial derivatives,
in contrast to [100] who only considered constant corrections to the light cone.
Our method also differs to that in [100]: they fix the gauge and work with non-
diagonal propagators, whereas we integrate out the constraints and work directly
with the dynamical degrees of freedom. This method has the advantage of allowing
us to work with diagonal propagators, but is not without its subtleties as we will
illustrate by means of a toy model in the next section. Note that the effective action
we obtain is consistent in that the resulting classical dynamics is independent of
the order in which we impose the constraints i.e. before we compute the equations
of motion, or after.

4.4.1 Toy model

As a warm up to the main event we consider the following toy model of a dynamical
scalar, φ, coupled to a non-dynamical scalar, A.

L = −1

2
(∂µφ)2 − 1

2
A4A− 1

2
m2A2 + λφ2A, (4.18)

where 4 ≡ ∂i∂
i. Our interest lies in the one-loop corrections to the propagator

for φ. We can compute this in two ways: directly from the Lagrangian (4.18) by
defining a propagator for both φ and A, or by integrating out the non-dynamical
field, A, and only working with the dynamical degree of freedom, φ. We will
compare the two methods, beginning with the former.

The Lagrangian (4.18) gives rise to the following field equations

δ

δφ

∫
d4xL = �φ+ 2λφA = 0 (4.19a)

δ

δA

∫
d4xL = −(∆ +m2)A+ λφ2 = 0, (4.19b)
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and the set of Feynman rules shown in Figure 4.1. At one loop the correction to
the φ propagator comes from the Feynman diagrams shown in Figure 4.2. The

p
φ φ

−i

p2

p
A A

−i

− |p|2 +m2 φ

φ

A

2iλ

Figure 4.1: The Feynman rules for the Lagrangian (4.18)

(a) 1PI contribution (b) Tadpole contribution

Figure 4.2: One-loop diagrams for the φ propagator

one-loop correction contains a one-particle irreducible (1PI) contribution and a
tadpole contribution. In contrast to QED, here the tadpole contribution need not
vanish. Indeed, from Figure 4.2a, we find the 1PI contribution to be

1PI =

(
−i

k2

)2

(2iλ)2

∫
d4p

(2π)4

−i

p2

−i

− |k− p|2 +m2

=− 4λ2

k4

∫
d4p

(2π)4

1

p2
(
− |k− p|2 +m2

) . (4.20)

whereas from Figure 4.2b, we find the tadpole contribution to be

tadpole =
1

2

(
−i

k2

)2

(2iλ)2

∫
d4p

(2π)4

−i

p2

−i

m2
= −2λ2

k4

∫
d4p

(2π)4

1

p2m2
. (4.21)

Now a non-vanishing tadpole is the same as saying that the vacuum expectation
value (vev) of the field A is non-vanishing. One could add a counterterm to
the Lagrangian of the form ∆L = (constant)A in order to eliminate this, and
therefore eliminate the tadpole. The spirit of this discussion is particularly relevant
for matter loops in Hořava gravity to be studied in subsequent sections. The
point is that in Hořava gravity matter loops also endow the gravitational fields
with a non-trivial vev because the theory offers no solution to the cosmological
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constant problem. By inserting a bare cosmological constant into the action as a
counterterm one can eliminate the vevs of those fields. In the subsequent section
we will assume that this has been done by neglecting the tadpole contribution
from the relevant diagrams.

To be able to neglect the tadpoles, we need to understand how they manifest
themselves when we integrate out the offending fields. To this end we integrate
out the field A in the Lagrangian (4.18) using the constraint (4.19b). Substituting
the constraint back in we obtain

Lreduced = −1

2
(∂µφ)2 +

λ2

2
φ2 1

4+m2
φ2, (4.22)

where the term containing the inverse of 4 is formally defined using a Fourier
transformation. The resulting equation of motion is given by

δ

δφ

∫
d4xLreduced = �φ+ 2λ2φ

1

4+m2
φ2 = 0 (4.23)

Note that one obtains exactly the same equation from substituting the constraint
(4.19b) into the φ equation of motion (4.19a), thereby illustrating the consistency
of our method. The Feynman rules for the reduced Lagrangian (4.22) are now
shown4 in Figure 4.3, along with the only one-loop contribution to the propagator
correction. Computing our solitary Feynman diagram, we obtain

p
φ φ

(a) −i
p2

φ

φ

φ

φ

p2

p1

p4

p3

(b)
iλ2

2

∑
σi∈{p1,p2,p3,p4}

1
−|σ1+σ2|+m2 (c)

Figure 4.3: (a) and (b) The Feynman rules for the reduced Lagrangian (4.22); (c)
One-loop diagrams for the φ propagator.

1

2

(
−i

k2

)2 ∫
d4p

(2π)4

(
−i

p2

)
iλ2

2

∑
perms

1

− |p3 + p4|2 +m2
, (4.24)

where p3 and p4 take values in {k,−k,p,−p}. Before proceeding further, we need
to consider all the permutations. Essentially, we need to find all the permutations

4Note the permutations of σ1 6= σ2 across the set of pis.
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pairing elements of the set {p1,p2,p3,p4} with {k,−k,p,−p}, the momenta of
each leg of the vertex in the relevant diagram. Eight permutations result in p3 +

p4 = p+k, four in p3+p4 = p−k, four in p3+p4 = −p+k and eight in p3+p4 = 0.
Using the fact we are integrating over p and only care about the modulus squared,
we can rewrite these as sixteen giving k− p and eight permutations giving 0. So,
the one-loop correction to the propagator gives

−λ2

k4

∫
d4p

(2π)4

1

p2

[
4

− |k− p|2 +m2
+

2

m2

]
. (4.25)

Clearly, the first term in (4.25) is equal to the 1PI contribution (4.20) derived
earlier, while the second is equal to the tadpole contribution (4.21). Therefore,
if we want to neglect the tadpole contributions for the reasons described above
we need to take care with “bubblegum diagrams” with the generic shape shown
in Figure 4.3c. In particular we should not include permutations that lead to
vanishing combinations of momenta in the relevant 4-vertex. Upon integrating
the non-dynamical field back in we now understand this as vanishing momenta
being transferred to a loop by the propagator for the non-dynamical field in the
tadpole diagram. We keep this in mind when computing bubblegum diagrams in
Hořava gravity.

4.4.2 Reduced action for a scalar field

Our goal is to identify one-loop corrections to the relativistic propagator for a
scalar field coupled to Hořava gravity. At tree level, this theory is described by
the following action

S = Sgrav + Streeϕ , (4.26)

where Sgrav is given by the action for Hořava gravity (4.1) and Streeϕ is given by
the relativistic action (4.17) for a scalar field of mass m and potential ϕ4, coupled
to the spacetime metric. The Hamiltonian and momentum constraints for this
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theory are

CN =
δS

δN
= M2

pl

√
γ
[
−KijK

ij + λK2 +R(3) − αaiai − 2αDia
i
]

+
√
γ

[
A1(R

(3)
ij )2 + A2(R(3))2 + A3

(
R(3)Dia

i +
1

N
4(NR(3))

)
+A4

(
(Dia

i)2 +
2

N
4(NDia

i)

)]
+

√
γ

M2
pl

[
B1(DiR

(3)
jk )2 +B2(DiR

(3))2 +B3

(
4R(3)Dia

i +
1

N
4(N4R(3))

)
+B4

(
Dia

i4Dja
j +

1

N
4(N4Dia

i) +
1

N
42(NDia

i)

)]
−√γ

[
1

2N2

(
ϕ̇−N i∂iϕ

)2
+

1

2
DiϕDiϕ+

1

2
m2ϕ2 +

µ

4!
ϕ4

]
(4.27a)

Ci =
δS

δNi

= 2M2
pl

√
γ
(
DjK

ij − λDiK
)

+

√
γ

N

[
−ϕ̇Diϕ+DiϕNjD

jϕ
]
. (4.27b)

We need to establish the form of the reduced action for the dynamical fields,
having integrated out the constraints up to the appropriate order. To this end,
we begin by perturbing our ADM fields about Minkowski,

N = 1 + εn (4.28a)

Ni = ε (∂iβ + Si) where ∂iSi = 0 (4.28b)

γij = δij

(
1 + 2

ε

Mpl

ζ

)
+ 2ε∂i∂jE + 2ε∂(iVj) +

ε

Mpl

hij (4.28c)

where ∂iV i = ∂ih
ij = hii = 0,

where we have introduced the expansion parameter ε, and we have assumed units
in which the emergent speed of light c = 1. Note that once this expansion has
been made, we will not be concerned with distinguishing between upper or lower
indices, since they will all correspond to coordinates on flat space. For the matter
sector we have to ensure we replace ϕ → εϕ, since we are also considering these
as leading order perturbations to a vacuum Minkowski background.

Having performed a helicity decomposition on the metric components it is conve-
nient to introduce projection operators,

πij ≡ δij −
∂i∂j
4

1

2
Πij|kl ≡

1

2

(
2πi(kπl)j − πijπkl

)
, (4.29)

which project out the transverse and transverse-traceless components respectively5.
When we switch to Fourier space, these will have a vector as a superscript, e.g. πk

ij

in which case one replaces ∂i → ki in the above expressions. We will also find it
5Note that the factor of 1

2 in the definition of Πij|kl has no significance beyond notation.
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useful to define

f(k) :=
1− A3

M2
pl
k2 + B3

M4
pl
k4

α + A4

M2
pl
k2 + B4

M4
pl
k4
. (4.30)

Some of the unphysical metric degrees of freedom can be removed by gauge fixing,
others we will have to integrate out6. It is clear from the foliation preserving
transformations (2.8) that we may choose the gauge conditions

Vi = 0 E = 0, (4.31)

without losing knowledge of our constraints. We have now reduced our expansion
of γij to the physical scalar and tensor. The pieces arising from N and Ni will
be removed only when we integrate out the corresponding constraints. Expanding
the action order by order in ε, we find that

S = ε2S(2) +
ε3

Mpl

S(3) +
ε4

M2
pl

S(4) +O
(
ε5
)
, (4.32)

where

S(2) =

∫
dtd3x

[
1

2
ϕ
(
−∂2

t +4−m2
)
ϕ+

1

4
hij

(
−∂2

t +4+
A1

M2
pl

42 − B1

M4
pl

43

)
hij

+M2
pln

(
α4− A4

M2
pl

42 +
B4

M4
pl

43

)
n−M2

pl(1− λ)β42β +
1

2
M2
plSi4Si

+3(1− 3λ)ζ̇2 − 2ζ4ζ +
(6A1 + 16A2)

M2
pl

ζ42ζ − (6B1 + 16B2)

M2
pl

ζ43ζ

+nC
(1)
N + niC

(1)
i

]
, (4.33)

S(3) =

∫
dtd3x

{
3

2
ζϕ̇2 − 1

2
ζ∂iϕ∂

iϕ− 3

2
m2ζϕ2 +

1

2
hij∂iϕ∂jϕ

+ αM2
pl [−ζ∂in∂in+ 2Mpln∂in∂in]− 4A34ζ∂in∂in− 4

B3

M2
pl

42ζ∂in∂i

+A4

[
ζ(4n)2 + 2Mpln(4n)2 − 2∂iζ∂in4n+ 4Mpl∂in∂in4n

]
+

B4

M2
pl

[
2Mpl4n4(n4n) + 2Mpl4n4(n4n) + 2Mpl4n4(∂in∂in)

+ ζ4n42n− ∂iζ∂in42n− ∂iζ∂i4n4n+ 24n4(ζ4n)−4n4(∂iζ∂in)
]

+ 2M3
pln (∂i∂jβ)2 − 2M3

plλn(4β)2 − 2M2
pl(1− 3λ)ζ̇n4β + 2M3

pln∂(iSj)∂iSj

+ 4M3
pln∂i∂jβ∂iSj +M2

plζ(∂i∂jβ + ∂(iSj))(∂i∂jβ + ∂(iSj))−M2
plλζ(4β)2

+ 4M2
pl∂iζ(∂jβ + Sj)(∂i∂jβ + ∂(iSj))− 2M2

pl(1− λ)∂iζ(∂iβ + Si)4β

+Mpl

(
nC

(2)
N + niC

(2)
i

)}
+ . . . , (4.34)

6Recall in EM, one can obtain an action in solely the two degrees of freedom by removing
the longitudinal part with the transverse gauge fixing ∂iAi = 0 and integrating out the non-
dynamical field A0, at the expense of losing manifest locality and Lorentz invariance.
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S(4) =

∫
dtd3x

{
3

4
ζ2ϕ̇2 +

1

4
ζ2∂iϕ∂

iϕ− 3

4
m2ζ2ϕ2 +

3

2
ζhij∂iϕ∂jϕ

− 1

8
hijh

ijϕ̇2 +
1

8
hijh

ij∂kϕ∂
kϕ− 1

2
hikhjk∂iϕ∂jϕ+

1

8
m2hijhijϕ

2

− 1

2
M2
pln

2ϕ̇2 −M2
plnn

iϕ̇∂iϕ−
1

2
M2
pln

inj∂iϕ∂jϕ−
1

4!
M2
plµϕ

4

+M2
pl

(
nC

(3)
N + niC

(3)
i

)}
+ . . . ,

(4.35)

and “ . . .” denote terms which are irrelevant to our subsequent calculations, and
the constraints are expanded as CN = εC

(1)
N + ε2C

(2)
N + ε3C

(3)
N + O (ε4) and Ci =

εC
(1)
i + ε2C

(2)
i + ε3C

(3)
i +O (ε4). Note that we do not need to consider interactions

beyond fourth order since for 1-loop corrections to the propagator we will only
encounter up to four point vertices.

We now integrate out the constraints by setting C(1)
N = −εC(2)

N − ε2C
(3)
N − ε3C

(4)
N +

O (ε4) and C(1)
i = −εC(2)

i − ε2C
(3)
i − ε3C

(4)
i +O (ε4), or more specifically,

2εM2
pl

(
−α+

A44
M2
pl

− B442

M4
pl

)
4n = 4εMpl

(
1 +

A34
M2
pl

+
B342

M4
pl

)
4ζ

+
ε2

2

(
ϕ̇2 + ∂iϕ∂

iϕ+m2ϕ2
)

+ ε2H2

− ε3
[
nϕ̇2 + ni∂iϕϕ̇+

1

2
hij∂iϕ∂jϕ.

+ ζ∂iϕ∂
iϕ
]

+ ε3H3 +O
(
ε4
)

(4.36a)

2εM2
pl(1− λ)42β = 2εMpl(1− 3λ)4ζ̇ − ε2∂i (ϕ̇∂iϕ) + ε2P2

+ ε3∂i
(
∂iϕ∂jϕ(∂jβ + Sj)

)
+ ε3P3 +O

(
ε4
) (4.36b)

εM2
pl4Si = −ε2πijϕ̇∂jϕ+ ε2Q2i + ε3Q3i

+ ε3πij

(
∂jϕ∂kϕ(∂kβ + Sk)

)
+O

(
ε4
) (4.36c)

where

Hq = Hq (hij, ζ, n, β, Si) = − dq

dεq

(
1

q!

δSgrav
δN

) ∣∣∣∣
ε=0

(4.37a)

Pq = Pq (hij, ζ, n, β, Si) = ∂i
dq

dεq

(
Nγij
q!

δSgrav
δNj

) ∣∣∣∣
ε=0

(4.37b)

Qi
q = Qi

q (hij, ζ, n, β, Si) = πij
dq

dεq

(
Nγjk
q!

δSgrav
δNk

) ∣∣∣∣
ε=0

. (4.37c)

Of course, we obtain three equations from the two constraints as the momen-
tum constraint can be split into its transverse and longitudinal parts, yielding
two equations. Note that Hq, Pq and Qq contain n, β and Si, which can be re-
moved iteratively to any desired order by re-substituting (4.36) into the resulting
expression.

We now use the equations (4.36) to eliminate the non-dynamical field n, β and Si
from the action, thereby arriving at the reduced action for the dynamical fields,
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hij, ζ and ϕ.

Sreduced =

∫
dtd3x ε2

[
1

2
hijO

ij|klhkl +
1

2
ζOζζ +

1

2
ϕ(−∂2

t +4−m2)ϕ

]
+ ε3 [Vhϕ2 + Vζϕ2 + . . .] + ε4 [Vϕ4 + Vh2ϕ2 + Vζ2ϕ2 + . . .] +O

(
ε5
)

(4.38)

where Oij|kl and Oζ denote complicated operators for the leading order kinetic
terms for hij and ζ. There are two important three point vertices and three
important four point vertices: the hijϕ2 vertex denoted by Vhϕ2 , the ζϕ2 vertex
denoted by Vζϕ2 , the ϕ4 vertex denoted by Vϕ4 , the hijhklϕ2 vertex denoted by
Vh2ϕ2 , and the ζ2ϕ2 vertex denoted by Vζ2ϕ2 . Again, the “. . .” correspond to terms
that will play no role in the 1-loop correction to the scalar propagator, namely
pure gravity vertices7.

Feynman Rules

The precise form of these operators is best expressed in terms of the corresponding
Feynman rules. Working in Fourier space with four-momentum kµ split into energy
ωk and three-momentum k, we have the following tree-level propagators, as shown
in Figure 4.4:

i4̃ϕ(k) =
1

−ω2
k + |k|2 +m2

(4.39a)

i4̃h
ij|kl(k) =

1
2Πk

ij|kl

−ω2
k + |k|2 + A1

M2
pl
|k|4 + B1

M4
pl
|k|6

=:
1

2
Πk
ij|kli4̃

h(k) (4.39b)

−i
(
4̃ζ(k)

)−1
=

2

α+ A4

M2
pl
|k|2 + B4

M4
pl
|k|4

[
(2− α) |k|2 − (A4 + 4A3)

|k|4

M2
pl

+
(
4B3 −B4 + 2A2

3

) |k|6
M4
pl

− 4A3B3
|k|8

M6
pl

+ 2B2
3

|k|10

M8
pl

]

− 3λ− 1

λ− 1
ω2
k,

(4.39c)

where the indexless 4̃h has been introduced to allow us to separate the projection
operator and the Green’s function. The relevant vertices are shown in Figure 4.5.
Our convention is that all momenta point into the vertex. The detailed form for
each vertex is presented in Appendix A.3.

4.4.3 One-loop corrections to a scalar field propagator

We are now ready to compute the one-loop correction to the scalar propagator.
To this end, the relevant 1PI graphs are shown in Figure 4.6. As usual, the

7In addition, the ϕ2ζhij vertex is not pure gravity but cannot contribute at one loop, as the
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4ϕ(k)
ϕ ϕ

4̃h
ij|kl(k)

hij hkl
4̃ζ(k)

ζ ζ

Figure 4.4: Propagators for the dynamical fields

k1

k2

Vij(k1, k2, k3) k3, ij
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k2

V (k1, k2, k3) k3

(a) Vhϕ2 (b) Vζϕ2

k1

k2

W (k1, k2, k3, k4)

k3

k4

k1

k2

Vijkl(k1, k2, k3, k4)

k3, ij

k4, kl k1

k2

V(k1, k2, k3, k4)

k3

k4

(c) Vϕ4 (d) Vh2ϕ2 (e) Vζ2ϕ2

Figure 4.5: Three and four-point vertices for the dynamical fields. The precise
form of these is presented in Appendix A.3.

renormalised two-point vertex for the scalar Γrenϕϕ = Γtreeϕϕ −Σ, where Γtreeϕϕ = (∆̃ϕ)−1

is the tree-level vertex and Σ is the self energy (at one loop).

Let us now compute the contributions to the self energy for each diagram. Our ex-
pressions will be given in terms of the integrations over internal momenta, although
we will explicitly drop terms that will obviously vanish when this integration is
performed (such as terms linear in ωp).

We begin with the pure scalar bubblegum diagram shown in Figure 4.7. The
appropriate contraction of the legs introduces a symmetry factor of two, so we

internal legs cannot contract all their indices appropriately.
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= + +

+ +

Figure 4.6: 1-Loop corrections to the scalar propagator

k k

p

ϕ ϕ

Figure 4.7: The pure scalar bubblegum diagram with a ϕ4 vertex

find that the contribution to the self-energy is given by Σϕ4 , where

M2
plΣϕ4 = M2

pl

∫
dωpd

3p∆̃ϕ(p)
W (k,−k, p,−p)

2

=

∫
dωpd

3p∆̃ϕ(p)

[
− 1

2

ω2
kω

2
p +

(
k · p +m2

)2
α |p + k|2 + A4

M2
pl
|p + k|4 + B4

M4
pl
|p + k|6

−
(
ω2
pk

2 + ω2
kp

2
)

|k + p|2
+

(
1− 1

2(1− λ)

)
[(k + p) · k]2 ω2

p + [(k + p) · p]2 ω2
k

|k + p|4
− µ

2
M2
pl

]
.

(4.40)

Note that since we are computing a bubblegum diagram we have taken care to
neglect the ‘tadpole-like’ contributions as discussed in Section 4.4.1.

k k − p

p

k
ϕ ϕ

Figure 4.8: Diagram containing two hijϕ2 vertices.

Next we consider the diagram containing hijϕ2 vertices, shown in Figure 4.8. As
this is not a bubblegum diagram we don’t need to worry about tadpole effects.
Taking into account the symmetries we find that the contribution to the self energy
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is Σhϕ2 , where

M2
plΣhϕ2 = M2

pl

∫
dωpd

3pVij(k, p− k,−p)Vkl(−k, k − p, p)4̃ϕ(k − p)4̃h
ijkl(p)

=

∫
dωpd

3p

[
−1

2
Πp
ij|klkikjkkkl4̃

ϕ(k − p)4̃h(p)

]
. (4.41)

k k

p

ϕ ϕ

Figure 4.9: Bubblegum diagram with a tensor graviton in the loop and a hijhklϕ2

vertex.

Now we consider another bubblegum diagram, this time with the tensor graviton
propagating around the loop, as shown in Figure 4.9. The diagram contains a
hijhklϕ

2 vertex and, given the symmetry factor of two, contributes a self-energy
Σh2ϕ2 where

M2
plΣh2ϕ2 =

1

2
M2

pl

∫
dωpd

3pVijkl(k,−k; p,−p) · 4̃h
ijkl(p)

=

∫
dωpd

3p4̃h(p)

[
1

2

(
−ω2

k + |k|2 +m2
)
− πp

ijkikj

]
.

(4.42)

k k − p

p

k
ϕ ϕ

Figure 4.10: Diagram containing two ζϕ2 vertices

The diagram with the ζϕ2 vertices is shown in Figure 4.10. With the appropriate
symmetry factors this gives a self-energy contribution Σζϕ2 where

M2
plΣζϕ2 =M2

pl

∫
dωpd

3pV (k, p− k,−p)V (−k, k − p, p)4̃ϕ(k − p)4̃ζ(p)

=

∫
dωpd

3p4̃ϕ(k − p)4̃ζ(p)

[
(3 + 2f(p))ωk (ωk − ωp)− (1− 2f(p))k · (k− p)

− (3− 2f(p))m2 +
1− 3λ

1− λ

[
ω2
p

|p|2
p · k +

ωpωk

|p|2
(
|p|2 − 2p · k

)]]2

.

(4.43)
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k k

p

ϕ ϕ

Figure 4.11: Bubblegum diagram with a scalar graviton in the loop and a ζ2ϕ2

vertex

Finally, we consider a third bubblegum diagram, shown in Figure 4.11. This has
the scalar graviton running through the loop with a ζ2ϕ2 vertex. Taking care to
neglect ‘tadpole-like’ contributions, we find that the contribution to the self-energy
is given by Σζ2ϕ2 where

M2
plΣζ2ϕ2 =M2

pl

∫
dωpd

3p∆ζ(p)V(k,−k; p,−p)

=

∫
dωpd

3p∆ζ(p)

[
1

2

(
3 + 8f(p)2

)
ω2
k +

1

2
[1− 8f(p)] |k|2

− 2

(
1− 3λ

1− λ

)2

ω2
p

(k · p)2

|p|4
+

3

2
m2

]
.

(4.44)

We cannot hope to solve these integrals exactly, but we can get a handle on
their schematic properties by making some approximations. We will examine
the leading order behaviour at low spatial momentum k . M∗ and assume for
simplicity that the scalar potential vanishes (m = µ = 0) and that |α| ∼ |1−λ| �
1. In each case we Wick rotate to Euclidean signature, and perform the integration
over ωp followed by the integration over p. For the latter, we approximate |k ±
p|2 ≈ |k|2 + |p|2, so that we can integrate out the angular components. We also
split the integration over |p| into different régimes, approximating the integrand
accordingly. This will hopefully be evident from the example we will work through
shortly. Before doing so, however, let us quote some useful integral formulae, in
particular [154, 155]

In =

∫ ∞
0

dz
zn

z2 + A2
=
An−1

2
Γ

(
1 + n

2

)
Γ

(
1− n

2

)
. (4.45)

For even integer values of n = 2N , this integral gives

I2N =
(−1)NA2N−1π

2
, (4.46)

whereas for odd integer values n = 2N + 1 it is divergent. We can regulate the
divergence using dimensional regularisation, such that

I2N+1 = lim
ε→0

∫ ∞
0

d1+εz

µε
z2N+1

z2 + A2
= (−1)NA2N

[
−2

ε
+ ln

(
µ2

4πA2

)
− γ
]
, (4.47)
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where γ is the Euler-Mascheroni constant and µ is the renormalisation scale. We
will also make use of the following integral which is finite for integer values of N∫ ∞

0

dz
z2N

(z2 + A2)(z2 +B2)
=

(−1)Nπ

2

[
A2N−1 −B2N−1

A2 −B2

]
. (4.48)

Let us now work through the simplest example to illustrate our methods. Consider
Σh2ϕ2 as given by the integral expression (4.42). Schematically, we write this as

Σh2ϕ2 ≈
1

M2
pl

[
#ω2

k

∫
dω̄pd

3p
1

ω̄2
p + |p|2X(|p|)

+ #|k|2
∫
dω̄pd

3p
1

ω̄2
p + |p|2X(|p|)

]
(4.49)

where # denotes (not necessarily equal) numbers of order one, and X(z) = # +

# z2

M2
pl

+ # z4

M4
h

with Mh ∼ Mplα
1/4 being the scale of Lorentz violation in the

tensor sector [117]. Here we are obviously being sloppy with tensor structure and
have used the fact that, upon Wick rotating the energy, ωp → −iω̄p, we have
∆̃h(p) = #

ω̄2
p+|p|2X(|p|) . We begin by using equation (4.46) to do the integration

over ωp, and then do the angular integration yielding

Σh2ϕ2 ≈ 1

M2
pl

(
#ω2

k

∫ ∞
0

d|p| |p|√
X(|p|)

+ #|k|2
∫ ∞

0

d|p| |p|√
X(|p|)

)
(4.50)

Now for |p| � Mh, we have X ∼ #, whereas for |p| � Mh we have X ∼
#|p|4/M4

h . Thus we split this integral up into two domains and approximate it as
follows ∫ ∞

0

d|p| |p|√
X(|p|)

≈ #

∫ Mh

0

d|p||p|+ #

∫ ∞
Mh

d|p|M
2
h

|p|
(4.51)

Note that
∫∞
Mh

d|p|M
2
h

|p| ≈M2
h

∫∞
0
d|p| |p|

|p|2+M2
h
−
∫Mh

0
d|p||p|, and so using the formula

(4.47) for N = 0, we obtain

Σh2ϕ2 ≈ M2
h

M2
pl

(
#

ε
+ # ln

µ2

M2
h

+ #

)(
#ω2

k + #|k|2
)
. (4.52)

This reveals a logarithmic divergence and finite pieces that simply renormalise the
constant part of the light cone, but by an amount that is suppressed by a factor
of
√
α =

M2
h

M2
pl
.

Using similar techniques, we arrive at the following approximations for the other
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contributions to the self-energy

Σϕ4 ≈
(

#

ε
+ # ln

µ2

M2
∗

+ # + #
|k|2

M2
∗

)(
#ω2

k + #|k|2
)

(4.53a)

Σhϕ2 ≈
[
# + # ln

|k|2

M2
h

]
|k|4

M2
pl

(4.53b)

Σζϕ2 ≈ 1

M2
∗

(
# + # ln

|k|2

M2
∗

)(
#ω4

k + #ω2
k|k|2 + #|k|4

)
+

1

α

(
#

ε
+ # ln

µ2

M2
pl

+ #

)(
ω2
k + #|k|2

) (4.53c)

Σζ2ϕ2 ≈α
(

#

ε
+ # ln

µ2

M2
h

+
#

α

)
ω2
k

+ (1 + #α)

(
#

ε
+ # ln

µ2

M2
h

+ #

)
|k|2

(4.53d)

where we have set ωk = 0 in the denominator of the integrands for Σhϕ2 and Σζϕ2 ,
corresponding to equations (4.41) and (4.43) respectively.

The first thing to note is that we have at most logarithmic divergences on account
of the fact that we have used dimensional regularisation. Focussing on the finite
terms it is clear that we generate terms of the form

1

α
ϕ

[
a0 + a1

∆

M2
pl

+ a2
∂2
t

M2
pl

+ + . . .

]
ϕ̈,

1

α
ϕ

[
b0 + b1

∆

M2
pl

+ . . .

]
∆ϕ, (4.54)

where we have neglected the contribution from the ln |k|
2

M2
∗
terms as they are not

expected to be important when we properly take into account infra-red corrections
arising from a non-trivial potential (i.e. m 6= 0, µ 6= 0). There are a number of
important features to dwell upon. The first is the potentially large leading order
correction to the light cone, of order δc2 ∼ (a0 − b0)/α & 107. This large factor
is a direct result of the strong coupling between matter and the scalar graviton
and suggests an unpalatable amount of fine tuning of the light cone for different
particle species. Of course, the effect may be reproduced in exactly equal measure
for all particles in which case there is nothing to worry about. It is beyond the
scope of this work to establish whether or not such an optimistic scenario occurs.
This point is discussed further in Section 4.6.

Beyond the leading order terms, we have higher derivatives with an additional
Planckian suppression. This is the relevant scale because the scalar graviton prop-
agator, ∆̃ζ only feels the z = 3 scaling at beyond the Planck scale8. Higher spatial
derivatives were anticipated in Section 4.3, and may have been expected from the
quadratic divergences that appeared in [100]. Because they were seen to remove

8From equation (4.39c) we see that the scalar graviton propagator behaves roughly as ∆̃ζ(k) ∼
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these divergences, it has been suggested [152] that the inclusion of terms such as
(DiKjk)

2 will help suppress these operators in the UV, beyond the scales M∗ and
Mh. However, our integrals are evaluated for low momenta k < M∗ so we do not
probe the very high energy corrections in this work.

In contrast, we did not anticipate the terms 1
M2
plα
ϕ∆ϕ̈ and 1

M2
plα
ϕ∂4

t ϕ in Section 4.3,
even though they are compatible with the DiffF(M) symmetry. This is because we
did not endeavour to generalise to terms involving temporal derivatives, consistent
with the original formulation of the gravitational action. However, we now see that
such terms are generated by loop corrections, and that they alter the temporal
part of the propagator in the UV. This is dangerous and will generically lead
to ghosts. Indeed, the fourth-order time derivative can be identified with a new
degree of freedom corresponding to an Ostrogradski ghost [67].

Let us consider this fourth order time derivative more closely. It stems from the
Σζϕ2 contribution to the self-energy, and in particular the piece proportional to
ω4
k,

Σζϕ2 ⊃ i

2M2
pl

ω̄4
k

∫
dω̄pd

3p4̃ϕ(k − p)4̃ζ(p) (3 + 2f(p))2 (4.55)

where the ω̄ indicates explicitly that we have performed a Wick rotation ω → −iω̄
on all internal and external energies. In our rough evaluation of this integral, we
set ω̄k = 0 inside the scalar part of the loop. One might worry that this eliminates
an important correction, so let us see what happens when we leave it in. The
Wick rotated propagators have the approximate form

4̃ϕ(k − p) ∼ 1

(ω̄k − ω̄p)2 + |k− p|2 +m2
, ∆̃ζ(p) ∼ α

ω̄2
p + c2(|p|)|p|2

(4.56)

where c(|p|) is given in footnote 8. Using the Feynman trick, then integrating over
ω̄p we obtain,

Σζϕ2 ⊃
πi

4M2
pl

αω̄4
k

∫ 1

0
dx

∫
d3p

(3 + 2f(p))2

[x(|k− p|2 +m2) + (1− x)c2(|p|)|p|2 + x(1− x)ω̄2
k]3/2

.

(4.57)

Since we are interested in the role of higher-order time derivatives, we may as well
set the external 3 momentum to vanish, k = 0. Now performing the integration

α
ω2

k−c2(|k|)|k|2 where

c(|k|) ∼


1 |k| < M∗

M2
∗/|k|2 M∗ < |k| < Mh

|k|2/M2
pl |k| > Mh

.
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over x and then the angles, we obtain,

Σζϕ2 ⊃ 2π2i

M2
pl

αω̄4
k

∫ ∞
0

d|p|
|p| (3 + 2f(|p|))2 (

√
|p|2 +m2 + |c(|p|)||p|)

|c(|p|)|
√
|p|2 +m2[(

√
|p|2 +m2 + |c(|p|)||p|)2 + ω̄2

k]

=
2πi

M2
pl

αω̄4
k

∞∑
n=0

ω̄2n
k

n!
In, (4.58)

where in the last line we have performed a Taylor expansion about ω̄2
k = 0, with

In = (−1)n
∫ ∞

0

d|p| |p| (3 + 2f(|p|))2

|c(|p|)|
√
|p|2 +m2(

√
|p|2 +m2 + |c(|p|)||p|)2n+1

. (4.59)

Now the crucial point is that, generically, each of the In is finite so the Taylor
expansion is valid in some neighbourhood of ω̄2

k = 0. This suggests that the higher-
order time derivatives are a real phenomena and not some artifact of our rough
approximations9. We will discuss the pathological implications of these higher-
order time derivatives and how they may be avoided in more detail in Section
4.6.

4.5 Quantum corrected gauge fields

The Standard Model of particle physics contains three gauge fields, twelve fermions
and one scalar field. The existence of the vectors and fermions has long been estab-
lished, but many years passed with no fundamental scalar fields being discovered.
In July 2012 a new particle, thought to be the Higgs particle, was discovered at
the LHC [156, 157]. This particle is a boson and most likely spin-0 [158], but
further measurements are required to confirm its spin. It remains possible that
there exist no fundamental scalars in nature, in which case: what can be made of
the analysis in Section 4.4? Even if the particle is confirmed as a scalar particle,
the data on its properties are nowhere near as precise as the well known vector
and fermion fields. This motivates us to consider a gauge field10, specifically the
U(1) of electromagnetism, coupled to Hořava gravity, and investigate the resultant
effects of the one-loop corrections to the propagator, with greater certainty of the
physical relevance.

9This is basically saying that the expansion of the integral about ω̄2
k = 0 does not contain

negative powers of ω̄2
k that cancel off the overall factor of ω̄4

k.
10We do not consider fermions due to the extra complications in the analysis — one cannot

simply minimally couple the flat space action, but instead is required to introduce vierbeins.
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4.5.1 Reduced action for a gauge field

Our tree level matter action is now

S = Sgrav + StreeA , (4.60)

where
StreeA = −1

4

∫
dtd3x

√
−gFµνF µν . (4.61)

Again, we will integrate out the constraints to work directly with the dynamical
degrees of freedom. This will also be necessary for the matter field in this case
since it carries a gauge symmetry.

The Hamiltonian and momentum constraints along with that from the vector field
component A0 are

CN =
δS

δN
= M2

pl

√
γ
[
−KijK

ij + λK2 +R(3) − αaiai − 2αDia
i
]

+
√
γ

[
A1(R

(3)
ij )2 + A2(R(3))2 + A3

(
R(3)Dia

i +
1

N
4(NR(3))

)
+A4

(
(Dia

i)2 +
2

N
4(NDia

i)

)]
+

√
γ

M2
pl

[
B1(DiR

(3)
jk )2 +B2(DiR

(3))2 +B3

(
4R(3)Dia

i +
1

N
4(N4R(3))

)
+B4

(
Dia

i4Dja
j +

1

N
4(N4Dia

i) +
1

N
42(NDia

i)

)]
−
√
γ

4

[
2

N2
γij(F0i − FkiNk)(F0j − FljN l) + FijF

ij

]
(4.62a)

Ci =
δS

δNi

= 2M2
pl

√
γ
(
DjK

ij − λDiK
)
−
√
γ

N
F ij
(
F0j − FkjNk

)
(4.62b)

CA =
δS

δA0

= ∂j

(√
γ

N
γij
(
F0i − FkiNk

))
(4.62c)

We perform an expansion about Minkowski, given by (4.28). For the vector field,
we work in the gauge Aµ → εAµ. We work in Coulomb gauge, so our full set of
gauge conditions is

Vi = 0 E = 0 ∂iA
i = 0, (4.63)

meaning Ai is purely transverse. This will reduce our expansions of γij to the phys-
ical scalar and tensor, and of Ai to the physical vector. The pieces corresponding
to N , Ni and A0 will be eliminated when we integrate out the constraints (4.62).
Expanding the action (4.60) order by order in ε, we find that

S = ε2S(2) +
ε3

Mpl

S(3) +
ε4

M2
pl

S(4) +O
(
ε5
)
, (4.64)
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where

S(2) =

∫
dtd3x

[
1

2
Ai
(
−∂2

t +4
)
Ai +

1

4
hij

(
−∂2

t +4+
A1

M2
pl

42 − B1

M4
pl

43

)
hij

+M2
pln

(
α4− A4

M2
pl

42 +
B4

M4
pl

43

)
n−M2

pl(1− λ)β42β +
1

2
M2
plSi4Si

+3(1− 3λ)ζ̇2 − 2ζ4ζ +
(6A1 + 16A2)

M2
pl

ζ42ζ − (6B1 + 16B2)

M2
pl

ζ43ζ

−1

2
(∂iA0)2 + nC

(1)
N + niC

(1)
i +A0C

(1)
A

]
, (4.65)

S(3) =

∫
dtd3x

{
1

2
ζF 2

0i −
1

2
hijF0iF0j +

1

4
ζF 2

ij +
1

2
hjkFijFik

− αM2
pl [ζ∂in∂in− 2Mpln∂in∂in]− 4A34ζ∂in∂in− 4

B3

M2
pl

42ζ∂in∂in

−A4

[
2∂iζ∂iζ4n− ζ(4n)2 − 4Mpl4n∂in∂in− 2Mpln(4n)2

]
− B4

M2
pl

[
−3ζ4n42n+ ∂iζ∂in42n− 2∂iζ4n∂i4n− 24ζ(4n)2

+2∂i∂jζ∂i∂jn4n− 2Mpln4n42n− 2Mpl∂in∂in42n

−8Mpl∂in4n∂i4n− 2Mpl(4n)3 − 4Mpl(∂i∂jn)24n
]

+ 2M3
pln (∂i∂jβ)2 −M3

pl2λn(4β)2 + 2M3
pln∂(iSj)∂iSj

− 2M2
pl(1− 3λ)ζ̇n4β + 4M3

pln∂i∂jβ∂iSj +M2
plζ(∂i∂jβ)2

−M2
plλζ(4β)2 +M2

plζ∂(iSj)∂iSj + 2M2
plζ∂i∂jβ∂iSj

+ 2M2
pl∂iζ∂jβ∂i∂jβ + 2M2

pl∂iζSj∂i∂jβ −M2
pl(1− λ)∂iζ∂iβ4β

−M2
pl(1− λ)∂iζSi4β + 2M2

pl∂iζ∂jβ∂iSj + 2M2
pl∂iζSj∂iSj

+ nC
(2)
N + niC

(2)
i +A0C

(2)
A

}
+ . . . , (4.66)

S(4) =

∫
dtd3x

{
− 1

2
M2
pln

2F 2
0i −

1

4
ζ2F 2

0i +
1

2
ζhijF0iF0j −

1

8
h2
jkF

2
0i

+
1

2
hikhjkF0iF0j − 3M2

pln(∂jβ + Sj)FjiF0i −
1

2
M2
plnjnkFjiFki

− 3

8
ζ2F 2

ij − ζhjkFijFik +
1

16
h2
klF

2
ij −

1

2
hjlhkl FijFik

− 1

4
hikhjlFijFkl + nC

(3)
N + niC

(3)
i +A0C

(3)
A

}
+ . . . , (4.67)

and as before, “. . .” denote terms which are irrelevant to our subsequent calcu-
lations, and the gravitational constraints are expanded as CN = εC

(1)
N + ε2C

(2)
N +

ε3C
(3)
N + O (ε4) and Ci = εC

(1)
i + ε2C

(2)
i + ε3C

(3)
i + O (ε4). We expand the gauge

field constraint as CA = εC
(1)
A + ε2C

(2)
A + O (ε3), since we will not be sensitive to

O (ε3) terms. Again, we do not need to consider interactions beyond fourth order
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since for 1-loop corrections to the propagator we will only encounter up to four
point vertices.

We now integrate out the constraints by setting C(1)
N = −εC(2)

N − ε2C
(3)
N − ε3C

(4)
N +

O (ε4), C(1)
i = −εC(2)

i −ε2C
(3)
i −ε3C

(4)
i +O (ε4) and C(1)

A = −εC(2)
A −ε2C

(3)
A +O (ε3),

or more specifically,

2εM2
pl

(
−α+

A44
M2
pl

− B442

M4
pl

)
4n = 4εMpl

(
1 +

A34
M2
pl

+
B342

M4
pl

)
4ζ

+
ε2

2

(
F0iF

i
0 +

1

2
FijF

ij

)
+ ε2H2 + ε3H3

− ε3
[
(ζ + n)F0iF

i
0 + F0iF

jinj +
1

2
hijF0iF0j

+F ijFijζ +
1

2
FijF

kjhik

]
+O

(
ε4
)

(4.68a)

2εM2
pl(1− λ)42β =2εMpl(1− 3λ)4ζ̇ − ε2∂i

(
F j
i F0j

)
+ ε2P2

+ ε3∂i
(

2ζF j
i F0j + hjkFikF0j + F j

i Fkjn
k
)

+ ε3P3 +O
(
ε4
) (4.68b)

εM2
pl4Si =− ε2πik

(
F j
k F0j

)
+ ε2Q2i

+ ε3πij

(
2ζF j

k F0j + hjlFklF0j + F j
k Fljn

l
)

+ ε3Q3i +O
(
ε4
) (4.68c)

ε4A0 =ε2
[
∂i(ζ − n)Ȧi − hij∂jȦi − ∂i(njFji)

− ∂i(ζ − n)∂iA0 + hij∂i∂jA0

]
+O

(
ε3
) (4.68d)

where Hq, Pq and Qq are defined as in (4.37).

We now use the equations (4.68) to eliminate the non-dynamical field n, β, Si, A0

from the action, thereby arriving at the reduced action for the dynamical fields,
hij, ζ and Ai.

Sreduced =

∫
dtd3x ε2

[
1

2
hijO

ij|klhkl +
1

2
ζOζζ +

1

2
Ai(−∂2

t +4)Ai

]
+ ε3 [VhA2 + VζA2 + . . .] + ε4 [VA4 + Vh2A2 + Vζ2A2 + . . .] +O

(
ε5
)

(4.69)

where Oij|kl and Oζ denote complicated operators for the leading order kinetic
terms for hij and ζ. As before, there are two important three-point vertices and
three important four-point vertices: the hijAkAl vertex denoted by VhA2 , the ζAiAj
vertex denoted by VζA2 , the AiAjAkAl vertex denoted by VA4 , the hijhklAmAn
vertex denoted by Vh2A2 , and the ζ2AiAj vertex denoted by Vζ2A2 . Note that
integrating out introduces an A4 vertex, which appears absent prior to integrating
out. This also occurs in QED coupled to matter, if one works with just the
dynamical degrees of freedom and is not problematic for the theory.
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Feynman Rules

Working in Fourier space with four-momentum kµ split into energy ωk and three-
momentum k, we have the following tree-level propagators, as shown in Figure
4.12:

i4̃A
ij(k) =

πkij

−ω2
k + |k|2 +m2

=: πkiji4̃A(k) (4.70a)

i4̃h
ij|kl(k) =

1
2Πk

ij|kl

−ω2
k + |k|2 + A1

M2
pl
|k|4 + B1

M4
pl
|k|6

=:
1

2
Πk
ij|kli4̃

h(k) (4.70b)

−i
(
4̃ζ(k)

)−1
=

2

α+ A4

M2
pl
|k|2 + B4

M4
pl
|k|4

[
(2− α) |k|2 − (A4 + 4A3)

|k|4

M2
pl

+
(
4B3 −B4 + 2A2

3

) |k|6
M4
pl

− 4A3B3
|k|8

M6
pl

+ 2B2
3

|k|10

M8
pl

]

− 3λ− 1

λ− 1
ω2
k, (4.70c)

where the indexless 4̃A and 4̃h have been introduced to allow us to separate the
projection operators and the Green’s function. The relevant vertices are shown in

4A
ij(k)

Ai Aj
4̃h
ij|kl(k)

hij hkl
4̃ζ(k)

ζ ζ

Figure 4.12: Propagators for the dynamical fields in the vector case

Figure 4.13. Recall our convention that all momenta point into the vertex.

4.5.2 One-loop corrections to a gauge field propagator

We are now ready to compute the one-loop correction to the vector propagator.
To this end, the relevant 1PI graphs are shown in Figure 4.14. As usual, the
renormalised two-point vertex for the vector ΓrenAA = ΓtreeAA −Σ, where ΓtreeAA = (∆̃A)−1

is the tree-level vertex and Σ is the self energy (at one loop). We have used the fact
that the propagator will remain transverse (since we have maintained rotational
invariance) to write Σij = πijΣ, and reduce the number of indices to wade through.

Let us now compute the contributions to the self energy for each diagram. Our
expressions will again be given in terms of the integrations over internal momenta,
explicitly dropping terms that will obviously vanish when this integration is per-
formed.
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k1, i

k2, j

Vij|kl(k1, k2, k3) k3, kl
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Vij(k1, k2, k3) k3

(a) VhA2 (b) VζA2

k1, i

k2, j

Wijkl(k1, k2, k3, k4)
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k4, l

k1, i

k2, j

Vij|klmn(k1, k2, k3, k4)

k3, kl

k4,mn k1, i

k2, j

Vij(k1, k2, k3, k4)

k3

k4

(c) VA4 (d) Vh2A2 (e) Vζ2A2

Figure 4.13: Three and four point vertices for the dynamical fields in the vector
case.

= + +

+ +

Figure 4.14: 1-Loop corrections to the vector propagator

Begin with the pure vector bubblegum diagram shown in Figure 4.15. The appro-
priate contraction of the legs introduces a symmetry factor of two. We find that
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k k

p

Ai Aj

Figure 4.15: The pure vector bubblegum diagram with a A4
i vertex

the contribution to the self-energy is given by ΣA4 , where

M2
plΣA4πkij = M2

pl

∫
dωpd

3p∆̃A
kl(p)

Wijkl(k,−k, p,−p)
2

=

∫
dωpd

3pπkimπ
k
jnπ

p
kl∆̃

A(k){
− 1

2

ω2
kω

2
pδmnδkl + (k · pδmk − pmkk) (k · pδnl − pnkl)

α|k + p|2 +A4
|k+p|4
M2
pl

+B4
|k+p|6
M4
pl


−
ω2
p

(
δmlδkn |k|2 + δmnkkkl

)
+ ω2

k

(
δmlδnl |p|2 + pmpnδkl

)
|k + p|2

+

(
1− 1

2(1− λ)

) ω2
p

[(
|k|2 + k · p

)
δmk − pmkk

] [(
|k|2 + k · p

)
δnl − pnkl

]
|k + p|4

+

(
1− 1

2(1− λ)

) ω2
k

[(
|p|2 + p · k

)
δmk − pmkk

] [(
|p|2 + p · k

)
δnl − pnkl

]
|k + p|4

}
,

(4.71)

where we again take care to neglect the ‘tadpole-like’ contributions.

k k − p

p

k
Ai Aj

Figure 4.16: Diagram containing two hijA2
i vertices.

Next we consider the diagram containing hijA2
i vertices, shown in Figure 4.16. As

this is not a bubblegum diagram we don’t need to worry about tadpole effects.
Taking into account the symmetries we find that the contribution to the self energy
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is Σhϕ2 , where

M2
plΣhA2πkij =M2

pl

∫
dωpd

3pVik|mn(k, p− k,−p)Vjl|pq(−k, k − p, p)4̃A
kl(k − p)4̃h

mnpq(p)

=

∫
dωpd

3pπkirπ
k
jsπ

p+k
kl · 1

2
Πp
mn|pq4̃

A(k − p)4̃h(p){[
δrmδnk [ωk(ωk + ωp)− k · (k + p)]− δrkkmkn + 2kmδn(rpk)

]
[
δspδql [ωk(ωk + ωp)− k · (k + p)]− δslkpkq + 2kpδq(spl)

]}
.

(4.72)

k k

p

Ai Aj

Figure 4.17: Bubblegum diagram with a tensor graviton in the loop and a h2
ijA

2
i

vertex.

Now we consider another bubblegum diagram, this time with the tensor graviton
propagating around the loop, as shown in Figure 4.17. The diagram contains
a h2

ijA
2
i vertex and, given the symmetry factor of two, contributes a self-energy

Σh2A2 where

M2
plΣh2A2πkij =

1

2
M2
pl

∫
dωpd

3pVij|klmn(k,−k; p,−p) · 4̃h
klmn(p)

=

∫
dωpd

3pπkipπ
k
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1

2
Πp
kl|mn4̃

h(p){
ω2
k

(
δpkδqmδln −

1

4
δpqδkmδln

)
+

1

4
δpqδkmδln |k|2

− δln
(
δpkδqm |k|2 + δpqkkkm

)
− δpk (δqlkkkl − δqmklkn)

− ωk2

|k + p|2
kkkmδln

}
.

(4.73)

Note that the final term in the above equation comes from integrating out the A0

constraint.

The diagram with the ζA2
i vertices is shown in Figure 4.18. With the appropriate
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k k − p

p

k
Ai Aj

Figure 4.18: Diagram containing two ζA2
i vertices

symmetry factors this gives a self-energy contribution ΣζA2 where

M2
plΣζA2πkij = M2

pl

∫
dωpd

3pVik(k, p− k,−p)Vjl(−k, k − p, p)4̃A
kl(k − p)4̃ζ(p)

=

∫
dωpd

3pπkaiπ
k
bjπ

p+k
kl 4̃

A(k − p)4̃ζ(p){
(1 + 2f(p)) [δijωk(ωk + ωp) + k · (k + p)δij − kikj ]

− 1− 3λ
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ωp

|p|2
[
ωp(k · pδij − pikj) + ωk(2k · pδij + |p|2 δij − pikj − pipj)

]}
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]}
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(4.74)

k k

p

Ai Aj

Figure 4.19: Bubblegum diagram with a scalar graviton in the loop and a ζ2A2
i

vertex

Finally, we consider a third bubblegum diagram, shown in Figure 4.19. This has
the scalar graviton running through the loop with a ζ2A2

i vertex. Taking care to
neglect ‘tadpole-like’ contributions, we find that the contribution to the self-energy
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is given by Σζ2A2 where

M2
plΣζ2A2πk

ij =M2
pl

∫
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(4.75)

The above expressions can all be marginally simplified by multiplying through by
πk
ij and using πk

ijπ
k
ij = 2, if one desires.

We are again interested in calculating these integrals, and do so by approximation
methods similar to those adopted for the scalar in Section 4.4.3, obtaining the
following expressions,
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)(
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(
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ΣζA2 ≈ 1
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Σζ2A2 ≈α
(
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+
#
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)
ω2
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+ (1 + #α)

(
#

ε
+ # ln
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h

+ #

)
|k|2.

(4.76e)

Comparing with the scalar field case in (4.52), (4.53), we see that the broad pattern
of these is unchanged in the vector case. The only additional terms are those in the
tensor graviton h vertices, due to the fact that our matter field carries a spacetime
index. These terms are subdominant to those in (4.76d) at any rate, so are not
expected to lead to new effects.
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The matter field still couples strongly to the scalar graviton ζ, as can be seen
in (4.76d). This suggests that the vector field will also experience large correc-
tions to the light cone. These are not necessarily observable, if all light cones
are renormalised in the same manner. Indeed, [100] argue that most large correc-
tions cancel out if one compares δc2

vector− δc2
scalar, provided some additional terms

are added into the potential (these will be discussed further in Section 4.6). Un-
fortunately, our approximation scheme loses specific numerical coefficients so we
cannot independently verify this, but a naïve hard cut-off analysis of our results
suggests no disagreement with [100]. It would be interesting to repeat the analysis
for fermionic fields, to investigate whether the light cone fine tuning is resolved in
that case.

An unexpected feature of the scalar field result was the presence of higher time
derivatives. Are these dangerous terms still present in the vector field case? Yes,
and in fact in our case there are contributions from both the scalar graviton
(4.76d) as before and also the tensor graviton (4.76b). For photons, not only are
the Ostrogradski ghosts dangerous, but experimentally the other higher derivative
terms may be too, as future experiments may be able to push the limits of the
suppression scale of dimension 6 operators11 on the photon above M?. Similar
restrictions do exist for the spin-1

2
sector, which we discuss in the next section.

It appears that regardless of rank of the field, coupling Hořava gravity to matter
runs into the same, serious problems.

4.6 Discussion

Hořava gravity has attracted much interest in its gravitational sector. However,
the knottier issue of matter in the theory is still relatively new. In this chapter
we have looked at both classical and quantum effects of Hořava gravity coupled
to matter.

Having reviewed pure Hořava gravity in Section 4.2, we investigated Hořava-like
matter theories in Section 4.3. We constructed the most general (at quadratic or-
der around a Minkowski background) DiffF(M) invariant action of matter coupled
to gravity, obeying the usual power-counting renormalisability conditions used in
Hořava gravity and assuming the temporal derivatives are as in the relativistic
theory. This corresponds to all the terms which can be generated if the theory is
renormalisable. We constructed these fields both in the usual ADM composition

11Note that the standard terminology for the dimension in this case includes the dimension
of the field, so since [ϕ] = 1 when canonically normalised and [4] = 2, the term ϕ42ϕ is of
dimension six in this language.
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and the Stückelberg formalism. Using this, it was easy to demonstrate that the
only way of coupling matter to gravity but not the new mode (in order to evade
Lorentz invariance or Equivalence Principle violations) is the standard Lorentz
invariant matter action.

Up to this point, we worked classically. However, in Sections 4.4 and 4.5, we consid-
ered the quantum corrections. In particular we studied one loop corrections to the
propagator for scalar and vector matter fields. Our approach differed somewhat
from that of [100] in that we integrated out the constraints and worked directly
with the propagating degrees of freedom. We also used dimensional regularisa-
tion to (roughly) evaluate our loop integrals thereby eliminating the quadratic
and quartic divergences that appeared in [100]. These divergences now manifest
themselves as large momentum dependent corrections.

This analysis has revealed some potentially worrying features. The first is the large
renormalisation of the light cone (∼ 1/α & 107) at low energies and momentum.
This arises because the scalar graviton couples so strongly to the matter sector
and was not noticed in [100] since they only focussed on divergences. Whether
or not this means light cones for different particle species must be fine tuned to
one part in 107 remains to be seen. What we can say is that the situation can
probably be improved by modification of the Hořava action to include terms such
as (DiKjk)

2, provided they are introduced sufficiently far below the Planck scale.
Such terms were originally proposed by [100] to alleviate quadratic divergences in
the the relative light cones of different species. Here they will act to modify the
propagator for the scalar graviton such that it becomes more weakly coupled to
matter with increasing momentum.

The consistency of including these terms can be questioned, however, since they
correspond to scaling dimension-8, and so the gravitational potential should be
modified to include dimension-8 terms. It is also not clear that these are the
only terms to be added — it may be that two-loop calculations imply a need to
introduce dimension-10 terms, and so on for all loop orders. In addition, [100]
only consider terms of the form (DiK

ij)2 to avoid modifying the tensor graviton
kinetic piece. However, this is an artificial restriction, and since terms of the form
(DiKjk)

2 are permitted by the symmetries, one expects them to be generated
quantum mechanically. A full analysis of the theory with these additional terms
included would be very interesting, particularly as the matter actions would also
gain new pieces.

Another important issue may be the effect of having interacting matter fields, since
then the RG flow can lead to corrections pushing both fields towards the same light
cone [159]. The strength of these corrections depends on the strength of the force,
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meaning there is no reason in Hořava’s theory to expect gravity to experience the
same light cone as matter, despite the ∼ 1% experimental constraints from binary
pulsars [100].

The second significant feature revealed by our analysis is the generation of higher-
order temporal derivatives. These are perfectly compatible with the DiffF(M) sym-
metry, but are generically associated with Ostrogradski ghosts [67]. Higher-order
time derivatives are also generated in perturbative General Relativity although
the corresponding ghosts have Planckian mass and so do not propagate when the
effective theory is valid. In contrast, Hořava gravity is touted as a UV complete
theory, rather than an effective theory only valid up to some cut-off, so we can
always get a ghost to propagate because we can go to arbitrarily high energies.

Can we avoid this problem by modifying the gravitational part of the action? This
seems unlikely since the origin of the higher-order time derivatives term can be
traced back to the relativistic matter Lagrangian with minimal coupling to gravity.
Indeed, consider the standard action

S ∼
∫
d4x
√
−ggµν∂µϕ∂νϕ, (4.77)

If one expands gµν = ηµν + 1
Mpl

hµν , then one obtains for the hµνϕ2 vertex V µν =
1
Mpl

[
k · qηµν − 2k(µqν)

]
, where k, q are the energy-momenta of the scalars and p

is the energy-momentum of the graviton. Working through, one arrives at the
contribution to the scalar propagator of

∼ 1

M2
pl

∫
d4pVµνρσ(k, p)4̃ϕ(k − p)4̃grav

µνρσ(p), (4.78)

where Vµνρσ(k, p) =
[
k · qηµν − 2k(µqν)

] [
k · qηρσ − 2k(ρqσ)

]
and 4̃grav

µνρσ(p) is some
generalised graviton propagator (which may be a sum of different helicity propa-
gators, e.g. spin-2 tensor and spin-0 scalar gravitons), and q = k − p.

If one splits the spacetime indices (µ, ν, ρ, σ) into temporal (0) and spatial (i, j, k, l)
indices, then V ijkl, V 00ij and V0000 contain ω4

k. This suggests that fourth-order
time derivatives will generically be generated, though we cannot rule out the
possibility that the details of the graviton propagator may be such that the ω4

dependence disappears from the integral. Given the discussion at the end of the
previous section, it seems a little optimistic to expect that this could be achieved
by a small modification of the gravitational action in Hořava gravity.

Can we avoid the higher time derivatives by modifying the matter action? Naively
one might be a little more optimistic for the following reason. Consider the of-
fending contribution to the self-energy given by equation (4.55) but with the Wick
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rotated scalar propagator given by

4̃ϕ(p) ∼ 1

ω̄2
p +Q2(|p|)

, (4.79)

Working through the analysis as at the end of the previous section we find that

Σζϕ2 ⊃ 2π2i

M2
pl

αω̄4
k

∫ ∞
0

d|p| |p| (3 + 2f(|p|))2 (|Q(|p|)|+ |c(|p|)||p|)
|c(|p|)||Q(|p|)|[(|Q(|p|)|+ |c(|p|)||p|)2 + ω̄2

k]
(4.80)

If we imagine that both propagators have a pure z = 3 scaling i.e.Q(|p|) ∼ Q0|p|3,
c(|p|)|p| ∼ c0|p|3 and take f(|p|) ∼ f0, constant then the integral evaluates as
∝ 1/ω̄2

k, so that the higher-order time derivatives are eliminated12. Of course,
given that such terms are generated anyway by quantum corrections perhaps it
is natural to consider matter Lagrangians that include an explicit z = 3 scaling
in addition to the leading order relativistic piece. However, the leading order
relativistic piece will almost certainly spoil the neat cancellation we have just
described which relied on exclusively z = 3 scalings. This question deserves fur-
ther investigation, not forgetting the phenomenological implications of introducing
Lorentz violating contributions to the classical matter action. Along similar lines,
it would be interesting to calculate the one-loop corrections to the gravity propa-
gators, to investigate whether the generation of Ostrogradski ghosts occurs in the
gravitational sector13.

It would also be interesting to investigate whether fermions also have light cones
which can avoid fine tuning in the same manner as scalars and vectors, or not.
In addition, [136] has argued that Crab Nebula synchrotron radiation forces the
scale of Lorentz violation in the fermionic sector to be Planckian, a result which
they argue also applies to higher-order operators. For both our scalar and gauge
fields, it appears from (4.53c) and (4.76d) that the relevant scale of suppression
is M? not Mpl. If this also holds in the fermionic case, it suggests we also need
an additional mechanism to suppress these corrections. These issues indicate that
extending our analysis for the case of fermions, while technically more involved,
would be fruitful.

Our analysis has revealed dangerous issues for matter in Hořava gravity, and points
towards a need for more detailed studies which may help rule out or save the theory.

12This pure z = 3 theory is equivalent to calculating corrections for 1 + 1 gravity, which is
renormalisable, as can be seen by making the substitution |p|3 = |q| inside the integral.

13Naïvely this seems reasonable — if terms of 2z are present in the matter sector, they should
also appear in the gravitational sector.
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Cleaning up the cosmological
constant problem

We now move on to consider a theory of gravity motivated by the need to alter
cosmology and low-energy physics. We introduce a class of models which resolve
the cosmological constant problem, before demonstrating some properties of an
explicit example. Note that in this chapter, the physical spacetime metric is
denoted g̃µν , with gµν reserved for a fundamental spin-2 field. This chapter is
based on the paper [2].

5.1 Introduction

Small scale physics is not the only indication that we need to alter our theory of
gravitation. On the largest scales, the expansion of our universe indicates a need
for new physics. Observations ranging from supernovae [55, 56] to the cosmic
microwave background [160] indicate that standard model particles make up only
5% of the universe. The rest is in the form of (roughly 25%) dark matter and
(roughly 70%) dark energy [38]. This can be explained within general relativity,
but at a cost — one must introduce some new particles to explain dark matter,
and add a cosmological constant to account for dark energy.

While there is significant motivation (supersymmetry etc.) for introducing new,
stable, heavy particles into our fundamental theories, which may then also be able
to account for dark matter, accounting for dark energy is more troublesome. The
cosmological constant, and the associated accelerated expansion of the universe,
can be explained simply by adding a cosmological constant into the Einstein-
Hilbert action. Recall from our discussion in Section 1.3.2 that such a cosmological
constant results in a horrendous degree of fine tuning. The observed cosmological
constant is given by Λ = Λbare + ΛSM . Now, ΛSM ∼ M2

pl, but Λ ∼ H2
0 ∼
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(10−33eV)2. This means that Λbare must cancel ΛSM in its first 120 digits!

If we choose to worry about this ‘cosmological constant problem’, then we want
some mechanism to explain the discrepancy between the vacuum energy from
particle physics and the vacuum curvature of the universe. A nice approach would
appear to be finding some mechanism to set Λ = 0 exactly, and then generate the
acceleration via another mechanism; a scalar field or modified gravity for example.
Unfortunately, methods of forcing Λ to zero tend to fall foul of Weinberg’s ‘no-go’
theorem [57], ruling them out. However, as with all no-go theorems, there is a
silver lining. It doesn’t only prohibit theories, but points you towards how to
create a theory where the issues may be evaded, giving the potential for viable
self-tuning theories.

What principles does Weinberg’s no-go theorem rely on? It assumes that your
theory that avoids the cosmological constant problem is based in four spacetime
dimensions and uses scale invariance to set Λ to zero. In such a theory there is no
scale, so a cosmological constant (which is dimensionful and hence corresponds to
a scale) cannot be generated. However, there must exist a goldstone boson from
breaking this scale invariance (which clearly is broken at some level, since we do
observe particle masses). In terms of quantum corrections, there is nothing to
stop an exponential potential term being generated for the goldstone boson — the
presence of such a term would drive the boson to an infinitely large value, corre-
sponding to unbroken scale invariance. While the cosmological constant is zero in
this case, we also have unbroken scale invariance, ruled out by experiment. Hence
one concludes scale invariance cannot be used to fix the cosmological constant
problem. If scale invariance is not responsible for setting Λ = 0, but a different
mechanism, the theorem can be evaded. An example is the supersymmetric large
extra dimensions (SLED) proposal [161], where SUSY is responsible for the can-
cellation of the cosmological constant. Other assumptions in the no-go theorem
include Poincaré symmetry in the scalar sector, which is broken at the level of the
solution in the Fab Four [162] proposal. There are also several other approaches
in the literature [163–167].

However, it is notable that most attempted resolutions of the cosmological con-
stant problem seek to explain why the cosmological constant is smaller than ex-
pected. We intend to ask instead why it gravitates less than expected. This shift
in viewpoint forms the basis for our proposal.
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5.2 A novel way to screen the vacuum energy

The idea for avoiding the cosmological constant problem can actually be framed
quite simply. All matter is coupled minimally to a physical metric, which we
denote g̃µν . This is actually a composite of fundamental fields, which we denote
φa,1 so that g̃µν = g̃µν(φa, ∂φa, ∂∂φa, . . .). Note that here we suppress the tensor
rank for brevity, and so the φa are not all spacetime scalars. In particular, {φa}
contains a fundamental metric gµν . Unless otherwise stated, we raise and lower
spacetime indices with the physical metric in this section.

We start with the observation that all the contributions to the effective cosmo-
logical constant in the action, both from the bare value and the various particle
physics contributions take the form∫

d4x
√
−g̃ × const. (5.1)

This can be prevented from having any influence on the dynamics if

δ

δφa

∫
d4x
√
−g̃ = 0 ∀ fieldsφa. (5.2)

It is only possible for us to satisfy this equation if g̃µν is not a fundamental field, but
is instead a composite, with

√
−g̃ a topological invariant and/or total derivative of

the fundamental fields φa. In fact, this demonstrates that this proposal is not for
a new model, but rather a new class of models, corresponding to different choices
of {φa} and the various topological invariants one can build from them.

Since the vacuum energy completely drops out of the dynamic equations, the
vacuum curvature (the curvature of physical spacetime) is now completely distinct
to the vacuum energy and can be chosen arbitrarily. We then no longer need to
concern ourselves with worries about stability of the vacuum curvature against
radiative corrections in the Standard Model sector! It is worth stressing that the
exact value of Λ is not explained by this proposal, however within it, one does
have the freedom to arbitrarily choose the cosmological constant to agree with
observation with a clean conscience.

To illustrate the idea more concretely, consider the case where g̃µν and gµν are
conformally related, so that

g̃µν = Ω(φa, ∂φa, ∂∂φa)gµν , (5.3)

with Ω > 0, which transforms as a scalar. Since
√
−g̃ = Ω2

√
−g, one could achieve

the required property of a total derivative by choosing Ω2 = 1√
−g∂µ(

√
−gAµ). Not

1As in GR, we assume that at least some of the fields do not admit a locally conserved energy-
momentum tensor. This ensures that we evade the no-go theorems presented in [168], i.e. the
fact that we already have a tensor means we are not building tensors out of lower spin objects.
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that one does not necessarily have to choose metrics of the form (5.3), disformal
metrics [169] could alternatively be considered.

Choosing the appropriate constituents and form of
√
−g̃ is only actually half the

story. We have proposed how the action should be built for the matter sector, by
simply minimally coupling it to the physical metric g̃µν , but have not commented
on how to build the action for the gravity sector. One could choose standard kinetic
terms for the φa, but the resulting theory would modify gravity in ways that are
highly constrained by a variety of observational and theoretical considerations,
particularly solar system tests. To evade these tight constraints, screening effects
such as the Vainshtein effect [74] and chameleon mechanism [78] are often vital to
suppress the modifications to gravity.

One obvious way to ensure compatibility with solar system tests is to take the
purely gravitational piece of the action to be the Eintein-Hilbert action, built out
of the physical metric,

∫
d4x
√
−g̃R(g̃). Thus, if g̃µν is any solution of GR with

an arbitrary cosmological constant, it will also solve this theory, since it will also
extremise this action. Since (de Sitter) Schwarschild is an excellent approxima-
tion to our solar system, this suggests that we can easily meet the observational
constraints. Unfortunately, this convenient choice comes with a price to pay — in
order to satisfy (5.2), g̃µν is required to depend on derivatives of the φa (or be uni-
modular gravity, see below). It is thus likely that

√
−g̃R(g̃) contains higher deriva-

tives, and is afflicted by Ostrogradski ghosts [67]. However, we will show later that
(at second order in perturbations on maximally symmetric backgrounds), ghosts
can be avoided by choosing the conformal factor appropriately.

The proposal therefore contains a wide class of theories, dependent on your choice
of
√
−g̃ and kinetic terms for φa. From this point onwards, we will consider more

specific examples of theories in this class, but we first discuss unimodular gravity
and its relation to this proposal.

5.2.1 Unimodular gravity

We now compare and contrast this model with unimodular gravity [170]. Unimod-
ular gravity relies on a similar idea, but approached from a different angle. The
symmetry group of the theory is restricted to those diffeomorphisms that preserve
the volume element2

√
−gd4x, whereas we remain fully diffeomorphism invariant.

This results in a theory where the curvature of the vacuum is arbitrary.
2Often referred to as restricting the volume element to unity, although in fact the real re-

striction is to coordinate transformations where the Jacobian is one.
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Unimodular gravity can be derived by considering the action

S =
1

16πG

∫
d4x
√
−g̃
[
R̃− 2Λ̃ + µ

(√
−g̃ −

√
−f
)]

+ Sm[g̃; Ψ], (5.4)

where µ is a Lagrange multiplier, fµν is a fixed metric and Sm[g̃,Ψ] is a matter
action. The Euler-Lagrange equations deriving from this action are

δS

δgµν
= −

√
−g̃

16πG

[
G̃µν − 8πGT̃ µν +

(
Λ̃− 1

2
µ

)
g̃µν
]

= 0, (5.5)

along with the constraint
√
−g̃ =

√
−f . By taking the trace of (5.5), one can

eliminate µ, resulting in
√
−g̃

16πG

(
δαµδ

β
ν −

1

4
g̃µν g̃

αβ

)[
G̃µν − 8πGT̃ µν

]
= 0. (5.6)

This just tells us that the traceless part of Einstein’s equations must vanish. Note
the disappearance of Λ from the equations of motion (5.6). Now, one obtains
an equation for the trace by acting on (5.6) with the derivative operator ∇̃, the
covariant derivative associated with g̃. From the Bianchi identity and energy
conservation3, this implies that

∇̃µ(R̃ + 8πGT̃ ) = 0. (5.7)

Then the combination R̃+8πGT̃ is constant. In other words, the value of the trace
of Einstein’s equations just corresponds to a boundary condition, and picking this
boundary condition specifies the cosmological constant.

Our proposal can actually be considered as a generalisation of unimodular gravity,
as it includes unimodular gravity as a special case. To see this, one can set Ω in
(5.3) to Ω2 =

√
−f√
−g , where fµν is a fixed metric. In this case, one obtains a theory

with a fixed volume element since
√
−g̃ =

√
−f , which is precisely unimodular

gravity, and
√
−g̃ is clearly a topological invariant (as it is a constant). This is,

however, just one possibility and so the proposal describes a wide class of models
which are mostly new but also reduces to unimodular gravity in this specific case.

This relationship between the theories is useful as there are interesting results
concerning unimodular gravity, which gives one hope these will hold in our more
general theory. For example, it is argued that the Hamiltonian is non-zero in
unimodular gravity, resolving the problem of time [171]. There is also evidence
that not only does unimodular gravity solve the cosmological constant problem at
the quantum level, but it may also have an UV completion via a full RG analysis
[172]. The relevance of these results to our proposal merits further research.

3Energy conservation cannot be derived from the action since we do not have full diffeomor-
phism invariance — it must instead be imposed by hand.
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5.2.2 Conformally related theories

Until now, we have considered the proposal in full generality. We now wish to
specialise to the case where the physical and fundamental metrics are conformally
related, as in (5.3). Explicitly, consider an action of the form

S[φa; Ψb] =
1

16πG

∫
d4x
√
−g̃R(g̃) + Sm[g̃µν ; Ψa], (5.8)

where Sm is the matter action describing matter fields Ψa minimally coupled
to the physical metric g̃µν . From this, we can calculate the equations of mo-
tion. To do this, we make use of the chain rule for functional derivatives δS

δφa(x)
=∫

d4y δS
δg̃µν(y)

δg̃µν(y)

δφa(x)
. One can then calculate4 that δg̃µν(y)

δφa(x)
= Ω(δαµδ

β
ν−1

4
g̃αβ g̃µν)

δgαβ(y)

δφa(x)
+

1
2
√
−g̃ g̃µν

δ
δφa(x)

√
−g̃(y). Turning the handle yields

δS

δφa
=
√
−g̃Ω

(
Ẽµν − 1

4
Ẽg̃µν

)
∂gµν
∂φa

+
1

2
Oa(Ẽ) = 0, (5.9)

where
Ẽµν =

1√
−g̃

δS

δg̃µν
= − 1

16πG

[
G̃µν − 8πGT̃ µν

]
, (5.10)

and Ẽ = Ẽµ
µ = g̃µνẼµν . Again, I emphasise that we are raising and lowering with

the tilded metric, g̃µν and g̃µν . Note that the first term in (5.9) only appears in
the gµν equation of motion, and no others, since

∂gµν
∂φa

=

1 φa = gµν

0 φa = all other fields
. (5.11)

T̃ µν = 2√
−g̃

δSm
δg̃µν

is the physical energy-momentum tensor. The final piece of (5.9)
to mention is the linear operator Oa. It acts on scalars, and is defined as

Oa(Q) :=

∫
d4yQ(y)

δ

δφa(x)

√
−g̃(y) (5.12)

= Q(x)
∂
√
−g̃(x)

∂φa(x)
− ∂

∂xµ

(
Q(x)

∂
√
−g̃(x)

∂∂µφa(x)

)
+

∂2

∂xµxν

(
Q(x)

∂
√
−g̃(x)

∂∂µ∂νφa(x)

)
− · · ·

It is then clear that for any constant c,

Oa(c) = c
δ

δφa(x)

∫
d4y
√
−g̃(y) = 0, (5.13)

by use of the condition (5.2). This is vital in eliminating the vacuum energy
from our equations. Note that (5.9) clearly reduces to the equations of motion of
unimodular gravity (5.6) in the case Ω2 =

√
−f√
−g .

4We use the product and chain rule for functional derivatives, and our other intermedi-
ate steps include δg̃µν

δφa
=
∫
d4y

[
Ω
δgµν
δφa

+
g̃µν
2Ω2

δΩ2

δφa

]
=
∫
d4y

[
Ω
∂gµν
∂φa

+ 1
2
√
−g̃

(
δ
√
−g̃

δφa
− δ
√
−g

δφa

)
g̃µν

]
,

noted here to aid following the calculation.
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We now explicitly demonstrate how the vacuum energy drops out of the dynamics,
showing along the way that any solution of Einstein’s equations (with any value
of the cosmological constant) satisfies (5.9). Now, to begin, we split up the energy
momentum tensor into the vacuum energy contribution σg̃µν and the fluctuations
above the vacuum τ̃µν . We use

G̃µν = τ̃µν − Λ̃g̃µν , 8πGT̃µν = τ̃µν + σg̃µν , (5.14)

where Λ̃ and σ are constant, to satisfy the field equations. The first of these is
simply Einstein’s equation sourced solely by the fluctuations above the vacuum
with an arbitrary cosmological constant Λ̃, note that this is not related to the
vacuum energy σ. The second is our splitting of the energy-momentum tensor
into its vacuum energy and fluctuations above the vacuum. Clearly with this
choice Ẽµν = 1

16πG
(Λ̃ + σ)g̃µν and Ẽ = 4

16πG
(Λ̃ + σ), which is just a constant.

Thus Oa(Ẽ) = 0, and also clearly Ẽµν − 1
4
Ẽg̃µν = 0, which clearly satisfies (5.9).

Therefore, any solution of Einstein’s equations with an arbitrary cosmological
constant is a solution of this theory, and the vacuum curvature is independent of
the vacuum energy. To simplify the equations, we consider only 8πGT̃µν = τ̃µν ,
neglecting the vacuum energy σ since we have shown it does not contribute to the
dynamics.

We can therefore choose ΛCDM solutions with an arbitrary cosmological constant
with a clean conscience — there is no fine-tuning involved in the value of the
cosmological constant. I reiterate that since we can regain all GR solutions for
g̃µν , vacuum solutions, such as (de Sitter) Schwarschild also solve this theory. This
ensures that we see no discrepancy from GR tests in the solar system.

Indeed, at first glance, we do not expect to see any deviations from GR, since
the physical metric can always just match the GR solution. However, there are a
number of points to note about this.

Firstly, GR solutions are not necessarily the only solutions of (5.9). Whilst in
unimodular gravity, the equations of motion turn out to be equivalent to Ein-
stein’s equations (modulo a cosmological constant), that will not in general be
true for this proposal5. We can consider both the classical and quantum stability
of these branches of solutions to investigate the observation consequences of the
extra solutions. This may have implications for Birkhoff’s theorem [173]. This is
important because the theorem provides evidence that it is reasonable to extend
our Newtonian notion that the gravitational effect of a sufficiently distant masses
is negligible, and therefore we can treat Minkowski space as the weak-field limit of
GR [63]. In Chapter 6 we will go to consider these extra solutions from a classical

5Sufficient conditions for the only solutions for g̃µν to be those of Einstein’s equation are
proved in Chapter 6 and Appendix B.3.
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perspective.

Secondly, since g̃µν is not a fundamental field, the perturbative structure of the
theory may differ from GR. Of particular concern is the potential presence of Os-
trogradski ghost modes, arising due to the potential existence of higher-derivative
terms in the theory. Not only that but perturbative GR is very well tested, for ex-
ample in calculating energy loss from binary stars [27]. Altering the perturbative
structure by having extra modes (even if they are not ghostly) raises doubts as to
whether these successes of GR can be matched. In the next section, we consider the
perturbative structure of a particular realisation of our proposal, and demonstrate
that it is not pathological (at quadratic order on maximally symmetry spaces).

5.3 Avoiding Ostrogradski ghosts: an example

Now, we investigate the perturbative structure of the theory, in particular whether
the theory is ghost-free. Overbars will be used to denote background quantities
in this section. In this section, we will raise and lower indices with the untilded
metric gµν . Our interest is restricted to the case of conformally related metrics
(5.3).

Consider perturbations about a maximally symmetric vacuum, with physical Rie-
mann curvature Rµνρ

σ(g̃) = Λ̃
3

(
g̃µρδ

σ
ν − g̃νρδσµ

)
. For simplicity, assume that the

conformal factor has a constant background value, Ω = Ω = constant. We
can then write the Riemann tensor of the fundamental metric as Rµνρ

σ(g) =
Λ
3

(
gµρδ

σ
ν − gνρδσµ

)
, where Λ = ΩΛ̃.

5.3.1 General perturbative result

Following a lengthy calculation, full details of which can be found in Appendix
B.1, we obtain an expression for the perturbative action to quadratic order

δ2S = Ω

[
δ2SGR[g] +

1

16πG

∫
d4x
√
−g∆L

]
, (5.15)

where δ2SGR is the expansion to quadratic order (in δgµν) of the usual Einstein-
Hilbert action with a cosmological constant, SGR[g] = 1

16πG

∫
d4x
√
−g (R(g)− 2Λ),

with R(g) the Ricci scalar built from gµν . We will denote the fluctuations in the
metric as δgµν = hµν . The second term in (5.15) is a perturbative correction
arising due to our modification of gravity,

∆L =
1

4

δΩ2

Ω
2

(
2δR(g)− 3

2

�δΩ2

Ω
2 − 2Λ

δΩ2

Ω
2

)
, (5.16)
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where δR(g) = ∇µ∇ν (hµν − hgµν)−Λh is the linearised Ricci scalar, h = hµµ and
∇ denotes the covariant derivative using the metric connection for gµν .

5.3.2 A ghost-free example

The above equation (5.15) holds for any choice of Ω2 satisfying (5.2) and (5.3).
Let us now consider the following specific case,

Ω2 =
RGB(Ξ, g)

µ4
, (5.17)

where µ is some mass scale and

RGB(Ξ, g) =
1

4
δµ1···µ4ν1···ν4 Rµ1µ2

ν1ν2(Ξ, g)Rµ3µ4
ν3ν4(Ξ, g) (5.18)

is the Gauss-Bonnet combination. The generalised Kronecker delta is given by
δµ1···µnν1···νn = n!δµ1[ν1

· · · δµnνn], and Ξλ
µν is a torsion free-connection independent of the

metric, from which we construct the corresponding Riemann tensor,

Rµν
αβ = gλαRµνλ

β(Ξ) = gλα
(
−2∂[µΞβ

ν]λ + 2Ξκ
λ[µΞβ

ν]κ

)
. (5.19)

√
−gRGB(Ξ, g) is the well-known Gauss-Bonnet invariant. In 4D, this is a topo-

logical invariant and so (5.2) is satisfied. Note that this remains true in spite of
the fact we are considering a Palatini variation where the Riemann tensor is not
built from the metric connection, but from an independent one.

The full equations of motion are

1√
−g̃Ω

δS

δgµν
=

(
δµαδ

ν
β −

1

4
g̃αβ g̃

µν

)
Ẽαβ (5.20a)

δS

δΞλ
µν

=
1

2
OΞλµν (g̃αβẼ

αβ) =
1

2

∫
(g̃αβẼ

αβ)
δ
√
−g̃

δΞλ
µν

. (5.20b)

Before moving on to perturbations, we make some comments about the back-
ground solutions. It is clear from (5.20a) that the traceless part of Einstein’s
equations holds (for the physical metric g̃µν). Note that cosmological constant-
like terms will never enter into this traceless piece. One can apply ∇̃µ (the co-
variant derivative with respect to the metric connection of g̃µν) to (5.20a). Since
∇̃µẼ

µν = 0 by the Bianchi identity and energy-momentum conservation, one is
left with ∂µ(g̃αβẼ

αβ) = 0, or the trace6 of Einstein’s equations is constant. In
fact, the arbitrary integration constant arising from the previous equation gives
precisely the arbitrary cosmological constant present in the theory, which is also
exactly what happens in unimodular gravity. Thus, the gµν equation of motion

6In this case, with respect to the tilded metric.
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(5.20a) leads necessarily to Einstein’s equations with an arbitrary cosmological
constant for g̃µν . The Ξλ

µν equation of motion (5.20b) is automatically satisfied
from this requirement for any Ξλ

µν , since Oa(c) vanishes for constant c. Let us
then assume that the connection Ξλ

µν coincides with the metric connection on the
background, Ξ

λ
µν = Γλµν = 1

2
gκλ (∂µgνκ + ∂νgµκ − ∂κgµν).

Moving on to perturbations, the gauge invariant fluctuation of Ξ can be written,

δ(Ξλ
µν − Γλµν) = Bλµν . (5.21)

It then follows that Ω
2

= 8Λ2

3µ4
, and

δΩ2

Ω
2 =

1

2Λ
(δR(g) +∇µχ

µ) , (5.22)

where χµ = Bµνν − Bννµ. So, the additional contribution to our perturbative
action (5.15) that arises from modifying gravity can be written

∆L =
1

4
ψ

(
2δR(g)− 3

2
∇µ∇µψ − 2Λψ

)
+ λ(δR(g) +∇µχ

µ − 2Λψ), (5.23)

where λ is a Lagrange multiplier fixing the newly-introduced ψ to coincide with
δΩ2

Ω
2 .

Now, the perturbative structure of the theory can only differ from GR in the
scalar sector7. So, we have two healthy spin-2 modes and none of spin-1, but
the behaviour of the spin-0 modes may cause us some concern. In fact, for the
specific case we have chosen in (5.17), the scalar modes are not pathological and ,in
fact, are absent! This statement is true to at least quadratic order on maximally
symmetric spaces. To see this, note that we can rewrite our perturbative action
as

δ2S =
Ω

16πG
δ2SGR[eψ/2g] +

∫
d4x
√
−gλ(δR(g) +∇µχ

µ − 2Λψ), (5.24)

understanding ψ to be small. That the effective action could ultimately be written
like this is obvious given the form of the full non-linear theory (5.8). Taking the χµ

equation of motion immediately yields ∂µλ = 0, and so (assuming asymptotically
vanishing boundary conditions), it follows that λ = 0. Hence the above action
(5.24) reduces to

δ2S =
Ω

16πG
δ2SGR[eψ/2g]. (5.25)

This is now just the effective action for metric fluctuations of the Einstein-Hilbert
action, with a cosmological constant, on a maximally symmetric spacetime. The

7While the penultimate term in (5.23) looks like it may be a vector, note that the derivative
operator ensures only the transverse scalar component is picked out.
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scalar ψ serves to renormalise the scalar modes, but does not alter the fact that
none of them propagate, as is shown explicitly in Appendix B.2. This means
that, to this order at least, the theory has the same perturbative structure as
GR, with just two propagating tensor degrees of freedom and no ghost. Thus, we
have potentially a ghost-free theory of gravity which can evade the cosmological
constant problem and pass all solar system tests.

Unfortunately, it remains possible that for the specific model in (5.17), if one
considers non-maximally symmetric spacetimes, or goes higher than quadratic
order in perturbation theory, the presence of ghosts could be revealed. Such a
scenario is precedented, for example in massive gravity when the ghostly sixth
mode makes its presence known on non-trivial backgrounds or at higher order in
perturbations [70]. In fact, the idea of being able to remove an Ostrogradski ghost
using constraints to all perturbative orders has been questioned recently [174]. It
is a matter for future work whether the constraint procedure which exorcises the
ghost here is able to remove them to all orders or on all backgrounds.

5.4 Discussion

A novel way to clean up the cosmological constant problem has been proposed. By
coupling matter to a composite metric, g̃ab(φ, ∂φ, . . .), satisfying the property (5.2),
we have been able to eliminate the troublesome vacuum energy from contributing
to the dynamics of the system. Thus one ought to be able to choose the vacuum
curvature to take on an empirical value, as dictated by observation, with a clean
conscience. The challenge is now to build a model incorporating this idea into a
viable model of gravity.

To this end we have proposed a model that exploits the neat idea, and at the same
time ought to be ghost-free and compatible with solar system physics and cosmo-
logical tests. This example contains a fundamental metric gµν , and an independent
torsion-free connection, Ξλ

µν . It is described by the action (5.8) with

g̃µν = Ωgµν , Ω2 =
RGB(Ξ, g)

µ4
(5.26)

and the matter fields Ψa are minimally coupled to the composite metric g̃µν . Note
that this choice of Ω2 is far from unique. One is free to add a whole host of terms to
its definition without introducing any unwanted pathologies. This includes terms
proportional to RGB(Γ, g), and the Pontryagin term R∧R. Indeed, all we need is
for the conformal factor to contain some sort of ‘auxiliary’ field whose equation of
motion constrains the Lagrange multiplier to vanish. (In the example presented
here, the role of the ‘auxiliary’ field is played by the independent connection, Ξλ

µν .)
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If that is the case, the perturbative analysis goes through untroubled and there are
no ghosts, at least not on maximally symmetric spaces. On more general spaces,
one may expect ghosts to (re)appear, however this requires further investigation.
One is able to consider far more exotic examples of theories satisfying (5.2) than
the conformal theories mentioned, which may remain ghost-free via alternative
mechanisms.

It was demonstrated that this theory can be considered a generalisation of uni-
modular gravity. While we considered the theory at the purely classical level,
recent (and not-so recent) results in the literature about the quantum behaviour
of unimodular gravity [171, 172], including the possible existence of a UV comple-
tion via the renormalisation group, gave us hope that our proposal may be valid
when thinking fully quantum mechanically (modulo questions of ghostly patholo-
gies). While the inclusion of a spin-3 field might seem at odds with the results of
[168] about the consistency of higher-spin theories, note that approaches such as
Loop Quantum Gravity are able to treat the connection as an independent field.
Questions of quantum behaviour of the theory deserve further investigation.

As we have seen, any solution to GR, with an arbitrary cosmological constant, is
a solution to this theory. However, it is possible that the reverse may not be true
and a generic realisation of the theory is expected to permit solutions that are not
present in GR. For the model given by (5.17), we noted from (5.20) that no further
solutions exist, and the extension to GR is fully encoded by the arbitrariness in
Λ. This suggests that the number of propagating degrees of freedom should be
equivalent to GR. More general models may yield more exotic solutions containing
interesting and potentially testable new features. Chapter 6 considers the effect
these new features may have in cosmological scenarios.
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Chapter 6

Cosmology and new solutions with
generalised unimodular gravity

In Chapter 5, a mechanism to evade the cosmological constant problem was pro-
posed. This was demonstrated to be in some sense a generalisation of unimodular
gravity, opening up a new class of potential models. In this chapter, a specific
realisation of the idea will be discussed, and the cosmological behaviour of the
theory considered. The background cosmology of the theory will be determined,
considering both the GR solutions and the new, non-GR solutions available.

Even the GR solutions require work beyond the usual GR result. While the
physical metric solves the usual Friedman equations (ensuring that observations
agree with GR), we will also be concerned with the dynamics of the fundamental
metric. Unlike GR, the physical and fundamental metric are different objects, and
so can exhibit different dynamics.

This chapter is based on [4]. Note that we raise and lower indices throughout with
the physical metric g̃µν .

6.1 Determining the model and solution possibili-
ties

For simplicity, we follow our work in Chapter 5 and work only in the case where
the physical and fundamental metrics are conformally related, g̃µν = Ωgµν . We
now wish to consider theories which possess additional physical metric solutions
to those in GR and get a feel for their behaviour. To understand how to choose
such a model, it is instructive to prove the following statement:

Statement. If
√
−g̃ contains no derivatives of gµν and ∇µν

µ , then the only so-
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lutions for g̃µν correspond to Einstein’s equation with an arbitrary cosmological
constant.

Proof. Begin by writing out the operator Ogµν (Q) (for sufficiently differentiable
Q) explicitly,

Ogµν (Q) =

∫
d4xQ

δ
√
−g̃

δgµν

= Q
∂
√
−g̃

∂gµν
− ∂α

(
Q

∂
√
−g̃

∂(∂αgµν)

)
+ ∂α∂β

(
Q

∂
√
−g̃

∂(∂α∂βgµν)

)
+ · · ·

= −∂αQ
∂
√
−g̃

∂(∂αgµν)
+ ∂α∂βQ

∂
√
−g̃

∂(∂α∂βgµν)
+ 2∂αQ∂β

(
∂
√
−g̃

∂(∂α∂βgµν)

)
+ · · · ,

where the dots indicate higher derivatives of
√
−g̃, and going from the second to

the final line, we have used that fact that
√
−g̃ is a total derivative. Clearly, the

last line tells us that if there are no derivatives of gµν in
√
−g̃, Ogµν (Q) = 0.

From (5.9), if Ogµν (Q) = 0 ∀Q, then the gµν equation of motion can be written

δS

δgµν
=
√
−g̃Ω

(
Ẽµν − 1

4
Ẽg̃µν

)
= 0. (6.1)

Since the metric is non-degenerate and the conformal factor non-zero, we can di-
vide through by

√
−g̃Ω. Therefore the traceless part (nine of the ten components)

of Einstein’s equations must necessarily be zero. Recall from Chapter 5 that we
can apply the operator ∇̃ to the traceless Einstein equations, to obtain the re-
sult that the trace is a constant, provided that we also enforce energy-momentum
conservation, ∇µT

µν .

This is then equivalent to all ten components of Einstein’s equation being satisfied,
up to the arbitrariness of the cosmological constant. We have had no freedom in
our choice of this, and so this is clearly the unique equation which g̃µν must
solve.

Remark. One could alternatively, as shown in Appendix B.3, weaken the condition
(still only a sufficient condition) to

(
δαµδ

β
ν − 1

4
g̃µν g̃

αβ
)
∇̃αOgµν (Q) = 0. However, it

is harder to get a handle on the meaning of this, and it is not at all obvious that
it is possible to construct a theory such that the weaker condition holds but there
are derivatives of g present.

Remark. Note that this does not imply a uniqueness of the solutions for the funda-
mental fields. In fact, the opposite is true, since for Ẽ = constant, the equations
of motion (5.9) will clearly be satisfied identically for arbitrary choices of all fields
in {φa} \ {gµν}.
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What is the importance of this statement? Well, it highlights the fact that a
sufficient1 condition for there to be no solutions in addition to those in GR is if,
as in the theory (5.17), no derivatives of gµν appear in the conformal factor. So,
since we are interested in a an understanding of the solution space beyond the
GR solutions, we must consider a theory where derivatives of gµν appear in the
conformal factor Ω.

In order to construct a theory with Ogµν (Q) 6= 0 we, analogously with (5.17),
consider adding a Gauss-Bonnet term to the conformal factor Ω. In this case,
we add RGB(Γ, g), the Gauss-Bonnet term built from the metric connection Γλµν
associated with gµν . By choosing a conformal factor

Ω2 =
1

µ4
[RGB(Ξ, g) + εRGB(Γ, g)] (6.2)

where ε is some dimensionless number, we obtain a theory exhibiting additional
solutions for g̃µν to GR’s provided ε 6= 0. The work in Chapter 5 suggests that the
constraint arising from RGB(Ξ, g) may also be able to ensure this theory is ghost-
free, assuming that Ξ is equal to the metric connection of g on the background.

The full Ξ equation of motion resulting from (6.2) can be written

δS

δΞκ
µν

=
1

2
Oκµν(Ẽ) = 0

⇒ 0 = ∂λẼ
(
−2Rλ(µν)

κ − 4Rµνδλκ + 4Rλ(µδν)
κ + gµνδλκR− gλ(µδν)

κ R
)
,

(6.3)

where the Riemann and Ricci tensors above are built from the connection Ξ. This
demonstrates that for Ẽ = const., the non-metric fundamental fields are arbitrary.

Meanwhile, the full gµν equation of motion is2

δS

δgµν
=
√
−g̃Ω

(
Ẽµν − 1

4
Ẽg̃µν

)
+

2ε

µ4

√
−gP µανβ∇α∇βẼ = 0, (6.4)

where P µναβ is the double-dual3 of the Riemann tensor,

P µναβ = −Rµναβ + 2Rµ[αgβ]ν − 2Rν[αgβ]µ −Rgµ[αgβ]ν ,

1 In fact, we conjecture that it is a necessary and sufficient condition that
√
−g̃ contains

no derivatives of gµν in order for g̃ to only possess solutions which also solve the Einstein
equations. We know of no counterexample, i.e. a theory with derivatives of g which does not
permit additional solutions. Intuitively, this appears reasonable as it seems odd that a quantity
built from g should be covariantly constant with respect to the connection compatible with a
different metric g̃. For the purposes of this chapter, we will not be concerned with the necessary
condition at any rate.

2A convenient shortcut is to use the equations of motion for Vringo in [175], provided one is
careful with signs.

3That is, one takes the Hodge dual of each of the pairs of indices in the Riemann tensor,
Pµναβ ∝ εµνρσεαβκλRρσκλ. Its trace gives the Einstein tensor [12].
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with the curvature tensors here built from the metric connection Γ associated with
gµν . It is clear to see that this equation is consistent with Einstein’s equations
Ẽµν for g̃µν , being satisfied up to an arbitrary trace (our arbitrary cosmological
constant). Note that acting on the right-hand most term of (6.4) with ∇̃µ results
in a non-zero answer, so there are additional solutions to those in GR present.

We now go on to consider solutions to the theory (6.2) and their cosmology. In
Section 6.2, we investigate the cosmology of the GR-like solutions of the theory, in
particular the behaviour of the fundamental modes. Having gained this insight in
the simplest case, we move on in Section 6.3 to consider the non-GR solutions of
the theory and the effect on physical cosmology as well as the fundamental modes.
We conclude in Section 6.4.

6.2 GR-like cosmology

Now that we have the full equations of motion for our model (6.2), given by (6.3)
and (6.4), we can begin investigating different branches of solutions in the theory.
We start with an analysis of the branch familiar to us from GR, which is always
also a solution here.

Cosmology is our concern here, so we focus on homogeneous and isotropic solu-
tions. The physical metric can then be written

ds2 = ã2

(
−dη2 +

dr2

1− κ̃r2
+ r2dS2

)
, (6.5)

where ã is the physical scale factor and we work, for now, in conformal time. This
makes life easier at this stage since we are dealing with the two conformally related
metrics.

A quick aside on notation: Derivatives with respect to conformal time will be
denoted by ′ and H̃ ≡ ã′

ã
. For simplicity, we will make use of the symbol γµν ,

defined by g̃µν = ã2γµν . Cosmic time will also be used, with derivatives denoted by
˙ and H̃ ≡ ˙̃a

ã
. This convention carries over to the fundamental metric, just without

the tildes: a is the scale factor, H ≡ a′

a
and H ≡ ȧ

a
. Our universe will be filled with

a perfect fluid, with stress-energy tensor given by T̃µν = ã2diag (−ρ, p, p, p) (with4

ρ 6= −p). Since the two metrics are related by g̃µν = Ωgµν , the scale factor a for
the fundamental metric will be related to that of the physical metric by ã =

√
Ωa.

To gain a first understanding of solutions of the theory, start with the GR solution
(for the physical metric). The traceless part of the Einstein equations are satisfied,

4This requirement is made simply because ρ = −p corresponds to vacuum energy-like contri-
butions, which we know will not affect our dynamics.
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and the trace Ẽ is a constant which, for easy comparison with GR, can be set to
Ẽ = 4Λ̃

16πG
. Combining these traceless and trace equations (and taking some linear

combinations), we obtain the usual conformal time Friedmann equations,

H̃2 + κ̃2 =
8πG

3
ã2ρ̃ (6.6a)

H̃′ = −4πG

3
ã2 (ρ̃+ 3p̃) , (6.6b)

where ρ̃ = ρ+ Λ̃
8πG
≡ ρ+ ρΛ and p̃ = p− Λ̃

8πG
. In addition, since ∇̃µT̃

µν = 0,

ρ′ + 3H̃(ρ+ p) = 0, (6.7)

for our fluid. If it is made from several (non-interacting) components, ρ =
∑

a ρa,
then the above energy conservation equation holds for each component.

Combining (6.6) and (6.7), one obtains the usual background results in cosmology
and in particular, with judicious choices of fluid and Λ̃, can match observations in
our universe to very good accuracy [38]. However, this is not the full story since
we have only determined the solution for the physical metric. We really want to
understand the dynamics of the fundamental degrees of freedom, Ξ and g.

In terms of solutions for Ξ, it is clear from (6.3) that since Ẽ = const, the Ξ

equation of motion will be satisfied for any connection! Motivated by our work in
the previous chapter, we choose the solution where Ξ coincides with Γ, the metric
connection for gµν . Ξ is then fully determined by the solution for gµν . Even though
the physical metric is clearly well behaved, we want to ensure that there are no
hidden singularities in the cosmic evolution of the fundamental fields.

Determining the solutions for g is equivalent to understanding the dynamics of
the fundamental scale factor a. Since a is conformally related to ã, we use our
knowledge of ã and the behaviour of the conformal factor to determine a. Since we
have made a FRW ansatz for g, it follows that RGB(Γ, g) = 24

a4
H′ (H2 + κ). Since

we are considering the solution where Ξ coincides with the metric connection for
g, the conformal factor (6.2) becomes

ã4 = Ω2a4 =
(1 + ε)

µ4
RGB(Γ, g)a4 =

24(1 + ε)

µ4
H′
(
H2 + κ

)
. (6.8)

Since ã is known, we can (with appropriate boundary conditions) solve this ODE
to obtain the behaviour of a. This equation also demonstrates that the sign of
1 + ε is physically irrelevant, since the change a → 1/a will compensate for such
a sign change. We restrict to 1 + ε > 0 from now on. Note that rearranging (6.8)
reveals that for κ ≥ 0, H ′ > 0, so H is monotonically increasing in conformal
time.
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Having derived our equations in conformal time, it proves easier to actually solve
them in cosmic time. In particular, the physical interpretation of the time coordi-
nate will be simpler in this case. Our system of equations to solve can be rewritten
in terms of cosmic time derivatives as,

H̃2 =
8πG

3

(
ργ +

Ẽ

2

)
(6.9a)

˙̃H = −8πG

2
(ρ+ p) (6.9b)

ρ̇γ = −3H̃γργ (6.9c)

Ḣ =
µ4

12(1 + ε)H2

(
1

2
− 12(1 + ε)H3

µ4
H̃

)
, (6.9d)

where Ẽ is a constant, which can be written in terms of the usual cosmological
constant as Ẽ = Λ̃

8πG
and ργ is a fluid with equation of state γ ≡ ργ+pγ

ργ
.

6.2.1 Analytic cases

We cannot solve for general cosmologies in closed form, but we can consider some
simple cases of single fluids5 with γ 6= 0, or alternatively consider universes con-
taining a pure cosmological constant, and calculate the consequences. This will
allow us to gain an understanding of the general behaviour and appropriate initial
conditions before we solve more complicated (realistic) theories numerically. For
simplicity, we restrict to spatially flat universes, κ = κ̃ = 0, which are in good
agreement with observational data [38].

By re-arranging (6.9d), we obtain,

µ4

24(1 + ε)
= (Ḣ +HH̃)H2. (6.10)

Since the left-hand side is positive,the right hand side must always be positive.
In particular, we note that if H changes sign, H2 → 0 at some point in our time
evolution. This means that Ḣ → ∞ at some finite time to maintain the relation
(6.10). Since this means that a /∈ C2(R), we choose to exclude this possibility by
demanding H > 0. Of course, the same conclusions would be reached by working
in conformal time from (6.8).

We use the initial conditions ã(t = 0) = 1, H(t = 0) = H(0), H̃(t = 0) = H̃0 to
obtain the behaviour for the fundamental Hubble factor H in the case of a single

5It is also possible to determine some multiple fluid behaviour, but the analytic forms are
less instructive, especially since the late-time behaviour will always take on single field form.
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fluid with equation of state γ 6= 0,−2,6

H3 =

(
H(0)3 − 1

12H̃0(2 + γ)

µ4

1 + ε

)(
1 +

3

2
γH̃0t

)−2/γ

+
1

12H̃0(2 + γ)

µ4

1 + ε

(
1 +

3

2
γH̃0t

)
. (6.11)

While for a pure cosmological constant,

H3 =

(
H(0)3 − 1

24H̃0

µ4

1 + ε

)
e−3H̃0t +

1

24H̃0

µ4

1 + ε
. (6.12)

The initial value of H always decays away, and the late time dependence is either
just proportional to t1/3 or constant, so the late time behaviour is of exponential
form in both cases,

a ∼


exp

[
3
8

(
γ

3γ−2

)1/3 (
µ4

1+ε

)1/3

t4/3
]

γ 6= 0

exp

[
1

2(1+ε)1/3

(
µ4

H̃0

)1/3

t

]
, γ = 0

(6.13)

or in terms of the conformal factor,

Ω2 ∝


(
H̃0t
)8/3γ

exp

[
−3

2

(
γ

3γ−2

)1/3 (
µ4

1+ε

)1/3

t4/3
]

γ 6= 0

exp

[(
H̃0 − 1

(24)1/3(1+ε)1/3

(
µ4

H̃0

)1/3
)
t

]
. γ = 0

(6.14)

Alternatively, one can solve for a in terms of ã in order to determine that, for
γ ≥ 0 and at late times

a ∼


exp

[(
1

12(γ+2)
µ4

(1+ε)H̃4
0

)1/3
1

2γ
ã2γ

]
γ > 0

exp

[(
1
24

µ4

(1+ε)H̃4
0

)1/3

ln ã

]
, γ = 0

(6.15)

with the conformal factor looking like

Ω2 ∼


ã4 exp

[
−
(

1
12(γ+2)

µ4

(1+ε)H̃4
0

)1/3
2
γ
ã2γ

]
γ > 0

exp

[
4

(
1−

(
1
24

µ4

(1+ε)H̃4
0

)1/3
)

ln ã

]
. γ = 0

(6.16)

6Considering more general fluids than γ ∈ [0, 2] will be helpful when we come to consider the
non-GR solutions. For γ = −2,

H3 = H(0)3(1− 3H̃0t)−
µ4

8(1 + ε)

1

H̃0

log(1− 3H̃0t)

1− 3H̃0t
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These explicitly demonstrate that H is, as we expected, a growing function with
time, as is a. The fundamental scale factor and the conformal factor are both
clearly well behaved for the lifetime of the universe in the theory — blow-ups only
occur when H̃ diverges or ã goes to zero, which can occur if e.g. γ < 0, or if there
is negative energy density.

The above equations only hold for a single contribution to the energy-momentum
of the universe. However, when the universe has multiple non-interacting fluid
components, the universe’s late time behaviour will be governed by a single com-
ponent (since ρ ∝ a−3γ), and so the behaviour of H at late times can then be
determined by (6.11) or (6.12) for the appropriate component. For example, if
there is any contribution to the energy-momentum tensor with γ = 0, this will
dominate the energy budget of the universe at late times, so one expects H to
obey (6.12) at late times. If a universe just contained radiation (γ = 4/3) and
pressureless dust (γ = 1), then (6.11) with γ = 4/3 would describe the early-time
behaviour, and with γ = 1 would describe late-time behaviour. Our calculations
in this section then demonstrate that H will be well behaved throughout the his-
tory of the universe. Numerical support for this will be demonstrated in Section
6.2.3.

6.2.2 Dynamical systems analysis

Before moving on to consider more general cosmological systems, we re-write our
system in an alternative form, using the tools of dynamical systems to determine
critical points in phase space and their stability. The advantages of this formalism
are not readily apparent in this case, but it will prove very useful when we consider
non-GR solutions to the theory.

Start from our expression for the Hubble parameter (in cosmic time), (6.9a). In-
troduce the following dimensionless quantities,

x ≡ 8πGẼ

6H̃2
z ≡ 4εH3

µ4
H̃, (6.17)

and divide (6.9a) by H̃2 to obtain the constraint equation

8πG

3H̃2
ργ = 1− x. (6.18)

This can be re-written Ωγ + Ω? = 1, where the density parameters Ωγ and Ω? are
given by

Ωγ ≡
8πG

3H̃2
ργ Ω? ≡ x. (6.19)
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Point x̄ z̄ Eigenvalues Ω? Stability

A 0 1
3(γ+2)

(
3γ,−3

2
(γ + 2)

)
0 Saddle

B 1 1
6

(−3γ,−3) 1 Stable

Table 6.1: Critical points for the set of equations (6.20).

It is now possible to use our equations to determine that this system evolves as

dx

dN
= 3γx(1− x) (6.20a)

dz

dN
=

1

2
− 3z − 3

2
γz(1− x), (6.20b)

where d
dN

= d
d ln a

= 1
H

d
d ln a

.

We are interested in the critical points of the theory, i.e. dx
dN

= dz
dN

= 0. These

can be easily calculated to be (x̄, z̄) =
(

0, 1
3(γ+2)

)
, which we denote Point A,

and (x̄, z̄) =
(
1, 1

6

)
, which we denote Point B. The stability of these points can

be determined by calculating the eigenvalues of the stability matrix7. Negative
eigenvalues indicate stable directions, positive eigenvalues indicate unstable ones.

As is clear from Table 6.1, Point A is a saddle point and Point B is a stable
point. Physically this is easy to understand. Point A corresponds to a universe
containing solely the matter density ργ and no cosmological constant, while Point
B corresponds to a cosmological constant dominated universe.

If there is a non-zero cosmological constant (x 6= 0), this will dominate at suf-
ficiently late times over the matter ργ. This means that Point A is unstable in
this direction, but Point B is stable. For γ > 0, both points are stable in the z
direction. This is reasonable, as can be seen from our result for H3 in (6.11). The
late-time behaviour clearly tends to constant z, and moving in the z direction does
not introduce any cosmological constant. Thus Point A has stable and unstable
directions, and is hence a saddle point, while Point B is stable in all directions,
and we thus expect it to be an attractor.

Again, note that this has not necessarily given us any new information to that
in Section 6.2.1, but it has demonstrated an alternative approach to deriving the
behaviour we obtained in that section. In Section 6.3.3, when we consider non-GR
solutions, it will turn out that we are not be able perform the equivalent analytical
calculations to those in Section 6.2.1, but we will be able to gain insight into the
behaviour of the theory using the dynamical systems approach.

7One performs the expansion x = x̄+ δx, z = z̄ + δz to first order on the right-hand side of

(6.20), and writes the resultant equations as a matrix equation

(
dx
dN
dz
dN

)
= M

(
δx

δz

)
. One then

determines the eigenvalues of M .
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6.2.3 Numerics

It is also possible to consider more general cosmologies via a numerical approach.
In Figure 6.1, we plot the behaviour of various objects in the theory in a realistic

H̃0t

dH3

dt

γ = 0

γ = 4
3

γ = 1

(a)

0 2 4 6 8 10

10
0

10
2

 

 

H̃0t

Ω2

ã

H̃

H

a

(b)

Figure 6.1: Numerical results for a universe with Ωm = 0.3 and ΩΛ = 0.7.
(a) The time derivative of H3 (blue line). The other lines show the analytic results
for specific values of γ.
(b) The evolution of various quantities with time in this universe.

cosmology made up of 70% cosmological constant and 30% pressureless matter.
At late times, this universe is fully dominated by a cosmological constant. Fig-
ure 6.1a, shows the derivative of H3 against time, and shows that at late times,
the behaviour mimics that of a cosmological constant, as expected from our ear-
lier discussion. Figure 6.1b shows the evolution of various quantities with time,
demonstrating that the physical cosmology is as expected (H̃ → const. at late
times) and that the quantities introduced by the presence of the fundamental
field, a, H and Ω remain well behaved, not only having singularities, but also
being smooth.

A wider range of numerical results shows agreement with our expectations from
the analytic case, a and H are smooth, increasing functions of time. The physical
cosmology is, of course, in line with what is expected from ordinary cosmologies
(with a cosmological constant) in all cases, since this is insensitive to the funda-
mental field dynamics.

6.3 Behaviour of new solutions in the theory

Now that we understand the behaviour of the GR-like solution of the theory, we
investigate how the cosmology differs for the additional, non-GR solutions present
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in our theory (6.2). We begin by going back to (6.2), and no longer work under
the assumption that Ẽ must be constant.

6.3.1 Behaviour of ã

Since we are still considering cosmology, we again substitute in our FRW ansätze
for g̃µν and gµν . The only non-zero components of the P tensor are

P 0i0j =
1

a6
γij
(
H2 + κ

)
P ikjl = − 2

a6
γi[jγl]kH′, (6.21)

and components related by symmetry. Using these, we can write

1

2
Og00(Ẽ) = − 6

a6

ε

µ4

√
−g(H2 + κ)HẼ ′ (6.22a)

1

2
Ogij(Ẽ) =

2

a6

ε

µ4
γij
√
−g
[(

2H′ −H2 − κ
)
HẼ ′ +

(
H2 + κ

)
Ẽ ′′
]

(6.22b)

Since Ogµν (Ẽ) is clearly not traceless, we can obtain an evolution equation by
taking the trace of (6.4). The resulting equation is

Ẽ ′′ = −2HẼ ′ H
′

H2 + κ
. (6.23)

Note that if Ẽ ′ = 0 at some time, then using the above equation (and differentiat-
ing), all higher derivatives of Ẽ are also zero at that time. Thus if Ẽ ′ = 0 at any
point, Ẽ = constant from that time onwards. So if at any point in its evolution
Ẽ ′ is zero, it will remain fixed, and so the theory will behave like Einstein gravity
with a cosmological constant. In fact, as we shall see once we have determined
the conformal factor in Section 6.3.3, a non-zero Ẽ ′ will be driven towards zero in
general.

This conclusion should be tempered somewhat, since it only holds in cosmic time
if H̃ > 0, since the left-hand side of (6.23) will pick up a H̃ ˙̃E piece. Thus ¨̃E

will only be opposite in sign to ˙̃E if H̃ > 0. This does not, however, seem too
restrictive — every case we considered in Section 6.2 had this property, and the
observed universe today certainly obeys it, but it is a caveat we will need to bear
in mind and return to later.

The traceless part of (6.4) becomes, with the appropriate ansätze substituted in,

4H̃ − 2
ã′′

ã
+ 2κ̃− 8πG(ρ+ p)ã2 − 8ε

µ4

1

ã2
H(H2 + κ)(−16πG)Ẽ ′ = 0, (6.24)

which we rewrite as

4H̃ − 2
ã′′

a
+ 2κ− 8πG(ρ̃+ p̃)ã2 = 0, (6.25)
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where ρ̃ = ρ+ ρ?, p̃ = p+ p? and

ρ? + p? = −16

ã4

ε

µ4
H(H2 + κ)Ẽ ′. (6.26)

The ‘starred’ contribution to the energy-momentum tensor corresponds to our
modification of gravity. Note for consistency that if Ẽ = constant, ρ? = −p? and
the additional contribution is just a pure cosmological constant.

Next, use our expression for Ẽ,

Ẽ =

(
− 1

16πG

)
1

ã2

(
−6

ã′′

ã
+ 8πGã2(ρ− 3p)

)
. (6.27)

Rearranging, and introducing ρ? and p? again, we determine using (6.26) that

ρ? =
Ẽ

2
− 12

ã4

ε

µ4
HẼ ′

(
H2 + κ

)
(6.28a)

p? = −Ẽ
2
− 4

ã4

ε

µ4
HẼ ′

(
H2 + κ

)
, (6.28b)

where Ẽ evolves according to (6.23). Rearranging (6.28) shows that γ? ≡ ρ?+p?
ρ?

can take any real value, including being infinite at Ẽ = H
H′ Ẽ

′ (with the sign
determined by the direction of approach). Of course, this γ? is a function of time
in general, but we will be most interested in situations where it mimics a fluid
with constant equation of state, which will happen to be at critical points of our
dynamical systems analysis. It is also clear that our work is consistent with our
previous work in Section 6.2, since when Ẽ ′ = 0, γ? = 0 and this is just GR with
a cosmological constant.

We now write the Friedmann equation

H̃2 + κ̃ =
8πG

3
ã2ρ̃ (6.29a)

H̃′ = −4πG

3
ã2(ρ̃+ 3p̃). (6.29b)

If we make the (usual) assumption that the fluid is made from several non-
interacting components,

ρ′a = −3H̃(ρa + pa) (6.30a)

ρ′? = −3H̃(ρ? + p?), (6.30b)

where pa + ρa can be determined from the equation of state γa, or from (6.26)
for the starred component. These equations also need to be supplemented by an
equation for the evolution of Ẽ, which is given by (6.23).

As before, these equations are sufficient for us to understand the evolution of
ã. It obeys the usual Friedmann equations from GR, but also contains an extra
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fluid component due to the modification of gravity. We also need to understand
how the fundamental fields behave. Again, we restrict ourselves to spatially flat
spacetimes, κ = κ̃ = 0 from now on. The important equations for us to understand
our fundamental fields are (6.2) and our Ξ equation of motion, (6.3).

6.3.2 Behaviour of Ξ

The key equation for Ξ to solve is, of course, its equation of motion (6.3). It will
be easiest to separate Ξ into the metric connection of g and the difference between
the two connections, a tensor ξ,

Ξλ
µν = Γλµν + ξλµν . (6.31)

We are only concerned with background quantities, and so by the symmetries of
our theory, we immediately deduce that ξi00 = ξ0

0i = 0. Since we assume κ̃ = 0,
it follows that ξijk = 0. We introduce the following scalars to help us parametrise
ξ,

ξ0
00 = A ξi0j = δijB ξ0

ij = δijC (6.32)

where A, B, C are (yet to be determined) functions of η.

Since we are looking at non-GR solutions, we must assume that ∂µẼ 6= 0, and so
the remaining terms in (6.3) must sum to zero. It only makes sense to consider
the λ index = 0 pieces of these, since the λ = i pieces are multiplied by ∂iẼ which
is identically zero since we are working with a homogeneous and isotropic system.

The two equations we obtain are

H2 − 2H′ − 2B′ + 2AB − 2B2 +BC + 2HA−HB +HC = 0 (6.33a)

3H2 − 2H′ − 2B′ + 2AB − 2B2 + 3BC + 2HA+HB + 3HC = 0. (6.33b)

Note that there is still a degree of arbitrariness here — we have two equations for
three unknowns. At first it is unclear how to tackle this. If we try and replicate the
symmetry of the Levi-Civita connection case across A, B, C then A = B = C = 0,
and so necessarilyH = 0, too. Unfortunately, this means that the conformal factor
will be zero (since RGB(Ξ, g) = RGB(Γ, g) = 0) and the theory is singular, so we
avoid this possibility.

To make progress, we rewrite A,B,C as

A = βB B = B C = γB, (6.34)

where β and γ are functions of conformal time. Taking the difference of (6.33),
the resultant quadratic yields solutions for B of B = −H and B = −H/γ.
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Both of these cases lead to the Riemann tensor (of Ξ) vanishing, and soRGB(Ξ, g) =

0. This is a perfectly valid background solution, since the conformal factor Ω has
a contribution from RGB(Γ, g) too, and so will not necessarily vanish. However,
RGB(Ξ, g) = 0 may be problematic if trying to construct a ghost-free theory, since
our demonstration of the absence of ghosts relied on Ξ’s conformal factor being
non-zero (and, specifically, a Levi-Civita connection).

This demonstrates that the dynamics of Ξ decouple from the rest of our prob-
lem, so we are unaffected by the remaining arbitrariness in the solution. We can
now discuss ã and a independently of Ξ’s behaviour. We will however, return to
discussing Ξ in our conclusions in Section 6.4.

6.3.3 Behaviour of a

We now want to understand the dynamics of a. Start by considering the equation
ã =
√

Ωa. Our expression for Ω, (6.2), can now be simplified to Ω2 = ε
µ4
RGB(Γ, g)

since RGB(Ξ, g) = 0. Since with our ansatz for g, RGB(Γ, g) = 24
a4
H′(H2 + κ), we

can determine a by solving (remembering that we set κ = 0),

ã4 =
24ε

µ4
H′H2, (6.35)

with appropriate boundary conditions, assuming ã is known. As in Section 6.2, we
can use the fact that ã4 and H2 are greater than zero to determine that8 H′ > 0,
or Ḣ + H̃H > 0. As before, taking H > 0, (6.23) tells us that Ẽ ′ will tend to
zero regardless of the original sign of Ẽ ′. It is easy to see that this also holds for
the cosmic time derivative ˙̃E under the assumption that H̃ > 0. This is helpful,
since it tells us that given enough time, the additional fluid should approximate a
cosmological constant.

Now we have all the equations, we attempt to proceed as before and solve the
full system of equations. Previously, we could solve for the physical scale factor ã
before worrying about the fundamental field behaviour, but the way the equations
are coupled prevents that approach working in this case (except for Ẽ ′ = 0).
We can gain some intuition for the behaviour of H from our equations (6.11)
and (6.12), since these cover all γ ∈ R, even though γ? is non-constant. We
expect the fundamental field’s Hubble parameter cubed H3 to have (once any
transient has decayed away) an linear relationship with time, ∼ At + B, unless
an effective cosmological constant dominates, it which case, H will just exhibit
constant behaviour.

8We consider ε > 0, which is sufficient to capture all the dynamics since a change in sign in
ε is equivalent to changing a→ 1/a.
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The relevant equations for us to solve are (6.23), (6.29), (6.30) and (6.35), as well
as needing to use (6.28) for our ‘modified gravity fluid’. For clarity, these can all
be viewed together as a group in Appendix B.4. As before, we will find it most
useful to work with the cosmic time equations,

H̃2 =
8πG

3

(
ργ +

Ẽ

2
− 3J ˙̃E

)
(6.36a)

˙̃H = −8πG

2

(
γργ − 4J ˙̃E

)
(6.36b)

ρ̇γ = −3H̃γργ (6.36c)

¨̃E = − ˙̃E

(
1

3J
+ H̃

)
(6.36d)

J̇ =
1

2
− 3JH̃, (6.36e)

where J ≡ 4ε
µ4
H3, a combination which has been defined for convenience.

Dynamical systems analysis

We cannot perform a straightforward analytical calculation of the solutions of the
theory as we did before, though we can formally write the solutions to the above
equations. Note in particular

J(t) = J(0)e−3
∫ t
0 H̃(t′)dt′ +

1

2

∫ t

0

e−3
∫ t
t′ H̃(t′′)dt′′dt′, (6.37)

and
˙̃E(t) = ˙̃E(0)e

−
∫ t
0

(
1

3J(t′)+H̃(t′)
)
dt′
. (6.38)

These confirm that H > 0 and ˙̃E → 0 as t→∞, as well as the rapid decay of any
initial transient in H, under the assumption H̃ > 0. Unfortunately, solving this
system in full generality will not be possible, so to gain further insight, we use a
dynamical systems approach.

Introduce the dimensionless variables

x ≡ 8πGẼ

6H̃2
y ≡ −8πGJ ˙̃E

H̃2
z ≡ JH̃ ≡ 4ε

µ4
H3H̃, (6.39)

and, as in Section 6.2.2, obtain a constraint equation by dividing (6.36a) through
by H̃2, resulting in

x+ y +
8πGργ

3H̃2
= 1. (6.40)

If we make the (reasonable) assumption that ργ ≥ 0, then (6.40) implies,

x+ y ≤ 1. (6.41)
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Point x̄ ȳ z̄ Ω? γ?

A 0 0 1
3(γ+2)

0 undefined
B 1 0 1

6
1 0

C 5
14

9
14

7
60

1 6
7

Table 6.2: Critical points for the set of equations (6.45). Their stability is given
in Table 6.3.

Our density parameters for the components in our theory are given by

Ωγ ≡
8πGργ

3H̃2
Ω? ≡ x+ y, (6.42)

and, clearly from (6.40), Ωγ + Ω? = 1. This also makes it clear that if we demand
Ω? ≥ 0, then we obtain the constraint,

x+ y ≥ 0. (6.43)

Since we are treating the modifications to gravity as an effective fluid component,
we can define its equation of state,

γ? ≡
4y

3(x+ y)
. (6.44)

So if y = 0, then γ? = 0 and it behaves like a cosmological constant. If y = 3x,
it behaves like a matter component since γ? = 1, and so on. In general, since x
and y will change with time, γ? will change with time, though it will take on fixed
values at the critical points.

By taking the time derivative and again introducing a dimensionless time N via
d
dN

= d
d ln a

= 1
H̃

d
dt

(and assuming H̃ > 0),

dx

dN
= − y

6z
+ 4xy + 3γx(1− x− y) (6.45a)

dy

dN
=

y

6z
− 4y(1− y) + 3γy(1− x− y) (6.45b)

dz

dN
=

1

2
− 3z − 2yz − 3

2
γz(1− x− y). (6.45c)

Note that if we restrict ourselves to the surface in {x, y, z} space defined by y = 0,
these equations coincide with those we obtained for the GR branch in (6.20).

We are again able to find the critical points of this system, which we display in
Table 6.2, along with their stability in Table 6.3. In addition to the two points on
the y = 0 plane which we observed previously, A and B, whose stability properties
remain unchanged, there is also a new saddle point introduced, Point C. This
corresponds to a tuning of Ẽ and ˙̃E such that their ratio to each other and to the
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Point Eigenvalues Stability

A
(
3γ,−6 + 7γ,−3

2
(γ + 2)

)
Saddle

B (−3γ,−3,−3) Stable
C

(
−3

7
(2 +

√
74), 3

7
(−2 +

√
74),−3

7
(−6 + 7γ)

)
Saddle

Table 6.3: Stability of the critical points listed in Table 6.2, for the set of equations
(6.45).

Hubble parameter H̃ remains fixed. This is, unsurprisingly, a saddle point since
moving away from the point breaks the tuning.

Since we have a point (B) whose stability matrix eigenvalues are all negative, it
is tempting to conclude that we have an attractor in the theory corresponding to
the modification to gravity behaving like a cosmological constant at late times,
regardless of the initial conditions. Unfortunately, this is not necessarily true.
The stumbling block is our assumption that H̃ > 0 throughout the universe’s
evolution. H̃ < 0 causes us three problems. In order to change sign and go from
positive to negative, H̃ = 0 at some point, and it is easy to see that our variables
x, y blow up in this limit, meaning our approach breaks down. In addition, since
H̃ < 0 changes our direction of time (N → −N), the time variable we chose
for the system is non-monotonic. This reversal of the time direction also means
that we should reverse the eigenvalues of our stability matrix. Stable points thus
become unstable ones, and so point B is no longer an attractor in this case. We
will alter our formalism to try and get around these problems. First, however,
we illustrate a specific example of initial conditions which lead to H̃ > 0 and the
behaviour we expect, as well as highlighting the regions in initial condition space
which correspond to such an evolution.

Consider Figure 6.2, where we numerically evolve a universe with initial conditions
and H̃ > 0 throughout. Figure 6.2a shows a projection onto the x–y plane and
the behaviour of the values of x, y, z with time is shown in Figure 6.2b. Figure
6.2b makes it clear that the system reaches the stable point B, and does not evolve
from there.

Figure 6.2a is more complicated and contains a number of lines, points and shad-
ings which need to be explained. The black square indicates the projection of the
initial conditions chosen onto the x–y plane, and the system’s evolution follows
the black line. The red, green and blue circles denote Points A, B and C respec-
tively. Given this, it can then be seen that the system’s evolution is from the
initial conditions at (1

3
,−1

6
) to the attractor at Point B.

The red lines mark our assumptions on the non-negativity of Ωγ and Ω?. The

121



Chapter 6: Cosmology and new solutions with generalised
unimodular gravity

x

y

(a) A projection onto the x–y plane of
phase space.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

N

(b) The evolution of x (blue), y (green)
and z (red) with time.

Figure 6.2: The evolution resulting from the initial conditions (x, y, z) =

(1
3
,−1

6
, 1

9
).

region to the top and right of the dashed red line corresponds to x + y > 1, or
Ωγ < 0, which is considered unphysical (although good late-time behaviour can
still be obtained in some of this region!). The region to the bottom and left of the
dot-dashed red line corresponds to x + y < 0, or Ω? < 0. We do not necessarily
have as good a motivation to demand that this region is avoided, since Ω? is just
some effective fluid rather than a true one9.

The remaining shadings represent different late time behaviours obtained by start-
ing the system in different regions of the x–y plane10. Evolution starting in the
light green region will end at the attractor, Point B, and have H̃ > 0 through-
out. Outside this region, H̃ becomes negative at some time. In the yellow region,
the sign of H̃ oscillates, and it ultimately ends up at Point B. In the unshaded
region, H̃ → −∞ in finite time, and so a big crunch occurs, and Point B is not
approached. The behaviour of these two regions will be demonstrated in the next
section.

A more traditional phase portrait is shown in Figure 6.3. To produce this, we have
restricted our dynamical system to the z = 1

9
plane. This kind of representation

of the phase plane can be misleading because of our restriction to the z = 1
9
plane.

Whilst we could calculate the directional trajectory for any point in the {x, y, z}
space, displaying this information graphically in a clear manner is non-trivial. To
avoid potential confusion, we instead use our projections onto the {x, y} plane, as

9For example, it is not inconsistent for the density parameter for the curvature, Ωκ̃ ≡ − κ̃
ã2H̃2

to be negative.
10To obtain these colours, one also has to make an assumption about the initial condition of

z. Here z = 1/9 initially. The choice of z will slightly move the borders of the regions, but make
no qualitative change to the discussion.
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x

y

Figure 6.3: A phase portrait of the z = 1
9
plane in {x, y, z} space. The red spots

indicate fixed points, the blue lines are the evolution of the system from a selection
of initial conditions. The orange and pink lines are nullclines. The arrows indicate
the projection into the z = 1

9
plane of the gradient vector dx

dN
, evaluated for various

points in the z = 1
9
plane.

in Figure 6.2a. However, this diagram is still informative since it still accurately
displays the flow directions over much of the phase space, in particular the stability
properties of Points A and B are clear from this diagram.

Dynamical systems analysis in new variables

The evolution for all starting points in the green shaded region of Figure 6.2a can
be well-described using the formalism we have detailed, but for the remainder of
phase space, it will prove useful to define new variables which remain finite as
H̃ → 0.

We introduce the dimensionless variables,

X ≡ κ2Ẽ

6
(
H̃2 + H̃2

0

) Y ≡ − κ2J ˙̃E(
H̃2 + H̃2

0

) Z ≡ JH̃0 W ≡ H̃

H̃0

, (6.46)

where H̃0 ≡ H̃(t = 0). These are related to our original variables by

x =
1 +W 2

W 2
X y =

1 +W 2

W 2
Y z = WZ. (6.47)

W clearly has no analogue in our original variables. Clearly, H̃ → 0 ⇒ W → 0,
and in this limit X, Y , Z and W are all well-behaved, whereas x and y blow up.
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We also encountered a problem with d
dN

= 1
H̃

d
dt

changing sign, resulting in blow-
ups and our time coordinate being non-monotonic. To combat this we introduce
a new dimensionless time

T = H̃0t, (6.48)

which is clearly monotone for monotonically increasing t.

From this, we write down the evolution equations for the system {X, Y, Z,W},

dX

dT
= − Y

6Z
+ 4WXY + 3γWX

(
W 2

1 +W 2
−X − Y

)
(6.49a)

dY

dT
=

Y

6Z
− 4WY (1− Y ) + 3γWY

(
W 2

1 +W 2
−X − Y

)
(6.49b)

dZ

dT
=

1

2
− 3WZ (6.49c)

dW

dT
= −

(
1 +W 2

) [
2Y +

3

2
γ

(
W 2

1 +W 2
−X − Y

)]
. (6.49d)

Our stable point B11 corresponds to a critical line along the W axis in these
coordinates as (X, Y, Z) =

(
W 2

1+W 2 , 0,
1

6W

)
. Working in the subspace orthogonal

to W , this looks like a point, and so we carry out the standard linear stability
analysis. For fixed W , the eigenvalues of the stability matrix are(

−3W,−3W,
−3W 3

1 +W 2

)
.

This point is stable if W > 0, but unstable in all directions if W < 0. This agrees
with our earlier observation that Point B was only an attractor if H̃ > 0.

As a first stage in our analysis, we now repeat the calculation leading to Figure
6.2 in these new variables. These are shown in Figure 6.4. Note that, as shown in
(6.47), the critical points and the red lines drawn in 6.2a will move as the system
evolves and W changes, so we do not plot the red lines or the Point C to avoid
cluttering the diagram. The X–Y phase plane plot in Figure 6.4a demonstrates
the same features as before. The system evolves from its starting black square
to the (moving) green circle representing Point B. This interpretation can also be
obtained by considering Figure 6.4b, where we see X → W 2

1+W 2 , Y → 0, Z → 1
6W

and W → const, at which point the system stops evolving and becomes stable.

We now move on to consider the unshaded region in our x–y or X–Y plots, and
consider its intersection with the 0 ≤ x + y ≤ 1 ‘tramlines’ of Figure 6.2a, where
Ωγ ≥ 0 and Ω? ≥ 0. The evolution of a universe with initial conditions in this
region is shown in Figure 6.5, where we show the behaviour of γ? alongside the
diagrams we have previously shown. As is clear from Figure 6.5b, H̃ becomes

11Points A and C are not stable points in this system.
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X

Y

(a) A projection onto the X–Y plane of
phase space.
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(b) Evolution of X (blue), Y (green), Z
(red) and W (black).

Figure 6.4: The evolution of the same system as Figure 6.2, but in our new
variables. The initial conditions are now (X, Y, Z,W ) = (1

6
,− 1

12
, 1

9
, 1).
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(c)

Figure 6.5: The evolution of a system with initial conditions (X, Y, Z,W ) =

(−1
6
, 1

3
, 1

9
, 1).

(a) Shows a projection onto the X–Y plane of phase space.
(b) Shows X (blue), Y (green), Z (red) and W (black) evolving.
(c) The evolution of the effective equation of state γ? (blue) and density parameter
Ω? (green).

negative in the evolution, before diverging to −∞ in finite time. Figure 6.5a
shows that the system never reaches Point B. Point B ‘moves’ along the X-axis
to the origin as W → 0, before moving away from the origin as W 2 grows with W
having passed through zero. Figure 6.5c shows that the effective fluid never has a
constant equation of state.

At this stage, we have demonstrated that there are regions of phase space where
either Point B is reached with H̃ > 0, or else H̃ becomes negative and diverges to
−∞ in finite time, producing a big crunch with ˙̃H < 0 throughout. The former
provides a good fit to our Λ dominated universe, while the latter does not describe
our universe well, especially since we know ˙̃H > 0 presently. As previously alluded
to, there is a third region, coloured yellow on the x–y and X–Y planes such as
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Figure 6.2a, where H̃ becomes negative during its evolution, but still ultimately
reaches Point B. We now consider this possibility.

As we approach the yellow region in the x–y plane, the trajectories is phase space
start to loop before reaching the attractor at Point B, as can be seen in Figure
6.6. H̃ > 0 throughout so we can use our original variables x, y, z to express this.
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Figure 6.6: The evolution of a system with initial conditions (x, y, z) =

(−1
5
,− 8

25
, 1

9
).

(a) Shows a projection onto the x–y plane of phase space.
(b) Shows x (blue), y (green), z (red) evolving.
(c) The effective equation of state γ? (blue) and density parameter Ω? (green).

While ˙̃H < 0 initially, ˙̃H → 0 and the system does not pass through H̃ = 0.
However, if instead we move our initial conditions away slightly, into the yellow
region, H̃ will become negative at some point in the evolution. We can no longer
describe this using our (x, y, z) variables.

Such a scenario is demonstrated in Figure 6.7, which shows snapshots at various
times in the system’s evolution. In this case, we performed our numerical cal-
culations using the {X, Y, Z,W} system. However, since the resultant pictures
are clearer, the phase plane plotted is the x–y plane, not the X–Y plane. These
variables have been reconstructed using the relations (6.47). The time evolution
in this plane is still the monotonically increasing T . Interpretation is simpler
in this plane since the critical points do not move. The contents of Figure 6.7
clearly show that the system undergoes decaying oscillations in H̃, as well as ˙̃E

and J . Over time, the magnitude of these oscillations weakens, and over very long
timescales, the system eventually reaches the attractor at Point B. The presence
of these oscillating solutions the phase space is interesting and they do not offer a
physically accurate match to the observed universe.

We have thus seen that there exist three régimes of solutions in this theory, based
on initial conditions in the x–y plane. Regardless of whether one imposes the
constraints of one or both of the red lines in our x–y diagrams, around half the
phase space results in a viable, cosmological constant dominated, cosmology. This
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Figure 6.7: The evolution of a system with initial conditions (x, y, z) =

(−2
3
,−1

6
, 1

9
), shown at several snapshots of time T .

(a),(d),(g),(j) Show a projection onto the x–y plane of phase space.
(b),(e),(h),(k) Show X (blue), Y (green), Z (red), W (black) evolving.
(c),(f),(i),(l) Effective equation of state γ? (blue) and density parameter Ω? (green).
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at least suggests that one does not require fine tuning to exhibit cosmological
constant-like behaviour in these non-GR solutions of the theory, although, of
course, one must pick a more restrictive region to obtain a value for this cos-
mological constant consistent with observations.

6.4 Discussion

We have investigated cosmology in a generalisation of unimodular gravity, con-
sidering non-GR cosmologies and their qualitative behaviour. Having derived the
equations of motion of a model we know possesses non-GR solutions, we first
determined the cosmological behaviour of the system (fundamental and physical
metrics) for the GR-like solutions in the model. We demonstrated that in this case,
the system behaved like GR plus a cosmological constant, and the fundamental
metric was well-behaved.

Having gained this insight, we moved on to the non-GR solutions. It transpired
that there were three classes of solutions. One régime led to late time cosmolog-
ical constant-like behaviour, with γ → 0 as t → ∞, mimicking the GR solution
of the theory. We understood this as corresponding to an attractor in the theory.
However, this critical point was only an attractor in the case that H̃ > 0. The two
other régimes involved the physical Hubble parameter H̃ becoming negative, and
resulted in wildly different cosmologies. One resulted in an oscillating cosmology,
and the other in a ‘big crunch’ cosmology. Both of these are considerably differ-
ent cosmologies to what we observe. However, around half the parameter space
appeared to exhibit late-time cosmological constant-type behaviour, meaning that
despite the presence of extra solutions, it does not appear that unreasonable fine
tuning is necessary to obtain Λ-like behaviour, at least at the level of background
cosmology.

These extra solutions arise by not imposing the condition Ẽ = const. Unfor-
tunately, this turns out to also affect the connection Ξ we introduced. With
Ẽ 6= const, Ξ can no longer be chosen arbitrarily, but instead is chosen dynam-
ically. This results in a solution with RGB(Ξ, g) = 0. This is problematic, since
our demonstration of the ghost-free property depended on the form of Ξ, and so
we have no reason to expect that this theory is ghost-free. However, this may not
be the case with all ghost-free variants of the theory, which may be able to remain
viable despite the fact that ˙̃E 6= 0. This issue deserves further consideration.

Ultimately, it appears that while there is naïve similarity between the GR and
certain non-GR solutions, at a deeper level the additional solutions allow patholo-
gies such as ghosts to enter the theory. One might want to restrict the theory
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to the GR solution with a Levi-Civita connection for Ξ by setting ˙̃E = 0 by fiat,
but there is no good reason for forcing this condition to hold. It appears that the
most promising approach may well be to construct theories which do not have any
additional solutions to those in GR (such as those without derivatives of g in Ω),
which are guaranteed to match Einstein’s equations with an arbitrary cosmologi-
cal constant, and the freedom that exists to choose the fundamental fields other
than the metric may help permit a viable theory to exist. An alternative approach
may be to attempt to identify some symmetry or other mechanism for ensuring
that only the GR solutions of the theory are ever realised.
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Discussion

7.1 Summary

This thesis has discussed models of modified gravity, in the quantum and classical
régimes. Even as GR approaches its centenary, there is no obvious candidate for
a usurper. The two specific examples of modified gravity considered here both
indicate in their own ways how hard finding viable alternatives to GR is.

In Chapter 1, we highlighted the successes of General Relativity, at both a theoret-
ical and observational level. We then moved on to discussing its flaws, in particular
evidence from both the high and low ends of the energy spectrum that GR must
ultimately be modified. The perils of such approaches were then discussed, in
particular noting that the additional modes present in alternative theories often
prove dangerous for the viability of the theory.

In Chapter 2, we introduced a modified theory of gravity for the quantum realm,
Hořava gravity. The set-up of the model was given, showing how Lorentz invari-
ance can be broken in the gravitational sector in order to improve quantum be-
haviour. Loop corrections diverge less, since there are higher order spatial deriva-
tives in the propagator, but Ostrogradski ghosts are avoided by remaining second
order in time. While the potential for good quantum behaviour is exciting, we
also highlighted some of the downsides of such a model, particularly focusing on
the behaviour of the additional mode which arises due to the breaking of diffeo-
morphism invariance. By reviewing the literature, we suggested that the ‘healthy
extension’ was the variant of the theory with the most promise, avoiding strong
coupling, tachyonic and ghostly instabilities, and issues with matter coupling and
cosmology. But there remained disputes in this theory about the presence of strong
coupling and the necessity of introducing a hierarchy of scales.

In Chapter 3, we set out to resolve these disputes. By using the Stückelberg trick
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and employing a decoupling limit we were able to isolate the behaviour of the
extra mode from the general relativistic behaviour. After showing that we could
recover previously obtained results in our limit, we then demonstrated that not
only was it necessary to introduce a hierarchy of scales to evade strong coupling,
but that avoiding strong coupling was not possible if the theory possessed our
decoupling limit. Having obtained a formalism where the Stückelberg dynamics
were easier to work with, we used this to our advantage, explicitly demonstrating
that Hořava gravity violated the Weak Equivalence Principle. This potentially
pathological issue has not been noted previously, and raised the prospect of being
able to use Equivalence Principle tests to constrain the theory.

In Chapter 4, we considered the effect of adding matter into Hořava’s theory.
Working at a classical level, we constructed actions for scalar and gauge fields
consistent with the DiffF(M) symmetry of Hořava gravity. We then proved that
these actions would lead to violations of the Equivalence Principle unless the new
terms permitted by the reduced symmetry vanished. While at a classical level it
is permissible to set coefficients in the action to zero by fiat to remove unwanted
terms, this isn’t true quantum mechanically — unless protected by a symmetry,
quantum effects can (and generically will) re-introduce such terms.

Motivated by this, we moved on to calculate quantum corrections to a tree level
Lorentz invariant matter (scalar or gauge) field coupled to Lorentz violating grav-
ity, focusing on one-loop corrections to the propagator. We elected to work with
the propagating degrees of freedom: the matter scalar, tensor graviton and one
scalar graviton. To achieve this, we expanded around Minkowski space, performed
a partial gauge fixing, and integrated out the remaining non-physical modes using
the constraints. Despite the fact that we were forced to approximate the answers
to the resultant loop integrals, we were able to find interesting features. The large
coupling between the scalar graviton and matter sector resulted in a 1/α ∼ 107

correction to the light cone. Unless replicated for all particles, this would result
in a fine tuning to ensure all particles see the same speed of light. We saw that
generically, higher order spatial derivatives would be generated, with a suppres-
sion scale M?. This was expected since these were consistent with the symmetries
of the theory and by the old adage of quantum theory: “if it’s not forbidden, it’s
compulsory” they would appear. Unfortunately, they were joined by higher or-
der time derivatives. The DiffF(M) symmetry was designed precisely to protect
against these sort of terms and the associated ghosts. We argued that their gen-
eration might be related to the fact we did not have a purely z = 3 theory — if
the only terms across the matter and gravity sector were scaling dimension 6, we
could rewrite the action as a 1 + 1D model, which is conformally invariant, but
this was spoilt by the presence of scaling dimension 2 and dimension 4 operators.
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In Chapter 5, we moved on to discuss a classical modification of gravity. In
particular, a new model to tackle the cosmological constant problem was proposal.
By coupling matter to a compositemetric, we were able to remove any contribution
to the gravitational field equations from the vacuum energy by making the volume
element a total derivative. The value of the cosmological constant just arose as an
integration constant, and could be freely chosen without any worries about fine
tuning it against particle physics contributions. By constructing the gravitational
action as the Ricci scalar of the composite metric, we also saw we could obtain
a theory whose solutions for the physical metric were equal to those of Einstein’s
equations, ensuring it passed solar system tests. After demonstrating that this
idea could be considered a generalisation of unimodular gravity, we derived the
equations of motion in the case that the composite metric was conformally related
to a fundamental one. Since it appeared that our proposal had a generic risk of
encountering Ostrogradski ghosts, we calculated a specific example in which (to
the second-order action on a maximally symmetric background) this was not the
case. By considering a theory with an additional, independent connection Ξ, a
constraint arose which was able to exorcise the ghost, and the remaining degrees
of freedom were just the same as GR.

In Chapter 6, we moved on to discuss cosmology and non-GR solutions in this pro-
posal. While a solution of GR is always a solution in this theory (for the composite
metric), the converse does not necessarily hold. We proved a sufficient condition
for a theory’s solution space to match that of GR, using this to help motivate a
choice of model with non-GR solutions. Wanting to understand the effect of these
new solutions on the physical cosmology and the fundamental fields, we consid-
ered the GR-like solutions to gain some relevant intuition. Having understood
their properties, and demonstrated that the fundamental field was well behaved,
we moved on to the non-GR solutions. Over roughly half the phase space, the
fundamental field was well behaved and the effect on physical cosmology was con-
sistent with adding a cosmological constant. Unfortunately, choosing to consider
non-GR solutions came at a cost, since it forced us to break assumptions on the
connection Ξ that we used to derive the ghost-free property of the theory. We
concluded by suggesting that restricting to a theory with only GR solutions may
be the safest approach to accurately describe our univese.

7.2 Future directions

While, as previously mentioned, modifying gravity (successfully) is very hard,
the models here are able to tell us something about the viability of different ap-
proaches. In fact, since the same features are generic, occurring across multiple

132



Chapter 7: Discussion

different theories, further investigations into these are likely to be able to tell us
about more general modified gravity models.

Research in Hořava gravity would benefit greatly from additional phenomenologi-
cal work. Recall that the avoidance of strong coupling and solar system tests place
upper limits on M?, while Equivalence Principle and Lorentz Invariance violations
can place lower limits. It is possible that tightening these limits will lead to an
inconsistency of the two bounds, ruling out the theory. An example of this would
be to use our work on loop corrections to ordinary matter in Hořava gravity, and
calculate the resultant size of Equivalence Principle violations.

Lorentz violation is also a looming spectre for Hořava gravity, and the results may
turn out to be applicable in other Lorentz violating theories of gravity. Many
of our best tests of Lorentz invariance involve fermionic systems and so it would
be a very worthwhile exercise to repeat our analysis of Chapter 4 for fermions.
This procedure will be more involved than our calculation, due to the necessity of
introducing vielbeins, but the results (and their comparison with those for scalar
and vector fields) may be directly able to rule out the theory.

It has been argued schematically that adding terms like (DiK)2 to the theory
would help avoid the fine tuning of light cones and it would be interesting to
repeat our analysis and that of [100] to determine whether this effect really does
resolve this issue. We would also like to determine whether it has any effect on
the higher dimension (particularly time) operators. Altering the Lifshitz scaling
in this manner also permits additional terms to be added to the action. We could
investigate which new terms are consistent with the symmetry classically, and
which terms generated by quantum corrections. For example ∂2

t ∂
2
i terms in the

tensor gravity or matter sectors may be generated, and it would be interesting to
see if the presence of these terms can be made consistent with observation.

The parameter λ and its renormalisation group flow is very important in Hořava
gravity. It is desired that it flows under the RG to 1 in the IR (though it should not
take the value λ = 1 precisely), but this has never been demonstrated. This may
be possible in the context of holography, by considering a 4+1D Lorentz violating
version of Randall-Sundrum II, where varying the size of the extra dimension
corresponds to varying the energy.

The proposal for cleaning up the cosmological constant also has a number of inter-
esting directions. It would be interesting to try and work with the full (non-linear)
degrees of freedom by using the Hamiltonian. By trying to keep as much gener-
ality as is practicable, it may be possible to understand what conditions on the
proposal allow one to obtain a ghost-free theory. This may be a particularly useful
approach, since far more exotic models than the conformal ones we considered are
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possible. Disformally related metrics may prove a fruitful avenue, or considering
alternative kinetic terms to avoid the ghost (and rely on non-linear effects to pass
solar-system tests). All of these merit further investigation.

The theory has only been considered classically thus far, but quantum effects
must ultimately be investigated to know whether the proposal is a viable model
of the universe. The analogy with unimodular gravity may be highly useful in
this context. It would be particularly interesting to understand whether, as in
unimodular gravity, a renormalisation group analysis reveals the potential for a
UV fixed point.

Understanding the extra solutions of the theory, by either proving or finding a
counterexample to our conjecture about GR solutions would be a helpful step. It
would be very useful to know whether allowing non-GR solutions always ruins your
ghost-freeness property and whether the existence of a large region of parameter
space where the theory mimics a cosmological constant, even in a supposedly non-
GR solution, is a generic feature. In addition, we have considered only background
cosmology thus far. Theories which mimic ΛCDM at the background level can have
differing predictions at the level of perturbations. While ΛCDM can be matched
when the degrees of freedom are the same as those of GR and we consider GR
solutions, working with the non-GR solutions and extra or differing degrees of
freedom may result in this not being the case.

Investigating these non-GR solutions outside the realm of cosmology would be
very interesting. For example, is there any additional effect which occurs when
considering the analogue of the Schwarschild solution for the non-GR branch? Do
Birkhoff’s theorem or the non-hair theorems still hold? This could have direct
phenomenological consequences for observations of stars or black holes. The ar-
bitrariness of Ξ in the case where we had a GR solution, ˙̃E = 0, suggests the
presence of some sort of symmetry. Understanding the precise nature of this sym-
metry might be a interesting avenue, in particular whether it is able to help provide
a mechanism to restrict us to the GR solutions when they are not necessarily the
only possible ones.
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Hořava gravity calculation details

A.1 Derivatives of potential terms

Below are the first derivatives of the potential V4 used in chapter 3.

∂V4

∂ãµ
=4A1(ãν ãν)ã

µ + 2A2ã
µãνν (A.1)

+ 2B1(K̃ρσK̃ρσ − K̃2)ãµ + 2B2(K̃µαK̃αν − K̃K̃µν)ãν

∂V4

∂ãµν
=A2(ãρãρ)η

µν + 2A3(ãρρ)η
µν + 2A4ã

µν

+B3(K̃σρK̃σρ − K̃2)ηµν (A.2)
∂V4

∂K̃µν
=2B1(K̃µν − K̃ηµν)ãρãρ +B2(2K̃(µ

ρ δ
ν)
σ − ηµνK̃ρσ − K̃δ(µ

ρ δ
ν)
σ )ãρãσ

+ 2B3(K̃µν − K̃ηµν)ãρρ + 4C1(K̃ρσK̃ρσ − K̃2)(K̃µν − K̃ηµν)
+ 2C2(2K̃α(µδν)

ρ − ηµνK̃αρ − K̃δ(µ
ρ η

ν)α)(K̃ρβK̃
β
α − K̃K̃ρα) (A.3)

A.2 Determining the strong coupling scale

In section 3.4, we stated that the appropriate strong coupling scale was given
by the interaction term in equation (3.35), leading to a strong coupling scale of
Λsc ∼ 1

lα
c

3/2
s . Here we will demonstrate that this is the appropriate scale, by virtue

of having the highest power of cs. Recall that the scales at which the various terms
become strongly coupled are given by equation (3.48), repeated here,

Λα
(a,n) =

1

lα
c

1
2

+ 2−a
n−2

s , ΛK(a,n) =
1

lα
c

1
2
− a
n−2

s , ΛV
(a,n) =

1

lα
c

1
2

+ 1−a
n

s . (3.48)

Let us begin by considering the Λα
(a,n) terms, We want to identify the terms with

the highest powers of cs, which will result in the lowest strong coupling scale, since
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Figure A.1: The exponent of cs to which various potential strong coupling terms
in Λα

(a,n) are raised.

cs ≤ 1. It is also necessary to bear in mind that n, a are restricted to be integers
and that not all the ‘possible’ terms appear in the perturbative expansion. The
exponent of cs in the Λα

(a,n) terms is plotted in Figure A.1. It is clear that the
strongest coupling would be given by the term (a = 0, n = 3), but this is not
present in the expansion. Instead, the two terms corresponding to (a = 1, n = 3)

and (a = 0, n = 4) have the greatest exponent of cs of any terms present and
so result in the lowest energy scale Λα

(1,3) = Λα
(0,4) = Λsc ∼ 1

lα
c

3/2
s . Furthermore,

it is clear from equation (3.48) that that is the smallest scale, since min ΛK(a,n) =
1
lα
c

1/2
s = Λsc/cs and min ΛV

(a,n) = 1
lα
c

5/6
s = Λsc/c

4/6
s will always be larger than Λsc

for cs ≤ 1.

Thus the terms which lead to strong coupling, and set the strong coupling scale,
are the (a = 1, n = 3) and (a = 0, n = 4) terms from Sα(a,n).

A.3 Scalar Field Vertices

This section contains the explicit form of the vertices shown in Figure 4.5, repeated
below as Figure A.2 for convenience. In some cases, the permutations will be done
explicitly. In other cases, this will not be done (for clarity). Where it is not
performed, a summation

∑
π is written explicitly, with the explicit permutations

π written under the vertex. Recall that all momentum ki are ingoing. In this
section only, Mpl has been set equal to one, it is trivial to restore these factors by
dimensional analysis.
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k1
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Figure A.2: A repeat of Figure 4.5. Three and four point vertices for the dynamical
fields.

Three point ϕh vertex — Vhϕ2

The diagram for the hijϕ2 vertex is shown in Figure 4.5a where

Vij(k1, k2; k3) = −k1(ik2j) (A.4)

Three point ϕζ vertex — Vζϕ2

The diagram for the ζϕ2 vertex is shown in Figure 4.5b, where

V (k1, k2; k3) = −3ω1ω2 + k1 · k2 − 3m2 − 2f(k3)(ω1ω2 + k1 · k2 −m2)

− 1− 3λ

1− λ
ω3

|k3|2
(k1 + k2) · (ω1k2 + ω2k1) (A.5)

138



Appendix A: Hořava gravity calculation details

Four point ϕ vertex — Vϕ4

The diagram for the ϕ4 vertex is shown in Figure 4.5c, where

W (k1, k2, k3, k4) =− 1

16

∑
π

1

|k3 + k4|2

(
ω1ω2 + k1 · k2 −m2

) (
ω3ω4 + k3 · k4 −m2

)
α+ A4

Mpl2
|k3 + k4|2 + B4

Mpl4
|k3 + k4|4

+
1

4

1

1− λ
∑
π

1

|k3 + k4|4
ω1ω3(k1 + k2) · k2(k3 + k4) · k4

− 1

2

∑
π

1

|k3 + k4|2
ω1ω3π

k3+k4
ij k2ik4j − µ

(A.6)

where
∑

π means you sum over all permutations of {1, 2, 3, 4}.

Four point ϕh vertex — Vh2ϕ2

The diagram for the hijhklϕ2 vertex is shown in Figure 4.5d, where

Vijkl(k1, k2; k3, k4) =
1

2
δi(kδl)j

(
ω1ω2 − k1 · k2 +m2

)
+ δjl (k1ik2k + k1kk2i)

+
1

|k3 + k4|2

[
1

α
〈H2〉

(
ω1ω2 + k1 · k2 −m2

)
− i

1− λ
(k1 + k2) · (k2ω1 + k1ω2)〈P2〉

+2(ω1k2m + ω2k1m)〈Q2〉m]

(A.7)

and

〈H2〉 =
1

4
δi(kδl)j

[
−ω3ω4 − A1 |k3|2 |k4|2 +B1k3 · k4 |k3|2 |k4|2

]
+

1

2

∑
3↔4

δi(kδl)j

[
|k3|2 +

3

4
k3 · k4

] [
1− A3 |k3 + k4|2 +B3 |k3 + k4|4)

]
− 1

4

∑
3↔4

[
1− A3 |k3 + k4|2 +B3 |k3 + k4|4)

]
δjlk3kk4i (A.8a)

〈P2〉 =
1

2

∑
3↔4

(±i)ω4

[
δjlk4ik3k −

1

2
(k3 + k4) · k3δi(kδl)j − λ |k3 + k4|2 δi(kδl)j

]
(A.8b)

〈Q2〉m =
1

2

∑
3↔4

ω4π
k3+k4
mn

[
−k4iδjlδnk +

1

2
k3jδi(kδl)j

]
(A.8c)
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Four point ϕζ vertex — Vζ2ϕ2

The diagram for the ζ2ϕ2 vertex is shown in Figure 4.5e, where

V(k1, k2; k3, k4) =

− 3ω1ω2 − k1 · k2 − 3m2 + 8f(k3)f(k4)ω1ω2 −
1

2

(
1− 3λ

1− λ

)2 ω3ω4

|k3|2 |k4|2
∑
π

(k1 · k3)(k2 · k4)

− 2
1− 3λ

1− λ

(
f(k3)

ω4

|k4|2
k4 + f(k4)

ω3

|k3|2
k3

)
· (ω1k2 + ω2k1)− 2

1− 3λ

1− λ
∑
π

ω2ω4k3 · k1

|k3|2
f(k4)

+
1

4α

ω1ω2 + k1 · k2 −m2

|k1 + k2|2
〈H2〉+ 4k1 · k2 (f(k3) + f(k4))− 16f(k3)f(k4)ω1ω2

−
i

1− λ
(k1 + k2)

|k1 + k2|2
· (k2ω1 + k1ω2)〈P2〉+ 2

πk1+k2
ij

|k1 + k2|2
(
ω1k2j + ω2k1j

)
〈Q2〉i

+
1

|k1 + k2|2
(ω1ω2 + k1 · k2 −m2) {(k1 + k2) · [k3f(k3) + k4f(k4)] + f(k3)f(k4) [k3 · k4 + (k1 + k2) · (k3 + k4)]}

−
4

α

∑
π

{[
A3 |k4|2 −B3 |k4|2

]
f(k3)

k3 · (k1 + k2)

|k1 + k2|2
(ω1ω2 + k1 · k2 −m2)

}

+
A4

α

∑
π

(ω1ω2 + k1 · k2 −m2)

{
f(k3)

[
|k3|2 − k4 · (k1 + k2)

|k3|2

|k1 + k2|2
− k3 · k4

]

+ f(k3)f(k4)

[
2
|k3|2 |k4|2

|k1 + k2|2
+ 4 |k3|2 + 4k4 · (k1 + k2)

|k3|2

|k1 + k2|2
+ 2k3 · k4

]}

+
B4

2α

∑
π

(ω1ω2 + k1 · k2 −m2)

{
f(k3)

[
− |k3|4 − |k3|2 |k1 + k2|2 + k3 · k4 + k4 · (k1 + k2)

|k3|2

|k1 + k2|2

+ k4 · (k1 + k2) |k3|2 + k3 · k4 |k3|2 − 2 |k3|2 |k4 + k1 + k2|2

− 2 |k3 + k4|2 k3
2 + |k3 + k4|2 k3 · k4 + |k3|2

|k1 + k2 + k4|2

|k1 + k2|2
k4 · (k1 + k2)

]

+ 2f(k3)f(k4)

[
4k3 · (k1 + k2)

|k4|2

|k1 + k2|2
+ 2k3 · k4 |k1 + k2|2

+ 2 |k3 + k4|2 |k4|2 + 2 |k3|2 |k4|2
|k1 + k2 + k3|2

|k1 + k2|2

+ 2 |k4|2 |k1 + k2 + k4|2 + 2 |k3 + k4|2 k3 · k4

+ 4 |k4|2 k3 · (k1 + k2)
|k1 + k2 + k3|2

|k1 + k2|2

]}

−
2

α

(1− 3λ)2

1− λ
(ω1ω2 + k1 · k2 −m2)

ω3ω4

|k1 + k2|2

{
1−

1

1− λ

[
(k3 · k4)2

|k3|2 |k4|2
− λ
]}

− 8
1− 3λ

(1− λ)2

∑
π

f(k4)ω1ω3k2 · (k1 + k2)

[
((k1 + k2) · k3)2

|k|3
2 |k1 + k2|4

−
λ

|k1 + k2|2

]

+ 4
1− 3λ

1− λ
∑
π

f(k3)
ω1ω4

|k1 + k2|2
k2 · (k1 + k2)− 8

1− 3λ

1− λ
∑
π

f(k4)k3 · (k1 + k2)
πk1+k2
ij k2ik3jω1ω3

|k3|2 |k1 + k2|2

+ 2
1− 3λ

1− λ
ω1ω3

|k3|2
πk1+k2
ij

|k1 + k2|2

{
k3i [(k3 + k4) · (k1 + k2) + 2k3 · k4] + k4i

[
k3 · (k1 + k2)− (1− λ) |k3|2

]}

+
1− 3λ

(1− λ)2

∑
π

ω1ω3

|k1 + k2|2
k2 · (k1 + k2)

{
2

[(k1 + k2) · k3)]2

|k1 + k2|2 |k3|2
− 2λ+ 4

k3 · (k1 + k2)k4 · (k1 + k2)

|k1 + k2|2 |k3|2

+
4(k3 · k4)k3 · (k1 + k2)
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− 2(1− λ)

k3 · k4
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− 2(1− λ)
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}
(A.9)
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where
∑

π means you permute over {1, 2}{3, 4} and

〈H2〉 = −1− 3λ

1− λ
ω3ω4

[
1 + 3λ+

1− 3λ

1− λ

(
(k3 · k4)2

|k3|2 |k4|2
− λ

)]
+

1

2

∑
3↔4

(4 |k3|2 + 6k3 · k4)

+ 4α
[
f(k3)

(
|k3|2 + k3 · k4

)
+ f(k3)f(k4)

(
2 |k3|2 − k3 · k4

)]
+

1

2

∑
3↔4

{
− |k3|2 |k4|2 (5A1 + 16A2)−A1(k3 · k4)2

+A3

[
4 |k3|2

(
|k4|2 + k3 · k4

)
− 8f(k3)

(
|k4|4 + |k3|2 |k4|2

)
+ |k3 + k4|2

(
−6k3 · k4 − 16 |k3|2 − 8f(k3) |k4|2

) ]
+A4

[
4f(k3) |k3|2

(
k3 · k4 − |k3|2

)
+ 4f(k3)f(k4)

(
2 |k3|4 − |k3|2 |k4|2

)
+ 4f(k3) |k3 + k4|2

(
k3 · k4 − 2 |k3|2

)
+ 8f(k3)f(k4) |k3 + k4|2 k3 · k4

]}

+
1

2

∑
3↔4

{
k3 · k4

[
|k3|2 |k4|2 (5B1 + 16B2) +B1(k3 · k4)2

]
+B3

[
− 12 |k4|6 − 4k3 · k4 |k4|4 + 8f(k3)(|k4|4 |k3|2 − |k4|6)

+ |k3 + k4|2
(
−8f(k3) |k4|4 + 8 |k4|4 − 4k3 · k4 |k4|2

)
+ |k3 + k4|4

(
6k3 · k4 + 16 |k4|2

) ]
+B4

[
4f(k3)(3 |k3|6 − k3 · k4 |k3|4) + 4f(k3)f(k4)(|k3|2 |k4|4 − 2 |k4|6)

+ 2f(k3) |k3 + k4|2 (8 |k3|4 − 2k3 · k4 |k3|2)

+ 2f(k3) |k3 + k4|4 (4 |k3|2 − 2k3 · k4)

+ 8f(k3)f(k4) |k3 + k4|4 (− |k4|2 − k3 · k4)
]}

(A.10a)

〈P2〉 =
1

2

∑
3↔4

iω4

{
1− 3λ

1− λ
f(k3)

[
− 2 |k3 + k4|2 + 2 ((k3 + k4) · k4)

2
]

+
1− 3λ

1− λ
1

|k4|2
[
− 2(k3 + k4) · k3(k3 + k4) · k4 + (1− λ) |k3 + k4|2 k3 · k4

]
+ (2k3 − (1− 9λ)k4) · (k3 + k4) +

1− 3λ

1− λ
(k3 + k4) · (k4 − 3k3)

− 2λ

(
3− 1− 3λ

1− λ

)
|k3 + k4|2

}
(A.10b)

〈Q2〉i =
1

2

∑
3↔4

ω4π
k3+k4
ij

{
k3j

[
1− 3λ

1− λ
k4 · (k3 + k4)

|k4|2
− 2 + 3

1− 3λ

1− λ

]

+ k4j

[
2f(k3)k4 · (k3 + k4) +

1− 3λ

1− λ
k3 · (k3 + k4)

+ (1− 9λ)− 1− 3λ

1− λ
k3 · k4

|k4|2

]}
(A.10c)
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Cleaning up the cosmological
constant problem calculational

details

B.1 General perturbative result derivation

We consider the vacuum case of the theory and so Ẽµν = − 1
16πG

(G̃µν + Λ̃g̃µν) and
Ẽ = 1

16πG
(R̃− 4Λ̃). Recall that for the relevant work we raise and lower with the

untilded metric. Using the equations of motion (5.9), we obtain1

δ2S =
1

2

1

16πG

∫ [
−Ω
√
−g̃
(
g̃µαg̃νβ − 1

4
g̃αβ g̃µν

)
δẼαβδgµν +

1

2

∑
a

δφaOa(δR̃)

]
,

(B.1)
where δẼαβ =

(
δG̃αβ + Λδgαβ

)
, using the relation between Λ̃ and Λ to remove

the tilde on gµν in the last term. We have also used the linearity of Oa and the
fact Oa(const) = 0. Next, we use the relation

∑
a

1

2

∫
δφaOa(Q) =

∑
a

1

2

∫
Qδφa

δ
√
−g̃

δφa
=

1

2

∫
Qδ
(√
−g̃
)
, (B.2)

which follows from the definition of the functional derivative, to rewrite the quadratic
action (introducing δgµν = hµν) as

δ2S =
Ω

32πG

∫ [
−
√
−gHµνδ

(
G̃µν + Λgµν

)
+

1

2Ω
δR̃δ

(√
−g̃
)]

, (B.3)

1Making use of a convenient shorthand way for calculating a quadratic action,

δ2S =
1

2

∑
a

∫
δφaδ

(
δS

δφa

)
.
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where Hµν ≡ hµν− 1
4
gµνh. Expanding the Einstein tensor, using the fact that Hµν

is traceless and that Hµνδg̃µν = ΩHµνhµν , we rewrite this as

δ2S =
Ω

32πG

∫ [
−
√
−gHµνδ

(
R̃µν − Λgµν

)
+

1

2Ω
δR̃δ

(√
−g̃
)]

. (B.4)

It will be useful to consider how this compares with the perturbative action aris-
ing from the Einstein-Hilbert action SGR = 1

16πG

∫ √
−g(R − 2Λ), which by the

standard calculational techniques can be shown to be

δ2SGR = − 1

32πG

∫ √
−ghµνδ (Gµν + Λgµν)

= − 1

32πG

∫ √
−gh̄µνδ (Rµν − Λgµν) ,

(B.5)

where h̄µν ≡ hµν − 1
2
gµνh.

Next, we introduce ∆2 = 16πG( δ2S
Ω
− δ2SGR). This will then tell us the way in

which this action deviates from GR (and remove some messy factors). From (B.4)
and (B.5),

∆2 =
1

2

∫ [
−
√
−g
(
HµνδR̃µν − h̄µνδRµν

)
+
√
−gΛh2 +

1

2Ω
δR̃δ

(√
−g̃
)]

.

(B.6)

Now, using the standard expressions for the Ricci tensor and scalar of conformally
related metrics (see e.g. [20]), we can write

δR̃µν = δRµν −
1

2

∇µ∇νδΩ
2

Ω
2 − 1

4
gµν
�δΩ2

Ω
2 (B.7a)

δR̃ =
1

Ω

(
δR− 3

2

�δΩ2

Ω
2 − 2Λ

�δΩ2

Ω
2

)
, (B.7b)

using the fact that Ω = const and being careful to vary the factor of 1/Ω appearing
in the general expression for R̃. We will also make use of

δ
(√
−g̃
)

= Ω
2√−g

(
δΩ2

Ω
2 +

1

2
h

)
(B.8a)

δg̃µν = Ω

(
1

2
gµν

δΩ2

Ω
2 + hµν

)
. (B.8b)

Manipulating the first term in the square brackets in (B.6), including an integra-
tion by parts, we obtain

−
√
−g
(
HµνδR̃µν − h̄µνδRµν

)
= −
√
−g

(
1

4
hδR−1

2

δΩ2

Ω
2 ∇µ∇νh

µν+
1

8

δΩ2

Ω
2 �h+Λh2

)
.

(B.9)
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Clearly, this results in the Λh2 term in (B.6) being cancelled off. Moving on to
the remaining part of the square brackets in (B.6), we get

1

2Ω
δR̃δ

(√
−g̃
)

=
√
−g

(
1

4
hδR− 3

8

δΩ2

Ω
2 �h+

1

2

δΩ2

Ω
2 δR

− 3

4

δΩ2

Ω
2 �

δΩ2

Ω
2 − Λ

(
δΩ2

Ω
2

)2

− 1

2
Λh

δΩ2

Ω
2

)
. (B.10)

Putting this all together, we obtain

∆2 =
1

2

∫ √
−g

[
1

2
(δR +∇µ∇νh

µν −�h− Λh)
δΩ2

Ω
2 −

3

4

δΩ2

Ω
2 �

δΩ2

Ω
2 − Λ

(
δΩ2

Ω
2

)2
]
.

(B.11)
Noting that δR = ∇µ∇νh

µν −�h− Λh and recalling our definition of ∆2, trivial
algebraic manipulations allow us to rewrite this as

δ2S = Ω

[
δ2SGR[g] +

1

16πG

∫
d4x
√
−g∆L

]
, (B.12)

with
∆L =

1

4

δΩ2

Ω
2

(
2δR(g)− 3

2

�δΩ2

Ω
2 − 2Λ

δΩ2

Ω
2

)
, (B.13)

as stated in Section 5.3.1.

B.2 No extra scalars propagating in de Sitter

After (5.25), it was stated that the scalar modes of the perturbations are simply
renormalised relative to GR, but there are no propagating spin-0 modes, this will
be demonstrated here.

Scalar perturbations of de Sitter metric (in flat FRW form) can be written as

gµνdx
µdxν = −(1 + α)2dt2 + e2Hte2ξδij(dx

i +∇iβdt)(dxj +∇jβdt), (B.14)

where H2 = Λ
3
, ∇i is the covariant derivative associated with the spatial metric

and ∇2 is the spatial Laplacian. The gauge has been chosen (without loss of
generality) such that δgij is a pure trace, thereby dropping terms of the form
(∇i∇j − 1

3
δij∇2)ν, where ν is the non-trace scalar perturbation in gij.

For the conformally related metric

eψ/2gµνdx
µdxν = −(1 + α̃)2dt2 + e2Hte2ξ̃δij(dx

i +∇iβ̃dt)(dxj +∇jβ̃dt), (B.15)

where
α̃ = α +

ψ

4
, ξ̃ = ξ +

ψ

4
, β̃ = β, (B.16)
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are the renormalised scalar modes. We can then write the perturbative GR action
of the conformally related metric as

δ2SGR[eψ/2g] =

∫
dtd3xe3Ht

[
−6 ˙̃ξ2 − 2e−2Htξ̃∇2ξ̃ − 6H2α̃2 + 12Hα̃ ˙̃ξ

−4e−2Htã∇2ξ̃ + 4e−2Ht ˙̃ξ∇2β̃ − 4He−2Htα̃∇2β̃
]
. (B.17)

As usual, we can use the Hamiltonian and momentum constraints, α̃ =
˙̃
ξ
H

and
β̃ = − ξ̃

H
to integrate out α̃ and β̃ (the lapse and shift). In doing this, we note

that the action (B.17) reduces to

δ2SGR[eψ/2g] = −2

∫
dtd3xeHt∇2ξ̃

[
ξ̃ +

1

H
˙̃ξ +

1

H
˙̃ξ

]
. (B.18)

Performing some integrations by parts on the final term, one can manipulate it into
the form eHt

˙̃
ξ
H
∇2ξ̃ → eHt

(
−

˙̃
ξ
H
− ξ
)
∇2ξ̃, and so the action completely vanishes.

Thus there are no propagating spin-0 degrees of freedom.

B.3 Proof of more general condition on the oper-
ator O

Here, we prove a more general condition to ensure that only solutions for g̃µν that
satisfy Einstein’s equation are permitted.

Take the trace of (5.9). Since the traceless part of Ẽµν necessarily vanishes, this
imposes the on-shell condition

g̃µνOgµν (Ẽ) = 0. (B.19)

This is an on-shell condition, i.e. imposed by the equations of motion, not a
condition which we must impose in the the theory ourselves. With this on-shell
condition, and after dividing through by

√
−g̃Ω, we rewrite (5.9) as(

δ(µ
α δ

ν)
β −

1

4
g̃µν g̃αβ

)(
Ẽαβ +

1

2
√
−g̃Ω

Ogαβ(Ẽ)

)
= 0. (B.20)

Applying ∇̃µ, and using the Bianchi identities and enforcing conservation of energy
to determine ∇̃µẼ

µν = 0,

− 1

4
∇̃µẼ +

1

2
√
−g̃

(
δν(αg̃β)µ −

1

4
δνµg̃αβ

)
∇̃ν

(
Ogαβ(Ẽ)

Ω

)
= 0 (B.21)

Now, in order for the unique solution to (B.21) to be Ẽ = const., a sufficent
condition is clearly (

δν(αg̃β)µ −
1

4
δνµg̃αβ

)
∇̃ν

(Ogαβ(Q)

Ω

)
= 0 (B.22)
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for all sufficiently differentiable Q, implying that (B.21) simply reduces to ∂µẼ =

0. Substituting Ẽ = const. into (B.20), one obtains that the traceless Einstein
equations must also vanish, which is the result that we require.

This is more general than the condition derived in Chapter 6, but it is less clear
how to gain a feel for the equations using this; and so it is less useful than the
other condition in gauging what sort of model we need to get a feel of the solution
space.

B.4 System of differential equations

In this section, we explicitly state the ODEs which we solve in Chapter 6, in order
that all the relevant equations can be clearly seen together. We use the notation
ρ̃ =

∑
a ρa + ρ?, γa ≡ pa+ρa

ρa
.

B.4.1 Conformal time

The ODEs are

H̃′ = −4πG

3
ã2 (ρ̃+ 3p̃) , (B.23a)

ρ′a = −3H̃γaρa, (B.23b)

ρ′? =
48ε

µ4

H̃H3

ã4
Ẽ ′, (B.23c)

Ẽ ′′ = −2Ẽ ′
H′

H
, (B.23d)

H′ = µ4

24ε

ã4

H2
, (B.23e)

with the auxiliary equations

H2 =
8πG

3
ã2ρ̃, (B.24a)

ρ? =
Ẽ

2
− 12ε

µ4

H3

ã4
Ẽ ′, (B.24b)

p? = −Ẽ
2
− 4ε

µ4

H3

ã4
Ẽ ′. (B.24c)

Clearly, ρ? and p? can be eliminated from this system of equations by using (B.24b)
and (B.24c).
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B.4.2 Cosmic time

From the conformal time equations, we can derive the following cosmic time equa-
tions,

˙̃H = −4πG (ρ̃+ p̃) , (B.25a)

ρ̇a = −3H̃(1 + wa)ρa, (B.25b)

ρ̇? =
48ε

µ4

H̃H3

ã4

˙̃E, (B.25c)

¨̃E = − ˙̃E
2Ḣ + 3H̃H

H
, (B.25d)

Ḣ =
µ4

24ε

1

H2
− H̃H, (B.25e)

with the auxiliary equations

H̃2 =
8πG

3
ρ̃, (B.26a)

ρ? =
Ẽ

2
− 12ε

µ4
H3 ˙̃E, (B.26b)

p? = −Ẽ
2
− 4ε

µ4
H3 ˙̃E. (B.26c)

Again, we eliminate ρ? and p? using (B.26b) and (B.26c).
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