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ABSTRACT 

Despite intensive research, cancer remains one of the major causes of worldwide morbidity. 

It is widely believed, however, that if currently available anti-cancer drugs could be 

delivered specifically to tumours then the disease would have been mastered. The delivery 

of prodrug converting enzymes by clostridial spores specifically to the anoxic centres of 

tumours is one potential delivery mechanism. This is due to the extreme selectivity of spores 

to germinate solely in the hypoxic regions of tumours. Once germinated, the expression of a 

prodrug converting enzyme converts a systemical1y administered prodrug to a highly toxic 

drug only in the tumour. Previous studies using Clostridium acetobutylicum and Clostridium 

beijerinckii as the delivery vehicle highlighted that prodrug converting enzyme expression is 

only found in tumours. However, no significant anti-tumour affect was observed. Two 

possible reasons were evolved. Firstly, expression of the prodrug converting enzyme may be 

low, and/or, secondly, the tumours may not be colonised sufficiently to promote an anti-

tumour effect. 

Preliminary studies identified that Clostridium sporogenes NCIMB 10696 may represent a 

more suitable host. Higher spore titres could be prepared and, once administered, higher cell 

counts are found in the colonised tumours. Prodrug converting enzymes with improved 

kinetics over pre-existing enzymes have also been identified. Once effective gene transfer 

systems and expression systems had been developed, suitably high levels of several different 

prodrug converting enzymes, in particular nitroreductases, were obtained. Initial in vivo 

studies on one of the early recombinant strains identified a definite anti-tumour effect. Since 

those initial studies, further improvements to expression have been made. It is hoped that a 

more significant anti-tumour affect would result from using these improved strains. 

It is the ultimate aim of CDEPT to have the prodrug converting enzymes integrated into the 

host genome so as to negate the use of antibiotics. Towards this, studies on the use of both 

classical and novel integrative technologies have been investigated. 
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CHAPTER! 

INTRODUCTION 



1.1 THE GENUS CLOSTRIDIUM 

The genus Clostridium comprises one of the largest prokaryotic genera (Minton and Clarke, 

1989). Characterised as anaerobic Gram-positive rods they are unified by their ability to 

form spores. As a grouping, they have achieved greatest prominence as a consequence of 

their more notorious representatives, Clostridium botulinum, Clostridium tetani, Clostridium 

perfringens and Clostridium difficile. In this context, spore production represents one of the, 

if not the most important, virulence factor. Thus, the capacity of C. botulinum spores to 

survive extreme adversity has meant that this organism has been the principal target in food 

processing for almost a century. Similarly, within the healthcare setting, the ability of 

C. difficile spores to survive in the hospital and nursing home environment makes this 

particular clostridia one of the major causes of nosocomial infection. It is also one of the 

most difficult examples of microbial contamination to eradicate. 

Paradoxically, it is the very ability to form spores that presents the genus with perhaps its 

greatest potential to benefit mankind, through the exploitation of clostridial spores as a 

delivery system for treating cancer. This is because intravenously administered spores 

localise to, and then exclusively germinate in, the hypoxic centres of solid tumours. The net 

result is the establishment of an actively growing population of vegetative cells, specifically 

restricted to the anaerobic environment within the tumour mass. This unique feature 

provides the opportunity to selectively deliver therapeutic agents to solid tumours, by 

endowing the clostridial species used with appropriate genes capable of directing the 

production of the desired therapeutic. 

1.2 CLOSTRIDIAL TUMOUR ONCOLYSIS 

The notion of using bacteria to treat tumours has been around for nearly 140 years. The first 

documented case of a cancer patient being purposefully injected with I ive bacteria as a form 
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of cancer treatment was undertaken by the German physician W. Busch in 1868 (Hall, 1988). 

The patient, who had an inoperable sarcoma, was infected with Streptococcus pyogenes by 

placing her into a bed previously occupied by a patient with as. pyogenes infection. Within 

a week the primary tumour had decreased by 50%, and the lymph nodes in the neck had also 

shrunk in size. This provided the first indication that tumours can be reduced by bacterial 

infection. Treatment with S. pyogenes was also performed by William B. Coley at New 

York Hospital, and Friedrich Fehleisen in Germany around 1880 - 1890 who achieved some 

degree of tumour regression and patient survival (Pawelek et al., 2003). Subsequent animal 

studies indicated that the results were in part attributed to the infection and in part to the 

stimulation of the host immune response. 

The concept of using bacteria as tumour vectors has, however, been most vigorously pursued 

using Clostridium species. As early as 1813, Vautier reported that cancer patients who 

suffered gas gangrene (c. perfringens) were apparently cured of their cancer following the 

clostridial infection (cited in Hall, 1988). The potential of deliberately using clostridia was 

explored in 1935, when Connell (I935) used sterile filtrates of Clostridium histolyticum for 

the treatment of advanced cancers. The clinical improvements observed were attributed to 

the production of proteolytic enzymes that preferentially degraded cancerous tissue without 

affecting normal tissue. These observations subsequently led to several experiments in 

which proteolytic enzymes were produced in situ by deliberately infecting tumours with 

clostridial spores. Thus, Parker and colleagues (Parker et al., 1947) demonstrated that 

intratumoural injection of spores of C. histolyticum into the transplanted sarcomas of mice 

resulted in germination of the clostridia and a noticeable lysis of the tumour tissue. These 

studies gave the first suggestion of the potential to use clostridial spores to induce the lysis of 

tumours. 

Following on from Parker's work, Malmgren and Flanigan (I955) further demonstrated the 

extreme selectivity of clostridia for the hypoxic areas of tumours. Systemic administration 

of C. tetani into mice bearing a variety of tumours resulted in the mice succumbing to 
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tetanus within 48 hours. The healthy control mice, which were not transplanted with a 

tumour, remained unaffected, demonstrating no signs of disease over the entire time of the 

study. This observation demonstrated that spore germination and production of the tetanus 

toxin occurred exclusively in the hypoxic cores of tumours. 

Mose and Mose (1959) were the first to consider using non-pathogenic clostridial spores as a 

means of treating cancer via clostridial-induced lysis. For this purpose they isolated 

Clostridium butyricum M55, a strain they later termed Clostridium oncolyticum M55 (now 

reclassified as Clostridium sporogenes ATCC 13732). The intravenous injection of 

C. butyricum M55 spores into mice transplanted with solid Ehrlich tumours resulted in the 

softening of tumours followed by the spontaneous discharge of a "brownish liquid necrotic 

mass". Of the few animals that survived, most had recurrence of the tumour at the same site, 

indicating the presence of an outer viable rim of cells from which tumour re-growth could 

occur. The results were confirmed with studies that used other rodent tumour models and 

non-pathogenic Clostridium species (Gericke and Engelbart, 1964; Mose and Mose, 1964; 

Thiele et al., 1964). 

The data obtained in these early studies was sufficient for the initiation of clinical studies. 

These were undertaken by Mose and Mose using C. oncolyticum M55. In the study, they 

demonstrated that this organism lacked human pathogenicity by administering a spore 

suspension to themselves (cited in Carey et aI., 1967). Initial trials were performed with 36 

patients, who received a dose of 106 to 109 spores either intratumourally or intravenously. 

The injections were well tolerated, but were followed by a high-grade fever that then 

decreased to a low-grade fever for 1-3 days. Oncolysis occurred in the largest of the 

tumours 5-8 days later, but was not evident in the smaller tumours, metastases, and the 

surrounding tissues. Trials were also performed in the USA (Carey et al., 1967) with five 

patients with advanced neoplastic disease. Oncolysis occurred in three cases only in the 

largest of tumours, and in one case a transient clinical benefit was attributed to clostridial

induced oncolysis. Several clinical trials have assessed the use of clostridia for the treatment 



of inoperable malignant brain tumours (Heppner and Mose, 1978; Heppner et al., 1983; 

Kretschmer, 1972). Oncolysis of the glioblastomas did occur, but complications arose 

before the completion of oncolysis and the tumours had to be removed via conventional 

surgery. These clinical trials showed that most patients could tolerate Clostridium well, 

although the presence of an outer viable rim of cells hampered progress. 

Experiments with wild type clostridial species clearly demonstrated that spore treatment is 

remarkably well tolerated and that vegetative growth frequently leads to the destruction of 

large parts of the tumour. Invariably, however, an outer viable rim remains from which 

tumour regrowth occurs. This led to the concept of combining drug treatment with spore 

administration to enhance the already observed therapeutic effect. In early studies, 

alkylating agents of the ethyleneimino type (such as tetramin, E-39, trenimon and mitomycin 

C) were shown to produce positive results when the dose and timing of drug/spore 

administration was adjusted to optimum levels (Thiele et al., 1964). The concept of 

enhancing the therapeutic properties of the clostridial cells used through genetic 

manipulation was first suggested by Schlechte and Elbe (1988). These workers attempted to 

make a recombinant strain of C. butyricum M55 that produced Colicin E3, an E. coli 

bacteriocin suggested to possess canceriostatic properties. At the time the methodology 

required to generate such a recombinant strain was not available, and the evidence presented 

to support the creation of such a strain was not convincing. It has only been since the 

advances made in clostridial gene transfer systems in the late 1980s and early 1990s 

(Mauchline et al., 1999; Minton et aI., 1993), that the desired genetic changes could be 

reproducibly made. As these gene systems were developed for non-pathogenic saccharolytic 

strains, the initial experiments were undertaken with Clostridium acetobutylicum and 

Clostridium beijerinckii. 



1.3 USE OF SACCHAROLYTIC STRAINS 

As a prelude to the enhancement of the therapeutic properties of clostridial strains through 

recombinant approaches, the ability of the various saccharolytic clostridial species to 

colonise tumours was assessed. Lemmon et al (1997) systemically applied 108 spores of 

C. beijerinckii NCIMB 8052 to mice bearing mammary EMT6 tumours and showed that 

vegetative Gram-positive clostridial rods were only present in the hypoxic and necrotic 

regions of the tumour. Histological samples of brain, heart, kidney, lung, and spleen tissues 

indicated the complete absence of spores. In another study (Lambin et at., 1998), the 

colonisation of four different saccharolytic clostridia: C. beijerinckii A TCC 17778, 

C. limosum DSM 1400, C. acetobutylicum ATCC 824 and NI-4082 (now reclassified as 

C. saccharoperbutylacetonicum), were compared to C. oncolyticum. It was found that a 

spore titre of at least 107 was required for colonisation of the W AG/Rij rats, and that 

C. acetobutylicum colonised better than the other three saccharolytic strains obtaining a 

similar population level to that obtained by C. oncolyticum. Heat treatment of the tumours 

indicated that the numbers of colony forming units (cfu) obtained (up to 109 cfu per gram of 

tissue after 4 - 5 days) was due to vegetative cells. 104 to 106 cfu were found in normal 

tissues. These colonies were proven to be entirely due to spores, as heat treatment had no 

effect on colony counts. This result was confirmed with Gram-staining and histochemical 

staining of the tumour and normal tissues. No clostridial spores were present in urine 

samples taken at 4 and 8 days after spore injection. 

Having established that saccharolytic clostridial strains are able to colonise tumours, efforts 

have focussed on the introduction of genes encoding anti-cancer agents. To date, the 

introduction of two classes of recombinant therapeutic protein have been explored: 

(i) proteins that are antitumourogenic in their own right such as toxins and cytokines, and; 

(ii) enzymes which turnover a prodrug to a toxic drug, so-called prodrug converting 

enzymes. 
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1.3.1 Tumour necrosis factor (TNFa) 

TNFa acts as a therapeutic agent in several ways. These include selective destruction of the 

neovasculature leading to thrombosis and necrosis of tumours, stimulation of T-cel1 

immunity, and direct cytotoxicity to tumour cells, mainly via apoptosis (Fiers, 1991; Larrick 

and Wright, 1990; Laster et al., 1988; Zheng et aI., 1995). Furthermore, enhancement of the 

anti-tumour effect of TNFa has been demonstrated when combined with irradiation 

(Hallahan et aI., 1995; Sersa et al., 1988). The downside to its use, however, is the systemic 

toxicity that ensues from direct administration. Delivery via recombinant clostridia therefore 

provides an opportunity for the localised production, thereby minimising any toxic side 

effects. 

In the investigations of Theys et al (1999), mouse TNFa (mTNFa) was placed under the 

control of the eglA promoter and eglA signal sequence for secretion of mTNFa into the 

tumour mass. Biologically active mTNFa was detected by spectrophotometric assay and the 

presence of mTNFa in both the culture supernatants and cell lysates was demonstrated by 

Western blot. The cleaved processed form of mTNFa was detectable in culture 

supernatants, with both the precursor and processed forms of mTNFa detectable in cell 

lysates. Lysates and supernatants were taken at various times throughout bacterial growth 

and added to the highly TNFa sensitive WEHIl64 clone 13 cells. Up to 1055 U TNFa per 

ml of lysate and approximately 104 U TNFa per ml of supernatant was detectable. However, 

it was noted that the TNFa activity in the supernatant decreased after 20 hours. This is 

unlike the TNFa activity in the cel1lysates, which was maximal at mid-log growth phase and 

maintained at that level for at least 20 hours. Acidification of the media during growth was 

attributed to be influencing TNFa stability, as this phenomenon was not seen in pH buffered 

media. 
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1.3.2 Prodrug converting enzymes 

Greatest attention has focussed on the use of prodrug converting enzymes. These represent 

the crucial component of Directed Enzyme Prodrug Therapy (DEPT). In DEPT strategies 

the anti-cancer drug is introduced into the bloodstream as a harmless "prodrug". This is 

subsequently converted into the active drug by an "enzyme" that is specifically targeted 

("directed") to tumour cells, prior to injection of the prodrug. Specific targeting of the 

enzyme ensures that high therapeutic doses of the drug are exclusively achieved within the 

vicinity of the tumour, and not elsewhere in the body. As each enzyme molecule is able to 

catalyse the generation of large quantities of therapeutic drug, not every tumour cell needs to 

be specially targeted, i.e. the 'bystander effect'. 

In order for enzyme/prodrug therapy to be effective, both the enzyme and prodrug should 

meet certain requirements. The enzyme should be either of a non-human origin or a human 

protein that is absent or expressed only at a low concentration in normal tissues (Rainov et 

aI., 1998; Rigg and Sikora, 1997). The protein must achieve a sufficient level of expression 

in the tumours and have high catalytic activity (Niculescu-Duvaz et aI., 1998). The prodrug 

should be a good substrate for the expressed enzyme and not be activated by exogenous 

enzymes present in normal tissue. Additionally, the prodrug must be able to pass through the 

tumour cell membrane in order for it to take its effect on the tumour cell. It is also 

preferential to have a high as possible cytotoxicity differential between the prodrug and toxic 

drug. Finally, it is beneficial if the drug is highly diffusible or is actively taken up by non

expressing cancer cells in order to elicit a 'bystander effect' (Niculescu-Duvaz et aI., 1998). 

The first DEPT strategy was proposed by Bagshawe (1987). Here, enzyme delivery is 

mediated by the fusion of the prodrug converting enzyme to a monoclonal antibody raised 

against a tumour-specific antigen, i.e. Antibody-Directed Enzyme Prodrug Therapy 

(ADEPT). Whilst such an approach remains under investigation (Francis et aI., 2002; 

Spooner et aI., 2003), ADEPT suffers from a number of fundamental drawbacks. Tumours 
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exhibit great heterogeneity with regard to the type of antigen present, necessitating the 

generation of a multitude of different antibodies for different forms of cancer. Moreover. in 

some instances tumours do not possess an enriched antigen, and so may not be targeted by 

this approach. This has led, in part, to a greater emphasis in recent years on strategies which 

seek to deliver the gene encoding the prodrug converting enzyme, most often through the use 

of a viral vector (Green et at., 2003; Okabe et at., 2003); in so-called Gene-Directed or 

Viral-Directed Enzyme Prodrug Therapy (G/VDEPT). However, GDEPT/VDEPT 

approaches also exhibit fundamental deficiencies, most notably a lack of tumour specificity, 

poor levels of transgene expression and inefficient distribution of the vector throughout the 

tumour mass (Xu and McLeod, 2001). 

The suggested (Minton et at., 1995) delivery of prodrug converting enzymes through the use 

of clostridial spores (Clostridial-Directed Enzyme Prodrug Therapy, CDEPT) would 

overcome many of these problems. The strategy does not rely on the presence or absence of 

a particular antigen. Rather, it achieves its specificity through the existence of the hypoxic 

environment present in the centre core of the majority of solid tumours. Two prodrug 

converting enzymes have been explored to date, based on the bacterial enzymes 

nitroreductase (NTR) and cytosine deaminase (CD). Both enzymes essentially have no 

human equivalent. 

1.3.2.1 Nitroreductase 

The first prodrug-converting enzyme to be cloned and expressed in clostridia was the E. coli 

B nitroreductase NfnB (Michael et at., 1994), which was introduced into C. beijerinckii 

NCIMB 8052 (Minton et at., 1995). Nitroreductase reduces the prodrug CB 1954 (5-

(aziridin-l-yl)-2,4-dinitrobenzamide) into either a 2-hydroxylamine, or 4-hydroxylamine 

product (Knox et at., 1988b) (see Figure 1.1). The 4-hydroxylamine product (5-(aziridin-l

yl)-4-hydroxylamine-2-nitrobenzamide) is known to be particularly toxic (10
4

_ to 10
5 
-fold 

more cytotoxic than the CB 1954 progenitor). A further non-enzymatic conversion of the 
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4-hydroxylamine derivative by Acetyl CoA to a 4-acetoxy derivative results in the formation 

of DNA cross-links. The DNA cross-links lead to apoptosis of the cancer cell (Knox et al., 

1988a; Knox et al., 1991). 

CB1954 

2-nitroso 
Derivative 

\7 
N 

;74 NHOH 

H2N I ~ 
2 

o N02 

4-hydroxylamine 
Derivative 

2-hydroxylamine 
Derivative 

Figure 1.1: Nitroreductase reduction of CB 1954 to the 4-hydroxylamino (4-HX) toxic drug. The 

arrows represent the nitroreductase enzyme catalysed two electron reduction. NfnB converts CB 1954 

to the 4-HX plus a less toxic 2-HX derivative. Most other nitroreductases studied, except NfnB, 

convert CB 1954 to the toxic 4-HX only. The numbered positions in the benzene ring are indicated. 

Adapted from AbuKhader et al (AbuKhader et aI., 2005). 

The nfnB gene was efficiently expressed in C. beijerinckii NCIMB 8052, where recombinant 

NfnB was estimated to represent 8% of the cells soluble protein. Following the intravenous 

injection of the recombinant spores into mice bearing EMT6 tumours, tumour lysates were 

shown, by Western blots, to contain the E. coli-derived enzyme (Minton et aI., 1995). 

Subsequently, Lemmon et al (1997) confirmed the result obtained with C. beijerinckii and 

measured a 22-fold increase in killing in EMT6 tumours treated with CB 1954. However, 
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despite the fact that recombinant nitroreductase could be detected In tumours, enzyme 

activity could not be detected in tumour tissue. 

1.3.2.2 Cytosine deaminase 

The other type of prodrug converting enzyme to be expressed in clostridia is the E. coli 

cytosine deaminase CodA. This enzyme converts the non-toxic prodrug 5-fluorocytosine (5-

FC) into the cytotoxic drug 5-fluorouracil (5-FU). 5-FU acts as an anticancer agent as it is 

further metabolised into 5-fluorouridine-5'-triphosphate and 5-fluoro-2'-deoxyuridine 5'

monophosphate, which inhibit DNA and RNA synthesis (Polak et aI., 1976). This enzyme is 

of particular interest in DEPT strategies as the difference in toxicity between prodrug (5-FC) 

and drug (5-FU) is large (104
). Moreover, both 5-FU and 5-FC are currently approved for 

clinical applications in the treatment of breast and gastrointestinal cancers. Fox et al (1996) 

were the first to report expression of codA in C. beijerinckii. Supernatants taken from the 

genetically modified C. beijerinckii culture increased the sensitivity of murine EMT6 

carcinoma cells to 5-FC 500-fold, a level comparable to other studies where the codA gene is 

transfected into mammalian cells. 

More recently, C. acetobutylicum was engineered to secrete CodA specifically at the site of 

the tumour by fusion of the clostripain (closJ) signal sequence to the 5' end of codA (Theys 

et al., 2001a). Western blot analysis revealed the 52-kDa CodA enzyme in both culture 

filtrates and cell lysates from early-logarithmic growth phase samples. In vitro and in vivo 

tests ascertained a maximal enzyme activity of 700 pmol 5-FC converted to 5-FU per ml in 

recombinant bacterial supernatants during early-log phase. This level would equate to a 3% 

conversion efficiency of 5-FC to 5-FU in vivo, an effectiveness considered to be 

therapeutically viable. The level of CodA activity decreased after early-log phase possibly 

due to denaturation of the enzyme from acidification of the media or by proteolytic 

breakdown from extracellular proteases produced by the bacterial host. 
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1.4 USE OF PROTEOLYTIC STRAINS 

The lack of anti-tumour effects seen following administration of prodrug to animals 

colonised with engineered saccharolytic clostridia may have been due to a number of factors, 

including segregational instability of the expression vector used and insufficient production 

of the recombinant prodrug converting enzyme gene. The latter could most simply be 

accounted for by the attainment of relatively low cell densities of saccharolytic clostridia in 

the colonised tumour, compared to, for instance C. sporogenes. Indeed, it was apparent that 

the bacterial cell numbers in tumours colonised by C. beijerinckii NCIMB 8052 was two 

orders of magnitude lower than comparable tumours colonised by C. sporogenes M55 (Liu 

et aI., 2002). 

These experiments suggest that a strain such as C. sporogenes M55 may represent a more 

effective delivery vehicle for anti-cancer agents. As this strain initially proved recalcitrant to 

gene transfer, another C. sporogenes (NCIMB 10696) was identified into which plasmid 

DNA could be transformed. Accordingly, an expression plasmid (pMTL540CD) carrying 

codA was successfully introduced into strain NCIMB 10696 and its in vivo effectiveness 

assessed as follows (Liu et aI., 2002): cell extracts taken from CodA recombinant C. 

sporogenes increased the cytotoxicity of 5-FC to SCCVII cells by a factor of 104
. Western 

blot analysis of CodA and detection of enzyme activity in vitro were performed both 7 and 

14 days post-intravenous injection of 108 spores of recombinant C. sporogenes into SCCVII 

tumour-bearing mice. CodA was detected by Western blot analysis in both the 7 and 14 day 

tumour samples. Also, extracts from tumours from mice injected with recombinant spores 

increased the cytotoxicity of 5-FC by a factor of 103 with no increase observed for mice 

injected with wild-type spores. The exquisite selectivity of the process was highlighted by 

Western blot of several different tissue homogenates. CodA was found to be confined to the 

tumour and could not be found in any of the other tissues screened (brain, heart, lung, liver, 

kidney and spleen). 
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To further confirm that C. sporogenes was producing sufficient CodA to convert 5-FC to 

5-FU at a clinically relevant rate, colonised mice were injected with either 5-FC or 5-FU at 

maximally tolerated doses. Control groups of animals received either recombinant spores 

alone, or saline as a negative control. Injection of spores alone caused a small amount of 

tumour lysis as seen in other experiments, whereas a combination of 5-FC and recombinant 

spores produced a greater growth delay than that given by the maximally tolerated dose of 

5-FU. However, in both cases, the tumours became mildly resistant to 5-FU after the first 

week of injections. 

The benefits of a more aggressive coloniser have additionally been shown in a study that 

utilised a non-toxinogenic, proteolytic strain of C. novyi, C. novyi-NT (Dang et al., 2001). 

These authors assessed a variety of anaerobic bacteria for their capacity to grow extensively 

and uniquely in the anoxic zones of transplanted tumours. Of the 26 bacterial species tested, 

15 species were of the non-pathogenic anaerobe Bifidobacterium, 2 species were 

Lactobacillus and 9 were members of the genus Clostridium. Intravenous injection of 

Bifidobacterium species resulted in tight clusters of bifidobacteria uniquely in the tumour, 

rather than dispersed throughout the necrotic regions as preferred. Intratumoural injection of 

clostridia, in particular C. novyi and C sordellii, resulted in an extensive spread of vegetative 

cells throughout the poorly vascularised area of the tumour mass. Toxicity of C. novyii and 

C. sordellii is a barrier when injected intravenously. Injection of up to 1 08 spores led to the 

death of all tumour-bearing mice within 16-18 hours, due to the release of potent lethal 

bacterial toxins. To overcome this toxicity, the lethal toxin gene was eliminated from 

C. novyi by heat shock, the toxin gene being located within a phage episome. The result was 

confirmed by PCR and led to a new strain, C. novyi-NT. C. sordellii was not chosen due to 

the presence of two homologous toxin genes. Intravenous injection of spores of C. novyi-NT 

led to germination of the spores in the tumour, and resulted in greatly expanded areas of 

necrosis, without the toxicity side effects observed earlier. However, as in earlier studies, a 

viable rim of tumour cells still existed at the periphery of the tumour. 
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1.5 COMBINATION THERAPIES 

At an early stage in the evolution of clostridial-based strategies, it was recognised that 

procedures that enhance tumour hypoxia might increase oncolysis. Thus, Dietzel et at 

(1978) looked at increasing hypoxia in tumours by raising the temperature within the tumour 

using microwaves (High-Frequency Hyperthermia, H-FH). When this was combined with 

irradiation in repeated cycles, a larger reduction in tumour weight in animal tumour models 

was noticed (Gericke et aI., 1979). Increasing the degree of hypoxia through restriction of 

the oxygen level in the respiratory air supplied to animals has also been investigated. A 

reduction of between 11 and 12% in the air supplied to animals carrying both Ehrlich and 

Hardy Passey melanomas dramatically improved the extent of tumour lysis, resulting in 

complete tumour eradication in 30% of cases (Mose, 1979). More recently, an effective 

route to increasing tumour hypoxia has been demonstrated using vascular targeting agents. 

1.5.1 Vascular targeting agents 

It had been observed that the efficiency with which tumours are colonised following spore 

inoculation was directly proportional to tumour volume (Theys et at., 2001 b). A tumour size 

of approximately 3 cm3 is necessary to guarantee colonisation. This size constraint is 

directly linked to the degree of hypoxia and necrosis present, i.e. the larger the tumour the 

greater the extent of hypoxia and necrosis within the centre. This led to the hypothesis that 

the use of angiogenesis inhibitors and/or vascular targeting agents would increase the level 

of hypoxia and thereby lead to more effective colonisation by clostridia. Moreover, it would 

allow smaller, more aerobic tumours to be colonised. 

This hypothesis was tested in W AGlRij rats bearing rhabdomyosarcomas USing 

Combretastatin A4-phosphate (CombreAp, OXIGENE, Lund, Sweden), an example of a new 

class of tumour vasculature targeting agent. CombreAp selectively attacks and destroys 

tumour-specific blood vessels formed by angiogenesis (Dark et aI., 1997) leaving normal 
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vasculature unharmed, due to the morphologically and functionally abnormal tumour blood 

vessels (Denekamp, 1993). Systemic administration of CombreAp was shown to result in 

severe tumour vascular shutdown some 3 to 6 hours after administration, leading to obvious 

necrosis within 1 to 3 days (Landuyt et aI., 2000). Moreover, if administration of Comb reAp 

was preceded 4 hours earlier by an intravenous dose of clostridial spores then smalI tumours 

« 1 cm
3

) were colonised. Equivalent sized tumours in the control animals that did not 

receive any CombreAp were not colonised (Theys et aI., 200 1 b), indicating a strong 

relationship between the level of hypoxia/necrosis and the likelihood of tumour colonisation. 

The benefits of vascular targeting agents were also shown in the studies of Dang et al (200 I) 

using C. novyi-NT. In this case the vascular targeting agent employed was dolastatin-10 

(D I 0), which was also used in combination with the DNA damaging agent mitomycin C 

(MMC). Treatment with spores, D 1 0, and MMC resulted in dramatic effects on the large 

subcutaneous tumours of the colorectal cancer celI line HCT116 in nude mice. 24 hours 

post-administration of the spores the tumour mass swelled. D 10 was then given 

intravenously and folIowed by MMC 24 hours later. 6 hours after D 1 0 treatment a zone of 

necrosis could be seen. This zone increased in size over 24 hours and often completely 

enveloped the tumour. The necrotic masses then shrunk over the following 2 to 4 weeks. In 

the control mice, which received only D10 and MMC, no reduction in tumour mass was 

noted. The downside to this combination bacteriolytic therapy (termed 'COBALT') is the 

association of significant toxicity: 15-45% of animals died depending on tumour size, when 

C. novyi-NT spores were combined with chemotherapy. A possible explanation could be 

tumour lysis syndrome, a phenomenon seen in other cases where large tumours are rapidly 

destroyed by antineoplastic agents. 

1.5.2 Temporal regulation of gene expression 

A further avenue that is under investigation is to position the gene encoding the therapeutic 

agent under the control of a radiation-inducible promoter. This would place the production 
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of the desired therapeutic protein, In combination with the appropriate dose of ionising 

irradiation, under both temporal and spatial control. In bacteria, DNA damage is restored by 

a number of systems, the most important of which is the SOS repair mechanism (Miller and 

Kokjohn, 1990). The recA gene is a central component of this system. Using both Northern 

blot analysis and promoter systems, the expression of the recA gene of C. acetobutylicum has 

been shown to be induced by some 30% following irradiation at clinically relevant doses of 

2 Gy (Nuyts et al., 2001 a; Nuyts et al., 2001 b). The feasibility of using the recA promoter to 

regulate mTNFa production was tested by Nuyts and co-workers (Nuyts et al., 2001c). To 

enable secretion of the protein, the eglA signal sequence was fused to mTNFa. Secretion of 

mTNFa was shown to increase by 44% 3.5 hours after a single irradiation dose of2 Gy. As 

radiotherapy is usually given in smaller fractionated doses, a second dose of 2 Gy was given 

3 hours after the first. This lead to a 1.33- to 1.36-fold increase in TNFa production. The 

level of induction achieved correlates well with the increase seen after a single dose 

indicating that the recA promoter can be reactivated by a second dose of radiotherapy (N uyts 

et al., 2001c). 

Radioinducibility is mediated by binding of DinR (equivalent to LexA in E. coli) to operator 

sequences in the recA promoter, termed 'Cheo boxes'. In the original experiments, 

expression from the recA promoter was not completely repressed, as TNFa was produced 

even in the absence of irradiation (Nuyts et al., 2001c). To exert greater regulatory control, a 

second Cheo box was subsequently incorporated into the recA promoter (Nuyts et aI., 

200 I d). This resulted in an increase in mTNFa secretion from 44% for the wild-type 

promoter to 412% for the promoter with an extra Cheo box after a single irradiation dose of 

2 Gy. Moreover, these authors were able to show that the constitutive endo-f3-1 A-glucanase 

(egIA) promoter could be converted to an ionising irradiation responsive promoter through 

the introduction of a Cheo box. Thus, the presence of a Cheo box resulted in a 242% 

increase in mTNFa secretion. The increase in mTNFa secretion. from irradiated and non

irradiated control cultures, was confirmed by RT-PCR to be caused by enhanced 
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transcription. 

Radiation-inducible promoters show promise for use in CDEPT strategies as the therapeutic 

protein is only induced in response to irradiation. Therefore, radiation may be employed as a 

'molecular switch', activating transcription/expression of the therapeutic gene only In 

tumour tissues rather than in other non-tumoural hypoxic tissues, such as abscesses or 

infarcted tissues. 

1.6 OTHER BACTERIAL DELIVERY SYSTEMS 

Whilst clostridia have been under the greatest scrutiny, other bacterial-based tumour delivery 

systems are under investigation, including the facultative anaerobe Salmonella typhimurium 

and the obligate anaerobe Bifidobacterium. Growth of S. typhimurium within tumours is 

mediated by severe disablements that both reduce toxicity (by alteration of the 

lipopolysaccharide) and impose a requirement for adenine. The latter is presumed not to be 

readily available in normal healthy tissues, but is enriched in the tumour environment as a 

consequence of cellular breakdown. This attenuation allows the organism to accumulate and 

persist in tumours and exert an inherent anti-tumour efficacy in their own right. However, 

whilst this efficacy has been observed in animal models (Low et aI., 1999; Pawelek et aI., 

1997), it was not seen in human trials (Toso et aI., 2002). As with clostridia, the use of 

S. typhimurium has been combined with DEPT approaches, most notably with codA, where 

appropriately manipulated strains have been shown, in combination with 5-FC, to cause 

significant tumour regression in rodent models (Zheng et al., 2000). This particular system 

has been taken into a Phase I clinical trial (Cunningham and Nemunaitis, 200 I), but the final 

outcome has yet to be published. 

The obligate anaerobe Bifidobacteriul71 longum has also been shown to selectively colonise 

solid tumours (Yazawa et aI., 2000). Compared to clostridia, the population densities 
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achieved in tumours are significantly less, i.e. less then 103 cfu g-l tumour tissue compared 

to 10
9 

cfu g-l in the case of C. sporogenes. Given the result obtained with saccharolytic 

clostridial species, these low numbers might be predicted to be insufficient for the 

production of effective levels of a recombinant therapeutic protein. Surprisingly, however, 

recent studies have shown that a strain engineered to produce CodA caused significant 

regression of DMBA-induced mammary tumours in rats following administration of 5-FC 

(Fujimori et at., 2002). Similarly, Bifidobacterium adolescentis has been used to deliver an 

endostatin gene to solid tumours in mice, where a strong inhibition of angiogenesis stemmed 

tumour growth (Li et at., 2003). 

1.7 GENETIC MANIPULATION OF CLOSTRIDIA 

Anti-tumour effects have been demonstrated usmg recombinant clostridia to target 

expressIOn of prodrug converting enzymes and cytotoxic agents to the hypoxic areas of 

tumours. Nevertheless, further improvements to the current rudimentary genetic 

manipulation systems available for the clostridia would enable even greater enzyme 

expression and therefore superior anti-tumour effects. 

1.7.1 Introduction 

Natural bacterial competence has been reported in several bacteria, most notably in 

Streptococcus pneumoniae, Haemophilus injluenzae, and Bacillus subtilis. However, there 

has never been reported natural competence in the clostridia. Therefore, to introduce foreign 

DNA into clostridia, transformation procedures that rely on induced competence via the 

alteration of the cell envelope need to be devised. It has been some 20 years since the 

development of the first plasmid transformation procedure for clostridia. Cryptic 

C. perfringens plasm ids were introduced into a plasmid cured derivative of C. perfringens 

11268, strain 11268 CDR (Heefner et at., 1984; Squires et at., 1984). In this early work. L-
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phase variants (protoplasts unable to regenerate to the bacillary form) of C. perfringens 

11268 CDR were generated by growth in the presence of penicillin G and 0.4 M sucrose. 

Being osmotically sensitive, it was thought that L-phase variants would be susceptible to 

polyethylene glycol (PEG) mediated transformation. Protoplasts were transformed with the 

tetracycline resistance encoding cryptic plasmid pJU 124 from C. perfringens 12502 and 

tetracycline resistant transform ants arose at a frequency of approximately 102 transform ants 

per J.lg of plasmid DNA. The plasmid was also introduced by a filter mating technique using 

C. perfringens 12502 as the donor and C. perfringens 11268 as the recipient at a frequency 

of 10-5 cells per donor. 

Included in the publication on the work on transformation procedures was the development 

of a variety of E. coli/c. perfringens shuttle vectors (Squires et aI., 1984). A series of 

plasmid vectors were constructed based on small « 4 kb) cryptic plasmids from 

C. perfringens fused to pBR322 into which had been inserted a tetracycline resistant 

determinant to allow for antibiotic selection in both E. coli and C. perfringens. The plasm ids 

contained restriction sites to allow the insertion of additional heterologouslhomologous 

DNA. Transformation of C. perfringens occurred at a frequency of 102 transformants per J.lg 

of the chimeric plasmids. Following this initial work there have been numerous reports on 

the improvement of clostridial transformation. 

1.7.2 Transformation procedures 

PEG mediated transformation has had limited success mainly due to the difficulty in 

improving the regeneration step such that the L-form cells can regenerate to bacillary form. 

This difficulty was finally overcome using the partially autolysin deficient C. acetobutylicum 

NI-4081 (Azeddoug et al., 1989; Truffaut et aI., 1989). Transformation frequencies of 

around 1 x 106 transform ants per J.lg plasmid DNA were obtained in this strain. However. 

the inherent difficulty in transforming and regenerating protoplasts led to the development of 

transformation of vegetative cells by electric field permeabilisation of the cell membrane, a 
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process now termed electrotransformation or alternatively electroporation. 

1. 7.2.1 Electroporation 

There have been several reports of the successful introduction of plasmid DNA at a high 

frequency to a variety of clostridial species including C. beijerinckii (Oultram et aI., 1988), 

C. acetobutyiicum (Mermelstein et ai., 1992), proteolytic (Zhou and Johnson, 1993) and non-

proteolytic (Davis et aI., 2000) C. botulinum, C. perfringens (Allen and Blaschek, 1988), 

C. celluioiyticum (Jennert et ai., 2000) C. sporogenes (Liu et aI., 2002) and C. thermocellum 

(Tardif et ai., 2001). In summary, a pulse of high-intensity electrical field is applied to the 

cell that induces the temporary formation of pores in the cell membrane through which 

exogenous DNA can enter the cell. The protocols have been optimised for each species with 

variations at the stage of cell preparation and in the buffers utilised, the electroporation 

parameters, and at the stage of cell rescue post-electroporation. 

1. 7.2.2 Conjugation 

As an alternative to electroporation, the conjugal transfer of plasm ids from E. coli to a 

clostridial host has been documented for several species including C. beijerinckii (Williams 

et aI., 1990), C. botulinum (Bradshaw et ai., 1998), C. celluioyticum (Jennert et aI., 2000), 

C. difficile (Purdy et ai., 2002), and C. perfringens (Lyras and Rood, 1998). In all the 

reported cases, plasmid transfer from the donor to the recipient was dependent on the transfer 

mechanism of the broad host range IncP family of plasmids. A transfer origin (ori1) 

provided on the shuttle vector, and several trans-acting functions (Tra functions) supplied by 

the E. coli donor are required for conjugal transfer. The Tra functions may be either 

plasmid-encoded, as is the case for the IncP-type helper plasmid R 702, or integrated into the 

chromosome as is the case with the donor E. coli SM 1 O. , 
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1. 7.2.3 Restriction modification 

During the early development of genetic systems for C. acetobutylicum it was found that 

C. acetobutylicum ATCC 824 contains a restriction system designated Cac824I, that greatly 

reduces the electroporation efficiency of plasmid DNA that lacks the appropriate methylation 

signature (Mermelstein and Papoutsakis, 1993). The cognate methylase M.Cac824I protects 

host DNA from restriction digestion by the Cac8241 endonuclease. The Cac8241 restriction 

system endonuclease recognises the sequence 5'-GCNGC-3', which is prevalent in E. coli 

plasm ids but occurs infrequently in the C. acetobutylicum genome. Protecting plasmid DNA 

by methylation with the <l>3TI methyltransferase encoded by Bacillus subtilis phage <l>3T, was 

shown to protect plasmid DNA from restriction by Cac8241 and the isoschizomer Fnu4HI. 

Since these findings, restriction modification systems have been found in the non-proteolytic 

group II strain of C. botulinum, A TCC 25765 (Davis et al., 2000), where the restriction 

endonuclease CboI cleaves the palindrome 5'-CCGG-3'. Restriction is overcome by 

methylation of the shuttle vector in an E. coli host containing the B. subtilis M.BsuFI 

methylase which is equivalent to M.Cbo!. The CceI (5'-CCGG-3') restriction activity has 

been found to exist in C. cellulolyticum ATCC 35319 (Jennert et aI., 2000), with methylation 

of the external C by M.MspI (MspI is an isoschizomer of CceI) affording protection of 

transformed plasmid DNA. Finally, C. difficile strains CD3 and CD6 were also found to 

possess restriction modification systems ~ (Purdy et al., 2002). In the case of CD3 no 

methylase exists to protect against the enzyme present (Cdi! cleaves 5'-CATCG-3') so all 

restriction sites need to be removed from shuttle vectors prior to transformation (Purdy et al., 

2002). In strain CD6 the two restriction systems, CdiCD6I (cleaves 5'-GGNMCC-3', 

equivalent to Sau96I) and CdiCD6II (cleaves 5'-GATC-3' equivalent to MboI) exist (Purdy 

et at., 2002). It was found that methylation by M.Sau961 protected against the CdiCD61 

restriction activity, and the resident dam methylation system of E. coli protected against 

CdiCD6II. 
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Additional to the restriction modification system, some clostridial species contain 

extracellular endonucleases, in particular, DNases. These have been reported to be present at 

low levels in C. thermohydrosulfuricum DSM 568 (Soutschek-Bauer et aI., 1985) and 

putatively in C. sporogenes NClMB 10696 (Liu et af., 2002). PEG-mediated transfonnation 

in the case of C. thermohydrosulfuricum, and the addition of DNase inhibitors to the 

electroporation buffer in the case of C. sporogenes NClMB 10696, negated the activity of 

extracellular DNases on the introduced plasmid DNA allowing successful transformation. 

1.7.3 Plasmid replicons and antibiotic selection 

Two decades have elapsed since the development of gene transfer technology for clostridia. 

During this time an arsenal of vectors has been developed to allow manipulation of the 

clostridia at the genetic and protein level. Despite this, the clostridial genus as a whole 

remains relatively intractable to in vitro derived genetic transfer such that the use of more 

genetically amenable organisms like E. coli and B. subtilis as intermediates is required for 

plasmid construction. This has led to the exclusive use of 'shuttle' vectors, which can 

replicate in the intermediate, normally E. coli, by the provision of a second replication 

region. Shuttle vectors therefore require a Gram-negative replication signal and antibiotic 

resistance marker for selection and maintenance in E. coli. Equivalent signals also need to 

be present for the Gram-positive host. 

1. 7.4 Shuttle vectors 

Native plasmids have been identified in several clostridia, for example in C. acetobutylicum 

ATCC 824 the pSOLI megaplasmid encodes the genes necessary for acetone and butanol 

production by this organism (ComiIIot et af., 1997). In addition to house keeping genes, 

some clostridia have plasmid-encoded virulence factors. These include the tetanus toxin of 

C tetani (Finn et af., 1984) and several toxins produced by C. perfringens (Katayama et af., 

1996). Native plasmids are one source of replication functions that have been utilised in the 
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construction of shuttle vectors since they are known to be functional in the host species and 

should be relatively segregationally stable. Several native plasm ids have been extensively 

characterised, including pCB 1 Oland pCB 1 02 from C. butyricum (Minton and Morris, 1981), 

pCD6 from C. difficile (Purdy et al., 2002) and pIP404 from C. perfringens (Garnier and 

Cole, 1986). As well as these well defined plasmids, several other clostridial plasm ids have 

been utilised in the construction of shuttle vectors, namely pCS86 from C. acetobutylicum 

strain No. 86 (Yoshino et al., 1990), and the C. perfringens plasm ids pHBIOI, pJU121, and 

pIU 122 (Blaschek and Solberg, 1981; Squires et aI., 1984). 

The replication regions of the well-defined clostridial plasm ids were identified by cloning 

putative minimal replication regions into otherwise non-replicative vectors. The vectors 

constructed were then transformed into either B. subtilis in the case of pCB 1 Oland pIP404 

(Collins et al., 1985; Garnier and Cole, 1988), or C. beijerinckii in the case ofpCBI02 and 

pCD6 (Collins et al., 1985; Purdy et al., 2002). Analysis of the replication regions from 

these plasm ids identified several different modes of replication. Firstly, pCB 101 displays 

many of the characteristics of other Gram-positive plasmids which replicate via a rolling 

circle mechanism (Brehm et aI., 1992). Sequence analysis of the replication protein of 

pCB 1 02 on the other hand revealed no homology to any currently known plasmid, thus it is 

unclear as to the mechanism by which this plasmid replicates. The replication mechanisms 

of pCD6 and pIP404 are also not definitely known, although they do both share features 

found in plasm ids that replicate via the theta replication method. These are a large putative 

replication protein and an extensive region of AT rich DNA repeats (Purdy et aI., 2002). 

An alternative to the use of clostridial plasm ids to construct shuttle vectors is the use of 

replicons derived from other Gram-positive bacteria. The B. subtilis plasmid pIM13 (Monod 

et at., 1986) has been widely used. It replicates via a single stranded DNA (ssDNA) 

intermediate and putatively based on that, a rolling circle mechanism. The Enterococcus 

faecalis plasmid pAMP 1 (Clewell et aI., 1974) has also been extensively employed. It 

replicates via a unidirectional theta replicating mechanism. Other plasmids that have been 
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utilised to a lesser extent are pIP501 from E. faecalis (Saunders and Guild, 1980), pWVOl 

from Lactococcus lac tis (Otto et aI., 1982), and the Staphylococcus aureus plasm ids pT127 

and pUB 11 0 (Lacey and Chopra, 1974; Novick and Brodsky, 1972). Generally, plasmids 

from other Gram-positive bacteria are not as segregationally stable as their clostridial 

counterparts. This is in part due to these plasm ids replicating via a rolling circle mechanism, 

which generates highly recombinogenic ssDNA intermediates (Gruss and Ehrlich, 1989), 

and as such they are not as good a choice for the construction of stable shuttle vectors. The 

one exception to this rule is pAMf31 which is generally stable in the variety of clostridial 

hosts which have been tested (Allen and Blaschek, 1988; Jennert et al., 2000; Oultram et aI., 

1988; Reysset and Sebald, 1985). 

In the absence of a 100% segregationally stable plasmid, antibiotic selection is required for 

positive selection of transformants. Ampicillin is routinely used in E. coli for antibiotic 

selection of plasmids, the resistance being encoded by f3-lactamase (bla). However, Bla is 

not functional in Gram-positive bacteria. The erythromycin resistance genes ermB from 

pAMf31 (Clewell et aI., 1974) or ermC from pIM13 (Monod et aI., 1986) are the most widely 

used selective marker to screen for clostridial transformants. Other antibiotic resistance 

markers that are frequently used include the tetracycline resistance gene tetM from Tn916 

(Franke and Clewell, 1981) and the C. perfringens Tn4451 chloramphenicol resistance gene, 

chloramphenicol acetyl transferase (catP) (Abraham and Rood, 1987). In the case of CatP, 

thiamphenicol is used instead of chloramphenicol for the selection of clostridial 

transform ants. 

1. 7.5 Expression vectors 

Expression vectors have been used in clostridia to obtain both expression of a particular 

protein and the expression of antisense RNA as a means of down-regulating protein 

expressIon. 
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For the over expressIOn of prodrug converting enzymes it is desirable to have strong 

constitutive expression such that the maximal level of protein is produced all throughout the 

growth cycle of the bacterium. Also, as the prodrug converting enzyme genes are not native 

to clostridia it is unlikely that the native prodrug converting enzyme promoter signals will 

function efficiently in clostridia. Therefore, the gene cannot be cloned with its own 

promoter, a technique often used for the expression of clostridial genes. 

Clostridial species produce a variety of sigma factors throughout growth and in response to 

different growth and environmental conditions. These alter the promoter recognition by 

RNA polymerase allowing coordinate transcription of different gene sets for a variety of 

bacterial responses. Furthermore, numerous transcriptional regulators exist leading to 

activation or repression of transcription. For this reason, most of the promoters that have 

been characterised are unsuitable for CDEPT due to their temporal expression. For example, 

in C. acetobutylicum these are promoters related to solventogenesis or acidogenesis, or to 

sporulation (Boynton et al., 1996a; Boynton et al., 1996b; Harris et al., 2002; Mermelstein et 

al., 1992; Nair et al., 1999; Papoutsakis and Bennett, 1993). As a consequence, only a few 

promoters have been isolated and utilised to promote prodrug converting enzyme production. 

These are the promoters preceding the ~-1,4-endoglucanase (egIA) region of 

C. acetobutylicum P262 (Zappe et al., 1988), the clostripain gene (closJ) gene of 

C. histolyticum DSM 1126 (Dargatz et al., 1993), and the C. pasteurianum ferredoxin (jdx) 

gene (Graves and Rabinowitz, 1986). These promoters all generally conform to the 

promoter consensus sequence recognised by the major form of Clostridium RNA 

polymerase, which shows homology to other bacteria (see Figure 1.2). 
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-35 -10 
eglA AAAAA TTATTA ATGTAAAAATATACTAAG TATAGA ATATTTA 
C/osl AATAA TGTAAA ACTTTAAATAATAACTCT TATAAT GGTTTTT 
fdx ACACT TTTAAA AAGTTTAAAAACATGA TACAAT AAGTTAT 

Consensus TTGACA (17 bp) TATAAT 

Figure 1.2: Putative promoter sequences of the p-1,4-endoglucanase (eglA), clostripain (closJ) and 

ferredoxin (jdx) genes used within clostridial prodrug converting enzyme expression vectors. The 

consensus sequence for the -35 and -10 is based on that recognized by the vegetative RNA polymerase 

holoenzyme. The -35 and -10 regions are underlined; bold characters within the consensus sequence 

indicate the highly conserved nucleotides, modified from Van Mellaert et al (Van Mellaert et aI., 

2005). 

As well as expressing the prodrug converting enzyme, it is desirable in some circumstances 

that the clostridial cells secrete the enzyme into the tumour mass. This can be obtained by 

fusing a signal sequence in frame to the 5' end of the gene of interest. The signal sequence 

encodes a signal peptide that consists of an NH2-terminal extension of the secretory peptide, 

which is required for successful translocation of the cell membrane. The signal peptide is 

cleaved by a signal peptidase once the protein is in the extracellular environment. The native 

signal peptide that is encoded by a secreted prodrug converting enzyme is usually not 

recognised by clostridial cells such that secretion is not very effective, if it occurs at all. 

Therefore, to enable efficient secretion of the prodrug converting enzyme from the clostridial 

cell two such signal peptides have been successfully developed, based on either the 

C. histolyticum DSM 1126 closI gene, or on the eglA gene of C. acetobutylicum P262 

(Dargatz et al., 1993; Zappe et al., 1988). Both signal peptides proved functional and 

secreted protein was detectable in the culture medium when the signal peptides were fused to 

either cytosine deaminase (codA) (Theys et al., 2001a) or tumour necrosis factor (m-TNFu) 

(Theys et at., 1999), respectively. 
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1.7.6 Gene integration in clostridia 

The recent and dramatic increase in antibiotic resistance and the rise in the occurrence of 

multidrug resistant bacteria in both community and hospital settings has led to the reduction 

in the use of antibiotic markers for clinical applications such as CDEPT. It is therefore 

necessary to have the prodrug converting enzyme integrated into the clostridial chromosome. 

This negates the use of plasmid-borne expression systems that are reliant on antibiotic 

selective markers. 

1.7.6.1 Homologous recombination 

The most common way of introducing genes into the bacterial chromosome is vIa 

homologous recombination, a process that results in genetic exchange between homologous 

DNA sequences from different sources. If the homologous DNA that is being inserted is 

interrupted in the middle with an antibiotic resistance marker (or other gene of interest) then 

following recombination, the target gene will be inactivated and the presence of the 

antibiotic resistance marker will allow selection of appropriate clones. Usually this 

technique IS used to inactivate a gene of interest in a process called allelic exchange 

mutagenesis. This process involves the exchange of the wild type chromosome encoded 

copy of the gene with a non-functional truncated copy of the gene. This is usually achieved 

by introducing the non-functional copy of the gene onto a replication deficient suicide vector 

such that once introduced the only antibiotic resistant clones will be ones where the gene of 

interest has been mutated. The preferable way of introducing the non-functional copy of the 

gene is on a conditionally replicative vector, for example a vector containing a temperature 

sensitive replicon. This would result in a plasmid that replicates only at the permISSIve 

condition. Changing to the non-permIssIve condition would inhibit plasmid replication 

thereby forcing segregational loss of the plasmid from the bacterial cell. The only way 

antibiotic resistant bacteria can be recovered is if the antibiotic resistance marker has 

integrated into the chromosome. The advantage to this approach is that a suitably high 
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number of cells will contain the plasmid prior to selecting for the rare integration event. 

Gene inactivation by allelic exchange can occur in two ways: 

1) Single crossover integration 

This process involves genetic exchange between a chromosomal copy of a gene and a 

plasmid-borne copy of the same gene that is truncated at the 5' and 3' ends (see Figure 1.3). 

Homologous recombination between the two DNA sequences results in the integration of the 

entire plasmid into the chromosome. The final outcome being the presence of two 

dysfunctional truncated copies of the target gene, one truncated at the 5' end the other 

truncated at the 3' end. However, mutations achieved in this way are intrinsically unstable 

due to the presence of large repeated flanking regions that may recombine to revert to the 

parent genotype. 
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Figure 1.3: A schematic representation of single crossover recombination. 

Mutant host 
chromosome 

'----------' 

28 



2) Double crossover integration 

The more desired situation is double crossover integration as there is less chance of reversion 

to the wild type genotype and only the antibiotic resistance marker persists in the host. 

Allelic exchange by double crossover relies on the exchange between the target gene and a 

plasmid-borne copy of the target gene disrupted with a selectable marker, which is usually an 

antibiotic resistance marker (see Figure 1.4). The process of double crossover can occur 

either directly or indirectly. Direct double crossovers occur in one recombination event such 

that a correct mutant can be directly selected. Alternatively, the process of double crossover 

integration can be split into a two-stage event. Initially the process is identical to single 

crossover integration, in that the entire plasmid integrates into the host chromosome. 

However, a second recombination event occurs between two homologous stretches of DNA 

resulting in two possibilities. In 50% of cases there is resolution of the entire plasmid and 

disrupted target gene and reversion to the parent genotype. The alternative and desired event 

is re-excision of the plasmid leaving an interrupted dysfunctional target gene. 

Allelic exchange has been used successfully for the knock out of several genes in both 

C. acetobutylicum and C. perfringens. The first reported clostridial mutant was generated by 

Wilkinson and Young (1994), where both gutD and spoOA single crossover mutants were 

made in C. acetobutylicum NCIMB 8052 (now renamed C. beijerinckii NCIMB 8052) by 

conjugal transfer of a suicide plasmid from an E. coli donor. Since then, a variety of mutants 

have been made in C. acetobutylicum ATCC 824: a single crossover mutant in 

aldehyde/alcohol dehydrogenase (aad) (Green and Bennett, 1996), an uncharacterised 

mutant in the sporulation specific sigma E-processing enzyme (oriA) (Wong and Bennett, 

1996), and single crossovers in phosphotransacetylase (pta) and butyrate kinase (buk) (Green 

et aI., 1996). In C perfringens double crossover mutants were obtained in theta-toxin (PfoA) 

and alpha toxin (PIc) (Awad et aI., 1995), in the enterotoxin (cpe) (Sarker et at.. 1999), in 

collagenase (colA) (Awad et aI., 2000), and in the toxin regulator (virX) (Ohtani et aI., 2002). 
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Figure 1...f: Schematic representation of direct and indirect double crossover recombination. 
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Delivery of the single crossover or double crossover fragments to clostridia is usually by a 

replication deficient suicide plasmid. However, this method is somewhat unreliable and 

burdensome with sometimes several thousand colonies needing to be screened in order to 

obtain a correct knockout. Also, the experiment may need several attempts to obtain a 

knockout, and sometimes a knockout will not occur at all. 

Due to the problems experienced by Harris and colleagues in obtaining a spaDA knockout 

mutant in C. acetabutylicum ATCC 824 using the suicide method, they developed a 

replicative plasmid based approach (Harris et al., 2002). In order to disrupt spaDA, a 580 bp 

internal spaDA fragment was PCR amplified and cloned into a plasmid based on the Gram

positive replicon from the B. subtilis plasmid pIM13. Serial passage of the recombinant C. 

acetabutylicum A TCC 824 harbouring the spaDA knockout plasmid on non-selective media 

was performed every 24 hours for 5 consecutive days with replica plating. Cells that grew 

on erythromycin (selects for integration event) but not on thiamphenicol (selects for plasmid) 

were isolated by comparing cultures that were replica plated onto medium containing either 

antibiotic. Isolates of C. acetabutylicum A TCC 824 that met the thiamphenicol sensitive and 

erythromycin resistant phenotype were then analysed by PCR amplification and sequencing. 

One isolate, SKOl, which was obtained in the first experiment with this method was 

analysed further by sequencing the interrupted region as the expected PCR product size for 

the interrupted gene was not obtained. From the sequencing data they determined that the 

following sequence of events occurred: first, the entire plasmid was apparently integrated 

into the chromosome at the spaDA gene, due to the presence of the duplicated internal spaDA 

fragment. It was expected that a second recombination event would occur somewhere in the 

duplicated region, resulting in either reversion to the parent phenotype or deletion of the 

plasmid DNA except for the marker resulting in an ideal double crossover. However, a 

second recombination event occurred between two 10 bp homologous sequences 

(5'-ACGACCAAAA-3') that were present in the 3' end of the Gram-positive replicon repL 

structural gene and upstream of the erythromycin resistance marker. The result \vas 
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inactivation of spaDA by insertion of a slightly larger fragment than predicted, an abnormal 

double crossover mutant. Potential reasons why a double crossover could occur on a 

replicative vector are due to the method of replication of the vector. pIM13 is known to 

replicate via a rolling circle method (Projan et al., 1987) that generates highly 

recombinogenic ssDNA intermediates. Secondly, by not implying selection, the resistance 

markers would only be maintained by the plasmid integrating due to the segregational 

instability of non-native rolling circle plasm ids. 

1. 7.6.2 Non-homologous recombination 

Recombination between DNA molecules can occur in a variety of other ways that are not 

dependent on regions of homologous DNA cloned onto a plasmid, or on the hosts 

recombination machinery. Mobile genetic elements, namely insertion sequences (IS) and 

transposons, are one such example of plasmid or chromosomally encoded genetic elements 

that perform non-homologous (illegitimate) recombination. 

Insertion sequences are the simplest type of mobile genetic element. Usually they consist of 

one or more transposase enzymes that are necessary for the movement of the element from 

one site to another. At the ends of most insertion sequences is an almost perfect inverted 

repeat (IR) sequence. The complementary nature of the IR sequences is in part responsible 

for the mobile nature of IS elements. Short duplicated target sequences are usually found 

flanking IS elements. This is not part of the IS element per se, but arises from the DNA at 

the site of insertion as a consequence of the molecular events involved. 

Transposons are similar to IS elements in that they consist of a transposase flanked with IR 

sequences and short duplicated target sequences. However, transposons also contain a 

resolution site, a resolvase and an identifiable genetic marker (usually an antibiotic resistance 

gene). More complex transposons, composite transposons, exist that consist of n\'o copies of 

an IS element in inverted orientation or as direct repeats (one usually contains a non-
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functional defective transposase) surrounding a set of resistance genes. Finally, a transposon 

can exist as an integron that is built up by insertion of additional antibiotic resistance genes 

within an existing transposon. 

Insertion sequences have been found in a variety of bacteria, although only a few have been 

reported in the clostridia. Several have been reported in C. perfringens (Brynestad et aI., 

1997; Daube et aI., 1993), and one, ISCbI, has been found in C. beijerinckii NCIMB 8052 

(Liyanage et aI., 2000a). To date, IS elements have not been utilised as a genetic tool for the 

manipulation of the clostridia. 

Transposons have also been found in a few clostridia, namely a Tn916-like tetracycline 

resistant determinant in C. difjicile (Hachler et aI., 1987), and two Tn3-like transposons, 

Tn4451 and Tn4452, in C. perfringens (Abraham and Rood, 1987). Although potentially 

useful, these transposons have not been shown to be capable of transposition. Among the 

several well characterised transposons, the 16.4 kb tetracycline resistance encoding 

conjugative transposon Tn916 from E. faecalis DS 16 (Franke and Clewell, 1981) has been 

shown to be successfully transferred by conjugation to C. acetobutylic;um (Woolley et aI., 

1989), C. botulinum (Lin and Johnson, 1991), C. tetani (Yolk et aI., 1988), C. difjicile 

(Mullany et al., 1991), and C. perfringens (Lyristis et aI., 1994). 

Utilising Tn916, several different mutants were obtained in a variety of clostridia. In 

C. perfringens, virulence gene sensor histidine kinase regulator (virS) (Lyristis et aI., 1994) 

and alpha, theta and kappa toxin mutants (Awad and Rood, 1997) were achieved. 

Granulose mutants (Mattsson and Rogers, 1994) and a tRNA mutant (Sauer and Durre, 

1992) were obtained in C. acetobutylicum. Finally, several different uncharacterised 

auxotrophic mutants have been obtained in C. botulinum (Lin and Johnson, 1991). 

Tn15.f5, originally isolated from Streptococcus pneumoniae, has also been used but to a 

lesser extent than Tn916, in the generation of mutants in C. beijerinckii (Evans et aI., 1998; 



Liyanage et al., 2000b). 

One major disadvantage to the use of Tn916 and transposons as a whole as a genetic tool is 

that integration is not targeted. Tn916 is reported to integrate into a hot spot in C. difficile 

CD37 (Mullany et al., 1991; Wang et al., 2000) and C. beijerinckii (Woolley et al., 1989). 

In other clostridial hosts, Tn916 was found to integrate at multiple host sites, namely in 

C. difficile 79-685 (Roberts et al., 2003), C. tetani (Volk et al., 1988), C. acetobutylicum 

(Babb et al., 1993) and C. botulinum (Lin and Johnson, 1991). Tn1545 is reported to 

integrate at multiple sites in C. beijerinckii (Woolley et al., 1989). From the perspective of 

CDEPT, non-targeted integration is not desired as integration in unknown genes may change 

the characteristics of the host such that the colonisation of the tumour may be affected, 

expression of the prodrug may be changed or the formation of spores reduced. 

1.8 CONCLUSIONS 

It is now over 10 years since the CDEPT concept was first proposed (Minton et al., 1995) as 

a means of treating solid tumours. In the intervening years a number of key steps have been 

taken towards proof of principle and the strategy now shows considerable promise as a novel 

therapy for treating solid tumours. Whilst concerns over the concept of deliberately 

'infecting' patients with a live clostridial species may surface, it is to be anticipated that 

clinical evaluations should dispel any such fears, allowing the full potential of CDEPT to be 

realised. However, there are still a number of additional refinements that have to be put in 

place before this approach can move into a clinical setting. 

Whilst proteolytic strains such as C. sporogenes and C. novyi are more effective in tumour 

colonisation and achieve higher population densities, these more aggressive tumour 

colonisers may cause toxicity (Dang et al.. 2001). The data obtained with B. longum has 

shown that high bacterial cell numbers are not necessarily required (Fujimori et at., 2002). 



The higher levels of therapeutic protein necessary could be achieved through the use of more 

effective transcription and translation signals. Therefore, to obtain the maximal benefit from 

CDEPT a suitable expression system needs to be employed. Regardless of the host used, for 

clinical evaluation, strains need to be generated which do not carry bacterial antibiotic 

resistance markers. This may be achieved through the integration of the therapeutic genes 

concerned into the genome. 

In addition to optimising the production of recombinant protein, the strategy may also 

benefit from maximising the catalytic activity of the enzyme utilised, through the use of the 

most effective enzyme and prodrug. The benefit of a more soluble nitroreductase prodrug 

has already been demonstrated (Liu et aI., 2002). The use of more effective enzymes is also 

likely to prove fruitful (Anlezark et aI., 2002). The deliberate secretion of the therapeutic 

protein may extend the area of drug generation away from the immediate vicinity of the foci 

of colonisation within the tumour. However, secreted enzymes are prone to proteolysis. 

This may present a particular problem with proteolytic clostridial strains. Moreover, a wider 

distribution of enzyme may give rise to a specific immune response directed against the 

protein. Immune responses in ADEPT prevent repeat therapies. On the other hand, recent 

studies have shown that the immunogenicity of specific enzymes can be attenuated (Spencer 

et al., 2002). 

1.9 PROJECT AIMS 

This study forms part of a European Union 5th Framework consortium consisting of six 

partners. The overall goal was to further develop the CDEPT strategy, ultimately to phase I 

clinical trial. 
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The specific aims of this study are: 

• To obtain over-expreSSIon of either of two prodrug converting enzymes. Both 

carboxypeptidase G2 and novel nitroreductase enzymes will be cloned and over

expressed in an optim ised expression vector and transformed into an optimally 

colonising clostridial host. Once obtained, engineered strains will be assessed for 

the production of the prodrug converting enzyme both in vitro and in an in vivo 

mouse model. 

• To assess the tools currently available for gene integration in clostridia and modify 

them for integration of the promoter/prodrug converting enzyme fusion into suitable 

genome targets, such that the colonisation capabilities of the recombinant strain 

remain unaltered. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1 CHEMICALS AND KITS 

Invitrogen Ltd., Paisley, U.K. 

TOPO TA Cloning® Kit (with pCR2.1-TOPO or pCRII-Blunt vector), NuPAGE® 

gels and buffers, Zymogram gels and buffers 

New England Biolabs (U.K.) Ltd., Herts, U.K. 

Restriction endonuc1eases and buffers, Klenow DNA polymerase I fragment, 

T4 DNA polymerase, Antarctic phosphatase, T4 DNA ligase, 

Novagen, Merk Biosciences, Nottingham, U.K. 

Bugbuster protein extraction reagent, rLysozyme™ , Benzonase™ 

QIAGEN Ltd., West Sussex, U.K. 

QIAprep spin mini prep kit, QIAquick PCR purification kit, QIAquick gel extraction 

kit, RNeasy miniprep kit, One-Step RT-PCR kit, Hot Star Taq, DNeasy tissue kit. 

Sigma Aldrich Company Ltd., Dorset, UK 

All chemicals were supplied by Sigma Aldrich unless otherwise stated. 

Nucleic acids 

Oligonucleotides were synthesised by Sigma-Genosys Ltd., Haverhill, U.K .. 

Synthetic genes were supplied by Entelechon GmbH, Regensburg, Germany. 

Cambio 

Failsafe PCR system 
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2.2 BACTERIAL STRAINS AND PLASMIDS 

Strain Genotype Reference/source 

E. coli TOPI0 F mcrA l1(mrr-hsdRMS-mcrBC) Invitrogen Ltd.® 
~801acZI1M15 I1lacX74 deaR recAl 
araD139 l1(ara-leu)7697 galU galK rspL 
(StrR

) endAl nupG 

E. coli TOPI 0 F' F' {lac!' TnlO (TetR
)} mcrA l1(mrr- Invitrogen Ltd.® 

hsdRMS-mcrBC) ~801acZI1M 15 I1lacX74 
deaR recAI araD139 l1(ara-Ieu)7697 galU 
galK rpsL(StrR

) endA 1 nupG 

E. coli HMS 174 (DE3) F, recA,l hsdR(r K12 -m K12), Rif lambda Invitrogen Ltd.® 
(DE3) 

E. coli HB 1 0 1 thi-I hsdS20 (r-B, m-B) supE44 recAB ara- N. P. Minton 
14 leuB5proA2 lacYl galK rpsL20 (stl) 
xyl-5 mtl-l 

Bacillus subtilis BS34A Tn9l6 conjugative donor strain A. Roberts, UCL, 
London 

Clostridium sporogenes 
NCIMB 10696 

Variovorax paradoxus 
ATCC 25301 

Table 2.1 - Bacterial strains used in this study 

Vector Replicon(s) 

pMTL20 ColEI 

pMTL20E ColEI 

pCR2.I-TOPO ColEI 

pIMP! ColEI, 
pIM13 

Antibiotic 
selection 

Amp 

Amp, 
Erm 

Amp, 
Kan 

Amp, 
Erm 

N. P. Minton 

N. P. Minton 

Features Reference/ 
source 

E. coli cloning (Chambers et 
vector al., 1988a) 
E. coli cloning M. Young, 
vector University of 

Wales 
Aberystwyth 

E. coli PCR TI A Invitrogen 
cloning vector 

Clostridium (Mermelstein 
shuttle vector and 

Papoutsakis. 
1993) 



pMTL934I aLS2 CoIEI, Erm Clostridium (Carter et at., 
pCD6 shuttle vector, 2005) 

antisense 
expression vector 

pCR4-TOPO: jac2 ColEI Amp, E. coli PCR TI A Entelechon 
Kan cloning vector, GmbH 

fac2 promoter 

pMTL30 ColEI Amp, Mobilisable (Williams et 
Erm suicide plasmid al., 1990) 

pCR-Blunt 11-TOPO ColEI Kan, E. coli PCR blunt Invitrogen 
Zeocin cloning vector 

R702 IncP~ Tet, Tra+, Mob+, (Hedges and 
conjugative Kan conjugative Jacob, 1974) 

plasmid 

pMTL93 0 1 CoIEI, Erm Clostridium (Purdy et al., 
pCD6 shuttle vector 2002) 

pHZl17 ColEI Amp eglA promoter (Abratt et al.. 
and coding 1993) 
sequence 

pMTL21 ColEI Amp E. coli cloning (Chambers et 
vector al., 1988a) 

pMTLI010 ColEI Tet E. coli expression R. Melton, 
vector Protherics, 

Salisbury 

pCR4-TOPO: :CPG2-synth ColEI Amp, E. coli PCR TI A Entelechon 
Kan cloning vector, GmbH 

synthetic CPG2 

pCR4-TOPO: :HinNTR-synth ColEI Amp, E. coli PCR TIA Entelechon 
Kan cloning vector, GmbH 

synthetic 
HinNTR 

pF25 ColEI Amp nfnB cloned into R. Naylor, 
pTrc99A Protherics, 

Salisbury 

pMTL9361gusA CoIEI, Erm GusA reporter J. Scott, 
pCD6 vector University of 

Nottingham 

pKNTl9-closlpcodA CoIEI, Erm Source of closI (Theys et al., 
pIM13 promoter 2001a) 



pMTL9361gusA:fac2p CoIEI, Erm fac2 promoter G. Carter, 
pCD6 gusA reporter Nottingham 

fusion 

pMTL93 61 gusA: :glnAp ColEI, Erm gInA promoter G. Carter, 
pCD6 gusA reporter Nottingham 

fusion 

pMTL93 61 gusA: :hydAp ColEI, Erm hydA promoter G. Carter, 
pCD6 gusA reporter Nottingham 

fusion 

pMTL9361gusA::egIAp ColEI, Erm eglA promoter G. Carter, 
pCD6 gusA reporter Nottingham 

fusion 

pMTL9361catP ColEI, Erm CatP reporter J. Scott, 
pCD6 vector University of 

Nottingham 

pMTL5200 ColEI Amp, HindlIIIXbaI N. Minton, 
Erm pBP 1 replicon University of 

Nottingham 

pMTL9401 ColEI, Erm Clostridium (Purdy et al., 

pCBI02 shuttle vector 2002) 

pMTL9511 ColEI, Erm Clostridium M. Herbert, 

pAM~l shuttle vector HPA Porton 
Down, 
Salisbury 

pMTL9611 ColEI, Erm Clostridium (Purdy et al., 

pIP404 shuttle vector 2002) 

pJIR418 CoIEI, Erm,Cm Clostridium (S loan et al., 

pIP404 shuttle vector 1992) 

pMTLI015::NTR-N ColEI Tet E. coli J. Heap, 
overexpressJOn University of 
plasmid, source Nottingham 
ofNTR-N 

pCRScript::HinNTR-synthv2 ColEI Amp Synthetic gene - Entelechon 
HinNTR version GmbH 
2 

pCRScript: : NTR -N -synth ColEI Amp Synthetic gene - Entelechon 
NTR-N GmbH 

pMTL31 ColEI Amp, Mobilsable (Williams et 

Erm suicide vector al., 1990) 

-+1 



pMTL900 ColEI Amp, Tn916 integrative (Roberts et 
Cm suicide plasmid al.,2003) 

pWG3 ColEI Erm, Cm Suicide vector C. Schwarz, 
contains C. University of 
sporogenes Ulm, 
spoDA interrupted Germany 
with CatP 

pMTL4 ColEI Amp E. coli cloning This study 
vector 

pMTL4-Em ColEI Erm E. coli cloning This study 
vector 

pMTL5100 CoIEI, Erm Clostridium This study 
pIM13 shuttle vector 

pMTL20: fdxTfacaLS2:celAT ColEI Amp fac expression This study 
cartridge 

pMTL20: :ceIAT: fac2fdxT ColEI Amp fac2 expression This study 
cartridge 

pMTL5102 ColE!. Erm Clostridium This study 
pIM13 shuttle fac2 

expression vector 

PEOriT ColEI Amp, pCR2.1-TOPO This study 
Kan carrying RK2 

OriT region PCR 
amplified from 
pMTL30 

pMTL5112 CoIEI, Errn Mobilisable This study 

pIM13 Clostridium 
shuttle fac2 
expression vector 

pCR2.1 : :LacZ alpha ColEI Amp, PCR amplified This study 

Kan lacZ alpha 

pMTL5122 CoIEI, Erm Mobilisable This study 

pIM13 Clostridium 
shuttlefac2 
expression vector 
blue/white 
selection 

pCR2.1 ::CPG2 ColE! Amp, PCR amplified This study 

Kan wild type CPG2 



pCR2.1 ::egIASSCPG2S0E ColEI Amp, eglA signal This study 
Kan sequence fused to 

5' end ofCPG2 

pMTL21 : :egIASSCPG2 ColEI Amp eglA signal This study 
sequence fused to 
5' end of CPG2 

pMTLl 01 0::CPG2-synthvl ColEI Tet E. coli This study 
overexpression 
plasmid 
harbouring 
synthetic 
sequence CPG2 
version 1 

pMTL 1 0 1 0: :CPG2-synthv2 ColEI Tet E. coli This study 
overexpreSSIOn 
plasmid 
harbouring 
synthetic 
sequence CPG2 
version 2 

pCR2.1 : :HinNTR ColEI Amp, PCR amplified This study 
Kan wild type 

HinNTR 

pMTL5112: :CPG2 ColEI, Erm Clostridium fac2 This study 
pIM13 based expression 

vector expressing 
wild type 
sequence CPG2 

pMTL5112::CPG2-synth CoIEI, Errn Clostridium fac2 This study 
pIM13 based expression 

vector expressing 
synthetic 
sequence CPG2 

pMTL5122::HinNTR CoIEI, Errn Clostridium fac2 This study 

pIM13 based expression 
vector expressing 
wild type 
sequence 
HinNTR 

pMTL5122: : HinNTR -synth CoIEI, Erm Clostridium fac2 This study 

pIM13 based expression 
vector expressing 
synthetic 
sequence 
HinNTR 

-u 



pMTL5122: :nfnB CoIEI, Erm Clostridium fac2 This study 
pIM13 based expression 

vector expressing 
nfnB 

pMTL9361 gusA :closlp CoIEI, Erm closI promoter This study 
pCD6 gusA reporter 

fusion 

pCR2.1 ::botHallAfdxp ColEI Amp, PCR amplified This study 
Kan ferredoxin 

promoter from C. 
botulinum Hall A 
ATCC 3502 

pCR2.1 ::bot2916fdxp ColEI Amp, PCR amplified This study 
Kan ferredoxin 

promoter from C. 
botulinum A TCC 
2916 

pCR2.1 ::perst13fdxp ColEI Amp, PCR amplified This study 
Kan ferredoxin 

promoter from C. 
perfringens strain 
13 

pCR2.1 ::per8327fdxp ColEI Amp, PCR amplified This study 
Kan ferredoxin 

promoter from C. 
perfringens 
NCTC 8327 

pCR2.1 ::spofdxp ColEI Amp, PCR amplified This study 
Kan ferredoxin 

promoter from C. 
sporogenes 
NCIMB 10696 

pMTL93 61 catP: spofdxp CoIEI, Erm C. sporogenes This study 

pCD6 ferredoxin 
promoter catP 
reporter fusion 

pMTL9361catP:perstl 3f dxp CoIEI, Erm C. sporogenes This study 

pCD6 ferredoxin 
promoter catP 
reporter fusion 

pMTL5210 CoIEI, Amp, Mobilisable This study 

pBPl Erm Clostridium 
shuttle vector 



pIMPl::OriT CoIEI, Amp, Mobilisable This study 
pIM13 Erm Clostridium 

shuttle vector 

pMTL5612 CoIEI, Erm fae2 based This study 
pIP404 Clostridium 

expression vector 

pMTL5622::nfoB CoIEI, Erm Stable This study 
pIP404 Clostridiumfae2 

based expression 
vector expressing 
nfoB 

pMTL5123: :nfoB CoIEI, Erm C. sporogenes fdx This study 
pIM13 promoter based 

expression vector 
expressing nfoB 

pMTL5 623: :nfoB CoIEI, Erm Stable C. This study 
pIP404 sporogenes fdx 

promoter based 
expression vector 
expressing nfoB 

pMTL5622: : HinNTR -synth CoIEI, Erm Stable This study 
pIP404 Clostridium fae2 

based expression 
vector expressing 
synthetic 
sequence 
HinNTR 

pMTL5122: :NTR-N CoIEI, Erm Clostridiumfae2 This study 
pIM13 based expression 

vector expressing 
NTR-N 

pMTL5123::NTR-N CoIEI, Erm C. sporogenes fdx This study 
pIM13 promoter based 

expression vector 
expressing NTR-
N 

pMTL5623::NTR-N CoIEI, Erm Stable C. This study 
pIP404 sporogenes fdx 

promoter based 
expression vector 
expressing NTR-
N 



pMTLS122::HinNTR-synthv.2 ColEI, Enn Clostridium fac2 This study 
pIM13 based expression 

vector expressing 
synthetic 
sequence 
HinNTR version 
2 

pMTLS122::NTR-Nsynth ColEI, Erm Clostridium fac2 This study 
pIMl3 based expression 

vector expressing 
synthetic 
sequence NTR-N 

pCR2.1 : :CspopyrF ColEI Amp, PCR amplified C. This study 
Kan sporogenes pyrF 

crossover 
fragment 

pMTL31: :pyrF(Csp) ColEI Erm pyrF single This study 
crossover suicide 
plasmid 

pMTL900: :pyrF(Csp) ColEI Cm pyrF single This study 
crossover Tn916 
integrative 
plasmid 

pMTLS122::spoDA:catP oril ColEI, Enn spoDA double This study 
pIM13 crossover 

fragment cloned 
into rolling circle 
plasmid 
orientation 1 

pMTLS122:: spoDA:catP ori2 ColEI, Erm spoDA double This study 

pIM13 crossover 
fragment cloned 
into rolling circle 
plasmid 
orientation 2 

pIMP 1 OriT: :spoDA :catP ori 1 CoIEI, Amp, spoDA double This study 

pIM13 Erm crossover 
fragment cloned 
into rolling circle 
plasmid 
orientation 1 
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pIMP 1 OriT: :spaOA :catP ori2 ColEI, 
pIM13 

Table 2.2 - Plasmids used in this study 

2.3 GROWTH MEDIA 

2.3.1 Luria-Bertani medium 

Amp, 
Erm 

spaOA double This study 
crossover 
fragment cloned 
into rolling circle 
plasmid 
orientation 2 

Luria-Bertani (LB) broth was prepared as described by Sambrook et al. (1989) and consisted 

of 109 tryptone (Oxoid), 5 g yeast extract powder (Oxoid) and 5 g sodium chloride (NaCI) 

made up to 1 I with distilled water. Sterilisation was achieved by autoclaving at 120 DC and 

15 psi for 20 min. 

LB agar was prepared by addition of 1 % (w/v) Number 1 Bacteriological Agar (Oxoid). 

2.3.2 2 x YT medium 

2 x YT broth was prepared as described by Sam brook et al. (1989) and consisted of 16 g 

tryptone (Oxoid), 10 g yeast extract powder (Oxoid) and 5 g sodium chloride (NaCI) made 

up to 1 I with distilled water. 

2 x YT agar was prepared by addition of 1 % (w/v) Number 1 Bacteriological Agar (Oxoid). 

2.3.3 TYG medium 

TYG medium consisted of 30 g tryptone (Oxoid), 20 g yeast extract powder (Oxoid) and 1 g 

sodium thioglycolate (thioglycolic acid, HSCH 2COOH) made up to 1 I with distilled \\ater. 
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If required, glucose supplementation was added to a final concentration of 0.5% (wi\') after 

sterilisation. 

TYG agar was prepared by addition of 1 % (w/v) Number 1 Bacteriological Agar (Oxoid). 

2.3.4 Spizizen's minimal salts medium (SMM) [pH7.0] 

SMM consisted of 14 g dibasic potassium phosphate (K2HP04), 6 g monobasic potassium 

phosphate (KH2P04), 1 g sodium citrate and 0.2 g magnesium sulphate (MgS04.7H20) made 

up to 1 I with distilled water. The medium was filter sterilised prior to use. 

2.3.5 B. subtiUs competence medium 

B. subtilis competence medium consisted of 10 ml SMM (as described in Section 2.3.4), 

0.5 ml glucose (10% [w/v]), 5 fll calcium chloride (CaCh, 0.1 M stock solution), 0.1 ml 

magnesium sulphate (MgCh, 250 mM stock solution), 0.1 ml manganese chloride (MnCh, 

50 nM stock solution), 0.2 ml casamino acids 10% (w/v) and 0.25 ml tryptophan (10 mM 

stock solution). The individual components were filter sterilised prior to use. 

2.3.6 B. subtiUs transformation medium 

B. subtilis transformation medium consisted of 1 ml SMM (as described in Section 2.3.4), 

50 fll glucose, 10% (w/v), 20 fll magnesium sulphate (MgCh, 250 mM stock solution), 1 fll 

casamino acids, 10% (w/v) and 25 fll tryptophan (10 mM stock solution). The individual 

components were filter sterilised prior to use. 

2.4 SUPPLEMENTS 

Growth medium was supplemented at the following final concentrations as required: 

ampicillin (Amp), 100 J..lg mr': chloramphenicol (Cm), 25 J..lg mr' (for B. subtilis 5 flg mr'); 



folate (Fol) 0.1 % v/v; thiamphenicol (Thi), 20 ).lg mr!; tetracycline (Tet), 10 ).lg mr! (for 

clostridia 20 ).lg mr\ erythromycin (Erm), 300 ).lg mr! ,in liquid broth, 500 ).lg mr! on solid 

media (for clostridia 10 ).lg mr!); kanamycin (Kan), 100 ).lg mr!; trimethoprim (Tri), 

10 ).lg mr!; cycloserine, 250 ).lg mr!; isopropyl-l-thio-~-D-galactopyranoside (IPTG), 

64 ).lg mr!; 5-bromo-4-chloro-3 indolyl-~-D-galactoside (X-Gal), 40 ).lg mr!. Stock solutions 

were prepared as described by Sam brook et al. (1989) and stored according to the 

manufacturer's instructions. 

2.5 GROWTH CONDITIONS 

E. coli was grown aerobically at 37°C unless otherwise stated. Liquid cultures were grown 

in Luria Bertani broth, or 2 x YT broth, with gentle agitation at 200 rpm. Strains of E. coli 

were stored at -80°C using the Microbank™ system (Prolab Diagnostics). Stocks were 

revived by plating onto LB media supplemented with the appropriate antibiotics and 

incubated at 37°C. Cells were maintained at 4 °C on LB agar plates for up to 2 weeks. 

C. sporogenes was cultured and manipulated in a Mk 3 Anaerobic Work Station (Don 

Whitely Scientific Ltd, West Yorks, U.K.). The atmosphere of nitrogen (N2), carbon dioxide 

(C02), and hydrogen (H2) was maintained at a ratio of 80% (v/v): 10% (v/v): 10% (v/v) 

respectively and at a temperature of 37°C. Clostridial strains were stored in 10 ml cooked 

meat medium (Oxoid) and incubated anaerobically for 3 weeks at 37°C to enable 

sporulation to occur. After this time the cultures were removed from the anaerobic cabinet 

and stored in the laboratory at room temperature. TYG medium supplemented with 0.5% 

(w/v) glucose was used for the propagation of C. sporogenes. 

Variovorax paradoxus was grown aerobically at 30°C. Liquid cultures were grown in 

2 x YT broth with gentle agitation at 200 rpm. Plate cultures were grown on 2 x YT agar 
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supplemented with folate (0.1 % v/v) when appropriate. 

Bacillus subtilis was grown aerobically at 37°C. Liquid cultures were grown in LB broth 

with gentle agitation at 200 rpm. 

Growth of all bacterial cultures in liquid medium was monitored by measuring optical 

density at 600 nm (OD600) using a Pharmacia Novaspec II. 

2.6 DNA MANIPULATIONS AND ANALYSIS 

2.6.1 Chromosomal DNA preparation 

Chromosomal DNA was prepared using the QIAGEN DNeasy® Tissue kit (Qiagen Ltd., 

UK). For extraction of clostridial DNA, lysis was aided by the addition of rLysozyme 

(Novagen) (l0 KU mr! final concentration). 

2.6.2 Plasmid preparation 

Plasmid preparation was carried out by the alkaline lysis method described by Sambrook et 

al. (1989) using the QIAprep Spin Miniprep Kit (Qiagen Ltd., UK) as described in the 

manufacturer's instructions. 

2.6.3 Restriction digests 

Restriction enzymes were obtained from New England Biolabs, or Promega. Digests were 

performed as described in the manufacturer's instructions. Briefly, digests contained 

1 x buffer supplied by manufacturer, bovine serum albumin (l ~g mr! final concentration) 

was added if required, 0.5 - 2 ~g DNA, 5 - 20 U restriction endonuclease, unless the 

endonuclease exhibited star activity in which case 1 U was added. The final volume was 
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made up with water and maintained < 5% glycerol concentration to assist in minimising star 

activity. 

2.6.4 Blunt-ending of DNA fragments using Klenow polymerase 

DNA digested with restriction enzymes which resulted in 5' overhanging ends was blunt

ended using DNA Polymerase I, Large (Klenow) Fragment, obtained from New England 

Biolabs or Prom ega as described in the manufacturer's instructions. Briefly, to a restriction 

digest (described above), 1 x DNA polymerase buffer (supplied by manufacturer), 2.5 U 

Klenow polymerase and 33 J.lM each dNTP was added, followed by incubation at 25°C for 

15 min. 

2.6.5 Blunt-ending of DNA fragments using T4 DNA polymerase 

DNA with 3' overhanging ends was blunt-ended using T4 DNA Polymerase, obtained from 

New England Biolabs, as described in the manufacturer's instructions. Briefly, to a 

restriction digest (described above), 1 x T4 DNA polymerase buffer (supplied by 

manufacturer), 5 U T4 DNA polymerase and 100 J.lM each dNTP was added, followed by 

incubation at 12°C for 15 min. 

2.6.6 Dephosphorylation of linearised DNA fragments 

Linearised DNA fragments were dephosphorylated usmg Antarctic Phosphatase (AP) 

obtained from New England Biolabs, as described in the manufacturer's instructions. 

Briefly, to a restriction digest (described above), 1 x AP buffer (supplied by manufacturer) 

and 5 U AP were added, followed by incubation at 37°C for 1 h. 

2.6.7 Ligation of DNA fragments 

Ligation of DNA fragments was carried out using T4 DNA ligase, obtained from NEB 

51 



according to manufacturer's instructions. Briefly, purified DNA fragment inserts were 

added to purified vector fragments at ratios of 1: 1, 3: 1 and 5: 1. Ligations were carried out in 

10/J1 volumes also containing 1 x T4 DNA ligase buffer (supplied by manufacturer) and 3 U 

T4 DNA ligase, followed by incubation at 16 DC overnight. 

2.6.8 Annealing of oligonucleotides prior to ligation 

Each oligonucleotide was diluted in sterile water to a concentration of I nM. 1 /JI of each 

was then added to 5 /JI REact buffer 3 (Invitrogen) and 5 /JI 100 mM MgCh. The solution 

was then made up to a final volume of 50 /JI with sterile water, and heated at 90 DC for 5 min 

before being allowed to slowly cool to room temperature over 45 min to 1 h. 

2.6.9 Ligation of annealed oligonucleotides and vector DNA 

The molarity of the annealed oligonucleotides and vector DNA was calculated and ratios of 

3: 1, 5: 1 and 0: 1 (oligonucleotides: vector) DNA were mixed. Ligations were carried out in 

10 /JI volumes also containing 1 x T4 DNA ligase buffer (supplied by manufacturer) and 3 U 

T4 DNA ligase. The reactions were incubated at 16 DC overnight. 

2.6.10 peR and restriction digest clean up 

DNA fragments from PCR reactions, restriction digests and blunt-ending reactions were 

routinely purified away from contaminating oligonucleotides and enzymes using Qiagen's 

QIAquick PCR Purification Kit (Qiagen Ltd., UK) as described in the manufacturer's 

instructions. 

2.6.11 Extraction of DNA fragments from agarose 

DNA fragments were visualised using ethidium bromide and the desired band excised from 

the agarose gel using a clean scalpel. The DNA was then extracted from the excised agarose 
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gel using Qiagen's QIAquick Gel Extraction Kit (Qiagen Ltd., UK) as described in the 

manufacturer's instructions. 

2.7 AGAROSE GEL ELECTROPHORESIS 

Agarose gels were prepared and run as described by Sambrook et al. (1989). Gels were 

prepared in 1 x T AE (40 mM Tris Acetate, 2 mM EDT A, pH 8.5) at a concentration of 1-

2% (w/v) agarose. Ethidium bromide was added to a final concentration of 10 )lg mr!. Gels 

were run in 1 x TAE buffer at 50 - 120 V. DNA was visualised using a UV transilluminator. 

2.8 POLYMERASE CHAIN REACTION 

2.8.1 Primers 

Primer Name Nucleotide Sequence (5' - 3') Primer 
Tm ~oC~ 

ERMBF ATGACTGATATCACTGATGCTAGCGAAATGATAC 71 
ACCAATCAG 

ERMBR CTTAGTGTTAACACAGCTGTAGGCGCTAGGGACC 69 
TC 

ORITF CCTGCTTCGGGGTCATTATGC 56 

ORITR CCTGCTTCGGGGTCATTATAGC 57 

LACZALPHAF CTATGGCGTGCTGCTAGCG 55 

LACZALPHAR ACAGGAAACACATATGAC 43 

CPG2F ACCCGAACGAACAATGCGTAGA 58 

CPG2R GTGGCTTCCTGGTCTGCTGTC 56 

EGLASOEF GGGGGTATTCATATGTTTTC 56 

EGLASOER CGCGCTTCTGAGCTTCAGCTTTATAAGT 62 



CPG2S0EF CAGAAGCGCGACACAACG 58 

CPG2S0ER GCCGCCCTTGTCGTCG 56 

CPG2correction 1 CTAGGAGATTATATATGGCTGCAAGATTGATAAT 76 
GGATCTAGGTGCTGGTAAATAACTGCA 

CPG2correction2 GTTATTTACCAGCACCTAGATCCATTATCAATCTT 72 
GCAGCCATATATAATCTC 

HINNTRF GAGGAAATCATATGACTCAAC 51 

HINNTRR CTGCAGGCCTTTTTTAAT 50 

HINWTRTF ATGACTCAACTTACTCGTGAACAAG 54 

HINWTRTR TTACCCCACCCATTTCACC 51 

HINSYNTHRTF ATGACTCAATTAACAAGGGAACAA 51 

HINSYNTHR TR TTAACCAACCCATTTTACTACTTCATC 54 

NFNBF CATATGGATATCATTTCTGTCGCC 54 

NFNBR AGGCCTTCTAGATTACACTTCGGTTAAGGTGAT 63 

BOTFDXF GCGGCCGCGTGTAGTAGCCTGTGAAATAAGTAA 70 

BOTFDXR GTATGCCATATGTAACACACC 53 

PERFDXF GCGGCCGCTTAAATTTTTAATACGGTATAGGGGT 69 

PERFDXR CATATGAAAACACCTCCTAAAATG 57 

NMERTF ATGACAGTATTAAGCAAAGAGCAGG 54 

NMERTR TTATGCCCAAATAACGGTTTC 49 

PYRFF GCATGCCTTGATACGGATATAAGTTATCTACC 61 

PYRFR CAGCTGCTTGCACATTCTTCAAAGTTTTTTCCTTC 62 

TETMF GGGGACGCGTGATAGCGGGAACAAATAATTG 62 

TETMR GGGGACGCGTCAACATAAAATACACTAAG 44 

CATPR GCGGAGACGGAGAAAATC 50 

PYRCF GTAGATTGTATAGGGACGGATCATGCACC 62 

PYRKR GCTCTTATCATATAAAACTGTCCTGGCTTCC 60 

Table 2.3 Nucleotide sequence and melting temperatures of oligonucleotides used in this study. 



2.8.2 General PCR parameters 

PCR reactions were carried out using the Failsafe PCR system (Cambio) as described in the 

manufacturer's instructions. Briefly, on ice, 100 ng DNA template, 0.5 /11 of each primer 

(from 100 /1M stock), and 1.25 U of Failsafe PCR enzyme mix were mixed and the reaction 

was made up to a final volume of 25 /11 with sterile, nuclease free water. Finally, 25 /11 of 

2 x Failsafe PCR premix buffer was added bringing the final reaction volume to 50 /11. The 

mixture was then subjected to PCR in a thermal cycler block (Applied Biosystems Gene 

Amp PCR system 2400). 

Failsafe PCR premix buffer E was routinely used for all PCR reactions. Ifhowever. premix 

buffer E failed to yield a product, then the reaction was repeated with the remaining 

11 premix buffers (A-D & F-L); the one that gave the highest yield was used in subsequent 

repeat PCR's with identical template and primer pairs. 

Annealing temperatures (Ta) varied and were dependent upon the melting temperatures (Tm) 

of the primers used. Tm's for oligonucleotides shorter than 20 bases was calculated using 

the Wallace Rule: T m = 2(A + T) + 4(G + C). For oligonucleotides longer than 20 bases, Tm 

was calculated using the Nearest Neighbour formula (Breslauer et aI., 1986). The Ta used in 

the individual PCR's was 5 °c below the lowest calculated Tm of the primer pair. 

Extension times varied and were dependent on the size of the product being amplified. A 

1 min extension time was allowed for every kilobase of DNA amplified. 

2.8.3 Colony PCR 

A single colony was taken from an agar plate and resuspended in 20 /11 of sterile distilled 

water. The cell suspension was then lysed by heating to 98°C for 10 min in a thennal cycler 

block. The lysate was cleared by centrifugation at 16,000 x g in a bench top centrifuge. 4 /11 

was carefully removed (avoiding any cellular debris) and added to the PCR reaction. 



2.8.4 Gene splicing by overlap extension ("gene SOEing") 

Genes were spliced according to the method of Horton et al (1990). Briefly, a first round of 

PCR was performed with two primers, one of the primers containing a region of DNA 

sequence homologous to the region to which it is to be fused. This was followed by a second 

round of PCR using both fragments required to be fused together as templates, and the outer 

primers. This results in the common sequence between the two fragments allowing the 

strands from the two different fragments to hybridise to one another, forming an overlap. 

Extension of the overlap by DNA polymerase yields the required dsDNA recombinant 

molecule. Further amplification was achieved using the outer primers to obtain the full 

length PCR fusion product. 

2.9 TRANSFER OF PLASMID DNA INTO BACTERIAL CELLS 

2.9.1 Dialysis of DNA ligation reactions 

Ligation reactions were dialysed against water using 0.025 I-lm nitrocellulose dialysis filters 

(Millipore Corporation). The filter was allowed to float, reflective side up, in a petri dish 

containing sterile deionised water. The ligation reaction was then added to the uppermost 

surface by pipette and left to dialyse for 30 min. 

2.9.2 Preparation of electrocompetent E. coli 

Electrocompetent E. coli were prepared as follows: a 1 ml aliquot from a 10 ml overnight 

culture of E. coli (grown with selection if necessary) was used to inoculate 100 ml LB broth. 

The cells were grown at 37°C with shaking at 200 rpm to an OD600 nm of 0.5 - 1.0 (an optical 

density indicative of exponential growth). Cells were harvested by chilling on ice for 15 -

30 min followed by centrifugation at 4,000 x g for 15 min at 4 dc. The supernatant was 
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aspirated and the pellet resuspended in 100 ml ice-cold sterile deionised water. The cell 

suspension was centrifuged as before. The pellet was then resuspended in 2 ml of 10% 

glycerol, and centrifuged as before. The pellet was then resuspended to a final volume of 

0.5 m] in 10% (v/v) glycerol, resulting in a cell concentration of approximately 1 x 1010 cells 

mr!. The cells were stored at - 80°C in 40 J.lI aliquots. 

2.9.3 Electroporation of plasmid DNA into E. coli 

Plasmid DNA or dialysed ligation reactions were added to 40 J.lI of electrocompetent E. coli 

(as prepared in Section 2.9.2) that had been allowed to thaw on ice for 10 min. This mixture 

was then transferred to a pre-chilled 2 mm gap elecroporation cuvette (BioRad). A pulse of 

2.5 kV (25 J.lF, 200 0) was delivered to the cuvette using a BioRad Gene Pulsar according to • 

the manufacturer's instructions. 400 J.lI of SOC or 2 x YT recovery medium was 

immediately added, and the cell suspension was incubated at 37 DC for 1 h with shaking 

(200 rpm). Appropriate serial dilutions were then made from the cell suspension prior to 

spreading onto selective 2 x YT agar. 

2.9.4 Preparation of chemically competent E. coli 

A 1 ml aliquot from a 10 ml overnight culture of E. coli (grown with selection if necessary) 

was used to inoculate 100 ml LB broth. The cells were grown at 37°C with shaking at 200 

rpm to an OD6oo nm of 0.5 - 1.0 (an optical density indicative of exponential growth). To 

9 

harvest the cells the cells was chilled on ice for 15 to 30 minutes and centrifuged at , 

4,000 x g for 15 min at 4°C. The cell pellet was then resuspended in 25 ml of ice cold 

0.1 M MgC\:z The cells were harvested as before and the pellet gently resuspended in 2 ml 

of ice cold 0.1 M CaCho The cell suspension was then left on ice for a minimum of:2 h, to 

achieve chemical competence. 100 J.lI aliquots could then be used for chemical 

transformations for up to 48 h provided the cell suspension was kept chilled. 
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2.9.5 Transformation of plasmid DNA into chemically competent E. coli 

Plasmid DNA or ligation reactions were added to 1 00 ~l of competent E. coli cells that had 

been kept chilled on ice and gently mixed. The transformation reactions were then incubated 

for 30 min on ice, followed by heat-shock at 42°C for 30 sec. The mixture was then 

incubated on ice for a further minute, before the addition of 200 ~l SOC or 2 x YT recovery 

medium. The reaction was then incubated at 37°C for one hour with shaking at 200 rpm 

before plating onto 2 x YT agar containing the appropriate antibiotic selection. 

2.9.6 Transformation of plasmid DNA into B. subtilis 

Plasmid DNA was introduced into B. subtilis by transformation as follows: a heavy 

inoculum of fresh overnight growth was taken and added to 20 ml of competence medium 

(detailed in Section 2.3.5) with appropriate selection if necessary, followed by incubation at 

37°C with shaking (200 rpm), until an 00600 equivalent of 3.0 or more was achieved. The 

cells were then diluted ten-fold in transformation medium (detailed in Section 2.3.6). I ml 

aliquots were removed and added to I ~g of plasmid DNA, followed by incubation at 37°C 

with agitation, for a further 90 min. Aliquots were then spread onto LB agar plates 

containing the appropriate selection. 

2.9.7 Conjugation of plasmid DNA into C. sporogenes 

Plasm ids were introduced into C. sporogenes by conjugation from E. coli CA434 (E. coli 

HB I 0 I carrying the helper plasmid R 702) essentially as described by Purdy et at (2002). A 

I ml aliquot from a 5 ml overnight culture of the E. coli donor strain, grown in LB broth with 

appropriate selection, was taken and the cells harvested by centrifugation in a bench top 

microfuge at 5,000 x g for I min. The pellet was gently resuspended with a pipette tip in 

I ml sterile PBS and the cells harvested as before. The pellet was then transferred to the 

anaerobic cabinet and resuspended in 200 ~I of C. sporogenes that had been grown 
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anaerobically, overnight at 37 DC. The cell suspension was then spotted in 10 III volumes 

onto non-selective agar plates, followed by incubation at 37 DC for 7 h under anaerobic 

conditions. The cells were then harvested by flooding the agar plates with 0.5 - 1.0 ml of 

sterile PBS. The resulting cell slurry was removed, serially diluted and spread on selective 

agar plates, followed by incubation at 37 DC for 16 - 24 h in an anaerobic workstation. 

2.10 ESTIMATION OF PLASMID SEGREGATIONAL STABILITY 

The method utilised is a modification of experiments by Bron and Luxen (1985). 

Recombinant C. sporogenes was grown overnight in TYG medium supplemented with the 

appropriate selective antibiotic. A 30 III aliquot of the overnight culture was then 

subcultured into 3 ml non-selective TYG medium. Cultures were then incubated for 12 h 

before being subcultured as before into fresh non-selective medium and incubated for a 

further 12 h overnight. This subculturing regime was repeated four times. At the end of 

each 12 h growth period, cells were serially diluted in PBS up to 10-7 and plated to single 

colonies on TYG agar either with or without antibiotic selection. The colonies that arose on 

non-selective plates were picked onto fresh TYG agar without and then with antibiotic 

supplementation. 

Segregational stability was expressed as percentage cells having lost the plasmid after n 

generations. It can also be expressed as plasmid loss per generation and was calculated 

according to the formula: 

R=(I-xt 

Where R = fraction of plasmid containing cells, x = the rate of plasmid loss/generation, 

n = nllm ber of generations (Swinfield et al., 1991). 



Therefore, to calculate plasmid loss per generation (x): 

x = I - R1/n 

2.11 T/A CLONING 

PCR products were cloned into pCR2.1-TOPO (Invitrogen) as described in the 

manufacturer's instructions. PCR products were ligated directly into the vector due to the 

presence of precleaved ends in the vector, which have been treated with terminal 

deoxynucleotidyl transferase to create ddT overhangs on both 3' ends. The addition of 

TOPO isomerase to the TOPO reaction negates the need for DNA ligase and PCR products 

can be ligated directly into the vector due to the addition of 3' deoxyadenosine overhangs by 

the action of Taq polymerase during PCR. 

2.12 BLUEIWHITE SELECTION 

Blue/white selection was possible when DNA inserts were cloned into the E. coli lacZ alpha 

(lacZa) region present on many standard cloning vectors. This leads to disruption of the 

protein's function, giving rise to an easily identifiable phenotypic marker. Colonies were 

screened on agar plates containing 40 /lg mrl X-Gal and 1 mM IPTG. Colonies harbouring 

vector containing the insert grew white, whilst those without grew blue due to a functional 

~-galactosidase activity and hence uninterrupted gene. This screening process was only 

possible in E. coli strains that carry a mutation in the native lacZa region, namely TOPIO 

and TOP I OF'. Complementation of the mutant LacZa with the vector-borne copy of LacZa 

enables a functional enzymatic activity. 
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2.13 RNA ANALYSIS 

To minimise RNase contamination, all RNA work was carried out in a designated clean area, 

which had been thoroughly cleaned with RNaseZap (Ambion). Certified RNase clean tips 

and microfuge tubes (Eppendorf) were used and where possible all solutions were treated 

with 1% (v/v) diethyl pyrocarbonate (DEPC). In addition, all glassware and apparatus were 

wiped over with RNaseZap and rinsed with DEPC-treated water before use. 

2.13.1 Preparation of total RNA from C. sporogenes 

Prior to harvesting cells, 2 volumes (1 ml) of RNAprotect Bacteria Reagent (QIAGEN) was 

added to a bijou. 0.5 ml of an overnight culture of C. sporogenes cells grown in TYG 

medium (~l x 107 cells) was then added to the RNAprotect Bacteria Reagent and vortexed 

for 5 sec followed by incubation at room temperature for 5 min. The crude RNA prep was 

harvested by centrifugation at 5,000 x g for 10 min in a benchtop microfuge. The 

supernatant was thoroughly aspirated and the pellet loosened by briefly vortexing. The 

bacteria were then lysed by resuspended in 100 /-ll of TE containing 3 mg mrl lysozyme and 

incubating at room temperature for 10 min. 

Total RNA was then extracted from the C. sporogenes lysate using Qiagen's Rneasy Kit, as 

described in the manufacturer's instructions. Briefly, 350 /-ll of buffer RLT (supplied with 

kit) to which ~-mercaptoethanol had been added, was mixed with the lysate, followed by the 

addition of 250 /-ll of cold absolute ethanol. This solution was then applied to an RNeasy 

column followed by the addition of 5U of Turbo DNase (Ambion) as a preliminary on

column DNase digestion. The column was then incubated at room temperature for 5 minutes 

and centrifuged in a bench top microfuge at 8,000 x g for 15 sec. The flow-through was 

discarded and 700 III of buffer RWI (supplied with kit) was applied to the column for 5 min. 

The column was again centrifuged at 8,000 x g for 15 sec and the flow-through again 

discarded. The column was then washed by addition of 500 III of buffer RPE (supplied with 
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kit) and centrifuged as before. The column was then washed with 500 /-11 of buffer RPE for a 

second time and centrifuged at 8,000 x g for 2 min. The flow-through was again discarded 

and the RNA eluted by the addition of 50 /-11 of DEPC treated water and centrifugation at 

8,000 x g for 1 min. 

2.13.2 Removal of contaminating genomic DNA from total RNA 

Contaminating DNA was removed from RNA samples using Ambion's Turbo DNase as 

described in the manufacturer's instructions. The appropriate volume of lax Turbo DNase 

buffer was added to the RNA sample,S U of Turbo DNase per /-1g of RNA was then added 

and the final volume adjusted with DEPC-treated water. The reaction was incubated at 

37°C for 30 min. 

2.13.3 DNase I treated RNA sample clean up 

Total RNA that had been treated with DNase I was cleaned up prior to use in RT-PCR using 

Qiagen's RNeasy columns as described in the manufacturer's instructions. Briefly, the RNA 

sample was adjusted to 100 /-11 with DEPC-treated water and 350 /-11 of buffer RL T (supplied 

with kit) was added to the sample, followed by the addition of 250 /-11 of ice cold absolute 

ethanol. This solution was then applied to an RNeasy column and centrifuged in a bench top 

microfuge at 8,000 x g for 15 sec. The column was then washed by addition of 500 /-11 of 

buffer RPE (supplied with kit) and centrifuged as before. The column was washed for a 

second time by the addition of 500 /-11 of buffer RPE and was then centrifuged at 8,000 x g 

for 2 min. The flow-through was again discarded and the RNA eluted by the addition of 30 

/-11 of DEPC-treated water and centrifugation at 8,000 x g for 1 min. 

2.13.4 One-tube RT-PCR 

Before use in RT-PCR, RNA was treated with Turbo DNase (as described in Section 2.13.2) 
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and subsequently cleaned up as described in Section 2.13.3. RT-PCR was carried out using 

Qiagen's One-tube RT-PCR kit and HotStar Taq (QIAGEN), as described in the 

manufacturer's instructions. Briefly, RNA samples, buffers and reagents were allowed to 

thaw on ice. On ice, 10 ).!l 5 x QIAGEN One Step RT-PCR buffer, 400 ).!M of each dNTP, 

0.6 ).!M forward and reverse primer and 2 ).!l QIAGEN OneStep RT-PCR enzyme mix were 

added to lOng of RNA (quantified using a NanoDrop ND-lOOO spectrophotometer), and the 

final volume was adjusted to 50 ).!l with DEPC-treated water. Reverse transcription was then 

allowed to proceed at 50°C for 30 min. After which time, the reaction was then transferred 

to a nuclease free PCR tube and PCR amplification was carried out using an Applied 

Biosystems Gene Amp PCR system 2400 thermocycler (see Table 2.4). 

Step Time 

15 min 

2 1 min 

3 1 min 

4 x sec 

5 10 min 

6 hold 

Temperature (OC) 

95 

94 

x 

72 

72 

4 

Details 

Inactivation of Omnicsript and Sensiscript 

ReverseTranscriptases, denaturation of the cDNA 

template, and activation of the HotStarTaq DNA 

Polymerase 

Denaturation. 

Primer annealing. The temperature was calculated 

according to the primer pair used in the reaction, 

i.e. 5°C below the lowest Tm. 

Extension. (The time was dependant on the size 

of the product, with 60 sec extension allowed for 

every kilobase of DNA amplified). 

Final extension 

Table 2.-1: PCR programme utilised for RT-PCR amplification ofmRNA. 
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Control reactions were performed where the RNA template was exchanged for DEPC treated 

water to check for RNA contamination of RT-PCR buffers, dNTPs e.t.c. Also several 

HotStarTaq control peR reactions were performed with a variety of templates: DNA 

template as a positive control, RNA template to check for DNA contamination of the RNA , 

and water template to check for DNA contamination of HotStar Taq components. 

If the RT-PCR failed, the procedure was repeated with the inclusion of either Q-solution 

(changes the melting behaviour of DNA) and/or additional MgCI2. 

RT-PCR products were visualised with ethidium bromide by agarose electrophoresis as 

described in Section 2.7. 

2.14 PROTEIN EXPRESSION AND PURIFICATION 

2.14.1 Over-expression of proteins in E. coli 

5 ml cultures of E. coli harbouring the expression vectors were grown in LB broth under 

selective conditions at 37°C overnight with shaking (200 rpm). The culture was then diluted 

100-fold in sterile selective LB broth and grown at 37°C with shaking (200 rpm). 1.5 ml 

aliquots of cells were taken at the appropriate time (usually 4 h, 8 h, and 24 h) and harvested 

by centrifugation at 4,000 x g for 20 min, the supernatant discarded and the pellet stored at 

-20°C overnight. 

2.14.2 Preparation of celllysates and protein extraction from E. coli 

E. coli cell Iysates were prepared using BugBuster protein extraction reagent (Novagen) as 

described in the manufacturer's instructions. Briefly, cell pellets that had been stored at 

-20°C overnight were allowed to thaw on ice for approximately 15 min. The pellet was 

resuspended in BugBuster reagent, which had been previously diluted to 1 x by addition of 
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the appropriate buffer, by gentle vortexing. 300 ~l of reagent per 1.5 ml culture \\as used 

and 25 U of benzonase per ml of BugBuster was added in order to reduce the viscosity of the 

final lysate. The cel\ suspension was then incubated at room temperature with gentle 

shaking for 30 min. The insoluble cell debris was removed by centrifugation at 16,000 x g 

for 20 min at 4°C and the supernatant, which contains the soluble protein, was retained. 

To isolate insoluble proteins packaged in inclusion bodies, the pellet obtained after the 

BugBuster lysis was subjected to the following further modifications: the pellet was 

resuspended in the same volume of BugBuster reagent that was used to resuspend the 

original cell pellet, by pipetting up and down followed by vortexing to obtain an even 

suspension. Complete resuspension of the pellet is essential to ensure solubilisation and 

removal of any contaminating soluble proteins. 1 KU mr! rLysozyme was then added and 

the solution mixed by gentle vortexing followed by a 5 min room temperature incubation. 6 

volumes of a 1: 10 dilution BugBuster reagent (in deionized water) was then added to the 

suspension and mixed by vortexing for 1 min. The suspension was then centrifuged at 5,000 

x g for 15 min at 4°C to collect the inclusion bodies. The supernatant is removed with a 

pipette. The inclusion bodies were then resuspened in half the original culture volume (0.5 

volume) of 1: 10 diluted BugBuster reagent, mixed by vortexing, and centrifuged at 5,000 x g 

for 15 min at 4°C. This step is repeated twice. A final resuspension is followed by a 

centrifugation at 16,000 x g for 15 min at 4°C, and the supernatant removed. The final pellet 

of purified inclusion bodies is resuspended in the Tris buffer appropriate for the protein 

being studied. 

2.14.3 Over-expression of proteins in C. sporogenes 

5 ml cultures of C. sporogenes harbouring the expression vectors were grown in TYG broth 

under selective conditions anaerobically at 37°C overnight. The culture was then diluted 

100 fold in sterile selective TYG broth and grown at 37°C anaerobically. 1 ml aliquots of 

cells were taken at the appropriate time intervals (usually 4 h, 8 h, and 24 h), the OD6oo 
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recorded, and harvested by centrifugation at 5,000 x g for 5 mIn. The supernatant was 

discarded and the pellet stored at - 20°C overnight. 

2.14.4 Preparation of celllysates and protein extraction from C. sporogenes 

C. sporogenes cell lysates were prepared USIng BugBuster protein extraction reagent 

(Novagen) as described in the manufacturer's instructions. Briefly, cell pellets that had been 

stored at -20°C overnight were allowed to thaw on ice for approximately 15 min. The pellet 

was resuspended by gentle vortexing in l/Sth culture volume of BugBuster reagent that had 

been previously diluted from lOx stock to 1 x by addition of the desired enzyme assay 

buffer. If a larger volume of culture had been harvested then l/20th culture volume of 

1 x BugBuster was used. 25 U of benzonase per ml of BugBuster was added in order to 

reduce the viscosity of the final lysate. 1 KU rLysozyme per ml of 1 x BugBuster was added 

to the resuspended pellet. The cell suspension was then incubated at room temperature with 

gentle shaking for 30 min. The insoluble cell debris was removed by centrifugation at 

16,000 x g for 20 min at 4 °C and the supernatant, which contains the soluble protein, was 

retained. 

2.15 PROTEIN VISUALISATION 

2.15.1 NuPAGE gel electrophoresis 

NuPAGE 4 - 12% precast gels (Invitrogen) in MES runnIng buffer (50mM 2-(N

morpholino)ethane sulphonic acid, 50 mM Tris, 0.1% (w/v) SDS, 1 mM EDTA, [pH 7.3]) 

were used for protein analysis by gel electrophoresis. Cell Iysates were diluted in 

4 x NuPAGE LDS sample buffer (106 mM Tris-HCI, 141 mM Tris-base, 2% (w/v) LOS, 

10% (w/v) glycerol, 0.51 mM EDTA, 0.22 mM Serva blue G2S0, 0.175 mM Phenol red [pH 

8.S]) and heated at 95°C for S min. Protein samples were then loaded into the wells of the 
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gel and run at 150 V for 90 min using the Novex XcellII minicell as described in the 

manufacturer's instructions. Pre-stained broad size range protein markers (BioRad) were 

used to estimate sizes of purified proteins. 

2.15.2 Novex Zymogram gel electrophoresis 

For the detection and characterisation of proteases, more specifically collagenases, Novex 

10% Zymogram gelatin gels (Invitrogen) were used. Proteases are visualised as clear bands 

against a dark blue background where the protease has digested the substrate, in this case 

gelatin. 5 ml overnight cultures of C. sporogenes NCIMB 10696 were centrifuged at 

5,000 x g. A 5 III aliquot of a 10-1 dilution of supernatant was diluted in 2 x Novex Tris

Glycine SDS sample buffer. Culture supernatant samples were loaded into the wells of the 

gel and run in 1 x Tris-Glycine running buffer at 125 V for 1 h using the Novex XcellII 

minicell as described in the manufacturer's instructions. Pre-stained broad range protein 

markers (BioRad) were used to estimate the size of proteases. After electrophoresis, the gel 

was incubated in 1 x Zymogram renaturing buffer for 30 min at room temperature with 

gentle agitation. The buffer was decanted off and the gel was equilibrated prior to being 

developed by the addition of 1 x Zymogram developing buffer. The gel was equilibrated for 

30 min at room temperature with gentle agitation. The buffer was decanted and replaced 

with fresh I x Zymogram developing buffer followed by overnight incubation at 37°C. 

2.15.3 Simply blue staining 

After electrophoresis, NuPAGE gels were rinsed with 100 ml of deionised water for 5 min 

with gentle agitation three times, before being stained with 20 ml SimplyBlue for 1 - 3 h, 

again with gentle agitation. The stain was discarded and the gel destained with water for 

I - 3 h. Zymogram gels were stained after being developed by the addition of 20 ml of 

SimplyBlue. The gel was stained with gentle agitation until the zones of clearance \vere 

visible, usually after 1 - 2 hours. 
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2.15.4 Densitometry 

Overexpression of proteins was quantified by densitometry USIng a OS-SOO Calibrated 

Densitometer with Quantity One software (BioRad). 

2.16 QUANTIFICATION OF PROTEIN SAMPLES 

Protein concentration of cell lysates was determined using the Bradford assay (Bradford, 

1976). Briefly, bovine serum albumin (BSA) standards were prepared in 200 /-11 volumes 

ranging from 1 to 20 /-1g protein/200 /-11. The standards along with 200 /-11 of Iysates and serial 

dilutions up to 10-3 were added to 1 ml light path plastic cuvettes containing SOO /-11 Bradford 

Reagent (Sigma-Aldrich Company Ltd. Dorset, U.K.) which contains Coomassie Brilliant 

Blue 0-250, and incubated for 5 min. The absorbance at 595 nm (AS9S) was measured 

relative to a water blank. The data created from the BSA standards was used to create a 

standard curve, from which the concentration of the lysates could be calculated based on the 

AS9S obtained. 

2.17 ENZYME ASSAYS 

2.17.1 Chloramphenicol acetyl transferase assay 

C. sporogenes lysates were prepared as described previously (see Section 2.14.3 and 2.14.4). 

A 100 /-11 aliquot of lysate was added to 1 ml reaction buffer (10 mM 5.5'-dithio-bis(2-

nitrobenzoic acid) in 1 M Tris-HCl [pH 7.S], and 0.1 mM Acetyl-CoA) which had previously 

been equilibrated to 37°C for at least 30 min, in a clean plastic cuvette. The cuvette was 

then placed in a spectrophotometer, blanked, and 20 J-ll of 5 mM chloramphenicol added and 
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quickly mixed by inverting. The reaction was left to run for 1 min in the spectrophotometer, 

after which time the increase in absorbance at 412 nm was recorded. This process was 

repeated for each sample lysate, with appropriate dilutions made of the Iysates where 

necessary. 

Units per ml of CAT were calculated using the following equation, 

(~A4l2 / min) / V 

13.6 

~A412/ min = the increase in A4l2 per min 

V = the volume oflysate added (ml) 

In order to obtain Units mg- l protein the Units per ml were divided by the protein 

concentration (mg mrl) of the sample. 

2.17.2 ~-Glucuronidase assay 

~-Glucuronidase levels were measured by modification of the method described by Melville 

et at (1994). C. sporogenes was serially diluted into 3 ml of TYG medium and grown 

anaerobically at 37°C overnight. The lowest dilution showing growth was used to inoculate 

fresh sterile selective media 1 in 100 and grown anaerobically at 37°C. A 1 ml sample was 

removed every hour or at the appropriate time interval (usually 4 h, 8 h, and 24 h) and the 

OD600 recorded. Each sample was then centrifuged at 5,000 x g for 5 min, the supernatant 

aspirated and the pellet frozen at - 70°C overnight. The pellets were thawed on ice for 

5 min and resuspended in 0.8 ml Z buffer (60 mM Na2HP04.7H20 [pH 7.0], 40 mM 

NaH2P04.H20, 10 mM KCI, 1 mM MgS04.7H20 and 50 mM 2-mercaptoethanol). Cells 

were lysed by addition of 8 ~l of toluene followed by vigorous vortexing for 1 min. Each 

sample was incubated on ice for 10 min, and then with caps open for 30 min at 37°C in a 

fume hood. 150 ~Ll from each sample was then transferred in duplicate to the wells of a flat 

69 



bottom 96 well plate and the enzyme reaction started by addition of a 6 mM solution of 

p-nitrophenyl-~-D- glucuronide. The plate was then immediately placed in a 37°C preheated 

ELISA plate reader (Wallac Victor2 1420 Multilabel counter). Absorbance at 405 nm was 

recorded every 30 sec until the reaction stopped. 

The specific activity was calculated based on the change in A405 while the reading was 

increasing linearly, using the following equation: 

A405 X 1,000 

OD600 X t (min) x 1.25 x sample vol (ml) 

In order to obtain specific activity per mg protein, the value for the specific activity was 

divided by the total protein concentration (mg mr!). 

2.17.3 Carboxypeptidase assay 

E. coli and C. sporogenes lysates were prepared as described previously (see Section 2.14.1, 

2.14.2,2.14.3 and 2.14.4). A quartz cuvette was prepared containing 0.1 ml of methotrexate 

solution (0.6 mM methotrexate [0.27 mg mr! methotrexate] in Tris buffer [0.1 M Tris-HCI 

pH 7.3, containing 0.2 mM ZnS04]) and 0.9 ml Tris buffer (0.1 M Tris-HCl pH 7.3, 

containing 0.2 mM ZnS04). The initial A320 was recorded (a value of at least 0.8 is required 

after zeroing with a Tris buffer blank). The cuvette was pre-warmed to 37°C, and the 

reaction initiated by the addition of 10 III of cell lysate. The decrease in absorbance at 320 

11m was recorded. 

To calculate Units mr! in the lysate: 

£: max for methotrexate is 8300 

~ A320 X 100 x dilution factor 

8.3 
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2.17.4 Nitroreducatse menadione assay 

E. coli and C. sporogenes lysates were prepared as described previously (see Section 2.U.l, 

2.14.2, 2.14.3 and 2.14.4). A 1 ml quartz cuvette was prepared containing 780 IJ.I of Tris 

buffer (10 mM Tris-HCI pH7.5 at 37°C) preheated to 37 °C. Immediately prior to adding 

the lysate the following were added to the cuvette and mixed: 10 IJ.I 1 mM menadione, 100 IJ.I 

10 mM NADH, and 100 IJ.I 700 )lM cytochrome C. The cuvette was returned to the 

spectrophotometer and the absorbance zeroed. 10 IJ.I of lysate, or serial dilutions of the 

lysate, was then added to the cuvette and the reaction mixture immediately mixed. The 

increase in A550 being recorded. 

Units per ml of nitro reductase activity were calculated using the following equation, 

(.-1A550 f min) f ml 

14.79 

where .-1A550 fmin = the increase in A550 per min. 

In order to get Units mg-! protein, the Units per ml were divided by the protein concentration 

of the sample in mg mr!. 

2.18 PHENOTYPIC ASSAY 

2.18.1 Spore assay 

Sporulation efficiencies were calculated using a modification of the method described by 

Kamiya et at (1992). In essence, 5 ml overnight cultures of C sporogenes were used to 

inoculate (1: 1 00) 35 ml of selective TYG broth. Broths were incubated anaerobically at 

370C for 72 h. Following incubation, 500 IJ.I of cell culture was heat inactivated at 80°C for 



20 min. Dilutions of heat inactivated cells, and a non heat inactivated sample as a total cell 

count control, were plated out on selective TYG agar. Sporulation efficiency was recorded 

as % of spores relative to total cell count. 
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3.1 INTRODUCTION 

It is the ultimate aim of CDEPT to have the gene encoding the prodrug converting enzyme 

stably integrated into the genome, so as to negate the use of antibiotics in the clinic. In the 

interim, an effective segregationally stable plasmid-based expression system is required in 

order to assess the effectiveness of new enzyme/prodrug systems in the in vivo animal 

model. 

A variety of vectors are available for the manipulation of clostridia, however they could not 

be employed without becoming party to a restrictive materials transfer agreement. This 

would impose restrictions on the consortium's freedom to develop any process generated. 

Therefore, the required vectors needed to be reconstructed. In this chapter the construction 

of an E. coli/Clostridium shuttle expression vector will be described. 

For the initial expression studies, the ferredoxin promoter (fdxp) from C. pasteurianum was 

chosen for the shuttle expression vector. Ferredoxin (Fdx) is a low molecular weight 

electron carrier protein that functions as an electron acceptor in redox reactions. Clostridia 

grown in iron-rich media are capable of expressing Fdx at a level up to 2% total cellular 

protein (Marczak et aI., 1985; Rabinowitz, 1972). Also, considering that Fdx is a low

molecular weight protein that is encoded by a single-copy gene (fdx) (Graves et al., 1985; 

Graves and Rabinowitz, 1986), clostridial jdx appears to be transcribed at high levels. 

Previous work (Minton et al., 1995) utilised the jdx promoter from C. pasteurianum to 

express the nitroreductase gene nfnB from E. coli to a level equivalent of 8% total cellular 

protein in a C. beijerinckii NCIMB 8052 host. If necessary, studies to identify an improved 

promoter wiII be performed at a later stage. 

An IPTG inducible ferredoxin promoter,jac, has been previously generated (CAMR, Porton 

Down, Salisbury). However, due to ownership issues, jac was resynthesised taking the 

opportunity to incorporate some improvements. These were enhancement to the spacing of 
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the ribosome binding site from the start codon and the alteration of the orientation of the lac 

operator. The resulting promoter was then utilised to generate an expression cartridge. 

3.2 RESULTS 

3.2.1 Construction of an E. coli/Clostridium shuttle vector 

Plasmid nomenclature was derived as follows. All plasmids constructed belong to the pMTL 

family of plasm ids. For plasmids generated for this work the prefix 5 was used therefore 

plasmids were called pMTL5xxx (i.e. 5 followed by three digits). A description of the 

nomenclature is shown in Appendix I. 

3.2.1.1 Vector backbone construction 

The first stage in the generation of an E. coli/Clostridium shuttle vector was to construct the 

basic plasmid backbone on which all future shuttle vectors could be based, that of pMTL4 

(Chambers et aI., 1988a). pMTL20 (Chambers et aI., 1988a; Oultram et aI., 1988), a 

derivative of pMTL4, was digested with the restriction endonuclease Haell in order to excise 

lacZa. This was performed so that lacZa could be recloned back into the shuttle vector in a 

more useful location at a later stage. Religation of the lacZa deleted plasmid yielded 

pMTL4 (see Figure 3.1). For antibiotic selection, erythromycin can be utilised as the sole 

antibiotic due to its selectivity in both E. coli and a variety of Clostridium species (Minton, 

N.P. personal communication). 

The next stage was to amplify up the erythromycin resistance marker, ermB, from pMTL20E 

(Oultram et al., 1988) using ERMF and ERMR primers. PCR amplified ermB was digested 

with EcoRV and HpaI and cloned into pMTL4 digested with EcoRV to generated pMTL-l

Em (see Figure 3.1). To reduce the overall plasmid size, useful in generating as 
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bla 

segregationally stable a plasmid as possible, and due to the fact that erythromycin can be 

used as the sole resistance marker, the ampicillin resistance marker was excised on a BspHI 

(blunt-ended) fragment. In place of bia a Gram-positive replicon was cloned. 

Haell 

pMTL20 
2476 bp 

ColEI 
RNA II 

Haell 

bla 

Haell 

bla 

Hpa l ermS EcoRV 

\~i===04 

~ 
EcoRV 

pMTL4 
2004 bp 

pMTL4-Em 
3132 bp 

ColEI 
RNA II 

ColEI 
RNA II 

ermS 

EcoRV 

Figure 3. i: Schematic representation of the cloning strategy for the construction of pMTL-t.-Em. A 

partial H ae n digest was performed on pMTL20 in order to delete out I aeZ a (such that I aeZ a could be 

cloned into a more suitable location) to generate pMTL-t. (1) . ernIB was then peR amplified [roIll 

pMTL20E and cloned into the EcoRV site of pMTU (2) to generate pMTL-t.-Em (3). 
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3.2.1.2 Choice ofreplicon and minimal region ofreplicon 

Initial studies on the genetic manipulation of clostridia for use in CDEPT involved 

C. acetobutylicum (Theys et aI., 1999) and the closely related C. beijerinckii (Minton et al., 

1995). Expression vectors utilised in these preliminary CDEPT studies were based on the 

replicon from the B. subtilis plasmid pIM13 (Monod et al., 1986), and on the E. faecalis 

plasmid pAM/31 (Clewell et at., 1974; LeBlanc and Lee, 1984), respectively. 

C. acetobutylicum NI-4082 was the initial CDEPT host of choice. Therefore, vectors based 

on the pIM 13 replicon were generated due to their high segregational stability in this strain 

(Azeddoug et al., 1992). 

pIM13 is a 2.2 kb multicopy plasmid from B. subtilis that contains two ORFs over 100 

amino acids in length. The first ORF (ermC) confers resistance to the macrolide

lincosomide-streptogramin B (MLS) antibiotics (Mahler and Halvorson, 1980). The second 

ORF constitutes a 16 kDa replication protein that has high homology to the replication 

protein of the cryptic Staphylococcus aureus plasmid pSN2. It is thought that the pSN2 

family of plasm ids, including pIMI3, replicate via asymmetric rolling-circle replication 

(Dempsey et al., 1995). 

The approximate minimal regIon of pIM13 required for replication was determined by 

performing a variety of deletions on pIM13 (Monod et al., 1986). The ermC determinant 

was not essential as deletion of the minor segment from the MboI site at position 1369 to the 

CfoI site at position 17 still yielded a stable high copy number plasmid. The smaller HindIII 

fragment from positions 882 to 1098 could also be deleted. The resultant plasmid was fully 

capable of stable replication with a high copy number. A Hinfl digest followed by Klenow 

DNA polymerase blunt-ending failed to give a functional plasmid. Finally a Bal31 digest 

from the CfoI site at position 17 showed that removal of approximately 100 bp in the 

clockwise direction still yielded a viable plasmid. Therefore, the minimal region of pIM 13 

required for replication encompasses the region from the CfoI site at position 17 to the 
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HindIII site at position 882 (Monod et al. , 1986) (see Figure 3.2). 

Klenow blunt and 
deletion fails to yield 
a functional plasmid 

D 
Hinfl Hinfl 

1 

RepL - replication 
protein 

Cfa! (17) - Bal31 
digestion for ",100 bp still 
yields a functional plasmid 

< 

Deletion stil l yields a 
stable high copy number 
vector in Bacillus subtilis. 

D 
HmdIII Hind III 

~ 
palB Macrolide res istance 

gene (ermC) 

Mba! (1369) 

Minimal reg ion of replication contained 
within the Cra! to HindIII restriction 
sites. Cra! site is dispensible 

) 

2246 bp 

Figure 3.2: Derivation of minimal region required for replication in pIMl 3. Converging arrows 

represent repeat regions. To generate the clostridial shuttle plasmid pIMPl , pUC9 digested with 

HindIII was cloned in place of the small HindIII fragment ofpIM13 (Mermelstein et aI. , 1992). 

Practically, this CfoUHindIII regIOn has been fused to the chloramphenicol resistance 

detenninant (cat) ofpC194 to yield a fully functional replicating plasmid, pBD347 (Projan et 

aI. , 1987). Additionally, the small HindIII region (bases 882 to 1098) has been deleted and 

replaced with pUC9 to yield pIMP1 (Mennelstein et aI. , 1992), a vector widely used in 

C. acetobutylicum. It has also been found that pIM13-based vectors expressing the cytokine 

mouse tumour necrosis factor alpha (mTNFa) and the prodrug converting enzyme cytosine 

deaminase (codA ) are structurally and segregationally stable in C. acetobutylicum DSM 792 

(lbeys et al. , 1999; Tbeys et al. , 2001b). 

To generate the clostridial shuttle vector, the Gram-positive replicon from pIMP 1 

(Mennelstein et aI., 1992) containing the minimal region of replication was excised by 

digestion with SmaI and FspJ and cloned into BspHI (blunt-ended) digested pMTL4-Em 

givi ng plasmid pMTL51 00 (see Figure 3.3). 
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rig ure 3.3: Schematic representation of the cloning strategy for the construction ofpMTL5100. The Gram-positive pIM13 replicon (repL) from pIMPlwas 

cloned on (1 Sma I and F<;pI fragment and cloned into pMTL4-Em in place of bla which was previously deleted on a BspHI fragment, Ole result being pMTL5 J 00. 



3.2.1.3 Shuttle expression vector construction. 

An IPTG inducible ferredoxin promoter expression cartridge has been previously 

constructed (Carter et at., 2005). The cloning of a lac operator into the ferredoxin promoter 

(Graves and Rabinowitz, 1986) generated the fac promoter. The fac promoter is flanked by 

the ferredoxin and cellulase (ceIA) transcriptional terminators. 

The ferredoxin expression cartridge was obtained from pMTL9341aLS2 (Carter et aI., 2005) 

and cloned as an NheIlSphI into the XbaI site in the multiple cloning site of pMTL20 

(Chambers et al., 1988a) to yield pMTL20:fdxTfacaLS2:ceIAT (see Figure 3.4). The 

ferredoxin promoter (jac) and antisense LuxS fragment (aLS2) was replaced with a synthetic 

optimised ferredoxin promoter (jac2) (synthesised and supplied by Entelechon GmbH on 

plasmid pCR4:fac2). XbaI and NotI digests on both plasm ids yielded 

pMTL20::ceIATfac2fdxT (see Figure 3.4). The sequence of fac2 is identical to that 

published for fac (Minton et al., 1990) apart from a two nucleotide reduction in the spacing 

between the ribosome binding site (RBS) and the A TG start codon, such that the sequence 

changed from AGGAGGTGTATTTCATATG to AGGAGGTTAGTCATATG. An NdeI 

restriction site was included 'over' the ATG start to enable optimal positioning of the gene 

encoding the prodrug converting enzymes to the promoter. Additionally, a lac operator 

sequence was included infac2 to enable IPTG induction. The orientation of the lac operator 

sequence was reversed infac2 in relation tofac. 

The entire expression cartridge was then cloned as an AatIIIBamHI (both sites blunt-ended) 

fragment into pMTL51 00 I inearised with EcoRV to give pMTL51 02 (see Figure 3.4). 
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For conjugative mobilisation of the plasmid, oriT was first PCR amplified from pMTL30 

(Williams et aI., 1990) using ORITF and ORITR primers, and cloned into pCR-Blunt II

TOPO (Invitrogen Ltd, Paisley, U.K.) to yield pEOriT. oriT was then excised on a 

SmaIlEcoRV fragment and cloned into the Pvull site ofpMTLSI02 yielding pMTLSl12 (see 

Figure 3.S). Finally to enable blue/white selection for cloning purposes lacZa was PCR 

amplified from pMTL20 using LACZALPHAF and LACZALPHAR primers to yield 

pCR2.1: :lacZalpha. lacZa was then digested with NdeIlNheI (blunt-ended) and cloned into 

pMTLS112 digested with NdeIlSmaI to give pMTLS122 (see Figure 3.6). 
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3.2.2 Conjugal transfer of shuttle vectors into C. sporogenes 

Preliminary studies were performed by J. Theys (University of Maastricht, The Netherlands) 

at the onset of the study on the differing in vitro sporulation capabilities and in vivo tumour 

colonisation potential of C. acetobutyticum NI-4082, C. acetobutylicum DSM 792, 

C. sporogenes M55, and C. sporogenes NClMB 10696. The C. acetobutyticum strains 

reached spore titres of 105_106 spores mrl. Much higher spore titres, in the region of 109_ 

1010 spores mrl, were obtained with the C. sporogenes strains. 108 spores of each clostridial 

strain were administered to tumour bearing mice. Following colonisation of the tumours, 

homogenisation of the tumour mass resulted in colony counts of up to 109 vegetative cells 

per gram tumour tissue for the C. sporogenes strains. Colonisation by the C. acetobutylicum 

strains was several-fold lower than that obtained for C. sporogenes. Utilising C. sporogenes 

M55, however, resulted in severe tumour oncolysis that compromised the reliable recording 

of tumour measurements. This made quantification of a prodrug conversion-related effect 

difficult to attain. Also, occasionally, toxicity and weight loss was observed in some 

animals. It was therefore decided to change the clostridial delivery strain to C. sporogenes 

NCIMB 10696 as the non-desirable side-effects were not observed with this strain. 

DNA transfer into C. sporogenes NCIMB 10696 has only recently been reported (Liu et at., 

2002). The electroporation method that was developed proved unreliable and irreproducible; 

no one outside of the author's laboratory could repeat the procedure (Minton, N.P. personal 

communication). One hypothesised reason for the low transformation frequency was the 

presence of extracellular endonucleases secreted by C. sporogenes (Liu et at., 2002). 

Supplementation of the electroporation buffer with a DNase inhibitor, aurintricarboxylic 

acid, did improve electroporation efficiencies up to - 1.5 x 10
2 

transform ants per microgram 

plasmid DNA. Several attempts were made in this laboratory to reproduce the protocol with 

a variety of vectors harbouring different replicons, however all attempts failed to yield any 

transformants. A new DNA transfer procedure was therefore required. 
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Conjugal transfer of plasmids may be a way of negating the action of extracellular 

endonucleases due to the direct contact of the donor and recipient mating pair via the pilus 

during the conjugation process. Conjugative transfer has proven to be a reliable method for 

the introduction of plasmid DNA from an E. coli S 17-1 donor to a variety of clostridial 

recipients, including C. acetobutylicum (Williams et al., 1990), C. botulinum type A strains 

(Bradshaw et al., 1998), and C. perfringens (Lyras and Rood, 1998). A conjugation protocol 

has previously been developed for transfer of plasm ids from an E. coli CA434 (E. coli 

HB 101 harbouring plasmid R 702) donor to a C. difficile recipient (Purdy et aI., 2002). 

Currently, there are no reports of conjugative transfer of plasmid DNA into C. sporogenes. 

Initially, pMTL5112 was introduced into E. coli CA434 via electroporation and then mated 

with C. sporogenes NCIMB 10696 following the method described by Purdy et al (2002). 

pMTL5112 was found to transfer into C. sporogenes at a frequency of approximately 

1.0 x 10-7 transconjugants per donor cell. At the time, the only alternative mobilisable 

shuttle vector available was pMTL93 0 1 (based on the replicon from the 

C. difficile plasmid pCD6) (Purdy et aI., 2002). Conjugal transfer of pMTL9301 into 

C. sporogenes occurred at a frequency of approximately 1.0 x 10-5 transconjugants per donor 

cell. 

These initial findings indicate that conjugation is an improved method for the generation of 

recombinant strains of C. sporogenes. It has also highlighted a difference in the transfer 

frequency for two different plasmid replicons. 

3.3 DISCUSSION 

At the onset of this study there were pre-existing expression shuttle vectors available for 

transfer of plasmid DNA from E. coli to clostridia. However, these vectors \\ere the 

property of CAMR, Porton Down. With the early project move from CAMR to the 
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University of Nottingham, these vectors could not be employed without becoming signatory 

to a restrictive materials transfer agreement. This imposed limitations on the consortium's 

freedom to exploit any process developed. Therefore, a new vector was constructed , 

incorporating some improved features over pre-existing plasmids. 

The Gram-negative component of the vector generated was based on the pMTL4 backbone, 

a derivative of pBR322 (Chambers et al., 1988a). This vector was chosen as in relation to 

the pUC series of p\asmids, also based on pBR322, pMTL4 is some 293 bp smaller. The 

pMTL series of plasm ids contain deletions relative to the pUC plasm ids, thus allowing more 

unique restriction sites to be generated in the multiple cloning site of lacZa. The copy 

number of pMTL4-based vectors is high as the pBR322 RNAIIRNAII region was replaced 

with the pUC equivalent. A single base change, a G to A substitution, immediately 

preceding the 5' end of the RNAI coding region in pUC is hypothesised to cause the increase 

in copy number (Chambers et al., 1988a). 

As the CDEPT host was originally planned to be C. acetobutylicum NI-4082, the plasmid 

replicon from the B. subtilis plasmid pIM13 was utilised to supply the Gram-positive 

replication functions. The minimal Gram-positive replicon from pIMPl, a derivative of 

pIM13, was fused to the E. coli vector to yield the shuttle vector pMTL51 00. 

Concurrent with this study, work was initiated on the identification of the most suitable 

CDEPT host (1. Theys, MAASTRO, University of Maastricht, The Netherlands). This 

resulted in a change of host from C. acetobutylicum NI-4082 to C. sporogenes NCIMS 

10696. As a shuttle vector had been constructed based on the pIMl3 replicon, it was opted 

to generate a conjugative shuttle vector due to the difficulties in reproducing the published 

C. sporogenes electroporation protocol. There has been a considerable amount of success in 

introducing plasmid DNA into a variety of clostridia at a high frequency by conjugation. 

The use of an E. coli donor and cloning intermediate also greatly simplified the cloning and 

conjugation processes. The pseudomonad IncP, RP4/RK2 type mobilisation/conjugation 
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system was chosen for transfer of the vectors to clostridia. This system was preferable, as it 

has been successfully used in the past to facilitate transfer of plasmid vectors into clostridia. 

Also, the availability of a RP4/RK2 compatible E. coli donor strain meant that the system 

could be utilised immediately upon construction of a suitable shuttle vector. 

Prior to transfer, the ferredoxin inducible promoter expression cartridge was cloned into the 

vector. This then enabled conjugative transfer of the vector to be used for prodrug 

converting enzyme expression to be assessed for transfer into C. sporogenes. Conjugal 

transfer of pMTL5112 could be performed reproducibly. However, in comparison to the 

pCD6-based conjugative shuttle vector pMTL930 1, transfer frequencies of pMTL5112 were 

100-fold lower. This equated to tens of colonies obtained per conjugation compared to 

approximately 1,000 colonies obtained per conjugation with pMTL9301. This difference in 

transfer frequency could be attributed to the mode of replication of the two plasmids. pIM13 

is known to replicate via a rolling circle mechanism (Projan et al., 1987), where as it is 

thought that pCD6 replicates via a theta mechanism due to the homology to the theta 

replicating plasmid pIP404 (Purdy et at., 2002). Rolling circle plasmids are in general much 

less segregationally stable than theta replicating plasm ids, and it is this reduced segregational 

stability that could be affecting transfer frequency. This can be attributed to the lack of 

antibiotic selective pressure during the seven-hour conjugative mating process. During this 

time, a significant proportion of the cells will loose the plasmid dependant on the 

segregational stability of the replicon. The plasmid copy number of the different plasmids is 

not known, yet cannot be discounted as another factor influencing conjugative transfer 

frequencies. 

Even though the transfer frequency of the pIM 13 based conjugative shuttle vector is not as 

high as the other replicon studied, pMTL5112 appeared to be structurally stable. For this 

reason the pIM 13-based plasmid replication functions were not changed. The segregational 

stability of alternative replicons could be studied at a later date, and if necessary a more 

stable replicon cloned. 
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4.1 INTRODUCTION 

In the preVIOUS chapter, a shuttle vector based on the B. subtilis plasmid pIM 13 \\ as 

constructed. An expression shuttle vector was then generated by insertion of an expression 

'cartridge' based on the ferredoxin promoter from C. pasteurianum. Once the plasmid was 

generated, a conjugal transfer method was developed and transfer of two different vectors, 

based on different Gram-positive replicons, into C. sporogenes was demonstrated. 

In this chapter the isolation, cloning, and expression of two prodrug converting enzymes will 

be described. These are carboxypeptidase G2 from Variovorax paradoxus ATCC 25301 and 

nitroreductase from Haemophilus injluenzae Rd. Carboxypeptidase 02 from V paradoxus is 

currently utilised in other DEPT strategies. The H injluenzae Rd nitroreductase is one of 

several novel nitroreductases isolated and characterised previously (Anlezark, O. personal 

communication). Kinetic and cell cytotoxicity studies of the novel enzymes, identified H 

injluenzae NTR (HinNTR) to be the most effective in cell cytotoxicity assays. Kinetic 

studies on the conversion of CB 1954 identified that HinNTR only produces the toxic 4-

hydroxylamine form of the drug. HinNTR has a comparable Km (690 )lM) compared to 

NfnB (682 )lM), but a significantly higher Kcat of 56.2 S-l compared to a Kcat of 6 S-l for 

NfnB. It was therefore of interest to over-express this novel nitroreductase to see if it results 

in a significant anti-tumour effect. 

4.2 RESULTS 

4.2.1 Initial cloning of prodrug converting enzymes 

4.2.1.1 Carboxypeptidase G2 (CPG2) 

Gram-negative signal peptides are generally shorter compared to Oram-positi\'e signal 
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peptides (Van Wely et al., 2001). Thus, proteins from Gram-negative bacteria will not be 

easily secreted in Gram-positive bacteria. For efficient secretion of Gram-negati\e proteins 

in a Gram-positive host, a Gram-positive secretion signal needs to be fused to the protein. 

As such, the first stage in cloning and over-expressing CPG2 was to change the CPG2 signal 

peptide for one known to function in clostridia. 

The entire CPG2 gene, including the native signal sequence, from V paradox us ATCC 

25301 was initially PCR amplified from chromosomal DNA using primers CPG2F and 

CPG2R and cloned into pCR2.1 TOPO to yield pCR2.1 ::CPG2. The 5' region corresponding 

to the mature peptide was then amplified from pCR2.1: :CPG2 in order to be fused to the 

endoglucanase A (EglA) signal peptide from Clostridium saccharobutylicum P262. For ease 

of cloning, the unique XmaI restriction site in CPG2 was utilised, thus minimising the region 

that would need to be re-sequenced. Primer pairs EGLASOEF/EGLASOER were used to 

amplify up the eglA signal sequence from plasmid pHZ117, creating an NdeI restriction site 

over the ATG start codon of eglA signal sequence. The 5' end of EGLASOER is 

homologous to the 5' end of cleaved CPG2 sequence to enable a SOEing PCR fusion of the 

two components. PCR primers CPG2S0EFICPG2S0ER were used to amplify the 5' portion 

of CPG2, up to and including the unique XmaI restriction site. The amplified products were 

combined and a second round of SOEing PCR amplification was performed with the 

flanking primers. The resulting PCR amplicon was cloned into pCR2.1 TOPO to yield 

pCR2.1::egIASSCPG2S0E (see Figure 4.1). To fuse the two ends ofCPG2 together, a three 

way ligation was performed between pMTL21 digested with EcoRI, the 5' end of CPG2 

fused to the eglA signal peptide digested with EcoRI and XmaI, and the 3' end of CPG2 

digested out of pCR2.1 ::CPG2 on an XmaIlEcoRI fragment. The resultant plasmid, 

pMTL21: :egIASSCPG2, contained a fully functional copy of CPG2 transcribed by the lac 

promoter. CPG2 activity can be screened for by plating on media containing folate. CPG2 

converts folate to glutamate and the insoluble pteroate. CPG2 production is \isualised as a 

precipitated yellow halo of pteroate surrounding colonies on solid media due t\) the 

91 



extracellular secretion of CPG2 (Minton et al., 1983). The secretion of functional CPG2 

from pMTL21 ::egIASSCPG2 was confirmed on folate containing media (see Appendix II for 

DNA and protein sequence of CPG2). 
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Figure 4.1: Schematic representation of SOEing PCR fusion of the eglA signal sequence to the 5' end 

of cleaved CPG2 to generate egIASSCPG2S0E. A first round of PCR was performed with primers 

1 +2 and 3+4, (primer 2 has a tail complementary to the 5' end of cleaved CPG2). A second round of 

PCR with primers 1 and 4 was performed to generate the fusion product. S.S. = signal sequence. 

For potentially improved expressIOn, a synthetic verSIon of CPG2 (CPG2-synth) was 

synthesised by Entelechon GmBH based on the amino acid sequence of GenBank entry 

A06774 (see Appendix II for DNA and protein sequence of CPG2-synth). The codon usage 

of CPGi was optimised to the C. acetobutylicum codon usage table, the organism of choice 

for the delivery of prodrug converting enzymes at the time of the design of the gene. 

Unexpectedly, E. coli harbouring the plasmid supplied, pCR4-TOPO::CPG2-synth, did not 

produce the typical yellow halo seen on folate containing media. The presence of p-

lactamase from the vector encoded bla gene is known to dramatically effect the secretion (lj' 
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CPG2, possible due to the f3-lactamase competing with CPG2 for translocation across the 

cell membrane (Chambers et al., 1988b). CPG2-synth was therefore cloned into pMTL 1010 

(a tetracycline resistance encoding plasmid, with expression of the gene of interest driven by 

the lac promoter). However, E. coli recombinants harbouring pMTL1010::CPG2-synth still 

failed to show the expected yellow halo on folate containing media. BLAST searching the 

protein sequence used to generate CPG2-synth highlighted the presence of two GenBank 

entries for CPG2, accession numbers A06774 and M12599. Alignment of the two GenBank 

entries with CPG2-synth showed a single amino acid difference at position 418 where an 

arginine was present in CPG2-synth and A06774 and an alanine present in M12599. As the 

synthetic CPG2 sequence encodes a non-functional protein it was assumed that the M 12599 

submission was in fact the correct sequence. To ascertain if the difference at position 418 

caused the observed lack of activity of CPG2-synth, the region containing the difference was 

changed to the alternative sequence. 

In order to correct the amino acid difference, two oligonucleotides, CPG2correction 1 and 

CPG2correction2, were synthesised with the correct DNA sequence such that when ligated 

together left overhangs at the 5' and 3' ends which are complementary to the AvrIl and Pst! 

restriction sites (see Figure 4.2). The oligos were ligated and cloned into the AvrIl/Pst! sites 

of pMTLIOIO::CPG2-synth to yield pMTL1010::CPG2-synthv2. The sequence of the 

resultant clones was confirmed by sequencing. Screening for the production of CPG2 on 

folate containing media gave the characteristic yellow coloration expected. 
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Original synthetic CPG2 sequence - 3' end of GenBank entry A06774 

ATI !} 
GTTGATATATCAGCTATACf~~.~GAGATTATATATGGCTAGGAGATTGATAATGGATCTAGGT 
CAACTATATAGTCGATATGGATCCTCTAATATATACCGATCCTCTAACTATTACCTAGAT CCA 

V 0 I S A I P R R L Y M A B R LI M 0 L G 

GCTGGTAAATAACTGCAG 
CGACCATTTATTGACGT¢ 

A G K pIt I 

Corrected synthetic CPG2 sequence - 3' end correct sequence based on GenBank 
submission (M12S99) 

Avr11 

! 
GTTGATATATCAGCTATA TAGG ~ 

CAACTATATAGTCGATATGGATd 
v 0 

A G 

I S A I 

r .. "'~ ~ CTGCAG 

C 
K 

pItl 

P R 

!} 
vc.. 

R L Y M A ~ R L I M 0 L G 

Figure 4. 2: Correction of CPG2 synthetic by cloning an oligo in between the AvrIl and PstI restriction 

enzyme sites. Incorrect region excised on an AvrIVPstI fragment and the ligated oligo cloned in its 

place. DNA sequence of the top strand primer (CPG2correctionl) is highlighted in green, DNA 

sequence of the bottom strand primer (CPG2correction2) is shown in orange. 

4.2.1. 2 Nitroreductase - HinNTR 

The nitroreductase gene from H. injluenzae KW20 (Rd) (HinNTR) (GenBank Access ion 

number YP _ 249310) was PCR amplified from H injluenzae KW20 (Rd) chromosomal DN A 

(supplied by P . Langford, Imperial College London, London. U.K.). PCR primers 

HlNNTRF and HINNTRR were used to introduce an NdeI restriction site over the A TG start 

codon and StuVPsII sites at the 3' end of the gene after the stop codon. Once amplified. the , 

PCR product was cloned into pCR2 . ITOPO. A sequence perfect clone \\as generated 



designated pCR2.1 ::HinNTR (see Appendix II for DNA and protein sequence of HinNTR). 

A synthetic verSIOn of the gene (HinNTR-synth) was also generated (synthesised by 

Entelechon GmbH) in which the triplet codons were altered such that they were optimised to 

the C. acetobutylicum A TCC 824 codon usage table. Restriction sites were added to the 

5' and 3' end of the gene to aid cloning, namely, an NdeI site over the ATG start codon and a 

PstI site after the stop codon, the plasmid containing the synthetic gene was designated 

pCR4::HinNTR-synth (see Appendix II for DNA and protein sequence of HinNTR-synth). 

4.2.2 Cloning prodrug converting enzymes into the expression vector 

4.2.2.1 Carboxypeptidase G2 (CPG2) 

The wild type sequence CPG2 was excised from pMTL21: :egIASSCPG2 on an NdeIlEcoRI 

(blunt-ended) fragment. The synthetic sequence CPG2 was excised on an NdeIlPstI (blunt

ended) fragment from pMTLI010::CPG2-synthv2. Due to the phenotypic indicator ofCPG2 

expression, the expression vector pMTL5112 was used as there is no need for blue/white 

selection of recombinant E. coli. pMTL5112 was digested with NdeI and SmaI and the 

CPG2 wild type and synthetic genes directionally ligated to pMTL5112 to generate 

pMTL5112::CPG2 and pMTL5122::CPG2-synth. 

4.2.2.2 Nitroreductase - HinNTR 

For cloning of the HinNTR wild type and synthetic genes, the over-expressIOn vector 

pMTL5122 was used due to the presence of LacZa enabling blue/white selection of putative 

ligation transformants. The wild-type HinNTR was excised from pCR2.1 ::HinNTR on an 

NdeIlStuI fragment. The synthetic HinNTR was isolated from pCR4::HinNTR-synth as an 

NdeIlPstI (blunt-ended) fragment. Several attempts were made to clone the genes directly. 
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However, any clones resulting from the ligation contained severe rearrangements or 

insertions as seen by the restriction enzyme profile compared to the expected profile. 

An alternative cloning strategy was therefore tested. The nitroreductases were digested from 

the same vectors as before as EcoRl blunt-ended fragments. These were then cloned into 

pMTL5122 digested with SmaI, the transformations being performed in the lacfl strain of 

E. coli, E. coli TopiO F'. The Top 10 F' strain over-expresses Lad, which binds to the lac 

operator present withinfac2, the result being tighter repression of transcription from thefac2 

promoter. Correct clones were then obtained with the nitroreductases in the correct 

orientation relative to the fac2 promoter. An NdeI deletion was then performed to delete the 

extraneous DNA between the NdeI restriction site of fac2 and that of the nitroreductase, 

again using E. coli Top 10 F' cells. Using this strategy, correct clones were obtained for both 

HinNTR genes, the plasm ids designated pMTL5122::HinNTR and pMTL5122::HinNTR

synth. 

4.2.3 Over-expression of prodrug converting enzymes in E. coli 

4.2.3.1 Carboxypeptidase G2 

When plasmids pMTL5112::CPG2 and pMTL5112::CPG2-synth were transformed into both 

E. coli TOP 1 0 and the conjugation donor E. coli CA434, the expression of carboxypeptidase 

G2 was visualised by the phenotypic yeIlow halo surrounding colonies on folate containing 

media. Analysis of culture supernatants and the soluble and insoluble fraction of ceIl lysates 

by SDS-PAGE indicated no major over-expression of a 41.4 kDa protein corresponding to 

the size of mature CPG2, or of the 45.8 kDa preprotein (data not shown). However, CPG2 

enzyme assays on the soluble and insoluble fraction of lysates, and on supernatants from 8 

hour cultures showed expression of CPG2 in the soluble fraction of the Iysates. The 

synthetic CPG2 was produced to a much higher level compared to the wild-type gene (see 
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Figure 4.3). It has previously been found that the wild type CPG2 does not express well in 

E. coli, possibly due to the high G+C content of the V paradoxus derived gene (Minton. 

N.P. personal communication). One potential reason for the lack of expression in the E. coli 

culture supernatant is due to the generally lower secretion of peptides in Gram-negative 

bacteria compared to Gram-positive bacteria. Secondly, the EglA signal peptide employed 

for secretion is from a clostridial species and may well not be recognised efficientlv ill 

E. coli. 

CPG2 methotrexate assay on recombinant E. coli CA434 
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Figure 4.3: CPG2 methotrexate assay on E. coli CA434 donors used for conjugation into 

C. sporogenes NCIMB 10696. CPG2 activity shown in Units per mg protein of lysate (soluble 

fraction), supernatant, or precipitated proteins (i.e. insoluble fraction). 

4.2.3.2 Nitroreductase - HinNTR 

The wild type and synthetic sequence HinNTR bearing shuttle plasmids were transformed 

. t th . t ' donor E coli CA434 and the levels of nitroreduetase overproduced in In 0 e conJuga Ion . 
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the lysate of the soluble fraction assessed by SDS-PAGE and menadione reductase assay . 

Cultures were harvested 24 hours after inoculation at an OD600 of approximately 2.0 and the 

cells lysed. The lysates of the soluble fraction were nonnalised to the same OD600 prior to 

analysis. SDS-PAGE of the lysates showed that there was over-expression of a protein of 

25 .2 kDa when the lysates of the HinNTR over-expressing E coli were compared to a vector 

only negative control lysate (see Figure 4.4) . Menadione reductase assay on the same lysates 

indicated that a nitroreductase, presumably HinNTR, was over-expressed to a level 

corresponding to 3-fold over background for the wild type HinNTR and 4.5-fold for the 

synthetic HinNTR (see Figure 4.4). Background levels of nitroreductase are particularly 

high in E coli presumably due to the endogenous nitroreductase, NfuB. 
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Figure 4. 4: SDS-PAGE and menadione reductase assay of overnight culture soluble fraction Iysates of 

E coli CA434 harbouring pMTL5122 ::HinNTR pMTL5 122::HinNfR-synth or pMTL5122 (negative 

control). SDS-PAGE gel: M = BioRad Broad range protein markers, 1 pMTL5122 ::HinNTR (2 5.2 

kDa), 2 = pMfL5122: :HinNTR-synth (25.2 kDa). 3 = pMTL5122 (negative control). Arrow indicates 

presumptive HinNfR over-expressed protein. 
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Based on these findings that the vectors utilised for over-expression of CPG2 and HinNTR 

are functional in E. coli, studies on the over-expression in C. sporogenes were initiated. 

4.2.4 Over-expression of prodrug converting enzymes in C. sporogenes 

4.2.4.1 Carboxypeptidase G2 

Conjugation ofpMTL5112::CPG2 and pMTLSI22::CPG2-synth into C. sporogenes NCIMB 

10696 yielded transconjugants that secreted what appeared to be CPG2 due to a yellow 

coloration on folate containing media. The colouration was only present on the 10° dilution 

of the mating mix and was not observed on a 10-1 dilution of the conjugation mix. Passage 

of recombinants on selective media supplemented with folate resulted in the loss of yellow 

colouration. It was therefore assumed that the yellow coloration was possibly due to the 

E. coli donor expressed copy of CPG2 being present on the conjugation 'slurry' when the 

transconjugants were first plated out. The lack of expression was further confirmed by a 

lack of over-expressed protein in both the lysates of the soluble fraction and supernatants of 

4 hand 8 h culture samples by SDS-PAGE, and by enzyme assay of lysates of the soluble 

fraction and supernatants (data not shown). Plasm ids were checked for functionality, 

deletions/insertions, and/or rearrangements by isolation of the plasm ids from the 

C. sporogenes recombinants. Purified clostridial derived plasm ids were retransformed into 

E. coli TOP 10. Restriction enzyme profiles of the plasm ids had not altered compared to the 

parent plasm ids and plating of E. coli TOP 1 0 harbouring the clostridial derived plasm ids 

gave the characteristic yellow halo on folate containing selective media. 

4.2.4.2 Nitroreductase - HinNTR 

The nitroreductase over-expression vectors pMTLSI22::HinNTR and pMTLSI22::HinNTR

synth were conjugated into C. sporogenes NClMB 10696. Clones were \erified hy 
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retransforming plasmids derived from C sporogenes recombinants back into E. coli . Clones 

of E. coli that were correct by restriction digest were then grown overnight and h,'sates of th _ e 

soluble fraction screened by SDS-PAGE. A band of the expected size (25.2 kDa) was noted 

indicting that the vector was still functional and expressed HinNTR to a high level in E. coli 

(see Figure 4.5). 
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Figure 4.5: SDS-PAGE analysis of HinNTR recombinants in E. coli CA434. M = BioRad Broad 

range protein markers, lane 1 = pMTL5122 (negative control), lane 2 = pMTL5122::HinNTR, lane 3 

= pMTL5122: :HinNTR-synth. Arrow represents location of HinNTR. 

Fol1owing successful identification of suitable erythromycin resistant recombinant clones of 

C sporogenes, expression of HinNTR was monitored by menadione assay relative to a 

negative control background (see Figure 4.6) . Maximal expression was observed at the 

shoulder of exponential and stationary phase. corresponding to 6 hours post inoculation. \\;th 

levels equivalent to 3-fold over background levels of endogenous nitroreductase acti it\·. 
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Analysis of the lysates of the soluble fraction that gave the highest expression by assay did 

not give the expected over-expressed band when visualised by SDS-PAGE (data not sho\-\l1). 
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Figure 4.6: Menadione reductase assay (results represented by the bars on the graph) on 

C. sporogenes lysates collected at 4 h, 6 h, 8 h, and 24 h. A growth curve (represented by the lines on 

the graph) was also perfonned to verify that the presence of the over-expression plasmid in the host 

was not affecting growth. 

RT-PCR was used to detennine whether the relatively low-level expression of HinNTR over 

background levels in C sp orogenes was due to a transcriptional or translational problem . 

RNA was harvested and purified from a 6 hour culture (OD600 = -1.5) . Following 

quantification of the RNA, RT-PCR was perfonned using primers HINWTRTF and 

HINWTRTR for the wild type HinNTR and primers HINSYNTHRTF and HINSYNTHRTR 

for the synthetic H inNTR. Agarose gel electrophoresis of the RT -PCR products showed a 

product of the expected size (663 bp) for the RNA samples and the DNA positive control 

(see Figure 4.7). The negative controls, RNA with no RT and water with no RT pro cd 

there was no DNA contamination of the RNA. The band intensities were of similar strength 
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indicating that the HinNTR RNA was of sufficient proportion of the total RNA isolated. 

Figure 4. 7: RT-PCR on HinNTR expressing C. sporogenes NCTh1B 10696. M = NEB 2 log DNA 

ladder, 1 = HinNTR RNA + RT-PCR, 2 = HinNTR-synth RNA + RT-PCR, 3 = HinNTR DNA + Taq. 

4 = HinNTR-synth DNA + Taq, 5 = HinNTR RNA + Taq (negative control), 6 = HinNTR-synth RNA 

+ Taq (negative control), 7 = negative control (H20 + HINWTRTF+lllNWTRTR primers), 8 = 

negative control (H20 + HINSYNTIIRTF+HINSYNTHRTR primers). 

4.2.5 In VIVO anti-tumour testing of C sporogenes NCIMB 10696 expressmg 

HinNTR-synth 

Having identified a level of expression from HinNTR-synth 3-fold above the background 

level provided by genome encoded nitroreductase expression, it was of interest to test this 

first generation strain in an in vivo model. All of the work described in this section (4.2.5) 

was performed by 1. Theys, MAASTRO, University of Maastricht, The Netherlands . It is 

included here for completeness. 

4.2.5.1 Development of an in vivo model 

Previous in vivo work at MAASTRO focused on the use of the rat rhabdomyosarcoma 

model. However, it was decided early on in the project to change to a mouse animal model. 

in particular the immunodeficient nuJnu mouse, due to more celJ lines and cell li nes of 
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human origin being available for the model. This would make it more suitable to study anti

tumoural effects on a variety of cancer cells in a later stage. 

Initially, toxicity of C. sporogenes NCIMB 10696 spores was assessed in vivo by 

intravenous injection of 108 spores (in a total volume of 100 /11 PBS in the tail vein of nu/nu 

mice) in a series of non-tumour bearing nu/nu mice. The animals showed no signs of toxicity 

and were normally active throughout the entire follow-up period. 

To test the tumour colonisation capability of C. sporogenes, HCTl16 colon carcinoma cells 

were xenografted into nu/nu mice. Growth of the tumours was followed and three weeks 

post injection, when the tumours had grown to approximately 400 mm3
, animals were 

injected via the tail vein with either 5 x 107 or 5 x 108 spores of C. sporogenes NelMB 

10696. After 8 days, the tumours were excised from euthanized animals and the bacterial 

cells quantified. Examination of the tumours revealed that up to 109 cfu of C. sporogenes 

were obtained per gram of tumour tissue. Ample tumour colonisation occurred using the 

lower spore titre, therefore the following experiments were performed using 107 spores. 

4.2.5.2 In vivo anti-tumour assessment of HinNTR-synth expressing C. sporogenes 

- single cycle treatment 

Having identified the supenor colonisation capability of C. sporogenes, the ability of 

HinNTR-synth recombinant C. sporogenes NCIMB 10696 to elicit an anti-tumour activity 

was assessed. 

Spores of recombinant C. sporogenes NCIMB 10696 were systemically injected into nu/nu 

mice, once the xenografted HCTl16 colorectal carcinoma cells had developed to an average 

tumour volume of 400 mm3
. Colonisation of the tumours was allowed to occur for 5 days 

prior to CB 1954 prodrug administration. As controls, animals were either left untreated 

receiving no spores or prodrug, received CB 1954 prodrug alone from day 5 (at a 

concentration of 15 mg kg-I, intraperitonially for 5 days). or recombinant spores (at a 
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concentration of 5 x 10
7 

spores in a volume of 1 00~1 PBS via the tail vein) followed by 

prodrug vehicle only on day 5 (sham treatment). Treatment and growth of the tumours were 

measured by recording tumour size using callipers and recording the body weight of the 

mice. A level of control was also added to the experiment to quantitatively evaluate the 

approach and distinguish between effects due to administration of the spores and the effects 

resulting from Clostridium-mediated prodrug conversion, by utilising an antibiotic controlled 

experiment. The daily prodrug injections were followed by a treatment with the antibiotic 

Flagyl® (200 mg kg-I, two times a day for nine days), which has been previously shown to 

eradicate clostridial spores from tumours (Theys et al., 2001 b). 

Tumour colonization following recombinant spore administration, but prior to the onset of 

antibiotic treatment, was quantified by performing dilution series of randomly selected 

tumours from spore-treated animals. All tumours screened showed colonization levels of 

108 _109 cfu g-l tumour tissue. To confirm the specificity of the system, normal tissues were 

also screened for spores, and as expected no spores could be detected. CB 1954 

administration alone was found to have no effect on tumour volumes. Administration of 

spores alone caused a tumour growth delay (p=0.09, Student's t-test) (see Figure 4.8 (A)), 

which is presumed to be a consequence of moderate oncolysis and the appearance of 

hemorrhagic necrosis. 

The most apparent effect in vivo was found when recombinant spores were combined with 

CB 1954 administration. Following prodrug injection, the tumour growth rate reduced to a 

near static level with no significant tumour growth occurring over the 25 day study. 

Statistical analysis of the anti-tumour effect highlighted that the increase was significant 

when compared to the sham control (p=0.016, Student's t-test) (see Figure 4.8 (A)). 

During the course of this pilot study, the evolution of the animals' body weight was followed 

as an indicator of the toxicity of the treatment. The data obtained indicated that the initial 

reduction in weight was only transient, and this weight loss was reversible with reversion to 
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normal body weight after 25 days (see Figure 4.8 (B)). 
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Figure 4.8: Tumour volume reduction following systemic administration of HinNTR-syntJl 

recombinant C. sporogenes spores to nu/nu mice bearing HCTl16 colon carcinoma cell line tumolUS. 

(A) Tumour growth as monitored after one cycle of recombinant C. sporogenes spore trcaancnt with 

CBl954 prodrug (_) or drug vehicle only (sham) (A ) treatment. Control aninlaJs received no 

treaanent (. ). (B) Representative body weight evolution dtuing a treatment cycle of prodrug (. ) and 
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sham treated ( .. ) mice. Data was obtained from at least 5 mice per group. Figures kindly provided 

by 1. Theys, MAASTRO, University of Maastricht, The Netherlands. 

4.2.5.3 In vivo anti-tumour assessment of HinNTR-synth expressing C. sporogenes 

- repeated cycle treatment 

Subsequently, it was of interest to see if repeated treatment cycles could be perfonned as this 

more closely reflects the actual clinical setting where chemotherapy is given in mUltiple 

cycles to allow recovery of the patient. To evaluate this, the basic treatment cycle as 

outlined above was followed by a week long recovery period, which was then followed by a 

second and third cycle of treatment identical to the first cycle. Sham treated animals only 

received two cycles as the tumours grew to a size that necessitated killing of the animals 

prior to a third cycle of treatment. 

The tumour volume data obtained shows a reduction in tumour growth with the sham 

treatment (see Figure 4.9). This highlights that not only can the spores genninate and 

effectively re-colonise the tumour to give an anti-tumour effect, but also means that the 

tumour microenvironment did not change dramatically following the first treatment cycle 

such that re-colonisation could not occur. 

Repeated treatment with the recombinant spores and CB 1954 prodrug resulted in a more 

significant anti-tumour effect with the tumour only doubling in size over the 70 day 

treatment, compared to the HCT116 control which doubled every 7 days and the sham 

treatment which doubled every 20 days (see Figure 4.9). This reduction in tumour growth 

for the recombinant spore treatment allowed application of an additional third treatment 

cycle. Throughout the three cycles, the treatment resulted in sustained growth delay effects. 
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Figure 4.9: Anti-tumour effect following repeated treatment cycles of HinNTR-syntll recombinant 

C. sporogenes in combination with CB1954 administration (_) or drug vehicle only (sham) (A) 

treatment. Control animals received no treatment (. ). Figure kindly provided by J. Theys, 

MAASTRO, University of Maastricht, The Netherlands. 

4.3 DISCUSSION 

The experiments presented in this chapter demonstrate that C sporogenes NCIMB 10696 

can be utilised for the expression of prodrug converting enzymes, in particular the 

nitroreductase from H. injluenzae. E~'Pression of CPG2 was, however, not as promising. 

CPG2 enzyme activity was detectable in the soluble fraction of E. coli Iysates but not in th e 
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culture supernatant probably due to the general difficulties associated with secreting proteins 

III Gram-negative bacteria. Expression of CPG2 was not obtained in C. sporogenes. 

C. sporogenes is classified as a proteolytic member of the genus Clostridium, with high 

levels of extracellular proteases detectable after exponential growth (Allison and 

MacFarlane, 1990). Proteolysis of CPG2 by C. sporogenes cannot be excluded as a factor 

contributing to the lack of expression. Indeed, crude experiments in which late exponential 

C. sporogenes culture supernatant was incubated with purified CPG2 resulted in a marked 

decrease in enzyme activity (data not shown). Due to time constraints and the potential for 

proteolysis of secreted CPG2, efforts were focused on nitroreductase which being both 

intracellular and smaller than CPG2 may be more easily over produced. 

Cloning of both the native sequence and synthetic HinNTR into pMTL5122 resulted in over

expression in E. coli, which could be visualised by SDS-P AGE. However, once conjugated 

into C. sporogenes, increased expression levels could only be detected by enzyme assay. No 

over-expressed band was visible by SDS-PAGE of recombinant cell soluble fraction Iysates. 

RT-PCR confirmed that HinNTR mRNA was being produced. Therefore, the low level of 

expression as visualised by SDS-PAGE could be due to translational problems such as sub 

optimal codon usage. 

Nitroreductase recombinant spores were delivered systemically to immunodeficient nu/nu 

mice harbouring xenografted HCT116 colorectal carcinoma cells. Delivery of the 

recombinant spores resulted in a clear sustained growth delay when combined with CB 1954 

prodrug. Administration of spores alone caused a significant tumour growth delay that can 

be attributed to moderate oncolysis and appearance of haemorrhagic necrosis. This 

observation foHowing spore administration is seen when using other proteolytic clostridial 

species such as C. novyii-NT and C. sporogenes M55. However, when combined with 

CB 1954 prodrug administration, the anti-tumour effect significantly increases, 

demonstrating the feasibility of using this process. Interestingly, the clostridial spores could 

also be delivered in multiple cycles, a scenario which more closely relates to clinical 
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chemotherapy regimes. As immunodeficient mice were used in the study, no conclusions 

can be drawn as to the immune response following multiple spore doses. 

Since such an outstanding anti-tumour response is seen with both single and repeated cycles, 

it must mean that not only the hypoxic but also aerobic cells are being killed as a result of a 

bystander effect that is contributing to the effect seen. 

Recently, an endogenous nitroreductase activity has been detected in several clostridial 

species (Theys, J. personal communication). Incubation of clostridial lysates with CB 1954 

results in conversion of CB 1954 to the toxic drug as visualised by TLC. Also, incubation of 

CB 1954 with non-toxic concentrations of clostridial lysate decreased the CB 1954 LDso 

concentration required to kill HCTl16 colorectal carcinoma cells 20 to 40-fold depending on 

the concentration of clostridial lysate. Therefore the effect of endogenous nitroreductase 

activity cannot be discounted for the effect seen in vivo. 

The only other published significant anti-tumour effect observed with recombinant 

C. sporogenes was utilising the prodrug converting enzyme cytosine deaminase (CodA) in 

combination with the prodrug 5-FC (Liu et at., 2002). These studies followed tumour 

growth for 11 days following a single intravenous injection of recombinant C. sporogenes 

spores into syngenic C3H1Km mice harbouring transplanted SCCVII tumours. A tumour 

growth delay was observed, but resistance to the toxic drug 5-FU was observed after 7 days 

of daily injections of 5-FC, after which time tumour growth paralleled normal non-treated 

control tumour growth. In comparison to the data presented in this chapter where a 

significant growth delay is seen, the growth delay effect reported by Liu et a!. was transient. 

This is attributed to the cancer cells developing resistance to the drug, a scenario not seen 

with the nitroreductase system developed here. 

The potential of combining vascular targeting agents with enzyme prodrllg therapy lIsmg 

engineered C. sporogenes has now been demonstrated (Liu ef a!., 2003). For these studies 
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the recombinant plasmids carrying nfnB or codA that had previously been introduced into 

saccharolytic clostridia (Fox et al., 1996; Lemmon et al., 1997) were transformed into 

C. sporogenes NClMB 10696. The resultant clones were then used in a therapy experiment 

in which the vascular targeting agent DMXAA (5,6 dimethylxantheone-4-acetic acid) was 

administered some 4 hours after spore injection. DMXAA was found to elicit a 4-fold 

increase in the extent of tumour colonisation. Complete tumour regression was achieved 

with both subcutaneously transplanted murine SCCVII and human HT29 carcinomas in C3H 

and nude mice, respectively. These experiments also evaluated the benefit of using more 

soluble derivatives of the prodrug CB 1954. One of the prodrugs tested (SN24927) was 

shown to cause more effective tumour regression in combination with clostridial cells 

overproducing nitroreductase. This result further supports the findings of Wilson et al 

(2002) where SN24927 was found to provide curative activity against WiDr tumours using a 

multilayer tissue culture model. However, since the presentation of this data three years ago, 

no further data has been presented by this group on nitroreductase expressing recombinant 

C. sporogenes. 

Despite the encouraging results, at this stage it is not entirely clear as to the contribution of 

HinNTR to the observed in vivo effect due to the relatively low level of expression. This 

could be clarified by bringing about a significant improvement to expression levels. 
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5.1 INTRODUCTION 

At this stage of the study, the level of HinNTR production observed was disappointing. 

When it is considered that the ultimate aim of CDEPT is to have the prodrug converting 

enzyme integrated into the genome as a single copy this would further reduce expression 

levels. It became apparent that expression would need to be improved. 

One factor that could affect expression levels is the segregational stability of the plasmid 

system utilised. An analysis of the segregational stability of the over-expression vector was 

therefore undertaken. The relative strength of the promoter used to drive expression of the 

prodrug converting enzyme is also a factor that may be effecting expression. Therefore, in 

parallel with the plasmid segregational stability study, the possibility of utilising an 

alternative promoter to fac2 was investigated. 

It is possible that there are specific gene related effects hampering expression. To study this, 

it was of interest to see if NfnB which has previously been expressed to high levels in 

C. beijerinckii (Minton et al., 1995) and C. sporogenes (Liu et al., 2003), could be expressed 

utilising the original expression vector pMTL5122. 

Finally, codon usage is also known to influence expression of genes especially in bacteria 

with genomes of extreme high or low G+C content. Therefore, the currently available 

nitroreductases were analysed for codon usage. Based on this, new synthetic genes were 

generated with the codon usage optimised to the C. tetani codon usage table. A study of the 

completed clostridial genome codon usage tables with the preliminary data available for 

C. botulinum and C. sporogenes identified that the C. tetani codon usage table proved to be 

the closest match. Once synthesised, the expression of these genes was assessed. 
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5.2 RESULTS 

5.2.1 Segregational stability of pMTLS122 

To assess the segregational stability of pMTLS122 cells of C. sporogenes NCIMB 10696 

harbouring the plasmid were grown non-selectively for 48 hours, passaging into fresh non

selective media every 12 hours. At the end of the passaging regime the cells had undergone 

the equivalent of 48 generations. The cells were then serially diluted and plated out onto 

non-selective media. Following overnight growth, 50 colonies were then picked and 

streaked out onto both non-selective and selective media. No growth was obtained on the 

antibiotic-containing selective media, relative to a positive control streak. Therefore, it can 

be assumed that less than 2% of the cell population are retaining pMTLS122. This indicted 

the segregational instability of pMTLS122 and prompted a further study of alternative 

clostridial replicons. 

5.2.2 Segregational stability of alternative clostridial replicons 

5.2.2.1 A novel clostridial plasmid 

Indigenous plasmids are inherently segregationally stable in their native host. Recently, a 

cryptic indigenous plasmid designated pBP 1 has been identified in C. botulinum NCTC 2916 

(Davis, 1998). Due to the close phylogenetic relation of C. botulinum to C. sporogenes 

(Collins et ai., 1994) the potential of utilising this plasmid was studied. 

Analysis of pBPl translated DNA sequences and comparison to the available SwissProt 

database identified 8 ORF's of which a role in plasmid replication could be attributed to 

ORF 1 (see Figure S.l). ORF 1 was found to bear a high degree of similarity with a group of 

topoisomerases with replicative origin-specific activities. This class of proteins are 
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implicated in initiating the replication of plasmids whose members are broadly represented 

by pC 194, a plasmid which replicates via a rolling circle mechanism (Novick, 1989) . An 

alignment of several replication proteins most similar to ORF 1 demonstrated that the 

primary sequence of ORF 1 essentially confirms to the five conserved regions described fo r 

this class of replication protein (N oirot -Gros et al. , 1994). 

ORF 2 

Replication 
protein 

ORF 3 

Xbal 

ori 

Hind II I 

pBP1 
5927 bp 

Hind II I 

ORF4 

ORF 8 

ORF 5 

c...--ORF 6 

'r---ORF 7 

Figure 5. J: Schematic representation of pBPI . The location of all identified ORF's are highlighted as 

well as the replication protein and HindIIIlXbaI restriction sites used for cloning. 

Plasmid origins of replication had also been identified and two inverted repeats are found 5' 

to the putative replication protein . One of these occurs 28 bp before a heptameric moti f 

described as a double - stranded origin nick site (dso) , characteristic of the pC 194 group of 

plasmids (Seery et of. , 1993). Indeed, the occurrence of the combinati on of an inverted 
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repeat, dso, and pC 194 type replication protein are suggestive features that this type of 

extrachromosomal element is a plasmid which replicates via a rolling circle mechanism. A 

second region of dyad symmetry is found between the dso and replication protein. Such 

features are found in other examples of this class of plasmid (Devine et aI., 1989; Josson et 

al., 1990) and may also serve some function in plasmid maintenance/replication. The 

evidence found so far thus indicates that pBPl replicates via a rolling circle mechanism. 

5.2.2.2 Cloning of pBP 1 plasmid replication protein fragment and segregational 

stability 

Previous work was performed by T. Davis on the identification of a minimal regIon 

containing plasmid replication functions (Davis, 1998). pBP 1 was first digested with 

HindIII into two fragments of2.711 kb and 3.216 kb (see Figure 5.1). Cloning of these two 

fragments into pMTL20E yielded pMTL20EBP2 and pMTL20EBP19 respectively. The 

plasm ids were then electroporated into C. beijerinckii NCIMB 8052 and transform ants were 

only obtained with pMTL20EBP 19. Thus, it was concluded that the replication functions 

were present on the 3.216 kb HindIII fragment of pBPl. The replicon was then further 

reduced by restriction digestion with HindIII and Xbal (see Figure 5.1). The 2.633 kb 

HindlII/XbaI fragment was cloned into pMTL20E to generate pMTL5200. The resulting 

plasmid could also transform C. beijerinckii NCIMB 8052. (Minton, N.P. personal 

communication). The vectors were also assessed in C. botulinum ATCC 3502 Hall A 

(Bennik, M. personal communication). Electroporation of pMTL5200 resulted in a 

frequency of approximately 2.0 x 103 cfu f.1g- 1 plasmid DNA. The plasmid was also assessed 

for segregational stability and was found to be 100% stable in C. botulinum ATCC 3502 

after four 8 hour passes in non-selective media (Bennik, M. personal communication). 

Based on the high segregational stability obtained in C. botulinum it was therefore of interest 

to determine if the replicon from pBPl was functional and 100% segregationally stable in C. 

sporogenes NCIMB 10696. For conjugative mobilisation of pMTL5200 into C. sporogenes 
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NCIMB 10696, oriTwas cloned in as an EcoRV/Smal fragment from pEOriT into the SmaI 

site of pMTL5200 to give pMTL5210. Conjugal transfer of pMTL521 0 into C. botulinum 

Hall A still resulted in a 100% segregationally stable plasmid, indicating that oriT was not 

effecting the segregational stability. 

5.2.2.3 Segregational stability of clostridial replicons 

During the course of these studies the following vectors based on a variety of plasmid 

replicons became available: 

l. pMTL9301 (pMTL28 + pCD6 replicon [4133 bp PvuII region] from pCD3SEC + 

OriT from pMTL30) (Purdy et aI., 2002) 

2. pMTL9401 (pMTL28 + pCB102 replicon [1628 bp Csp45I1HindlII region] from 

pCB102 + OriT from pMTL30) (Purdy et al., 2002) 

3. pMTL961l (pMTL29 + plP404 replicon [2544 bp NspIlNheI region] from pJIR418 

+ OriT from pMTL30) (Purdy et al., 2002) 

4. pMTL9511 (pAM~ 1 based shuttle vector, M. Herbert, HPA, Porton Down, 

Salisbury) 

Also available for segregational stability screenmg are pMTLS112, pMTLS210, and a 

conjugal version of the plMP1 plasmid, pIMPl ::OriT. plMP1 ::OriT was constructed by 

cloning OriT as a SmaIlEcoRV fragment into SmaI digested pIMP1. 

All the vectors were conjugated into C. sporogenes NCIMB 10696. Once the various 

recombinant strains were verified correct by PCR screening and retransforming the plasm ids 

back into E. coli, the rate of plasmid loss and loss per generation was determined (see Table 

S.l). Recombinant C. sporogenes was grown non-selectively for 48 hours passaging into 

fresh non-selective media every 12 hours, an equivalent of 48 generations. Once cultures 

had been grown for 48 generations a serial dilution of the culture was plated onto non

selective media. To calculate plasmid stability, 100 randomly picked colonies were streaked 
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onto media with or without antibiotic selection, the proportion of cells that grew on the plate 

containing antibiotic selection being taken as the representation of plasmid segregational 

stability. Due to the low segregational stability of pIM I3-based vectors, segregational 

stability was calculated based on cell counts on selective and non-selective media following 

48 generations of growth in non-selective media. 

Plasmid Replicon 

p1MP1:0riT plM13 

pMTL5112 plM13 

pMTL9301 pCD6 

pMTL5210 pBP1 

pMTL9401 pCB102 

pMTL9511 pAMP1 

pMTL9611 plP404 

Stability (% of cells 

maintaining plasmid) 

0.00835 * 

0.01087 * 

58 

73 

84 

96 

98 

Loss per 

generation 

1.78x10-i 

1.73 x 10-1 

1.13 x 10-2 

6.54 x 10-3 

3.63 x 10-3 

8.50 x 10-4 

4.21 x 10-4 

Method of 

replication 

rc 

rc 

Theta? 

rc? 

? 

Theta 

Theta 

Table 5.1: Plasmid segregational stability of the available clostridial replicons. * = due to low 

stability, data was collected from colony counts of cultures plated onto selective and non-selective 

media (approximately 10,000 cfu would need to be screened to isolate a single plasmid-bearing 

clone). rc = rolling circle, ? = not known. 

Unexpectedly, the pIM 13 based plasm ids pMTL5112 and pIMP 1: :OriT were severely 

unstable with a plasmid loss per cell generation equating to 17%. Also, it was disappointing 

to find that the pBPI replicon was not 100% segregationally stable as determined for 

C. botulinum. The most stable plasmid was pMTL9611, based on the C. perfringens plasmid 

pIP404, with 98% of the population retaining the plasmid after 48 generations, a figure that 

equates to a 4.21 x 10-4 loss of the plasmid per generation. 

pIP404 is a small (10.207 kb), low-copy. mobilisable plasmid which encodes a UV inducible 

bacteriocin. Unlike other plasm ids from Gram-positive bacteria, pIP404 does not appear to 
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replicate via a ssDNA intermediate as evidenced by a lack of signal in DNA hybridisation of 

crude Iysates of both C. perfringens and B. subtilis harbouring either pIP404 or derivatives 

of pIP404 respectively (Gamier and Cole, 1988). The exact method of replication utilised by 

plP404 is not yet known. It is possible that pIP404 replicates via a theta mechanism due to 

the lack of ssDNA intermediate and the presence of an extensive repeat region downstream 

of the replication protein. The increased stability of pMTL9611 could therefore be partly 

attributed to this alternative method of replication, as ssDNA is known to be highly 

recombinagenic and unstable. This is further supported by the fact that the pAM~ I-based 

plasmid pMTL9511, which is known to replicate via a theta mechanism, is also highly stable 

in C. sporogenes. 

The minimal region of pIP404 which has been identified to confer replication proficiency is 

the 2.792 kb EcoRIIEcoRV fragment (Gamier and Cole, 1988). Furthermore, Sal3I 

digestion from the EcoRI site into ORF 4 (the putative copy number control ORF) increases 

copy number by approximately 5-fold. The region of pIP404 used in pJIR418 to provide 

Gram-positive plasmid replication was the 2.629 kb HindIIIIEcoRV fragment, the restriction 

sites being deleted during the cloning of pJIR418 in order to free them up for introduction 

into the multiple cloning site. This region was further reduced during the cloning of 

pMTL9611 by taking a 2.544 kb NheIlNspl fragment (Purdy et aI., 2002). 

5.2.3 Development of a segregation ally stable mutant strain of C. sporogenes 

NelMB 10696 

The curmg of strains harbouring pIM13-based plasmids can increase the segregational 

stability of these plasm ids when they are reintroduced into the cured mutant (Azeddoug et 

a/.
J 

1992). Based on the poor segregational stability of pMTL5122, it was decided to create 

a cured strain of C. sporogenes NCIMB 10696. 
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The C. sporogenes NCIMB 10696 strain harbouring pMTLSI22::nfoB (discussed in Section 

5.2.5) was cured of the vector by growing recombinant cells non selectively for 98 hours 

passaging every 24 hours, a more severe process compared to the stability study as loss of 

the plasmid was desired. Cultures were then plated out onto media with or without antibiotic 

selection in order to determine plasmid segregational stability. In total, 0.011 % of the wild 

type C. sporogenes NCIMB 10696 cells harbouring pMTLS122: :nfoB remained resistant to 

erythromycin, a level comparable to that obtained during the segregational stability study. 

Of the colonies that grew on the non-selective media, 100 were then screened for loss of the 

plasmid by picking onto plates with or without antibiotic selection. Two clones that were 

erythromycin sensitive, designated 10696-1 and 10696-3, were screened for loss of the 

plasmid by colony PCR using plasmid replicon specific primers. A faint signal was present 

when the PCR products were visualised on a 1 % agarose gel, indicating a proportion of the 

population of the colony still harboured the plasmid. This was resolved by passaging the 

strains a further two times on non-selective media and re-screening the resulting individual 

colonies for loss of the plasmid. 

Following the generation of a cured strain the next stage was to assess any effects on the 

maintenance of introduced plasmids. Accordingly, pMTLS122 and pMTLSI22::HinNTR

synth were transferred into the cured strain 10696-1. Conjugations into the wild type strain 

were repeated as a control using the same donor culture for both recipients. Conjugation 

transfer frequencies were calculated, and an increase in transfer frequency was observed in 

the cured strain equivalent to an increase of 1 x 10-7 transconjugants per donor cell for the 

wild type bacterium to 1 x 10-5 transconjugants per donor for the cured strain. The transfer 

frequency of pMTLS122 in the cured strain is now comparable to the transfer frequencies 

observed with other clostridial replicons in the wild type C. sporogenes NCIMS 10696 

strain. 

Both the wild type and cured recombinants were cultured non-selectively for 48 hours with 
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passage every 12 hours, an equivalent to 48 generations. Cells were then plated out onto 

selective or non-selective media and the rate of plasmid loss calculated based on the number 

of colony forming units derived (see Table 5.2). 

Plasmid cfu mr' TYG cfu mr' % loss- cfu mr' TYG cfu mr' % loss-
TYG+Erm wIt TYG+Er cured 

m 

pMTL5122 3.75x 108 4.07 x 104 99.9891 6.30 x 108 2.12*108 66.3492 

pMTL5122:: 5.20 x 107 1.84 X 106 96.4615 6.30 x 108 2.37*108 

HinNTR-synth 
62.3810 

Table 5.2: Segregational stability of two pIM13 based shuttle vectors in the wild type and plasmid

cured derivative ofC. sporogenes NCIMB 10696. 

The plasmid losses calculated equate to a loss per generation of 1.73 x 10-
1 

for pMTL5122 in 

the wild-type bacterium and 2.24 x 10-2 for pMTL5122 in the cured strain. For 

pMTL5122::HinNTR-synth, the loss per generation in the wild type C. sporogenes NCIMB 

10696 was 6.72 X 10-2 , whereas in the cured strain th is decreased to 2.02 X 10-
2

. A 

significant improvement in plasmid stability was therefore seen in the cured strain of 

C. sporogenes. 

5.2.4 Improving expression - assessment of available promoters using a GusA 

reporter vector 

Reporter gene systems are an indispensable technology for characterization of promoter 

strength and regulation. Two reporter gene vectors have been developed in our laboratory 

based on either the chloramphenicol acetyltransferase gene (caIP) of C. perfringens (Steffen 

and Matzura, 1989) or the ~-glucuronidase (gusA) gene from E. coli. CatP has been 

previously used to study expression at the transcriptional level of the C. pe,/ringens pIce 
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gene (Bullifent et ai., 1995; Matsushita et al., 1994). GusA has been used previously to 

measure expression from the promoters of both the cpe gene (encoding C. perfringens 

enterotoxin) and the nanEA operon (encoding N-acetylmannosamine-6-phosphate epimerase 

and sialic acid lyase also in C. perfringens (Melville et al., 1994; Walters et al., 1999; Zhao 

and Melville, 1998). In C. difficile, GusA has also been used to study the expression of the 

toxin genes toxA and toxE in utilising C. perfringens as the host for the reporter assay 

(Dupuy and Sonenshein, 1998). In C. beijerinckii NCIMB 8052, GusA has been used as a 

reporter to study the solventogenesis/acidogenesis associated genes acetoacetate 

decarboxylase (adc) from C. acetobutylicum and phosphotransbutyrylase (ptb) from 

C. beijerinkcii (Ravagnani et al., 2000). Finally, in C. acetobutylicum the thiolase (thf), 

acetoacetate decarboxylase (adc), phosphotransbutyrylase (ptb), hydrogenase (hydA) and 

xylose isomerase (xyiA) promoter activities were screened using GusA as the reporter 

(Girbal et al., 2003). 

For maximal expression of the prodrug converting enzymes, the optimal promoter from a 

range of available promoters was sought and compared to the modified ferredoxin promoter 

(fac2) using the GusA reporter vector pMTL9361gusA (see Figure 5.2). The promoters 

available are all derived from clostridial genes and are listed in Table 5.3. The clostripain 

(closl) promoter GusA reporter vector was constructed by cloning the closI promoter from 

pKNT19closlpcodA on a HindIIIINcol blunt-ended fragment and ligating to pMTL9361gusA 

digested with EcoRICRIIXbal blunt-ended fragment (see Figure 5.2). The alternative 

promoter reporter vectors were constructed by G. Carter, University of Nottingham. 

121 



Xbal 
fdx 

fac2 

EcolCRI 

gusA 

celA 

ermB 

ColEI 
RNA" 

oriV 

pMTL9361 gusA 

10846 bp 

traJ PpuMI 

repA 

ull 

Pvull 

lacl 

Figure 5.2: Schematic representation of the reporter vector pMTL936JgusA. Promoters were cloned 

as blunt fragments into the XbaIlEcoICRI blunt sites of pMTL9361gusA. If required, the 1656 bp 

Ppu1vfl/Pvull region encompassing the ptb promoter and lacI was deleted such that promoters 

containing lac operator sites became constitutive. 



Promoter Source SourcefReference 

eglA p-l ,4-endoglucanase from S. Barbe, K.U. Leuven 
C. acetobutylicum P262 (Zappe et aI. , 1988) 

hydA Hydrogenase from (Santangelo et al.. 1995) 
C. acetobutylicum P262 

gInA Glutamine synthetase from S. Barbe, K.U Leuven 
C. beijerinckii NCIMB 8052 (Quixley and Reid, 2000) 

closl Clostripain from S. Barbe, K.U Leuven 
C. histolyticum DSM 1126 (Dargatz et aI. , 1993) 

Table 5.3: Promoters available for assessment of activity in C .sporogenes utilising pMTL9361gu~..t 

reporter vector. 

GusA reporter assays indicated that all the promoters are relatively similar in strength. 

although the clostripain promoter from C. histolyticum was the strongest at just over a 2.8-

fold ' stronger' compared to fac2 (see Figure 5.3) . 

GusA assa y data on clostridia l promote rs 
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Figure 5.3: GusA reporter vector data fo r the clostridial promoters. 
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5.2.4.1 Cloning of a novelferredoxin promoter from c. sporogenes 

During the course of this study, work was published on the characterisation of a novel 

ferredoxin (jdx) promoter from C. perfringens strain13 and its use in the over-expression of a 

clostridial sialidase in C. perfingens strain 13 (Kaji et aI., 2003; Takamizawa et aI., 2004). 

The group headed by Okabe identified a homolog to the C. pasteurianum ferredoxin protein 

(Fdx) in C. perfringens. A region 70 bp upstream of the +1 site of the promoter was cloned 

and compared to the C. pasteurianum fdx promoter using a CatP reporter vector. Reporter 

assays indicated that the C. perfringens ferredoxin promoter is 10-fold more active compared 

to the C. pasteurianunifdx promoter (Kaji et al., 2003). 

Based on this result, an in silico analysis of the partially annotated C. botulinum genome (at 

the current time the genome sequence was only available at the private C. botulinum Sanger 

web site - http://www.sanger.ac.uklProjects/C_botulinum/private) was performed utilising 

the Artemis package (Sanger Institute, Cambridge, U.K.). Screening of the genome for 

ferredoxin orthologues revealed three putative orthologues: 

1) CB00039 (262 amino acids, 29.8 kDa) - homology to two ferredoxins: 

a) Clostridium tetani putative polyferredoxin (258 amino acids) - fasta scores: EO: 

2.3e-44, 50.95% homology over 263 amino acids. 

b) Clostridium acetobutylicum polyferredoxin (249 amino acids) fasta scores: EO: 

4.7e-20, 35.65% homology over 258 amino acids. 

2) CB00059 (56 amino acids, 5.6 kDa) - homology to Clostridium pasteurianum 

ferredoxin (55 amino acids) - fasta scores: EO: 1.6e-18, 90.9% homology over 55 

amino acids. 

3) CB00089 (63 amino acids, 7.0 kDa) - homology to two ferredoxins: 

a) Thermatoga maritima ferredoxin (60 amino acids) - fasta scores: EO: 0.00016, 

38.98% homology over 59 amino acids. 

b) Clostridium perfringens ferredoxin (62 amino acids) - fasta scores: EO: 3.4C-07, 
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45.76% homology over 59 amino acids 

Alignment of the three ferredoxins identified in the C. botulinum genome with the 

C. perfringens and C. pasteurianum ferredoxins highlighted that CB00059 was the correct 

homologous ferredoxin from which to amplify the promoter from (see Figure 5.4). The 220 

bp fragment extending from nucleotide positions -178 to +42 relative to the transcription 

initiation start site ofbot1'dx was PCR amplified using primers BOTFDXF and BOTFDXR 

and chromosomal DNA from C. botulinum Hall A ATCC 3502 and C. botulinum ATCC 

2916, plus C. sporogenes NCIMB 10696. The C. sporogenes fdx promoter was PCR 

amplified using three independent PCR's to avoid the introduction of PCR errors into the 

sequence. The 177 bp fragment extending from nucleotide positions -137 to +40 relative to 

the transcription start site of per1'dx was PCR amplified using primers PERFDXF and 

PERFDXR and chromosomal DNA from C. perfringens strain 13 and C. perfringens NCTC 

8237 (supplied by J. Scott, Nottingham). Oligonucleotides complementary to the 5' and 3' 

ends of the promoters were used, with an NdeI restriction site created over the A TG start 

codon and a NotI restriction site added to the -178 end for the C. botulinum fdx promoter or -

137 end for the C. perfringens fdx promoter. 

CpastFdx MAYKIADSCVSCGACASECPVNAISQGDSIFVIDADTCIDCGNCANVCPVGAPVQE 56 

CB00059 MAYKITDACVSCGACAAECPVNAISQGDSIFDIDADTCIDCGNCANVCPVGAPVQD 56 

CperfFdx MAYKILDTCVSCGACAAECPVDAISQGDTQFVIDADTCIDCGNCANVCPVGAPVQE 56 

***** *.********.****.******. . .. . * ***********************: 

Figure 5.4: Protein alignment of clostridial Fdx homologues. "*,, indicates residues or nucleotides in 

that column which are identical in all sequences in the alignment. ":" indicates that conser\'~d 

substitutions have been obseIVed (amino acids coloured red), no mark indicates no homology (amino 

acids coloured blue). 
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Once amplified, clones with the promoter in the correct orientation in pCR2.l TOPO (5' end 

of the promoter nearest the XbaI site in pCR2.1), were cloned into the GusA reporter vector 

pMTL9361gusA as Sad/XbaI fragments. Several attempts were made to clone the promoter 

fragments into pMTL9361gusA reporter vector but correct reporter vectors for all the 

promoters could not be obtained. To overcome the cloning difficulties, an alternative CatP 

reporter vector pMTL9361eatP was utilised (see Figure 5.5). Thefdx promoters were cloned 

in utilising the XbaI and Sad sites in pCR2.1-TOPO and the XbaI and Sad sites in the 

polylinker of pMTL9361eatP. Reporter assay data from an 8 hour time point indicated that 

both the C. perfringens fdx and C. sporogenes fdx showed improved promoter strength 

compared to the C. pasteurianum derivedfae2, with the C. perfringens fdx promoter giving 

2.5-fold improvement over fae2 and the C. sporogenes fdx promoter giving a 3.5-fold 

improvement overfae2 (see Figure 5.6). 
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Figure 5.5: Schematic representation of pMTL9361catP. For cloning of promoter fragments into 

pMTL936 1 MCScatP, promoters were cloned in as XbaUSacI fragments from pCR2.1-TOPO clones 

into tJle XbaUSacI sites in the MCS ofpMTL9361catP. If required. the 1656 bp PpuMIJPvuIJ region 

encompassing the ptb promoter and lacI was deleted such that promoters containing lac operator sites 

became constitutive. 
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Figure 5.6: CatP promoter reporter data for clostridial ferredoxin promoters. Data collected at 8 hour 

time point. Samples all normalised to an OD6OOmn of 1.0. fac = Jae2 , spo = C. sporogenes Jdx 

promoter, per = C. perfringens Jdx promoter. 

Combining all the collated promoter reporter data for the clostridial promoters highlighted 

the optimal promoter to be the fdx promoter from C sporogenes (spofdx) . This was based on 

the relative promoter strength at the 8 hour time point of the growth cycle (see Table 5.4) . 

Promoter Relative ratio· 

gInA 0.89 

fac2 1.00 

hydA 1.10 

perfdx 2.32 

eglA 2.37 

closl 2.80 

spofdx 3.18 

Table 5. -I : Combined promoter data from GusA and CatP reporters. * expressed as ratio to the 

actjvity of theJac2 promoter in either assay. 
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5.2.5 Cloning and expression of an alternative nitroreductase, NfnB 

The in vivo data obtained for HinNTR-synth was very promising. There was, however, no 

distinguishable reduction in tumour volume, just maintenance at a static level. Recently, Liu 

and colleagues published initial findings on the over-expression of the E. coli nitroreductase 

NfnB in C. sporogenes where a significant reduction in tumour volume was found (Liu et 

ai., 2003). 

In order to establish ifNfnB could be over-expressed, as has been previously reported (Liu et 

al., 2003; Minton et ai., 1995), it was decided to replace HinNTR with NfnB and repeat the 

expression studies using pMTL5122. This would verify if the reason for the lack of 

expression lies with the vector, as nfnB is known to be capable of being expressed in both 

C. beijerinckii and C. sporogenes, albeit using different expression vectors. 

Primer pair NFNBF and NFNBR were used to amplify nfnB from pF25 (nfnB cloned into 

pTrc99A) such that an NdeI site was created 'over' the ATG start codon and XbaIlStuI sites 

were at the 3' end for cloning into the expression vector (see Appendix II for DNA and 

protein sequences of nfnB). pMTL5122 was digested with NdeI and PvuII and nfnB was 

cloned in to the expression cartridge on a NdeIlStuI fragment to give pMTL5122::nfnB. 

Expression was first verified as before in E. coli CA434 using SDS-PAGE and menadione 

reductase assay on the soluble fraction of Iysates from an 8 hour culture (see Figure 5.7). 
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NfnB was proven to have been expressed as evidenced by the over-expression of a protein of 

23.9 kDa that was not evident in a vector only control. This over-expression corresponded to 

a value of 12.7% soluble protein by densitometric analysis of the SDS-PAGE gel. Analysis 

of the 8 hour soluble fraction lysates by menadione reductase assay showed that NfnB was 

over-expressed to a level lO-fold over background NfnB activity. This compared to a le\ el 

of3-fold over background for the HinNTR (see Figure S.7). 

pMTLSI22::nfoB was then conjugated into C. sporogenes NCIMB 10696 and erythromycin 

resistant transconjugants were verified to be correct by PCR screening for the plasmid and 

isolating the plasmid and retransforming back into E. coli. Further screening of the E. coli 

clones by SDS-PAGE proved that the plasmid had not undergone any major rearrangements 

whilst in C. sporogenes, such that expression was affected (data not shown). C. sporogenes 

soluble fraction lysates were prepared from 8 hour cultures of recombinants harbouring 

pMTLSI22::nfoB. All clones screened showed an abundance of a protein of between 20.6 

kDa and 28.9 kDa, which was not evident in a negative control lysate derived from cells 

harbouring an insert-free expression vector pMTLS122 or pMTLSI22: :HinNTR -synth (see 

Figure S .8). 

Analysis of the 8 hour soluble fraction lysates by menadione reductase assay indicated a 

major increase in over-expression compared to the HinNTR and negative control Iysates, 

corresponding to a level of IS-fold over background levels of nitroreductase activity 

recorded in the negative control (see Figure S.8). 
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The data obtained for the over-expression of NfnB highlights that proteins can be over-

expressed in C. sporogenes NCIMB 10696 utilising the expression vector pMTL5122. 

However, in the context of nitroreductase, in particular NfnB, the products of the reduction 

of CB 1954 are important. As well as reducing the 4-nitro group to give the toxic 

4-hydroxylamine drug, NfnB also reduces the 2-nitro group to the less potent 

2-hydroxylamine derivative. Therefore either improved prodrugs or enzymes are sought for 

nitroreductase, a case that was thought to have been resolved using HinNTR. 

The first possible route to obtaining expression of HinNTR was through optimisation of the 

over-expression vector as plasmid stability and promoter strength are two factors that can 

influence expression of proteins. The effect of changing the replicon and promoter was first 

assessed on vectors containing nfnB as any improvement in expression can be compared to 

that already obtained. 

5.2.5.1 Alteration of promoter and/or rep/icon of the NfnB over-expressing plasmid -

effect on expression 

To determine the effects that the identified optimal plasmid would have on expression, 

variants of pMTL5122: :rifhB were constructed. First as a negative control for expression, a 

pIP404 RepA version of pMTL5112 was generated by deleting out repL on a blunted 

AatlII BamHI fragment, and cloning in the plP404 replicon on a blunted NheIINspI fragment, 

to yield plasmid pMTL5612. The over-expression plasmid pMTL5122::njnB was then 

altered to contain the plP404 replicon using the same digest to give pMTL5622::nfi1B. 

Secondly, the C. sporogenesfdx promoter was cloned into pMTL5122::njnB as an NdeIIYo[! 

fragment into an NdeIlNotI fac2 deleted version of pMTL51 :?:?::njnB to gl\e 

pMTL5123 ::nfnB. Finally, the pIP404 RepA was cloned pMTL5123 ::1if11B to \ ield 

pMTL5623: :nfnB. The final result was four different plasmids all expressing nfnB dri\ en by 

either the C. sporogenes fdx promoter or fac:?, and with either the unstable pIM 13 RepL or 

stable pIP404 RepA replicon. The combination of pIM 13RepL and C. sporogenes fiit was 



generated but not tested in C sporogenes due to stability problems associated with th 

pIM13 replicon in C sporogenes. 

The nfnB variant plasmids were first transfonned into E. coli CA434 and expression ofNfnB 

was checked by SDS-P AGE of the lysates of the soluble fraction from overnight cultures 

(see Figure 5.9) . All 3 plasmids expressed NfnB, indicated by over-expression of a protein 

of 23 .9 kDa. Densitometric analysis of the SDS-PAGE gel predicted that the fac2-based 

vectors over-expressed to a level equating to 4% soluble protein, where as the spofdx 

promoter based vector over-expressed to a level equating to 15% soluble protein, indicating 

that the spofdx promoter is better recognised by E. coli RNA polymerase thanfac2. This is 

most likely due to the spacing between the -10 and -35 sequence of the spofdx promoter 

being identical to the E. coli consensus of 17 bp (see Figure 5.10). 
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fac2 
spofdx 
Consensus 

fac2 
spofdx 
Consensus 

- 35 - 1 0 
ACTTACACT TTTAAA AAGTTTAAAAACATGA TACAAT AAGTTA 
AAAAATTAC TTTAAA AATTAATAAAAACATGG TAAAAT ATAAAT 

TTGACA ( 1 7 bp ) TATAAT 

RBS start 
TTTA AGGAGG TTAGTCAT ATG 
TTTA AGGAGG TGTGTTACAT ATG 

AGGAGG (9 bp) ATG 

Figure 5.10: Location and sequence of/ac2 and the C sporogenes ferredoxin promoter. Consensus == 

E coli consensus sequence. 

The plasmids were then conjugated into C sporogenes NCIMB 10696. Screening of soluble 

fractions obtained after lysis of overnight cultures by SDS-PAGE indicated that all three 

vectors were capable of over-expressing NfnB, at broadly equivalent levels of 10-11 % 

soluble protein (see Figure 5.11). Unfortunately, the expected 3-fold improvement in 

expression from the C sporogenes fdx promoter predicted from the CatP reporter assay was 

not seen in the over-expression of NfnB. Based on the reporter data, an increase In 

expression from 10% to approximately 30% soluble protein would be anticipated. 
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5.2.6 Expression of nitroreductases in the cured strain of C sporogenes 

Having identified that the cured strain was approximately 10- to 1 DO-fo ld more effic ient at 

gene transfer an<L once introduced, plasmids were several fold more stable, it was of interest 

to determine the effects on expression of nitroreductase enzymes. 

The recombinant cured strain C sporogenes NCIMB 10696 harbouring the HinNTR and 

HinNTR-synth over-expression plasmids as well as the NfnB over-expression plasmid were 

studied for expression levels. Lysates of the soluble fraction from 8 hour cultures were 

analysed by SDS-PAGE (see Figure 5.12) . 
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SDS-PAGE analysis of the lysates of the soluble fraction indicated that the fnB expressing 

plasmids were still functional in the cured strain. Densitometric scanning of the gel 

predicted levels of between 5% and 10% soluble protein at 8 hours , with the pfP404 based 

vectors producing the larger amount of enzyme at this time point. Of particular interest. 

however was the expression obtained from the synthetic H. injluenzae nitroreductase. Over-

expression of HinNTR-synth could not be visualised in lysates of the soluble fraction from 

wi ld type C sporogenes NCIMB 10696, however, in lysates of the soluble fraction from the 

cured strain recombinant harbouring pMTL5122::HinNTR-synth over-expression could be 

detected. This was further confirmed to be the case when the soluble fraction lysates were 

examined using the menadione nitroreductase assay (see Figure 5.13). In comparison to 

NfnB expressed from pMTL5122, where a level of 22-fold over background nitroreductase 

activity was obtained, HinNTR-synth was expressed at a level of 14-fold over background. 

If the levels of soluble protein produced are also taken into consideration then the units of 

nitroreductase per mg of total protein are comparable for the two enzymes (see Table 5.5) . 

Menadione NTR assay - cured 10696 harbouring ove rexpression 
plasm ids 

Figure 5.13: Menadione assay on the cured strain of C sporogenes NCfMB 10696 o\·cr ... c"pr 
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Enzyme % soluble Total soluble Units mg-i Units mg-' 
protein protein (mg mr1) total protein nitroreductase 

NfnB 5.41 1.83 2.34 43.3 

HinNTR-synth 4.01 1.37 1.57 39.1 

Table 5.5: NTR activity calculated on units mg- I protein based on densitometry scan of SDS-PAGE 

gel. 

Segregational stability of the clones revealed that, as before, the pIM 13-based clones were 

more stable in the cured strain compared to the wild-type strain. 

5.2.7 Cloning of HinNTR into a stable vector - expression in wild type and 

cured strains 

One plausible explanation for the over-expression of HinNTR-synth in the cured strain could 

be due to the increased segregational stability of pIM 13-based plasm ids in this host. To 

assess this, the stable pIP404 replicon was cloned into pMTL5122::HinNTR-synth to yield 

pMTL5622::HinNTR-synth. This was obtained by cloning the blunt-ended NheIlNspI 

pIP404 replicon from pJIR418 and cloning into pMTL5122::HinNTR-synth digested with 

BamHI and AatII and blunt-ended to delete repL. pMTL5622::HinNTR-synth was then 

conjugated into both strains of C. sporogenes NCIMB 10696 and Iysates of the soluble 

fraction from mid-exponential cultures analysed by SDS-PAGE (see Figure 5.14). 
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Figure 5.14: SDS-PAGE analysis of effect of plasmid stability on HinNTR over-exrpressing clones. 

Lanes 1-3 are lysates of the soluble fraction from recombinant C. sporogenes NCIMB 10696. Lanes 

4-6 are lysates of the soluble fraction from recombinant cured strain C. sporogenes NCIMB 10696. 

Percentage soluble protein determined by densitometry on over-expressed bands is shown in brackets. 

Lane 1+4 = pMTI..,5122 (negative control), lane 2+5 = pMTL5122: :HinNTR-synth (lane 2 = 0%., lane 

5 = 7.25% soluble protein), lane 3+6 = pMTI..,5622 ::HinNTR-syntb (lane 3 = 8.58%, lane 6 = 13.3% 

soluble protein). M = NEB Broad range protein markers. The arrow indicates the location of the 

over-expressed protein. 

Expression of HinNTR-synth was obtained in the wild-type strain of C. sporogenes Ne lMB 

10696 when the gene was cloned in a segregationally stable version of the expression vect or. 

This indicates a role for plasmid segregational stability in gene over-expression. 



5.2.8 Cloning of a 'final' optimal expression vector 

5.2.8.1 Characterisation of a novel improved nitroreductase 

During the course of these studies another project was initiated on the in silico identification 

of new and improved nitroreductase enzymes for use in DEPT strategies (1. Heap, School of 

Pharmacy, University of Nottingham). One such novel nitroreductase isolated, termed 

NTR-N had an approximately 1- to 2-fold improvement in CBl954 specific activity 

compared to HinNTR. An approximately 3.5- to IO-fold improvement was noted when 

NTR-N was compared to NfnB (Heap, J. personal communication). Additionally, NTR-N 

only produces the desired toxic 4-hydroxylamine drug from the CB 1954 reduction. All 

kinetic studies performed gave the following rank order of the enzymes: 

NTR-N > HinNTR > NfnB 

Based on this preliminary data it was of interest to obtain over-expression of this novel 

nitroreductase in C. sporogenes. 

5.2.8.2 Cloning of the novel nitroreductase into the optimised vector 

NTR-N was cloned from pMTL1015::NTR-N on a NdeIlPvuI fragment and cloned into 

pMTL5122::nfoB digested with the NdeI and PvuI to give pMTL5122::NTR-N (see 

Appendix II for DNA and protein sequence ofNTR-N). NTR-N could not be cloned directly 

into pMTL5623 directly due to the presence of an internal NdeI restriction site present in the 

replication protein of pIP404. The fac2 promoter was then switched for the C sporogenes 

ferredoxin promoter using NdeI and NotI to give pMTL5123: :NTR-N. Finally the pllvl13 

replicon was excised using BamHI and AatII and T4 blunted, the replacement stable replicon 

from pIP404 was cloned in as a blunt NheIlNspI fragment. The resulting plasmid was 

designated pMTL5623::NTR-N. 

Lysates of the soluble fraction from all the deri\'ati\es of the NTR-N over-e:\pressmg 
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plasmid clones (pMTL5122::NTR-N, pMTL5123::NTR-N and pMTL5623::NTR-0J) in both 

the wild type and cured strains of C. sporogenes NCIMB 10696 were screened for over

expression by SDS-PAGE, however none gave the expected 24.7 kDa size over-expressed 

band visible on the SDS-PAGE gel. Furthermore, no activity above background levels was 

detectable via menadione nitroreductase assay (data not shown). 

One potential cause of low level expression of genes can be poor codon usage. Therefore the 

next step in improving expression was to identify the codon usage of the novel 

nitroreductases in relation to NfnB. 

5.2.9 Codon usage as a determinant of expression 

Codon usage is considered to be an important contributor to setting the level of gene 

expression. In the two highly studied microbial species, E. coli and B. subtilis, highly 

expressed genes are transcribed from optimal codons that are recognised more efficiently by 

the most abundant tRNA (Karlin et aI., 1998; Kunst et al., 1997). In other bacterial species 

codon usage is shaped more by mutational bias and, therefore, is mainly determined by the 

G+C content of the genome. Of the clostridial genomes sequenced so far all possess G+C 

contents in the region of 29% - 31 % G+C (Bruggemann et aI., 2003; Nolling et aI., 2001; 

Shimizu et a!., 2002). Examination of the clostridial genomes identified a significant A+ T 

codon bias for highly expressed genes which possessed a GC content of between 13% and 

18% (Sharp et a!., 2005) with a significant predominance of A and T at the 'silent' third 

position of the triplet codon. Therefore it can be concluded that the main factor influencing 

codon usage is the strong mutational bias towards A and T. 

The four nitroreductase genes utilised (nfnE, HinNTR, HinNTR-synth. NTR-N) \\ere 

analysed for G+C content. As expected the synthetic HinNTR has the lowest G+C content at 

33.'+8%, in comparison to the wild-type HinNTR that has a G+C content of .+ 1.93%, 

1.+ 1 



indicating a potential reason as to expreSSIOn of the synthetic gene over the wild-type 

sequence gene. However, nfnB has a much higher G+C content at 51.53% G+C compared to 

the HinNTR. NTR-N has a nearly identical G+C content (51.65%) compared to nfnE yet is 

not expressed. Therefore some alternative factor(s) must be influencing expression of the 

genes. 

Codon usage of the various nitroreductases was analysed utilising the codon usage analyser 

GCUA (http://www.gcua.de). A partial codon usage table is currently available for 

C. sporogenes and the closely related C. botulinum Hall A. Codon bias may be exist when 

only a few coding sequences have been analysed. Therefore, a comparison of this partial 

data to the three full genome codon usage tables available for C. acetobutylicum, 

C. perfringens, and C. tetani was performed (see Table 5.6). This indicated that the codon 

usages of all clostridia are relatively similar. The C. tetani codon usage gave the closest 

match to C. sporogenes. (see Table 5.6). 



Clostridial species (no of CDS' ) s 

Complete genome codon usage Partial codon usaqe 

Amino Triplet C. C. C. tetani C. 
acid codon acetobutylicum perfringens (2373) 

C. 

(3945) 
botulinum sporogenes 

(2723) (146) (7) 

Ala GCA 45 45 47 44 
Ala GCU 54 49 
Arg AGA 70 86 77 73 80 
Asn AAU 80 83 85 90 79 
Asp GAU 85 87 86 90 83 
Cys UGU 70 79 80 80 84 
End UAA 64 75 70 76 100 
Gin CAA 70 86 82 86 92 
Glu GAA 74 77 83 83 86 
Gly GGA 51 58 55 50 49 
His CAU 78 81 83 88 82 
lie AUA 58 62 65 53 59 

Leu UUA 42 66 58 65 59 
Lys AM 68 70 78 81 83 
Met AUG 100 100 100 100 100 
Phe UUU 85 81 88 89 83 
Pro CCA 53 45 48 
Pro CCU 45 45 47 
Ser AGU 28 29 29 31 25 
Ser UCA 27 32 
Ser UCU 30 29 32 

Thr ACA 44 
Thr ACU 50 44 47 55 

Trp UGG 100 100 100 100 100 

Tyr UAU 78 84 85 90 88 

Val GUA 51 47 56 

Val GUU 45 52 

Table 5.6: Codon usage table for the three sequenced clostridial genomes plus 4 clostridial genes 

(number in brackets represents number of codong sequences used to generate codon usage). Only 

frequent optimal codons (27 out of 64 codons) are shown. Figures in bold indicates codons used 

preferentially when two or more codons are available with similar frequency. 

5.2.9.1 Codon usage of currently available nitroreductase genes 

GCUA analysis of the available nitroreductases (nfnB. HinNTR, HinNTR-synth, NTR-,\) 

gave an indication as to the codon usage of each particular gene, (for the raw graphical 

representations see Appendix II). It was anticipated that this analysis \\ l~llid highlight the 



correlation between the total number of low scoring codons (i e the tRNA .. , occurs at less 

than 10% of the tRNA pool, indicated as red bars in the GCUA graphl'c I . a representatIOn). 

and expression of the protein. The data is presented in Table 5.7. 

% of tRNA pool for an~ ~iven codon 

Gene 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% Total % of 
<10% total 
codons codons 

nfnB (218 
aa) 6 15 10 16 0 4 4 17 0 12 84 38.5 

HinNTR 
(221 aa) 12 2 3 10 0 4 1 11 3 9 55 24.9 

HinNTR-
synth 0 0 0 1 0 0 0 0 2 0 3 1.4 

NTR-N (222 
aa) 13 2 7 21 0 5 5 12 13 9 87 39.2 

Table 5.7: Tabulated data on the frequency of low scoring codons. 

As can be seen there is no correlation between the total number of low scoring codons and 

expression. NfnB, which is well expressed, has 84 codons that are in less than 10% of the 

tRNA pool, which represents a total of 38.5% of the total number of 218 triplet codons in the 

entire protein. NTR-N has a similar number compared to NfnB and HinNTR has nearly half 

the number of low scoring co dons yet both are not expressed. The presence of particular 

exceedingly rare codons (l % of tRNA pool) does, however, correlate with expression. 

HinNTR contains 12 rare codons and NTR-N contains 13 rare codons. The dependency on 

these particular rare codons (CUC [Leucine], CGC + CGG [Arginine], and UCG [Serine]) 

may be limiting expression even though they represent only 5% of the total number of 

codons. In particular, the codon CGC appears to be the most prevalent rare codon in 

HinNTR and NTR-N. This may be the limiting factor, especially if the tRNA for CGC is 

actually the least abundant in C. sporogenes. The exception to the rule is HinNTR-synth, 

which is not expressed, yet has only 3 low-scoring codons. none of which are rare. 



Clustering of rare codons has also been suggested to limit expression level (V s arenne and 

Lazdunski 1986). Analysis of the nitroreductases for the clustering of low sco . d . flng co ons IS 

shown in Table 5.8. 

Gene Singlet Doublet Triplet Quadruplet Quintuplet Sextuplet Total 
<10% 
codons 

NfnB 35 11 6 1 1 0 84 

HinNTR 26 13 1 0 0 0 55 

HinNTR- 3 0 0 
synth 

0 0 0 3 

NTR-N 35 11 6 0 0 2 87 

Table 5.8: Tabulated data on the clustering of low scoring co dons from GCUA analysis. 

No correlation between the clustering of low scoring codons and lack of expression can be 

drawn. Rare codons are distributed through out the genes and clustered rare codons are 

present in all genes. In fact, NfnB which is expressed has up to 5 low scoring codons 

clustered together. 

Finally, it is thought that the occurrence of low scoring codons early on in the translation of 

mRNA can lead to early termination of translation (Makoff et at., 1989). This factor could 

be influencing expression of the nitroreductases. However, the GCUA analysis did not 

reveal any correlation as NfnB has 19 low scoring codons in the first 50 codons, the highest 

frequency of low scoring codons of all the nitroreductases screened. 

To summarise, the presence of several rare codons appears to be influencing expression. It 

was of interest to see if altering the codon usage could enhance expression of HinNTR and 

NTR-N. 
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5.2.9.2 Construction of second generation synthetic nitroreductase genes 

It was decided to redesign the DNA sequence and re-synthesise NTR-N and HinNTR such 

that the optimal most abundant tRNA was used at any given triplet position. This would 

give a definite indication of whether or not codon usage is important in obtaining over

expression. The LETO codon optimisation programme (Entelechon GmbH) \vas employed 

for the initial optimisation of both genes. LETO uses a genetic algorithm to enable the 

simultaneous optimisation of a large set of competing parameters such as codon usage, 

codon tandem repeats, mRNA secondary structure, GC distribution, long range repeats, and 

AT/GC stretches. Initially both genes were optimised utilising the codon usage and 

secondary structure optimisation criteria only. The sequence obtained for NTR-N was left as 

determined using LETO, however, the sequence given for HinNTR was further manually 

optimised from the given sequence as in some cases a less than optimal codon was chosen. 

In addition, the sequence returned was relatively similar to HinNTR-synth as Entelechon 

GmbH probably used LETO for the design of the first generation synthetic HinNTR 

(HinNTR-synth vI). The manual optimisation was based on the criterion that if the same 

amino acid was repeated in HinNTR or spaced only one amino acid apart then the second 

most abundant tRNA was used for the second amino acid in the sequence. Both genes were 

synthesised by Entelechon GmbH with an Ndel restriction site 'over' the ATG start codon 

and an .xhol restriction site after the stop codon and supplied cloned into pCR-Script Amp 

SK(+) (Stratagene) (see Appendix II for DNA and protein sequences of HinNTR-synth \'2 

and NTR-N-synth). 

Both synthetic nitroreductase genes were cloned as NdeII.xhoI fragments from pCR-Script 

into pMTL5I22 digested with NdeI and .xhoI to yield pMTL5122::HinNTR-synth \'2 and 

pMTL5122::NTR-N-synth, the aim being to identify the sole effect of optimising codon 

usage without altering the initial plasmid. FolIO\\ing conjugation into C. sporogenes 

NCIMB 10696 and the cured derivative of C. sporogenes NCI\ lB 10696. Iysatc:-; of the 



soluble fraction from 8 hour cultures were visualised by SDS PAGE ( F ' --- see 19ure ) . 1.)) . 

M 1 2 3 4 

D 

M 
kDa 

124 

80 

49 .1 

34 .8 

28 .9 

20.6 

7.1 

Figure 5. J 5: SDS-PAGE gel of soluble fraction lysates from NTR-N-synth and HinNTR-synUl v.2 

over-expressing C sporogenes NCIMB 10696. Lane I = pMTLS122, lane 2 = pMTLSI 22::NTR- . 

lane 3 = pMTLSI22::NTR-N-syntb (9.9% soluble protein), lane 4 = pMTLS1 22 :: HinNTR-syntll v.2 

(11.0% soluble protein). M = NEB Broad range protein markers. The arrow indicates the location of 

the over-expressed protein. 

Both synthetic derivatives of NTR-N and HinNTR were over-expressed in C sporogene. 

NCIMB 10696 to relatively similar high levels . Expression was also obtained in the cured 

strain to a similar level (data not shown). The presence of a doublet for NTR-N \\35 

presumed to be due to the presence of truncated proteins caused by premature termjnation of 

translation . 
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5.2.10 Characterisation of the cured strain - sporulation efficiency and protease 

production 

As a precursor to future studies, some preliminary characterisation of the C. sporogenes 

cured strain was performed to ascertain if any phenotypic changes had occurred during the 

curing process. 

The cured strain 10696-1 was studied further for sporulation efficiency and protease 

production, two features of C. sporogenes that aid in its superior colonisation of the tumour. 

Spore assays were performed on 72 hour cultures grown in TYG media not supplemented 

with glucose. Approximately 10% of wild type C. sporogenes NCIMB 10696 cells \\ere 

spores, compared to only 1 % of the cured strain. The cured strain therefore has an 

approximate 10-fold reduction in sporulation efficiency compared to the wild-type 

bacterium. This is, however, still 100-fold higher than the sporulation efficiency of the 

original CDEPT host C. acetobutylicum (Theys, J. personal communication). Thus the 

reduction in spore forming capability of the cured strain still renders it a useful delivery tool 

compared to C. acetobutylicum. 

Analysis of protease production by both the wild-type and cured strains of C. sporogenes 

NelMB 10696 utilising collagen zymogram gel analysis of supernatants from overnight 

cultures showed that protease production, specifically collagenase secretion, was not 

markedly altered between the two strains for the time point studied (data not shown). 

5.3 DISCUSSION 

In Chapter 4, a low level of expression of HinNTR was obtained, although this appeared to 

be sufficient to exhibit a static anti-tumour effect in vivo. Therefore in this chapter the 

. d d .. d fI se in C sporogenes The potential expression vector was characterIse an optimise or u· . 
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of affecting expression by altering the gene was also studied. 

The segregational stability of pMTL5122 was shown to be exceedingly low \'n C . sporogenes 

NCIMB 10696. Studies comparing pMTL5112 to pIMP1::0riT highlighted that the pIi\113 

replicon is highly unstable in C. sporogenes NCIMB 10696, both vectors being lost at a 

frequency of approximately 1.7 x 10-1 per generation. This confirms that no essential 

plasmid replication functions of pIMP 1 were deleted in the construction of pMTL5122. 

pIM13-based plasmids are generally segregationalIy unstable in other clostridial species with 

losses of 2.3 x 10-2 per generation in C. acetobutylicum NI-4081 (Azeddoug et al., 199~) and 

4.7 x 10-3 per generation in C. cellulolyticum (Jennert et al., 2000). The exceptions to this 

are C. acetobutylicum DSM 792 and C. acetobutylicum NI-4082 where pIM 13-based 

plasm ids are segregationally stable. The extreme low stability of pIM13-based plasm ids in 

C. sporogenes prompted a segregational study of the other clostridial plasmids as 

segregational stability may be influencing gene over-expression. 

Prior to the initiation of this study, work was performed on the isolation and characterisation 

of a novel cryptic plasmid, termed pBPl, from C. botulinum NCTC 2916. A shuttle vector 

was constructed based on a presumptive minimal replication region from pBP 1. This vector 

was 100% segregationally stable in C. botulinum Hall A A TCC 3502. It was thought that a 

pBPl rep licon-based vector was likely to be segregationally stable in C. sporogenes even 

though the plasmid is thought to replicate via a rolling circle method, due to the close 

phylogenetic relationship of C. sporogenes to C. botulinum. This would make the pBP 1 

replicon an ideal candidate for the construction of a vector for use in CDEPT. 

Unfortunately, this expected stability was not found to be the case in C. sporogenes. 

Segregational stability studies on a variety of clostridial replicons identified pBP I to be lost 

-1 . 
at frequency of 6.54 x 10- per generatIOn. The most stable plasmid, based on the 

C. perfringens plasmid pIP404, was nearly 100% segregationally stable O\er ..+8 generations 

with a loss of 4.21 x 10-4 per generation. Therefore the choice of plasmid replicc1Jls appears 
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to be very species specific. Interestingly the most stable plasm ids in C spo . rogenes \\ere 

also the plasm ids that are known to replicate via the theta mechanism. This confirms to the 

general consensus that theta-replicating plasmids are more segregationally stable than 

plasmids that replicate via the rolling circle mechanism. There are situations \vhere this 

general rule is not confirmed. In C. cellulolyticum, both the pAM~ 1 (theta-replication) and 

plM 13 (rolling circle, ssDNA) replicons are moderately stable, with a loss per generation of 

approximately 7.8 x 10-3 and 4.8 x 10-3 respectively (Jennert et al., 2000). 

Having identified the exceedingly low segregational stability of plM 13-based shuttle vectors 

it was of interest to generate a cured strain of C. sporogenes. The aim being to see if a 

similar increase in segregational stability is seen as observed in C. acetobutylicum NI-4081 

and the cured strain NI-4082 (Azeddoug et al., 1992). Once generated, plasmid transfer into 

the cured C. sporogenes strain occurred at a 10- to 100-fold higher frequency. Also, the 

segregational stability increased from a loss per generation of 1. 73 x 10-1 for the wild-type 

strain to 2.24 x 10-2 for the cured strain. This increase was not as severe as that observed in 

C. acetobutylicum NI-4082, however, there was still a definite improvement. The host-

encoded mutation(s) in C. acetobutylicum NI-4082 are thought to be related to resolution of 

plasmid multimers as segregational stability should occur when most of the plasmid DNA is 

in the monomeric form. It is interesting to hypothesise that a similar mutation was selected 

in the curing of C. sporogenes NCIMB 10696. Conjugal transfer frequencies of pIM 13-

based plasm ids were also altered in the cured strain. This increase could be attributed to the 

aforementioned increase in segregational stability, as the plasmid should not be lost as fast 

during the seven-hour non-selective stage ofthe conjugation procedure. 

A second feature of the expression vector that was characterised was the relative strength of 

the fac2 promoter compared to other clostridial promoters. The ferredoxin promoter from 

C. pasfeurianum is known to be capable of over-expressing NfnB in C. beijerinckii to a level 

equating to 8% soluble protein (Minton et at.. 1995). Ho\\ e\Oer the promoter has not been 

characterised in Co sporogenes and may behave differently in this relatively dissimilar host. 
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Two reporter genes, GusA and CatP, were utilised to characterise a variety of clostridial 

promoters. Initial studies of available promoters identified the closI to be the 'strongest' 

available. One potential reason for this could be due to the close phylogenetic relationship 

of C. histolyticum to C. sporogenes. Also, clostripain is present in the C. botulinum A TCC 

3502 Hall A genome (CB01920) and is indicated to be present in C. sporogenes by 

microarray (Carter, A. personal communication). The alternative promoters are from 

solventogenic clostridia, which are not as closely related to C. sporogenes as the proteolytic 

C. histolyticum. 

The identification that the C. perfringens endogenous ferredoxin promoter is 'stronger' than 

the C. pasteurianum ferredoxin promoter prompted a study of the ferredoxin promoters in 

C. sporogenes. The CatP reporter data obtained highlighted an approximately 3-fold 

increase in reporter gene expression in C. sporogenes. The GusA reporter and CatP reporter 

data was combined for all the different promoters tested and the ferredoxin promoter from 

C. sporogenes proved to be the 'strongest' with a 3.1S-fold increase in reporter activity 

relative to fac2. Phased A-tracts in the C. perfringens pIc promoter sequences have been 

implied to be stimulate promoter activity through a curved DNA interaction of the promoter 

with the a-subunit C-terminal domain of RNA polymerase (Katayama et al., 1999; 

Katayama et al., 2001). Recent data on the analysis of the C. perfringens ferredoxin 

promoter identified three upstream phased A-tracts and two downstream phased A-tracts 

located within the promoter (Kaji et al., 2003). It is hypothesised that the phased-A tracts 

form a DNA curvature where the position of the bend centre appears critical for the 

stimulatory effect of DNA curvature on promoter activity. That the C. perfringens promoter 

was not the optimal promoter in C. sporogenes suggests that the DNA bend formed by the 

C. sporogenes ferredoxin promoter phased A-tracts is most suitable for interaction with 

C. sporogenes RNA polymerase. 

In parallel with the above studies, the potential of using pMTL5122 to obtain over

expression of a gene, which has previously been successfully over-expressed, was studied. 
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Cloning nfnB into pMTL5122 resulted in over-expression as confirmed by SDS-PAGE and 

menadione assay. Conjugal transfer of the vector into C. sporogenes also resulted in over

expression to a level equating to 7% soluble protein, a level similar to that obtained with 

C. beijerinckii. This proves that pMTL5122 is functional and capable of over-expressing 

protein to a relatively high level in C. sporogenes. Also, this highlights that expression is 

gene specific, with some genes proving easier to over-express than others. Over-expression 

to levels equivalent of 30% of the cells soluble protein have been reported using expression 

systems in E. coli (Chambers et al., 1988b). It was of interest to see what effects changing 

the plasmid replicon and/or promoter would have on protein expression, and to see if more 

elevated levels of expression could be obtained utilising the more stable pIP404 replicon 

and/or stronger C. sporogenes ferredoxin promoter. Interestingly there did not appear to be a 

significant increase in expression. Utilising pMTL5122, expression to a level equating to 

10.4% of the cells soluble protein was obtained. If the replicon was changed for the more 

stable pIP404 replicon a level of 11.0% soluble protein was obtained, a similar level (11.1 %) 

was obtained when the C. sporogenes fdx promoter was utilised. Based on the 3.18-fold 

improvement of the C. sporogenes fdx promoter over fac2 identified from the promoter 

reporter data, a level of expression of NfnB equating to approximately 30% soluble protein 

would be expected. As this was not seen, it suggests that a threshold for over-expression 

exists such that no greater than approximately 10% soluble protein can be over-expressed in 

the growth conditions tested. Alternatively, the potential toxicity associated with massively 

over-expressing a protein may prevent levels higher than approximately 10% soluble protein 

being obtained. Nevertheless, as it is an enzyme that is being expressed in the context of 

CDEPT current levels of over-expression may be sufficient to obtain a suitable anti-tumour 

effect and obtain tumour reduction. 

The effect that the cured strain had on expression of the nitroreductases was then studied. 

All the vectors were transferred at the previously found higher frequency. Lysates of the 

soluble fraction from nitroreductase recombinant cured strains were then visualised by SDS-
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PAGE. Expression of NfnB was apparent with higher levels in the plP404-based plasmids. 

This could be attributed to a potentially higher segregational stability and/or copy number of 

the plP404-based vector compared to the pIM13-based vector. Additionally, expression of 

HinNTR was observed, albeit at a lower level (4% soluble protein) than that observed for 

NfnB (5 - 10% soluble protein, according to the vector used). This could be due to the 

increased segregational stability of pIM I3-based vectors in the cured strain of C. sporogenes 

NCIMB 10696. This hypothesis was proven to be correct by the construction of a 

segregationally stable version of pMTL5I22::HinNTR-synth, pMTL5622::HinNTR-synth. 

Once pMTL5622::HinNTR-synth was transferred to the wild-type strain of C. sporogenes 

over-expression of HinNTR was obtained, indicating that plasmid stability does indeed 

influence the probability of obtaining expression of a particular gene. 

The identification of NTR-N as a novel improved nitroreductase, further added to the range 

of nitroreductases available for analysis. Cloning of this nitroreductase into pMTL5I22 did 

not result in expression of NTR-N protein. Based on G+C content of the genes alone 

expression of NTR-N would be predicted to occur as both nfnB and NTR-N have almost 

identical G+C contents. However, as expression of NTR-N was not obtained more specific 

factors appear to be influencing expression. 

Codon usage analysis of the nitroreductases highlighted that improvements could be made to 

NTR-N in order to increase the potential for obtaining expression. Also, there were some 

improvements that could be made to HinNTR-synth (now termed HinNTR-synth vI) to 

further improve the expression obtained in the cured strain. Once these improvements in 

codon usage had been generated NTR-N-synth and HinNTR-synth v2 were cloned into 

pMTL5I22. The aim being to identify the sole effect codon usage would have on expression 

as when the wild type NTR-N and HinNTR-synth vI were cloned into pMTL5122 no 

expression was obtained. Lysates from both wild type and cured strain recombinants 

harbouring pMTL5122::HinNTR-synth v2 and pMTL5I22::NTR-N-synth showed that 

expression of both genes could now be reliably obtained to relatively high levels in the 
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soluble fraction of both hosts. Thus, codon usage is also appearing to influence the potential 

of obtaining expression. This is confirmed by the findings of Musto et al (2003) where 

analysis of the C. perfringens and C. acetobutylicum genomes identified a strong bias 

towards low G+C contents. There was little variation in the mean G+C contents along the 

entire genome, with the exception of the ribosomal operons. For each amino acid the 

predominant triplet is A- and/or T -ended. This is particularly the case in highly expressed 

genes where the GC content is exceedingly low, in the range of 13-18%. 

To summarise, a variety of features appear to influence gene over-expression: 

1) Plasmid segregational stability; 

2) Codon usage of the gene to be expressed; 

3) Unknown features specific to each gene. 

However, the studies above indicate that if the gene is expressed on a segregationally stable 

plasmid or the codon usage is optimised then expression should be obtainable. There is, 

however, a more significant effect seen by optimising codon usage compared to plasmid 

stability, as NTR-N was not expressed when cloned into the segregationally stable plasmid 

pMTL5623. Optimisation of the codon usage of NTR-N, however, resulted in expression 

even though the gene was cloned in a segregationally unstable vector. This indicates the 

importance of eliminating rare codons in a particular sequence in order to obtain over-

expreSSIon. 

154 



CHAPTER 6 

DEVELOPMENT OF INTEGRATIVE TOOLS 

FOR C. SPOROGENES 
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6.1 INTRODUCTION 

Having obtained over-expression of HinNTR and a novel nitroreductase NTR-N, it was of 

interest to develop targeted gene integration systems for C. sporogenes. The ultimate aim of 

CDEPT being to have the prodrug converting enzyme integrated into the host chromosome, 

such that the gene can be stably maintained without the use of antibiotic selection. In this 

chapter, a variety of methods for obtaining gene integrants will be assessed in C. sporogenes 

NCIMB 10696. 

Obtaining mutants in clostridia is extremely difficult with current methods for gene 

inactivation remaining woefully inadequate. Suicide vectors remain the most common way 

of generating mutants in the two best-studied clostridia, C. perfringens and 

C. acetobutylicum. Since the initiation of these studies, suicide vectors have also been used 

to generate mutants by single crossover in the acidogenic Clostridium, C. tyrobutyricum 

(Zhu et aI., 2005), and by double crossover in C. septicum, the primary agent of spontaneous 

gas gangrene (Kennedy et al., 2005). The ability to generate mutants, albeit rarely, using 

'suicide' approaches appears relatively wide spread across the clostridial genus. In this 

chapter, the potential of using suicide plasm ids to generate both single and double crossover 

targeted gene knockouts in C. sporogenes will be explored. 

Conditionally replicating vectors are currently unavailable for use in clostridia. However, a 

replicative vector has been used to generate a sporulation mutant in C. acetobutylicum 

(Harris et al., 2002). The basis for integration is thought to be related to the method of 

replication of the vector used. The vector was based on the pIM13 replicon that replicates 

via a rolling circle mechanism. ssDNA intermediates are generated during rolling circle 

replication which are highly recombinogenic. pIMl3-based vectors are known to be 

segregationally unstable under non-selective conditions in a variety of clostridia, including 

C. sporogenes (see Chapter 5.0). A double crossover knockout system based on vectors 

containing the pIM 13 replicon will be developed in this chapter. 
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The E. faecalis transposon Tn916 has been used to generate anum ber of non-targeted 

mutants in C. acetobutylicum, C. botulinum, C. perfringens and C. difjicile. However, 

Tn916 has also been used to generate a targeted single crossover mutant in the sigma-factor 

(sigK) of C. difjicile (Haraldsen and Sonenshein, 2003). Additionally, in the work of 

Roberts et al (Roberts et aI., 2003) 50% of the cwp66 adhesin mutants screened had in fact 

integrated in the genomic copy of cwp66 (Minton, N.P. personal communication). As Tn916 

is capable of entering the genome at a variety of sites in both C. difjicile and C. botulinum, it 

may be possible to utilise Tn916 as an insertional mutagen in C. sporogenes. To identify 

this, in this chapter, pMTL900 will be assessed as a targeted mutational tool. 

Initially, knockouts will be attempted using vectors containing antibiotic selectable crossover 

cassettes. However, it is planned that any methods that prove successful would be repeated 

replacing the antibiotic marker for the C. sporogenes ferredoxin promoter and nitroreductase 

NTR-N. Thus, resulting in the generation of the 'final' strain. 

6.2 RESULTS 

6.2.1 Choice of knockout targets 

Two genes were identified as potential targets useful in the generation of a CDEPT integrant, 

either pyrF or spoOA. pyrF encodes the gene orotidine-5'-phosphate decarboxylase which is 

involved in the biosynthesis of pyrimidine ribonucleotides. PyrF converts orotidine-5 '-

phosphate to uridine-5'-monophosphate (UMP) with the evolution of CO2• UMP is then 

further converted by other enzymes to uridine-5'-triphosphate (UTP), cytidine-5 '-

triphosphate (CTP) and finally cytidine-5'-diphosphate (COP). As well as becoming uracil 

auxotrophs, pyrF knockout mutants can be positively selected for by resistance to 

5-fluoroorotic acid. pyrF has been successfully used as a target for the generation of mutants 
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in Mycobacterium smegmatis (Husson et aI., 1990). An additional safety aspect is also 

created by the generation of a uracil auxotroph, as the germinating spores will be confined to 

the tumour, a location expected to contain particularly high levels of pyrimidines. 

Auxotrophy has been utilised as a safe guard mechanism for the delivery of prodrug 

converting enzymes to tumours by Salmonella typhimurium. A S. typhimurium purl 

auxotroph strain, strain VNP20009, has been generated that requires an external source of 

adenine (Clairmont et aI., 2000). Once systemically administered, VNP20009 auxotrophs 

accumulated preferentially in tumours and' 41 days post-injection are cleared from all other 

organs screened. 

The second gene target is the major sporulation initiation factor spaDA. One of the overall 

aims of the EU consortium was to generate a conditionally sporulating mutant of 

C. sporogenes. Therefore the native spaDA gene would need to be inactivated such that 

mutant containing an inducible copy of spaDA would only be able to sporulate in vitro by 

addition of an exogenous inducer. 

6.2.2 Inactivation of pyrF by single crossover homologous integration 

Due to a lack of conditionally replicating vectors which function in Clostridium species as a 

whole, the first attempt at generating an insertion ally inactivated mutant in pyrF was based 

on a suicide plasmid, the type of which has been used to generate an assortment of mutants 

in a variety of clostridial species. 

pMTL31 is a mobilisable suicide plasmid which carries the RP41 RK2 oriT region, such that 

it can be transferred from a strain of E. coli which harbours a conjugative helper plasmid 

such as E. coli CA434 (E. coli HBI01 carrying the IncP~ conjugative helper plasmid, R702). 

Also present on the plasmid are the erythromycin and ampicillin resistance markers (ermB 

and bla respectively), the Gram-negative ColEI rep licon, and LacZa to enable blue/white 



selection (Williams et al., 1990). pMTL31 has previously been used to successfully generate 

mutants in C. acetobutylicum, C. beijerinckii, and C. difficile by conjugal transfer of the 

suicide plasmid from an E. coli donor (Liyanage et al., 2001; Wilkinson and Young, 1994). 

The pyrF integrational plasmid was generated by PCR amplifyingpyrF from genomic DNA 

prepared from C. sporogenes NCIMB 10696. PCR primers against pyrF were designed 

based on the C. botulinum Hall A ATCC 3502 genome sequence 

(http://www.sanger.ac.uk/Projects/C_botulinum/private/). PCR amplification with primers 

PYRFF and PYRFR (designed to incorporate SphI and Pvull restriction sites at the 5' ends 

of the amplified fragment respectively) generated the expected product of 764 bp. The peR 

product was cloned into pCR2.I-TOPO prior to cloning into the suicide plasmid pMTL31. 

pMTL3I was digested with Sad (blunt-ended) and SphI. The C. sporogenes NCIMB 10696 

pyrFfragment was cloned from pCR2.I-TOPO on a Pvull / SphI fragment into the linearised 

pMTL31 fragment. The resulting plasmid was designated pMTL31 ::pyrF(Csp). 

High frequency gene transfer is desirable for obtaining gene knockouts usmg suicide 

plasmids as the frequency with which a mutant will be isolated is higher. Electroporation is 

usually the preferred method as large quantities of DNA can be electroporated, thus easily 

increasing the transfer frequency. An electroporation procedure has previously been 

developed for C. sporogenes NCIMB 10696 (Liu et al., 2002), however the method proved 

to be irreproducible in our laboratory. The development of a conjugal transfer procedure for 

C. sporogenes has negated this bottleneck in gene transfer (see Section 3.2.2). 

Plasmid pMTL31::pyrF(Csp) was transferred to C. sporogenes NCIMB 10696 by 

conjugation from E. coli CA434. As there is no Gram-positive replicon provided in 

pMTL31, the only way the plasmid can be maintained is by integrating into the host genome. 

Integration is regarded as a rare event, therefore a positive control conjugation with a 

replication proficient plasmid (pMTL5112) was included during every repeat of the 

conjugation to confirm that the conjugation procedure utilised was successful. Plasmid 
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pMTL31 ::pyrF(Csp) was repeatedly conjugated into C. sporogenes, with 15 independent 

conjugations being performed in total, and an estimated 7 x 108 cfu of C. sporogenes being 

used. Previous work using conjugal transfer of suicide plasmids to C. beij"erinckii NelMB 

8052 produced integrants at a frequency of 10-6 to 10-7 per recipient (Wilkinson and Young, 

1994). If a similar frequency is observed in C. sporogenes then it would be expected that 

approximately 70 to 700 integrants in total would have resulted from the repeated 

conjugations. However, no erythromycin resistant transconjugants were observed in any of 

the conjugations performed. 

If, however, integration in C. sporogenes is less efficient than in C. beij"erinckii then a more 

efficient means of delivering the crossover fragment is required. In the absence of 

conditional vectors for the clostridial genus as a whole, the conjugative transposon Tn916 

was assessed as a suitable alternative delivery tool. 

6.2.3 The conjugative transposon Tn916 

6.2.3.1 Conjugative transfer of Tn916 

The conjugative transposon Tn916 has previously been shown to be capable of mediating its 

own transfer from E. faecalis to C. botulinum at a frequency of approximately 10-
6 

transconjugants per recipient (Lin and Johnson, 1991). Based on this observation, 

conjugative transfer of Tn916 was attempted in C. sporogenes using B. subtilis BS34A 

(B. subtilis CU2189 harbouring a single copy of Tn916) as the transposon donor (Roberts et 

aI., 2003). B. subilis BS34A transferred the tetracycline resistance determinant, Tn916, at a 

frequency of approximately 10-7 transconjugants per recipient, with an estimated 1,700 

tetracycline resistant C. sporogenes transconjugants obtained per filter mating. No 

spontaneous tetracycline resistant mutants of C. sporogenes were obtained in independent 

experiments involving plating of C. sporogenes onto filters without B. subtilis BS..l3A and 
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then, following incubation, plating onto TYG supplemented with cycloserine and 

tetracycline. Transconjugants were confirmed to be C. sporogenes rather than B. SUblilis as 

independent experiments highlighted that cycloserine at a final concentration of 250 IJ.g mrl 

was completely selective against B. sublilis BS34A. Furthermore, PCR analysis of genomic 

DNA isolated from selected tetracycline resistant transconjugants with primers specific to 

tetM (TETMF and TETMR) gave a product of the expected size (2.146 kb) for telM. As 

Tn916 was being utilised as a delivery tool rather than a mutational tool the specific location 

and frequency of Tn916 integration sites was not investigated. 

6.2.3.2 Integration utilising the conjugative transposon Tn916 as a delivery tool 

Following successful transfer of Tn916 from B. subtilis to C. sporogenes, its use as a 

delivery tool for single crossover knockout fragments could be assessed. Plasmid pMTL900 

was recently developed by Roberts et al (Roberts et al., 2003) for the expression of Tn916 

mediated integrated antisense RNA in C. difficile. pMTL900 is a B. subtilis suicide vector 

which contains the Tn916 tetM gene, into which a poly linker and the chloramphenicol 

resistance gene, catP, from the C. perfringens plasmid pCW3 have been cloned. The 

resultant plasmid can then be used to integrate genes cloned into the polylinker ofpMTL900 

by homologous recombination with the genome of B. subtilis carrying a single copy of 

Tn916 (strain BS34A). The recombinant transposon can then be transferred, by conjugation, 

from B. subtilis to the recipient of choice, in this case C. sporogenes. 

The pyrF fragment utilised in pMTL31 was again exploited for the Tn916 approach. pyrF 

was excised from pCR2.I-TOPO::pyrF on a PvuII / Sphl fragment and cloned into plasmid 

pMTL900 also digested with Pvull and Sphl, generating pMTL900::pyrF(Csp). To increase 

the frequency of double crossover recombination between tetM encoded on 

pMTL900::pyrF(Csp) and the genomic copy of tetM in B. subtilis BS34A, the plasmid was 

linearised with the restriction enzyme Agel and dephosphorylated to prevent recircularisation 

of the plasmid. 
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Approximately 1 I-lg of pMTL900::pyrF(Csp) was transformed into B. subtilis BS34A. 

Transformants were selected for on medium containing 5 I-lg mr] chloramphenicol. Since 

pMTL900 is replication deficient in B. subtilis, true chloramphenicol resistant clones should 

only arise if a double crossover event has occurred between the tetM gene of Tn916 and the 

homologous region in pMTL900 (see Figure 6.1). After 48 h incubation at 30°e. 

approximately five chloramphenicol resistant clones were observed on each selective plate. 

Four clones were randomly selected and screened further using a colony PCR with primers 

PYRFF, PYRFR, TETMF and TETMR (see Table 6.1). 

Forward primer Reverse primer Expected product size 
(kb) 

TETMF TETMR 4.7 

TETMF PYRFF 3.7 

TETMR PYRFR 1.6 

PYRFF PYRFR 0.76 

Table 6.1: PCR amplification ofpMTL900::pyrF(Csp) 

PCR was also performed on a pMTL900::pyrF(Csp) plasmid DNA positive control, and a B. 

subtilis BS34A untransformed negative control. 

The presence of the pyrF fragment in the B. subtilis donor was confirmed in all four 

randomly selected clones, and a single correct clone was used to conjugate the recombinant 

transposon into C. sporogenes NCIMB 10696. Plate filter matings were carried out between 

B. subtilis BS34A Tn916::pMTL900pyrF(Csp) and C. sporogenes NCIMB 10696. A 

positive control of B. subtilis BS38A (tetM interrupted with catP from pMTL900) was 

included. Transconjugants were selected for on 20 I-lg mr] thiamphenicol; the B. subtilis 

donor was counter-selected with 250 I-lg mr] cycloserine. Several thiamphenicol resistant 
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clones of C. sporogenes were obtained. Co lony PCR's were performed wi th primers PYRFF 

and CA TPR (see Figure 6 .1) which generated a product of 2.4 kb prov in g Tn 916 had 

integrated into the genome. PCR screeni ng thiamphenicol resistant clones with prim ers 

PYRCF and CATPR (see Figure 6.1) did not y ield a product. PCR with PYRCF and 

PYRKR, however, gave the expected product size of 1.522 kb for an uninteITupted copy of 

pyrF. Thus it appears Tn916 had integrated at an alternative genomic location. 
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6.2.4 Inactivation of spoOA by double crossover 

Since a single crossover pyrF mutant was not obtained using both a standard suicide vector 

and a transposon mediated suicide vector then the target gene was altered to spoOA in which 

mutants have previously been made in C. acetobutylicum and C. perfringens (Harris et at., 

2002; Huang et al., 2004). Due to the innate instability of single crossover mutants and 

possibility of getting revertants, double crossover with spoOA was attempted. 

The ~poOA gene plus regions up- and down-stream were PCR amplified from C. sporogenes 

NCIMB 10696 genomic DNA using primers based on the C. botulinum Hall A ATCC 3502 

genome sequence (work performed by C. Schwarz, University ofUlm, Germany). A 1.11 kb 

spoOA crossover cassette was constructed using primers located 237 bp downstream of 

spoOA with an EcoRI site generated by the primer, and a second primer located 33 bp 

upstream with a primer generated HindlII restriction site. The chloramphenicol resistance 

marker (catP) was then cloned into spoOA at a unique Pst! site in order to disrupt spoOA, thus 

creating a double crossover fragment. The spoOA double crossover fragment was then 

digested with EcoRI and HindIII and cloned into pMTL31 with the same two restriction 

enzymes generating plasmid pWG3 (C. Schwarz, University ofUlm, Germany). 

As with prevIous attempts with suicide vectors, p WG3 was repeatedly transferred by 

conjugation into C. sporogenes NCIMB 10696 this time selecting for thiamphenicol 

resistance (encoded by catP), using plasmid pMTL5112 (with selection for erythromycin) as 

a positive control for the conjugation process. The conjugation process was repeated fifteen 

times however no thiamphenicol resistant clones were ever obtained indicating that a double 

crossover event had not occurred. 
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6.2.5 Development of a single stranded DNA intermediate plasmid integration 

system 

Recently, Harris and colleagues (Harris et af. , 2002) deve loped a spoOA in activated strain of 

C. acelobutylicum ATCC 824 utilising a replication profi cient pl asm id based on the 

B. subtilis rolling circle plasmid pIM13 . Although the mutant generated was an imperfect 

double crossover (see Figure 6.2), it was of interest to develop a si mil ar procedure for 

generating double crossover mutants in C. sporogenes. As has been mentioned already, 

pIM 13 plasm ids are segregationally unstable in C. sporogenes (see Section 5.2.1.1.3 ). It is 

thought that this instability combined with the generation of single stranded DN A 

intermediates by rolling circle replication will aid in the homologous recombinati on process 

and generation of a double crossover mutant. 
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The segregationally unstable pIM13-based plasmids pMTL5122 and pIMP} ::OriT were 

utilised as the delivery tools for the spaOA double crossover cassette previously created for 

use in suicide plasmids. The spaOA crossover fragment was cloned from pWG3 as a blunt

ended HindIII / EcaRI fragment and ligated to either pMTL5l22 or pIMP 1: :OriT, both being 

digested with BamHI (blunt-ended). The result being the spaOA double crossover cassette 

being cloned in either orientation into both delivery vectors. The plasmids were designated 

pMTL5122::spaOA:catP oril or ori2, and pIMPl::OriT::spaOA:catP oril or ori2. Problems 

were encountered conjugating the pMTL5122 derivatives into C. sparagenes however, 

transconjugants were obtained with the pIMPl::OriT derivative. These were studied further. 

Correct clones containing the pIMP 1: :OriT spaOA crossover vector were initially cultured 

overnight in selective media. This was followed by a passaging regime of subculturing 

every 24 hours non-selectively for 4 consecutive days, followed by plating onto media 

containing either thiamphenicol to select for the crossover cassette or erythromycin to select 

for the plasmid backbone. It was hoped that the cell counts for the plasmid backbone would 

be much lower than for the crossover cassette indicating that a potential crossover event 

could have occurred. However, colony counts of putative integrants revealed that there was 

a similar number ofthiamphenicol and erythromycin resistant clones (see Figure 6.3). 
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Figure 63: Colony counts for pIMPloriT-based spoOA crossover vectors. 

Potentially, all thiamphenicol resistant clones could be single crossover mutants with the 

plasmid backbone marker as well as the spoOA marker integrated into the host chromosome. 

50 colonies for each plasmid were picked onto media containing erythromycin and / or 

thiamphenicoL All 50 colonies grew on both selective plates . Plasmid extracts from several 

clones revealed that no crossover event had occurred as plasmid DNA could be detected 

when the DNA isolated was used to retransform E coli . Utilis ing the colony count data 

above the segregational stability of the plasmids was assessed and was not affected 

significantly by the introduction of the crossover cassette. 

6.3 DISCUSSION 

In this chapter the genetic tools that have previously been utilised to generate mutants III a 
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variety of clostridia were assessed in two different gene targets in C. sporogenes. 

Additionally, an unstable ssDNA intennediate based integrational vector was constructed 

and assessed. 

Attempts to utilise currently available mutational tools, both suicide vector and Tn916 based 

approaches, failed to yield a single crossover mutant in the pyrF gene of C. sporogenes 

NCIMB 10696. No erythromycin colonies were obtained using the pMTL31 suicide vector 

approach. Any thiamphenicol resistant colonies that were obtained with the Tn916 approach 

were shown to contain the transposon by PCR using transposon specific internal primers. 

However, PCR screening with primers flanking the target site resulted in a product of the 

expected size for an intact copy of pyrF. Therefore, it is probable that the transposon 

integrated into another location other than pyrF. Transposition of intact Tn916 was shown to 

be possible by conjugal transfer from B. subtilis BS34A to C. sporogenes. Tetracycline 

resistant colonies arose at a frequency of approximately 10-7 transconjugants per recipient. 

The exact location of integration of Tn916 was not studied. 

It is unclear why suicide vector systems that have proven to be capable of generating mutants 

in a variety of clostridia failed in C. sporogenes. Transfer frequency of plasmids is a 

determinant in the probability of mutant isolation. Transformation frequencies in the range 

of 3 x 105 cfu J.lg-1 plasmid DNA in C. perfringens (Scott and Rood, 1989), and up to 6 x 10
6 

cfu J.lg- 1 plasmid DNA in C. acetobutylicum (Azeddoug et aI., 1992) are amongst the highest 

reported frequencies of transfer for all clostridia. This correlates to the majority of reported 

mutants being obtained in C. perfringens and C. acetobutylicum using high-frequency 

electroporation-mediated transformation of replication deficient crossover vectors. Without 

a reliable electroporation protocol, vectors have to be introduced into C. sporogenes by 

conjugation. Conjugal transfer of replication deficient plasm ids is estimated to occur at an 

approximately 100-fold lower frequency than replication proficient plasm ids in 

C. beijerinckii (Young, M. personal communication). However, this is highly \·ariable 
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depending on the Gram-positive replicon used as a positive control and may vary on the 

clostridial host as well. Taking this into consideration, the lowest transfer frequency 

obtained in C. sparagenes with pMTL5122-like plasmids typically yielded approximately 50 

transconjugants per plate. If suicide plasmids transfer at a IOO-fold lower frequency then 

recombinants would not be obtained. However, during suicide plasmid conjugations the 

entire conjugation 'mix' was plated out on IO selective agar plates. If the reduced frequency 

were only IOO-fold then it would be expected that some integrants should be obtained. As 

no integrants were obtained then the transfer frequency of suicide plasm ids into 

C sparagenes may be lower than IOO-fold. 

Transfer frequency of Tn916 may be lower than that required in order to isolate a mutant. 

However, in the case of cwp66, 50% of thiamphenicol resistant colonies screened were 

cwp66 mutants. This suggests that the Tn916 mediated approach is highly efficient. Also, 

Tn916 has been successful at generating mutants in two different genes in C. diffic ile , yet 

mutants in spaOA of C. sparagenes could not be obtained. 

One factor known to influence the efficiency of integration into certain clostridia is the size 

of the gene fragment cloned into the delivery vector. This has proven to be a controlling 

factor as in C. perjringens, gene fragments in excess of 3kb have been required to obtain 

homologous recombination (Rood, 1.1. personal communication). Secondly, double 

crossover mutants have in some cases been easier to obtain than single crossover mutants 

(Minton, N.P. personal communication). To gain insight into the affects of this a 1.11 kb 

fragment containing spaOA was peR amplified from genes flanking spaOA to generate a 

double crossover fragment. However repeated transfer of the vector did not result in any 

thiamphenicol resistant mutants. Therefore in the future it may be necessary to utilise even 

larger fragments in order to obtain gene knockouts. 

Failed attempts at using both replication deficient vectors and Tn916 to generate integrants 

.. fi' I 'd h' h 'ould enable a laroer number l,r prompted the use of a replIcatIOn pro IClent p asml w IC \v t:" 
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cells to be targeted. The double crossover fragment from spoOA was used as the target as it 

is larger then pyrF and also is cloned as a double crossover cassette. Also, spoOA has 

previously been disrupted in C. acetobutylicum using replication proficient plasm ids (Harris 

et at., 2002). Repeated passage of the pIMP 1 oriT -based vectors did result in severe loss of 

the plasmid, however a similar number ofthiamphenicol and erythromycin resistant colonies 

were obtained. It appears that the plasmid had not integrated as thiamphenicol resistant 

clones were also erythromycin resistant, and plasmid DNA could be isolated from these 

clones and retransformed back into E. coli. 

One potential alternative explanation as to the failed attempts of obtaining integrants in 

either pyrF or spoOA is that homologous recombination appears to be very target specific 

with some genes being relatively easy to inactivate. For example, in the genetically 

amenable C. perfringens certain genes known to be non-toxic if knocked out have proven 

impossible to inactivate (1. Rood, personal communication). This'raises the question of the 

possible presence of specific gene targets in the form of Chi-like DNA sequences in the 

genome where recombination will preferentially occur (Myers and Stahl, 1994). In 

B. subtilis the gene AddAB protein complex behaves in an analogous way to RecBCD in E. 

coli (Kooistra et al., 1993). In vivo, AddAB responds to the five nucleotide sequence 

5'-AGCGG-3', or its complement (Chedin et al., 2000). RecA, AddA, and AddB have been 

identified in the C. botulinum genome and have been found to be present in C. sporogenes 

by microarray analysis, AadA is present but divergent from the C. botulinum gene. 

Therefore the requisite machinery is present to enable recombination to occur, although 

nothing is yet known about the relative activity of the recombination machinery of C 

sporogenes in relation to more genetically acquiescent clostridia such as C perfringens. 
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CHAPTER 7 

SUMMARY AND GENERAL DISCUSSION 
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7.1 Introduction 

DEPT-based cancer therapies rely on the targeted over-expression of prodrug-converting 

enzymes. The two main aims of this study were to obtain over-expression of prodrug 

converting enzymes and subsequently generate targeted mutants, in which the gene encoding 

the prodrug converting enzyme had been integrated into the genome. The work described 

here presents the first demonstrated over-expression in C. sporogenes NCIMB 10696 of two 

novel nitroreductases that have kinetic and enzymatic improvements over the nitroreductase 

currently used in alternative DEPT strategies, NfnB. A variety of approaches were 

investigated to generate targeted mutants. Unfortunately, all methods tried failed to yield a 

mutant in either of the designated spoOA or pyrF gene targets. 

7.2 Construction of a clostridial expression system 

Prior to the over-expression studies, the pMTL51 00 series of clostridial shuttle vectors were 

constructed. These are based on the widely used Gram-positive replicon from the B. subtilis 

plasmid pIM13. This replicon was chosen due to its segregational stability in the original 

CDEPT host of choice, C. acetobutylicum NI-4082. However, after the initiation of the 

project, early in vivo data on the varying colonisation potentials of different clostridia 

indicated C. sporogenes NCIMB 10696 to be the most suitable. At the outset of this study, 

the only published method for introducing DNA into C. sporogenes was by an 

electroporation procedure that proved to be irreproducible outside the author's laboratory. 

Conjugation is thought to be a way of negating transformation barriers such as extracellular 

endonucleases. Utilising the vector pMTL51 12, a previously published conjugal transfer 

method was adapted for use in C. sporogenes NCIMB 10696. This yielded transconjugants 

at a frequency of approximately 1.0 x 10-7 per donor cell. Using the pCD6-based plasmid 

pMTL9301, transconjugants were obtained at a frequency of 1.0 x 10-
5 

per donor cell. These 

levels of transfer frequency were similar to those obtained using a similar protocol in C 

difficile strain CD3 (Purdy et a/. , 2002). Higher conjugation transfer frequencies. in the 
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range of 10-
3 

to 10-
4 

recipients per donor, were obtained in C. botulinum, though a different 

protocol was used (Bradshaw et al., 1998). Therefore, the conjugation transfer frequencies 

obtained in C. sporogenes are comparable with other reported frequencies. The observed 

difference in transfer frequency of pIM 13- and pCD6-based vectors in C. sporogenes is most 

likely a consequence of the extreme segregational instability of pIM13-based plasm ids. 

Experiments performed in C. sporogenes NCIMB 10696 showed that plasmids based on 

pIM 13 were lost at a frequency equivalent to 17% per generation. Therefore, during the 

seven hour non-selective mating stage of the conjugation procedure, a significant proportion 

of the population will loose the plasmid due to poor segregation of the plasmid during cell 

division. 

7.3 Over-expression of CPG2 and HinNTR 

Codon usage is thought to be a major contributor to obtaining expression of heterologous 

genes. CPG2 and HinNTR were therefore synthesised based on the C. acetobutylicum 

ATCC 824 codon usage table. Once the wild type and synthetic DNA sequence prodrug 

converting enzymes were cloned, expression of both CPG2 and HinNTR was demonstrated 

in E. coli using pMTL51 00 series vectors. Interestingly, the synthetic DNA sequence CPG2 

was expressed to a much higher level than the wild-type sequence gene. This could be 

attributed to the high G+C content of the wild-type gene, which would result in less 

preferential codons being used for a particular amino acid. The HinNTR genes were both 

expressed to similar levels. 

Conjugal transfer of the genes encoding both enzymes into C. sporogenes resulted in low-

level expression of HinNTR only. The synthetic sequence HinNTR was expressed to 

marginally higher levels than the wild-type gene. In vivo studies on recombinant 

C. sporogenes NCIMB 10696 expressing HinNTR-synth resulted in a striking anti-tumour 

response. This is thought to be due to an additional bystander effect where apoptosis of 

aerobic non-targeted cells is also occurring. This phenomenon has been reported previousl~ 
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for NfnB in combination with CB 1954 (Djeha et al., 2000; Wilson et al., 2002). The anti

tumour response observed could also be being enhanced by the identified endogenous 

nitroreductase activity of C. sporogenes. The lack of expression of CPG2 was not 

investigated further due to time constraints and the potential for proteolytic cleavage of 

CPG2. 

7.4 Improving expression of prodrug converting enzymes 

Having identified a level of nitroreduction by the first generation recombinant, it was 

thought that improving expression could lead to an even greater anti-tumour effect. 

Additionally, as it is the final aim to have the nitroreductase integrated into the host genome 

as a single copy, expression needs to be as elevated as possible. Segregational stability and 

codon usage were found to affect expression, although, a more noticeable effect was seen 

when codon usage was altered. The reason for these differences appears to be gene specific 

as it is unclear why HinNTR-synth, which has near optimal codons, was not expressed to 

high levels in a segregationally unstable plasmid. The hypothesis that certain rare codons 

that occur only in HinNTR and NTR-N, and not in NfnB, are limiting expression was proven 

by the re-synthesis ofNTR-N. 

7.5 Assessment of current integrational tools 

During the course of this study a number of attempts to develop directed mutagenesis 

procedures for C. sporogenes have been made. The use of suicide vectors as a means to 

generate targeted mutants appears to be limited. They have been successfully used to 

generate mutants in a variety of clostridia including, C. beijerinckii, C. perfringens, 

C acetobutylicum, and C. difjicile (A wad et al., 1995; Liyanage et al., 2001; Wilkinson and 

Young, 1994; Wong and Bennett, 1996). More recently C. septic/{/}/, and C tyrobutyricum 

mutants have been generated (Kennedy et al., 2005; Zhu et al., 2005). However. unless 

significant improvements in gene transfer frequency or alternatively efficient electroporation 
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protocols are developed, the use of suicide vectors In C. sporogenes has so far has not 

proven fruitful. 

The exploitation of the conjugative transposon Tn916 as a mutational element is intriguing. 

Integration of the element has been proven to be both random and non-random in a species 

dependent manner. However, Tn916 has been used to obtain recombination within the sigK 

(Haraldsen et al., 2003) and cwp66 (A. Roberts personal communication) genes of 

C. difficile strains 196 and 79-685 respectively. Attempts to obtain Tn916 mediated 

recombination within the pyrF gene of C. sporogenes failed to yield any correct mutants. 

Tn916 was thought to have integrated into an alternative location in the genome as 

thiamphenicol resistant clones were proven to contain Tn916 using internal primers. 

However, using primers flankingpyrF gave a product of a size determined for an interrupted 

copy of pyrF. 

Finally, a ssDNA based integrative vector was constructed and assessed. No spoDA mutants 

were generated. Reasons for the failure of this approach, which successfully generated a 

spoDA mutant in C. acetobutylicum, are not known. The presence of species-specific Chi

like DNA sequences which promote integration, are hypothesised to be a potential cause for 

the failure to generate mutants in the gene targets chosen in C. sporogenes. 

7.6 Latest advances of other clostridial anti-tumour therapies 

This work highlights the potential of using recombinant clostridial spores to elicit an anti

tumour effect. Furthermore, the initial difficulty in obtaining over-expression of improved 

prodrug converting enzymes appears to have been solved. During the course of these studies 

work has been published on the progression of alternative clostridial therapies. 

The main clostridial alternative to CDEPT is the use of a strain of C. novyi, C. novyi-NT, in a 

process termed combination bacteriolytic therapy (shortened to the acronym COBALT) 

(Dang et aI., 2001). Following on from these initial studies on the use of C. n01yi-NT in 
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combination with conventional therapeutics, there has followed further work on reducing the 

toxicity observed in these initial studies. The combination of microtubule-synthesis

inhibitors resulted in a reduction in toxicity although a tumour cell specific response was still 

observed (Dang et al., 2004). The administration of microtubule-stabilising drugs did not 

result in haemorrhagic necrosis but in slow regression of the tumour. When the microtubule

stabilising drugs were combined with C. novyi-NT this improved the duration of tumour 

regression to the point where a cure was observed in mice bearing HCT116 colorectal 

carcinoma xenografts. Recently, combination of C. novyi-NT with an analogue of the most 

promising microtubule-stabilising drug led to a complete cure in 4 out of 5 mice harbouring 

HCT116 colorectal carcinoma xenografts (Smith et al., 2005). 

An alternative to the clostridial-derived expression of prodrug converting enzymes is the 

production of cytokines. Intratumoural injection of recombinant C. acetobutylicum 

expressing rat interleukin-2 (rIL-2) results in a significant growth delay of the tumour in 

rhabdomyosarcoma-bearing rats (van Mallaert et al., 2006). The rIL-2-mediated indirect 

activation of CDS+ T lymphocytes is proposed to be responsible for the observed growth 

delay (van Mallaert et al., 2006). This further highlights the potential of using expression of 

cytokines rather than prodrug converting enzymes to elicit anti-tumour effects. 

7.7 Future work 

Following on from these studies it is of primary interest to repeat the in vivo studies with 

both the HinNTR and NTR-N over-expression clones. Additionally, any anti-tumour effect 

resulting from the endogenous nitroreductase activity needs to be studied, such that the effect 

arising specifically from the expression of the novel nitroreductase can be quantified. 

It is paramount that the final strains have the prodrug converting enzyme integrated into the 

genome. To this aim, integrative technology needs to be developed. Indeed, it is vital to the 

clostridial research community as a whole. Recently, a mobile group II intron has been used 

176 



to generate an alpha toxin (PIc) inactivated mutant in C. perfringens (Chen et al., 2005). 

Mobile group II introns are site-specific retrohoming elements that are capable of targeting 

specific DNA sequences independently of host-encoded recombination machinery. It would 

be of interest to develop this method for the generation of mutants for use in CDEPT. This is 

due to the method being highly efficient and site-specific which avoids the random insertion 

of transposons, or low frequency of recombination associated with suicide plasm ids. 

Additionally, the major clinical advantage of this system is that no antibiotic resistant genes 
'-

are introduced into the chromosome making it ideal for applications such as CDEPT. 

In addition, it would be interesting to attempt to solve expression of carboxypeptidase G2, as 

CPG2 has yet to be expressed in a bacterial DEPT strategy. Initially RT-PCR performed on 

the recombinant clones created in this study would highlight if the expression was related to 

mRNA stability. If mRNA is being produced, expression of CPG2 could be attempted in the 

segregationally stable vector. If no CPG2 activity could be detected at this stage then the 

codon usage of CPG2 could be studied. Further work could also be performed on the 

proteolysis of CPG2. Expression in a less proteolytic saccharolytic Clostridium such as 

C. acetobutylicum would highlight if the level of protease secretion by C. sporogenes is 

hampering the extracellular production of CPG2. This would limit the choice of prodrug 

converting enzymes to intracellular enzymes such as nitroreductase. 
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APPENDIX I 

pMTL5 series of plasm ids - C. sporogenes and C. botulinum work 

1 st digit = replicon 
1 = pIMl3 
2 = pBPl 
3 = pCD6 
4 = pCBl02 
5 = pAMl3l 
6 = pIP404 
7= 
8= 
9= 

pMTL5 __ _ 

2 digit = feature 
0= nothing 
1 = oriT 
2 = oriT /lacZ 
3 = oriT/lacl 
4 = oriT /lacZ/lacl 
5= 
6= 
7= 
8= 
9= 

3 rd d" " 19lt = promoter 
0= nothing 
1 = fac 
2 = fac2 
3 = Cspofdx 
4= 
5= 
6= 
7= 
8= 
9= 
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APPENDIX II 

Prodrug converting enzyme DNA and protein sequences 

eglAss:CPG2 

MFSKIKKINFFKKTFSFLIAVVMMLFTVLGTNTYKAEAQKRDNVLFQAATDEQPAVIKTLEKLVNIETGTGDAEGI 
AAAGNFLEAELKNLGFTVTRSKSAGLVVGDNIVGKIKGRGGKNLLLMSHMDTVYLKGlLAKAPFRVEGDKAYGPGI 
ADDKGGNAVILHTLKLLKEYGVRDYGTITVLFNTDEEKGSFGSRDLIQEEAKLADYVLSFEPTSAGDEKLSLGTSG 
IAYVQVNITGKASHAGAAPELGVNALVEASDLVLRTMNIDDKAKNLRFNWTIAKAGNVSNIIPASATLNADVRYAR 
NEDFDAAMKTLEERAQQKKLPEADVKVIVTRGRPAFNAGEGGKKLVDKAVAYYKEAGGTLGVEERTGGGTDAAYAA 
LSGKPVIESLGLPGFGYHSDKAEYVDISAIPRRLYMAARLIMDLGAGK. 

CPG2 

ATGTTTTCAAAAATCAAAAAAATTAATTTTTTTAAAAAAACATTTTCTTTTTTAATTGCTGTTGTAATGATGTTGT 
TTACAGTATTAGGAACAAATACTTATAAAGCTGAAGCTCAGAAGCGCGACAACGTGCTGTTCCAGGCAGCTACCGA 
CGAGCAGCCGGCCGTGATCAAGACGCTGGAGAAGCTGGTCAACATCGAGACCGGCACCGGTGACGCCGAGGGCATC 
GCCGCTGCGGGCAACTTCCTCGAGGCCGAGCTCAAGAACCTCGGCTTCACGGTCACGCGAAGCAAGTCGGCCGGCC 
TGGTGGTGGGCGACAACATCGTGGGCAAGATCAAGGGCCGCGGCGGCAAGAACCTGCTGCTGATGTCGCACATGGA 
CACCGTCTACCTCAAGGGCATTCTCGCGAAGGCCCCGTTCCGCGTCGAAGGCGACAAGGCCTACGGCCCGGGCATC 
GCCGACGACAAGGGCGGCAACGCGGTCATCCTGCACACGCTCAAGCTGCTGAAGGAATACGGCGTGCGCGACTACG 
GCACCATCACCGTGCTGTTCAACACCGACGAGGAAAAGGGTTCCTTCGGCTCGCGCGACCTGATCCAGGAAGAAGC 
CAAGCTGGCCGACTACGTGCTCTCCTTCGAGCCCACCAGCGCAGGCGACGAAAAACTCTCGCTGGGCACCTCGGGC 
ATCGCCTACGTGCAGGTCAACATCACCGGCAAGGCCTCGCATGCCGGCGCCGCGCCCGAGCTGGGCGTGAACGCGC 
TGGTCGAGGCTTCCGACCTCGTGCTGCGCACGATGAACATCGACGACAAGGCGAAGAACCTGCGCTTCAACTGGAC 
CATCGCCAAGGCCGGCAACGTCTCGAACATCATCCCCGCCAGCGCCACGCTGAACGCCGACGTGCGCTACGCGCGC 
AACGAGGACTTCGACGCCGCCATGAAGACGCTGGAAGAGCGCGCGCAGCAGAAGAAGCTGCCCGAGGCCGACGTGA 
AGGTGATCGTCACGCGCGGCCGCCCGGCCTTCAATGCCGGCGAAGGCGGCAAGAAGCTGGTCGACAAGGCGGTGGC 
CTACTACAAGGAAGCCGGCGGCACGCTGGGCGTGGAAGAGCGCACCGGCGGCGGCACCGACGCGGCCTACGCCGCG 
CTCTCAGGCAAGCCAGTGATCGAGAGCCTGGGCCTGCCGGGCTTCGGCTACCACAGCGACAAGGCCGAGTACGTGG 
ACATCAGCGCGATTCCGCGCCGCCTGTACATGGCTGCGCGCCTGATCATGGATCTGGGCGCCGGCAAGTGA 

CPG2-synth 

ATGTTCTCAAAGATTAAGAAAATAAATTTTTTTAAGAAGACATTTAGTTTTTTAATAGCAGTAGTAATGATGTTAT 
TTACAGTATTAGGAACTAACACATATAAAGCAGAGGCTCAAAAAAGAGATAATGTATTATTTCAAGCAGCTACAGA 
TGAGCAACCAGCAGTTATTAAAACATTAGAGAAGCTAGTAAATATTGAAACAGGTACAGGAGATGCTGAAGGAATA 
GCAGCAGCAGGTAATTTTTTAGAGGCTGAACTAAAAAATTTAGGATTTACAGTAACTAGAAGTAAAAGTGCTGGTC 
TTGTTGTAGGAGATAATATAGTTGGAAAAATTAAGGGAAGAGGTGGAAAAAACCTTTTATTAATGTCACACATGGA 
CACTGTTTATCTAAAAGGAATATTAGCAAAAGCACCATTCAGAGTAGAAGGAGATAAAGCTTATGGTCCTGGAATT 
GCTGATGATAAGGGAGGAAATGCTGTAATTTTACATACATTAAAATTACTTAAGGAATATGGTGTTAGAGATTACG 
GAACAATTACAGTACTATTTAATACTGATGAAGAAAAAGGCTCTTTTGGTTCAAGGGACTTAATTCAGGAAGAAGC 
AAAATTGGCTGATTATGTACTATCATTTGAACCAACTAGTGCAGGAGATGAAAAACTTAGTCTTGGTACTTCAGGT 
ATTGCATACGTTCAAGTTAATATAACAGGAAAAGCAAGTCATGCTGGTGCTGCACCTGAGTTGGGTGTAAATGCAT 
TAGTTGAAGCTTCTGATCTTGTTCTTAGGACAATGAATATTGATGATAAAGCTAAAAATCTTAGATTCAACTGGAC 
TATAGCAAAGGCAGGTAATGTTAGTAATATAATACCAGCTTCTGCTACACTTAACGCTGACGTTAGATATGCAAGA 
AATGAAGATTTTGATGCAGCAATGAAAACTCTTGAAGAAAGAGCACAACAGAAAAAATTGCCAGAGGCAGATGTTA 
AGGTAATAGTTACTAGAGGAAGACCTGCTTTTAATGCAGGAGAAGGAGGTAAGAAATTAGTTGACAAAGCTGTTGC 
TTATTATAAAGAAGCAGGAGGAACTCTTGGAGTTGAAGAAAGGACTGGTGGAGGAACAGATGCAGCTTATGCTGCT 
CTTTCTGGTAAACCAGTTATAGAGTCTTTGGGTCTTCCAGGTTTTGGATACCATAGTGATAAGGCAGAATATGTTG 
ATATATCAGCTATACCTAGGAGATTATATATGGCTGCAAGATTGATAATGGATCTAGGTGCTGGTAAATAA 
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HinNTR 

MTQLTREQVLELFHQRSSTRYYDPTKKISDEDFECILECGRLSPSSVGSEPWKFLVIQNKTLREKMKPFSWGMINQ 
LDNCSHLVVILAKKNARYDSPFFVDVMARKGLNAEQQQAALTKYKALQEEDMKLLENDRTLFDWCSKQTYIALANM 
LTGASALGIDSCPIEGFHYDKMNECLAEEGLFDPQEYAVSVAATFGYRSRDIAKKSRKGLDEVVKWVG. 

HinNTR 

ATGACTCAACTTACTCGTGAACAAGTTCTTGAACTCTTCCATCAACGCAGCTCAACACGTTATTACGACCCAACAA 
AAAAAATCAGTGATGAAGATTTTGAATGTATTTTAGAGTGCGGTCGATTATCGCCGAGTTCTGTAGGCTCTGAGCC 
TTGGAAATTTTTAGTGATTCAAAATAAAACCTTACGCGAAAAAATGAAACCTTTTAGCTGGGGAATGATAAATCAG 
CTTGATAATTGCAGTCATCTTGTGGTAATTCTCGCGAAGAAAAATGCCCGTTATGATAGTCCGTTTTTTGTGGATG 
TGATGGCACGCAAAGGCTTGAACGCAGAGCAACAACAAGCCGCCCTCACAAAATACAAAGCCCTGCAAGAAGAAGA 
TATGAAATTACTCGAAAACGACCGCACTTTATTTGATTGGTGCAGCAAACAAACTTATATCGCCCTTGCAAATATG 
CTTACTGGAGCTTCAGCCCTTGGCATCGACTCTTGCCCAATTGAAGGTTTTCATTACGACAAAATGAATGAATGCC 
TCGCCGAAGAAGGATTATTCGATCCTCAAGAATATGCGGTTTCTGTCGCCGCAACCTTTGGCTATCGCTCACGCGA 
TATTGCGAAAAAATCCCGTAAAGGATTGGATGAAGTGGTGAAATGGGTGGGGTAA 

HinNTR-synth 

ATGACTCAATTAACAAGGGAACAAGTACTAGAATTATTTCATCAAAGAAGTTCAACAAGATATTACGATCCAACTA 
AGAAGATATCAGATGAAGACTTTGAATGTATATTAGAGTGTGGAAGATTAAGTCCTAGTTCTGTTGGATCAGAACC 
ATGGAAGTTCTTGGTAATTCAAAATAAAACTCTTAGAGAAAAAATGAAACCATTTAGTTGGGGTATGATTAATCAG 
CTTGATAACTGCTCACACCTAGTTGTAATTCTTGCAAAGAAGAATGCTAGATATGATTCTCCTTTTTTTGTTGATG 
TTATGGCTCGTAAAGGACTTAATGCTGAACAGCAACAAGCTGCATTAACTAAATATAAAGCATTACAGGAAGAAGA 
TATGAAACTTCTTGAGAATGATAGAACTTTATTTGATTGGTGTTCTAAACAAACATACATAGCATTGGCAAATATG 
TTAACAGGAGCTAGTGCATTAGGAATAGACAGTTGTCCAATAGAAGGTTTTCATTATGATAAGATGAACGAATGCC 
TTGCTGAGGAGGGATTATTTGATCCTCAAGAATATGCTGTATCAGTAGCTGCAACATTCGGATATAGATCTAGAGA 
TATAGCAAAAAAATCTAGGAAAGGTCTTGATGAAGTAGTAAAATGGGTTGGTTAA 

HinNTR-synthv.2 

ATGACTCAATTAACAAGAGAACAAGTATTAGAATTATTTCATCAAAGAAGTT~TACTAGATATTATGATCCTACTA 
AAAAGATAAGTGATGAAGATTTTGAATGTATATTAGAATGTGGAAGATTAAGTCCATCTAGTGTAGGATCTGAACC 
TTGGAAATTTTTAGTAATACAAAATAAAACTTTAAGAGAAAAAATGAAGCCATTTTCTTGGGGAATGATAAATCAA 
TTAGATAATTGTTCTCATTTAGTAGTTATATTAGCAAAAAAAAATGCTAGATATGATTCTCCTTTTTTTGTAGATG 
TTATGGCAAGAAAAGGATTAAATGCAGAACAACAGCAAGCAGCTTTAACTAAATATAAAGCTTTACAAGAAGAAGA 
TATGAAATTATTAGAAAATGATAGAACATTATTTGATTGGTGTAGTAAACAAACTTATATAGCTTTAGCAAATATG 
TTAACTGGAGCAAGTGCATTAGGAATAGATTCTTGTCCTATAGAAGGATTTCATTATGATAAAATGAATGAATGTT 
TAGCAGAAGAGGGATTATTTGATCCACAAGAATATGCTGTTTCAGTAGCTGCAACTTTTGGATATAGATCAAGAGA 
TATAGCTAAAAAAAGTAGAAAAGGATTAGATGAAGTTGTAAAATGGGTTGGATAA 

NfnB 

MDI ISVALKRHSTKAFDASKKLTPEQAEQIKTLLQYSPS STNSQPWHFIVASTEEG KARVAKSAAGNYVFNERKML 
DASHVVVFCAKTAMDDVWLKLVVDQEDADGRFATPEAKAANDKGRKFFADMHRKDLHDDAEWMAKQVYLNVGNFLL 
GVAALGLDAVPIEGFDAAILDAEFGLKEKGYTSLVVVPVGHHSVEDFNATLPKSRLPQNITLTEV. 

nfnE 

ATGGATATCATTTCTGTCGCCTTAAAGCGTCATTCCACTAAGGCATTTGATGCCAGCAAAAAACTTACCCCGGAAC 
AGGCCGAGCAGATCAAAACGCTACTGCAATACAGCCCATCCAGCACCAACTCCCAGCCGTGGCATTTTATTGTTGC 
CAGCACGGAAGAAGGTAAAGCGCGTGTTGCCAAATCCGCTGCCGGTAATTACGTGTTCAACGAGCGTAAAATGCTT 
GATGCCTCGCACGTCGTGGTGTTCTGTGCAAAAACCGCGATGGACGATGTCTGGCTGAAGCTGGTTGTTGACCAGG 
AAGATGCCGATGGCCGCTTTGCCACGCCGGAAGCGAAAGCCGCGAACGATAAAGGTCGCAAGTTCTTCGCTGATAT 
GCACCGTAAAGATCTGCATGATGATGCAGAGTGGATGGCAAAACAGGTTTATCTCAACGTCGGTAACTTCCTGCTC 
GGCGTGGCGGCTCTGGGTCTGGACGCGGTACCCATCGAAGGTTTTGACGCCGCCATCCTCGATGCAGAATTTGGTC 
TGAAAGAGAAAGGCTACACCAGTCTGGTGGTTGTTCCGGTAGGTCATCACAGCGTTGAAGATTTTAACGCTACGCT 

GCCGAAATCTCGTCTGCCGCAAAACATCACCTTAACCGAAGTGTAA 
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NTR-N 

MTVLSKEQVLSAFKNRKSCRHYDAARKISAEDFQFILELGRLSPSSVGSEPWQFIVVQNPEIRQAIKPFSWGMADA 
LDTASHLVVFLAKKNARSDSPFMLESLKRRGVTEPDAVAKSLARYQAFQADDIKILDDSRALFDWCCRQTYIALAN 
MMTGAAMAGIDSCPVEGFNYAEMERILSGQFGLFDAAEWGVSVAATFGYRVQEIATKARRPLEETVIWA. 

NTR-N 

ATGACAGTATTAAGCAAAGAGCAGGTTCTATCCGCATTTAAAAACCGTAAATCATGCCGGCATTACGATGCGGCAC 
GCAAAATCAGTGCCGAGGATTTTCAGTTTATTTTAGAACTCGGGCGTTTGTCGCCCAGTTCGGTCGGTTCGGAGCC 
TTGGCAGTTTATTGTGGTTCAAAACCCTGAAATCCGACAGGCAATCAAGCCGTTTTCTTGGGGTATGGCGGATGCT 
TTGGATACCGCCAGTCATTTGGTGGTGTTTTTGGCGAAGAAAAATGCCCGCTCCGACAGCCCGTTTATGTTGGAAA 
GCCTCAAACGGCGCGGCGTTACCGAACCGGATGCCGTAGCAAAATCTTTGGCAAGGTATCAGGCGTTTCAAGCTGA 
CGACATCAAGATTTTGGACGATTCTCGCGCCTTGTTTGACTGGTGTTGCCGTCAGACCTATATCGCGTTAGCCAAC 
ATGATGACGGGTGCGGCGATGGCAGGTATCGATTCCTGCCCGGTGGAAGGTTTCAACTATGCCGAGATGGAGCGCA 
TATTGTCCGGGCAGTTTGGTTTGTTCGATGCGGCAGAATGGGGCGTGTCCGTCGCCGCGACATTCGGCTACCGCGT 
TCAGGAAATCGCCACGAAAGCGCGTAGGCCCTTGGAAGAAACCGTTATTTGGGCATAA 

NTR-N-synth 

ATGACAGTATTATCTAAAGAACAAGTATTATCTGCATTTAAAAATAGAAAAAGTTGTAGACATTATGATGCTGCTA 
GAAAAATAAGTGCAGAAGATTTTCAATTTATATTAGAACTTGGAAGATTATCTCCTTCTAGTGTAGGATCTGAACC 
TTGGCAATTTATAGTAGTACAAAATCCAGAAATAAGACAAGCAATAAAACCTTTTTCATGGGGAATGGCTGATGCA 
TTAGATACAGCATCTCATTTAGTAGTTTTTTTAGCAAAAAAGAATGCAAGATCTGATTCACCATTTATGTTAGAAA 
GTTTAAAAAGAAGGGGAGTTACTGAACCAGATGCAGTAGCTAAAAGTTTAGCAAGATATCAAGCTTTTCAAGCTGA 
TGATATAAAAATTTTAGATGATAGTAGAGCATTATTTGATTGGTGCTGTAGACAAACTTATATAGCTTTAGCTAAT 
ATGATGACAGGAGCAGCAATGGCTGGAATAGATTCTTGTCCTGTAGAAGGATTTAATTATGCAGAAATGGAGAGAA 
TATTATCTGGACAATTTGGTTTATTTGATGCAGCTGAATGGGGAGTATCAGTTGCTGCAACTTTTGGATATAGAGT 
TCAAGAAATAGCTACAAAAGCAAGAAGACCATTAGAAGAGACTGTAATATGGGCTTAA 
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Graphical Codon Usage Analysis of prodrug converting enzymes 

C. tetani codon usage table 
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