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Abstract

Considerable interest has been show in the development and application of real
time On-The-Fly (OTF) kinematic GPS. A major error source and limitation of
such a positioning technmque is that caused by cycle slips. When these occur,
the integer ambiguities must be resolved for, which can take hundreds of epochs

to complete depending on satellite availability and geometry.

This research has focused on investigating the applications of real time OTF
GPS, as well as its limitations and precision, which has been shown in the thesis
to be precise to a few millimetres. The limitations of such a system at present
include the use of UHF telemetry links, which at best have a line of sight range
of ~10 km. The research has shown that alternatives are required, and the use

of a relay station can prove invaluable.

Cycle slips are another major limiting factor when using OTF GPS, as once a
cycle slip occurs, it can either be corrected for or the mnteger ambiguities
resolved for. The second option can take hundreds of seconds, depending on
the algorithms used and the satellite number and geometry. This research has
partly focused on the development of software which will instantaneously detect

and correct for cycle slips in high rate GPS data.

The applications of real time OTF GPS are numerous. Research has been
carried out to investigate its use to monitor and control construction plant as
well as monitoring the movement of large structures. As OTF positioning is
precise to a few millimetres, it is ideal for the control of construction plant, and
has been compared to laser levelling and precise digital levelling. Such a GPS
system gives the user a 3-dimensional position for the bulldozer blade, for
example. Such information can prove invaluable for quality control as well as

developing an automated system, which would be controlled by real time OTF



GPS. In addition, real time OTF GPS has been shown in the research to
provide instantaneous positioning of large structures in the form of bridges.
Such information could provide future systems which would monitor the

structure for dangerous movements, resulting in a failure alarm.

Carrier phase kinematic GPS has previously been shown to work over baseline
lengths of < 20 km. The use of Multiple Reference Stations (MRS) has been
shown in this research to enable OTF GPS to be applied over longer baseline

lengths, with a precision in the order of 12 cm over 132 km.
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Introduction

Chapter 1

Introduction

Kinematic GPS has been the focus of research for many years,
[SUMMERFIELD, 1990], [WESTROP, 1990], [WALSH, 1994], [HANSEN,
1996]. All the research has focused on the development of OTF software and
algorithms to enable efficient kinematic carrier phase positioning to be achieved.
The more recent research has been focused upon the development of On The
Fly (OTF) algorithms, whereby carrier phase integer ambiguity resolution 1s
achieved whilst on the move. The applications to which OTF GPS can be used
on are numerous, especially when the OTF algorithms are used in a real time

system.

1.1 Satellite Navigation

Ever since the first sputnik satellite was placed into orbit, it was realised that
data transmitted suffered from the effect of Doppler shift. Scientists at the
Applied Physics Laboratory (APL) of Johns Hopkins University found that the
position of the satellite could be determined by measuring the Doppler shift at
ground points of known coordinates. The idea was developed by APL to form
the basis of the US Navy’s Navigation Satellite System (NNSS), commonly
known as the Transit Doppler System. This began operating 1n 1964, and was
used by Geodesists as well as navigators to enable precise positioning. The

main reason for the system’s development, however, was for Polaris submarines
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to be able to coordinate themselves anywhere in the world. The system,
however, was very tedious to use, as there were only a few satellites, and the

user had to wait for hours to be able to position.

The US Department of Defense (DoD) decided to develop a new system, which
would enable instantaneous positioning anywhere in the world, day or mght
during any weather. The use of microprocessors and accurate atomic clocks
meant that satellites could be developed which could transmit precise signals at
accurate times, the time taken by the signal to travel to the user, scaled by the
speed of light gives the range. Four ranges are required to correct for the
user’s three dimensional position, as well as the clock errors between the

accurate satellite clocks and the digital clocks within the receiver.

The system is the DoD’s NAVSTAR (NAVigation Satellite, Timing and
Ranging) GPS (Global Positioning System), which is detailed in Chapter 2 and
3. GPS is an all weather, 24 hour system, which allows positioning anywhere in
the world. Authorised users can position themselves to an accuracy of ~20 m,
whilst civilian users can position themselves to ~ 100 m. Research, however,
has seen the development of techniques which can increase the accuracies
obtained, from a few metres using DGPS, to millimetres by using carrier phase

techniques.

1.2 Real Time Kinematic GPS

An accuracy of 100 m is good enough for many navigation applications, but 1s
nowhere near accurate enough for surveying. Carrier phase techniques have
been developed which allow millimetre level precision, but require the GPS
receiver to remain stationary. OTF GPS allows the user to move whilst
positioning, and when the OTF system incorporates a telemetry link it is
possible to achieve real time millimetre level positioning. The applications for

such a real time positioning technique are numerous, ranging from precise
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navigation, real time setting out, construction plant control and the monitoring

of large structures.

1.3 Engineering Applications of Real Time OTF GPS

Real Time OTF kinematic GPS has the advantages over other GPS positioning

techniques that it can be used in a dynamic situation. Many engineering
applications, such as setting out, may take advantage of using this type of
kinematic GPS. In addition, the integration of such a positioning technique into
the hydraulics of a construction plant may allow automated plant control and
monitoring. Real time OTF GPS could also be used to momtor the movement
of structures, whether they are meant to move or not. Such structures could
include stock piles, large bridges and damns. Many other applications are
possible with the technology, the only limitation being able to see enough

satellites to allow positioning and being able to think of the applications.

1.4 Thesis Overview

The aim of this research is to investigate the engineering applications of real
time On-The-Fly (OTF) kinematic GPS, as well as the applications of OTF GPS
over long ranges and the detection of cycle slips within the OTF data. The
Concepts of GPS are outlined in Chapter 2, where the way in which GPS works
is described. Chapter 3 discusses the Measurements and Observables available
through using the GPS system, discussing their resolution, and the way in which
the GPS receiver accesses the signals, and how modern GPS recetvers can
overcome encryption placed upon the GPS signals by the US DoD. Chapter 4
discusses the Positioning Techniques used, with accuracies ranging from ~100m
to a few millimetres. Chapter 5 Discusses the concepts of OTF GPS, as well as
detailing the processing techniques which can improve the technique. Chapter 6
details the problem of cycle slips with using carrier phase data, especially with

kinematic data. Four techniques are discussed, which have been used by the
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author to develop a FORTRAN 77 program, which detects and corrects cycle
slips. Chapter 7 details trials and results carried out by the author using OTF
GPS over baselines in excess of 100 km, using software developed by Hansen
[1996]. Chapter 8 discusses real time OTF GPS and how the data may be
transmitted through a telemetry link, resulting in a real time system. The
precision of such a system as well as its advantages and disadvantages are
discussed. Chapters 9 and 10 discuss engineering applications of real time OTF
GPS. Chapter 9 details the use of real time OTF GPS to monitor and control
constructton plant. Tnals were carried out by the author whereby real time
OTF GPS was placed on a bulldozer, and the resulting positions analysed.
Chapter 10 details the use of real time OTF GPS as a tool to measure the
movement of large structures. Such structures include bridges which move due
to wind loading and traffic loading, as well as the monitoring of a bridge during

construction. Conclusions and recommendations are given within each

Chapter.
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Chapter 2

The Concepts of GPS

2.1 Introduction

Navstar GPS 1s an acronym for NAVigation Satellite Timing And Ranging
Global Positioning System, and is commonly abbreviated to GPS. The
positioning through GPS is a form of intersection, where the user measures the
distance to four satellites, which transmit their positions in orbit. The user then

solves for his position (X, Y, Z or ¢, A, h) and clock error (At).

Many publications are presently available which describe the 'concepts of GPS',

however, this chapter will only outline the general details of the system.

2.2 Motives Behind the GPS System

The Transit Doppler satellite navigation system was developed between 1958
and 1963 for the US Navy, and became generally available for non-military
users i 1967 [ASHKENAZI et al, 1977], but was only able of providing
accuracies in the order of 10's of metres after about one hour's observation
[WALSH, 1991]. This method was not accurate and quick enough for new

aircraft and missile positioning.
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In the early 1970's the Unites States of America Department of Defense (DoD)
decided to develop GPS, which would provide instantaneous three dimensional
(3-D) positioning to a few metres anywhere in the world. The predominant
reason for the system was a military one, but with the development of civilian
receivers and understanding, the civilian service is now as good as that available
by the forces, if not better. The positioning accuracies vary from millimetric
Fiducial GPS techniques to 100m stand alone C/A-code. These accuracies
depend upon the type of receiver, user dynamics, observables and processing

techniques used.

2.3 The System

GPS was declared at Initial Operational Capability (IOC) in December 1993
and at Full Operational Capability (FOC) in April 1995. It was designed as an
all weather, all terrain system. The number of users at any one time is infinite,
as long as they have a GPS receiver. The only limitation with the system is the
ability to see at least four satellites for 3-D positioning, five satellites for real
time On The Fly (OTF) positioning and three satellites for two dimensional (2-
D) positioning. The US DoD have placed two extra limitations upon the
system as used by non military personnel, these being Anti Spoofing (AS) and
Selective Availability (SA) §3.2.4. AS results in the encryption of one of the
two GPS codes, and SA results in false codes being transmitted. SA became
operational on the 15 March 1990, and AS in July 1992. Only Block 11
satellites are affected. Certain environments can produce problems and
limitations, such as the effect of multipath. This is discussed more fully in

chapter 6.

The system presently consists of 24 Block II satellites at a range of around
20,200 km above the earth, with approximately 11 hour 58 min orbits. Six
orbital planes exist, which lie at 55° inclination. Four satellites orbit in each of
the planes. Two positioning services exist, Precise positioning Service (PPS)
and Standard Positioning Service (SPS). The PPS was intended for military use

only, and the SPS for civilian.
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GPS i1s split into three segments, these being

e The Control Segment
e The Space Segment
¢ The User Segment

2.3.1 The Control Segment

The control segment carries out the tracking, data transmission and supervision

tasks necessary for the control of all the GPS satellites.

The control segment consists of five ground based monitoring stations, whose
coordinates are accurately known, equipped to monitor the satellites and update
the information transmitted by the satellites. These are located at Hawaii,
Colorado Springs, Ascension Island, Diego Garcia and Kwajalein, figure 2.1, all
of which lie close to the equator. Their configuration means that the satellites
can be monitored 90% of the time. This segment is a vital part of the system,
whereby each satellite is updated every hour. However, the satellite ephemeris
will degrade over time, and the ephemeris should be upgraded at least every
four hours [SHARDLOW, 1994]. Each tracking station possesses a dual
frequency GPS receiver connected to an external caesium beam oscillator. The
data from the tracking stations is transmitted to the master control station at the
Consolidated Space Operations Centre, Falcon Air Force Base, Colorado
Springs. Here, the satellite ephemerides and clock corrections can be predicted

and uploaded to the satellites.

2.3.1.1 Satellite Ephemerides

The satellite ephemerns is a list of Keplerian elements defining the mean orbit of
the satellites and correction terms for deviations from the orbits. As the
satellites orbit the Earth at approximately 20, 200 km, they experience very
hittle drag and the orbits are fairly consistent. The ephemeris may be obtained in

one of two ways.
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The broadcast ephemeris is transmitted as part of the Navigation message in the
GPS signal [ASHKENAZI and MOORE, 1986] and [VARNUM  and
CHAFFEE, 1982].

Essentially, the user receives a list of 16 Keplerian elements for the satellites.
From these, it 1s possible to determine the instantaneous orbital ellipse and the
position of the satellite on that ellipse, for all epochs of observations [MOORE,
1993], ISHARDLOW, 1994]. These elements are revised every hour, but are
valid without too much degradation for up to 4 hours. The updated information
1S uploaded to the satellites from one of the four ground antennas (GA) shown

in figure 2.1. Broadcast ephemerides have accuracies in the region of 10 to 20

metres.

Colorado {8 7

Kwajalein

Springs W%
(MCS, MS, il)s
. _1:}:;:-__;.;1. .

Hawan
(MS)

Island S
(MS, GA)

Figure 2.1

Location of the Control Segment's tracking Network.

More accurate ephemerides are generated after the event. These are termed
Precise Ephemerides, and have accuracies of approximately 20 cm. Such
ephemerides are obtained from organisations such as International GPS
Geodynamics Service (IGS), and are freely available over the internet. The
precise ephemerides are created from a world-wide network of permanently

tracking GPS receivers.
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2.3.2 The Space Segment

The space segment of the GPS system consists of the GPS satellite

constellation.

Initially, the constellation was to consist of 24 satellites plus 3 active spares.
However, due to budgetary limitations, the constellation consists of 24
satellites, orbiting the earth in such a way as to provide 24 hour coverage with

at least 4 satellites being visible anywhere in the world at any time.

The satellites are in near circular orbits at nominal altitudes of 20,200 km, with
a period of approximately 11 hours and 58 minutes. The satellites consist of 21
satellites with 3 spares orbiting at an inclination of 55°, with six orbital planes
containing four satellites each. The current status and launch dates are

tabulated in Appendix A.

GPS Initial Operational Capability (IOC) was declared on 8 December 1993, as
3 Block I and 21 Block II satellites were fully operational. The full operational
constellation of 24 Block II satellites was completed in March 1994 and Full
Operational Capability (FOC) was declared on 27 April 1995. Further details

about the signals themselves can be found in Chapter 3.

The first Block IIR, replenishment, satellite blew up on launch on the 17
January 1997 at Cape Canaveral. It is the second launch failure on the GPS

program’s history, the first occurred on 18 December 1981 [GPS WORLD,
1997].

2.3.3 The User Segment

Because GPS is a passive system, an unlimited number of users can access it at
any one time. The user must have a GPS receiver to access the data, which is
basically a radio receiver, with an in-built data processor to calculate the 3-
dimensional position. The characteristics of the receiver depend upon the

accuracies of the applications. The cost of a GPS receiver dramatically
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increases with accuracy. These range from a C/A-code receiver which is
accurate to ~100 m 2d RMS, to geodetic receivers which can access both the
carriers and pseudorange observables on L1 and L2. Numerous types of
receivers have been developed which can cater for the wide range of

requirements.

Further details about the techniques used within the receivers to access the

signals are found 1n §3.3.

Two levels of GPS services are available, namely the Standard Positioning

Service and the Precise Positioning Service.

2.3.3.1 The Standard Positioning Service

The Standard Positioning Service (SPS) is available to all users on a continuous
world wide basis with no direct charge. This service is provided through the
GPS L1 carner frequency, supplying the C/A-code and navigation message.
SPS provides horizontal positioning accuracies to within 100 m 2d RMS (95%
probability) and 300 m (99.9% probability). The degraded accuracies are
achieved by the US DoD placing encryption and errors onto the SPS, §3.2.1.

2.3.3.2 The Precise Positioning Service

Users authorised by the US DoD may access the Precise Positioning Service
(PPS), designed to provide instantaneous and accurate positioning, velocities
and timing service on both L1 and L2 carrier frequencies. It 1s denied to non
authorised users by the encryption of the P-code to the Y-code §3.2.1, and the

use of SA. PPS users can therefore access both the C/A-code and P-code.

10
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Chapter 3

GPS Measurements and Observables

3.1 Introduction

A signal transmitted at a frequency fg will be subjected to a phenomenon known

as Doppler Shift when received by a relatively moving recetver. This is simply
'the change in apparent time interval between two events which arise from the
motion of an observer together with the finite velocity of transmission of

information about the events' [GILL, 1965].

This happening can be witnessed in everyday life for example; a moving car
emits a sound at a constant frequency. Whilst the car moves towards an
observer, the frequency heard increases to it's maximum value, which is the

same as fg. As the car travels away from the observer, the frequency decreases

in value. The same effect is seen with emitted satellite signals, moving relative
to a ground receiver. The Doppler shift effect has been evident since 1676, well
before Doppler and Fizeau published their work. Here, Romer deduced the
velocity of light using the apparent variation of Jupiter's satellites [GILL, 1965].
The same effect was observed from the first satellite, Sputnik, to orbit the

Earth. Ever since, techniques and satellites have been developed to enable

positioning using Doppler shift.
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This technique has been used by the Transit Doppler system, and is now the
fundamentals behind the Carrier Phase GPS method.

The Transit Satellite system was developed between 1958 and 1963 for the US
Navy. A satellite Doppler receiver measures (integrated) Doppler counts, over
a fixed time interval, as the satellite passes over it. Range rate equations are

then derived from the Doppler measurements to lead to the receivers position.

The system consisted of six operational satellites, at a nominal altitude of

1,100km [ASHKENAZI, 1977].

GPS was designed as a passive system, capable of serving a large number of
users. This 1s achieved by taking range measurements through recording the
time taken for a signal to travel from a satellite to the GPS receiver. This time
will give a distance when multiplied by its velocity, the speed of light. There
are, however, errors due to atmospheric effects, satellite and receiver clock
errors, ephemeris errors and others such as multipath effects. The measured
distance 1s therefore called a pseudo range, as it is not the true range due to the

errors. The basic details of the GPS signal are outlined in the following chapter.

3.2 GPS Signal Structure

The signal was designed to reduce multipath and ionospheric noise and to
withstand hostile interference through jamming. This was partly achieved using
a spread spectrum technique, where the signal is spread over a much wider
signal band than the minimum bandwidth required to transmit the information.
The time and frequency generation on board the satellites is based on extremely
precise atomic standards carried by all the satellites. The Block II satellites
contain two rubidium and two caesium beam atomic clocks. All the GPS
satellite signals are derived from this on-board atomic standard, which has a
fundamental frequency of 10