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Summary

There is growing evidence that several glycolytic enzymes, so-called

housekeeping enzymes, including fructose bisphosphate aldolase (FBA) and

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), despite being devoid of

any apparent secretion signal, may be localised to the cell surface of several

bacterial and fungal species, where they exhibit diverse non-glycolytic biological

functions. However, the mechanism(s) of secretion of such signal-less proteins to

the cell surface or to external environment is not well understood. Whilst their

intracellular functions are well known, it is unclear whether they perform any

additional functions, unconnected to their central role in glycolysis, on the

bacterial surface. It is becoming apparent that such proteins may be immunogenic

and they may be capable of eliciting protective immunity in animal models. As

such, they represent potential vaccine candidates. In a search for novel surface-

exposed proteins as potential vaccine candidates against N. meningitidis

serogroup B, and in accordance with the fact that glycolytic enzymes are putative

virulence factors in some bacterial species, it is hypothesised that meningococcal

FBA and GAPDH-l, may be present on the cell surface and thus may contribute

to the pathogenesis of disease.

In N. meningitidis serogroup B, there is a single gene cbbA (NMB 1869) and two

genes gapA-l and gapA-2, predicted to encode fructose bisphosphate aldolase

and glyceradehyde 3-phosphate dehydrogenase (GAPDH) enzymes, respectively.

Sequence analysis shows that FBA and GAPDH-l are highly conserved at the

amino acid level. The amino acid sequences of FBA from N. meningitidis and

those from Xanthobacter flavus and Synechocystis sp. displayed high identities
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(67 and 65%, respectively), which suggests that the meningococcal FBA (like

those of X flavus and Synechocystis sp.) belongs to bacterial Class-II FBP

aldolases.

The cbbA and gapA-l genes were cloned and over-expressed in host E. coli. FBA

was purified under non-denaturing and denaturing conditions, whilst GAPDH-l

was purified under denaturing conditions. Recombinant native FBA was used in

a coupled enzymic assay confirming that it has fructose bisphosphate aldolase

activity. The purified FBA and GAPDH-l proteins were then used to raise

polyclonal monospecific rabbit antiserum (RaFBA and RaGAPDH-l) for

subsequent characterisation of enzymes with the aim to determine their sub-

cellular localization as well as potential roles in pathogenesis of meningococcal

disease. RaFBA and RaGAPDH-l reacted with ca. 38-kDa and 37-kDa proteins,

respectively, in immunoblot analysis against whole cell lysates from

meningococcal strain MCS8 but not the cbbA and gapA-l isogenic mutants,

respectively, confirming that cbbA and gapA-l are naturally-expressed proteins in

N. meningitidis. Furthermore, expression of cbbA was detected in 26/26 and

GAPDH-l in 17/17 diverse meningococcal strains.

Cell fractionation experiments showed that meningococcal FBA and GAPDH-l

are localized both to the cytoplasm and to the outer membrane. These results

were validated by flow cytometry. The data demonstrated that outer membrane-

localized FBA was surface-accessible to FBA-specific antibodies in encapsulated

N. meningitidis, whereas flow cytometry analysis confirmed that GAPDH-I

could be detected on the cell surface, but only in a siaD-deficient background,
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suggesting that GAPDH-I is inaccessible to antibody in encapsulated

meningococci. Mutational analysis and functional complementation was used to

identify additional functions of FBA and GAPDH-l. The cbbA and gapA-l

knock-out mutant strains were unaffected in their ability to grow in vitro, but

showed a significant reduction in adhesion to HBME and HEp-2 cells compared

to their isogenic parent and complemented derivatives. In a transgenic mouse

model, cbbA mutant strains were shown to be less able to establish bacteraemia

compared to their wild-type parent strains.

In summary, in this study, expression of FBA and GAPDH-l was shown to be

well conserved across diverse isolates of Neisseria species. This study also

demonstrates for the first time that meningococcal glycolytic enzymes, FBA and

GAPDH-l. are surface localised proteins and required for optimal adhesion of

meningococci to host cells. Taken together, these results suggest that FBA and

GAPDH-l may be involved in the pathogenesis of meningococcal disease.
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CHAPTER 1: General Introduction
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1.1 Introduction

1.2 Historicalbackground

Meningococcal disease (MCD), previously known as cerebrospinal fever, was

first described by Vieusseux in the area around Geneva, Switzerland, in the

spring of 1805. Just two years after this report, epidemics of what appeared to be

the same disease were reported in New England and among the Prussian army.

Following these outbreaks, the disease became widely recognised in Europe, in

parts of Asia and in America (DeVoe, 1982). However, it was not until 1887 that

an equally novel discovery was made by the Austrian pathologist Anton

Weichselbaum, who identified the etiological agent of meningococcal disease by

showing, for the first time, that there was a connection between Neisseria

meningitidis (then known as Diplococcus intracellularis meningitidis) and

'epidemic cerebrospinal meningitidis' (de Souza & Seguro, 2008).

1.3 Cultural and biochemicalcharacteristicsof N. meningltldis

N. meningitidis, (the meningococcus) is a Gram-negative, oxidase and catalase

positive, non-sporing, aflagellate, aerobic diplococcus of approximately 0.8 urn

in diameter. The bacterium may be encapsulated or unencapsulated, and is a

member of the bacterial family Neisseriaceae (Ala'Aldeen & Turner, 2006;

Stephens et al., 2007). This family includes the genera Neisseria, Moraxella,

Kingel/a, and acinetobacter. The genus Neisseria includes two human pathogens,

N. meningitidis and N. gonorrhoeae. N. meningitidis is relatively fastidious in

growth requirements and grows reasonably well on blood, chocolate, Modified

New York City medium, and on Muller-Hinton Agar. Optimum growth
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conditions can be achieved at 35-37°C at pH 7.0-7.4 in a humid environment

with 5-10% CO2 (Ala'Aldeen & Turner, 2006).

1.4 Epidemiology of meningococcal disease

In spite of considerable success in the development of drugs and effective

vaccines, the problem of disease due to N meningitidis is far from solved

(Peltola, 1983) and still remains a serious threat to global health (Fig 1.1)

occurring sporadically throughout the world (Milonovich, 2007). Strains of N

meningitidis have been classified into 13 serogroups on the basis of the

immunological specificity of capsular polysaccharides but invasive

meningococcal infection is limited to the serogroups A, B, C, W-135, Y and more

recently X (Stephens, 2007; Tzanakaki & Mastrantonio, 2007).
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Figure 1. 1 Worldwide distribution of major meningococcal serogroups and
outbreaks of serogroup B by serotype (shaded in purple). The meningitis belt
(dotted line) of Sub-Saharan Africa and other areas of substantial meningococcal
disease in Africa are shown (adapted from reference Stephens et al., 2007).
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The five common serogroups: A, B, C, Y and W-135 are responsible for more

than 90% of the total cases of invasive meningococcal disease in the human

population (Serruto et al., 2004). However, serogroups A, B, and C account for

most of the meningococcal disease throughout the world (Tzanakaki &

Mastrantonio, 2007).

The bacterium is not only a common commensal of the human upper respiratory

tract (nasopharynx) but also an important and devastating human pathogen that

remains a leading cause of bacterial meningitis and septicaemia (Schneider et al.,

2007; Tzanakaki & Mastrantonio, 2007), affecting all age groups but primarily

targeting children and young adults (Harrison, 2006; Soriano-Gabarro et al.,

2002). The only natural reservoir of N meningitidis is the human nasopharyngeal

mucosa. Depending on age, climate, country, socioeconomic status, and other

factors, it is carried by approximately 10% of adult population in the nasopharynx

(Schoen et al., 2007; van Deuren et al., 2000), where it usually resides as a

harmless commensal (Girard et al., 2006), without causing any detectable

symptoms (Caugant et al., 2007). However, in a small number of colonized

persons, the organism can traverse the mucosal tissues to gain access into

bloodstream to cause septicaemia/meningococcemia and/or subsequently

progresses to the cerebrospinal fluid (CSF) by mechanisms that are not clearly

understood, to cause meningitis (Nassif, 1999). The traversal of these barriers are

essential steps in the pathogenesis of meningococcal meningitis (Sokolova et al.,

2004). The invasive disease is very rare and only occurs when the following

conditions are fulfilled: (i) contact with a virulent strain, (ii) colonization by that

strain, (iii) penetration of the bacterium through the mucosa, and (iv) survival and

4



eventually outgrowth of the meningococcus in the bloodstream (van Deuren et

al., 2000). The septicaemia / meningococcemia and meningitis caused by the

meningococcus are collectively known as meningococcal disease.

Serogroup A meningococcus has remained a major cause of meningococcal

disease in the so called "African Meningitis Belt", which spans several sub-

saharan countries, and also in parts of Asia (Schoen et al., 2007; Stephens, 2007).

The African Meningitis Belt was first described by Lapyeysonnie in 1963, and

initially comprised Burkina Faso, Ghana, Togo, Benin, Niger, Nigeria, Chad,

Cameroon, Central African Republic, and the Sudan. Later it was extended to

include Ethiopia, Mali, Guinea, Senegal and Gambia, which is now known as

"The Expanded Meningitis Belt" (van Deuren et al., 2000). Outbreaks within the

African Meningitis Belt have been reported to prevail in the dry season and

gradually reduce in the rainy season (Stephens, 2007).

Serogroup B disease accounts for a substantial portion of cases in the United

States, with half of the invasive infections occurring in infants (Harrison, 2006),

and also remains the major cause of sporadic or endemic disease in many

industrialized countries, accounting for 30-70% of cases of disease (Schoen et al.,

2007). Prolonged outbreaks have been described in Europe, Cuba, Chile, and

recently in New Zealand, where it has caused significant morbidity and mortality

(Stephens, 2007).

Serogroup C strains cause small scale outbreaks worldwide. However, it has been

associated with an endemic pattern of disease since the 1990s, causing multiple
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outbreaks in schools and in the community in North America and Europe

(Harrison, 2006).

Serogroup Y cases have substantially increased in number in recent years,

accounting for 30% of the cases in United States (Schoen et al., 2007). This

serogroup has also classically been associated with cases of meningococcal

pneumonia (Harrison, 2006).

Another relatively uncommon meningococcal serogroup is W-135, which

currently accounts for fewer than five percent of all cases worldwide (Rosenstein

et al., 2001). The first international outbreak of serogroup W-135 meningococcal

disease was reported among pilgrims to the Hajj in Saudi Arabia during 2000-

2001, and in Burkina Paso in 2002 (Chiou et al., 2006; Taha et al., 2003).

Serogroup W-135 causes a relatively small number of cases in the United States

(Harrison, 2006), and is similarly uncommon in Europe.

6



1.5 Pathogenesisof meningococcaldisease

There are a multitude of molecular/cellular receptors and mediators that are

involved in the outcome of host-meningococcal interactions (Emonts et al., 2003;

van der Flier et al., 2003). These factors work in concert with various strongly

interacting pathways within the vascular tree and in the subarchnoid space (Van

Amersfoort et al., 2003). A key factor in meningococcal pathogenesis is the

ability of bacteria to attach to host cell receptors, which is a complex

phenomenon and involves different adhesive factors depending upon the

environment that meningococci encounter with the host cell (Serruto et al.,

2003). The primary attachment is mediated by Type IV pili that act as

'meningococcal sensory organ' establishing the primary cellular communication

between the organism and host target cells (Nassif, 2000).

1.5.1 Colonisation

N. meningitidis, an obligate human commensal, colonizes the nasopharynx (Fig.

1.2) and spreads from person to person by direct contact or via respiratory

droplets ( from a distance up to approximately 1 metre) from infected (with a

potentially pathogenic strain) but asymptomatic carriers to other healthy

individuals (Caugant et al., 2007). The human naso-oropharyngeal mucosa serves

as the reservoir for the spread of meningococci in the population. A number of

molecules are required by the bacteria to enable them to colonise and/or infect the

host, including adhesins, which are key factors that are required for initial

colonisation of human mucosal sites (Virji, 2009).
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Colonisation of the upper respiratory mucosal surfaces by N. meningitidis is the

first step in the establishment of a human carrier state and invasive

meningococcal disease (Stephens, 2009). Colonisation by the meningococcus

occurs both at the exterior surface of the mucosal cell and intra- or subepithially

(van Deuren et al., 2000). Colonization of the oropharynx by meningococci

produces an antibody response from the three major immunoglobulin classes

within a few weeks after acquisition of the bacterium and may act as an

immunizing event (Kremastinou et al., 1999). Most oropharyngeal carriers not

only develop homologous antibodies but also develop heterologous antibodies to

other meningococcal strains (Goldschneider et al., 1969). Damage to

nasopharyngeal ciliated epithelium may be an important first step in

meningococcal colonization of the human nasopharynx (Rayner et aI., 1995;

Stephens et al., 1986).

Active or passive tobacco smoke exposure independently increases the risk of

carriage and developing meningococcal disease (Fischer et al., 1997; Haneberg et

al., 1983; Stuart et al., 1989).

1.5.2 Adhesion

Adhesion to human mucosal surfaces is essential for meningococcal survival.

Stephens et al., developed a human nasopharyngeal organ culture model and

found that meningococci specifically bind non-ciliated columnar epithelial cells

and induce pseudopodia that ultimately result in internalization of meningococci

within these cells (Stephens et al., 1983).
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The identified meningococcal adhesins include Pili, PilC, PilQ, Opa, Opc, LOS,

Factor Hsbinding protein, PorA, HrpA, PorB and NadA and their proposed host

receptors include platelet activating factor, CD46, CEACAMl, vitronectin and

u-actinin integrins, complement receptor 3, laminin and the CD scavenger

receptor (reviewed in Stephens, 2009). Pili are major adhesins that contribute to

meningocoocal attachment to mucosal cells. Stephens and McGee found that

pilated meningococcal strains consistently attached to human nasopharyngeal

cells in greater numbers than meningococci without pili suggesting that pili are

important mediators of meningococcal attachment to host tissues. However, the

number and distribution of receptor sites for pili or pili-associated meningococcal

ligands differ among human cells and may determine sites of meningococcal

colonization (Stephens & McGee, 1981). Pili have been shown to bind to

receptors on nasopharyngeal cells, i.e. the membrane co-factor protein or CD46

(Kallstrom et al., 1997) and this binding induces signal transduction pathways in

host cells (Kallstrom et al., 1998)

After attachment, meningococci continue to proliferate on the surface of human

non-ciliated epithelial cells, resulting in the formation of small microcolonies at

the site of initial attachment. Intimate adherence of meningococci to the host

epithelial cells result in the formation of cortical plaques (Stephens, 2009) and

leads to the recruitment of factors ultimately responsible for the formation and

extension of epithelial cell pseudopodia that engulf the meningococcus (Doulet et

al., 2006). After initial binding, intimate association is mediated via class 5 outer

membrane proteins (OMPs) such as opacity proteins, Opa and Ope with
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CD661CEACAMs and integrins, respectively, on the surface of the epithelial

cells (Virji et al., 1996).
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Figure 1. 2 Stages in the pathogenesis of N meningitidis. N meningitidis may be
acquired through the inhalation of respiratory droplets. The organism establishes
intimate contact with non-ciliated mucosal epithelial cells of the upper respiratory
tract, where it may enter the cells briefly before migrating back to the apical
surfaces of the cells for transmission to a new host. Asymptomatic carriage is
common in healthy adults in which bacteria that enter the body by crossing the
epithelial barrier are eliminated. Besides transcytosis, N meningitidis can cross
the epithelium either directly following damage to the monolayer integrity or
through phagocytes in a 'Trojan horse' manner. In susceptible individuals, once
inside the blood, N meningitidis may survive, multiply rapidly and disseminate
throughout the body. Meningococcal passage across the brain vascular
endothelium (or the epithelium of the choroid plexus) may then occur, resulting
in infection of the meninges and the cerebrospinal fluid (adapted from reference
Virji, 2009).

1.5.3 Invasion

Meningococci traverse the mucosal epithelium via phagocytic vacuoles (Fig 1.2)

as a result of endocytosis (McGee et al., 1983; Nassif & So, 1995; Stephens et

al., 1983; Stephens & Farley, 1991). During invasion several bacterial factors

have been demonstrated to modulate the metabolism of the mucosal cells (Virji,

1996). Two virulence factors appear to be essential for meningeal invasion by N
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meningitidis: the capsular polysaccharide, and type IV pili (Nassif et al., 1994;

Virji et al., 1991). Type IV pili play a pivotal role in meningeal invasion, which

is associated with an increase in the expression of PilC (Hardy et al., 2000; Pron

et al., 1997). Capsulated piliated bacteria adhere to the apical surface of the cells

and only a small proportion of the bacteria are internalized. This adhesion is

associated with the formation of 'cortical plaques' beneath bacterial colonies on

the apical surface (Merz et al., 1999). The formation of the cortical

plaque-associated cell membrane protrusions results from the organization of

specific molecular complexes involving the molecular linkers ezrin and moesin

(known as ERM [ezrin-radixin-moesin] proteins), along with the clustering of

several membrane-integral proteins, including CD44, intracellular adhesion

molecule (ICAM)I, and cortical actin polymerization (Eugene et al., 2002;

Hoffmann et al., 2001; Lambotin et al.• 2005; Merz et al., 1999). Some

lipooligosaccharide (LOS) mutant meningococcal strains, show structurally

altered actin polymerization and are defective in the recruitment and

phosphorylation of cortactin, thus are poorly invasive (Hoffmann et al., 200 1)~

1.5.4 Survival of meningococcus in bloodstream

Meningococci can survive and proliferate in the bloodstream through the

expression of particular bacterial virulence factors or because of naivety or

specific immune system defects in the host (van Deuren et al., 2000). The steps

of meningococcal intracellular survival and transcytosis through the basolateral

tissues and dissemination into the bloodstream are less well studied. Following

the successful traversal of nasopharyngeal mucosa, N. meningitidis progresses to

sub-epithelial tissue and may gain access to the bloodstream. Once viable
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meningococci have reached the bloodstream, the bacterium, in order to protect

itself in such a hostile environment, requires the expression of the capsule which

is known to protect against complement-mediated bacteriolysis and phagocytosis

(Klein et al., 1996). In addition some class 1 OMPs hamper ingestion of

meningococcus by neutrophils via down-regulation of the Fey receptor and the

Cl and C3 receptor (Bjerknes et al., 1995). Meningococcal intracellular survival

is determined by factors including IgAl protease, which degrades lysosome-

associated membrane proteins (LAMPs), thus preventing phagosomal maturation,

and up-regulation of expression of capsule (Hopper et aI., 2000). Furthermore,

IgAl protease appears to break IgA1, releasing monomeric Faba fragments, that

can block the interaction of IgG and IgM (Mulks & Plaut, 1978).

Intracellular meningococci reside within a membranous vacuole and are capable

of translocating through the epithelial layers within 18-40 h (Stephens et al.,

1983; Stephens et al., 2007). Following internalization N. meningitidis are

capable of intracellular replication and this is due in part to the capacity of the

organism to acquire iron through specialized transport systems, such as the

hemoglobin-binding receptor (HmbR), transferring-binding protein (TbpAB) and

lactoferrin-binding protein (LbpAB) (Perkins-Balding et al., 2004).

1.5.5 Nasopharayngeal carriage and mucosal immunity

The meningococcus has its natural habitat in the mucus membranes of the

oropharynx of the human host. Those harbouring the organism are usually

asymptomatic and are commonly referred to as 'carriers'. The frequency of

carriage in the normal population ranges from 10-30% during non-epidemic
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periods but may approach 100% during epidemics (DeVoe, 1982). The duration

of meningococcal carriage can vary from days to months (Cartwright et al., 1987;

Stephens, 1999). The probability of meningococcal disease after the acquisition

of N meningitidis declines very sharply, such that invasive disease becomes

unlikely 10-14 days after acquisition (Stephens, 2009). Meningococcal carriage is

affected by age, intimate personal contacts, crowding (eg, bars, dormitories) and

smoking (Tzeng & Stephens, 2000; Yazdankhah & Caugant, 2004). Damage to

upper respiratory tract by co-infections (e,g. mycoplasma, influenza, and other

respiratory viral infections), smoking, very low humidity, drying of mucosal

surfaces, and trauma induced by dust, predisposes to carriage and meningococcal

disease (Artenstein et al., 1967; Greenwood et al., 1985; Moore et al., 1990;

Young et al., 1972).

The first and most important line of defense against infection with N

meningitidis is the integrity of the mucosal membrane. The increased incidences

at the end of the dry season in Africa have been attributed to the dryness of the

air, which probably influences the integrity of the mucosal membranes of

nasopharynx (Verheul et al., 1993). Asymptomatic carriage by N. lactamica, a

non-pathogenic species of Neisseria, occurs especially during early childhood

and is associated with a rise in antibody titers to pathogenic meningococci, and

these cross-reactive antibodies may be useful in the development of natural

immunity to N meningitidis (Gold et al., 1978; Goldschneider et al., 1969). Rates

of carriage of N lactamica increase from 3.8% in 3-month old infants to a peak

of 21.0% at 18 months and then decline to 1.8% by 14-17 years of age. However,
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in the same population, the prevalence of N. meningitidis average 0.71% during

the first four years oflife and increase to 5.4% in teenagers (Gold et al., 1978).

1.5.6 Host susceptibility

The presence of sufficient pre-existing immunity or ability to rapidly generate a

relevant immune response limits new acquisition to the mucosal surface, whereas

immunological naivety is permissive for invasion (Wall, 2001). The most well

known host factors that predispose invasive meningococcal disease include

deficiencies in the terminal complement pathway (C5-C9) and in properdin.

(Fijen et al., 1999; Sjoholm et al., 1982). Disappearance of maternally transferred

antibodies increases the risk of invasive meningococcal disease in infants and

young children (Stephens et al., 2007).

A number of additional host factors have been recognised to be associated with

increased risk of meningococcal disease. These include polymorphisms in genes

encoding for Fey-receptor II (CD32), Fey-receptor III (CDI6), mannose-binding

lectin, TLR4, and plasminogen activator inhibitor (PAl-I) (Emonts et al., 2003;

Faber et al., 2006; Fijen et al., 2000; Hibberd et al., 1999; Read et aI., 2001;

Smimova et al., 2003; Tully et al., 2006). Furthermore, viral (influenza) and

mycoplasma respiratory infections can predispose to meningocoocal disease,

perhaps by damaging mucosal surfaces, altering dynamics of adherence, and

spread and impairing mucosal immunity (Moore et al., 1990). Infectious agents

such as enteric bacteria may induce cross-reacting IgA antibodies, which

competitively inhibit the binding of bactericidal IgG and IgM antibodies to the

meningococcus (Wenzel et al., 1973).
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1.6 Clinical manifestations of invasive meningococcal disease

N. meningitidis causes a spectrum of disease ranging from benign self-limited

meningococcemia to fulminant septic shock, multiple organ failure, and death

(can happen within 6 h after the symptoms). Among the wide range of clinical

manifestations of meningococcal disease, the two most common are meningitis

and septicaemia (Kirsch et al., 1996), which may co-exist.

1.6.1 Meningococcal septicaemia

Meningococcal septicaemia is the most severe form of infection, characterized by

wide spread haematogenous dissemination, but is less common than meningitis.

Meningococcal septicaemia may be: transient, chronic and fulminant. The

clinical course of severe meningococcaemia is rapidly progressive, with the time

from onset of fever until death often as short as 12 h (Kirsch et al., 1996).

Transient meningococcaemia is characterized by fever and non-specific rash, and

is usually detected as an unexpected result from blood culture. Both fever and

rash can disappear within 2-5 days without treatment (Stephens et al., 2007).

Chronic meningococcaemia is rare infection that can lasts from weeks to months

without meningeal symptoms. The symptoms include intermittent fever,

arthralgia, signs of vasculitis, and a non-specific maculopapular rash. Symptoms

may disappear for days and then re-appear (Harwood et 01.,2005; Stephens et al.,

2007).
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Fulminant meningococcal septicaemia is characterised by a rapid proliferation of

meningococci in the circulation, resulting in very high concentrations of bacteria

(105-108 ml") and meningococcal endotoxin (101-103 EU ml") (Brandtzaeg et

al., 1989; Brandtzaeg et al., 200 I; Stephens et al., 2007).

Patients suffering from fulminant meningococcal septicaemia may present with

severe, persistent shock, lasting more than 24 h or until death, and no distinct

clinical signs of meningitis. Due to the presence of few meningococci in the

cerebrospinal fluid (CSF), pleocytosis is negligible (Brandtzaeg et al., 1989;

Brandtzaeg et al., 1992; Stephens et al., 2007). Other clinical presenting features

include impaired renal, adrenal, and pulmonary function and disseminated

intravascular coagulation with thrombotic lesions in the skin, limbs, kidneys,

adrenals, choroids plexus, and occasionally the lungs (Hazelzet et al., 1996;

Stephens et al., 2007). The septemic inflammatory response leads to progressive

circulatory collapse and severe coagulopathy. Patients may suffer from vascular

complications that can lead to loss of digits or limbs, and survivors can be

severely handicapped (Brandtzaeg et al., 1989; Hazelzet et al., 1996; Hazelzet et

al., 1998).

1.6.2 Meningococcal meningitis

Meningitis is the most common clinical presentation of invasive meningococcal

disease; more than 60% of patients in industrialized countries develop meningitis

without shock. In developing countries, the proportion of patients with meningitis

is much higher than that in developed countries (Stephens et al., 2007). In

meningococcal meningitis bacteria are localized primarily to the meningeal
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compartment, resulting in a clinical picture indistinguishable from other forms of

bacterial meningitis (Kirsch et al., 1996).

Patients with meningitis usually have a low concentration of meningococci «103

ml") and endotoxin «3 EU ml") in plasma but high concentrations in CSF

(Brandtzaeg et al., 1989; Brandtzaeg et al., 1992; Ovstebo et al., 2004), leading

to a compartmentalised inflammatory response in the subarchnoid space, with a

pronounced increase in the concentrations of tumor necrosis factor a (TNF-a),

interleukins (IL-I p, IL-6, IL-8, and IL-I0), different chemokines, and other

mediators (Stephens et al., 2007).

In adult patients with meningococcal meningitis the following symptoms and

signs predominate: headache, fever, vomiting, photophobia, neck stiffness,

positive Kernig's and Brudzinski's signs, and lethargy. In infants and younger

children, non-specific symptoms including poor feeding, irritability, a high

pitched cry and a bulging fontanelle are typical findings. Seizures may occur in

up to 20% of cases and meningitis is a cause of a first episode of status

epilepticus in 12% of cases (Nadel & Kroll, 2007).
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1.7 Diagnosis and chemotherapy of meningococcal disease

Clinical diagnosis of meningococcal disease largely relies on the recognition of

symptoms such as fever, rash and meningeal signs and altered mental status, and

is confirmed by pleocytosis, gram stain with and without culture of cerebrospinal

fluid, or blood or skin lesions (Stephens et al., 2007). In early stages of

meningococcal disease diagnosis is, however, extremely difficult especially when

there is no epidemic outbreak of the disease, and requires a high degree of

suspicion, as symptoms may be similar to other conditions (e.g. Influenza and

other viral infections), and specific signs may be absent. In a recent study on

clinical recognition of meningococcal disease in children and adolescents it was

shown that classical features developed later on in disease progression (median

time of onset 13-22 h after symptoms began), where as early less-specific

features of sepsis such as leg pain, cold hands and feet and abnormal skin colour

first developed after a median period of 8 h in the majority of children

(Thompson et al., 2006).

Cultures of blood, or CSF, (in the absence of contraindications for lumber

puncture), and skin lesion aspirates may confirm the diagnosis (Nadel & Kroll,

2007). Latex agglutination assays on blood, eSF, or urine have been used as

adjunctive diagnostic tests but have a poor sensitivity and specificity (Perkins et

al., 1995). Meningococcal peR is now widely used in developed countries for

diagnosis.

As soon as the disease is first suspected based on suggestive clinical features,

initial treatment with antimicrobials should not be delayed whilst waiting for the
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results of laboratory investigations. Penicillin resistance is rare amongst clinical

isolates of N. meningitidis in the UK. Benzylpenicillin or a third generation

cephalosporin such as ceftriaxone is usually used for specific treatment. The

recommended duration of antibiotic therapy for meningococcal disease is 7 days

for both meningococcal meningitis and septicaemia (Nadel & Kroll, 2007). Until

the diagnosis is established, the patients must be treated empirically with broad

spectrum bactericidal antibiotics (such as cefotaxime or ceftriaxone and

amoxicillin [for Listeria cover] depending on age) (Peltola et al., 1989).

1.8 Classificationof N. meningifidls

Several classification systems, to aid in epidemiological studies, have been

developed for N. meningitidis. The most clinically relevant and well established

is a serological typing method that divides strains immunologically into

serogroups, serotypes, and serosubtypes, based on antigenic differences in their

capsule, PorB protein, PorA protein, and LOS, respectively. For example, a

serogroup B serotype 4, serosubtype 15 and immunotype lOis written as

B:4:P1.IS:LIO (Ala'Aldeen & Turner, 2006).

Multi-locus enzyme electrophoresis (MLEE) uses the natural electrophoretic

mobility of various cytoplasmic enzymes whose molecular weights vary between

different strains of meningococci. Using MLEE it was possible to classify

meningococci with similar characteristics into clonal families, designated

electrophoretic type (ET) (Caugant et al., 1986a; Caugant et al., 1986b).
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A genotyping method based on sequence analysis called multi-locus sequence

typing (MLST) has also been developed for N. meningitidis (Maiden et al.,

1998). The method has been a valuable approach in revealing associations

between isolates, showing the existence of distinct clones over-represented in

certain communities (Chiou et al., 2006; Feavers et aI., 1999; Maiden et al.,

1998; Murphy et al., 2003; Nicolas et al., 2001).

MLST, an adaptation of multi-locus enzyme electrophoresis, is fully portable and

data stored in a single expanding central multi-locus sequence database can be

interrogated electronically via the internet providing a powerful resource for

global epidemiology (Maiden et al., 1998).

MLST is based on DNA sequence variation in specific regions of seven

housekeeping genes (abcZ, adk, aroE, fumC, gdh, pdhC, pgm) that range from

433 to 501 bp in length. For each gene fragment, different sequences are assigned

as distinct alleles, and each isolate is defined by the combination of alleles at each

of the seven housekeeping loci. This is known as the allelic profile or sequence

type (ST). The STs are assigned to lineages using the BURST software

(http://neisseria.mlst.net) (Baethgen et al., 2008).
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1.9 Virulence factors of N. meningitidis

The meningococcus can avoid the host defense mechanisms through the

expression of several surface components and secretion of various molecules as

well as shedding complex vesicle structures (blebs) that may modulate or deflect

the immune system (Wall, 2001). It can also undergo phase and antigenic

variation (Berrington et al., 2002; Jennings et al., 1999), and is able to use host

factors for its own protection and growth. Some of the bacterial factors that may

be employed by the meningococcus to evade immune killing and in establishment

of infection are discussed below.

1.9.1 Capsule

The polysaccharide capsule is a major virulence factor and plays a crucial role in

invasive meningococcal disease. The capsule confers resistance to a number of

arms of the immune system (Schneider et al., 2007). The capsule of the

pathogenic meningococcal serogroups differs in both chemical structure and

antigenenic properties (Morley & Pollard, 2001). Capsule is the basis for

immunological serogrouping and confers resistance to the meningococcus against

phagocytosis, complement-mediated lysis and offers protection to the cells

against environmental insults (McNeil et al., 1994; Morley & Pollard, 20ot;

Schoen et al.) Thirteen structurally distinct capsular serogroups have been

described and six (A, H, C, W-135, Y, and X) of which cause the invasive

meningococcal disease (Stephens et al., 2007). Of six invasive meningoccoal

serogroups, the capsule of four serpgroups (S, C, Y, and W-135) , except

serogroup A, is composed of sialic acid derivatives, which bestows the organism
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antiphagocytic properties enhancing its survival in the bloodstream or central

nervous system (Stephens, 2009).

1.9.2 Lipooligosaccbaride

Meningococcal lipopolysaccharide (LPS, endotoxin). also referred to as

lipooligosaccharide (LOS), is composed of an oligosaccharide (OS) portion with

a phosphorylated diheptose (Hep) core attached to the toxic lipid A moiety

embedded in the outer membrane (Griffiss et al., 1988; Stephens, 2009).

Meningococcal lipid A is responsible for much of the biological activity and

toxicity of meningococcal endotoxin. Neisserial lipopolysaccharide lacks

repeating O-antigens and is thus often referred to as LOS. The core

oligosaccharide of meningococcal LOS and the two short chains are attached to

the two inner core heptose residues. The oligosaccharide chains vary in

composition and are the basis for immuno-typing meningococcal strains (Tzeng

& Stephens, 2000). Meningococcal LOS is subject to phase variation of its

terminal structures allowing switching between immunotypes, which is proposed

to have functional significance in disease (Berrington et al., 2002).

1.9.3 Pili

Pili (bair-like projections; also known as fimbriae) (Fig 1.3) are thin filamentous

protein structures on the surface of N meningittdis and are composed of repeating

identical subunits (pilins) of approximately 17 to 21 kDa. The meningococcal pili

belong to the type IV family of pilins. Recent systematic genetic analysis has

identified 15 proteins that are involved in the biogenesis, assembly and

disassembly of pili (known as pi! proteins) (Virji, 2009). The meningococcal pili
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playa key role in mediating the interaction of the bacterial cell with host cellular

membranes leading to the bloodstream invasion from the nasopharynx, and the

traversal across the blood-brain barrier (BBB) (Nassif, 1999). In addition to

adhesion, pili are involved in several other functions. For example, they facilitate

uptake of foreign DNA from the extracellular milieu, thereby increasing the

transformation frequency of bacteria, and are also responsible for twitching

motility (Frye et al., 2006; Fussenegger et al., 1997). N meningitidis is

genetically capable of producing antigenically different pilins. There are two

types of pilin designated class I and class II, produced by a single meningococcal

cell (Nassif, 1999).

Figure 1. 3 Prominent outer membrane components of N meningitidis that
influence bacterial interaction with host cells, (a) Pili traverse the capsule and are
the most prominent adhesins of encapsulated N meningitidis. In addition, the
integral outer membrane (OM) adhesins, Opa and Ope, are also known to
mediate interactions with specific host-cell receptors. Lipopolysaccharide may
interfere with the adhesion functions of OM proteins, but can also contribute to
cellular interactions by interacting with various cellular receptors. (B) A cross-
section of a pilus fibre showing that variable domains (V) and glycans (0) as well
as other substitutions (not shown) are located externally, whereas the constant
domains are buried within the fibre, protected from the host environment
(adapted from reference Virji, 2009).
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1.9.4 Major outer membrane proteins

Meningococcal outer membrane proteins have been grouped into five major

classes based on their apparent molecular weights on sodium dodecyl sulphate

(SDS) polyacrylamide gels and peptide analysis (Tsai et al., 1981). All five

classes of OMPs have been studied as potential vaccine candidates in N.

meningitidis (Chiou et al., 2006).

All meningococci express either a class 2 or class 3 outer membrane protein

named PorB and most strains also express a class 1 outer membrane protein

named PorA (Hitchcock, 1989). A two-dimensional secondary structure

containing eight surface exposed loops (I-VIII) has been predicted for PorA and

most variability is thought to occur in variable regions 1 and 2 (VRI and VR2)

which correspond to loops I and IV, respectively (Feavers et al., 1992; Maiden et

al., 1991). In addition, a third variable region, designated VR3 has been reported

to be present on the top ofloop V (van der Ley et al., 1991), however, the genetic

variability of this region appears to be lower than that of VR 1 and VR2 (de

Filippis et al., 2007).

The outer membrane protein PorB of N. meningitidis is a pore-forming protein

which has various effects on eukaryotic cells. It has been shown to (1) up-

regulate the surface expression of the co-stimulatory molecule CD86 and of

MHC class II (which are TLRZIMyD88 dependent and related to the porin's

immune-potentiating ability), (2) be involved in prevention of apoptosis by

modulating the mitochondrial membrane potential, and (3) form pores in

eukaryotic cells (Massari et al., 2005).
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The classl PorA and Class 2/3 PorB proteins have been studied most because

they are also used in the meningococcal typing scheme for the serosubtype and

serotype, respectively. Both proteins contain variable and hyper variable regions

(Diggle & Clarke, 2006).

Reduction modifiable protein M was formally known as the class 4 outer

membrane protein of N. meningitidis. The protein shows 94.2% homology with

protein III of N. gonorrhoeae, with both proteins having two potential disulfide

loops. The protein also shares low-level homology with Escherichia coli OmpA

(Klugman et aI., 1989).

The N. meningitidis opa (opacity) proteins and Ope (opacity protein Sc), (Fig 3.1)

are highly immunogenic, trimeric or tetrameric basic outer membrane proteins

with a similar molecular mass of ca. 30 kDa, which migrate aberrantly slowly on

sodium dodeeyl sulphate polyacrylamide gel electrophoresis (SOS-PAGE) unless

they have been fully denatured by boiling (Achtman et al., 1988). Opa proteins

are distinguished from the Opc protein because they have very little sequence

similarity (Olyhoek et al., 1991) The opa and ope proteins play an important role

in adhesion and invasion of host epithelial, endothelial and phagocytic cells (de

Jonge et al., 2003; Nassif, 1999; Prince et al., 2001).

1.9.5 Non-capsular virulent factors ofN. meningitidis

1.9.5.1 Neisseria hia homologue A (NhhA)

NhhA is a well-conserved outer membrane, autotransporter protein, which was

identified as a homologue of the adhesin AIDA-I of E. coli in N. meningitidis.
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This gene was designated nhhA (Neisseria hia homologue) due to its close

homology to the Hia and Hsf adhesin of non-typeable H injluenzae (Peak et al.,

2000). Antibodies to NhhA can be detected from the sera of healthy carriers as

well as patients suggesting that NhhA is expressed during colonization of

humans.

1.9.5.2 Adhesion and penetration protein (App)

App stands for Adhesion and penetration protein (App). The gene was so named

because of its homology to Hap (Haemophilus adherence and penetration

protein). App is a highly conserved, surface-localised, immunogenic protein,

which belongs to the autotransporter family of proteins (Hadi et al., 2001). App

was identified by genome analysis and by screening of a N. meningitidis

expression library using polyclonal antisera raised against the OMPs from N.

meningitidis (Hadi et al., 2001). App appears to be expressed during invasive

disease, as sera from convalescent patients contain antibodies that recognize

recombinant App. App has also been demonstrated to function as adhesin in N.

meningitidis. It binds to epithelial cells, but not endothelial cells (Serruto et al.,

2003).

1.9.5.3 Autotransporled serine Protease A (AspA/Na/P)

AspA is a 112-kDa phase variable classical autotransporter protein containing a

subtilisin-type serine protease motif in the passenger domain. AspA was

bioinforrnatically identified from the genome of N. meningitidis serogroup A. It

shares significant homology with autotransported serine protease of Serratia

marcescens. Although the aspA gene is phase variable, its amino acid sequence
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appears to be well conserved in serogroup A, B, and C meningococci (Turner et

al.,2002).

As the signal peptide of AspA contains a lipoprotein motif, the protein was also

designated NalP (Neisserial autotransporter lipoprotein) (van Ulsen et al., 2003).

The protease activity is required for release of the passenger domain of AspA

from the cell surface. The autocatalytic release was abolished by substitution of

alanine for active-site serine (8426 in AspA from strain MCS8 was mutated to an

alanine residue) (Turner et al., 2002; van Ulsen et al., 2003). The presence of

anti-AspA antibodies in sera of convalescent patients suggest that AspA is

expressed during invasive disease.

1.9.5.4 Factor H binding Protein (jHbp)

The factor H-binding protein (fHbp), previously referred as genome-derived

neisserial antigen 1870 (GNA1870) (Masignani et al., 2003) or lipoprotein 2086

(Fletcher et al., 2004), was identified by recent genomic studies carried out to

search for promising vaccine candidates for serogroup B disease (Masignani et

al., 2003; Pizza et al., 2000). The fHbp gene encodes a 27-kDa surface

lipoprotein, which is present on the surface of all strains of N. meningitidis

(Beemink et al., 2007; Fletcher et al., 2004; Masignani et al., 2003). The protein

appears to elicit protective bactericidal antibodies that both activate classical

complement pathway bacteriolysis and inhibit binding of the complement down-

regulatory protein factor H (fH) to the bacterial surface (Welsch et al., 2008). The

fHbp is the sole receptor for fH on the meningococcus, and recruitment of fH

contributes to the ability of the meningococcus to avoid innate immune responses
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by inhibiting complement-mediated lysis in human plasma (Madico et al., 2006;

Schneider et al., 2006).

1.9.5.5 T-cell stimulating protein A (TspA)

TspA is an immunogenic, T-cell and B-cell-stimulating protein of N. meningitidis

(Robinson et al., 2005). TspA was identified by screening N. meningitidis using a

polyclonal antisera raised against fractionated proteins of N. meningitidis (Kizil

et al.. 1999). Homology searches revealed that TspA is a member of the FimV

family of proteins. TspA is a highly conserved antigen that is universally

expressed by meningococci and shown to mediate optimal adhesion of N.

meningitidis to cultured epithelial and endothelial cells (Oldfield et al., 2007).

1.9.5.6HrpA-HrpB system

A functional two-partner secretion system (TPS), haemagglutininihaemolysin-

related protein A (HrpA)-HrpB, composed of the secreted effector protein HrpA

and its cognate transporter HrpB, has recently been found in all N. meningitidis

strains and shown to contribute to adhesion of un-encapsulated bacteria to

epithelial cell lines. It also appears to be essential for intracellular survival of the

N. meningitidis (Schmitt et al., 2007; Tala et al., 2008).

1.9.5.7 Neisseria Adhesin A (NadA)

Neisserial adhesion A (NadA), a surface-exposed protein, was identified as a

homologue of UspA2 from Moraxella catarrhalis and of YadA from Yersinia

enterocolitica (van Ulsen et al., 2001; van Ulsen & Tommassen, 2006). NadA is

present in 50% of meningococcal isolates obtained from patients (and is more

28



commonly associated with three hypervirulent clusters ET-37, ET-S and cluster

A4) than with carriage isolates (16%). The nadA gene encodes a protein of ca.

360 amino-acid residues, which forms high molecular weight oligomers and

appears to mediate cellular adhesion (Capecchi et al., 2005). NadA has also been

shown to induce strong protective bactericidal antibodies suggesting that this

protein may represent a novel vaccine antigen for meningococcal disease caused

by three hypervirulent lineages (Comanducci et al., 2002).

1.9.5.8 Meningococcal Serine Protease A (MspAJ

MspA, also described as AusI, is a phase-variable serine protease, which was

identified by in silico genome analysis of N meningitidis serogroup B strain

MC58 (Turner et al., 2006).

1.9.5.9 Iron-acquiring proteins

Transferrin binding proteins (TbpA & B) and lactoferin binding proteins (LbpA

& LbpB) are outer membrane proteins that are expressed by meningococci in

iron-restricted environments during infection for iron acquisition. Antibodies to

Tbps can be detected in sera from carriers and in convalescent sera (Ala'Aldeen et

al., 1994; Gorringe et al., 1995) and these antibodies were shown to possess

opsonic activity (Lehmann et al., 1999), In laboratory animals, antibodies to Tbps

were shown to be bactericidal (Ala'Aldeen & Borriello, 1996; Danve et al., 1993)

and were able to block iron uptake by the organism (Pintor et al., 1996). The

vaccine potential of these proteins lies in their limited antigenic heterogeneity

(Ala'Aldeen, 1996; Rokbi et al., 1997). Preliminary data from adult studies

suggest that they are safe and immunogenic (Pollard & Frasch, 2001).
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Neisseria spp. may also express lactoferrin binding proteins: LbpA (Pettersson et

al., 1993; Pettersson et al., 1994) and LbpB (Pettersson et al., 1998). Lactoferrin,

a major human iron carrier protein, is present on mucosal surfaces and is

presumably an important source of iron for N. meningitidis during its colonisation

of the nasopharynx (Johnson et al., 1999). LbpA is highly conserved and

essential for iron uptake from lactoferrin (Biswas & Sparling, 1995; Bonnah &

Schryvers, 1998).

1.10 Blebing and autolysis

Meningococci are characterized by frequent vesiculation of the outer membrane

and/or shedding of endotoxin (McAllister & Stephens, 1993). The shedding of

endotoxin from N. meningitidis is a strain specific virulence factor and occurs by

a specific process called blebing. These blebs contain outer membrane protein

and LOS and the amount of blebing varies considerably between strains

(Andersen et al., 1981). Blebing appears to contribute to the rapid initiation of the

inflammatory cascades of sepsis. Blebing may also be related to the natural

autolysis of meningococci that occurs in stationary growth phase, resulting in

release of DNA and facilitating genetic transformation (Tzeng & Stephens,

2000).

1.11 Animal models for meningococcal infection

Animal models are often required to understand the mechanisms of pathogenesis,

and to develop novel therapies and prevention regimes. Thus, relevant models

are key factors for deciphering microbial virulence (Bakaletz, 2004). Several

animal models have been developed and used for studying the pathogenesis of
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meningococcal disease. These include monkeys, guinea pigs, chicken embryos,

adult and infant mice, and infant rats (Arko, 1989). Of these, the mouse and

infant rat systems appears to be the most suitable for laboratory experiments

(Nassif & So, 1995). None of the present models, however, completely satisfy all

the criteria required for an ideal animal model. Harter and Petersdorf (Harter &

Petersdorf, 1960) have described the criteria for an ideal animal model as

follows:

(i) The portal of entry and route of dissemination of the organism must be similar

to those in man, (ii) the bacterium must be pathogenic for man as well as

experimental animals, (iii) the course of the disease must be relatively predictable

and of sufficient duration to permit evaluation of therapy, (iv) the disease must be

reproducible within the limits of biological variation, (v) the lesions in the

experimental infection must be morphologically similar to those in man, and (vi)

the technique must be relatively simple. Unfortunately, it is unlikely that anyone

animal model can meet all of these requirements for studies on meningococcal

disease.

Recently, two transgenic mice models, one expressing human CD46 (Johansson

et al., 2003) and another expressing human transferrin (Zarantonelli et al., 2007),

have been developed. These are potentially useful tools for studying pathogenesis

and evaluating vaccine candidates. The transgenic mice expressing CD46 were

shown to be susceptible to meningococcal disease after intranasal, but not

intraperitoneal challenge, suggesting that human CD46 facilitates pilus-dependent

interactions at the epithelial mucosa (Johansson et al., 2003). Since iron is
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essential for meningococcal growth, the transgenic mouse model expressing

human transferrin may represent an important advance for in vivo studies of

meningococcal virulence and immunogenicity factors (Zarantonelli et al., 2007).

1.12 Meningococcal vaccines

Prevention of meningococcal disease can effectively be accomplished by

vaccination. The first major success towards vaccination against meningococcal

disease was achieved in the 1960s by Gotschlich and co-workers, who

successfully demonstrated the importance of anti-polysaccharide antibodies in the

human immune response against serogroup A and C disease (Morley & Pollard,

2001). Meningococcal serogroup A, C, W-135 and Y infections can be prevented

by vaccines based on the respective capsular polysaccharides.

1.12.1 Plain polysaccharide vaccines

Meningococcal purified polysaccharide vaccines have been used widely since the

development of a highly immunogenic vaccine for serogroups A and C in 1969

by Gotshlich et al., (Gotschlich et al., 1969a). The vaccines have been shown to

be safe and efficacious in preventing disease in US military recruits, and have

also been used in an attempt to minimize the serogroup A epidemics in Africa.

The efficacy has been estimated at 85 to 100 percent among older children and

adults (Artensteinetal., 1970; Peltolaetal., 1977; Wahdanetal., 1977}.

There are, however, some important limitations associated with meningococcal

polysaccharide vaccines: (1) the serogroup C polysaccharide is poorly

immunogenic in young children (King et al., 1996; Maslanka et al., 1998), with
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little or no efficacy among children younger than 24 months of age (Gold et al.,

1977; MacLennan et al., 1999), (2) they are unable to induce long-acting T

cell-dependent immunologic memory (Reingold et al., 1985) and, hence, offer

only a relatively short duration of protection, especially in young children, (3)

the repeated doses of polysaccharide vaccine may induce a degree of

hyporesponsiveness. However, the clinical relevance of this finding is unclear

(King et al., 1996; Maslanka et al., 1998), (4) some studies conducted among

military recruits suggested that the meningococcal polysaccharide vaccines may

decrease short-term acquisition of carriage (Gotschlich et al., 1969b), however,

these vaccines failed to produce long-term protection against carriage and, are

thus unable to induce herd immunity (Hassan-King et al., 1988; Moore et al.,

1988). In addition to bivalent polysaccharide vaccines, an outbreak in the

meningitis belt during 2003 with serogroup W-135 prompted the development of

a trivalent AlCfW-135 and tetravalent AlCfW-1351Y polysaccharide vaccines

(Girard et al., 2006).

1.12.2 Meningococcal conjugate vaccines

Efforts to overcome the poor immunogenicity of capsular polysaccharide

vaccines led to development of conjugate vaccines. The premise for the

development of new conjugated meningococcal vaccines was based on the

experience gained with Hib (H. influaenzae type b) conjugated vaccine, which

has succeeded in virtually eliminating Hib disease in young children in many

countries (Adams et al., 1993; Peltola et al., 1992). Conjugation of

polysaccharides to protein carriers appears to change the nature of the antibody

response from a T-cell-independent to a T-cell-dependent response. The
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conjugate vaccines are, therefore, typically T-cell dependant and confer major

immunologic improvements over plain polysaccharide vaccines (Lesinski &

Westerink, 200 1a; Lesinski & Westerink, 2001b). Meningococcal serogroup C

conjugate vaccines have been developed using a genetically detoxified diptheria

toxin (CMRI97) or tetanus toxoid as the protein-carrier (Anderson et al., 1994;

Safadi & Barros, 2006). In November 1999, the United Kingdom became the first

country to introduce a conjugate vaccine against serogroup C meningococcal

disease into the childhood immunization program (Miller et al., 2001). Later on,

in January 2005, a quadrivalent meningococcal conjugate vaccine (MCV4) was

developed and licensed (Harrison, 2006). Meningococcal conjugate vaccines

have been demonstrated to be safe, and shown to elicit an improved immune

response in infants (Anderson et al., 1994; Campagne et al., 2000; Fairley et al.,

1996; Lieberman et al., 1996; Richmond et al., 1999). They also possess prime

immunologic memory, and lead to a booster response to subsequent doses

(Borrow et al., 2000; Twumasi et al., 1995).

1.12.3 Meningococcal serogroup B vaccine

The capsular polysaccharide of meningococcal serogroup B differs from the

others because of its structural homology with human embryonal neural tissue

(Wyle et al., 1972). This mimicry rules out the use of polysaccharide-protein

conjugate vaccines as an effective strategy to combat serogroup B disease

because of the theoretical danger of induction of auto-antibodies that cross-react

with glycosylated host antigens (Jodar et al., 2002). Therefore, currently there is

no universal vaccine available against serogroup B disease. Instead vaccine

research has focused on protein-based vaccines composed of outer membrane
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vesicles (OMVs) purified from the bacterium. Due to the high sequence and

antigenic variability of the antigens present in the OMVs, these vaccines mostly

induce immunity against the highly variable PorA membrane protein, and

efficacy trials have shown serosubtype-specific protection (Serruto et al., 2003).

However, the OMV-based vaccine produced by the Finlay Institute in Cuba

(commercially marketed at VA-MENGOC-BC), which contains outer membrane

proteins and capsular polysaccharide of meningococcal serogroup C, is believed

to have contributed to the rapid decline of the epidemic in Cuba (Isabel et al.,

1999), and has also been shown to be efficacious in subjects of more than 4 years

of age in Brazil where heterologous strains were circulating (de Moraes et al.,

1992). In addition, a recently introduced bivalent meningococcal OMV vaccine

has offered a wide vaccine coverage particularly of the circulating strains in

Europe and is able to induce bactericidal antibodies not only against the vaccine-

homologouslPorA-related strains but also against heterologous strains (Boutriau

et al., 2007). Although currently available vaccines based on OMVs may induce

a functional immune response against serogroup B, none of these vaccines are

universally protective due to the great heterogeneity of the surface-exposed

regions of many of the outer membrane proteins. An alternative approach to

OMV vaccines has been to the use of 'reverse vaccinology' to identify conserved,

immunogenic OMPs, which can be developed as protein subunit vaccines

(Rappuoli, 2000; Serruto et al., 2004).

Two promising vaccines are currently being assessed in phase II and III clinical

trials. One of these vaccines (developed by Novartis) is a multi-component

vaccine, which includes a combination of five antigens and OMVs from the
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NZ98/254 strain of N. meningitidis serogroup B (Giuliani et al., 2006). The other

(produced by Wyeth) contains two variants of a single lipoprotein (rLP2086 also

known to as GNA1870/tHbp) (Richmond P, 2008). In addition, numerous other

outer membrane proteins such as OpcA, NspA, and iron regulated proteins (TbpA

and B, FbpA, FetA) are being evaluated and explored for use as potential

meningococcal vaccine candidates.

1.13 Genome sequence of meningococci

The meningococci genome consists of about 2.1-2.2 million bases encoding

approximately 2000 genes (Parkhill et al., 2000; Tettelin et al., 2000). The

genome sequences of N. meningitidis strain MeS8 (serogroup B) (Tettelin et al.,

2000), strain Z2491 (serogroup A) (Parkhill et al., 2000) and strain FAM18

(serogroup e) (Bentley et al., 2007) have been published. In addition, the

annotated genome sequence of obligate commensal species N. lactamica has also

been made publicly available. The three sequenced meningococcal genomes

differ from each other by approximately 9-10% and from the N. gonorrhoeae

genome by roughly the same amount (Stephens et al., 2007). The chromosome of

N. meningitidis strain MeS8 is almost 100 kb larger than the other two sequenced

strains mainly due to large duplication of about 30 kb comprising 36 coding

sequences (NMBl124-NMBI1S9 duplicated in NMB1162-NMB1197) and the

acquisition of two additional islands of horizontally transferred DNA (IHT-B

17.1 kb and IHT-e 32.6kb). Both of these islands are absent in the genomes of

strains Z2491 and FAM18 (Schoen et al., 2007).
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1.14 Protein secretion pathways in N. meningitidis

Protein secretion in bacteria plays an essential role in nutrient acquisition,

survival in and adaptation to different environments, inter- and intraspecies

communication, and virulence. For example, in N. meningitids, secreted proteins

are involved in adherence of the bacteria to host cells or required to suppress the

host's defense mechanisms (Dautin & Bernstein, 2007; van Ulsen & Tommassen,

2006). Gram-negative bacteria use several different pathways for secretion of the

exoproteins. These pathways are categorized as Type-I, II, III, IV, autotransporter

pathway and two-partner secretion (TSP) pathway (type-V) (Henderson et al.,

2004; van Ulsen & Tommassen, 2006). N. meningitidis uses three of the six

known protein secretion pathways: the autotransporter pathway (AT) and the two

partner secretion pathway (collectively known as Type V secretion pathway) and

the type one secretion pathway (van Ulsen & Tommassen, 2006). Like all

Gram-negative bacteria, meningococci are bounded by two hydrophobic barriers,

the inner membrane (1M) and the outer membrane (OM), which are separated by

the periplasmic space containing peptidoglycan (Morley & Pollard, 2001). Thus,

the pathways allowing the extracellular secretion of proteins from Gram-negative

bacteria must traverse three distinct compartments: the inner membrane, the

periplasm and the outer membrane, which separate the cytoplasm (the site of

synthesis) from the exterior of the cell (Lory, 1992). However, an increasing

number of cytoplasmic proteins (including some that are normally considered to

be house-keeping enzymes with a primary biological role in the cytoplasmic

compartment) have been reported to be secreted either to the cell surface or into

the extracellular environment independently of any recognized classical secretion

pathway.
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Figure 1. 4 Overview of secretion systems in Gram-negative bacteria. Protein
transport across the outer membrane of Gram-negative bacteria can be subdivided
into Sec-independent and Sec-dependent pathways. The three main terminal
branches allowing further transport of Sec-transported periplasmic intermediates
are: the chaperone/usher (CU) pathway for the synthesis of fimbrial adhesins, the
autotransporter pathway and the complex type II secretion system. No stable
periplasmic intermediates are found in type I, type III and type IV secretion
systems. Each of the three export mechanisms features a protein-conducting
channel able to span the two bacterial membranes and, in the case of type III and
type IV, one additional membrane of the host cell. Examples for pathogens
utilizing the various secretion systems are indicated at the bottom of the figure
(adapted from reference Gerlach & Hensel, 2007).

1.14.1 Type 1 secretion system

The type one secretion system (or ATP-binding cassette [ABC] transporters) is

hetrotrimeric complex composed of three proteins: an cytoplasmic

membrane-embedded ABC transporter, a pore- forming outer

membrane-embedded channel protein, and an adapter or membrane-fusion

protein (Gerlach & Hensel, 2007; van Ulsen & Tommassen, 2006). These

proteins are represented in E. coli HlyB, ToIC, and HlyD, respectively (Binet et

al., 1997). A well-known protein secreted via type 1 is the u-haemolysin (HlyA)
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of E. coli (Goebel & Hedgpeth, 1982). Secretion of HlyA, and similar effector

molecules occurs in a Sec-independent, continuous process across both the

cytoplasmic and outer membrane (Henderson et al., 2004). These proteins

completely bypass the periplasm and are directly secreted from the cytoplasm

(Binet et al., 1997). A wide range of substrates (proteinaceous and non-

proteinaceous) varying in size between 78 to 8682 residues are secreted in a

single step from the cytoplasm to the extracellular space, without a stable

periplasmic intermediate (Gerlach & Hensel, 2007; van Ulsen & Tommassen,

2006).

1.14.2 Autotransporter secretion system

The autotransporters, a family of secreted proteins from Gram-negative bacteria,

are synthesized as a single polypeptide containing all the information required for

their export and secretion (Henderson et al., 1998). The primary structure of these

proteins is basically modular and composed of three functional domains: the

amino-terminal leader sequence, the secreted mature protein (passenger domain)

and translocation unit that forms a ~-barrel pore to allow secretion of the

passenger protein (Desvaux et al., 2004). Autotransporter secretion was first

described for the 19A1 proteases of N. gonorrhoeae (Pohlner et al., 1987). The

signal sequence present at the end ofN-terminus directs the autotransporter to the

Sec machinery for the transport across the cytoplasmic membrane and its further

export into the periplasm (Brandon et al., 2003; Henderson et al., 1998). The

passenger domain of the autotransporters has been shown to confer various

phenotypes and the last domain is the translocation unit that facilitates

translocation of the passenger domain through the outer membrane (Henderson et
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al., 2004). The term 'autotransporter' was coined because of the apparent absence

of a dedicated secretion machine (van Ulsen & Tommassen, 2006). However,

recent work has shown accessory periplasmic proteins are important (Ruiz-Perez

et al., 2009).

1.14.3 Two-Partner secretion system

Two-partner secretion (TPS) systems export large 'exoproteins' rich in beta-

helical structure (TpsA family members) across the outer membranes of Gram-

negative bacteria using channel-forming ~-barrel proteins (TpsB family

members). Like autotransporter proteins, most of these proteins are associated

with virulence traits and their characterized diverse functions include

autoaggregation, biofilm formation, iron acquisition, adherence to host tissues,

cytolysis, immunomodulation, binding of heme and/or hemopexin, and contact-

dependent inhibition (Aoki et al., 2005; Henderson et al., 2004; Jacob-Dubuisson

et al., 2004). The first member of the TPS family to be characterized was the

ShlB (HlyB) protein of Serratia marcescens, which exports the ShlA hemolysin

from the periplasm of the Gram-negative bacterial envelope into the external

medium (Poole et al., 1988).

The hallmarks of TPS systems are the presence of (1) an N-proximal

250-residue-Iong 'TPS' domain where specific secretion signals in the substrate

protein are found and (2) a ~-barrel channel (TpsB) homologue (Clantin et al.,

2004; Jacob-Dubuisson et al., 2001). Usually, the genes encoding these two

proteins occur within an operon. The TPS domain is essential for secretion and

mediates interactions between the TpsA protein and its TpsB partner (Hodak et
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aI., 2006). The TpsA protein is exported across the cytoplasmic membrane by the

Sec machinery (Chevalier et al., 2004; Grass & St Geme, 2000). Its TPS domain

then interacts with the periplasmic domain of the TpsB partner, which triggers

channel opening and initiates the translocation of the TpsA protein, probably in

an extended conformation through the TpsB pore (Clantin et al., 2007; Guedin et

al., 2000; Meli et al., 2006).

In silico analyses have revealed that a large number of TspA proteins are encoded

in various bacterial genomes, ranging from those of plant pathogens such as

Xylella fastidiosa and Ralstonia solanacearum to those of human pathogens such

as N. meningitidis and Y. pestis (Jacob-Dubuisson et al., 2004; Locht et al., 2001)

Taken together, these findings demonstrate that TPS systems are present in nearly

all groups of Gram-negative bacteria (hence, they probably participate in

processes other than virulence) and that TpsB proteins belong to a large family of

outer membrane protein-translocating porin type proteins with members in the

animal, plant and fungal kingdoms, making this general secretion mechanism the

most widely distributed in nature (Yen et al., 2002).

1.15 Non·Classical secretion of proteins In bacteria

Most proteins destined to be released in the extracellular media contain an

N-terminal or C-terminal classical signal peptide, which mediates the export of

envelope-associated as well as some secreted, proteins, across the inner

membrane via the Sec-dependant pathway (van Ulsen & Tommassen, 2006).

However, almost two decades ago, a small number of eukaryotic proteins lacking

N-terminal signal peptide or other identifiable targeting peptides were shown to
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be secreted and thus localised extracellularly. This phenomenon, termed

leaderless secretion and later non-classical secretion was initially identified in

eukaryotes (Bendtsen & Wooldridge, 2009). For some years only eukaryotes

were known to secrete proteins via alternative or non-classical secretory routes.

Strikingly, a similar phenomenon was later observed in the bacterial kingdom. It

is apparent that non-classical secretion does not follow a simple route of secretion

but that proteins can be secreted via different rather undefined secretion systems

in prokaryotic as well as eukaryotic organisms (Bendtsen & Wooldridge, 2009).

The GInA glutamine synthetase of Mycobacterium tuberculosis was the first

published example of apparent bacterial non-classical protein secretion, whilst in

Mycobacterium smegmatis, GInA is localized solely to the cytoplasm of the

bacterium (Harth & Horwitz, 1997). The proteomic research on Bacillus subtilus

has revealed that twenty four proteins with highly divergent functions are

secreted to the extracellular environment without having classical Sec-signal

peptides (Bendtsen & Wooldridge, 2009). Furthermore, an alternative secretion

system has also been identified in Listeria monocytogenes (Lenz et al., 2003).

Recently, proteins lacking known secretion signals have also been shown to be

secreted by yeast cells via alternative/non-conventional secretion mechanisms

(Nombela et al., 2006).

A growing number of diverse proteins have been identified which are

multifunctional. Such proteins have been named 'moon-lighting proteins'.

(Jeffery, 1999; Jeffery, 2003; Jeffery, 2009). Moonlighting proteins are a diverse

set of proteins that include glycolytic enzymes, chaperones, transcription factors,
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and proteins with many other types of functions (Nombela et al., 2006). An

interesting example is phosphoglucose isomerise (PGI), a cytosolic glycolytic

enzyme that catalyses the second step of glycolysis. A secreted form of this

protein has been shown to act as cytokine in eukaryotes (Amraei & Nabi, 2002).

Thus, some of the proteins found to be secreted via non-classical system may

play a different role in the unexpected location than that of their role in the

cytoplasm (Schaumburg et al., 2004).

A less well-defined method of protein secretion may be mediated by OMVs

released from the outer cellular membrane of Gram-negative bacteria. This

phenomenon, also called membrane blebbing ( or vesicle-mediated secretion) has

now been found in a range of Gram-negative bacteria (Kuehn & Kesty, 2005).

The OMVs from pathogenic bacteria appears to contain adhesins, toxins, and

immunomodulatory compounds, and they have been shown to directly mediate

bacterial binding and invasion, cause cytotoxicity, and modulate the host immune

response (Bendtsen & Wooldridge, 2009; Kuehn & Kesty, 2005). Two of the

well characterised examples of vesicle-mediated secretion include ClyA of E. coli

(Wai et al., 2003) and VacA of Helicobacter pylori (Keenan et al., 2000).

Furthermore, Actinobacillus actimycocetemcomitans has also been shown to

secrete leukotoxin, a membranolytic cytotoxin, via membrane blebs and these

toxins are likely to be incorporated into host cell membranes (Demuth et al.,

2003; Kato et al., 2002).
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1.16 Multi-faceted (moon-lighting) roles of glycolytic enzymes

Several studies have provided intriguing evidence of the unexpected nature and

location of glycolytic enzymes on the surface of numerous microbial pathogens

(Bergmann et al., 2004; Ling et al., 2004; Lottenberg et al., 1992; Pancholi &

Fischetti, 1992; Pancholi & Fischetti, 1998; Pancholi V, 2003). However, little is

known about the molecular mechanisms of the multi-faceted roles of glycolytic

enzymes, specifically regarding the relationship between their glycolytic and

non-glycolytic functions (Kim & Dang, 2005). Glycolytic enzymes, such as

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase and fructose

bisphosphate aldolase (FBA) have been reported as potential virulence factors in

a variety of organisms (Pancholi & Chhatwal, 2003). Although long recognized

for their cytosolic role in glycolysis and gluconeogenesis, dual (or 'moon-

lighting') functions have been increasingly recognized. In particular, glycolytic

enzymes have been found on the bacterial cell surface (despite lacking

identifiable secretion signals) where they interact directly with host soluble

proteins and surface ligands. However, the mechanisms by which these cytosolic

enzymes are translocated and retained on the cell surface of pathogens are not yet

understood.

1.16.1 The glycolytic pathway is non-functional in N. meningitidis

Glycolysis is the main pathway for carbohydrate degradation (glucose) in nearly

all organisms. The end product of glycolysis is pyruvate. The conversion of

glucose into pyruvate requires a cascade of nine enzymatic reactions and most of

these reactions are reversible during the gluconeogenic cycle (Fourrat et al.,

2007). Glycolysis can be generally separated into two phases, the priming phase
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and the energy-yielding phase. The priming phase uses two moles of ATP to

convert glucose to fructose- 1, 6-bisphosphate. In the second phase, fructose-l,6-

bisphosphate is further converted stepwise into pyruvate with the production of

four moles of ATP and two moles ofNADH (Fig 1.6) (Kim & Dang, 2005).

Genome-based studies on meningococcal strain MC58 revealed that glycolysis

(also known as the Embden Meyerhof Parnas [EMP] pathway) is not involved in

pyruvate synthesis in N meningitidis. This is because of the absence of one

essential enzyme in the pathway: phosphofructokinase (EC 2.7.1.11) (Fig 1.5).

The generation of pyruvate from glucose has, instead, been shown to occur

through the Entner Douderoff (EO) and the Pentose Phosphate (PP) pathways

(Fig 1.5), confirming that EMP (glycolysis) is non-functional in N meningitidis

(Baart et al., 2007).

HD6PG
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Figure 1. 5 Central metabolism of N meningitidis. The dashed arrow indicates
phosphofructokinase (PFK), which is not present in N meningitidis. The red box
area indicates the site of enzymes (FBA and GAPDH-l) under study. (adapted
from reference Baart et al., 2007).
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1.16.2 Fructose 1, 6-bisphosphate aldolase (FDA)

Fructose 1, 6-bisphosphate aldolase (E.CA.1.2.l3) is the best studied glycolytic

enzyme in the aldolases family. FBA catalyses the reversible cleavage of fructose

1,6 bisphosphate into two triose sugars: dihydroxyacetone phosphate

(glycerine-P) and glyceraldehyde 3-phosphate (Fig 1.6) (Ramsaywak et al., 2004;

Wehmeier, 2001; Zgiby et al., 2000). Aldolases can be broadly divided into two

groups with different catalytic mechanisms, designated Class-I and Class-II

(Arakaki et al., 2004; Thomson et al., 1998). The Class-I enzymes utilize an

active site lysine to stabilize a reaction intermediate via schiff-base formation,

and are usually found in higher eukaryotic organisms. The Class-II enzymes,

however, have an absolute requirement for a divalent ion, usually zinc (Zgiby et

al., 2000) and are usually found in prokaryotic organisms and lower eukaryotes

such as fungi and some green algae grown under heterotrophic conditions (Plater

et al., 1999; Ramsaywak et al., 2004; Sauve & Sygusch, 2001). Most organisms

contain only one class of FBA, although a few possess enzymes of both classes.

E. coli (Thomson et al., 1998)., Streptococcus pneumoniae (Isabel et al., 1999)

Corynebacterium synechocystis sp. PCC 6803 (Nakahara et al., 2003) and some

others are reported to express both types of enzymes. Among the Class- I

enzymes found in mammals, there are three tissue-specific isozymes of aldolase

that have similar molecular masses and catalytic mechanisms: aldolase A

(expressed primarily in muscles and red blood cells), aldolase B (expressed

primarily in liver, kidney and small intestine) and aldolase C (expressed mainly

in brain, smooth muscle, and neuronal tissues (Arakaki et al., 2004).
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The class-Il family has been sub-divided, in this case into two groups depending

on their sequences; they are known as Type A and Type B (Nakahara et al., 2003;

Sauve & Sygusch, 2001). Since the Class-II aldolases are not found in animals, it

has been suggested that they could provide a possible therapeutic and vaccine

targets (Blom et al., 1996; Ramsaywak et al., 2004).

In addition to its metabolic function, studies have demonstrated that FBA is

present on the surface of several microbial pathogens and may facilitate their

adhesion to host tissues by interacting directly with host surface ligands. For

example, in S. pneumoniae, surface-associated FBA was shown to bind to a large

7-transpass transmembrane receptor belonging to the cadherin superfamily (Blau

et al., 2007) and also shown to be immunogenic in humans and capable of

inducing a protective immune response against S. pneumoniae in mice (Ling et

al., 2004). In addition, FBA was found to be a surface-localized immunogenic

protein in S. suis (Zongfu et al., 2008) and a possible role for FBA in immunity to

a nematode parasite Onchocerca volvulus has also been reported (McCarthy et

al.,2002).
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Figure 1.6 Schematic diagram shwoing glycolytic pathway in a eukaryotic cell.
Glycolysis is an ancient metabolic pathway in which one mole of glucose is
catabolised to two moles of each pyruvate, NADH and ATP. Under aerobic
conditions, pyruvate is further oxidized by mitochondrial enzymes to carbon
dioxide and water. (Abbreviations: ENOl, enolase1; FBA, Fructose bisphosphate
aldolase, GAPDH-1, glyceraldehyde-3-phosphate dehydrogenase; GPI, glucose-
6-phosphate isomerase; HK, hexokinase; LDH, lactate dehydrogenase; PFK,
phosphofructokinase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate
mutase; PK, pyruvate kinase; TPI, triose phosphate isomerase) (adapted from
reference Kim & Dang, 2005) .
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1.16.3 Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme

which catalyzes the conversion of glyceraldehyde 3-phosphate to 1, 3-

diphosphoglycerate. The most common form is the NAD+-dependent enzyme

(Ee 1.2.1.12) found in all organisms studied so far and which is usually located

in the cytoplasm (Kim & Dang, 2005). In addition to its well-established

metabolic function, recent studies have demonstrated unexpected, non-glycolytic

functions of GAPDH in physiological and pathological processes (Kim & Dang,

2005; Sirover, 1999).

The localisation of GAPDH on the surface of a pathogen was first described in

the Gram-positive pathogen, S. pyogenes (Lottenberg et al., 1992; Pancholi V,

2003). In this organism, surface-exposed GAPDH binds several mammalian

proteins including the uPARlCD87 membrane protein on pharyngeal cells (Jin et

al., 2005; Lottenberg et al., 1992; Pancholi & Fischetti, 1992; Winram &

Lottenberg, 1996), regulates intracellular host cell signaling events (Pancholi &

Fischetti, 1997) and contributes to host immune evasion (Terao et al., 2006).

GAPDH was subsequently identified on the surface of other Gram-positive

bacteria including staphylococci (Modun & Williams, 1999; Modun et al., 2000),

S. agalactiae (Seifert et al., 2003) and Listeria monocytogenes (Schaumburg et

al., 2004). In addition, surface localization of GAPDH has been reported in

enterohemorrhagic (EHEC) and enteropathogenic (EPEe) Escherichia coli; the

protein of these pathogens has been observed to bind to human plasminogen and

fibrinogen, suggesting a role in pathogenesis (Egea et al., 2007). Similar to the

surface 10calized-GAPDHs from other species, the EHEe and EPEe GAPDH
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proteins possess NAD-ribosylating activity (Aguilera et al., 2009). In

Mycoplasma genitalium, surface-associated GAPDH is important for adhesion to

human mucin (Alvarez et al., 2003), and in Lactobacillus plantarum, a normal

inhabitant of the human gastrointestinal tract, GAPDH was shown to be involved

in adherence to gastric mucin and Caco-2 cells (Kinoshita et al., 2008; Ramiah et

al., 2008). Interestingly, the major fimbriae of Porphyromonas gingivalis bind to

GAPDH on the surface of several oral streptococci, and this interaction is

important for colonization of the oral cavity (Nagata et al., 2009). Fungi also

express GAPDH on their cell surface, for example, the GAPDH of Candida

albicans was shown to be associated with the cell wall and involved in mediating

adhesion to fibronectin, laminin and plasminogen (Gil-Navarro et al., 1997;

Gozalbo et al., 1998; Jonathan et al., 2003). GAPDH has also been found on the

surface ofthe single-celled protozoan, Trichomonas vaginalis, and shown to bind

extracellular matrix components, including fibronectin (Lama et al., 2009). Thus,

GAPDH is a multi-functional protein displayed on the surface of several fungi

and Gram-positive pathogens, which contributes to their adhesion to host cells

and may act as virulence factor (Egea et al., 2007).

1.17 Aims of the Project

The aim of this study was to investigate the molecular, immunological, and

functional attributes of two of the glycolytic pathway enzymes, namely FBA and

GAPDH of N. meningitidis.
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CHAPTER 2: Cloning and expression of cbbA and gapA-1
and purification of their products
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2.1 Introduction

Glycolytic enzymes, which along with other enzymes involved in central

metabolism, are sometimes called 'housekeeping enzymes' are classical

cytoplasmic proteins that are found in all cell types. These enzymes are known to

be constitutively expressed and localised mainly to the cytoplasm of the cell.

There is growing evidence that several so-called housekeeping enzymes,

including fructose bisphosphate aldolase (FBA) and glyceraldehydes-3-phosphate

dehydrogenase (GAPDH), are often localised to the surface of bacterial

pathogens. Whilst their intracellular functions are well known, it is unclear

whether they perform any additional functions on the bacterial surface.

Fructose 1, 6-bisphosphate aldolase catalyses the reversible cleavage of fructose

1,6-bisphosphate into two triose sugars: dihydroxyacetone phosphate (glycerine-

P) and glyceraldehyde 3-phosphate in the glycolysis cycle (Ramsaywak et al.,

2004; Wehmeier, 2001; Zgiby et al., 2000). Besides performing a key role in

glycolytic cycle, aldolases have also been shown to be localised to the surface of

numerous bacterial and fungal pathogens. In S. pneumoniae surface-localized

FBA was shown to bind the host cell ligand Flamingo cadherin (Blau et al.,

2007), and was also found to be a surface-localized immunogenic protein in S.

suis (Zongfu et al., 2008).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a cytoplasmic

glycolytic enzyme that converts glyceraldehyde 3-phosphate to 1, 3-

bisphosphoglycerate coupled with the reduction of NAD+ to NADH. Recent

studies have demonstrated unexpected, non-glycolytic, functions of GAPDH in
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physiological and pathological processes (Kim & Dang, 2005). Several reports

have shown that in some Gram-positive bacteria and fungi extracellular GAPDH

interacts with various host components, including plasminogen, the cytoskeletal

proteins actin and myosin, and extracellular matrix proteins including fibronectin

(Gozalbo et al., 1998; Pancholi & Fischetti, 1992; Schaumburg et al., 2004;

Seifert et al., 2003; Winram & Lottenberg, 1996). The GAPDH of Mycoplasma

bovis has been shown to induce an immune response in infected cattle (Perez-

Casal & Prysliak, 2007). Moreover, other cytosolic proteins: Enolase, DnaK, and

peroxiredoxin, of N. meningitidis serogroup B, have recently been reported

localised to the outer membrane, where they can act as plasminogen receptors

(Knaust et al., 2007). Thus, FBA and GAPDH-l may be multifunctional proteins

with a role in central metabolism and an additional role unconnected to their

primary role which is associated with an alternative sub-cellular localisation.

Such proteins have been described as 'moonlighting proteins' (Jeffery, 1999;

Jeffery, 2003; Jeffery, 2009).

The aims of this chapter were to clone and over-express cbbA and gapA-I, to

affinity purify full length recombinant FBA and GAPDH-l, and to raise

polyclonal antisera against the purified proteins to facilitate subsequent

characterisation studies.

53



2. 2 Materialsand Methods

2.2.1 Bacterial strains, growth conditions, and media

E. coli strains and plasmids used in this chapter are described in Table 2.2. E.

coli strains were routinely grown at 37°C in Lysogeny Broth (LB) (Bertani,

2004) or on LB agar. Where appropriate, antibiotics were used at the following

concentrations: ampicillin (lOO ug ml'), kanamycin (30 ug mrl). Where

appropriate, blue/white selection of transformants in cloning experiments was

achieved using IPTG (Roche) and X-gal at 0.5 mM and 80 J.1gml", respectively:

All liquid cultures were aerated by agitation at 200 revolutions per minute (rpm)

in a shaking incubator.

2.2.2 Extraction of chromosomal DNA

Chromosomal DNA was prepared by using a DNeasy Blood & Tissue kit

(Qiagen) using the protocol for bacterial cells recommended by the manufacturer.

Briefly, overnight culture of N. meningitidis grown on chocolate agar plates was

scraped off the plate with a sterile loop and re-suspended in 180 J.11of ATL buffer

(provided in kit) and 20 J.11of Proteinase K to disrupt the cells. The sample was

then heated at 56°C until the complete lysis of cells was achieved. The lysate was

applied to DNeasy spin column. The bound DNA was washed twice using the

buffers provided in the kit. The bound DNA was eluted in 200 J.11of elution

buffer.

2.2.3 Extraction of plasmid DNA

E. coli JMI09, harboring the desired plasmid, were streaked out from -80

glycerol stock on to LB agar plates containing appropriate antibiotic and
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incubated overnight at 37°C . The following day, a single colony was used to

inoculate a 10 ml of LB broth supplemented with 100 ug ml" ampicillin. The

broth culture was incubated at 37°C overnight with shaking at 200 rpm. Small-

scale purification of high copy number plasmids was achieved using 5 ml

overnight cultures using a QIAprep spin kit (Qiagen) according to the

manufacturer's instructions. In case of low copy number plasmids or large-scale

(70-100 ug) plasmid purification, GeneElute the Midi Prep kit (Sigma) was used

according to manufacturer's recommendation.

2.2.4 Quantification of DNA and protein

The concentration of purified PCR products, plasmid, genomic DNA and purified

proteins was quantified using a NanoDrop (ND-IOOO) spectrophotometer

(Agilent Technologies).

2.2.5 Polymerase chain reaction (peR)

All peR reactions were performed in a 25 III final volume using sterile 0.2 ml

thin-walled peR tubes and cycled using a elOOO model Thermal Cycler

(BID-RAD). A master mix containing all of the peR components except

template DNA was prepared in a pre-chilled, sterile micro centrifuge tube and

thoroughly mixed by vortex. Following a brief centrifugation, a 24 J.LIaliquot of

master mix was dispensed into chilled peR tubes and 1 III appropriate template

DNA. The solution was mixed by gently stirring with a pipette tip and kept on ice

prior to placement in the thermal cycler. Unless otherwise stated, all PCR

mixtures contained: 100 ng of chromosomal DNA or l-lO ng of Plasmid DNA;

each of the respective primers to a final concentration of 200 nM; 2.5 J.LIlOx
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Expand buffer (Roche); dNTPs (Roche or Promega) to a final concentration of

200 IlM, Expand Hi Fidelity DNA polymerase 0.2 III (3.5 U Ilrl) (Roche) and the

reaction mixture was made up to a final volume of 25 III with dH20. The peR

conditions were: initial template denaturation step of 3 min at 95°C, followed by

30 cycles of incubation, annealing at 48°C for 1 min, primer extension at 68°C

for 3.5 min, and 94°C for 45s, with final incubation at 48°e for I min and 68°C

for 10 min.

2.2.6 Agarose gel electrophoresis

An agarose gel (0.8-1%) was prepared according to the standard protocol. DNA

ladders 2-Log (New England BioLabs) and 0.5 kb (Fermentas) were run

alongside the samples to enable analysis of DNA fragment size in the samples.

Gels were viewed using an Uvitec gel documentation system.

2.2.7 Purification of peR and Gel-extracted DNAproducts

DNA fragments generated by PCR or restriction endonuclease digestion were

purified using a QIAquick® peR purification kit (Qiagen) according to

manufacturer's recommendations. For gel extraction of DNA fragments

amplified by peR or generated by restriction digestion, samples were separated

by agarose gel electrophoresis and the band of interest was excised with Gene

catcher Tips (Web Scientific) and purified using a Gel extraction Kit (Qiagen)

according to manufacturer's instructions.
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2.2.8 Cloning of cbbA in N-terminal Histidine-tag vector

A 1,06S-bp DNA fragment corresponding to the cbbA coding sequences was

amplified by peR using genomic DNA of N. meningitidis strain MeS8 and the

primer pair FBA_El and FBA_E2 incorporating BamH 1 and KpnI sites,

respectively (Table 2.1). The peR reaction was performed as described in

Section 2.5. The DNA fragment was purified and ligated to the pEXPNT-TOPO

expression vector (Invitrogen) according to the manufacturer's instructions.

Screening for a successful clone was performed by colony peR amplification of

the desired DNA fragment, restriction digestion with BamHI and KpnI and

subsequent DNA sequencing. A construct in which cbbA was correctly oriented

for translation was chosen and used to transform E. coli BL21 (DE3) pLysS

according to the manufacturer's instructions. The pEXPINT-TOPO-based

constructs drive expression of the recombinant protein with N-terminal 6-

histidine tag under the control of phage T7 promoter.

2.2.9 Cloning of cbbA in C-terminal Histidine-tag vector

A DNA fragment corresponding to the cbbA coding sequence was amplified by

peR using genomic DNA of N. meningitidis strain MC58 and the primers

FBA_pQE70 (F) and FBA_pQE70(R) incorporating SphI and BgnI sites,

respectively (Table 2.1). The peR reaction was performed as described in

Section 2.5. The peR conditions used to amplify this insert were: initial template

denaturation step of 3 min at 95°e, followed by 30 cycles of incubation,

annealing at Sloe for 1 min, primer extension at 68°e for 2.5 min, and 94°C for

4Ss, with final incubation at si'c for 1 min and 68°e for 10 min. The pQE70

vector was linearized by digestion (section 2.10) with SphI and Bgm. The
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plasmid pSAT-FBA was constructed by ligating SphI and BglII-digested, gel-

purified cbbA peR product with pQE70 (Appendix B) according to the

manufacturer's instructions (Qiagen). Positive clones were screened for the

successful ligation of cbbA by colony peR, restriction digestion with SphI and

BglII and DNA sequencing to determine in frame ligation. A clone that contained

cbbA in the correct orientation for translation and in frame with the start codon of

the vector was selected and used to transform E. coli BL21 (DE3) pLysS

(Invitrogen) according to the manufacturer's instructions.

2.2.10 Restriction endonuclease digestion

Restriction digestion reactions were routinely carried out in a 10 J.ll final volume.

Unless otherwise stated, 100-200 ng of DNA (for screening purpose) and 1 ug of

DNA (for using in sub-cloning), was digested either as a single digest or double

digest with appropriate enzymes and compatible buffers. Restriction

endonuclease enzymes and buffers were purchased from New England Biolabs or

Roche and used according to the directions of the manufacturer.

Table 2. 1 List of primers used in work described in this chapter

~". (/ Restriction
Primer DNA sequence' it. , . SI e

Expression of chbA

FBA_El(F) 5'-CGCGGATCCATGGCACTCGTATCCATGCG- 3'

FBA_E2(R) 5'-CGCGGTACCGTCGTCCGAACGGCGG- 3'

FBA_pQE70 (F) 5'-CGCGGATCCATGGCACTCGTATCCATGCG-3'

FBA_pQE70 (R) 5' -CGCGGT ACCGTCGTCCGAACGGCGG-3'

BamHI

KpnI

SphI

Bgill

Expression of gapA-l

NMB0207(F) 5' -CGCGGA TCCATGGGCATCAAAGTCGCCATC-3'

NMB0207(R) 5'-CGCGTCGACTTATTTGAGCGGGCGCACTIC-3'

BamHI

Sal!

"Sequences in bold identify restriction enzyme sites.
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Table 2. 2 Bacterial strains and plasmids used in work described in this
chapter

SO/I id D 0 0 Source ortrams p asnu s escrrption ..rererence
E. coli strains

JMI09 endAl recAI gyrA96 thi hsdRl7 (rK- Promega

rK-)relAI supE44 ~(lac-proAB) [F'

traD36 proAB laqIqZ~MI5]

TOPIOF' F'lacIqTnlO(TetR) mcrA ~(mrr- Invitrogen

hsdRMS-mcrBC) <D801acZ~M15

MacX74 recAI araDl39 ~(ara-

leu)7697 galU galK rpsL endAl

nupG

BL21(DE3)pLysS F- ompT hsdSB (rB-mB-) gal dcm Invitrogen

(DE3) pLysS (CamR)

Plasmids

pQE70 Cloning vector encoding resistance to Qiagen

ampicillin

pEXPINT-TOPO Expression vector encoding Invitrogen

resistance to ampicillin

pCRlNT -TOPO Expression vector encoding Invitrogen

resistance to ampicillin

pSAT-FBA MCS8 cbbA gene cloned in pQE70 This study

pDT-GapAl MC58 gapA-l gene cloned in This study

pCRlNT -TOPO

pSAT-l MC58 cbbA gene cloned in This study

pEXPINT-TOPO
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2.2.11 Ligation Reaction

Appropriate amounts of vector and insert DNA were combined in a 1:I or 1:3

ratios in a sterile microcentrifuge tube and the reaction was assembled in 10J.11

final volume. A typical ligation reaction contained; 100 ng insert, 50-100 ng

plasmid DNA, IJ.11T4 DNA ligase (Roche or Promega), 1 J.11salt solution in case

of TOPO cloning, 1 J.1110 x ligation buffer (Roche), and where required dH20

was added to make a final volume of 10 J.11.The ligation reaction was incubated

at 16°C for Ih and then overnight at 4°C. An aliquot of 1.5 J.11was used to

transform E. coli JM 109 competent cells.

Where appropriate, Antarctic phosphatase ([AP] New England BioLabs) was

used to catalyze the removal of the 5' phosphate groups from linear DNA

fragments to prevent self-ligation. The procedure was carried out according to the

manufacturer's recommendations. Typical reactions contained 1 J.11[= 10 U] of

AP, approximately 1 J.1gof vector DNA, 5 J.11of lOx AP buffer and nuclease-free

deionized water to a final volume of 50 J.11.This was incubated at 37°C for 15

min followed by purification using the QIAquick PCR purification kit (Qiagen)

2.2.12 Transformation

Briefly, an aliquot of 100 J.11of frozen competent E. coli cells JMI09 (Promega),

One shot Top 10 and BL21 (DE3) pLysS (Invitrogen) was thawed on ice 5 min

prior to transformation. 100 ng of plasmid DNA was added to cells and mixed

gently by stirring with a pipette tip. The cells were incubated on ice for 20 min

followed by heat shock at 42°C in water bath for 50 s without shaking.

Immediately after heat treatment, the cells were transferred on to ice for 2 min.
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To the cells was added a 450 ul of room temperature (RT) S.O.C medium

(Invitrogen) and the cell suspension was incubated at 37°C for 1.5 hr with

shaking at 250 rpm. The transformation reaction was plated out as 1001l1,150 Ill,

and 200 Ill, on LB agar containing appropriate antibiotic and incubated overnight

at 37°C.

2.2.13 DNA sequencing

DNA constructs were sequenced in both directions using specific primers at the

School of Biomedical Sciences (University of Nottingham) on an ABI 377

automated DNA sequencer.

2.2.14 Pilot expression of the recombinant rFBA and rGAPDH-l

E. coli strain BL21 (DE3) pLysS harboring appropriate expression plasmid were

grown overnight in LB broth containing 100 ug mrl ampicillin. The following

day, 500 III of the overnight culture was inoculated into fresh 10 ml

LB/ampicillin broth. The cultures were allowed to grow to mid log phase (OD6oo

= 0.6). The culture tube was split into two 5 ml culture aliquots and IPTG was

added to a final concentration of 1 mM to one of the cultures. The culture tubes

were then incubated at 37°C for 4 h with shaking and 500 III aliquot was removed

from each culture at times 0, 1, 2, 3, and 4 h, and cell were harvested by

centrifugation at 13,000 x g . The cell pellets were either stored at -20°C or

resuspended in 100 III of 1x SDS-PAGE sample Buffer (Appendix A). The

samples were heated to 100°C for 5 min and subsequently resolved by

SDS-PAGE followed by immunoblot analysis.
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2.2.15 Sodium dodecyl sulfate polyacrylamide gel electrophoresis

The recombinant proteins were electrophretically separated by 10-12%

SDS-PAGE (Appendix A) using Mini- Protean III equipment (BID-RAD)

following the method of Laemmli (Laemmli, 1970). The protein samples were

prepared by mixing bacterial cell pellets with 1 x SDS-PAGE sample buffer

(Appendix A) and heated at 100°C for 5 min. An aliquot of 10JlI of sample was

loaded into each well of the gel and 10JlI of pre-stained protein markers (New

England Biolabs) were loaded into an adjacent lane. Proteins separated by

SDS-PAGE were visualized by staining with SimplyBlue SafeStain (Invitrogen)

or PageBlue™ Protein Stain Solution (Fermentas) according to the

manufacturer's instructions. Gels were scanned using a GS-800 calibrated

densitometer (BIO-RAO).

2.2.16 Immunoblot analysis

For Immunoblot analysis, the protein mixtures separated by 10% SOS-PAGE

were transferred onto a nitrocellulose membrane (Amersham Biosciences) in

semi-dry blotting buffer (Appendix A) using a Trans-Blot SD semidry transfer

cell (BIO-RAO) at a constant currant of 14 rnA for approximately 30 min. The

membranes were incubated in blocking solution (Appendix A) or 1% Bovine

serum albumin (BSA) (Sigma) for 30 min at RT. The membranes were then

probed with mouse anti-pentahistidine antibody (Qiagen) or rabbit primary

antibody diluted 1:10,000 and 1:1000, respectively, in blocking buffer and

incubated overnight with shaking at 4°C. The following day, the membrane was

washed three times 15 min each with PBS containing 0.05% Tween-20

(PBS-Tween), and incubated into secondary antibody (anti-mouse IgG
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conjugated to alkaline-phosphtase or anti-rabbit conjugated to alkaline

phosphtase) (Sigma) at the concentration of 1:30,000 for 2 h at RT. After 2 h the

membrane was washed thrice with PBS-Tween for 15 min each time. The

membrane was then developed using the BCIP (5-bromo-4- chloro-3-

indolylphosphate)-Nitro Blue Tetrazolium liquid substrate (PerkinElmer™). The

membrane was finally washed with dHzO and a digital image of the membrane

was taken using a OS-800 calibrated densitometer (BIO-RAD).

2.2.17 Protein purification under denaturing conditions

The large-scale expression of recombinant His-tagged proteins for purification

was performed using the common expression protocol. Briefly, a single colony of

E. coli BL21 (DE3) pLysS harboring the expression plasmid was inoculated into

10 ml LB containing ampicillin (lOO J.1gml") and grown at 37°C overnight. One

litre of LB broth containing ampicillin was then inoculated with 10 ml of an

overnight starter culture and grown to mid log phase (OD600 = 0.6), and induced

by addition of IPTO to a final concentration of 1 mM. After 3h of induction the

cells were harvested by centrifugation (8,000 x g for 10 min at 4°C) using an

Allegra™ X-22R centrifuge (Beckman Coulter) and the cell pellet was then

either stored at -20°C or used for purification. Protein purification was achieved

by re-suspending the culture pellet from 20 ml culture in 1 ml lysis buffer (B)

(Appendix A) and sonicated (10 son, 20 s off pulses for 5 min on ice) using a

(SoniPrep sonicater MSE 150) to disrupt the cells. The lysate from disrupted cells

was centrifuged at 8,000 x g for 30 min at 4°C. The supernatant was collected in

a sterile Eppendorf tube for purification of the recombinant protein. Purification

was carried out using a Ni-NTA spin kit (Qiagen). Firstly, Ni-NTA spin columns
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were equilibrated with 600 ul of buffer B, and centrifuged at 700 x g for 2 min to

drain the buffer and then 600 J.lI of supernatant collected from the lysate of

disrupted cells was loaded into pre-equilibrated columns and centrifuged at 700 x

g for 2 min. The flow through was collected and saved in a separate Eppendorf

tube for SDS-PAGE analysis. Secondly, the spin columns were washed twice

with approximately 600 J.lI of buffer C (Appendix A) to release non-specific

proteins. The third and last step was elution of pure proteins bound to spin

column with buffer E (Appendix A). The protein elutes were stored at -20°C

2.2.18 Protein purification under native conditions

Briefly, the culture pellet from a l-litre culture of E. coli BL21 (DE3) pLysS cells

containing pSAT-FBA and induced with IPTG for 3 h, was resuspended in the

lysis buffer (Appendix A) and the cells were then disrupted by sonication (lOs

on, 20s offpulses for 10 min on ice) in ice water. Soluble and insoluble fractions

were separated by centrifugation (8,000 x g for 30 min at 4°C). Five hundred III

of Hispure™ cobalt resin (Thermo) was centrifuged at 2,000 x g for 1 min to

drain the storage buffer and then the resin was added to the soluble fraction

containing the recombinant FBA. The supernatant-resin mixture was then

incubated overnight at 4°C to allow binding of the tagged protein to the resin.

The following day, the mixture was passed through gravity purification columns

(Sigma). The flow through was collected and re-applied to the column to

maximize protein binding. The resin was then extensively washed with

approximately 10 column volumes of wash buffer (Appendix A) to minimize the

yield of contaminating proteins in the eluted fraction. The protein bound to the
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resin was then eluted in elution buffer (Appendix A). The purity of the protein

was examined by SDS-PAGE.

2.2.19 Protein purification by gel electro-elution

The partially purified samples of rGAPDH-l were resolved in a single lane on

10% SDS-PAGE. The gel was stained briefly with SimplyBlue SafeStain

(Invitrogen). The band corresponding to the recombinant protein of interest was

identified according to its size estimated by comparing with the molecular weight

markers. The protein band with an apparent molecular mass of ca. 37-kDa

demonstrating rGAPDH-l was excised out from gel and further cut into small

slices. For electro-elution, the gel slices were transferred to aD-tube (D-Tube

Dialyzer midi, MWCO 6-8 kDa, Novagen) containing filter sterile 1x SOS-

running buffer (Appendix A) and electro-elution was performed at constant

voltage of 110 volts for 2 h in a agarose gel casting tank filled with 1 x SDS

running buffer. The eluted protein was aspirated from the 0-Tubes and dialysed

in clean O-tubes against PBS for 48 h at 4°C and then concentrated using

centrifugal filter device (Microcon, Amicon Bioseparation, 5,000 Da MWCO).

2.2.20 Raising polyclonaJ antiserum against FDA and GAPDH-l

Rabbit polyclonal antibodies against the denatured purified recombinant FBA and

GAPOH-I and non-denatured purified FBA proteins were raised in New Zealand

white female rabbits. Typically, rabbits were immunized three times at 2-week

intervals with 30 J.1g of protein emulsified in Freud's Complete (first

immunization) or incomplete adjuvant. After two doses, the rabbits were test

bled, boosted once more, and sacrificed 10 days later.
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2.2.21 Protein and nucleic acid sequence analysis

The genome database of N. meningitidis MCS8 was interrogated at

http://cmr.jcvi.org/cgi-binlCMRlGenomePage.cgi?org=gnm. Sequence homology

data were obtained using the CLUSTALX software (http://www-igbmc.u-

strasbg.fr/BioInfo/ClustaIX). Protein secretion signals were analyzed using the

SignalP 3.0 server available at http://www.cbs.dtu.dklservices/SignaIP/

(Emanuelsson et al., 2007). The SoftBerry Bacterial Promoter Prediction

algorithm- (http://linuxl.softberry.comlberry.phtml?topic=bprom&group=progra

ms&subgroup=gfindb) was used to examine DNA segments for potential

promoter sequences. Other DNA and protein sequence analyses, and primers

designing, were carried out using the DNAman package of programs (Lynnon

BioSoft).
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2.3 Results

2.3.1 Sequence analysis of the cbbA and flanking DNA and FBA protein

In N. meningitidis strain MeS8, the cbbA gene (NMBI869) is 1,065 bp long

encoding a predicted protein of354 amino acids (Fig 2.1) and has a G+C content

of 56.18%. The cbbA gene is downstream of xerC (NMB 1868) predicted to

encode the XerC integrase/recombinase and upstream of NMB 1870, which

encodes factor H-binding protein, fHbp (Madico et al., 2006). This genetic

organization appears to be conserved in published genomes of N. meningitidis

Z2491 (serogroup A), N. meningitidis FAM18 (serogroup e) and N. gonorrhoeae

FAI090 strains. However, the gene encoding for fHbp is annotated as putative

lipoprotein and/or hypothetical open-reading frame. Sequences >94% identical to

the MC58 cbbA gene are found in the genomic sequences of the serogroup e

meningococcal strain FAM18 (GenBank accession no. YP_974462; (Bentleyet

al., 2007», the ST-4821 strain 053442 (GenBank accession no. YP_001598513;

(Peng et al., 2008» and the group A strain Z2491 (GenBank accession no.

YP_002342063; (Parkhill et al., 2000). Additionally sequences >93% identical to

MCS8 cbbA are found in the gonococcal strain FAI090 (94% identical; GenBank

accession no. YP_207215), and N. lactamica strain ATCe 23970 (93% identical;

GenBank accession no. ZP_03723075) sequences confirming that cbbA is highly

conserved across Neisseria species. At the amino acid level, FBA sequences from

meningococcal strains Z2491, MeS8, FAM18 and 053442, and the gonococcal

strain FA1090, are > 99% identical. By alignment, the neisserial FBA

(NMBI869) was 67 and 65% identical to class-lIB FBA enzymes from

Xanthobacter flavus and Synechocystis sp., respectively, but was only 21%

identical to the E. coli class-HA FBA, confirming that the neisserial FBA is a
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class-lIB enzyme. As expected for a class-II FBA, a conserved putative zinc-

binding site (Berry & Marshall, 1993) was also identified (HSI_XX_ H84). Using

the SignalP software, FBA was predicted to be a non-secreted protein by the

SignaIP-HMM program

2.3.2 Cloning and expression of cbbA in pEXPINT-TOPO

The cbbA gene comprises of 1,065 bp, which encodes a protein of a 354 amino

acids (a.a). The entire ORF was successfully amplified by PCR (Fig 2.2). A

single band with the expected molecular weight of ca. l-kb was observed by

agarose gel electrophoresis. The peR product was ligated to the pEXP-NT/TOPO

expression vector followed by transformation of E. coli JMI09 cells for plasmid

proliferation and subsequent screening for the successful clones.

The pExp-NTrrOPO expression vector, unlike pGEM-T Easy, lacks the

whitelblue phenotype based screening system; therefore, the screening for the

successful clones was initially attempted by colony PCR (Fig 2.3 A). Several

recombinant clones were identified to contain the cbbA insert by observing a

DNA fragment corresponding to cbbA alongside a band amplified with the same

primers using MC58 DNA as a positive control. In order to confirm the colony

PCR results and to ascertain the orientation of cbbA, recombinant clones were

selected and used to extract plasmid DNA for restriction analysis and. subsequent

partial sequencing.

Six clones were subjected to further verification by restriction digestion analysis.

The restriction sites BamHI and KpnI (present in FBA_El and E2 primers

respectively) were used to ascertain the orientation of the desired insert. Insertion
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of cbbA in the same orientation as the T7 promoter of the vector was expected to

produce single linear fragments of ea 3.7 kb in a double digest with BamHI and

KpnI. In contrast, insertion of cbbA in a reverse orientation to the vector yielded

the expected two DNA fragments of ca. 1 kb and 2.7 kb. Out of six clones

analysed by colony peR, three were identified to contain cbbA in the desired

orientation whilst the remaining three produced two DNA bands consistent with

the reverse orientation (Fig 2.3 B).

One plasmid containing cbbA in correct orientation was designated pSAT-1.

Finally, the sequence and orientation of the cloned cbbA was confirmed by DNA

sequencing. The plasmid pSAT-l was partially sequenced using the T7 forward

and reverse primers. Sequencing demonstrated that pSAT -1 contained the cbbA

in frame with the His-tag of the vector and in correct orientation under the control

of phage T7 promoter for expression of the recombinant protein.
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Figure 2. 1 Agarose gel analysis showing (A) the PCR amplification of cbbA.
Chromosomal DNA was prepared from N meningitidis MCS8 and used to
amplify out cbbA by PCR. Lane 1, DNA ladder, lane 2, PCR product
corresponding to cbbA. (B) colony peR amplification of cbbA, putative
transform ant colonies were used for peR amplification of cbbA, lane 1, DNA
markers, lane 2, peR product of cbbA from MC58 chromosomal DNA (Control),
lanes, 3-9, putative transformant colonies. The DNA product in lanes 7 and 9 was
of the expected size suggesting successful cloning of cbbA (C) restriction
digestion of pSAT-1, plasmid DNA was used to veri fy the cloning of cbbA using
the BamHI and KpnI. Lane 1, DNA markers, lanes 2-7, putative pSAT-l digested
with BamHI and KpnI.
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Expression of rFBA was successfully achieved in E. coli BL2l (DE3) pLysS

cells harboring the plasmid pSAT-l following induction with IPTG. Expression

was checked by SOS-PAGE followed by either staining or immunoblot analysis.

A recombinant protein band with apparent molecular weight of ca. 38-kDa

corresponding to the rFBA was observed in induced samples on the SOS gel after

staining with SimplyBlue 8afeStain (Fig 2.4). Immunoblot analysis also detected

the tagged recombinant protein corresponding to the full length rFBA. A faint

protein band was also observed in un-induced samples. This was probably due to

leaky expression of the gene without induction as it was absent in negative

control cells containing the same vector without the insert (Fig 3.5).

The solubility of the expressed rFBA was determined by resuspending the cell

pellet in PBS. Following 30 min incubation at room RT, cells were disrupted by

sonication and centrifuged to separate soluble and insoluble fractions. Both

fractions were collected separately and analysed by 80S-PAGE (Fig 2.6 A)

followed by immunoblot analysis using anti-penta histidine antibodies (Fig 2.6

B). A strong protein band corresponding to FBA was detected in insoluble

fraction whereas a weak band was present in soluble fraction of expressed protein

suggesting that the rFBA protein was expressed mostly as insoluble protein.
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ca. 38- kDa

Figure 2. 2 SDS-polyacrylamide gel showing pilot expression of FBA. Whole
cell lysate of E. coli strain BL21 (DE3) pLysS containing the plasmid pSAT-1,
non-induced and IPTG-induced samples were separated by 10% SDS-PAGE.
Lane 1,protein markers; lanes 2-4, whole cell lysate of non-induced cultures after
, 1, 2, and 3 h, respectively; lane 5, lysate from E. coli containing empty vector,
lanes 6-8 whole cell lysate of IPTG-induced cultures after I, 2, and 3 h,
respectively. The protein was expressed within 1 h after induction and the
expression reached maximum level at 3 h.
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83- _
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32-
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ca. 38- kDa

Figure 2. 3 Immunoblot analysis showing the pilot expression of FBA. Whole
cell proteins were separated by 10% SDS-PAGE and then transferred on to
nitrocellulose membrane followed by probing with anti-penta histidine
antibodies. Lane 1, protein markers; lane 2-4, un-induced samples lane 5, lysate
from E. coli containing empty vector, lanes 6-8 induced samples.
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32- 32-

(A) (B)

Figure 2.4 Solubility of the rFBA E. coli BL21(DE3) pLysS harboring pSAT-I
were induced with I mM IPTG and incubated at 37°C for 3 h. (A) Protein were
resolved by 10% SDS-PAGE Lane I, protein markers; lanes 2 pellet (insoluble
fraction; inclusion bodies); lane 3, supernatant fraction. (soluble fraction), (B)
Immunoblot analysis of protein resolved by SDS-PAGE. Lane 1, protein
markers; lane 2, pellet (insoluble fraction; inclusion bodies); lane 3, supernatant
fraction. This is showing that FBA was expressed as insoluble protein.
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2.3.3 Purification of rFBA under denaturing conditions

Due to the insoluble nature of recombinant protein, purification was performed

under denaturing conditions. The 20 ml culture pellet of E. coli harbouring

pSAT-1 was induced with IPTG in a mid log phase and further grown for 3h.

Following sonication of the harvested cells, purification of the recombinant

protein was successfully achieved under denaturing conditions using affinity

chromatography (Fig 2.7). The protein was eluted in elution buffer containing

urea. After purification urea was removed by dialysis against PBS using D-tube-

dialyzer. Purified protein was analysed by SDS-PAGE to confirm the purity and

integrity of the purified protein.

kDa 1
175- .--",...-.....,.,..--- ......---......-
83-

62-

47-

2 3 4 5 6 7 8

32.5-

25-

ea. .1R-kDa

Figure 2. 5 SDS-polyacrylamide gel demonstrating affinity purification ofrFBA.
E. coli strain BL21 containing plasmid pSAT-1 were grown until the exponential
phase and induced with 1 mM IPTG. After 3 h of induction, cells were harvested
by centrifugation and purified using a Qiagen Ni-NTA spin kit under denaturing
conditions and the samples were separated by 10% SDS-PAGE. Lane 1, protein
markers; lane 2, whole cell lysate of E. coli harboring pSAT-l; lane 3, flow
through; lane 4, first wash; lane 5 second wash; lane 6, protein markers, lane 7
first eluate; and lane 8 second eluate. The eluate showed the single protein band
representing the full sized rFBA

74



2.3.4 peR amplification and cloning of chhA in pQE70

Although N-tenninally His-tagged rFBA was successfully expressed and

subsequently purified under denaturing conditions, in order to examine the

functional activity of the recombinant protein and to generate polyclonal

antibodies against conformational epitopes of the protein, cbbA was re-cloned

with C-tenninal 6 x His-tag in an endeavour to express recombinant proteins in

soluble form to facilitate subsequent purification under native conditions. The

cbbA gene was amplified by PCR using primers incorporating SphI and BgflI

restriction sites to facilitate the ligation with pQE70. The purified, digested cbbA

product was successfully ligated to pQE70 after both molecules were digested

with SphI and BglII followed by transformation of E. coli JM109 cells. A number

of recombinant clones were selected and screened for the presence of cbbA in

order to confirm successful cloning. Screening was initially performed by colony

PCR of putative transformants colonies. Several recombinant clones produced an

expected band of ca. l-kb were then selected and propagated for purification of

plasmid DNA. The plasmid DNA was subjected to further confirmation by

restriction digestion analysis using SphI and Bgm. As expected two DNA bands

corresponding to cbbA and vector backbone were observed by agarose gel

analysis demonstrating the successful ligation. Finally, one of the positive clones

was sequenced. The sequencing results confirmed that the ligation was in frame

with the start codon of the vector and the sequences were identical to that of the

cbbA. This clone was selected for expression of recombinant protein and

subsequent purification under non-denaturing conditions.
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Figure 2. 6 Agarose gel analysis demonstrating the (A) PCR amplification of
cbbA. Chromosomal DNA was prepared from N meningitidis MC58 and used to
amplify the entire open reading frame of cbbA for cloning into pQE70. Lane 1,
DNA markers, lane 2, PCR product of cbbA. (B) colony PCR amplification of
cbbA. Screening for cbbA cloning was performed by colony peR amplification of
cbbA from putative transformants colonies. Lane 1, DNA markers, lane 2-7, cbbA
amplified by colony PCR, (C) the restriction digestion of pSAT -9. Plasmid DNA
was isolated from E. coli harboring pSAT-9 and used to confirm the cloning of
cbbA in pQE70. Lane 1, DNA markers, Lane 2, Sph[ & BglII-digested pSA T-9.
Lane 2 shows the expected two bands confirming the successful ligation of cbbA
with pQE70
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2.3.5 Expression and purification of rFBA under native conditions

E. coli BL2I (DE3) pLysS cells harboring the plasmid pSAT-FBA were used to

express rFBA. Optimal expression was achieved after 3 h induction with IPTG.

Expression was confirmed by SOS-polyacrylamide gel followed by immunoblot

analysis. Despite the high levels of expression, no formation of inclusion bodies

was detected (data not shown).

The Recombinant FBA from a I-litre culture of E. coli harboring pSAT-FBA was

purified under native conditions. After sonication of the harvested cells,

purification of the recombinant protein was performed by affinity

chromatography. The protein was eluted in elution buffer containing imidazole.

After purification the imidazole was removed by dialysis against the same buffer

(minus imidazole) using BD-dialyzer tubes. Purified protein was analysed by

SOS-PAGE to confirm the purity and predicted molecular weight. SOS-PAGE

analysis demonstrated a strong recombinant protein band with an apparent

molecular weight of ca. 38-kDa corresponding to the FBA (Fig 2.9A).

Immunoblot analysis using anti-penta histidine and RaFBA antisera also detected

the protein band representing rFBA (Fig 2.9B & C respectively). The purified

protein was used to examine enzymic activity of natively purified protein and to

raise polyclonal antisera to facilitate subsequent characterisation.
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Figure 2. 7 SDS-PAGE and immunoblot analysis demonstrating the rFBA
purified under native conditions. (A) SDS-PAGE (l0%) analysis confirms the
purity of the recombinant FBA purified under native conditions. (B) Immunoblot
analysis shows that recombinant FBA is recognized by RaFBA (C) and anti-
penta histidine antibodies.

2.3.6 Sequence analysis of gapA-l, flanking DNA and GAPDH-! protein

In N. meningitidis strain MeS8; the 1,032-bp gapA-l gene (Fig 2. I0)

(NMB0207) has a Gf-C content of 58 % and encodes a predicted protein of 343

amino acids (estimated molecular weight 37.0 kDa). The gapA-l gene is

downstream of, and in the opposite orientation to, aat (NMB0206) predicted to

encode the leucyl/phenylalanyl-tRNA-protein transferase and upstream of, and in

the same orientation as, NMB0208, which is predicted to encode an electron

transport protein, ferredoxin (4Fe-4S-type). The same genetic organization occurs

in N meningitidis Z2491 (serogroup A), N meningitidis FAM18 (serogroup C).

Sequences >98% identical to the Me58 gapA-l gene are found in the genomic

sequences of the group A strain Z2491 (Parkhill et al., 2000), the serogroup e

meningococcal strain FAM18 (Bentley et al., 2007), and the ST-4821 strain

053442 (Peng et al., 2008). Additionally, gapA-l orthologues are found in the
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gonococcal strain FA1090 (98% identical) and N. lactamica strain ATCC 23970

(90% identical) confirming that gapA-l is highly conserved across Neisseria

species. At the amino acid level, GAPDH-l sequences from meningococcal

strains MCS8, Z2491, FAMI8, 053442, and the gonococcal strain FAl090 are

>97% identical. As expected, the highly conserved GAPDH active site was

identified eS3ASCITNCL 160), and GAPDH-l shows significant homology to

GAPDH enzymes from higher organisms, including the human GAPDH enzyme

(45% identity). Despite its demonstrated presence on the bacterial surface, the

GAPDH-l of N. meningitidis was not predicted to possess a classical secretion

signal by the SignaIP-HMM and -NN programs. GenBank accession numbers for

the gapA-l sequences analyzed in this study are as follows: YP_97432562

(FAMI8), YP_00160027 (ST-4821 strain 053442), YP_002341615 (Z2491),

YP_208807 (gonococcal strain FAI090) and ZP_03723143 (N. lactamica ATCC

23970).

2.3.7 Cloning and expression of gapA-l of N. meningitidis strain MeS8

The entire open reading frame of gapA-l was amplified by PCR using the

primers NMB0207 (F) & NMB0207 (R) primers (Table 2.1) and cloned into the

pCR-T7/NT-TOPO expression vector to yield pDT-GapA 1. The plasmid

pDT-GapAI was constructed by Dr. David P Turner (unpublished).

In order to express N-terminally 6 x His-tagged recombinant proteins, overnight

culture of E. coli BL2l (DE3) harboring pDT-GapAl were grown to mid log

phase followed by induction with 1mM IPTG and further grown for 3 h. Samples

were taken from induced and un-induced cultures at an hourly interval to monitor
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the optimal expression. Pre-induced and post-induced samples were then

analysed by SDS-polyacrylamide gel including negative control sample (E. coli

BL21 (DE3) pLysS containing pCRT7INT-TOPO vector without insert, treated

under same expression conditions). A protein band of apparent molecular weight

of ca. 37-kDa demonstrating rGAPDH-l was observed in induced samples on

SDS- gel (Fig 2.11) and also a weak band of the same size was present in

uninduced samples suggesting the leaky expression. This band was absent in the

negative control.

The resolved protein samples were subsequently transferred onto nitrocellulose

membrane followed by probing with anti-penta antibodies. A strong immune-

reactive band of predicted molecular mass of ca. 37-kDa corresponding to

rGAPDH was detected by immunoblot analysis.
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Figure 2. 8 SOS-PAGE (10%) analysis showing the expression of GAPOH-l in
induced and un-induced samples, Lane 1, protein markers, lane 2- 4, un-induced
0-3 h sample, respectively, lane 5, control (E. coli harboring empty vector), and
lane 6-8, induced 0-3 h sample, respectively.
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Figure 2. 9 Immunoblot analysis confirming expression of GAPOH-lin induced
and un-induced samples, Lane 1, protein markers, lane 2- 4, un-induced whole
cell proteins, lane 6, control (E. coli containing empty vector), Janes 6-8 whole
cell proteins from induced samples.
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2.3.8 Purification of rGAPDH-l by D-tube Dialyzer

The purification of the rGAPDH-l was performed by using metal affinity

chromatography. The rGAPDH-I was resolved on SDS-PAGE to confirm the

purity and expected size based on predicted molecular weight. A ca.37-kOa band

corresponding to rGAPDH was observed together with several additional protein

bands, which were assumed to be non-specific contaminating proteins. Therefore,

in order to obtain a purified rGAPDH-l for raising polyclonal antiserum the

partially purified elutes containing rGAPOH-I were resolved on SOS-PAGE and

the protein band corresponding to GAPDH-l was excised from the SDS-

polyacrylamide gel, and the gel pieces were used for purification by electro-

eluation using D-tube dialyzers.

The purified protein was analysed by SDS-PAGE and immunoblot analysis. One

gel was stained with SimplyBlue SafeStain and subsequently destained with

dH20 whilst another gel containing the same profile of proteins was used to

transfer the resolved protein onto the nitrocellulose membrane for probing with

either anti-penta histidine and/or Ra-GAPOH-I antibodies. The SOS-PAGE

demonstrated a single band with an apparent molecular weight of 37-kDa

corresponding to rGAPDH-l. The immunoblot analysis demonstrated that anti-

penta histidine recognised the purified protein as rGAPDH.
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Figure 2. 10 SDS-PAGE and immunoblot analysis demonstrating the rGAPDH-l
purified under denaturing conditions. CA) 10% SDS-PAGE analysis confirms the
purity of rGAPDH-I CB) Immunoblot analysis shows that rGAPDH-I IS

recognized by anti-penta histidine antibodies Cc) and by RaGAPDH-l
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2.4 Discussion

This chapter details the cloning of cbbA and gapA-l of N. meningitidis strain

MCS8 and the expression and subsequent purification of their products: FBA and

GAPDH-l. A preliminary strategy adopted towards characterising both FBA and

GAPDH-l proteins was to clone and over express both proteins and subsequently

to raise polyclonal antisera against both proteins. The antisera were then used in a

number of experiments to facilitate identification of the putative roles of both

enzymes in pathogenesis of meningococcal disease. In N. meningitidis strain

MCS8 genome there is a single copy of cbbA (NMB 1869) predicted to encode

FBA protein. The entire open reading frame encoding full length FBA was

successfully cloned in N-tenninally histidine-tagged vector to express the

recombinant protein. The recombinant protein was shown to be optimally

expressed in host E. coli using 1mM IPTG for 3 h. Expression was detected by

immunoblot analysis using anti-penta histidine antibodies. As a negative control,

vector without insert was used to transform E. coli and treated in parallel.

Recombinant protein with apparent molecular weight of 38-kDa corresponding to

FBA was obtained in induced samples. FBA was affinity purified under

denaturing conditions and used to raise polyclonal antiserum in rabbit. The

antiserum was shown to strongly react against purified FBA protein.

Following several unsuccessful attempts to purify under native conditions, the

rFBA was successfully purified under denaturing conditions. Failure to purify

protein under native conditions may possibly be due to the insoluble form of the

protein, as confirmed by finding that majority of the proteins were in the pellet

(inclusion bodies) fraction rather than in supernatant of expressed samples.

84



Despite optimisation of expression parameters such as lowering the growth

temperature (20, 25, 30°C), adding less concentration of IPTG (0.5mM) at late

exponential phase which is believed to improve the solubility of recombinant

proteins, several attempts to express the protein in a more soluble form were

unsuccessfuL This insolubility issue was not just the case with meningococcal

FBA, but this enzyme expressed with an N-terminal His-tag from Mycobacterium

tubeculosis was also shown to be functionally inactive and insoluble protein

(Ramsaywak et al., 2004). In that study, to improve the yield of soluble protein

efforts were made to express the tagged FBA at low temperature (15°C) and also

by co-expression with different chaperones (GroES and GroEL; or DnaJ, Dnak,

and grpE). These parameters although were shown to improve a little the yield of

soluble protein but failed to yield an active enzyme (Ramsaywak et al., 2004).

Another possible explanation for inability to purify the protein under native

conditions might also be due to the manner in which the protein is folded in its

native form, such that the histidine-tag is buried within the protein and may not

be exposed sufficiently to be purified by affinity chromatography.

Alternatively, to express recombinant FBA protein in a soluble form to achieve

subsequent purification under native conditions, a DNA fragment corresponding

to full length cbbA was successfully cloned in pQE70. This vector carries 6 x

histidine-tag at C-terminal of the recombinant protein. Recombinant protein

expressed with C-terminal histidine-tag was successfully purified under native

conditions. SDS-PAGE analysis confirmed the expected size and purity by

demonstrating a single band of apparent molecular mass of ca. 38-kDa

corresponding to the recombinant FBA.
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In the published meningococcal genome sequences, there are two genes (gapA-l;

NMB0207 and gapA-2; NMB2159).encoding putative GAPDH enzymes. We

began our investigations by focusing on gapA-l (NMB0207) rather than gapA-2,

because the gapA-l has been shown to be up-regulated in N. meningitidis upon

the contact with human epithelial cell whereas gapA-2 was not found to be

similarly regulated. The gapA-l was successfully cloned in pCR-NTffOPO and

optimal expression of the recombinant protein was achieved by induction with

ImM IPTG for 3 h. The expression was shown to be not under tight IPTG control

as non-induced samples contained a weakly expressed protein band of apparent

molecular weight of ca. 37-kDa. Initial attempts to purify rGAPDH-l under

native conditions were not successful suggesting that the expressed protein was

not folded correctly and appeared to be in insoluble form. Since previous

optimisation attempts to improve expression of the FBA protein in more soluble

form were unsuccessful, protein was therefore purified under denaturing

conditions. The SDS-PAGE analysis of the affinity purified protein demonstrated

several protein bands including the protein band with apparent molecular weight

of ca. 37-kDa corresponding to rGAPDH-l. In order to obtain pure protein for

raising polyclonal antiserum, the purification was carried out by electro-elution

using D-tube dialyzers. The partially purified GAPDH-l was first separated by

polyacrylamide gel from SDS- polyacrylamide gels and then the protein bands

corresponding to the GAPDH-l were excised and eluted. The eluted proteins

were dialyzed against PBS for 48 h. The immunoblot analysis using anti-penta

histidine antibodies recognized a protein bands with apparent molecular weight

of ca. 37-kDa.
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In conclusion, expression plasmids for rFBA and rGAPDH-I were successfully

constructed. The rFBA was over expressed with N-terminal and C-terminal

histidine tags and the recombinant proteins were successfully purified by affinity

chromatography. The purification of N-terminal His-tagged rFBA under native

conditions was unsuccessful, which may be due to the insoluble nature of the

recombinant protein or in accessibility of His-tag to nickel column, however, the

protein was successfully purified under denaturing conditions and used to raise

polyclonal antisera. The rFBA was successfully purified under native conditions

from C-terminally His-tagged vector. This natively purified rFBA was then used

to study the functional/enzymic activity of the protein and used for generating

polyclonal antiserum for using in subsequent characterisation experiments. In

addition, the rGAPDH-I was also over expressed with an N-terminal histidine-

tag, again this protein was found to be in insoluble (inclusion bodies) fraction,

and the purification was performed under denaturing conditions as insoluble

proteins that were subsequently purified by gel electro-elution. The purified

rGAPDH-l was used for raising polyclonal antiserum to facilitate the

characterisation experiments. Taken together, the work described in this chapter,

resulted in the successful production of reagents that would facilitate further

studies into the role of these proteins.
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CHAPTER 3: Mutagenesis and complementation of cbbA

and gapA.10f N.meningitidis
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3.1 Introduction

In this chapter the generation of cbbA and gapA-l null mutants and subsequent

complementation of cbbA and gapA-l mutations at an ectopic site in respective

isogenic null mutants is described. The mutant and complemented strains will be

utilized in subsequent characterization experiments to facilitate a study of the

potential role of FBA and GAPDH-l in pathogenesis of meningococcal disease.

In addition to mutating cbbA in MCS8, the cbbA isogenic mutants were created in

four meningococcal strains of different genetic backgrounds (Z4181, Z4667,

Z4673, and ST-18). The mutated strains were used as negative controls in

immunoblot experiments to assess the expression of cbbA and gapA-l m

meningococcal strains, and in subsequent molecular and immunological

characterisation experiments (Chapter 4 & 5). Whilst the cbbA-isogenic mutants

generated in additional four known MLST -type strains (Z4181 ilcbbA,

Z4667ilcbbA, Z4673ilcbbA, and ST-18ilcbbA) were used in challenge

experiments using a transgenic mouse model to assess the potential role of cbbA

in development of bacteraemia. The transgenic mice express human transferrin,

which is an important source of iron during the course of meningococcal

infection: a process requiring the binding of human transferrin by the

meningococcal transferrin receptor, which is unable to efficiently bind transferrin

of non-human origin (Zarantonelli et al., 2007).

Using the cbbA and gapA-l mutant strains, a potential in vitro role of FBA and

GAPDH-I in adhesion of N meningitidts strain MCS8 to cultured meningothelial

and epithelial cell lines to host cells was investigated. Both mutants exhibited a

reduced capacity to adhere to these cell lines compared to their isogenic wild-
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type parents. To exclude the possibility that the impaired adhesion was not due to

either polar effects or undetected secondary mutations, both cbbA and gapA-l

mutations were complemented at an ectopic site in isogenic-null mutants to

determine whether the replacement of a wild-type copy of each of these genes

could result in restoration of the wild-type phenotype.

The aims of this part of study were to create cbbA and gapA-l mutants in N.

meningitidis and to subsequently complement the mutations in isogenic null

mutant strains and to determine the growth characteristics between wild-type

Me58, mutants and complemented strains.
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3.2 Materialsandmethods

3.2.1 Bacterial strains, growth condition, and media

Bacterial strains and plasmids described in this chapter are listed in (Table 3.1

and 3.3). Growth conditions and media for culturing E. coli are described in

Chapter 2. Meningococcal strains (Table 3.3, stored at -80 in a mixture of 50%

MHB and sterilized glycerol) were grown on Brain Heart Infusion (BHI) agar

and/or Brain Heart Infusion Broth or Muller-Hinton Agar (MHA) or Muller-

Hinton Broth (MHB) or Dulbecco's Modified Eagle Medium (DMEM)

supplemented with Vitox at the concentration suggested by the manufacturer

(Oxoid) or 2% Fetal calf serum (Invitrogen) and where appropriate kanamycin

(50 j.lgml") or erythromycin (5 ug mll) and incubated in an atmosphere of 5%

CO2 at 37°C with or without shaking.

3.2.2 Cloning of cbbA plus flanking DNA

A ca. 2.3-kb fragment of DNA (Fig 3.1 A) consisting of the cbbA gene, 1 kb of

upstream and ca.300 bp of downstream flanking DNA was amplified by PCR

using the primer pair FBA_Ml (F) and FBA_M2(R) (Table 3.2) and N.

meningitidis strain MC58 chromosomal DNA. The PCR was performed as

described in section 2.5 with the following modifications, annealing at 48°C for 1

min, primer extension at 68°C for 4.5 min, and 94°C for 45s. The PCR product

was purified using the QIAquick PCR purification kit (Qiagen) according to

manufacturer's instructions (Section 2.7). The PCR product was used to ligate

with the pGEM-T Easy vector according to the manufacturer's instructions.

Recombinant clones were identified as white colonies on selective agar plates

containing 100 ug ml" ampicillin, 0.5 mM IPTG and 80 ug ml" X-gal. A number
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of clones were selected and confirmed by restriction digestion (Section 2.2.10)

and PCR using the primers FBA_Ml (F) and FBA_M2(R) (Table 3.2). The

resulting plasmid was designated pSAT-2. The plasmid pSAT-2 (Fig 3.1B) was

then used to transform E. coli JMI09 competent cells (Promega) according to the

manufacturer's instructions (Section 2.2.12).

3.2.3 Cloning ofgapA-l plus flanking DNA

A ca. 3-kb region of DNA encompassing gapA-I and l-kb flanking DNA from

either side of the gene and containing a neisserial uptake sequence was amplified

by peR using the primer pair NMB0207 (F) FL and NMB0207 (R) FL (Table

3.2) and chromosomal DNA prepared from N. meningitidis strain MeS8. The

PCR was performed as described in section 2.5 with modifications: annealing at

48°C for 1 min, primer extension at 68°C for 3.5 min, and 94°C for 4Ss, with

final incubation at 48°e for 1 min and 68°C for 10 min. The peR product was

gel-purified using a Gel-extraction kit (Qiagen) according to manufacturer's

instructions. The peR product was then cloned into the pGEM-T Easy vector

(Promega). Putative transformants were identified as white colonies on selective

agar plates (section 3.2.2). Recombinant clones were verified by restriction

digestion analysis and PCR using the primer pair NMB0207 (F) FL and gapA-l

(R) FL (Table 3.2).
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Figure 3. 1 Schematic diagram representing the mutagenesis strategy for cbbA in
N meningitidis A) A 2.3-kh DNA fragment encompassing cbbA and flanking
DNA B) cloning of cbbA and flanking DNA in pGEM-T Easy to generate pSAT-
2 C) Inverse PCR product containing the flanking DNA and pGEM-T easy vector
for ligation of Kan R resistance marker d) Mutagenic plasmid designated pSAT-4
containing KanR and inverse PCR product.
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Table 3. 1 List of Plasmids used in work described in this chapter.

Plasm ids Resistance Description Source/
Reference

pGEM-TEasy Amp Cloning vector Promega

pJMK30 Amp/kan Source of kanamycin resistance cassette (van Vliet et

al., 1998)

pHYS25 Erym Ectopic complementation vector (Winzer et

al.,2002)

pSAT-2 Amp pOEM -T Easy vector cloned with 2.3 kb This study

insert of FBA plus flanking DNA

pSAT-3 Amp Inverse PCR product of ca. 5kb, digested This study

with BglII and self-ligated by both ends

to make it circularize as plasmid

pSAT-4 Amp/kan pSAT3 cloned with kanamycin This study

resistance cassette of 1.5 kb

pSAT-6 Amp pOEM-T Easy cloned with gapA-I plus This study

2-kb flanking DNA

pSAT-7 Amp pOEM- T Easy vector with 2 kb DNA This study

flaking either side of gapA-l gene

amplified by PCR and self-ligated

pSAT-8 Amp/kan pSAT-7 ligated with KanR gene digested This study

with BamHI

pSAT-ll Amp/ermy pOEM-T Easy cloned with This study

complementation cassette of ca.2.7 kb

pSAT-I2 Amp/ermy pSAT-11 cloned with cbbA along with This study

its native promoter sequences

pSAT-13 Amp/ermy pSAT-11 containing cbbA promoter and This study

BgnJ site for cloning of inserts for

expression under cbbA promoter

pSAT-14 Amp/ermy pSAT-13 cloned withgapA-l within This study

unique BglII site present downstream

the cbbA promoter sequences
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3.2.4 Inverse-PCR mutagenesis of cbbA

The plasmidpSAT -2 was subjected to inverse-Pf'R using the primer pair

FBA_M3 (IR) and FBA_M4 (IF) (Table 3.2, Fig 3.1 e). The rca was performed

as described in section 2.2.5 with the following modifications: annealing at 48°e

for 1 min, primer extension at 68°e for 5 min, and 94°e for 45 s. The peR

product was digested overnight at 25°C with BgnI before being self-ligated. The

resulting plasmid designated pSAT-3 was used to transform E. coli for

propagation and subsequent purification. The purified pSAT-3 was subsequently

digested with BgnI to enable insertion of resistance cassette. The kanamycin

resistance cassette was prepared from the plasmid pJMK30 (van Vliet et al.,

1998) by digestion with BamHI (Section 3.2.6). The BgnI-digested and purified

i-peR product was ligated to BamHI-digested Kanamycin resistance cassette.

The resulting plasmid was designated pSAT-4 (Fig 3.1 D)

3.2.5 Inverse-PCR mutagenesis of gapA-I

The plasmid pSAT -6 was used as a template DNA in inverse peR using the

primer pair gapAl_Ml (IF) and gapAl_M2 (IR) (Table 3.2) and chromosomal

DNA of N. meningitidis strain MeS8. This peR was carried out as described in

section 2.5 with modifications: annealing at 48°e for Imin, primer extension at

68°e for 5 min, and 94°e for 45 s. The inverse peR product was purified and

digested with BgflJ for lh at 37°e and then overnight at 2Soe. The BgnI-digested

i-peR product was then self-ligated using T4 DNA ligase (Roche) to generate

pSAT-7. The resulting plasmid pSAT-7 was purified and subsequently digested

with BgflJ and ligated to 1.5-kb antibiotic cassette (encoding resistance to

kanamycin). The resulting plasmid was designated pSAT-8.
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3.2.6 Preparation of selectable marker

The antibiotic cassette encoding resistance to kanamycin (1.5 kb) was obtained

by restriction digestion of 2 ug of pJMK30 plasmid (Appendix B) with BamHI

followed by preparative gel electrophoresis and gel extraction. The purified

kanamycin resistance cassette (KanR) was then ligated to linearized pSAT-3 and

pSAT-7 to yield pSAT-4 and pSAT-8, respectively.

3.2.7 Construction of ectopic complementation vector

A DNA fragment of ca. 2.7-kb (Fig 3.1) consisting of opa promoter and

erythromycin resistance cassette flanked by two meningococcal genes

(NMBOI02 and NMBOI03) was amplified by PCR using the primer pair

CompCass_(F) and CompCass_(R) (Table 3.2) and plasmid DNA pYHS25

(Winzer et al., 2002) . The PCR was performed as described in section 2.5 with

the following modifications, annealing at 51°C for 1 min, primer extension at

68°C for 4 min, and 94°C for 45s. Prior to cloning into pGEM-T Easy (Promega),

the PCR product was fully sequenced using the primers comcass_Fl and

comcass_RI (Table 3.2). The gel purified PCR product was ligated to pGEM-T

Easy vector (Promega). Screening for successful clones was performed on the

basis of blue/white phenotype. Plasmid DNA from putative transfonnants was

analysed by restriction digestion and DNA sequencing to confirm the successful

cloning. The resulting plasmid was designated pSAT -11(Table 3.1, Fig 3.2).
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Figure 3. 2 Schematic diagram representing A) the gene organization of
complementation cassette B) and subsequent cloning of this cassette into the
pGEM-T Easy vector to generate pSAT-ll
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Table 3. 2 List of primers used in work described in this chapter

. Primer DNA sequence" Restrict
. . ..' . -ion site

Mutagenesis of cbbA and gapA-l

FBA_Ml(F) CTGCTGTGCCCGAGC
FBA_M2(R) CCGCTGCTGCAGGCG
FBA_M3(IR) GCGAGATCTTGTGTCTCCTTGGGCAATAGG BgnI
FBA_M4 (IF) GCGAGATCTGCTCCATCCAACTGGG BgnI
FBA_SAT(F) GCGCGCGGGTGGGCTTCGTCATAC
FBA_SAT(R) GTCTTTATGGTCGAGCGGTGCGG
gapAl_Ml(IF) GCGAGATCTGCAACAAACCGTC BgnI
gapAl_Ml(IR) GCGAGATCTGGTTTGTTCCTTTGTTGAGGG BgnI
NMB0207(R)FL GAGAACTGTCATGCGTATTCC
NMB0207(F)FL CCAAACCCAATGCCGCGAATG
gapA-l_Cl(F) GCATACAATTCTGCTAAAATACGC
CFR (R) CAGCGACTGTCAGGCC
Kan-CTR GACAACGCAGACCGTTCCG
Kan-NTR TCGCGGCCTCGAGCAAGACG

Complementation of cbbA and gapA-l

CompCass_F ATGTGGCGGGTTTTGAGTGC
CompCass_R GATTTTTCTTGCGGCGCGGC
FBA_COM(F) CGCGGATCCATGAGCTGTTTATGGTTTTTTGCTG BamID
FBA_COM(R) CGCGGATCCGGCATTTTGTTTACAGGCAACCTG BamID
pSAT-12iPCR(IF)CGCAGATCTGATACCCCCGATGAC BgnI
pSAT-12iPCR(IR)CGCAGATCTCATTTGTGTCTCCTTGG BgnI
gapA1_Comp(F)2 CGCGGATCCATGGGCATCAAAGTC BamID
gapAl_Comp(R)2 CGCGGATCCTTTGTTTGACGGTTTGTTG BamID
ComcassF TCAGCGGGTGCGTCGAGAAGC
ComcassR GCAAATCACAATTCTTGAGCG
NMBO 102(F)2 ATGTGGCGGGTTTTGAGTGC
NMBO1 03(R) TTTGGATTIIICTTGCGGCGC
"Sequences in bold identify restriction enzyme sites.
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3.2.8 Natural transformation in N. meningitidis strain MeS8

N. meningitidis strain MC58 was streaked on chocolate plates and incubated

overnight as described in (section 3.2.1). A single colony was sub-cultured into

fresh Brain-Heart Infusion (BHI) broth supplemented with Vitox (Oxoid) and

incubated overnight in 5% C02 at 37°C. The overnight broth culture of N.

meningitidis strain MC58 was diluted 1:20 in fresh BHI broth and further grown

to an optical density of 0.2. An aliquot of 0.2 ml of the culture was transferred to

a IS-ml tube with conical bottom containing 1.5 ml of BHI agar supplemented

with Vitox. After incubation for 5-6 hrs at 37°C in 5% C02 without shaking, 10

J.11(ca. 1 J.1g)of the mutagenic plasmid DNA was added to the tubes and

incubation was continued for 16 h. The putative transformants were selected on

BHI containing kanamycin 50 J.1gml". Kanamycin-resistant N. meningitidis

colonies were obtained and further analysed by PCR and immunoblotting of

whole cell extracts of the putative mutants.

3.2.9 Complementation of cbbA

To complement the cbbA mutation, cbbA. together with its predicted promoter

sequences, was amplified by PCR from genomic DNA of N. meningitidis strain

MCS8 using the primers FBA_COM (F) and FBA_COM (R) (Table 3.2)

incorporating BamHI restriction sites. The peR was performed as described in

section 2.5 with the following modifications: annealing at 55°C for 1min, primer

extension at 700e for 2.5 min, and 94°e for 45s. The peR product was ligated to

pGEM-T Easy (Promega), excised and then cloned into BamHI-digested pSAT-

11. Positive clones were analysed by colony peR, restriction digestion analysis

and DNA sequencing to confirm in frame ligation. The resulting plasmid was
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designated as pSAT-12 and used to transform MC5S6.cbbA (Section 3.2.8)

introducing a single chromosomal copy of the complementing gene in the

intergenic region between NMBOI02 and NMBOl03 ORFs, which are orientated

in a tail-to-tail fashion. Insertion of the gene at this ectopic site was confirmed by

peR analysis with the primer pair NMBOI02 (F) and NMBOI03 (R) (Table 3.2)

and immunoblotting for the expression of the gene using RaFBA antisera.

3.2.10 Complementation of gapA-l

The plasmid pSAT-12 was subjected to inverse PCR using the primer pair

pSAT-12iPCR (IF) and pSAT-12iPCR (IR) (Table 3.2). The rca was performed

as described in section 2.5 with the following modifications, annealing at 52°C

for I min, primer extension at 68°e for 6.5 min, and 94°C for 45s. The PCR

resulted in deletion of cbbA and introduction of a unique BgnI site to facilitate

the cloning of gapA-l under the promoter of cbbA. The amplicon was digested

with BglII before being self-ligated. This plasmid was designated as pSAT-13.

The gapA-l gene was amplified by PCR from the genomic DNA of

Nimeningitidis strain Me5S using primers gapAl_comp (F) 2 and gapAl_comp

(R) 2 (Table 3.2). The PCR was performed as described in section 2.5 with the

following modifications: annealing at 52°C for 458 min, primer extension at 68°C

for 1.5 min, and 94°C for 45s. The PCR product was purified and digested with

BamHI to enable ligation to BgnI-digested and dephosphorylated linear pSAT-

13. The resulting construct was designated pSAT-14 and used to complement

MC586.gapA-l
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3.2.11 Determining in vitro meningococcal growth

Meningococcal growth characteristics in liquid cultures were conducted by re-

suspending 1:100 overnight cultures of N. meningitidis in 10 ml of MH broth.

The following day, overnight broth culture was diluted in fresh BHI or DMEM

and adjusted to a starting OD6oo of 0.06. The cultures were incubated with

shaking at 200 rpm as described in section 3.2.1. The OD600reading was taken at

hourly intervals for 8h and then at 24h h and experiments were performed in

triplicate.
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pGEM-T Easy

pSAT-12

Figure 3. 3 A map of the pSAT-12 constructed by cloning cbbA into pSAT-l1
and used to complement cbbA mutation in isogenic-mutants. The plasmid
contains ampicillin and erythromycin resistance genes and cbbA promoter for
driving the expression of cbbA gene.

pSAT-14 lNMBo102

41cbbA Promoter

v--.---~ ifio-1
NMB0066 (ermC) FLAG

Figure 3.4 A map of the pSAT-14 constructed by inverse peR using pSAT-12 as
template to substitute the cbbA with gapA-l under the cbbA promoter. The
resulting plasmid containing gapA -1 was designated pSAT-14 and used to
complement gapA-l mutation in isogenic-mutants. The plasmid contains
ampicillin and erythromycin resistance genes and cbbA promoter for driving the
expression of gapA -1.
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Table 3. 3 Bacterial strains used in work described in this chapter

. Strain Description Source or
reference

E. coli
JM109 endAl recAl gyrA96 thi hsdR17 Promega

(rK-rK-)relAl supE44 t:.(lac-proAB)
[F' traD36 proAB laqlqZt:.M1S]

N. meningitidis
MC58 wild-type serogroup B strain (Tettelin et

ai.,2000)
Z4181 Clinical isolate
Z4667 Clinical isolate
Z4673 Clinical isolate
ST-18 Clinical isolate
MC58 DsiaD siaD deletion and replacement with C. Tang

erythromycin cassette Imperial
College

MC58t:.cbbA cbbA deletion and replacement with This study
kanam ycin cassette

Z4l81t:.cbbA cbbA deletion and replacement with This study
kanamycin cassette

Z4667!lcbbA cbbA deletion and replacement with This study
kanam ycin cassette

Z4673!lcbbA cbbA deletion and replacement with This study
kanamycin cassette

ST18!lcbbA cbbA deletion and replacement with This study
kanamycin cassette

MC58!lgapA-l gaA-l deletion and replacement with This study
kanamycin cassette

MC58!lcbbA cbbAEc, MC58!lcbbA complemented with an This study
ectopic copy of cbbA

Z4181!lcbbA cbbAEct Z4181!lcbbA complemented with an This study
ectopic copy of cbbA

ST18t:.cbbA cbbAEct ST18!lcbbA complemented with an This study
ectopic copy of cbbA

MC58t:.gapA-l gapA_IEct MC58!lgapA-l complemented with This study
an ectopic copy of gapA-l
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3.3 Results

3.3.1 Cloning of cbbA plus flanking DNA

In order to create a cbbA knock-out mutant in N. meningitidis strain MeS8, a region

of DNA containing l-kb upstream and ca.300 bp downstream of the start codon of

cbbA was successfully amplified by peR (Fig 3.5A). The fragment contained one

copy of the neisserial DNA uptake sequence (5'-GCeGTCTGAA-3') downstream of

the cbbA gene, which is required for efficient DNA uptake by natural transformation

of N. meningitidis (Elkins et al., 1991). The amplicon was gel-purified and used to

ligate to the pGEM-T Easy vector followed by transformation of E. coli JMI09 to

yield pSAT-2 (Fig 3.1 B).

The positive clones were identified by blue/white screening. The plasmid DNA was

prepared from resulting putative transformants and used to confirm the cloning of the

DNA fragment (cbbA plus flanking DNA) by restriction digestion and peR analysis.

The cloned DNA fragment was subsequently extracted from pSAT-2 after digestion

with Not! (Fig 3.Se). This digestion produced the expected two bands of ca.3 kb and

2.3 kb. In addition, the DNA fragment was amplified by peR (Fig 3.SB) using the

plasmid pSAT-2 as template and the original primer pair used to amplify the product.

Both approaches confirmed the successful ligation of the desired insert to pGEM-T

Easy.
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co.2.3-kb

(A)

1 2 3
lO-kb

4-kb
3-kb
2-kb

l-kb

O.5kb

(C)

(B)

Figure 3. 5 Agarose gel analysis (A) showing the PCR amplification of a DNA
fragment consisting of cbbA and flanking DNA. Lane 1, DNA markers, lane 2, peR
product of cbbA and flanking DNA. (B) PCR amplification of DNA fragment from
pSAT -2 to confirm ligation, plasmid DNA from putative transform ants was used as a
template for amplification of DNA fragment consisting cbbA and flanking DNA.
Lane 1, DNA markers, lane 2 and 3 test samples. A band representing the desired
amplicon was observed in lane 3 indicating successful ligation in this clone. (C) The
restriction digestion analysis of pSAT-2, Plasmid DNA was prepared from E. coli
harboring putative pSAT -2 and used to verify the cloning of DNA fragment by
digestion with Notl. Lane 1, DNA markers, lanes 2 and 3, putative pSAT -2 digested
with Notl. As expected two bands of expected size were observed in both samples,
confirming the successful ligation of DNA fragment with pGEM- T Easy.
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3.3.2 Mutagenesis of cbbA by inverse peR

The plasmid pSAT-2 was used as template for inverse PCR. This PCR resulted in

deletion of approximately 300bp of the cbbA gene from start codon and

amplification of a 5-kb amplicon (Fig 3.6 A) and the introducing a unique Bgm site.

The product was gel-extracted and digested with Bgm to facilitate self-ligation

followed by transformation of E. coli JMl09 cells. Putative transformants were

selected and analysed by restriction digestion with BglII. Clones that produced bands

corresponding to the expected size of ca.5-kb were designated as pSAT-3 and were

chosen for insertion of a selectable marker. The pSAT-3 plasmid was subsequently

purified and digested with Bgm (Fig 3.6 B) to enable the insertion of selectable

marker encoding resistance to kanamycin.

The selectable marker encoding resistance to kanamycin was isolated from the vector

pJMK30 by digestion with BamHI. However, one difficulty encountered was

obtaining sufficient amounts of the kanamycin cassette, as the vector containing this

cassette appeared to be at a very low copy number. In an attempt to increase the yield

of the vector, 10 ml cultures of E. coli JMl09 competent cells containing the

pJMK30 vector were harvested and used to purify the plasmid followed by elution in

30 JlI rather than 50 ul.
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1 2 1 2 3

ca.5-kb ca.5-kb

(A) (B)

Figure 3. 6 Agarose gel analysis (A) demonstrating the amplification of a 5-kb peR
product. The plasmid pSAT-2 was used as template DNA for inverse peR. Lane 1,
DNA markers, lane 2, inverse peR product representing pGEM-T Easy vector (3-kb)
and 2-kb DNA flanking cbbA (B) the restriction digestion analysis of pSAT-3.
Plasmid DNA was prepared from putative pSAT-3 transformants and linearized by
digestion with BglII. Lane 1, DNA markers, lane 2, uncut pSAT-3 and lane 3,
BglII-digested pSAT-2. As expected a ca. 5-kb band corresponding to linear pSAT-2
was observed in lane 3.

In order to introduce the marker into the unique BamHI site in the intermediate

vector pSAT-3, the KanR cassette was prepared by digestion of the vector pJMK30

and purified by gel electrophoresis followed by gel extraction. The kanamycin

cassette was obtained with the expected size of 1.5 kb (Fig 3.7A). The BamHI-

digested, purified antibiotic resistance cassette (encoding resistance to kanamycin)

was ligated to the intermediate vector pSAT-3 linearized by digestion with BglII

followed by transformation of E. coli JMI09 competent cells to yield pSAT-4.

Putative transformants were selected on kanamycin plates. Successful ligation of

KanR cassette to BglII-digested linear pSAT-3 was confirmed by restriction digestion

with Sma!. The SmaI site is available in the region of the KanR cassette, therefore an
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expected ca. 6.5 kb single linear band was observed on an agarose gel (Fig 3.7B).

The resulting plasmid was designated pSAT-4. Plasmid DNA was purified from E.

coli harbouring pSAT-4 for further confirmation by peR analysis.

Using the primer pair FBA_Ml (F) and FBA_M2 (R) (Table 3.2) the cloning of

KanR resistance cassette in pSAT-4 was further confirmed by peR amplification of a

ca.3.5 kb band consisting of 1.5 kb representing the KanR cassette and 2-kb of

flanking DNA. A negative control of plasmid (PSAT-2) without the Kan'' cassette

was also used in the same peR reaction. The expected 3.5 kb band was obtained in

all five samples tested whereas the negative control produced the expected 2.0 kb

band representing flanking DNA only (Fig 3.7C). This confirmed that, the Kan"

cassette was successfully cloned in the pSAT-4. The pSAT-4 was then chosen to

mutate the cbbA by natural transformation in N. meningitidis strain MeS8.
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1 1 2 3 4 5lOkb

lO-kb ca.7-kb

4kb 4-kb
3kb ca.2.6-kb 3-kb

2kb 2-kb
ca.1.5-kb

l-kb

(A) CB)

1 2 3 4 5 6 7
lO-kb

4-kb ca. 5-kh
3-kb

2-kb ca. 2-kb

(C)
Figure 3. 7 Agarose gel analysis demonstrating (A) restriction digest of pJMK30
vector with BamHI to obtain kanamycin resistance cassette, pJMK30 vector was
prepared and digested with BamHI. BamHl sites are present at both ends of the
kanamycin cassette in pJMK30 vector and could be used to isolate resistance
cassette. Lane 1, DNA markers and lane 2, BamHI-digested pJMK30. The lower
band of ca.l.5 kb represents KanR cassette, whereas the upper band corresponds to
the vector backbone (B) Restriction digest analysis of pSAT-4 to confirm the
presence of Kan" cassette Lane 1, DNA markers, lanes 2 and 4, uncut pSAT-4, lanes
3 & 5, Sma l-digested pSAT-4. An expected ca. 6.5 kb band was observed in lanes
3&5 indicating the successful ligation of KanR cassette in pSAT-4 (C) peR
amplification of KanR cassette and flanking DNA. Lane 1, DNA markers, lanes 2-6
pSAT-4 as template DNA and lane 6, pSAT-3 as template DNA (negative control).
Lanes 2-6 demonstrate an expected 3.5 kb band representing Kan resistance cassette
and flanking DNA, whereas, lane 7 produced 2-kb band.
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3.3.4 Verification of cbbA mutagenesis

The mutation of cbbA was confirmed by the peR analysis and immunoblotting by

probing the whole cell lysate from Me58~WT and MC58.1.cbbA using RaFBA

antisera. Initially, putative cbbA~null mutants were verified for the presence of the

KanR cassette at proper location and orientation of the cloned cassette in the

chromosome by peR analysis using the of cbbA-specific primer pair FBA_El (F)

and FBA_E2 (R) (Table 3.2) to amplify cbbA from the chromosomal DNA of the

putative mutant clones. Chromosomal DNA of N. meningitidis strain MCS8 was also

amplified with the same primer pair as a positive control. The PCR resulted in

amplification of an expected ca. l-kb band from chromosomal DNA of the

Me58-WT strain whilst no band was observed in the mutant samples (Fig 3.8A)

suggesting the successful mutation of cbbA in the putative mutants, which were

designated as MC58.1.cbbA. It was still not clear that the inserted KanR cassette was

in the same orientation as cbbA in the chromosome of the putative mutants. To

determine the orientation of the KanR cassette another PCR using the primer pair

Kan-CI'R and FBA_M2 (R) (Table 3.2) was performed, This peR would be

expected to produce a l-kb product where the orientation of the KanR cassette was

the same as the deleted cbbA. This confirmation was important in order to minimize

the impact of the mutation on the downstream genes (if the KanR was cloned in same

orientation) by facilitating expression of downstream genes in the same operon. An

expected 1-kb band was observed in 9 out of 10DNA samples from putative mutants

(Fig. 3.8B) confirming the presence and the correct orientation of the cloned

selectable marker in putative mutants. Taken together, these results appear to have
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genotypically confirmed that cbbA has been substituted in putative mutant genome

with KanR cassette.

1 2 3 4 5 6 7 8 9 10 11

ca.l-kb

(A)
1 2 3 4 5 6 7 R 9 10 11

10-kb

4-kb
3-kb

2-kb
ca.1.1-kb

l-kb

O.5-kb

(B)

Figure 3. 8 Agarose gel demonstrating the CA) PCR amplification of cbbA from the
putative mutants. Chromosomal DNA was extracted from putative cbbA mutants and
used to confirm the mutation by PCR amplification of cbbA. Lane 1 DNA markers,
lane 2, MC58-WT DNA, lanes 3-11 putative cbbA mutant DNA. The PCR failed to
produce a band corresponding to cbbA size from putative mutants, except the
positive control of MCS8 chromosomal DNA. CB) orientation and presence of KanR

cassette in putative cbbA knock-out mutants. Chromosomal DNA was prepared from
putative mutants and used to verify the orientation and presence of KanR ea sette by
PCR using primers Kan-CTER and FBA MI(R). This PCR was expected to produce
ca.I-kb product in case of presence of KanR cassette in same orientation as of cbbA
in putative mutants. Lane 1, DNA markers, lane 2, MC58-WT DNA (control), Janes
3-12, putative cbbA mutant DNA. lane 2, failed to produce any band due to absence
of the cassette in the WT, whereas a band of expected size was observed in 3, 5-12
lanes, confirming the successful replacement of cbbA with the KanR in the same
orientation. Lane 4 could not produce any band suggesting that the Karl cassette was
in opposite orientation in this mutant.
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To confirm that the cbbA gene is not expressed in the isogenic-null mutant strain,

whole cell lysate of MC58-WT and MC58~cbbA were resolved by SDS-PAGE

followed by immunoblot analysis by probing the membranes with RaFBA antisera.

A strongly reactive protein band with an apparent molecular weight of ca. 38-k-Da

was detected in the lysate of the MC58-WT sample which was absent from the lysate

of the MC58L1cbbA extract (Fig 3.9). This demonstrated that the expression of cbbA

has been abolished by the mutation. The RaFBA also detected another protein band

of higher molecular weight than FBA from the lysate of both MC58- WT and

MC58~cbbA, which was presumably non-specific band due to the polyclonal nature

of antisera

1 2 3

. 38-kDa

Figure 3. 9 Immunoblot analysis demonstrating the successful deletion of cbbA in
putative mutants Whole cell extracts were prepared from MC58- WT and MC58-
putative cbbA mutants and resolved on 10% SDS-PAGE followed by
immunoblotting with RaFBA to verify the cbbA deletion. Lane l , protein markers,
lane 2, whole cell extracts from MC58-WT, and lane 3, whole cell extracts from
MC58 cbbA mutant. RaFBA recognized a band of apparent molecular weight of ca.
38-kDa corresponding to FBA in lane 2, whereas the same band was absent in lane 3,
confirming that the cbbA is not expressed in cbbA mutant cells.
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3.3.6 Mutagenesis of cbbA in clinical isolates of N. meningitidis

In addition to mutating cbbA in N meningitidis strain MC58, attempts were made to

mutate cbbA in four additional clinical isolates of N meningitidis. The plasmid

pSAT-4 was used to mutateN meningitidis strains Z4181, Z4667, Z4673, and ST18

by natural transformation and allelic exchange. The putative transformants were

analysed for cbbA mutation and for the presence of KanR resistance marker in the

chromosome by PCR and immunoblot analysis as described above. PCR analysis

(Fig 3.10) showed that cbbA was successfully replaced by kanamycin resistance

marker in all four strains. Furthermore, a band corresponding to the apparent

molecular weight of FBA was observed in all wild-type strains but absent from the

respective isogenic mutants in immunoblots (Fig 3.11) confirming the deletion of

cbbA in these mutants.

123456789
lO-kb

l-kb
ca.l-kb

4-kb
3-kb

2-kb

Figure 3. 10 Agarose gel analysis demonstrating the PCR amplification of cbbA
from clinical isolates of N meningitidis- WT and absent in their respective mutants,
Chromosomal DNA was prepared from putative mutant strains and used to verify the
mutation by PCR amplification of cbbA. Lanes I, DNA markers, lanes 2,4,6,8
chromosomal DNA from Z4181, Z4667, Z4673, ST-18 WT strains, respectively,
lanes 3,5,7,9, Z4181, Z4667, Z4673, ST-18 putative cbbA mutant stains,
respectively. The DNA band of ca. I-kb representing cbbA was observed in all
Wwild-type strains but absent in isogenic mutant strains indicating that cbbA was
successfully deleted.
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Figure 3. 11 Immunoblot analysis demonstrating the loss of expression of cbbA in
mutant strains. Whole cell extracts from putative cbbA mutants created in different
clinical isolates of N meningitidis were resolved by 10% SDS-PAGE followed by
immunoblot analysis. Lanes 1, protein markers, lanes 2,4,6,8 Z4181, Z4667, Z4673,
ST-18 WI strains, respectively, lanes 3,5,7,9, putative cbbA mutants in: Z4181,
Z4667, Z4673, SI-18 strains. The lower band of ca. 38-kDa represents FBA, which
is present in all WT strains but absent in all respective mutant strains indicating that
cbbA is not expressed in mutant strains.

3.3.7 Cloning of gapA-l gene plus flanking DNA

In order to create a gapA-l-null mutant in N meningitidis strain Me58, a fragment

of DNA encompassing gapA-l and ca.l-kb of DNA both upstream and downstream

of the start codon of gapA-l was amplified by peR (Fig 3.12A). This amplicon was

purified and ligated with pGEM-T Easy to yield pSAI-6. The plasmid pSAT-6 was

then used to transform E. coli JMI 09 cells and the successful clones were identified

by blue/while selection. Plasmid DNA was prepared from putative transfonnant

clones and analysed by restriction digestion with Sma!. Two Sma! sites are present in

the cloned DNA fragment, thus, as expected two bands of 3.0 and 3.2 kb were

obtained (Fig 3.12B). peR analysis ofpSAI-6 also confirmed the successfuJligation

(Fig 3.12C).
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Figure 3. 12 Agarose gel showing (A) peR amplification of gapA-1 plus flanking
DNA. Lane 1, DNA markers, lane 2, peR product consisting of gapA-l and flanking
DNA. (B) showing the restriction digestion of pSA T-6. Plasmid DNA was prepared
from putative pSAT -6 transfonnants and used to verify the cloning by restriction
digestion with Sma!. Lane 1, DNA markers, lane 2, pSAT-6 plasmid DNA. As
expected two bands (3 and 3.3-kb) were observed in lane 2 confirming the successful
ligation of DNA fragment in pSAT-6 (C) showing the peR amplification of gapA-1
plus flanking DNA from the plasmid construct pSA T-6. Lane 1, DNA markers, lane
2, peR product of gapA-l plus flanking DNA.
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3.3.8 Mutagenesis of gapA-l by inverse peR

The plasmid pSAT-6 was used as template DNA for inverse PCR. This resulted in

amplification of a 5-kb band (Fig 3.13A), deletion of the gapA-J open reading frame

(ORF), and introduction of a unique Bg/II site to facilitate the introduction of

selectable marker encoding resistance to kanamycin. The i-PCR product was

digested with BglII and self-ligated generating a pSAT-7. The pSAT-7 plasmid was

subsequently purified from a transfonnant clone and digested with BgnI to facilitate

the insertion of the KanR cassette (Fig 3.13B). The BgllI digested plasmid was

purified and analysed by agarose gel electrophoresis. The kanamycin resistance

marker was prepared as described previously (Section 3.3.2) and ligated to the

plasmid pSAT-7 digested with BgllI to yield pSAT-8. Plasmid DNA was prepared

from putative pSAT -8 transformants and used to verify the cloning of Kan" cassette

by restriction digestion with SmaI. As expected, three DNA bands were obtained by

this digestion confirming the successful cloning of the kanamycin resistance marker

(Fig 3.13C). The plasmid pSAT-8 was then used to mutategapA-l in N. meningitidis

strain Me58.
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Figure 3. 13 Agarose gel analysis demonstrating (A) the successful amplification of
inverse-PCR product for gapA-l mutagenesis. Plasmid DNA prepared from pSAT-6
was subjected to inverse-PCR to delete gapA-l and amplification of 5-kb amplicon
consisting of DNA flanking the gapA-l and pGEM- T easy vector, (B) the restriction
digestion of pSAT-7. Plasmid DNA was prepared from rutative pSAT-7
transformnts and digested with BglII to enable the insertion of Kan cassette. Lane I,
DNA markers, lane 2, uncut pSAT-7, lane 3, pSAT-7 digested with BglII, lane 3
produced an expected 5-kb band, (C) the restriction digestion anaJysis of pSAT-8,
The plasmid pSAT-8 DNA was prepared and verified by restriction digestion with
Smai for the presence of KanR cassette, lane 1, DNA markers, lanes 2 and 4,
undigested pSAT-8, lanes 3 and 5, Smaf digested pSAT-8. As expected three
products were observed in digested samples confirming the ligation ofKanR•
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3.3.9 Verification of gapA-l mutagenesis

Initially, verification of gapA-I null-mutants was accomplished by peR analysis.

Chromosomal DNA was prepared from putative mutants and used to confirm

deletion of gapA-l by amplifying a band corresponding to gapA-l. As expected this

PCR failed to produce a band of the expected size for gapA-l from the putative

mutants, indicating that the gapA-l ORF has been successfully substituted with the

kanamycin resistance marker, whereas the positive control of MC58-WT produced

an expected ca. lkb band representing gapA-l(Fig 3.24). In addition, PCR analysis

was performed to determine the orientation of the kanamycin resistance marker in

the chromosome of putative mutants using the primers Kan_CTR and gapA-l (R) FL

(Table 2.3). Where necessary, Me58 wild-type DNA was used as a control (Fig

3.25). This PCR resulted in amplification of expected l-kb band from the putative

mutants cloned with the appropriately oriented KanRmarker whereas the MC58-WT

negative control did not produce a band. The gapA-l null mutants were designated

MC58~gapA-1.
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Figure 3. 14 Agarose gel analysis demonstrating the verification of gapA-l deletion.
Chromosomal DNA was prepared from putative mutant strains and used to verify the
deletion of gapA-l by PCR. Lane 1, DNA markers, lane 2, MC58-WT DNA
(positive control), lanes 3-10, putative gapA-l mutant DNA. Lane 2, shows the
expected band corresponding to gapA-l, which is absent in lanes 3-10, confirming
the successful deletion of gapA-l in the mutant DNA.

1 2 3 4 5 6 7 8 9 10 11
10-kb

4-kb
3-kb
2-kb

l-kb ca. 1.1-kb

0.5-kb

Figure 3. 15 Agarose gel analysis demonstrating the presence and orientation of
KanR cassette. Chromosomal DNA was prepared from putative mutant strains and
used to confirm the orientation and presence of KanR cassette by PCR using primer
Kan-CTER and gapA-l_(R) FL. This PCR was expected to produce ca.l-kb product
in case of presence of KanR cassette in same orientation as of gapA-l in putative
mutant strains. Lane 1, DNA markers, lane 2, MCS8-WT DNA (control), lanes 3-11,
DNA from putative gapA-l mutant. Lane 2, failed to produce any band due to
absence of the cassette in the WT, whereas a band of expected size was observed in
2-9 lanes, confirming the successful replacement of gapA-l by the KanR in the same
orientation. Lanes 10 and 11 could not produce any band suggesting that the KanR

cassette was in wrong orientation.
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In order to confirm that gapA-l is not expressed in the isogenic-null mutant strain,

whole cell lysates of MC58-WT and MC58~gapA-l were resolved on SDS-PAGE

followed by immunoblot analysis by probing the membranes with RaGAPDH-l

antiserum. A protein band of apparent molecular weight of ca. 37-k-Da was detected

in the lysate of the MC58-WT sample, which was absent from the lysate of

MC58~gaA-l (Fig 3.16). This confirmed that the expression of gapA-l has been

abolished by the mutation. The RaGAPDH-l also detected a number of additional

protein bands, including one immediately above the gapA-l band in lysates of both

MC58-WT and MC58~cbbA, which were assumed to be non-specific due to the

polyclonal nature of antiserum.

1 2 3
kDa

ca. 37-kDa

Figure 3. 16 Immunoblot analysis demonstrating the successful deletion of gapA-l in
putative mutant strain, Whole cell extracts were prepared from MC58- WT and
gapA-l mutant and resolved on 10% SDS-PAGE followed by immunoblotting with
RaGAPDH-l. Lane 1, protein markers, lane 2, whole cell extracts from Me58-WT,
and lane 3, whole cell extracts from MC58~gapA-l. Ra.GAPDH-l recognized a band
of apparent molecular weight of ca. 37-kDa representing GAPDH-l in lane 2,
whereas the same band was absent in lane 3, confirming that the gapA-l is not
expressed in gapA-l mutant cells.
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3.3.11 Construction of ectopic complementation vector

In order to rule out polar effects on neighbouring genes during phenotypic analysis

of the cbbA and gapA-l mutant strains, the cbbA and gapA-l mutations were

complemented using an ectopic complementation vector (Fig 3.3 and Fig 3.4) in

which the gene of interest may be cloned downstream of the cbbA promoter and

upstream of the ermy gene (encoding resistance to erythromycin). These sequences

are flanked by the genes NMBI02 and NMB103, which are in a tail-to-tail

configuration in both the vector and the meningococcal genome. The construct

facilitates insertion of genes of interest, under the control of the cbbA promoter, into

the meningococcal genome at a site that is unlikely to effect the expression of any

other genes. The complementation cassette was amplified by PCR from the pYHS25.

The 2.7 kb PCR product representing the complementation cassette (Fig. 3.17A, Fig

3.2 A) was gel-purified for cloning into pGEM-T Easy vector followed by

transformation of E. coli JMI09 cells. Positive clones were identified by blue/white

phenotype of the transformants colonies. The resulting ectopic complementation

plasmid was designated as pSAT-ll (Fig 3.2 B).

One successful clone was chosen for plasmid propagation and purification. The

complementation cassette was fully sequenced by using universal M13 (F and R) and

a pair of internal primers (Table 3.2) designed from sequences within the

complementation cassette to confirm the predicted promoter sequences and other

flanking genes. The sequencing results, when aligned with available sequences of the

promoter, revealed that there were differences in the predicted promoter region.
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Therefore, an alternative strategy was devised in which the native promoter of cbbA

was utilised. The plasmid pSAT-ll was digested at the BamHI site immediately

downstream of the predicted opa promoter in the multiple cloning site and an

expected band of a ca.6.5 kb corresponding to the linear pSA T-II was observed (Fig

3.17B). The clone was further confirmed by partial DNA sequencing using a MI3 (F

and R) primers. This pYHS25-based newly constructed plasmid pSAT-ll was used

as basis to clone complementing genes cbbA and gapA-l gene under the cbbA

promoter present immediate downstream ofNMBOl02 for driving the expression of

complementing genes.

1 2 1 2 3

lOkb
lO-kb ca.6.5-kb

3-kb ca.2.7-kb 4-kb
2-kb 3-kb

l-kb 2-kb

l-kb

(A) (B)

Figure 3. 17 Agarose gel analysis (A) showing the PCR product of complementation
cassette Plasmid DNA was prepared from pYHS25 and used as template for
amplification of a ca.2.7-kb DNA fragment corresponding to complementation
cassette. Lane 1, DNA markers, lane 2, PCR product representing complementation
cassette, (B) restriction digestion analysis of pSAT-I 1 with BarnHI showing the
successful ligation of complementation cassette in pGEM-T Easy, lane I, DNA
markers, lane 2, uncut pSAT-II DNA, and lane 3, BamHI-digested linear pSAT-ll
(ca.6.2 kb).
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3.3.12 peR amplification and cloning of cbbA in pSAT-ll

A ca. 1.1 kb product, consisting of the cbbA and its predicted promoter sequences,

was amplified by PCR (Fig 3.18). The amplicon was purified and ligated into

pGEM-T Easy, excised with BamHI and then introduced into BamHI-digested

linearized pSA T-11. Transformants were selected on agar plates containing

appropriate antibiotics and verified by restriction digestion analysis and subsequent

sequencing of the putative clone to confirm the in-frame ligation. The resulting

plasmid was designated pSAT-12 (Fig 3.3) and used to complement cbbA mutation

in isogenic null mutant by natural transformation and allelic exchange.

1 2

l-kb
ca. 1.1-kb

lO-kb
4-kb
3-kb
2-kb

O.S-kb

Figure 3. 18 Agarose gel analysis demonstrating the successful PCR amplification of
cbbA from chromosomal DNA of N meningitidis. Chromosomal DNA was prepared
from MC58-WT and used to amplify the cbbA for cloning into pSAT-ll to generate
pSAT-12. Lane 1, DNA markers, lane 2, PCR product of cbbA gene.

Prior to introduction of pSAT-12 into MC58~cbbA by natural transformation,

pSAT 12-harboring E. coli JMI09 cells were grown overnight and the culture pellet

was used to determine the expression of cloned cbbA by immunoblot analysis using

RaFBA antisera. Six different clones were selected for preparation of whole cell
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extracts. The proteins were separated by SOS-PAGE and transferred to a

nitrocellulose membrane for immunoblot analysis with RaFBA antisera. All six

clones were shown to express a protein band with an apparent molecular mass

similar to the expected size of FBA, which was absent in the pSA T-11 (negative

control) suggesting that the FBA is expressed in E. coli from this plasmid without

any induction (Fig 3.19).

kDa
83-

1 2 3 4 5 6 7 8 9

62-

47- .38-kDa

32-

Figure 3. 19 Immunoblot analysis of whole cell lysates from E. coli harbouring
pSAT -12. Whole cell lysates of E. coli were resolved by 10% SOS-PAGE followed
by iimmunoblot analysis to determine the expression ofFBA. Lane 1, DNA markers,
lane 2, MC58-WT whole cell lysate, lanes 3-5, pSAT-12, 1-3 samples, respectively,
lane 6, pSAT-ll (negative control), lanes 7-9, pSAT-12, 4-6 samples, respectively.
As expected all pSAT-12 constructs represented a band equivalent to FBA.

The plasmid pSAT-12 was subsequently introduced into MC58~cbbA by natural

transformation and allelic exchange (Section 3.2.8), introducing a single

chromosomal copy of the complementing gene in the intergenic region between

NMB0102 and NMBOI03, open reading frames orientated in a head-to-head fashion.

In addition, pSAT-12 was used to transform in two other mutants in clinical isolates

of meningococci: Z4181~cbbA and ST18~cbbA. These mutants were created to act

as background in challenging transgenic mice to assess a potential role of FBA in
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development of bacteraemia in these mice. Transformants were selected on selective

BHI agar plates. Successful transformants were sub-cultured and used for DNA

extraction and preparation of whole cell extracts for peR and immunoblot analysis,

respectively. The resulting complemented mutant strains were designated

Me58.1cbbA cbbAEc" Z4181.1cbbA cbbAEct and STl8.1cbbA cbbAEct.

3.3.13 peR analysis of putative N. meningitidis-.1cbbA cbbAEet strains

To confirm the successful complementation of ebb A at ectopic site in isogenic-null

mutants, chromosomal DNA was prepared from the putative complemented strains.

The presence of cbbA was identified by peR amplification of a DNA band

corresponding to cbbA from chromosomal DNA of the complemented mutant strains

using the FBA_pQE70 (F&R) primers and genomic DNA from MeS8-WT and

putative complemented strains and their isogenic-null mutant strains. Agarose gel

analysis demonstrated an expected band of ca. l-kb representing cbbA from

MeS8-WT and complemented mutants, but absent in isogenic-mutant strain (Fig

3.20) confirming the successful complementation of cbbA mutation.

In addition, another PCR using the primers NMB0102 (F) 2 & NMBOI03(R) was

performed to verify the insertion of complementation cassette at the proper location

in the chromosome of complemented strains. Insertion of the complementation

cassette at the proper location was identified by obtaining a ca. 4-kb band in

complemented mutant strains whereas WT and mutant strains were expected to

produce a band of ca. 1.3 kb representing only NMB0102 & NMOI03 PCR product.
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As expected all three complemented strains produced an expected ca. 4-kb band

whereas WT and mutant strains produced 1.3 kb band further confirming the

insertion of cbbA at desired location in complemented strains (Fig 3.21).

ca. 1.1-kb

Figure 3. 20 Agarose gel analysis demonstrating the amplification of cbbA from
cbbA mutant and their complemented strains. Chromosomal DNA was prepared and
used to amplify cbbA using the primer pair FBA_pQE70 (F and R) and genomic
DNA from N meningitidis- WT (positive control) and Scbb.A (negative control).
Lanes 1,5,9, DNA markers, lanes 2,6,10, MCS8-WT, Z4181-WT, and ST-18-WT
genomic DNA, respectively, lanes 3,7,11, MC58tJ.cbbA, Z4I8ItJ.cbbA, and
ST-18tJ.cbbA , lanes 4, 8, 12, MC58tJ.cbbA cbbAEC

\ Z4l81tJ.cbbA cbbAEct and
ST18tJ.cbbA cbbAEC

\ respectively.

4-kb

1.3-kb

O.S-kb

Figure 3. 21 Agarose gel analysis confirming the insertion of cbbA at d sired
location in complemented strains. Chromosomal DNA was prepared and used to
amplify the complementation cassette using the primer pair NMBO 102 (F) 2 and
NMBOI03 (R) and genomic DNA from complemented mutants strains and N.
meningitidis-WT and Scbb.A. Lanes 1,5,9, DNA markers, lanes 2,6,10, MCSS-WT,
Z4181-WT, and ST-JS-WT genomic DNA, respectively, lanes 3,7,11, M 58 cbbA,
Z41SItJ.cbbA, and ST-18tJ.cbbA , lanes 4,S,12, MC58~cbbA cbbAE \ Z4181 cbbA
cbbA Eet and ST 18~cbbA cbbA Eet , respectively.
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3.3.14 Immunoblot analysis of N. meningitidis-Scbbn cbbAEcl strains

The whole cell extracts were prepared from N. meningitidis-MC58 WT, Z4181,

ST18 wild-type, their respective null-mutants and putative complemented strains and

resolved on 12% SDS-PAGE followed by immunoblot analysis using RaFBA

antisera. All three complemented strains (MC58!1cbbA cbbAEe
" Z4181~cbbA cbbAEcl

and ST18!1cbbA cbbAEct
) tested were shown to express a protein band corresponding

to apparent molecular weight of ca. 38-kDa representing FBA (Fig 3.22 A,B,C).

These complemented strains will be used to con finn the previously identified

phenotype of cbbA mutant in various characterisation experiments.

ca.38-kDa

A B c

Figure 3. 22 Immunoblot analysis demonstratin~ the expression of cbbA in
complemented mutant strains, MC5 8~cbbA cbbA .ct, Z4181 !1cbbA cbbA Eel and
STl8!1cbbA cbbAEel. Whole cell extracts were resolved by 10% SDS-PAGE
followed by immunoblot analysis using RaFBA. CA)Lane I, grotein marker, lane 2,
MC58-WT, lane 3, MC58~cbbA, lane 4, MC58!1cbbA cbbA "", (B) lane I, protein
marker, lane 2, Z4181-WT, lane 3, Z4181~cbbA, lane 4, Z4181~cbbA cbbAEe,,(C)
Lane 1, protein markers, lane 2, ST-18-WT, lane 3, ST-18~cbbA, Lane 4, ST-
18!1cbbA cbbA Eel.
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3.3.15 Mutagenesis ofpSAT-12 by inverse-PeR

Sequencing of the complementation construct revealed that there were differences in

promoter region compared to the expected sequence. In order to ensure expression of

the cbbA gene, therefore, the cbbA was cloned together with its predicted promoter

sequences. Again, in order to ensure expression of an ectopic copy of gapA-l

inserted into the genome via the complementation vector, the gapA-l locus was

analysed on the MeS8 chromosome in an attempt to identify the native promoter

sequences of gapA-l. Visual inspection revealed that in N. meningitidis strain MeS8

the gapA-l gene is downstream to NMB0208 (predicted to encode ferridoxin), and

bioinfonnatics analysis could not identify a strong promoter sequences upstream of

gapA-l. Therefore, the promoter of cbbA was employed to drive expression of

gapA-I at the ectopic site. Inverse-PflR was performed of the pSAT-12. This

resulted in deletion of cbbA from the ATG start codon to the stop codon and

introduction of unique BgnI site. The i-peR product was digested with BgnI and

self-ligated to yield pSAT-13 intermediate vector. The pSAT-13 was transformed in

E. coli JMI09 for plasmid propagation and subsequent purification. A successful

clone was identified by restriction digestion with BgnI of plasmid DNA prepared

from putative transformants. As expected a band of ca. 6-kb representing linear

pSAT-13 was observed in all five samples tested (Fig 3.23) confirming the deletion

ofcbbA.
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Figure 3. 23 Agarose gel analysis showing the restriction digestion analysis of
pSAT-13 using BglII. Plasmid DNA was purified from E. coli harboring putative
pSAT -13 and used to confirm the deletion of cbbA and presence of BglII site to
facilitate ligation of gapA-1. Lane 1, DNA markers, lanes 2,4,6,8,10 uncut pSAT-13,
lanes 3,5,7,9, and II, pSAT-13 digested with BglII. All lanes containing BglII
digested pSAT-13 produced a plasmid of correct size based on predicted molecular
weight of linear construct. One of the correct clones was chosen and used for
plasmid propagation and purification for cloning of gapA-I in BglIJ site.

3.3.16 peR amplification and cloning of gapA-I in pSAT-13

The promoter-less gapA-1 consisting of 1,032 bp was peR amplified (Fig 3.36). This

peR resulted in amplification of an expected ca. l-kb band representing gapA -1 and

introduction of a unique BamHI site to facilitate the ligation into pSAT -13 (Fig

3.24A). The pSAT-13 plasmid was prepared by digestion with BglII (site present

downstream of cbbA promoter) and gel-purified, followed by dephosphorylation to

prevent self-ligation. The BamHI-digested and purified gapA-1 product was then

ligated to linearized pSAT-I3 to yield pSAT-14, followed by transformation of E.

coli JMI09 cells. The positive clones were identified by colony peR (Fig 3.24B),

and partial sequencing using a primer FBA_eom (F) (Table 3.2) to confirm in frame

ligation. This primer anneals at the start of cbbA promoter available upstream of

gapA-1 to drive the expression of this gene.
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ca. J-kb
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Figure 3. 24 Agarose gel analysis demonstrating «A) the successful amplification of
gapA-I from chromosomal DNA of N meningitidis for ligation into pSAT-13 to
generate pSAT-14. Lane 1, DNA markers, lane 2, PCR product of gapA-I (B) colony
peR amplification of gapA-I from putative transformants. Lane I, DNA marker,
lanes 2-10, PCR product representing the gapA -1. Several clones were identi fled and
further confirmed by sequencing.

After verification of gapA-l cloning in pSAT-14, the expression of gapA-I under the

control of the cbbA-promoter was determined in E. coli 1MI09 cells. Whole cell

proteins were prepared from E. coli 1M 109 cells harboring pSA T-14 and resolved on

10% SDS-PAGE and transferred to nitrocellulose membrane followed by

immunoblotting by probing with RaGAPDH-l antiserum. The pSAT-14 clone was

shown to express a protein band with an apparent molecular mass corresponding to
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the expected size ofGAPDH-l, which was absent in the pSAT-12 (negative control)

indicating that the GAPDH-l is expressed in E. coli under the cbbA promoter (Fig

3.25). The pSAT-14 was then used to complement the gapA-l mutation in

Me58f1gapA-l by natural transformation and allelic exchange. The putative

complemented transformants were selected on selective BHl agar plates. The

chromosomal DNA was prepared from putative complemented mutants for peR

analysis.

kDa 1 2 3 4
83-
62-

47-

ca. 37-kDa

32- ..
25- •

Figure 3. 25 Immunoblot analysis demonstrating the expression of gapA-I in E. coli
harboring pSAT-14, Whole cell extracts were prepared from E. coli containing
pSAT-14 and reolved by 10% SOS-PAGE to verify the expression of gapA-1 by
immunoblot analysis using RaGAPDH-l. Lane 1, DNA markers, Lane 2, whole cell
extracts from Me58-WT, lane 3, whole cell extracts from E. coli harboring pSAT-12
(Negative control), lane 4, and whole cell extracts from E. coli harboring pSAT-14.
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3.3.17 PCR analysis of putative MC58~gapA-l gapA_IEcl

In order to verify the successful complementation of gapA-I at ectopic site in

isogenic-null mutants, chromosomal DNA was prepared from the putative

complemented and isogenic-null mutant strains and used to amplify the DNA band

corresponding to gapA-I using a pair of gapA-I-specific primers. Agarose gel

analysis demonstrated an expected band of ca. l-kb representing the gapA-I from

complemented mutants that was absent in the isogenic-mutant strain (Fig 3.26A)

confirming the successful complementation of gapA-I mutation.

In addition, another peR using the primers NMBOI02 (F) 2 & NMBOI03(R) was

performed to verify the insertion of the complementation cassette at the proper

location in the chromosome of complemented strains. Insertion of the

complementation cassette at the proper location was expected to produce ea 4-kb

band in complemented mutant strains whereas mutant strain was expected to produce

a band of ea 1.3 kb representing only NMBOI02 & NMOI03 peR product. As

expected the complemented strain produced an expected ca. 4-kb band whereas the

mutant strains produced a l.3-kb band (Fig 3.26B) further confirming the insertion

of gapA -1 at the desired location in the chromosome of complemented strains.
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O.S-kb
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CA) CB)

Figure 3. 26 Agarose gel analysis demonstrating CA) the peR amplification from the
gapA-l mutant and complemented strain. Genomic DNA was extracted from
putative gapA-l complemented strains to confirm the complementation of gapA-l in
peR amplification of gapA-l. Lane 1, DNA markers, Lane 2, Me586.gapA-1
gapA_rEct, and Lane 3, MC586.gapA-l. Lane 2 shows a band of apparent molecular
weight of gapA-l confirming the successful complementation, whereas no band was
observed in the mutant strain (B) Confirmation of the insertion of gapA-l at desired
location in the chromosome of complemented strain. Genomic DNA was extracted
from putative gapA-l complemented strain for PCR amplification of gapn-], Lane I,
DNA markers, lane 2, MC586.gapA-l, and Jane 3, MC586.gapA-l gapA_JEc". Lane 3
shows a band corresponding to complementation cassette, whereas an expected 1.3-
kb DNA fragment corresponding to NMBOI02 & NMB0103 was observed in Lane
2.

133



3.3.18 Determining the growth characteristics of meningococcal strains

Before undertaking phenotypic analysis of the cbbA and gapA-l mutants, it was first

essential to demonstrate that mutations of these genes did not significantly affect the

growth rate of N meningitidis. Growth and colonial characteristics of mutant strains

were assessed by visual inspection of colony morphology on agar plates and

monitoring the rate of growth in liquid culture. The mutant strains demonstrated

similar colony morphology and colour to that of wild-type strain MeS8 (data not

shown). The wild-type MeS8, isogenic cbbA and gapA-l null mutant and

complemented strains were then grown in BHI broth or OMEM with a starting OD600

adjusted to 0.06. Growth rate was assessed by measurement of 00600 of samples that

were removed from the culture at hourly intervals. The growth rate of the strains

with deletion of cbbA and gapA-l was not substantially different to that observed for

wild-type MeS8 and complemented strains. All strains were observed to grow to a

similar 00600 by the final time point of eight and 24 h. These experiments were

performed in triplicate and the results are presented in (Figure 3.27). In order to

further explore whether the addition of normal human serum may have any effect on

the growth of wild-type and mutant strains, meningococcal growth was monitored in

OMEM or DMEM supplemented with 10% human serum. Again, no substantial

differences between the growth rates of wild-type MeS8 and either cbbA and gapA-l

mutants were observed (data not shown).
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Figure 3. 27 Growth characteristics of meningococcal mutant and complemented
strains compared to their wild-type parent strain. (A) N meningitidis strain MC58-
WT, MC58LlcbbA, MC58LlcbbA cbbAEc( (B) N meningitidis strain MC58-WT,
MC58LlgapA-l, MC58LlgapA-l gapA_IEC( were grown in BHI broth in triplicate and
OD reading was taken at hourly intervals for 24 hrs. No substantial differences were
observed demonstrating that the cbbA and gapA-l mutation has no effect on in vitro
maximal growth of N meningitidis strain.
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3.4 Discussion:

This chapter describes the mutagenesis of cbbA and gapA-l in N. meningitidis. The

mutant strains were used to facilitate the functional characterisation of the products

of these genes in a number of in vitro and in vivo experiments (described in detail in

Chapter 4 & 5). The mutagenic plasmids were generated by cloning DNA fragments

flanking the cbbA and gapA-l, which contained one naturally-occurring Neisserial

uptake sequences. The cbbA and gapA-l mutants were successfully generated in N.

meningitidis strain MCS8. Additionally, cbbA was disrupted in four clinical isolates

of N. meningitidis. Importantly, both cbbA and gapA-l mutant strains were shown to

exhibit unexpected phenotypes in characterisation experiments (Chapter 4 & 5),

which initiated further analysis that led to subsequent complementation of both

mutations in their respective isogenic mutants. Complementation of mutants, in

which a wild-type copy of the gene is reintroduced in the respective isogenic-mutant

at an ectopic site, provides an important check that any observed phenotype can be

ascribed to the loss of the mutated gene rather than to polar effects of the mutation

on adjacent genes in the operon or additional undetected secondary mutations.

The complementation of chhA and gapA-l mutations in N. meningitidis strain MC58

was initially attempted using the pAP2-1 based plasmid pNJ095 and pNJ096,

respectively. The plasmid pAP2-1 is based on a gonococcal cryptic plasmid; it has a

porA promoter and a spectinomycin resistance cassette. The plasmid pNJ095 and

pNJ096 constructs were created by Dr Neil Oldfield and shown to express desired

proteins, FBA and GAPDH-l by immunoblot analysis. These plasmid borne genes

136



were assumed to be expressed independently on the plasmid rather than integrating

into the chromosome of the bacteria. Several attempts to introduce these plasmid

constructs by either natural transformation or electroporation in respective mutants

were unsuccessful. Alternatively, the complementation strategy based on the allelic

exchange was adopted. Under this strategy, the complementation was performed

using a pYHS25-based ectopic complementation vector in which the expression of

genes of interest is driven under the control of the cbbA promoter. Moreover, these

constructs facilitate insertion of genes of interest into the meningococcal genome at a

site that is unlikely to effect the expression of any other genes.

A pYHS25-based complementation plasmid was generated by cloning a ca.2.7 DNA

fragment, which contained two neisserial DNA uptake sequences and the

erythromycin resistance cassette flanked by the two meningococcal genes:

NMBOI02 & NMBOI03. Although the complementation plasmid contained

promoter sequences upstream of erythromycin resistance cassette, the sequences

were found to differ from that which was expected. Therefore, the cbbA and gapA-l

genes were cloned under the predicted promoter sequence upstream of cbbA. In an

attempt to identify promoter sequences upstream of FBA, analysis of the

organization of genes at the cbbA locus (NMB1869) was performed. This analysis

demonstrated that cbbA is the first gene in its orientation, so must have its own

promoter. The predicted cbbA gene (based on gene-finding algorithms used at the

Comprehensive microbial resource [CMR] database) starts from an internal ATG

start codon, meaning that the first 25 predicted amino acids in the ORF are not
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predicted to be part of the gene. This is in agreement with a visual inspection, which

shows that there is a good ribososmal binding site (RBS) upstream of the internal

ATG but not at the first ATG. The cbbA was amplified from a position upstream of

the predicted promoter to a position downstream of its stop codon and cloned in a

complementation vector. The resulting complementation plasmid was used to

transform N. meningitidis strain MC58&:bbA, Z4181~cbbA and ST18~cbbA,

returning wild-type copies of cbbA to these mutants. Successful complementation

was confirmed by PCR analysis and immunoblot analysis using RaFBA antiserum.

For complementation of gapA-l mutation, examination of the orientation of the open

reading frame around the gapA-l gene indicated that polar effect could not be

responsible for the attenuation of the gapA-lbecause gapA-l is the second and last

gene in the operon and that the immediately downstream gene is in the opposite

orientation. However, this mutant was also complemented in trans with a single copy

of the wild gene in an ectopic chromosomal location to generate MC58~apA-l

gapA_IEct. The genetic organization at the gapA-l locus (NMB0207), which is

downstream of NMB0208 (predicted to encode ferredoxin) was analysed to identify

potential promoter sequences. This showed that the two genes might be cistronic (i.e.

they may share a promoter). Bioinfonnatics prediction identified a possible promoter

upstream of gapA-l (NMB0207), but with only a weakly identified -35 region. The

gapA-l gene was, therefore, cloned downstream of the cbbA promoter. The gapA-l

gene was amplified from a position upstream of its ribosome binding site to a

position downstream of its termination codon to generate a complementation
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plasmid. The resulting plasmid designated pSAT-14 was introduced into N.

meningiiidis strain MC58~apA-l by natural transformation to reintroduce the wild-

type copy of gapA-l. Complementation of gapA-l at ectopic site was successfully

achieved in the gapA-l isogenic null mutant. Prior to employing the mutants in

characterisation experiments, in vitro assessment of growth rate was undertaken to

determine whether mutation of cbbA or gapA-l had any overt influence on

meningococcal growth. The wild-type MCS8, cbbA and gapA-l mutant and their

complemented strains were shown to grow at a similar rate without any noticeable

differences either in colonial morphology or by growth rate in broth culture.

Moreover, the addition of normal human serum to DMEM or BHI had no effect on

the growth of N. meningitidis strain MCS8 and both mutants. The pattern of growth

remained the same in the presence or absence of human serum in the culture

medium. These findings are consistent with the findings ofBaart et al., who showed

that the glycolytic pathway was non-functional in the meningococcus due to absence

of one of the important enzymes in this pathway: phosphofructokinase (Baart et al.,

2007).

In conclusion, cbbA isogenic mutants were generated in five meningococcal strains.

and a gapA-l isogenic mutant was generated in N. meningitidis strain MCS8. In

addition, the cbbA mutation was complemented in three of the isogenic mutants and

the gapA-l mutant was also complemented. Additionally, the growth of wild-type

MCS8 was shown to be unaffected by the mutation of either cbbA or gapA-l,
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demonstrating that the products of these genes were not required for optimal growth

of N meningitidis.
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CHAPTER 4: Molecular and immunological characterisation

of FBA and GAPDH·1

141



4.1 Introduction

The functional, molecular, and immunological characterisation of two of the

glycolytic enzymes namely FBA and GAPDH-l of N. meningitidis is described in

this chapter. It is important to note that recent genome-based studies have revealed

that one of the glycolytic (EMP) pathway enzymes, namely phosphofructokinase

(Ee 2.7.1.11) is absent from N. meningitidis strain Me8S, rendering this pathway

non-functional (Baart et al., 2007). Despite the inability to utilize the glycolysis

pathway, FBA, GAPDH-l and other enzymes required for glycolysis are maintained

in the meningococcal genome, presumably for other roles. In the absence of

alternative roles for these enzymes, spontaneous mutations would be expected to

accumulate in the encoding sequences. This chapter will focus on the

characterisation of both of enzymes with the aim of determining their conservation,

expression, cellular localization, and additional non-glycolytic role(s).

An important property for a putative vaccine antigen is that it should be well-

conserved across divergent isolates of meningococci and expressed naturally. To

confirm that the cbbA and gapA -1 genes were conserved across, and expressed in,

diverse clinical isolates of menigococci, whole cell proteins from a panel of

meningococcal strains and one strain each of N. gonorrhoeae, N. polysacchareae,

and N. lactamica were screened by peR and subsequently by immunoblot analysis

using RaFBA and RaGAPDH-l, respectively. To determine the enzymic activity,

rFBA was successfully purified under native conditions, which was then used to

confirm the functional activity of this enzyme. In keeping with the fact that
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glycolytic enzymes may reach the surface of nwnerous bacterial and fungal

pathogens, in this study surface-location of FBA and GAPDH-l meningococcal

glycolytic enzymes was investigated using a combination of molecular and

immunological techniques, including sub-cellular fractionation of meningococcal

cells, surface-biotinylation of intact meningococcal cells, enzyme-linked

immunosorbant assay (ELISA) and flow cytometry.

In an attempt to determine the surface location and evaluate the vaccine potential of

FBA in meningococci, whole cell ELISA was performed with polyclonal antiserum

raised against the denatured purified rFBA protein. Initial results were promising and

demonstrated that FBA was present in the outer membrane fraction of

meningococcal cells. To confirm these results, and assess surface-exposure we used

a technique that involves the biotinylation of surface-exposed proteins. Although

considered to be an invaluable approach in the identification of surface exposed

proteins, it failed to demonstrate surface-exposure ofFBA and GAPDH-l. To further

investigate the surface location of FBA, the polyclonal antiserum raised against

natively purified FBA was used to evaluate the accessibility of FBA epitopes on the

surface of live encapsulated N. meningitidis serogroup B bacteria using flow

cytometry analysis. Using the polyclonal antisera, raised against denatured purified

FBA and GAPDH-l protein, the susceptibility of meningococci to antibody-

dependent, complement-mediated bacteriolysis using in vitro serum bactericidal

assay was also investigated.
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In addition, to assess whether FBA is essential for bacteraemia in a novel transgenic

mouse model of infection, isogenic cbbA mutants created in five different genetic

backgrounds of N. meningitidis, were used by our collaborators at the Pasteur

Institute in Paris. The results of the animal studies have shown that all cbbA mutant

strains were significantly less able to cause bacteraemia compared to their wild-type

parent strains indicating that FBA may play a role in the pathogenesis of

meningococcal disease.

The aim of this chapter was to characterize the FBA and GAPDH-l enzymes of N.

meningitidis using molecular and immunological techniques. The key aims were to

determine their surface localisation and evaluate the vaccine potential of both

proteins. This chapter also aimed to explore the potential role of FBA in

meningococcal pathogenesis.
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4.2 Materials and methods

4.2.1 Bacterial strains, growth conditions and media

The bacterial strains and plasmids used in this chapter are described in chapter 2 and

3. Culture conditions for the growth of E. coli and N. meningitidis were as described

in sections 2.2.1 and 3.2.1, respectively. All meningococcal strains were clinical

isolates belonging to different serogroups and types (Table 4.1) and included

representative isolates of recognized hypervirulent lineages. The antibiotics were

used as appropriate at the following concentrations: kanamycin 50 flg ml" and

erythromycin 5 ug ml".

4.2.2 Preparation of whole cell proteins

Meningococcal cells (Table 4.1) were grown overnight in BHI supplemented with

Vitox (Oxoid) at 37°C in a shaking incubator (250 rpm). The cultures were harvested

by centrifugation at 13000 x g for 10 min. The pelleted cells were re-suspended in

sterile PBS and 5x SDS-PAGE sample buffer (Appendix A) to achieve Ix final

concentration of whole cell protein extracts. The whole cell lysate was briefly

sonicated using a lOs pulse to obtain a homogenous suspension, boiled for 5 min

and then mixed thoroughly before SDS-PAGE analysis.
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Table 4. 1 Clinical isolates of N. meningitidis.

Strain Country of Serogroup Sequence Clonal complex
origin type

ZIOOI USA A 4 ST-4 complex/subgroup IV

Zl035 Pakistan A ST-1 complex/subgroup VII

Z1054 Finland A 5 ST-5 complex/subgroup III

Z1213 Ghana A 4 ST-4 complex/subgroup IV

Zl269 Burkina Faso A 4 ST-4 complex/subgroup IV

Z1503 China A 5 ST-5 complex/subgroup III

Z3771 UK A 5 ST-5 complex/subgroup III

Z3842 Norway B 32 ST-32 complex/ET-5 complex

Z4181 Mali C 11 ST-ll compleX/ET-37 complex

Z4323 Israel C 11 ST-ll compleX/ET-37 complex

Z4662 Netherlands B 8 ST-8 complex/Cluster A4

Z4667 Netherlands B 48 ST-41144 complexILineage 3

Z4673 Netherlands B 41 ST-41/44 complexILineage 3

Z4676 Denmark B 37 ST-37 complex

Z4678 Germany B 19 ST-18 complex

Z5826 China A 7 ST-5 complex/subgroup III

Z6413 South Africa C 8 ST-8 complex/Cluster A4

Z6414 New Zealand C 66 ST-8 complex/Cluster A4

Z6418 Cuba B 33 ST-32 complex/ET -5 complex

Z6419 Austria B 40 ST-41144 complexlLineage 3

26420 Greece B 41 ST-41144 complexlLineage 3

26417 England C 11 ST-ll complexlET-37 complex

Z4684 Norway B 13 ST-269 complex

24685 Norway B 14 ST-269 complex

24701 Norway B 11 ST-ll compleX/ET-37 complex
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4.2.3 Strain distribution of cbbA and gapA-l in N. meningitidis

A panel of 26 strains of N meningitidis of known MLST-type (Table 4.1) was

selected to determine the expression of cbbA and gapA-l. The whole cell proteins

from these strains were analysed by immunoblotting and probing with anti-FBA or

anti-GAPDH-l serum, respectively.

4.2.4 Kinetic analysis of the fructose bisphosphate aldolase activity

Kinetic analysis studies of FBA protein were performed at the University of Leeds

under the supervision of Dr Alan Berry. A coupled enzymic assay was used to

determine FBP-aldolase activity. The assay was performed in 1 ml of 50 mM Tris-

HCI supplemented with 0.1 M potassium acetate buffer, pH 8.0 containing 0.1-5 mM

fructose 1, 6-bisphosphate, 0.2 mM NADH and 2 III of 10 mg ml" mixture of

glycerol-phosphate dehydrogenase-triosephosphate isomerase at 30DC. The reagents

were added in the following order: buffer, FBP, NADH and coupling enzymes. The

reaction was then started by adding purified FBA enzyme. The reaction mixture was

mixed well before recording the decrease in absorbance at 340 nm as the measure of

enzyme activity on an Uvikon 930 spectrophotometer. Activities were calculated

using the molar extinction coefficient for NADH as 6220 Mlcm·l. One unit of

aldolase activity was defined as the amount of enzyme which catalyses the oxidation

of 2 umol NADH per min in the assay system. Kinetic parameters were estimated

using the Origin Pro 7.5 software program.
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4.2.5 Sub-cellular fractionation of meningococcal cells

To investigate the sub-cellular localisation ofFBA and GAPDH-l in N. meningitidis

Me58, a traditional method of cell fractionation was used to prepare cytoplasmic,

periplasmic, inner membrane and outer membrane fractions of the celJ and each

fraction was probed with the anti-FBA or anti-GAPDH-l antiserum in order to

identify the cellular localisation of FBA and GAPDH-l, respectively, in N.

meningitidis. Meningococcal cells were grown overnight at 37°C in BHI broth with

or without supplement and DMEM supplemented with 10%human serum.

Periplasmic proteins were prepared by a modification of the method of Nossal and

Heppel (Nossal & Heppel, 1966) or a chloroform extraction method (Ames et al.,

1984). Briefly, cells from lOOml overnight cultures were harvested at 13000 x g for

2 min and the pellet was re-suspended in 1 ml of EB buffer (10 mM Tris-HCI pH

7.5, 10 mM MgCh, 25% sucrose), and washed twice in the same buffer. Finally, the

pellet was re-suspended in EB buffer and incubated for 10 min on ice. The

preparation was centrifuged at 13000 x g for 4 min, following rapid re-suspension in

0.4 ml of ice cold water and incubation on ice for a further 10 min, followed by

centrifugation at 13000 x g for 2 min. The upper fraction of the supernatant

consisting of periplasmic proteins was transferred to a fresh eppendorf and stored at -

20oe. After collection of the periplasmic fraction, the cell pellets (spheroplasts) were

re-suspended into 0.4 ml Tris-HCI (PH 7.5) and sonicated to release the cytoplasmic

contents. Non-disrupted cells were removed by centrifugation at 5000 x g for I min.

The upper clear supernatant was transferred to a fresh eppendorf and centrifuged at
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17000 x g for 30 min. The supernatant was collected as the cytoplasmic protein

fraction and stored at -20°C. The remaining pellet was re-suspended in 0.2 ml of 10

mM Tris-HCI pH 7.5,10 mM MgChand 0.2 ml of 10mM Tris-HCI pH7.5, 10mM

MgCh and 4% Triton X-100. The sample was incubated at 37°C for 30 min and then

centrifuged at 17000 x g for 30 min. The supernatant was collected as the

cytoplasmic membrane fraction and stored at -20°C. The final pellet (yielded after

collection of the cytoplasmic membrane fraction) was deemed the outer membrane

protein-enriched fraction. This pellet was re-suspended by brief sonication in 10mM

Tris-HCI pH 7.5, 10 mM MgChand then 0.5 ml of 10mM Tris-HCI pH7.5, 10 mM

MgCh and 2% Triton X-lOOwas added. The suspension was incubated at 37°C for

30 min and then centrifuged at 17000 x g for 30 min. This step was repeated to

remove any remaining soluble proteins to ensure the purity of fraction. Final pellet

was re-suspended in 0.2 ml IOmM Tris-HCI pH 7.5 and stored at -20°C.

4.2.6 Methodologies to assess surface exposure of FDA and GAPDH-l

4.2.6.1 Cellsurfacebiotinylationofmenmgococci

Cells of N. meningitidis strain MC58 were grown overnight on chocolate agar.

Colonies were collected and placed into 1ml of sterile PBS in an eppendorf tube (1.5

ml). Cells were harvested by centrifugation at 13000 x g for 5 min. Before being re-

suspended in carbonate buffer (Appendix A), cells were washed three times with

fresh ice-cold PBS. The optical density (OD6oo) was adjusted to 0.2 and biotin-

streptavidin (Sigma) was added to a final concentration of 0.5 mg mr'. The cells

were incubated at RT for 30 min and then harvested by centrifugation at 13000 x g
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for 5 min. In order to remove excess unbound biotin, the cells were washed two

times with sterile PBS. The cell pellet was briefly sonicated (10 s pulses). The

biotinylated samples were analysed by SDS-PAGE followed by immunoblotting

using anti-goat anti-biotin conjugated to alkaline phosphatase at a dilution of

1:30000. Membranes were developed using BCIP substrate (Section 2.2.15 and

2.2.16).

4.2.6.2 Enzyme linked lmmunosorbant assay (ELISA)

An ELISA was used to analyze the ability of polyclonal antisera raised against

recombinant proteins to bind to intact meningococcal cells. The antiserum was pre-

adsorbed with the mutant strain and serially diluted (1: 10, 1:100, and 1:1000) in

coating (carbonate) buffer (Appendix A), before being added in 100 J.l.1aliqoutes to

plate wells (Nunc 96-well plates, PolySorp) for 1 h at RT. Control wells were coated

with PBS containing 1% BSA (PBS-BSA) (negative control). Plate was washed

three times in PBS containing 0.05% Tween 20 (PBS-Tween) buffer. To block the

remaining binding sites 100 J.l.1of PBS-BSA was added to each well and incubated

for 1 h at RT. Microtiter plate wells were again washed three times with PBS-Tween

before adding the digoxygenin-Iabeled bacterial cells. For labeling, N. meningitidts

strains were grown in liquid culture and washed 3 times in PBS-Tween before being

resuspended in carbonate buffer to an OD of 0.1 at 600 nm. Bacteria were labeled by

adding 10 ug of digoxygenin (Roche) per 1 ml bacterial suspensions for 2 h at RT.

One hundred microlitres labeled cells were added to each well, and plates were

incubated for 2 h at RT. Plates were washed 5 times with PBS-Tween and incubated
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with anti-digoxigenin Fab fragment-conjugated antibody (1:5,000; Roche) in 1%

BSA in PBS-Tween (blocking buffer) at 100 III per well . Plates were incubated at

RT for an additional 1 hour and washed 5 times. One hundred microliters of 2, 2'-

azino-bis; 3-ethylbenzthiazoline-6-sulphonic acid (ABTS) (Chemicon international

ES004) substrate (5 mg ml"; Roche) were added to each well, and the absorbance

was measured at 405 nm after 30 min using an ELISA plate reader (BioTek).

4.2.6.3 Flow cytometryanalysis

The ability of antisera elicited by the recombinant FBA and GAPOH-l to bind to the

surface of pathogenic strains of N. meningitidis group B was determined by flow

cytometry using an indirect fluorescence assay. N. meningitidis strain MCS8 wild-

type and MC58~cbbA cells were grown to 00600 <0.7 to obtain mid-log phase

bacteria. Four samples per strain, each containing I x 107 CFU ml" in PBS, were

prepared for the flow cytometry analysis. In each case one sample was: untreated;

treated with primary antibody only; treated with secondary antibody only; or treated

with both primary and secondary antibodies. The cells were washed twice in sterile

filtered PBS by centrifugation at 5000 x g for 5 min. The test sample cells were

treated with either RaFBA or RaGPADH-l polyclonal antiserum (1:500) diluted in

PBS containing 0.1% BSA, 0.1% sodium azide and 2% foetal calf serum (PBS-BSA-

FCS buffer), whereas the control cells were re-suspended without antibody, and

incubated on ice for 2 h. The samples were washed 3 times in PBS and the test

sample pellets were mixed with secondary antibody, goat anti-rabbit IgO conjugated-

Alexa Flour 488 (Invitrogen) diluted 1:50 in PBS-BSA-FCS buffer. The control
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sample pellets were re-suspended in PBS-BSA-FCS buffer, and all samples were

incubated on ice for 2 h in the dark. Finally, the samples were washed in PBS twice

before being re-suspended in 1 ml PBS containing 0.5% formaldehyde to fix the

cells. The samples were then analysed for fluorescence using Coulter Altra Flow

Cytometer. The cells were detected using forward and log-side scatter dot plots, and

a gating region was set to exclude cell debris and aggregates of bacteria. A total of

50,000 bacteria (events) were analyzed for fluorescence signals. All buffers and

solutions were filtered using 0.2 um tilter to eliminate any small particles. As

negative controls, one sample was untreated, one sample was treated with primary

antibody only and one sample was treated with secondary antibody only.

4.2.7 Serum bactericidal assay

N. meningitidis strain MC58 was grown on chocolate agar overnight. Ten colonies

were inoculated into 5 ml MHB (without supplement) and incubated for two hours at

37°C in a shaking incubator. The 00600 run was measured and cells were harvested

(8000 x g for 5 min) from a 500 J.lI aliquot of the culture. The cells were re-

suspended in PBS/bovine serum albumin (BSA) to achieve an 00600 of 0.1.

The assay was performed in a sterile 96-well tissue culture plate, to which the assay

components (antibody, complement, and bacteria) were added sequentially. Each

well contained: 20 ).11of RaFBA or RaOAPDH-l antiserum (or pre-immune serum

taken from the same rabbit) pre-adsorbed with the cells of strain MC5McbbA or

MC58ilgapA-l, respectively (and de-complemented by heating to 56°C for 30 min),

152



10 J.l.1of bacteria (diluted to ca. 800 colony-forming-unites [CFU] per well), and 10

J.l.1of sterile baby rabbit serum (Pel-Freeze) as a source of complement. Sera were

used at the final dilution of 1:2, 1:4, 1:8, and 1:16. After the addition of all

components to the wells, the plates were covered and incubated for 60 min at 37°C

on a microplate shaker (150 rpm). Ten microliters from control wells were

inoculated on to chocolate agar at time zero. After 60 min incubation serial dilutions

were performed and 10 ,.11 aliquots were inoculated onto chocolate agar. The

chocolate agar plates were incubated as previously described (Section 3.2.1).

After overnight incubation, the number of colonies at each dilution of RaFBA and

RaGAPDH-l were counted, and the serum bactericidal titer was reported as the

reciprocal of the serum dilution yielding 2: 50% killing of the bacteria. Control wells

included: a serum with known bactericidal activity (anti-meningococcal whole cell);

a complement control containing PBS-BSA, complement and bacteria; an inactive

complement control containing RaFBA or RaGAPDH-l serum, heat inactivated

complement, and bacteria; an antibody control containing PBS-BSA, RaFBA or

RaGAPDH-l serum and the bacteria to determine that the organisms were viable in

antibody in the absence of complement).
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4.2.8 Transgenic mouse model of meningococcal bacteraemia

Murine bacteraemia studies were performed at the Pasteur institute by Or M. K. Taha

as previously described (Zarantonelli et al., 2007). Briefly, prior to challenging with

meningococcal isolates, mice were kept in a biosafety containment facility in cages

with sterile litter, water, and food according to institutional guidelines. The

experimental design was approved by the lnstitut Pasteur Review Board (France).

Mice were infected at 6 weeks of age by intraperitoneal challenge with standardized

inocula (5 x 106 CFU). Bacterial counts in the blood were determined 2,6, and 24 h,

after meningococcal challenge by plating serial dilutions of blood samples on GCB

medium and were expressed in loglO CFU ml" of blood. Student's t-test and analysis

of variance were used to examine the data. A P value of 0.05 was considered

statistically significant.
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4.3 Results

4.3.1 Fructose bisphosphate aldolase activity

A coupled enzymic assay using native recombinant FBA was used to confirm that

the purified meningococcal FBA was active as a fructose bisphosphate aldolase (Fig.

4.1), despite the apparent lack of an intact EMP pathway in this organism. The

kinetic parameters for the purified enzyme for the cleavage of FBP were estimated as

Km (FBP) = 0.05 mM and kcat = 126 min-toThese values are similar to those found

for FBA enzymes from a variety of sources such as E. coli (Km (FBP) - 0.19 mM

and kcat - 490 min-I) (Plater et al., 1999).
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Figure 4. 1 Kinetic analysis of the rFBA The enzyme activity was measured using
different substrate (FBP) concentrations (0.1 mM-S.O mM) under standard reaction
conditions for one min. A decrease in absorbance at 340 nm was recorded as the
measure of enzyme activity. Activities were calculated using the molar extinction
coefficient for NADH as 6220 M-t cm-toKinetic parameters were estimated using the
Origin Pro 7.5 software program.
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4.3.2 Distribution and expression of cbbA in N.meningitidis

Due to the accessible outer membrane location, immunogenic nature and potential

roles in pathogenesis, glycolytic enzymes have been suggested as possible candidate

vaccine antigens against several infections caused by Gram-positive bacteria and

fungi (Gil-Navarro et al., 1997; Kim & Dang, 2005; Ling et al., 2004; McCarthy et

al., 2002). One important prerequisite for a vaccine candidate is that a large

proportion of target strains should possess and express the relevant antigen. To

assess the presence of the cbbA gene and FBA expression in the N. meningitidis

population, 26 clinical isolates of N. meningitidis, representative of the three main

disease-associated serogroups (A, B, C,), were screened by PCR and/or immunoblot

analysis. The analysis also included one strain each of N. gonorrhoeae, N.

polysacchareae and N. lactamica. All of the isolates examined were positive by PCR

for the presence of cbbA. The PCR resulted in amplification of a single DNA

fragment of ca. l-kb in all assayed strains (Fig. 4.2 A and B). Having established that

cbbA is present in all strains tested, we investigated expression of its gene product

FBA. Total cellular proteins were immunoblotted using the anti-FBA rabbit serum.

A protein band with an apparent molecular mass of ca. 38-kDa corresponding to

FBA was detected in all strains tested (Fig 4.3 A, B, C). In addition, N. lactamica, N.

gonorrhoeae, and N. polysacchareae were also positive for FBA expression (data not

shown).
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Figure 4.2 Distribution of the cbbA gene and prevalence of cbbA in diff r nt clini al
isolates of N. meningitidis of known-MLST type (A) Lane I, DNA marker, lane 2,
MC58-WT, lanes 3-11 Z1035, Z1054, Z1213, Z1503, Z4676, Z1534, Z3771, Z 42,
Z4662 respectively (B) Lane 1, DNA markers, lanes 2-4,- Z467 , Z 41 ,Z641 ,
Lane 5, MC58llcbbA, lanes 6-11, Z6420, N gonorrho ae, Z41 I, Z4667, Z4 7 ,
Clone 12 CST-11), respectively. PCR-amplified products c mpri ing th mplet
cbbA (1065 bp) of 17 meningococcal strains with known ML T-typc were b crvcd
in all strains examined.
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Figure 4. 3 FBA expression in divergent clinical isolates of N. meningitidis. Whole
cell proteins were resolved by 10% SOS-PAGE followed by imrnun bl t analysi
using RaFBA. The FBA is present in whole-cell Iysates of all strain examined (A)
Lane 1, protein markers, lanes 2-5, Z1035, Z1054, Z1213, Z 1269 r sp ctively, lane
6, Me58~cbbA, lanes 7-10, Z1503, Z377l, Z3842, Z4l81, respectively (B) Lane I,
protein markers, lane 2, Me58-WT, lanes 3-10, Z4662, Z4667, Z4673, Z4676,
Z4678, Z5826, Z6413, Z6414, respectively (C) Lane 1, prot in markers, lane 2,
Me58-WT, Lane 3, Me58~cbbA, Lanes 4-8, Z4684, Z4685, Z4701 Z6417, Z4 2 ,
respectively. A band corresponding to FBA was observed in all train examined
except the cbbA null mutant.
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4.3.3 Sub-cellular location of cbbA inN. meningitidis

To localise cbbA in the meningococcus, and to determine whether FBA may be

exported to the surface of N. meningitidis, sub-cellular fractions were probed with

RaFBA. FBA was predominately detected in the outer membrane-enriched and the

cytosolic protein fractions of wild-type MeS8 and complemented cbbA isogenic

mutant strain. (Fig. 4.4 A and B), but was absent from the concentrated culture

supernatant (secreted protein fraction). FBA was not detected in fractions derived

from Me58dcbbA (Fig. 4.4 D). Although experimental artifacts due to partial cell

lysis cannot be ruled out, it is clear that these proteins have a strong propensity to

interact with the cell wal1of many bacteria. However, to exclude the possibility that

the presence of FBA in outer membrane-enriched fraction was due to autolysis with

the attachment of released FBA to the surface of unbroken cells, whole cell lysate of

MeS8- WT cells was mixed with intact MeS8LkbbA cells and incubated at RT

followed by cell fractionation. Interestingly, FBA was not detected in the outer

membrane-enriched fraction of these cells (Fig. 4.4 e) confirming that the FBA does

not bind to the cell surface as a consequence of autolysisicellieakage. Additionally,

immunoblotting experiments with antiserum against PorA, a known outer membrane

protein of N. meningitidis, gave an identical profile except that PorA was absent

from the cytosolic fraction (data not shown). These results confirm that

meningococcal FBA is a cytosolic protein, but is also translocated to the outer

membrane.
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Figure 4.4 Subcellular localization ofFBA (A) MC-WT (B) MC58 cbbA cbbA/~(·'
(C) MC58.1cbbA mixed with MC58-WT sonicated lysate (D) MC5 cbhA ell
fractionation. In all Figs, lane 1, protein markers, lanes 2, peripia mi pr teins, Ian
3, cytoplasmic protein-enriched fractions, lane 4, cytopla mic m mbrane pr t in-
enriched fractions, and lane 5, outer membrane protein-enriched fraction (adju tcd
to ensure equal protein loading). All samples were eparated on a 10% a rylarnid
gel and probed in immunoblotting experiments with RaFBA. A band orresp nding
to FBA was observed in outer membrane enriched fraction of WT-M 5 and th
complemented strain and was absent from the isogenic null mutant.
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4.3.4 Distribution and expression of gapA-l in N. meningitidis strains

The gapA-l gene has been shown to be up-regulated following meningococcal

interaction with host cells demonstrating that it may be involved in a critical step of

pathogenesis. We examined the presence of gapA-l and its expression in population

of N. meningitidis. A total of 17 strains of known MLST-type representing most of

the known virulent lineages were screened by peR for the presence of a gapA-l

homologue. All neisserial isolates tested by this peR screening method yielded a

single amplified product of the expected size ca. l-kb corresponding to gapA-l (Fig.

4.5 A and B). Additionally, after demonstrating that gapA-l was present across all

the meningococcal strains screened by peR, we extended this analysis to

demonstrate that gapA-l is expressed in vitro in the same panel of strains. Whole-

cell lysates of the 17 neisserial isolates were examined by immunoblot analysis to

detect the presence of a GAPDH-l protein using RaGAPDH-l antiserum. All

neisserial isolates expressed an immunoreactive GAPDH-l protein, with the

exception of Me58~apA-l, demonstrating that the gene is expressed in diverse

clinical isolates of meningococci (Table 4.1, and Fig.4.6 A, B and e). In addition,

single isolates of N. gonorrhoeae strain FA1090 was also examined. The protein

band corresponding to the GAPDH-I was detected in this isolate (Fig. 4.6 C).
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Figure 4. 5 Distribution of the gapA-I gene in diverse clinical i olates of N.
rneningitidis (A) Lane 1, DNA markers, Jane 2, MC58- WT, lanes 3-10, Z I035,
Z1054, ZI213, ZI503,Z4676, Z1534, Z3771, Z3842, respectively. (8) Lane I, DNA
markers, lane 2-10, Z4678, Z6413, Z6414, Z6420, N. gonorrho ae FA I090, Z41 I,
Z4667, Z4673, Clone 12 (ST-Il), respectively. PCR-amplified pr du ts r the
expected size of gapA-I (1032 bp) were observed in all 17 meningoc ccal train
examined.
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Figure 4.6. The gapA-l gene is expressed across divergent clinical is latcs of N.
meningitidis. Whole cell extracts were separated by 10% SDS-PAG followed by
immunoblot analysis using RaGAPDH-l. The GAPDH-l i dete tcd in wh I - ell
Iysates of all strains tested. (A) Lane 1, protein mark rs, lane 2, M 5 -WT, lane 3,
MC58tlgapA-l, lanes 4-10, Z1035, Z1054, Z1213, Z1503, Z4676, Zl5 4, Z 771,
respectively (B) Lane 1, protein markers, lane 2, MC58-WT , lane 3, M 5 ap'A-L,
lanes 4-10 Z4678, Z6413, Z6414, Z6420, N. gonorrhoeae strain A I090, Z41 I,
Z4667, respectively (C) Lane 1, protein markers, lane 2, M 5 -W , lane
MC58tlgapA-l, lanes 4-6, Z4673, Z3842, Clone 12 (ST-II), re p ctively. A pr tcin
band corresponding to GAPDH-l was observed in all strains xamin cl c 'pt
MC58tlgapA-l mutant strain.
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4.3.5 Sub-cellular localization of gapA-l inN. meningitidis

Since the GAPDH has been described to be present on the surface of cells of several

microbial species (Fernandes et al., 1992; Goudot-Crozel et al., 1989; Pancholi &

Fischetti, 1992) and recently three proteins from N. meningitidis (enolase, DnaK, and

peroxiredoxin), which are usually intracellular proteins, have been shown to be

located in the outer membrane of N. meningitidis (Knaust et al., 2007) , we

undertook to investigate the presence of a cell wall-associated form of GAPDH in

outer membrane-enriched fractions obtained from N. meningitidis. The sub-cellular

fractions of wild-type MCS8 were probed using RaGAPDH-l. GAPDH-l was

predominately detected in the cytosolic fraction and a proportion was also present in

the outer membrane-enriched fraction, but was absent from the concentrated culture

supernatant (secreted protein fraction) (Fig. 4.7). A trace amount, possibly

representing transient GAPDH-l during translocation across the inner membrane,

can also be seen in the cytoplasmic-membrane enriched fraction. GAPDH-l was not

detected in fractions derived from MCS8~apA-l (data not shown). These results

confirm that meningococcal GAPDH-l is a cytosolic protein, but is also found in the

outer membrane.
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Figure 4. 7 Sub-cellular localization of GAPDH-l in N meningitidis MC58- WT cell
fractionation Lane 1, protein markers, lanes 2-6, periplasmic protein-enriched
fraction, cytoplasmic membrane protein-enriched fractions, cytoplasmic membrane
protein-enriched fractions, outer membrane protein-enriched fractions, and secreted
proteins (and adjusted to ensure equal protein loading) respectively. Protein wer
separated on a 10% acrylamide gel and probed in immunoblotting experiments with
RaGAPDH-l. A protein band corresponding to GAPDH-l was ob erved in outer
membrane-enriched fractions.
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4.3.6 Determining the surface exposure of FBA and GAPDH-l

4.3.6.1 Biotinylation of surface-exposed proteins

As a complementary approach to investigate the surface exposure of FBA and

GAPDH-l in N meningitidis, a novel biotinylation method was employed. Thi

method has been shown to discriminate truly surface-accessible proteins from

cytoplasmic and peri plasmically oriented proteins (Myers-Morales et al., 2007). This

experiment was aimed to biotinylate the surface of intact N meningitidi -WT, cbbA

and gapA-l null mutant strains followed by SDS-PAGE analysis and

immunoblotting using anti-biotin antibodies. The protein bands corresponding to

FBA and GAPDH-l were anticipated to be present only in MC58-WT samples but

should be absent in the respective isogenic null mutants. As can be seen in Fig 4.8

due to either high background or a large amount of biotin-labeled proteins, no clear

difference in the profiles of the three samples was observed on immunoblotting.

1 2 3 4
kDa ;;:~

83-

62-

47-

32-

25-

Figure 4. 8 Immunoblot analysis to investigate the surface-expo d bi ntinylat d
proteins of N meningitidis Lane 1, protein markers, lane 2, M 5 -W , lane 3,
MC58t1cbbA, lane 4, MC58t1gapA-l
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4.3.6.2 Whole cell ELISA

To investigate the presence of FBA on the surface of N meningitidis, an FBA

ELISA was performed using whole cells of N meningitidis followed by probing with

different concentrations of anti-FBA antibodies. As the target antigen, the ELISA

included encapsulated N. meningitidis cells from strain Me58 or the same strain in

which the cbbA gene had been deleted (Me58~cbbA). With anti-FBA antiserum,

strain Me58 showed significantly higher binding (P value 0.015) in the whole-cell

ELISA compared to that of its isogenic cbbA mutant strain (Fig. 4.9). The ELISA

demonstrated that the FBA antiserum recognized antigen(s) on the meningococcal

cell surface, indicating that the protein was present and in a conformation that could

be recognized by the serum raised against the recombinant protein.

0.7 • MCSS·WT
MC5McbbA

0.6

0.5 I

It) 0.4~
c 0.30

0.2

0.1

0

Figure 4. 9 Whole bacterial cell ELISA to determine the binding of anti-FBA
antibodies to intact N meningitidis cells. ELISA plates were coated with various
dilutions of rabbit anti- FBA antibodies. The plate contents were reacted with labeled
intact N. meningitidis cells followed by anti-digoxygenin antibodies. ABTS substrate
was added and absorbance was measured at 405 nm in a microplate ELISA reader
(BioTek). Bars denote standard error of the mean. Experiments were repeated three
times, with consistent results.
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4.3.6.3 Flow cytometry analysis

In order to provide confirmatory evidence for the localization of FBA on the

bacterial cell surface, and to substantiate the sub-cellular fractionation results

showing the outer membrane localisation of FBA, the poJycJonal mono-specific

antiserum raised against the natively purified rFBA (nRuFBA) was used to probe

intact N. meningitidis strain MCS8 cells followed by treatment with secondary

antibody conjugated with Alexa Flour 488. The stained cells were visualized by flow

cytometry. Control cell samples that were either treated with nRuFBA polyclonal

antiserum alone or with Alexa Flour conjugated secondary antibody alone did not

produce significant fluorescence signals. In comparison, the cells stained with both

nRaFBA antibody followed by Alexa Flour 488 conjugated secondary antibody,

demonstrated a significant shift in the fluorescence signals (approximately 79% of

cells in the population were strongly fluorescent), indicating cell surface localization

of FBA (Fig. 4.10 A). As an additional negative control, MC58~cbbA mutant cells

were also examined using the same conditions. The FBA mutant cells showed no

significant fluorescence signal (Fig. 4.10 B). The proportion of surface expressed

FBA seems to be promising and may be sufficient to endow a biologically distinct

phenotype to the bacterium. These results are also consistent with data obtained from

the association assays, which showed that FBA is required for optimal in-vitro

interactions with cultured epithelial and meningothelial cells.
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Figure 4. 10 Flow cytometry analysis of MC58 wild-type (A) or MC58~cbbA cells
(B) for FBA surface localization. Cells were stained with nRaFBA alone, (control 1)
anti-rabbit IgG-Alexa Flour 488 conjugate alone (control 2) or both (test).
Flourescence was displayed as a histogram. The histogram area in M2 represents the
population offluorescently labeled meningococci.
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To investigate the surface exposure of GAPDH-I, flow cytometry analysis was

performed on live bacteria during the logarithmic phase of growth, using GAPDH-l

antiserum. The encapsulated wild-type MCSS and isogenic gapA-I mutant strains

were stained with anti-GAPDH-l followed by Alexa Flour 488. The fluorescence

intensity was measured by flow cytometry. As shown in Fig. 4.11 A and B,

polyclonal anti- GAPDH-l antibodies failed to bind to either the encapsulated

MCS8-WT or the MC5S.1.gapA-I strain demonstrating that GAPDH-l was not

surface exposed in capsulated strains. There can be several reasons for failure of

GAPDH-l to bind to the surface of encapsulated meningococci. RaGAPDH-l was

raised against the denatured purified protein and linear proteins may lack important

conformational epitopes present in the naturally folded protein, or the protein may

reach to the surface transiently and at specific phases of growth. Additionally, it is

also known that the polysaccharide capsule can functionally mask membrane

proteins. We, therefore, used a capsule mutant MCS8 strain and followed the binding

of the antibodies to the surface of intact cells by flow cytometry. The data

demonstrated a significant shift in the fluorescence signal (Fig. 4.12) (approximately

25% of cells in the population were fluorescent) indicating that GAPDH-I was

available for binding in the absence of polysaccharide capsule suggesting that the

presence of the capsule may hinder the binding of the antibody. In summary.

GAPDH-I is an outer membrane localized protein which is only surface exposed in

the non-capsulated strains. In contrast, in a capsulated background the OAPDH-l

could be masked by the capsule.
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Figure 4. 11 Flow cytometry analysis ofMC58 wild-type (A) or MC58~gapA-l cells
(B) for GAPDH-l surface localization. Cells were stained with RaGAPDH-l alone,
(control 1) anti-rabbit IgG-Alexa Flour 488 conjugate alone (control 2) or both (test).
Flourescence was displayed as a histogram.

--- :\IC5Msi.aD(Controll)
--- MC586.silD (ControI2)
--- MC58~silD(fest)

1041

1
Flourescence intensity

Figure 4. 12 Flow cytometry analysis showing binding of mouse polyc1onal anti-
rGAPDH-l antiserum to live nonencapsulated N. meningitidis strains Cells were
stained with RaGAPDH-l alone, (control 1) anti-rabbit IgG-Alexa Flour 488
conjugate alone (control 2) or both (test). Flourescence was displayed as a
histogram. The histogram area in M2 represents the population of fluorescently
labeled meningococci.
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4.3.7 Serum bactericidal assay (SBA)

The ability of RaFBA and RaGAPDH-I antisera to kill meningococcal cells in

presence of complement was determined. Prior to using the sera in bactericidal

assays, both polyclonal antisera were pre-adsorbed with their respective isogenic

mutant strains to remove non-specific antibodies that might result in non-specific

killing. The antisera were used at various dilutions: 1:10, 1:50, and I: 100.

Bactericidal activity was not observed with antisera raised against either FBA or

GAPDH-l (data not shown). Positive control assays using anti-whole meningococcal

serum consistently gave 100% killing. No killing was seen in control wells lacking

active complement, serum, or both. To exclude the possibility that capsule may limit

the accessibility of the proteins on the surface, a siaD (encoding capsule) mutant N.

meningitidts strain MeS8 was used in the assay. Unfortunately, this strain seemed to

be sensitive to both pre-immune and immune sera, thus, it was not possible to

interpret the impact of either of the antisera on the killing of N. mentngitidis siaD

mutant strain.
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4.3.8 Evaluation of cbbA mutant strains using a transgenic mouse model of

infection

A transgenic mouse model expressing human transferrin (bTf) bred under specific-

pathogen-free conditions was established from line 803 C57B6/SJU mice at the

Institut Pasteur (Zarantonelli et al., 2007) to use as a model of meningococcal

bacteraemia. To provide further insights into the potential role of FBA in the

development of bacteraemia, six-week-old female B6/SJL mice expressing (hTf)

were infected by intraperitoneal injection of N. meningitidis-WT, Z4181-WT, Clone

12-WT (ST-18), 24198-WT (ST-ll) (Zarantonelli et al., 2007), and their isogenic

cbbA-mutant strains at a dose (5 x 106 CFU) in groups of five mice for each wild-

type, and compared to a group of five mice that were administered cbbA mutant

strain. Mice were able to survive with the 5 x 106CFU dose, and bacteraemia could

therefore be assessed by blood cultures at 2, 6, and 24 h post inoculation. All

meningococcal wild-type isolates examined were shown to induce bacteraemia in the

transgenic mouse model whereas the isogenic mutant strains showed a reduced

capacity to establish bacteraemia. The number of bacteria recovered at different time

points is shown in (Fig. 4.13 and Table 4.2) and demonstrate that there were

significant differences in the level of bacteraemia established by the mutant strains

compared to the wild-type.
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Table 4.2 Meningococcal strains used for mouse model of meningococcal
bacteraemia. The data denote bacteria per milliliter of blood using means of 5 mice
per time point and per strain.

Strains t=O 2h 6h 24h. . .MC58-wt
MC58-tlFBA
Z4181-wt
Z4181-MBA
Clone 12 -wt (ST-I8)
Clone12-MBA
24198wt (ST-11)
24198L'1FBA

3.45 x 10
1.25 X 107

1.10x107
2.40 x 106

5.50 x 106

2.60 x 106

5.75 x 106

1.90 x 106

2.82 x 10
1.46 x 105
2.38 x 106

1.20 x 104

2.45 x 106

2.10 x 104

2.16 x 106

3.60 x 106

2.54 x 10
1.05 x 105
3.50 x 106

2.72 x 103

1.31 x 106

1.60 x 104

4.03 x 106

2.90 x 104

2.60 x 10
1.78 x 102

2.51 x 106

1.00 x 101

2.21 x 105
4.20 x 101

3.50 x 105
1.00 x 101

1.0E+'08

1.0E+'07

1.0E+06

E 1.0E+05

~o 1.0E+04-Cl!!: 1.0E+'03
1.0E+'02

1.0E+01

1.0E+OO

Time (hrs)

-+-MC58·wt

-+-MC58. ~FBA

-+-Z4181 . wt

~Z4181 . ~FBA

-Io-Clone12 -wt (ST.18)

Clone12 . ~FBA

-+-24198wt (ST.11)

24198~FBA

Figure 4. 13 Bacteraemia in hTf transgenic mice after intraperitoneal meningococcal
challenge. Transgenic mice expressing hTf (B6/SJL hTt) were challenged
intraperitoneally with 5 x 106 CFU of N meningitidis- WT, Z4181- WT, Clone 12-
WT (ST-18), 24198-WT (ST-ll) and their isogenic cbbA-mutant strains. The data
are the means and standard deviations from five independent experiments with
groups of five mice per time point in each experiment.
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4.4 Discussion

This chapter describes the molecular and functional characterisation of FBA and

GAPDH-l of N. meningitidis, with the aim of identifying their additional non-

glycolytic roles. Recent qualitative proteomic studies of N. meningitidis have shown

that OMV vaccines also contain a high number of periplasmic and cytoplasmic

proteins (Ferrari et al., 2006; Jun et al., 2007; UIi et al., 2006; Vipond et al., 2006).

For example in OMVs from serogroup B N. meningitidistlgna33, although the vast

majority of proteins belonged to the outer membrane compartment, the minority of

cytoplasmic proteins were experimentally shown to be surface-associated and

exposed in N. meningitidis, Here we demonstrate that FBA and GAPDH-l of N.

meningitidis, besides being present in the cytoplasmic compartment, are also outer

membrane localised proteins.

According to our in silico sequences analysis, cbbA and gapA-l appears to be highly

conserved genes in N. meningitidis. peR analysis confirmed the presence of cbbA

and gapA-l in all clinical isolates tested. Expression ofFBA and GAPDH-l (ca. 38-

kDa and ca. 37-kDa, respectively) was detected in whole cell proteins preparations

from all meningococcal strains, representative of different hyper-virulent lineages,

examined in this study. In an effort to establish whether FBA and GAPDH-l localise

on the surface of meningococci, a cell fractionation approach was employed (Nossal

& Heppel, 1966). The fractionation results demonstrated a protein band of apparent

molecular mass of ca. 38-kDa corresponding to FBA in the cytosolic and outer

membrane fractions. This indicates that FBA is localised to the outer membrane as
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well as the cytoplasm of N. meningitidis. Similarly, GAPDH-l was also found

localised to the outer membrane of N. meningitidis. In spite of a growing list of

cytoplasmic proteins identified on the bacterial surface, the mechanism(s) of their

surface localization and attachment to the bacterial envelope remain unclear. These

proteins do not appear to possess signal peptides that direct proteins into secretory

pathways, and nor do they appear to have any known cell wall-anchoring motifs.

Further experiments are needed to elucidate the mechanism(s) of delivery and

attachment of these proteins to the bacterial surface.

Based on the sub-cellular fractionation results indicating the outer membrane

localisation ofFBA and GAPDH, surface expression ofFBA and GAPDH-I proteins

was further investigated by using a combination of immunological and molecular

techniques. Initially, a biotin labelling technique was applied to intact bacterial cells

(Myers-Morales et al., 2007). The data from immunoblot analysis profile showed a

large number of biotinylated proteins which masked the protein bands corresponding

to FBA or GAPDH-l. Subsequently, a whole-cell ELISA was used to determine the

accessibility of polycIonal antiserum to bind to the surface of encapsulated

meningococci. The data provided evidence that the binding of polyclonal anti-FBA

serum to the intact Me58 wild-type cells was significantly higher compared to the

isogenic null mutant indicating the surface expression of FBA in N. meningittdis. To

further support these findings, flow cytometry analysis was performed, The data

presented here demonstrates that FBA protein was abundantly associated with the

external side of the bacterial membrane and accessible to antibodies as indicated by
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the fluorescence intensity shift observed upon antibody binding. FBA was available

at the cell surface with levels of fluorescence comparable to those found with

recognised surface antigens such as NMBI468 (Chi-An et al., 2008), NMB2132 and

NMB2091 (Giuliani et al., 2006), although considerably lower than other surface

antigen such as fHbp (Giuliani et al., 2006). Despite being found localised to the

outer membrane by the cell fractionation method, the results of flow cytometry

indicated that the GAPDH-I was not accessible to antibodies on the surface of

encapsulated wild-type cells. A possible explanation of the failure of GAPDH-l

antiserum to bind to the bacterial surface could be that surface exposure of this

protein may be transient or only occurring during specific phase of the

meningococcal cell cycle, or it may indeed be located on the outer surface of the

membrane, but inaccessible from the antibodies due to the polysaccharide capsule. In

a previous study, Grifantini et al. used microarrays to show that expression of gapA-

I was up regulated in meningococcal strain MCS8 (4.8-fold) following contact with

human 16HBE14 epithelial cells (Grifantini et al., 2002a; Grifantini et al., 2002b).

Subsequent flow cytometry experiments showed that GAPDH-l could be detected

on the cell surface of free grown and adherent meningococci (Grifantini et al.,

2002b). However, the methodology used involved a pre-treatment of cells with 70%

ethanol to permeabilize the capsule layer, thus making it unclear if GAPDH-l is

antibody-accessible in encapsulated meningococci. To address this issue, a siaD

(encoding capsule) mutant meningococcal strain was probed with GAPDH-l

antiserum followed by flow cytometry analysis. The data showed a significant shift

in the intensity of fluorescence indicating that GAPDH-l could only be detected on
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the meningococcal cell surface in mutants lacking capsule, suggesting that

GAPDH-I is usually masked.

The induction of functional antibodies after immunization with recombinant proteins

has been a tremendous challenge during the evaluation and development of

meningococcal vaccine candidates. Anti-FBA and anti-GAPDH-l were tested for

their ability to promote in vitro complement-mediated killing of N. meningitidis

MCS8. Unfortunately, neither of the antibodies was found to exhibit bactericidal

activity against N. meningitidis. The reason for lack of bactericidal activity could be

due to the fact that the FBA and GAPDH-l antisera used in the serum bactericidal

assay were raised against denatured purified recombinant proteins. Several studies

with recombinant meningococcal antigens, including PorA (Christodoulides et al.,

1998; Niebla et al., 2001) and PorB (Wright et al., 2002), have clearly demonstrated

that the production of bactericidal antibodies is dependent on refolding of the protein

to produce a native conformation. Hence, these antibodies were unlikely to recognise

surface-exposed, conformational epitopes, which may be important in vivo.

Antibodies raised against histidine-tagged NspA were shown to recognise epitopes

that are present in denatured NspA but not in native NspA on the surface of live

meningococcal cells (Moe et al., 1999). In future work, the bactericidal activity of

anti-FBA serum raised against natively purified rFBA will be determined.

This study demonstrates that both FBA and GAPDH-l, well-known cytoplasmic

proteins, are present on the surface of neisserial cells and so may be involved in the
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normal in vivo immune response to live meningococcal cells. The presence of

neisserial "cytoplasmic" proteins on the surface has been reported previously. For

example, Ferrari et al. (Ferrari et al., 2006) found enolase, Hsp60, TufA and

glyceraldehyde 3-phosphate dehydrogenase (gapA-2 not gapA-l) on the neisserial

surface by flow cytometry while other researchers have identified RplL (Spence &

Clark, 2000; Spence et al., 2002), and DnaK, (Knaust et al., 2007) as being surface

exposed.

In addition, FBA was shown to be essential for bacteraemia in a novel transgenic

('humanised') mouse model of infection. All five isogenic cbbA mutants created in

five different genetic backgrounds of N. meningitidis were impaired in their ability to

sustain bacteraemia compared to their wild-type parent strains indicating that FBA

may play a potential role in the pathogenesis of meningococcal disease. This result

suggests that the mutants were less able to access the bloodstream and/or to survive

in the bloodstream after intraperitonial inoculation compared to Wild-type. In future

work, the antiserum raised against purified FBA in native form (retaining aldolase

activity) will be used in a passive protection experiment using the transgenic mouse

model to determine whether anti-FBA antibodies elicit a protective response against

N. meningitidis.

In summary, purified recombinant FBA protein was found to be ezymatically active.

The data represented in this chapter indicates that FBA and GAPDH-I are both

highly conserved in pathogenic N. mentngitidis strains and that FBA and GAPDH-l
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are constitutively expressed in all N. meningitidis strains examined. Besides their

cytosolic location they are also localised to the outer membrane of N. meningitidls.

Additionally, FBA was shown to be available to antibodies on the surface of intact

capsulated N. meningitidis cells. This is the first time that FBA has been

demonstrated on the surface of a Gram-negative bacterium. However, GAPDH-l

was only accessible to antibodies on the surface of non-capsulated meningococci.

Furthermore, in vivo studies demonstrated the potential role of FBA in the

pathogenesis of the meningococcal disease.
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CHAPTER 5: Determining the roles of FBA and GAPDH·1 In

meningococcal association to human cells
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5.1 Introduction

In this chapter the potential roles of FBA and GAPDH-l in meningococcal adhesion

to, and invasion of, cultured human epithelial and endothelial cells are discussed.

Adhesion of pathogens to host tissue has gained increasing attention as an important

initial event in the pathogenesis of bacterial infections before colonization and

eventual invasion of these surfaces (Beachey, 1981). The meningococcus is a

common commensal of the human nasopharynx, which in a smaIl percentage of

carriers, crosses the epithelial barrier and gains access to the bloodstream.

Colonization of the nasopharynx is a complex and incompletely understood process,

which involves long-range attachment to host epithelial cells via type IV pili,

remodeling of the meningococcal outer membrane, and interactions between several

additional bacterial adhesins including Opa, Ope, LOS, tHbp, PorA, HrpA, PorB and

NadA and proposed or demonstrated host cell receptors including platelet activating

factor, CD46, CEACAM 1, vitronectin and u-actinin integrins, complement receptor

3, laminin and the GP96 scavenger receptor (reviewed in Stephens, 2009). Following

bacteraemia, N. meningitidis may bind to and subsequently cross the blood-

cerebrospinal fluid (B-CSF) barrier to enter the sub-arachnoid space, resulting in

acute and purulent meningitis (Nassif et al.• 2002).

Glycolytic enzymes, such as GAPDH, enolase and FBA have been reported as

potential virulence factors in a variety of organisms (Pancholi & Chhatwal, 2003).

Although long recognized for their cytosolic role in glycolysis and gluconeogenesis,

additional or 'moon-lighting' functions have been increasingly recognized. In
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particular, despite lacking identifiable secretion signals, glycolytic enzymes have

been found on the bacterial cell surface where they interact directly with host soluble

proteins and surface ligands. InMycoplasma genitalium, surface-associated GAPDH

was shown to be important for adhesion to human mucin (Alvarez et al., 2003). In S.

pyogenes and C. albicans surface-associated GAPDH was shown to bind to

fibronectin (Gozalbo et al., 1998; Pancholi & Fischetti, 1992) In S. pneumoniae,

surface-associated FBA was shown to bind to transmembrane receptor belonging to

the cadherin superfamily (Blau et al., 2007). FBA and GAPDH were also shown to

be immunogenic in humans and capable of inducing a protective immune response

against S.pneumoniae in mice (Ling et al., 2004). In addition, FBA was found to be

a surface-localized immunogenic protein in S. suis (Zongfu et al., 2008) and a

potential role for FBA in immunity to nematode parasite Onchocerca volvulus has

also been described (McCarthy et al., 2002).

The aim of this chapter was to explore whether, like these other examples,

meningococcal FBA and GAPDH-l are involved in adhesion to, and invasion of,

host cells.
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5.2 Materialsandmethods

S.2.1 Bacterial strains, growth conditions and media

Bacterial strains described in this chapter are listed in (Table 3.1 and 3.3). Growth

conditions and media for culturing meningococci and E. coli are described in Section

2.2.1. Mutant and complemented strains were created as described in Chapter 3.

Antibiotics were used at the following concentration: kanamycin (SO ug ml") or

erythromycin (5 ug ml"),

S.2.2 Preparation of meningococci

N. meningitidis strains, MCS8-WT, MCS8f1cbbA, MCS8flgapA-l, MCS8f1cbbA

cbbAEcI and MC58&gapA-l gapA-IEcI were streaked onto chocolate agar plates and

incubated as described in section 3.2.1. The following day, a single colony was

inoculated into 10 ml Dulbecco's Modified Eagle Medium (DMEM; Invitrogen)

containing 2% heat-inactivated fetal calf serum (FCS; Invitrogen) and incubated

overnight at 37°C with shaking (200 rpm). The following day, overnight broth

culture was diluted 1:lOin DMEM containing 2% FCS and further grown for 2 h.

5.2.3 Preparation of human cells

Human brain microvascular endothelial (HBME) cells or human larynx carcinoma

(HEp-2) cells were grown to confluence in DMEM supplemented with 10% FCS and

1% antibiotic antimycotic solution (Sigma) in 24-well tissue culture plates (Costar)

at 37°C in an atmosphere of 5% C02. Prior to all experiments, mono-layers were

transferred to DMEM supplemented with 2% FCS to remove the antibiotics.
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5.2.4 Association assay

Association assays were performed essentially as previously described (Oldfield et

al., 2007). Briefly, HBME or HEp-2 monolayers were infected with 1 x 106 CFU

ml" of meningococci (confirmed retrospectively by plating out aliquots of serially

diluted inoculums) and left to associate for 2 h in 5% C02 at 37°C. To assess total

cell association, monolayers were washed four times with 1 ml 1 x PBS per well.

The mono layers were then disrupted and homogenized in 1ml 0.1% saponin in PBS.

Meningococci were enumerated by serial dilution of the homogenized suspensions

and subsequent determination of colony-forming units by plating 10 III spots from

appropriate dilutions of the lysates on agar.

5.2.5 Adhesion inhibition assay

To block bacterial adhesion, meningococci were incubated for 1 h at RT with

polyclonal anti-FBA sera at different dilutions ranging from I: J 00 to 1:500 in PBS.

The bacteria were pelleted by centrifugation (17,000 x g for 1 min) and washed

twice with PBS before being used to infect human cell monolayers as described in

section 5.1.4. Alternatively, monolayers were treated with 25 Ilg ml" of natively

purified rFBA or PBS only (negative control) for J h and the assay continued as

mentioned above (Section 5.2.4)
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S.2.6 Invasion assay

HBME or HEp-2 monolayers were infected as described in section 5.2.4, but were

left to associate for 4 h in 5% C02 at 37°C. The media was then removed and 2 ml

DMEM containing gentamicin (100 Jlgml") added per well to kill the extra-cellular

bacteria. Prior to further steps, aliquots of the gentamicin-containing supernatants

were plated out to confirm killing of extra-cellular bacteria. Furthermore, the

susceptibility of all meningococcal strains to gentamicin at 100 ug ml" was

confirmed prior to testing. To assess cell invasion, monolayers were washed three

times with 1 ml 1 x PBS per well. The monolayers were then disrupted and

homogenized in 1 ml 0.1% saponin in PBS. Meningococci were enumerated by

serial dilution of the homogenized suspensions and subsequent determination of

colony-forming units by plating 10 JlI aliquots from appropriate dilutions of the

lysates on agar.

S.2.7 Statistical methods

Statistical analysis was performed with Microsoft Excel. All experiments were

performed in triplicate unless otherwise stated and were repeated at least three times.

Statistical significance was measured using a two-tailed Student r-test.
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5.3 Results

5.3.1 Association assay of MC58AcbbA using HBME and HEp-l cells

To determine a potential role of FBA in adhesion to epithelial and endothelial cells,

viable counts of bacteria associated with homogenized infected monolayers were

used to compare the capacity of the wild-type and cbbA mutant strain to associate

with either HBME or HEp-2 cells. These experiments showed that cbbA-deficient

meningococci had a significantly reduced capacity to adhere to monolayers of

HBME cells and HEp-2. Experiments were repeated on three separate occasions,

with both cell lines, with consistent results. To confirm that this effect was not due

to reduced growth, the growth rate of both strains was compared by measuring the

optical density at 600 nm (OD600) in triplicate on three separate occasions. No

substantial differences between strains were observed (section 3.3.18 and Fig. 3.27

A).

To exclude the possibility that the impaired adherence was due to a polar effect or

undetected secondary mutation in MC58AcbbA, a wild-type copy of the gene was

introduced in trans into MC58AcbbA using plasmid pSAT-12 (Table 3.1).

Introduction ofpSAT-12 led to similar levels ofFBA expression to the MCS8-WT

(section 3.3.12 and Fig. 3.19) and restored levels of adhesion to both human cell

types to approximately wild-type levels (Fig. 5.1 A and 5.1 B). In summary, these

experiments show that FBA plays a role in the adherence of N. meningitidls with

human cells.
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In addition to complementation, to further rule out the possibility that the impaired

adherence was due to undetected secondary mutation in the original cbbA mutant,

the cbbA mutation was introduced by natural transformation into N. meningitidis

strain Z4673 to create an independent cbbA-deficient derivative. Adherence assays

with meningothelial cells showed that the Z4673 cbbA mutant exhibited a similar

reduction in the number of adherent bacteria compared with its parental strain as did

the Me58tJ.cbbA mutant (Fig. 5.2).

To study whether the impaired adhesion was due to the direct involvement of FBA

i.e. that FBA is an adhesin and binds a specific host cell receptor(s), cultured HBME

cells were incubated with or without rFBA before infection with N. meningitidis. The

adhesion to HBME cells by N. meningitidis Me58 could not be inhibited by rFBA

(data not shown). Alternatively, to further assess the involvement ofFBA in bacterial

adhesion, the wild-type strain Me58 was treated with polyclonal RaFBA serum, pre-

immune serum or not treated (negative control) to investigate whether this would

block adhesion. Treatment with either immune or pre-immune serum demonstrated

no substantial effect on bacterial adhesion (Fig 5.3). A possible reason for increased

number of adherent bacteria observed in the inhibition assay result was that the

bacteria used for infecting the monolayers were twice in number (2 x 106) as

compared to previous adhesion assays
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Figure 5.1. cbbA-deficient meningococci have a reduced ability to associate with (A)
HBME or (B) HEp-2 cells compared to the wild-type or complemented strains. The
number of cbbA-deficient meningococci associating to HBME cells was significantly
lower than the wild-type (P = 0.0011). Bars denote standard deviation. Cfu denotes
colony forming units. In (B), experiments were repeated on two separate occasions
with consistent results, but only one representative experiment is shown. Bars denote
deviation from the mean of quadruplicate samples from experiments repeated on two
separate occasions.
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Figure 5.2. cbbA-deficient Z4673 has a reduced ability to associate with HBME cells
compared to the wild-type strain. Mean levels shown from a representative
experiment using quadruplicate wells. Cfu denotes colony forming units. Bars denote
standard deviation from the mean of quadruplicate samples from experiments
repeated on two separate occasions. Experiments were repeated on two separate
occasions, with consistent results
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Figure 5.3. Inhibition of meningococcal association to HBME cells using RaFBA.
Wild-type MC58 was treated with RaFBA sera or pre-immune sera before infection
of HBME cells. Mean levels shown from a representative experiment using
quadruplicate wells. Cfu denotes colony forming units. Bars denote standard
deviation from the mean of quadruplicate samples Experiments were repeated on two
separate occasions, with consistent results.
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5.3.2 Invasion assay of MC58AcbbA using HBME and HEp-2 cells

To investigate whether FBA is involved in the internalization of N meningitidis into

epithelial and meningothelial cells, HEp-2 and HBME monolayers were infected

with wild-type MC58, MC58~cbbA and MC58~cbbA cbbAEcl
• After 4 h of co-

incubation, any unattached or surface-adherent bacteria were killed by exposure to

gentamicin, after which viable intracellular bacteria were enumerated following

release by lysis with saponin. The results from three independent experiments using

the HBME cell line (Fig. 5.4 A) and from one representative experiment using the

HEp-2 cell line (Fig. 5.4 B), demonstrated that the cbbA-deficient MC58 had reduced

capacity to invade the monolayers, but this difference was not statistically significant

and is likely to be a consequence of the reduced adherence of the mutants to the

monolayer.
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• MC58-WT
• MC58~cbbA

MC58~cbbA cbbAEet
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~-5 1.E+02

I
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MC58~cbbA

• MC 58~cbbA cbbA Eet

B

Figure 5.4. cbbA-deficient meningococci have a reduced ability to invade into (A)
HBME cells or (B) HEp-2 cells compared to the wild-type or complemented strains.
Numbers of mutant cells invading HBME cells were lower than the wild-type strain,
but this difference was not statistically significant (P = 0.13). Mean levels shown
from three independent experiments, each using triplicate wells. Cfu denotes colony
forming units. Bars denote standard deviation. In (B), experiments were repeated on
two separate occasions with consistent results, but only one representative
experiment is shown. Bars denote standard deviation from the mean of quadruplicate
samples.
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5.3.3 Association assay of MCS8AgapA-l using HBME and HEp-2 cells

Viable counts of bacteria associated with homogenized infected monolayers were

also used to compare the capacity of the wild-type and gapA-l mutant strain to

associate with either HBME or HEp-2 cells. These experiments showed that

GAPDH-deficient meningococci had a significantly reduced capacity to adhere with

monolayers of HBME (Fig. 5.4 A) and HEp-2 cells (Fig 5.4 B). Experiments were

repeated on more than three separate occasions, with both cell lines, with consistent

results. Once again, to confirm that this effect was not due to reduced growth, the

growth rate of both strains was compared by measuring the optical density at 600

nm (OD6(0) in triplicate on three separate occasions. No substantial differences

between strains were observed (section 3.3.18 and Fig. 3.27 B).

The ability of the complemented strain to adhere to HEp-2 and epithelial cells was

then analysed. As shown in Fig. 5.5 A and B; complementation reversed the

adhesion defect of the mutant to wild-type levels. Taken together, the results strongly

suggest that gapA-l is involved in adhesion of meningococci to both epithelial and

endothelial cells.
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Figure 5.5. GAPDH-l-deficient meningococci have a reduced ability to associate
with (A) HBME and (B) HEp-2 cells compared to the wild-type or complemented
strains. The number of GAPDH-l-deficient meningococci associating was
significantly lower than the wild-type (HBME cells P = 0.0018, HEp-2 cells 0.017).
Mean levels shown from three independent experiments using quadruplicate wells.
Bars denote standard deviation. Cfu denotes colony forming units.
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5.3.4 Invasion assay of MC58L\gapA-I using HBME and HEp-2 cell line

To evaluate the role of gapA-l in the invasion of meningococcus into epithelial and

meningothelial cells, viable counts of bacteria released from homogenized infected

monolayers were used to compare the capacity of the Me58 wild-type,

MC58L\gapA-l and Me58L\gapA-lgapA-1Ect complemented strains to invade either

HBME or HEp-2 cells. The results from three independent experiments using the

HBME cell line (Fig. 5.6 A), and from one representative experiment using the

HEp-2 cell line represented in Fig. 5.6 B, show that the gapA-l-deficient Me58 are

less invasive than the parent strain and the complemented isogenic mutant strains,

however, this difference was not statistically significant. The reduced capacity to

invade is likely to be a consequence of the reduced adherence of the mutants to the

monolayer.
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• MCSS-WT
• MC58~gapA-1
• MCS8AgapA-l gapA_1Ect 1.E+03

• MC58-WT
MC58~gapA·1
MCS8~gapA·l gapA-1EC'

j
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A B
Figure 5.6. GAPDH-l-deficient meningococci have a reduced ability to invade to
(A) HBME or (B) HEp-2 cells than the wild-type or complemented trains. The
number ofGAPDH-l-deficient meningococci invading HBME cell compar d t th
wild-type was not significantly different (P = 0.1338). Mean level hown fr m thr e
independent experiments, each using triplicate wells. Bars denote tandard d viati n.
Cfu denotes colony forming units. In (B) mean levels shown from a repre entative
experiment using quadruplicate wells. Bars denote standard deviation from the mean
of quadruplicate samples. Experiments were repeated on two eparat occa i n
with consistent results.
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5.4 Discussion

This chapter describes the characterisation of the potential roles of meningococcal

FBA and GAPDH-l in adhesion to, and invasion into, host cells in vitro using the

well-established HBME cells and HEp-2 cell models. Although regarded as an

extracellular pathogen generally, N. mentngitidis has the capacity to enter eukaryotic

cells by interacting with several distinct cellular receptors. This has been

demonstrated in numerous in vitro studies (Claudia Sa et al., 2009). The ability of

bacteria to colonize their hosts and cause infection is often linked to their ability to

express several different adhesins with different receptor specificities (Scarselli et

al., 2006). N. meningitidis has evolved a diverse array of surface structures to

interact with host cells. These include Type IV pili, which are considered to be the

prime attachment-promoting factor for capsulated meningococci to the

nasopharyngeal mucosa (ViIji et al., 1991), LOS and a number of outer membrane

proteins, such as Ope and Opa opacity proteins (Virji et al., 1992; Virji et al., 1993),

App (Hadi et al., 2001), NadA (Capecchi et al., 2005), NhhA (Scarselli et al., 2006).

and MspA (Turner et al., 2006), mediating interaction of meningococcus to host

cells. Since the genome of N. meningitidis strain MC58 contains genes encoding

several known adhesins (Virji, 2009), it is perhaps not surprising that ablation of

additional putative adhesins (i.e. FBA and GAPDH-l) did not dramatically reduce

adhesion in this model. Nevertheless, there was a significant reduction in adhesion

for the cbbA and gapA-l mutants compared to their wild-type parent strain.

indicating that cbbA and gapA-l playa role in association with human endothelial

and epithelial cells.
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Multifunctional, extra-cytoplasmic glycolytic enzymes acting as adhesins is not

unprecedented. For example, in Streptococcus spp. an extra-cytoplasmic GAPDH

has been described to mediate binding to plasmin and shown to possess an ADP-

ribosylating activity (Pancholi & Fischetti, 1992), while in C. albicans the

extracellularly localized GAPDH has been shown to bind fibronectin and laminin

(Gil-Navarro et al., 1997; Gozalbo et al., 1998). Likewise, FBA of S. suis (Zongfu et

al., 2008) and S. pneumoniae (Ling et al., 2004) has been shown to be immunogenic

and surface-localized proteins. In addition, S. pneumoniae FBA has, recently, been

demonstrated to act as adhesin mediating in vitro adhesion to host receptor Flamingo

cadherin on A549 type IIlung carcinoma epithelial cells (Blau et al., 2007).

In the present study, a potential role of cbbA and gapA-l in mediating interaction

with host cells was investigated using a mutational analysis and functional

complementation of both genes in N. meningitidis strain MC58. To assess the

adhesive properties of FBA and GAPOH-l, cbbA and gapA-l knock-out mutants

were created in N. meningitidis strain Me58 and cbbA was also mutated in four

additional genetic backgrounds representative of clinical isolates of N. meningittdis

(see Chapter 3). Before using in association assays, mutant strains were assessed for

the attenuation of growth in liquid culture and colony morphology on solid agar. The

cbbA and gapA-l deficient strains appeared to grow at the same rate in liquid culture

as well as showed the same colony morphology, as determined by measuring the

optical density 00600 of broth culture and visual inspection of colony morphology

after 24, 48 and 72 h respectively. This indicated that both of these enzymes are
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unlikely to contribute to the glycolysis in N. meningitidis, consistent with the finding

by Baart et al., (Baart et al., 2007), and that the mutation of both enzymes

individually do not affect in vitro maximal growth of N. meningitidis.

In previous chapters, FBA and GAPDH-l have been identified as outer membrane

localized proteins. Additionally, flow cytometry analysis confirmed that FBA was

available to antibodies on the surface of encapsulated N. meningitidis, whilst

GAPDH-l was also accessible to antibodies, but only in the absence of capsule. It

was speculated that these proteins may play a role in adhesion to host cells.

Association assay were then carried out with different cell lines, including HBME

and HEp-2 cell lines. In adhesion experiments, nonetheless, both mutants

demonstrated a significantly reduced capacity to adhere to HBME and HEp-2 cells.

Although results of invasion experiments using cbbA and gapA-l mutants

demonstrated a reduced capacity in both cell lines, this difference was not

statistically significant. The reduced capacity to invade is likely to be a consequence

of the reduced adherence of the mutants to the monolayer. Due to time constraints,

experiments using HEp-2 cells were carried out only two times and ideally they

should be repeated at least three to five times at different occasions to allow

statistical significance to be assessed. It was hypothesized that if FBA has a direct

role in adherence, exogenously added purified rFBA or anti-FBA may competitively

inhibit FBA-mediated meningococcal adherence. To investigate this, adherence to

HBME cells was determined in the presence of free rFBA and anti-FBA antiserum.

Both (rFBA and anti-FBA) failed to interfere in vitro with meningococcal adhesion
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to HBME cells. One possible explanation to the inability of either rFBA or anti-

rFBA antiserum to inhibit the adherence process could be that the FBA may have

indirect role in adhesion. This can be addressed by determining the ability of

meningococci expressing a non-enzymatically functional, but structurally identical

FBA to adhere to host cells. To exclude the possibility that the defective adhesion

was due to polar effects of both mutations, functional complementation of both

mutations was performed to prove unequivocally the involvement of FBA and

GAPDH-l in binding to host cells and to verify that the observed phenotypic effect

was not due to an unanticipated effect on another gene. Single wild-copies of desired

genes were reintroduced in respective mutants at an ectopic site. The complemented

strains were then analyzed to determine their adhesive properties. The results

demonstrated a restoration of adhesion levels to those observed for the wild-type

strains indicating that the reduced capacity in adherence of mutants with both cell

lines was the outcome of the loss of the expression of cbbA and gapA-l. The

impaired adhesion of cbbA knock-out strain to host cells also correlate to our

previous finding of animal studies showing that the cbbA mutants were impaired in

their ability to sustain bacteraemia compared to their wild-type parent strains.

Together, these results indicate that FBA may play a potential role in the

pathogenesis of meningococcal disease.

In addition to the viable count methodology used in this study, which measure levels

of cell-associated (i.e. adherent and internalized) bacteria, several other methods can

be employed to investigate adhesive properties of N. meningitidis. Future
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experiments could be performed using different approaches such as immuno-

fluorescence microscopy, assay using micro-beads coated with purified protein, and

environmental scanning electron microscopy (ESEM), which can be used to

visualize surface-associated bacteria alone, to validate the results independently.

In summary, FBA and GAPDH-l are highly conserved proteins and universally

expressed by meningococci, and are required for optimal adhesion to human cells.

To the best of our knowledge, this is the first study demonstrating the contribution of

FBA and GAPDH-l of N. meningitidis in adhesion to the host cells. Future studies

are required to determine the mechanism( s) by which these proteins modulate

adhesion to host cells.
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CHAPTER 6: Genaral Discussion
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6.1 Generaldiscussion

There are an increasing number of reports showing that classical cytoplasmic house-

keeping enzymes, without any identifiable secretion signals, are often localized to

the surface of microbial pathogens, where they exhibit various functions, unrelated to

glycolysis, such as surface localization and adhesion to host cell receptors, thus,

contributing to the pathogenesis of disease (Pancholi & Chhatwal, 2003). In order to

gain a deeper understanding of microbial pathogenesis, there is considerable interest

in identifying the additional roles of these glycolytic enzymes. Given their surface

localisation and immunogenicity, these enzymes may represent potential vaccine

candidates. The work presented in this thesis details molecular, functional and

immunological characterisation of two of the meningococcal glycolytic enzymes

namely, fructose 1,6-bisphosphate aldolase (FBA) and glyceraldehydes-3-phosphate

dehydrogenase (GAPDH-l).

The discussion of the results of this study will include the validity of the approach of

selecting both genes under analysis, the strategies used to achieve the aims/goals and

discussion of the fmding achieved. The choice of genes for investigation in this

project was based on the premise that glycolytic enzymes are often found localized

to the surface of variety of bacterial and fungal pathogens and shown to have

potential roles in adhesion to various host molecules such as fibronectin (EsgJeas et

al., 2008), laminin (Gozalbo et al., 1998; Pancholi & Fischetti, 1992), plasminogen

(Agarwal et al., 2008), mucin (Alvarez et al., 2003) and cadherin (Blau et al., 2007).

It was hypothesized that similar to glycolytic enzymes from other pathogens,
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meningococcal FBA and GAPDH-l may be multi-functional proteins and localized

to the outer membrane of N. meningitidis. The strategy that was adopted towards

characterizing both enzymes included cloning the respective genes, cbbA and

gapA-l, and subsequent purification of recombinant FBA (rFBA) and rGAPDH-I

proteins to generate polyclonal rabbit antiserum. In addition, knock-out mutants of

cbbA and gapA-l were created in N. meningitidis. The antiserum and mutant strains

were then employed in undertaking phenotypic analysis to facilitate the

characterisation of both proteins. The following sections will explore the subsequent

characterisation of these proteins, and, in particular, describe the evidence for their

surface localisation, and the potential roles of FBA and GAPDH-l in the

pathogenesis of meningococcal disease.

6.1.1 Fructose bisphosphate aldolase (FBA)

There have now been a number of studies showing that certain glycolytic proteins,

such as GAPDH, enolase, and FBA, which can be usually found in the cytoplasm of

the cell, are involved in various other functions unrelated to their primary function in

glycolysis (Agarwal et al., 2008; Alvarez et al., 2003; Bergmann et al., 2001;

Bergmann et al., 2004; Ling et al., 2004; Pancholi & Chhatwal, 2003). One such

protein, fructose-I, 6-bisphosphate aldolase (FBA) has been previously reported to

be localized to the surface of some Gram-positive bacteria. In S. pneumoniae, for

example, surface-exposed FBA (Class lIB) was demonstrated to act as an adhesin,

specifically binding to a large 7-transpass transmembrane receptor belonging to the

cadherin superfamily (Blau et al., 2007) . InN. meningitidis, two cytoplasmic house-
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keeping enzymes, GAPDH and enolase (Grifantini et al., 2oo2a; Knaust et al., 2007)

have been shown to be surface-localized, but their non-glycolytic roles are

undefined. We undertook to investigate whether FBA was also surface-localized in

N. meningitidis, as has been described for GAPDH and enolase, and to determine

whether FBA plays a role in meningococcal pathogenesis.

In the published meningococcal and gonococcal genome sequences, there is only one

gene cbbA, predicted to encode a putative FBA enzyme. Despite being predicted to

be part of a non-functional metabolic pathway, cbbA has not acquired spontaneous

mutations in any of the Neisserial genomes examined, which suggests that the gene

was acquired recently, that the glycolytic pathway became non-functional recently,

or that the protein has one or more additional functions. Sequence analysis shows

that FBA is highly-conserved at the amino acid level. The deduced protein sequence

exhibited high identities to Class-II FBA from Xanthobacter flavus and

Synechocystis sp (67 and 65%, respectively) suggesting that the meningococcal FBA

belongs to bacterial Class-II FBP aldolases. The enzyme was highly related to FBP

aldolases from other meningococcal strains (in the range of 93-98% identity at the

amino acid level). In addition, a 2l-amino acid insertion sequence, which is present

in two subclasses of the Class lIB FBA enzymes, was also present in the Neisserial

sequences. The presence of this sequence suggests that the neisserial FBA enzyme is

a tetrameric, rather than a dimeric enzyme; a feature which is present in

extremophiles, and which has been suggested to confer thermal stability (Izard &

Sygusch, 2004; Sauve & Sygusch, 2001).
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In this study, rFBA was successfully expressed with an N-tenninal histidine-tag in

host E. coli; however, the expression resulted in insoluble proteins (inclusion

bodies). Modification of the expression parameters including induction temperature,

time, and IPTG concentration failed to result in the production of soluble proteins.

The reason for this insolubility is unclear; however, it might be related to the nature

of the vector promoter (T7 promoter) or be intrinsic to the FBA protein. Attempts to

purify rFBA under native conditions were unsuccessful. Therefore, the expressed

protein was purified under denaturing conditions and used to raise rabbit poJycJonaJ

anti-FBA serum (RaFBA).

To examine the aldolase activity and generate polyclonal antiserum against native

purified FBA, the protein was expressed with a histidine-tag at the C-terminal and

purified under non-denaturing conditions. The purified rFBA was shown to have

aldolase activity confirming that the enzyme was in native conformation after

purification. In accordance with the in silico prediction of tetrameric structure of

FBA, the purified native protein was used to investigate the tetrameric nature of

meningococcal FBA using native gel analysis. However, due to the either

aggregation of native proteins or other unknown reasons, the results did not show an

intact protein band. The purified protein was also used to generate rabbit polyclonal

anti-FBA antiserum (nRaFBA), which was used to confirm that FBA is expressed in

vitro in each of a range of Neisserial strains tested including commensal species.

This suggests that FBA plays an important role which is required by both non-

pathogenic and pathogenic species.
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Many studies have now reported that, in addition to the cytosol, FBA is localized to

the outer membrane of the some Gram-positive bacterial pathogens, but no such

evidence is available for Gram-negative bacteria. This study thus aimed to

investigate sub-cellular localisation of FBA in N. mentngitidis. Cell fractionation

studies demonstrated that FBA was present in both the cytosol and in an outer

membrane-enriched fraction. Although the cell fractionation results indicated that

FBA was localized to the outer membrane of N. meningitidis, we further investigated

the possibility that cytosolic enzyme released following cell lysis may adhere to

intact N. meningitidis cells. Incubation of cbbA-deficient mutant cells with either

whole cell lysates of wild-type MCS8 or soluble rFBA protein prior to fractionation

failed to show any reactivity, suggesting that FBA is not recruited onto the surface of

intact bacteria. The cell fractionation results showing outer membrane localisation

were substantiated by whole cell ELISA and flow cytometry analysis. Flow

cytometry and ELISA data indicate that FBA is surface exposed in N. meningilidis

and present in a form that was accessible to antibodies, suggesting that, similar to

GAPDH and enolase, FBA is translocated (or diverted) to the outer membrane. To

our knowledge, this is the first report demonstrating that a proportion of FBA is

found on the cell surface of any Gram-negative bacterium.

InN. meningitidis strain MCS8, cbbA is the first of four genes that could be part of

an operon, and thus, polar effects may account for the observed phenotypic

characteristics of mutation of cbbA. To exclude this possibility, the cbbA mutation

was complemented in three isogenic cbbA mutants created in N. meningitidis (MeS8,
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Z4181, and ST-18) by reintroducing a wild copy of cbbA at an ectopic site on the

chromosome of respective mutant strains. As a complementary experiment, to

confirm that cbbA mutation does not affect the expression of downstream genes in

the operon, we determined the expression of the immediately down-stream gene

which encodes tHbp using immunoblot analysis. The expression of fHbp was similar

in both wild-type MeS8 and cbbA mutant strains.

Phenotypic analysis of mutant strains was undertaken to determine the role of FBA

in neisserial biology. In initial growth profiling experiments, the cbbA-deficient

mutant grew at the same rate (in broth culture and on solid media) as the wild-type

and the complemented mutant strains, demonstrating that FBA is not required for

optimal growth of the meningococcus under the in vitro conditions tested. No

differences in either colony or bacterial cell morphology (using light microscopy)

were observed. In adhesion experiments, however, the cbbA-deficient mutant strain

exhibited a significantly reduced capacity to adhere to both HBMB and HEp-2 cells.

This phenotype was completely restored in a complemented strain. Although cbbA

mutant strain showed a reduced capacity to invade both monolayers, this difference

was not statistically significant. It is hypothesized that the observed defect in

invasion was likely to have been a consequence of the reduced ability of the mutant

strain to initially adhere to the cell monolayers. The observation that FBA is

involved in adhesion to both epithelial and endothelial cells, and that FBA

expression is conserved in non-pathogenic strains (such as N. polysacchareae) may

suggest a role for FBA during colonization of the nasopharyngeal mucosa by
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commensal Neisserial species. To determine whether the observations of impaired

adhesion of cbbA mutants to host cells were also reflected in vivo, the cbbA knock-

mutant strains created in five different genetic backgrounds (MeS8, Z4181, Z4667,

Z4673, and ST-18) were assessed to determine the potential role of FBA in

establishing bacteraemia in a transgenic (expressing human transferrin) mouse model

of meningococcal disease. The mutant strains were impaired in their ability to sustain

bacteraemia compared to their wild-type parent strains suggesting that the mutants

were less able to access the bloodstream and/or to survive in the bloodstream after

intraperitonial inoculation compared to wild-type parent strains. Together, these

results indicate a potential role for FBA in the pathogenesis of meningococcal

disease. In future work, the antiserum raised against natively purified rFBA will be

used in passive protection experiments using the transgenic mouse model to

determine whether anti-FBA antibodies elicit a protective response against N.

meningitidis. Active protection experiments using mice vaccinated with natively

purified rFBA will also be performed.

It is theoretically possible that the cbbA deletion may affect the expression of

meningococcal genes determining piliation or other factors important for adhesion.

Variation in the expression of these genes, between wild-type and mutant strains,

may be responsible for differences in observed phenotypes. Unfortunately, due to

unavailability of antiserum and time constraints, the expression of these various

genes was not assessed. However, given that type IV pili mediate natural

transformation and that this methodology was successfully used to transform the
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cbbA knock-out strain with the complementation construct, it is assumed that

piliation is not grossly affected by deletion of cbbA. Although this study

demonstrates that FBA is present on the meningococcal cell surface and is required

for optimal adhesion, the role of FBA in this process is unknown. It is possible that

the enzymatic activity of FBA plays an indirect role that is required for optimal

adhesion. However, given that other FBA homologues (such as FBA in S.

pneumoniae) have been shown to directly bind to host cell ligands it is also possible

that the meningococcal protein has direct host receptor binding activity. Determining

the ability of meningococci expressing a non-functional FBA to adhere to host cells

would address this. S. pneumoniae FBA was putatively shown to bind to a cadherin

superfamily receptor (Flamingo cadherin receptor, FeR) on the surface of host

epithelial cells, but it is unknown which FBA residues participate in this interaction

(Blau et al., 2007). Meningococcal FBA is only 40% identical to the pneumococcal

enzyme at the amino acid level, so it is unclear whether meningococcal FBA binds

the same receptor. The preliminary data of serum bactericidal experiments using

antiserum raised against denatured purified FBA showed no bactericidal activity

against N. meningitidis strain MeS8. Future work will be performed with the

antiserum raised against natively purified proteins and bacteria grown under

conditions that mimic in vivo conditions. It is possible that FBA may be up-regulated

in vivo, leading to great level of surface expression, which may be of importance in

relation to bactericidal activity of specific antibodies.
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Pneumococcal FBA has been shown to be immunogenic in humans and capable of

eliciting a partially protective immune response against lethal S. pneumoniae

intranasal challenge in mice (Ling et al., 2004). Given that meningococcal FBA is:

highly conserved, expressed by a wide range of isolates, surface-accessible to

antibodies and structurally and antigenically unrelated to the human (Class I) FBA

protein, meningococcal FBA is worthy of future study as a possible candidate

vaccine component against this important human pathogen.

6.1.2 Glyceraldehyde 3-phosphate dehydrogenase (GAPDH-l)

During last two decades a number of reports have indicated that GAPDH, a classical

cytoplasmic glycolytic enzyme is often present at bacterial surfaces and performs a

variety of non-glycolytic functions (Pancholi, 2001; Pancholi & Chhatwal, 2003;

Sirover, 1996; Sirover, 1999). Surface localization of GAPDH was first

demonstrated in the Gram-positive pathogen, S. pyogenes. In this organism, surface-

exposed GAPDH binds several mammalian proteins including the uPAR/CD87

membrane protein on pharyngeal cells (Jin et al., 2005; Lottenberg et al., 1992;

PanchoIi & Fischetti, 1992; Winram & Lottenberg, 1996), regulates intracellular host

cell signaling events (Pancholi & Fischetti, 1997) and contributes to host immune

evasion (Terao et al., 2006). GAPDH was subsequently identified on the surface of

other Gram-positive bacteria including staphylococci (Modun & Williams, 1999;

Modun et al., 2000), S. agalactiae (Seifert et al., 2003) and Listeria monocytogenes

(Schaumburg et al... 2004). However, the prerequisites for secretion of GAPDH are

not yet understood. The surface localised GAPDH appears to contribute to the
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virulence of pathogens by means of binding to host proteins including

plasminogen/plasmin, and fibronectin, thus facilitating their colonization and

invasion of host tissue (Bergmann et al., 2004; Egea et al., 2007; Gozalbo et al.,

1998; Pancholi & Fischetti, 1992). In M. genitalium, for example, only a small

proportion of the total cellular GAPDH is trafficked to the bacterial surface,

however, this is sufficient to impart a biologically-significant phenotype (mucin-

binding) on this organism (Alvarez et al., 2003). For organisms with relatively small

genomes, multi-functional proteins may be advantageous to optimize the potential of

the genome. However, non-glycolytic roles of surface-localised GAPDH are poorly

studied in Gram-negative pathogens. Although Grifantini et al. for the first time

demonstreted that GAPDH expression was up-regulated on the meningococcal cell

surface following contact with human epithelial cells; no biological function has so

far been ascribed to this observation. Furthermore, another recent study has shown

that surface-localised GAPDH of a Gram-negative E. coli mediates binding to

human plasminogen and fibrinogen (Egea et al., 2007). It was, thus, speculated that

similar to surface localized-GAPDH enzymes from other microbial pathogens,

surface-exposed meningococcal GAPDH-l may also contribute to pathogenesis of

meningococcal disease due to its functional diversity.

InN. meningitidis, gapA-l is one of the two genes coding for the metabolic enzyme

OAPDH. Although predicted to be part of a non-functional metabolic pathway, the

genes encoding GAPDH and other enzymes required for glycolysis are maintained in

the meningococcal genome, presumably for other roles. Sequence analysis shows
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that GAPDH-l is highly-conserved at the amino acid level. In this study,

recombinant GAPDH-I (rGAPDH-l) was expressed and purified under denaturing

conditions. Purified protein was used to generate rabbit polyclonal antiserum

(RaGAPDH-l). Anti-GAPDH-l was then used to investigate the strain distribution

and sub-cellular localization of the enzyme. A strain survey for distribution and

expression of gapA-l was carried out by peR and immunoblot analysis of whole cell

proteins from different clinical isolates of known MLST-type. Immunoblot analysis

of these strains showed that they all express GAPDH-l, suggesting that GAPDH-I is

constitutively-expressed in N. meningitidis.

To facilitate studies of the potential role of gapA-l in the pathogenesis of

meningococcal disease, a gapA-l knock-out mutant was created in N. meningitidis

strain Me58. The mutant strain was evaluated by screening for defects in growth. on

agar and in broth culture. The gapA-l mutant grew at the same rate (in both broth

culture and on solid media) as the wild-type strain demonstrating that gapA-l is not

required for maximal growth of the meningococcus under in vitro conditions.

Moreover, the colony or bacterial cell morphology of mutant strain (using light

microscopy) was indistinguishable compared to wild-type parent strain.

In accordance with the previous observations that GAPDH is a multi-functional

protein and appears to be translocated to the surface of numerous bacterial and

fungal pathogens (including N. meningitidis), surface-location of meningococcal

GAPDH-I was confirmed using sub-cellular fraction and flow cytometry analysis.
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Sub-cellular fractions were probed using anti-GAPDH-l in immunoblotting

experiments. A band corresponding to GAPDH-I was demonstrated to be present in

both the cytosolic and the outer membrane protein-enriched fraction of wild-type

meningococci, suggesting that, similar to enolase and FBA, a proportion of

GAPDH-l is translocated to the outer membrane. To exclude the possibility that

cytosolic GAPDH-I released from lysed cells is recruited. back onto the surface of

intact meningococci prior to fractionation, gapA-l-deficient meningococci were

incubated with lysates of wild-type MCS8 cells and rGAPDH-I. The fractionated

cells were then probed with RaGAPDH-l in immunoblot analysis and demonstrated

no reactivity. This is in agreement with the recent report by Saad et al... who showed

that provoked cell lysis of Lactobacillus plantarum did not lead to re-association of

GAPDH onto the cell surface (Saad et al., 2009). Instead, Saad et al.. suggested that

changes in plasma membrane permeability during the growth cycle may facilitate the

movement of GAPDH onto the external surface of the plasma membrane in this

Gram-positive organism (Saad et al., 2009). Clearly, however, such a mechanism

would only permit periplasmic localization in a Gram-negative organism. The results

of sub-cellular fractionation were further validated by flow cytometry analysis. The

data demonstrate that GAPDH-l was not accessible by antibodies on the surface of

capsulated MCS8; however, GAPDH-l was shown to be exposed on the surface and

accessible by antibodies in non-capsulated MeS8. It is important to note that in the

previous report by Grifantini et al., GAPDH-l was shown to be accessible to

antibodies following permeabi1isation of the capsule with 70% alcohol and using

meningococci grown under the conditions mimicking in vivo conditions (i.e. co-
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incubated with host cells). Our flow cytometry data independently confirm that in

capsulated meningococci, GAPDH-l appears to be functionally masked by the

capsule and is only exposed on the surface of non-capsulated N. meningitidis.

However, capsule expression in meningococci is known to be down-regulated

following the initial type N pilus dependant-contact with host cells in order to

facilitate intimate adherence (Deghmane et al., 2002; ViIji et al., 1995). Thus, it is

possible that surface-localised GAPDH-l may be unmasked following this change

allowing it to influence subsequent steps in adhesion. This speculation was supported

by our observation that in adhesion experiments the GAPDH-l mutant strain

exhibited a significantly reduced capacity to adhere to both HBME and HEp-2 cells

compared to the wild-type strain. This phenotype is unlikely to be due to polar

effects arising from the intenuption of transcription of genes that are downstream

from gapA-l in N. meningitidis; given the opposite orientation of immediately

downstream genes and the observation that complementation completely restores the

wild-type phenotype.

In serum bactericidal assays (SBAs), antibodies raised against denatured GAPDH-J

failed to kill meningococci. It is likely that the absence of SBA activity is due to lack

of accessibility of antibody to the antigen owing to the masking of GAPDH-l by the

capsule. Additionally, for the proteins with either low or transient surface expression,

it seems likely that either the level of antigen on the surface is insufficient to promote

bactericidal killing or only a fraction of the population may be killed. In addition,

bactericidal assays in this study were carried out by incubating the immune serum
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and complement with meningococcal cells grown in an enriched broth. Under these

conditions, the bactericidal activity of antibodies induced by antigens that are

specifically up-regulated during adhesion to host cells is expected to be

underestimated. Moreover, antigens appearing on the bacterial surface only after

adhesion or during a later phase of infection may give a negative result in SBAs even

though, in vivo, they may play an important role in protection. In future work, the

bactericidal assays should be performed using bacteria grown under conditions that

mimic in vivo conditions and antibodies raised against the native GAPDH-l protein

will be assessed for serum bactericidal activity.

In conclusion, meningococcal gapA-l is a constitutively-expressed, highly-conserved

protein, which appears to be partially localized to the outer membrane. Loss of gapA-

1 does not affect the in vitro maximal growth rate of N. meningitidis, but

significantly affects the ability of the organism to adhere to human epithelial and

meningothelial cells. Given the surface localisation and a potential role in adhesion

to host cells, GAPDH-l may be involved in the pathogenesis of meningococcal

disease.

6.2 Conclusion

In the present study, cbbA and gapA-l (encoding FBA and GAPDH-l proteins,

respectively) were cloned and the recombinant proteins were subsequently purified

either under denaturing or non-denaturing conditions. Polyclonal antisera were raised

in rabbit against native or denatured rFBA and rGAPDH-l. Both antisera were
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shown to react against the cognate purified proteins in immunoblot experiments.

peR and immunoblot analysis demonstrated that the cbbA and gapA-l genes were

well conserved and expressed in divergence isolates of N. meningitidis, which is an

important property required of a prospective vaccine candidate. Sub-cellular

fractionation results indicated that both FBA and GAPDH-l were localized to the

outer membrane and cytosol of N. meningitidis. The cbbA and gapA-l knock-out

mutants were successfully created in N. meningitidis strain MCS8. Both mutants

grew normally when cultured on solid media as well as in broth culture compared to

the wild-type strain. Both mutants, however, demonstrated a clear phenotype of

reduced capacity to adhere to, and invasion, cultured epithelial and meningothelial

cells.

The cbbA gene was also mutated in four other clinical isolates of N. meningitidis to

act as additional controls in assessing a potential role of FBA in the development of

bacteraemia in a novel transgenic mouse model of meningococcal disease. The cbbA

knock-out mutant in all four genetic backgrounds demonstrated reduced capacity to

establish bacteraemia compared to the parent wild-type strains in the mouse model.

Flow cytometry and ELISA data demonstrated that FBA was surface exposed and

accessible by antibodies on the surface of intact cells. GAPDH-l was shown to be

surface-exposed on the non-capsulated MCS8 strain and was inaccessible to

antibodies on the surface of a capsulated strain. Although insufficient to promote

detectable complement mediated killing, given their surface localisation and

potential role in adhesion, immune responses against FBA and GAPDH-l may still
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be involved in immunity to meningococcal disease. In summary, both cbbA and

gapA-l are constitutively expressed and partially localized to outer membrane of N.

meningitidis. The mutation of both genes (cbbA and gapA-1) did not affect the

growth rate of bacteria, however, the mutant strains showed a significantly reduced

ability to adhere to cultured epithelial and meningotheliai cells. Moreover, the cbbA

mutation was associated with attenuation in the establishment of bacteraemia in a

transgenic mouse model of meningococcal infection.

6.3 Futuredirections

Although this study has demonstrated that both FBA and GAPDH-l are required for

optimal in vitro adhesion of N. meningitidis to epithelial and meningothelial cells,

future experiments, using different independent approaches such as

immunoflourescence microscopy and ESEM (Oldfield et al., 2007), should be

performed to show the validity of the results. Future work should also aim to identify

FBA and GAPDH-l interacting host proteins and clarify the mechanism(s) that are

responsible for the defect in adherence to host cells. A potentially usefuJ approach

may be to compare the gene expression profiles of the cbbA and gapA-1 mutant

strains with the wild-type using microarray technology (Chan et al., 2005; Liu et al.,

2005). Disruption of a single gene may result in changes in gene expression that arise

as a direct consequence of the disruption or as a result of compensatory changes.
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APPENDIX· A: Buffers and reagents
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TAE buffer (SO x stock)

242 g Tris base (life technologies), 57.1 ml glacial acetic acid (Fisher chemicals) 100

ml 500 mM EDTA (PH 8.0) made up to 1 L with ciH20

Agarosegel

0.8-1.0 % agarose was prepared by dissolving 0.8-1 g of agarose powder (sigma), 2

ml SOx TAB buffer and made up to 100 ml with dH20; melt and add 5 III ethidium

bromide (10 mg ml").

Antibiotics

Antibiotics were purchased from Sigma-Aldrich UK, prepared according to the

manufacturer's recommendations, sterilized by filtration and store at 4°C.

Ampicillin (100 mg ml" stock solution prepared indH20)

Kanamycin

Streptomycin

Erythromycin

(50 mg ml" stock solution prepared in dH20)

(50 mg ml" stock solution prepared in dH20)

(100 mg ml" stock solution prepared in ethanol)

ELISA coating (carbonate) buffer

142mM sodium bicarbonate, 8mM sodium carbonate [PH 9.4]) to Sllg ml")

Sodium dodecyl sulfate (SDS)-resolving buffer

(36.34 g Tris base, 8 ml 10% SOS add de-ionised water (dH20) up to 200 mit pH at

8.8) or 1.5M Tris-Chloride (FW 121.1). pH 8.8, 0.4% SOS.

SDS-staking buffer

12.114 g Tris base, 8 ml 10% SOS) add dH20 up to 200 mi, pH at 6.8 or O.S M Tris-

Chloride (FW 121.1), pH 8.8, 0.4% SOS.

SDS running buffer (lOx)

(30.3 g (0.25 M) Tris base, 187.7 g (2.5 M) Glycine, 9S0 ml dH20, 10 g SOS (1%).

made up to 1000 ml with dH20, mix well.
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SDS-sample buffer (5x)

0.62 M Tris-CI (PH 6.8), 5% SDS, 25% glycerol, 12.5% p- meracaptoethanol,

0.002% Bromophenol blue, or 7.8125 ml (2 M) Tris-CI, 1.25 g SDS, 6.25 ml

glycerol, 3.125 ml p-meracaptoethanol, traces of bromophenol blue, made up to 25

ml with dH20.

Resolving (separating) gel

l.7 ml SDS-resolving buffer, 2.33 ml Acrylamide/Bis-Acrylamide (30%), 2.88 ml

dH20, 30 J.11 10% ammonium persulfate (APS) and 30 J11 Tetramethyl

ethylenediamine (TEMED).

Staking gel

1ml SDS-stacking buffer, 0.8 ml AcrylamidelBis-Acrylamide (30%),2.18 ml dH20,

30 J.1110%APS and 30 J.11TEMED.

Semi-dry blotting buffer

5.82 g Tris base, 2.93 g Glycine, 3.75mllO% SDS, 200 ml methanol and make up to

1000 ml with dH20.

Phosphate buffered saline solution (PBS)

1 x PBS was prepared by dissolving 1 tablet of Phosphate buffered saline (Dulbecco,

Oxoid) in 100 ml dH20 and autoclave, this gives sodium chloride 0.16 mol,

Potassium chloride 0.003 mol, Disodiwn hydrogen phosphate 0.008 mol and

Potassium dihydrogen phosphate 0.001 mol with a pH value of7.3

BSA (Albumin from bovine serum, Sigma A3912) as lyophilized powder (M W c.

66 kDa) was prepared in sterile PBS according to the concentration needed.

Blocking buffer

2.52 g skimmed milk powder (Marvel), 50 ml PBS/O.05% Tween-20 (400 ml PBS

with 200 ....1Tween20).
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Washing buffer

400 ml PBS/200 J,llTween-20

Lysogeny broth (LB)

Tryptone 10 g, Yeast extracts 5 g and sodium chloride 10 g for 1000 ml dH20.

LB agar

Tryptone 109, Yeast extract 5 g, Sodium chloride 109, Microbial tested agar 15 g

for 1000ml of dH20, pH 7.0 ± 0.2 at 25°C.

IPTG (Isopropyl-J3-D-I thiogalactopyranoside [FW 238.8])

1 M solution stock solution was prepared by dissolving 0.23 g of IPTO in 1 ml

dH20, sterilized by filtration and stored at -20°C.

LB ampicillinlIPfGIX-gal agar

LB agar cooled at 50°C, 100 J,lgml" Ampicillin, 0.5 mM IPTG (dissolved in dH20)

and 80 ug ml" X-gal (dissolved in dimethylformamide), mix and pour into plates

DNA loading dye (lOx)

10 mM Tris-HCI (PH 7.6), 0.03% Bromophenol blue, 0.03% xylene cyanol FF, 60%

glycerol, 60 mM Ethylenediamine tetraacetic acid (EDTA)
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ButTers used for protein purification under denaturing condition

Lysis ButTer (buffer B)

100 mM NaH2P04, 10mM Tris-Cl, and 8 M Urea, pH 8.0

Wash ButTer (buffer C)

100 mM NaH2P04, 10mM Tris-CI, and 8 M Urea, pH 6.3

Elution Buffer (buffer E)

100 mM NaH2P04, 10mM Tris-Cl, and 8 M Urea, pH 4.5

Buffers (or protein purification under native condition

Lysis Buffer

50 mM NaH2P04, 300 mM NaC}, 10 mM imidazole, and pH adjusted to 7.4 using

NaOH

Wash buffer

50 mM NaH2P04, 300 mM NaC}, 15 mM imidazole, and pH adjusted to 7.4 using

NaOH.

Elution buffer

50 mM NaH2P04, 300 mM NaCl, 300 mM imidazole, and pH adjusted to 7.4 using

NaOH.
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Vectors

A- Schematic diagram of pEXP-NT/TOPO (Invitrogen)

pEXP5-NTITOPO
2745 bp

Comments (or pEXPS.NTITOPO
2745 nucleotides

T7 promoter. bases 1-17
T7 forward priming site: bases 1-20
Ribosome binding site (RBS : bases 68-73
Initiation ATG: bases 60-82
Polyhistidi e (6xHis) region: bases 92-109
HisG epitope: bases 92-112
TEV recognition site: bases 122-142
TOPCY recognition site 1: bases 141-145
TOPC)'Il recognition site 2: bases 146-150
T7 reverse priming site: bases 198-217
T7 transcription terminator. bases 159-287
bra promote. bases 399-497
Ampicillin resistance gene: bases 498-1358
pUC origin: 1503-2176
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B- Schematic diagram of pCR® T7/NT-TOPO (invitrogen)

flCRP.OcNct

Res ATC &tHis' )(press" Epltope Et<

pCR®T71
NT-TOPO®

2870 bp

Comments for pCR®T7INT- TOPO®
2870 nucleotides
T7 promoter: bases 20-36
T7 promoter priming site: bases 20-39
Ribosome binding site: bases 87-90
Initiation ATG: bases 100-102
Polyhistidine (6xHis) region: bases 112-129
Xpress™ epitope: bases 169-192
EK recognition site: base 178-] 92
TOPO® Cloning site: bases 204-205
T7 reverse priming site: bases 270-289
T7 transcription termination region: ba s 23] -3 0
f1 origin: 431-886
Ampicillin resistance gene ( RF): ba s 10 I. 7-
1877
pUC origin: 2022-2695

254



c- Schematic diagram of pGEM- T Easy vector (Promega)

Tll 1 s rl
Apal 14
Aalll 20
Sphl 26
BslZI 31
Ncol 37
BsIZI 43

pGEM -T Easy Notl 43
Sacll 49

Vector EcoRI 52
(3015bp)

Spal 64
EcoRI 70
Noll 77
Bs1Z1 77
PSII a6
Sail 90
Ndal 97
Sacl 109
BstXI 116 ~
Nsd 127 IlsP6 141

pGEM -1 Easy Ve-ctor sequence reference points:

17 RNA po~'merase transcription initiation site
multiple oning region
SP6 R..'JApolymerase promoter (-17 to 3)
SP6 ru A po~'merase transcription inHia 'on site
p C/MB Reverse Sequencing Primer binding ite
", Z start codon
I,' opera or
p ac amase cding ~gion
phageIl region
I operon sequences
p 'C/),113 Fon ...·ardSequen ing Primer binding site
1 RNA polymerase promoter (-17 to +3)
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1
10-1

139-1'"
1 1

176-197
1

200-216
1337-219
2

2836-2996,1 -395
2 9-2972
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D- Schematic diagram of pQE-70 (Qiagen)

I
::CE:=
Q.O 0)Sal~

PTS lac 0 lac O-RBS~MCS

~~
it
.t pQE.70

3.4 kb

~IEl

pOE·TO

pQE-70 Vector
Position.s of elemen.ts in. bases
Vector size (bp)
Start of numbering at Xh§J (CTCGAG)
T5 promoter/lac operator element
T5 transcription start
6xHis-tag coding sequence
Multiple cloning site
Lambda to transcriptional termination region
rrnB T1 transcriptional termination region
CoIE1 origin of replicotion
~-Iactamase coding sequence
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1-6

7-87
61

133-150
113-132
173-267

1029-1127
1603

3221-2361



E- Schematic diagram of pJMK-30 (source of KanR cassette)

pJMK30
KmR

4185bp HindIII
PstI
Sal!
Xbal
Bamffi
Sma!
KpnIamp EcoRI

Ssp!
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Summary

Fructose-1, 6-bisphosphate aldolases (FBA) are cyto-
plasmic glycolytic enzymes, which despite lacking
identifiable secretion signals, have also been found
localized to the surface of several bacteria where they
bind host molecules and exhibit non-glycolytic
functions. Neisseria meningitidis is an obligate
human nasopharyngeal commensal, which has the
capacity to cause life-threatening meningitis and
septicemia. Recombinant native N. meningitidis FBA
was purified and used in a coupled enzymic assay
confirming that it has fructose bisphosphate aldolase
activity. Cell fractionation experiments showed that
meningococcal FBA is localized both to the cyto-
plasm and the outer membrane. Flow cytometry dem-
onstrated that outer membrane-localized FBA was
sUrface-accessible to FBA-specific antibodies. Muta-
tional analysis and functional complementation was
used to Identify additional functions of FBA. An FBA-
deficient mutant was not affected in its ability to grow
in vitro, but showed a significant reduction In adhe-
sion to human brain microvascular endothelial and
HEp-2 cells compared to Its Isogenic parent and Its
complemented derivative. In summary, FBA Is a
highly conserved, surface exposed protein that is
required for optimal adhesion of meningococci to
human cells.
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Introduction
Neisseria meningitidis remains an important cause of sep-
ticemia and meningitis and is associated with high mor-
bidity and mortality (Stephens et al., 2007). As an obligate
human commensal, it colonizes the nasopharyngeal
mucosa of a substantial proportion of the population in an
asymptomatic manner. In susceptible hosts, ~~per-
invasive strains of meningococci possess the ability to
invade the nasopharyngeal sub-mucosa and enter the
bloodstream, where they can multiply rapidly to high
levels. Meningococci may also translocate across the
brain vascular endothelium, proliferate in the cerebral-
spinal fluid (CSF) and cause meningitis (Stephens, 2009).
To reach the meninges, N. meningitidis must therefore
interact with two cellular barriers and adhesion to both
epithelial and endothelial cells are crucial stages of
infection. Various bacterial factors including lipooligosac-
charide (LOS), capsule, type IV pili and outer membrane
adhesins such as Opa, Ope, NhhA, App, NadA and MspA
have been shown to have a role in meningococcal adhe-
sion and invasion of epithelial and/or endothelial cells
(reviewed in Virji, 2009).
Glycolytic enzymes, such as glyceraldehyde

3-phosphate dehydrogenase (GAPDH), enolase and fruc-
tose bisphosphate aldolase (FBA) have been reported as
potential virulence factors in a variety of organisms (Pan-
choli and Chhatwal, 2003). Although long recognized for
their cytosolic role in glycolysis and gluconeogenesis,
additional or 'moon-lighting' functions have been increas-
ingly recognized. In particular, despite lacking identifiable
secretion signals, glycolytic enzymes have been found on
the bacterial cell surface where they interact directly with
host soluble proteins and surface ligands. In Mycoplasma
genitalium, surface-associated GAPDH.was shown to be
important for adhesion to human mucin (Alvarez et et.,
2003). In Streptococcus pyogenes and Candida albicans
surface-associated GAPDH was shown to bind to
fibronectin (Pancholi and Fischetti, 1992; Gozaibo et al.,
1998) and in Staphylococcus aureus the cell wall
transferrin-binding protein was found to be GAPDH
(Modun and Williams, 1999). GAPDH was also reported
to be a virulence-associated immunomodulatory protein In
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Streptococcus agalactiae (Madureira et si., 2007).
Surface-associated enolase has been reported as a
plasminogen-binding protein in S. pyogenes (Pancholi
and Fischetti, 1998), a fibronectin and plasminogen-
binding protein in Streptococcus suis (Esgleas et al.,
2008; Tian et al., 2009), and a plasminogen and laminin-
binding protein in Bacillus anthracis (Agarwal et al.,
2008). In Streptococcus pneumoniae, surface-associated
FBA was shown to bind to a large 7-transpass transmem-
brane receptor belonging to the cadherin superfamily
(Blau et al., 2007). FBA and GAPOH were also shown to
be immunogenic in humans and capable of inducing a
protective immune response against S. pneumoniae in
mice (Ling et al., 2004). In addition, FBA was found to be
a surface-localized immunogenic protein in S. suis
(Zongfu et al., 2008) and a possible role for FBA in immu-
nity to Onchocerca volvulus has also been reported
(Mccarthy et al., 2002).

Fructose-1, 6-bisphosphate aldolase catalyses the
reversible cleavage of fructose-1, 6-bisphosphate into
dihydroxyacetone phosphate and glyceraldehyde
3-phosphate (Zgiby et al., 2000; Wehmeier, 2001; Ram-
saywak et al., 2004). Aldolases can be divided into two
groups with different catalytic mechanisms, designated
Class-l and Class-II respectively (Thomson et al., 1998;
Arakaki et al., 2004). Class-I FBAs utilize an active site
lysine residue to stabilize a reaction intermediate via
Schiff-base formation, and are usually found in higher
eukaryotic organisms (animals and plants). Class-ll FBAs
have an absolute requirement for a divalent ion, usually
zinc (Zgiby et al., 2000) and are commonly found in bac-
teria, archae and lower eukaryotes including fungi and
some green algae grown under heterotrophic conditions
(Plater et al., 1999; Sauve and Sygusch, 2001; Ramsay-
wak et al., 2004). Most organisms contain only one class
of FBA, although a few possess enzymes of both classes.
Escherichia coli (Alefounder et al., 1989; Thomson et al.,
1998), S. pneumoniae (Isabel et al., 1999) and Syn-
echocystis sp. PCC 6803 (Nakahara et al., 2003) among
others have been reported to express both types of the
enzyme. The Class-II FBAs can be subdivided into two
groups, Type A and B, depending on their amino acid
sequences (Sauve and Sygusch, 2001; Nakahara et al.,
2003). Because Class-II FBAs are not found in animals, it
has been suggested that they could provide a possible
therapeutic or vaccine target (Blom et al., 1996; Ramsay-
wak et al., 2004).

In N. meningitidis, it is noteworthy that, due to the
absence of the enzyme phosphofructokinase, the
Embden-Meyerhof-Parnas (EMP) glycolytic pathway is
rendered non-functional (Baart et al., 2007). Instead, the
catabolism of glucose has been shown to be carried out
through the Entner Oouderoff (ED) and Pentose Phos-
phate pathways (PP) (Baart et al., 2007). Nevertheless,

the meningococcal genome retains functional genes
for other glycolytic pathway enzymes, presumably for
alternative (non-EMP pathway) functions. Furthermore,
GAPOH expression (GapA1, but not GapA2) was
found to be up-regulated on the meningococcal cell
surface following contact with human epithelial cells (Gri-
fantini et al., 2002), although no biological function has
so far been ascribed to this observation. In addition,
enolase has recently been shown to be a surface-
localized protein in N. meningitidis, where it acts to
recruit plasminogen onto the bacterial surface (Knaust
et al., 2007). The available N. meningitidis genome
sequences contain a single, putative Class II FBA-
encoding gene (cbbA), which has not previously been
characterized. The aim of this study was to characterize
the enzymatic function, sub-cellular localization and
putative role of FBA in the pathogenesis of meningococ-
cal infection.

Results
Sequence analysis of the cbbA gene, flanking DNA and
FBA protein

In N. meningitidis strain MC58, the 1065 bp cbbA gene
(locus tag NMB1869) has a G+C content of 55.18% and
encodes a predicted protein of 354 amino acids (esti-
mated molecular weight 38.3 kOa). The cbbA gene is
downstream of, and in the opposite orientation to, xerC
(NMB1868) encoding the XerC integrase/recomblnase
and upstream of, and in the same orientation as,
NMB1870, which encodes factor H-binding protein, fHbp
(Madico et al., 2006). A similar genomic arrangement is
present in the serogroup A meningococcal strain Z2491
(NMA0588, NMA0587 and NMA0586 encoding XerC,
FBA and fHbp respectively; Parkhill et st., 2000), the
serogroup C strain FAM18 (Bentley et el., 2007) and the
ST-4821 strain 053442 (Peng et a/., 2008), suggesting
that this is a conserved arrangement. In these three
genomes, the cbbA sequences are > 94% Identical to
the MC58 cbbA gene. Additionally, sequences > 92%
identical to MC58 cbbA are found in the gonococcal
strain FA1090 (94% identical) and N. lactamlca strain
ATCC 23970 (93% Identical) confirming that cbbA Is
highly conserved across Neisseria species. At the amino
acid level, FBA sequences from meningococc I str Ins
MC58, FAM18, 053442, Z2491 and the gonococcal
strain FA1090 are > 99% Identical. By alignment, the
neisserial FBA protein (NMB1869) was 70, 67, 65 and
40% identical to Class-liB FBA enzymes from Cuprl vl-
dus metallidurans, Xanthobacter flavus, Synechocystls
sp. and S. pneumoniae, respectively, but was only 21
and 29% identical to the E. coli and Haemophllus inttu-
enzae Class-IIA FBA enzymes, respectively, Indicating
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Fig. 1. SOS·PAGE analysis confirms the purity of the recombinant
FBA purified under native conditions (A). Immunoblot analysis
shows that recombinant FBA is recognized by RaFBA (B) and
anti·pentahistidine antibodies (C).

that the neisserial FBA belongs to Class-liB. Further-
more, the neisserial FBA enzyme contains a 21-amino
acid insertion sequence (S236_Y2S6),which is unique to
two subclasses of the Class liB enzymes. The presence
of this insertion sequence suggests that the neisserial
FBA enzyme may have a tetrameric quaternary struc-
ture, rather than the dimeric structure, which is typical of
Class Ii FBA enzymes that lack this sequence (Sauve
and Sygusch, 2001; Izard and Sygusch, 2004). As
expected for a Class-Ii FBA, a conserved putative zinc/
cobalt-binding site (Berry and Marshall, 1993) was also
identified (H8'-XX-H84).FBA of N. meningitidis was pre-
dicted to be a non-secreted protein by the SignaIP-HMM
program; although a possible 13-amino acid signal
peptide (predicted cleavage site "DHA-AE'S) was iden-
tified by SignaIP-NN. A signal peptide was similarly pre-
dicted for the Class-liB FBA homologue in X. flavus, but
not for the homologue in Synechocystis sp. or the E. coli
Class-IiA FBA.

Cloning, expression and purification of recombinant FBA

To examine the aldolase function of meningococcal FBA,
and to raise FBA-specific antibodies, the cbbA gene from
MCS8 was cloned into the expression vector pQE70 to
facilitate the expression and subsequent purification of 6x
histidine-tagged recombinant FBA (rFBA). After induction
of E. coli cells harbouring the FBA expression plasmid, a
recombinant protein with an apparent molecular mass
consistent with the predicted mass of the tagged protein
was strongly expressed, affinity-purified under non-
denaturing conditions (Fig. 1A) and used to generate
rabbit anti-FBA-specific polyclonal antiserum (RaFBA).
Immunoblot analysis confirmed that RaFBA and anti-
pentahistidine antibodies both reacted to the purified
rFBA (Fig. 1B and C).
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Meningococcal FBA has fructose bisphosphate
aldolase activity

A previously described coupled enzymic assay (Berry and
Marshall, 1993) was used to confirm that the purified
native meningococcal FBAwas active as an FBA (Fig. 2).
Kinetic parameters of the purified enzyme for cleavage of
fructose bisphosphate (FBP) were estimated as Km
(FBP) = O.OSmM and !<cal = 126 min '. These values are
similar to those found for Class-II FBA enzymes from a
variety of sources such as E. coli (Km (FBP) - 0.19 mM
and !<cal - 490 rnirr ') (Plater et al., 1999).

Mutagenesis of cbbA and strain survey

To examine any additional roles of FBA, a cbbA knockout
derivative of N. meningitidis MCS8 was generated. To
achieve this, the cbbA gene plus flanking DNAwas ampli-
fied and cloned, and inverse PCR was employed to
remove the open reading frame. The product was then
ligated to a kanamycin resistance marker .and.t~e result-
ing plasmid used to transform N. menmgltldls MCS8.
Using this strategy, the cbbA gene was successful~y
mutated to yield MCS86.cbbA. The genotype of this
mutant was confirmed by PCR and sequencing (data not
shown). Immunoblotting using AaFBA showed that a ~.
38 kDa protein corresponding to FBA could be detected In

whole ceillysates of wild-type but not MeS8 cbbA (Fig. 3,
lanes 1 & 2) confirming that FBA is expressed under the
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Fig. 2. Coupled enzymic assay to me sure th activity of
meningococcal fructose 1, 6-blsphosph t aldol e Cl avag 01
fructose I, 6·blsphosphate (FBP) was coupl d to
a-glycerophosphate dehydrogenase and NAO oxldatlcn. On unit
of aldolase activity was deli ned as the amount of nzym which
catalysed the oxidation of 21lmOI NAOH min '.
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Fig. 3. Immunoblot analysis of whole cell proteins from the N.
meningitidis MC58 wild-type, 6cbbA mutant derivative and
complemented mutant reveals the absence of FBA in the 6cbbA
mutant preparation.

conditions used and that expression had been abolished
in the mutant. In addition to the strongly reactive FBA
band, immunoblot analysis showed an additional cross-
reactive band at c. 50 kDa (Fig. 3). However, this band
was also present in preparations of the AcbbA mutant
demonstrating that this protein was not FBA. To further
confirm that the c. 38 kDa immuno-reactive protein was
FBA, a wild-type copy of cbbA was introduced in trans into
MC58AcbbA using the pYHS25-based plasmid pSAT-12

Table 1. Bacterial strains and plasm ids.

Strain or plasmid

Strains
E. coli

JM109

Description Source or reforence

(Table 1). Introduction of cbbA at an ectopic site restored
FBA expression (Fig. 3, lane 3). Further immunoblot
analyses using a panel of 25 N. meningitidis strains
(Table 2) including representatives of differing serogroups
and sequence types showed that FBA expression was
conserved across all strains (data not shown). Expression
was also conserved in representative examples of N.
lactamica, N. polysacchareae and N. gonorrhoeae exam-
ined (data not shown). These data complement in silica
predictions that cbbA is universally present and constitu-
tively expressed across Neisseria strains including com-
mensal species.

Meningococcal FBA is localized to the cytoplasm and
outer membrane

The sub-cellular localization of FBA was investigated by
sub-cellular fractionation followed by immunoblot analysis
of the fractions. FBA was predominately detected in outer
membrane and cytosolic protein-enriched fractions, but
was absent from the cytoplasmic membrane-enriched
fraction (Fig. 4). FBA could also be detected in the peri-
plasmic protein-enriched fraction, possibly representing
transient FBA during translocation to the outer membrane
(Fig. 4). FBA was not detected in concentrated culture
supernatants (data not shown). Immunoblotting experi-
ments with antisera against PorA, a known outer mem-
brane protein of N. meningitidis, gave an identical profile
except that PorA was absent in the cytosolic fraction (data
not shown). These results demonstrate that meningococ-
cal FBA is predominantly a cytosolic protein that is also
found in the outer membrane.

Promogo

TOP10F'

endAl recAl gyrA96 thi hsaR17 (rK-r.-) relAl supE44 6(/ac-proAB) [F'
tra036 proAB laql°ZliM 15]

F'ladq Tnl0(TetR) mcrA 6(mrr-hsaRMS·mcrBC) <l>SO/acz.o.M15
MacX74 recAl araD139 6(ara·leu)7697 gaA.) gafr< rpst. endAl nupG

F· ompT hsd93 (rB·mB·) gal dcm (DE3) pLysS (CamR)

Invltrog n

BL21 (OE3)pLysS
N. meningltidis

Me5S
Me5S6cbbA
Me586cbbA cbbN"

Plasmids
pQE70
pSAT-FBA
pGEM-T Easy
pSAT-2
pJMK30
pSAT-4

pYHS25
pSAT-12

Invitrog n

wild-type serogroup B strain
cbbA deletion and replacement with kanamycin cassette
MCSS6cbbA complemented with an ectopic copy of cbbA

Cloning vector encoding resistance to ampicillin
MCSS cbbA gene cloned in pOE70
Cloning vector encoding resistance to ampiCillin
2.3 kb fragment spanning the MeSS cbbA region cloned In pGEM·T Easy
Source of kanamycin resistance cassette
pSAT-2 containing the kanamycin resistance cassette In the same orientation as

the deleted cbbA gene
Ectopic complementation vector encoding resistance to erythromycin
pYHS25 containing cbbA

n It lin I I., 2000
Thl study
This study

Olagon
This study
Promego
This study
v n VII tat 81., 1998
This study

Wlnl r ot 81•• 2002
This study
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Memngococcdl .IdolasehJ, J roleIn Jdhe<mn 609 -Table 2. Isolates of N. meningitidis examined for the expression of FBA.

Country of Date of Sequence
Strain' origin isolation Disease Serogroup type Clonal complex

Z1oo1 USA 1937 tnvasive (unspecified) A 4 ST-4 complex/subgroup IV
Z1035 Pakistan 1967 Meningitis and septicaemia A 1 ST-1 complex/subgroup tltt
Z1054 Finland 1975 Invasive (unspecified) A 5 ST-5 complex/subgroup III
Z1213 Ghana 1973 Invasive (unspecified) A 4 ST-4 complex/subgroup IV
Z1269 Burkina Faso 1963 Invasive (unspecified) A 4 ST-4 complex/subgroup tV
Z1503 China 1984 Invasive (unspecified) A 5 ST-5 complex/subgroup III
Z3771 UK 1987 Invasive (unspecified) A 5 ST-S complex/subgroup III
Z3842 Norway 1976 Invasive (unspecified) B 32 ST-32 compleX/ET·S complex
Z4181 Mali 1989 Carrier C 11 ST-11 complexlET-37 complex
Z4323 Israel 1988 Invasive (unspecified) C 11 ST·11 compleX/ET·37 complex
Z4662 Netherlands 1967 Invasive (unspecified) B 8 ST-8 complex/Cluster A4
Z4667 Netherlands 1963 Invasive (unspecified) B 48 ST-41/44 complexILlneage 3
Z4673 Netherlands 1986 Invasive (unspecified) B 41 ST-41/44 comptexILlneage 3
Z4676 Denmark 1962 Invasive (unspecified) B 37 ST-37 complex
Z4678 East Germany 1985 Invasive (unspecified) B 19 ST-18 complex
Z4684 Norway 1988 tnvasive (unspecified) B 13 ST-269 complex
Z4685 Norway 1988 Carrier B 14 ST-269 complex
Z4701 Norway 1969 Invasive (unspecified) B 11 ST-11 complexlET-37 complex
Z5826 China 1992 Invasive (unspecified) A 7 ST-5 complex/subgroup lit
Z6413 South Afriea 1990 Invasive (unspecified) C 8 ST-8 complex/Cluster A4
Z6414 New Zealand 1994 Invasive (unspecified) C 66 ST -8 complex/Cluster A4
Z6417 UK 1993 Invasive (unspecified) C 11 ST-l1 compleX/ET-37 complex
Z8418 Cuba 1992 Invasive (unspecified) B 33 ST-32 compleX/ET-S complex
Z6419 Austria 1991 Invasive (unspecified) B 40 ST-41/44 complexILlneage 3
Z6420 Greece 1992 Invasive (unspecified) B 41 ST-41/44 complex/Llneage 3

a. Further details of streins are available at http://pubmlst.org/

Meningococcal FBA is surface accessible to antibodies

In order to investigate whether the outer membrane-
localized FBA was accessible on the bacterial cell
surface, RaFBA antibodies were used to probe intact
meningococcal cells which were then analysed by flow
cytometry. MeS8 cells treated with RaFBA alone or sec-
ondary antibody alone did not produce high fluorescence

CP pp CM OM

62-

48-

32-

25-

Fig. 4. Sub-cellular loealization of FBA. Cytosolic protein-enriched
(CP), periplasmic protein-enriched (PP), cytoplasmic membrane
protein-enriched (CM) and outer membrane protein-enriched (OM)
frectlons of MCS8 were separated on a 10% acrylamide gel and
probed In immunoblotting experiments with RaFBA.

<C> 2010 Blackwell Publishing Ltd, Molecular Microbiology, 76, 605-615

signals (3.4 and 4.4 mean fluorescence intensities,
respectively), while cells treated with RaFBA followed by
anti-rabbit IgG-Alexa Flour 488 conjugate demonstrated a
clear shift in fluorescence signal (55.2 mean fluorescence
intensity) confirming the cell surface localization of FBA
(Fig. SA). No shift in fluorescence signal was observed
when MeS8~cbbA cells were examined under Identical
conditions [Fig. 5B; mean fluorescence Intensity of 12.1
compared to samples treated with primary or secondary
alone (3.6 and 6.7, respectively)]. From the wild-type cells
probed with both antibodies, 79.05% were found In the M1
region (Fig. SA), suggesting that the majority of the popu-
lation had FBA present on the cell surface. Pre-Immune
serum showed no reactivity against wild·typ MeS8 In
immunoblot experiments confirming that the binding of
RaFBA to wild-type MeS8 observed by flow cytometry
was FBA·specific.

FBA is required for efficient adhesion to host cells

Viable counts of bacteria associated with homogenlz d
infected monolayers were used to compare the cap city
of the wlld-type, FBA mutant and complem nted mut nt
strains to associate with, and invade human br In
microvascular endothelial (HBME) cells. FBA·d flcl nt
meningococci had a significantly reduced c p city to
adhere to monolayers of HBME cells (Fig. SA). No st •
tistically significant reduction was observed In th ability

http://pubmlst.org/
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- MC58.lcbbA pr1rnary& secondary

Fluorescence Intensity

Fig. 5. Flow cytometric analysis of MC5Swild-type (A) or
MC5St.cbbA cells (B) for FBA surface localization. Cells were
stained with RaFBA (primary alone). anti-rabbit IgG-Alexa Flour
488 conjugate (secondary alone) or both. Fluorescencewas
displayed as a histogram. The histogramarea in Ml represents the
population of fluorescently labelled meningococci.

show that FBA plays a role in the adherence of N. men-
ingitidis to human cells.

Discussion
An increasing number of reports show that classical
cytoplasmic house-keeping enzymes without identifiable
secretion signals may be localized to the surface of
microbial pathogens, where they exhibit various func-
tions, unrelated to glycolysis (Pancholi and Chhatwal,
2003). One such protein, fructose-1, 6-bisphosphate
aldolase (FBA) has been previously reported to be local-
ized to the surface of some Gram-positive bacteria. In S.
pneumoniae, for example, surface-exposed F8A (Class

A

1.E+04

1.E+03

I1.E+02

OMC5Swr
.MC5McbbA
.MC5McbbA cbbAE<:I

1.E+01

B

1.E+03

OMC5Swr
·MC58f.cbbA
.MC58f.cbbA cbbAE<I

of the FBA mutant to invade monolayers of HBME cells
(Fig. 68). Similar results were also obtained using HEp-2
(human larynx carcinoma) cells, confirming that the
effect was not cell-type specific. To confirm that the
observed effects were not due to an impairment in in
vitro growth, the growth rate of the strains was com-
pared by measuring the optical density at 600 nm
(00600) and determining the viable counts of broth cul-
tures sampled during exponential growth over 24 h in
triplicate on three separate occasions. No significant dif- Flg.6. FBA-deflclentmeningococcih v reducod blilly to
ference between strains was observed (data not shown). associate with (A) but not InvadeInto (B) HBM II comp r d
To further exclude the possibility that mutation of cbbA with the Wild-typeor complementodstrains. Th num r 01

FBA-deflclentmeningococciassociatingwas slgnlflc ntly low r th n
affected expression of the downstream gene encoding the wild-type (.P = 0.0011). Numb rs of rrunantC liS Inv ding w r
factor H binding protein, whole cell Iysates of MC58, not significantly lower comparedwith th wltd·type (P. 0.13).
MC58""cbbA and MC58""cbbA cbbAEc1were probed with Similar experiments were also carri d oul using HEp-2 COli with

consistent resurts, Mean levels shown from Ihr Ind p nd nl
anti-fHbp. Expression levels of this protein were similar experiments,each using Irtpllcalew lis. B rs d nOI I nd rei
in the three strains. In summary, these experiments deviation. Cfu denot s colony fonmlngunlls.
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liB) was demonstrated to act as an adhesin, specifically
binding to a large 7-transpass transmembrane receptor
belonging to the cadherin superfamily (Blau et al., 2007).
In N. meningitidis, two cytoplasmic house-keeping
enzymes, GAPDH and enolase, have been shown to be
surface-localized, and enolase has been suggested to
act as a plasminogen receptor (Grifantini et al., 2002;
Knaust et al., 2007). The non-glycolytic role(s) of
GAPDH on the bacterial surface is undefined. We under-
took to investigate whether FBA was also surface-
localized in N. meningitidis, as has been described for
GAPDH and enolase, and to determine whether FBA
plays a role in meningococcal pathogenesis.

In the published meningococcal and gonococcal
genome sequences, there is only one gene, cbbA, encod-
ing a putative FBA enzyme. Despite being predicted to be
part of a non-functional metabolic pathway, cbbA has not
acquired spontaneous mutations in any of the neisserial
genomes examined, which suggests that the gene was
acquired recently, that the glycolytic pathway became
non-functional recently, or that the protein has one or
more additional functions. Sequence analysis shows that
FBA is highly conserved at the amino acid level, and is a
Class-liB enzyme. A 21-amino acid insertion sequence,
which is present in two subclasses of the Class liB FBA
enzymes, was also present in the neisserial sequences.
The presence of this sequence suggests that the neis-
serial FBA enzyme is a tetrameric, rather than a dimeric
enzyme; a feature which is present in extremophiles, and
which has been suggested to confer thermal stability
(Sauve and Sygusch, 2001; Izard and Sygusch, 2004).
Unexpectedly for a presumed cytosolic protein, a possible
signal sequence was predicted for the neisserial FBA
enzyme, suggesting a possible means of translocation
across the cytoplasmic membrane.

In this study, rFBA was expressed and purified under
non-denaturing conditions. Purified rFBA was shown to
have aldolase activity confirming that the enzyme was in
native conformation after purification. The purified protein
was also used to generate rabbit polyclonal anti-FBA anti-
serum (RaFBA), which was used to confirm that FBA was
expressed in vitro in each of a range of neisserial strains
tested including commensal species. This suggests that
FBA plays an important role which is required by both
non-pathogenic and pathogenic lineages. FBA was
shown to be present in both the cytosol and to be exposed
at the cell surface of wild-type meningococci in a form that
was accessible to antibodies, suggesting that, similar to
GAPDH and enolase, FBA is translocated (or diverted) to
the outer membrane. An alternative hypothesis is that
FBA is released from lysed cells and recruited back onto
the surface of intact meningococci; however, we have
pro.bed Iys.atesof cbbA-deficient meninqococcl following
cO-Incubation with rFBA and found no reactivity with

(Q) 2010BlackwellPublishingLtd,Molecular Microbiology, 76, 605-615
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RaFBA (data not shown). In M. genitalium, only a small
proportion of the total cellular GAPDH is traHicked to the
bacterial surface; however, this is suHicient to impart a
biologically significant phenotype (mucin-binding) on this
organism (Alvarez et al., 2003). For organisms with rela-
tively small genomes, multi-functional proteins may be
advantageous to optimize the potential of the genome. To
our knowledge, this is the first report demonstrating that a
proportion of FBA is found on the cell surface of
meningococci.
An FBA-deficient mutant grew at the same rate (in

broth culture and on solid media) as the wild-type and
the complemented mutant strains, demonstrating that
FBA is not required for growth of the meningococcus
under the in vitro conditions used. No diHerences In
either colony or bacterial cell morphology (using light
microscopy) were observed. The FBA-deficient mutant
strain exhibited a significantly reduced capacity to
adhere to both HBME and HEp-2 cells. This phenotype
was completely restored in a complemented strain. Our
observation that FBA is involved in adhesion to both epi-
thelial and endothelial cells, and that FBA expression is
conserved in non-pathogenic strains (such as N.
polysacchareae) may suggest a role for FBA during
colonization of the nasopharyngeal mucosa by commen-
sal neisserial species.
Although we have shown that FBA is present on the

meningococcal cell surface and is required for optlm I
adhesion, the role of FBA in this process is unknown. It Is
possible that the enzymatic activity of FBA plays an Indi-
rect role that is required for optimal adhesion. However,
given that other FBA homologues (such as FBA in S.
pneumoniae) have been shown to directly bind to host cell
ligands it is also possible that the meningococcal protein
has a direct host receptor-binding activity. Determining the
ability of meningococci expressing a non-enzymatically
functional FBA to adhere to host cells would address this.
S. pneumoniae FBA was shown to bind to a c dh rln
superfamily receptor (Flamingo cadherin receptor, FCR)
on the surface of host epithelial cells, but it Is unknown
which FBA residues participate In this Interaclion (BI u
et al., 2007). Meningococcal FBA is only 40% id ntic I to
the pneumococcal enzyme at the amino acid level, so It Is
unclear whether meningococcal FBA binds th m
receptor. Work is currently In progress to d termln
whether meningococcal FBA binds to FCR or dlff rent
host cell receptor.

Pneumococcal FBA has been shown to be Immuno-
genic in humans and capable of eliciting a p rti lIy pro-
tective immune response against lethal S. pn omon;
intranasal challenge in mice (Ling et sI., 2004). Glv nth
meningococcal FBA Is highly conserved, express d by
wide range of Isolates, surface-accessible to ntibodi
and structurally and antigenically unrelated to th hum n
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Table 3. List of primers used in this study.

Primer DNA sequence' Restrictionsite

Expression
FBA_pOE70 (F)
FBA_pOE70 (R)

Mutagenesis
FBA_M1(F)
FBA_M2(R)
FBA_M3(IR)
FBA_M4(IF)

Complementation
FBA_COM(F)
FBA_COM(R)

CGCGGATCCATGGCACTCGTATCCATGCG
CGCGGTACCGTCGTCCGAACGGCGG

Sphl
9gl11

CTGCTGTGCCCGAGC
CCGCTGCTGCAGGCG
GCGAGATCTTGTGTCTCCTTGGGCAATAGG
GCGAGATCTGCTCCATCCAACTGGG

Bgill
Bgill

CGCGGATCCATGAGCTGTTTATGGrnnnTGCTG
CGCGGATCCGGCATTTTGTTTACAGGCAACCTG

BamHI
BamHI

8. All primers were designed from the N. meningilfdisMC58 genome sequence. Sequences in bold Identify restrictionenzyme sites.

(Class I) FBA protein, meningococcal FBA is worthy of
future study as a possible candidate vaccine component
against this important human pathogen.

Experimental procedures
Bacterial strains and growth conditions

Escherichia coli TOP10F' and BL21(DE3) pLysS (Table 1)
were used for the expression of 6x histidine-tagged rFBA
encoded by plasmid pSAT-FBA (Table 1). E. coliJM109 was
used as a host strain for the construction of mutagenic
and complementation plasmids, pSAT-4 and pSAT-12
respectively. E. coli strains were grown at 3JOC in Luria-
Bertani (LB) broth or on LB agar supplemented, where appro-
priate, with ampicillin (100 ~g rnl'], kanamycin (30 ~g mt')
or erythromycin (200 ~g rnr '). Strains of Neisseria (Tables 1
and 2) were grown at 37°C, air plus 5% CO2, on Brain Heart
Infusion (BHI) agar supplemented with 1% Vitox (Oxoid) and
kanamycin (50 ~g mr ') or erythromycin (5 ~g mr") where
appropriate.

DNA manipulation

Genomic DNA was extracted from N. meningitidis using the
DNeasy Tissue kit (Oiagen). Plasmid DNA was prepared by
using the OIAprep Spin kit (Oiagen). Restriction enzymes
and T4 DNA ligase were purchased from Roche. All enzy-
matic reactions were carried out according to the manufac-
turer's instructions. DNA sequencing was carried out at the
School of Biomedical SCiences (University of Nottingham) on
an ABI 377 automated DNA sequencer.

Preparation of recombinant FBA

The cbbA gene was amplified from N. meningitidis MC5S
using oligonucleotide primers FBA_pOE70 (F) and
FBA_pOE70 (R) (Table 3) using the Expand High Fidelity
PCR system (Roche). The resulting amplicon was digested
with Sphl and BglII, before being ligated into similarly treated
pOE70, and the resulting plasmid, pSAT-FBA, used to trans-
form E. coliBL21 (DE3) pLysS. Transformants were grown to

log phase, induced with 1 mM IPTG for 3 h and harvested by
centrifugation. Recombinant 6x histidine-tagged FBA was
then affinity-purified under native conditions. Briefly, the
culture pellet from an IPTG-induced culture of E. coli BL21
(DE3) pLysS (pSAT-FBA) was dissolved in 20 ml of lysis
buffer (50 mM NaH2PO., 300 mM NaCl, 10 mM Imidazole, pH
7.4) and disrupted by sonication using a MSE Soniprep 150
for 10 cycles (each cycie conslsnnq of a 10 s burst followed
by a 10 s cooling period). The cell lysate was then mixed with
1 mi of HisPur™ Cobalt Resin (Pierce) and incubated over-
night at 4°C. The lysate-resin mixture was then applied to a
column, and washed with 50 mM NaH,PO., 300 mM NaCl,
15 mM imidazole, pH 7.4. Bound protein was then elutod In
elution buffer (50 mM NaH2PO., 300 mM NaCl, 300 mM Imi-
dazole, pH 7.4).

Production of a rabbit antiserum against purified
recombinant FBA

New Zealand White femaie rabbits were Immunized subcu-
taneously four times at 2 week Intervals with 30 j.lg of rFBA
protein emulsified In Freud's complete (first immunization
only) or incomplete adjuvant. After three Injections, th
animals were test bled, boosted once more and sacrllic d 10
days later.

50S-PAGE and immunoblotting

Proteins were electrophoretically separated using 10% poiy-
acrylamide gels (Mini-Protean III; Blo-Rad) and woro st In d
using SimplyBlue Safestain™ (Invitrogen) or transterr d to
nitrocellulose membranes as previously described (Klzil
et al., 1999). Membranes were probed with mous nil-
pentahistidine antibody (Olagen) or rabbit prim ry ntlbody
diiuted 1:10000 or 1:1000, respectively, In blocking buff r
[5% (wI/vol) nonfat dry milk, 0.1% (voIlVOI) Tw n 20 In 1
phosphate-buffered saline (PBS)] and Incub t d for 2 h. Aft r
being washed in PBS with 0.1% Tween 20 (PBST), m m-
branes were incubated for 2 h with 1:30 OOO-dilut d go I
anti-mouse (or anti-rabbit) IgG-alkaline phosph t conju-
gate (Sigma). After washing with PBST, blots w r d v lop d
using BCIP/NBT-Blue liquid substrate (Slgm ).

© 2010 Blackwell Publishing Ltd, Moleculsr Microbiology, 76, 605-615



Kinetic analysis of fructose bisphosphate
aldolase activity

This was done using a previously described methodology
(Berry and Marshall, 1993). Briefly, the assay was performed
at 30°C in 1 ml of 50 mM Tris-HCI supplemented with 0.1 M
potassium acetate buffer (pH 8.0) containing 0.1-5 mM fruc-
tose 1, 6-bisphosphate (FBP), 0.2 mM NADH and 2 ILl of a
10 mg ml-' mixture of glycerol phosphate dehydrogenase/
triose phosphate isomerase (coupling enzymes). The
reagents were added in the order: buffer; FBP; NADH; cou-
pling enzymes. Finally, the reaction was started by adding
0.26 nmol of purified native FBA. A decrease in absorbance
at 340 nm was recorded as the measure of enzyme activity
on an Uvikon 930 spectrophotometer. Activities were calcu-
lated using the molar ex1inction coefficient for NADH as
6220 M-' crrr '. One unit of aldolase activity was defined as
the amount of enzyme which catalysed the oxidation of
2 urnot NADH rnirr '. Kinetic parameters were determined
using Origin Pro 7.5 software.

Construction of MC58L1cbbA

A 2.3 kb fragment of DNA consisting of the cbbA gene and
flanking DNA was amplified using FBA_M1(F) and
FBA_M2(R) (Table 3) from N. meningitidis MCS8 chromo-
somal DNA. The amplified DNA was TA cloned into the
pG~M-T Easy vector to generate pSAT-2. This was then
subject to inverse PCR using primers FBA_M3(IR) and
FBA_M4(IF) (Table 3) resulting in the amplification of a 5 kb
amplicon in which the cbbA coding sequence was deleted
and a unique Bglli site had been introduced. The Bglil site
was used to introduce a kanamycin resistance cassette,
BamHI-digested from pJMK30 (Table 1), in place of cbbA.
One of the resulting plasmids, pSAT-4, containing the resis-
tance cassette in the same orientation as the deleted gene,
was confirmed by restriction digestion and sequencing and
Subsequently used to mutate the meningococcal strain MCS8
by natural transformation and allelic exchange as previously
described (Hadi et al., 2001). The deletion in the resulting
mutant (MCS811CbbA) was confirmed by PCR analysis and
immunoblotting. Growth curve assays carried out using liquid
cuitures showed no significant differences between
MC586cbbA and the Wild-type strain (data not shown).

Complementation of cbbA

A fragment corresponding to the cbbA coding sequence and
upstream promoter was amplified from chromosomai DNA of
st~ain MCS8 with High Fidelity Expand Taq (Roche) using the
pn~ers FBA_COM(F) and FBA_COM(R) (Table 3) lncorpo-
r~!lng BamHI sites into the amplified fragment. The BamHI-
dlge~ted fragment was then introduced into a unique BamHI
site In pYHS2S. This vector contains an erythromycin resis-
tance gene fianked by the MCS8 genes NMB0102 and
NMB0103 (Winzer et al., 2002). The resuiting plasmid
pSAT-12 was used to transform MC5811CbbAby natural trans-
formation, thus introducing a single chromosomal copy of
cbbA ~nd the downstream erythromycin resistance cassette
In the rntergenlC region between NMB0102 and NMB0103.

C 2010 Blackwell Publishing Ltd, Molecular Microbiology, 76,605-£15
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Insertion of the cbbA gene and erythromycin resistance
cassette at the ectopiC site was confirmed by peR analysis
and sequencing. Expression of FBA was confirmed by
immunoblotting.

Sub-cellular localization of FBA

Cells from 100 ml of overnight BHI broth cultures were har-
vested at 13 000 9 for 2 min and the pellet re-suspended in
1 ml of EB buffer (10 mM Tris-HCI pH 7.5, 10 mM Mgel2, 25%
sucrose), and washed twice in the same buffer. Finally, the
pellet was re-suspended in EB buffer and incubated for 10 min
on ice. The preparation was centrifuged at 13 000 9 for 4 min:
following re-suspension in 0.4 ml of ice cold water, the mixture
was incubated on ice for a further 10 min, followed by centrifu-
gation at 13000 9 for 2 min. The supernatant, containing
peri plasmic proteins, was removed and stored at -20°C. The
remaining cell pellet (spheroplasts) were re-suspended Into
0.4 ml of Tris-HCI (pH 7.5) and sonicated using a MSE Sonl-
prep 150 for 10 cycles (each cycle consisting of a 10 s burst
followed by a 10 s cooling period) to release the cytoplasmic
contents. Non-disrupted cells were removed by centrifugation
at 5000 g for 1 min. The upper clear supernatant was trans-
ferred to a fresh tube and centrifuged at 17000 9 for 30 min.
The supernatant (representing the cytosolic fraction) was
removed and stored at -20°C. The remaining pollet was
re-suspended in 0.4 ml of 10 mM Trls-Hel pH 7.5, 10 mM
MgC!" 2% Triton X-100. The sample was Incubated at 37"C for
30 min and then centrifuged at 17000 9 for 30 min. The
supernatant, enriched for cytoplasmic membrane proteins,
was removed and stored at -20°C. The final pellet (enrlchod
for outer membrane proteins) was re-suspended by brief
sonication in 1 ml of 10 mM Tris-HCI pH 7.5, 10 mM MgCla, 10/0
Triton X-100, incubated at 37°C for 30 min and then contrl-
fuged at 17 000 9 for 30 min. The pellet was re-suspended In
0.2 ml of 10 mM Tris-HCI pH 7.5 and stored at -20°C.

Flow cytometry

Neisseria meningitidis strains were grown to mid-log ph so
(00600 approximately 0.7). 1 x 10' cfu allquots were contn-
fuged at 5000 9 for 5 min and resuspendod In 0.2 Ilm-fIIt r d
PBS. The cells were Incubated for 2 h with (lR-FBA [1 :500
diluted in PBS containing 0.1% BSA, 0.1% sodium azid and
2% fetal calf serum (FCS)] and untreated colis woro u d 5
a control. Cells were washed throe timos with PBS nd Incu-
bated for 2 h in the dark with goat anti-rabbit IgG-Alox Flour
488 conjugate (Invitrogen; dllutod 1:50 In PBS cont Inlng
0.1% BSA, 0.1% sodium azido and 2% FCS). Ag in,
untreated cells were used s a control. Fin lIy, th mpl
were washed in PBS twice beforo bolng re-su p nd d In , ml
of PBS containing 0.5% formaldehydo to fix th c II .
Samples were analysed for fluoroscenc u ing Coult r
Altra Flow Cytometer. Cells were dot et d u ing lorw rd nd
log-side scatter dot plots, and a gating r glon w t to
exclude cell debris and aggregates of b ctori . A tot I of
50000 bacteria (events) were analysed.

AssociatIon and invasion assays

Association and invasion assays wero perform d nil lJy
as previously described (Oldfieid t et; 2007), Brl fly, HBME
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or larynx carcinoma (HEp-2) cells were grown to confluence
in DMEM supplemented with 10% heat-inactivated FCS
(Invitrogen) and 2% antibiotic anti-mycotic solution (Invitro-
gen) in 24-well tissue culture plates (Costar) at 37°C in an
atmosphere of 5% CO2. Prior to all experiments, mono-layers
were transferred to DMEM supplemented with 2% FCS to
remove the antibiotics. Meningococci were cultured in MHB
for 2 hand monolayers were infected with 1 x 106 cfu of
meningococci and incubated for 2 h (association) or 4 h
(invasion) in 5% CO2 at 3rC. To assess total cell association,
monolayers were washed four times with 1 ml of PBS per
well. To assess invasion, monolayers were further incubated
in DMEM containing gentamicin (100 l!g rnr ') for 2 h. Prior to
further steps, aliquots of the gentamicin-containing superna-
tants were plated out to confirm killing of extra-cellular
bacteria. Furthermore, the susceptibility of all meningococcal
strains to gentamicin at 100 l!g ml-1 was confirmed prior to
testing. Monolayers were then washed four times with 1 ml of
PBS. In both association and invasion experiments, mono-
layers were then disrupted and homogenized in 1 ml of 0.1%
saponin in PBS. Meningococci were enumerated by serial
dilution of the homogenized suspensions and subsequent
determination of colony-forming units by plating 50 l!1aliquots
from appropriate dilutions of the Iysates on agar. All associa-
tion and invasion assays were repeated at least three times.
Statistical significance was measured using a two-tailed Stu-
dent's t-test.

Protein and nucleic acid sequence analysis

Public databases containing previously published protein and
DNA sequences were searched using the BLAST and PSI-
BLAST algorithms available at http://blast.ncbLnlm.nih.gov/
Blast.cgL The genome database of N. meningitidis MC58 was
interrogated at http://cmr.jcvLorg/cgi-bin/CMRlGenomePage.
Cgi?org=gnm. Sequence homology data were obtained using
the CLUSTALX software (http://www.clustal.orgl). Protein
secretion signals were analysed using the SignalP 3.0 server
available at http://www.cbs.dtu.dklserviceslSignaIP/ (Eman-
uelsson et al., 2007). GenBank accession numbers for the
cbbA sequences analysed in this study are as follows:
YP_974462 (FAMI8), YP_001598513 (ST-4821 strain
053442), YP_002342063 (Z2491), YP_207215 (gonococcal
strain FA1090) and ZP_03723075 (N. lactamica ATCC
23970).
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