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Abstract 

Abstract 

The potential application of inkjet printing technology to produce precisely dosage 

care is demonstrated in this thesis. Inkjet printing technology as it offers the 

opportunity to deliver quantities with high accuracy can produce medicines tailored 

for each patient. 

The viability of this method was first demonstrated by using Felodipine as an active 

pharmaceutical ingredient polyvinyl pirrolidone (PVP) as an excipient. Felodipine is 

an antihypertensive drug which is poorly soluble in water and PVP is a highly soluble 

polymer commonly used to improve drugs' bioavailability. These were dissolved at 

various ratios in a mixture of ethanol and DMSO (95/5). Using a piezoelectric driven 

dispenser, picolitre size droplets of the solutions were dispensed onto suitable 

hydrophobic substrates. The dried products were characterized using AFM, localized 

nano-thermal analysis and high resolution vibrational spectroscopy (ATR-IR and 

Raman). Results indicate intimate mixing of the micro-dot API and excipient 

mixtures. Specifically, ATR-IR confirmed the interaction of felodipine and PVP by 

means of hydrogen bonding. Nanothermal analysis indicates a single glass transition 

point which is lowered as the API concentration increases. Finally, confocal Raman 

microscopy mapping on single droplets allows the visualization of the homogeneous 

distribution of the drug. 

Also, capozide has been used as a model therapeutic system which could be 

produced rapidly as a viable formulation using the inkjet printing technology. 

Capozide consists of captopril, an angiotensin converting enzyme (ACE) inhibitor and 

hydrochlorothiazide, a thiazide diuretic drug, in varying ratios. These active 

pharmaceutical ingredients (APls) and poly(lactic-co-glycolic acid) (PLGA) were 

dissolved in appropriate solvents and using a piezoelectric driven dispenser and 

pipetting, picolitre and microlitre size droplets respectively were deposited onto 

hydrophobic coated glass slides. Captopril and PLGA were dissolved in chloroform, 

ethanol and DMSO (75/18/7). Hydrochlorothiazide (HCT) and PLGA were dissolved in 

acetone and DMSO (93/7). The dried products where characterised using AFM and 
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Abstract 

high resolution Raman microscopy. The results showed that both capropril and HCT 

are phase separated with the PLGA. Also, the dissolution profiles of the final 

products were measured using HPLC where it has been shown that PLGA can control 

the release of the drug from the formulation. These results are a promising first step 

to produce pharmaceutical by means of inkjet printing. 
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1. Introduction 

1. Introduction 

1.1 Current trends in oral dosage drug formulation production 

Nowadays the most popular drug delivery systems are tablets and intravenous 

solutions. The advantages that they can offer are the greater stability, pain 

avoidance, versatility, patient compliance accurate dosage and easy production [1-2]. 

Tablets are compressed powders. The main aim of these compressed powders is to 

be easily dissolved in the gastrointestinal tract and aid in the complete absorption of 

API. The tablet manufacture process can be classified as granulation (wet and dry) 

and direct compression. Direct compression is the term used to define the process 

where powder blends of the drug substance and excipients are compressed on a 

tablet machine. There is no mechanical treatment of the powder apart from a mixing 

process. Granulation is a generic term for particle enlargement, whereby powders 

are formed into permanent aggregates. In granulation, the particles are 

agglomerated to improve the flow, density and compressibility of particulate 

material by size enlargement. The agglomeration can be achieved by using a dry 

binder (dry granulation) or a binder solution (wet granulation) which stick the 

individual particles together. 

More speCifically in dry granulation, the powder blends are compacted through roller 

or slugging compactions. Slugging involves the manufacture of a large compressed 

tablet, whereas roller compaction pushes powder blends through two counter­

rotating rolls, producing a sheet of agglomerated material [3-4]. The main advantage 

of dry granulation is that the powders are not exposed to moisture and dry process. 

However, the applied mechanical stresses during processing may lead to phase 
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1. Introduction 

transformation via the solid-state or melt mechanisms [5]. Also, the tablets produced 

when materials possess a low bulk density may be too thin after compression. 

Finally, dry granulation is not suited for poorly flowing drug compounds [2]. 

Wet granulation provides better control of drug content uniformity at low drug 

concentrations, as well as control of product bulk density and ultimately 

compactibility (brittle fracture), even for high drug contents. Wet granulation 

involves two types of processing; fluid bed granulators or high-shear mixers. Wet 

granulation typically involves wet massing a blend of API and excipients in a wet 

granulator followed by subsequent sieving and finally drying [3-4]. However, during 

wet granulation process different crystalline polymorphs of the API can be formed 

[6-7]. Other limitations of wet granulation are the expensive equipment and the 

solvent recovery when it is not used as water as a solvent. 

In direct compression the powder blends of APls and excipients are compressed on a 

tablet machine. The advantages over the granulation process are the lower cost as it 

is much simpler not requiring many operations granulations. However, the inherent 

physical properties of the individual filler materials are highly critical, and minor 

variations can alter flow and compression characteristics, so as to make them 

unsuitable for direct compression [3-4]. Armstrong described the requirements for 

direct compression fillers which must have good flow properties, possess good 

compaction properties, have appropriate particle size to avoid segregation and have 

high bulk density [8J. Various excipients are available now that allow tablet 

production without granulation process intervenes such as microcrystalline cellulose, 

starch 1500 and lactose [2J. 

From all the above it is clear that the first choice as a tablet manufacture method is 

the direct compression due to its low cost. However, this method is not always 

applicable as it requires specific properties from the compounds and also it cannot 

be used for drug loading more than 30% [4J. Hence, the manufacture part of a 

formulation requires a considerable amount of cost and time. Consequently, a 

simpler generic method to produce solid drug dosages would revolutionize the 

pharmaceutical industry. Inkjet printing is a well established method for transferring 

quantities with high accuracy and perfectly localised [9-11]. In this case, the active 

compound can be dissolved with excipients depending on the properties of the final 
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formulation product. By implementing, inkjet printing in drug formulation many of 

the excipients required in manufacture such as lubricants, binders, fillers etc. will not 

be necessary. Also, properties of the compounds that affect the tablet's properties 

such as compactability, bulk density, particle size, melting points cannot be 

considered as the most important properties will be taken into account are the 

solubility of the compounds and the viscosity of the solution that will occur. A more 

thorough analysis of inkjet printing is represented in chapter 1.5. 

1.2 Stability in drug formulations 

One of the major concerns in pharmaceutical industry is the long term stability of the 

formulation product. There have been drugs with the best therapeutic properties but 

failed to come to the market due to lack of physical and chemical stability. For 

instance ritonavir was marketed by Abbott in 1996, however two years later lots of 

capsules failed the dissolution experiments due to the formation of another 

polymorph of the drug [12]. The main factors that affect the stability of product are 

heat, humidity, oxidation and light. 

Humidity can have a significant effect on solid drug substances or drug products. 

First of all, humidity can alter the adhesion properties of API with excipient. Price et 

01. found that the adhesion interactions between lactose and drug probes of 

salbutamol sulphate and budesonide were shown to be significantly increased with 

each incremental rise in humidity. This could result to a reduction of the disperSion 

and deaggregation properties of a DPI formulation, influencing the aerolisation 

efficiency and therapeutic efficacy of the irrespirable drugs to the respiratory tract 

[13]. Also, uptake of moisture can have a plasticization effect to any of the 

compounds in the formulation reducing the glass transition temperature [14]. For 

instance, the glass transition temperature of sucrose can range between 60 - 75°C 

depending on the water uptake from each sample [15]. The high mobility that 

molecules have on glass transition temperature can lead to crystallization of the 

product which in turn can affect dramatically the therapeutic properties of the drug. 
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Hydrolysis is a common phenomenon that happens to pharmaceuticals. This happens 

when the compound comes into contact with water. Hydrolysis is often the main 

degradation pathway for drug substances having ester and amide functional groups 

within their structure [16]. Example can be hydrochlorothiazide, a drug substance 

with excellent solid-state stability, can undergo hydrolysis to form formaldehyde and 

4-amino-6-chloro-1,3-benzenedisulphonamide. Desai et 01. have shown that the 

inclusion of povidone K-30 NF (PVP) as binder and poloxamer 188 NF (Pluronic F68) 

as a wetting agent significantly increases drug hydrolysis during storage [17]. 

Oxidation is a well-known degradation pathway for pharmaceuticals. Compounds can 

be oxidised by the atmospheric oxygen. Hydrocortisone, meth-otrexate, adinazolam, 

hydroxyl group directly bonded to an aromatic ring (eg, phenol derivatives such as 

catecholamines and morphine), conjugated dienes (eg, vitamin A and unsaturated 

free fatty acids), heterocyclic aromatic rings are some of the compounds that can be 

subjected to oxidative degradation [16]. 

light can also affect the stability of the formulation leading to changes in the 

physico-chemical properties of the product. light-sensitive drugs can be affected 

either by sunlight (especially ultraviolet irradiation) or artificial light sources (e.g. 

fluorescent light). This may not only lead to photodegradation of the active 

pharmaceutical ingredient but also to a change in the physico-chemical properties of 

the product, e.g. the product becomes discolored or cloudy in appearance, a loss in 

viscosity or a change in dissolution rate is observed or a precipitate is formed [18]. 

From all the aforementioned it is clear that stability's investigation can be a big part 

of the research to bring a medicine to the market. Consequently, the ability to 

produce optimized formulations immediately prior to use can be the key to address 

the huge amount of research to achieve the long term formulation stability. Inkjet 

printing has the potential to produce precise amount of medicine which are 

preordained for instant consumption. A controller connected with the patient's 

personal doctor, can control the delivery of one or more drugs and/or change the 

drug regimens in response to a changing in medical conditions of the patient. The 

formulation can be prepared directly and consumed instantly. 
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1.3 Poorly soluble drugs; challenges and prospects 

Solubility is one of the most important factors that influence bioavailability of the 

drugs. The drug is first released from the formulation and through the 

gastrointestinal wall, it is transferred to the circulation system [19]. 

Various approaches have been used to improve solubility and enhance the 

dissolution rate of poorly soluble drugs involving both physical and chemical 

modification [20]. The physical modification aims to increase the surface area and 

wettabiJity of the API. This approach focuses on particle size reduction [21] and the 

generation of amorphous state [22]. The particle size reduction by milling aims at 

increasing the surface area of the particles and thus increasing the solubility. This 

technique has been applied to a variety of poorly soluble drugs [23-26]. Other 

approaches to increase the solubility involves the solubilization with surfactants and 

complexation with cyclodextrins [27]. 

One of the most promising strategies to increase the solubility of the drug is the 

dispersion of it into a hydrophilic inert polymer matrix. The two major methods to 

produce solid dispersion products are the melting and the solvent evaporation 

method. The melting process was first applied by Sekiguchi and Obi when they found 

that the administration of a fused mixture of the poorly water-soluble drug 

sulphathiazole and the water-soluble carrier urea produced an enhanced absorption 

of the drug in rabbits [28]. In the melting method the active compounds are 

suspended in a previously melted carrier with subsequently cooling and solidify the 

mixture. The main disadvantage of this method is the degradation of the drug or the 

carrier can be caused by the heat [29]. 

The solvent evaporation method consists of the solubiJisation of the drug and a 

polymer into a volatile solvent that is later evaporated. The final product will be an 

amorphous carrier in which the drug is molecularly distributed. This type of solid 

solution will be homogenous. Also, the product can be an amorphous carrier where 

the drug is dispersed in the form of amorphous clusters. This type is not homogenous 

on a molecular level and consists of two phases [20]. The most common polymers 

have been used are Polyvinyl Pyrrolidone (PVP) [3D], Polyethylene Glycols (PEGs) [3D-

31], Polyvinyl Alcohol (PVA) [32] and cellulose derivatives such as HydroxyPropyl 
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Methylcel/ulose (HPMC) [30] and HydroxyPropylCeliulose (HPC) [33]. Common 

characteristics of these polymers are that they are water soluble, soluble in most 

common organic solvents and they can interact with API by forming bonds such as 

hydrogen bonding. 

Despite the growing interest of solid dispersion, its commercial value is still limited. 

The main reason for this is the poor stability. The physical instability of the product 

can come from the recrystallization of the API. However, different polymers, which 

are used to solid disperSion, have been shown that inhibit the crystallization of the 

drug [34). In particular PVP has been found to have significance inhibitory effects of 

the drugs crystallization [35-38). The mechanism of inhibition of PVP involves the 

antiplasticising effect of PVP as well as specific interaction with the API [37]. 

However due to their chemistry and polarity, these polymers are highly hygroscopic 

which by absorbing water can promote the crystallization [22] which in turn can 

causes phase separation. For instance, Rumodor et 01 by investigating the phase 

behaviour of amorphous solid dispersions found that although the drug and the 

polymer were completely miscible immediately after the manufacture, they 

exhibited phase separation during storage and in elevated humidity [39]. 

Additionally, changes in the dissolution rate during storage have been observed [40-

41]. 

Other issues which limits the commercial application of solid dispersion are referred 

by Serajuddin [29] and these can involve any residual solvent that can not be 

removed from the solid dispersions, the scale up of the manufacturing process, and 

the dosage form development. The manufacture issues come from that the texture 

of the product is soft and tacky and therefore difficult to pulverize. Other issues are 

the poor flow, mixing properties of powders and poor compressibility. 

Inkjet printing can be the key technology to overcome the aforementioned issues 

and the solid dispersion technology becomes a commercial reality. In inkjet printing, 

as in the solvent evaporation method, both the API and the excipients will be 

dissolved in an appropriate solvent. The solvent will be evaporated leaving the 

product onto an appropriate substrate. As it was mentioned in the previous section, 

inkjet printing is preordained to produce drug for instant consumption and hence the 

long term stability is not necessary. An application of this is represented in chapter 3 
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where the poorly soluble felodipine dissolves with PVP in ethanol and ejected using 

an inkjet printer. However, it is worth mentioning that the compounds must remain 

stable when they are dissolved in the solvents before they are sprayed. Also, the 

phenomenon of polymorphism must be taken into account as depending on the 

solvent used different crystalline forms of the API can be grown [42] 

1.4 Technologies in Controlled drug delivery systems 

Conventional dosage forms are not able to control the rate of drug delivery or the 

target area and provide an immediate of drug release. As a result, drug 

concentration in the blood and tissue fluctuates widely. In controlled release drug 

dosage forms (CROOS), the drug is at maintained the necessary therapeutic levels 

with narrow fluctuations reducing the frequency of drug administration and 

improving the treatment efficiency (Figure 1.1). 

Generally, natural and synthetic polymers are used as the structural backbone for 

controlled release drug delivery system. Among all, the CRODS the monolithic matrix 

is the simplest and least expensive used. The polymer is homogenously distributed 

with the drug by blending the drug with the polymer and then molding, extruding, or 

casting them together. The dissolution profile of the drug from the polymer matrix 

can follow various mathematical models [43-44]. For instance pharmaceutical dosage 

forms which contains water soluble drugs in porous matrices for which the Fick's low 

governs the release of the dru& follow the first order mathematical model [44]. 

The disadvantage of this diffusion controlled system is the decreasing amount of the 

drug with time. Therefore, various approaches employing release mechanisms other 

than diffusion control have been developed to achieve constant release rates in 

polymer matrix devices, for example, swelling controlled delivery systems based on 

hydrogels [45-47], erosion polymers [48] and osmotic pressure pumps. 

Hydrogels are three-dimensional crosslinked polymeric structures that are able to 

swell in an aqueous environment. During the dissolution of the hydrogel two 

phenomena take place; swelling and true dissolution of the polymer. In the early 

stage of drug delivery, matrix thickness increases due to polymer swelling. The 
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successive polymeric chain disentanglement (true polymer dissolution), and the 

dissolution of the drug or fillers used, counteracts this increase in thickness, 

producing a diminution of the volume of the matrix. Finally, the matrix disappears 

when all the polymer is swollen [45]. Examples of polymers are used as hydrogels are 

ethylene glycol dimethacrylate, Methoxyethoxyethyl methacrylate, Methacrylic acid 

etc. All the common polymers are mentioned in the excellent review of Hamidi et 01. 

[46]. 

In terms of polymer erosion, there are two mechanisms can be identified; surface 

and bulk erosion. Bulk erosion occurs when water molecules are able to permeate 

into the bulk of the polymer matrix at a quicker rate than erosion. The surface 

erosion occurs when the polymer degradation is much faster than the water 

intrusion (Figure 1.2). Polyanhydrides are examples of bulk erosion materials 

whereas poly(lactide) and poly(lactide-co-glycolide) are surface erosion materials 

[48-49]. 

Osmotic systems utilize the principle of osmotic pressure to deliver drugs. When the 

dosage form comes into contact with water, imbibes water at a rate dependent on 

the fluid permeability of the membrane and osmotic pressure of the core 

formulation. This osmotic imbibition of the water causes a saturated drug inside the 

core which is dispensed at a controlled rate (Figure 1.3) [50]. Various types of 

osmotic pumps are in the market nowadays [51]. 

A final approach can be applied to control the drug release is the utilization of 

polymers as film coatings. Different types of polymers can be used as coatings. For 

instance cellulose derivatives, poly(vinyl acetates) and polymethacrylates. Also, 

blends of enteric and gastro-intestinal-tract (GIT)-insoluble polymers are particularly 

interesting for the coating of solid dosage forms, being able to provide large ranges 

of drug release profiles at low as well as at high pH [52]. Hence, as ethyl cellulose is 

poorly permeable from the drugs, it is usually added with PEG [53], PVP [54], and 

hydrophilic cellulose ethers [55-56). These hydrophilic additives are dissolved and 

leach out from the polymeric membranes resulting in a more permeable films and 

increased drug release rates. 

Apart from the polymer coating technology systems, matrix systems made of 

swellable and non swellable polymers and osmotically controlled devices discussed 
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above, more sophisticated CRDDS are still being developed. These systems are based 

on microparticulate systems which involves polymeric biodegradable nanoparticles 

which aim at the uptake the drug particles intact. This approach is promising in the 

case of delivering peptides and other macromolecules which normally cannot be 

administered orally [57-58]. 
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Figure 1.1: Drug concentration at the site of therapeutic action after delivery as a conventional injection 
(thin line) and as a temporal controlled release system (bold line) [49] . 
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Figure 1.2: schematic illustration of surface and bulk erosion [48] . 
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Figure 1.4: Schematic diagram of the osmot ic drug controlled release systems [51] . 

1.5 Inkjet printing 

1.5.1 Introduction 

1. Introduction 

Inkjet printing can be defined as the deposition of functional materials in the form of 

a liquid onto a specific substrate. The most common application is the transfer of 

electronic data to paper. However, nowadays more and more applications demands 

of the accurate transferring materials with specific electrical, biological or optical 

properties on substrates. Inkjet printing is one of the most promising technologies on 

that matter [59-60) 

The main advantage of this met hod is that it offers high accuracy and throughput of 

fluids. Nano or even pico quantities of materials can be transferred and perfectly 

localized. Also, the high uniformity and small size of the droplet generating renders 

this technique capable of producing precise micro features. Exploiting this capability, 

microelectromechanical systems (MEMS) has been improved by localized features 
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which were not possible by photolithography and also, transistor made by injected 

semiconductive organic thin film have been fabricated [61-62]. 

1.5.2 Inkjet printing technology 

Inkjet printing is fundamentally divided into continuous and drop on demand mode. 

In continuous mode the liquid is pressurised to form a jet through a nozzle. By 

imposing a periodic perturbation, uniform droplets are formed (Figure 1.5). 

Continuous mode is used for high speed graphical applications such as textile 

printing and labelling. In drop on demand mode the liquid is held and pressurised 

creating a droplet only when needed (Figure 1.6) [63]. 

Depending on the technology implemented, inkjet printing is categorised into 

thermal, piezoelectric, electrostatic and acoustic inkjet. An excellent paper was 

published by Hue which describes each technology [64]. Thermal and piezoelectric 

are the most widespread technologies, whereas the latter ones are still in the 

development stages. In thermal inkjet, the ink is heated creating a rapid expanded 

vapour bubble which ejects from the nozzle. Depending on its configuration, a 

thermal ink-jet can be a roof-shooter (Figure 1.7a) with an orifice located on top of 

the heater, or a side-shooter (Figure 1.7b) with an orifice on a side located nearby 

the heater. The roof-shooter design is used in the printheads from Hewlett-Packard, 

Lexmark, and Olivetti. The side-shooter design is implemented in the Canon and 

Xerox printheads [64J. 

Piezoelectric dispensers rely on the deformation of a piezoelectric material. When 

voltage applied the piezo material changed its shape to a preordained direction, 

causing a sudden volume change creating pressure waves which results In a drop 

being ejected from the orifice. Depending on the deformation of the piezoelectric 

material, the technology can be classified into four main categories; squeeze mode 

where radially polarised tubes are used, bend and push mode design where the 

electric field is generated between the electrodes parallel to the polarization of the 

piezo electric material and finally shear mode where the electric field is 

perpendicular to the polarization of the piezoceramic (Figure 1.8) [9, 65-66]. 
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In the electrostatic dispensers, an electric voltage is applied in the form of a signal 

between two electrodes. Due to the applied voltage, an intense electric field is 

generated between the two electrodes which induce the liquid meniscus at the 

interface. When this electrostatic force is greater than the surface tension at the 

liquid meniscus, the liquid breaks up and droplets are ejected (Figure 1.9) [67]. 

Acoustic droplet ejection (ADE) uses a pulse of ultrasound to move low volumes of 

fluids (typically nanoliters or picoliters) without any physical contact. This technology 

focuses acoustic energy into a fluid sample in order to eject picolitter size of 

droplets. The acoustic droplet ejection process (Figure 1.10) transfers nanoliter or 

picoliter droplets from a conventional flat-bottom microplate (A) using acoustic 

energy (8) from the transducer (C). The energy is focused on the surface of the 

liquid in the lower well, causing a droplet of precise volume to be ejected without 

any physical contact between the transducer and the liquid being dispensed [68]. 

The most important properties of liquid in dispensers that implement a piezoelectric 

response are viscosity, surface tension and density. These fluid properties influence 

the drop formation mechanism and subsequent drop size at a given voltage. Also, 

these properties can provide information about the impact of the droplet into the 

substrate. Schiaffino and Sonin classified the drop impact into four different regimes 

We = pDV
2 o. = 11/ 

according to Weber ( tT) and Ohnesorge ( JDpa ) numbers, 

where p is the density of the liquid, 0 is the diameter of the drop before impact, U is 

the impact velOCity, (J is surface tension, and n is the viscosity of the liquid. In regime 

I, where We »1 and Oh «1, kinetic energy dominant motion prevails, and fluid 

behaves almost like an in viscid fluid; in regime II, where We » 1 and Oh » 1, 

capillarity drives the motion of in viscid fluids; in regime III, where We « 1 and Oh 

»1, capillary effect is dominant, and the viscosity of the fluid is important; finally, in 

regime IV, where We »1 and Oh » 1, kinetic energy dominates the capillarity, and 

the viscous force is also important [69]. Jang et 01 investigated the printability of the 

fluids by applying the inverse (Z) of the Ohnesorge number (Oh) which relates to the 

viscosity, surface tension, and density of the fluid. They have experimentally defined 

the printable range as 4 < Z < 14 by considering characteristics such as single droplet 

formability, positional accuracy, and maximum allowable jetting frequency. This 
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range of Z corresponds to low viscosity fluid [70] . Yang et 01 showed that a smaller 

value of surface tension represents a weaker cohesive which leads to a slender liquid 

ligament with a relatively longer break up length. The shapes of the liquid and tail 

droplet tend to be round for the cases of high surface tension . It also takes more 

time for contraction of a spherical droplet for the liquid with lower surface tension 

[71]. 

Finally, the volume of the droplet is directly dependent on the voltage and the 

duration of the signal that is applied . Hence, the droplet velocity and volume are 

found to show a linear relation with driving voltage, but show a more complicated 

and periodic behaviour with changing frequency and pulse width . Derby et 01 showed 

that droplet velocity exhibits a maximum as a function of pulse width, which remains 

unchanged when driving voltage amplitude increased [72]. 
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Figure 1.5: Schematic diagram of continuous inkjet printing system [9]. 
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Figure 1.6: Schematic diagram of drop on demand inkjet printing system [9]. 
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Figure 1.7: a) schematic diagram of a roof-shooter thermal inkjet dispenser b) a side shooter thermal 
inkjet dispenser [64]. 
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Figure 1.8: piezoelectric inkjet technologies [65] 
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Figure 1.9: schematic diagram of electrostatic inkjet dispenser [67] 
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A 

Figure 1.10: schematic diagram of acoustic drop on demand dispenser [68] . 

1.5.3 Inkjet Printing in life sciences 

In life sciences inkjet printing has been proved a key technology. Compound 

synthesis, genomics, drug screening, drug delivery and biomaterials are some of the 

areas where this technique is or can be applied offering unique capabilities. All of 

these applications are driven by the desire to miniaturize process in order to achieve 

higher cost efficiencies and better detail. 

In high throughput screening, higher density well plates have started being used to 

reduce reagent costs and to obtain more information from each plate run through 

the screening process. The first step in HTS is to transfer a small quantity of 

compound from the master plate to the assay plate. By applying microdispensing 

technology the compound can be transferred in well-plates in various concentrations 

even in nanolitters, avoiding the intermediate dilution step. After the assay is 

prepared, it is conducted by a series of reagent additions and incubations followed 

by a read-out of the results [10-11] . 

In genomics, the basic application involves the dispensing DNA or synthetic 

oligonucleotides onto substrates and probing for complementary base-pair binding. 

Yamamoto et al managed to fabricate DNA microarrays by means of a bubble jet ink 

device to eject oligonucleotides to a glass surface. In that case, the dispenser, 

ejecting pico litter solution, was able to achieve highly densed spots per cm 2
• These 
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were screened with a f1uorescently labeled synthetic 18-mer oligonucleotide derived 

from the p53 gene, or segments of the p53 gene that had been PCR amplified from 

genomic DNA of two cell lines of human oral squamous cell carcinoma (SCC). This 

allowed us to discriminate between matched hybrids and 1 bp-mismatched hybrids 

[73]. 

Apart from the well-established applications of inkjet printing in genomics and HTS, 

inkjet printing is a novel technique with respect to the biomaterial fabrication. An 

interesting study comes from the Barralet et 01 group. In this study, implants based 

on calcium 3D phosphate structures involving hydroxyapatite and brushite ceramics 

were printed by spraying calcium phosphates powders [74]. Also, for medical devices 

such as drug-containing stents, ink-jet technology due to the controllable and 

reproducible nature of the droplets in the jet stream and the ability to direct the 

stream to exact locations on the device surfaces can offer a boost to the cost of the 

procedure. Tarcha et 01 programmed target deliveries of 100 Il8 of drug, a typical 

dose for a small stent, into cuvettes which gave a standard deviation (SO) of dose of 

0.6 1lB. Jetting on coated, uncut stent tubes exhibited 100% capture efficiency with a 

1.8 Il8 SO for a 137 Il8 dose. In preliminary studies, continuous jetting on stents can 

yield efficiencies up to 91% and coefficients of variation as low as 2%. These results 

indicate that ink-jet technology may provide significant improvement in drug loading 

effiCiency over conventional coating methods [75]. 

1.5.4 Inkjet printing in drug formulation 

Inkjet printing as a drug formulation method is a novel technique. To date, the 

literature concerning this issue is limited. Thermal inkjet technology has been utilized 

by the Hewlett Packard's laboratories to prepare solid dosage forms of drugs. This 

group promoted this method as an alternative technique for low water soluble active 

pharmaceutical ingredients (APls). Therefore, they chose prednisolone as a test 

molecule due to its low solubility in water [76]. 

Inkjet printing has been applied as an alternative technique to fabricate therapeutic 

agents with the appropriate size and shape. By applying the current inkjet 

technology, amphiphiles, dissolved in ethanol solution, were sprayed into water 

forming small unilamellar vesicles with diameter 50-200 nm which can be used as 
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drugs' carriers. The group demonstrated this method as one that allows excellent 

control and reproducibility of particle size and shape, together with efficient 

encapsulation [77]. Furthermore, Radulescu et 01 by using inkjet technology and 

simple emulsion-solvent evaporation technique prepared PLGA microcapsules 

loaded with paclitaxel. Paclitaxel and PLGA were dissolved in OCM and sprayed in 

PVA solution. After the solvent removal, the product was PLGA spheres having 

encapsulated paclitaxel with 66.7% efficiency [78]. A similar work has been 

accomplished by Xie et ai, where PLGA biodegradable nanoparticles produced to 

encapsulate protein based drug using a co-axial electrospray technique [79]. 

Moreover, Chan et 01 using inkjet printing technology, they deposited mixtures of 

ibuprofen and PEG 6000. Subsequently, by using ATR properly modified, they 

characterized the samples by investigating the distribution of ibuprofen in the 

mixture [80]. Finally, Kastra el at by using three dimensional printing technique 

(30P), they prepared erosion mechanism delayed-release tablets with varying 

polymer content [81]. In 30P technique, layers are created by adding layers of 

powders at the top of a piston using inkjet printing. The powder layers are selectively 

joined each other where the where the part is to be formed by 'ink-jet' printing of a 

binder material [82]. 

The benefits of inkjet printing in drug formulation can be various. As it was 

mentioned earlier, a drug formulation consists of the API and several other polymers 

which are used during the manufacture process. The implementation of inkjet 

printing in drug formulation will render these polymers unnecessary and a big part of 

the manufacture process avoidable. 

Also, this technique has the potential to produce medicines for instant consumption. 

APls along with the necessary excipients and the appropriate solvents can be sold 

and ejected through an inkjet printing device. At this point, it is worth mentioning 

that the consequently, long term stability issues will be avoided. 

Another potential application of this technique deals with the recent advances in 

pharmacology. In the future, the therapy will be determined by the specific genotype 

for each patient. Hence, it is possible that each patient will be provided with his own 

cartridges of drug, to print each own drug with the right dosage. 
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1.6 Aims and objectives of thesis 

So far the reader has been introduced to various issues that need to be overcome 

during the tablet manufacture. These can be related to the cost of manufacture due 

to the use of various excipients to give to the processed compounds the appropriate 

compressibility, stability and release profile and the long term stability studies must 

take place. 

The aim of this thesis is to introduce inkjet printing as a novel drug formulations 

technique which could produce medicine preordained for instant consumption and 

hence avoiding any manufacture and stability issue. Also, since the inkjet printing 

technology offers high fluid delivery accuracy, a successful implementation of this 

technology can offer the ability to produced precise amounts of medicine, tailored to 

individual patients. 

The feasibility and efficiency of inkjet printing to produce proper drug formulation 

product is investigated in this thesis by spraying various APls with excipients and 

characterising them with micro- and nano- analytical methods. 

Hence, in the third chapter, the nano-scale production of drug formulations by 

means of inkjet printing technology is described. The formulations consisted by 

felodipine and hydrochlorothiazide with PVP and Captopril with Hydrochorothiazide 

with PlGA in various ratios. 

In Chapter 4, the release of the felodipine from the felodipine/PVP drug formulation 

produced by inkjet printing in microscale is investigated be means of confocal Raman 

microscopy. 

Chapter 5 attempts to increase the production scale of felodipine/PVP drug 

formulation so that the felodipine to be in the therapeutic amount by producing a 

microarray of the formulation. 

Fina"y, chapter 6 investigates the feasibility of inkjet printing to produce capozide as 

a model therapy. As Capozide tablet consists of captopril and HCT, inkjet printing can 

produce the tablet by preparing individual formulations of each API onto a single 
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substrate to consists a therapy. Also, the feasibility of PLGA to control the drug 

release from the formulation has been investigated. 
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2. Instrumentation 

2.1 Pico-litre dispenser 

The dispenser used in this thesis is a piezo-driven dispenser (GeSim, Germany) 

(Figure 2.1a) mounted on a Kruss Drop shape Analysis system (DSA 100, Kruss, 

Germany) (Figure 2.1d). The microdispenser was created from microstructured 

silicon and glass chips, tightly connected. The piezoelectric material is glued outside 

of the thin silicon wafer (Figure 2.1b). By applying a voltage, the piezoelectric 

material goes out of shape in a specific direction. This distortion is transferred to the 

solution causing the formation of a small droplet (Figure 2.1c). 

The overall volume of the droplets is determined by the dispenser type (mainly by 

the size of the orifice). However, the droplet volume can be tuned by adjusting piezo 

parameters (amplitude, pulse width, excitation frequency); increasing amplitude or 

pulse duration will produce larger droplets. 

Apart from the dispenser, the DSA system consists of a camera to record the droplet 

at the side, a mechanical stage which can move automatically in x- and y- directions 

accordingly and a light source (Figure 2.1d). 
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d) 
Figure 2.1: a) Photo of the dispenser used in the experiments, b) schematic diagram of the piezoelectric 
dispenser manufacture c) schematic graph of the operation principle of piezo-driven dispenser d) DSA 
100 system. 

2.2 Micro array printer 

A Scienion sciFLEXARRAYER piezo system (BioDot, Germany) was used in this work, is 

a non contact liquid handling and spotting system. The technology dispenses with a 

high dynamic volume range (picolitre to microlitre) and can accurately aspirate and 

dispense aqueous and organic solutions. Using the piezo-elements, spot volume can 

be changed as well as dispensing reagents on top of each other without 

contamination. 

This configuration uses a solenoid nozzle that is synchronized with a positive 

displacement of the syringe to dispense drops at frequencies in the range of 20-1000 
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Hz to dispense non-contact drops on a continuous base. This quantitative non 

contact technology couples the BioDot "drop-on-demand" valve with a high 

resolution syringe pump to meter precise amounts of reagent. 

The system consists of the liquid handling station, wash station, the dispenser and 

the dispense control system. The liquid handling station pumps the solution to the 

capillaries (nozzles) by a syringe pump using Teflon or PEEK tubes (Figure 2.2) . The 

flow of the liquid system is controlled via the 3/2 way valve. For aspiration the valve 

is in the first position and the syringe pump is moving down. After taking up a certain 

volume the valve switches to position 3 to push the aspirated volume into the 

system liquid bottle. For flushing the tubes with the system liquid the valve switches 

to position 3 first and the syringe pump soaks up the system liquid. The valve is 

changed to position 2 and the syringe pumps the liquid out of the dispenser capillary. 

The sample can be taken up by positioning the nozzle is in the sample solution, the 

3/2 way valve is switched to position 2 and the syringe pump starts aspiration. After 

the required uptake volume is completed, the valve will be switched to position 3 

and the syringe pump will move to the default position which is in the middle of the 

syringe . The uptake will be stopped by changing the valve to position 1 and lifting the 

nozzle above the sample solution. 
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Figure 2.2: Schematic diagram of the liquid handling [83] . 

The wash station comprises one independent, chemically inert wash channel for 

each dispenser nozzle, supplied by a peristaltic pump using separate, chemically inert 
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tubes. The inside of the nozzle is automatically cleaned with the system liquid when 

flushed . The outside of the nozzle is additionally cleaned in the wash station via a 

wash command. During the wash, the piezoelectric elements ultrasonicate each 

dispense capillary individually, for maximum wash efficiency. The wash station is also 

served by a two channel peristaltic pumps. The wash solution is put in a large flask 

and a filter is placed before the uptake tube. This tube can be split into several tubes 

depending on the number of nozzles installed. After the wash procedure, the waste 

from all channels is combined in one single pass through the wash station and taken 

away by one wash out tube, connected to the waste container. 

The dispense head can accommodate up to eight piezo dispense nozzles which each 

controlled individually. The dispense control station includes high resolution optical 

measurements, a stroboscopic LED for image illumination and a video camera . The 

camera is situated closed to the nozzle for visual inspection of the drop formation 

(Figure 2.3). The selected nozzle dispenses drops with its fixed frequency. The LED for 

image illumination is triggered by the piezo frequency, but it flashes at a user 

definable delay and hence the image can be captured at any point of the trajectory. 

This allows monitoring and optimization of drop size, drop velocity and drop 

trajectory. 

Figure 2.3: Photo of the dispense head and the camera [83] . 

The nozzle consists of a glass capillary with an outer diameter of 1 mm. This glass 

capillary is embedded into a piezo ceramic material, which is cemented onto the 

capillary. Most of the inner and outer surface of this piezo ceramic tube is an 

electrode to which a rectangular voltage pulse is applied . The ceramic contracts 
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while the voltage is applied initiating a pressure wave towards the glass capillary and 

towards the system liquid within the capillary. 

The stage comprises two magnetic linear servo drives (Figure 2.4) . A high resolution 

optical encoder continuously controls the motion of each driver. 

Figure 2.4 : Photo of the stage showing t ranslation axes [83] . 

2.3 Atomic Force Microscopy 

AFM is an imaging and force measurment technique which can visualise surfaces to 

the micrometre and nanometre scale. Figure 2.5 illustrates a schematic diagram of 

an AFM. It consists of a sharp tip which is scanned over a surface with a feedback 

mechanisms that enables the piezo-electric scanners to maintain the tip at a 

constant force (to obtain height information), or height (to obtain force information) 

above the sample surface [84] . As the tip scans the surface of the sample, moving up 

and down with the contours of the surface, the laser beam is deflected off the 

attached cantilever into a quadrant element photodiode. The photodetector 

measures the difference in light intensities between the upper and lower 

photodetector quadrants to determine the degree of cantilever flexure. Feedback 

from the photodiode difference signal, through software control from the computer, 

enables the tip to be maintained at either a constant force or constant height above 

the sample. In the constant force mode the piezo-electric transducer monitors real 

time height deviation. In the constant height mode the deflection force on the 

sample is recorded . The latter mode of operation requires calibration parameters of 

the scanning tip to be inserted in the sensitivity of the AFM head during force 

calibration of the microscope. 
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AFM can obtain topographical images in either contact mode (as described) or in 

tapping mode. In tapping mode the cantilever oscillates at its resonant frequency 

making intermittent contact with the surface. As the oscillating cantilever contacts 

the surface, the cantilever oscillation is necessarily reduced due to energy loss 

caused by the tip to the surface. The reduction in oscillation amplitude is used to 

identify and measure surface features. Typically, tapping mode is operated in a 

constant amplitude mode, whereby the feedback signal controls the height of the 

cantilever to maintain a constant user-set amplitude [85-86) . 

Apart from topographical information, AFM can provide details on the local 

compositions of the sample. There are many modes that can be used to achieve this 

[87-89], but the most common is to monitor the phase shift of the oscillating 

cantilever in tapping mode [90) . Such 'Phase imaging' can be used to detect 

nanoscale variation in composition, adhesion, friction, viscoelasticity, and other 

properties of the materials [86, 91). Changes in the phase lag often indicate changes 

in the properties of the sample surface. Phase imaging has been proved an extremely 

useful tool for pharmaceutical characterization. Phase imaging has been used to 

reveal polymeric forms from single crystal measurements [92), to confirm phase 

separation of two copolymers for drug delivery [93) and to identify formation of 

amorphous domains during miling of crystalline salbutamol [94). Other applications 

of AFM in pharmaceuticals concern the surface morphology [95-96], porosity [97), 

hardness [98) and surface energy [98-99) of drugs and excipients. 

7 
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Figure 2.5: Schematic diagram of the main components of an Atomic Force Microscope. 

26 



2. Instrumentation 

2.4 Localised Thermal Analysis 

In localised thermal analysis (LTA), the sample is heated locally with a thermally 

active probe providing information about the glass transition temperature and the 

melting point of the sample at this location. LTA has proved useful for thin layers or 

coatings where bulk methods such as DSC, TMA and DMA cannot be applied [100]. 

Bulk methods measure the mean thermal properties of a sample, whereas L TA can 

provide information about the spatial distribution of the thermal properties of a 

material surface which can be useful to design materials with the desired properties. 

When the thermal probe is placed on the sample, the temperature of the tip is 

ramped linearly with time at a pre-defined rate while the degree of bending is 

monitored. At the point of phase transition, the material beneath the tip softens and 

the probe penetrates into the sample. This is reflected as reduction of the deflection 

whereby phase transition temperatures of the sample such as glass transition 

temperature or melting point can be determined. 

In this thesis, two different LTA methods scanning thermal analysis (SThM) and 

nanothermal analysis (NTA) were used. The main difference between these methods 

is the size of the probe. In SThM, the tip has a terminal radius of ca. SOOnm, whereas 

an NTA tip can be below lOOnm. In SThM a Wollaston wire probe is used. It consists 

of a silver wire with a fine platinum core which is bent into a sharp loop and etched 

to expose the core (Figure 2.6) [101]. This probe is relatively stiff and can be used in 

contact mode only. 

The NTA probes are fabricated from doped silicon by Anasys instruments (Santa 

Clara, CA) (Figure 2.7). These probes have a heater integrated into the end of the 

cantilever which allows them to be heated by the application of a current to around 

400' C at very rapid heating rates. Their advantages against the Wollaston probes are 

that they can achieve better spatial resolution and also they can image in both 

contact and tapping AFM modes and hence are more suitable for softer easily 

damaged samples. 

LTA has been successfully applied to many aspects of the industry, such as in 

electronics, polymer and biology science. Moreover, this technique has been gained 

significant interest in pharmaceuticals. The main advantage of this technique is that 
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can distinguish different components in a drug dosage forms in situ with minimal 

sample preparation and high spatial resolution . Hence, SThM has proved to be a 

useful tool to discriminate polymorphic forms of drug [102] and the coating of a 

tablet and its core [103] whereas NTA has been implemented to characterise nano­

dispersed pharmaceutical systems to confirm their heterogeneity [104-105]. 

Figure 2.6: Schematic diagram of an SThM Wollaston tip [101]. 

Figure 2.7: SEM images of the nanothermal cantilever (left) and its probe [106] . 

2.5 Confocal Raman Microscopy 

2.5.1 Theory 

When monochromatic radiation is incident upon a sample then this light depending 

on its interaction with the sample may be reflected, absorbed or scattered in some 

manner. In the Raman technique, the scattering of the radiation is considered to 

extract information about the molecular structure of the samples. 
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Raman scattering is an inelastic scattering of photons. The scattered light consists of 

two types; one called Rayleigh scatter which is strong and has the same intensity 

with the incident beam, and the other called Raman scattering which is very weak 

(10.5 of the incident beam) . There are two types of Raman scattering; Stokes and 

anti-Stokes scattering. In Stokes scattering, photons are scattered at low energy. 

Since at room temperature the population state of a molecule is principally in its 

ground vibrational state, this is the larger Raman scattering effect. In anti-Stokes 

scattering, the scattered photon are scattered at a higher energy. 

The incident photons will thus interact with the sample molecules, and the amount 

of energy change (either lost or gained) by a photon will be characteristic of the 

nature of each bond (vibration) present. However, not all vibrations will be 

detectable with Raman spectroscopy, since if the vibration of the molecule does not 

change its polarizability the Raman band will be very low or zero . 
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Figure 2.8: Schematic diagram of t he different energetic levels of photons for Raman scattering. 

2.5.2 Raman microscopy 

A Raman microscope can offer a powerful non-destructive and non-contact method 

of spatially resolved sample analysis. 

A standard Raman microspectrometer consists of an excitation source, a microscope, 

a spectrometer and a detector. Raman microscopy can use various radiation sources 
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which can be applied from ultra violet to near infra-red. The spectrometer is used to 

narrow the pass bands. The most common detectors that have been used are CCDs. 

In a confocal Raman microscope, there are additional pinhole apertures, to reject the 

out of focus light. One aperture is placed between the laser and the objective and 

the other is placed at the image plane of the objective. The apertures block the light 

scattered from regions outside the focal plane of the objective. A schematic diagram 

of a confocal microscope is illustrated in Figure 2.9 [107]. The main advantage of the 

confocal Raman is that it enables a very small sample area or volume to be analysed 

- down to the micron scale. 

One of the most important applications that confocal Raman spectroscopy offers is 

the opportunity to chemically map and image of a sample. In this case, images are 

recorded point by point and line by line while scanning the sample through the 

excitation focus. Chemical imaging as an analytical tool has been favoured as a non­

destructive, non-contact and non-invasive technique. Chemical imaging offers the 

ability to simultaneously identify and quantify several substances within samples. 

There are a plethora of publications related to this issue [108-114]. For instance, 

Raman mapping gave the opportunity to investigate the distribution of ibuprofen in 

PVP [115] and Alprazolam to Xanax [113]. 

One of the main challenges we need to face is that this technique can be time 

consuming, especially for samples with low Raman scatter that are mapped with high 

spatial resolution. Moreover, mapping an area with a pOint laser source may be very 

time consuming, subject to the desired spatial resolution, because of the small size 

of the laser spot (typically 1-10 ~m). The problem of long acquisition time has been 

resolved by employing Principal Component AnalysiS (PCA) to analyse experimental 

Raman mapping spectra [112]. Other techniques have been used to reduce the 

acquisition time are line imaging [116] where the detector analyses the spatial and 

spectral dimensions simultaneously and a focal plane array where optical detectors 

are composed of several thousand elements forming a matrix of pixel. They enable 

thousands of spectra to be obtained simultaneously [117J. 

Another factor which increases the time to plot a chemical map and was a Significant 

factor here is the loss of focus of the laser beam. Samples with increased roughness 

can contribute to this effect (Figure 2.10). This can be resolved by using autofocus 
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technology where during the scan of the sample surface the focal point microscope 

objective is moving up and down to focus exactly at the sample surface [118] . 

Autofocus considers that at the maximum light reflection, the refractive intensity 

from the laser is also at a maximum. In practise, this may not be true and usually an 

offset must be set. When autofocus is employed the acquisition time per spectra 

increased to around 4 seconds. 

Excitation 
pinhole 

o 

Figure 2.9: A schematic diagram of Confocal microscopy. 

z 

Object 

... put-of-focus light 

.. .... .... ..! ... 

Th' I . 
In sect ion 

in foclIs 

Figure 2.10: Schematic image of the principle of autofocus where the end of the arrows indicate where 
the focus location . The left image represent the system working without autofocus where the laser only 
at the edge of the spot is focused . The right image represents the autofocus system where the laser 

beams are focused along the surface of the spot. 

2.5.3 Extraction of distribution maps 

Chemical images can be produced from the acquired spectra (with tagged spatial 

coordinates) in various ways. The simplest option is to follow the intensity or the 

area under a certain peak which is characteristic for a compound . This so-called 
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univariate approach is used whenever possible because it is the simplest and most 

understandable way to produce chemical images, one for each component. 

However, the condition that all the components of the imaged sample have uniquely 

assignable wave numbers with satisfactory signal-to-noise (s/n) ratio is not always 

fulfilled. Additionally, mapping an area may be demanding because of the small size 

of the laser spot (typically between 1-10~m) and also because of the high acquisition 

time required to increase the s/n ratio [111J. Moreover, in more complex systems 

where the specific peaks can be overlapped or a constituent compound is at a low 

concentration then univariate analysis cannot extract reliable distribution maps, and 

hence more advanced data analysis tools are used. Multivariate curve resolution has 

been shown to be very effective for unravelling complex spectral data from mapping 

(or imaging) Raman data. 

Multivariate analysis takes into account aU the spectrum information. The most 

common multivariate methods for imaging data analysis include principal 

component analysis (peA), and partial least square (PLS). These methods aim to 

unravel the pure spectra of the compounds and their concentrations from mixed 

spectra. They are based on the assumptions that the signal collected is linearly 

related to the concentration of the components. Thus, the mixed spectra can be 

expressed as the sum of each pure material spectrum plus the experimental noise. 

The spectrum set of a mixture containing k compounds can be mathematically 

expressed, if the interactions among the constituents are negligible, with the 

following equation. 

x=csT +E 

Where ST (kxA) is the pure spectra matrix, consisting of A wavenumbers, k is the 

number of samples. X (pxA) is the matrix containing the mapping spectra which is 

equal to the numbers of samples x number of wavenumbers and C (pxk) is the 

concentration matrix of the components (number of samples )( number of 

components). The matrix E represents the residual noise. In effect, PCA decomposes 

the data into sections of signal and noise. By removing the noise, the Signal to noise 

ratio (s/n) can be significantly improved. The major results that PCA provide are the 

number of components that have detectable signal, the features that are related to 

the signal and the features that are related to the concentration [119]. It should be 
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noted that the data is originally acquired in a three-dimensional hypercube form 

(nxmxA), thus, the data has to be unfolded into a two dimensional matrix 

beforehand. Every mapping data set is a 3D data structure (two spatial dimensions 

and one spectral) which can be temporarily rearranged by appending two spatial 

coordinates to produce a 20 data structure (one spatial and with mixed with x- and 

y- coordinates and one spectral dimension (Figure 2.11). peA is applied to this 20 

data structure and, after completion of the 20 results, scores are folded back into 

the original 30 data sets from which then chemical images are then produced. All the 

procedure mentioned before is employed to all multivariate studies of Raman 

spectra. 

If the pure spectra matrix is available, the direct classical least square (OCLS) can be 

used. In this case the spectral concentrations are estimated by: 

Other techniques involve clustering techniques, and multivariate curve resolution 

(MCR) [108]. 

Zhang et 01. described theoretical multivariate methods of analysis applied to a 

model a pharmaceutical tablet. From all the techniques, OCSl was considered to 

provide the most reliable results since it is based on reference spectra. PCA was 

described as an exploratory data analysis technique. In general, there is not a one to 

one correspondence between a principal component and a chemical compound but 

in some formulations it is possible that a PCA loading matches a pure reference 

spectrum. Cluster analysis has been shown that it is a useful tool to segment a data 

set into regions of similar chemical composition or physical form. It is a useful tool to 

characterize a product with distinct spatial distribution character. Finally, MCR 

provided similar results with the OCLS. However, its interpretation should be with 

caution as a particular component spectra may have the signature ofthe other [108J. 
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Figure 2.11: Schematic representation of a spectral imaging hypercube showing the relationship 
between spatial and spectral dimensions [117] . 

2.6 Attenuated Total Reflectance Spectroscopy (ATR) 

ATR-FTIR is a method of performing spectroscopy on a solid sample to detect the 

frequencies of IR radiation absorbed by the material. In ATR spectroscopy, an 

infrared beam is directed onto an optically dense crystal with a high refractive index 

at an angle greater than the critical angle to internal reflection. This internal 

reflectance creates an evanescence wave that extends beyond the surface of the 

crystal into the sample held in contact with the crystal. This evanescent wave 

protrudes only a few microns (0.5 11 - 5 11) beyond the crystal surface and into the 

sample. Consequently, there must be good contact between the sample and the 

crystal surface. In regions of the infrared spectrum where the sample absorbs 

energy, the evanescent wave will be attenuated or altered. The attenuated energy 

from each evanescent wave is passed back to the IR beam, which then exits the 

opposite end of the crystal and is to a detector in the IR spectrometer. The system 

then generates an infrared spectrum. 

The most popular ATR crystal analysis materials are zinc selenide (ZnSe) and 

diamond. Both of these crystals have a refractive index of 2.4. A typical polymer 

refractive index is 1.5. At 45 degrees angle of incidence and at a wave number of 
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1000 cm-l the ATR depth of penetration would be about 2 microns. The most likely 

differentiation for use of ZnSe or diamond is the form and hardness of the polymer 

sample . The Knoop hardness (kgjmm 2
) of diamond is 8820 whereas that of ZnSe is 

120.5. In practical terms this means that for softer or for flat polymer samples a ZnSe 

ATR crystal is used. 

Beam 

Sample ill contact 
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Figure 2.12: Schematic diagram of the principal ATR-FTIR spectroscopy 

• 
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3. Production of individual 
sprayed formulations 

3.1 Introduction 

In this chapter, the first step towards the formulation of medicines via inkjet printing 

is demonstrated. APls along with excipients have been dissolved in appropriate 

solvents and sprayed on to hydrophobic treated glass slides. The chosen APls were 

felodipine, captopril and hydrochlorothiazide. 

Felodipine dispersed in PVP is an extensively studied poorly soluble drug system [34, 

120-129]. Typically the compounds are dissolved in alcohol, followed by rapid 

evaporation of the solvent to produce an amorphous single phase material with 

improved dissolution properties compared to crystalline felodipine. To prove this 

inkjet method, we compared the product to the published bulk methodologies for 

producing dispersions. 

Captopril and hydrochlorothiazide have been chosen as a combination therapy used 

commercially (Capozide™) that the inkjet printing can reproduce in a microarray 

format. Hydrochlorothiazide is practically insoluble in water, whereas captopril is 

freely soluble in water. 

The deposited products were characterized using Atomic force microscopy (AFM), 

scanning thermal microscopy (SThM) and nanothermal analysis, attenuated total 

internal reflection infra red spectroscopy (ATR-IR) and Confocal Raman microscopy 

(CRM) to provide complementary characterisation. In particular the release profile of 

the drugs was studied to assess the potential of the format for therapeutic purposes. 
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3.2 Active Pharmaceutical Ingredients 

3.2.1 Felodipine 

Felodipine is an oral calcium- channel blocker (CCB) of the dihydropyridine (DHP) 

class. Calcium is necessary for muscle cells to contract. Felodipine prevents calcium 

from being released within the muscle cells of the small arteries and thereby causes 

the muscles to relax and the arteries to dilate or expand. It is a well tolerated drug 

which is a given in an extended release tablet formulation where a single dosage can 

last for 24 hours [130]. Felodipine is marketed under the brand 

name Plendil™ by AstraZeneca and Renedil™ by Sanofi-Aventis. 

3.2.1.1 Fe/od/pine's formu/otion 

Felodipine has been investigated extensively. As a compound practically insoluble in 

water, its in-vivo bioavaiJabilitv can become limited. Dissolved felodipine can be 

completely adsorbed from the gastrointestinal tract so solubility can be a limiting 

factor to bioavailability. Hence, the concerned research mainlv focuses on the 

improvement and modification of the release profile. The first solid dosage form was 

a conventional tablet which is clinically effective in a twice daily dosage. Along with 

the conventional release tablets, extended release has been prepared which require 

one dosage. Both the formulations have equal bioavailability [131]. 

Usually, to produce a controlled drug release profile of felodipine, it is mixed with a 

hydrophilic excipient, to form a uniform mixture. The most common excipients that 

have been used are PVP [31, 34, 121-129, 132], HPMC [31, 34, 123-125, 129], PEG 

[120, 132] and some polymeric surfactants [133]. In most of the cases, the drug and 

the excipient have been dissolved in an appropriate solvent (e.g. ethanol), followed 

by a rapid evaporation to produce an amorphous product. 

Dissolution studies have shown that the use of a hvdrophilic excipient can enhance 

the dissolution of felodipine, improving its bioavailability {124-125]. 

3.2.2 Captopril 

This drug belongs to a group of medications called ACE inhibitors. It is used to 

treat high blood pressure (hvpertension). It works bV relaxing blood vessels, causing 

37 



3. Production of individual sprayed formulations 

them to widen. Lowering high blood pressure helps prevent strokes, heart attacks 

and kidney problems. This medication is also used to improve survival after an 

acute heart attack, to help protect the kidneys from damage due to diabetes, and 

with other drugs (e.g., "water pills"/diuretics, digoxin) to treat congestive heart 

failure. 

Captopril is commonly marketed by Bristol-Myers Squibb under the trade 

name capoten™. 

3.2.2.1 Captoprll's /ormulaUon 

The drug is freely water soluble and has an elimination half-life after an oral dose of 

1.7 h. It is stable at pH 1.2. As pH increases, the drug becomes unstable and 

undergoes a degradation reaction. More specifically, above pH 4 the rate of captopril 

degradation increases with pH, whereas below pH 4 the rate of degradation is 

independent of pH [134].The efficacy of Captopril after oral dosing lasts for only 6-

Shours. Therefore, clinical use requires 37.5-75 mg to be taken 3 times daily. The 

development of oral controlled release formulations for captopril is difficult because 

of in vivo and in vitro instability. The drug also undergoes dose dumping and burst 

phenomenon (being freely water soluble) when formulated as controlled or 

sustained release formulation. Development of a prolonged-action dosage form 

of captopril should bring many benefits to patients for the following reasons: (1) a 

decrease in the frequency of administration should lead to an improvement in 

patient compliance and as a result clinical efficiency would be improved; (2) it is 

expected that a minimization of fluctuations in the blood concentration of the drug 

will decrease the risk of side-effects [135]. 

Various approaches have been used to develop a prolonged release oral dosage 

forms. These can involve the use of polymers as fillers or coatings in the preparation 

of tablets, pellets and matrices. Seta et 01. have studied prolonged-action dosage 

forms of captopril using seven different formulations, including coated slow-release 

granules, enteric coated granules, an oily semisolid matrix (OSSM) and four kinds of 

modified release tablets [136]. A sustained release captopril formulation has also 

been reported by Serajuddin et 01. which was a capsule dosage form 

containing captopril and a semi-solid matrix of at least one fatty acid glyceride 

and/orpolyethylene glycol ester {137]. Abramowitz et 01. designed a formulation 
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where captopril is inside a polymeric core which is coated with an enteric polymers 

such as methacrylic acid copolymers, hydroxyl propyl methyl cellulose phthalate 

(HPMCP) and cellulose acetates or delayed release coating such as ethyl cellulose 

and methacrylic acid copolymers [138]. Granulated excipients of lactose or dicalcium 

phosphate with ethylcellulose were examined for their ability to be used as matrix 

materials to produce a controlled release dosage form by direct compression for 

captopril [139]. 

3.2.3 Hydrochlorothiazide 

Hydrochlorothiazide (HCT) is a diuretic. It increases the amount of urine passed, 

which causes the body to lose salt and water. This medicine is used to treat high 

blood pressure. It is also reduces the swelling and water retention caused by various 

medical conditions, such as heart, liver, or kidney disease. 

Hydrochlorothiazide is sold both as a generic drug and under a large number of 

brand names, Apo-Hydro™, AquazideH™, Dichlotride™, Hydrodiuril™, 

HydroSaluric™, Microzide™, ESidrex™, and Oretic™. 

Hydrochlorothiazide is also used in combination with many common drugs used to 

treat hypertension such as Diovan HCT, Zestoretic, Benicar HCT, Atacand HCT, 

and Lotensin HCT and others. 

3.2.3.1 ConvenUonal/ormulations 0/ Hydrochlorothiazide 

Hydrochlorothiazide has limited solubility in water which can reduce its 

bioavailability. The main method to increase its bioavailability is to incorporate it 

within hydrophilic polymers. Verveat et 0/ demonstrated that the incorporation of a 

liquid solubiliser into microcrystalline cellulose pellets enables the enhancement of 

the release of the HCT. Also, PEG 400 and PVP has been applied to increase the 

bioavailability [140-141]. Furthermore the dissolution enhancement by preparing 

solid dispersion formulation with PVP has been studied. 
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3.3 Aims - Objectives 

The aim of this chapter is to describe the production and testing of formulations of 

felodipine, captopril and hydrochlorothiazide as APls using inkjet printing. The APls 

were combined with appropriate polymers to achieve the desired properties of the 

final formulation. The compounds were dissolved in appropriate solvents and the 

solutions were sprayed using a piezo driven dispenser. The dried products were 

subsequently analyzed using micro- and nano- analytical methods for the physic­

chemical state and drug release properties. 

3.4 Materials - Methods 

3.4.1 Materials 

Felodipine was supplied by AstraZeneca (Charnwood, Leics., UK). Captopril, 

Hydrochlorothiazide (HCT), Polyvinyl pyrollidone (PVP) k30, poly(lactic-co-glycolic 

acid) (85:15), Pluronic F-127 and DMSO 99% anhydrous were purchased from Sigma­

Aldrich. Flutec fluid was purchased by F2 chemicals (Lancashire, UK). 

~~~ ~ C):):~I 
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Figure 3.1: Felodlplne Figure 3.2: Captopril Figure 3.3: Hydrochlorothiazide 

15~J. 0 ~M H~ot 
Figure 3.4: PVP K30 Figure 3.5: PLGA Figure 3.6: Pluronic F-127 

(n = number of monomers (x: number of Lactic Acid units (a/b/a/ = 130/80/100) 

MW=30000) y: number of Glycolyc Acid units 

xly = 85/15) 
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3.4.2 Methods 

3.4.2.J Preparation of solutions 

Feladlplne 

Solutions of felodipine and PVP were prepared by dissolving them into a mixture of 

ethanol and DMSO (95/5). Felodipine is soluble in ethanol. DMSO was used to 

increase the boiling point of the solution to reduce chances of the dispenser clogging 

due to the evaporation of the solvent. The ratios of felodipine to the polymer were 

1/10, 1/5, 1/2, 1/1 and 2/1 (w/w). 

Caproprll 

Solutions of captopril and PLGA were prepared by dissolving them into a mixture of 

chloroform, ethanol and DMSO (75/18/7). Chloroform was also used to dissolve 

PLGA. Ethanol was used to dissolve captopril and to disperse DMSO, as DMSO is not 

miscible with chloroform. Finally, DMSO was used to increase the boiling point to the 

solution to avoid any possible clogging of the dispenser. The ratios of captopril to the 

polymer were 30/70 and SO/50 (w/w). 

Hydrochlorothiazide 

Solutions of hydrochlorothiazide with PVP and PLGA were prepared. When PVP was 

used, the compounds were dissolved into a mixture of acetone, ethanol and DMSO 

(55/38/7). Acetone was used to dissolve HCT, ethanol to dissolve PVP and DMSO to 

increase the boiling point of the solution. 

In the case of PLGA, the compounds were dissolved into a mixture of acetone, and 

DMSO (93/7). Both HCT and PLGA are soluble in acetone. DMSO was used to increase 

the boiling point of the solution. 

3.4.2.2 Preparotlon of surface 

Hydrophobic surfaces suitable for retaining the sprayed micro-droplets were 

prepared by depositing f1utec fluid on glass cover slips using a spin coating device. 

Flutec fluid is a fluorinated compound (4-pentafuorosulfurnitrobenzene). The 

hydrophobic surface was to avoid the spreading of the samples after their 

deposition. 
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3.4.2.3 Dispensing 0/ solutions 

All the solutions were ejected as pico-litre droplets using a piezo driven dispenser 

(GeSim A010-201 PICPIP). The solvent was evaporated under ambient conditions and 

the samples were kept in a desiccator until further analysis. The duration and the 

amount of voltage and the frequencies of cycles applied to the piezo dispenser were 

used to control droplet deposition. In general, the sprayed conditions were 

determined by the surface tension and viscosity of the solution. Solutions with higher 

viscosity required a higher voltage, whereas surface tension is the predominant 

factor which affects the droplet formation [71]. Here the optimum voltage for the 

samples for a single droplet was found to be in the range of 35 - 42V applied in 35 -

45 ",sec pulses. 

At this point, it is worth noticing that when PVP and felodipine were used as solutes 

in the sprayed solution, the nozzle was clogged in very few seconds (Figure 3.7), even 

though the solutions were stable in the vials after weeks of their preparations. This 

phenomenon was deteriorated increasing the concentration of solutions. 

Unfortunately, it was not clear whether this was happening in the higher 

concentration of felodipine or PVP. An explanation of this can be lying behind the 

chemical structure of PVP. PVP as it contains hydrophilic groups and a hydrophobic 

chain can act as a surfactant. Hence, it was possible that if there were bubbles in the 

solutions, PVP could cover them and the felodipine may precipitate there. A similar 

phenomenon was observed by Schubert group where when they used solvents 

containing amino groups the solution with polystyrene, the polymer was precipitated 

inside the nozzle in a couple of seconds. This group was not able to justify the reason 

[60]. 
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Figure 3.7: photo of the clogged piezo-dispenser. 

3.4.2.4 Atomic Force Microscopy (AFM) 

AFM analysis was performed in air using tapping mode with a Dimension 3000 

(Nanoscope lila controller, Veeco, CAl . Tap300 cantilevers were used (Budget 

Sensors, Sofia, Bulgaria). The images where analyzed using the SPIP software (Image 

metrology, Denmark) . 

3.4.2.5 Thermal Analysis 

Nanothermal Analysis (NTA) 

NTA was performed on single dried droplets using a Multimode AFM (Nanoscope V 

controller, Veeco) with a NTA modification from Anasys Instruments (Santa Barbara, 

CAl . The probes used were AN2 (Anasys) with heating rate of 1°C/sec. The 

instrument was calibrated using measurements on poly(caprolactone) (PCl) (Tm = 

55°C), polyethylene (PE) (Tm = 116°C) and polyethylenetelephalate PET (Tm = 238°C). 

Scanning Thermal Microscopy (SThM) 

SThM analysis was performed using an Explorer AFM system (Veeco) with a 

Wollaston wire micro-thermal tip (Veeco). To increase the signal level samples were 

produced with 40 droplets to increase the mass of material for analysis. 

In the case of felodipine, local thermal analysis was performed with a temperature 

ramp rate of lOoC/sec. The same calibration samples as for NTA were employed. 

Finally, the theoretical glass transition temperature of the mixture based on the 

Gordon-Taylor (GO) equation [142] were compared with the measured values. This 
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equation assumes that the two components are miscible. The GO equation is defined 

as 

(3.1) 

PiT, 
The constant k is defined as k = --g-

P 2Tg2 

(3.2) 

Where Wl, Wz, Tgl and Tg2 are the mass fraction and the glass transition of felodipine 

and PVP respectively and Pl and P2 the densities of felodipine and PVP. According to 

Konno et 01. these are equal to 1.33mg/ml and 1.28 mg/ml respectively [123]. 

The value of glass transition temperatures of the PVP and felodipine that has been 

used to determine the constant k for each compound and the glass transition 

temperature were based on the SThM data. For PVP and felodipine these were equal 

to 198 DC and 46 DC respectively. 

In the case of HCT/PVP system the density of HCT was from Tajber et 01. and was 

equal to 1.89 mg/ml [143]. 

3.4.2.6 Infrared Spectroscopy (ATR -IR) 

As for SThM, samples with multiple droplets were used to increase signal levels for 

ATR-IR. To avoid crystallization of the API, the solvent was evaporated in vacuum. 

The IR spectra were obtained using a Nicolet Avatar 360 FTIR using diamond as 

crystal. 

In the case of felodipine the number of scans was 200 over the range 450 - 4000 cm·l 

at a resolution of 4cm·1
• For captopril and HCT, the IR spectra the number of scans 

was 1000 over the range 450 - 4000 cm· l at a resolution of 4 cm-1
• 

3.4.2.7 Confocal Raman 

Confocal Raman studies were performed on single droplets using a Jobin­

Yvon/Horiba micro-Raman spectrometer, by means of red laser with 632nm 

wavelength and 600 l/nm grating. The spectrometer is equipped with an Olympus 

microscope BX41. 
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In all the cases, Raman spectra were obtained on multiple droplets with l00~m slit 

width, 8 sec acquisition time. Each spectrum was the mean of four measurements. 

In terms of the Raman mapping, when felodipine was applied as an API, the 

experimental conditions were a l00~m slit width, a l00x microscope objective and 

5sec exposure time. Each spectrum was the mean of two measurements. The sample 

profiling was performed at step increments of l~m in x- and y- directions. 

For felodipine/PVP and HCT/PVP the confocal Raman mapping was performed on a 

single droplet. The sample profiling was performed at step Increments of l~m in x­

and y- directions. 

For captopril/PLGA, HCT/PLGA and HCT/PLGA/Pluronic the Raman mapping has been 

performed in multiple droplets. The sample profiling at step increment in these case 

were performed on 5~m in x- and v- directions with 0.5 sec exposure time. Each 

spectrum was the mean of two measurements. The slit width was 150 ~m. 

All the Raman studies were carried out through l00xmagnification lense. The 

chemical images were then constructed based on algorithms of the NGLabspec 

spoftware (Horiba Jobin Yvon). The eigenvalues of each principal component was 

calculated using Solo+MIA software (eigenvector, USA). 

3.5 Results 

3.5.1 Atomic Force Microscopy 

3.5.1.1 Fe/adlplne 

AFM imaging of single droplet felodipine/PVP spots at the different ratios showed 

them to be homogenous at the nanoscale with no indication of drug crystallization 

and phase separation (Figure 3.8a, c, d, e, f). Although small holes can be observed in 

the film due to the drying phase the material deposited shows no evidence of 

internal structure. Intimate mixtures with PVP therefore appear to inhibit 

crystallization of felodipine as has been shown previously for bulk formulations. 

However, at the higher concentration of PVP small crystals can be formed which 
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must come from PVP's crystallization (Figure 3.8b) . Due to the rapid evaporation of 

the solvent from such small drops, the felodipine deposited alone also appears to 

have no internal structure and therefore is likely to be amorphous (Figure 3.8a) . 

However, when the dispenser sprays for more than a minute, crystals are formed 

which is caused by the slower evaporation of the solvent from such a large volume 

(Figure 3.8g) . 
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Figure 3.8: AFM topographic (left) and phase (right) images of the surface of a) sprayed felodipine and 
felodipine/PVP micro-deposits at ratio b) 1/10, c) 1/5, d) 1/2, e) 1/1, f) 2/1 and g) a product produced 

by spraying mUltiple droplets of felodipine/PVP " 1/10 (w/w) . 
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3.5.1.2 Capropril 

The product obtained when captopril and PLGA of different ratios were sprayed is 

illustrated in Figure 3.9 When PLGA was sprayed alone the deposits appeared 

amorphous and homogenous (Figure 3.9a). However, the addition of captopril 

resulted in the formation of small dots on the surface. These dots are likely to be 

captopril exposed on the surface (Figure 3.9 b,c). 

Figure 3.9 : AFM topographic and phase (right) AFM images of a) sprayed PLGA and captopril/PLGA 
mixtures at b) 30/70, c) SO/50, w/w ratios and d) after the dissolution of captopril/PLGA mixture in 

water for 5 sec. 
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3.5.1.3 Hydrochlorothiazide 

When hydrochlorothiazide was sprayed with PVP, the product was homogenous 

without any sign of phase separation or crystallization (Figure 3.10). As in the case of 

felodipine, small holes can be observed which are due to the drying phase of 

material deposited (Figure 3.lOb and d) . 
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Figure 3.10: Topographic and Phase (right) AFM images of a) sprayed HCT and HCT/PVP mixture of 

ratio b) 1/5, c) 1/2, d)l/l, e) 2/1 . 

When PLGA is used although the product is amorphous there is a phase separation of 

the two compounds. This is identified in the phase image where certain areas appear 

bright in the phase contrast (Figure 3.11). 

Figure 3.11: Topographic and Phase AFM image of HCT/PL:=t- = 3:/ : \:/.::. 
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3.5.2 Localised Thermal Analysis 

3.5.2.1 Fe/odipine 

SThM and NTA raw data are presented in Figure 3.12. Only one Tg was observed for 

each mixture which is consistent with a true solid dispersions being formed. It is clear 

that the NTA and the SThM produced comparable results. As the drug concentration 

increased the Tg was reduced . The values predicted from the Gordon-Taylor equation 

(fig. 4) are lower than the experimental values, indicating that either the sample 

does not ideally match the assumptions of this model (e.g. complete miscibility of 

the two components) or that the thermomechanical properties of the samples are a 

contributory factor to the experimental measurements. A more thorough analysis of 

how the properties of the samples and tip are represented in the discussion section 

in th is chapter (discussion 3.6.1). 
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Figu re 3.12: Comparisons Tg f rom SThM, NTA and the Gordon-Taylors equation fo r Felodipine-PVP 
mixtures. 

3.5.2.2 Hydrochlorothiazide 

SThM data of HCT/PVP mixture are represented in Figure 3.13. The experiment 

revealed a single glass transit ion point which is consistent with an intimate mixture 

of the API and the polymer. As the drug concentration increased, the observed Tg 

reduced . Also, the values predicted from Gordon - Taylor are lower than the 

experimental values as for the felodipine/PVP system. 
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Figure 3.13: a) Comparison the data from SThM and Gordon - Taylor equation . 

3.5.3 Infrared Spectroscopy (ATR-IR) 

3.5.3.1 Feiodipine 

ATR-IR was used to examine the intermolecular interactions between felodipine and 

the polymer in the spot formulations. Felodipine has a secondary amine group that is 

capable of forming hydrogen bonds with the carbonyl groups of PVP and with the 

carbonyl group of other felodipine molecules. The characteristic wavelength range 

for the evaluation of these interactions is at the -NH stretching region between 3000 

and 3700 cm·l . If this -NH group interacts with the carbonyl group, its associated 

peak shifts to a lower wavenumber. Hence, for the crystalline drug powder one 

single peak is observed at 3344 cm·l , but in the sprayed felodipine the peak is moved 

to lower wavenumber at 3324 cm·l indicating that the hydrogen bonding among the 

felodipine's molecules are stronger in the amorphous sprayed drug as it has been 

previously reported (Figure 3.14c) [123, 126J. Additionally, there is simultaneous 

change in the carbonyl region (Figure 3.14b). Specifically, the carbonyl peak of the 

sprayed drug has been split in two peaks from which the former has been moved to 

higher wavenumbers at 1699 cm·l compared to the crystalline powder, whereas the 

latter has been shifted to lower wavenumbers at 1688 cm·l . This indicates that as 

there is only one peak that has been moved downwards, only one of the carbonyl 

groups is associated with the hydrogen bonding, whereas the other either does not 

compete at all or its energy is very low. 
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In the formulations with 2:1, 1:1 and 1:2 drug to PVP ratio the peak corresponding to 

the NH group is split and appears at lower wavenumbers (Figure 3.14c). This has 

been proposed to indicate a stronger hydrogen bonding between the felodipine and 

the polymer than with itself. When higher concentrations of PVP are used the -NH 

group is obscured by the large water peak is associated with the highly hygroscopic 

PVP rendering analysis difficult. Finally, it is worth noticing that the broadness of the 

peak is consistent with the proposed amorphous nature of the product, as the peak 

in question of crystalline powder is sharper. 
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Figure 3,14: a) ATR spectra of powder felodipine, sprayed felodipine, PVP and mixtures of 
felodipine/PVP of various ratios, b) ATR spectra of sprayed felod ipine and powder felodipine in the 
carbonyl reg ion c) ATR spectra of powder felodipine, sprayed felodipine and mixtures of felodipine/PVP 

of various ratios in the NH reg ion, 
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3.5.3.2 Captoprll 

ATR spectra of Captopril powder and sprayed captopril are illustrated in Figure 3.15. 

The peaks at 1749 and 1589 cm-1 corresponds to the C=O group of carboxylic acid 

and amide. The peaks at 1228cm-1 and 1220cm-1 corresponds to the c-o and C-N 

bending vibration. 

By comparing the ATR spectrum of the powder captopril and the sprayed captopril in 

the CO region (Figure 3.15b), it is clear that the peak corresponding to the C=O group 

of carboxylic group has been moved towards lower wavenumbers, whereas the 

broadness of the amide peak in the sprayed product does not allow identifying the 

peak shift. 

Also, by applying ATR any possible interaction between the captopril and PLGA could 

be investigated. Captopril could be bonded with PLGA by hydrogen bonding either of 

its carbonyl groups with the OH group or of the SH group with the C=O group of 

PLGA. However, ATR does not seem to confirm this as the carbonyl peaks of PLGA in 

the captopril/PLGA mixture and in the sprayed PLGA remain in the same position 

(Figure 3.15c) 
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Figure 3.15: a) ATR spectra of PLGA, crystalline captopril, sprayed captopril and the mixture 
captopriljPLGA of various ratiOS, b) comparison of ATR spectra of sprayed Captopril and crystalline 
powder of Captopril in the co region, c) comparison of ATR spectra of sprayed Captopril, crystalline 
powder and mixture of Captopril PLGA mixture. 

3.5.3.3 Hydrochlorothiazide 

In Figure 3.16a the ATR-FTIR spectrum of the crystalline powder, the sprayed HeT 

and the mixtures of HCT/PVP of various is illustrated. The most important chemical 

groups of HeT molecule are the four amino groups and the s=o groups since these 
c) 

two groups can interact either with other HeT molecules or with other potential 

excipients by means of hydrogen bonding. Specifically, HeT has four amino groups 

from which two are coming from the primary sulphonamide, one from the secondary 

sulphonamide and there is one secondary amino group. In the crystalline powder the 

peaks which correspond to the NH groups are at 3359 cm·l , 3262 cm-l and at 3166 

em-i. The symmetric stretching vibration of SO groups appeared at 1149 and 1163 

cm-1 whereas the antisymmetric stretching vibration of SO group is detected at 1317 
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cm·
l 

and 1333 cm·l
• The strong peak at 1600 cm-l corresponds to the C=C group of 

the aromatic ring. 

In the sprayed HCT the peaks of the spectrum were broadened, an Indication of the 

amorphous nature of the product. The NH peak at 3166 cm-1 has been overlapped by 

the peak at 3262 cm-l (Figure 3.16b). In terms of the SO peaks the two peaks 

assigned to the asymmetric stretching vibration has overlapped each other to a 

broad intense peak detected at 1320 cm-1
• The peaks corresponding to the 

symmetric SO vibration at 1149 and 1163 cm-l has been shift to 1154 and 1167 cm-l 

respectively (Figure 3.16c). Finally, the peaks correspond to the NH scissoring 

vibration have been shift from 1521 and 1555 cm- l to 1515 and 1553 cm-1 

respectively (Figure 3.16c). All the peak movements described above, It is an 

indication of a rearrangement of the hydrogen bonding in the sprayed material. 

ATR-FTIR has been Implemented to investigate the bonding between PVP and HCT. 

Figure 3.16d shows the comparison of the amorphous HCT with the 2/1 (w/w) 

HCT/PVP mixture. HCT has four NH groups which can be associated with the c=o 
group of PVP. It is illustrated that when PVP is added, then the two peaks of amino 

group are moved to lower wavenumbers due to hydrogen bonding between the NH 

groups of HCT with the carbonyl group of PVP. 
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Figure 3 016: a) ATR spectra of powder HCT, sprayed HCT, PVP and mixture of HCT/PVP of different 
ratios, b) comparison of powder HCT and sprayed HCT in the region of NH group c) comparison of 
powder HCT and sprayed HCT in the carbonyl region between 1100 cm

ol 
- 1700 cm

ol 
d) comparison of 

sprayed HCT and HCT/PVP in the region of NH group. 

The ATR-FTIR spectrum of PLGA has also implemented to investigate any possible 

interactions between HCT and PLGA. HCT can be associated by means of hydrogen 

bonding not only between the c=o groups of PLGA and the NH groups of HCT but 

also between the 5=0 groups of HCT with the OH group of PLGA. The former bond 

could be detected by a peak shift of the carbonyl peak of PLGA and the NH peak of 

HCT. Figure 3.17b shows that the NH peak at 3258 cmol of the sprayed Hcr has been 

slightly shifted to lower wavenumbers in the mixture with PLGA. This is more obvious 

in the HCT/PLGA = 70/30 where the HCT signal is stronger due to its higher 

concentration. However, the peak of the carbonyl group of PLGA remained in the 

same position with the pure compound . Also the peak which corresponds to the 

asymmetric vibration of 50 has slightly moved to higher wavenumbers at 1328 cm
ol 

from 1322 cm
ol 

of the sprayed HCT (Figure 3.17c). 
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Figure 3.17: a) ATR spectra of powder HCT, sprayed HCT, PLGA and mixture of HCT/PLGA of different 
ratios, b) comparison of sprayed HCT and mixtures of HCT/PLGA of different ratios in the region of NH 
group c) comparison of sprayed HCT and HCT/PLGA mixtures in the sulphonic region from 900 cm·l to 
1600 cm·l . 

3.5.4 Raman 

3.5.4.1 Feiodipine 

From the Raman spectrum of felodipine crystalline powder, it has been observed 

that there is a characteristic peak at 3335 cm·l which corresponds to the NH 

stretching vibration and a characteristic peak at 1639 cm·1 corresponding to the free 

carbonyl stretching mode. In the sprayed felodipine the characteristic peak of NH 

group in addition to become broader losing lots of its intensity and moves towards 

lower wavenumbers indicating that the hydrogen bonding among felodipine's 

molecules are stronger than in crystalline powder (Figure 3.18). Also, in the samples 

where PVP is added the peak of amino group is disappeared, possibly due to the low 
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concentration of the felodipine. Also, the carbonyl group of the PVP is covered by the 

carbonyl group of felodipine . As the concentration of PVP increases, its characteristic 

peaks are increasing (Figure 3.19) . 

• fclodipine sprayed 
• felodipine powder 

'''''' . 
Figure 3.18: Raman spectra of powder felodipine and sprayed felodipine. 

____ ~r 

I XXI 2000 

Figure 3.19: Raman spectra of sprayed felodipine, PVP and · mixtures of felodipine/PVP of various ratios. 

3.5.4.2 Captopri/ 

The Raman microscope spectra of the crystalline powder of captopril and the 

sprayed captopril are shown in Figure 3.20. In the captopril powder the c=o 

stretching vibration of the carboxylic group of captopril is assigned at 1745 cm·
l 

and 

the C=O stretching vibration of the amide group at 1603 cm·
l 

and at 1583cm-
l

, In the 

sprayed drug the former peak has been shifted to 1727 cm·
l 

whereas the latter has 

59 



3. Production of individual sprayed formulations 

been shifted to 1616 cm·l . Moreover, due to the broadness of the peak, it is not clear 

if both the peaks of the amide of the crystalline have been shifted. 

Confocal Raman microscopy has been also implemented to investigate any possible 

interactions between the captopril and PLGA. The position of the characteristic peaks 

of captopril and PLGA is in the same position with their pure product indicating that 

the nature of the compounds remains the same and no interaction between them 

takes part (Figure 3.21). 

IG:J] 
- - .. - .- -

• caplopri lsprayed_ 1 
• captopri I powder 

' .. 
Figu re 3.20: Raman spectra of powder captopril and sprayed captopril with zoom in the carbonyl region 
at 1550 -1800cm·1 

. 

Figure 3.21: R; man spectra of sprayed ca ~t~pril , PLGA a~d mixtures of Captopril/PLGA = SO/SO (w/w) 

mixture. 

3.5.4.3 Hydrochlorothiazide 

In Figure 3.22 the Raman spectra of HCT on various forms is illustrated. The NH 

groups of HCT occur at the area between 3100 and 3370 cm·
l 

which correspond to 

the symmetric vibration of secondary N-H group, the NH2 symmetric vibration and 
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the symmetric vibration of the NH group of the primary and secondary 

sulphonamide. The strong peaks at 1150 and 1165 cm·l corresponds to the 

symmetric vibration of 502 whereas the peaks at 1295 and 1313 cm·l correspond to 

the asymmetric vibration of 502. The strong peak at 1596 cm·l assigned to the NH2 

bending vibration . Also, the strong peaks at 680 cm-l and 710 cm-l correspond to the 

CS stretching vibration. 

In the sprayed HCT the peaks corresponding to the NH group which are in the range 

3160 - 3500 cm-l wavenumbers became broader indicating the amorphous nature of 

the product. Furthermore, the second peak moved to lower wavenumbers than in 

crystalline material indicating that the hydrogen bonding between the HCT 

molecules are stronger than in the crystalline form whereas the peak of the amino 

group at 3360 cm-l , even though it is broader than in crystalline form it has been 

remained in the same position indicating that the certain amino group does not 

compete to the hydrogen bonding. Also, it is worth noticing that the peak at 3167 

cm-l looks to have shift to higher wavenumbers and unified with the peak at 3263 

cm-1 (Figure 3.22) . 

Furthermore, the peak which corresponds to the symmetric vibration of 502 group 

looks to be in the same position with the crystalline, even though it is difficult to 

elucidate it due to their broadness. 

Figure 3.22: Raman spectra of powder HCT and sprayed HCT. 

• HCT sprayed 
- HCT powder 
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When PVP is added to the formulation its characteristic peak appears, whose 

intensity increases as its concentration increases (Figure 3.23). The most 

characteristic peaks of PVP are the peak corresponding to the carbonyl group at 1662 

cm-
l 

and the carbonyl ring at 938 cm-l . The carbonyl group of PVP can interact via 

hydrogen bonding with the NH group of HCT. Focusing on the NH region of sprayed 

HCT and 2/1 = HCT/PVP mixture, it is observed that both the peaks corresponding to 

amino groups have been slightly shifted indicating hydrogen bonding between the 

PVP and HCT. However, the carbonyl group of PVP remains in the same position with 

the pure material. Finally, the peaks of symmetric and asymmetric SO stretching 

have been shift slightly to higher wavenumbers. 

------~~~ 
~ 
)'. - HCT sprayed 

bl.fdl!-.:.!Jl:-"'-"--T~ - HCT/PVP = 1/5 
- HCT/PVP = 1/2 
- HCT/PVP = 1/1 
- HCT/PVP = 2/1 

A 

~---.-/~ --

!,()() 1000 I SOO 2000. 2~ JOOO ) 500 -4 000 

Figure 3.23: Raman spectra of sprayed HCT, and mixtures of HCT/PVP of various ratios with zoom on the 
NH area of sprayed HCT and 2/1 = HCT/PVP sprayed mixture. 

The spectra of HCT/PLGA in different ratios are illustrated in Figure 3.24. As in the 

case of PVP, when PLGA is added, its characteristic groups are appeared. The C=O 

group of PLGA can interact with NH group via hydrogen bonding, however there is no 

peak shift of neither the NH groups of HCT, nor the C=O group of PLGA which does 

not confirm any hydrogen bonding between the API and the polymer. Also, PLGA 

could interact with HCT via hydrogen bonding of its OH group with the SO groups of 

HCT. Nevertheless, the peaks corresponding to the SO group at 
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- HCT s prayed 

- PLGA 

- HCTI LGA = 30170 
~~~~~~~~~ 

'-. 
Figure 3.24 : Raman spectra of sprayed HCT, PLGA and mixture of HCT/PLGA = 30/70 with zoom in the 
area of NH group. 

In Figure 3.25 the Raman spectrum of the mixture of HCT with PLGA and Pluronic is 

shown. Due to its low concentration the pluronic's peak can not be detected in the 

spectra of the mixture. Pluronic can interact with the PLGA and HCT with hydrogen 

bonding of its hydroxyl group. However, this could not be confirmed as the carbonyl 

peak of PLGA remained at the same position in the mixtures. Also, the second peak 

of NH group of HCT looks to be slightly shifted indicating hydrogen bonding between 

the NH group of HCT and the CO group of PLGA (Figure 3.26a). Finally the peaks that 

correspond to the S02 group of HCT which can be associated with pluronic via 

hydrogen bonding remains in the same position with the sprayed HCT indicating that 

no interaction between HCT and pluronic took place (Figure 3.26b) . 

• Sprayed HCT 

. Sprayed mixture of HCT/PLGAlPluronic = 50145/5 

- Pluronic 

- PLGA 

.. , .. 
Figure 3.25: Rama n spectra of sprayed HCT, pluronic, PLGA and sprayed HCT/PLGA/Pluronic = 50/45/5 

mixture. 
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· Sprayed HCT 
• Sprayed HCTIPLGAlPturonrc 

• Sprayed H CT 
· Sprayed HCTIPLGAJPlu ron Ie 

Figure 3.26: Raman spectra of sprayed HCT and sprayed mixture of HCT/PlGA/Pluronic = 50/45/5 
mixture in the a) NH region and b) so region. 

3.5.5 Raman Mapping 

3.5.5.1 Felodipine 

Confocal Raman Microscopy has been applied to study the drug distribution and 

state within the micro-spots. The spectral peaks chosen to plot the map were the 

characteristic carbonyl group of felodipine at 1667cm-1 and the characteristic carbon 

ring breathing of PVP at 937cm-1. Figure 3.27a,Figure 3.28a, Figure 3.30a, Figure 3.31a 

show the Eigenvalues for each principal component. It is observed that the 

Eigenvalues are reduced dramatically after the first factor and it is almost zero after 

the third factor which indicates that the contribution of more than three factors is 

limited. Hence, the chemical map of the product has been created by using three 

principal components (PCs) for the mixtures of felodipine/PVP 2/1, 1/2 and 1/10 and 

two principal components for the mixtures 1/2 and 1/5. 

As it can be seen from the model spectra and the chemical maps (Figure 3.27,Figure 

3.28,Figure 3.29,Figure 3.30 and, b and c), the API and the polymer is evenly 

distributed as the characteristic peaks of felodipine and PVP coexist in the model 

spectra. The model spectra used to create the chemical maps were separated based 

on the intensity of the peaks. Therefore, the model spectra with the less intensity 

correspond to areas with a less concentration of material and are located at the edge 

due to the curvy shape of the droplet. 
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Figure 3.27: a) Eigenvalues plot versus PCs numbers of the Felodipine/PVP = 2/1 mixture b) 3 model 
spectra used to create the chemical map where the red, blue and green correspond to background, 
both background and sample respectively )optical microscope image of deposited product d) Chemical 
image of the mixture. 

BOO 

roo 

200 

c) 

I 000 I 200 I 400 

·50 0 

I 
I 800 

Figure 3.28: a) Eigenval~~s 'plot versus PCs numbers of the Felodipine/PVP = 1/1 mixture b) 2 model 
spectra used to create the chemical map, where the red and the green correspond to the sample and 
background respectively c)optical microscope image of deposited product d) Chemical image of the 
mixture. 
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Figure 3.29: a) Eigenvalues plot versus PCs numbers of the Felodipine/PVP = 1/2 mixture b) 3 model 
spectra used to create the chemical map, where the red, blue and green correspond to background, 
both background and sample respectively c)optical microscope image of deposited product d) Chemical 
image of the mixture. 
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Figure 3.30: a) Eigenvalues plot versus PCs numbers of the Felodipine/PVP = 1/5 mixture b)2 model 
spectra used to create the chemical map, where the red, and the yellow correspond to background, and 
the sample respectively c )optical microscope image of deposited product d) Chemical image of the 
mixture. 
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Figure 3.31 : a) Eigenvalues plot versus PCs numbers of the Felodipine/PVP = 1/10 mixture b) 3 model 
spectra used to create the chemical map, where the purple, yellow and blue correspond to background, 
both background and sample respectively c)optical microscope image of deposited product d) Chemical 

image of the mixture. 

3.5.5.2 Captopril 

Figure 3.32 shows the chemical image for the captopril PLGA formulation. The image 

has been separated into three components. The differences of the model spectra are 

negligible as all of them contain peaks of both the captopril and PLGA leading to the 

conclusion that the product is homogenous. The red and the blue spectra are 

separated based on their intensity whereas the green spectra correspond to areas 

with very little material or to out of focus areas. 
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Figure 3.32: Eigenvalues plot versus PCs numbers of the Cap/PLGA = 50/50 mixture b) 3 model spectra 
used to create the chemical map, where the green corresponds to background areas and the red and blue 
to captopril!PLGA mixture c)optical microscope image of deposited product d) Chemical image of the 

3.5.5.3 Hydrochlorothiazide 

As shown from the eigenvalue plot versus the PC numbers (Figure 3.33,Figure 

3.34a,Figure 3.35a and Figure 3.36a), PCA analysis suggests using 2 factors to create 

the chemical image of the sample except the 1/1 HCT/PVP sample. Like in the case of 

felodipine/PVP system, the model spectra, indicates that the product of all the ratios 

HCTjPVP is homogenous as all model spectra contain peaks of both HCT and PVP. 

Moreover the green spectra in all the cases correspond to areas with less quantity 

material. Moving to the centre of the droplets the deposited material increases and 

the model spectra became stronger. The yellow areas correspond to areas where 

both the green and the red spectrum contribute to the spectrum in this areas. 
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Figure 3.33: a) Eigenvalues plot versus PCs numbers of the HCT/PVP = 2/1 mixture b) 2 model spectra 
used to create the chemical map, where the green and red correspond to both background and sample 
respectively c)optical microscope image of deposited product d) Chemical image of the mixture. 
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Figure 3.34: Eigenvalues plot versus PCs numbers of the HCT/PVP = 1/1 mixture b) 2 model spectra used 
to create the chemical map, where the red corresponds to background areas and the blue and the 
green to the captopril/PLGA mixture c)optical microscope image of deposited product d) Chemical 

image of the mixture. 
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Figure 3.35: Eigenvalues plot versus PCs numbers of the Ha /PVP = 1/2 mixture b) 2 model spectra used 
to create the chemical map, c)optical microscope image of deposited product . The green corresponds 
to background and the red to HCT /PVP mixture d) Chemical image of the mixture. 
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Figure 3.36: a) Eigenvalues plot versus pes numbers of the Ha/pvp ;; 1/5 mixture b) 2 model spectra 
used to create the chemical map, c)optical microscope image of deposited product d) Chemical image of 

the mixture. 

In Figure 3.37a the Eigenvalues plot with the principal components for the HCT/PLGA 

30/70 is illustrated. From this plot, it is clear that the factors that can contribute to 

the obtained spectra are the first five. The chemical map Figure 3.37d has been 
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created by separating the spectra in to five principal components. Hence, the areas 

corresponding to yellow model spectrum are areas containing only HCT since the 

characteristics peaks of PLGA such as the carbonyl group at 1760cm-1 are missing in 

model spectra. The red, purple and blue area contain both HCT and PLGA as the 

model spectra corresponding to these contain the characteristic peaks of HCT and 

the characteristic peak of PLGA at 1760cm-1
• However, they are not equally 

distributed as the ratio of these characteristic peaks of HCT and PLGA is not the same 

to all the model spectra. Hence, the blue areas where the ratio of the C=C of HCT to 

the carbonyl group of PLGA is the biggest, contains the higher concentration of HCT 

where the red and purple areas the lower concentration as the ratio is the smallest. 

Also, the optical microscope image combined with the chemical image shows that 

the polymers have been accumulated at the top of the sample, in contrast with the 

drug which is distributed in all the place. 

The chemical images of the mixtures of HCT and PLGA at ratios of 30/70 and 20/80 

are illustrated in Figure 3.37 andFigure 3.38. In the case of 30/70 HCT/PLGA the 

green spectrum corresponds to the background whereas the others correspond to 

the sprayed product. As these spectra, contains peaks of both the compounds such 

as the strong C=C peak of HCT at 1604 cm-1 and the carbonyl peak of PLGA at 1750 

cm-I
, both the compounds are distributed to all the sample. 
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Figure 3.37: : a) Eigenvalues plot versus PCs numbers of the HCT/PLGA = 30/70 mixture b) 5 model 
spectra used to create the chemical map, where the green, yellow correspond to background and to 
HCT respectively whereas the red, blue and pu rple correspond to areas with mixture of HCT and PLGA in 
different concentrations c) optical microscope image of deposited product d) Chemical image of the 
mixture. 
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Figure 3.38: : a) Eigenvalues plot versus PCs numbers of the HCT/PLGA = 20/80 mixture b) 2 model 
spectra used to create the chemical map, c)optical microscope image of deposited product d) Chemical 
image of the mixture. 
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In the case of the mixture of HCTjPLGAjPluronic mixture the PCA analysis showed 

that four factors contribute to the spectra obtained (Figure 3.39a) . Hence, the chemical 

map of the spot has been separated in to four PCs. The purple and blue spectra 

contain peaks of both HCT and PLGA indicating the coexistence of the two 

compounds. The red spectrum corresponds to areas with HCT as only the peaks of 

API appeared. The green model spectra express areas which contain the less 

material. Unfortunately, Raman was not able to distinguish the pluronic's 

characteristic peak due to its low concentration and because most of the pluronic 

peaks are overlapped from those from PLGA and HCT. Finally, the optical microscope 

image combined with the chemical image shows that the API is evenly disturbed 

combared with the polymers. 
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Figure 3.39: a) Eigenvalues plot versus PCs numbers of the HCT/PLGA/Pluronic = 50/45/5 mixture b) 4 
model spectra used to create the chemical map. The green spectrum corresponds to background, the 
red spectrum corresponds to pure HCT and the pink and the blue spectra correspond to the mixture of 
HCT /PLGA c)optical microscope image of deposited product d) Chemical image of the mixture . 
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3.6 Discussion 

In this chapter, drug formulations of felodipine, captopril and hydrochlorothiazide 

with polymers have been prepared by using the inkjet printing method. A 

combination of micro and nano analytical methods has been implemented to study 

the physicochemical properties of these formulations. 

3.6.1 Felodipine 

In terms of the felodipine/PVP system AFM confirms that the product is 

homogenous, amorphous without phase separation at the drug-polymer ratios used. 

Also, the importance of the evaporation rate has been confirmed as it can affect the 

physical form of the final product. A slow evaporation rate can lead to crystallization, 

which can lead in turn to a dramatic change in therapeutic properties of the 

medicine through a reduced solubility. 

The homogeneity of the product was confirmed by LTA, where only one glass 

transition point was detected for the mixtures at the micrometre (SThM) and 

nanometre scale (NTA). However, it is worth noticing the differences between the 

measured TI and the theoretical values derived from the Gordon-Taylor equation. 

The reason for this is probably related to the fundamental principle of L TA. In 

general, at both the micro and nano-scale the thermomechanical contribution of the 

physical contact area of the tip is an important factor in the thermal response of the 

samples. Tsukruk et 01. investigated this mechanical contribution by measuring the 

probe heat dissipation which is dependent on the probe/surface contact area for a 

certain material. The results showed that at an increasing indentation depth, there is 

an increase in the observed temperature for a glass transition above its actual value 

[144]. This phenomenon has a smaller effect on the measurements of the SThM due 

to the larger size of the initial contact region [145]. It is important to note that these 

phenomena do not affect the observation of a single TI . 

ATR spectroscopy reveals the association of felodipine with PVP to be via hydrogen 

bonding consistent with previous publications. In comparison to the literature the 

current study reveals the association of the drug and the polymer with two kinds of 

bonds even at a 2/1 Felodipine!PVP. Previous studies of solid dispersion of felodipine 
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with the PVP showed that at the higher concentration of felodipine only one peak at 

the higher wavenumbers of the amino group appears indicating only weak hydrogen 

bonds are formed [132]. This may be due to the inkjet printing method, where the 

amount of product is much less than in bulk solid dispersion methods. Consequently, 

the solvent is evaporated more rapidly possibly leading to a more intimate 

interaction of the PVP and felodipine. Also, ATR revealed that the hydrogen bonding 

among the felodipine's molecules in the amorphous sprayed material are stronger 

than in crystalline powder as the peaks corresponding to the amino group move to 

lower wavenumbers. This has also been confirmed by previous work [121). 

Confocal Raman microscopy has been applied as an additional analytical method to 

confirm the homogeneity of the product. The chemical map of the samples were 

processed using direct classical least square (DCLS) based on the algorithms of the 

NGLabspec. In order to choose the number of factors that contribute to the plot of 

chemical mapping, the Eigenvalues of each principal component was analysed. The 

PC Eigenvalues decrease with the number of components and level off when the 

complete signal is taken into account. For the experiments in this thesis, they sharply 

decrease after the first PC. Based on this behavior, it can be concluded that it is quite 

likely that two components exists. Indeed, the results indicate that in most of the 

cases two PCs, one coming from the samples and the other from the background, are 

enough to characterize the samples which show that both the compounds are evenly 

distributed along the mixture. Karavas et 0/ by applying confocal Raman mapping to 

solid dispersions mixture of felodipine with PVP and using the ratio of carbonyl peak 

to carbon ring band suggested that at elevated concentrations of felodipine 

aggregations of API's molecules can be observed [128). However, in our case by using 

NTA, a technique which can offer a much higher spatial resolution than confocal 

Raman microscopy did not reveal such agglomerations as all the measurements 

taken along the sample were far away from the glass transition temperature of 

felodipine. 

3.6.2 Hydrochlorothiazide 

AFM of HCT/PVP confirms that the product is homogenous, amorphous without 

phase separation at the drug-polymer ratios used. In the formulations where PLGA 
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has been applied the product is amorphous and there is a phase separation between 

the API and the polymer. 

SThM also confirmed the homogeneity of the product, since only one glass transition 

point has been detected. As in the case of felodipine/PVP system the values from LTA 

are increased compared to the theoretical values from the Gordon - Taylor equation. 

The explanation from this phenomenon must be sought again in thermomechanical . 

issues that govern the method. At this point, it is worth to noticing that both the 

lines plotted from the experimental and theoretical data are approximately parallel. 

This is an indication of a constant offset factor. Also, the homogeneity of the product 

is confirmed by the histogram of the SThM values, where in all the samples except 

the HCT/PVP = 1/1 sample the values are effectively constant. In the case of 

HCT/PVP, the high distribution ofT, values can come from the uneven distribution of 

the HCT in the sample, where the lower T, values correspond to areas with highly 

HCT concentration. 

ATR has been implemented to identify possible interactions between the HCT and 

the polymers. HCT can interact with PVP via hydrogen bonding of its amino groups 

with the carbonyl group of PVP. The potential hydrogen donors of HCT are the two 

amino groups of the primary sulfonamides, one from the secondary sulfonamide and 

one from a secondary amino group. The assignment of the NH peaks has been done 

previously by Tajber et 01. [143]. In general, the best hydrogen bond donor will bond 

to the best hydrogen bond acceptor. Moreover, hydrogen bond donating abilities 

correlate with the acidities, as the more highly acidic group is a better donor among 

the similar functional groups. In the case of HCT, according to Adsmond et al. [146] 

the amido proton is more acidic than the proton in the amino group, due to the 

strong electronegative character of the SO group which is able to polarise the 

nitrogen atom positively which in turn facilitates the release of the proton. 

Consequently, the API will interact with PVP via the amido group and therefore the 

peaks corresponding to NH of the sulphonamides will be shifted. Consequently, from 

the Figure 3.16d the first and second peak in the crystalline HCT powder can be 

assigned to the to the primary and secondary sulphonamide N-H peak, as these two 

peaks were shifted to lower wavenumbers when PVP was added. Unfortunately, the 

ATR spectrum was not able to distinguish the other two amino groups. 
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Raman spectra are consistent with the ATR spectra as the amino peaks became 

broader in the sprayed material and are moved to lower wavenumbers. From Figure 

3.23 the peak of the amino group at 3360 cm·l of the powder has shifted slightly 

when PVP is added and hence it will correspond to the asymmetric bonded stretch of 

the amino group of the primary sulphonamide. The amino groups at 3267 cm·l 

moved to even lower wavenumbers and therefore corresponds to symmetric stretch 

of either the amino group of either the primary sulphonamide or to the secondary 

sulphonamide. Unfortunately, due to the broadness of the peaks, it is not clear 

whether the amino peak at 3168 cm·l has moved to a lower wavenumber (Figure 

3.22). However, Tajber et 01. by using FTIR suggested that this peak must correspond 

to the stretching vibration of the primary sulphonamide [143]. The stretching of the 

secondary amino group is covered at by the peak of the asymmetric NH2 stretch. 

Also, vibrational spectroscopy was applied to investigate any possible interaction 

between the HCT and the PLGA. HCT and PLGA both can act as donor and acceptor in 

a hydrogen bond, as the hydroxyl group of PLGA can bond with the SO group of HCT 

and also the carbonyl group can interact with the amino groups of HCT. However, 

considering the large polymeric chain of PLGA, where only the carbonyl group exists, 

whereas only one hydroxyl moiety is present for each polymeriC chain, PLGA can be 

expected to act as an acceptor rather than a donor. Nevertheless, neither ATR nor 

Raman confirmed any peak shift of the carbonyl peak of PLGA remains in the same 

position with the pure PLGA. However, ATR showed a peak shifting of SO of HCT to 

higher wavenumbers for both the ratios of HCT/PLGA which is in a lower position 

from the crystalline powder (Figure 3.17c). This can be justified by a possible 

disruption of the SO···HN hydrogen bond among the molecules of HCT and direct 

formation of CO···HN hydrogen bond between the HCT and PLGA. This event can 

increase the energy of SO groups moving the peak to higher wavenumbers. The 

reason why this chemical and energetic transformation is not reflected by a peak 

shift of NH groups of HCT could be due to the peak broadness and the loss of their 

intensity which makes the analysis difficult. Also, it is likely that a limited number of 

HCT's molecules took part to the hydrogen bonding with the polymer, which also can 

explain the phase separation between the two compounds which was observed from 

the AFM. 
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To plot the chemical map of HCT with the others polymers the Direct Classic Least 

Square (DCLS) method has been used based on algorithms from the NGLabspec 

software. All the results confirmed the AFM results. Like in the case of 

felodipine/PVP the Hence, the HCT/PVP mixture results in a homogenous product at 

all the ratios applied, where both the compounds were distributed evenly in the 

samples. HCT/PLGA results to a product where the API is homogenously distributed 

in the samples whereas the polymer is accumulated in a certain area of the sample. 

Eigenvalues, as they sharply decrease after the first PC, suggest it is quite likely that 

two components exist. Even though, that in the phase separated samples they can 

be at least 3 components, the drug, the polymer and mix of drug and polymer, there 

are no pure polymer areas. The main reason for the phase separation is the 

Marangoni effect. According to this affect the liquid and hence any solute dispersed 

on it is moved towards the edge of the droplet due to unbalanced surface tension 

forces. This surface tension gradient is caused by the solvent evaporation which 

cools the droplet non uniformly. The temperature at the liquid-air surface at the top 

centre of the droplet is the lowest due to a longer thermal conduction path to the 

substrate, and the surface tension is highest at this point. This produces an inward 

flow near the droplet surface, whose shear stress balances the Marangoni stress, i.e, 

the surface-tension gradient [147-148]. Another theory which has been developed by 

Witten's group takes into consideration the generic properties of the substrate­

solvent interaction, the presence of surface roughness or chemical heterogeneities 

that produce contact line pinning which causes the gathering of the solute to the 

edge [149]. A description of the phenomenon is illustrated in Figure 3.40. If the 

contact line is not pinned during the evaporation, the hashed region would be 

removed from the drop, the interface would evolve from the solid line to the dashed 

line and the contact line would be moved from A to B. In the case where the contact 

line is pinned then there must be a flow that replenishes the liquid that is removed 

from the edge. At this point, it is worth noticing that these two theories complement 

each other; the Maragoni effect exists always but its effect can be minimized by 

reducing the evaporation rate of the solvent, whereas the phenomena described by 

the latter theory can be minimized by using a highly hydrophobic substrate (as used 

here) as the contact line will not be pinned. Consequentlv, the Maragoni effect is 

likely to playa dominant role in the form of the deposited material in this work. One 
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of the reasons for this phenomenon may be the fact that hydrochlorothiazide is 

soluble in acetone but not soluble in DMSO, whereas PLGA is freely soluble in both 

the solvents. Specifically, it has been shown by the Schubert's group that the usage 

of a mixture of two solvents where one of them has a low vapour pressure can 

improve the quality of the droplet and make it more homogenous [150-151] . As the 

DMSO evaporates more slowly than acetone, the concentration of DMSO at the edge 

will gradually increase. This will cause a decrease in the local vapour pressure, and 

therefore a decrease in the rate of evaporation at the edge and the amount of liquid 

that is transported from the centre to the edge. The 'coffee ring' effect can also be 

avoided by the usage of a mixture of two solvents, one with low solubility and a high 

boiling point and one with a low boiling point and high solubility for the compounds. 

In this case the dissolving potential of the solvent gradually decreases during 

evaporation and the compounds precipitate before a ring is formed [150]. Hence, 

HCT as it is insoluble in the DMSO it precipitated before the ring formation whereas 

PLGA as it is soluble in both, it precipitated after the evaporation of DMSO where 

due to the capillary forces by the evaporation will move the polymer. At this point it 

is worth noticing that in the case of felodipinejPVP mixture, any coffee ring 

formation was avoided as both compounds are soluble in ethanol and DMSO and 

also because of the hydrophobic which. made the droplet not to e pinned on the 

substrate. 
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Figure 3.40: Schematic diagram of the droplet evaporation. When the contact line is not pinned, (top 
picture) uniform evaporation removes the hashed layer, the interface moves from the solid line to the 
dashed line, and the contact line will move from A to B. However, if the contact line is pinned (bottom 
image) then the motion from A to B must be prevented by an outflow to replen ish the liquid removed 
from the edge. 

3.6.3 Captopril 

AFM reveals phase separation between the captopril and PLGA. Captopril appears as 

small dots which disappear after the sample is exposed to water. 
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ATR has been applied to investigate whether there is any conformational changes 

during the spraying of captopril and also if there is any possible interaction between 

the API and the polymer. To begin with, as shown in Figure 3.41 captopril like other 

proline containing peptides normally has an equilibrium conformation between cis 

and trans isomers. 

-• 
Figure 3.41: trans and cis (right) isomerization of captopril (152J . 

Furthermore, the trans:cis ratio at room temperature is 6:1 in aqueous solution, but 

the active form of captopril is the trans isomer when bound to the enzyme. However, 

this conformation is pH dependent. Around neutrality there is a significant amount of 

cis- isomer and so binding of cis isomer to the enzyme cannot be excluded a priori 

[153] . Therefore, the cis-trans interconversion of captopril is very important in 

pharmaceuticals and a number of studies have focused on its conformational 

analysis [154-156] . Rabenstein et of. found that the trans isomers of captopril in the 

solution were constructed by intramolecular hydrogen bonding of the amide group 

and the carboxylic acid hydrogen [155] . Consequently, in the trans isomer the 

intermolecular hydrogen bonding should be reduced due to the formation of the 

aforementioned intramolecular hydrogen bonding. As a result, the c=o stretching 

mode of carboxylic acid group and of amide group will shift to higher and lower 

frequencies respectively. The ATR results indicate that the sprayed drug is in cis form 

as the peak of carbonyl group of the carboxylic acid was moved to lower 

wavenumbers . Unfortunately, the peak corresponding to the c=o group of the amide 

is not clear enough in the crystalline material to have a clear conclusion of the 

chemistry of the sprayed captopril. However the double peak of the carbonyl group 

of the amide group indicates a coexistence of the cis and trans form. 

Raman analysis confirmed the ATR results as it is clear that the c=o group of 

carboxylic moved to lower wavenumbers, whereas the C=O group of amide moved 

to higher wavenumbers, indicating the formation of the cis-isomer. Nevertheless, 

Raman did not show any co-existence of the two isomeric form of captopril which is 
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probably due to the broadness of the peak caused by the amorphous nature of the 

product. 

When PLGA was added to the solution the (=0 peak of the carboxylic group of 

captopril was masked by the (=0 group of PLGA both in ATR and Raman spectrum. 

From the amide peak of captopril, ATR showed the coexistence of the two isomeric 

forms of captopril. Moreover, the Raman spectrum of the sprayed captopril and the 

captopril in the mixture (ap/PLGA are matching each other regarding the peaks of 

captopril, which confirms that captopril maintains the same chemical state. 

Another interesting point is the absence of the SH vibration peak in the ATR. This 

peak should be detected at 2500 - 2600 cm'l wavenumbers. Its absence could lead 

to the erroneous conclusion of the formation of disulfide, since captopril in aqueous 

solution can form disulfide (Figure 3.42) . 
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Figure 3.42: Structure of captopril disulphide. 

However, the fact that the peak in question was not detected even in the powder, 

and that the Raman shows the SH vibration leads to the conclusion that the only 

forms of captopril in the solution are the cis and trans isomers. 

An additional under investigation issue of the captopril/PLGA system is any possible 

interaction of the compounds by means of hydrogen bonding. (aptopril can act 

either as a donor via the SH and carboxylate groups or as an acceptor via its two 

carbonyl groups. PLGA, as was mentioned earlier, can act as an acceptor through its 

carbonyl groups and as a donor through the OH group. ATR did not confirm any 

hydrogen bonding between the (=0 group of PLGA and the SH group of captopril 

since the (=0 peak remain at the same position with the sprayed material. 

Moreover, the SH peak in the Raman spectrum remains in the same position as well. 

For the same reason hydrogen bonding via the (=0 groups of captopril and the OH 

group of PLGA was not confirmed as the amide peak remains in the same position 
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whereas the carboxylic peak was not able to be investigated as it is covered by the 

stronger peak of PLGA. 

Raman microscopy also showed that, the compounds are evenly distributed. This 

does not agree with the findings from the AFM where it showed that captopril is 

phase separated from PLGA. The reason why the phase separation is not detected by 

the Raman microscopy is because of its resolution limitation which is around l~m 

equal to the size of the beam. In terms of the distribution of the API and the polymer 

in the product, confocal Raman microscopy showed that the API tends to move to 

the centre, leaving the polymer at the edge. This can be justified by the fact that the 

polymer is deposited first and as the droplet was shrinking during the evaporation 

due to the hydrophobic surface the remaining compounds are deposited in the 

centre. 

3.7 Conclusions 

In this chapter three different APls along with certain excipients were successfully 

printed using a piezoelectric driven dispenser. Felodipine and PVP produced a 

homogenous product as AFM and LTA confirmed. The interactions of felodipine with 

the polymer by means of hydrogen bond were also established by ATR - FTIR. Finally, 

Confocal Raman microscopy showed that both felodipine and PVP are distributed 

along the surface. 

The micro-printing of captopril/PLGA solution results in a phase separated product. 

Also, it appears that the deposited captopril was converted from trans to cis form as 

shown by Raman and ATR. Finally, vibrational spectroscopy did not prove any 

interaction between captopril and PLGA. 

Hydrochlorothiazide/PVP results are similar with the felodipine/PVP system. More 

specifically, it produced a homogenous product according to the AFM, LTA and 

Confocal Raman mapping analysis. Interaction between the two compounds has 

been also confirmed by ATR. 

In contrast, in the HCT/PLGA system the two compounds are phase separated 

according to AFM. Finally, ATR showed that there can be hydrogen bonding between 

the NH group of HCT and the CO group of PLGA. 
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4. Investigation of the release of 
felodipine from individual 
printed felodipine/PVP spots 

4.1 Introduction 

In this chapter, the investigation of inkjet printing as a method to prepare medicines 

is extended. In every drug formulation, one of the most important aspects is to 

investigate how the drug is released. Typically, an in vitro drug release profile from 

the formulation is determined using standard dissolution apparatus type I or II 

following the USP standards, with the drug concentration in solution being 

determined by UV spectroscopy or HPLC. Specifically, the medicine is exposed to an 

appropriate solvent at 36°C and samples are taken at regular time paints. The UV 

absorbance of the characteristic wavelength of the API of interest is measured and 

subsequently, the release profile of the API is plotted, as the concentration of the 

compound is proportional to the UV absorbance according to the Beer - Lambert law 

[157-159J. 

However, here, the low quantity of the deposited material does not allow the use of 

UV spectroscopy for the dissolution experiments. Therefore, confocal Raman 

microscopy was applied to investigate the dissolution properties of felodipine/PVP 

mixture, since the intenSity of the bands of Raman spectrum are proportional to the 

concentration of the chemical group corresponding to the chemical group. 
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4.1.1 Potential incorporation of conventional control released 

techniques to inkjet printing 

A common approach to increase the solubility of a drug substance is to reduce its 

particle size and thus increase the surface area in contact with a solvent for a given 

mass of material. Inkjet printing can provide this opportunity by spraying different 

quantities of material, producing a microarray, where each sprayed product will have 

different dissolution properties depending on the drug loading [160]. Also, the 

spraying of a relatively insoluble API with a soluble excipient can provide a solid 

dispersion product with improved dissolution properties. Application of this concept 

is demonstrated in this chapter where the poorly soluble API, felodipine is 

incorporated with soluble PVP to produce a solid dispersion mixture. 

Moreover, there are various concepts which can help to prepare solid drug dosage 

forms by modifying the release profile of the API. For example, API could be 

incorporated with a slowly biodegradable polymer which can serve as a slow-release 

polymer matrix. This concept has been applied by Xie et 01. where they prepared 

biodegradable films with controllable thickness for control sustained release 

applications of paclitaxel encapsulated in poly(lactic-co-glycolic acid) PLGA (161]. This 

concept is also discussed in chapter 6 where the release profile of 

hydrochlorothiazide and captopril was modified by co-spraying with PLGA. 

Another potential way to modify the release profile of the drug is to spray a suitable 

coating onto the API. Coatings have been used to delay drug release and to protect 

the drug from undesirable physiochemical conditions in parts of body such as gastric 

environment, releasing the API at a desired location [162]. For instance ethyl 

cellulose in combination with hydrophilic polymers such as the co-polymer PVA-PEG 

[163] or HPM [164] can modify the release and protect the API from being dissolved 

until it reaches the desired therapeutic area. 

4.1.2 Quantitative Raman Analysis 

Raman spectroscopy has been proved to be an excellent tool not only as a qualitative 

method of analysis but also for quantitative determination of compounds in a 

mixture [165-166]. Several quantitative Raman studies have been applied to 

mixtures of liquids [167-169]. However, the use of Raman to quantify compounds in 
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solids mixtures is a complicated issue because the Raman bands depend on external 

factors such as sample alignment and homogeneity. Therefore, to gain quantitative 

information the ratio of two bands is used, unless an internal standard can be found 

[165] such as a solvent which does not interfere with the sample. In more complex 

systems, quantitative data are processed using chemometrics techniques based on 

multiple linear regression or principal component regression which depend on band 

intensity comparison [165-166]. 

In theory, the intensity of a Raman peak is dependent on the polarizability of the 

electrons in the molecules which leads to a complex expression of the intensity 

[170]. A simple formula for the intensity which is analogous to the Beer - Lambert 

law and it is suitable for analytical purposes can be expressed as; 

I = KVCo (4.1) 

Where 10 is the intensity of the exciting radiation, V is the volume of sample 

illuminated by the source and viewed by the spectrometer, C is the concentration of 

the sample and K is the constant for each band. 

In this chapter, the proportional association of the intensity of characteristic bands of 

felodipine and PVP has been used to quantify the amount of the compounds in the 

mixture. 

4.2 Alms - Objectives 

This chapter aims to study the dissolution properties of a single material spot 

consisting of various ratios of felodipine and PVP. Due to the low quantity of the 

deposited materials, the release of the API has been investigated by using the 

intensity of the characteristics peaks of PVP and felodipine in Raman spectra of the 

felodipine/PVP mixtures. 
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4.3 Materials - Methods 

4.3.1 Materials 

Felodipine was supplied by AstraZeneca (Charnwood, Leics, UK), PVP k30 and DMSO 

99% anhydrous were purchased from Sigma-Aldrich. Flutec fluid was purchased by 

F2 chemicals (Lancashire, UK). 

4.3.2 Methods 

4.3.3 Preparation of solutions 

Solutions of felodipine and PVP were prepared by dissolving them into a mixture of 

ethanol and DMSO (95/5). Felodipine is soluble in ethanol. DMSO was used to 

increase the boiling point of the solution to reduce chances of the dispenser clogging 

due to evaporation of the solvent. The ratios of felodipine to polymer were lIla, 

lIS, 1/2 (wlw). 200 droplets of each solution were sprayed onto flutec coated glass 

coverslips. The samples were dissolved in 2ml of deionised water and dried in the 

vacuum. AFM and confocal Raman studies were executed before and after 

dissolution. 

4.3.4 Atomic Force Microscopy 

AFM analysis was performed in air by tapping mode using a Dimension 3000 

(Nanoscope ilia controller, Vee co, CA). Tap300 cantilevers were used (Budget 

Sensors, Sofia, Bulgaria). The images were subsequent analysed using SPIP software 

4.3.5 Confocal Raman 

Confocal Raman studies were performed on the dried deposits from the 200 droplets 

using a Jobin-Yvon/Horiba micro-Raman spectrometer, by means of a red laser with 

a 632nm wavelength and a 600 l/nm grating. The spectrometer is equipped with an 

Olvmpus microscope BX41. 

The chemical images were obtained using a 100llm slit width, a loox microscope 

objective and 1 sec exposure time. Each spectrum was the mean of two 
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measurements. The sample profiling was performed at step increments of 5~m in x­

and y- directions. 

To investigate the dissolution profile of felodipine from the spot formulations, these 

were exposed to 2 ml deionised water media for a range of time periods, dried and 

the Raman spectra acquired from several points of the sample (Figure 4.1). The mean 

spectrum of these was applied for the analysis. The mean spectrum was created by 

merging individual spectra shifting the data to make the same average intensity 

levels on the overlapping sections. The intensity of each peak is proportional to the 

concentration of the chemical group that corresponds to that peak. In Figure 4.2 the 

change of the intensity of the carbonyl and carbon ring of PVP as a function of 

felodipine and PVP's concentration is represented . These figures show that as the 

concentration of felodipine and PVP increases, the intensity of the carbonyl peak and 

the carbon peak increases in proportion. Consequently, any alteration of the peaks 

of the carbonyl group of felodipine and of the Coring's peak of PVP can be used to 

quantify the proportional change of the corresponded compound. To achieve this, a 

calibration curve of the concentration of the felodipine as a function of the ratio of 

the carbonyl peak to carbon ring peak was produced (Figure 4.3a). Based on this 

calibration, the change of the drug concentration in the formulation during the 

dissolution of the samples was determined. 
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Figure 4.1: A representative optical microscope image magnified x100 of 1/5 felodipine with the points 
highlighted where the spectrum obtained. For the dissolution studies the mean spectrum of these were 

used. 
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Figure 4.2: a) Change in the intensity of the carbon ring as a function of the concentration PVP in the 
felodipine/PVP mixture, b) Change in the intensity of the carbonyl ring as a function of the 
concentration felodipine in the felodipine/PVP mixture. 
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Figure 4.3: Change in the ratio of carbonyl peak to the carbonyl ring as a function of the API/PVP ratio. 

4.4 Results 

4.4.1 Atomic Force Microscopy 

4.4.1.1 Felodipine/PVP = 1/10 

Figure 4.4 shows a topographic and phase AFM image of the 1/10 felodipine/PVP 

mixture. Before the dissolution of the mixture small holes were typically observed 

due to the drying of the mixture onto the substrate. After dissolution for 3sec, larger 

holes could be observed whereas after 5 sec these holes had become interconnected 

due to the loss of more material. After 10 sec dissolution time the product was 

topographically homogenous as more material was lost extinguishing all the features 

leaving small of little holes on the sample. 
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Figure 4.4: Topographic [152) and phase (right) AFM images of 1/10 felodipine/PVP mixture a) before 
the dissolution in water and after the dissolution for b) 3see, e) 5see and d) 10see. 

4.4.1.2 Fe/odipine/PVP = 1/5 

From topographic AFM images 1/5 felodipine/PVP mixture (Figure 4.5), it is clear that 

as the dissolution time increases, more material was removed as expected due to the 
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dissolution of PVP. Also, AFM phase data did not illustrate any phase separation of 

the compounds or crystallization. 

Figure 4.5 : Topographic [152] and phase (right) AFM images of 1/5 felodipine/PVP mixture a) before the 
dissolution in water and after the dissolution for b) 3sec, c) 10sec. 

4.4.1.3 Felodipine/PVP = 1/2 

Figure 4.6 illustrates topographic and phase AFM images of a 1/2 felodipine/PVP 

mixture. The results are similar to the previous two mixtures. Hence, the dissolution 

results in a loss of material, however the product remains homogenous without any 

sign of phase separation or crystallization . 
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Figure 4.6: Topographic [152] and phase (right) AFM images of 1/5 felodipine/PVP mixture a) before the 
dissolution in water and after the dissolution for b) 3sec, c) 10sec and d) 15sec, e) 20see. 
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4.4.2 Confocal Raman mapping 

The most appropriate peaks of the spectra to investigate the sample during the 

dissolution were the carbonyl peak of felodipine at 1660cm·l and the peak 

corresponding to the carbonyl ring at 937 cm·l . 

4.4.2.1 Fe/odipine/PVP = 1/10 

Raman mapping images of the felodipine/PVP mixtures have been separated into 

four components. In the case of 1/10 felodipine/PVP mixture the model spectra for 

all the dissolution times contains the peaks of felodipine and PVP indicating that 

there is no phase separation between the components at the scale of observation of 

the Raman (approx. 0.5 ~lm). The model spectra have been created based on the 

intensity of the spectra's peaks. 
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Figure 4.7: Raman chemical images of 1/10 felodipine/PVP mixture a) before dissolution, and after b) 

3sec, c) Ssec, exposure to dissolution media. 
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4.4.2.2 Fe/odipine/PVP = 1/5 

Similar data are observed for the 1/5 felodipine/PVP mixtures as for the 1/10 

felodipine/PVP mixture (Figure 4.8). The product remains homogenous at all time 

points. Also, it is worth noticing that in the sample which is dissolved for 5sec, there 

are areas assigned in red colour which indicates a higher concentration of felodipine 

as the ratio of the carbonyl peak to the carbon ring peak of PVP is larger in the 

spectrum corresponding to these areas (Figure 4.8c). 
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Figure 4.8: : Raman chemical images of 1/5 felodipine/PVP mixture a) before the dissolution, and after 

b) 3sec, c) 5sec, d) lOsec 
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4.4.2.3 Feiodipine/PVP = 1/2 

In the case of the 1/2 felodipine/PVP mixture the product continues to remain 

homogenous. The spectra at all the dissolution time points are qualitatively similar 

indicating that the sample remains homogenous during dissolution. 
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Figure 4.9: Raman chemical images of 1/2 felodipine/PVP mixture a) before the dissolution, and after b) 

3sec, c) lOsec, d) 30sec, e) 45 sec .. 
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4.4.3 Dissolution profiles 

Figure 4.10 shows the mean Raman spectra at the different dissolution time points 

for each of the felodipine-PVP ratios. It is clear that in the case of 1/10 

felodipine/PVP mixture the intensity of all the peaks are reduced, indicating that 

both the felodipine and the PVP are being released into solution (Figure 4.10a). In 

the case of l/S and 1/2 felodiplne/PVP mixtures the peaks of PVP are reduced, 

whereas the peaks corresponding to felodipine increase their intensity (Figure 4.10b, 

c). 

The dissolution profiles of felodipine from the deposited spots, i.e. the mole fraction 

of API versus dissolution time are illustrated in Figure 4.11 for different drug!PVP 

ratios. It is appears from this that the PVP is preferentially removed from the spot as 

the dissolution experiment progresses resulting in a relative increase of API. For ease 

of comparison, these data are recast as the change in the amount of felodipine 

during the dissolution relative to the initial amount in Figure 4.12b. Here it is clear 

that the loading of the drug in the deposited spots plavs an important role In the 

dissolution properties of the formulation with the dissolution rate reduced at higher 

loadings. 
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Figure 4.10: Mean Raman spectra of a) 1/10 felodipine/PVP mixture, b) 1/5 felodipine/PVP mixture and 

c) 1/2 felodipine/PVP mixtures 
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Figure 4.12 : Change the molecular fraction of felodipine during dissolution time in various mixtures of 
felodipine/PVP, c) dissolution profiles of felodipine/PVP mixture. 

4.5 Discussion 

From the phase images of AFM and from Confocal Raman mapping showed that all 

the mixtures are homogenous without phase separation and remain so during the 

dissolution conditions employed. At this point, it is worth noticing that the mixture 

remains homogenous during the dissolution probably due to the strong interactions 

between the drug and the polymer, which inhibits mobility of the drug and hence its 

potential to phase separate and crystallize. Phase separation between felodipine and 

PVP is a common phenomenon in bulk formulations, for example due to the 
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influence of humidity. Marcac et 01. showed that storing films of felodipine/PVP 

mixture in elevated moisture, leads to crystallization and subsequently phase 

separation [171J. However, this process was relatively slow, beginning after the first 

hour with a phase separation of the compounds and crystallization of felodipine after 

four hours. In these cases water is believed to plasticize the polymer within the 

dispersion leading to an increased mobility of the drug. In our case after the 

dissolution of the samples for some seconds, they were dried in vacuum and stored 

in a desiccator to avoid such humidity effects. 

The dissolution studies showed that the drug dissolution profile is highly dependent 

on the initial drug loading. At higher loadings no detectable amount of drug was 

released within the timescales studied. Also, confocal Raman microscopy revealed 

that in simulated dissolution studies, PVP is dissolved much more rapidly than 

felodipine for all the drug loadings. In literature, PVP has been extensively used to 

increase the dissolution rate of various insoluble compounds [172-174J. Specifically, 

it has been shown that as the proportion of PVP increased, felodipine dissolution 

rates increased and reached a plateau at a ratio of 1:10 [125, 128-129J. Moreover, 

Kin et 01. showed that during the dissolution process of PVP solid dispersions, the 

concentration of felodipine in the medium reached around eight times the solubility 

of crystalline felodipine and then slightly decreased with time [125J which is due to 

suppression of felodipine's recrystallization by the PVP[124J, which is known as an 

inhibitor of drug recrystallization in general due to the hydrogen bonding between 

the drug and the polymer [175J. 

Moreover, it has been proved that the main factor which affects the release profile 

of felodipine is the intensity of this hydrogen bonding with the polymer matrix [126]. 

These interactions can promote the dispersion of the drug that is surrounded, in 

molecular level, by polymer chains, and restrict its ability to form crystal lattices with 

its neighbouring drug molecules [124, 126J. Also, Karavas et 01. showed that a 

maximum interaction is achieved when the polymer's concentration is more than 

75% (w/w), whereas below 60% (w/w) there is a dramatic decrease. Furthermore, it 

has been confirmed that the required molar ratio between felodipine and PVP in 

order for the interaction to be fully developed is 1:40 [176J. In our case both 

compounds are dissolved in ethanol and DMSO. As the solvents are evaporated, the 
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less soluble compound, felodipine in this case [177-178], will be precipitated first. 

Consequently, the higher concentration of felodipine is used the more material 

which is not associated with the PVP can exist. 

Here, preliminary studies showed that when the concentration of the sprayed 

solution decreased from 20mg/ml to lOmg/ml In the 1/2 felodiplne/PVP mixture, 

almost all the API was dissolved in lOsecs. Figure 4.13 shows an optical microscope 

image of the remaining product after being dissolved in delonised water for lOsec 

and the mOdel spectra used to create the mapping. As can be seen, the model 

spectra are the spectra of pure PVP Indicating that all the API has dissolved In 

contrast with the 20mg/ml solution where API was remained on the surface. This 

phenomenon can be justified if we note that the deposited material is on a 

hydrophobic coated surface. This makes the product more compact on the substrate. 

During drying and loss of solvent the API molecules will become more crowded 

promoting molecular interactions. 

There are also other possible technical reasons why in the present study that the 

drug is not to dissolved when a higher concentration of API is used. First and 

foremost, the intensity of the Raman peak can be affected by sample topography 

after the dissolution and also by any conformational change of any chemical group. It 

is well documented that the intensity of the Raman peak depends on the orientation 

of chemical groups [179-181]. For instance, when the polar orientation of a specific 

chemical group is parallel to the incident beam the intensity of the Raman band is at 

a maximum. Consequently, it is difficult to predict what effect the dissolution of the 

sample in water would have. Even though, AFM showed that the samples are 

relatively flat, on the mlcroscale the shape of the under Investigation product was 

topographically completely different for the dried droplets before and after 

dissolution. 

Due to the aforementioned technical issues related to the intensity of the band, the 

concentration of the API was measured by both the intensity of the carbonyl peak 

and by the ratio of the carbonyl peak to the ratio of carbon ring of PVP. From the 

Figure 4.14, it is clear that there Is a linear relationship between these two 

approaches, indicating that they are consistent. 
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a} 

b) 

Figure 4.13 : optical microscope, chemical image and the model spectra used to plot the chemical map. 
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Figure 4.14: Correlation of the API 's release, measured by the intensity of carbon ring and the ratio of 
API/PVP with the API 's release measure by the intensity of carbon ring. 

4.6 Conclusions 

In this chapter, t he re lease of the AP I from a single spot was investigated using 

confocal Raman microscopy. This method was used as a substitute for the 

conventional uv techniques. The results showed that the dissolution of felodipine is 

highly dependent on the concentration of API to the formulation since in the 

formulation where the API was less concentrated, the drug was almost all released, 

whereas in the other formulations with higher drug loading the drug remained on 

the substrate . Even though, the reason for this is unclear, it can be speculated that 

the increased concentration of API in the sprayed solution with the hydrophobic 
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substrate can bring felodipines' molecules closer inducing hydrogen bonding among 

them which can not break apart during the dissolution. Moreover, preliminary 

studies showed that the dissolution of the drug is also dependent on the 

concentration of the sprayed solution since by reducing the concentration to half, 

even the drug at 1/2 felodipine/PVP mixture was dissolved It was interesting to 

notice also that during the dissolution, the remaining PVP still was in homogenous 

mixture. 

The dissolution results presented in this chapter are proof that inkjet printing can be 

a viable method to produce solid dispersion formulation with tailored release and for 

instant consumption. 
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5. Production of an array of a 
single API 

S.l Introduction 

Previous chapters proved the feasibility of producing drug formulations of various 

APls and eXcipients in dried deposits of spayed micro-droplets. The next step was to 

scale-up the production process and prepare a dosage form with therapeutic 

capabilities through the production of arrays of dried droplets. Microarray printing 

technology has emerged as a key tool for high throughput screening of chemical 

compounds. 

One of the basic challenges and obstacle that had to be overcome for the 

preparation of the drug dosage forms based on inkjet printing was the low quantity 

of sprayed material in each droplet that had to be produced and analysed. To reach 

a therapeutic dose the sprayed solutions should be highly concentrated but this 

Increases the viscosity of the solution. In particular, solutions of high concentration 

of a polymer can be highly viscous. The piezodispenser used in these experiments 

can spray solutions up to a viscosity of Scp at the most and any increase in 

concentration of the solution should be used with caution. 

To avoid an undesirable increase in the concentration of the sprayed solutions, 

multiple droplets can be deposited on each spot. However, as we have seen in 

chapter 3, the deposition of multiple droplets can cause crystallization of product 

due to the slower solvent evaporation. 

In addition consideration should be given to possible blockage of the dispenser due 

to compound precipitation as described in chapter 3. To avoid this, the dispenser 
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was coated externally and internally with a hydrophobic material. Even though that 

it is not clear yet the effect that it had, there was no blockage of the dispenser. 

5.2 Time of flight ion mass spectroscopy (Tof-Sims) 

To show the reproducibility of the product produced by the microarray printer 

regarding the distribution of the API, Tof-Simns was applied . 

In Tof-Sims a beam of primary ions which is accelerated to a surface causes a series 

of collisions that eventually lead to the emission of a variety of species from the 

surface, including electrons, photons, neutral species and positively and negatively 

charged secondary ions. This is called the sputtering effect. Secondary ion mass 

spectrometry (SIMS) uses this effect to obtain information about the composition of 

the surface by analysing the fragments sputtered from the surface with a mass 

spectrometer. In static SIMS, the ion dose of the primary beam is kept low « 1013 

ions cm-2 
) in order to minimize the damage to the surface, whereas the higher dose 

of the ion beam used in dynamic SIMS causes erosion of the surface. 

In (ToF-SIMS), sputtered ions of one polarity are accelerated to a given potential. 

Before reaching the detector the fragments drift through a field-free path. Since all 

ions have the same kinetic energy at the beginning of the path, the time it takes 

them to travel a -xed distance only depends on their mass. Lighter ions reach the 

detector earlier than heavier fragments and can therefore be separated from each 

other. The main advantage of this method is that all ions of a given charge can be 

analysed at the same time [182]. 
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Figure 5.1: Particle beam interaction using ToF-SIMS. Incident particles bombard the surface liberating 

single ions (+/-) and molecular compounds. 
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5.3 Alms - Objective 

The aim in this chapter was to produce a viable dosage form (in terms of dosage) of 

felodipine mixed with PVP. Microarrays of felodipine/PVP were produced and 

characterised using AFM, SThM, confocal Raman microscopy and Tof-SIMS 

Dissolution studies of the formulation were utilised HPLC. 

5.4 Materials - Methods 

5.4.1 Materials 

Felodipine was supplied by AstraZeneca (Charnwood, Leics., UK). Polyvinyl 

pyrollidone (PVP) k30, poly(lactic-co-glycolic acid) (85:15) and DMSO 99% anhydrous 

were purchased from Sigma-Aldrich. Flutec fluid was purchased by F2 chemicals 

(Lancashire, UK). FASSIF powder was purchased by Phares (Basel, Switzerland). 

5.4.2 Methods 

5.4.2.1. Preptlratlon 0/ FASSIFsolution 

FASSIFphosphate buffer was prepared by dissolving 0.42 gr of NaOH, 3.9S4gr 

NaH2P04·H20 and 6.186gr NaCI In deionlsed water. The pH of the buffer was adjusted 

to 6.5 using NaOH. Subsequently, 2.24gr of Phares SIF Powder were dissolved in the 

buffer. 

5.4.2.2 Preptlf'tlt/on 0/ substrates 

Glass slides were coated by f1utec fluid using dip-coating method. 

5.4.2.3 Preptlratlon and spray 0/ solutions 

Felodipine and PVP were dissolved to acetone ethanol and DMSO (80/15/5). Ethanol 

was used to dissolve the PVP. Acetone was used because it was found that it sprayed 

easier than ethanol. Also, acetone increases the evaporation rate of the solution 

which can inhibit the formation of crystals. DMSO has been used to decrease the 

evaporation rate avoiding clogging of the piezo dispenser. 
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Polymer microarrays were formed using an ink-jet printer (i) (SciflexarrayerSS, 

Scienion). 10 mls of wash solution (Acetone) was flushed through the system at 60 

ill/S. Nozzle was then connected to the system and flushed with a further 2 mls of 

acetone at 10 ill/S. The nozzle used was a 90 ilm hydrophobic nozzle. Printing 

conditions were 15QC base temperature, 22QC air temperature, 34% humidity, 509 Hz 

frequency, 164 V pulse and 64 ils pulse width . The number of spots 16x49 where 300 

droplets deposited on each. 

c) 

Figure 5.2: photrographic images of a) the spray of solution from the dispenser, b) the production of 
microarray and c) representative microarray of the sprayed felodipine/PVP mixture. 

5.4.2.4 Atomic Force Microscopy 

AFM analysis was performed in tapping mode using a Dimension 3000 (Nanoscope 

Ilia controller, Vee co, CAl . Tap300 cantilevers were used (Budget sensors tapping in 

the air). SPIP software (Image metrology) was used to analyse the images. 

5.4.2.5 Scanning Thermal Microscopy 

SThM analysis was performed using an Explorer AFM system (Vee co, Santa Barbara, 

CAl with a Wollaston wire micro-thermal tip (Veeco) . Local thermal analysis was 

performed with a temperature rate of SOC/sec. The instrument was calibrated using 
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measurements on poly( l1l-caprolactone) (PCl) (Tm = 55°C), polyethylene (PE) (Tm = 

116°C) and polyethylenetelephalate PET (Tm = 238°C) . 

5.4.2.6 Confocal Raman 

Confocal Raman studies were performed on single spots using a Jobin-Yvon/Horiba 

micro-Raman spectrometer, by means of red laser with 632nm wavelength and 600 

l/nm grating. The spectrometer is equipped with an Olympus microscope BX41. 

Confocal Raman mapping has been applied to Felodipine/PVP mixture. The sample 

profiling at step increment were performed on 511m in x- and y- directions with 0.7 

sec exposure time. The data analysis was carried out in the NGlabSpec software. 

After acquisition PCA was carried out using routines from the software. 

5.4.2.7 Tof-Sims 

ToF-SIMS analysis was performed using an ION-TOF IV (GmbH, MOnster, Germany) 

instrument. To obtain spectra from eachpolymer spot secondary ions were sampled 

from a 100 x 100 11m area on each spot. Images and spectra were obtained using a 

Ga+ primary ion beam, operated at 25 kVenergy. 

5.4.2.8 Dissolution study of the micro array 

The dissolution rate of felodipine/PVP microarray printing has been measured using 

a beaker shaken with a shaking stage. Each sample was placed in FASSIFsolution in a 

concentration of 0.056 mg/ml. At predetermined time intervals, samples of Iml were 

withdrawn from the dissolution medium, filtered through 0.211m PTFE filter and 

assayed using the HPlC method for the drug. The calibration curve was constructed 

by dissolving felodipine in methanol in known concentrations. 

Figure 5.3: photographic image ofthe dissolution experiment. 
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5.4.2.9 HPLC analysis 

The chromatographic system was an HP agilet 1050. It consisted of a C8 gemini 

analytical column (100mm x 4.6mm). The mobile phase consisted of methanol and 

0.05M phosphate buffer (pH 3.5) (75/25 v/v) . The autosampler was set up to make 

20111 injections, every 7mins. The flow rate of the mobile phase was Iml/min and the 

detection was at 228nm at 40°C. The calibration curve was constructed by dissolving 

felodipine in methanol in known concentrations. 
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Figure 5.4: cal ibration curve of felodipine. 

5.5 Results 

5.5.1 Atomic Force Microscopy 

Figure 55 shows AFM images of the sprayed product produced by the microarray 

printing device. From these images, the products in all the cases appear homogenous 

and there is no sign of crystallisation. The holes that appear on the surface in all the 

cases are proposed to be due to the dehydration of the sample during the 

evaporation of the solvent 
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Figure 5.5: topographic (right) and phase [152] AFM images of a) 1/2, b) 1/5, c) 1/10 felodipine/PVP 
mixture produced by the microarray printing device. 

5.5.2 Scanning Thermal Microscopy 

Figure 5.6 shows the SThM results of a spot produced by the microarray printer and 

the DSA 100. In both graphs, there is single transition point, which increases as the 

concentration of polymers indicating intimate mixture of the drug and the polymer. 
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Figure 5.6: comparison the SThM results produced by the microarray printer and by the GeSim 
dispenser. 

5.5.3 Confocal Raman Mapping 

The chemical images of felodipine/PVP mixtures are illustrated in Figure 5.7,Figure 

5.8 andFigure 5.9. The differences among the spectra which allow the plot of the 

chemical images of the samples are based on the intensity of the spectra . In all the 

cases, the green spectra correspond to an area with the lowest quantity of material, 

whereas the red spectra is the highest quantity of material as the peaks are more 

intense. As all the model spectra have peaks from the felodipine and PVP, the 

samples is homogenous without phase separation or any other chemical 

modification at least at the sale of observation (approx 500nm). 
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Figure 5.7: a) Eigenvalues versus principal components number, b) the model spectra used to plot the 

chemical map, c) optical microscope image, d) chemical map of the felodipine/PVP mixture 1/10 ratio . 
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Figure 5.8: a) Eigenvalues versus principal components number, b) the model spectra used to plot the 
chemical map, c) optical microscope image, d) chemical map of the felodipine/PVP mixture 1/5 ratio . 

110 



5. Production of array of a single API 

000 

'oo 
600 

300 

200 

100 lt3 

a) 0L;-_--!== ;:" '='=O"~=,!=:::::;==!=::! 
3 • 5 

b) 

Pmcipa/ Compone,. Nl..mbef 

· 1 

d) 

·200 o 

Figure 5.9: a) Eigenvalues versus principal components number, b) the model spectra used to plot the 
chemical map, c) optical microscope image, d) chemical map of the felodipine/pVP mixture lIs ratio . 

5.5.4 Tof-Sims 

Figure 5.10 shows the chemical image for of a pair of droplets of all the various 

concentration produced. As it is shown from the chlorine chemical distribution, 

felodipine is distributed evenly on the surface with perfectly reproducibility among 

the samples. Finally, it was shown that the fluorinated compound remained on the 

substrate without being mixedwith the solute during the solvent evaporation. 
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Figure 5.10: Tof-Sims images of two droplets of felodipine/PVP mixtures of ratio a) 1/10, b) 1/5, c) 1/2 
produced from microarray printing machine. The left image of each pair show the substrate using 
CSH8F as a marker. The middle image corresponds to the position of the API using CI as a marker and 
the third image corresponds to the total ion. 

5.5.5 Dissolution studies 

Figure 5.11 shows the dissolution profiles of felodipine from a microarray of 

felodipine/PVP mixtures and the pure API. In the present study, the dissolution rates 

of felodipine in the FASSIF solution were significantly faster than that of the pure API. 

The drug in the mixture with the PVP is released completely and very rapidly after its 

immersion in the medium. 

20 40 60 80 100 120 

time (min) 

Figure 5.11: dissolution profiles of pure felodipine, and the sprayed felodipine/PVP mixture 1/5 and 
1/10 mixtures. 
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5.6 Discussion 

Atomic force microscopy shows that the sample is homogenous without any phase 

separation at the nanoscale or indication of crystallization. It is worth mentioning, 

the difference in the colour in the phase images comes from the topographical 

variations of the sample. The holes in the sample appear brighter in the phase image. 

This is because, as the tip goes inside the hole, the interactions between the tip and 

the sample increase due to the increase in tip-sample contact area. This is 

encouraging data, as it indicates that the sample is similar to the those produced in a 

smaller scale. 

Moreover, the SThM results are remarkably comparable for drops produced by both 

the devices. They both gave the same pattern with the sample produced by the 

microarray printer providing lower values for the thermal transitions. A possible 

reason is that the sample produced by the microarray printing, due to the 

hygroscopic nature of PVP absorbed more water than the ones produced by the 

GeSim dispenser as they are contain more material, reducing the glass transition 

temperature of the sample. Besides, it was shown from previous publication that the 

increasing the water uptake of the samples results to a decrease in glass transition 

temperature of the polymers [183] which was also confirmed for felodipine/PVP 

mixture [123]. 

In terms of the confocal Raman mapping, the chemical images were plotted, 

separated in three principal components, as the samples consist of three different 

compounds felodipine, pvp and glass. Before concluding to this number of PCs, the 

chemical images were separated in more factors where it was confirmed that the use 

of more than three factors does not offer any more increase in the detection 

resolution. This indicates that there are no different forms of the three components 

in the sample and that an intimate amorphous mixture of PVP and felodipine has 

been created. The separation of the components occurred based on the intensity of 

the peaks and not on the quality differences. 

There are limited numbers of papers which investigate the dissolution of felodipine 

in FASSiF solutiOn. Felodipine is neutral and exhibits a water solubility of 11J81ml at 

37°C. However, FASSIF increases the solubility of felodipine by a factor of ca. 50 
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[184] . These experiments showed that the pure felodipine dissolves extremely 

slowly. Even in two hours only 3% of the drug was dissolved. In contrast, when 

felodipine is associated with the PVP, it releases completely and rapidly. The rapid 

dissolution of the mixtures may be a result of the dispersed state that the API in the 

polymer matrix and the low quantity of material deposited in a single spot which 

increases the surface area which is in contact with the dissolution medium. The 

reduction of particle size is a common technique used to improve the dissolution of 

an ingredient [185-186]. It is interesting also the fact that the felodipine dissolves 

very rapidly, contrary to previous work where the API when associated to PVP 

dissolves in a gradual manner. This is because each spot act as an independent 

formulation which due to the quantity will be dissolved rapidly. 

However, when blank FASSIF was used as a medium, felodipine did not dissolve. In 

Figure 5.12 the optical microscope image and the Raman spectrum of the remaining 

material are illustrated. From the Raman spectrum, it is shown that the remaining 

felodipine is amorphous due to broadness of the amino peaks. Also, the peaks of the 

polymer have disappeared indicating that only the API remained on the surface. The 

optical microscope image, shows that some of the material was released as only 

approximately half of the dots remains, again most probably because of the PVP 

dissolution. The most probable reason why felodipine is not released from the 

formulation is the high concentration solution which was used in the sprayed droplet 

and the hydrophobic substrate . These two parameters may result the felodipine 

becoming associated with the · substrate, inhibiting dissolution. This belief is 

supported by the fact that reducing the concentration of the API in the solution of 

the 1/2 felodipine/PVP allows the drug to be released as shown in the previous 

chapter. 

a) 

Figure 5.12: a) optical microscope image of the remaining after the dissolution product, b) Raman 

spectrum of the the remaining product. 
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S.7 Conclusions 

In this chapter the production of a proper solid drug dosage form based on the 

current technology of inkjet printing was described. This technique can be the 

predecessor of a real tailored therapy. Its flexibility to spray samples with different 

concentration in API, which individually will follow a different dissolution profile, 

could allow tuning of the release drug profile according to the patient's needs. 

This chapter showed that the production of a proper dosage form with the current 

technology is feasible. However the restriction to increase the concentration of the 

sprayed solution can limit the application of the technique. 

In this chapter, microarrays of felodipine and PVP mixtures were prepared. AFM and 

confocal Raman data confirmed that the product is similar to what is produced by 

the GeSim dispenser as described in chapter 3, namely homogenous and amorphous. 

The release of the API in the FASSIF solution is rapid whereas In contrast it Is almost 

insoluble in blank FASSIF. 
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6. Production of arrays of 
multiple APIs 

6.1 Introduction 

In this chapter, it is attempted to produce a proof of principal combination therapy 

by inkjet printing. The therapy contains two active pharmaceutical ingredients 

captopril and hydrochlorothiazide. These two drugs are combined in a dosage form 

and are marketed by the brand name Capozide™. 

A challenge that needs to be faced in order to prepare a proper product is to control 

the release of these APls as both are freely soluble in the medium used. For this 

purpose PLGA was used to create a polymer matrix which would control the release 

of the APls. However, PLGA produces more viscous solutions than PVP, which was 

used in the case of felodipine. Hence in the previous chapter the main technical 

issue, we needed to overcome was the ejection of highly concentrated solutions. 

Also, due to the fact that PLGA produces a more viscous solution than PVP only 

10mg/ml of PLGA was able to be sprayed. 

6.2 Capozlde formulation 

Capozide™ for oral administration combines two antihypertensive drugs, captopril 

and hydrochlorothiazide. Capozide™ is available in four formulations of captoprll 

with hydrochlorothiazide 25 mg with 15 mg, 25 mg with 2S mg, SO mg with 15 mg, 

and SO mg with 25 mg. 
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The rationale for using fixed-dose combination therapy, as in the case Capozide™, is 

to obtain increased blood pressure control by employing two antihypertensive 

agents with different modes of action and to enhance compliance by using a single 

tablet that is taken once or twice dally. Monotherapy is effective in achieving the 

target goal in only about 50 percent of patients, treatment with two or more agents 

from different pharmacologic classes Is often necessary to achieve adequate blood 

pressure control. Specifically, by using a single therapeutic, the efficacy increases by 

the dose of a particular agent. However, as you increase the dose of that same 

agent, there is a simultaneous increase in dose-dependent side effects. Using low 

doses of two different agents can also minimize the clinical and metabolic effects 

that occur with maximal dosages of the individual components of the combined 

tablet [187-188]. 

The rationale behind the utilization of combination of captopril and 

hydrochlorothiazide Is to increase the output urinary levels of potassium. More 

specifically, thiazides cause a reduction in intracellular sodium (Nal) and In intra- and 

extracellular potassium (1<., Ke). Since In many patients Ke losses are greater than KI 

losses, the K/Ke ratio (which is directly related to membrane potential and thus to 

vascular tone) increases. Captopril also reduces Nal but its effects on Ke and I<. are 

quite different from those of thiazides. Captopril in fact causes an increase in I<. 

inducing a net increase in KJKe. This increase can also be observed when captopril is 

given in combination with thiazide. Therefore the combination of captopril and 

hydrochlorothiazide has an additive effect on Nab and increases KJKe in the vast 

majority of patients [189J. Also, captopril can prevent hypokalaemia and 

hyperuricaemia observed with hydrochlorothiazide alone in addition to its 

antihypertensive synergy [190J. 

6.3 PLGA and Pluronlcs In drug delivery 

PLGA is a well-known biodegradable and biocompatible polymer with a history of 

safe use in orthopaedics [191], bone plates [192], and extended release 

pharmaceuticals [95, 193-196]. Macromolecular drugs such as proteins [197-198], 

peptides [198-199], genes [200], vaccines and antigens can be successfully 
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incorporated into PLGA or PLGA-based nano/microparticles [201]. PLGA degrades 

chemically by hydrolytic cleavage of the ester bonds in the polymer backbone. The 

degradation products lactic acid and glycolic acid are water soluble non-toxic 

products. Polymer degradation influenced by amorphous/crystallinity, hydrophilicity, 

molecular weight, and the presence of excipients play an important role [202] . 

Consequently, the drug release kinetics from the PLGA are mainly determined by 

both diffusion of drug through the preformed aqueous pores and interconnected 

channels, as well as an erosion of the polymer matrix. Thus, the drug release rate can 

be affected by the inherent drug properties such as molecular size and water 

solubility and initial microsphere morphologies such as porosity and tortuosity. 

Triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) 

(PEO-b-PPO-b-PEO), available under trade name " poloxamer" or "Pluronic," are 

recognized as pharmaceutical mUltipurpose excipients capable of increasing aqueous 

solubility and stability of drugs. These amphiphilic copolymers are nontoxic and 

commercially available in a wide range of molecular weights and architectures, which 

determine their hydrophilic/lipophilic properties and hence show the ability to form 

nanoscopic core-shell structures in water. The incorporation of drugs into the core of 

the micelles formed by Pluronic· results in increased solubility, metabolic stability 

and circulation time for the drug [203] . 

Nowadays there is a plethora of research papers that investigate the incorporation of 

PLGA with pluronic. These papers mainly focus on the preparation of micro- and 

nanoparticles which encapsulate the biologic compound protecting it not only from 

the environment but also from its inactivation that may be caused by its 

incorporation with PLGA only [204-206] . 

EO PO EO 

Pluronic: LSI EO,·PO.f~ MW. ,~ 

o m Pfuronk P85 EO,,"powEO;'I. MW :: 4600 
Hydrophobicity 
increases z (HLB dOCtoaoes) 

a) -
b) Pluronlc"21 EO ·PO,.·EO •• 1.!V1. 12 

6.1: chemical structure of a) PLGA b) pluronic 
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6.4 Mathematical models In drug release from polymer matrix 

There are number of mathematical models used to describe the release of the API 

from a polymer matrix [43-44, 48, 207]. The main drug release mechanisms are drug 

diffusion from the non degraded polymer (diffusion controlled system), enhanced 

drug diffusion due to polymer swelling (swelling-controlled system) and drug release 

due to polymer degradation and erosion (erosion-controlled system). Mathematical 

modelling concerns unifications of all the individual parameters involved in the drug 

release, which involves not only mass transport and chemical processes but also 

design parameters such as the device geometry and drug loading. 

The zero-order model expresses the dissolution from pharmaceutical dosage forms 

which do not disaggregate and release the drug slowly. Zero order describes a 

system where the release is independent from the concentration (eq. 6.1). First 

order release rate is concentration dependent (eq. 6.2). The Higuchi model has 

developed in 1963 and it was the first to specifically describe the release of drugs 

from a polymer matrix. It is expressed as a square root of time dependent process 

based on Fickian diffusion (eq. 6.3) [208]. The Hixson-Crowell cube root law (eq. 6.4) 

describes the release from systems where there is a change in surface area and 

diameter of particles or tablets (Hixson and Crowell, 1931). 

(6.1) 

This relationship can be used to describe the drug dissolution of several types of 

modified release pharmaceutical dosage forms, as in the case of some transdermal 

systems, as well as matrix tablets with low soluble drugs in coated forms, osmotic 

systems [133, 209-210]. 

logQo =logQ,-~.303 
(6.2) 

This relationship can be used to describe the drug dissolution in pharmaceutical 

dosage forms such as those containing water-soluble drugs in porous matrices (211]. 

(6.3) 
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This relationship can be used to describe the drug dissolution from several types of 

modified release pharmaceutical dosage forms, as in the case of some transdermal 

systems [212] and matrix tablets with water soluble drugs [213]. 

(6.4) 

This model can be applied to a pharmaceutical dosage form whose drug release rate 

is proportional to the surface area of dosage form, such as in erosion-dependent 

release systems [44, 214] . 

In the above equations 00 is equal to the initial amount of drug, Ot is the cumulative 

drug release at time t, ko the zero order release constant, k the first order release 

constant, kH the Higuchi constant and kHC the Higgson-Crowler release constant 

Finally, a simple empirical equation from Korsmeyer et al was introduced to describe 

the release behaviour from controlled release polymeric matrices. 

(6.5) 

The value of n gives an indication of the release mechanism. Hence it was stated that 

n is 0.5 for Fickian diffusion, 0.5 < n > 1.0 for non- Fickian transport and 1.0 for case" 

transport. When n > 1.0 super case II transport is apparent. Case" transport involves 

polymer dissolution and chain disentanglement. In the case of a cylinder n = 0.45 

instead of 0.5 and 0.89 instead of 1 must be used [2151. 

6.S Alms - Objectives 

The aim of this chapter Is to produce a combination therapy based on inkJet printing. 

Captopril and HCT mixtures with PLGA were prepared by means of Inkjet printing and 

also by depOSition solution with pipette. The deposited products were characterised 

by AFM and Raman. Finally the release of the drugs was investigated using HPLC. 
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6.6 Materials - Methods 

6.6.1 ftfaterials 

Captopril, hydrochlorothiazide, poly(lactic-co-glycolic acid) (85:15), Pluronic F-127 

and DMSO 99% anhydrous were purchased from Sigma-Aldrich. Flutec fluid was 

purchased from F2 chemicals (Lancashire, UK). 

6.6.2 ftfethods 

6.6.2.1 Preptlratlon 0/ solutions 

Captoprll 

To deposit mixtures of captopril and PLGA onto substrate, solutions of captopril and 

PLGA were prepared by dissolving them into a mixture of chloroform, ethanol and 

DMSO (75/18/7). Chloroform was used to dissolve PLGA. Ethanol was used to 

dissolve captopril and to disperse DMSO, as DMSO is not miscible with chloroform. 

Finally DMSO was used to increase the boiling point to the solution to avoid any 

possible cloggage in the dispenser. The ratios of captopril to the polymer were 30/70 

and 50/50 (w/w), whereas the concentration ofthe polymer was 20mg/ml. 

Hydrochlorothiazide 

Solutions of hydrochlorothiazide with PlGA were prepared by dissolving them into a 

mixture of acetone, and DMSO (93/7). Both HCT and PlGA are soluble in acetone. 

DMSO was used to increase the boiling point of the solution to avoid clogging the 

dispenser. 

6.6.2.2 Dispensing 0/ solutions 

The solutions were dispensed using either by a or a microarrays printer. When the 

samples were deposited by using pipette, the solutions were contained 20mg/ml 

PLGA in both the case of captopril and HCT. 2J.l1 of solution was deposited on each 

spot of the microarray. 

When the samples were deposited by means of the microarray printer the solutions 

were contained 10mg/ml PLGA. Captopril solution was sprayed without PLGA, 
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whereas HCT was sprayed with PLGA and Pluronie F-127 in a ratio of 50/45/5 

HCT /PLGA/Pluronie. 

Microarrays were formed using an ink-jet printer (i) (SeiflexarrayerSS, Seienion). 10 

ml of wash solution (Acetone) was flushed through the system at 60 J.ll/s. Nozzle was 

then connected to the system and flushed with a further 2 ml of acetone at 10 J.l1/s. 

The nozzle used was a 90 J.lm hydrophobic nozzle. Printing conditions were 1S!!C base 

temperature, 22!!C air temperature, 34% humidity, 509 Hz frequency, 164 V pulse 

and 64 J.lS pulse width. The number of spots was 16)(49, where 300 droplets were 

deposited on each spot. 

6.6.2.3 Atomic Force Microscopy 

AFM analysis was performed in tapping mode using a Dimension 3000 (Nanoscope 

ilia controller, Veeco, CA). Tap300 cantilevers were used (Budget Sensors, Sofia, 

Bulgaria). SPIP software (Image Metrology, Denmark) was used to analyse the 

images. 

6.6.2.4 Confocal Raman 

Confocal Raman studies were performed using a Jobln-Yvon/Horlba micro-Raman 

spectrometer, by means of red laser with 632nm wavelength and 600 1/nm grating. 

The spectrometer is equipped with an Olympus microscope BX41. 

Raman spectra were obtained using red laser with 632nm wavelength and 600 1/nm 

grating. The acquisition time was 8sec with 5 repetitions. 

Confocal Raman mapping has been applied to captopril/PLGA, HCT/PLGA and 

HCT/PLGA/Pluronic mixtures. The sample profiling at step increment In these case 

were performed on 12J.lm in x- and y- directions with 3 sec exposure time with 2 

repetitions. Raman data were collected through a 100)( objective. The data analysis 

was carried out in the NGLabSpec software. After acquisition multivariate analysis 

was carried out using routines from the software. Eigenvalues and PCA when it was 

necessary were carried out by means of Solo+MIA software (Eigenvector, USA). 

6.6.2.5 Dissolution study 0/ the mlcroarray 

The dissolution rate of the microarrays was measured using a beaker shaken with a 

shaking stage. Each sample was placed in SGF solution without enzyme in a 
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concentration of 0.035 mg/m/. The SGF solution was prepared by dissolving 0.05M 

NaCI in deionised water and adjusted it at pH 1.5 with HC/. At predetermined time 

intervals, samples of 1ml were withdrawn from the dissolution medium, filtered 

through 0.211m syringe filter and assayed using the HPLC method for the drug. 

The investigation of the dissolution profile of Capozide ™ tablets was performed in a 

USP paddle apparatus 2 at a paddle rotation speed 50rpm at room temperature in 

900ml SGF solution without enzyme. 

6.6.2.6 HPLC analysis 

The chromatographic system was an HP agilet 1050. The chromatographic column 

was a C8 gemini analytical column (100mm x 4.6mm I.D., particle size 5I1m). The 

mobile phase consisted of acetonitrile and 0.1% phosphate buffer (25/75 v/v) . The 

mobile phase was determined so that both captopril and HCT was able to be 

detected simultaneously (Figure 6.2) and also because captopril exhibits the 

maximum stability on pH below 4 [134] . 

The mobile phase was also filtered with 0 .2~m autofilter. The autosampler was set 

up to make 20111 injections, every 6mins. The flow rate of the mobile phase was 

1ml/min and the detection was at 218nm at 40°C. 
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Figure 6.2: Representative chromatogram of the of the tablet. The large peak at 2.23 minutes 
corresponds to the HCT and the samller peak at 2,67 corresponds to captopril. 
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6.7 Results 

6.7.1 Atomic Force Microscopy 

6.7.1.1 Captopril 

The product obtained when captopril and PLGA of different ratios were deposited 

using pipette is illustrated in Figure 6.3 . When PLGA was sprayed alone the 

deposited material appeared amorphous and homogenous (Figure 6.3a) . However, 

the addition of captopril resulted in the formation of small circular features on the 

surface and an inhomogeneous mixture (Figure 6.3b,c) . These features are likely to 

be captopril exposed on the surface. 

Figure 6.3: Topographic (left) and phase (right) AFM images of Captopril/PLGA mixtures of a) 50/50, 
b)30/70 and c) after the dissolution of 30/70 captopril/PLGA mixture for 10sec in water. 
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6.7.1..2 Hydrochlorothiazide 

AFM images of the mixture of HCT with PLGA prepared by pipetting and by the 

microarray printer are illustrated in Figure 6.4. In all the cases the phase images 

show that there can be phase separation between the two components. The 

addition of pluronic resulted to a phase separated mixture (Figure 6.4c). The product 

occurred by using the microarray printer appeared homogenous without phase 

separation and with no sign of crystallization (Figure 6.4d). 
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f) 
Figure 6.4: Topographic (left) and phase (right) AFM images of a) HCT/PLGA = 50/50 produced by 
pipette b)HCT/PLGA = 30/70 produced by pipette, c)HCT/PLGA =20/80 produced by pipette, 
d)PLGA/Pluronic = 90/10 produced by pipette, e) HCT/PLGA/Pluronic = 50/47/3 produced by microarray 
printerf) HCT/PLGA/Pluron ic = 20/75/5 produced by pipette. 
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6.7.2 Raman Mapping 

The spectra of pure captopril, PLGA, HCT, Pluronic and substrate are illustrated in 

Figure 6.5 Figure 6.6. In the mixture of captopriljPLGA the characteristic peaks that 

can be used to distinguish the two compounds from the mixture are the two 

carbonyl peaks of captopril at 1619cm·1 and 1728cm·1 and the carbonyl peak of PLGA 

at 1768cm·1. Also, good markers can be the peak at 920cm·1 corresponding to the 

ring breathing of captopril and the peak of PLGA at 1130cm·1 corresponding to the 

asymmetric vibration of C-O-C groups of PLGA. 

In terms of the mixture of HCT/PLGA and HCT/PLGA/Pluronic, the compounds could 

be distinguished from the peak at 1768cm·1 for PLGA, 1600cm·1 for HCT and 847cm·1 

or 1478cm·1 for pluronic. 

' Captoprll sprayed 
· PLGA 

Figure 6.5: Raman spectra of Captoprii sprayed and PLGA in the area of 850 - 1800cm·
1

. 

1\ 

' PLGA 
' P luronic 
· HCT sprayed 

Figure 6.6: Raman spectra of sprayed HCT, PLGA and Piuronic in the area of 850 - 1800cm·
1 

127 



Production of arrays of multiple APls 

6.7.2.1 Captopril 

Figure 6.7 shows the Eigenvalues for each principal component. It is observed that 

the Eigenvalues were reduced dramatically after the first factor and were almost 

zero after the third factor which indicates that the contribution of more than three 

factors is limited. Hence, the chemical map of the product has been created by using 

two principal components (pes). 

From the model spectra in Figure 6.7b, it is clear that the red spectra corresponds to 

areas with a higher concentration of captopril, as the characteristic peaks of PLGA 

are less intense and moreover the carbonyl peak of PLGA covered by the carbonyl 

peak of captopril. 

Also, in Figure 6.7c the optical microscope image is illustrated with the rectangular 

box are the data limits for the chemical image. From these two images, it is clear that 

there is a correlation of the topographic figures in the optical microscope image with 

the chemical data in the chemical image. 
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Figure 6.7: a) eigenvalues plot versus Principal Components numbers, b) model spectra used to create 
the chemical map, c)optical microscope image of deposition of CaptopriI!PLGA=50/50 mixture, d) 

Chemical image of the Captopril/PLGA = 50/50 mixture. 
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6.7.2.2 Mlcroarray (HCT/PLGA/Pluronlc = 50/47/3) 

As shown from the eigenvalue plot versus the PC numbers, PCA analysis suggests 

using 3 factors to create the chemical image of the sample. However, in this case 

four PCs have been found to be more suitable, as by using this number of factors an 

additional chemical characteristic of the product appeared model spectra (blue 

spectra). The two most characteristic peaks of the Raman spectra of the samples are 

the NH2 bending vibration of HCT corresponded by the strong peak at 1597cm-1 and 

the carbonyl peak of PLGA corresponds to the peak at 1758cm-1
• 

The yellow and the red spectra are separated based only on their intensity as they 

look qualitively similar. However, the areas corresponding to the yellow spectra are 

more concentrated in the polymer, than the areas corresponding to red spectra, 

since the ratio of the characteristic peak of HCT to the peak of PLGA are less than in 

red API. The purple area contains the API only, whereas in terms of the green 

spectra, it has the less intensity and the peaks are not so clear. The most Interesting 

spectra is the blue. In the blue spectra, the carbonyl peak has moved towards lower 

wavenumbers which indicate hydrogen bonding of the carbonyl peak of the PLGA. 

This hydrogen bonding can occur between the carbonyl group of PLGA and either the 

NH groups of HCT or the OH groups of pluronic as discussed in chapter 3. 
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Figure 6.8 : a) eigenvalues plot versus PCs numbers of the HCT/PLGA/Pluronic = 50/47/3 mixture 
produced by the microarray printer b) model spectra used to create the chemical map. The green 
spectrum corresponds to the background, the pink one corresponds to areas with pure API, the red and 
yellow spectra correspond to areas with HCT/PLGA mixture and the blue spectrum correspond to areas 
where the HCT interacts with PLGA, c)optical microscope image of deposited product d) Chemical image 
of the m ixtu re. 

6.7.2.3 Pippete produced /ormuoltions 

PLGA/Pluronic = 90/10 

The eigenvalues plot versus the PC numbers for the PLGA/Pluronic mixture show that 

the first PC is enough to show the obtained spectra . This is proved by the model 

spectra used to plot the chemical map as it is clear that the model spectra are 

separated based on the intensity of the peaks. However, due to their low detection 

signal the peaks of pluronic were not revealed . Finally, the optical microscope image 

shows that the product is evenly distributed along the substrate. 

To reveal the position of pluronic, by using the Solo+MIA software, PCA was 

employed. Peaks of pluronic appeared in the 8th PC whereas the previous were PCs 

found to contain peaks from PLGA. As a representative PC of this kind, the 2
nd 

PC is 
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illustrated in Figure 6.10. The chemical image of pluronic seems to be more reliable 

than this method because it is nicely reproduced in the 8th Pc. 
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Figure 6.9: a) eigenvalues plot versus PCs numbers of the HCT/PLGA = 20/80 mixture produced by the 
I microarray printer b) model spectra used to create the chemical map, cL optical microscope image of 
deposited product d) Chemical image of the mixture. 
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Figure 6.10: a) Chemical image of PC2, b) spectrum of PC2, c) chemical image of PC8, d) spectrum of 

PC8. The asterisks are the characteristic peaks of pluronic. 
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HCT/PLGA ::: 20/80 

In Figure 6.11a the Eigenvalues plot with the principal components is illustrated. 

From this plot, it is clear that the factors that can contribute to the obtained spectra 

are the first three. Figure 6.11c shows the area of the spot that was mapped. The 

chemical map has been created by separating the spectra in to three principal 

components. Hence, the areas corresponding to red model spectrum are areas 

contain only HCT since the characteristics peaks of PLGA such as the carbonyl group 

at 176Ocm·1 are missing In model spectra. The green and blue area contain both HCT 

and PLGA as the model spectra corresponding to these contain the characteristic 

peaks of HCT and the characteristic peak of PLGA at 1760cm-1 (Figure 6.11b). 

However, the use of four factors produced the most accurate map of the product. 

This was confirmed when a spectrum was taken in a random position in the yellow 

area in the sample (Figure 6.11d). From Figure 6.11g the spectrum at this position fits 

better to the yellow model spectra which does not contain PLGA peaks rather than 

the green spectrum of the model with three factors which contain peaks of the 

PLGA. 

Finally, based on this analysis, and in combination with the optical microscope image 

(Figure 6.11c), it is clear that the API is gathered in the centre of the product. 

Specifically, the yellow and purple model spectra are related to the spectrum of pure 

HCT in areas where the API is highly concentrated. Finally, the optical microscope 

image shows that most of the material was gathered at the edge the spot. The 

chemical image along with the optical microscope Image shows that PLGA moves 

tends to gathered at the edge of the spot. 
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Figure 6.11: a) Eigenvalues plot versus PCs numbers of the HCT/PLGA = 20/80 mixture produced by 
the microarray printer b) 3 model spectra used to create the chemical map. The red spectrum 
corresponds areas with pure HCT, whereas the green and the blue correspond to areas with 
HCT/PLGA mixture c)optical microscope image of deposited product d) Chemical image of the 
mixture based on 3 factors, e) 4 model spectra used to create the chemical map, f) Chemical image 
of the mixture based on 4 factors . !!l a soectrum taken in a random ooint at veJlow area . 
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Her /PLGA/Pluronic = 20/75/5 

In the case of the mixture of HCT/PLGAjPluronic mixture the PCA analysis showed 

that two factors contribute to the spectra obtained (Figure 6.12a). Hence, the 

chemical map of the spot has been separated in to two PCs. 80th components 

contain peaks of both HCT and PLGA. Unfortunately, Raman was not able to 

distinguish the pluronic's characteristic peak due to its low concentration and 

because most of the pluronic peaks are overlapped from those from PLGA and HCT. 

The red model spectra express areas which contain the less material. Also it is 

interesting to notice the two shoulders at the 1720cm·1 and at the 1780cm-1 in the 

green spectrum. However, the peak at 1720cm-1 it is most likely noise which was 

picked up by the multivariate analysis. Also, the optical microscope image shows 

that the compounds have been distributed evenly during the evaporation. 

'''"" 
1000 

800 

i 800 

W 

400 

200 

"-' 
a) '( 8 .649 

0 . b) 
2 8 10 12 14 16 18 ~ 

Princlp3i Component Number 

1200 1400 1600 
Raman Shib (em 

1000 1800 

500 

000 

-500 

500 

000 

500 

C) d) 
·2000 2000 

Figure 6.12: Eigenvalues plot versus PCs numbers of the HCT/PLGA/pluronic = 20/75/5 mixture produced by 
the microarray printer b) 3 model spectra used to create the chemical map, c)optical microscope image of 
deposited product d) Chemical image of the mixture. 
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HCT /PLGA = 50/50 

The Eigenvalues plots versus the number of principal components are illustrated in 

Figure 6.13a. According to this plot, three factors contribute to the obtained spectra 

mostly. Figure 6.13b and c illustrate the chemical map of the spot and the three 

components used to plot the chemical image. The green spectrum corresponds to 

areas with low quantity of materials or to areas where the laser beam lost its focus. 

The red spectra correspond to areas which consist of HCT only whereas the blue 

spectra contain both PLGA and HCT as the characteristics peaks of HCT and PLGA 

coexist. 

Finally, the chemical and optical microscope image shows that the centre of the 

product is occupied by HCT whereas PLGA has been moved to the edge where most 

of the deposited material has been gathered to the edges. Similarly the optical 

microscope image shows that most of the deposited material was gathered to the 

edge. , 
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Figure 6.13: Eigenvalues plot versus PCs numbers of the HCT/PLGA = 50/50 mixture produced by the 
microarray printer b) 3 model spectra used to create the chemical map. The green spectrum correspond 
to the background, whereas the blue and the red correspond to areas with HCT/PLGA and pure HCT 
respectively c)optical microscope image of deposited product d) Chemical image of the mixture. 
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6.7.3 Raman spectra 

6.7.3.1 Hydrochlorothiazide 

To investigate the physicochemical nature of the hydorchlorothiazide, Raman spectra 

of the products were taken at two random places at the centre and the edge of the 

samples. 

The most important groups in the mixture of HCT and PLGA are the NH groups and 

the SO groups of HCT and the carbonyl group of PLGA. The NH groups occurred at 

the area between 3100-3700cm'1, whereas the SO groups are assigned to peaks at 

1300cm·1 corresponding to the asymmetric vibration and at 1165 cm-1 corresponding 

to the symmetric vibration of the group in question. Finally the carbonyl group of 

PLGA occurs at 1765 cm-1
• 

From the Figure 6.14,6.15, Figure 6.16 and Figure 6.17c, It is clear in all samples that 

the broadness of the amino peaks of HCT compared with the powder indicates an 

amorphous nature of the product. Also, in the mixtures HCT/PLGA 20/80 and 

HCT/PlGA/PIuronic the peak assigned to the symmetric vibration of SO group has 

moved slightly to higher wavenumbers from 1164cm-1 to 1174cm-1 in the case of 

HCT/PlGA = 20/80 and to 1172 cm-1 when pluronic is added. In the case of the 

HCT/PlGA SO/SO the SO peaks of the spectrum obtained from the edge and the 

centre of the product, are in the same position. Nevertheless, they both have been 

shifted slightly to higher wavenumbers than the sprayed HCT from 1166cm-1 to 

1171cm-1
. In the mixture produced by the microarray Finally, the carbonyl group of 

PlGA remains in the same position with the carbonyl group of the unprocessed 

PlGA. In terms of the amino groups, the broadness of the peaks makes the analysis 

difficult. However in all the cases they seem to remain in the same position. 

However, in the case of HCT/PlGA SO/SO both the peaks corresponding to the amino 

groups looks to have been moved to lower wavenumbers. 
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Figure 6.14: Raman spectra of HCT/PLGA SO/50 taken from the edge, from the centre, pure HCT and 
PLGA with zoom at the area of b) SO vibrations and c) amino groups. 
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Figure 6.15: Raman spectra of HCT/PLGA 20/80 taken from the edge, from the centre, pure HCT and 
PLGA with zoom at the area of b) 50 vibrations and c) amino groups. 
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Figure 6.16: Raman spectra of HCT/PLGA a) 50/50, b) 30/70, c) 20/80, d)HCT/PLGA/Pluroic = 20/75/5, e) 
product from the microarray printer with zoom at the area of II) SO vibrations and III) amino groups. 
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Figure 6.17: Raman spectra of HCT/PLGA a) 50/50, b) 30/70, c) 20/80, d)HCT/PLGA/Pluroic = 20/75/5, e) 
product from the microarray printer with zoom at the area of 11)50 vibrations and III) amino groups .. 

138 



Production of arrays of multiple APIs 

6.7.3.2 Captopril 

In the captopril powder the c=o stretching vibration of the carboxylic group of 

captopril is assigned at 1745 cm-l and the C=O stretching vibration of the amide 

group at 1603 cm-l and at 1583cm-l . In the sprayed drug the former peak has been 

shifted to 1727 cm-l whereas the latter has been shifted to 1616 cm-l. Moreover, due 

to the broadness of the peak, it is not clear if both the peaks of the amide of the 

crystalline pwoder have been shifted. 
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Figure 6.18: Raman spectra of powder captopril, Ca/PLGA = SO/SO mixture produced by pipet and pure 
captopril produced by the microarray printer with zoom in the carboxylic region . 

6.7.4 Dissolution studies 

Figure 6.19 shows the effect that PLGA has on the dissolution rate of captopril. When 

captopril was immersed in blank SGF, it is dissolved completely in less than three 

minutes. The addition of PLGA results in a more extended release of the API. 

Increasing the concentration of PLGA 70% in the mixture causes the captopril to be 

released more slowly, where even after 3hrs the drug has released 60% only of the 

drug. In the mixture of equal concentrations of API and PLGA there is an initial burst 

release of the API and after the fifth minute the drug is released in an extended 

manner where it is released completely after 3hrs. 
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Figure 6.19: Dissolution profi le of Captopril, Captopril/PLGA 30/70 and Captopril/PLGA 50/50. 

The influence of PLGA in the release of API is illustrated in the Figure 6.21. Pure HCT 

is dissolved rapidly in the blank SGF. The utilization of PLGA in the mixture results in 

an extended release of the API. Hence, at the lower concentration of the API the 

drug is released with the slowest rate where after two hours only 20% has been 

released in the medium. Increasing the concentration of API in the mixture, results in 

an increased dissolution rate. However, even after two hours the API being released 

is 70% of the initial loading. 

The addition of Pluronic results in a much more rapid release of the API. Hence, both 

when the API consists the 30% and when the API consists of the 20% it is released 

completely after the 40 minutes. 
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Figure 6.20: comparison the dissolution profiles of HCT from the Capozide tablet, HCT/PLGA/Pluronic = 
50/75/5 produced by the microarray printer and HCT/PLGA = 20/80, 30/70, 50/50 mixtures produced by 
pipetting. 
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Figure 6.21: a) dissolution profiles of HCT/PLGA 20/80 and HCT/PLGA/Pluronic 20/75/5, b) dissolution 
profiles of HCT/PLGA 30/70 and 30/65/5. 

6.8 Discussion 

AFM data showed phase separation for both the mixtures of captopril and HeT with 

PLGA. For captopril/PLGA the phase separation appears as small dots on the surface 

of the polymer matrix. This can be realised when after its dissolution in water, the 

dots were replaced by small depressions indicating that the captopril was dissolved. 
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In the mixtures of HCT/PLGA the two compounds are phase separated. This 

phenomenon was observed by AFM also when the mixtures were prepared using the 

piezo- dispenser from GeSim (chapter 3.12). However, it is worth noticing that the 

phase separated portion of the sample is a low percentage of the whole sample. The 

observed phase also is consistant with the burst effect in the dissolution studies for 

both captopril and the HCT, since the API which is phase separated will dissolve 

rapidly and then dispersed in the polymer in a more gradual manner. It is also 

interesting that the samples with pluronic produced by pipetting exhibited phase 

separation and those produced by the microarray printer were homogenous. The 

reason for this may come from technical issues regarding taking AFM images. More 

specifically, the shape of product produced by the microarray printer contains lots of 

curved surfaces which make the imaging with AFM more difficult. Therefore, it is 

likely that the phase separation occurred in the areas where AFM could not work. 

Also, the mixture of pluronic and PLGA produced a non-homogenous mixture. This is 

consistent with previous results where the use of 2% of pluronic resulted in a 

homogenous product whereas 50% of pluronic caused a phase separation on the 

surface [216}. 

The chemical map of the samples were processed using direct classical least square 

(DCLS) based on the algorithms of the NGLabspec. In order to choose the number of 

factors that contribute to the plot of chemical mapping, the Eigenvalues of each 

principal component was analysed. As in the previous chapters the PC Eigenvalues 

sharply decrease after the first PC. Based on this behaviour, it can be concluded that 

it is quite likely that two components exists which is plausible like in chapter 3 there 

is no pure polymer areas. The factors which have been used to plot the chemical 

image have been chosen in such a way that the model spectra will reveal all the 

necessary chemical information. However, in the sample containing mixture of HCT 

PLGA and Pluronic, Pluronic was not able to be detected due to its low detectable 

signal and because its strongest peaks were covered by the peaks of HCT and PLGA. 

However in the case of the PLGA/pluronic mixture, PCA was able to reveal pluronic. 

The interesting and the unexpected result was that a clear pattern of the peaks of 

pluronic appeared in the ath PC very far away from the first PC which was suggested 

by the Eigenvalues versus PC numbers plot. By using DCLS from the NGLabspec 

software, it is likely that the small shoulder at 849cm·1 belongs to the strong pluronic 
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peak. However, the spectrum of the pure PLGA has a small peak on this wavenumber 

and as the concentration of PLGA is 9 times higher it may belong to the PLGA. Hence, 

by using the MIA software and PCA analysis it was able to reveal the whole pattern 

of the pluronic. 

Raman mapping revealed that the samples prepared by both the microarray printer 

and depositing with pipette have different physicochemical properties at their 

surfaces. The samples HCT/PLGA prepared by the microarray device are phase 

separated, a phenomenon which has been first introduced in chapter 3 In the 

samples prepared by the GeSim dispenser. Samples prepared by depositing the 

solution with pipette are phase separated to a much greater extent. The main reason 

for this is the slower kinetics of drying of the larger droplets. Due to this some of the 

drug is deposited in the centre whereas the polymer tends to move at the edge 

taking along the remaining drug forming a mixture where in some areas it is not 

homogenous according to the AFM results .. The justification of the spot formation 

like in the samples represented in chapter 3 can be based on the different solubility 

of the compounds has in the solvents. More specifically in the mixtures of HCT/PLGA, 

the HCT is soluble in acetone but not in OMSO, and hence it will precipitate before 

the ring is formed, since OM SO will be the last to evaporate inducing the coffee ring 

formation of PLGA. 

The addition of pluronic results to a more uniform product where all the compounds 

are equally distributed. This is maybe due to the interactions between the pluronic 

and PLGA via hydrogen bonding of the ether groups of pluronic with the hydroxyl 

groups of PLGA [20S]. When pluronic is added, the solvent system consists of 

acetone, ethanol and OMSO. Pluronic is not soluble in OMSO [177] and therefore it 

will precipitate together with the HCT, which is slightly soluble In ethanol, without 

forming the coffee ring formation. PLGA will be the last to precipitate where pluronic 

can hold the PLGA molecules closer. 

Finally, Raman studies of the samples produced by pippetting and by inkjet printing 

gave results similar to the product produced by the GeSim dispenser in chapter 3. 

Specifically, Raman studies showed a shift towards lower wavenumbers and a shift of 

the symmetric vibration of SO group of HCT indicating disruption of the hydrogen 

bonding between the SO groups and the amino groups among the HCT molecules 
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and formation of hydrogen bonding between the amino groups of HCT and the 

carbonyl groups of PlGA. A more thorough analysis of the phenomenon is described 

in the chapter 3. where it was observed in the samples produced by the GeSim 

dispenser. Nevertheless, as in that chapter the carbonyl peak of PLGA remain in the 

same position with the unprocessed material. This may happen due to the limited 

number of carbonyl ions which take part in the hydrogen bonding formation and 

hence the peak shift that may occur is covered by the broad and strong peak of the 

inert carbonyl groups. Finally, it is important to mention that a second peak 

appeared next to the carbonyl peak of PLGA in the spectra used to create the 

chemical map of the samples results from noise from the instrument and not a 

carbonyl peak shift as the most detailed Raman spectra in Figure 6.17 showed since 

by using higher acquisition time this figure has been remove. 

In terms of captopril, the Raman studies showed that the printed API is in that cis­

form as the carbonyl peak at 1642cm'l appeared at higher wavenumbers whereas 

the peak of the carbonyl peak at 1700 appeared in lower wavenumbers from the 

powder Captopril. This was also confirmed by the product produced with the GeSim 

dispenser in chapter 3 where a detailed analysis of the phenomenon is represented. 

The last step to investigate any drug formulation is to study the release of the APls 

from it. Both captopril and hydrochlorothiazide are freely soluble in the medium 

used. PlGA was chosen to create a polymer matrix which can control drug release. 

PlGA has been widely used to control the release of freely soluble drugs [206, 217-

219]. The mechanisms involved the release of the drug from polymeric matrixes are 

swelling, diffusion and degradation. However, in our case since the dissolution 

duration lasts for only 2hrs and PlGA (85:15) requires days in order to be degraded; 

hence, the main release mechanism of the APls from the polymer Is likely to be 

diffusion. Also, it is interesting to notice that both in the case of captoprll/PlGA and 

HCT /PLGA when 30/70 Is used the release rate is similar even though it would be 

expected that HCT would be released at a slower rate. More specifically, HCT as a 

base will be protonated in the acidic environment. Moreover, PlGA exhibits free 

carboxylic groups which would demonstrate electrostatic interactions with the 

protonated HCT, inhibiting the diffusion of the API. In contrast, captopril as an acid 

will be deprotonated and exist as negative ions. Hence electrostatic interactions 
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between the API and the polvmer cannot exist. The fact that both the HCT and 

Captopril follow the same dissolution profile indicates that these interactions do not 

affect the diffusion of the drug from the polvmer. Also, the reason why onlv 60% of 

both the APls are released must be due to fact that the polvmer covers the rest of 

the API. The rest of the drug will be dissolved when the polvmer starts being eroded 

where the medium will be inserted into its structure dissolving the drug. The 

prolonged release of the 20/80 HCT/PLGA mixture may be attributed to the 

formation of a more homogenous and intimate mixture with the drug and the 

polvmer. 

In order to achieve a complete release of the API as in the commercial tablets, 

Pluronic- f127 was attempted to incorporate with the.polvmer. From Figure 6.21, it is 

clear that the Pluronic has a significant effect on the release of the API. The addition 

of Pluronic results in a more rapid release of the entire API within 40mins. In terms of 

the mechanism that governs the release, it could be expected a priori that the 

hvdrophilic poloxamer would quicklV leach out from the PLGA leaving pores which 

allow the medium to dissolve the API mixed within the polvmer. 

To investigate the release API from the formulation the zero order, first order, 

Higuchi and Korsmever - Peppas model were applied. The suitability of each model 

to describe the mechanism of the drug release was based on the calculation of the R2 

for the formulations. From the table 6.1 , most of the formulations follow the data 

fitting of the Korsmever - Peppas model. More specificallv, in terms of 

hvdrochlorothiazide mixtures, data fitting for HCT/PLGA 20/80 gives a high ~ value of 

0.99. The n value is equal to 0.55 which indicates a non-Fickian release. The mixture 

of HCT/PLGA 30/70 seems to be closer to the non-Fickian Higuchi model with R2 = 

0.933. The release of the HCT/PLGA SO/SO does not seem to follow any of the 

proposed models as the R2 value is low in all the cases. From the mixtures of 

HCT/PLGA/Pluronic onlv the 30/65/5 was able to correlate with the proposed 

models. This mixture seems to follow the Peppas model with n value equal to 0.216. 

In the case of captopril mixtures, for a better fitting with the proposed models the 

first two time points have been excluded. During this time period the API which is 

phase separated is burst from the formulation. Figure 6.24 shows that the release of 
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captopril follows the Peppas model having R2 value equal to 0.94 in both the cases. 

The n values are equal to 0.35 and 0.116 which indicates a Fickian release model. 

It has been suggested that when the n exponent is less than 0.5 is due to drug 

diffusion partially through a swollen matrix and water filled pores in the formulations 

[220]. This looks to be valid in the formulations presented in this chapter. As It has 

been shown before from the AFM and Raman microscopy the samples are phase 

separated. Hence in these cases, the phase separated drug which is exposed to the 

medium was dissolved first, leaving big pores which due to the small sizes of each 

spot, compared to medium, filled with the solution following a Fickian diffusion. 

Besides the good fitting of some formulations with selected models, no complete 

description could be found in current models. Especially the samples with pluronic 

where the drug is released completely in less that 20mins was not able to fit to any 

of the model. Therefore, the obtaining of more values below 20m ins is necessary to 

correlate the drug release with the models. However, the limitations of the models 

can justify any deviation of the release profile from them. In the Higuchi model, the 

device geometry must be a thin film with negligible edge effects, the size of the drug 

particles should be much smaller than the thickness of the film, the carrier material 

should not swell or dissolve and perfect sink conditions should prevail. In our 

systems most of the aforementioned prerequisites can be fulfilled as the spots can 

be considered thin films to an extent but clearly not completely. 

In terms of the Korsmeyer - Peppas model the release is modelled to occur in a one­

dimensional manner and the system width-thickness or length-thickness relation 

must be at least 10, as well as assumptions about constant diffusivities of a drug with 

a polymer, constant dimensions of a device during an In vitro release test, one­

dimensional diffusional behaviour, and perfect sink conditions in an In vitro release 

test. Finally, these models a better fit is obtained when apparatus I or II are used for 

the dissolution test. In our case the dissolution test was carried out on a shaking 

stage which may affect the final results. 

146 



Production of arrays of multiple APls 

zero 1st 

Higuchi 
Korsmeyer-

order order Peppas 
HCT/PLGA = 50/50 0.75 0.42 0.88 0.9 

HCT /PLGA = 30/70 0.64 0.48 0.93 0.86 

HCT/PLGA = 20/80 0.87 0.68 0.99 0.99 

HCT/PLGA/Pluronic = 
0.41 0.3 0.75 0.9 

30/65/5 

Her /PLGA/Pluronic = 
0.56 0.3 0.84 0.77 

20/75/5 

Captopril/PLGA = 50/50 0.9 0.39 0.86 0.94 

Captopril/PLGA = 30/70 0.53 0.84 0.79 0.94 
l . 

Table 6.1. r fittmg of the vanous release models for Captopnl/PLGA and HCT/PLGA mIxtures . 
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Figure 6.22 : a) Higuchi, b) Korsmeyer-Peppas c)zero order, d) first order for mechanism of drug release 
for the mixtures HCT/PLGA/pluronic at ratio of 20/80,30/70, 50/50 prepared by pippetting deposition . 
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Figure 6.23 : a) Higuchi, b) Korsmeyer-Peppas c)zero order, d) first order for mechanism of drug release 
for the mixtures HCT/PLGA/pluronic at ratio of 20/80, 30/70, 50/50 prepared by pippetting deposition. 
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Figure 6.24: a) Higuchi, b) Korsmeyer-Peppas c)zero order, d) first order for mechanism of drug release 
for the mixtu res Captopril/PLGA at ratio of 30/70, and SO/SO prepared by pippetting deposition . 

6.9 Conclusions 

In this chapter, a successful extended release formulation was prepared using 

Captopril and Hydrochlorothiazide as APls. Captopril and HCT were printed along 

with PLGA which has been used as polymeric matrix to control the release of the 

APls. AFM and confocal Raman mapping revealed phase separation for both the 

mixtures of Captopril/PLGA and HCT/PLGA. Also PCA was proved a powerful 

technique to reveal the location of pluronic which was not able to be observed using 

algorithms from the NGLabspec. 

It was found that pluronics increase the dissolution rate of the HCT significantly. 

Finally, the mechanism of the release of the drug from the polymeric matrix was 

investigated by applying the four most common mathematical models which can 

better, whereas in the case of Captopril there is a Fickian drug release as the describe 

the drug release from monolithic polymeric matrixes. It was found that in the case of 
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HCT/PlGA = 30/70 the Higuchi release kinetic described the system Korsmeyer -

Peppas showed and HCT/PlGA = 20/80 a non fickian drug release is happening. 
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7. Conclusions - Future work 

This aim of the thesis was to prove inkjet printing can be used to produce drug 

formulation product. In order to confirm this, solid dispersion formulations and 

controlled release drug formulation were attempted to be produced. Hence, in 

chapter 3, APls with excipients were successfully printed and characterized. Single 

droplet and multiple droplets of mixtures of felodipine and PVP, captopril with PLGA 

and hydrochlorothiazide with PVP and PLGA were sprayed onto hydrophobic 

substrates. The characterization of felodipine/PVP and HCT /PVP mixtures showed 

that an intimate mixture of the components. However, when PLGA was used both 

captopril and HCT were phase separated with the polymer. 

In chapter 4, the release of felodipine from a single spot was investigated. By using 

the intensity of the characteristics Raman bands of felodipine and PVP, it was shown, 

that the release of the API is directly dependent on the felodipine's concentration in 

the mixture where when felodipine is in its lowest concentration Is dissolved 

completely. However, more investigation needs to be done regarding the effect of 

the concentration of the solute in the release of the API. It has been found that by 

using less concentrated solutions, the API releases quicker which may be either due 

to the increase of surface area. Also for the same reason, the use of a hydrophilic 

surface must be investigated. 

In chapter 5, a proper therapeutic dosage form offelodipine was attempted. For this 

purpose microarrays of felodipine/PVP mixtures were produced and characterised. 

Although each individual spot gave similar AFM, SThM and Raman results, the drug 

was not be able to be released in blank FASSIF solution. In contrast, the dissolution 

test in the FASSIF solution with enzyme results to an immediate release of the API. 
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In chapter 6, the application of inkjet printing was attempted to get extended by 

producing a therapy composed of two APls; captopril and hydrochlorothiazide. As 

captopril and HCT is freely soluble to the dissolution medium, PlGA was used to 

control the release of the API. When the solution was deposited by pipette, the API 

was released from the formulation in a controlled manner. Yet the deposition of 

solution by the microarray printer results to an immediate release of the API which 

can be due to the total increase of surface area as the spots produced by the 

microarray printer are much smaller. 

Even though, this work showed that inkjet printing is a promising drug formulation 

method, there still lot of room for development in this area. First of all, an 

appropriate substrate to print for the deposition of the solution is fundamental to 

apply. This substrate must be biocompatible which could protect the drug from the 

environment allowing It to release in the desired area. Such substrate can be a tablet 

into which the solution will be ejected. Also the porosity of the substrate is of 

fundamental importance. A porous material would allow the solute to be absorbed 

modifying the release of the API or it would be possible that the solvent would not 

be able to evaporate completely. 

Also apart from using a polymer matrix, another approach which could be apply to 

control the release of the API is to coat it with a polymer which would also could 

protect it to release in undesirable areas, by using two different solutions a 

microarray printer could print the solution containing the API at first and 

subsequently the solutions containing the coating material. 

To summarise all the above, it can be concluded that inkjet printing due to its high 

flexibility to produce drugs with tailored properties can gain the interest of 

pharmaceutical industries. The proper technology exists and it is continuously 

developed to handle solutions difficult to be printed, such as viscous solutions. 

Hewlett Packard (HP) has already patented an inkjet device which could produce 

drug formulation [221]. Moreover, recently, Crospon has licensed a 'smart' drug 

delivery skin patch technology from HP labs that uses inkjet printing technology to 

deliver drugs under the skin [222]. These two facts may be the evidence that the 

commercial availability of a device which produces real tailored medicine is not far 

away. 
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