
UNIVERSITY OF NOTTINGHAM 

DEPARTMENT OF CIVIL ENGINEERING 

SATELLITE LASER RANGING AND THE 

DETERMINATION OF EARTH ROTATION PARAMETERS 

by 

Terry Moore, B.Sc 

Thesis submitted to the University of Nottingham for 

the degree of Doctor of Philosophy 

October 1986 



TABLE OF CONTENTS 

ii 

Page 

ABSTRACT viii 

ACKNOWLEDGEMENTS 

LIST OF FIGURES xii 

CHAPTER 1 INTRODUCTION 1 

CHAPTER 2 SATELLITE LASER RANGING 

2.1 INTRODUCTION 7 

2.2 GENERAL SYSTEM DESCRIPTION 9 

2.2.1 Basic Technique 9 

2.2.2 Satellite Laser Ranging Tracking 15 

Stations 

2.2.3 Laser Ranging Satellites 19 

2.2.4 Applications of Satellite Laser 27 

Ranging 

2.3 LASER RANGE MEASUREMENT ERRORS 31 

2.3.1 Classification of Error Sources 31 

2.3.2 Instrument Errors 32 

2.3.3 Modelling Errors 35 

2.3.3.1 Atmospheric Refraction Correction 35 

2.3.3.2 Other Modelling Errors 38 



iii 

2.4 PROCESSING OF SATELLITE LASER RANGING 41 

DATA 

2.4.1 Pre-Processing of Observed Laser 41 

Ranges 

2.4.1.1 General Description 41 

2.4.1.2 Filtering of Raw Laser Ranging Data 43 

2.4.1.3 Compression of Laser Ranging Data 48 

2.4.1.4 Simple Polynomial Pre-Processing 50 

Strategy 

2.4.1.5 Orbit Residual Pre-Processing 53 

Strategy 

2.4.2 Analysis of Satellite Laser Range 56 

Data 

CHAPTER 3 PRINCIPLES OF THE DYNAMICAL ANALYSIS 

OF SATELLITE LASER RANGE OBSERVATIONS 

3.1 BASIC CONCEPTS 60 

3.2 COORDINATE REFERENCE SYSTEMS 64 

3.2.1 Earth Fixed Coordinate Systems 64 

3.2.1.1 Geocentric Cartesian Coordinate System 64 

3.2.1.2 Spherical Polar Representation 65 

3.2.1.3 Spheroidal Coordinate Representation 67 

3.2.1.4 Topocentric Coordinate System 72 

3.2.1.5 Coordinate Transformations 75 



iv 

3.2.2 Inertial Reference Frame 77 

3.2.3 Time Scales 79 

3.2.4 Precession and Nutation 84 

3.2.5 Earth Rotation and Polar Motion 93 

3.3 FORCE MODEL COMPONENTS 97 

3.3.1 Introduction 97 

3.3.2 Gravitational Attraction of the Earth 98 

3.3.3 Moon, Sun and Planetary Attractions 102 

3.3.4 Solid Earth and Ocean Tides 105 

3.3.4.1 Solid Earth Tides 105 

3.3.4.2 Ocean Tides 113 

3.3.5 Solar Radiation Pressure 116 

3.3.6 Other Forces 119 

3.4 ORBIT INTEGRATION AND ADJUSTMENT BY 123 

LEAST SQUARES 

3.4.1 Numerical Integration of the 123 

Equations of Motion 

3.4.2 Introduction to Least Squares 129 

Adjustment 

3.4.3 Observation Equations 135 

3.4.4 Least Squares Adjustment Minimum 143 

Requirements 

3.4.5 Residual and Error Analysis 146 



V 

CHAPTER 4 DETERMINATION OF EARTH ROTATION 

PARAMETERS 

4.1 INTRODUCTION 153 

4.2 INTERNATIONAL MONITORING SERVICES 159 

4.3 EARTH ROTATION PARAMETERS FROM 162 

LASER RANGING 

4.3.1 Basic Principles 162 

4.3.2 Analysis Procedure 164 

4.3.3 Post-Processing and Smoothing 167 

4.4 PROJECT MERIT 171 

4.4.1 General Description 171 

4.4.2 Organisation, Campaigns and Analysis 174 

4.4.3 Satellite Laser Ranging and 179 

Project MERIT 

CHAPTER 5 UNIVERSITY OF NOTTINGHAM SATELLITE 

LASER RANGING ANALYSIS SOFTWARE 

5.1 INTRODUCTION 183 

5.2 ANCILLARY PROGRAMS 187 

5.2.1 Data Pre-Processing Programs 187 

5.2.1.1 General Description 187 

5.2.1.2 Pre-Processing Package, DATPAK-1 188 

5.2.1.3 Pre-Processing Package, DATPAK-5 191 

5.2.2 CHEBPOL Chebyshev Polynomial Program 195 



vi 

5.3 SATELLITE ORBIT INTEGRATION PROGRAM 199 

- ORBIT 

5.3.1 General Description 199 

5.3.2 Program Input and Output 204 

5.4 SATELLITE ORBIT ANALYSIS PROGRAM 208 

- SOAP 

5.4.1 General Description 208 

5.4.2 Program Input and Output 215 

5.5 VALIDATION AND OPERATION OF SODAPOP 219 

5.5.1 Software Validation 219 

5.5.2 Operation of SODAPOP 221 

CHAPTER 6 DATA PROCESSING AND RESULTS OF 

THE ANALYSIS 

6.1 MERIT SHORT CAMPAIGN DATA 225 

6.1.1 Introduction 225 

6.1.2 Data Sets and Pre-Processing 226 

6.1.3 Solutions for Tracking Station 232 

Coordinates 

6.1.4 Solutions for Polar Motion 238 

6.2 MERIT MAIN CAMPAIGN DATA 245 

6.2.1 Introduction 245 

6.2.2 Data Set Specifications 246 

6.2.3 Analysis Procedure and Models 250 



vii 

	

6.2.4 	Solutions for Tracking Station 	253 

Coordinates 

	

6.2.5 	Solutions for Earth Rotation 
	

262 

Parameters 

CHAPTER 7 CONCLUSIONS AND SUGGESTIONS FOR 

FURTHER WORK 

	

7.1 	CONCLUSIONS 	 268 

	

7.2 	SUGGESTIONS FOR FURTHER WORK 	272 

APPENDICES 

	

A 	ROTATION MATRICES 	275 

B COMPUTATION OF SATELLITE ELEVATION 	276 

ANGLE 

	

C 	FITTING OF POLYNOMIALS BY LEAST 
	

278 

SQUARES 

D INTERPOLATION FORMULAE 	280 

E LEAST SQUARES NORMAL EQUATIONS 	283 

	

F 	SATELLITE ACCELERATION DUE TO THE 	286 

EARTH'S ATTRACTION 

G TABLES OF RESULTS (SHORT MERIT DATA) 288 

H TABLES OF TRACKING STATION 	303 

COORDINATES (MAIN MERIT DATA) 

J TABLES OF EARTH ROTATION PARAMETERS 316 

REFERENCES AND BIBLIOGRAPHY 	 337 



viii 

SATELLITE LASER RANGING AND THE 

DETERMINATION OF EARTH ROTATION PARAMETERS 

ABSTRACT 

Over recent years considerable advances have 

taken place in the field of space geodesy, resulting in 

a number of highly precise global positioning 

techniques. The increased resolution of many of the 

scientific products from the new observational 

techniques has stimulated the interest of not only 

geodesists but also geophysicists. Furthermore, their 

potential to determine the orientation of the earth's 

axis of rotation (polar motion) and the variations of 

the rate of rotation of the earth about that axis, was 

recognised by the scientific community. The result was 

the establishment of Project MERIT, to intercompare 

these new observational techniques. 

Satellite Laser Ranging, a method of measuring 

the distance from a point on the earth's surface to an 

artificial satellite by means of timing the flight of a 

short pulse of laser light, is currently the most 

accurate available means of tracking near earth 

satellites. However, in order to reach the accuracy 

requirements of current geodetic applications dedicated 

satellites, such as the NASA LAser GEOdynamic Satellite 

(LAGEOS), must be tracked and specialised processing 

software must be used. 
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This Thesis describes the basic theory behind 

the analysis of Satellite Laser Ranging Observations, 

with a special emphasis on the determination of earth 

rotation parameters (the polar motion and the 

variations in the rate of rotation). The development 

and testing, at Nottingham, of the Satellite Orbit 

Determination and Analysis Package Of Programs, 

SODAPOP, for the processing of laser range data, is 

described. The thesis also presents and discusses the 

results of the analysis of laser range observations to 

the LAGEOS satellite, from the short and main campaigns 

of project MERIT. 
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1. 	INTRODUCTION 

During the last thirty years significant 

scientific advances have led to the development of 

completely new observational techniques, which have 

changed the face of geodesy. Traditionally, the science 

of measuring and mapping the surface and gravity field 

of the earth depended on measurements of terrestrial 

angles and distances combined with astro-geodetic and 

gravimetric observations. In contrast, the new 

techniques of 'space geodesy' are based on observations 

to both real (the moon) and artificial satellites, and 

extra galactic radio sources (such as quasars). 

However, the accuracy of the measurements and products 

has not only challenged the traditional methods of 

triangulation and trilateration, but has led to many 

new and diverse applications of space geodesy in the 

fields of geophysics and geodynamics. 

Over recent years the greatest impact of the new 

observational techniques has been their contribution to 

the monitoring of both the orientation to the earth and 

the global and local movements of the crust. In order 

to stimulate the development of the techniques and 

promote the exploitation of the scientific products 

several major international collaborative scientific 

projects have been established. Notable amongst these 

are the Crustal Dynamics Project (US National 

Aeronautics and Space Administration) and Project MERIT 

(joint IAU/IUGG working group on the rotation of the 

earth). 
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Satellite geodesy was born in 1957 following the 

launch of the first Sputnik spacecraft. Since then many 

other artificial satellites have been launched, 

including several with dedicated geodetic missions. 

The majority of satellite geodetic techniques consists 

of tracking a particular satellite from a number of 

tracking stations distributed around the world. These 

observations may be subsequently used to determine the 

satellite's orbit, the three dimensional positions of 

the tracking stations and many other geodetic and 

geophysical parameters. Generally, the techniques are 

based on the precise timing of the propagation of 

either radio (microwave) or visible light (laser) 

signals between the ground tracking station and the 

satellite. 

Laser ranging is currently the most precise 

method of tracking both near earth satellites and the 

moon. The development of Satellite Laser Ranging 

Systems started in the early 1960's and the first 

measurements were achieved in 1964 at the NASA Goddard 

Space Flight Center. Although the first measurements 

were only accurate to a few metres the last decade has 

seen considerable advances in the instrumentation, 

which has resulted in current state-of-the-art systems 

which are capable of accuracies of the order of 2-5cm. 

In principle, the technique consists of a ground based 

laser which transmits a series of intense short pulses 

of laser light to the satellite. These are reflected 
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back by the satellite and the time of flight of each 

pulse forms the raw 'range' observations. To ensure the 

transmitted laser pulses are reflected back to the 

ground tracking stations, the satellites must carry 

corner cube retro-reflectors. Of the many hundreds of 

spacecraft launched into earth orbit only a very small 

number are suitably equipped for laser tracking. 

However, two satellites, LAGEOS and STARLETTE, which 

are dedicated passive laser ranging targets, have been 

launched, and are regularly tracked by the global 

network of ranging systems. 

Clearly, a set of 'raw' distance (range) 

measurements between a tracking station and a satellite 

is of little scientific interest to a geodesist or 

geophysicist, and the data must be processed in order 

to yield the necessary products. The most common 

approach to this analysis (the dynamical method) is 

based on an orbit determination process which computes, 

simultaneously, both the satellite orbit and a number 

of other geodetic parameters, depending on the 

particular application. The basis of the orbit 

determination process is a model of all the forces 

acting on the satellite, which may include both 

gravitational and surface forces. The vector sum of all 

these forces gives the resultant acceleration of the 

satellite as a function of it's position and velocity. 

By numerically integrating this acceleration twice the 

position and velocity of the satellite, as a function 
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of time, are obtained. In order for the process to 

begin the initial position and velocity vectors must be 

known; however, to begin with these need not be known 

precisely as they may be subsequently improved. The 

second stage of the procedure combines this 'computed' 

orbit with the range observations from a number of 

tracking stations and performs a least squares solution 

for a series of unknowns. These may include the initial 

satellite position (and velocity), the coordinates of 

all the tracking stations and a number of other 

parameters. 

The movement of the earth's axis of rotation 

with respect to it's surface and the variations of the 

rate of rotation of the earth about this axis, have 

been predicted for many years. Indeed, 'polar motion' 

has been determined from astrometric observations since 

1899, when the International Latitude Service was 

formed. More recently the monitoring of these phenomena 

has been the task of the International Polar Motion 

Service and the Bureau International de l'Heure. Over 

the last decade, however, several of the new space 

geodetic technniques have demonstrated their potential 

to determine the polar motion and the variations in the 

rate of rotation to a far higher resolution than had 

been previously possible. As a result, in 1978 a 

working group was formed to study the future of the 

international monitoring services and to encourage the 

development and exploitation of these new techniques. 
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A 'special programme of international collaboration to 

Monitor Earth Rotation and Intercompare the Techniques 

of observation and analysis' to be known as Project 

MERIT was the resulting initial proposal of the working 

group. The project was based around two observational 

campaigns in 1980 (3 months) and in 1983/84 

(14 months), with subsequent periods for the analysis 

of the observations. 

Of the six different observational techniques 

which contributed to project MERIT, it became evident 

that Satellite Laser Ranging (SLR) and Very Long 

Baseline Interferometry (VLBI) would provide the most 

precise results, and form the basis of any future 

monitoring service. The Geodesy Group at Nottingham has 

been involved with Project MERIT as an Associate 

Analysis Centre since the 2nd MERIT workshop held at 

the Royal Greenwich Observatory in 1983 (Wilkins, 

1984). In particular the Group has concentratted on the 

processing and analysis of both SLR and VLBI data 

observed during the short and main MERIT campaigns. 

This thesis is the result of research at 

Nottingham to develop orbit determination software and 

to subsequently process Satellite Laser Ranging 

observations. A Satellite Orbit Determination and 

Analysis Package Of Programs, SODAPOP, has been 

developed in order to analyse laser range observations 

to LAGEOS. Despite the specific purpose of the software 

suite, it has been structured so as to enable its 
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extension, at a later date, to include other satellite 

systems. In view of Project MERIT, the aim of the 

analysis was to establish a reliable method of 

determining earth rotation parameters (i.e. the polar 

motion and the variations in the rate of rotation of 

the earth) from SLR observations. In addition, a 

further aim was the computation of a precise, and 

repeatable, set of coordinates of the tracking 

stations. The software was initially tested using laser 

range data observed during 1980, around the time of the 

Short MERIT Campaign. Following the validation and 

testing period, SODAPOP was subsequently used to 

process data from the first four months of the Main 

MERIT Campaign. The development and testing of the 

software and the results of the anlyses are reported in 

this thesis. 

The observational technique of Satellite Laser 

Ranging is discussed in Chapter 2 and the basic theory 

behind the dynamical analysis of SLR observations is 

described in Chapter 3. The determination of earth 

rotation parameters and Project MERIT, with a special 

emphasis on the application of Satellite Laser Ranging, 

are outlined in Chapter 4. Chapter 5 describes the 

software package, SODAPOP, developed at Nottingham and 

outlines the specifications and testing of the 

programs. The results of the analysis of LAGEOS laser 

ranging data are presented and discussed in Chapter 6. 

The thesis is concluded in Chapter 7. 



CHAPTER TWO  

SATELLITE LASER RANGING  
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2.1 	INTRODUCTION  

The development of a laser system for 

precise satellite tracking started in 1961 at the NASA 

Goddard Space Flight Center (GSFC), and in 1964 the 

first range measurements were obtained. Basically the 

technique of Satellite Laser Ranging consists of a 

ground based tracking station which transmits a series 

of intense short pulses of laser light towards an 

artificial satellite capable of reflecting some of 

these back to the receiving optics of the tracking 

station. By accurately timing the time of flight of an 

individual pulse, one obtains a precise measure of the 

double range to the satellite. The simple schematic, 

fig 2.1, illustrates the principle of the laser ranging 

measurement. 

The first measurements, in the early 1960's, 

were to Beacon Explorer B (Explorer 22) which was the 

first satellite to be equipped for laser ranging. 

Although the observed ranges had a precision of a few 

metres, the last 20 years have seen an improvement in 

accuracy of almost two orders of magnitude. Current 

state-of-the-art systems are demonstrating the 

capability of ranging with a precision of around 3cm. 

For a satellite to be suitably equipped for 

Satellite Laser Ranging it must carry corner cube 

optical retro-reflectors. Since Beacon Explorer B, a 

total of 16 other suitable satellites have been 

launched, as described in § 2.2.3. Notable is the LAser 
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GEOdynamic Sateliite, LAGEOS, launched by NASA in 1976, 

which was designed specifically to support geodetic and 

geophysical research. Consequently, LAGEOS has become 

the primary laser ranging target. 

Very similar in concept to Satellite Laser 

Ranging is the techinique of laser ranging to the moon 

(Lunar Laser Ranging, LLR). Several Satellite Laser 

Ranging systems are also used to monitor the distance 

to arrays of planer retro-reflector placed on the 

surface of the moon. There are currently 5 such arrays; 

three were placed by the astronauts of the Apollo 11,14 

and 15 missions, and two were carried by the Soviet 

Lunakod 1 and Lunakod 2 spacecraft. Lunar Laser Ranging 

has provided a wealth of information on the dynamics of 

the earth-moon system as well as the determination of 

geophysical parameters and general relativity. 

Over the last few years a global network of 

precise, fixed and mobile, tracking stations have 

routinely tracked LAGEOS and a number of other 

satellites, producing a large quantity of very precise 

data. Analysis of these data sets have demonstrated the 

potential of the current, centimetre accuracy, laser 

ranging systems to make significant contributions to 

geodesy, geophysics and crustal mechanics. The 

applications of Satellite Laser Ranging are discussed 

in more detail in § 2.2.4. 
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2.2 GENERAL SYSTEM DESCRIPTION 

2.2.1 Basic Technique 

As described in § 2.1 Satellite Laser Ranging 

consists of accurately measuring the time of flight of 

a short pulse of laser light, as illustrated in 

fig. 2.1. As the laser fires, a small fraction of the 

pulse is diverted to the range receiver which triggers 

the timing system. The remainder of the pulse is 

directed through the transmitting telescope and from 

there propagates through the atmosphere to be reflected 

by the satellite retro-reflectors. The returning pulse 

again propagates through the atmosphere back to the 

receiving telescope, which focuses on to the detector 

package. The latter instrument produces a signal which 

stops the timing mechanism. The 'time of firing' and 

'time of return' of the pulse combine to form the basic 

observable, the 'time of flight'. This leads to the 

range measurement, using the simple model, 

R = c(tr  - tf )/2 	(2.1) 

where R • range from the laser reference point to 

the average satellite retro-reflector 

position 

c 	speed of light in a vacuum 

tr : epoch corresponding to the return of the 

laser pulse 

tf : epoch corresponding to the firing of the 

laser pulse. 



Satellite 
carrying retro-

reflectors 

Returning 
Pulse 

/ Transmitted 
Pulse 

Receiving 

	

Telescope 	)1(  

	

\\ 	Transmitting Telescope 

 

Telescope Pointing 
System 

(Satellite Orbit 
Prediction) 

 

Fig 2.1 Principles of  Satellite Laser Ranging 
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However, this model is clearly not realistic, as no 

delays, biases or errors, such as the delay due to 

atmospheric refraction and delays in the firing and 

timing systems, are accounted for. The modelling of 

error sources and the calibration of biases from laser 

ranging systems are discussed in § 2.4. Equation (2.1) 

may be re-written, to allow for possible error sources, 

as, 

R = c At/2 - cR  - CB  - Cc  - e 	(2.2) 

where R  : atmospheric refraction correction 

6
B : system delays, determined by calibration 

E
C 
 

: centre of mass correction (see § 2.3.1) 

E : remaining systematic and random errors 

At : tr - tf ' time of flight. 

Both equations (2.1) and (2.2) calculate a 'one way' 

range to the satellite by assuming that the time of 

flight of the pulse to the satellite and the time of 

flight back from the satellite are identical, and equal 

to half the total flight time of the laser pulse. This 

is the procedure adopted by most centres currently 

processing laser ranging observations (Tapley, Schutz 

and Eanes, 1982). Furthermore, the raw range 

measurements are transmitted to analysis centres in the 

form of one-way ranges, determined in this way. 

However, for reasons to be discussed in § 5.5.1, the 

Nottingham suite of programs processes the data as 

'two-way' ranges, as would be obtained directly from 

the time of flight. 
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An observed laser range is a measure of the 

distance (one-way or two-way) between some reference 

point of the tracking system (determined by 

calibration) to the retro-reflectors on the satellite. 

The processing of laser range observations involves the 

computation of the satellite's orbit (see Chapter 3), 

which is expressed as the 3 dimensional cartesian 

coordinates of the centre of mass of the satellite. 

Consequently, a small correction (determined before the 

launch of the satellite) is applied to the observed 

ranges to refer them to the centre of mass rather than 

the outer surface of the satellite (see § 2.3.1). 

Clearly, a single measurement of the range can 

yield very little useful information and, therefore, 

the usual practice is to track a satellite during many 

'passes' over a laser ranging station, taking range 

measurements up to 10 times per second. These ranges, 

possibly combined with ranges from other tracking 

stations as well, may be input into a least squares 

'variation of coordinates' analysis procedure. 

This processing of laser ranges allows analysts to 

determine, for example, the satellite's orbit, the 

coordinates of the tracking stations and several other 

geophysical and orbital parameters. The analysis of 

Satellite Laser Ranging data is outlined in § 2.5 and 

discussed in more detail in Chapter 3. 

The principal components of a tracking station 

may be discussed under five headings: the telescopes 
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and mounts, the control computers and software, the 

laser, the detection system and the timing system. 

Clearly, when tracking a satellite there is a need to 

direct the 'out going' laser pulse towards the 

satellite and also point the telescope so it will 

receive the returning pulse. For this purpose the 

transmitting and receiving telescopes (which may in 

some cases be a single telescope) are generally 

attached to the same gimbal mount, which may be 

directed either manually or automatically. In an 

automated system the pointing of the telescopes would 

be controlled by a computer system using a prediction 

of the satellite's orbit. The computer may also be used 

to control the timing system and the flow of data 

between the other systems (for example, the storage of 

the range observations). 

Probably the most important of the hardware 

devices is the system of laser oscillators and 

amplifiers which produces the short pulse of high 

intensity light transmitted through the telescope. 

Detailed descriptions of the 'Light Amplification by 

the Stimulated Emission of Radiation, LASER' devices 

used in laser ranging systems is clearly beyond the 

scope of this thesis, however a general description of 

the characteristics of typical lasers is included. 

Traditionally, all laser tracking stations used Ruby 

laser which produced coherent light with a wavelength 

of 694.3nm, an energy of a few Joules and a pulse width 
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(duration of an individual pulse) of the order of 1Ons. 

Current, state-of-the-art, tracking systems utilise 

Nd:YAG lasers with a wavelength of 532.Onm, an energy 

of less than a Joule and a very short pulse width of 

around 150-200 ps. Details of operational lasers used 

in satellite tracking, and other aspects of hardware, 

may be found in a recent paper by Dr. J Degnan of the 

Goddard Space Flight Center (Degnan, 1985). 

A typical detection package could operate as 

follows. The receiving telescope focuses the returning 

pulse on the cathode of a photomultiplier, after 

passing through timing and spectral filters (the latter 

only allow a very narrow bandwidth of light to pass 

through). The output of the photomultiplier is 

amplified (if necessary) and sent to a device which 

produces the necessary logic signal to either stop or 

start the timing system. Two types of timer are in 

general use, namely, 'interval' and 'event' timers. An 

interval timer operates rather like a precise 

stop-watch which is started when the pulse is fired and 

stopped when it returns, the elapsed time giving the 

time of flight. In comparison, an event timer reads the 

epoch at which particular events occur, such the the 

firing or return of a pulse, off a 'clock' which 

operates continously. Lunar Laser Ranging systems 

generally use event timers as they allow more than one 

pulse to be in flight at any time. Details of a typical 

'third generation' Satellite Laser Ranging' facility 
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are given in a technical note of the Royal Greenwich 

Observatory (Sharman, 1982). 

2.2.2 Satellite Laser Ranging Tracking Stations  

Laser ranging systems have developed in a number 

of different countries over the past two decades. As 

would be expected, this diversity of development has 

led to a wide variety of different systems and 

specifications ranging from fixed satellite and lunar 

tracking systems to highly mobile systems specifically 

designed for monitoring crustal movements. As 

development has progressed laser tracking systems have 

been catagorised into three generations which can be 

loosely defined by their single shot root mean square 

precisions (the average precision of a one way range 

measurement) as, 

first generation 	greater than 50cm 

second generation 
	

between 10 and 50 cm 

third generation 	better than 10cm 

Differences in instrumentation and approach also 

differentiate between the three generations, and where 

applicable these will be discussed in later sections. 

Tracking systems in all these catagories are still 

operational in various parts of the world, but many are 

in the process of upgrading to the 3rd generation 

specifications, in order to meet the stringent 

precision requirements being set by current geodynamic 

and geophysical applications. 



16 

As already stated, soon after the launch of 

Beacon Explorer B in October 1964, the first laser 

system was operational at the Goddard Space Flight 

Center (GSFC) and had an accuracy of 1 to 2 metres. 

During 1970 a preliminary three month polar motion 

experiment was conducted by the GSFC using two 50cm 

precision ranging systems. Soon after, in 1972, 

tracking stations at either end of a 900km baseline in 

California observed the initial measurements of the San 

Andreas Fault Experiment (SAFE). By the early 1970's 

several experimental tracking stations were operational 

in Europe as well as the systems already commisioned by 

the GSFC and the Smithsonian Astrophysical Observatory 

(SAO). Since then numerous laser tracking systems have 

been developed and operated throughout the world. 

The currently operational satellite laser 

tracking stations can be, generally, divided into three 

different types. Firstly, there are a number (in Europe 

particularly) of 'fixed' systems at satellite and 

astronomical observatories, which are designed to 

operate at one location and not move from one site to 

another. However, movement of some of these stations is 

possible, as demonstrated by the recent move of one of 

the SAO systems from Natal in Brazil to Matera in 

Italy, but not without considerable disassembly. 

Between 1972 and 1978 the GSFC commissioned eight 

mobile laser ranging systems, MOBLAS 1 to 8, to form 

the basis of the Goddard Laser Tracking Network (GLTN). 
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The telescopes, laser and other instrumentation are 

mounted in a number of large vans, allowing the whole 

system to be moved from one global location to another. 

Although the eight systems have been deployed around 50 

times at over 20 different locations, they are not 

highly mobile and tend to stay at one site for a number 

of years. 

The need for highly mobile systems, for the 

study of crustal dynamics on a regional and global 

basis, became evident a number of years ago. Currently 

four highly transportable laser tracking stations are 

operational. Two Transportable Laser Ranging Stations, 

TLRS-1 and TLRS-2, have been developed by the 

University of Texas and the GSFC respectively. They 

have been operated at many locations of the past few 

years and have clearly demonstrated their ability to 

start observing soon after occupying a new site. Two 

additional TLRS systems are planned by the GSFC, the 

first TLRS-3 is expected to be operational in 1986, to 

meet the needs of the Crustal Dynamics Project in 

studying regional deformations. Since 1984, two 

European Modular Transportable Laser Ranging Systems, 

MTLRS-1 and MTLRS-2, have been operated by the Institut 

fUr Angewandte Geodgsie (IfAG) and the Observatory for 

Satellite Geodesy of the Delft University of Technology 

(DUT/OSG), respectively. These tracking systems are 

modular in construction and are designed to be highly 

mobile. 
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The global network of operational tracking 

stations can be considered as three seperate, but 

cooperating, groups. The first of these, the Goddard 

Laser Tracking Network consists of the eight MOBLAS 

systems, the Transportable Laser Ranging Stations 

(TLRS), four Smithsonian Astrophysical Observatory 

(SAO) fixed stations. In addition a further three 

fixed satellite and lunar laser ranging facilities, at 

Hawaii, Texas and Orroral Valley, Australia, are also 

operated by the GLTN. The second group, the Intercosmos 

INSATLAS network, comprises around fifteen fixed 

stations around the world. These tracking stations are 

mainly first generation, however some systems (notably 

Potsdam in East Germany) have been upgraded and 

regularly contribute data to the global data set. 

Unlike the two previous groups, the third is not 

operated by a central agency but consists of the 

various European, Japanese and Chinese tracking systems 

operated by scientific institutions of the host 

country. These stations do, however, cooperate closely 

with the Goddard Laser Tracking Network for 

observational campaigns and projects (notably the NASA 

Crustal Dynamics Project, see § 2.2.4). 

The operational status and even the location of 

satellite laser tracking stations are constantly 

changing, consequently making the task of producing a 

definitive list of the 'current' network almost 

impossible. Therefore, in order to provide an 
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illustration of the distribution of the tracking 

stations those contributing data during the 14 months 

of the main campaign of Project MERIT (see § 2.2.4) 

have been listed in fig 2.11. As described in § 4.4.3 

two data sets were compiled from the data observed 

during the campaign, namely the Standard Data Sets of 

compressed filtered data and the Full Rate set of raw 

observations. The first half of fig 2.11 details the 

thirty stations which contributed data to the Standard 

Data Sets and the second half the remaining eight 

stations which contributed data to the Full Rate but 

not to the Standard Data Sets. The flexibility of the 

TLRS transportable systems is clearly illustrated, and 

indeed TLRS-1 contributed data observed at six 

different sites in North America and Chile. Fig 2.111 

illustrates the global locations of the stations 

described in fig 2.11. 

2.2.3 Laser Ranging Satellites  

Since the launch of Explorer 22 (Beacon B), on 

the 9th October 1964, a further 16 satellites equipped 

with retro-reflectors have been launched by a number of 

countries. The purpose of the retro-reflectors is to 

ensure a strong return of a fraction of the transmitted 

laser pulse by the satellite. This is achieved by using 

an array of 'corner-cubes'. As the name suggests a 

corner-cube retro-reflector is basically a glass 

tetrahedron, of which three sides are mutually 
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ID No. System Location 

1181 POTSDM ZIPE, Potsdam, GDR 
7086 MLRS Ft. Davis, Texas 
7090 MOBLAS-5 Yarragadee, Australia 
7105 MOBLAS-7 GSFC, Greenbelt, Md 
7109 MOBLAS-8 Quincy, Ca 
7110 MOBLAS-4 Monument Peak, Ca 
7112 MOBLAS-2 Platteville, Co 
7121 MOBLAS-1 Huanhine, French Pol. 
7122 MOBLAS-6 Mazatlan, Mexico 
7210 HOLLAS Haleakala, Maui, Hawaii 
7265 TLRS-1 Mojave, Barstow, Ca 
7400 TLRS-1 Santiago, Chile 
7401 TLRS-1 Cerro-Tololo, Chile 
7805 METFIN Metsahovi, Finland 
7810 ZIMMER Zimmerwald, Switzerland 
7831 HELWAN HIAG and TUP, Helwan, Egypt 
7833 KOOTWK Kootwijk Obs., Netherlands 
7834 WETZEL IfAG, Wetzell, FRG 
7835 GRASSE GRGS/CERGA, Grasse, France 
7837 CHILAS Shanghai, China 
7838 SHO Simosato Hydrographic Obs., Japan 
7839 GRAZ Obs. Graz-Lustbuehel, Austria 
7840 RGO Royal Greenwich Obs., UK 
7843 ORRLAS Orroral Val., Australia 
7882 TLRS-2 Cabo San Lucas, Mexico 
7886 TLRS-1 Quincy, Ca 
7907 ARELAS Arequipa, Peru 
7939 MATERA PSN, Matera, Italy 
7940 DIONYS Dionysis, Athens, Greece 
8843 MTLRS-1 Kootwijk, Netherlands 

1072 ZVENIG Zvienigorod, USSR 
1837 SIMIEZ Simiez, Crimea, USSR 
7062 TLRS-2 Otay Mountain, Ca 
7082 TLRS-1 Bear Lake, Utah 
7106 GORF Greenbelt, Md 
7220 TLRS-1 Monument Peak, Ca 
7824 SANFAN San Fernando, Spain 
7935 DODAIR Dodair, Tokyo, Japan 

Fig 2.11 Details of MERIT Tracking Stations (1983/84)  
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perpendicular and silvered, obtained by diagonally 

slicing the corner of a cube of glass. Any light 

incident with the remaining face will be reflected, in 

turn, by each of the back faces and will emerge from 

the corner-cube parallel to the incoming light. 

Clearly, therefore, regardless of the direction of the 

incoming light incident on the front face it will be 

reflected back in a parallel direction. Typically, 

these optical retro-reflectors are made of fused 

silica, and operate throughout the visible and near 

infra-red portions of the spectrum. 

Apart from the optical retro-reflectors no 

further payload is required on an artificial satellite 

to enable it to be tracked by a laser ranging station. 

However, the objectives of the particular missions of 

the various satellites, and consequently the structure 

and payloads, are extremly varied. The details of the 

17 satellites are presented in fig 2.IV. Notable is 

the range of the 'nominal heights' of the orbits, 

ranging from 300km to 20,000km. Clearly, the choice of 

satellite to be tracked will be determined by the 

application being considered, as certain applications 

will be best realised by using observations to a 

particular satellite (and orbit). For example, if one 

aims to determine precise tracking station coordinates 

and earth rotation parameters, then a satellite in a 

high (above the earth's upper atmosphere), extremely 

stable, well known orbit is most suitable. Whearas, if 



Satellite ID No. Launch Date Height (km) Eccentricity Inclination 

Explorer 22 (Beacon B) 1964-64A 13 Oct 1964 890-1080 0.013 79.7 
Explorer 27 (Beacon C) 1965-32A 29 Apr 1965 940-1320 0.025 41.2 
Explorer 29, Geos 1 1965-89A 6 Nov 1965 1110-2280 0.072 59.4 
Diademe 1 1967-11A 28 Feb 1967 570-1350 0.053 40.0 
Diademe 2 1967-14A 15 Apr 1967 590-1880 0.085 39.5 
Explorer 36, Geos 2 1968-02A 12 Jan 1968 1080-1580 0.032 105.8 
Peole 1 1970-109A 12 Dec 1970 520-750 0.016 15.0 
NTS 1 	(Timation 3) 1974-54A 22 Jul 1974 13400-13800 0.008 125.1 
Starlette 1975-10A 6 Feb 1975 810-1110 0.021 49.8 
Geos 3 1975-27A 10 Apr 1975 840-850 0.001 115.5 
Castor - D5B 1975-39A 19 May 1975 270-1270 0.070 30.0 
Lageos 1976-39A 4 May 1976 5800-5900 0.004 109.9 
NTS 2 1977-53A 23 Jun 1977 19500-20200 0.012 62.3 
Intercosmos 17 1977-96A 24 Sep 1977 460-510 0.004 82.9 
Seasat 1978-64A 27 Jun 1978 776-800 0.002 108.0 
Tansei 4 1980-15A 17 Feb 1980 517-602 0.006 38.7 
Intercosmos 22 1981-75A 7 Aug 1981 800-895 0.007 81.2 

Fig 2.IV Laser Ranging Satellites  
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the aim is to study, for example, the fine details of 

the earth's gravity field, tidal effects or the upper 

atmosphere, then a satellite in a lower orbit (i.e. 

less than 1000km) would be required. Satellite Laser 

Ranging may also provide supportive role to other 

missions, such as Satellite Altimetry, in order to 

determine the orbit of the particular satellite. For 

this reason altimetry satellites, such as GEOS-3 and 

SEASAT, also carry retro-reflectors together with their 

principle payloads. Applications of laser ranging to 

satellites are discussed in more detail in § 2.2.4. 

Although many of the early observations were to 

Beacon C and later the GEOS satellite, the majority of 

tracking stations currently concentrate on two 

dedicated laser ranging satellites, LAGEOS and 

STARLETTE, the former being the principle target for 

geodetic and geophysical research. STARLETTE was 

launched on 6 February 1975 by the French Centre 

Nationale d'Etudes Spatiale (CNES), into an orbit of 

eccentricity 0.021, perigee 806km and inclination 

49.82 ° . The satellite is a small sphere of radius 12cm, 

which is covered with 60 corner-cube retro-reflectors. 

The shell, in which the corner-cubes are embedded, is 

constructed from aluminium alloy sheets around a 

Uranium 238 core, resulting in a mass of 47.295kg. 

STARLETTE is completely passive and was developed 

exclusively for laser ranging, the shape and low 

' area/mass' ratio (see § 3.3.5) designed to minimise 
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the effects of non-gravitational forces. The orbit of 

STARLETTE was chosen to be highly suitable for tidal 

analysis (see § 3.3.4) and over the last decade 

analyses have demonstrated the ability to precisely 

determine tidal and other geodetic parameters from 

STARLETTE laser ranging data (Williamson and Marsh, 

1985). 

The LAser GEOdynamic Satellite (LAGEOS) was 

launched by NASA on the 4 th May 1976. Similar in 

appearance and design to STARLETTE, LAGEOS is a 

spherical passive satellite (60cm diameter) with a 

brass core and an aluminium shell, and a mass of 407kg. 

Embedded in the outer shell are 426 corner-cube 

retro-reflectors of which 422 are made of fused silica 

(operative throughout the visible and near infra-red 

portions of the spectrum) and four of germanium 

(effective in the middle infra-red region). 

LAGEOS was launched into a near circular orbit 

having an altitude of about 5800km, an inclination of 

109.9 °  and an eccentricity of 0.004. The orbital 

characteristics were selected so that the effects of 

atmospheric drag and short wavelength uncertainties in 

the gravity field, would be minimised. Hovever, the 

satellite also had to be at a low enough altitude to 

ensure a strong return of the laser pulses. As with 

STARLETTE, the high density and spherical shape are 

designed to reduce the effects of solar radiation on 

the satellite. The use of state-of-the-art precise 
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laser ranging systems with LAGEOS over the past few 

years has clearly demonstrated the enormous potential 

of this combination for the investigation of geodynamic 

and geophysical phenomena and maintaining a global 

geodetic reference frame. 

The list shown in fig 2.IV gives the current 

status of laser ranging satellites, although at present 

a metrological balloon, METEOR-3, is also carrying 

retro-reflectors. There are also firm plans for the 

launch of EGP, a Japanese dedicated laser ranging 

satellite, in October 1986. This satellite will be a 2m 

diameter sphere carrying mirrors as well as retro-

reflectors to allow optical tracking. 

Three other missions, ERS-1 (ESA Remote Sensing 

Satellite), POPSAT (Precise Positioning Satellite) and 

TOPEX (Ocean Topography Experiment) are currently being 

planned by the European Space agency (ESA) and (the 

latter) by NASA. All three will carry laser retro-

reflectors as part of the payload. POPSAT is designed 

as a geodetic satellite for determining the positions 

of points on the earth's surface for earthquake 

prediction and monitoring (Wintzer and de Villiers, 

1982). At present no launch has been date proposed for 

POPSAT, although it is planned for the 1990's. ERS-1 

and TOPEX are proposed remote sensing satellites which 

will carry several different payloads for a variety of 

experiments. Both, however, will have radar altimeters 

to monitor the surface of the oceans. 
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ERS-1 (Haskell, 1983) is currently scheduled for launch 

in 1991 and the earliest possible launch for TOPEX is 

1990, although the future of this mission is uncertain 

at present. 

To complement and enhance the dramatic effect 

LAGEOS has had on the earth sciences over the last few 

years, NASA and the Piano Spaziale Nazionale (PSN) of 

the National Research Council of Italy have agreed to 

develop and launch a second LAser GEOdynamic Satellite, 

LAGEOS II (Christodoulidis and Zerbini, 1985). The 

satellite will have the same physical size and 

construction as LAGEOS I and very similar orbital 

characteristics, with the exception of the inclination 

of 51 ° -53 ° , in comparison with 109.8 °  for LAGEOS I. The 

current proposal is to launch the satellite using 

NASA's Space Shuttle during November 1988. 

2.2.4 Applications of Satellite Laser Ranging 

During recent years the analysis of laser range 

observations to artificial satellites has led to a 

significant improvement of our knowledge of several 

aspects of the earth's science and of the forces acting 

on satellites. A review of some of the recent 

applications of Satellite Laser Ranging is presented in 

this section and where applicable an estimate of the 

precision currently achievable is given. 

A product of the analysis of laser range 

obervations is the three dimensional position of the 
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tracking stations. If a dynamical approach of analysis 

is used, as discussed in § 2.5, then there is a 

requirement to fix the longitude of one of the tracking 

stations. It has been demonstrated (Christodoulidis and 

Smith, 1983a), that laser ranging to satellites has the 

potential to define a vertical datum to approximately 

1cm and a horizontal datum to an accuracy of better 

than 2cm. Clearly, positioning to this precision leads 

to the possibility of studying the movements of 

tectonic plates on a regional and global scale, and so 

to assist in the prediction of earthquakes. 

The Crustal Dynamics Project (CDP) was initiated 

in 1979 as part of the NASA Geodynamics Program. The 

aim of the project are to determine regional 

deformations in regions of the US (and tectonically 

similar regions), global tectonic plate movements and 

internal deformations of the North American and Pacific 

plates. The San Andreas Fault Experiment (SAFE), which 

is now a part of the CDP, has used laser ranging to 

satellites to monitor a baseline in California for the 

last fourteen years, resulting in a rate of around 

-6.5±0.7 cm/yr (Christodoulidis and Smith, 1983b). On a 

global scale laser ranging measurements of the rate of 

movement of major tectonic plates have been compared 

with a model of the motions derived by Minster and 

Jordan (1978) and show a good general agreement. The 

CDP is cooperating with the WEGENER (Working group of 

European Geoscientists for the Establishment of 
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Networks for Earthquake Research) consortium, with the 

objective of monitoring regional deformations around 

the tectonically active region of the Eastern 

Mediterranean. Transportable laser ranging systems, in 

addition to fixed systems , will range to LAGEOS from a 

number of sites around the area during 1986, and again 

in 1988 and 1990 (Reinhart et al, 1985). 

Satellite Laser Ranging has also proven to be 

one of the most accurate methods of orientating the 

earth within an inertial reference system. Laser range 

measurements have been used to determine, since 1976, 

the two components of the earth's polar motion (x
P 
 and 

y 
P
) and the excess length of day (see § 3.2.4). The 

resulting series are now regularly included in the 

Bureau International de l'Heure (BIH) determination of 

the earth's orientation. Currently attainable 

accuracies are of the order of 0.002 arc seconds in x 
P 

and y
P 
 (around 6cm on the earth's surface) and 0.2 ms 

in length of day (Smith et al, 1985). Laser ranging to 

satellites is also one of the principal techniques of 

project MERIT (as discussed in Chapter 4). 

In addition, laser tracking of satellites is the 

most precise means available of determining the orbital 

motion of artificial satellites. The principal force 

acting on a satellite is that of the earth's gravity 

field, and over recent years laser range measurements 

have contributed to a number of geopotential models. 

Notable is the GEM-L2 model for LAGEOS (Lerch et al, 
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1982), which included a contribution from around two 

and a half years of LAGEOS tracking data. During the 

development of the PGS-1331 'tailored' gravity for 

STARLETTE tidal parameters were also determined (Marsh, 

Lerch and Williamson, 1985). The tidal model obtained 

showed a close agreement with the ocean tidal model of 

Schwiderski (ocean tides are discussed in § 3.3.4.2) 

and confirmed the frequency dependent love numbers of 

the Wahr model. 

Precise orbit monitoring also allows for the 

improvement of constituents of the force model acting 

on the satellite. For example, atmospheric drag models, 

and solar radiation pressure (see § 3.3.5), and also 

other geophysical effects inferred from the orbital 

parameters. The study of the evolution of the node of 

LAGEOS's orbit has enable geophysicists to gain 

important knowledge regarding the earth's rheology. A 

change in the earth's oblateness has been inferred, and 

attributed to the 'post glacial rebound', leading to an 

estimate of the viscosity of the lower mantle 

(Rubincam, 1984). 

During the next few years a slight improvement 

of the single shot precision of laser ranging systems 

is predicted (5-10mm)and by maintaining a global 

network of tracking stations it is anticipated that 

Satellite Laser Ranging will make further significant 

contributions to the geosciences (Christodoulidis and 

Smith, 1983b). 
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2.3 LASER RANGE MEASUREMENT ERRORS 

2.3.1 Classification of Error Sources  

As previously stated in § 2.2 a measurement of a 

range to a satellite is corrupted by a series of errors 

from a variety of sources. These may be classified as 

instrument errors and modelling errors, the former 

directly affecting the recorded measurement while the 

latter refers to corrections applied to the data due to 

modelled effects, such as atmospheric refraction. The 

' error budget' (or more commonly, the single shot range 

precision) of a tracking system is evaluated as the sum 

of the best estimates of the effects of all the error 

sources. A standard method of asssessing the magnitude 

and effect of errors in laser ranging systems has been 

proposed (Pearlman, 1984). This model attempts to 

standardise the tests, models and calibration 

procedures used by the various laser ranging stations 

and to classify the possible error sources and the 

nature of the errors. Clearly, by the laser ranging 

community adopting a standard such as this, a 

quantitative comparison of the relative performances of 

different tracking systems may be obtained. A 

consistent estimate of the error budget could also be 

provided to the analysts of laser ranging data to allow 

representative weighting to be applied to the range 

measurements during the processing. 

Typically, the major component of the instrument 

errors is due to the combined effect of the delays 
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within the systems, which are usually determined by 

internal calibration. Details of the calibration of 

system delays are given in § 2.3.2. In contrast, the 

delay of the laser pulse as it propagates through the 

atmosphere is the principal model error source. This 

may not be removed by calibration but must be accounted 

for by means of a model based on measurements of 

surface temperature and pressure. Atmospheric 

refraction and the models adopted for corrections to 

laser ranging measurements is discussed in § 2.3.3.1, 

together with other sources of model errors which 

corrupt laser range data. 

2.3.2 Instrument Errors  

The range measurements to a satellite are 

referred to a fixed reference point within the 

telescope system, usually the intersection of the two 

axes of rotation of the telescope mount. However, it is 

not practical, or generally possible, to mount all the 

instrumentation at this 'point'. Therefore some delay 

is introduced into the range measurements due to the, 

often varying, optical and cable path lengths to the 

detecton system and timer. Clearly, these errors must 

be removed from the raw range measurements. The 

magnitude of this error is usually determined by a 

process of calibrating the tracking system, by 

measuring over a fixed path length from the laser 

reference point. This may be achieved by ranging to 
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ground targets (retro-reflectors) at known distances 

from the reference point. However, some tracking 

stations have internal calibration devices, where the 

laser pulse follows a known optical path (of fixed 

length) between transmitting and receiving telescopes. 

Clearly, if the distance is known precisely then the 

residual errors will be due to delays within the 

system. Typically, however, these errors often vary 

with time and consequently it is common practice for 

laser ranging stations to be calibrated for system 

delays before and after each pass. The method of 

calibration using ground targets is not, however, error 

free and may be corrupted by uncertainties in the 

measurement of the distance to the ground target, the 

varaible and uncertain refraction effects at low 

elevation angles, and by the effect of using different 

signal strengths during calibration to those used 

during satellite ranging. 

The 'fixed' reference point is assumed to be 

invariant, but any eccentricity in the mount may 

introduce errors into the measurement, which will vary 

according to the direction in which the telescope is 

pointing. This error will not only affect the range 

measurements to satellites but also any ground target 

calibration ranges. Mount eccentricities are typically 

measured and modelled with periodic re-measurement to 

ensure there is no change in the modelled variations. 
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Errors in the time standards, used during the 

measuring of the time of flight of the laser pulses and 

for the 'time tagging' of the ranges in the database, 

must also be monitored and corrections applied where 

necessary. Clock errors may be separated into a bias 

term (relative to UTC, for example), a drift term and 

also any discontinuous behaviour of the time standard. 

Such errors are usually monitored by means of a 

comparison with time transfer services, such as LORAN 

or GPS, or with other broadcast sources. The 

interpretation of the time of reception of a pulse may 

also lead to errors in the range measurements if the 

returning pulse is non-Gaussian in from. Several third 

generation stations currently use a system based on 

the detection of a single photon of the returned pulse, 

and consequently this error source is eliminated. 

However, for tracking systems receiving a laser pulse 

of many photons, corrections must be made to the range 

measurements depending on whether a 'leading edge' or 

' centroid' detection system is used. 

The determination of systematic and random 

instrument errors of laser ranging systems is generally 

performed by the operators of the tracking stations and 

range measurements are corrected before their release 

to the laser ranging community. However, no correction 

is usually applied for model errors until the data is 

processed. 
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2.3.3 Modelling Errors  

2.3.3.1 Atmospheric Refraction Correction 

As a laser pulse propagates through the 

atmosphere, both on its journey to and from the 

satellite, it experiences a delay (and a bending of the 

path) due to troposheric refraction (Abshire and 

Gardner, 1985). This has the effect of an increase in 

the apparent range to the satellite, varying between 

approximately 13.5m at an elevation angle of 10 °  to 

2.4m at the zenith (Sinclair, 1982). Clearly, with 

current ranging accuracies, of the order of a few 

centimetres, a model is required which can determine 

the correction for atmospheric refraction with 

sufficient accuracy (say, better than 1cm). 

The model recommended (Schutz, 1983b and 

Pearlman, 1984) is that of Marini and Murray, in which 

the correction is based on the computated index of 

refraction at the tracking station (Marini and Murray, 

1973). The only additional measurements required to 

compute the corrections are those of the temperature, 

the pressure and the relative humidity at the laser 

tracking station. Preliminary comparisons with ray 

trace experiments indicated this model to be accurate 

to better than 5mm for elevation angles of greater than 

10 ° . However, this was subsequently not considered 

representative (Bufton, 1978) and it has been estimated 

that the effect of horizontal variations of 

metrological conditions (horizontal gradients in 
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atmospheric density) could cause this model to be in 

error by up to 2cm at elevation angles of around 20 °  

(Bufton 1978 and Gardner, 1976). The correction to a 

one way range measurement is given by 

OR =  f(A) 	. 	A + B 	(2.3) 
g(4i,H) 	sin E + 	B / (A+B)  

sin E + 0.01 

where 	A = 0.002357 P + 0.000141 e 	(2.4) 

B = (1.084x10 8 )PTK + (4.734x10 ° )  2P 2  	(2.5) 
T(3-1 /K) 

K = 1.163 - 0.00968 cos 21) - 0.00104 T (2.6) 

+ 0.00001435 P 

f(A) = 0.965 + 0.0164  + 0.000228 	(2.7) 
x2 	x4 

f(X) = 1.0 	for A = 0.6943 pm (Ruby Laser) 

f(A) = 1.02579 for A = 0.5320 um (Nd:YAG Laser) 

g(4,H) = 1 - 0.0026 cos 24) - 0.00031 H (2.8) 

e = Rh/100 . 6.11x10 s 	(2.9) 

s = 	7.5 (T - 273.15) 	(2.10) 
237.3 + (T - 273.15) 

and 	AR : correction in metres 

E 	true elevation angle of satellite 

(see Appendix B) 

P : atmospheric pressure at tracking station 

(in millibars) 

T : atmospheric temperature at tracking 

station (in Kelvin) 



37 

Rh  : - relative humidity at tracking station 

(percent) 

A : laser wavelength in microns (pm) 

(1) : latitude of tracking station 

H : height of the tracking station above mean 

sea level (km). 

From equation (2.4) it is clear that the most 

significant term of equation (2.3) is dependent on the 

pressure at the tracking station and inversely 

proportional to the elevation angle, (Pearlman, 1984) 

as given by 

aAR = 0.0024 aP 	(2.11) 
sin E 

where aAR : change in the range correction AR, in mm 

ap : change in atmospheric pressure in mb. 

To quantify this expression, a measurement 

error of 1mb in the pressure will introduce an error of 

about 7mm in the correction to the range, whereas small 

errors in the elevation angle will have very little 

effect. The dependence of the model on the temperature 

measurement at the tracking station is given by 

aba = 1x10 	aT 	 (2.12) 
sin 3  E 

where aT : change in temperature T in Kelvin. 

A error of 1K in the measurment of temperature 

at the tracking station results in an error of 0.3mm in 

the range correction. Clearly, in order that the 
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effects of atmospheric refraction may be removed with 

the precision predicted by the model, the barometers 

and thermometers at the tracking sites must be 

calibrated to ensure that errors in the pressure and 

temperature measurements do not corrupt the atmospheric 

delay correction. 

2.3.3.2 Other Modelling Errors  

For all laser ranging satellites the array of 

corner-cubes, which reflect the transmitted laser 

signal back to the tracking station, are displaced from 

the centre-of-mass of the spacecraft. Furthermore, the 

orbit determination is referred to this reference point 

(the centre-of-mass) and so the observed ranges must be 

corrected accordingly. However, the pulse is not 

reflected from a single point but is a combination of 

reflections from all the reflectors facing the station. 

For spherical satellites (such as LAGEOS and STARLETTE) 

this correction is a simple constant offset, however, 

for others the satellite attitude and consequently the 

position of the reflector array must be considered, 

resulting in more complex correction formulae. 

For LAGEOS the centre-of-mass correction has 

been determined both analytically (Fitzmaurice et al, 

1978 and Arnold, 1978) and by pre-launch calibration 

(Fitzmaurice et al, 1978). A constant value of 24.0cm 

has been generally adopted by the laser ranging 

community and indeed is the value recommended by the 



39 

MERIT standards (Melbourne, 1983). For STARLETTE the 

correction is conventionally adopted as 7.5cm. It was 

shown during the analytical determination of the centre-

of-mass correction for LAGEOS, that there was a 

dependence of the correction on the pulse width of the 

laser and on the detection system. It is estimated 

(Pearlman, 1984) that an error as large as 1cm could be 

introduced as a result of using a different pulse width 

or detection system, to that assumed during the 

determination of the correction. This range error would 

appear as a long term fixed bias in the observed 

ranges. 

As previously discussed, in § 2.3.2, the laser 

ranges are referred to some 'fixed' reference point 

within the tracking system. However, particularly for 

mobile and transportable laser ranging stations, the 

offset to some local geodetic reference benchmark must 

be surveyed. This allows the transformation of the 

determined tracking station coordinates to this 

geodetic reference point from the laser reference 

point. Clearly, when a site is re-occupied, the 

tracking station cannot be placed in exactly the same 

position and so the laser reference point will also be 

in a different position. However, a local survey 

permits the connection to the same fixed geodetic 

(ground) reference point. Small errors may be 

introduced to the resulting coordinates from any errors 

in the surveyed transformation vector or from any local 
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movements of the laser ranging station with respect to 

the ground point. This is equally true for both fixed 

or mobile laser tracking systems. 

Although corrections for model errors are 

generally applied by the analysts of laser ranging data 

during the processing, the atmospheric refraction 

correction and the ground survey of the laser position 

depend on measurements taken at the tracking stations. 

Consequently, as with instrument errors, the monitoring 

of modelling error sources and the process of 

calibration depend on measurements carried out by the 

field operators of the laser ranging stations. 
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2.4 	Processing of Satellite Laser Ranging Data  

2.4.1 	Pre-processing of Observed Laser Ranges  

2.4.1.1 General Description  

The processing of laser ranging observations 

can be divided into two distinct stages. The aim of the 

first of these stages, pre-processing, is to produce 

from the 'raw' observed data a 'clean' data set free 

from erroneous observations, and corrected for any 

known anomalies of the raw data. The data may also be 

compressed so as to produce a quantity of data suitable 

for the main stage of the analysis. The second stage 

takes the 'clean' data and computes the required 

unknowns, as described briefly in § 2.4.2 and in more 

detail in Chapter 3. This section is concerned with the 

process of producing the 'clean' data ready for 

analysis, from the raw data set of observed ranges. 

Pre-processing of laser ranging data, for the 

purpose of this thesis, may be defined as any process 

concerning the observed ranges which is carried out by 

the analyst after the data has been received (at the 

analysis centres) and before the main computational 

stage. This definition clearly excludes any corrections 

which are applied at the tracking stations or data 

collection centres, to account for systematic and 

random errors discussed in § 2.4.2. 

Some form of pre-processing is usually found 

necessary for a number of possible reasons. Firstly, 
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the raw data may contain spurious or 'bad' observations 

which must be removed, otherwise they would corrupt the 

final analysis. These may be the result of the 

incorrect detection of the returning laser pulse, 

particularly with systems operating at the single 

photon level, when background photons of light may pass 

through the spectral and time filters of the detection 

system. Other effects, such as timing errors, may also 

introduce 'noisy' observations into the data set. The 

recording and transmission (usually on magnetic tapes) 

of the observed ranges may possibly introduce some data 

corruption, although this would normally lead to gross 

errors rather than noise and so may be detected easily. 

Secondly, any known anomalies of the data set must be 

corrected. These usually occur as a result of incorrect 

'flagging' when the data was recorded at the tracking 

stations. Within the standard data formats, a number of 

information flags indicate which corrections have been 

applied, which constants have been used and with 

reference to which time scale the observations were 

logged. Blunders of this nature are usually detected 

and publicised by the data collection centres before 

the general release of the data. 

Lastly, the current trend in Satellite Laser 

Ranging is towards tracking systems operating at very 

high repetition rates, up to 10 pulses per second 

(Pearlman, 1984). This has resulted in immense 

quantities of data being collected, sometimes in the 
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region of several thousand ranges per pass (around 40 

minutes for LAGEOS). Clearly, this is a considerable 

problem for analysts who may be presented with 

excessive volumes of data, which it may not be 

practical to handle. Rather than disregarding the 

majority of this data the current practice is to adopt 

some form of averaging or compression technique, with 

the aim of producing a reasonable volume of data which 

is representative of the larger data set. Various 

techniques of data compression to produce 'normal 

points' have been proposed over the last few years and 

are discussed in § 2.4.1.3. 

Clearly, when adopting pre-processing procedures 

it is important that only the poor observations are 

removed and the data is averaged without introducing 

trends or biases in to the resulting data set. Two 

pre-processing strategies that have been tested at 

Nottingham are presented in § 2.4.1.4 and § 2.4.1.5 and 

their relative merits discussed. 

2.4.1.2 Filtering of Raw Laser Ranging Data  

After the initial correction of the observations 

for any known anomalies the purpose of filtering is to 

remove any 'bad' observations from the data set. The 

detection outliers from a series of data points is a 

very common, and well documented, concept not only in 

geodesy and surveying but all scientific disciplines. 

Consequently, there are many available approaches, but 
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the problem is to select, or develop, the most 

appropriate screening technique for Satellite Laser 

Ranging observations. 

To illustrate the nature of the data, the range 

residuals from a single 'good' 30 minute pass are 

plotted in fig 2.V. The 'residuals' are simply the 

'observed - predicted' ranges, the predicted range 

calculated from a approximate orbit determination. The 

details of this procedure are given in § 2.4.1.5; the 

figure is only included in this section as an 

illustration. Clearly, there is a need for the adopted 

method to adequately model the motion of the satellite 

over whatever period is required (usually one complete 

pass), to ensure that only outlying points are rejected 

and good observations are not 'trimmed' from the data 

set. Although not shown in fig 2.V, laser range 

observations are rarely continuous over a whole pass 

and breaks of a few minutes may occur, due to cloud 

cover or other problems. It is important that an 

adopted filtering algorithm is able to cope with such 

discontinuities, without loss of precision. 

Several different techniques have been suggested 

for the screening of laser ranging observations, which 

primarily differ in the model chosen to represent the 

satellites orbit. However there are two major different 

approaches. Firstly, by using all the available data, 

prior to the period of the observations being filtered, 

a very stable long arc (orbit) may be computed and 
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extrapolated to include the relevant period of data 

(Tapley et al, 1982). Residuals are calculated as the 

'observed - predicted' range and any gross errors 

detected and the corresponding observations rejected. 

The residuals are subjected to either polynomial or 

'bias' parameter fitting, to remove any remaining 

systematic trends, before spurious observations are 

detected by some rejection criteria. Clearly, not all 

analysis centres possess the facility to compute very 

long orbital arcs and so a 'short arc' version of the 

same principle has been adopted by several groups, in 

which simple Keplerian orbital elements (Ashkenazi and 

Moore, 1986) are adjusted after the removal of gross 

outliers. 

A simpler approach is to represent the orbital 

motion (over, say, the duration of a single pass) by an 

nth order regression polynomial of the form 

R.1  = a0  + a11  (t.-t 0 	. . ) + 	+ an1  (t.-t0 ) n 

where R. 1 	: observed range at epoch ti  

ti -t0 : interval from reference epoch t 0  

a0 " an  : coefficients. 

By including a residual term in (2.13) this model may 

be 'fitted' to a pass of observations, with the 

coefficients determined by least squares. The 

linearised model and least squares procedure are 

described in Appendix C. The polynomial may be fitted 

to the observed ranges, R, or the square of the ranges, 

R 2  (Sinclair, 1985) and the order of the polynomial 

(2.13) 
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selected to adequately model the orbital motion. 

The advantage of such techniques is the simplicity with 

which a polynomial representation of an orbit may be 

evaluated, However, care must be taken if the residuals 

are to be used at a later stage (for example during the 

compression of the data) as high frequency trends may 

be introduced by the model. This may result if the 

polynomial model does not sufficiently represent the 

orbital motion. 

It has been shown (Masters et al, 1983) that 

ranges to LAGEOS vary quadratically (approximately) 

over short periods of time (up to 5 minutes). 

Therefore, the second derivative of the ranges with 

respect to time should be constant, or vary smoothly. 

Consequently, by comparing successive differences of 

the derivatives, outliers may be detected, as these 

result in erratic changes of the derivative. 

Having obtained the range residuals, by whatever 

means, a criteria must be adopted in order to reject 

the bad observations. A first criterion, to detect 

gross errors, may be to use a fixed 'window' (say ±50m) 

and reject any ranges with residuals outside this 

window. The root-mean-square residual, a r , is the basic 

parameter used by most filtering criteria, where 

6 2 = L. r  1=14  
2 

V. (2.14) 
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and 	v. : ith  residual (observed - predicted) 

n 	number of residuals (of observed ranges) 

Typically, data is filtered by rejecting all 

observations with residuals greater than 2a or 3a. The 

entire screening process would usually be repeated a 

number of times until no more observations are 

rejected. 

2.4.1.3 Compression of Laser Range Observations  

As previously mentioned, many laser ranging 

stations are currently producing data at the rate of 

several thousand ranges per pass (up to about 40 

minutes for LAGEOS) and when tracking data from a 

number of stations are combined the resulting quantity 

of data cannot be handled economically or easily. A 

means of 'data compression' is necessary which will 

maintain (or even enhance) the quality of the 

observations and the contribution of the entire data 

set but greatly reduce the quantity of data that must 

be processed. The technique of producing 'normal 

points' has been employed by analysts of Lunar Laser 

Ranging data for many years, in order to compress 

observations over 10 minute intervals into single 

representative observations. For the analysis of LAGEOS 

laser ranging data intervals, or 'bins', of one to 

three minutes are suitable, while for STARLETTE bins of 

30 seconds of data are typical. 
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As with data filtering techniques, many 

different approaches have been proposed. These are 

generally based on either range residuals from a 

predicted orbit or on some form of polynomial (fitted 

by least squares, see Appendix C) to the filtered 

ranges. Clearly, it is important, whichever approach is 

employed, that no systematic trends are introduced, 

either from the range residuals or from the fitting of 

a polynomial, as these may corrupt the resulting normal 

point ranges. A further variation between the different 

approaches concerns the choice of epoch, within the 

interval of data, at which the normal point range 

should be determined. 

One method of producing normal points is based 

on the averaging of range residuals over short periods 

of time. By using a computed orbit range residuals may 

be obtained as the difference between the observed 

range and the range computed from the predicted orbit 

(see § 2.4.1.2). Over a single pass any remaining 

systematic trends in the residuals may be removed, for 

example, by fitting a low order polynomial. After 

splitting the data into short bins, the residuals are 

averaged over these periods. The normal point range is 

evaluated at the observation epoch nearest the mean 

epoch of the observations within the bin, as follows 

RNjt 	Rt  - vt  + v. 	(2.15) 

where 	v 	mean range residual for the j th 'bin' 

vt 	range residual at normal point epoch t 
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Rt : observed range at normal point epoch t 

RNjt  normal point range at epoch t within 

the j th bin.  

This technique has been recommended as a 

standard procedure for the generation of normal points, 

and was adopted by the laser ranging community during 

the 5th International Workshop on Laser Ranging 

Instrumentation (Gaignebet, 1985). However, this 

procedure does require a knowledge of the satellite's 

orbit, and consequently 'simpler' models have also been 

proposed. 

The satellite's orbital motion over the short 

periods of the normal point bins (say 3 minutes for 

LAGEOS) may be accurately represented by low order time 

polynomials (or Chebyshev polynomials) fitted to the 

filtered ranges. The normal points may be subsequently 

generated by evaluating the polynomial at the required 

epoch within the particular bin. This epoch may be 

either the mid epoch, the mean epoch, or the epoch of 

an observed range nearest to the mean epoch of the bin. 

The latter is generally accepted as the most suitable 

epoch at which normal points should be generated. 

2.4.1.4 Simple Polynomial Pre-Processing Strategy 

The aim of this section is to describe a 

polynomial pre-processing technique developed, tested 

and employed during the initial analyses of LAGEOS data 

at Nottingham. Subsequently a different method, based 
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on range residuals from a computed orbit, was adopted 

and the formalisation of this approach are discussed in 

the following section (§ 2.4.1.5). A polynomial 

approach to filtering and the generation of normal 

points was used because of its ease of programming and 

the relatively fast rate at which raw observations 

could be pre-processed. The initial tests were 

conducted using LAGEOS data which was generally of ,2 nd 

generation' accuracy and nature, and with this data set 

the model performed well. However, later attempts to 

pre-process '3 rd generation' LAGEOS observations 

indicated certain limitations of the simple approach. 

The first stage of the procedure involves the filtering 

of any spurious ranges from the data set. 

(i) A 10 th  order polynomial is fitted by least 

squares (see Appendix C) to each pass of 

data and the root-mean-square residual of 

the fit, ar , is calculated. 

(ii) All the observed ranges with residuals 

greater than 2ar are rejected and steps 

(i) and (ii) repeated up to four times, or 

until no more ranges are rejected. 

This method successfully filters all spurious 

ranges from most passes of LAGEOS data. However, when a 

pass of data consists principally of 'noise' and very 

little 'signal' the method fails and most of the 'bad' 

observations pass through the filter. Consequently, a 

second filter is included during the formation of 
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normal points in order to trap any remaining bad 

observations which have passed through the main 

filtering procedure. The method of formation of normal 

points is as follows 

(i) The observations are divided into short 

periods (bins) of data, spanning one to 

three minutes. 

(ii) A 7 th order polynomial is fitted through 

each bin, by least squares, and the root-

mean-square residual calculated. 

(iii) If this rms residual exceeds some preset 

value, indicating 'bad' observations may 

still be included in the data, the whole 

bin of data is rejected. 

(iv) The epoch of the observation closest to 

the mid epoch of each bin is identified. 

(v) The normal points are generated by 

evaluating the polynomial for each bin at 

the corresponding epoch. 

By evaluating the polynomial at the epoch of the 

'real' observation, closest to the mid interval epoch, 

the corrections and other data contained within the 

data record, for that epoch, may also be used for the 

normal point range. 

Various orders of polynomial were tested for 

both the filtering and generation of normal points, and 

10th and 7th orders (respectively) were found to be the 
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most efficient. This procedure was used throughout all 

the initial trials of the Satellite Laser Ranging 

analysis software (see Chapter 5) and solutions 

obtained using the normal points were shown to be 

practically identical to those obtained using the full 

set of filtered data. However, the benefit of using 

normal points was the considerable decrease in both the 

quantity of data to be processed and the time this 

processing took. 

Although this procedure proved to be efficient, 

it was not 'fool proof' and occasionally 'bad' 

observations would pass through the filters undetected. 

This was because trends in the residuals introduced by 

the polynomial, which was not always able to adequately 

fit all passes of data, were greater than the residuals 

of the 'bad' observations. Similarly, any similar 

trends introduced at the normal point stage would lead 

to a 'bias' in the normal point range. Finally, any 

breaks (of a few minutes) in the data, during a pass, 

may cause problems when fitting a polynomial. This 

could subsequently result in either of the two previous 

problems. After considering modifying the model to 

improve it's overall efficiency, it was decided that a 

completely revised strategy may be more suitable. 

2.4.1.5 Orbit Residual Pre-Processing Strategy 

The principal difference between this approach 

to pre-processing of LAGEOS range data and the method 
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described in § 2.4.1.4, concerns the modelling of the 

orbital motion of the satellite. In preference to a 

simple polynomial model, a computed orbit of the 

satellite is determined based on a model of the forces 

acting on the satellite. This technique of orbit 

determination (see Chapter 3) forms the basis of the 

majority of analysis procedures for laser ranging 

observations (see § 2.4.2). However, for pre-processing 

purposes the orbital parameters do not need to be known 

as precisely. The residuals from this computed orbit 

(observed - predicted range) are used to filter the raw 

LAGEOS observations as follows: 

(i) The data is sampled at 2 or 3 minute 

intervals to produce a reduced raw data 

set. 

(ii) The orbital parameters are fitted to this 

data (see Chapter 3), using the best 

available tracking station coordinates. 

(iii) Any observations with very large residuals 

(gross errors) are rejected from this 

sampled data set and stage (ii) repeated if 

necessary. 

(iv) The residuals of all the observations are 

calculated and, for each pass, any 

systematic trends in the range residuals 

are removed by fitting a 1 st order (for up 

to 20 minutes data) or 2 nd order (for over 
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20 minutes of data) polynomial, by least 

squares. The rms residual, ar , is 

calculated. 

(v) If ar is greater than 0.5m then all the 

observations with residuals greater than 2a 

are rejected. If ar  is less than 0.5m then 

all observations with residuals greater 

than 3a are rejected. 

(vi) Steps (iv) and (v) are repeated until no 

more ranges are rejected. 

This procedure assumes no previous knowledge of 

the orbit (steps (i),(ii) and (iii)), however, if a 

previous orbit is known this may be extraploated to 

produce a predicted orbit, spanning the interval of raw 

data. Consequently, the first three steps of the 

procedure may not be required. Step (iv) ensures that 

no systematic trends remain and the residuals are 

distributed about a zero mean. This is efficiently 

achieved by using low order polynomials. The first of 

the rejection criterion (step (v)) ensures an initial 

fast removal of gross outliers, while the second avoids 

'trimming' good observations from the set once any 

gross errors have beeen removed. The filtered residuals 

are subsequently split into short bins (1 to 3 minutes) 

and normal points are generated using the procedure 

outlined in § 2.4.1.3. 
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Although this procedure is more time consuming, 

and requires a sophisticated model of the satellite's 

motion, it has proven to be very efficient with no 

evident problems or limitations. However both the 

polynomial and orbital pre-processing procedures are 

currently included in the Nottingham software suite 

(see Chapter 5). 

2.4.2 Analysis of Satellite Laser Range Data  

The observational technique of laser ranging to 

satellites results in batches of range measurements 

from ground tracking stations to a particular 

satellite. These observations are of very little use 

without some form of post-observational analysis. The 

aim of such analyses is to use these precise 

measurements to obtain estimates of many geodetic and 

geophysical parameters, and consequently a better 

understanding of the phenomena. The wide range of the 

applications to which processed laser ranging 

observations have contributed, or may contribute in the 

near future, has already been discussed in § 2.2.4. 

For many years the analysis of Satellite Laser 

Ranging, and other geodetic satellite, observations has 

been dominated by two distinct approaches, namely 

dynamical methods and geometrical methods. Between 

these two extremes several techniques have evolved 

which bridge the gap, resulting in short-arc semi 

dynamic techniques. Many of the early experiments in 
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satellite geodesy used geometric analysis to determine 

inter-station baselines. However, over the years models 

of the orbital motion of satellites have improved and 

as a result dynamical methods of analysis have become 

the dominant techniques for the analysis of laser 

ranging data. 

The fundamental component of a dynamical 

approach is a precise model of the orbital dynamics of 

the satellite, which is used to determine the 

satellite's orbit. This model consists of many 

components representing all the forces acting on the 

satellite. Clearly, imperfections in these models 

impose a limitation on the accuracy attainable from the 

analysis of laser ranging data. Indeed with the current 

trend towards tracking systems operating at the 2-5cm 

(single shot precision) level, certain force model 

components are becoming the dominant error sources, 

particularly for low satellites such as STARLETTE. 

Despite these apparent limitations, long arc dynamical 

solutions using observations spanning several years 

(Smith et al, 1985 and Tapley et al, 1985) have 

provided very stable geodetic reference systems, which 

define not only the coordinates of the globally 

distributed tracking stations but also the motion of 

the pole and fundamental constants (such the geocentric 

constant of gravitation, GM). These reference systems 

form a framework within which the analysis for other 

geophysical parameters may be based. 
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In contrast to the dynamical approach, geometric 

solutions do not rely on a precise knowledge of the 

dynamics of the satellite's orbit and consequently are 

not affected by imperfections in the force models. 

However, such solutions do require near simultaneous 

observations (usually co-observed passes, the 

observations of which are interpolated to produce quasi-

simultaneous ranges) from a number of tracking station. 

In addition, the spatial geometry of the tracking 

stations and the distribution of the data is critical. 

The approach was severely restricted in the early years 

because of the poor geometry obtainable using low 

satellites (such as Beacon Explorer C), however, the 

launch of LAGEOS improved the situation considerably. 

Nevertheless, the dependence on accurate syncronisation 

of the clocks, at the tracking stations, and the 

dependence on the weather conditions make the use of a 

purely geometrical mode of analysis unlikely. 

The use of semi-dynamic approaches has been 

studied by various groups over recent years. A method 

of using simultaneous range differences between two co-

observing sites to determine the inter-station baseline 

has been proposed (Pavlis, 1982 and 1985). Studies 

concerning the use of short and medium arcs of 

STARLETTE data (Moore, 1985) have shown that, over 

short arcs (say up to 10 minutes) the dependence on the 

dynamical orbital model is greatly reduced and the 

precision of the fit of the orbit to the observations 
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is determined by the precision of the data and not by 

that of the models. However, the distribution of data 

and the geometry of the tracking stations become much 

more important. 

In summary, despite the dependence on the models 

representing the orbital motion of the satellite, 

dynamical methods dominate the analysis of Satellite 

Laser Ranging data. This is a result of the ability of 

dynamical techniques to process laser ranging data with 

no requirement of co-observation and very little 

dependence on the geometry of the tracking stations, 

and in addition, to determine a wide variety of unknown 

parameters. Consequently, nearly all the software 

packages developed for the analysis of laser ranging 

data are based on dynamical approaches. 

The principle of the dynamical analysis of laser 

range observations are presented in Chapter 3 and 

details of the software package, SODAPOP, developed at 

Nottingham, based on these principles, are given in 

Chapter 5. 



CHAPTER THREE  

PRINCIPLES OF THE DYNAMICAL ANALYSIS  

OF SATELLITE LASER RANGING DATA 
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3.1 	BASIC CONCEPTS 

The determination of a satellite's orbit is an 

important component of the dynamical analysis of 

Satellite Laser Ranging observations. Furthermore, by 

processing laser ranging data to altimetry satellites 

the determination of the satellite's orbit is the 

principal aim of the analysis. However, generally the 

orbit of the satellite provides a stable framework 

against which other parameters are derived. Orbit 

determination is basically the computation of the 

ephemeris of the satellite from a set of tacking data, 

usually from a global network of tracking stations. The 

principles are not, however, dedicated to laser ranging 

and other navigation and positioning systems have used 

the technique for many years. Both the Navy Navigation 

Satellite System (TRANSIT Doppler), which has been used 

for navigation and positioning since 1967, and the more 

recent NAVSTAR Global Positioning System, use the 

CELEST (O'Toole, 1976) orbit determination program to 

compute the satellite ephemerides which are 

subsequently broadcast to the satellites (Ashkenazi and 

Moore, 1986). 

The process of orbit determination involves the 

use of an accurate model which describes the various 

forces acting on the satellite. This force model may 

include components due to gravitational, surface and 

other forces (see § 3.3). The vector sum of all the 
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components gives the resultant force acting on the 

satellite, and consequently the resultant acceleration 

of the satellite. This acceleration (which is a 

function of the position or, in the case of drag 

components, the velocity of the satellite) is 

numerically integrated, once to obtain the velocity and 

twice of obtain the position of the satellite as a 

function of time. 

For this 'orbit integration' to commence the 

satellite's state vector (consisting of the position 

and velocity vectors of the satellite) must be known at 

some initial epoch t o . However, to begin with these 

starting elements need not be known accurately because 

observations, in this case laser range measurements, 

from a network of tracking stations may be used in a 

least squares solution to obtain better a estimate of 

the initial state vector. Depending on the particular 

objective of the processing, various other parameters 

may also be determined as unknowns in the least square 

solution. If the aim of the analysis is simply the 

determination of the orbit of a satellite then the 

coordinates of the tracking stations would be fixed and 

the starting elements (and possibly polar motion 

values) would be the principal unknowns. In contrast, 

for geophysical research the objective may be the 

determination of the tracking station coordinates (for 

crustal dynamics), the tidal Love numbers or 

geopotential coefficients. 
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In addition to the satellite coordinates, the 

orbit integration process also generates a series of 

partial differential terms of position and velocity 

with respect to the components of the initial state 

vector and other model unknowns. These are required so 

as to enable the coefficients of the observation 

equations (see § 3.4.4) to be computed during the least 

squares analysis. A general outline of the principles 

of orbit determination is illustrated in fig 3.1. 

Although the coordinates of the tracking 

stations and various other force model components 

(particularly the geopotential model) are given in an 

'earth fixed' reference frame, the numerical orbit 

integration must be carried out in an inertial (i.e. 

non-rotating) coordinate reference system. The various 

coordinate reference frames and the transformations 

between them are described in the following section 

(§ 3.2), and the components of the force model and the 

integration and adjustment procedures are discussed in 

§ 3.3 and § 3.4 respectively. 
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3.2 	COORDINATE REFERENCE SYSTEMS 

3.2.1 	Earth Fixed Coordinate Systems  

3.2.1.1 Geocentric Cartesian Coordinate System 

In order to describe a three dimensional 

coordinate system it is necessary to define a number of 

properties. Firstly the location of the origin and the 

orientation of the axes must be specified (in addition, 

for a cartesian representation this would also include 

a definition of whether the axes form a 'right handed' 

or a 'left handed' system). The parameters, i.e. 

cartesian, polar or spheroidal, which define the 

position of a point relative to the coordinate system 

must also be specified. Finally, the scale of the 

system must be defined. Consequently, in order to 

adequately define a three dimensional reference frame a 

minimum of seven parameters must be specified. For a 

cartesian representation these are the position of the 

origin (3 parameters), the direction of the three axes 

(3 parameters) and the scale of the system 

(1 parameter). 

The geocentric earth fixed coordinate reference 

frame is a right handed cartesian system with its 

origin at the geocentre (the earth's centre of mass) 

The Z-axis is directed towards the CIO pole as 

currently maintained by the Bureau International de 

l'Heure (BIH) and the X-axis towards the BIH zero 

meridian (see § 4.2) The Y-axis is mutually 
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perpendicular to the other two so as to form a right 

handed system. The scale is defined by the adopted 

standard. The position of a point, P, as shown in fig 

3.11, is defined by three displacements, X 
P 
 , Y

P 
 and Z , 

along the three axes X, Y and Z from the geocentric 

origin. The resulting position vector is given by 

P = (X 
P 
 , Y 

P 
 , Z 

P
). 	(3.1) 

Clearly, this definition of the position vector 

is also true for other geocentric cartesian coordinate 

systems, such as the inertial reference frame defined 

in § 3.2.2. The coordinates of laser ranging stations 

are generally given in the geocentric earth fixed 

system with either cartesian or spheroidal (see 

§ 3.2.1.3) components. Similarly, the geopotential 

field is also given in terms of the earth fixed system 

but in this case a spherical polar representation is 

used. 

3.2.1.2 Spherical Polar Representation 

The position of a point, P, in a cartesian 

reference frame is usually expressed in terms of the 

three perpendicular components. However, a polar 

representation may also be used in which the position 

is expressed in terms of a distance and two angles, as 

illustrated in fig 3.11. The position vector of the 

point P is then given by 

P = (R 
P 
 , X , 

P
) 	(3.2) 
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Fig 3.11 Geocentric Coordinate System 
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where R 	distance of point P from origin 0 

	

X 	: spherical longitude, the anti-clockwise 

angle from the X-axis to OP' (the 

projection of OP in the X-Y plane) 

spherical latitude, the anti-clockwise 

angle from OP' (i.e. the X-Y plane) to 

OP. 

The spherical and cartesian coordinates are related by 

Xp  = Rp  cos 4 	cos ap  

Yp  = Rp  cos (1)p  sin X 

(3.3) 

(3.4) 

Zp  = Rp  sin itsp (3.5) 

and conversely 

1 R 	= 	(X224. y2 4. 	z212 (3.6) 
P 	P P i  

A 	= tan 1  Y (3.7) 

X 
p 

(1) p 	= 	sin 	I  
p 

(3.8) 

R 

= tan 1  (3.9) 

✓ (X123  + Y 2 ) 

3.2.1.3 Spheroidal Coordinate Representation 

Traditionally, geodetic computations have 

separated the three dimensional coordinates of a point 

into horizontal and vertical components. This is 

usually achieved by adopting a reference surface 

closely resembling the figure of the earth and 
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expressing a points position by its height above this 

surface and the position of the projection of the point 

onto the surface. A convenient surface on which to 

carry out such computations is an oblate spheroid (the 

surface described by rotating an ellipse about its 

minor axis). Clearly, to define a ellipsoidal 

coordinate system it is necessary to specify two 

parameters of the ellipsoid in addition to the usual 

seven parameters. Typically, a spheroid is adopted 

which closely fits the specific area of a local survey. 

However, for global studies, such as the analysis of 

laser ranging data, a geocentric mean ellipsoid is 

defined, such that its minor axis is coincident with 

the Z-axis of the geocentric cartesian system. 

In order to specify the parameters which 

describe the position of a point, it is first necessary 

to define various properties of the ellipsoid. Firstly, 

the equatorial plane is defined as the plane containing 

the major axis of the ellipsoid, the X-Y plane shown in 

fig 3.111. Secondly, the meridional plane through point 

P is defined as the plane containing both the minor 

axis (the Z-axis) and the point, and is illustrated in 

the lower half of fig 3.111. The 'normal' at point P is 

defined as the line (P1P2 in fig 3.111) through point P 

which is perpendicular to the ellipsoid at point P 1  

(the projection of point P onto the spheroid). The 

equation of any point on the surface of the spheroid, 

in terms of the geocentric cartesian coordinates is 



Meridional Section 

Fig 3.111 Spheroidal Coordinates 
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given by, 

x2 4.  y2 4. Z2 = 1 	(3.10) 

a 2 	a 2 	b2  

where a 	semi-major axis 

b : semi-minor axis 

The spheroidal representation of the position vector 

of a point, P, is given by, 

P = 4, A, h) 	(3.11) 

where (I) : geodetic latitude, the anti-clockwise 

angle between the normal at P (line P 1 P2 ) 

and the equatorial plane, 

A : geodetic longitude, the anti-clockwise 

angle from the meridional plane which 

includes the X-axis (ie the Greenwich 

Meridian) to the meridional plane through 

the point P, 

h : height of the point P above the reference 

ellipsoid, along the normal at P (distance 

PP 1 in fig 3.111). 

The transformation from geodetic (i.e. spheroidal) to 

cartesian coordinates is given by, 

X = (N + h) cos (I) cos A 	(3.12) 

Y = (N + h) cos (I) sin A 	(3.13) 

Z = ((N + h) - Ne 2 ) sin 4) 

= ((1 - e 2 )N + h) sin (0 	(3.14) 
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where e 	eccentricity of the ellipsoid, given by, 

e
2 = a 2 - b 2  (3.15) 

 

a 2 

 

or 	e2 = 2f - f 2  (3.16) 

f : flattening of the ellipsoid, as given by 

f = a - b 
	

(3.17) 
a 

N 	radius of curvature in the plane 

perpendicular to the meridional plane, 

the prime vertical, which is given by 

(Bomford, 1980), 

N = 	a 	(3.18) 
✓(1 - e 2  sin 2 4). 

The reverse transformation, from cartesian to geodetic 

spheroidal coordinates is given by, 

A = tan -1  LI  
x J 

1 (3.19) 

(1) = tan-1  (Z + Ne 2  sin fl) ) 	(3.20) 

✓ (x2  + Y 2 ) 

h = 	X 	- N 	(3.21) 
cos (I) cos A 

Equation (3.20) must be evaluated iteratively, 

starting with an initial assumption of the value of (1). 

The geocentric latitude, as given by equation (3.8) may 

be used as a first approximation for the geodetic 

latitude, 1). An alternative to this iterative procedure 

is given by Vincenty (1979). This approach allows the 

direct conversion from cartesian to geodetic 



A = tan 1  Y ) 
( X 

u = tan 1  ( 	b 	. 	tan 	(I) 
a 

(3.25) 

I 	(3.26) 

coordinates, without the need for any iteration, as 

follows, 

P = ✓ (X 2  + Y 2 ) 	(3.22) 

8= tan 1 ( z . a ) 
	

(3.23) 
P b 

[

(I) = tan-1 	Z + c b sin 3 6 	(3.24) 

P - e 2  a cos 3 0 
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h = ITT: a cos u) 2  + (Z - b sin u) 2  (3.27) 

E = a 2  - b 2 	 (3.28) 

b 2  

and 8, P and u are intermediate parameters. The sign 

of h is the same as the sign of (p - a cos u). 

3.2.1.4 Topocentric Coordinate Systems  

The topocentric coordinate system is a cartesian 

coordinate system with its origin at some point on the 

earth's surface. The Z-axis is in the direction of the 

perpendicular to the plane which is tangential to the 

surface of the earth, at the origin. The X-axis, which 

lies in the tangential plane, is directed towards the 

CIO pole. The Y-axis is perpendicular to both these 

axes, so as to form a left-handed system, as 

illustrated in fig 3.IV. Clearly, this system is of 

little use for expressing the positions of the tracking 
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Fig 3.IV Topocentric Coordinates 
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- sin (1) cos A 	- sin (I) sin A 	cos (I) 

- sin X 	cos X 	0 

	

cos (I) cos A 	cos (I) sin A 	sin 4) 

R = 

and 
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stations of a global network. However, it is used in 

the analysis of laser ranging observations as a 

convenient system in which to determine the elevation 

angle from the tracking station to the satellite. The 

elevation angle of the satellite (see Appendix B) is 

required in order to compute the correction for the 

effects of atmospheric refraction (see § 2.3.3.1). In 

this particular case all that is required is the 

coordinate difference between the tracking station and 

the satellite. The transformation between coordinate 

differences in the geocentric cartesian frame and the 

corresponding coordinate differences in the topocentric 

system are given by (Vincenty, 1979), 

   

   

AX
T 

AYT 

AZT 

AX 

R AY 

AZ 

(3.29) 

   

   

and the inverse transformation is given by, 

(3.30) 

(3.31) 

AXT , AYT , AZT  • coordinate differences in the 

topocentric system, 



X 1 
 

Y1  

z i  

1 	(3.32) 

Z 1 

0 	6, 	--6 
Z y 

-ez  0 x 

	

—0 	0 y x 
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1X, AY, AZ 	coordinate differences in the 

geocentric cartesian system, 

(I) , A 
	

: geodetic latitude and longitude 

of the origin of the topocentric 

system. 

3.2.1.5 Coordinate Transformations  

The relationships between the geocentric 

cartesian coordinate system and the spherical and 

spheroidal representations have been given in § 3.2.1.3 

and § 3.2.1.4, respectively. However, when comparing 

coordinates derived by different observational 

techniques, such as TRANSIT Doppler or VLBI, with those 

derived from the analysis of laser ranging data, it is 

necessary to account for any systematic differences 

resulting from the particular definition of the 

'geocentric' reference frame (Mueller et al, 1982). 

This situation may also arise when comparing two sets 

of coordinates derived from laser ranging observations, 

as a result of different analytical procedures or 

models. The transformation from one earth fixed 

reference frame to another may be expressed by 

specifying three translations of the origin, three 

rotation angles and a scale correction (Vincenty, 

1979). The resulting transformation is given by, 
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where 

X1 , Y/ , Z 1  : coordinates in reference frame 1, x i  

X2, 

6x, 

Y2' 

Sy, 

Z 2 

6x : 

coordinates in reference frame 2, x2  

translations of the origin, Sx 

c 	scale difference between the two 

systems 

8x
, 

ey , 8 z 	small rotation angles about the X, Y 

and Z axes, respectively, elements of 

rotation matrix R. 

Clearly, if these seven parameters are known it 

is possible to transform coordinates from one reference 

system to another. However, in the first instance this 

is generally not the case. Given two sets of 

coordinates, of corresponding points, in two different 

earth fixed reference frames, the initial task is to 

determine the seven parameters relating the two 

reference frames. This is achieved by settin g  up an 

' observation equation' for each pair of matching 

coordinates, as follows, 

X2  - X 1 	6x + R X i  + c X l . 	(3.33)  

With a minimum of three pairs of coordinates it is 

possible to solve, by least squares, for the seven 

unknown parameters. In order to compare the reference 

frames defined by two different observation techniques, 

such as laser ranging and VLBI, the coordinates of a 

number of 'colocated' points must be determined by both 

techniques (Mueller et al, 1982). 
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3.2.2 Inertial Reference Frame  

A new fundamental astronomical reference system, 

FK5, was introduced on the 1 st of January 1984, in 

accordance with the resolutions of the International 

Astronomical Union (IAU) in 1976 and 1979 (Kaplan, 

1981). A series of constants and time scales were also 

introduced, including a new relationship between 

Greenwich Mean Sidereal Time (GMST) and Universal Time 

(see § 3.2.3), and new precession and nutation models 

(§ 3.2.4). The reference system also adopted the new 

standard epoch of J2000.0 (or January 1.5 of the year 

2000) to replace the standard epoch 1950.0 of the 

previous FK4 system. 

As mentioned previously, in § 3.1, the numerical 

integration to determine the orbit of a satelite must 

be carried out in an inertial reference frame. The 

generally adopted (and recommended by the MERIT 

Standards) inertial reference frame is a geocentric 

cartesian system defined by the mean equator and 

equinox of J2000.0. The X-axis of this system is 

directed towards the mean equinox of J2000.0 and the 

Z-axis is normal to the mean equatorial plane (of 

J2000.0). The Y axis is perpendicular to both the X and 

Z axes so as to form a right handed system. This 

inertial reference system is also used for a new lunar 

and planetary ephemeris, known as the Development 

Ephemeris Number DE200/LE200, computed in accordance 

with the resolutions of the IAU. However, the reference 
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frame of this ephemeris is heliocentric, as opposed to 

geocentric. 

As outlined in § 3.1, the satellite's ephemeris 

is computed in the inertial J2000.0 reference frame and 

the tracking station coordinates and geopotential 

models are given in an earth fixed reference system. In 

order to transform the coordinates of a point from one 

of these geocentric reference frames to the other the 

position vector of a point must be subjected to a 

number of rotations, as given by, 

R =PENQr 	(3.34) 

where 
	inertial frame coordinates (x, y, z), 

R : earth fixed coordinates, at UTC time t UTC 

(X,Y,Z), 

P - 

• 

polar motion matrix (see § 3.2.5), 

E earth rotation matrix (see § 3.2.5), 

N nutation matrix (see § 3.2.4), 

Q : precession matrix (see § 3.2.4). 

and the inverse transformation is given by, 

r = QT NT E T P T R 
	

(3.35) 

Details of the procedure and the particular 

expressions required to transform coordinates from one 

reference frame to another are given in the following 

sections. 
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3.2.3 Time Scales  

This section aims to define the various time 

scales used during the dynamical analysis of laser 

ranging observations, and the relationships between 

these time scales. The reasons for using a particular 

time scale are also discussed. 

Greenwich Apparent Sidereal Time (GAST) is 

defined as the hour angle (measured in units of time) 

between the Greenwich Meridian and the true equinox of 

date. Similarly, Local Apparent Sidereal Time (LAST) is 

defined as the hour angle between the meridian which 

includes the point of observation (the local meridian) 

and the true equinox of date. These two time scales are 

related by, 

LAST = GAST + A 	(3.36) 

where A 	astronomical longitude (in units of time) 

of the local meridian from the Greenwich 

meridian (measured positive eastwards). 

Greenwich Mean Sidereal Time (GMST) is the hour angle 

between the Greenwich meridian and the mean equinox of 

date. The true equinox of date differs from the mean 

equinox of date because of the effects of nutation 

(see § 3.2.4). Similary, the mean equinox of date is 

obtained from the mean equinox at the reference epoch 

(i.e. J2000.0) by correcting for the effects of 

precession. 
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From observations of the transits of stars, a 

number of observatories around the world (see § 4.2) 

determine their own LAST. These are combined by the 

Bureau International de l'Heure (in Paris) and result 

in a number of time scales which are known collectively 

as Universal Time (UT) and are closely related to the 

diurnal rotation of the earth. There are four Universal 

Time scales referred to as, UTO, UT1, UT2 and UTC, the 

first of which, UTO, is derived directly from the 

determinations of LAST. However, this time scale has 

periodic and irregular variations due to the polar 

motion and variations in the rate of rotation of the 

earth (see § 3.2.5). Subsequently, each determination 

of UTO is corrected for the effects of polar motion and 

a weighted mean of these values (from all the 

participating observatories) leads to the time scale 

known as UT1. Both UT1 and GMST represent a 

determination of the rotation of the earth either with 

respect to a mean sun (in the case of UT1) or the fixed 

stars (for GMST). The two time scales are related by 

the following expressions (Kaplan, 1981), 

(3.37) + AtGMST tGMST 	= 	tGMST(0) 

where 

tGMST(0) 	= 24110 s .54841 	+ 8640184 s .812866 TU 	(3.38) 

+ O s .093104 TU 2 	- 6s.2x10-6 TU 3 

,6tGM5T = 	( 1.002737909350795 + 5.9006x10 11 	TU 	(3.39) 

- 5.9x10-15 TU2)  tUT1 
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and tUT1 
	: UT1 time elapsed since 0.0hrs UT1 of 

the particular day, 

tGMST(0) : GMST at 0.0hrs UT1 of the particular 

day, 

TU 
	number of Julian centuries of 

36525 days of UT elapsed since 

2000 January 1.5 12 h UT1 (Julian day 

No. 2451545.0). 

The Greemwich hour angle of the true equinox of date 

(GAST) may be computed from GMST using the expression, 

A1P tGAST = tGMSt + 	cos c  

where 41P : nutation in longitude, 

(3.40) 

6 
	obliquity of the eclpitic (see § 3.2.4). 

The Universal time scale, UT2, which is also 

maintained by the BIH, is determined by correcting the 

UT1 time scale for predicted values of the seasonal 

variations in the earth's rotation rate. 

Traditionally the unit of time, the second, was 

defined initially by the mean solar day and later by 

the orbit of the earth. However, with the development 

of precise atomic clocks the second was redefined as 

the fundamental unit of time, by the International 

System (SI) of units. This definition is based on the 

resonance of the ceasium atom, which is monitored by 

many different atomic clocks around the world. The 

weighted mean of the readings of these atomic clocks 
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leads to a time scale based exclusively on the 

SI second, International Atomic Time (TAI). Clearly, 

this time scale bears no relation to Universal Time 

(UT1 or UT2) and changes in the rate of rotation of the 

earth. The requirement for a time scale which although 

based on the SI second would keep pace with any changes 

in the rate of rotation was recognised and led to the 

establishment of Coordinated Universal Time, UTC. This 

time scale differs from TAI by an integer number of 

seconds. This difference is changed occasionally, by 

the introduction of leap seconds, to keep UTC within 

0.9s of UT1. The last adjustment was made on the 30 th 

June 1985, resulting in the current difference, 

TAI-UTC, of 23.0 seconds. Both TAI and UTC are 

maintained by the BIH and the differences from UTC, 

i.e. UT1-UTC and UT1-TAI, are published monthly in the 

BIH Circular D and yearly in the BIH Annual Report 

(BIH, 1984). 

Most of the standard time signals broadcast by 

radio, television and satellites are based on UTC, and 

consequently Coordinated Universal Time (UTC) is the 

most readily available time scale around the world. As 

a result, the epoch of satellite laser range 

observations from the global network of tracking 

stations are refered (directly or indirectly) to BIH 

UTC. Consequently, UTC is very well suited for use as 

the reference time scale for the analysis of laser 

ranging data, provided the occasional leap seconds are 
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accounted for. Because of the constant time intervals 

of UTC (except for the leap seconds) it is also used 

for the numerical integration procedure to generate the 

satellite orbit. 

The IAU resolutions (Kaplan, 1981) recommended 

the use of new models for both precession and nutation 

(see § 3.2.4). Both of these models are given in terms 

of a new time scale Barycentric Dynamical Time (TDB), 

which together with the Terrestrial Dynamical Time 

(TDT) scale is also defined in the resolutions. 

Terrestrial Dynamical Time is the time scale for an 

apparent geocentric ephemeris and replaces Ephemeris 

Time. Continuity was maintained between TDT and 

Ephemeris Time by adopting a suitable relationship 

(i.e. offset) between TDT and TAI, 

tTDT = tTAI + 32 s .184 
	

(3.41) 

Barycentric Dynamical Time (TDB) is the time scale for 

the equations of motion relative to the solar system's 

barycentre, and differs from TDT by periodic 

relativistic terms, as given by, 

tTDB = tTDT + O s .001658 sin (g + 0.0167sin g) (3.42) 

where g : mean anomaly of the earth in its orbit, 

g = (357 ° .528 + 35999 ° .05 T) . 2 R 	(3.43) 
360 

T : the interval, in Julian centuries of 

TDB, between J2000.0 and the epoch, 
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T = (J - 2451545.0) 	(3.44) 
36525 

• the TDB Julian date of the epoch. 

The applications of the various time scales during the 

process of orbit determination and the analysis of 

laser ranging observations are discussed, where 

applicable, in the following sections. 

3.2.4 Precession and Nutation 

The earth is not perfectly spherical but has an 

equatorial bulge. The attraction of the sun and planets 

on the earth causes the equator and the ecliptic (the 

plane of the earth's orbit) to be in a state of 

constant motion, with respect to an inertial reference 

frame. As a result of the motion of the equator and the 

ecliptic, the equinox (the point at which the ecliptic 

and equatorial planes intersect) also moves. The 

geocentric celestial sphere is illustrated in fig 3.V, 

together with the traces on the sphere of the mean 

equator (EQ) and the ecliptic (ec) at the J2000.0 

reference epoch. The axes of the J2000.0 inertial 

reference frame (as described in § 2.2.2) are also 

shown. The angle e between the ecliptic and the 

equatorial planes is the obliquity of the ecliptic (an 

angle of about 23.5 ° ). 

The attraction of the moon and sun on the 

earth's equatorial bulge causes the celestial pole 

(normal to the earth's equator) to rotate in a westerly 
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Fig 3.V Celestial Sphere 
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motion around the pole of the ecliptic, with a period 

of about 25800 years and an amplitude of about 23.5 °  

(the obliquity of the ecliptic). This effect is known 

as 'luni-solar precession'. Due to the changing 

configuarations of the planets, their action on the 

earth, as a whole, results in a motion of the ecliptic 

plane, known as 'planetary precession'. This has the 

effect of an eastward motion of the equinox of about 

12" per century and a decrease in the obliquity of 

about 47" per century. The combined effect of 

luni-solar and planetary precession is known as 

'general precession' and is described by three angles, 

the equatorial precession parameters, 2,1 , zA  and 8A 

(Kaplan, 1981). These parameters relate the inertial 

frame (i.e. mean of J2000.0) to the 'mean-of-date' 

frame, as illustrated in fig 3.VI. The transformation 

from cordinates referred to J2000.0 to the mean-of-date 

coordinates, at an epoch of TDB, is given by, 

r 	= Q r 
	

(3.45) 

where r : (x, y, z) T  inertial nertial frame coordinates, 

r
M 
 : (xM' yM' zM  ) 	mean-of-date (at tTDB ) 

 

coordinates, 

Q : precession matrix, as given by, 

Q 
	

R
3
(-zA ) R2 (8A ) R3A ) 

	
(3.46) 

R3 , R2 2 • rotation matrices about the z and y axes 

respectively (see Appendix A). 
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Fig 3.VI Precession Parameters 
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New expressions for the equatorial precession 

parameters were adopted by the IAU in 1976 and are 

given by (Kaplan, 	1981), 

= 2306".2181T + 0".30188T 2  + 0".017998T 3  (3.47) 

zA = 2306".2181T + 1".09468T 2  + 0".018203T 3  (3.48) 

A = 2004".3109T - 0".42665T 2  - 0".041833T 3  (3.49) 

where T is given by equation (3.44). 

Because the earth's orbit is not circular, and 

the moon's orbit does not lie in the ecliptic plane and 

is also not circular, the luni-solr precession is not a 

regular motion. As the configuration of the earth, moon 

and the sun changes this 'nutation' causes the true 

pole to rotate around the mean celestial pole, with a 

relatively short period. The principal componentof 

nutation has a period of 18.6 years and an amplitude of 

about 9", and depends on the longitude (in the plane of 

the ecliptic) of the ascending node of the mean lunar 

orbit (0) measured from the mean equinox of date. 

Components of nutation also exist with varying periods 

and amplitudes, depending on the fundamental arguments 

of the earth-moon-sun system (fig 3.VII). 

A new nutation model was adopted by the IAU in 

1980 (Kaplan, 1981) which was developed by J. Wahr 

(Wahr, 1981), based on the work of H. Kinoshita and on 

the geophysical model 1066A of F. Gilbert and 

A. Dziewonski (Melbourne, 1983). The model includes the 

effects of a solid inner core and liquid outer core. 
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The new theory also uses a new reference pole, the 

'Celestial Ephemeris Pole' which has no diurnal motion 

with respect to earth fixed and space fixed reference 

frames, as these motions are included implicitly in the 

model. 

Nutation is described in terms of two angles, 

the nutation in longitude Al), and the nutation in 

obliquity Ae, which connect the mean-of-date system to 

the true-of-date reference system, as illustrated in 

fig 3.VIII. The mean-of-date system (xM , ym , zm ) was 

described with reference to precession. The true-of- 

date system (xT , yT , z T ) is defined by the true equator 

and equinox of date (i.e. at the particular epoch). The 

transformation of coordinates between these two 

coordinate systems is given by, 

r = N r T 	 m (3.50) 

where the nutation matrix N is given by, 

N = R1 (-e-Ae) R3 (-A1)) R 1  (e)(3.51) 

	

and rM 	: (xm , ym , zM ), mean-of-date coordinates, 

	

T 	: (xT, yT , zT ), true-of-date coordinates, 

R1 , R3  • rotation matrices about the x and z 

axes respectively (see Appendix A), 

and the obliquity of the ecliptic (e) is given by, 

c = 84381".448 - 46".8150T - 0".00059T 2 	(3.51) 

+ 0".001813T3 
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Fig 3.VIII Nutation Angles 
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The nutation in longitude (Al)) and in obliquity (As) 

are given by the summation of a series of 106 terms, 

Alp = 7106 (p.+q.Trsin(a.k+b.2, 1 +c.F+d.D+e.S.2) (3.53) ti=1 	1 1 	1 	1 	1 	1 	1 

Ac  = 7106 4  (r.+s.Trcos(a.k+b.2, 1 +c.F+d.D+e.Q) (3.54) 1'1=1 	1 1 	1 	1 	1 	1 	1 

where T is given by equation (3.44) and, 

ai ,bi ,ci ,d1.,. el  : integer multiples of the 

(pi  + qiT)" 

(r. + s.1,) " 

1 	1 

fundamental arguments, 

: coefficient of sine argument, 

: coefficient of cosine argument, 

and 2., It', F, D and Q are the fundamental arguments 

(fig 3.VII) as given by, 

134 °  57' 	46" 	+ 	(1325 r  + 	198 ° 	52' 	2".633)T 
+ 31".310T 2  + 0".064T 3  (3.55) 

= 357 °  31' 	39".804 + 	(99r  + 359 °  3' 1".224)T 
- 0".577T 2  - 0".012T 3  (3.56) 

93 ° 	16' 	18".877 	+ 	(1342 r  + 82 °  1' 3".137)T 
-13".257T 2  + 	0".011T 3  (3.57) 

297 °  51' 	1".307 	+ 	(1236 r  + 307 °  6' 41".328)T 
- 6".891T 2  + 0".019T 3  (3.58) 

125 °  2' 	40".280 	- (5r 	+ 	134 ° 	8' 10".539)T 
+ 7".455T 2  + 0".008T 3 	(3.59) 

0 
where 1 r  = 360 . 

The integer multiples, a i , bi , c i , di , ei , and the 

coefficients p i , qi , ri , s i , of equations (3.52) and 

(3.53) for the 1980 IAU nutation model are given in 

Kaplan (1981) and in the MERIT Standards (Melbourne, 

1983). 

St = 

Q' 

F = 

D = 

Q = 
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3.2.5 Earth Rotation and Polar Motion 

The rate of rotation of the earth is not 

constant but has secular, irregular and seasonal 

variations. Although predicted much earlier, the 

existence of these variations was not verified until 

about 50 years ago, in order to explain errors in the 

position of the moon and planets. With the advent of 

atomic clocks, the comparison of Universal Time (UT1) 

with atomic time scales (i.e. UTC or TAI) confirmed the 

variations. The principles of determining these 

fluctuations in the rate of rotation of the earth are 

discussed in detail in Chapter 4. 

When transferring coordinates from a space fixed 

reference frame to an earth fixed system it is 

necessary to rotate from the true equinox of date to 

the Greenwich Meridian. This is equivalent to a 

rotation about the z T-axiz of the true-of-date 

coordinate system through an angle equivalent to 

Greenwich Apparent Sidereal Time (GAST), the Greenwich 

hour angle of the true equinox of date. The resulting 

coordinate system is known as the instantaneous-

terrestrial reference frame (XI , Y1 , Z 1 ), as 

illustrated in fig 3.IX. The formulae for determining 

GAST at an epoch of UT1 are given in equations (3.37) 

to (3.40). The transformation between the true-of-date 

and the instantaneous-terrestrial coordinates is 

given by, 
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R 	= E r T 
	 (3.60) 

where the earth rotation matrix, E, is given by, 

E 	= R3 (GAST) 
	

(3.61) 

andT 	(xT' yT' zT' ) true-of-date coordinates, •  

: (XI' YI' ZI' ) instantaneous-terrestrial 

coordinates, 

R3 : rotation matrix about the x-axis 

(see Appendix A). 

The true pole (instantaneous spin axis) of the 

instantaneous-terrestrial system is not, however, fixed 

with respect to the body of the earth, but is in a 

state of constant motion, known as 'polar motion'. 

Although this effect was predicted by Euler in 1765, it 

was not observed until about a hundred yaers ago. Polar 

motion consists principally of a free Eulerian nutation 

(or 'Chandler Wobble') with a period of about 428 days, 

which results from the non-coincidence of the earth's 

axis of rotation and its principal axis of inertia. 

There is also a seasonal variation and evidence of a 

long term (or secular) drift of the mean position of 

the pole of about 0".25 over the last 75 years 

(Bomford, 1980). The motion of the true pole is 

described by two small angles, x and y , between the 

instantaneous spin axis and the mean axis of rotation 

of the earth. The latter is known as the Conventional 

International Origin (CIO) and is defined in § 4.1. The 

monitoring and determination of the two components of 
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Fig 3.IX Earth Rotation and Polar Motion 
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polar motion are also discussed in Chapter 4. 

The transformation of the coordinates of a point 

from the instantaneous-terrestrial reference frame 

(X
I' 

YI' Z I ) to the earth fixed frame (X, Y, Z) is also 

illustrated in fig 3.IX and is given by, 

R = P RI 	(3.62) 

where the polar motion matrix P is given by, 

P = R2 (-xp ) R 1 (-yp ) 
	

(3.63) 

and RT 	: (XT' YT' ZT' ) instantaneous-terrestrial  

coordinates, 

R 	(X, Y, Z), earth fixed coordinates, 

R1, R2 : rotation matrices about the x and y 

axes respectively (see Appendix A). 

The complete transformation of coordinates from the 

J2000.0 inertial reference frame to the earth fixed 

frame (at some epoch of UTC, t UTC  ) is given by equation 

(3.34) i.e. 

R= PENQr 	(3.34) 

where the rotation matrices P, E, N, Q are as defined 

in equations (3.63), (3.61), (3.51) and (3.46) 

respectively. 
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3.3 FORCE MODEL COMPONENTS 

3.3.1 Introduction 

As previously mentioned in § 3.1, the 

determination of the orbit of a satellite, by numerical 

integration, requires a model of the forces which 

govern the motion of the satellite. These may be 

categorised as gravitational forces, surface forces and 

any propulsion, the latter resulting from, for example, 

occasional thrusts used to manoeuvre the spacecraft. 

The sum of the individual components, which are 

evaluated independently, gives the resultant force 

acting on the satellite, and consequently the 

instantaneous acceleration vector. As the numerical 

integration must be performed in an inertial reference 

frame (i.e. the mean of J2000.0 system) then the 

resultant force model must also be evaluated in the 

same inertial coordinate system. 

The gravity field of the earth is the principal 

component of the force model, however, in addition the 

gravitational attractions of the moon, sun and the 

planets are also accounted for. Due to the tidal effect 

of the moon and sun on the earth, the model of the 

gravitational field must be corrected for the effects 

of both ocean and solid earth tides. Surface forces 

depend on the cross-sectional area, mass, shape and 

attitude of the satellite and account for the effects 

of solar radiation pressure (and earth albedo 

radiation), atmospheric drag and photonic thrust. 
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The design of the satellite and choice of altitude can 

both minimise the effects of surface forces, for 

example LAGEOS, which is a small, dense and spherical 

satellite at a high altitude free from the effects of 

atmospheric drag. 

The principal gravitational, surface (and other) 

forces which significantly contribute to the motion of 

a satellite are discussed, individually, in the 

remainder of this section. Where applicable particular 

references to the LAGEOS satellite are included. 

3.3.2 Gravitational Attraction of the Earth 

As mentioned in § 3.3.1 the attraction due to 

the gravitational field of the earth is the principal 

component of all the forces acting on an earth 

satellite. This force is a function of the position of 

the satellite in an earth fixed reference frame. The 

earth's gravity field is normally described by a 

geopotential expansion in terms of spherical harmonics. 

The potential, U, at all points external to the earth 

is given as a function of their spherical polar (earth 

fixed) coordinates by, 

n m . U = GM ( 1 + 1:2  11.71=0  pLi Pn (sin (1)13 ) 

x (cm cos mX + Sm sin map ) 

(3.64) 

	

where G 	• universal gravitational constant, 

	

M 	mass of the earth, 
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a 	• 

• 

earth's equatorial radius, 

R
P 
 X , 	• earth fixed spherical polar 

coordinates of the point, 

n, m 	: degree and order of the spherical 

harmonic expansion, 

Pmn (sin gyp ) : Legendre polynomial, 

Cmn , Sn
m  
	: Spherical harmonic coefficients. 

Theoretically, the expansion given in equation (3.64) 

is an infinite series, however, in practice all the 

geopotential models truncate this series after a finite 

number of terms. The Pm (sin (I) ) terms are known as the 

associated Legendre polynomials, which are functions of 

sin (1) , and are usually abbreviated to just Pm  , as 

given by, 

Pm = cosm p . dn+m (p 2 
- 1) n n (3.65) 

    

(2n ) n! 
	

d pn+m  

where 	p = sin cti 	(3.66) 

These Legendre functions are known as 'tesseral' 

harmonics, except when the order m=0, they are referred 

to as the zonal harmonics and when the degree and order 

are equal (m=n) they are known as the sectorial 

harmonics. These may be easily computed by simple 

recurrence relations, which in the case of the zonal 

harmonics is given by, 

0  P 	1 =- ((2n - 1) sin (1) p Pn-1 - (n - 1) Pn
0  
-2 ) (3.67) n n 

where P1 = 1 and P°  = sin (p . 	 (3.68, 3.69) 1  
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For the tesseral harmonics the recursion formula is 

given by, 

Pn = Pn-2 + (2n - 1) cos (I) P
m-1 

p n-1 

and for the sectorials by, 

Pn = (2n - 1) cos (I) P
m-1 

p n-1 

with the initial value for both given by, 

P i 	= cos cl) 1 

(3.70) 

(3.71) 

(3.72) 

The instantaneous acceleration vector of the 

satellite, in an earth fixed system, is given by the 

gradient of the potential field at the satellite, 

V U 	(3.73) 

where R 	satellite acceleration vector (R, Y, 2) 

in an earth fixed reference system. 

As the potential field, U, is expressed in terms of 

spherical polar coordinates the components of R are 

evaluated as, 

V.
1  = 3U = 3U  3Rp  + au  aap  + au 3~p (3.74) 

aR1  . 	aR aR. 	ax aR. 	3R. 

	

p 1 	p 1 	p 

	

where R. 	component (X, Y, Z) of the earth fixed 

coordinate of the satellite, 

R . 

	

1 
	corresponding component (M, Y, 2) of the 

acceleration vector. 

The partial derivatives of equation (3.74) are given 

in Appendix F. This acceleration vector must then be 

transformed into the inertial reference frame, in which 
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the integration is performed, using, 

i:  = QT  NT  E T  PT  K 	(3.75) 

where P 	acceleration vector (X, g, i) in 

the inertial reference frame, 

P, E, N, Q : polar motion, earth rotation, 

nutation, and precession matrices, 

as given in § 3.2.4 and § 3.2.5. 

Clearly, it is not possible to determine the 

acceleration of the satellite without a model 

describing the geopotential field. Various models are 

available which are derived from both satellite 

observations and terrestrial gravity measurements. The 

geopotential is described by a set of spherical 

harmonic coefficients, Cn
m  and Sn

m  . These are usually 

expressed as the normalized forms, &Ill  amd grrill , which 

are related to true cofficients by the expression, 

and 

Cm  = Nm n n Cm  m 

Sm = Nm - S m n 	n n 

(3.76) 

(3.77) 

1 
where Nm  = 	(n - m)! (2n + 1) (2 - 60m) ) 2  (3.78) n 	

[ 

and (5 om : Kronecker delta, defined as, 

6
OM 

= 1 for m = 0, 6OM  = 0 for m # 0 	(3.79) 

Over the last 10 or 15 years the accuarcy of the 

models of the earth's gravity field have shown a great 

improvement, brought about 	mainly by the 

introduction of observations to a number of satellites. 

(n + m)! 



102 

The European GRIM models (Reigber et al, 1985) and the 

NASA Goddard Earth Models (GEM) have included 

progressively more laser ranging (and also radar range 

and doppler) measurements together with surface 

gravimetry and satellite altimetery data. (Lerch et al, 

1985). Specially 'tailored' gravity models have also 

been developed such as the GEM-L2 model for LAGEOS and 

PGS-1331 for STARLETTE. GEM-L2 (Lerch et al, 1983) 

combined all the data from the previous 'satellite 

only' GEM-9 model with two and a half years of LAGEOS 

laser ranging data. Similary, PGS-1331 (Marsh et al, 

1985) combined four years of STARLETTE observations 

with the data from the GEM-10B model and also included 

SEASAT satellite altimetry data and LAGEOS laser ranges 

(although the LAGEOS data only contributed to the 

tracking station coordinates, and not to the gravity 

field solution). 

3.3.3 Moon, Sun and Planetary Attractions  

In the same way the earth exerts a gravitational 

attraction on a satellite, the moon, the sun and the 

other planets also exert a similar attraction. This 

results in an acceleration vector s 
 of the satellite 

towards the 'third body', Pi , as given by, 

- s = V U
s 
	(3.80) 

where the potential, U s , at the satellite due to the 

third body P.
3 
 is, 
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U
s 	G M. 

3  
r - r. 
- 	- 3 

(3.81) 

where M. : the mass of the third body, P j , 

G 	• . universal gravitational constant, 

r 	: satellite position vector (inertial), 

r
3  
. : position vector of third body (inertial) 

resulting in, 

r s = 	3 	rj  ) 
 

( Ir -r.( ) 3  
- 	- 3 

(3.82) 

However, the earth is similarly attracted towards the 

third body P.. Consequently, there is also an 

acceleratical,ir. e ,oftheearthtowardstheP.,as a 

result of the potential, Ue , at the earth due to the 

third body, as given by, 

e 	Mj = 	- G 	. 	(re  - r.) 	(3.83)  3 

( Ir
e  - r.I ) 3  - 	-3 

where r
e  is the inertial frame position vector of 

the earth. However, since the inertial reference 

frame is geocentric, this is a zero vector, and so 

equation (3.83) becomes, 

e 	3 
= - G M. 	r. 	(3.84) - 	- 3 

r. 3 
 

where rj  is the distance of P j  from the geocentre. 

Consequently, the resultant acceleration of the 

satellite, r, with respect to the earth (in the 
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inertial frame) is given by, 

and so, 

44 

r = r - r -s 	-e (3.85) 

= - G Mj 	r - r. - 	-3 	+ r. 	(3.86) 
3 

( 	- rj  I ) 3 	ri 3  

Clearly, in order to evaluate this acceleration 

the positions (in the inertial reference frame) and the 

masses of the moon, sun and planets must be known. The 

new planetary and lunar ephemeris, adopted by the IAU 

in 1984 (Kaplan, 1981), is Development Ephemeris Number 

DE200/LE200. This gives the positions of the moon and 

planets in a heliocentric (J2000.0) inertial frame at 

0.0hrs TDB of each day, together with the masses of the 

planets and the constants associated with the 

ephemeris. In order to use these positions they must 

first be converted to the geocentric inertial frame, by 

subtracting the coordinates of the earth from those of 

the other planets and the moon. The geocentric position 

vector of the sun is obtained by multiplying the 

heliocentric position vector of the earth by -1. The 

position vectors of moon, sun and planets at a specific 

epoch (for example, the epoch of an observation or 

orbit integration step) may be subsequnetly computed by 

interplation (see Appendix D) between the daily 

vectors. 
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3.3.4 	Solid Earth and Ocean Tides  

3.3.4.1 Solid Earth Tides  

As the earth is not entirely rigid, its 

anelastic deformation under the influence of the 

gravitational attractions of the moon and sun changes 

the acceleration of a satellite due to the 'fixed' 

geopotential field of the earth. The principal effect 

is due to the solid earth (or body) tides, but for 

precise orbit determination the ocean tides must also 

be taken into account (see § 3.3.4.2). 

At any point on the surface of the earth, the 

potential due to either the moon or the sun is given 

by, 

U = 	G M. 	= G M. 
7  

I r - r.3  I - 	- 

where M.
3 	

mass of the moon or sun, 

: position vector of point P, 

(3.87) 

r. 	: position vector of the centre of 

mass, P.
3
, of the moon or sun, 

1r - rj 1 : distance, p, from the point P to P. 

(centre of mass of the sun or moon) 

The distance, p, may be calculated using the cosine 

rule (see fig 3.X), as given by, 

p2 = r 2 	r. 2 	2 r r. cos z 	(3.88) 

where r = i r i 	: distance of point P from the 

geocentre, 



\deformed earth 

I 
1 
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Fig 3.X Earth tides  
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r.
3 	

Jr.1 : distance from the geocentre to the 

centre of mass of the moon or sun. 

z 	: the angle POP S , in fig 3.X. This 

angle may be approximated to the 

zenith at the point of the moon or 

sun. 

By substituting equation (3.88) into equation (3.87) 

the potential at P is given by, 

GM. 
3  1 

(r 2  + r . 2  - 2 r r cos z) 2  

(3.89) 

This may be expanded, using the binomial expansion, 

and the infinite series expressed in terms of Legendre 

polynomials to give, 

Up  = G M. r =u 	r I n  Pn (cos z) 3 	n 	 (3.90) 

where Pn (cos z) : Legendre function, as defined in 

equation (3.65) 

The first term of this series, when n=0, is constant 

and results in no force. Similarly the second term 

(n=1) produces a constant force, which is independent 

of both r and z, and so does not produce any tidal 

variations. The contribution of higher order terms 

decreasesrapidly,duetotheratioofrir.3,which for 

the moon is of the order of 1/60 and for the sun 

1/23000. Consequently, the only significant effect is 

due to the second harmonic (when n=2), which results in 

the tide rising potential, UT, as given by, 

r. 	r. 
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UT  = G M. r 2  P2 (cos z) 
3 

r. 3  
J 

As the Legendre function may be written as, 

P2 (cos z) = i (3 cos 2  z - 1) 

then equation (3.91) may be re-written as, 

(3.91) 

(3.92) 

UT  = G;
3  r

2  (3 cos 2  z - 1) 	(3.93) 

2r. 3  

This potential causes the earth to deform as 

shown in fig 3.X, with a bulge towards, and away from, 

the particular body, and a narrowing perpendicualr to 

that direction. This deformation of the earth leads to 

an additional potential due to the tidal bulge 

(Agrotis, 1984) as given by, 

U = k2  G M. a 5  P2 (cos z) 

r 3  r. 3 

J 
r  

where a 	earth equatorial radius, 

(3.94) 

r : distance from the geocentre to the 

satellite, 

k2 : love number, nominally 0.3 (Baker, 1984) 

By substituting the Lengendre function, as given in 

equation (3.92), and with, 

cos z = r • r. 
- 	- 3 

(3.95) 

 

r r. 
J 

  

the potential at the satellite due to the tidal bulge, 

equation (3.94), may be written as, 



:f.  = k2  G Mi  a 5 	-15 (r • ri ) 2  r + { 

2 r 5  r.22  r. 2  
J 	

r  
J 

(3.97) 
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U=k2GIvi.
3 	 3 

a 5 	3 (r • r.) 2  - 1 1 	(3.96) 

2 r 2  r3.2 	2 
r. 2 r 
	3 

where r 	satellite position vector in the 

inertial frame, 

r.
3 
 : position vector of the moon or sun in 

the inertial frame, obtained from the 

planetary ephemeris DE200/LE200, as 

discussed in § 3.3.3. 

The acceleration (in the inertial frame) of the 

satellite resulting from the tidal effect of the moon 

or sun (on the earth) is given by evaluating the 

gradient of the respective potential U, leading to, 

1 + 6 (r • r.
3
) r.

3 
 + 3 r 

- 	- 
The body tide love number k 2  (Baker, 1984), 

which gives the change of the potential of the earth 

due to the tidal potential, is nominally constant with 

a value of 0.3. However, k2  is not constant but varies 

according to the periods of the various tides. Any 

model, such as the Wahr model (Wahr, 1979), which 

accounts for the frequency dependence of the love 

numbers, is most efficiently evaluated using a two step 

procedure. A frequency independent love number 

(k2  = 0.3) is used during the first stage to evaluate 

the acceleration of the satellite due to the the change 

r r. 
J 
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in potential from equation (3.97). The effect of the 

frequency dependent love numbers is accounted for by 

computing corrections Aerill  and Ygrial  to the normalized 

spherical harmonic coefficients, as the second stage. 

The corrections are given in the MERIT Standards 

(Melbourne, 1983) as, 

OCn - iAgm  AM  X 6ks  Hs 	
1  In+m even eie (3.98) 

s(n,m) n+m odd 

which may be expressed as, 

LZ = Am X as Hs cos es n+m even (3.99) 

s(n,m) 	I sin 8 s n+m odd 

and am  AM  X 6ks  Hs 	-sin 0 s 
sn+m even 	(3.100) 

s(n,m) 	t cos 8 s 'n+m odd 

where Am  = 	(-1) m  
" 	a 1/(41.1-  (2 - 

 

(3.101) 

 

) ) OM 

 

with 6om  • Kronecker delta, 

a 	earth equatorial radius, 

6ks  : difference between the Wahr model (Wahr, 

1979) value for k at frequency s and the 

nominal value of k2 = 0.3, in the sense 

ks - k2, 

H
s 	: amplitude (in metres) of the tide with 

frequency s, taken from Cartwright and 

Taylor (1971), 

and 6 
s = n • 8 = 1  X. 	n. =1 	1 8i (3.102) 

with 8 	vector of Doodson variables (T, s, h, p, 

N', p1), 



111 

n 	vector of integer multiples (n 1 , n2 , n3 , 

n4,  n5, n6 ) of the Doodson variables 

(Melbourne, 1983). 

The Doodson variables are related to the fundamental 

arguments of the nuataion series (see § 3.2.4) by, 

s = F + 52 	: moon's mean longitude, 

h = s - D 	: sun's mean longitude, 

p = s - Q 	: longitude of the moon's. 

mean perigee, 

P1 	: longitude of the sun's 

mean perigee, 

N' = -0 	: negative longitude of 

moon's mean node, 

= 8 g  + 7 - s : time angle in lunar days, 

from lower transit. 

where 8 g  is Greenwich Mean Siderael Time (GMST). 

The MERIT Standards (Melbourne, 1983) recommend the 

use of six diurnal tides, leading to corrections to the 

1 C2 and S2 terms, and two semi-diurnal tides correcting 

-2 	 2 the C2  and S2  . This recommendation is based on a 

cut-off amplitude of 9x10 2  for the product AM  oks  Hs  

in equations (3.98) to (3.100) and a nominal value of 

the k2 love number of 0.3. 

Solid earth tides result in a deformation of the 

earth's surface, which not only changes the potential 

field at the satellite but also changes the coordinates 

(3.103) 
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of the tracking stations. This effect can lead to 

movements of up to 32cm and 15cm for lunar and solar 

tides, respectively. Clearly, this does not affect the 

force model of the satellite, but the effect on the 

tracking station coordinates must be accounted for 

during the analysis process. As with the change in 

potential, the variations of station coordinates are 

most effectively evaluated using a two step procedure 

(Melbourne, 1983). The first step uses frequency 

independent love and shida numbers (h2  and 2, 2 ) and the 

vector displacement (inertial frame) of a tracking 

station, 

given by 

ArA ' 

P, due 

(Martin 

3 
M. 	a 4  

to lunar or solar 

	

et al, 	1980), 

3k,
z 	

(r
P 	

• 	r.) 	r. 
" 	- 7 	~3 

solid earth tides is 

+ 	(3.104) 

M r.
3  3 

 

rP 	7  
r. r. 

+ ( 3 (h2  - k 2 ) (rp  • rj) 2  - 112 	rp  
2 	( 

rP 3  
r. ) 2 	2 	—r 

where r
P 	

inertial frame coordinates of station P, 

r
3  
. : coordinates of moon or sun (inertial), 

: distance from geocentre to station P, 

r 	: distance from geocentre to moon or sun, 

M: mass of the earth, 

M. : mass of moon or sun, 

h2  • nominal second degree love number, ' 

k 2  • nominal second degree shida number. • 

The MERIT Standards recommend nominal values of h 2 and 

2 of 0.6090 and 0.0852, respectively. With these 
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values, and a cut-off amplitude of 0.005m in the radial 

displacement, only one component (radial) needs to be 

corrected for the frequency dependence of the love 

numbers, in the second step. The correction is for K 1  

frequency where h 2  from Whar's theory is 0.5203 (Whar, 

1979). The change in radial component may be expressed 

as a change in the height of the station, as given by, 

Oh = -0.0253 sin cl) cos (I) sin (GMST + A) 	(3.105) 

where (I), A, h : geocentric earth fixed spheroidal 

coordinates of the tracking station, 

Ah 
	

correction to station height. 

This effect is a maximum at a latitude of 45 °  where 

the amplitude is 0.013m (Melbourne, 1983). Solid earth 

tides also introduce variations in the rate of rotation 

of the earth as discussed in Chapter 4. 

3.3.4.2 Ocean Tides  

The attractions of the moon and sun on the 

earth leads to a tide rising potential as given by 

equation (3.91). As the surface of the oceans is an 

equipotential surface (except for the effects of 

temperature, pressure, salinity and currents), this 

tide rising potential causes the level of the oceans to 

fluctuate with time. Consequently, the oceans apply a 

variable load on the body of the earth, which responds 

by deforming. Clearly, as with the tides of the solid 

earth, this deformation results in a change in the 
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potential, at the satellite, due to the earth and a 

corresponding change in the acceleration of the 

satellite. The effect of ocean tides is most 

efficiently implemented as corrections to the 

normalized spherical harmonic coefficients of the 

geopotential model, which may be expressed as (Eanes et 

al, 1983 and Melbourne, 1983), 

	

Aemn = Fmn 	1 ( (Csnm

• 

	+ Csnm

- ) 

 cos 8 s + 	(3.106) 
s(n,m)  

+ 	_ 
+ (Ssnm + Ssnm)  sin 8 s ) 

Agmn  - 

	

- Fmn 	1 ( (Ssnm

• 

	- S;nm)  cos 0 s - 	(3.107) 
s(n,m)  

+ 	- - (Csnm - Csnm)  sin e s ) 

where Fn
m   = 4 7 a 2  pw . (1 + lc'n  ) (3.108) 

       

       

M Nm n (2n + 1) 

and Nm • . normalizing factor, equation (3.78), n 

a 	. . equatorial earth radius, 

M 	: mass of the earth, 

pw 	density of sea water, 

8 s 	: argument of the tide constituent, s, 

as given by equation (3.102), 

k' n : load deformation coefficients, 

+ 	+ 
Csnm- , S;nm ocean tide coefficients for the 

tide s, where C; and S SA snm 

prograde waves and C
;nm and S;nm 

denote retrograde waves. 
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The values of the ocean tide coefficients are given in 

the MERIT Standards for the Schwiderski ocean tide 

model (Schwiderski, 1980), together with the associated 

load deformation coefficients. Long period 

perturbations are only produced when the degree, n, is 

greater than 1, but the effect decreases rapidly and so 

the correction is only evaluated for tides up to degree 

6. Terms for the long period tides (order m=0) S sa , Mf , 

and Mm , for the diurnal tides (m=1) K1, 01, P1 and Q1, 

and for the semi-diurnal tides (m=2) M 2,  S2, N2 and K2, 

are given for degree n=2 to 6. 

As discussed previously in § 3.3.4.1, a tracking 

station on the earth's surface may be displaced by up 

to 40cm due to the effects of solid earth tides. 

Similarly, the ocean tidal loading also has an effect 

on the coordinates of a tracking station, however the 

effect is much less. Typically, the change in the 

height of a station may be of the order of 1cm, 

however, in certain coastal sites this may increase to 

around 10cm. Clearly, if this is the case, the effect 

of ocean tidal loading on the tracking station 

coordinates must be corrected during the analysis 

procedure. For this purpose the MERIT Standards 

(Melbourne, 1983) give the necessary coefficients, 

evaluated for 25 laser ranging and VLBI sites 

(Goad,1980). 
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3.3.5 Solar Radiation Pressure  

The intensity of solar radiation, emitted by the 

sun, varies inversely with distance away from the sun. 

As a result the radiation pressure acting on a 

satellite orbiting the earth is given by, 

Ps  = Io  { Au  

	

2 	 (3.109) 

c 	Ir - r.lj - 	-3 

where Au : astronomical unit (1.4959787x10 11 m), the 

distance equivalent to the semi-major 

axis of the earth's orbit, 

r 	inertial frame satellite position vector, 

r
7  
. : position vector of the sun, in the 

inertial frame (obtained from the 

planetary ephemeris DE200/LE200), 

Io • intensity of solar radiation at one 

astronomical unit (I o = 1367.2 Wm 2 )

speed of light in a vacuum. 

This solar radiation pressure results in an 

acceleration of the satellite in a direction away from 

the sun, which in the inertial reference frame is given 

by the vector, 

:r.. = CR  Io 	Au 	2 	A 	r- Ej 	(3.110) 

c slE - I) I 	I m 	Ir - rd 
7 

where A : cross sectional area of satellite (m 2 ) 

m • . mass of the satellite (kg), 

CR : radiation pressure reflectance coefficent. 
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The precise modelling of radiation pressure is, 

for many satellites, a complex process, for a number of 

reasons. The reflectivity of the outer surface and the 

shape of the satellite are both important. A fraction 

of the incident radiation is absorbed (raising the 

temperature of the spacecraft) and the remainder is 

reflected, either diffusely of specularly. Clearly, 

this reflected radiation also imparts a force on the 

satellite in the opposite direction to that of the 

incident radiation. The effects of solar radiation 

pressure are minimised if the area-to-mass ratio of a 

satellite is kept small, for example, LAGEOS and 

STARLETTE are both very small dense satellites. However 

in order to study the effects of solar radiation 

pressure the most effective type of satellite would be 

very large and light, such as a balloon satellite. 

Furthermore, it is preferable to have a constant 

area-to-mass ratio, to ensure that the solar radiation 

force does not depend on the orientation of the 

satellite. This may only be achieved by spherical 

satellite (such as LAGEOS and STARLETTE). Finally, 

there are unpredictable variations in the intensity of 

the sun's radiation due to changes in the solar 

activity. 

The uncertainty in the model, introduced by 

these various effects, is accounted for by including a 

reflectance coefficient CR in equation (3.110). Due to 

the effect of the reflected radiation this parameter is 
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typically greater than 1 (for LAGEOS it is 

approximately 1.14) and may be determined as a unknown 

in the least squares solution. A further complication 

arises when the satellite passes into the earth's 

shadow, which completely cuts off the solar radiation 

pressure (when the satellite is in the umbra). However, 

as the satellite passes through the penumbra, there is 

a gradual decrease in the radiation pressure and a 

corresponding decrease in the resulting acceleration. 

To ensure precise modelling of the effects of solar 

radiation pressure it is necessary to introduce a 

'shadow test' to determine when the satellite goes into 

the earth's shadow, and to cut-off the radiation 

pressure model accordingly (Agrotis, 1984). 

In addition to the main effect of 'direct' solar 

radiation on a satellite albedo radiation, reflected 

back from the surface of the earth, also has a similar 

effect. This, however, decreases according to the 

inverse square law as the altitude increases, but at an 

altitude of 800km it may still account for around 10% 

of the direct effect. In contrast to direct radiation 

pressure, the modelling of albedo is both complex and 

time consuming. The first difficulty arises because the 

albedo is variable depending on the position of the 

satellite and on the unpredictable temporal changes of 

the reflective properties of the earth. Consequently, 

the effect needs to be re-computed at every step of the 

orbit integration. Secondly, the evaluation involves a 
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numerical integration over the entire surface of the 

earth visible from the satellite to determine the 

components of the total albedo flux. Clearly, this 

process is computationally very time consuming and 

accordingly various procedures have been proposed to 

simplify the modelling of albedo. (Anselmo, 1983). 

3.3.6 Other Forces  

This section will discuss some of the forces 

which may act on a satellite, but have not been 

described in any of the previous sections. The 

modelling of empirical accelerations which may be 

included to account for any deficiencies in any of the 

force models, is also discussed. For the LAGEOS 

satellite the effects of these additional forces are 

generally considered negligible (or not applicable). 

However, an empirical along track acceleration is 

typically modelled. 

Although the effects of atmospheric drag are not 

applicable for LAGEOS, because of its high altitude, 

for many lower satellites the effects are very 

significant. The inertial frame acceleration of the 

satellite due to air drag is given by, 

-1 = 	CD  A } pa  yr  vr  

where CD : satellite drag coefficient, 

A 	• cross sectional area of satellite, 
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m 	mass of satellite, 

pa • air density at satellite, 

r : velocity vector of the satellite 

(inertial frame) with respect to the 

atmosphere. 

The inertial frame velocity vector, v r , is evaluated 

from the rate of rotation of the atmosphere (assumed to 

be the same as the rate of rotation of the earth) and 

the satellite true-of-date coordinates, by, 

vr 	Q T NT (w X rT ) 

- 

	

where Q 	: precession matrix (see § 3.2.4), 

	

N 
	nutation matrix (see § 3.2.4), 

(3.112) 

w 	rotation rate vector of the earth 

(true-of-date), 

T 
	true-of-date coordinates of satellite. 

The air density at the satellite, p a ,is obtained from 

a model, such as that of Jacchia (1971), which is valid 

for altitudes of less than 2000km. There are, however, 

no such models for altitudes greater than 2000km, but 

the effects of atmospheric drag at these altitudes is 

very small. As with solar radiation pressure (see 

§ 3.3.5) air drag depends on the area-to-mass ratio 

(A/m) and so the effects are minimised for a small 

dense satellite (such as STARLETTE). A further 

complication arises with non-spherical satellites as 

the drag is not constant and varies according on the 



121 

orientation of the satellite. The drag coefficient C D , 

in equation (3.111), may be included as an unknown in 

the least squares solution and so account for 

deficiencies in the atmospheric drag model. 

For satellites which are occasionally 

manoeuvered it is necessary to include the effects of 

the thrust forces. These manoeuvres are used, 

especially for low flying satellites, to maintain a 

specific orbit configuration. They are however, 

generally predictable and are modelled as along track, 

across track, and radial accelerations. Small 

perturbations may also result from charged or neutral 

partical drag (Afonso et al, 1985). 

These small accelerations may be accounted for 

by the empirical modelling of forces in specific 

directions; these take the general form, 

P = C n 	(3.113) 

where C 	constant coefficient, 

unit vector in the required direction 

i.e. along track, across track. 

For the LAGEOS satellite an along track empirical 

acceleration is modelled and the coefficient C T is 

determined as an unknown in the least squares solution. 

For an along track acceleration equation (3.113) gives 

the resulting (inertial frame) acceleration of the 

satellite, by 
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Y.  = C i. T -:- r 
(3.114) 

where i-  : inertial frame velocity vector of the 

satellite (with magnitude r). 

Over the lifetime of the LAGEOS satellite the mean 

value of CT has been found to be -3.1x10 -12  (Melbourne, 

1983). 
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3.4 ORBIT INTEGRATION AND ADJUSTMENT BY LEAST SQUARES 

3.4.1 Numerical Integration of the Equations of Motion  

As previously mentioned in § 3.3 the resultant 

acceleration of the satellite is given by summing all 

the individual accelerations due to the forces acting 

on the satellite. Clearly, it may not be necessary to 

include the effects of all the forces described in 

§ 3.3, if certain forces are considered negligible. As 

the subsequent numerical integration must be performed 

in an inertial reference frame, the resultant 

acceleration vector (and consequently its components) 

must be evaluated in the same inertial frame. Orbit 

determination consists of integrating the satellites 

equations of motion in order to compute its position 

and velocity vectors as a function of time. The 

equations of motion are 2 nd order differential 

equations, which are functions of position, velocity 

and time, as given by, 

= f( r, r, t ) 	(3.115) 

where Y.  : resultant inertial frame acceleration 

vector, 

r : satellite velocity vector, inertial frame, 

r : satellite position vector, inertial frame, 

t : time, usually UTC (see § 3.2.3). 

By assuming initial position and velocity vectors at 

some starting epoch, t o , the position and velocity at 



another epoch, t, are given by, 

• 	• 	t - r r(t) 	r(t 0 	j ) + 	dt t o  

t • r(t) 	r(t0 ) + fto  r dt 
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where 

r(t), r(t) 	: position and velocity vectors at t, 

r(t 0 ), (t o ) : position and velocity vectors at t o . 

Initially, the satellite state vectors, ; .0  and r o , 

need not be known precisely, as they may be improved by 

determining small corrections to them as unknowns in 

the least squares solution (following the intoduction 

of the range observations). Since the advent of high 

speed computers, it has been possible to carry out the 

integrations of equations (3.116) and (3.117) 

numerically. In practice, this is carried out with a 

'step length' between the integrations, resulting in a 

satellite ephemeris consisting of position and velocity 

vectors at discrete epochs. Subsequently the position 

(and velocity) of the satellite at any specific epoch 

may be computed by interpolation between the discrete 

values. Typical interpolation formulae are discussed in 

Appendix D. 

There are two distinct types of numerical 

integration procedures which are suitable for the 

evaluation of equations (3.116) and (3.117). These are 

'single-step' methods and 'iterative (or multi-step)' 

methods. In practice, both methods are used, however, 
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because of the low accuarcy of single-step methods 

their use is usually limited to providing sufficient 

initial steps to enable a more precise multi-step 

method to take over. 

The single-step methods, using only the ith  

value of the integral, obtain the (i+1) th value in a 

'single-step'. This value is subsequently used to 

evaluate the (i+2) th value of the integral, and so on 

until the ephemeris is generated after succesive 

applications of the method. As an example, equation 

(3.116) for the (i+1) th  value may be written as, 

r(ti  + h) = r(t i ) + rti+h 	dt  (3.118) 'ti 	- 

where 	r(ti ) = r(t0  + ih) 	(3.119) 

and h : integration step size. 

There are a number of different single-step methods 

which are suitable for this application, however a 

common choice is a Runge-Kutta procedure (Spencer et 

al, 1977). These methods evaluate the function (in 
• 

this case r or r) at several intermediate points 

within the step interval in order to determine the next 

value. The 4 th order Runge-Kutta is widely used (with 

an error per step of the order of h 5 ) and applied to 

equation (3.118) may be expressed as, 

ri+1  = ri  + 1 ( ki  + 2k2  + 2k3  + k4  ) 	(3.120) 

where 	r(t.1  + h) 

r.1  = r(ti ) - 	- 



and f(t, r) 

k1  = h f(t., r.) 1 

1 
k2 	2' h f(t.+1h r.+-2k1  ) 1 - 

1 	
' 	

1 k3  = h f(t.+-2h r.+-k2  ) 1 2- 

k4  = h f(ti+h, r i+k3 ) 

126 

(3.123) 

(3.124) 

(3.125) 

(3.126) 

(3.127) 

A detailed description of the application of the 

Runge-Kutta method to orbit determination is given in 

Agrotis (1984). A disadvantage of the Runge-Kutta 

methods is that there is no simple formula for 

evaluating the error associated with each step. 

However, it is possible to obtain a theoretical 

estimate of the cumulative error, which is proportional 

to hn , where n is the order of the method. If s i  is the 

truevalueofoneelementofr.(i.e. x, y or z), and 

the value of s. obtained after i integration steps of 

size h is s i1' then, 

s.1 = s.1  - A hn 	(3.128) 

where A is a constant. If s i2  is another corresponding 

value of s i , computed after i  2  integrations, with step 

size 2h, then similary, 

Si = si2 - A(2h)
n 	(3.129) 

and so combining (3.128) and (3.129) an estimate of 

the cumulative error, E, is given by, 

e . A hn =s it 	s i1 (3.130) 

   

2n  - 1 
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which for a 4 th order formula becomes, 

6 = 
	( sit - S ii ) 
	

(3.131) 

Consequently, in order to obtain an estimate of the 

error, the integration must be repeated with half the 

original step length. In order to maintain a sufficient 

level of accuracy it is necessary to use very short 

step lengths (for example, 15 seconds in the case of 

LAGEOS orbit integration) for Runge-Kutta methods. 

Furthermore, each integration step involves the 

evaluation of the four functions of (3.124) to (3.127), 

which may be computationally time consuming. 

Consequently, Runge-Kutta methods are only used, in 

orbit determination, to compute sufficient values, 

starting from the initial velocity and position 

vectors, to allow a multi-step iterative procedure to 

take over. 

Although there are numerous iterative methods of 

numerical integration, predictor-corrector schemes are 

the most common (Spencer et al, 1977). These make use 

of previously computed values, of which there would be 

n+1 in the case of an nth order scheme, to predict the 

next value. This value is then used with the previous n 

values in order to evaluate the corrected value. If the 

difference between the predicted and corrected values 

exceeds some pre-set limit then the 'corrector' may be 

re-applied, using the most recent estimate of the 

corrected value instead of the predicted value. 

Clearly, in order that a predictor-corrector may start 
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the first n+1 values must be known. If this is not the 

case then a single-step method must be used to compute 

the necessary values from the initial starting 

values. 

The Adams-Bashforth formulae are derived using 

the Newton backward difference formula to approximate 

the function being integrated (Spencer et al, 1977). 

Rather than considering the entire vectors, as in 

equations (3.117) to (3.127), it is convenient to refer 

to just one element s i of r (i.e. x, y or z), to 

illustrate the Adams-Bashforth formulae. The predicted 

value s i+1 , for the (i+1) th value of s is given by, 

1 	5 s. 	= S. + h(f. +--Vf. +--V 2 f. + 2V 2 f. + ..) (3.132) 1+1 	1 	1 	2 1 12 	1 	8 	1 

where f.1  = f(t.a. , s.) as in equation (3.123), 	(3.133) 

and 

Vf.1  = f. 1  - f. 1-1 = f(t a.., s.) - f(t.1-1 ' 	1 s.-1 ) 	(3.134) 

	

0 2 f1 	Vf. 	
Vf 	f. - 2 	+ 

	

1 	1 	i-1 	1 	f -1 	fi-2 (3.135) 

V3f.1 = 	 1 V2f. 	fi-1 V 2    etc 	(3.136) 

and the predicted value of fi+1 is given by, 

	

fi+1 	= f(ti+1 , s i+1 ) 
	

(3.137) 

The corrected value , si+1, of the (i+1)
th value is 

then given by, 

** 
5 1_1.1 	si  + h (f 4: 	- ive 	_ 1 u 2 F *  

i+1 	2 i+1 	12' '1+1 - 	(3.138) 

1 0 f * 
- 24' - i+1 - 	) 

In practice, these formulae, (3.132) to (3.138), are 
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truncated to some order n, the order of the last 

backward difference included (Vnfi ). Consequently, to 

evaluate the differences for the (i+1) th step the 

previous n+1 values, s i-n to s i must be known. The 

error, e
**

, involved in truncating the formulae after 

the nth backward difference (Agrotis, 1984) is given 

by, 

** ** 	* 
e 	. 	cn+1 	(si+1 - s i+1 ) (3.139) 

 

bn+1 - cn+1 

  

where bn+1 and cn+1 are the coefficients of the (n+1) th 

backward differences from the predictor (3.132) and the 

corrector (3.138) formulae, respectively. 

Clearly, the error may be estimated at each step 

from the difference between the predicted and corrected 

values. A disadvantage with the Adams-Bashforth method 

is that the step size, h, cannot be altered, for 

example if the error is too great. The integration step 

length must, therefore, be chosen carefully so as to 

provide the required accuracy without excessive 

computations. Experience has shown (Ashkenazi, Agrotis 

and Moore, 1984) that for LAGEOS orbit determination a 

step length of 120 seconds is suitable. Full details of 

the application of the Adams-Bashforth predictor-

corrector method are given in Agrotis (1984). 

3.4.2 Introduction to Least Squares Adjustment  

The aim of the analysis of laser range 
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observations is to determine a series of unknown 

parameters, such as the coordinates of the tracking 

stations and polar motion components. The observed 

ranges must, however, be functions of these unknown 

parameters, such that, 

ri  = f i (x l „ x2 , . . • xk ) 	(3.140) 

where r.1 	ith observed satellite range, 

x1 , x2 , . . xk  : unknown parameters (k unknowns). 

If approximate values of the unknowns are assumed then 

it is possible to obtain a computed value of the 

observed range, 

r. 	= f.( 1 x 1c 	lc' x2c, . 	• xkc )  (3.141 ) 

Thetruevaluesoftheunknowns,ii.
3
,differs from the 

approximatevalue,x.3 ,byasmallcorrectionAx
3
.,such c  

that, 

R. = 	 c x3  . 	+Ax. 	(3.142) 
3 

and the true value of the range observation will be 

given by , 

ri = f i ( xlc 	Axl, x2c  + Ax2 , . . xkc  + Axk ) (3.143) 

By  taking a Taylor series expansion of this equation 

and assuming second and higher order terms are 

negligible, it may  be re-wriiten as, 

aric 	a/.ic 	a . r1c 
E. = ri . + 	Ax 1 + 	Ax + 	+ 	Ax (3.144) c 	2 	k ax 	ax2 	axk 

where ar.l 	af. c 	1 

ax. 	ax. 
3 

, X 	• 	X c 	2c 	• kc ) 
 

(3.145) 
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However, due to random errors in the range measurement 

(as previously discussed in § 2.3) the observed range, 

io 	 by a small  

residual error, vi , such that, 

ri= r.1  + . 0 vi (3.146) 

So, by combining equations (3.144) and (3.146) the 

'observation equation' of an observed range 

measurement, linearised about the approximate values, 

is given by, 

ar. 	ar. 	ar. is Ax
1 + 	ic  Ax +...+ 	Ax = 	'v. 2 	k 	ic 

ax1 	ax2 	axk 
	(3.147) 

Given a set of n observed ranges an observation 

equation of the form of equation (3.147) may be set up 

for each range. The resulting set of observation 

equations may be conveniently expressed in matrix form 

as, 

	

Ax = b+ v 	(3.148) 

where A : (n x k) matrix of the observation equation 

coefficients (the partial derivatives in 

equation (3.147)), 

x 	(n x 1) vector of the unknown corrections 

(ax) to the approximate values (xi c ),  c 

b : (n x 1) vector of the observed (rio ) minus 

computed (ric ) range observations, 

v : (n x 1) vector of the residuals,v i  . 

If the observations (in this case range measurements) 
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are of differing accuracies then the observation 

equations may be 'weighted' before solution. Weighting 

of observation equations requires a knowledge of the 

'a priori' covariance matrix (see § 3.4.5) which if the 

observations are correlated will comprise both diagonal 

and off-diagonal elements. However, it is usual to 

assume that the observations are uncorrelated, 

resulting in a diagonal covariance matrix. The diagonal 

elements of this matrix are the reciprocals of the 

squares of the standard errors of the individual 

observations. The weighted observation equations may be 

obtained from equation (3.148) as, 

	

1 	 1 	 1 
W 2  A x = w2 b  w2 v  

where 

	

1 	0 	 0 
GI 

• • 	• 	0 

1 
W2  

0 

• 

1 
6 2 

(3.149) 

(3.150) 

• • 

0 	0 1 
a n 

and ai  a priori standard error of the ith  

observation. 

By ensuring the units of the standard errors are 

consistent with those of the observations, weighting 

also converts all the terms of the observation 

equations into dimensionless quantities. Consequently, 

observations of different types may be mixed in a 
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single solution (i.e. position observations may be 

included with the ranges). It is also possible, by 

assigning very large weights (low standard errors), to 

hold certain quantities, such as the coordinates of a 

tracking station, fixed in the solution. 

Provided the residuals may be assumed to be 

random and normally distributed then the 'least 

squares' method leads to the most probable solution of 

equation (3.149). The least squares solution is that 

which minimises the sum-of-the-squares of the weighted 

residuals, i.e., 

	

V T  w v -4 minimum 
	

(3.151 ) 

As shown in Appendix E the values of the unknowns 

which satisfy (3.151) are given by, 

	

(AT  W A) x = AT  W b 
	

(3.152) 

These are known as the 'normal equations' and may be 

expressed, in matrix form, as, 

N x = d 	(3.153) 

where N : (k x k) normal equation coefficient matrix 

d : (k x 1) right hand side vector of the 

normal equations (A T  W b). 

The solution of the normal equations, which gives the 

vector of unknowns x, may be carried out by a number of 

methods (Ashkenazi, 1967 and 1969). As the normal 

equations are positive-definite and symmetrical (see 

Appendix E), a suitable method of solution is 
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Choleski's method of symmetric decomposition. The 

normal equation coefficient matrix N is decomposed 

symmetrically into L L T , to give, 

	

L LT 
	

(3.154) 

where L is a lower triangular matrix. Consequently, 

the normal equations may be written as, 

L L T  x = d 	(3.155) 

or 	L f = d 	(3.156) 

where 	f = LT  x 	(3.157) 

The solution is obtained in two stages; firstly a 

'forward substitution', equation (3.156), to obtain the 

vector f, and secondly a back substitution, equation 

(3.157), to obtain x, the vector of unknowns. 

The vector of unknowns consists of the small 

corrections tx 1, Ax2' . . Axk' to the initial 

approximate estimates of the unknown parameters. 

Improved estimates of these unknowns are obtained by 

adding (see equation (3.141)) the corrections to the 

initial values. If the corrections are within the 

limits of the linearisation then these will be the 

'final' values of the unknowns, otherwise the process 

may be repeated with the new estimates replacing the 

original approximate values. Furthermore, the vector of 

unknowns may also be substituted into equation (3.148) 

to obtain the vector of residuals v. The computation of 

the covariance matrix of the unknowns and the analysis 

of the residuals are discussed in § 3.4.5. 
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3.4.3 Observation Equations  

The generalised least squares observation 

equation for a range measurement, linearised about the 

approximate values is given by equation (3.147). For 

the dynamical analysis of laser ranging observations 

this equation, for an individual range measurement, may 

be expressed as, 

Br 	Br 	Dr 	(3.158) v6 

	

ArOj + V.1. 13 	Opp  + 11.1e , 	A . + Lj=1 	3=1 	P3 	3=1 
 

arOj 	B . 	Be.3 P3 	3 

Br 
+ / AR...,..( 1.

i 	
... 1.. ) + v. 

	

j=1 BR 	sj 	o 	lc 	1 

sj 

where 

roi 	: a component of the initial position and 

velocity vectors (inertial frame), r o  and 

r0' 

Ai 
	: any force model unknown (i.e. C R , CT , 

CD, GM etc, as given in § 3.3 ), 

n 

	

	number of force model unknowns in the 
P 

solution, 

e. 	: an earth rotation parameter x 
P 
 , y 

P
, or 

 
UT1-UTC (see § 3.2.5 and Chapter 4), 

n
e 	

• . number of earth rotation parameter 

R 

 

unknowns in the solution, 

• 

• 

a component of the earth fixed position 

vector, Bs , of stations (tracking 

station coordinates), 

R. s3 
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rio' r. : observed and computed values the i th  ic 

range, 

least squares residual, 

and the range, r, between the satellite and the 

tracking station, s, is given by, 

1 
r = ((x - xs ) 2  + (y - y s ) 2  + (z - z s ) 2 ) 2 	(3.159) 

or by, 
1 

r = ((X - Xs ) 2  + (Y - Ys ) 2  + (Z - Z s ) 2 ) 2 	(3.160) 

where 

x, y, z 	:r, inertial frame coordinates of the 

satellite, 

xs , ys , z s : r s , inertial frame coordinates of the 

tracking station, 

X, Y, Z 	R, earth fixed coordinates of the 

satellite, 

Xs , Ys , Z s : Rs , earth fixed coordinates of the - 

tracking station, 

Clearly, the range between the tracking station and 

the satellite is independent of the reference system, 

and so may be evaluated by either (3.159) or (3.160). 

The coordinates of the satellite and tracking station 

(because of the effects of solid earth and ocean tides) 

must be computed at the epoch of each observation, 

which for Satellite Laser Ranging is, generally, the 

epoch of reflection of the laser pulse at the 

satellite. 

v. 1 
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The observation equation (3.158) is a general 

form, and the choice of unknowns in the solution will 

dictate the particular terms of the equation. In order 

to constrain certain unknowns to pre-determined or 

arbitrary values it is possible to introduce additional 

'observation equations' with suitably high weights, of 

the form, 

Au = (uo - uc ) + v (3.161 ) 

where u 	any unknown parameter in (3.158), 

u o  , uc  : observed and computed values of the 

unknown, these would normally both be 

equal to the required value of the 

unknown. 

For example, to fix the longitude of one of the 

tracking stations (as is indeed necessary when 

processing laser ranging observations) then an 

'observation' of the from of (3.161) is introduced, as 

given by, 

AXs =  (X 	- so 	Xsc ) + v (3.162) 

where as is the earth fixed longitude of tracking 

station s. However, AX s  is not one of the unknown 

cartesian tracking station coordinates in equation 

(3.158), but Xs  is related to Xs  and Ys  by equation 

(3.25) as, 

(3.163) as 	tan 1  
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The observation equation (3.162) may be written in 

terms of AXs and AYs as, 

where 

ax 	ax 
s AXs + 	AYs = (Aso - A ) + v 	(3.164) 

@Xs 	3Ys 

axs 	-Ys 	(3.165) 

3Xs 	X2  + Y 2  

and 
	

axs 	x 
	

(3.166) 

3Ys 	X2  + Y 2  

The longitude of station s may then be fixed 

assigning a sufficiently high weight (low standard 

error) to the 'observation equation'. 

To form the observation equations it is first 

necessary to evaluate the various partial derivative 

coefficients of equation (3.158). The coefficients of 

the tracking station coordinates are the simplest to 

compute and are derived from the differentiation of 

equation (3.160) to give, 

ar 	= R s3  . - R. 	(3.167)  3 

aR . s3 r 

where R s3  . : Xs , Ys , Z s - a component of the earth 

fixed tracking station coordinate vector, 

RR : X, Y, Z - the corresponding component of 

the earth fixed satellite coordinate 

vector. 

For an earth rotation parameter, the partials 

may be expanded to give, 
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3r 	ar ax
s 	

ar BY 
	

ar az
s 

+ --- 
Be.

1 	
axs B e.1 	ay

s B
e. 	az

s B
e . 

1 	1 

(3.168) 

The partials of range with respect to a coordinate 

component may be evaluated using equation (3.167), the 

remaining partials may be expressed in vector form as, 

aR 
-s 

ae. 
1 

ax
s 	

BY 
	

az
s 

Be.ae. 	Be . 

1 	1 	1 

 

(3.169) 

 

However, as the earth fixed coordinates of tracking 

station s are related to the corresponding inertial 

frame coordinates by equation (3.34), i.e. 

Rs 	P E N Q r s  

then 
aR 	a 
_s 

= 	(pENQFs  ) 
Be.

1 	
Be . 

1 

(3.170) 

which for the components of polar motion, x
P 
 , y 

P
, may 

be written as, 

aR 	ap 
-s 

= 	(ENQrs  ) 
3x 	ax 

aR 	ap 
= 	(ENQrs  ) 

By 	By 

(3.171) 

(3.172) 

As a change in universal time, AUT1, is related to a 

change in Greenwich Apparent Sidereal Time, AGAST, by 

equation (3.39), observation equations may be formed in 

terms of AGAST in order to determine A(UT1-UTC). The 

coefficient from equation (3.170) is given by, 

s 	
aE 

= P 	N Q r -s BGAST 	BGAST 
(3.173) 
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The coefficients for the satellite state vector 

unknowns and the force model unknowns are given by, 

3r 	ar 3x 	3r ay 	Dr 3z 
	 =   + 	+ 
3r0i 	3x Droi 	ay aroi 	az 3r0i  

and 

(3.174) 

 

Dr 	ar ax 	3r 3y 	ar az 

 

(3.175) 

  

= 

  

    

Dpi 	 1 1 3x 3p1 	.3y3p.3z Dp. 

3r Dr 	giDr The partials -5-3-c, ay  and 	may be simply evaluated by 

differentiating equation (3.159), for example, 

ar 
= 

Dr. 
3 

r
3  
. - r . s3 (3.176) 

  

 

r 

 

where r3., r sj 
, • corresponding components of the 

inertial frame position vector of the 

satellite and the station , s. 

However, the partials of the satellite position vector 

with respect to the components of the initial state 

vector and with respect to the force model unknowns 

must be evaluated by numerical integration of the 

acceleration partials. These are integrated once, to 

give the velocity partials and twice to give the 

position partials as a function of time. The partial 

derivatives with respect to the state vector components 

(and similarly for the the force model unknowns) are 

given by, 

     

ark 
ft ° t 	

dt 	(3.177) 

0 	ar 0i 

3 

    

DrOi 

 

ar0i 
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and 

ark 	ark  
a;.i 	at 	(3.178) 

a 	ar 	t 
 

to 
ar 0 i  

where P
3  
., r.

3 
 : components of the inertial frame 

acceleration and velocity vectors (at 

time t), P and r. 

The acceleration partials, with respect to the state 

vector unknowns are given by, 

aPk  

aroi  

aP 	ax 	aP 	ay 	aP. az 
= 	+ __I 	+ 	3 	(3.179) 

ax aroi 	ay aroi 	az aroi  

	 + + 

. 
aPja;c + 

	3 
aP.a;r 	ark  az 

2 . 	. 	. 
ax aroi 	ay aroi 	az a roi  

and with respect to the force model unknowns 

aP. ax 	aP ay 	aP. az  
+ 	___ 4. __1 ___ + 

ax api 	ay api 	az api  
_ 	. 	- 	. 	•• 	. 	•• 

Dr . ax 	ar. ay 	ar . az 	ar. 
___ + __2 ___ + _2 ___ 4. 	 3P1  + --- 

ax api 	a;7 ap i 	az api 	api  

where aPj. pi  : obtained by direct differentiation of 
api 	

the force model component containing 

the parameter,pi . For example/.  for the 

reflectance coefficient C 	
JLA 

R , 	would 
acR  

be obtained by differentiation of 

equation (3.110). 

ar. aPi  
The partial derivatives --- 3,  —' etc, may be evaluated 

ax 	ax 
as the sum of the individual partial derivative s,  

obtained by differentiation of all the components of 

ar
k 

api 
(3.180) 
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the force model in turn. However, as least squares 

provides only a first order correction, the only 

significant contribution to the acceleration partials 

is due to the geopotential field of the earth and the 

effect of all the other force model components may be 

neglected. The acceleration partials for the 

acceleration of the satellite due to the earth's 

gravity field are derived in Agrotis (1984), together 

with a discussion on the effects of neglecting other 

forces. 

The integration is carried out using the 

numerical procedures described in § 3.4.1. For the 
3r. 

integration to start initial values of --2— at the 
ar t,. 

starting epoch t 0  must be provided as givgn by, 

and 

( 	ar. 

t 0 

0 it 

1 

0 

when i = j 

when i A j 

Dr 01 

ar. 

3r Oi 

for example, from equation (3.181), 

(3.181) 

(3.182) 

ax 	ax 0 --- 1 = 1 	(3.183) 
ax0  t0 	3x 0 	0 	3x0 

and 

ay 	3y 0 --- I = 0 	(3.184) 
3x t 	ax 0 	0 	0 

Similarly, initial values of the velocity partials 

must also be given, such that, 



( ar. 
3 	. 1 when i = 

al'Oi / t0 
j (3.185) 

and 

143 

[

a j 	= 0 when i A j 	(3.186) 
a;-t 0i 	0 

where 
. 
u rOi 

: a component of the initial velocity vector r- -. 

Finally for any force model unknowns, 

3 	. 0 	for all i and j 	(3.187) 

As the satellite ephemeris is required to a 

higher accuracy than the partials, satisfactory 

accuracy is maintained by choosing the step length of 

this numerical integration to be the same as for the 

determination of the ephemeris (see § 3.4). A step 

length of 120 seconds has been found to be suitable for 

LAGEOS (Ashkenazi, Agrotis and Moore, 1984). 

3.4.4 Least Squares Adjustment Minimum Requirements  

The least squares adjustment of the orbital 

starting elements and the tracking station coordinates 

using laser ranging measurements constitutes a 

3-dimensional network adjustment. As with all 3-D 

networks the normal equations, as given by equation 

(3.152), are singular with seven degrees of freedom. 

Consequently, in order to carry out a solution seven 

constraints must be imposed, such that three locate the 

origin of the coordinate system, three orientate the 

@pi  Ito  

3r. 



144 

axes and one determines the scale of the network. If 

all these constraints are not provided the normal 

equations will be rank deficient by the number of 

constraints not specified. 

In the dynamical analysis of laser ranging 

observations (or indeed, any orbit determination 

process with other satellite observations) the three 

origin conditions are satisfied by the model of the 

earth's gravity field. If the gravity field is 

represented by the spherical harmonic expansion, as in 

equation (3.64), then the coefficients C O ,   1 C1 and  S 1 
1 

represent the first moments of mass of the earth about 

the origin of the coordinate reference system. By 

setting these coefficients to zero, in the expansion, 

then by implication the origin is located at the mass 

centre of the earth. 

The orientation of the axes is partly satisfied 

by the adopted values of the polar motion components x 

and y . These specify the direction of the Z-axis of 

the earth fixed coordinate system with respect to the 

instantaneous spin axis of the earth. However, there is 

still a deficiency in orientation, because the 

coordinate axes are free to rotate about this Z-axis. 

This freedom is constrained by fixing the longitude of 

one of the tracking stations, by introducing an 

'observation equation' such as equation (3.164) before 

forming the normal equations. Clearly this provides a 

reference meridian for the tracking station solution 



145 

and the adoption of different values will introduce a 

systematic bias in the tracking station coordinates. 

Both the speed of light, c, and the geocentric 

gravitational constant, GM, provide a constraint on the 

scale of the network and so the two values must be 

compatible with one another. Any discrepancy between 

the two adopted values may be accounted for by (for 

example) fixing the speed of light to the conventional 

value and solving for GM in the least squares 

solution. 

Clearly, in order to carry out a solution for 

tracking station coordinates, the six orbital starting 

elements and a number of force model parameters, the 

only additional constraint required is the fixing of 

the longitude of one of the tracking stations. However, 

if polar motion components (x and y ) are also being 

determined, two additional degrees of freedom are 

added, because of the release of the orientation of the 

Z-axis. This may be remedied by fixing the latitudes of 

two of the tracking stations in addition to the one 

fixed longitude. Typically, the positions of a number 

of tracking stations would be fixed, their coordinates 

having been determined previously using published 

values of the polar motion components (for example, BIH 

circular D). 

As discussed in § 3.4.3, UT1-UTC may not be 

determined directly as an unknown from the least 

squares solution, however GAST may be determined, and 
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is related to UT1-UTC by a simple expression, equation 

(3.39). Furthermore, it was seen in § 3.1 that the 

satellite coordinates are generated (by the numerical 

integration procedure) in the inertial reference frame 

and are transformed to the earth fixed frame by the 

rotation matrices of equation (3.34), of which the 

matrix E is a function of GAST. Consequently, it is not 

possible to simultaneously determine absolute values of 

UT1-UTC and the satellite initial state vector, because 

this would allow the orbit to be free to rotate. 

Therefore when determining values of UT1-UTC (i.e. 

GAST) it is necessary to either hold the components of 

the initial state vector fixed (to some pre-determined 

values), or if determining a number of values of 

UT1-UTC at different epochs, to hold one value fixed at 

some reference epoch. 

The procedures for determining earth rotation 

parameters (x 
P 
 , y

P 
 and UT1-UTC) are discussed in more 

detail in Chapter 4. 

3.4.5 Residual and Error Analysis  

This section is concerned with the 'accuracy' of 

the observations and the determined parameters, and the 

detection of 'poor' observations. The term 'accuracy' 

is rather a vague description, and it is preferable to 

divide 'accuracy' into four components and discuss 

'precision', 'reliability', 'systematic biases' and 

' repeatablility'. The precision of a quantity is 
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defined by its a posteriori standard error, determined 

from the covariance matrix of the unknowns (these 

quantities are discussed later in this section). 

However, precision does not take into account 

systematic biases in the results or gross errors in the 

observations. Systematic biases do not affect the 

internal consistancy of the solution and so may only be 

detected through comparison with other (external) 

' correct' solutions. The reliability of a 3-dimensional 

network represents the ability of a network to detect 

gross errors in the observations. With laser ranging 

data sets this is rarely a problem as there are usually 

many ranges to the satellite from each tracking 

station. The final 'accuracy' criteria is repeatabilty, 

which represents the ability of a network to reproduce 

the same results with different sets of data. The 

precision of the determined quantities and the 

reliability of the observations are considered in the 

remainder of this section. 

Following the solution of the least squares 

normal equations (3.153), the vector of unknowns, x, 

may be substituted into equation (3.148) to determine 

the vector of least squares residuals v, as, 

v = Ax- b 	(3.188) 

From these residuals two statistics may be evaluated. 

Firstly by considering only the range residuals, the 

root-mean-square range residual may be computed from, 
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1 

V
T 
V 2  

aR  = 
nR 

where nR : number of range observations, 

aR : root-mean-square range residual. 

(3.189) 

The 'rms' residual provides an indication of the mean 

precision of the range measurements and also the level 

of agreement between the computed orbit and the orbit 

implied by the observed ranges. Secondly, the mean 

square error of an observation of unit weight, denoted 

by a; may be evaluated from (Ashkenazi, 1970), 

G2
0 
 = yT  W v  

n - k 
(3.190) 

where W : the 'weight' matrix, as defined by 

equation (3.150), 

n: total number of observations, 

number of unknowns. 

If the weights applied to the observations were 'on 

average' estimated correctly then 'sigma zero squared', 

0 2
0 
 should equal unity. However, if they were not then 

the original weight matrix may be corrected using, 

1 

(unbiased) = 6 2 W (estimated) 
0 

(3.191) 

The residuals may be used to detect gross errors in 

the observations. If a residual is large when compared 

with its corresponding standard error then the 

observation may be suspected to be in error. The 

rejection criteria, and the determination of the 
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standard error of a residual are considered later in 

this section, 

The covariance matrix of the unknowns gives an 

indication of the strength of the three dimensional 

network and estimates of the a posteriori (after 

adjustment) precisions of the unknowns and observed 

quantities. The covariance matrix, axx  is defined as, 

G 2 
x

1 
	6x 1 x2 X 1 Xk 

2 a 	a
x 	• . 	a 

X2X 1 	2 	X2Xk 

CT 
XX (3.192) 

XkX 1 
a 
XkX2 

• 	6 2 
xk 

where a 2 	: variance of the i th unknown, x., 

6x x 	covariance of a pair of unknowns xi , xj .. 

It can be shown (Ashkenazi, 1970) that this matrix is 

given by, 

aXX
m  60 " 1 = 60  (AT  W A)1 	(3 . 193) 

The covariance matrix can be used to determine the 

standard errors of any quantity in the adjustment, 

whether an observation, an unknown, or neither. The 

standard errors of the unknown quantities, such as the 

cartesian coordinates of the tracking stations, are 

merely the respective diagonal elements of the matrix. 

For quantities derived from unknowns, such as the 

distances (baselines) between the tracking stations or 



Y = f T  • x 

where 	fT  = (f 1'  f 2,  f 3, . . . fk ) 

then 	a2 = fT a 	f y 	xx 

(3.194) 

(3.195) 

(3.196) 
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indeed the computed ranges, it is necessary to use 

Gauss' propagation of error theorems. These state that 

if a scalar quantity, y, is a linear function of the 

unknowns, as given by, 

Forexamplerthevarianceofabaselineli 13  between 

twostationss.1  anss.is given by, 

a 2 6Lij = g a 
XX.. 13 	 13 	- 

 

1 	3 	1 , Y. - Y. , Z. - Z. 
 3 	1 

       

L 	 L 	 L 

  

X. - X
1  . , Y. - Y. . , Z. - Z. 3 	 3 	1 

L 	 L 	 L 

with 

L 2 	= 	(X.1  - X.) 2  + (Y. - Y.) 2  + (Z. - Z.) 2  (3.199) 
 3 	1 	3 	1 	3 

and a xx.. 1J 
: (6 X 6) matrix, the corresponding 

section of the covariance matrix of 

the unknowns, 

X.,Y.,Z. : earth fixed coordinates of station i, 1 1 1 

X.,Y.,Z. : earth fixed coordinates of station j, 
3 	3 	3 

Similarly, for the i th  observation (range measurement) 

the a posteriori variance is given by, 

6r 	A
1  . 	A.

1 	(3.200) r (a posteriori) 	XX  



151 

where A. • coefficients of the i observation 

equation, i.e. the i th row of the 

A matrix, see equation (3.148), 

aXX : the full covariance matrix as defined by 

equation (3.193). 

The reliability of an observation, that is the 

ability the network to detect a gross error in that 

observation, may be assessed (Crane, 1980) by the ratio 

of the a posteriori standard error to the 'unbiased' 

a priori standard error, as given by equation (3.191). 

A totally unreliable observation would result in a 

ratio of unity and a decrease in the ratio implies an 

increased reliability. 

As discussed previously, reliable observations 

containing gross errors will result in corresponding 

large residuals. However, the significance of these 

must be assessed by comparing them with the standard 

error of the residuals. If the ratio of 
v./6  vi is V1  

assumed to be normally distributed then it is possible 

to assess the probability that the observation contains 

a gross error. For example, only 5% of the observations 

should have an absolute value of v.1/aVi  of greater 

than 2.0 and only 1% greater than 2.5. The standard 

error of a residual, aV1  ., may be computed (Crane, 1980) 

using, 

2 	2 	 2 
-  

V 
G .

1  
= Gri (a priori) 	Gri (a posteriori) (3.201)  

If the observation is, however, reliable then the 

th 
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a posteriori standard error will be small compared to 

the a priori value and the standard error of the 

residual may be approximated to be equal to the 

unbiased a priori standard error of the observation. 

When processing laser ranging observations, the 

problem of local reliability in the network rarely 

arises, as typically many observations contribute to 

the unknown parameters. However, although the data is 

filtered before input to the analysis stage, the 

ability to detect spurious observations is invaluable. 

It is also beneficial to compute the a posteriori 

standard errors of the observations, and more 

importantly of the unknowns, to assess the precision of 

the solution. These estimates of the precision are, 

however, frequently over optimistic as they only 

represent the 'internal' precision of the adjustment. 

Only by comparing the results of the adjustment with 

externally obtained values, for example tracking 

station coordinates computed by another analysis centre 

or derived from a different observation technique (such 

as VLBI), is it possible to assess the 'external' or 

'absolute' precision of the unknowns. 



CHAPTER FOUR 

DETERMINATION OF EARTH ROTATION PARAMETERS  
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4.1 	INTRODUCTION 

Although it is often convenient to think of the 

earth as rotating around a fixed pole at a fixed rate, 

this is not the case, and in fact the axis is not fixed 

nor is the rate of rotation constant. The importance of 

the study and monitoring of these variations has been 

recognised for many years, and indeed, they were 

predicted several centuries before the phenomena were 

observed. 

The instantaneous orientation of the earth with 

respect to a fixed celestial reference system is 

described by four principal effects; precession, 

nutation, polar motion and variations in the rate of 

rotation. As discussed in § 3.2.4, the effects of 

precession and nutation may be simply evaluated from 

available models. However, in order to formulate these 

models the constants and coefficients must be 

determined from observations, because of our currently 

inadequate knowledge of the internal structure of the 

earth. This thesis, however, is not concerned with the 

development of models for precession and nutation, but 

with the determination of the direction of the earth's 

axis of rotation, with respect to the surface of the 

earth (the polar motion), and the variations of the 

rate of rotation of the earth about this axis. Over 

recent years the term, 'earth rotation parameters' or 

ERP, has been commonly used to collectively refer to 

the two components of polar motion and the variations 
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in the rotation rate. This term is also used throughout 

this thesis, in preference to the alternative, 'earth 

orientation parameters' 

The instantaneous axis of rotation of the earth 

is not fixed with respect to the body of the earth, but 

moves periodically, anti-clockwise, around a roughly 

circular path about a mean position. This simplified 

description describes, approximately, the effect known 

as the 'polar motion'. With no observational data 

Euler, in 1765, predicted the existence of polar motion 

and by assuming the earth was a rigid body concluded 

that it must have a principal period of 300 days. 

However, because of the elasticity of the earth, this 

period is in fact of the order of 428 days (around 14 

months), the 'Chandler Period'. This motion, which is 

generally known as the 'Chandler Wobble', is a result 

of a slight offset between the axis of rotation of the 

earth and the axis of maximum inertia, and has an 

amplitude of between 0.08 and 0.18 seconds of arc 

(around 2.4 to 5.4 metres on the surface of the earth). 

In addition, there is also a similar, approximately 

circular, seasonal motion with a period of one year and 

an amplitude of between 0.06 and 0.10 arc seconds 

(Bomford, 1980). Polar motion values determined over 

several years indicate there may also be a long term 

drift of the mean orientation of the axis of rotation. 

The motion of the pole is described by two small 

angles x and y , between the instantaneous axis of 
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rotation and the mean axis of rotation of the earth, 

and in the direction of the Greenwich meridian and the 

90 °  west meridian (respectively). The reference 

direction, fixed with respect to the body of the earth, 

is known as the Conventional International Origin 

(CIO), which is defined as the average direction of the 

rotation axis during the years 1900 - 1905. The CIO was 

originally defined by the adopted latitudes of the five 

observatories of the International Latitude Service 

(ILS, see § 4.2). Polar motion cannot be predicted 

accurately, because the geophysical phenomena which 

excite the motion are not fully understood, and so must 

be determined by observations. The two components of 

polar motion, published by the BIH (see § 4.2), over 

the past five years are plotted in fig 4.1. 

Traditionally, the basic unit of time was 

defined by tne diurnal rotation of the earth, which was 

assumed to be uniform despite the suspicion of 

variations in the rate. The length of day was 

determined from observations of the transits of stars 

across the meridians of a number of astronomical 

observatories. As clocks became more precise, through 

pendulums, quartz crystal oscillators and eventually 

atomic frequency standards (which have stabilities of 

the order of a few parts in 10 13 ), the complex 

variations in the length of day became apparent. These 

fluctuations may be classified as seasonal, irregular 

variations and a secular decrease in the rate of 
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Fig 4.1 BIH polar motion 
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rotation. Around 20 years ago atomic clocks took over 

the role of defining the basic unit of time, however 

the variations in the rotation of the earth are still 

monitored for scientific research and other 

applications. The secular decrease in the rate of 

rotation, of about 5ms per year, is generally 

attributed to the tidal forces of the earth-moon system 

(Mueller, 1969). At shorter periods, irregular 

fluctuations in the length of day show a high 

correlation with changes in the angular momentum of the 

atmosphere (Lambeck and Cazenave, 1973). 

In order to determine the variations in the rate 

of rotation of the earth, it is necessary to compare a 

time scale derived from astronomical observations, and 

so dependent on the earth's rotation, with an atomic 

based time scale. The time scales UT1, UTC and TAI are 

defined in § 3.2.3 and clearly the difference, UT1-UTC 

and UT1-TAI reveal fluctuations in the rotation rate. 

The excess length of day, D, may also be used to 

express the variations, and is defined as the 

difference between the actual length of day and a 

standard length of day of 86400.0 SI seconds. 

An accurate knowledge of the orientation of the 

earth with respect to a fixed celestial reference 

system (inertial frame) has applications in geodesy, 

navigation, astrometry and in geophysics. Geodetic 

positioning by astronomical or satellite techniques 

requires a knowledge of the orientation of the earth at 
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the instant of observation, with respect to the 

reference system used for the stars or the satellite 

orbit. Clearly, different applications have different 

positioning requirements and corresponding requirements 

for the precision of the earth rotation parameters. For 

example, for many navigation purposes the effects of 

polar motion may be neglected and a knowledge of 

Universal Time (UT) is only required to the nearest 

second. However, for precise, centimetre level, 

geodetic positioning for earthquake research or 

tectonic plate studies, earth rotation parameters of a 

very high precision (a few milli-arc-seconds for polar 

motion and around 0.1 milli-seconds in Universal Time) 

are required. Recent developments of the techniques of 

Satellite Laser Ranging and Very Long Baseline 

Interferometry are resulting in these high levels of 

precision of positioning, and also the precise earth 

rotation parameters required for the reduction of the 

data. 

The geophysical community is also interested in 

the variations of the orientation of the earth because 

many of the short and long period effects are excited 

by geophysical forces that may not be measured 

directly. For example, changes in the mass distribution 

of the earth due to earthquakes and the melting of the 

polar ice and glaciers, and the coupling between the 

atmosphere and the earth (and also between the core and 

the mantle), all have an effect on the earth rotation 

parameters. 
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4.2 INTERNATIONAL MONITORING SERVICES 

The first international cooperating service 

formed specifically to monitor earth rotation 

parameters was the International Latitude Service 

(ILS). This was established in 1899 by the 

International Astronomical Union and the International 

Geodetic Association. As the name suggests, the ILS was 

set up to monitor polar motion by determining the 

astronomical latitudes of five optical observatories 

around the world. There observatories were all close to 

the 38 °  8' N parallel at Mizusawa (Japan), Kitah 

(USSR), Carloforte (Italy), Gaithersburg (USA) and 

Ukiah (USA). The latitudes of these stations defined 

the Conventional International Origin (IUGG, 1967). The 

ILS was succeeded by the International Polar Motion 

Service (IPMS) which since 1962 has been based in Japan 

and regularly publishes values of polar motion. The 

five observatories of the ILS are used in conjunction 

with observations from about fifty other optical 

observatories around the world. An assortment of photo 

zenith tubes, zenith telescopes, astrolabes and 

meridian transit telescopes contribute data to the 

IPMS. 

In 1912 the Bureau Intrnational de l'Heure (BIB) 

was established at the Paris Observatory, to provide an 

international time scale based on the rotation of the 

earth. The aim was to produce a unified time system 

which would be related to the time signals broadcast by 
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observatories through published offsets. Currently the 

BIH is responsible for the maintenance of the 

international atomic and universal time scales. 

Although the principal role of the BIH is the 

determination of universal time, polar motion values 

are also derived during the reduction of the 

observations . In 1979, astrometric observations were 

made with 80 instruments at 60 observatories around the 

world, many of which are common with those used by the 

IPMS (Feissel, 1980). 

The origin of the BIH polar motion values was 

made to agree with the CIO in 1968. From 1973 onwards, 

the polar motion series derived from the Doppler 

tracking of the Transit satellites has been combined 

with the optical astrometric values in the BIH 

published polar motion series. It subsequently became 

evident from the Doppler values that systematic biases, 

resulting from the classical astrometric techniques, 

were included in the 1968 BIH system. This was also 

apparent when polar motion values derived from laser 

ranging measurements to the moon were introduced. As a 

result, the 1979 BIH system was introduced which, by 

using a number of years of Doppler observations, 

removed the systematic effects of the classical optical 

methods. In recent years, in addition to the Doppler 

measurements, earth rotation parameters derived from 

Satellite and Lunar Laser Ranging and Very Long 

Baseline Interferometry have also been introduced, and 
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are becoming increasingly dominant over the published 

BIH values. 

The earth rotation parameters determined by the 

BIH are published monthly, with a delay of about two 

months, in the BIH circular D. The complete annual 

series is also published in the BIH Annual Report for 

the respective year. In addition to these 'delayed' 

values the BIH also provides a Rapid Service on a 

weekly basis which is published in the Earth 

Orientation Bulletin (Series 7 Time Service 

Publication) of the United States Naval Observatory. 

This latter publication also reproduces earth rotation 

parameters derived at the USNO and at other 

establishments from astrometric, Doppler and laser 

ranging observations. 

The history and operation of the earth rotation 

and polar motion monitoring services is outlined by 

Guinot (1978), and further details of the analysis 

procedures and publications of the IPMS and BIH are 

given by Wilkins (1980a). 
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4.3 EARTH ROTATION PARAMETERS FROM LASER RANGING 

4.3.1 Basic Principles  

The traditional astrometric method of 

determining earth rotation parametes involves the 

measurement of the variations of latitude and Universal 

Time at a number of observatories around the world. The 

variations are determined with respect to a set of 

fixed positions for a catalogue of stars. Clearly, each 

station may only detect the component of polar motion 

along the meridian passing through the observatory. 

However, by combining observations from a number of 

well distributed sites the earth rotation parameters 

may be obtained. 

The application of satellite techniques may be 

considered an analogous situation with the satellite in 

orbit replacing the stars. A complication arises in 

that, the tracking systems used to orientate the earth 

with respect to the orbit must also be used, in turn, 

to establish the orbit of the satellite. The early 

experiments to determine earth rotation parameters from 

a single laser ranging station (Kolenkiewicz et al, 

1977) approached this problem by first establishing a 

reference orbit from a long period of data (say, one 

month). The movements of the tracking station (and 

hence the earth rotation parameters, variation in 

latitude and length of day) were subsequently obtained 

by comparison of short period orbits (say, 12 hours) 

with the reference orbit. However, the drawback of this 
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approach was the requirement for very precise modelling 

of the perturbing forces on the satellite during the 

computation of the long reference orbit. Any errors 

would subsequemtly appear as apparent variations of the 

tracking station coordinates. 

The approach adopted by the majority of analysts 

of Satellite Laser Ranging observations is to use a 

network of tracking stations, in preference to a single 

station. Consider a situation in which the coordinates 

of a number of tracking stations, in an earth fixed 

reference system, are well known and a satellite is 

tracked during two different periods. If the tracking 

stations are common to both periods of observations 

then it is possible to simultaneously determine the 

satellite's orbit and the (average) coordinates of the 

point about which the network of tracking stations 

rotated between the two periods. This method of 

determining the pole position does not require a very 

long precise orbit to be computed and shorter orbits 

(with a corresponding increase in accuracy) may be 

used. A network approach has been used by the US 

Department of Defense to routinely derive polar motion 

components from satellite Doppler (Transit) tracking 

data since the early 1970's (Anderle, 1973). 

As previously shown in § 3.4.3, corrections to 

provisional polar motion and earth rotation (GAST and 

hence UT1-UTC) may be included as unknowns in the least 

squares dynamical analysis of laser ranging data (the 
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process described in Chapter 3). Although the simple 

example, of the network approach, given above may 

suggest it is necessary to fix the coordinates of all 

the tracking stations, this is not strictly true when 

analysing laser ranging data and the minimum 

constraints actually required are given in § 3.4.4. 

There are, however, several different ways of 

satisfying these constraints. As a result a number of 

different analysis procedures for the determination of 

earth rotation parameters have been implemented by the 

various laser ranging analysis centres. The procedure 

developed and adopted at Nottingham is discussed in the 

following section. 

4.3.2 Analysis Procedure  

As previously discussed (in § 3.4.4), when 

processing laser ranging observations by the dynamical 

method it is not possible to simultaneously determine, 

as unknowns in a solution, the coordinates of all the 

tracking stations and the two polar motion components, 

without applying additional constraints. Because of the 

'release' of the polar motion components two degrees of 

freedom are introduced which must be satisfied. By 

holding the latitudes (in addition to the one fixed 

longitude, see § 3.4.4) of two of the tracking stations 

fixed to previously known (and precise) values, the 

coordinates of all the other tracking stations and the 

two polar motion components may be determined. 
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Alternatively, if a solution is to include a number of 

pairs of polar motion values at a number of different 

epochs, then by fixing a pair of values at just one 

epoch all the remaining polar motion values and all the 

tracking station coordinates may be determined. 

A similar situation arises when determining GAST 

(in order to obtain UT1-UTC, see § 3.4.3), however in 

this case, GAST and the satellite initial state vector 

may not be simultaneously determined. If the orbit is 

expressed in terms of Keplerian orbital elements, 

rather than the usual cartesian representation 

(Ashkenazi and Moore, 1986), then by fixing the 

longitude of the ascending node, to some pre-determined 

value, the necessary constraint would be applied. 

However, it is not possible to uniquely distinguish a 

particular cartesian orbital element in the same way. 

As a result it is necessary to fix all the elements of 

the initial satellite state vector to some previously 

derived values. An alternative method would be, as with 

the polar motion components, to solve for a number of 

GAST values at different epochs in a single solution, 

and satisfy the constraint by holding one value fixed 

at some reference epoch. Thus allowing the satellite 

orbit to be released and allowing the initial state 

vector and the other GAST values to be determined. 

It would be clearly preferable to adopt this 

latter alternative for both polar motion and UT1-UTC 

(i.e. GAST), as this would allow the satellite state 
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vector, the tracking station coordinates and a number 

of polar motion and UT1-UTC values (at different 

epochs) to be simultaneously determined. The only 

necessary constraints would be the fixing of the 

longitude of one of the tracking stations, and UT1-UTC 

and one pair of polar motion values at some reference 

epoch. However, the current SODAPOP software package 

(see Chapter 5), developed at Nottingham, is not 

capable of determining more than one set of earth 

rotation parameters in a single solution. Consequently, 

a two-stage data processing procedure for determining 

earth rotation parameters was adopted. Details of the 

data sets processed by this method and the models and 

unknowns of the particular solutions are given in 

Chapter 6. 

Initially, a one month period of laser ranging 

data is processed in order to establish a stable 

reference orbit and a set of tracking station 

coordinates. The necessary constraints are provided by 

fixing the longitude of one of the tracking stations 

and adopting preliminary values of polar motion and 

earth rotation. Typically, these may be taken from 

published values, such as the BIH circular D series. 

The solution is repeated, iteratively, a number of 

times until all the unknown parameters have converged 

to the required levels. 

Having established the reference orbit and 

coordinates of the tracking stations these are then 



167 

held fixed for the subsequent stage of the analysis. 

The one month set of data is split into a number of 

consecutive short data sets, each spanning a period 

(for example) of one to five days. The short data sets 

are processed independently in order to determine the 

mean earth rotation parameters during the particular 

period. The resulting series of polar motion and 

UT1-UTC values may be subsequently used in lieu of the 

adopted preliminary values, and the first stage of the 

process repeated to obtain a new reference orbit and 

coordinate set. If required, or necessary, a revised 

set of earth rotation parameters may also be obtained, 

by repeating the second stage. Indeed, the whole 

computational cycle may be repeated any number of 

times, although in practice (see, § 6.2.3) this has not 

been found to be necessary. 

4.3.3 Post-Processing and Smoothing 

The analysis of laser ranging data, to determine 

earth rotation parameters, results in three series of 

values at discrete epochs. As polar motion (i.e. x and 

y ) and earth rotation (i.e. UT1-UTC) are time varying 

quantities then any derived values must be assigned a 

corresponding epoch. At Nottingham this is calculated 

as the mean apoch of all the range observations 

included in the period of data processed, 

1  tmean = 
	n — I . 	t. n 1=1 1 ( 4 . 1 ) 
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where tmean : mean epoch assigned to the earth 

rotation parameters, derived from the 

period of data 

t. 	: epoch of the ith  range observation 

n 	: number of range observations. 

The resulting 'raw' time series may be smoothed 

to remove any high frequency noise and so allow 

interpolation of the earth rotation parameters to other 

epochs, as required. The raw values computed or 

received by the BIH are smoothed using Vondrak's 

algorithm, in order to produce the continuous smooth 

series of earth rotation parameters published in the 

BIH circular D. A comparative discussion of this, and 

other suitable, methods of smoothing may be found in 

Feissel and Lewandowski (1984). 

The aim at Nottingham was to maintain the raw 

values and so to avoid any smoothing if at all 

possible. However, in order to compare the derived 

earth rotation parameters with those determined at 

other analysis centres they must first be interpolated 

to the same epochs. As the BIH circular D values are 

published for 0.0 hrs UT at 5 day intervals, these 

epochs were adopted as convenient nominal reference 

epochs, at which any comparisons would be made. Details 

of the results of the processing of laser ranging data 

are given in Chapter 6, however, for the purposes of 

this discussion it is convenient to mention that the 

earth rotation parameters were determined at roughly 
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1 and 5 day intervals. In order to 'transfer' these 

values to the nominal BIH epochs two different 

interpolation schemes were used. 

For the daily values (of x 
P 
 , y 

P
, and UT1-UTC) 

the interpolation consists of a least squares fit of a 

quadratic function (see Appendix C) to each set of five 

consecutive values which span either side of the BIH 

epochs (i.e. the five values whose corresponding epochs 

are closest to the reference epoch). The daily values 

are input to the interpolation procedure and are 

attributed with a priori weights, obtained from the 

covariance matrices of the individual solutions 

(see § 3.4.5). This allows the estimation of an 

a posteriori standard error for the interpolated value, 

which is obtained by evaluating the quadratic function 

at the respective BIH epoch. 

The raw earth rotation parameters resulting from 

the 5 day solutions are reduced to the BIH nominal 

epochs by linear interpolation between the pair of 

values either side of a particular BIH epoch. Standard 

errors for the resulting parameters are evaluated by 

differentiation of the interpolation formula and 

application of the 'Gaussian propagation of error' 

theorems (Ashkenazi, 1970). No further smoothing was 

applied to either series of earth rotation parameters. 

Because of the high correlation between the 

satellite orbital parameters and UT1-UTC (see § 3.4.4) 

they may not be determined simultaneously, and a 
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reference value of UT1-UTC must be used. Consequently, 

the only truly estimable measure of the rate of 

rotation of the earth is the rate of change of UT1-UTC. 

This rate of change is usually expressed as the change 

in UT1-UTC over a day, which is equivalent to the 

excess length of day, D. Having obtained values of 

UT1-UTC (from the 1-day or 5-day solutions) at the BIH 

epochs, ti , ti-1 , and 	the the excess length of day at 

epochs ti  - 2.5 days and t i  + 2.5 days may be 

evaluated 

Di-2.5 = (UT1-UTC) i  - (UT1-UTC) i-1 	(4.2) 

5 

Di+2.5  = (UT1-UTC) i+1  - (UT1-UTC) i  (4.3) 

5 

The standard errors of these values may be 

calculated from the a posteriori standard errors of the 

UT1-UTC values. The excess length of day at epoch t i  

(Di ) may be evaluated as the weighted mean of 1 	 Di-2.5 

and i.e. Di+2.5 ,  

D1 W . 	. 	. 1 	1-2.5D  1-2.5 	Wi+2.5 D.  1+2.5 (4.4) 

 

Wi-2.5 	Wi+2.5 

 

where Wi±2.5 = 1  

ai±2.5 
(4.5) 

and, ai_2.5 andGi+2.5  are the standard errors of the 

two intermediate values of the excess length of day, 

Di....2.5 andD1i.2.5 .ThestandarderrorsofD.
1  may also 

be calculated from these two values. 
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4.4 PROJECT MERIT 

4.4.1 General Description  

The scientific importance of the study of the 

rotation and orientation of the earth has been 

recognised for many years (see § 4.1). However, over 

recent years the existing classical astrometric methods 

of determining earth rotation parameters could no 

longer provide the resolution which was becoming 

increasingly necessary. With the advent of several new 

space techniques, notably, Transit Doppler, Very Long 

Baseline Interferometry and Lunar and Satellite Laser 

Ranging, it was clearly demonstrated (McCarthy and 

Pilkington, 1978) that a far higher resolution was 

achievable. A special working group was formed in 1978, 

during the IAU Symposium on 'Time and the Earth's 

Rotation', to encourage the further development of 

these new technniques with the aim of promoting the 

development of a new international service to monitor 

polar motion and Universal Time, to succeed the 

existing monitoring services (see § 4.2). After 

subsequent meetings the working group proposed a 

special campaign of observation and analysis and ,in 

1979, was officially recognised by both the 

International Astronomical Union (IAU) and the 

International Union of Geodesy and Geophysics (IUGG) 

and became the IAU/IUGG Joint Working group on the 

Rotation of the Earth (Wilkins, 1980b). 
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This 'special programme of international 

collaboration to Monitor Earth Rotation and 

Intercompare the Techniques of observation and 

analysis' (Wilkins, 1980a) adopted the title (and 

acronym) of Project MERIT. The main objectives of the 

project were, firstly, to encourage the development of 

the new techniques of determining polar motion and 

variations in the rate of rotation, and secondly, to 

obtain precise data from which the causes and effects 

of the variations may be assessed. The final aim was to 

ultimately make recommendations to the International 

Unions (IAU/IUGG) with regard to the future of the 

international monitoring services of earth rotation. 

It was recognised that the aims of the project 

would be best achieved by the organisation of an 

international observational campaign, with the 

participation of both the classical and the new 

techniques. Such a campaign would allow a comparative 

assessment of the relative merits of the various 

techniques and produce sufficient data to also allow a 

reliable assessment of the accuracies of the results. 

However, because of the organisational complexity of 

such a large international campaign it was decided 

(Wilkins, 1980a) to first conduct a 'Short Campaign' to 

allow the arrangements to be refined before the 

subsequent 'Main Campaign' (see § 4.4.2). As the Global 

Positioning System (Ashkenazi and Moore, 1986) was not 

fully operational during the two campaigns, six 
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observational techniques contributed data, namely, 

classical optical astrometry, very long baseline and 

connected element radio interferometry, satellite and 

lunar laser ranging, and Transit Doppler. A review of 

the observational techniques is given by Wilkins 

(1980a). 

The advancements of these space geodetic 

techniques also led to the formation of the IAG/IAU 

Joint Working Group on the Establishment and 

Maintenance of Conventional Terrestrial Reference 

System, COTES (Mueller et al, 1982). The aims of the 

working group were to investigate and make 

recommendations with regard to the re-definition of the 

terrestrial and celestial coordinate reference systems, 

exploiting the new observational techniques. It was 

agreed (Wilkins and Feissel, 1982) that it would be of 

mutual benefit to both working groups if Project MERIT 

was organised so as to contribute, whenever possible, 

to the re-definition of the reference systems. In order 

to establish the differences between the reference 

frames particular to certain techniques, two methods 

were identified by the working groups (Feissel and 

Wilson, 1983). Firstly, by determining the coordinates 

of the stations by two or more observational 

techniques, simultaneously, i.e. colocation, and 

secondly, by determining any diurnal differences 

between the earth rotation parameters determined by the 

different techiniques. As a result, an 'intensive 
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campaign' was proposed, to take place during the Main 

MERIT Campaign. During this period all the 

participating stations would be asked to observe as 

frequently as possible and the colocation of different 

techniques (with the particular aid of mobile systems) 

would be encouraged. Furthermore, it was also decided 

to determine the coordinates, by Transit Doppler, of 

all the observational stations contributing data to the 

Main MERIT Campaign. 

In order to simplify the comparison of the 

results obtained by the different techniques, or by 

different analysis centres for the same technique, a 

sub-committee was formed with the task of producing a 

series of standard models, procedures and constants for 

use by all the participants of Project MERIT. The 

resulting MERIT Standards (Melbourne, 1983) have since 

been used, not just for Project MERIT but, extensively 

for the analysis of space geodetic observations. 

4.4.2 Organistion, Campaigns and Analysis  

Within the working group on 'the Rotation of the 

Earth' a steering committee was formed to oversee the 

organisation of Project MERIT. The officers, steering 

committee and members of the working group, including 

the principal coordinators for each observational 

technique, are given by Wilkins (1984). The 

transmission of data and the collection of results was 

controlled by an 'Operational Center' for each 
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technique and a single, overall, 'Coordinating Center' 

(at the BIH) which gathered all the results and 

published then in the MERIT Monthly Circulars and the 

final report of the campaign (Feissel, 1986). The 

Operational Centers distributed the observational data 

to the Analysis Centers, and computed 'rapid' earth 

rotation parameters on a weekly basis and reported 

these to the Coordinating Center. The analysis of the 

full data sets was carried out by a number of Analysis 

Centers for each technique. Although the Designated 

Analysis Centers (DAC) were expected to provide a 

complete series of earth rotation parameters for the 

total duration of the Main Campaign, in compliance with 

the MERIT Standards, the Associate Analysis Centers 

(AAC) were only expected to provide a partial analysis 

of the data. During and after the Main Campaign, the 

Geodesy Group of the University of Nottingham 

contributed to Project MERIT as an Associate Analysis 

Center for both Satellite Laser Ranging and Very Long 

Baseline Interferometry. 

As previously oultlined, Project MERIT centered 

around two observational campaigns. The Short Campaign 

was held for three months between August and October of 

1980, with the aim of testing and developing the 

organisation required during the Main Campaign. 

Although only two techniques (Transit Doppler and 

Optical Astrometry) had regularly determined earth 

rotation parameters before the Short Campaign, 
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six observational techinques participated during the 

three months. Details of the contribution of the 

various techniques during the Short Campaign are given 

in fig 4.11, which is reproduced from Table 1 of the 

MERIT/COTES Joint Summary Report (Wilkins and Mueller, 

1985). The results of the Short Campaign were presented 

at the IAU Sympossium No 63 (Calame, 1982), and the 

campaign was reviewed at the first MERit Workshop 

(Wilkins and Feissel, 1982). 

The duration of the Main Campaign was chosen to 

be sufficiently long to allow the principal periodic 

terms of the polar motion (and the variations in the 

rate of rotation) to be determined. A period of 14 

months, roughly the Chandler period of the polar 

motion, was selected from the 1 st of September 1983 to 

the 31 st of October 1984. Clearly, the objectives of 

the Main Campaign of Project MERIT were very similar to 

the overall aims of the project (see § 4.4.1). The 

major difference between the observations of the Short 

and Main Campaigns was the increased precision of the 

results due to the development of the new techniques 

that had taken place during the intervening period. The 

participation of the various techniques to the Main 

Campaign are outlined in fig 4.111, which is reproduced 

from Table 2 of the MERIT/COTES Joint Summary Report 

(Wilkins and Mueller, 1985). 

During a three month period, from April to June 

of 1984, of the Main Campaign the Intensive Campaign 



Observational 
Technique 

Number 
of 

observing 
stations 

Number 
of 

operational 
centres 

Number 
of 

analysis 
centres 

Optical astrometry 85 1 2 

Doppler tracking of satellites 31 2 2 

Satellite laser ranging 31 2 6 

Lunar laser ranging 3 1 4 

Connected element radio 
interferometry 

2 2 - 

Very long baseline radio 
interf erometry 

9 1 3 

Fig 4.11 Participation in the MERIT Short Campaign (1980)  



Observational 
Technique 

Number 
of 

observing 
stations 

Number 
of 

operational 
centres 

Number 
of 

analysis 
centres 

Optical astrometry 61 2 3 

Doppler tracking of satellites 203 2 3 

Satellite laser ranging 27 4 8 

Lunar laser ranging 3 1 3 

Connected element radio 
interferometry 

1 1 1 

Very long baseline radio 
interferometry 

8 2 5 

Fig 4.111 Participation in the MERIT Main Campaign (1983/4)  
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was held. The aim of this campaign was to detect any 

diurnal differences in the earth rotation parameters 

derived by the various techniques, due to differences 

in the reference systems. A further aim was to 

determine whether any very short term variations could 

be detected by the new techniques. Consequently, all 

the participating observatories were requested to 

observe as frequently as possible, and the colocation 

of mobile SLR anf VLBI facilities with permanent 

stations was encouraged. Although there was a slight 

increase in the activities in optical astrometry, 

Satellite Laser Ranging and Very Long Baseline 

Interferometry, there were fewer colocations than had 

been hoped for (Wilkins and Mueller, 1985). 

Following the main campaign a period of about 

nine months was dedicated to the processing of the 

observational data by the Dedicated and Associate 

Analaysis Centers. The preliminary results of Project 

MERIT were reported to the International Conference on 

Earth Rotation and the Terrestrial Reference Frame and 

the 3 rd MERIT Workshop, both in 1985, and are presented 

in the proceedings of the conference (Mueller, 1985) 

and summary of the results of Project MERIT (Feissel, 

1986). 

4.4.3 Satellite Laser Ranging and Project MERIT 

Of the new observational techniques which 

promoted the establishment of Project MERIT, it was 
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generally recognised that both Satellite Laser Ranging 

and VLBI had already demonstrated very high potential 

accuracies, and would probably form the basis of any 

future earth rotation monitoring service. Consequently, 

a considerable effort was made by the laser ranging 

community, both before and after the Main Campaign, to 

complete the construction and testing of new and 

upgraded tracking stations, in order to produce a well 

distributed (global) network of precise ranging systems 

(Schutz, 1983a). During the Main Campaign laser range 

observations, to LAGEOS, were reported from a total of 

38 tracking stations. Details of the participating 

stations are presented in fig 2.11 and their locations 

are graphically illustrated in fig 2.111. 

Three different satellites, namely LAGEOS, 

STARLETTE and GEOS-III, were tracked during the Short 

MERIT Campaign (Aardoom, 1982). However, at the second 

MERIT Workshop (Schutz, 1984) the Satellite Laser 

Ranging Group recommended that only LAGEOS and 

STARLETTE should be tracked during the Main Campaign, 

with LAGEOS the primary target. 

The observational data was reported from the 

tracking stations to the Data Collection Centers in two 

formats (and quantities). The 'quick look' data, which 

is a sample of the full data set (say, 50-60 observed 

ranges per good LAGEOS pass), was reported once a week 

and processed by the Operational Center of Satellite 

Laser Ranging (at the Center for Space Research of the 
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University of Texas at Austin), to produce a rapid 

determination of the earth rotation parameters. In 

comparison, the 'full rate' data, the complete set of 

observed ranges (after initial filtering at the 

tracking stations), was reported to the Crustal 

Dynamics Data Imformation System (of NASA) some time 

after the observations. Considering the rate at which 

data is accumulated from 3 rd generation laser ranging 

facilities (see § 2.4.1.1), the full rate data was 

compressed to produce 'normal point' ranges by the 

Operational Center. However, the major purpose of the 

creation of the Standard Data Sets was to produce sets 

of data compatible with both the MERIT Standards and 

the supplementary Satellite Laser Ranging Data Analysis 

Standards (Schutz, 1983b), to facilitate the inter-

comparison of the derived earth rotation parameters. 

The resulting monthly Standard Data Sets and the Full 

Rate data were subsequently made available to the 

various Designated and Associate Analysis Centers (for 

Satellite Laser Ranging). 

This apparently complex flow of laser ranging 

data and the resulting earth rotation parameters 

between the participants of Project MERIT is summarised 

in fig 4.IV. Further details of the data sets and 

formats may also be found in the Satellite Laser 

Ranging Procedures Guide for Project MERIT (Schutz, 

1983b). 
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5.1 	INTRODUCTION 

A Satellite Orbit Determination and Analysis 

Package Of Programs, with the acronym SODAPOP, has been 

developed at Nottingham in order to process Satellite 

Laser Ranging data. Currently, a number of routines and 

models are specifically tailored for laser range 

measurements to the LAGEOS satellite. However, because 

of the 'modular' approach adopted during the writing of 

the software package, it may be easily modified to 

enable the analysis of laser range observations to 

different satellites (such as STARLETTE) or indeed 

different types of data altogether. 

The package consists principally of two 

programs, ORBIT, an orbit integration program and SOAP, 

the Satellite Orbit Analysis Program, which performs 

the least squares adjustment and error analysis. 

Whearas ORBIT is a 'general' orbit integration program, 

with only specific models tailored to suit LAGEOS, SOAP 

is designed specifically for the analysis of Satellite 

Laser Ranging observations. Despite the high level of 

compatability between the two programs their 

independence is maintained to allow for future 

development. The remainder of the package consists of 

ancillary service programs to pre-process raw laser 

ranging data and post-process the residuals and 

products. The efficiency of both ORBIT and SOAP is 

improved by the CHEBPOL program discussed in § 5.2.2. 

The interaction between the various programs of the 

SODAPOP suite is illustrated in fig 5.1. 
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Fig 5.1 SODAPOP - Satellite Orbit Determination and Analysis Package of Programs  
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The package has been developed by the author, 

and by Dr. L. G. Agrotis during his research period at 

Nottingham (Agrotis, 1984), on ICL 2900 series 

computers. The ORBIT and CHEBPOL programs were 

originally written by Dr. Agrotis and ORBIT has 

required little modification since. However, CHEBPOL 

has been upgraded (to increase it's flexibility) by the 

author. The first 'prototype' version of SOAP was 

written jointly by the author and Dr. Agrotis, however, 

since then all later versions have been developed by 

the author. All the remaining service programs for the 

pre-processing of data and the plotting (and 

processing) of residuals and results have also been 

developed by the author, with the exception of the 

TRANSFORM program (see § 3.2.1.5). This program was 

taken from the University of Nottingham Doppler 

Adjustment Package (UNDAP), and was originally written 

by Dr. R. M. Sykes (Sykes, 1979). 

The orbit integration program, ORBIT, is based 

on the principles of orbit determination described in 

Chapter 3. Starting with an initial satellite state 

vector and a model of the forces acting on the 

satellite it computes, using numerical integration 

procedures, the satellite ephemeris (§ 3.4.1) and the 

observation equation partial derivatives (§ 3.4.3). The 

ephemeris and partials computed by ORBIT are 

subsequently used by SOAP which takes the pre-processed 

laser range observations and performs a least squares 

adjustment (§ 3.4.2) and error analysis (§ 3.4.5). 
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Both ORBIT and SOAP need to evaluate the large 

nutation series (§ 3.2.4) and the precession equations 

at each integration step or observation epoch 

(respectively). These time consuming computations are 

avoided by the program CHEBPOL, which derives, for each 

day, a set of Chebyshev polynomial interpolation 

coefficients for the precession and nutation matrices. 

The interpolation formulae may be used by ORBIT and 

SOAP to efficiently evaluate the relevant matrices as 

required. CHEBPOL also computes interpolation formulae 

for the nutation in longitude (§ 3.2.4), the planetary 

coordinates (§ 3.3.3) and the earth rotation 

parameters, x p  , y p , and UT1-UTC (§ 3.2.5). 

The data pre-processing package consists of a 

series of programs to filter, compress and sort the 

laser range measurements and produce data in a suitable 

format for the analysis program SOAP. The principal 

programs of the SODAPOP suite are discussed, in detail, 

in the remainder of this Chapter, which is concluded in 

§ 5.5 with details of the testing and validation of the 

software and a description of the operational use of 

the package. 



187 

5.2 	ANCILLARY PROGRAMS 

5.2.1 	Data Pre-processing Programs  

5.2.1.1 General Description  

The requirements for, and method of, pre-

processing laser ranging observations were discussed in 

2.4.1. Two pre-processing strategies were outlined; a 

simple polynomial technique and a method based on the 

residuals from a computed orbit. The SODAPOP suite 

currently allows either approach to pre-processing to 

be adopted. However, despite the complexity of the 

second method, its use is recommended whenever possible 

(this method is not suitable if no satellite state 

vector is available). 

The raw laser range data is distributed to the 

analysis centres on magnetic tapes in the modified 

Seasat Decimal (SSD) format (Schutz, 1983b). The 

(MERIT) data consists of one file for each calender 

month, sorted into chronological order. When pre-

processing the observations it is convenient to handle 

the ranges from one station at a time. Consequently, 

there are a number of programs common to both pre-

processing packages which either sort the observations 

according to their tracking station or combine the 

individual pre-processed data sets to give a single 

data file. The program 'NUMB' scans the complete file 

of raw observations and outputs the station 

identification numbers for which data was found 

together with the number of ranges observed at each 
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station. For a specified tracking station number (as 

obtained from NUMB) the program 'READ' will read all 

the observed ranges for that station from the magnetic 

tape and store them in a disc file. Following the pre-

processing of the 'subsets' of observations the 'SORT' 

program combines the individual files and sorts the 

observations into chronological order, resulting in a 

single data file ready for input to the analysis 

program, SOAP. 

The 'RESPLOT' program is also used by both 

pre-processing packages. This is a general plotting 

program to produce graphical representations of the 

residuals from the filtering procedures and also of the 

least squares residuals from SOAP. 

5.2.1.2 	Pre-Processing Package, DATPAK-1  

This package of programs was written to 

pre-process laser ranging data by the polynomial method 

discussed in § 2.4.1.4. The general outline of DATPAK-1 

and the flow of data through the package are 

illustrated in fig 5.11. The two principal programs of 

the package, FILTER and NORMAL, have not been 

previously discussed. The FILTER program takes the 

observed ranges from one station and splits the data 

into individual passes over the station. A break in the 

data of more than 30 minutes is used to detect the end 

of one pass and the start of the next. An n th order 

polynomial is fitted by least squares to each pass and 
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any ranges with large residuals (say, > 2a) are 

rejected, as described in § 2.4.1.4. The input to the 

program consists of the raw ranges from one station and 

a control file which informs the program of the order 

of the polynomial, the rejection criterion to be used, 

and the number of times the filter is to be repeated. 

The program outputs the filtered observations and the 

residuals which may be subsequently graphically output 

using the RESPLOT program. 

The file of filtered observations forms the 

input to the data compression program, NORMAL. This 

program splits the data, from one tracking station, 

into short periods, typically 3 minutes, and computes 

one 'normal point' range for each period. The procedure 

used by NORMAL to generate the normal points is 

described in § 2.4.1.4. An additional input file allows 

the order of the polynomial to be modified and also the 

period of data, to be compressed into each normal 

point, to be specified. The normal point ranges are 

output from the procedure in Seasat Decimal format, 

with the relevant parameters set to indicate the 

observations are normal points and not raw ranges 

(Schutz, 1983b). Similar sets of normal points from the 

other tracking stations are combined and the 

observations sorted into chronological order by the 

SORT program. 

This package of pre-processing programs was 

initially tested, and subsequently used, with mainly 
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2nd generation laser ranging data, observed during 

1980. Experience showed that a 10th order polynomial 

and a rejection level of 2a was, generally, a suitable 

combination for filtering. Normal point ranges were 

obtained for each minute of data using a 7 th order 

polynomial. The subsequent processing of the 

observations which were pre-processed using this 

package is descrided in § 6.1. 

For the reasons outlined in § 2.4.1.4 the pre-

processing procedure used by this package was found to 

have several limitations, especially with high 

repetition rate 3 rd generation laser ranging data. 

Consequently, a completely different approach to 

pre-processing was adopted, and has since made the 

first version effectively redundant. 

5.2.1.3 Pre-processing Package,  DATPAK-2  

The theoretical considerations on which the 

programs of this package are based are described in 

§ 2.4.1.5. Basically, the satellite orbit is not 

represented by a polynomial fitted to the ranges, as 

with DATPAK-1, but by a 'computed' orbit generated by 

the ORBIT program (see § 5.3) which is fitted to a 

sample of the raw range observations using the SOAP 

program (see § 5.4). The structure of the DATPAK-2 

package, and the necessary inclusion of major programs 

from the SODAPOP suite, is illustrated in fig 5.111. 

The programs ORBIT, SOAP, SORT and RESPLOT are not used 
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exclusively by DATPAK-2 and are described elsewhere in 

this Chapter, while the other programs, namely, SELECT, 

PREFILTER, AUTOFILTER, and NORMAL-2, are outlined in 

this section. 

If the orbit of the satellite is known, from 

previous data sets (for example), then this may usually 

be extrapolated to span the period of data to be pre-

processed. Otherwise, it is necessary to determine the 

orbit by using a sample of the range observations from 

the data set. It is important to note that any 'trends' 

remaining in the 'computed' orbit may be removed at a 

later stage and so a 'precise' orbit is not required. A 

sample of the full data set is used simply to increase 

the efficiency of the process and ideally normal point 

ranges would be used, however, these are not (usually) 

available at this stage of the pre-processing. The 

SELECT program scans a raw data file and selects one 

observation every 3 minutes (for example) and neglects 

all the other observations. 

The SOAP program is operated in a mode (see, 

§ 5.4) which, for every observed range, computes and 

outputs the 'observed - computed' range residual. The 

PRE-FILTER program appends these residuals to the 

corresponding data record in the file of raw 

observations, in a non-standard extended SSD format. 

The filtering of noisy or bad observations from the 

data set is carried out by the AUTOFILTER program by 

the method described in § 2.4.1.5. This program 
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operates automatically and the only input required is 

the data file, for one station, as prepared by 

PRE-FILTER. Any 'trends' introduced into the 

distribution of the residuals, which are typically 

linear or quadratic, are removed by fitting a low order 

polynomial (by least squares) to the residuals from 

each pass. Observations are rejected with residuals 

greater than twice or three times the root-mean-square 

residual. The order of the polynomial, the choice of 

rejection criteria and the number of times the filter 

is repeated are all controlled by the program itself. 

This ensures a minimum of intervention is required from 

the operator and automatically optimises the procedure 

to suit the data. The output from AUTOFILTER is in the 

same format as the input, but the rejected observations 

are removed from the data file. Residuals are also 

output in a format suitable for graphical plotting by 

the RESPLOT program. 

The NORMAL-2 program splits the data into short 

'bins' and generates a normal point range for each 

'bin' by the standard procedure, described in 

§ 2.4.1.3. This involves the averaging of the residuals 

output from AUTOFILTER. The input consists of the 

filtered data file and the period of data (in seconds) 

to be compressed into each normal point. The only 

output is the compressed and filtered data from one 

tracking station, which may be subsequently combined 

with other such files using the SORT program. 
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DATPAK-2 has been tested and used with 

3rd generation laser ranging observations and has 

repeatedly demonstrated its ability to pre-process such 

data more efficiently and reliably than DATPAK-1. 

Clearly, this approach does require the generation of a 

computed orbit, however, this need only be determined 

once for each set of data, even though the filtering 

and compression of the data is carried out one tracking 

station at a time. 

5.2.2 CHEBPOL  Chebyshev Polynomial Program 

The computation of the nutation matrix (see, 

§ 3.2.4) at a specific epoch involves the evaluation of 

the 108 terms of the nutation series. For a dynamical 

analysis of laser ranging data this computation must be 

performed for every observation epoch (in SOAP) and for 

every numerical integration step (in ORBIT). Clearly, 

this is a time consuming and inefficient approach. The 

CHEBPOL program enables SOAP and ORBIT to compute the 

nutation matrix without having to evaluate the long 

series, by previously deriving a number of Chebyshev 

interpolation coefficients for the elements of the 

matrix B, where 

B = QT  N T 	 (5.1) 

and, Q and N are the precession and nutation matrices 

defined in § 3.2.4. Consequently, to compute this 

precession/nutation matrix at a particular epoch SOAP 
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and ORBIT simply need to evaluate the Chebyshev 

interpolation formulae with the coefficients output 

from CHEBPOL. 

Together with the 9 elements of the B matrix (as 

defined in equation (5.1)) CHEBPOL also outputs the 

Chebyshev polynomial coefficients for the nutation in 

longitude, ii (see equation (3.53)) and the geocentric 

inertial frame coordinates of the moon, sun and planets 

(Venus, Mars, Jupiter and Saturn). The nutation in 

longitude is required by both SOAP and ORBIT in order 

to convert from GMST to GAST, when computing the earth 

rotation matrix (equation (3.61)). Both programs also 

require the planetary coordinates, when evaluating the 

the third body gravitational effects, the solar 

radiation pressure, and tidal corrections (see § 3.33, 

§ 3.35, § 3.34, respectively). CHEBPOL also provides 

daily linear interpolation coefficients for the earth 

rotation parameters (xp , yp  and UT1-UTC) which are 

obtained from 5-day values (typically, BIH circular D) 

input to the program. 

The current version of the CHEBPOL program 

computes and outputs daily polynomial coefficients for 

40 days. The starting day number (and year) are 

specified as input to the program. CHEBPOL also 

requires input of the earth rotation parameters at 

5-day intervals. In order to cover the 40 day period, 

9 sets of earth rotation parameters must be provided, 

the first of which must coincide with the specified 
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starting epoch. The only remaining inputs required are 

the heliocentric inertial frame coordinates of the moon 

and planets. These are provided by the planetary 

ephemeris DE200/LE200 (see § 3.3.3) which covers the 

period 1979 to 2006. Rather than inputing the complete 

ephemeris file it is often more efficient to extract 

the relevant portion of the ephemeris and input this to 

CHEBPOL. 

The output from CHEBPOL consists of a set of 

Chebyshev polynomial (and linear interpolation) 

coefficients for 0.0hrs UT of each day of the specified 

40 day period. These coefficients enable the required 

values to be evaluated at any epoch within the period. 

The Chebyshev representation of a function is 

discussed in Appendix D. In CHEBPOL a particular set of 

coefficients is valid for 24 hours and the variable is 

UTC time since 0.0hrs of that day. The coefficients of 

a 10 th order polynomial are evaluated for each 

function, however, the full series is truncated and 

only the first five coefficients a 0 -a4  are output. 

Consequently, a particular value of a function f(t) 

within the corresponding interval is given by 

f(tUTC) = XL ak  cos k 0 	(5.2) 

where 0 = cos 1 'tUTC  - 12h .0 (5.3) 

24h .0 

A total of 140 coefficients are output for each day, 

which enable the coordinates of the moon, sun and 
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planets to be evaluated as well as the 9 elements of 

the B matrix (equation (5.1)) and the nutation in 

longitude All). To compute the coefficients the functions 

must be evaluated at 11 data points within each one day 

interval (see Appendix D). However, the planetary and 

lunar coordinates are given as discrete values at 

0.0hrs TDB of each day, and so they are interpolated to 

the required epochs using the Everett formulae, with up 

to 4th order central differences (see Appendix D). 

These coordinates are, however, given in terms of 

Astronomical Units and in a heliocentric reference 

frame and so must first be converted to metres 

(1AU = 1.4959787x10 11m) and to the geocentric inertial 

frame (see § 3.3.3). 

For each day CHEBPOL also evaluates and outputs 

two linear interpolation coefficients C o  and C l , for 

each of x 
A 
 , y 

P
, and UT1-UTC. The earth rotation 

parameters at any epoch 
tUTC'  during the particular 

day, is given (for example) by 

x
P 
 = Co + C 1 tUTC 
	(5.4) 

The coefficients are obtained by linear interpolation 

between the earth rotation parameters, at 5-day 

intervals, input to the program. 
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5.3 SATELLITE ORBIT INTEGRATION PROGRAM - ORBIT 

5.3.1 General Description 

The SODAPOP suite divides the analysis of laser 

range observations into two distinct tasks, firstly, 

the determination of the satellites orbit and secondly 

the least squares adjustment. The ORBIT program carries 

out the numerical integration, in the inertial frame, 

of the satellite acceleration vector Y.  and the 

acceleration partial derivatives (see § 3.4). This 

results in the inertial frame position and velocity 

vectors of the satellite at intervals of UTC, specified 

by the integration step size. For the integration to 

start it is necessary to assign initial approximate 

position and velocity vectors (and also inital values 

for the position and velocity partial derivatives), at 

some starting epoch. As previously described in § 3.4.1 

there are several suitable methods of numerical 

intergration, those implemented by ORBIT are : 

(i) a 4th  order Runge-Kutta single step 

procedure (the starting procedure) 

(ii) a 9th  order Adams-Bashforth predictor-

corrector multi step method. 

The Runge-Kutta procedure is used to start the 

integration from the initial vectors. As shown in 

§ 3.4.1, the limited efficiency and low accuracy of a 

single step method restrict its use to just providing 

sufficient data points (in this case 8, in addition to 
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the starting vectors) to enable the predictor-corrector 

scheme to operate. In order to achieve the necessary 

accuracy it is usual to use a substantially smaller 

integration step length for a single step method than 

for a multi step method. Experience with ORBIT has 

shown (Ashkenazi, Agrotis and Moore, 1984) that 

suitable step lengths, for LAGEOS, are 15 seconds for 

the starting procedure and 120 seconds for the 

predictor-corrector. However, these values are input to 

the program (see § 5.3.2) and so may be varied as 

appropriate. With the current step lengths, the Runge-

Kutta starting procedure must operate for a total of 64 

integration steps before the predictor-corrector may 

take over. 

In order to monitor the truncation error of the 

Adams-Bashforth procedure, the error is evaluated at 

each integration step, using equation (3.139), for each 

component of the state vector. If this value exceeds 

1pm then a message is output and the corrector is 

repeated. 

The force model (see § 3.3) currently installed 

in ORBIT is particularly suited to LAGEOS and wherever 

possible has been kept in close agreement with the 

models and constants recommended by the MERIT Standards 

(Melbourne, 1983). The constituents of the force model 

are as follows. 

(i) 	The GEM-10 or GEM-L2 geopotential model, 

complete to degree and order 20. The MERIT 
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recommended constraints on C 1
2  and S

1 

terms of GEM-L2 are applied, however they 

were not applied during the processing of 

LAGEOS laser range data discussed in 

Chapter 6. 

(ii) The third body attractions of the sun and 

moon and the planets (Venus, Mars, Jupiter 

and Saturn). 

(iii) Lunar and Solar solid earth tides, the 

Whar model (see § 3.3.4.1). 

(iv) Ocean tides, Schwiderski model 

(see § 3.3.4.2). 

(v) Solar radiation pressure (see § 3.3.5). 

(vi) Along track acceleration (see § 3.3.6). 

At the altitude of LAGEOS (= 6000km) there is no need 

for an atmospheric drag model (see § 3.3.6). However, 

for lower satellites, such as STARLETTE at an altitude 

of around 800km, drag is a very significant effect and 

must be accounted for in the force model. 

The solar radiation pressure model of ORBIT also 

includes the facility to test whether the satellite is 

in the area of shadow cast by the earth, and cut off 

the effect of the model accordingly. However, this 

approach introduces sudden changes in the force model, 

which can lead to very large truncation errors. 

Clearly, it would be preferable to slowly decrease, or 

increase, the effect of solar radiation pressure as the 
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satellite passes into (or out of) the area of shadow. 

As only a simple cut-off model is, currently, available 

in ORBIT this 'shadow test' is not generally used. 

As previously discussed, in § 3.4, several of 

the forces may be neglected when evaluating the 

acceleration partial derivatives, without significantly 

affecting the results. In ORBIT only the effects of the 

geopotential (all 20x20 terms) and the third body 

attractions are included. Although the effects of ocean 

tides are insigificant, the contributions are included 

because the coefficiennts of the geopotential model are 

corrected for earth tides before the acceleration 

partials are evaluated. In addition to the position and 

velocity partials ORBIT may also output partials for 

the along track acceleration coefficient C T, the solar 

radiation pressure coefficient CR, the geocentric 

gravitational constant GM and up to 12 normalized 

spherical harmonic coefficients, ern).  or C, of the 

geopotential model. 

ORBIT may be operated in two modes which differ 

only by the starting procedure. The first, and usual ,  

mode operates as described previously in that the orbit 

integration is started from initial approximate state 

vectors using the Runge-Kutta procedure until the 

predictor-corrector takes over for the remainder of the 

arc. The second mode allows an existing orbit to be 

continued to produce a new orbit, by-passing the single 

step starting procedure. To enable this, at the end of 
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an arc ORBIT outputs the last nine position and 

velocity vectors (and the position and velocity 

partials) to a file. When operating in the second mode, 

ORBIT reads in these values and treats them as the 

previous nine steps of the orbit integration and 

continues directly with the predictor-corrector 

procedure. This approach allows very long orbital arcs, 

say one month long, to be split into a number of 

smaller and more manageable orbit computations, which 

when combined give the complete orbit. 

The efficiency of the ORBIT program is increased 

by using the files of Chebyshev polynomial coefficients 

generated by CHEBPOL (as described in § 5.2.2). A new 

set of coefficients is produced for each day, and so at 

each integration step ORBIT checks the current date and 

when this changes a new set of coefficients is read 

from the data file to replace the existing 

coefficients. If required daily values of the earth 

rotation parameters (x 
P 
 , y

P 
 and UT1-UTC) may be input 

to ORBIT and used in preference to the values read from 

the CHEBPOL file. This allows the values to be updated, 

for example as unknowns in a least squares solution, 

without the need to generate a complete new file of 

Chebyshev polynomial coefficients. 

A full and detailed description of the operation 

of ORBIT, including a simplified flow chart of the 

program is given by Agrotis (1984). 
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5.3.2 Program Input and Output 

The operation of the ORBIT program is controlled 

by a number of input parameters. In addition, ORBIT 

also requires input of other data, such as the file of 

Chebyshev polynomial coefficients, from a number of 

serial and random access computer files. The particular 

details of the file handling are not included (however, 

details are given by Agrotis (1984)), but the required 

input is comprised as follows. 

(i) 	Various 'flags' which control the operation of 

the program. 

(a) Input mode of starting elements. Modes 1 

and 2 specify whether the input starting 

elements are given in the earth fixed or 

inertial reference frames. Mode 3 denotes 

that ORBIT is to continue an existing 

orbit and so the 9 previous position and 

velocity vectors (and partials) are 

required. In this mode ORBIT by-passes 

the starting procedure. 

(b) Flags to indicate whether partials are 

required for a particular force model 

parameter (i.e. C11/ CR or GM). 

(c) Shadow Test. This flag indicates whether 

or not the solar radiation pressure is 

cut off when the satellite passes through 

the earth's shadow. 
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(d) Input source of earth rotation 

parameters. These daily values may be 

input from two sources and either fixed 

throughout the day or interpolated. The 

options are; input from the CHEBPOL file 

and either linearly interpolated to the 

particular epoch or fixed throughout the 

day, or input from a separate file and 

fixed throughout the day. 

(ii) Epoch of starting elements. The UTC time, t o , 

corresponding to the orbit starting elements 

given as year, day number, and time in hours 

minutes and seconds. 

(iii) Satellite state vector in the appropriate 

reference frame (according to mode 1 or 2). 

(iv) The position and velocity vectors (and 

partials) for the last nine steps of a previous 

orbit, if operating in mode 3. 

(v) The integration step size of both the starting 

procedure and the predictor-corrector scheme, 

and the total number of integration steps. 

(vi) The earth's angular velocity. Although always 

required as an input parameter, this value is 

only used from atmospheric drag models. 

(vii) Cross sectional area and mass of satellite. 

These values are required for both the solar 

radiation pressure and atnospheric drag 

models. 
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(viii) The values of the solar radiation pressure 

coefficient, CR , the along track acceleration, 

coefficient CT, and the geocentric constant of 

gravitation, GM. 

(ix) The degree and order of the normalized 

spherical harmonic coefficients for which 

partials are required. 

(x) The Chebyshev polynomial coefficients, from 

the CHEBPOL file. 

(xi) The Schwiderski ocean tide model coefficients 

and load numbers k y  (see § 3.3.4.2). 

The output from ORBIT consists of various levels of 

printed output which give the user details of the 

status and modes of operation of the program. In 

addition ORBIT also outputs to six computer files as 

follows. 

(1) 	Inertial frame ephemeris. This file consists 

of the inertial frame position and velocity 

vectors of the satellite, time tagged, at even 

intervals of UTC. The interval is determined by 

the step length set for the predictor-corrector 

procedure, typically (for LAGEOS) 120 seconds. 

(ii) Earth fixed ephemeris. Identical to file (i) 

except that the position and velocity vectors 

are given in the earth fixed reference frame. 

(iii) Position partial derivatives, at intervals 

corresponding to the ephemeris. 
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(iv) Velocity partial derivatives, as (iii). 

(v) File containing the last 9 records of the 

inertial frame ephemeris file , corresponding 

to the last 9 integration steps. 

(vi) File containing the last 9 records of the file 

of position partials (iii) and the velocity 

partials (iv), corresponding to the last 9 

integration steps. 

If ORBIT is to be used, subsequently, in mode 3, to 

continue the orbit integration, then the last two files 

contain the necessary state vectors and partials. When 

processing laser range observations to satellites the 

least squares analysis program, SOAP, requires the 

first and third of these files (ie the inertial frame 

ephemeris annd the position partials). The remaining 

two files are not used at present, but may be required 

for different satellite tracking/positioning systems. 
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5.4 SATELLITE ORBIT ANALYSIS PROGRAM - SOAP 

5.4.1 General Description 

The Satellite Orbit Analysis Program, SOAP, is 

the second principal program of the SODAPOP suite and 

carries out the least squares analysis of satellite 

laser range observations, following the principles 

described in § 3.4. The analysis procedure involves the 

formation of an 'observation equation' for each 

observed range using the approximate coordinates of the 

tracking stations and a predicted satellite ephemeris. 

These equations are then combined and solved for the 

most probable values of corrections to the approximate 

parameters by the process of least squares. The 

predicted (computed) orbit is obtained by numerical 

integration, using the ORBIT program. Together with the 

least squares solution, SOAP also performs a 

statistical error analysis giving the least squares 

residuals and the a posteriori precision (from the 

covariance matrix) of the unknowns and the observations 

(see § 3.4.5). Similar to ORBIT, SOAP is currently 

'tailored' for the analysis of LAGEOS laser ranging 

observations, however, wherever possible extensions to 

enable the analysis of STARLETTE data have been 

included. 

The present version of the software may include 

any of the following as unknowns in the least squares 

solution. 
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(1) 	Initial satellite position and velocity 

vectors. 

(ii) Tracking station coordinates. 

(iii) Earth rotation parameters (x 
P 
 , y

P 
 and 

UT1-UTC). 

(iv) Gravity field normalized spherical 

harmonic coefficients. 

(v) Geocentric gravitational constant, GM. 

(vi) Solar radiation pressure reflectance 

coefficient, CR . 

(vii) Along track acceleration coefficient (for 

LAGEOS), CT . 

The program may be operated in 3 different 

modes, which are designed to optimise the efficiency of 

the package when dealing with short or long periods of 

data. The particular mode is selected by the operator 

as an input parameter, as described in § 5.4.2. When 

the program is operating in mode 1, the laser range 

data is read in, the observation equations are formed 

and the least squares solution and error analysis is 

performed. This is, therefore, the usual mode of 

operation and could, theoretically, be used for all the 

processing of laser ranging observations. However, when 

dealing with longer periods of data, say one month, it 

is necessary to generate, using the ORBIT program, the 

satellite's ephemeris and the partial derivatives over 

this period. This is a very time consuming task, and 
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results in a number of very large and unmanageable 

computer files. Consequently the facility is included 

in ORBIT, as described in § 5.3.1, to split a long 

orbital arc into a series of consecutive shorter arcs. 

Given one of these sections of the complete orbit, 

SOAP, when operated in mode 2, will read in the 

corresponding batch of data and form and store the 

observation equations. After repeating this procedure 

for all the remaining portions of the orbit (and data 

set) the resulting observation equations may be read 

back into the SOAP program, when operating in mode 3, 

and the least squares solution performed. Clearly, 

modes 2 and 3 correspond, approximately, to the first 

and second halves of mode 1, the division occurring 

directly after the formation of the observation 

equations. 

The laser range data is read into SOAP in 

Modified Seasat Decimal (SSD) format (Schutz, 1983b), 

regardless of whether the observations are 'full rate' 

or compressed into 'normal points' (see § 2.4.1.3). The 

data is stored in chronological order with each record 

of data corresponding to one range observation (or 

normal point). The data records consist of the range 

measurement (one-way), the UTC epoch of observation, 

the identity of the tracking station, metereological 

data, and pre-processing flags and information. It was 

recommended (Schutz, 1983b) that the data from the 

MERIT main campaign should not have the atmospheric 
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refraction and centre-of-mass corrections applied, 

however, as SOAP reads in each observation data record 

it checks the relevant flags and removes any 

corrections that have been incorrectly applied. The 

program reads in one observation at a time and for each 

range forms the observation equation, and adds the 

contribution of that equation to the normal equations, 

before reading in the next range observation. 

The Chebyshev polynomial coefficients generated 

by CHEBPOL are used by SOAP, in order to compute the 

rotation matrices between the inertial and earth fixed 

reference frames and to evaluate the solar and lunar 

coordinates at a particular epoch. The latter are 

required in order to correct the tracking station 

coordinates for the effect of lunar and solar solid 

earth tides (see § 3.3.4.1). A new set of coefficients 

is read from the CHEBPOL file, if the date of the 

observations changes 

The epoch of a range observation is defined by 

SOAP to be the UTC time at which the laser pulse hits, 

and is reflected by, the satellite. Clearly, this epoch 

is not observable as the satellites are generally 

remote and passive, and so the only observable epochs 

are the time of firing and time of return of the laser 

pulse. As the one way range may be approximated, to 

sufficient accuarcy, to half the total time of flight, 

the time of observation may be defined as the mid epoch 

between the times of firing and return of the pulse. 
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Indeed, the data transmitted in the SSD format is time 

tagged in this way. However, any errors in the range 

measurement will also corrupt the epoch of observation. 

To avoid this problem an independent iterative method 

of determining the epoch of observation is adopted by 

SOAP. Firstly, the time of firing, t f , of the laser is 

computed from, 

tf = to - r
o 	

(5.5) 
c 

where to : time of observation (from data record) 

ro • . observed one-way range 

c 	: speed of light, in a vacuum. 

As a first approximation it is assumed, obviously 

incorrectly, that the time of observation is equal to 

the time of firing. The position vector (inertial 

frame) of the satellite is obtained at this epoch from 

the ephemeris by means of Everett interpolation (using 

up to 8 th order central differences, see Appendix D). 

After rotating the tracking station coordinates into 

the inertial frame, using equation (3.35), it is 

possible to compute the range, r 1 , between the station 

and the satellite, using equation (3.159). This range 

leads to a second approximation of the epoch of 

observation, 

t = t + r 2 	f 	 1 c 
(5.6) 

The process may then be repeated with this time of 

obsrvation, t2 , used to determine a updated inertial 
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frame position vector of the satellite and 

corresponding range r 2 , leading to a new epoch of 

observation, t 3 , from an equation similar to equation 

(5.6). The iteration continues until the difference 

between two successive values of the time of 

observation is below some preset value. Once the epoch 

of observation is obtained the process is reversed in 

order to find the 'computed' time of return, t r , of the 

laser pulse to the tracking station. The 'computed' 

two-way range may be then be calculated from, 

rc = c (tr - tf ) 
	

(5.7) 

Two corrections are applied to the observed 

ranges by SOAP to account for errors in the measurement 

model. Firstly, the centre-of-mass corection (see 

§ 2.3.3.2) and secondly, a correction for the effects 

of atmospheric refraction (see § 2.3.3.1). For 

spherical satellites, such as LAGEOS and STARLETTE, the 

centre-of-mass correction is simply a constant value 

(24cm and 7.5 cm, respectively) which is added to the 

observed range. For tropospheric refraction the Marini-

Murray model (Marini and Murray, 1973) is recommended 

by the MERIT Standards, and is accordingly adopted by 

SOAP. The model requires the surface pressure, 

temperature and relative humidity at the tracking 

station, and the true elevation angle of the satellite 

at the epoch of observation. The first three values are 

available from the observational data record, whearas 

the latter is calculated from the satellte and tracking 



214 

station coordinates (see Appendix B). 

For each range measurement an observation 

equation of the form of equation (3.158) is formed. The 

coefficients of the equation, the partial derivatives, 

are evaluated as outlined in § 3.4.3. The partials for 

the satellite state vector and force model parameters 

are obtained from the file of partial derivatives 

generated by ORBIT. As the partials are produced at 

even intervals of UTC, corresponding to the integration 

step length, they must be interpolated (using Everett 

formulae, with up to 4 th central differences) to the 

observation epoch. The laser range measurements are 

treated, by SOAP, as two-way ranges and so the observed 

ranges and the observation equation coefficients must 

be multiplied by a factor of two. 

At present, no weighting is applied to the range 

observation equations which implies a default weighting 

of one metre for all the observations. In order to hold 

various quantities fixed during a solution, such as the 

longitude of a tracking station, it is possible to 

introduce additional observations of the form of 

equations (3.161) and (3.162), with suitably high 

weights. In addition to fixing the longitude of any 

tracking station, it is also posible to hold fixed the 

satellite starting elements and the coordinates of the 

tracking stations. 

From the observations equations the normal 

equations are formed, as given by equation (3.152) and 



215 

these are subsequently solved by Choleski's method of 

triangular decomposition (equations (3.154) to (3.157)) 

for the unknown parameters. The full covariance matrix 

(equation (3.193)) is also evaluated and the 

a posteriori standard errors of the observed ranges and 

the unknown parameters are computed and output. The 

least squares residuals, with corresponding reliability 

and error analysis, are also output from the program, 

and may be output graphically using the RESPLOT program 

of the SODAPOP suite. 

5.4.2 Program Input and Output  

The mode and operation of SOAP are controlled by 

values input from a serial computer file. In addition, 

input is also required from a minimum of four other 

serial (and random) access computer files. These 

provide the laser range observations, the satellite 

ephemeris, the partial derivatives and the Chebyshev 

polynomial coefficients. Concise details of the file 

handling are not included in this section, but the 

required input may be summarised as follows. 

(i) Program mode. This parameter may take three 

values, as described in § 5.4.1. 

(ii) Input of earth rotation parameters. The 

available options are similar to those in 

ORBIT. The earth rotation parameters may be 

either input from the CHEBPOL file or from 

a separate file. If input from the CHEBPOL 



216 

file they may be either linearly 

interpolated or fixed throughout the day. 

If, however, they are input from a separate 

file then only the latter option is 

available. 

(iii) Number of tracking stations. 

(iv) Details of the reference ellipsoid on which 

the coordinates of the tracking stations are 

given. The required parameters are the 

semi-major axis and the flattening of the 

ellipsoid. 

(v) Approximate coordinates, latitude, 

longitude and height, of each tracking 

station. 

(vi) Number of tracking stations to be held 

fixed in the solution, and the 

identification number of each station to be 

fixed. 

(vii) Number of tracking stations whose longitude 

is to be fixed in the solution, and the 

identification number of each station. 

(viii) Orbit fixed flag. This flag indicates 

whether the orbit starting elements are to 

be fixed or solved for during the solution. 

(ix) Earth rotation parameter flags. These 

indicate whether polar motion (x
P 
 and y P) 
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and/or UT1-UTC are to be solved for as 

unknowns. 

(x) Flags to indicate which force model 

parameters are to be determined as unknowns. 

These may include the geocentric 

gravitational constant GM, the along track 

acceleration coefficient CT, the solar 

radiation pressure reflectance coefficient 

CR and normalized spherical harmonic 

coefficients Cn and gm . Clearly, SOAP may 
only determine those parameters for which 

partials have been previously generated by 

ORBIT. 

(xi) Approximate values of the force model 

unknowns which are included in the 

solution. 

(xii) The epoch corresponding to the initial 

satellite state vector used by ORBIT, input 

as year,day number and UTC time in hours, 

minutes and seconds. 

(xiii) The inertial frame satellite state vector. 

(xiv) The integration step size, in seconds, of 

the predictor-corrector scheme of the ORBIT 

program. This corresponds to the interval 

between successive records in the ephemeris 

and partials files generated by ORBIT and 

used by SOAP. 
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(xv) The satellite ephemeris file (inertial 

frame) produced by ORBIT. 

(xvi) The file of (inertial frame) position 

partial derivatives, with respect to the 

starting elements and the force model 

unknowns (also from ORBIT). 

(xvii) Laser range observations file. If the 

program is operating in modes 1 or 2 then 

the range observations are required. 

In mode 3 the file(s) should contain the 

observation equations previously created by 

SOAP in mode 2. 

The output from SOAP is principally in the form 

of a computer printout, which gives details of the 

particular solution and the data set, and the results 

of the adjustment. If required the output may also 

include the residual and error analysis of each range 

measurement. The least squares range residuals may also 

be output to a computer file in a format suitable for 

the graph plotting program RESPLOT. However, when SOAP 

is operating in mode 2, no solution is performed and so 

the the only outputs are a printout giving details of 

the data set and a file of the observation equations. 
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5.5 VALIDATION AND OPERATION OF SODAPOP 

5.5.1 Software Validation 

As with any computer program, a very important 

stage of the development of the SODAPOP suite was the 

process of checking whether the various programs 

perform the required tasks correctly and to sufficient 

accuracy. Certain tests may be performed 'in house' but 

at some stage the products of the programs must be 

compared with corresponding results from a totally 

independent source. In this particular context, these 

'products' are the coordinates and parameters resulting 

from the analysis of the same set of laser ranging data 

by both SODAPOP and another orbit determination 

package. The suite has been tested using several 

different sets of LAGEOS laser ranging data, and the 

resulting tracking station coordinates (and other 

parameters) compared with external values. The results 

of these tests and the subsequent processing of other 

data sets are presented in Chapter 6. 

At various stages of the development of the 

programs internal checks have also been carried out. In 

order to verify the validity of using Chebyshev 

polynomials to evaluate the precession and nutation 

matrices, in both SOAP and ORBIT, the ORBIT program was 

initially developed using the exact evaluation of the 

complete series and formulae. When the later version of 

ORBIT was subsequently developed, to include the 

Chebyshev polynomial representation in preference to 
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the exact evaluation, the corresponding ephemerides 

generated by the two programs were compared and no 

sigificant differences were detected (Agrotis, 1984). 

The precision of the orbit integration was 

checked by first generating one orbital ephemeris and 

then repeating the procedure after halving the 

integration step length. An ephemeris produced by ORBIT 

was also compared with a corresponding ephemeris 

generated by the ORBIT program of the SATAN package 

developed independently at the Royal Greenwich 

Observatory by Dr. A. T. Sinclair and Mr. G. M. Appleby 

(Sinclair and Appleby, 1986). The results of this 

comparison are presented by Agrotis (1984). 

The operation of SOAP in modes 2 and 3 was 

checked by first running the program in mode 1 and 

processing a sample of laser ranging data. This data 

set was then split into two separate files and 

observation equations for these two data subsets were 

produced by SOAP operating in mode 2. The combined 

solution was performed, using SOAP in mode 3, and the 

results of the two solutions compared. Clearly, the two 

solutions should produce identical results and this was 

indeed verified. 

It was also important to check the operation of 

the pre-processing software to ensure no biases or 

errors were introduced into the resulting data set. 

Initially, a set of filtered observations and the 

corresponding set of normal points were processed 
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separately, in order to demonstrate the effects of 

using normal points. There were no significant 

differences between the two solutions, however there 

was a considerable saving of both time and storage when 

normal point ranges were used. Similarly, the results 

of a solution carried out using normal points generated 

by DATPAK-2 was also compared with a solution performed 

using the normal points of the MERIT Standard Data 

Sets. These were produced by the Centre for Space 

Research of the University of Texas (Schutz, 1983b), 

from the same raw laser ranging observations. Again, 

there was a very close agreement between the two 

solutions. 

The process of refinement and validation of the 

SODAPOP suite is still continuing, as more data sets 

are processed. This has allowed more extensive, and 

significant, comparisons to be made with results 

produced by other analysis centres and with comparable 

results produced by different techniques (such as Very 

Long Baseline Interferometry). 

5.5.2 Operation of SODAPOP 

Previously in this Chapter, the programs of 

SODAPOP have been discussed separately and with only 

limited reference to the other programs of the package. 

Although each program may be operated in several 

different modes, even greater flexibility is introduced 

by operating the programs in various combinations. The 
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aim of this section is to bring together all the 

programs of the package, and describe typical 

operational configuations of combinations of the 

programs. For example, the pre-processing package 

DATPAK-2 currently uses virtually every program of the 

SODAPOP suite, including the two main programs ORBIT 

and SOAP. The combination of the programs used by 

DATPAK-2 is illustrated in fig 5.111, and the details 

of the operational modes of the programs are discussed 

in § 5.2.1.3. 

Variations in the operation of SOAP and ORBIT 

arise for two main reasons. Firstly, when processing 

long periods of data (say, longer than one month) it is 

necessary to use a different approach to that used when 

processing, say, 5 days of laser ranging data. 

Secondly, particular procedures must be adopted when 

determining earth rotation parameters, to avoid ill-

conditioning of the normal equations (see § 3.4.4). The 

procedure adopted at Nottingham for the determination 

of earth rotation parameters is discussed in § 4.3.2. 

The analysis of a short period of data, (say 

5-days), to obtain the coordinates of the tracking 

stations and the orbital starting elements may be 

considered as a standard mode of solution. The 

ephemeris and partials may be generated in a single 

computation, without the need to divide the orbit into 

smaller and more manageable sections. The least squares 

solution may also be completed in a single execution of 
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the program. In contrast, the analysis of longer 

periods of data (for example, one month) requires a 

totally different approach. Although possible, it is 

not currently practical to store the ephemeris and 

partial derivatives for a complete month (or longer) 

and the generation of such an orbit in a single program 

execution is exceedingly time consuming. Consequently, 

the ephemeris and data are handled more efficiently by 

considering short (say, 5-days) periods at a time and 

combining these to give the complete one month 

solution. An operation of the two programs (SOAP and 

ORBIT) may be as follows. 

(i) The one month set of tracking data is 

divided into a number of smaller (5-day) 

subsets. 

(ii) From the orbital initial starting elements 

the ephemeris and partial derivatives are 

generated for the first 5-day period. The 

observation equations are formed from the 

corresponding tracking data. 

The orbit integration is continued for a 

further 5 days (replacing the existing 

ephemeris and partials files) and the 

observation equations form for this 5 day 

period. 

(iv) 	Stage (iii) is repeated for the remainder 

of the sections of the long arc. 
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(v) 	All the observation equation are read back 

into SOAP (operating in mode 3) and the 

least squares solution is performed. No 

ephemeris or partials files are required 

during this last stage. 

Although this process is manageable, it is not 

particularly efficient and a more elegant approach is 

afforded by the use of Helmert blocking of the normal 

equations (Cross, 1983). The SODAPOP package is 

currently being modified to enable the analysis of very 

long periods (for example, over one year) of laser 

ranging observations, by adopting the Helmert-Wolf 

procedures (Hill, Moore and Ashkenazi, 1986). However, 

a discussion of the principles or applications of this 

technique is beyond the scope of this thesis. 



CHAPTER SIX 

DATA PROCESSING AND THE RESULTS  

OF THE ANALYSIS  
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6.1 MERIT SHORT CAMPAIGN DATA 

6.1.1 Introduction 

The initial development versions of the SODAPOP 

package (as described in Chapter 5) were tested using 

two short periods (four days each) of LAGEOS laser 

ranging data, observed in 1980. The aim of the analysis 

was not only to test and validate the software but also 

to ascertain the precision with which unknown 

parameters, such as tracking station coordinates, could 

be determined. As outlined in § 5.1 the package was 

developed jointly by the author and Dr. L. G. Agotis, 

and similarly the initial processing was also carried 

out jointly. However, the principal interest of 

Dr. Agrotis was to assess the effects of the various 

parameters of the force model and to test the 

suitability of different geopotential models. 

Consequently, the results of these particular tests 

will not be included in this thesis, but are presented 

in detail in Agrotis (1984). Details of the pre-

processing of the data and the solutions performed in 

* Although the title of of this section may imply the 

processed data was observed during the Short MERIT 

campaign, this is not strictly true for the second of 

the two periods of data considered. However, the 

intention is to convey the approximate period during 

which the observations were made. 
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order to recover the coordinates of the tracking 

stations and the earth rotation parameters are given in 

the following sections, with reference where 

appropriate to the thesis of Dr. Agrotis. 

With a view to the later processing of 

observations from the Main MERIT Campaign, a further 

aim of the initial trials was to develop and test 

suitable analysis procedures for the determination of 

earth rotation parameters. As a result, the package was 

modified so as to enable longer periods of data to be 

processed, and was tested using a fourteen day data set 

from December 1980. The results of this latter solution 

are presented in § 6.1.5. 

6.1.2 Data Sets and Pre-Processing  

Two 4-day periods of LAGEOS laser ranging data, 

observed during 1980, have been processed using the 

SODAPOP package. The aim of the analysis was, 

principally, to test the software package and to asses 

the capabilities of the orbit determination procedure 

(see § 6.1.1). The data sets were observed between 

September 2 nd and 5th 1980, and December 2nd and 5th 

1980, and were provided to the University of Nottingham 

by the Royal Greenwich Observatory, which in turn 

received the data from the NASA Goddard Space Flight 

Center (GSFC). At the time of the observations the 

contributing tracking stations were generally 2 nd 

generation facilities (see § 2.2.2), i.e. with a 
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single shot range accuarcy of about 10 - 20cm and a 

firing repetition rate of around 1 pulse per second. 

However, several first generation systems were still 

operational. The details of the tracking stations which 

contributed data during the two periods are given in 

fig. 6.1, together with their nominal coordinates which 

are taken from the GSFC SL5 geodetic parameter solution 

(Christodoulidis et al, 1982). It is noticeable that 

all of the tracking stations are operated by the 

Goddard Laser Tracking Network (see § 2.2.2) and 

consequently the majority are located around the 

American continent (particularly in California). The 

global locations of the tracking stations are also 

shown on the world map of fig. 6.11. 

The data was received as 'full rate' raw range 

observations and so required pre-processing before the 

main analysis stage. Although referred to as 'raw' data 

a number of corrections had been applied to the data 

(either at the tracking stations or the data 

distribution centre) before release to analysts. The 

observed ranges were generally corrected for the 

effects of atmospheric refraction (using the Marini and 

Murray model, see § 2.3.3.1), the satellite centre-

of-mass correction (see § 2.3.3.2) and other instrument 

errors particular to each tracking station. However, in 

order to ensure a standard form of data, and a unified 

modelling of errors, the effects of any corrections 

applied to the data (for atmospheric refraction and 



ID No. System Location Nominal Tracking Station Coordinates 
latitude 	longitude 	height 

(deg min sec) 	(deg min sec) 	(m) 

Data Sets 
(1980) 

7063 STALAS Greenbelt 39 1 13.3581 283 10 19.8002 15.252 Sept/Dec 

7090 MOBLAS-5 Yarragadee -29 2 47.4115 115 20 48.1106 237.411 Sept/Dec 

7091 MOBLAS-7 Haystack 42 37 21.6820 288 30 44.3452 88.353 Sept 

7096 MOBLAS-6 Am. Samoa -14 20 7.5191 189 16 30.3563 45.142 Sept 

7114 MOBLAS-2 Owens Val. 37 13 57.2091 241 42 22.2214 1174.590 Dec 

7115 MOBLAS-3 Goldstone 35 14 53.8977 243 12 28.9542 1035.159 Sept/Dec 

7120 MOBLAS-1 Haleakala 20 42 27.3907 203 34 38.1072 3064.181 Sept/Dec 

7896 TLRS-1 Pasadena 34 12 20.0227 241 49 39.7243 437.894 Dec 

7907 ARELAS Arequipa -16 27 56.7010 288 30 24.6028 2485.156 Sept/Dec 

7943 ORRLAS Orroral Val -35 37 29.7593 148 57 17.1341 941.858 Sept/Dec 

7929 NATLAS Natal -5 55 40.1238 324 50 7.2367 32.245 Sept 

ae 	6378144.11m 	1/f.298,255 

Fig 6.1 Details of Tracking Stations (1980) and Nominal Coordinates  
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Fig 6.11 Location of Tracking Stations (1980) 



September 
2 	- 5, 	1980 

December 
2 	- 5, 	1980 

December 
2 	- 15, 	1980 

No. of Tracking Stations 6 6 6 

No. of Raw Range Observations 28271 13498 - 

No. of Normal Point Ranges 645 356 1019 

Ratio 40:1 38:1 - 

Fig 6.111 Specifications of Data Sets (1980)  
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centre-of-mass) were removed before pre-processing and 

the subsequent analysis. As outlined in § 5.5.1 

corrections of these effects are evaluated using 

standard models by the SOAP program and applied to each 

range observation (or normal point range) during the 

analysis phase. The table in fig 6.111 outlines the 

general specifications of the two periods of data. 

Clearly, for the process of obtaining an initial 

evaluation and validation of the software and 

procedure, the number of raw range observations far 

exceeded the requirements and was unmanageable. For 

this reason the data sets were 'compressed' by means of 

normal points (see § 2.4.1.3) after any spurious 

observations (and passes) had been filtered out. The 

pre-processing was carried out using the DATPAK-1 

software (as described in § 5.2.2) which was operated 

such that the data was filtered up to a maximum of four 

time (using a 10 th order polynomial) and normal point 

ranges were produced for each minute of data. This 

procedure resulted in approximately a 40:1 reduction in 

the quantity of data. 

The coverage of the ranges of the four day 

periods was far from ideal and the data sets were 

dominated by observations from station 7090 (Yarragadee 

in Australia). However, considering the objectives of 

the analysis, as outlined in the previous section, it 

was decided that the data was suitable. 
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6.1.3 Solutions for Tracking, Station Coordinates  

The two LAGEOS data sets, from September and 

December 1980, were each processed twice with the aim 

of obtaining the coordinates of the tracking stations 

and consequently the inter-station baselines. The same 

'model' was used in both solutions with the exception 

of the polar motion components. In the first solutions 

(for both data sets) the polar motion values adopted 

were linearly interpolated from the BIH Circular D 

published values. Subsequently, polar motion components 

were determined from the same tracking data (as 

described in § 6.1.4) and these new polar motion values 

were used to re-adjust the tracking station coordinates 

in the final processing of the data. During the latter 

solution the 'derived' polar motion components replaced 

the BIH circular D values, and were fixed throughout 

the four day periods. The resulting coordinate sets are 

presented later in this section together with 

comparisons with independently obtained corresponding 

coordinates of the tracking stations. 

The solution vector comprised the cartesian 

earth fixed coordinates of all the contributing 

tracking stations, the six elements of the initial 

satellite state vector (inertial frame) and the 

coefficients of the along track acceleration, CT, and 

of the solar radiation pressure model, CR . A number of 

tests had been previously performed in order to 

determine the effects of releasing different parameters 
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of the force model as unknowns of the solution vector 

(Agrotis, 1984). The suitability of different 

geopotential models was investigated (Agrotis, 1984 and 

Ashkenazi, Agrotis and Moore, 1984) and as a result the 

GEM-L2 geopotential model (see § 3.3.2) was adopted. 

Scale was provided by the adopted speed of light 

(2.99792458x10 8  ms -1 ) and the compatible value of the 

geocentric gravitational constant, (3986000.448x10 14  

m 3 S 2 ) which was fixed during the solutions. The earth 

rotation parameters used are discussed above, with the 

exception of the UT1-UTC values which were linearly 

interpolated from the BIH Circular D values. As 

outlined in § 3.4.4, the only additional constraint 

required was satisfied by fixing the longitude of one 

of the tracking stations. Accordingly, the longitude of 

STALAS (station 7063, see fig 6.1) was restrained to 

the GSFC SL5 value of 283 °  10' 19.8" (Christodoulidis 

et al, 1982). A spheroid of semi major axis 6378144.11m 

and a flattening of 298.255 was used for all the 

geodetic coordinates (i.e. 4), A, h). 

As only 4-day periods of data were processed, no 

special 'long arc' techniques, as described in § 5.6.2, 

were necessary and so the analysis procedure consisted 

of the determination of the satellite orbit (by a 

single execution of the ORBIT program) followed by the 

least squares adjustment, using the SOAP program. This 

procedure was repeated, iteratively, a number of times 

until the corrections to the unknowns were considered 
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negligible. The a posteriori standard errors of all the 

unknown parameters (see § 3.4.5) were also evaluated by 

the analysis program (SOAP). 

The root-mean-square range residuals (as defined 

in § 3.4.5) from all the least squares solutions were 

of the order of 10cm. This parameter gives an 

indication of not only the precision (on average) of 

the range measurements but also the precision of the 

computed orbit. As the 'raw' range data had an accuracy 

of around 10 - 20cm, a high level of agreement between 

the computed orbit and that implied by the range 

measurements may be inferred. 

As mentioned previously, the data sets were 

processed twice, with different polar motion values, 

and accordingly the results of the two analyses will be 

presented and discussed separately. The final 

coordinates of the tracking stations, obtained using 

the BIH Circular D values of polar motion, are 

presented in fig G.I and fig G.II of Appendix G, for 

September and December respectively. These are 

geocentric earth fixed coordinates and are tabulated in 

both cartesian and geodetic representations. The 

internal standard errors, evaluated from the covariance 

matrix, of the coordinates are also included. 

The internal standard errors of the station 

coordinate determinations for the September data set 

are of the order of 5cm, with the exception of station 

7096. In this particular case one of the component 
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standard errors is in excess of one metre, however, 

this is attributable to the fact that only one pass 

of observations from this station was included in the 

data set. As there were fewer observations, and 

consequently a slightly worse coverage, in the December 

data set, there is a noticeable increase of the 

internal standard errors of the tracking station 

coordinates, to around 10 - 20cm. However, there 

appears to be no particular station which is determined 

significantly better (or worse) than any other. These 

standard errors do not, however, give a true indication 

of the repeatability or the 'external' accuracy of the 

station coordinates. For this purpose, it is necessary 

to compare the derived coordinates with compatable 

values determined independently. 

The differences between the cartesian 

coordinates of the tracking stations obtained from the 

September and December 1980 solutions, and the 

differences between these and the coordinates of the 

GSFC SL5.1 solution (Christodoulidis et al, 1982) are 

presented in fig G.III. Similarly the differences in 

geodetic coordinates (4), A, h) are tabulated in 

fig G.IV. To give an indication of the average 

difference between the coordinate sets the 

root-mean-square differences are evaluated and included 

at the bottom of the respective figures. From these it 

can be seen that the cartesian components are 

repeatable, and in agreement with the SL5.1 solution, 

to better than 80cm (on average). Similarly, the 
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geodetic coordinates are in agreement to better than 

90cm. However, it is noticeable that all the 

differences in station heights are significantly lower 

than the differences in longitude or latitude. In 

particular the heights of the stations common to both 

the September and December solutions are repeatable to 

around 6cm. The largest differences are of the 

latitudes of the tracking stations and these may be 

attributed to errors in the adopted BIH polar motion 

values. Consequently, the second stage of the 

processing involved the determination of the earth 

rotation parameters during the two periods, and is 

discussed in the following section (§ 6.1.4). 

In addition to the coordinates of the tracking 

stations the inter-station baselines were also 

evaluated and those common to all three solutions 

(Sept 80, Dec 80 and GSFC SL5) are presented in 

fig G.V, together with the differences between the 

baseline lengths and the root-mean-square differences. 

It is noticeable that the baselines from the different 

solutions are in agreement to around 20cm (on average), 

which compares with the average differences of tracking 

station coordinates of around 80cm. This improvement 

may be attributed to the fact that any small errors in 

the orientation of the network of tracking stations 

should not effect the baseline lengths. Furthermore, it 

also supports the hypothesis that the large coordinate 

differences were due to errors in the polar motion 

values. 
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Following the determination of the polar motion 

components during the two periods (see § 6.1.4) the 

solutions outlined above were repeated. The unknown 

parameters and the model were the same as previously, 

except that the new polar motion values replaced the 

corresponding BIH Circular D values and were fixed 

throughout the 4 day periods. The cartesian and 

geodetic earth fixed coordinates of the tracking 

stations re-determined from the September and December 

data sets are tabulated in fig G.VI and fig G.VII, 

respectively. The internal standard errors of these 

coordinates were not significantly different from those 

obtained from the previous solutions (see fig G.I and 

fig 

The coordinate differences between the revised 

September and December solutions and the GSFC SL5 

solution are given in fig G.VIII (for X, Y, Z) and 

fig G.IX (for (I), A, h). Comparing these figures with 

those for the coordinate differences using the BIH 

polar motion values (fig G.III and fig G.IV) it can be 

seen that there was a very significant improvement. As 

would be expected the differences in latitude showed 

the greatest improvement, the average difference 

decreasing from around 80cm to 20cm. However, the 

improvement of the longitude and height differences was 

not significant. The September coordinate solution, 

with the exception of station 7096 (due to the limited 

coverage and large standard errors), was generally in 
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agreement with the SL5 solution to better than 20cm. 

The agreement between the December solution and SL5 was 

slightly worse (better than 45cm), however this may be 

attributed to fewer observations and more restricted 

coverage (see fig 6.111). 

The revised baselines between the tracking 

stations and the differences in baseline lengths 

between the September, December and SL5 solutions are 

given in fig G.X. Comparing this table with the values 

tabulated in fig G.V, it can be seen that the adoption 

of different polar motion components has had a 

negligible effect on the lengths of the baselines. 

However, the differences of station coordinates are now 

of the same order as the differences of the baselines. 

These average differences (in fig G.VIII and fig G.IX) 

give a better indication of the 'true' accuracy of the 

station coordinates than the internal standard errors 

given in fig G.I. Considering the short duration of the 

data sets these results encouraged the subsequent 

analysis of longer periods of data (see § 6.1.5). 

6.1.4 Solutions for Polar Motion 

The large differences of the latitudes of the 

tracking stations (see fig G.IV), between the September 

and December solutions and the SL5 solution, were 

attributed to errors in the adopted polar motion 

components. These values were taken from the BIH 

Circular D and linearly interpolated to the epochs of 
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the observations. In order to aleviate this problem new 

polar motion values were determined from the same laser 

ranging data sets. The general methods of determining 

the polar motion components from laser ranging 

observations are described in § 4.3, however in this 

particular case the analysis procedure was as follows. 

As previously explained, it is not possible to 

simultaneously determine polar motion and the latitudes 

of all the tracking stations, and the minimum 

requirement requires that either one pair of polar 

motion values are fixed or the latitudes of two of the 

tracking stations are fixed. With only four day data 

sets the former solution is not viable and so the 

latitudes of at least two of the tracking stations must 

be constrained. Consequently, during the first stage of 

the analysis the coordinates of all the tracking 

stations were held fixed to the GSFC SL5.1 values 

(Christodoulidis et al, 1982). The polar motion 

components and the satellite initial state vector (and 

the two force model coefficients) were then determined 

from the September data set. One value of x and one of 

y were obtained for the four day period and assigned 

an epoch equivalent to the mean epoch of all the 

observations during the period. With these polar motion 

values fixed, and the tracking station coordinates 

released, the solution to compute the coordinates of 

the tracking stations was performed (for the September 
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data), resulting in the values tabulated in fig G.VI. 

In order to compute the polar motion components for the 

December period of data, the coordinates of the four 

common stations were fixed to the final September 

values and the remaining two values fixed to the SL5 

values. Finally, the coordinates of the tracking 

stations were recomputed using the December data set 

and the derived polar motion components. 

The polar motion values determined from the 

September and December four day data sets are tabulated 

in fig G.XI, together with the corresponding, five day 

average, values from the BIH Circular D and those 

determined by the Goddard Space Flight Center (GSFC 

GEM-L2) during the computation of the GEM-L2 

geopotential model (Lerch et al, 1982). All the values 

are given in units of milli-arc-seconds (0.001 seconds 

of arc), where 1 mas is approximately equivalent to 3cm 

on the earth's surface. The Nottingham values were 

determined with an internal precision of the order of 

1 mas, compared with approximately 3 mas for the 'GSFC 

GEM-L2' values. 

From fig G.XI it can be seen that for both the 

September and December epochs there is a close 

agreement between the Nottingham and GSFC values, 

however both these solutions differ, considerably, from 

the BIH circular D values. During this period the 

smoothed BIH polar motion was derived, principally, 

from Classical Astrometric and Transit Doppler 
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observations, with very little (or no) contribution 

from laser ranging. Because of the dependence of the 

derived components on the adopted tracking station 

coordinates, independent absolute values of polar 

motion may not be obtained. However, the change of the 

component between the epochs may be determined. The 

final column of fig G.XI gives the difference between 

the December and September polar motion components and 

again a close agreement may be seen between the 

Nottingham and GSFC differences. 

The possibility of determining UT1-UTC, and 

changes of this parameter (often expressed as changes 

in the length of day, LOD) were also investigated. 

Because of the short periods of data being processed 

errors in UT1-UTC did not significantly effect the 

tracking station coordinates. Consequently, the results 

of the investigation are not included in this thesis, 

but are discussed in detail in Agrotis (1984). 

6.1.5 Analysis of Fourteen Day Data Set 

Following the successful analysis of the two 

4-day data sets the software package was modified so as 

to enable longer orbits to be generated and 

consequently longer periods of data to be processed. 

The analysis procedures adopted for the SODAPOP package 

are discussed in § 5.6.2. In summary, the method 

consists of dividing the long orbit into a series of 

smaller, more manageable, consecutive arcs, for example 
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each with a duration of 5 days. The range observation 

equations are formed, separately, for each short period 

and then combined to give the final solution. In order 

to test this major modification to the software a data 

set consisting of 14 days of LAGEOS range data observed 

between the 2nd and 15 th of December 1980 was 

processed. This period of data included the four days 

of data from December 1980 which was processed 

previously. The specifications of the data are given if 

fig 6.111 and as with the previous analysis the raw 

data was filtered and compressed into 1 minute normal 

points. The pre-processing resulted in a total of 1019 

normal points from 6 tracking stations (see fig 6.1 and 

fig 6.11). The data was divided into three consecutive 

four day periods and a final two day period, and a 

single solution was performed to determine the tracking 

station coordinates, the initial sateliite state vector 

and the two coefficients of the force model (C T and 

CR ). As before the earth rotation parameters were 

interpolated between the BIH circular D values and all 

other components of the model were mainatained as 

described in § 6.1.3. 

For both the fou day solutions the 

root-mean-square range residual (one-way) was of the 

order of 10cm, however because of the increased orbital 

errors introduced by the 14 day integration (a total of 

10080 predictor-corrector 2 minute integration steps) 

the rms residual in this case was of the order of 13cm. 
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The resulting earth fixed tracking station coordinates 

are tabulated in fig G.XII. Both the geodetic and 

cartesian representations are given together with the 

corresponding internal standard errors. These 

coordinates are compared with the corresponding 

coordinates from both the four day December 1980 (BIH 

polar motion) solution and the GSFC SL5.1 solutions, in 

fig G.XIII and fig G.XIV. It is noticeable that there 

is a close agreement between the two Nottingham 

December solutions, with the mean differences all 

better than 30cm. This result is not suprising 

considering the same model and earth rotation 

parameters were used, however it does serve to verify 

the adopted analytical principles. The intercomparison 

with the SL5.1 solution again reveals a close agreement 

between the heights (an average difference of 12cm) and 

longitudes (25cm) and a poor agreement between the 

latitudes (56cm). This, as previously, may be 

attributed to errors in the adopted polar moion 

components. 

Clearly, differences between the latitues may be 

reduced by determining a set of polar motion values 

from the same data set. However, an alternative 

approach was adopted, which entailed the determination 

of systematic rotational biases (about the X and Y axes 

of the earth fixed system) between the derived 

coordinates and those of the GSFC SL5.1 solution. These 

small rotations correspond to the systematic biases in 
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the coordinates introduced by the systematic errors in 

the polar motion components. The principles of this 

procedure are discussed in § 3.2.1.5, and the biases 

between the two coordinate sets were determined using 

the TRANSFORM program (see § 5.1). 

After the removal of the effects of the two 

rotations (ax 	-0.016 arc seconds and ay  = -0.012 arc 

seconds) the resulting coordinates (D80/14b) are 

compared with the SL5.1 solution in the final column of 

fig G.XIII and fig G.XIV. As would be expected the 

modelling of the systematic rotations, introduced by 

the polar motion components, has removed the large 

differences between the latitudes of the two 

solutions. 

As described previously (in § 6.1.3) the 

baselines between the tracking stations are insensitive 

to small errors in the polar motion components. 

Consequently, there is a very good agreement between 

the baseline lengths resulting from the December 

fourteen day solution and both the December four day 

solution and the GSFC SL5.1 solution. A selection of 

the baselines, corresponding to those tabulated in 

fig G.V, are presented in fig G.XV. In addition the 

baseline lengths are compared with the other solutions 

and the differences are also tabulated along with the 

root-mean-square differences. 
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6.2 MERIT MAIN CAMPAIGN DATA 

6.2.1 Introduction 

As previously mentioned in § 4.4.2 the Geodesy 

Research Group of the Univeristy of Nottingham 

contributed to Project MERIT as an Associate Analysis 

Centre for both Satellite Laser Ranging and Very Long 

Baseline Interferometry. This section is concerned with 

the results obtained from the processing of a subset of 

the MERIT LAGEOS laser ranging data. With Project MERIT 

in mind the aim of the analysis was to derive a series 

of earth rotation parameters over the period considered 

and compare this with other independently obtained 

series. In addition the aim was to also determine a 

reliable set of coordinates of the tracking stations. 

The suitability of determining these station 

coordinates and earth rotation parameters from 

different periods of data was also investigated. 

The SODAPOP suite of programs (see Chapter 5) 

was used to process and analyse the LAGEOS laser 

ranging data collected during the first four months 

(September to December 1983, inclusive) of the Main 

MERIT Campaign. On recognising that the pre-processing 

of the full rate 'raw' data would have presented a 

considerable, time consuming, task it was decided that 

the MERIT Standard Data Sets (as described in § 4.4.3) 

would be processed, in preference to the full rate 

data. 
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The specifcations of the data sets, and the 

procedures and models adopted, are detailed in the 

following sections. In addition the results of the 

processing and comparisons with corresponding results 

from other analysis centres are also presented. 

6.2.2 Data Set Specifications  

The four 1 month Standard Data Sets of LAAGEOS 

laser ranging data, observed during the period 

September to December 1983, were received at Nottingham 

on Magnetic tapes from the Royal Greenwich Observatory. 

The RGO previously received the data through the MERIT 

communications network illustrated in fig 4.IV. The 

selection of the first four months, in preference to 

any of the later months of the campaign, was dictated 

by the availability of the data sets, at the time. 

Clearly, the observations taken at the start of the 

campaign became generally available before any of the 

later observations. The time constraint of the research 

project restricted the analysis to the first four 

months. 

During these four months a total of over 1.1 

million raw range observations were received at the 

Data Collection Centre, from 23 stations around the 

world. The pre-processing, consisting of filtering and 

data compression, of this raw data resulted in the 

total of 11091 'normal point' observations, from 19 

stations, of the Standard Data Sets. 
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This pre-processing was performed at the Center for 

Space Research (CSR) of the University of Texas at 

Austin, the MERIT Operational Centre for Satellite 

Laser Ranging. The normal points were generated by the 

method described in § 2.4.1.3, each representing a 3 

minute period of raw data. 

As the raw range measurements were observed at 

so many sites there was a large variation of the 

estimated a priori standard errors of the raw ranges, 

from between 2 and 20cm (2 nd and 3 rd 
 
generation 

instumentation). During the data compression standard 

errors of the resulting normal point ranges were 

evaluated, and these ranged between 0.1 and 10cm 

(schutz, 1983b). The details of the tracking stations 

are given in fig 6.IV and their approximate locations 

are illustrated in fig 6.V. The stations separated in 

the second half of fig 6.IV contributed observations to 

the full rate data sets but these were not included in 

the Standard Data Sets. 

Before the formation of the normal point ranges 

the full rate data (or 'Quick Look' data) was 

converted, at the CSR, into a standard format. This 

consisted of correcting all the various time tags to 

UTC(BIH) and removing any corrections applied to the 

data for atmospheric refraction and satellite centre-

of-mass. The ranges are scaled by the standard speed of 

light (299792458 ms 1 )and any other anomalies 

corrected. This extensive pre-processing stage 
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ID No. System Location 

1181 POTSDM ZIPE, Potsdam, GDR 
7086 MLRS Ft. Davis, Texas 
7090 MOBLAS-5 Yarragadee, Australia 
7105 MOBLAS-7 GSFC, Greenbelt, Md 
7109 MOBLAS-8 Quincy, Ca 
7110 MOBLAS-4 Monument Peak, Ca 
7112 MOBLAS-2 Platteville, Co 
7121 MOBLAS-1 Huanhine, French Pol. 
7122 MOBLAS-6 Mazatlan, Mexico 
7210 HOLLAS Haleakala, Maui, Hawaii 
7805 METFIN Metsahovi, Finland 
7831 HELWAN HIAG and TUP, Helwan, Egypt 
7833 KOOTWK Kootwijk Obs., Netherlands 
7834 WETZEL IfAG, Wetzell, FRG 
7838 SHO Simosato Hydrographic Obs., Japan 
7839 GRAZ Obs. Graz-Lustbuehel, Austria 
7840 RGO Royal Greenwich Obs., UK 
7907 ARELAS Arequipa, Peru 
7939 MATERA PSN, Matera, Italy 

1837 SIMIEZ Simiez, Crimea, USSR 
7062 TLRS-2 Otay Mountain, Ca 
7220 TLRS-1 Monument Peak, Ca 
7837 CHILAS Shanghai, China 

Fig 6.IV Details of Tracking Stations (1983)  

Standard Data Set Sept Dec Nov Dec Total 

No. of Stations 14 18 18 16 19 
No. of Raw Ranges 240202 315462 284971 179223 1019858 
No. of N.P. Ranges 2388 3532 2771 2400 11091 

Nottingham Solns. 

No. of Stations 14 17 16 18 18 
No. of N.P. Ranges 2387 3528 3762 2379 11056 

Fig 6.VI Specifications of Data Sets (1983)  
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simplifies the subsequent analysis and also ensures a 

unified set of observations. 

On receipt of the data at Nottingham it was 

initially scanned and a number of whole data sets from 

certain stations were rejected. This editing was based 

on an assessment of whether there was a sufficient 

quantity of data for a coordinate solution for that 

station. The observations from Helwan (7831) were 

rejected from both the October (4 ranges) and November 

(6 ranges) data sets. In addition the 3 ranges from 

Metsahovi (7805) were also rejected from the November 

set. The entire data set from Platteville (7112) was 

similarly rejected from the December set (9 ranges). 

Because of an anomaly of the SOAP program any ranges 

with observation epochs within the first 10 minutes of 

an orbit must also be rejected. This situation arises 

because of the interpolation algorithm used for the 

satellite ephemeris, which requires the satellite state 

vector to be known for the preceding 5 integration 

steps (2 minutes each). As a result a number of other 

ranges were also edited from the data sets. The total 

number of stations and normal point ranges of the 

Standard Data Sets and the corresponding numbers used 

in the monthly solutions are given in fig 6.VI. 

6.2.3 Analysis Procedure and Models  

The basic principles of the procedure adopted 

for the processing of laser ranging data are outlined 

in § 4.3.2. 
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In summary, the four monthly sets of observations were 

processed separately and the processing of each month 

was carried out in two distinct stages. The first stage 

consisted of establishing a stable reference orbit and 

set of tracking station coordinates using all the 

observations from the particular month. This required 

the generation of a 30 (or 31) day orbit which was 

performed using the method outlined in § 5.6.2. For 

this purpose the complete orbit (and corresponding 

range data) was divided into six consecutive 5 day 

periods (with an additional day for October and 

December). The unknowns in the least squares solution 

included the initial satellite state vector, the 

coordinates of all the tracking stations, and the 

coefficients of the solar radiation pressure (C R ) and 

the along track acceleration (CT ) models. The 

geocentric gravitational constant, GM, was also 

determined from the September and October data sets. 

During this first stage, the earth rotation parameters 

were interpolated between the BIH circular D values. As 

described previously the only additional constraint 

required to enable a solution was the fixing of the 

longitude of one of the tracking stations. In this case 

the longitude of station 7210 (see fig 6.IV) was held 

fixed at the value given in the CSR 8112.2 LAGEOS 

Station coordinate solution. Despite the variation of 

the a priori standard errors of the range data (see 

6.2.2) no weighting was applied to the observations 
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This results in a default weighting of 1 metre for all 

the range observations. 

The one month data sets were then divided into 

1-day and 5-day subsets, for the second stage of the 

processing. A separate solution was performed for each 

subset of range observations, in order to determine 

UT1-UTC and the two components of polar motion, x
P 
 and 

y . During the second stage the initial satellite state 
P 
vector, the cartesian coordinates of the tracking 

stations and the coefficients CT and CR (and GM) were 

all held fixed at the values determined from the first 

stage of the analysis. 

This process resulted in two series of earth 

rotation parameters at roughly 1 and 5 day intervals, 

for each month. An epoch was assigned to each set of 

earth rotation parameters calculated as the mean of all 

the observations epochs of the particular data subsets. 

Finally, the new earth rotation parameters were 

interpolated to the nominal BIH epochs (0.0hrs UT, at 

5-day intervals). By adopting these values, in 

replacement of the BIH Circular D values, the first 

stage of the procedure was repeated in order to 

re-establish the satellite orbit and the tracking 

station coordinates. 

Throughout the processing the same models and 

parameters were used, so as to ensure a uniformity 

between the solutions. The models were configured so as 
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to be in close agreement, wherever possible, with the 

MERIT standards. The detailed specifications of the 

parameters, constants and models adopted are given in 

fig 6.VII. There are two notable deviations from the 

recommendations of the MERIT Standards. Firstly, the 

C1 and  S 1 harmonic coefficients of the geopotential 2 	2 

model were not modified, as recommended, but maintained 

at the GEM-L2 values. The modification was overlooked 

during the processing of the first month of data 

(September 1983) and so for consistency was not applied 

before the later solutions. Secondly, the displacements 

of the tracking stations due to ocean tidal loading 

were neglected, as they were not considered to be 

significant compared to the observational accuracies. 

Only the effects of direct solar radiation pressure 

were modelled, and so the effects of Albedo radiation 

were neglected. The 'shadow' test of the solar 

radiation pressure model was not operated, however the 

reflectance coefficient was included as an unknown 

parameter. 

6.2.4 Solutions for Tracking Station Coordinates  

As described in the previous section the 

coordinates of the tracking stations were determined 

twice for each monnth of LAGEOS laser range data. The 

models and unknowns in the solutions were identical 

except for the earth rotation parameters. The initial 

solutions used the BIB circular D series while the 
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1 GEM-L2 - 20x20, with C2  and S2  
not modified as recommended by 
the MERIT Standards. 

3.98600448x10 14  m 8 s -2  

2.99792458x10 8  ms -1  

sun, moon and Planets : Venus, 
Mars, Saturn, Jupiter. 

Appendix 5, MERIT Standards 
(Wahr model), frequency 
dependent Love numbers, 
Gravitational effect on 
satellite and station 
displacements modelled. 

Appendix 6, MERIT Standards 
(Schwiderski model), station 
displacements not modelled. 

Direct radiation (no Albedo), 
reflectance coefficient C

R is an adjusted parameter, noearth 
shadow cut-off. 

CT is an adjusted parameter 

Marini-Murray model 

0.240m (for LAGEOS) 

IAU 1980 

IAU 1976 

ae = 6378137.0m, 1/f = 298.255 

Geopotential Model 

GM 

Velocity of Light, c 

Third Body 
Attractions 

Solid Earth Tides 

Ocean Tides 

Solar Radiation 
Pressure 

LAGEOS Along Track 
Acceleration 

Refraction Correction 

Centre-of-mass Corrn. 

Nutation 

Precession 

Spheroid 

Fig 6.VII Adopted Constants and Models  



255 

second solutions used the series of earth rotation 

parameters derived at Nottingham (from the same data 

sets). The coordinates determined from both sets of 

solutions are presented in this section. 

In addition to the tracking station coordinates 

the remaining unknowns in the solutions were the 

initial satellite state vector and the two force model 

coefficients CT  and CR . The parameters and models used 

during the processing are given in § 6.2.3. The rms 

(root-mean-square) range residual of all the solutions 

was of the order of 20 - 25cm. As described in § 6.1.3, 

this value indicates the mean accuarcy of the tracking 

data (over short arcs) and the accuarcy of the orbit 

determination (over longer arcs). However, this 

parameter must be viewed with caution because simply by 

including more unknown parameters in the solution the 

residuals, and consequently the rms residual, tend to 

become smaller. 

The sets of tracking station coordinates 

resulting from the four 1 month solutions, using BIH 

earth rotation parameters, are presented in fig H.', 

fig H.II, fig H.III and fig H.IV (of Appendix H) for 

the September, October, November and December data 

sets, respectively. The geodetic (1), X, h) coordinate 

representation is given, expressed with respect to a 

spheroid with a semi major axis of 6378137.0m and 

flattening of 298.255. In addition the internal 

standard errors of the various components, 
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derived from the respective covariance matrices, are 

also given (in units of metres). It is notable that the 

standard errors of a number of stations of the 

September 1983 solution are considerably larger than 

those of all the other stations. In particular three 

stations, 1181, 7834 and 7838 (see fig 6.IV) have 

standard errors of the coordinate components of greater 

than 30cm, while those of the remaining stations are of 

the order of 5 - 15cm. However, these large values may 

be attributed to the limited number of LAGEOS passes 

tracked by the stations during September (2 passes for 

1181 and 3 each for 7834 and 7838). Other variations of 

the standard errors may be approximately correlated 

with the estimated a priori standard errors of the 

range observations (Schutz, 1983b). 

Although the internal standard errors may give 

an indication of which station coordinates are poorly 

determined, they do not give a 'true' estimate of the 

accuracy of the derived coordinate set. As previously 

described the repeatability of the solutions (from one 

month to the next) and the external comparison with 

other independent coordinate sets give a more realistic 

estimate of the 'true' accuracy. 

The four sets of coordinates were compared, 

individually, with the LAGEOS station coordinate 

solution 8112.2 (LSC 8112) of the Center for Space 

Research (CSR) of the University of Texas at Austin. 

Because of the large number of tracking stations common 
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to the coordinate sets it is not practical to present 

all the difference of the coordinate components and 

baselines. Consequently, only the root-mean-square 

(rms) differences of the cartesian and geodetic 

coordinates and the rms differences of the baseline 

lengths are given in fig H.V. The Nottingham solutions 

are identified in the figure by a four character code 

(i.e. SEPB) of which the first three characters 

indicate the particular month of the data and the final 

character differentiates between coordinate sets 

obtained using BIH (B) earth rotation parameters and 

those using the Nottingham (N) values. 

The LSC 8112 coordinates were determined from 

approximately five years of LAGEOS tracking data, and 

this set was selected in prefernce to the GSFC SL5.1 

set (Christodoulidis et al, 1982) because the latter 

offered fewer stations in common with the Nottingham 

coordinate sets. However, it has been since shown that 

the LSC 8112 coordinates may contain systematic biases, 

notably a 0.7m offset of the origin in the direction of 

the Z-axis (Tapley et al, 1985). Consequently, the 

selection of these coordinates as a reference set may 

now be questioned, however at the time they were 

considered to be the most suitable. 

From fig H.V it can be seen that the rms 

differences of all the coordinate components are of the 

order of 20 - 50cm. as with the previous coordinate 

solutions (see § 6.1.3) the best agreement was between 
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the heights (above the reference ellipsoid) of the 

tracking stations and the worst between the latitudes, 

with the latter possibly atributabe to errors in the 

adopted polar motion series. A seven parameter least 

squares adjustment of each monthly set of coordinates 

to the the LSC 8112 coordinates was performed as 

described in § 3.2.1.5. These seven parameters included 

the rigid body translations of the implied origin (ox, 

Sy, and Sz), three rotations about the orthogonal axes 

(ax , ay , and az ) and a scale parameter (c). The 

transformation parmeters determined between the 

coordinate sets are tabulated in fig H.VI. It is 

notable that the largest (and most significant) 

translations for each month are along the Z-axis, 

however this may be due to the systematic errors of the 

LSC 8112 coordinates. The scale difference of around 

3.0x10 -8  between the September, October and November 

coordinates and LSC 8112 may be due to the adopted GM 

value (see § 3.4.4). The LSC 8112 coordinates were 

determined using a fixed value of 3.98600440x10 14  m 8 s -2  

whereas the value of GM was determined as an unknown 

parameter (see fig H.X) from the September, October and 

November data sets. The December solution, however, 

adopted the MERIT recommended value of GM and 

consequently only a very small scale difference was 

determined between the two coordinate sets. 

After the removal of these bias parameters from 

the Nottingham coordinate sets the comparisons with 
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LSC 8112 coordinates were repeated and the resulting 

rms differences are tabulated in fig H.VII. The sets of 

coordinates are identified by the same codes used in 

fig H.V, however, a subscript is added to indicate that 

the biases with respect to the University of Texas 

solution have been removed. The rms differences of the 

coordinate components (both cartesian and geodetic) are 

all less than 40cm, with a mean of around 28cm. The rms 

differences of the baseline lengths, after the removal 

of the scale bias, are of the order of 45cm. 

In order to test the repeatability of the 

monthly coordinate solutions the sets of coordinates 

were inter-compared, both before and after the removal 

of the transformation parameters from LSC 8112. The 

resulting rms differences of the geodetic and cartesian 

coordinates and the baseline lengths are given in 

fig H.VIII. The corresponding rms differences after the 

removal of the transformation parameters are similarly 

tabulated in fig H.IX. As would be expected the 

agreement between the Nottingham solutions is better 

than the agreement with the LSC 8112 coordinates. From 

fig H.IX it can be seen that the rms differences of the 

coordinate components and the baseline lengths are of 

the order of 20cm and 30cm respectively. These monthly 

variations were, however, larger than anticipated and 

required further investigation (see Chapter 7). 

For the second stage of the processing of the 

data (see § 6.2.3) the coordinates of the tracking 
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stations given in figures H.I to H.IV were held fixed, 

and the resulting earth rotation parameters are 

discussed in § 6.2.5. Following the interpolation of 

these new values to the same epochs as the BIH 

Circular D values, they replaced the latter in the one 

month coordinate solutions. The analysis outlined 

previously was repeated for each month of laser ranging 

data and the resulting coordinates of the tracking 

stations are tabulated, together with their internal 

standard errrors, in figures H.XI to H.XIV. 

The root-mean-square range residuals from the 

various solutions reduced from around 25cm to 20cm when 

the Nottingham earth rotation parameters were adopted. 

There was also a corresponding reduction of the 

internal standard errors of the coordinates of the 

tracking stations. As described previously, each 

monthly set of coordinates was compared both with the 

LSC 8112 coordinates and with those from the other 

monthly solutions. The rms differences of the 

coordinates and the baseline lengths between the 

Nottingham solutions and LSC 8112 are given in 

fig H.XV. The codes used to identify the particular 

solution are similar to those described previously, 

except that the last character is now 'N' (rather than 

'B') to indicate that the Nottingham earth rotation 

parameters were used. In comparison with fig H.V the 

introduction of the new earth rotation parameter series 

had very little effect on the tracking station 
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coordinates, and no consistent reduction (or increase) 

of a particular component (such as latitude) is 

evident. 

The transformation parameters between the 

Nottingham solutions and LSC 8112 were re-determined 

and are tabulated in fig H.XVI. Except for the 

September values all the remaining transformation 

parameters are similar to those determined previously 

(see fig H.VI). After the removal of these bias 

parameters from the Nottingham coordinates they were 

again compared with LSC 8112, and the rms differences 

of the baseline lengths and cartesian and geodetic 

coordinates are given in fig H.XVII. Following the 

replacement of the BIH earth rotation parameters with 

the Nottingham derived values an improvement of the 

agreement between the resulting sets of coordinates and 

the LSC 8112 coordinates had been expected. However, in 

practice, there was a slight degradation of the 

agreement, as may be seen by comparing fig H.XVII with 

fig H.VII. This may indicate that either the method of 

determining earth rotation parameters was not producing 

a representative and accurate series (see § 6.2.5) or 

the differences are due to some other effect not 

accounted for in the analytical model. 

Finally, the monthly coordinate sets were inter-

compared, both before and after the removal of the 

transformation parameters of fig H.XVI. The resulting 

rms differences of the coordinates and baseline lengths 
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are tabulated in fig H.XVIII and fig H.XIX. In 

comparison with fig H.VIII and fig H.IX, the adoption 

of the new series of earth roataion parameters does not 

appear to have significantly increased or decreased the 

level of agreement between the individual monthly 

coordinate solutions. 

6.2.5 Solutions for Earth Rotation Parameters  

The procedure adopted for the determination of 

earth rotation parameters is described, in principle, 

in §4.3.2 and in detail, for the particular solutions 

performed, in § 6.2.3. The analyses resulted in two 4 

month series for each of the unknown earth rotation 

parameters (x 
P 
 , y

P 
 and UT1-UTC) at roughly one and five 

day intervals. An epoch was assigned to each set of 

values and as described in § 4.3.3. post-processing 

procedures were used to interpolate (and compress in 

the case of the daily series) the 'raw' values to the 

same epochs as the BIH Circular D series. From the 

resultng UT1-UTC values, corresponding values of the 

excess length of day, D, were also evaluated, using the 

principles outlined in § 4.3.3. Estimates of the 

a posteriori standard errors of all the derived 

parameters were also obtained. 

The earth rotation parameters detemined over the 

four month period and the correspponding standard 

errors are given in fig J.I and fig J.II (of 

Appendix J) for the values resulting from the 1-day 
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(UNOTT.1) and 5-day (UNOTT.5) solutions. The internal 

standard errors of all the components of the UNOTT.5 

series are very consistent, with those of the polar 

motion components varying between 0.0012 and 0.0026 arc 

seconds and the excess length of day between 0.0 and 

0.3 milli-seconds of time. However, the corresponding 

standard errors of the UNOTT.1 series are far less 

consistent, with occasional very large values. These 

variations may be attributed, to some extenet, to the 

interpolation process, which required the fitting of a 

quadratic function to five of the daily values. 

Principally, however, the variations are a result of 

only using a single day of tracking data to determine 

each 'raw' value. 

In order to assess the accuracy and reliability 

of the two series of earth rotation parameters, they 

were compared with three corresponding series derived 

independently at other institutions. These comprised 

the smoothed series published by the BIH in their 

Circular D, and two series determined by the Centre for 

Space Research of the University of Texas. The BIH 

values were determined from a combination of results 

derived by different observational techniques (see 

§ 4.2), whereas the CSR values were derived from only 

LAGEOS laser range 'Quick Look' data. The two CSR 

solutions were determined using the LPM 81.12 and 

LPM 84.02 systems (Schutz, 1983b)and will be referred 

to as CSR 81.12 and CSR 84.02 during the remainder of 

this section. 
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The tables of the differences between these 5 

different series of earth rotation parameters are given 

in fig J.III , fig J.IV, fig J.V and fig J>VI for x , 

y , UT1-UTC and excess length of day D, respectively. 

The values are given for 0.0 hours UT on the day 

numbers of 1983 tabulated in the first column of the 

figures. As previously, the root-mean-square 

differences were also evaluated and are given at the 

bottom of the respective columns. 

From these figures it can be seen that the 

agreement between the two Nottingham series was of the 

order of 4 - 8 mas (milli-arc-seconds) for the polar 

motion components. In comparison, however, the 

agreement between either of the Nottingham series and 

the BIH valus was of the order of 8 - 10 mas ad with 

the CSR values, 11 - 16 mas. These comparisons also 

indicated the existence of large systematic differences 

between portions of the series and the external values. 

In particular, a systematic difference, of the order of 

-17 mas,may be seen between UNOTT.1 and BIB series 

during the period (day numbers) 274 to 300. This period 

corresponds to the October data set and indicates that 

monthly discontinuities have been introduced to the 

Nottingham UNOTT.1 and UNOTT.5 series. Similar large 

differences also exist between the Notingham and CSR 

series, however, there are no systematic differences 

between the two Nottingham solutions. 
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The differences between the Nottingham UT1-UTC 

series and the BIH series are given in fig J.V and show 

an agreement between the sets of Nottingham values of 

the order of 0.7 ms (milli-seconds of time). This 

compares with an rms difference between either of these 

and the BIH values of the order of 1.0 ms. Rather than 

considering the 'absolute' values of UT1-UTC, fig J.VI 

gives the differences between the changes of UT1-UTC, 

expressed as the excess length of day, D. Because this 

latter series does not depend on the absolute values of 

UT1-UTC, it is largely free from any systematic 

differences introduced during the solutions. 

Consequently, the agreement the between different 

series is improved, resulting in rms differences of the 

order of 0.1 to 0.2 ms. Furthermore there is no 

indication of any systematic differences between these 

values. 

In order to assess the 'true' level of agreement 

between the different series of earth rotation 

parameters, any systematic differences between the 

Nottigham vaues and the corresponding BIH values were 

determined (by least squares) and removed from the 

Nottingham values. Discrete monthly sets of range data 

were used during the determination of the Nottingham 

earth rotation parameters and so the series were first 

divided into the corresponding monthly sections and a 

set of bias parameters were determined for each month. 

The resulting systematic differences are presented in 
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fig J.VII and fig J.VIII, for UNOTT.1 and UNOTT.5. It 

is notable that similar differences were detected for 

both the UNOTT.1 and UNOTT.5 series, indicating that 

the differences had not been introduced during the 

determination of the earth rotation parameters, but 

during the initial computation of the reference orbit 

and tracking station coordinates. 

The effects of these systematic differences were 

removed from the UNOTT.1 and UNOTT.5 series and 

resulted in UNOTT.1b and UNOTT.5b as given in fig J.IX 

and fig J.X, respectively. The differences between 

these two Nottingham series and the BIH Circular D 

values were re-computed and are tabulated in fig J.XI, 

fig J.XII, fig J.XIII and fig J.XIV for x 
P 
 , y 

P
, UT1-UTC 

and D, respectively. The agreements between the two 

sets of Nottingham values of x and y are of the order 

of 5 mas and 7 mas, which are not significantly 

different from the agreements before the removal of the 

biases. However, the agreement between the Nottingham 

values of xp  and yp  and those of the BIH are now of the 

order of 4 mas and 6 mas respectively (as compared to 

around 8 - 10 mas previously). Similarly, the agreement 

of the UT1-UTC series has also improved to around 0.9 

ms. However, as would be expected, the differences 

between the various series of the excess length of day 

(fig J.XIV) shows no significant changes from those of 

fig J.VI. 
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This level of agreement between the Nottingham 

earth rotation parameters and those determined 

independently is of a similar order to the agreement 

between the CSR 81.12, CSR 84.02 and BIH (smoothed) 

values. However, this agreement, particularly with the 

University of Texas LAGEOS derived values, is slightly 

worse than anticipated, and again may be principally a 

result of the analytical procedures adopted, rather 

than the particular models (as these were in accordance 

with the MERIT recommendations). 

In conclusion, the Nottingham values of x , y 
P P 

and the excess length of day, resulting from the 1-day 

and 5-day solutions (UNOTT.1 and UNOTT.5), are 

illustrated graphically together with the BIH Circular 

D values in figures J.XV to J.XXII. The corresponding 

values after the removal of the systematic differences 

of figures J.VII and J.VIII are similarly illustrated 

in figures J.XXIII to J.XXX. Because of the range of 

the UT1-UTC values determined during the four month 

period it is not possible to present a representative 

illustration, however the values of the excess length 

of day are illustrated in the figures. 



CHAPTER SEVEN 

CONCLUSIONS AND SUGGESTIONS FOR 

FURTHER WORK 
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7.1 	CONCLUSIONS 

A suite of computer programs, known as SODAPOP 

(Satellite Orbit Determination and Analysis 

Package Of Programs), has been developed in order 

to process Satellite Laser Ranging observations 

to the LAGEOS satellite. The programs are 

structured so as to enable, after slight 

modifications, the extension of the package to 

include different satellites and different types 

of tracking data. 

2. The constants, models and procedures adopted 

during the development of the software were, 

wherever possible, in accordance with the 

recommendations of the Committee for Project 

MERIT Standards (Melbourne, 1983). 

3. The programs were tested and validated by 

processing two short 4-day periods of LAGEOS 

laser range data from September and December 

1980. 

4. The earth fixed coordinates of the tracking 

stations were determined from each data set, 

using earth rotation parameters as published by 

the BIH, with an internal precision of between 5 

and 20 cm. The agreement between the two sets of 

coordinates, and each with the GSFC SL5.1 

coordinates, was better than 90cm. The baseline 

lengths agreed to better than 40cm. 
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5. Using the two 4-day periods of LAGEOS data the 

two components of polar motion (x and y ) were 

determined. Although these values differed from 

the BIH values by about 1m they agreed with the 

'GEM-L2' values to better than 20cm. 

6. The coordinates of the tracking stations were 

re-computed using the derived polar motion values 

and the resulting coordinates agreed with the 

SL5.1 coordinates to better than 40cm. 

7. To test a modification of the software, to 

enable the processing of long periods of data 

(say one month), a 14-day data set from December 

1980 was processed. The agreement between the 

resulting tracking station coordinates and GSFC 

SL5.1 was of the order of 30 - 50cm. After the 

modelling of systematic rotations about the X and 

Y axes, the agreement of the coordinates was of 

the order of 20 - 30cm. 

8. Following the testing of the various programs, 

SODAPOP was used to process LAGEOS laser range 

data observed during the first four months 

(September to December, 1983) of the Main MERIT 

Campaign, with the aim of determining the 

coordinates of the tracking stations and the 

earth rotation parameters. 

9. In order to reduce the necessary work load, 

pre-processed 'compressed' data, prepared at the 
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University of Texas was processed in preference 

to the 'full rate' data sets. 

10. Using each month of data, the earth fixed 

coordinates of the tracking stations were 

determined, twice. Firstly, with the BIH 

Circular D earth rotation parameters and secondly 

with the Nottingham derived values. 

11. The coordinates agreed with the University of 

Texas 8112.2 coordinate set to better than 60cm. 

They were also repeatable, between the monthly 

solutions, to around 50cm. 

12. Seven parameter transformations were modelled 

between the monthly coordinate solutions and 

8112.2. After the removal of the transformation 

parameters the agreement was better than 40cm, 

and the repeatability was around 20 - 30cm. 

13. Two series of earth rotation parameters were 

determined, for the four month period. The first 

series was derived from 'raw' values determined 

from daily batches of range data, whereas the 

values of the second series were determined from 

5-day periods of data. 

14. The agreement between the two series and with 

other independent series was of the order of 8mas 

for x and y and better than 0.2ms for the 

excess length of day. 
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15. After the removal of systematic differences 

between the Nottingham and BIB series the 

agreement was of the order of 3 - 7mas for x and 

yp . 

16. The use of the Nottingham series (UNOTT.1) of 

earth rotation parameters in replacement of the 

BIH Circular D smoothed values, in the monthly 

coordinate solutions, degraded the agreement 

between the derived coordinates and the 8112.2 

coordinate set. 

17. The analytical procedure adopted for the 

determination of earth rotation parameters is not 

considered to be a completely satisfactory 

method. Several limitations and restrictions of 

the method became evident and in particular the 

requirement to hold the orbit fixed was 

considered to be an inappropriate approach. 

18. The ability of the dynamical analysis of 

Satellite Laser Ranging data to determine earth 

rotation parameters, and the dependence of the 

resulting series on the adopted analytical 

procedure, have been demonstrated. 
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7.2 SUGGESTIONS FOR FURTHER WORK 

1. The SODAPOP software should be modified so as to 

enable the determination of a number of polar 

motion and earth rotation (UT1-UTC) values in a 

single solution. In addition it should be 

possible to hold any pair of polar motion 

components (or the latitudes of two tracking 

stations) and UT1-UTC fixed to any pre-determined 

(or standard) initial values. These two 

modifications would enable a single stage 

analysis procedure to be adopted, only requiring 

the additional constraint of the two components 

of polar motion (or two latitudes) and UT1-UTC at 

a particular reference epoch during the period of 

data. 

2. Methods of efficiently extending the period of 

data that may be processed in a single solution 

should be investigated. The method of storng the 

observation equations described in this thesis 

soon becomes inefficient and methods such as 

Helmert blocking may be more appropriate. Such an 

approach would also, for example, enable the 

processing of all the data from the Main MERIT 

Campaign in a single solution, resulting in a 

single, continuous, earth rotation parameter 

series. 
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3. The analysis of the Main MERIT Campaign data 

should be continued, by whatever method, so as to 

enable a more detailed evaluation of the 

resulting coordinates and earth rotation 

parameters. 

4. The methods of post-processing of the earth 

rotation parameters also requires further 

investigation and the merits of the various 

approaches evaluated. 

5. Because of the variation of the estimated 

a priori standard errors of the current laser 

range data, the weighting of range observation 

equations in the least squares solution should be 

investigated. This should include the 

determination of representative standard errors 

of 'normal point' compressed range data. 

6. The SODAPOP package should be modified so as to 

enable the analysis of laser range data to, 

initially, STARLETTE and other satellites. This 

would require, for example, the inclusion of a 

model for air drag to be added to the current 

force model of the ORBIT program. 

7. The effects of 'tuning' the geopotential 

coefficients of the gravity field should be 

investigated, paricularly for low altitude 

satellites, such as STARLETTE. Clearly, the 

determination of geopotential coefficients would 
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require the analysis of long periods of data and 

so would be dependent on the fulfillment of other 

suggestions for further work. 

8. 	The variations of the individual coordinate 

components of the monthly coordinate solutions, 

with repsect to an average coordinate set, should 

be further investigated. 

Note. During the interval between the end of the 

research period and the completion of this 

thesis, research including a number of these 

suggestions for further work has been started at 

the University of Nottingham. 
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APPENDIX A 

ROTATION MATRICES 

For a right handed orthogonal coordinate system 

a rotation about the ith  axis, through an anticlockwise 

angle 8 (when viewed from the positive end of the axis 

towards the origin) may be expressed by a rotation 

matrix R-(8), 

R1 (8) = 

(Krakiwsky and Wells, 

1 	0 

0 	cos 8 

0 	-sin 8 

1971) where, 

0 

sin 8 

cos 8 

(A.1)  

cos 8 0 -sin 8 

R2 (8) = 0 1 0 (A.2)  

sin 8 0 cos 8 

cos 0 sin e 0 

R3 (0) = -sin 8 cos 8 0 (A.3)  

0 0 1 

The order of the execution of a number of 

rotations (expressed as a product of the matrices) must 

be strictly adhered to as the rotation matrices do not 

commute. 
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Ste„ 	r 

Z sp 

Fig B.I Satellite Elevation Angle 

In fig B.I point P represents the tracking 

station on the earth's surface and point S the 

satellite. The geocentric earth fixed coordinate axes 

are X, Y and Z and the local topocentric axes at 

point P are XT , YT  and ZT  (see § 3.2.1.4). Line S'10  

lies in the plane of the XT  and YT  axes, and line SS' 

is parallel to the Z T-axis. 

The elevation angle of a satellite is the angle 

between the local horizontal plane and the line between 

the tracking station and the satellite (Marini and 

Murray, 1973), and is given by, 

asp = sin 1 (Zsp  / r) 
	

(B.1) 

where asp  : elevation angle of satellite, S, at 

point p, 
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sp 	zenith height of the satellite, S, above 

the horizontal plane through P, 

r: computed range between S and P, as given 

by equation (3.160). 

The zenith height of the satellite above the 

horizontal plane is the Z T component of the local 

topocentric coordinates of the satellite. This may be 

evaluated by converting the earth fixed coordinates of 

the satellite into the local topocentric system, using 

equation (3.29). However, as only the ZT component is 

required, equation (3.29) may be simplified to give, 

Zsp = (X s - X ) cos $ cos X + (Y s - Y ) cos $ sinX 

+ (Z s - Z ) sin $ 	(B.2) 

where Xs , Ys ,Z s  • earth fixed coordinates of the 

satellite, 

X 
P 
 , Y 

P 
 , Z

P 
 : earth fixed coordinates of the 

tracking station, 

(1). A 	: geodetic latitude and longitude 

of the tracking station. 
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APPENDIX C 

FITTING OF POLYNOMIALS BY LEAST SQUARES 

The example discussed in this Appendix is 

concerned with the fitting of an nth order polynomial 

to a set of k range observations. However, the 

principles may be generalised and used with any form of 

data or time series. From equation (2.13) the 

polynomial representation of the range may take the 

form, 

ao + a 1 (t - t0  ) + a2 1  (t. - t0 ) 2  + . . 	(C. 1) 

. . + an(ti - t0 ) n rt  + v. 
i 

where a0 " an 	: polynomial coefficients, 

	

(t. 	t0 ) : time interval since reference 

epoch, t o , 

v. 

	

1 
	 : least squares residual, 

rt observed range at epoch t i , 

Given a series of k range observations, where k is 

greater than n, an equation such as (C.1) may be set up 

for each range and expressed in matrix form by, 

T •a = r+ v 
	

(C.2) 

where 

1t 1 - t0 ) 	(t 1  - t 0 ) 2  . . . (t 1  - t 

1 	(t2  - t0 ) 	(t2  - t0 ) 2  . . . (t2  - to ) n  

T = (C.3) 
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and a : vector of unknown coefficients a 0  to an , 

r : vector of observed ranges r 1  to rk , 

v : vector of least squares residuals. 

The least squares normal equations (see 

Appendix E) may be formed from equation (C.2) and these 

solved for the unknown coefficients a 0  to an . 

A suitable method of solution of the normal equations 

would be Choleski's method of symmetric decomposition 

(see § 3.4.2). Following the solution, the residuals 

may be obtained, if required (for example, for the 

filtering of raw data), by back substitution using 

equation (C.2). 



APPENDIX D 

INTERPOLATION FORMULAE  



280 

APPENDIX D 

INTERPOLATION FORMULAE 

D.1 
	

Chebyshev Polynomials  

A function f(t) may be represented over an 

interval t0 to t 0 + At, in terms of Chebyshev 

polynomials, as, 

f(ti ) = k=1 ak  cos k 0 	(D.1) 

(ti  - to ) - Zt  
where e = 	cos 1  (D.2)  

At 

and n is the order of the polynomial. 

The coefficients ak are computed by evaluating the 

function 	 here (from 

equation D.2), 

t t. = At cos 8.3 	2 + A  + to (D.3)  

and 8. 	( 2j + 1 1 ir for j = 0, 1, - - n (D.4) 
I. 	n + 1 j 2 

The Chebyshev polynomial coefficients are given by, 

ak 

a 	1  
0 n + 	X7 =o f(tj )  

2 	
En f(t  n + 1 L3.0 Ly cos ke. 3 

(D.5)  

(D.6)  

Although n+1 coefficeints may be computed, when the 

function is evaluated at some epoch within the interval 

a truncated series of m terms may be used ( m < n ). 
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D.2 Everett Interpolation 

Given a function f(t) which is known at discrete 

data points t i' at constant intervals At, then the 

function may be interpolated within the interval t i  to 

ti+1  by using the Everett central difference formula, 

f(t) = E0  f(t i ) + E2  6 2 f(t i ) + E 4  6 4 f(t i ) + .. (D.7) 

+ F0 f(t.1+1  ) + F2 62f(t.1+1  ) + F 4 6 4 f(ti+ .1  ) + .. 

where E0  = 1 - u 	 (D.8) 

E l  = u(1 - u)(2 - u)/3! 	(D.9) 

E2  = 	(-1 - u)u(1 - u)(2 - u)(3 - u)/5! 	(D.10) 

F0  = u 	 (D.11) 

F2  = u(u 2  - 1)/3! 	 (D.12) 

F 4  = u(u 2  - 1)(u 2  - 4)/5! 	(D.13) 

with t - t. 
u = 	1 	(D.14) 

At 

and the term 6 nf(t
3 
 ) is the nth central difference of 

f(t.
3
) as defined by, 

6 2 f(t3  .)=f() .-- 2f(t.3 	1- ) 	f( 	) tj _ i 	ti+1  (D.15) 

6 4 f(t
3
.) = f( 	) - 4f() + 6f(t.) - 	(D.16) tj-2 	j-1 3 

- 4f( 	) + f( 	) tiil 	ti+2  

The series is, in practice, truncated after the nth 

central difference (n must be an even integer) which 

implies that n+2 discrete data points must be known, 

evenly distributed about the particular epoch. The 

terms above are sufficient to the 4 th central 
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difference, in order to extend this to include the 8 th 

central difference additional terms would be required, 

as follows, 

E 6  = (u + 2) E 4 
(u - 4) 3! 5!  7! 

E8  = (u + 3) E 6 (u - 5) 3! 	5! 7!  9! 

F6  = (u + 3) F 4 (u - 3) 3! 	5!  71 

F8  = (u + 4) F 6 
(u - 4) 31 	! 7!  9! 

and the central differences, 

6 6 f(t
3
.) = f(t

3
. 	) - 6f( 	) + 15f( 	) - 
-3 	

t i _2 	ti _ i  

	

- 210f(t
3
.) + 15f( 	4. ) - 6f( 	) + tj1 	ti+2  

+ f(t
J+3

) 

(D.17)  

(D.18)  

(D.19)  

(D.20)  

(D.21)  

6 8 f(t.
3
) = f(t3. -Li  A) - 8f(tj-3 3  ) + 28f(t. -z -) - 	(D.22) 

-56f(t3. -1 
	3

4 )+70f(t.)- 56f(t. +1 4 ) + , 	3 

+ 28f( 	) - 8f( 	) + f( 	) ti+2 	ti+3 	ti+4 
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APPENDIX E 

LEAST SQUARES NORMAL EQUATIONS 

E.1 	Derivation  of the Normal Equations  

In order to obtain the most probable values of a 

vector of unknowns x from a given set of observations 

then the required values of x are those which minimise 

the sum of the squares of the residuals, i.e. 

VT  W v = minimum 

which gives 	a(vT  W v)  = 0 
ax 

Given a set of observation equations, expressed in 

matrix form by, 

A x = b + v 
	

(E.3) 

which may be weighted to give, 

W 1  A x 
1 	1 

= w2 b  4. W2  v (E.4) 

1 	1 	1 
or 	W2 v = W2  A x - W2  b 	(E.5) 

then squaring this gives, 

	

VT  W v = (W 2  A x - W2 ‘ b) T  • (W 2 A x - W 2  b) 	(E.6) 

= XTATWAx - xTATWb - b TWAx + bTWb 
	

(E.7) 

Differentiating this with respect to x gives, 

	

a(v T  W  v) = 2A T  W A x- AT  W b - AT  W b 	(E.8) 
ax 

and so for a minimum, 

2AT  W A x - 2A T  W b 	= 0 	(E.9) 

which gives the matrix form of the normal equations as, 

AT  W A x = AT  W b 
	

(E.10) 
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E.2 Symmetric Properties of the Normal Equations  

The normal equation matrix, N, is given by, 

N 
	

AT W A 
	

(E.11) 

and so the transpose is given by, 

NT = (AT  W A) T  = AT WT A 
	

(E.12) 

However, as W is a symmetric matrix then, 

	

NT  = AT W A = N 
	

(E.13) 

E.3 Positive Definite Property of Normal Equations  

If the quadratic form of a symmetric matrix A is 

always positive for any real non-zero vector y, then 

the matrix A is said to be 'positive definite'. The 

normal equation matrix, N, is given by equation (E.11) 

and so for any vector y = [y1, y 2 , - - yn ] T , the 

quadratic form is, 

	

y T  N y = yT .(AT W A).y 	(E.14) 

= yT .(AT W 2
.W 2 A).y 

	

= yT.(w2 A)T.(W2 	• A).y 

1 	 1 
•
,
L .”2 and so y T Ny = (W 2  A y) .to, A y) > 0 	(E.15) 

Clearly, the above result must be true since the sum 
1 

of the squares of (W 2  A y) must always be positive. 

Because the normal equation matrix, N, is positive 

definite, then by implication all the diagonal elements 

of N must be positive. For example, as, 

yT N y > 0 	(E.16) 
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and choosing the real non-zero vector, 

y = 	[ 1, 0, 0, - - 0 1 T 	(E.17) 

then the first element on the diagonal, d 1 , must be 

positive. Similarly by choosing other suitable vectors 

for y it can be shown that all the other diagonal 

elements are positive. 

Without these properties it would be impossible 

to solve the normal equations by Choleski's method of 

triangular decomposition (see § 3.4.2). This is because 

the method involves the computation of the square roots 

of the elements on the leading diagonal of the normal 

equation coefficient matrix. Clearly, non of these 

elements must be less than, or equal to, zero. 
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APPENDIX F 

SATELLITE ACCELERATION DUE TO THE EARTH'S ATTRACTION 

From equation (3.74) a component, it i , of the 

acceleration vector R of the satellite due to the 
earth's attraction is given by , 

au 	au aR 	au ax 	au at P. + ___ __2 4. 	P  
aR.1 	aR aR 	a), aR. 	at 	 R . p i 	p 1 	p 1 

(F.1 ) 

whereR.1  : component (X, Y, Z) of the earth fixed 

coordinates of the satellite, 

K.1  : corresponding  component (M, V, 2) of the 

satellite acceleration vector. 

The partials of the potential U with respect to the 

spherical polar coordinates, R 
P 
 , gyp , and X , are 

evaluated by  differentiating  the expansion of the 

geopotential, as given in equation (3.64), to give, 

co 	n 	m au 	-GM ( 1 + Xn=2  Im=0  pl_ ) n (n + 1) Pn 	(F.2) 
aR 	R2 	R 

ID 	P 	 A 
x (Cm cos mX + S sin mX 	) n 	p 	m  n 	P)  

au . G 	lc° , In , ( a 1---z--  in m Pm Tx 	yiM ( - 	— 	n=z m=u 	n 	(F.3)  
P 	P 	P 

x (Cm n  cos map  - S sin mX 	)  m n 	P
) 

au  = Gm  ( xco 	7 11L 0 	: i n ( pm+1 _ m tan (I) Pm 
5 (1) 	IT 	n=2 L 	1 	n 	p n 

P 	P 	pJ 

x (Cirl  cos mAp  SW sin map ) ) 	(F.4) 

and the partial derivatives of the spherical polar 

coordinate components with respect to the components of 
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the cartesian coordinate vector are obtained by 

differentiating equations (3.6), (3.7) and (3.8), to 

give, 

3R
P 
 = X 	3A 

P 
, 	= 	-Y 	, 9 1) 10  = 	- Z X 	(F.5) 

1 
3X 	R

P 	 i 3X 	(X2  + Y 2 ) 	ax 	(X2 + y212 Rp2 

aR
P 
 = Y , ax = 	x 	, app 

 = 
	— Z Y 	(F.6) 
 1 

aY 	R
P 
	aY 	(X 2  + Y 2 ) 	3Y 	(X2  + Y 2 ) 2  R 2  
 P 

3R
P 
 = Z 	3A 

P 
, 	= 0 	, 4

P 
 = (1 - Z 2  / R 2 )(F.7) 
 A  

1 
3Z 	R

P 	
3Z 	DZ 	(X2  + Y2)2 



APPENDIX G  

TABLES OF RESULTS (SHORT MERIT DATA)  



Station 
(deg 

Latitude 
min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
a 

(i) 	
a A 

(cm) 
oh 

7063 39 1 13.39497 283 10 19.80020 15.332 0.050 0.012 0.044 
7090 -29 2 47.43349 115 20 48.10653 237.521 0.047 0.056 0._041 
7091 42 37 21.71790 288 30 44.34828 88.383 0.037 0.058 0.037 
7096 -14 20 7.51619 189 16 30.37933 45.522 0.622 1.135 0.258 
7115 35 14 53.93166 243 12 28.94113 1035.369 0.051 0.058 0.051 
7120 20 42 27.41463 203 44 38.08404 3064.291 0.049 0.074 0.043 

ae 
	6378144.11m 
	1/ f 

	
298.255 

Station X 
(m) 

Y 
(m) 

Z 
(m) 

Standard Errors (cm) 
aX 	ay 	aZ  

7063 1130711.924 -4831370.633 3994089.653 0.010 	0.030 	0.060 
7090 -2389003.531 5043333.515 -3078527.390 0.060 	0.030 	0.050 
7091 1492451.379 -4457281.917 4296818.401 0.060 	0.030 	0.040 
7096 -6100049.853 -996200.161 -1568977.200 0.100 	1.150 	0.640 
7115 -2350866.197 -4655547.058 3661000.634 0.060 	0.050 	0.050 
7120 -5466003.132 -2404405.758 2242230.145 0.030 	0.080 	0.050 

Fig G.I Tracking Station Coordinates - Sept 1980 (BIH Polar Motion)  



Station 
(deg 

Latitude 
min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
ad) 	ox  

(cm) 
ah 

7063 39 1 13.38650 283 10 19.80020 15.352 0.096 0.040 0.104 
7090 -29 2 47.43252 115 20 48.10357 237.451 0.093 0.182 0.099 
7114 37 13 57.20716 241 42 22.20028 1174.560 0.080 0.102 0.080 
7115 35 14 53.89673 243 12 28.94113 1035.439 0.152 0.153 0.199 
7120 20 42 27.37679 203 44 38.11135 3064.241 0.088 0.121 0.078 
7896 34 12 20.03078 241 49 39.71218 438.024 0.086 0.094 0.082 

ae 
	6378144.11m 
	

1/f = 298.255 

Station X 
(m) 

Y 
(m) 

Z 
(m) 

Standard Errors (cm) 

ax 	Gy 	az 

7063 1130711.965 -4831370.808 3994089.462 0.030 	0.120 	0.080 
7090 -2389003.438 5043333.507 -3078527.330 0.200 	0.060 	0.090 
7114 -2410427.211 -4477803.643 3838688.512 0.110 	0.070 	0.080 
7115 -2350866.503 -4655547.664 3661000.795 0.110 	0.260 	0.080 
7120 -5466003.148 -2404406.629 2242230.038 0.060 	0.130 	0.090 
7896 -2493215.745 -4655230.002 3565577.465 0.100 	0.070 	0.090 

Fig G.II Tracking Station Coordinates - Dec 1980 (BIH Polar Motion)  



Tracking 
Station 

Dec 80 - Sept 80 GSFC SL5 - Sept 80 GSFC SL5 - Dec 80 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

7063 0.04 -0.18 -0.19 0.15 -0.64 -0.93 0.11 -0.46 -0.74 
7090 0.09 -0.01 0.06 -0.20 0.16 0.65 -0.29 0.17 0.59 
7091 - - - 0.16 -0.71 -0.84 - - 
7096 - - - 0.27 0.74 0.01 - - 
7114 - - - - - - 0.46 -0.24 0.07 
7115 -0.31 -0.61 -0.84 0.10 -0.54 -0.98 0.41 0.07 -0.14 
7120 -0.02 -0.87 -1.11 0.13 -0.68 -0.73 0.14 0.19 0.38 
7896 - - - - - - 0.26 -0.18 -0.28 

RMS 
Difference 0.16 0.54 0.70 0.18 0.61 0.76 0.31 0.25 0.14 

Fig G.III Comparison of Tracking Station Coordinates (BIH Polar Motion)  



Tracking 
Station 

Dec 80 - Sept 80 GSFC SL5 - Sept 80 GSFC SL5 - Dec 80 

A(1) 
(m) 

AA 
(m) 

Ah 
(m) 

AI) 
(m) 

AX 
(m) 

Ah 
(m) 

A4) 
(m) 

AA 
(m) 

Ah 
(m) 

7063 -0.26 0.00 0.02 -1.14 0.00 -0.08 -0.88 0.00 -0.10 
7090 0.03 -0.08 -0.07 0.68 0.11 -0.11 0.65 0.19 -0.04 
7091 - - - -1.11 -0.07 -0.03 - - - 
7096 - - - -0.09 -0.69 -0.38 - - - 
7114 - - - - - - 0.06 0.52 0.03 
7115 -1.08 0.00 0.07 -1.05 0.33 -0.21 0.03 0.33 -0.28 
7120 -1.17 0.79 -0.05 -0.74 0.67 -0.11 0.43 -0.12 -0.06 
7896 - - - - - - -0.25 0.31 -0.13 

RMS 
Difference 0.81 0.40 0.06 0.88 0.42 0.19 0.49 0.30 0.14 

ae 
	6378144.11m 
	

1/ f = 298.255 

Fig G.IV Comparison of Geodetic Station Coordinates (BIH Polar Motion)  



Inter-Station 
Baseline 

Nominal Length 
of Baseline 

(m) 

Sept 
80 
(m) 

Dec 
80 
(m) 

GSFC 
SL5 
(m) 

Dec 80 - 
Sept 80 

(m) 

SL5 - 
Sept 80 

(m) 

SL5 -
Dec 80 
(m) 

7063 - 7090 12645951 .55 .53 .39 -0.02 -0.17 -0.14 
7063 - 7115 3501892 .12 .51 .18 0.38 0.06 -0.33 
7063 - 7120 7244019 .59 .63 .54 0.04 -0.04 -0.08 
7090 	- 7115 11810629 .82 .80 .47 -0.02 -0.35 -0.33 
7090 - 7120 9656459 .37 .43 .16 0.06 -0.21 -0.27 
7115 	- 7120 4096904 .32 .04 .13 -0.27 -0.18 0.09 

RMS Difference 0.20 0.20 0.23 

Fig G.V Comparison of Baseline Lengths (BIH Polar Motion)  



Station 
(deg 

Latitude 
min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

7063 39 1 13.36198 283 10 19.80020 15.332 
7090 -29 2 47.40568 115 20 48.10764 237.521 
7091 42 37 21.68685 288 30 44.34300 88.383 
7096 -14 20 7.53107 189 16 30.38434 45.532 
7115 35 14 53.89576 243 12 28.96014 1035.379 
7120 20 42 27.39167 203 44 38.10789 3064.291 

ae = 6378144.11m 
	

1/f = 298.255 

Station X 
(m) 

Y 
(m) 

Z 
(m) 

7063 1130712.070 -4831371.257 3994088.862 
7090 -2389003.736 5043333.878 -3078526.641 
7091 1492451.471 -4457282.570 4296817.696 
7096 -6100049.727 -996200.292 -1568977.646 
7115 -2350866.059 -4655547.852 3660999.736 
7120 -5466003.083 -2404406.491 2242229.484 

Fig G.VI Tracking Station Coordinates - Sept 1980 (Nottm Polar Motion)  



Station 
(deg 

Latitude 
min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

7063 39 1 13.36101 283 10 19.80020 15.342 
7090 -29 2 47.40342 115 20 48.09469 237.441 
7114 37 13 57.20296 241 42 22.20637 1174.550 
7115 35 14 53.89059 243 12 28.94628 1035.439 
7120 20 42 27.39361 203 44 38.10409 3064.261 
7896 34 12 20.02755 241 49 39.71609 438.024 

ae = 6378144.11m 
	

1/f = 298.255 

Station X 
(m) 

Y 
(m) 

Z 
(m) 

7063 1130712.076 -4831371.283 3994088.845 
7090 -2389003.404 5043333.995 -3078526.541 
7114 -2410427.113 -4477803.776 3838688.403 
7115 -2350866.436 -4655547.820 3660999.641 
7120 -5466003.082 -2404406.370 2242229.530 
7896 -2493215.683 -4655230.099 3565577.383 

Fig G.VII Tracking Station Coordinates - Dec 1980 (Nottm Polar Motion)  



Tracking 
Station 

Dec 80 - Sept 80 GSFC SL5 - Sept 80 GSFC SL5 - Dec 80 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

7063 0.01 -0.03 -0.02 0.00 -0.01 -0.14 0.00 0.01 -0.13 
7090 0.33 0.12 0.10 0.01 -0.20 -0.10 -0.33 -0.32 0.20 
7091 - - - 0.07 -0.06 -0.13 - - - 
7096 - - - 0.15 0.88 0.45 - - - 
7114 - - - - - 0.37 -0.10 0.17 
7115 -0.38 0.03 -0.10 -0.04 0.26 -0.08 0.34 0.23 0.02 
7120 0.00 0.12 0.05 0.08 0.06 -0.07 0.08 -0.07 -0.11 
7896 - - - - - - 0.20 -0.08 -0.20 

RMS 
Difference 0.25 0.09 0.07 0.08 0.38 0.21 0.26 0.17 0.15 

Fig G.VIII Comparison of Cartesian Tracking Station Coordinates (Nottm Polar Motion)  



Tracking 
Station 

Dec 80 - Sept 80 GSFC SL5 - Sept 80 GSFC SL5 - Dec 80 

Act) 
(m) 

AX 
(m) 

Ah 
(m) 

Ad) 
(m) 

AX 
(m) 

Ah 
(m) 

Al) 
(m) 

AX 
(m) 

Ah 
(m) 

7063 -0.03 0.00 0.01 -0.12 0.00 -0.08 -0.09 0.00 -0.09 
7090 0.07 -0.35 -0.08 -0.18 0.08 -0.11 -0.25 0.43 -0.03 
7091 - - - -0.15 0.05 -0.03 - - - 
7096 - - - 0.37 -0.84 -0.39 - - - 
7114 - - - - - - 0.19 0.37 0.04 
7115 -0.16 -0.35 0.06 0.06 -0.15 -0.22 0.22 0.20 -0.28 
7120 0.06 -0.11 -0.03 -0.03 -0.02 -0.11 -0.09 0.09 -0.08 
7896 - - - - - - -0.15 0.21 -0.13 

RMS 
Difference 0.09 0.25 0.05 0.19 0.35 0.20 0.18 0.26 0.14 

ae = 6378144.11m 
	

1/f = 298.255 

Fig G.IX Comparison of Geodetic Station Coordinates (Nottm Polar Motion)  



Inter-Station 
Baseline 

Nominal Length 
of Baseline 

(m) 

Sept 
80 
(m) 

Dec 
80 
(m) 

GSFC 
SL5 
(m) 

Dec 80 - 
Sept 80 

(m) 

SL5 - 
Sept 80 

(m) 

SL5 - 
Dec 80 
(m) 

7063 - 7090 12645951 .56 

N
  N

 V
)
 ON CY)  1.1)  

Lf) II)  V
)  I"-  '4'  0

 
•
 •
 •
 •
 •
 • 

.39 -0.04 -0.17 -0.13 
7063 	- 7115 3501892 .13 .18 0.39 0.05 -0.34 
7063 - 7120 7244019 .61 .54 0.04 -0.06 -0.10 
7090 	- 7115 11810629 .83 .47 -0.04 -0.36 -0.32 
7090 - 7120 9656459 .36 .16 0.07 -0.20 -0.27 
7115 	- 7120 4096904 .33 .13 -0.29 -0.20 0.08 

RMS Difference 0.20 0.20 0.23 

Fig G.X Comparison of Baseline Lengths (Nottm Polar Motion)  



Polar Motion 
Series 

Sept 80 

2nd  - 5
th 

Dec 80 

2nd - 5th 

Dec - Sept 

x 
P y p  x p  y p  Ax p  Ay p 

 
(mas) (mas) (mas) (mas) (mas) (mas) 

Nottingham -25 354 49 396 74 42 

GSFC GEM-L2 -26 343 45 378 71 35 

BIH Circular D -17 317 19 378 36 61 

Fig G.XI Polar Motion Values (and Comparisons)  



Station 
(deg 

Latitude 
min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
a 

(i) 	
a X 

(cm) 
ah 

7063 39 1 13.38897 283 10 19.80020 15.300 0.096 0.047 0.113 
7090 -29 2 47.43525 115 20 48.12231 237.525 0.048 0.116 0.068 
7114 37 13 57.21448 241 42 22.21275 1174.651 0.061 0.106 0.072 
7115 35 14 53.90848 243 12 28.94180 1035.148 0.068 0.116 0.088 
7120 20 42 27.37480 203 44 38.12006 3064.374 0.052 0.133 0.080 
7896 34 12 20.02753 241 49 39.72218 438.074 0.052 0.104 0.067 

ae 
	6378144.11m 
	

1/f = 298.255 

Station X 
(m) 

Y 
(m) 

Z 
(m) 

Standard Errors (cm) 

6X 	ay 	
az 

7063 1130711.945 -4831370.722 3994089.448 0.034 	0.144 	0.049 
7090 -2389003.907 5043333.312 -3078527.439 0.125 	0.059 	0.036 
7114 -2410426.910 -4477803.732 3838688.746 0.114 	0.073 	0.043 
7115 -2350866.286 -4655547.273 3660999.923 0.120 	0.100 	0.039 
7120 -5466003.180 -2404406.918 2242229.028 0.067 	0.142 	0.046 
7896 -2493215.565 -4655230.209 3565577.410 0.113 	0.064 	0.035 

Fig G.XII Tracking Station Coordinates - Dec 80/14 (BIH Polar Motion)  



Tracking 
Station 

Dec 80/14 - Dec 80 Dec 80/14 - SL5.1 Dec 80/14b - SL5.1 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

AX 
(m) 

AY 
(m) 

AZ 
(m) 

7063 -0.02 0.09 0.03 0.13 -0.55 -0.77 -0.10 -0.23 -0.32 
7090 -0.47 -0.20 -0.11 0.18 0.37 0.69 0.36 0.12 0.16 
7114 0.30 -0.09 0.23 0.16 -0.15 -0.17 -0.06 0.15 0.04 
7115 0.22 0.39 0.13 0.19 -0.32 -0.26 -0.02 -0.03 -0.04 
7120 -0.03 -0.29 -0.01 0.17 0.48 0.39 0.04 0.66 0.26 
7896 0.18 -0.21 -0.05 0.08 0.03 -0.22 -0.13 0.31 0.00 

RMS 
Difference 0.26 0.24 0.12 0.16 0.36 0.48 0.16 0.32 0.18 

Fig G.XIII Comparison of Cartesian Tracking Station Coordinates (BIH Polar Motion)  



Tracking 
Station 

Dec 80/14 - Dec 80 Dec 80/14 - SL5.1 Dec 80/14b - SL5.1 
4  

04) 
(m) 

AA 
(m) 

Ah 
(m) 

04) 
(m) 

AX 
(m) 

Eh 
(m) 

A4) 
(m) 

AA 
(m) 

Ah 
(m) 

7063 0.08 0.00 -0.05 -0.95 0.00 -0.05 -0.38 -0.15 -0.05 
7090 -0.08 0.51 0.07 0.73 -0.32 -0.11 0.12 -0.37 -0.11 
7114 0.23 0.31 0.09 -0.17 0.21 -0.06 0.10 -0.13 -0.06 
7115 0.36 0.02 -0.29 -0.33 0.31 0.01 -0.05 -0.01 0.01 
7120 -0.06 0.25 0.13 0.49 -0.37 -0.19 0.35 -0.59 -0.19 
7896 -0.10 0.26 -0.05 -0.15 0.05 -0.18 0.12 -0.26 -0.18 

RMS 
Difference 0.19 0.28 0.14 0.56 0.25 0.12 0.23 0.31 0.12 

a
e 	6378144.11m 	1/f = 298.555 

Fig G.XIV Comparison of Geodetic Tracking Station Coordinates (BIH Polar Motion)  



Inter-Station 
Baseline 

Nominal Length 
of Baseline 

(m) 

Dec 
80/14 
(m) 

Dec 
80 
(m) 

GSFC 
SL5 
(m) 

Dec 80/14 
- Dec 80 

(m) 

Dec 80/14 
- SL5.1 
(m) 

7063 - 7090 12645951 .56 .53 .39 -0.02 -0.12 
7063 - 7115 3501892 .28 .51 .18 -0.23 -0.10 
7063 - 7120 7244019 .52 .63 .54 -0.11 0.02 
7090 - 7115 11810629 .46 .80 .47 -0.34 0.02 
7090 - 7120 9656459 .42 .43 .16 -0.01 -0.26 
7115 	- 7120 4096904 -.09 .04 .13 -0.14 0.23 

RMS Difference 0.18 0.16 

Fig G.XV Comparison of Baseline Lengths (BIH Polar Motion)  



APPENDIX H  

TABLES OF TRACKING STATION  

COORDINATES (MAIN MERIT DATA)  



Station Latitude 
(deg 	min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
a 

(I) 	
G
A  

(cm) 
Gh 

1181 52 22 48.91793 13 3 54.81372 147.793 0.332 0.506 0.315 
7086 30 40 37.14004 255 59 2.64204 1963.294 0.073 0.085 0.065 
7105 39 1 14.17014 283 10 20.10885 22.114 0.062 0.064 0.059 
7109 39 58 30.01472 239 3 18.89282 1109.282 0.051 0.041 0.048 
7112 40 10 58.01280 255 16 26.29400 1504.745 0.094 0.131 0.087 
7121 -16 44 0.67736 208 57 31.74290 46.730 0.087 0.084 0.088 
7122 23 20 34.25524 253 32 27.09491 33.893 0.091 0.086 0.101 
7210 20 42 26.00928 203 44 38.53700 3068.204 0.067 0.023 0.043 
7833 52 10 42.22071 5 48 35.09235 93.280 0.214 0.487 0.252 
7834 49 8 41.74915 12 52 40.92621 661.183 0.134 0.175 0.140 
7838 33 34 39.69575 135 56 13.12745 101.500 0.260 0.324 0.303 
7839 47 4 1.66464 15 29 35.85413 539.410 0.095 0.113 0.097 
7907 -16 27 56.69380 288 30 24.54455 2492.148 0.058 0.044 0.049 
7939 40 38 55.77123 16 42 16.63624 535.816 0.065 0.059 0.063 

ae = 6378137.0m 
	

1/f = 298.255 

Fig H.I Tracking Station Coordinates - Sept 1983 (BIH ERP)  



Station Latitude 
(deg 	min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
G 

(i) 	
GX  

(cm) 
a
h 

1181 52 22 48.94059 13 3 54.81116 147.599 0.123 0.136 0.127 
7086 30 40 37.10692 255 59 2.64397 1963.244 0.132 0.156 0.144 
7090 -29 2 47.44543 115 20 48.00050 244.440 0.096 0.110 0.100 
7105 39 1 14.15753 283 10 20.09640 22.054 0.058 0.044 0.052 
7109 39 58 29.99603 239 3 18.87163 1109.198 0.062 0.047 0.057 
7110 32 53 30.22846 243 34 38.18315 1841.792 0.063 0.042 0.051 
7112 40 10 57.99108 255 16 26.26928 1504.609 0.067 0.059 0.063 
7121 -16 44 0.70257 208 57 31.72664 47.148 0.078 0.060 0.056 
7122 23 20 34.23236 253 32 27.08522 33.794 0.073 0.048 0.051 
7210 20 42 25.96808 203 44 38.53700 3068.189 0.075 0.019 0.041 
7833 52 10 42.24039 5 48 35.09183 92.962 0.087 0.112 0.089 
7834 49 8 41.76975 12 52 40.93064 660.929 0.062 0.064 0.066 
7838 33 34 39.68082 135 56 13.13113 101.127 0.070 0.052 0.061 
7839 47 4 1.68013 15 29 35.87935 539.133 0.062 0.057 0.065 
7840 50 52 2.56398 0 20 9.80761 75.062 0.058 0.062 0.064 
7907 -16 27 56.69379 288 30 24.53935 2492.213 0.061 0.044 0.043 
7939 40 38 55.77701 16 42 16.65735 535.828 0.060 0.047 0.058 

ae 
	6378137.0m 
	

1/f = 298.255 

Fig H.11 Tracking Station Coordinates - Oct 1983 (BIH ERP)  



Station Latitude 
(deg 	min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
a 

ci) 	
aX 

(cm) 
ah 

1181 52 22 48.90982 13 3 54.81162 147.981 0.121 0.108 0.121 
7086 30 40 37.12666 255 59 2.62956 1963.006 0.085 0.063 0.070 
7090 -29 2 47.43464 115 20 48.04716 244.656 0.075 0.062 0.063 
7105 39 1 14.15888 283 10 20.09738 21.976 0.074 0.062 0.067 
7109 39 58 29.98912 239 3 18.88648 1109.296 0.150 0.130 0.140 
7110 32 53 30.23708 243 34 38.19525 1841.837 0.095 0.089 0.082 
7112 40 10 57.98556 255 16 26.28672 1504.731 0.083 0.072 0.079 
7121 -16 44 0.70218 208 57 31.72715 47.262 0.112 0.098 0.083 
7122 23 20 34.23434 253 32 27.09699 33.890 0.093 0.068 0.070 
7210 20 42 25.98343 203 44 38.53700 3068.024 0.092 0.024 0.050 
7834 49 8 41.74967 12 52 40.92670 660.930 0.074 0.064 0.078 
7838 33 34 39.69420 135 56 13.13286 101.096 0.086 0.066 0.076 
7839 47 4 1.65317 15 29 35.87337 539.126 0.081 0.085 0.082 
7840 50 52 2.54328 0 20 9.82478 74.971 0.082 0.104 0.085 
7907 -16 27 56.70952 288 30 24.53902 2492.279 0.083 0.053 0.052 
7939 40 38 55.76412 16 42 16.64210 535.376 0.081 0.061 0.078 

ae 	6378137.0m 
	

1/f = 298.255 

Fig H.III Tracking Station Coordinates - Nov 1983 (BIH ERP)  



Station Latitude 
(deg 	min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
a (I) 	aX 

(cm) 
ah 

1181 52 22 48.92229 13 3 54.80469 147.936 0.124 0.121 0.115 
7086 30 40 37.13856 255 59 2.64787 1963.257 0.086 0.065 0.071 
7090 -29 2 47.42871 115 20 48.05817 244.458 0.077 0.064 0.066 
7105 39 1 14.16357 283 10 20.10862 22.268 0.084 0.072 0.083 
7109 39 58 29.99310 239 3 18.90302 1109.457 0.116 0.122 0.123 
7110 32 53 30.24747 243 34 38.20592 1842.149 0.098 0.080 0.101 
7121 -16 44 0.68206 208 57 31.72317 47.640 0.105 0.066 0.061 
7122 23 20 34.25566 253 32 27.09517 34.113 0.098 0.061 0.074 
7210 20 42 25.99901 203 44 38.53700 3068.350 0.090 0.017 0.042 
7834 49 8 41.75907 12 52 40.94343 661.143 0.081 0.079 0.083 
7838 33 34 39.70227 135 56 13.13852 101.405 0.081 0.048 0.064 
7839 47 4 1.66480 15 29 35.87824 539.318 0.084 0.076 0.084 
7840 50 52 2.54170 0 20 9.83580 74.315 0.071 0.068 0.076 
7907 -16 27 56.70202 288 30 24.54998 2492.486 0.090 0.050 0.045 
7939 40 38 55.77024 16 42 16.64300 535.938 0.071 0.057 0.067 

ae 	6378137.0m 
	

1/f = 298.255 

Fig H.IV Tracking Station Coordinates - Dec 1983 (BIH ERP)  



Coordinate Root-Mean-Square (RMS) Differences 
Solutions X Y Z (i) 	A h Baseline 

(m) (m) (m) (m) 	(m) (m) Length (m) 

SEPB - LSC 8112 0.35 0.32 0.49 0.49 0.35 0.34 0.57 
OCTB - LSC 8112 0.56 0.41 0.49 0.54 0.60 0.27 0.51 
NOVB - LSC 8112 0.34 0.38 0.44 0.53 0.38 0.19 0.43 
DECB - LSC 8112 0.29 0.39 0.53 0.56 0.36 0.28 0.43 

fig H.V Coordinate Comparison (BIH ERP)  

Coordinate 
Solutions ax 

Transformation Parameters 
ay 	az 	ax 	ay az c 

From To (m) (m) (m) (sec) (sec) (sec) (ppm) 

SEPB - LSC 8112 -0.076 0.116 -0.444 0.004 0.007 -0.009 0.038 
OCTB - LSC 8112 -0.085 -0.043 -0.174 0.013 -0.015 -0.014 0.031 
NOVB - LSC 8112 0.050 -0.017 -0.055 0.016 0.006 -0.009 0.020 
DECB - LSC 8112 0.133 0.014 -0.390 0.014 0.010 -0.004 0.006 

fig H.VI Transformation Parameters  

Coordinate 
Solutions X 

(m) 

Root-Mean-Square (RMS) Differences 
Y 	Z 	(i) 	A 	h 	Baseline 
(m) 	(m) 	(m) 	(m) 	(m) 	Length 	(m) 

SEPB 
OCTBu 

NOVBu  
DECBu

u  

- LSC 
- LSC 
- LSC 
- LSC 

8112 
8112 
8112 
8112 

0.31 
0.30 
0.27 
0.24 

0.20 
0.30 
0.23 
0.29 

0.33 
0.32 
0.30 
0.35 

0.37 
0.34 
0.39 
0.39 

0.20 
0.35 
0.21 
0.26 

0.26 
0.28 
0.15 
0.20 

0.49 
0.44 
0.40 
0.42 

fig H.VII Coordinate Comparison - Biases Removed (BIH ERP)  



Coordinate 
Solutions X 

(m) 

Root-Mean-Square (RMS) Differences 
Y 	Z 	(I) 	X 	h 	Baseline 
(m) 	(m) 	(m) 	(m) 	(m) 	Length 	(m) 

SEPB - OCTB 0.47 0.25 0.58 0.67 0.33 0.21 0.35 
SEPB - NOVB 0.26 0.25 0.53 0.53 0.23 0.27 0.38 
SEPB - DECB 0.34 0.30 0.24 0.28 0.29 0.32 0.49 
OCTB - NOVB 0.49 0.25 0.35 0.49 0.39 0.18 0.39 
OCTB - DECB 0.59 0.30 0.48 0.55 0.54 0.27 0.43 
NOVB - DECB 0.27 0.17 0.40 0.35 0.23 0.29 0.29 

fig H.VIII Monthly Coordinate Inter-comparison (BIH ERP)  

Coordinate 
Solutions X 

(m) 

Root-Mean-Square (RMS) Differences 
Y 	Z 	(i) 	A 	h 	Baseline 
(m) 	(m) 	(m) 	(m) 	(m) 	Length 	(m) 

SEPB 
SEPBu 

SEPBu 

SEPBu 

SEPBu  

SEPBu 
u 

- OCTB 
- OCTBu  
- OCTBu 

- OCTBu 

- OCTBu  

- OCTBu 
u 

0.22 
0.20 
0.26 
0.29 
0.25 
0.22 

0.26 
0.22 
0.24 
0.21 
0.27 
0.14 

0.15 
0.20 
0.20 
0.15 
0.21 
0.14 

0.19 
0.20 
0.20 
0.22 
0.23 
0.16 

0.26 
0.19 
0.25 
0.25 
0.33 
0.18 

0.19 
0.24 
0.25 
0.19 
0.13 
0.18 

0.31 
0.34 
0.36 
0.33 
0.36 
0.26 

fig H.IX Monthly Coordinate Inter-comparison - Biases Removed (BIH ERP)  



Data Set Along Track 
Acceleration, CT T 

Solar Radiation 
Pressure ' CR 

GM, Geocentric 
Gravitational Constant 

SEPTEMBER -0.328x10 -11  1.113 3.98600430x10 14  

OCTOBER -0.323x10 11  1.114 3.98600428x10 14  

NOVEMBER -0.454x10 11  1.049 3.98600429x10 14  

DECEMBER -0.554x10 11  0.980 - 

fig H.X Coefficients and Constants Determined from Monthly Data Sets  



Station Latitude 
(deg 	min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
a 

(i) 	
a
X  

(cm) 
ah 

1181 52 22 48.91259 13 3 54.83250 147.699 0.232 0.351 0.220 
7086 30 40 37.15149 255 59 2.64656 1963.266 0.050 0.059 0.045 
7105 39 1 14.18122 283 10 20.11628 22.116 0.043 0.045 0.042 
7109 39 58 30.02235 239 3 18.89433 1109.367 0.036 0.029 0.034 
7112 40 10 58.02689 255 16 26.28140 1504.927 0.066 0.091 0.061 
7121 -16 44 0.66575 208 57 31.74358 46.964 0.061 0.059 0.061 
7122 23 20 34.27013 253 32 27.09294 33.834 0.063 0.059 0.070 
7210 20 42 26.01472 203 44 38.53700 3068.202 0.046 0.016 0.030 
7833 52 10 42.21788 5 48 35.12258 93.129 0.149 0.339 0.176 
7834 49 8 41.74475 12 52 40.94665 661.095 0.093 0.121 0.097 
7838 33 34 39.67366 135 56 13.13017 101.755 0.181 0.225 0.210 
7839 47 4 1.65799 15 29 35.87864 539.305 0.065 0.079 0.067 
7907 -16 27 56.68457 288 30 24.54680 2492.208 0.040 0.030 0.033 
7939 40 38 55.76793 16 42 16.64828 535.781 0.045 0.041 0.044 

ae  = 6378137.0m 
	

1/f = 298.255 

Fig H.XI Tracking Station Coordinates - Sept 1983 (Nottm ERP)  



Station Latitude 
(deg 	min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 

c(i) 	
ax  

(cm) 
ah 

1181 52 22 48.94125 13 3 54.80233 147.729 0.105 0.115 0.107 
7086 30 40 37.11246 255 59 2.63009 1963.333 0.112 0.132 0.122 
7090 -29 2 47.42972 115 20 47.99791 244.459 0.084 0.094 0.086 
7105 39 1 14.15755 283 10 20.09023 22.185 0.049 0.037 0.044 
7109 39 58 29.99504 239 3 18.87829 1109.318 0.053 0.040 0.049 
7110 32 53 30.22718 243 34 38.18189 1841.934 0.054 0.035 0.043 
7112 40 10 57.99005 255 16 26.26942 1504.746 0.057 0.060 0.054 
7121 -16 44 0.69993 208 57 31.72338 47.217 0.066 0.051 0.048 
7122 23 20 34.23467 253 32 27.08425 33.919 0.062 0.041 0.044 
7210 20 42 25.97277 203 44 38.53700 3068.245 0.063 0.017 0.035 
7833 52 10 42.24554 5 48 35.07395 93.156 0.074 0.095 0.076 
7834 49 8 41.77449 12 52 40.91683 661.109 0.052 0.054 0.056 
7838 33 34 39.69937 135 56 13.13427 101.266 0.059 0.044 0.052 
7839 47 4 1.68472 15 29 35.86532 539.290 0.053 0.048 0.055 
7840 50 52 2.56574 0 20 9.79274 75.228 0.050 0.053 0.054 
7907 -16 27 56.69816 288 30 24.54219 2492.272 0.052 0.037 0.036 
7939 40 38 55.78291 16 42 16.64779 535.949 0.053 0.040 0.049 

ae  = 6378137.0m 
	

1/f = 298.255 

Fig H.XII Tracking Station Coordinates - Oct 1983 (Nottm ERP)  



Station Latitude 
(deg 	min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
a 

(1) 	
a
X  

(cm) 
ah 

1181 52 22 48.90912 13 3 54.81821 148.043 0.118 0.106 0.118 
7086 30 40 37.13185 255 59 2.63322 1962.984 0.082 0.062 0.068 
7090 -29 2 47.43452 115 20 48.04884 244.548 0.073 0.061 0.062 
7105 39 1 14.16339 283 10 20.10169 22.016 0.074 0.060 0.065 
7109 39 58 29.99641 239 3 18.88424 1109.320 0.143 0.130 0.139 
7110 32 53 30.24638 243 34 38.19484 1841.856 0.093 0.087 0.080 
7112 40 10 57.99317 255 16 26.28718 1504.722 0.081 0.071 0.077 
7121 -16 44 0.69458 208 57 31.72571 47.161 0.110 0.096 0.081 
7122 23 20 34.24104 253 32 27.10055 33.903 0.091 0.066 0.069 
7210 20 42 25.98734 203 44 38.53700 3068.032 0.090 0.023 0.049 
7834 49 8 41.75175 12 52 40.93408 660.993 0.072 0.062 0.076 
7838 33 34 39.69351 135 56 13.14275 101.179 0.084 0.065 0.074 
7839 47 4 1.65664 15 29 35.88199 539.200 0.079 0.083 0.080 
7840 50 52 2.54884 0 20 9.83546 75.053 0.080 0.102 0.083 
7907 -16 27 56.70327 288 30 24.53809 2492.235 0.081 0.052 0.051 
7939 40 38 55.76911 16 42 16.64618 535.436 0.079 0.060 0.076 

ae = 6378137.0m 
	

1/f = 298.255 

Fig H.XIII Tracking Station Coordinates - Nov 1983 (Nottm ERP)  



Station Latitude 
(deg 	min 	sec) 

Longitude 
(deg 	min 	sec) 

Height 
(m) 

Standard Errors 
a 

(GI 	
a A 

(cm) 
ah 

1181 52 22 48.92229 13 3 54.80469 147.936 0.124 0.121 0.115 
7086 30 40 37.13856 255 59 2.64787 1963.257 0.086 0.065 0.071 
7090 -29 2 47.42871 115 20 48.05817 244.458 0.077 0.064 0.066 
7105 39 1 14.16357 283 10 20.10862 22.268 0.084 0.072 0.083 
7109 39 58 29.99310 239 3 18.90302 1109.457 0.116 0.122 0.123 
7110 32 53 30.24747 243 34 38.20592 1842.149 0.098 0.080 0.101 
7121 -16 44 0.68206 208 57 31.72317 47.640 0.105 0.066 0.061 
7122 23 20 34.25566 253 32 27.09517 34.113 0.098 0.061 0.074 
7210 20 42 25.99901 203 44 38.53700 3068.350 0.090 0.017 0.042 
7834 49 8 41.75907 12 52 40.94343 661.143 0.081 0.079 0.083 
7838 33 34 39.70227 135 56 13.13852 101.405 0.081 0.048 0.064 
7839 47 4 1.66480 15 29 35.87824 539.318 0.084 0.076 0.084 
7840 50 52 2.54170 0 20 9.83580 74.315 0.071 0.068 0.076 
7907 -16 27 56.70202 288 30 24.54998 2492.486 0.090 0.050 0.045 
7939 40 38 55.77024 16 42 16.64300 535.938 0.071 0.057 0.067 

ae  = 6378137.0m 
	

1/f = 298.255 

Fig H.IV Tracking Station Coordinates - Dec 1983 (BIH ERP)  



Coordinate 
Solutions X 

Root-Mean-Square (RMS) Differences 
Y 	Z 	(I) 	X 	h 	Baseline 

(m) (m) (m) (m) 	(m) (m) Length (m) 

SEPN - LSC 8112 0.33 0.29 0.62 0.62 	0.26 0.35 0.63 
OCTN - LSC 8112 0.53 0.55 0.58 0.64 	0.68 0.27 0.45 
NOVN - LSC 8112 0.33 0.33 0.41 0.47 	0.34 0.21 0.47 
DECN - LSC 8112 0.30 0.36 0.54 0.56 	0.35 0.29 0.41 

fig H.XV Coordinate Comparison (Nottm ERP)  

Coordinate 
Solutions ax 

Transformation Parameters 
ay 	az 	ax 	ay az c 

From To (m) (m) (m) (sec) (sec) (sec) (ppm) 

SEPN - LSC 8112 0.062 0.055 -0.302 -0.009 0.009 -0.004 0.028 
OCTN - LSC 8112 -0.083 -0.041 -0.385 0.022 -0.013 -0.016 0.026 
NOVN - LSC 8112 0.076 -0.039 -0.193 0.013 0.006 -0.007 0.025 
DECN - LSC 8112 0.123 0.013 -0.412 0.013 0.008 -0.005 0.006 

fig H.XVI Transformation Parameters  

Coordinate 
Solutions X 

(m) 

Root-Mean-Square (RMS) Differences 
Y 	Z 	(i) 	X 	h 	Baseline 
(m) 	(m) 	(m) 	(m) 	(m) 	Length 	(m) 

SEPN 
OCTNu 

NOVNu 

DECNu u 

- LSC 
- LSC 
- LSC 
- LSC 

8112 
8112 
8112 
8112 

0.34 
0.27 
0.29 
0.25 

0.27 
0.28 
0.25 
0.25 

0.44 
0.31 
0.30 
0.36 

0.47 
0.32 
0.39 
0.40 

0.24 
0.32 
0.23 
0.24 

0.32 
0.21 
0.16 
0.20 

0.59 
0.39 
0.42 
0.41 

fig H.XVII Coordinate Comparison - Biases Removed (Nottm ERP)  



Coordinate 
Solutions X 

(m) 

Root-Mean-Square (RMS) Differences 
Y 	Z 	(i) 	A 	h 	Baseline 
(m) 	(m) 	(m) 	(m) 	(m) 	Length 	(m) 

SEPN - OCTN 0.46 0.55 0.71 0.88 0.45 0.20 0.43 
SEPN - NOVN 0.26 0.37 0.54 0.59 0.27 0.27 0.42 
SEPN - DECN 0.30 0.36 0.42 0.51 0.24 0.27 0.43 
OCTN - NOVN 0.47 0.38 0.36 0.49 0.47 0.20 0.36 
OCTN - DECN 0.51 0.36 0.42 0.52 0.53 0.17 0.37 
NOVN - DECN 0.26 0.18 0.29 0.27 0.19 0.28 0.31 

fig H.XVIII Monthly Coordinate Inter-comparison (Nottm ERP)  

Coordinate 
Solutions X 

(m) 

Root-Mean-Square (RMS) Differences 
Y 	Z 	(1) 	A 	h 	Baseline 
(m) 	(m) 	(m) 	(m) 	(m) 	Length 	(m) 

SEPN 
SEPNu u SEPN 
SEPNu  

SEPNu u SEPNu 

- OCTNu - OCTNu - OCTN 
- OCTNu  

- OCTNu u - OCTNu 

0.24 
0.23 
0.27 
0.28 
0.21 
0.25 

0.30 
0.28 
0.21 
0.24 
0.26 
0.14 

0.26 
0.29 
0.19 
0.13 
0.17 
0.13 

0.29 
0.26 
0.21 
0.20 
0.19 
0.18 

0.26 
0.25 
0.21 
0.26 
0.30 
0.18 

0.26 
0.29 
0.26 
0.20 
0.11 
0.18 

0.43 
0.43 
0.38 
0.35 
0.32 
0.27 

fig H.XIX Monthly Coordinate Inter-comparison - Biases Removed (Nottm ERP)  



APPENDIX J  

TABLES OF,EARTH ROTATION PARAMETERS  



Epoch 
Yr Day Time 

x 
P 

(mas) 

a xp 
(mas) 

Y P 
(mas) 

a
yp 

(mas) 

UT1-UTC 

( 	0.1ms) 

aAUT 
(0.1ms) 

D 

(0.1ms) 

aD 
(0.1ms) 

83 250 0.0 309.6 1.0 140.7 2.6 6454.0 3.2 - - 
83 255 0.0 294.1 2.7 129.8 5.9 6348.8 0.8 19.88 0.4 
83 260 0.0 284.6 5.8 101.5 3.4 6252.3 2.5 18.73 0.5 
83 265 0.0 272.1 6.6 73.8 4.3 6161.1 3.7 19.60 0.7 
83 270 0.0 248.3 2.3 67.3 4.9 6054.0 3.6 20.00 1.1 
83 275 0.0 213.6 14.8 70.8 0.9 5981.4 9.5 18.62 1.4 
83 280 0.0 192.6 2.5 59.0 1.9 5868.7 2.9 24.22 1.0 
83 285 0.0 170.3 1.4 48.8 3.3 5746.6 1.7 20.39 0.4 
83 290 0.0 151.2 3.7 38.6 1.0 5649.9 0.2 19.54 0.5 
83 295 0.0 131.3 3.8 49.3 0.6 5545.3 4.6 22.10 0.7 
83 300 0.0 111.0 5.2 35.0 0.4 5426.9 2.7 23.30 1.0 
83 305 0.0 102.0 11.2 16.7 2.4 5314.9 7.4 24.22 1.1 
83 310 0.0 82.5 1.8 18.5 2.4 5185.3 1.8 25.21 0.8 
83 315 0.0 55.6 3.6 12.5 3.2 5059.8 2.6 25.27 0.5 
83 320 0.0 37.4 3.4 9.0 4.9 4932.0 3.1 25.51 0.5 
83 325 0.0 15.2 1.5 23.3 2.7 4804.6 1.4 24.65 0.4 
83 330 0.0 -18.3 2.8 44.4 20.2 4684.3 2.5 23.44 0.9 
83 335 0.0 -25.9 0.3 34.0 5.2 4591.9 7.7 19.60 1.1 
83 340 0.0 -45.8 1.2 39.2 2.1 4488.3 2.3 20.07 0.9 
83 345 0.0 -64.8 2.7 40.1 3.3 4389.1 4.0 20.71 0.6 
83 350 0.0 -80.8 1.9 57.4 3.9 4281.9 1.4 19.94 0.5 
83 355 0.0 -96.5 0.8 59.7 5.8 4185.8 2.6 21.40 0.4 
83 360 0.0 -106.2 4.9 84.7 3.8 4068.8 1.1 22.90 0.4 
83 365 0.0 

L 
-125.4 9.7 92.0 6.4 3956.2 2.2 - - 

Fig J.I Earth Rotation Parameter Series - UNOTT.1  



Epoch 
Yr Day Time 

x 
P 

(mas) 
axp 
(mas) 

YP 
(mas) 

Gyp 
(mas) 

UT1-UTC 

( 	0.1ms) 

GAUT 
(0.1ms) 

D 

(0.1ms) 

a D 
(0.1ms) 

83 250 0.0 314.2 1.7 146.6 1.4 6453.3 1.0 - - 
83 255 0.0 301.6 1.4 126.5 1.2 6349.0 0.9 20.11 0.2 
83 260 0.0 286.0 1.8 105.1 1.3 6252.2 1.0 19.24 0.2 
83 265 0.0 265.2 2.6 81.1 2.1 6157.1 1.5 19.72 0.3 
83 270 0.0 244.5 2.1 68.6 1.9 6054.0 1.4 18.46 0.3 
83 275 0.0 213.1 1.6 59.5 1.5 5969.8 1.1 18.39 0.2 
83 280 0.0 186.2 1.9 56.4 1.6 5871.3 1.2 21.49 0.2 
83 285 0.0 169.8 1.6 44.1 1.4 5755.6 1.0 22.30 0.2 
83 290 0.0 151.8 1.8 38.8 1.3 5647.6 1.0 21.64 0.2 
83 295 0.0 129.9 2.1 43.7 1.8 5539.2 1.3 22.10 0.2 
83 300 0.0 110.4 1.7 36.1 1.4 5426.4 1.1 22.50 0.2 
83 305 0.0 100.5 2.0 21.0 1.5 5314.1 1.2 24.17 0.2 
83 310 0.0 83.9 1.4 15.4 1.1 5186.5 0.8 26.21 0.2 
83 315 0.0 57.8 1.5 15.0 1.2 5053.0 0.9 26.26 0.2 
83 320 0.0 29.8 2.1 14.9 1.8 4925.9 1.4 25.09 0.2 
83 325 0.0 5.2 1.7 22.3 1.5 4802.3 1.1 21.95 0.3 
83 330 0.0 -12.6 2.2 18.6 2.2 4706.4 1.4 19.24 0.3 
83 335 0.0 -28.1 2.5 21.0 2.4 4609.9 1.6 21.42 0.3 
83 340 0.0 -45.2 1.7 39.0 1.6 4493.9 1.1 21.74 0.2 
83 345 0.0 -60.0 1.6 52.1 1.4 4389.4 1.0 21.08 0.2 
83 350 0.0 -77.5 1.9 63.3 1.5 4283.1 1.1 21.09 0.2 
83 355 0.0 -98.1 2.0 67.3 1.9 4178.7 1.3 21.24 0.3 
83 360 0.0 -106.9 1.7 80.9 2.0 4070.5 1.3 - - 

Fig J.II Earth Rotation Parameter Series - UNOTT.5  



Day No. 
1983 

BIH 
Circ D 

UNOTT.1 - 
UNOTT.5 

UNOTT.1 	- 
BIH Circ D 

UNOTT.1 	- 
CSR 81.12 

UNOTT.1 - 
CSR 84.02 

UNOTT.5 - 
BIH Circ D 

UNOTT.5 - 
CSR 81.12 

UNOTT.5 - 
CSR 84.02 
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5.6 4.6 21.6 10.2 9.2 26.2 
255 293.0 1.1 -0.9 19.1 8.6 6.6 26.6 
260 280.0 4.6 0.6 20.6 6.0 2.0 22.0 
265 265.0 7.1 6.1 22.1 0.2 -0.8 15.2 
270 249.0 -0.7 6.3 19.3 -4.5 2.5 15.5 
275 231.0 -17.4 -19.4 -0.4 -17.9 -19.9 -0.9 
280 211.0 -18.4 -22.4 -5.4 -25.0 -29.0 -12.0 
285 189.0 -18.7 -21.7 -5.7 -19.2 -22.2 -6.2 
290 167.0 -15.8 -24.8 -7.8 -15.2 -24.2 -7.2 
295 145.0 -13.7 -15.7 -5.7 -15.1 -17.1 -7.1 
300 123.0 -12.0 -8.0 -1.0 -12.6 -8.6 -1.6 
305 100.0 2.0 - 13.0 0.5 - 11.5 
310 77.0 5.5 - 17.5 6.9 - 18.9 
315 55.0 0.6 9.6 2.8 - 11.8 
320 33.0 4.5 14.5 -3.3 - 6.8 
325 12.0 3.2 - 21.2 -6.8 - 11.2 
330 -9.0 -9.3 -1.3 -3.6 - 4.5 
335 -29.0 3.5 - 0.5 0.9 - -2.1 
340 -47.0 1.3 14.2 1.8 14.8 
345 -64.0 -0.8 - -5.8 4.0 - -1.0 
350 -80.0 -0.8 - 8.2 2.5 - 11.5 
355 -95.0 -1.5 - -9.5 -3.1 - -11.1 
360 -109.0 2.8 - -8.2 2.1 -8.9 
365 -122.0 -3.4 - -14.4 - - - 

RMS Difference 4.3 8.8 14.7 13.2 10.1 16.0 13.2 

Fig J.III Comparison of x components of Polar Motion 



Day No. 
1983 

BIH 
Circ D 

UNOTT.1 - 
UNOTT.5 

UNOTT.1 	- 
BIH Circ D 

UNOTT.1 - 
CSR 81.12 

• 
UNOTT.1 	- 
CSR 84.02 

UNOTT.5 - 
BIH Circ D 

UNOTT.5 - 
CSR 81.12 

UNOTT.5 - 
CSR 84.02 

250 151.0 -5.8 -10.3 -6.3 -1.3 -4.4 -0.4 4.6 
255 131.0 1.3 -1.2 18.8 5.8 -2.5 17.5 4.5 
260 112.0 -3.6 -10.5 4.5 -5.5 -6.9 8.1 -1.9 
265 95.0 -7.3 -21.2 -11.2 -18.2 -13.9 -3.9 -10.9 
270 80.0 -1.2 -12.7 -4.7 -5.7 -11.4 -3.4 -4.4 
275 66.0 11.3 4.9 7.9 13.8 -6.5 -3.5 2.5 
280 54.0 2.6 5.0 13.0 12.0 2.4 10.4 9.4 
285 43.0 4.7 5.8 22.8 14.8 1.1 17.1 10.1 
290 34.0 -0.2 4.6 18.6 11.6 4.8 18.8 11.8 
295 27.0 5.5 22.3 19.3 27.3 16.7 13.7 21.8 
300 22.0 -1.0 13.1 21.1 20.1 14.1 22.1 21.1 
305 18.0 -4.3 -1.3 - 6.7 3.0 - 11.0 
310 17.0 3.2 1.5 - 8.5 -1.7 - 5.4 
315 18.0 -2.5 -5.5 2.5 -3.0 - 5.0 
320 19.0 -5.9 -10.0 - -3.0 -4.1 - 2.9 
325 22.0 1.0 1.3 - 7.3 0.3 - 6.3 
330 26.0 25.8 18.4 - 23.4 -7.4 - -2.4 
335 32.0 12.9 2.0 - 8.0 -11.0 - -5.0 
340 39.0 0.2 0.2 - 7.2 0.0 - 7.0 
345 47.0 -11.9 -6.9 5.2 5.1 - 17.1 
350 56.0 -5.9 1.4 - 14.4 7.3 - 20.3 
355 66.0 -7.6 -6.3 - 5.7 1.3 - 13.3 
360 76.0 3.8 8.7 - 21.7 4.9 - 17.9 
365 87.0 - 5.0 - 19.0 - - - 

RMS Difference 7.9 9.7 14.8 13.2 7 4 J . 12.9 11.3 

Fig J.IV Comparison of y components of Polar Motion 



Day No. 
1983 

BIH 
Circ D 

UNOTT.1 - 
UNOTT.5 

UNOTT.1 	- 
BIH Circ D 

UNOTT.5 -
BIH Circ D 

250 6442.0 0.7 12.0 11.3 
255 6358.0 -2.2 -11.2 -9.0 
260 6269.0 0.1 -16.7 -16.8 
265 6173.0 4.0 -11.9 -15.9 
270 6070.0 0.0 -16.0 -16.0 
275 5964.0 11.6 17.4 5.8 
280 5859.0 -2.6 9.7 12.3 
285 5754.0 -9.0 -7.4 1.6 
290 5648.0 2.3 1.9 -0.4 
295 5537.0 6.1 8.3 2.2 
300 5423.0 0.5 3.9 3.4 
305 5305.0 0.3 9.4 9.1 
310 5183.0 -1.3 2.3 3.5 
315 5057.0 6.7 2.8 -4.0 
320 4933.0 6.1 -1.0 -7.1 
325 4815.0 2.2 -10.4 -12.7 
330 4698.0 -22.1 -13.7 8.4 
335 4588.0 -18.0 3.9 21.9 
340 4485.0 -5.6 3.3 8.9 
345 4386.0 -0.4 3.1 3.4 
350 4283.0 -1.3 -1.1 0.1 
355 4179.0 7.1 6.8 -0.3 
360 4077.0 -1.7 -8.2 -6.5 
365 3982.0 - -25.8 - 

RMS Difference 7.4 10.6 9.8 

Fig J.V Comparison of UT1-UTC Series  



Day No. 
1983 

BIH 
Circ D 

UNOTT.1 - 
UNOTT.5 

UNOTT.1 	- 
BIH Circ D 

UNOTT.1 	- 
CSR 81.12 

UNOTT.1 	- 
CSR 84.02 

UNOTT.5 - 
BIH Circ D 

UNOTT.5 - 
CSR 81.12 

UNOTT.5 - 
CSR 84.02 
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255 17.3 2.6 2.0 3.9 2.8 2.2 4.1 
260 18.5 0.2 1.1 2.2 0.7 1.6 2.7 
265 19.9 -0.3 0.3 1.0 -0.2 0.4 1.1 
270 20.9 -0.9 2.6 1.0 -2.4 1.1 -0.5 
275 21.1 -2.5 -1.9 -1.4 -2.7 -2.1 -1.6 
280 21.0 3.2 0.7 1.7 0.5 -2.0 -1.0 
285 21.1 -0.7 -1.0 -1.8 1.2 0.9 0.1 
290 21.6 -2.1 -0.3 -0.5 0.0 2.3 1.6 
295 22.4 -0.3 -0.9 1.3 -0.3 -0.9 1.3 
300 23.2 0.1 0.5 1.2 -0.7 -0.3 0.4 
305 24.5 -0.3 - -0.2 -0.3 - -0.2 
310 25.4 -0.2 -0.4 0.8 - 0.6 
315 25.6 -0.3 - -0.8 0.7 - 0.2 
320 24.9 0.6 - 2.3 0.2 - 1.9 
325 24.0 0.7 - 0.3 -2.1 - -2.5 
330 22.8 0.6 - 2.0 -3.6 - -2.2 
335 21.2 -1.6 -3.6 0.2 - -1.8 
340 20.2 -0.1 -0.7 1.5 - 0.9 
345 20.1 0.6 - 1.8 1.0 - 2.2 
350 20.4 -0.5 - -1.3 0.7 -0.1 
355 20.4 1.0 - -1.4 0.8 - -1.6 
360 19.5 3.4 - 5.8 - - - 
365 17.8 - - - - - - 

RMS Difference 1.5 1.4 1.3 2.0 1.4 1.5 1.6 

Fig J.VI Comparison of Excess Length of Day (D) Series  



322 

Month 

1983 

Period 

(Day Nos.) 

Ax
A  

(mas) 

Ayp  

(mas) 

A(UT1-UTC) 

(0.1ms) 
SEPT 250 - 270 -3.5 11.2 8.7 

OCT 275 - 300 16.0 -9.2 -5.6 

NOV 305 - 330 -1.1 -0.7 1.8 

DEC 335 - 365 -0.2 -0.6 2.6 

Fig J.VII Systematic Differences between UNOTT.1 and  
BIH Circular D  

Month 
1983 

Period 
(Day Nos.) 

Ax 
p 

(mas) 

Ay 
ID 

(mas) 

A(UT1-UTC) 

(0.1ms) 
SEPT 250 - 270 -3.3 9.5 5.3 

OCT 275 - 300 18.0 -6.3 -6.1 

NOV 305 - 330 0.2 4.9 -0.9 

DEC 335 - 365 -1.9 -3.9 0.4 

Fig J.VIII Systematic Differences between UNOTT.5 and  
BIH Circular D  



Epoch 
Yr Day Time 

x
p 

(mas) 
axp 
(mas) 

yP 
(mas) 

ayp 
(mas) 

UT1-UTC 

( 	0.1ms) 

aAUT 
(0.1ms) 

D 

(0.1ms) 

a D 
(0.1ms) 

83 250 0.0 306.1 1.0 151.9 2.6 6462.8 3.2 - - 
83 255 0.0 290.6 2.7 140.9 5.9 6355.6 0.8 19.88 0.4 
83 260 0.0 281.1 5.8 112.7 3.4 6261.1 2.5 18.73 0.5 
83 265 0.0 268.5 6.6 84.9 4.3 6169.9 3.7 19.60 0.7 
83 270 0.0 244.8 2.3 78.5 4.9 6062.8 3.6 20.60 1.1 
83 275 0.0 229.6 14.8 61.6 0.9 5975.8 9.5 20.03 1.4 
83 280 0.0 208.6 2.5 49.7 1.9 5863.1 2.9 24.22 1.0 
83 285 0.0 186.3 1.4 39.5 3.3 5741.0 1.7 20.39 0.4 
83 290 0.0 167.2 3.7 29.3 1.0 5644.2 0.2 19.54 0.5 
83 295 0.0 147.3 3.8 40.0 0.6 5539.6 4.6 22.10 0.7 
83 300 0.0 127.0 5.2 25.8 0.4 5421.3 2.7 22.84 1.0 
83 305 0.0 100.9 11.2 16.0 2.4 5316.2 7.4 23.50 1.1 
83 310 0.0 81.4 1.8 17.8 2.4 5187.1 1.8 25.21 0.8 
83 315 0.0 54.5 3.6 11.8 3.2 5061.6 2.6 25.27 0.5 
83 320 0.0 36.4 3.4 8.2 4.9 4933.8 3.1 25.51 0.5 
83 325 0.0 14.1 1.5 23.6 2.7 4806.4 1.4 24.65 0.4 
83 330 0.0 -19.4 2.8 43.6 20.2 4686.1 2.5 23.42 0.9 
83 335 0.0 -25.6 0.3 33.4 5.2 4594.5 7.7 19.53 1.1 
83 340 0.0 -45.9 1.2 38.7 2.1 4490.9 2.3 20.07 0.9 
83 345 0.0 -64.9 2.7 39.6 3.3 4391.6 4.0 20.71 0.6 
83 350 0.0 -81.0 1.9 56.8 3.9 4284.4 1.4 19.94 0.5 
83 355 0.0 -96.6 0.8 59.1 5.8 4188.4 2.6 21.40 0.4 
83 360 0.0 -106.4 4.9 84.1 3.8 4071.3 1.1 22.90 0.4 
83 365 0.0 -125.6 9.7 91.4 6.4 3958.8 2.2 - - 

Biases (with respect to BIH Circular D) removed 

Fig J.IX Earth Rotation Parameter Series - UNOTT.1b 



Epoch 
Yr Day Time xP 

(mas) 
axp 
(mas) 

YP 
(mas) 

Gyp 
(mas) 

UT1 -UTC 

( 	0.1ms) 

GAUT 
(0.1ms) 

D 

(0.1ms) 

aD 
(0.1ms) 

83 250 0.0 310.9 1.7 156.1 1.4 6458.6 1.0 - - 
83 255 0.0 298.3 1.4 138.0 1.2 6354.3 0.9 20.11 0.2 
83 260 0.0 282.8 1.8 114.6 1.3 6257.5 1.0 19.24 0.2 
83 265 0.0 261.9 2.6 90.6 2.1 6162.4 1.5 19.72 0.3 
83 270 0.0 241.2 2.1 78.1 1.9 6059.2 1.4 19.28 0.3 
83 275 0.0 223.1 1.6 59.1 1.5 5968.0 1.1 19.50 0.2 
83 280 0.0 204.0 1.9 50.9 1.6 5865.2 1.2 21.90 0.2 
83 285 0.0 187.8 1.6 37.8 1.4 5749.5 1.0 22.30 0.2 
83 290 0.0 169.8 1.8 32.5 1.3 5641.5 1.0 21.64 0.2 
83 295 0.0 147.9 2.1 37.5 1.8 5533.1 1.3 22.10 0.2 
83 300 0.0 128.4 1.7 29.8 1.4 5420.3 1.1 22.16 0.2 
83 305 0.0 107.1 2.0 21.9 1.5 5311.3 1.2 23.67 0.2 
83 310 0.0 84.1 1.4 20.2 1.1 5185.6 0.8 26.06 0.2 
83 	315 	0.0 58.0 1.5 19.9 1.2 5052.1 0.9 26.26 0.2 
83 320 0.0 29.9 2.1 19.8 1.8 4925.0 1.4 25.09 0.2 
83 325 0.0 5.3 1.7 27.1 1.5 4801.4 1.1 21.95 0.3 
83 330 0.0 -12.4 2.2 23.5 2.2 4705.5 1.4 19.18 0.3 
83 335 0.0 -28.9 2.5 21.7 2.4 4609.6 1.6 21.29 0.3 
83 340 0.0 -45.1 1.7 35.1 1.6 4494.3 1.1 21.69 0.2 
83 345 0.0 -61.9 1.6 48.2 1.4 4389.8 1.0 21.08 0.2 
83 350 0.0 -79.4 1.9 59.4 1.5 4283.6 1.1 21.09 0.2 
83 355 0.0 -100.0 2.0 63.4 1.9 4179.2 1.3 21.24 0.3 
83 360 0.0 -108.9 1.7 77.0 2.0 4070.9 1.3 - - 

Biases (with respect to BIH Circular D) Removed 

Fig J.X Earth Rotation Parameter Series - UNOTT.5b 



Day No. 
1983 

BIH 
Circ D 

UNOTT.1 	- 
UNOTT.5 

UNOTT.1 - 
BIH Circ D 

UNOTT.5 -
BIH Circ D 

250 304.0 -4.8 2.1 6.7 
255 293.0 -7.7 -2.4 5.3 
260 280.0 -1.7 1.0 2.8 
265 265.0 6.7 3.5 -3.1 
270 249.0 3.6 -4.2 -7.8 
275 231.0 6.5 -1.4 -7.9 
280 211.0 4.6 -2.4 -7.0 
285 189.0 -1.5 -2.7 -1.2 
290 167.0 -2.6 0.2 2.8 
295 145.0 -0.6 2.3 2.9 
300 123.0 -1.4 4.0 5.4 
305 100.0 -6.1 0.9 7.1 
310 77.0 -2.6 4.4 7.1 
315 55.0 -3.5 -0.5 3.0 
320 33.0 6.5 3.4 -3.1 
325 12.0 8.8 2.1 -6.7 
330 -9.0 -7.0 -10.4 -3.4 
335 -29.0 3.3 3.4 0.1 
340 -45.0 1.1 1.1 -0.1 
345 -64.0 -3.0 -0.9 2.1 
350 -80.0 -1.5 -1.0 0.6 
355 -95.0 3.4 -1.6 -5.0 
360 -109.0 2.4 2.6 0.2 
365 -122.0 - -3.6 - 

RMS Difference 4.6 3.3 4.7 

Biases (with respect to BIH Circular D) Removed from Nottm series 

J.XI Comparison of  x components of Polar Motion 



Day No. 
1983 

BIH 
Circ D 

UNOTT.1 - 
UNOTT.5 

UNOTT.1 - 
BIH Circ D 

UNOTT.5 -
BIH Circ D 

250 151.0 -4.1 0.9 5.1 
255 131.0 3.0 9.9 7.0 
260 112.0 -1.9 0.7 2.6 
265 95.0 -5.7 -10.1 -4.4 
270 80.0 0.4 -1.5 -1.9 
275 66.0 2.5 -4.4 -6.9 
280 54.0 -0.4 -4.3 -4.0 
285 43.0 1.7 -3.5 -5.2 
290 34.0 -3.2 -4.7 -1.5 
295 27.0 2.6 13.0 10.5 
300 22.0 -4.0 3.8 7.8 
305 18.0 -5.9 -2.0 3.9 
310 17.0 -2.4 0.8 3.2 
315 18.0 -8.1 -6.2 1.9 
320 19.0 -11.6 -10.8 0.8 
325 22.0 -4.6 0.6 5.1 
330 26.0 20.2 17.6 -2.6 
335 32.0 11.7 1.4 -10.3 
340 39.0 3.5 -0.4 -3.9 
345 47.0 -8.6 -7.4 1.2 
350 56.0 -2.6 0.8 3.4 
355 66.0 -4.3 -6.9 -2.6 
360 76.0 7.1 8.1 1.0 
365 87.0 - 4.4 - 

RMS Difference 6.8 6.8 5.0 

Biases (with respect to BIH Circular D) Removed from Nottm series 

J.XII Comparison of y
A 
 components of Polar Motion 



Day No. 
1983 

BIH 
Circ D 

UNOTT.1 	- 
UNOTT.5 

UNOTT.1 - 
BIH Circ D 

UNOTT.5 -
BIH Circ D 

250 6442.0 4.2 20.8 16.6 
255 6358.0 1.3 -2.5 -3.7 
260 6269.0 3.6 -7.9 -11.6 
265 6173.0 7.5 -3.2 -10.6 
270 6070.0 3.5 -7.3 -10.8 
275 5964.0 7.8 11.8 4.0 
280 5859.0 -2.2 4.1 6.2 
285 5754.0 -8.5 -13.0 -4.5 
290 5648.0 2.7 -3.8 -6.5 
295 5537.0 6.5 2.6 -3.9 
300 5423.0 0.9 -1.7 -2.7 
305 5305.0 4.9 11.2 6.3 
310 5183.0 1.4 4.1 2.6 
315 5057.0 9.4 4.6 -4.9 
320 4933.0 8.8 0.8 -8.0 
325 4815.0 4.9 -8.6 -13.6 
330 4698.0 -19.4 -11.9 7.5 
335 4588.0 -15.1 6.5 21.6 
340 4485.0 -3.4 5.9 9.3 
345 4386.0 1.8 5.6 3.9 
350 4283.0 0.9 1.4 0.6 
355 4179.0 9.2 9.4 0.2 
360 4077.0 0.5 -5.7 -6.1 
365 3982.0 - -23.2 - 

RMS Difference 7.3 9.3 8.8 

Biases (with respect to BIH Circular D) Removed 

Fig J.XIII Comparison of UT1-UTC Series  



Day No. 
1983 

BIH 
Circ D 

UNOTT.1 	- 
UNOTT.5 

UNOTT.1 	- 
BIH Circ D 

UNOTT.5 -
BIH Circ D 

250 16.3 - - 
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255 17.3 -0.2 2.6 
260 18.5 -0.5 0.2 
265 19.9 -0.1 -0.3 
270 20.9 1.3 -0.3 
275 21.1 0.5 -1.1 
280 21.0 2.3 3.2 
285 21.1 -1.9 -0.7 
290 21.6 -2.1 -2.1 
295 22.4 0.0 -0.3 
300 23.2 0.7 -0.4 
305 24.5 -0.2 -1.0 
310 25.4 -0.8 -0.2 
315 25.6 -1.0 -0.3 
320 24.9 0.4 0.6 
325 24.0 2.7 0.7 
330 22.8 -14.2 0.6 
335 21.2 -1.8 -1.7 
340 20.2 -1.6 -0.1 
345 20.1 -0.4 0.6 
350 20.4 -1.1 -0.5 
355 20.4 0.2 1.0 
360 91.5 - 3.4 
365 17.8 - - 

RMS Difference 1.5 1.3 1.3 

Biases (with respect to BIH Circular D) Removed from UT1-UTC values 

Fig J.XIV Comparison of Excess Length od Day (D) Series  
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