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Abstract 

The diterpenoid paclitaxel (TaxolTM) is one of the most effective anticancer drugs, used 

against a wide range of cancers. It is produced as a secondary metabolite in the vascular 

cambial region of the bark of Taxus brevifolia from which it was first extracted in 1971. 

Taxol also accumulates in low concentrations in several other Taxus species. As the 

demands for Taxol greatly exceeded its supply, alternative routes for producing the drug 

and its related taxanes were developed. Taxol is presently manufactured by semi- 

synthesis from its precursors baccatin III and 10-deacetylbaccatin III found in Taxus 

needles. The biosynthesis of Taxol mostly occurs via the 2-C-methyl D-erythritol 4- 

phospahte pathway and requires at least 19 enzymatic steps from the precursor 

geranylgeranyl diphosphate. This study set out to heterologously express the early genes 

of the Taxol biosynthetic pathway in Nicotiana tabacum for the subsequent redirection 

of this precursor for the synthesis of novel taxanes. 

The first five genes of the Taxol biosynthetic pathway, namely taxadien-5-a- 

hydroxylase, taxadien-5a-acetyltransferase, taxoids 100-, 13a- and 7p-hydroxylase, were 

isolated from Taxus baccata mRNA. Individual transgenic tobacco lines were generated 

expressing each of the first three enzymes of the biosynthetic pathway. These lines were 

crossed with each other in order to obtain all three transgenes expressed together in 

individual transgenic lines. Progenies from the crosses, expressing the first three 

transgenes were analysed, however, GS-MS analysis failed to detect the compound 

taxadiene-5a-ol and its acetylated compound taxadiene-5a-yl acetate. The expression of 

the Taxol biosynthetic genes in transgenic tobacco plants were accompanied by 

phenotypic effects, including dwarfism and low fertility of the transgenic plants. To 

circumvent these sterility issues which made crossing of the plants difficult, a construct 



was prepared carrying the first two genes of the Taxol biosynthetic pathway, to be 

transformed in yellow flesh tomato mutant at a later stage. 

The localisation of taxadiene synthase, 5a-hydroxylase and taxadien-5a 

acetyltransferase was investigated by making translational fusions to fluorescent protein 

tags. Confocal microscopy was used to detect the fluorescent proteins GFP, YFP and 

CFP in Arabiodopsis thaliana roots and tobacco leaf and root cells. Taxadiene synthase 

was found to be localised to the plastids, taxadien-5-a-hydroxylase spatially positioned 

on the plastid envelope and the endoplasmic reticulum membrane and taxadien-5a 

acetyltransferase was localised to the endoplasmic reticulum. 
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Introduction 

CHAPTER I: INTRODUCTION 

1.1 Taxus and Taxoids 

In late 1950s, an exploratory plant screening program was set up by the National 

Cancer Institution (NCI) in the United States to screen for anti-cancer substances 

from plants (Zubrod et al., 1966). Many extracts were screened including a crude 

extract from the bark of Taxus brevifolia, which demonstrated cytotoxic activity 

against Melanoma B16 and other cancer cells. The active constituent was isolated 

and characterised as paclitaxel in 1971 (Wani et al., 1971). Interests arose in 

paclitaxel when Susan Horwitz reported that this compound had a unique mode of 

action in promoting tubulin assembly and preventing depolymerisation, a process 

leading to cell death (Schiff et al., 1979). In December 1992, paclitaxel was 

approved by the Food and Drug Administration (FDA) for the treatment of refractory 

ovarian and metastatic breast cancer (Suffness and Wall, 1995) and was subsequently 

marketed as Taxo1TM (hereafter referred as Taxol) (Figure 1.1) by Bristol-Myers- 

Squibb. Taxol has become widely used for the treatment of a range of cancers 

including head and neck, breast, cervix, bladder and lung cancers as well as for 

AIDS-related Karposi's sarcoma. 

The Taxus (yew) species are members of the Taxaceae family and are slow-growing 

shrubs widely distributed throughout Europe, the Far East, Northern and Central 

America. All Taxus species to date have been reported to produce Taxol (though 

levels may vary widely) (Itokawa, 2003), and the drug has been found to be most 
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Introduction 

abundant in the vascular cambial region (Strobel et al., 1993) of the stem, needles 

and the root tissue of the yew. 

' NH 

pia Jý 

Taxol 

Figure 1.1 Structure and numbering of Taxol. 
Taxol having a molecular formula C47H51NO14 consists of an eight-membered B-ring fused 
to the A-ring and to the C-ring taxoid ring system to which an oxetane (D) ring is attached. 
The taxane core undergoes various esterifications to afford the baccatin core to which an N- 
benzoyl phenylisoserine side chain is attached to yield Taxol. OBz, benzoyl; AcO, acetyl. 

The toxic nature of the yew trees has been known since the second century, when the 

king of Eburones poisoned himself with yew `juice' (Reviewed in Wilson et al., 

2001). The accumulation of complex mixtures of taxane alkaloids in the needles and 

bark of the yews contribute to its poisonous nature. To date over 400 taxanes have 

been isolated from the different Taxus species (Baloglu and Kingston, 1999; Shi and 

Kiyota, 2005), among which Taxol and its precursor 10-deacteylbaccatin III exhibit 

strong antifeedant activity, explaining why the yew tree is not attacked by 

woodworm and its needles are resistant to insects (Daniewski et al., 1998). Taxol, is 

believed to be produced as a secondary metabolite by the Taxus cells as part of plant 

defense responses to pathogenic attacks, hence possesses antibiotic (Elmer et al., 
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1994) and antifungal activity (Young et al., 1992) and is toxic to mammals (Odgen, 

1988). 

1.2 Biosynthesis of Taxol 

The chemical structure of Taxol has led researchers to suggest that the pathway 

consists of 19 enzymatic steps. By making use of differential display of mRNA 

reverse-transcription PCR (DD-RT-PCR) method, homology based cloning approach 

and creating an EST library using methyl jasmonate induced Taxus cell culture, most 

of the genes and the steps of the Taxol biosynthetic pathway have been elucidated. 

Taxol biosynthesis (Figure 1.2) is believed to derive from the common isopentenyl 

diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) produced via 

the mevalonate (MVA) or plastidial 2-C-methyl-D-erythritol 4-phosphate (MEP) 

pathway (Eisenreich et al. 1996; Cusid6 et al., 2002). Among the different enzymes 

which are responsible for the early steps of the Taxol biosynthetic pathway is the 

Taxus geranylgeranyl diphosphate synthase (GGPPS) (Hefner et al., 1998). This 

enzyme catalyses the head-to-tail condensation of the five-carbon precursors, IPP 

and DMAPP to give the C 10 geranyl diphosphate (GPP) followed by C 15 farnesyl 

diphosphate and finally the C20 GGPP molecule. 

The committed step of Taxol biosynthesis is represented by the cyclisation of the 

GGPP to taxa-4(5), 11(12)-diene and its isomer taxa-4(20), 11(12)-diene (Williams et 

al., 2000a), a reaction catalysed by the plastidial taxadiene synthase (TXS) (Hezari et 

al., 1995,1997; Wildung and Croteau, 1996). The taxane core of these olefins 

undergo an allylic rearrangement of the 4(5) or 4(20) double bond to the 4(20) 
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position by a cytochrome P450 (CYP) mono-oxygenase taxadiene-5a-hydroxylase 

(T5OH) (Jennewein et al., 2004) to yield taxa-4(20), 11(l2)-dien-5a-ol (Hefner et al., 

1996). The C-5-hydroxyl group of this alcohol is then acetylated by the taxadien-5a- 

acetyltransferase (T5AT) to form taxa-4(20), 11(12)-dien-5a-yl-acetate (Walker et 

al., 2000), representing the third step of the Taxol biosynthetic pathway. Two taxoids 

10ß-hydroxylases (Schoendorf et al., 2001; Jennewein et al., 2004b) have been 

isolated which both catalyse the hydroxylation of taxa-4(20), 11(12)-dien-5a-yl- 

acetate at its C-10 position to afford taxa-4(20), 11(12)-dien-5a-103-o1-monoacetate. 

The oxygenated taxane core is further hydroxylated and decorated by a benzoyl 

group at the C2 position and an acetate group at the C 10 position to afford the 

intermediate baccatin III, to which the C 13 N-phenylisoserine side chain is appended 

in an additional five steps to yield Taxol (Figure 1.2). 

Two CYP-dependent hydroxylases; taxoid 13a-hydroxylase (Jennewein et al., 2001) 

and 14ß-hydroxylase (Jennewein et al., 2003) have been identified and are deemed 

to be involved in the bifurcation of the Taxol biosynthetic pathway, leading to the 

formation of dead-end metabolites in Taxus cell cultures (Ketchum et al., 2007a). 

The enzyme that epoxidates the C4/C20 double bond to form the oxetane ring has 

not yet been identified, nor have those catalysing the Cl and C9 hydroxylation of the 

taxane core. Based on a survey of the relative abundances of the naturally occurring 

taxoids (Floss and Mocek, 1995) and the oxidation frequency of the taxoids found in 

cell cultures (Ketchum et al., 2003,2007a), the proposed sequence of oxidation is 

considered to progress from the C5 to C 10, followed by C2 and C9 then C 13, C7 and 

finally C 1. 
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Figure 1.2 Outline of the proposed sequence of events in the Taxol biosynthetic 
pathway. 

Taxol arises mainly via the plastidial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway 
through the supply of IPP and DMAPP. The cyclisation of GGPP to taxadiene by taxadiene 
synthase (TXS) is followed by the first oxygenation at the C5 by taxadien-5a-hydroxylase 
(T50H). The taxane core undergoes further oxygenation (five alcohol functions, one 
carbonyl and one cyclic ether). Two subsequent acetylation (Ac), a benzoylation (013z) by 
acyl and aroyl CoA-dependent transferases takes place followed by oxetane ring formation, 
and oxidation at the C9 leading to the late intermediate baccatin Ill, to which the C13 side 
chain is attached to afford Taxol. Multiple arrows represent undefined steps (Adapted from 
Guo et a!., 2006). 
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1.3 Functionally Important Enzymes of the Taxol Biosynthetic 

Pathway 

1.3.1 Taxadiene synthase: the first committed enzyme of Taxol biosynthesis 

The cyclisation of the Taxus GGPP by taxadiene synthase (TXS) has been 

demonstrated to produce principally taxa-4(5), 11(12)-diene (94%) with very low- 

level coproduction of the isomer taxa-4(20), 11(12)-diene (4.8%) (Williams et al., 

2000a). This committed step of the pathway has been proposed to arise from the 

ionization and cyclisation of GGPP with closure of the A-ring and transfer of the 

C 11-a proton to C7 to initiate the transannular closure of the B/C-ring juncture to a 

(JS)-verticillene cation, (Figure 1.3) followed by deprotonation at C5 to afford the 

isomers taxa-4(5), 11(12)-diene and taxa-4(20), 11(12)-diene (Koepp et al., 1995; 

Williams et al., 2000a). Lin et al (1996) reported that the cyclisation of GGPP to 

taxa-4(5), 11(12)-diene is direct and does not involve preliminary formation of the 

4(5), 11(12)-diene isomer followed by isomerization to the endocyclic isomer 

4(20), 11(12)-diene. 

TXS was partially purified from the yew stem bark and adhering cambium and 

characterised as a monomeric protein of molecular weight 79 kDa. The enzyme was 

found to require Mg2+ as a cofactor, which is thought to bind the anionic diphosphate 

group of the substrate GGPP and to assist in the ionisation step of the reaction 

(Hezari et al. 1995). Eventually taxadiene synthase cDNA (Accession No. U48796) 

was cloned from a cDNA library of Pacific Yew (T. brevifolia) stem cells, through a 

homology-based PCR cloning strategy (Wildung and Croteau, 1996). TXS being the 

key enzyme in the Taxol biosynthetic pathway has been cloned from most of the 
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other Taxus species; T chinensis (AY007207) (Wang et al., 2002), T baccata 

(AY424738) (Besumbes et al., 2006) and Taxus x media (AY461450) (Kai et al., 

2005). 
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Figure 1.3 Outline of the cyclisation reaction of GGPP via an (IS)-verticillenc to 
the formation of taxa-4(5), 11(12)-diene and its isomer taxa-4(20), 11(12)-diene 
(Adapted from Williams et at, 2000a). 

The very low levels of TXS activity in yew stem extracts and the trace amounts of 

this diterpene olefin intermediate in bark (5-10 µg/kg) (Koepp et al. 1995) suggested 

that this cyclisation step to establish the taxane skeleton could be a slow if not rate 

limiting step, in Taxol biosynthesis. However, a more detailed investigation into the 

enzyme activity of TXS over the course of Taxol production was performed using 

cell cultures of T. canadensis (Hezari et al., 1997). The ability of the cell cultures to 

produce Taxol was not dependent on taxadiene synthase activity which led the 

authors to suggest that although the cyclisation step might be a slow step, it is not a 
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rate-limiting step in the pathway (Hezari et al., 1997). Taxadiene is not sold 

commercially and is not readily available, requiring either 750 kg of dry bark from T. 

brevifolia for the isolation of only 1 mg of 85% pure taxadiene or a 25-step chemical 

synthesis (Koepp et al., 1995). In order to achieve a high level of taxadiene as the 

first step towards the overexpression of Taxol in heterologous systems, TXS has 

been expressed in E. coli (Huang et at, 1998,2001; Ajikumar et at, 2010), yeast 

(Dejong et al., 2005), Arabidopsis (Besumbes et al., 2004), the moss Physcomitrella 

patens (Anterola et at, 2009) and a yellow fruited tomato line (Kovacs et at, 2007). 

1.3.2 Cytochrome P450 oxygenases of the Taxol biosynthetic pathway. 

Cytochrome P450 (CYP) monooxygenases form a large family of enzymes 

distributed in many organisms from bacteria to higher eukaryotes, including 

mammals and higher plants (Nelson, 1999). CYP enzymes play an essential role in 

electron transfer of the respiratory chain and are also involved in the oxidation steps 

of plant secondary metabolism to form more complex structures of plant natural 

products, such as phenylpropanoids, flavonoids and terpenoids (Kim and Tsukaya, 

2002; Morant et al., 2003). CYPs catalyse the insertion of oxygen into an inactivated 

substrate (RH), while the second oxygen atom is reduced to water, as illustrated in 

the equation below: 

RH + 02 + NADPH, H+ -º ROH + H2O+NADP+ 

The activities of most CYPs are usually associated to the outer face of the 

endoplasmic reticulum (ER) via a hydrophobic N-terminal transmembrane 

integration region required for anchoring (Werck-Reichhart and Feyereisen, 2000) 

8 



Introduction 

and receive their electrons from the flavoprotein NADPH Cytochrome P450 

reductase (CPR) (Benveniste et al. 1977; Nelson, 1999). In eukaryotic organisms, 

their substrates are generally lipophilic, reflecting the integral nature of these 

enzymes. The CYPs are also characterised by the presence of a highly conserved 

proline, phenylalanine, glycine (PFG) heme-binding motif and a heure protein active 

centre which binds to the substrate protein through a highly conserved cysteine 

residue. 

Approximately half of the proposed 19 distinct enzymatic steps of the Taxol 

biosynthetic pathway are considered to be catalysed by CYP mono-oxygenases 

(Croteau et al. 2006). By making use of differential display of mRNA-reverse 

transcription-polymerase chain reaction (DD-RT-PCR) method or homology based 

cloning and random sequencing, using transcripts isolated from methyl jasmonate- 

induced T. cuspidata cells, most of the CYPs involved in Taxol biosynthesis have 

been cloned. 

1.3.2.1 Hydroxylation of the taxadiene nucleus by cytochrome P450 oxygenase 

taxadiene 5a-hydroxylase 

The first and probably most important oxygenation step of the Taxol biosynthesis 

involves the hydroxylation at C5 of taxa-4(5), 11(12)-diene or its isomer, with double 

bond rearrangement to yield taxa-4(20), 11(12)-dien-5a-ol. Microsomal preparations 

from the woody stems of T. brevifolia and T. cuspidata were examined for their 

ability to transform partially soluble taxadiene to more polar products (Hefner et al., 

1996). The microsomal cuttings were found to catalyse the aerobic NADPH- 
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dependent conversion of taxadiene to an oxygenated substrate which structure was 

determined as taxa-4(20), 11(12)-diene-5a-ol by NMR spectroscopy. The production 

of the taxadiene-5a-ol was also confirmed as the first oxygenated compound, by 

oxidising isomer taxa-4(20), 11(12)-diene previously prepared by total synthesis 

(Rubenstein and Williams., 1995). The alcohol was demonstrated to be present in a 

5-10 gg/kg range which was in the same range as taxadiene previously purified 

(Koepp et al., 1995) suggesting that the oxygenation could be a less efficient step of 

the pathway (Wheeler et al., 2001). 

Due to its low level of induction, expression of this hydroxylase was previously 

undetected by the differential display-based cloning technique from methyl 

jasmonate-treated cell cultures (Wheeler et al., 2001). Jennewein et al. (2004a) made 

use of a homology based PCR amplification with primers directed to regions of very 

high sequence conservation in CYP oxygenases of plant origin. Using this method, a 

clone of taxadiene-5a-hydroxylase (T50H) (Accession no. AY289209) was 

identified containing an apparent 1509 bp open reading frame (ORF) encoding a 

protein of -57 kDa and exhibited typical CYP characteristics including the oxygen 

binding domain and a N-terminal membrane anchor indicating that the enzyme is 

localised in the ER. To test the function of the encoded protein, the corresponding 

cDNA was expressed in Saccharomyces cerevisiae strain WATT I (Pompon et al., 

1996) which harbours a galactose-inducible Arabidopsis thaliana NADPH-CYP 

reductase that is required for efficient redox coupling to the cytochrome. A cell-free 

protein expression system was used where the protein extracts from the transformed 

yeasts were fed exogenous taxane substrates including taxa-4(5), 11(12)-diene and its 
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isomer taxa-4(20), 11(12)-diene. Both isomers were found to have efficiently been 

converted to taxa-4(20), 11(12)-dien-5a-ol. 

To assess the substrate binding of T5OH, the cDNA was transferred to the 

baculovirus Spodoptera fugiperda (Sf9) expression system which coexpressed a 

Taxus CYP reductase (TCPR) (Jennewein et al., 2005) for the efficient electron 

transfer to the cytochrome in microbial hosts. On feeding of the taxadiene isomers, 

the insect cell microsomes enriched in the recombinant T5OH bound to both isomers, 

with higher affinity to taxa-4(20), 11(12)-diene. This correlated to what Lythgoe 

proposed in 1966 that taxa-4(20), 11(12)-diene is the committed precursor of taxoid 

biosynthesis. 

The oxygenation of taxadiene was shown to proceed by a CYP-mediated abstraction 

of hydrogen from the C20 methyl group of taxa-4(5), 11(12)-diene or from C5 in the 

case of the 4(20) isomer, leading to the allylic radical intermediate X (Figure 1.4). 

This is followed by selective oxygen insertion from the 5a-face of X to accomplish 

the net oxidative rearrangement to yield to taxa-4(20), 11(12)-dien-5a-ol (Jennewein 

et al., 2004a). 
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Figure 1.4 Proposed mechanism for CYP Taxadiene-5a-hydroxylase (Jennewein 
et al., 2004a). 

T5OH mediated oxygenation of taxa-4(5), 11(12)-diene and taxa-4(20), 11(12)-diene to taxa- 
4(20), 1 1(12)-dien-5a-ol involved deprotonation at C20 in the 4(5) olefin or C5 in the 4(20) 
isomer leading to an intermediate X followed by oxygen insertion from the 5a-face to yield 
taxadien-5a-ol. Isomerisation of the 4(5) to 4(20) isomer was not observed. 

1.3.2.2 Other CYPs involved in the Taxol biosynthetic pathway 

Most of hydroxylases involved in the taxane decoration have been isolated, however, 

the sequence of oxygenations is still unknown. In an initial attempt to assess the 

product efficiencies and the order of hydroxylations of the taxadiene core, Taxus 

microsomes were fed with taxadien-5a-ol and taxadiene-yl acetate (third product of 

the Taxol pathway). Taxadien-5a-ol was observed to have been preferentially 

converted to a more polar compound identified as taxa-4(20), 1 l (l 2)-dien-5a, 13a- 

diol while taxadiene-yl acetate was converted to the compound taxa-4(20), 11(12)-5a- 

l0ß-diol 5-acetate (Wheeler et al., 2001) (Figure 1.5). 
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Figure 1.5 Outline of the synthesis of Taxol intermediates (Jennewein et a/ 2001). 

The schematic diagram illustrating third step of the pathway, the acetylation of taxadien-5a 
of to the ester by the enzyme taxadien-5a-O-acetyl transferase. The ester is further 
hydroxylated by 100-hydroxylase while the taxadienol is preferentially hydroxylated by the 
I3a hydroxylase. Subsequent hydroxylations of the appropriate intermediates did not occur 
where the large X indicates that the illustrated reaction did not occur with the noted enzyme. 
The broken arrows signify undefined steps. 

The clone responsible for the conversion of taxadien-5a-yl-acetate to taxa- 

4(20), 11(12)-5a-acetoxy-103-ol, was identified as a taxoid 1Oß-hydroxylase 

(T I OBOH) (Accession no. AF318211) by Schoendorf and co-workers in 2001. 

Random sequencing using an EST cDNA library from the mRNA of T. cuspidata 

cells revealed the presence of another lOß-hydroxylase (Accession number 

AY563635) capable of mediating the same hydroxylation of taxadien-5a-yl acetate 

to taxa-4(20), 11(12)-dien-5a-acetoxy-1Oß-ol (Jennewein el al., 2004b). 

In 2001, Jennewein and co-workers (2001) isolated the clone 13a-hydroxylase 

(T13OH) (GenBank accession no. AY056019) which produced a protein that 
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catalysed the conversion of taxadien-5a-ol to taxa-4(20), 11(12)-dien-5a, 13a-diol. 

When incubated with the recombinant l0ß-hydroxylase (Schoendorf et al., 2001), the 

product taxa-4(20), 11(12)-dien-5a, 13a-diol did not yield a detectable product 

(Figure 1.5), indicating that the action of taxoid T1OBOH precedes that of the 

T130H en route to Taxol. On the other hand, the absence of a detectable product 

when T13OH was incubated with taxadien-5a, 100-diol 5-acetate indicated that the 

enzyme might be catalysing a later step of the Taxol biosynthetic pathway (Jennwein 

etal., 2001). 

The uncertainties surrounding the central portion of the Taxol pathway and the lack 

of readily available test substrates have made the isolation of the genes involved 

difficult. Researchers have therefore made use of the dead-end metabolite of the yew 

heartwood Taxusin [taxa-4(20), 11(12)-dien-5a, 9a, IO3,13a-tetraol tetra acetate] (Ho 

et al., 1987), in an attempt to decipher the mid-pathway hydroxylases of the Taxol 

biosynthesis. The family of previously cloned CYP genes from the T. cuspidata cell 

culture (Schoendorf et al., 2001) was expressed in WAT11 yeast cells which were 

incubated with the [3H-acetyl]Taxusin. One clone was identified which catalysed the 

formation of 70-hydroxyTaxusin and was characterised as a taxoid 7ß-hydroxylase 

(Accession no AY307951) (Chau et al., 2004). The hydroxylase was demonstrated to 

possess a higher binding affinity to polyoxygenated and acylated taxoids bearing a 

5a-acetoxy group, hence placing this enzyme in the middle of the extended Taxol 

pathway. 

A T. cuspidata EST library constructed by Jennewein and co-workers (2004b) 

allowed for the amplification of a range of cDNAs among which the taxoid 2a- 
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hydroxylase (GenBank accesssion no AY518383) (Chau and Croteau, 2004) was 

identified. This clone was found to preferentially catalyse the conversion of 70- 

hydroxyTaxusin to a hexaol tetraacetate which led the authors to suggest that 2a- 

hydroxylase follows the 7ß-hydroxylation en route to Taxol (Chau and Croteau, 

2004). 

1.3.2.3 Taxoid 14/ hydroxylase 

Hydroxylations at position C 14 is very rare in taxoids (Baloglu and Kingston, 1999), 

however 140-hydroxy taxoids accumulate as major metabolites in Taxus cell cultures 

(Ketchum et al., 2003). Jennewein et al. (2003) isolated the taxoid 143-hydroxylase 

(GenBank accession no AY188177) which is responsible for the bifurcation of the 

Taxol pathway. This taxoid which hydroxylates the A-ring of the taxane core was 

found to possess several characteristics typical of CYP enzymes and resembles in 

sequence the taxoid 100-hydroxylase which functionalises the B-ring of the core. 

Taxol is unsubstituted at C14, which led the authors to suggest that 14(3-hydroxylase 

is not involved in the production of Taxol nor is the product taxadien-5a- 

acetoxy, 100,140-triol (accumulated in Taxus cell culture (Ketchum et al., 2003)) an 

early metabolite of the drug. 
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1.3.2.4 C4, C20 epoxidation 

The oxetane D-ring of the Taxol compound is considered as a very important feature 

for microtubule binding in cells, however little is known about the enzyme catalysing 

its formation or the substrate selectivity of the enzyme(s) which catalyse its 

synthesis. Mechanisms accounting for the formation of the oxetane ring has been 

proposed by several groups. The first step in formation of the ring is hypothesised as 

epoxide of the 4(20) double bond, however the configuration at C-5 and the oxetane 

ring preclude direct attack of the epoxide by the hydroxyl group. 

Potier and co-workers in 1987 proposed that the oxetane formation involve an 

acetate rearrangement followed by the opening of the epoxide ring and a backside 

attack of a C5-acetate moiety onto C4 followed by a rearrangement to the oxetane 

ring with the migration of the 5a-acetoxy group to the C4a position of the taxane 

core (Gueritte-Voegelein et al., 1987). However, it still remains unclear whether an 

inter or intramolecular reaction is responsible for the final formation of the oxetane 

ring (Rohr, 1997). Giner and Faraldos (2003) later proposed similar oxetane ring 

formation suggesting that intramolecular nucleophilic displacement gives rise to a 

dioxonium-ion intermediate (1) (Figure 1.6). Subsequent intramolecular 

displacement of the acetoxonium ion by the newly generated OH group would give 

rise to the oxetane ring. 
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Figure 1.6 Proposed Biosynthesis Oxetane by Epoxy-Ester/Cyclic-Ether 
Rearrangement (Giner and Faraldos, 2003). 

The reaction involves an acetate rearrangement with concomitant opening of the epoxide 
ring and a nucleophilic substitution reaction. The intramolecular exchange of the C5a- 
acetoxy group and the C4ß-oxide function of an advanced taxoid is catalysed by a 
transferase mechanism to give a dioxonium-ion intermediate (1). 1 is proposed to undergo 
either an inter or intramolecuar reaction for the final formation of the oxetane ring. X-Enz is 
the undefined enzyme. 

1.3.3 Acyl and aroyl transferases of the Taxane core 

The CoA-dependent acyl and aroyl transferases are important members of the Taxol 

biosynthetic enzymes, constituting 5 of the 19 pathway steps. By making use of 

various cloning strategies, the genes encoding these transferases have been 

elucidated. The putative acyl group transfer motif (HXXXDG) generally found in a 

family of acyltransferases are; HAKSDG, HGVCDG, HSVSDG and HGICDG (Hu 

et al.,, 2002). This conserved motif has been suggested by St-Pierre et al., (1998) to 

lie at or close to the active centre of the acyltransferases and to function in acyl group 

transfer from acetyl CoA to the substrate alcohol. 
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1.3.3.1 Acetyl CoA: taxadiene-5a-acetyl transferase (TSAT) 

Feeding studies of taxoid intermediates to Taxus cell culture have indicated the 

acetylation of the taxadiene-5a-ol at C5 to be the third step of the Taxol biosynthetic 

pathway (Wheeler et al., 2001). The enzyme catalysing this acetylation has been 

isolated from a cDNA library constructed from methyl jasmonate induced T. 

cuspidata cell culture (Walker et al., 1999; 2000). This clone was functionally 

expressed in E. coli and the protein was found to convert the substrate taxa- 

4(20), 11(12)-dien-5a-ol in the presence of acetyl-CoA, to its acylated derivative, 

taxa-4(20), 11(12)-dien-5a-yl acetate, which correlated previous report (Wheeler et 

al., 2001). 

The isolated clone was characterised as an acetyl CoA: taxadiene-5a-acetyl 

transferase (T5AT) (Accession no. AF190130) which possesses characteristic 

features of other plant acyltransferases including the histidine motif (St. Pierre et al., 

1998) and a molecular weight of - 80kDa. Sequence comparison analysis have 

revealed high similarity between Taxus T5AT and other Taxus transferases as well as 

to other plant acetyltransferases (Hu et al., 2002). Walker et al. (2000) reported that 

T5AT sequence did not encode any N-terminal targeting information, however, the 

activity of this enzyme was found to reside in the microsomal extracts, possibly 

indicating that it is located to the endoplasmic reticulum (Walker et al., 2000). 
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1.3.3.2. Benzoyl-CoA: taxane 2a-O benzoyltransferase (TBT) and 10-deacetyl 
baccatin III-10-0-acetyltransferase (DBA 1) 

A survey of the 350 naturally occurring taxoid intermediates characterised to date by 

Baloglu and Kingston (1999) suggests the second acylation of the taxane core to be 

the benzoylation of the C2a-hydroxyl group of an advanced taxane intermediate. 

Walker and Croteau (2000b) made use of a cell free assay of the expressed proteins 

previously isolated from Taxus cell cultures (Walker et al., 1999) to isolate the clone 

2a-O-benzoyl transferase (TBT) (Accession no. AF297618), which mediates the 

benzoylation of the C2 position of the taxane core. 

One of the late steps in the biosynthesis of Taxol is the acetylation at the C10 

position of the late precursor 10-deacetylbaccatin III (10-DABIII) to afford the 

baccatin III. The acetyltransferase enzyme characterized as 10-deacetylbaccatin III- 

10-0-acetyl transferase (DBAT) (Accession no. AF 193765), has been shown to 

catalyse the acetylation of 10-DAB III to baccatin III in the presence of acetyl CoA 

(Walker and Croteau, 2000a). 

1.3.4 Enzymes of the C13 side chain biosynthesis 

The taxane core and the C-13 phenylisoserine side chain of taxoids undergo both 0- 

and N-acyl group transfer reactions, however, the precise order of some acylation 

and benzoylation reactions remain uncertain. Baccatin III was demonstrated as the 

immediate precursor of Taxol in labeling studies, to which the ß-phenylisoserine side 

chain is attached to afford the end-product Taxol (Fleming et al., 1994). Feeding 

studies of Taurus tissues with amino acid precursors and advanced taxoid 
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intermediates, metabolite profiling of Taxus cells in culture, and demonstration of 

relevant activities in cell free enzyme systems have demonstrated that the side chain 

synthesis requires a five-steps reaction, which is shown in Figure 1.7. 
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Figure 1.7 Outline of Taxol biosynthesis involving the five step assembly of the 
C13-side chain. 

The enzymatic steps are as follows: the aminomutase PAM catalyses conversion of (S)-a- 

phenylalanine to (R)-ß-phenylalanine. The amino acid is activated to the corresponding CoA 

ester and the aminoacyl group is then transferred to C13-hydroxyl of baccatin lll. This 

reaction is catalysed by the enzyme BAPT to yield the product N-debenzoyl-2'-deoxytaxol. 
This intermediate then undergoes a CYP-mediated hydroxylation at the 2'-position in the 

side chain to give N-debenzoyltaxol, a reaction catalysed by a 2'-hydroxylase in the presence 
of NADPH and molecular oxygen. The last step is the N-benzamidation by the enzyme 
DBTNBT to afford Taxol in the presence of the benzoyl CoA. Ac is the acetyl group and Bz 
is the benzoyl group. PAM: phenylalanine aminomutase, BAPT: baccatin III 13-0-(3-amino- 
3-phenylpropanoyl) transferase, DBTNBT: 3'-N-debenzoyl-2'-deoxytaxol N- 
benzoyltransferase. 
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1.4 Mechanism of the Biological Activity of Taxol 

Interest in Taxol as a drug candidate increased in 1979, when biologist Susan 

Horwitz and co-workers (Schiff et al., 1979) reported the drug to employ a unique 

mode of action against cancer cells compared to the other anticancer drugs known at 

the time, such as Vinka alkaloids and colchinine. HeLa cells treated with Taxol were 

visualised using direct immunofluorescence and electron microscopy. After 

incubation with the drug, the treated cells were found to exhibit an unusual 

microtubule (MT) cytoskeleton, characterised by bundles of MTs which were stable 

even under depolymerising conditions, such as in the absence of microtubule- 

associated proteins, or in presence of Ca2+ and cold temperatures (Schiff et al., 

1979). 

The microtubule skeleton is a component of eukaryotic cells and is required for a 

variety of functions including chromosome segregation and cell mitosis, all of which 

require that the microtubules be in dynamic equilibrium with the monomeric a- and 

ß-tubulin. Taxol acts by promoting the MT assembly by shifting the dynamic 

equilibrium existing between tubulin dimers and microtubules towards microtubule 

assembly, hence promoting MT polymerisation. A schematic representation of the 

effect of Taxol on MT depolymerisation is shown in Figure 1.8. 
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Figure 1.8 Microtubule polymerisation in the presence and absence of Taxol. 

Under normal conditions, a- and ß-tubulin bind reversibly to maintain a dynamic equilibrium 
between dimers and MTs. In the presence of Taxol, the drug molecules bind to the ß-tubulin 
of the protofilaments, stabilising the MTs and inhibits the release of monomeric tubulin from 
the ends of the MT polymer causing a dynamic instability whereby the assembly and 
disassembly of the tubulin process is hampered. 

Taxol was reported to induce different responses in a range of cancer cell lines, 

depending on the drug concentration. At low concentration, Taxol inhibits mitosis by 

altering MT dynamics initiating the formation of tubulin bundling, and micronuclei 

cells with abnormal DNA content, which lead to cell death due to gene dose problem 

and disproportionate distribution of chromosomes (Long and Fairchild, 1994). 
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Treatment of cancerous cells with high concentration of Taxol promotes the 

formation of stable bundles of MTs and increased MT polymerisation, resulting in 

G2/M phase arrest and apoptosis (Torres and Horwitz, 1998). Although, much 

research has been done to clarify the mechanism by which anti-mitotic drugs cause 

cell death, the link between the mitotic arrest and apoptosis is still poorly understood. 

1.4.1 Taxanes with improved solubility 

Apart from availability and cost, the main drawback of paclitaxel are its poor 

solubility in aqueous solution, drug delivery, cytotoxicity and development of drug 

resistance. Taxol is highly hydrophobic and being poorly soluble in water, its peroral 

delivery is not effective. The drug is currently dissolved in the solvent Cremophor 

EL (a polyoxyethylated castor oil derivative) and ethanol for its intravenous delivery. 

The main limitation to the clinical use of Cremophor EL is its toxicity, which has 

been associated with multiple side-effects (Expösito et al., 2009). Recently, 

Abraxane, a novel albumin-bound formulation of paclitaxel has been developed 

which has demonstrated better solubility and increased anti-tumour activity in breast 

cancer (Miele et al., 2009). 

The structure of Taxol has been modified in many ways to create novel drugs with 

improved bioavailability and solubility. One of the many Taxol derivatives widely 

used to date is Taxotere® (docetaxel) (Figure 1.9). Docetaxel was first semi- 

synthesised by Potier and co-workers in 1991 from the Taxol precursor 10-DAB III 

and carries a butoxyl group at the 3'-N-benzoyl position of the side chain attached to 

the C13 of the taxane core (Gueritte-Voegelein et al., 1991; Guenard et at., 1993). 
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This important taxane has demonstrated improved solubility and anti-mitotic activity 

against a P388 leukemic cell line, compared to Taxol (Bissery et al., 1991). 
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Figure 1.9 Structure of Taxol and docetaxel. 

The structural differences between Taxol and its semi synthetic analogue Docetaxel are the 
presence of the tert-butoxycarbonyl group instead of a benzoyl group on the nitrogen atom at 
C-3' of the C-13 side chain and the hydroxyl group instead of an acetate at the C-10 position 
of the B-ring. 

A wide range of taxane-derived prodrugs has been synthesised by esterification of 

the 2' of the N-phenylisoserine side chain and/or C7 of the taxane core which has 

improved the water solubility of Taxol. Replacing the hydroxyl group of C-2' of the 

side chain of Taxol by a pyridine moiety (Nicolaou et al., 1994 a) or addition of a 

highly ionisable phosphate moiety at the C7 position of paclitaxel-2'-ethylcarbonate 

(Ueda et al., 1995) have respectively yielded in suitable cellular environments, 

products with high solubility and similar antitumour properties to Taxol. 
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1.4.2 Taxane resistance in cancerous cells 

Taxol and Docetaxel are currently considered to be among the most important 

anticancer drugs used for the treatment of a range of cancers including breast, lung, 

ovarian, prostate, head and neck cancers. Despite contributing to the survival of 

cancer patients, treatment with these drugs often results in a number of side effects 

and multi-drug resistance. Multi-drug resistance (MDR) is a condition whereby 

tumour cells acquire resistance to natural agents such as Vinca alkaloids and taxanes 

but also show cross-resistance to other antitumour agents having different structures 

and modes of actions. Taxol resistance can also be the result of mutations occurring 

at various points in the ß-tubulin, causing an alteration in the drug-binding pocket, 

therefore preventing the drug from effectively attaching itself to the MT (Reviewed 

in Galletti et al., 2007). 

The MDR phenotype in cancer cells is characterised by the overexpression of the 

ATP-binding cassette (ABC) superfamily of transport proteins which pump mainly 

hydrophobic cytotoxins out of the cells, keeping intracellular drug concentration 

below a cell-killing threshold. These transmembrane protein pumps include the "P- 

glycoprotein (P-gp) encoded by the mdrl gene, multidrug resistance protein 1 

(MRP1), encoded by the mrpl gene and the breast cancer resistance protein (BCRP), 

encoded by the mxr gene" (Galletti et al., 2007). Taxol and Taxotere are substrates 

for most of these ABC pumps, therefore several strategies for blocking their removal 

by modifying the structure of these drugs have been investigated. 
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1.4.3 Natural and synthetic taxanes overcoming transport-based resistance 

Appropriate modifications at the C2, C7, CIO, and C3" positions of paclitaxel, 

docetaxel as well as other taxane derivatives have led to the synthesis of "second 

generation" taxane anticancer agents, prodrugs and noncytotoxic taxane-based 

reversal agents (tRAs) which act as modulators of the ABC pumps in cancer cells. 

The search of "second generation" taxoids possessing activity against drug-resistant 

cancer cells has led to the finding of the natural taxanes for instance Taxusin, 

Taxuspine C, taxinine NN-1, taxinine NN-11 and its 9,10-isomer (Figure 1.10) 

isolated from the Japanese yew, T. cuspidata (Kobayashi et al., 1998; Bai et al., 

2005). Some of these natural taxanes possess a cinnamoyl group at different 

positions on the taxane core and have demonstrated the ability of modulating the P- 

gp pumps in human ovarian carcinoma MDR 2780AD cell line resistant to the Vinca 

alkaloid drug Vincristine. Among these taxoids isolated with antitumour activities, a 

few non-taxol type taxoids were also reported. These compounds when administered 

in combination with the antimitotic agent Vincristine were able to modulate the P-gp 

pump, inhibiting the active efflux of the antitumour agents from the tumour cells, 

hence overcoming MDR. (Kobayashi et al., 1998; Kobayashi & Shigemori, 2002). 
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Figure 1.10 Natural taxanes with ability to modulate MDR (Galletti et a!., 2007). 

A wide range of non-cytotoxic taxane-based reversal agents (tRAs) (Figure 1.11) has 

been synthesised from natural taxane 143-hydroxy-10-deacetylbaccatin III (14-OH- 

DAB) isolated from the needles of T wallichiana and from the Taxol precursors 10- 

DAB III and baccatin III (Brooks et al., 2003; Ojima et al., 1997; 1998). When orally 

administered along with paclitaxel, the most potent tRAs; tRA 96023 (Minderman et 

al., 2004), tRA 98006 (Brooks et al., 2003) and Ortataxel/ IDN 5109 (Nicoletti et al., 

2000) modulated a broad-spectrum of the ABC pumps. In particular, the P-gp of the 

intestinal tract were found to be modulated, allowing a greater accumulation of 

paclitaxel in the drug-resistant cancer cells. IDN5109, (Figure 1.11) currently 

marketed as Ortataxel has been found to be highly orally active with excellent 

bioavailability, thus providing the first orally active taxoid anticancer agent (Nicoletti 
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et al., 2000). Photoaffinity labelling studies have demonstrated close proximity of the 

C-7 position to the P-gp binding site of Taxol (Snyder et al, 2001; Altstadt et al., 

2001)). Various C-7 paclitaxel silyl ethers have been prepared with variation at the 

C-3' position of its side chain as well as modification of the structure of docetaxel at 

its C4 and C3' position (Guenard et al., 2000; Altstadt et al., 2001). This has led to 

the synthesis of BMS-184476, BMS-188797, RPR 109881A (Figure 1.11) which 

effectively modulated the MDR effect of the P-gp pumps in cancer cell lines resistant 

to paclitaxel or docetaxel. These drugs have entered clinical trials and the novel 

intravenous taxanes BMS-184476 and BMS-188797 have demonstrated superior 

activity to Taxol in multiple human xenograft tumour models as well as in paclitaxel- 

unresponsive ovarian carcoma HOC79 (Galletti et al., 2007). 
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Figure 1.11 Taxanes with enhanced MDR modulation effects which have 
entered clinical trials (Galletti et al., 2007). 
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1.5 Taxol Production and its Biotechnological Applications 

The current market for Taxol relies on Taxus cell suspension cultures and on semi- 

synthesis using the Taxol precursors baccatin III and l0-deacetyl baccatin III (10- 

DAB III) which account for up to 0.2% dry weight of needles of the European yew 

T. baccata. The treatment of cancer per patient requires at least 3g of Taxol, and 

only I kilogram of Taxol is obtained from 1000 yew trees, which make the yew trees 

a limited supply of the drug (Rohr, 1997; Suffness and Wall, 1995). Furthermore, the 

very slow growth rate of the yew trees and the presence of analogues with very 

similar structure to that of Taxol make the purification of the drug difficult. Much 

research has been done in search of alternative methods to increase the production of 

Taxol, in order to meet its increasing demand for the treatment of cancer and for pre- 

clinical studies. 

The first total chemical synthesis of Taxol was achieved by Nicolaou and co-workers 

in a 35 to 51 steps to produce only a 0.4% yield of the drug (Nicolaou et al., 1994b, 

1995). Holton et al. (1994a, b) also demonstrated the total Taxol synthesis beginning 

with readily available optically active chemicals and are based on fragmentation of a 

tricyclic systems to form the A/B ring system followed by the attachment of the C 

and D rings. However, due to the chemical complexity of the Taxol structure, these 

synthesis are far from being economical and are unlikely to become a solution to the 

supply problem of Taxol. 
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1.5.1 The semi-synthesis of Taxol from its immediate precursors 

A semi-synthetic approach has been devised as an alternative source of Taxol or 

Docetaxel, which Bristol-Myers Squibb uses as a nine-step process by making use of 

the Taxol intermediate 10-deacetyl baccatin III (10-DAB III) (Reviewed in Malik et 

al., 2011). 1 0-DAB III is readily obtained at level 1 g/kg from the renewable needles 

of the European yew T baccata (Chauviere et al., 1981). Numerous reaction 

schemes have been developed, however production of the compounds in multi- 

kilograms is via the Holton ß-lactam coupling method (Holton et al., 1994a) which 

has provided a standard protocol and has been used and modified by other research 

groups for the development of short and practical semi-synthetic routes. The starting 

material, 10-DAB III from the needles of Taxus baccata is selectively acetylated and 

protected with triethylsilane (TES). The hydroxyl group at Cl3 of this C7-protected 

baccatin III derivative reacts with the selected ß-lactam to give either Taxol or 

Docetaxel. 

1.5.2 Biotechnological approaches and Tissue culture 

The leading producer of Taxol, Bristol-Myers Squibb has a farm with 30 billion 

Taxus trees to supply the bark and needles necessary for the extraction of Taxol and 

taxane intermediates (Reviewed in Malik et al., 2011). The extraction of taxanes 

from the bark and needles of the yew trees require expensive technology and 

complex system of purification techniques. One preferred alternative to these 

problems has been the use of Taxus cell suspension culture, which is an 

environmentally balanced source of the drug and its analogues. Cell suspension 
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culture also offers the possibility of growing the tissue material under controlled 

conditions and independently of its original and remote location (Jennewein and 

Croteau., 2001). Currently, Python Biotech is the largest producer of paclitaxel via 

plant tissue culture, employing a large-scale fermentor with a capacity of up to 

75,000 L (Expösito et al., 2009). 

1.5.2.1 The use of elicitors on the production of taxanes 

The production of many secondary metabolites including paclitaxel as part of plant 

defense in response to biotic and abiotic elicitors has prompted much research in 

their application to Taxus cell suspension culture for the increased production of the 

drug. Other strategies to optimise the production of taxanes in Taxus cell culture 

have been the use of different culture batch systems, selection of high-producing cell 

lines, effect of heat-shock (Zhang and Fevereino, 2007) and cell wall digesting 

enzymes (Roberts et al., 2003). 

Methyl jasmonate (MJ), a natural plant product produced as part of plant defense, is 

the most widely used elicitor for the enhancement of taxanes in Taxus cell 

suspension cultures. Its first use as an elicitor was demonstrated by Yukimune and 

co-workers in 1996 in Taxus cell suspension cultures, which resulted in a 5.1- and 

20.2-fold increase in the yield of Taxol (in T. media) and baccatin III (in T. baccata) 

at levels -110 mg/L and 53.02 mg/L by week two respectively. Since, this 

enhancement agent has been widely used for taxane optimisation in Taxus cell 

cultures (Ketchum et al., 1999a), which has led to considerable progress in the 
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understanding of the pathway, enzymology, and molecular genetics of Taxol 

biosynthesis (Ketchum et al., 2007a). 

1.5.2.2 Synergistic effect of elicitors, additives or inducing factors 

Different elicitors have enhanced the production of taxanes to various extents, 

however, when applied synergistically, they have demonstrated a more marked effect 

on the yield of these secondary metabolites. The combination effects of the elicitors 

such as methyl jasmonate, chitosan and silver ion on paclitaxel level in T. chinensis 

have been demonstrated to result into a 40-fold increase, yielding 25.4 mg/L of the 

drug in the elicited T. chinensis cell culture (Zhang et al., 2000). 

US. Patent. No. 5019504 (Christen et al., 1991) described the first use of fungal 

elicitors for the enhanced production of Taxol by T. brevifolia cell suspension 

cultures. The release of ethylene from these fungal-elicited cultures was reported to 

interfere with the production of Taxol, hence addition of ethylene inhibitors such as 

silver ion was reported by Zhang and Wu (2003) to result in an increase in Taxol 

yield in fungal-elicited Taxus cell cultures. 

Cusidö et al. (2002) demonstrated that the addition of N-benzoylglycine and 

mevalonate to a two-stage Tazus media cell culture elicited with methyl-jasmonate 

led to a 8.3 fold (21.12 mg/L) and 4 fold (56.03 mg/L) increase of paclitaxel and 

baccatin III respectively. The N-benzoylglycine was proposed to possibly undergo 

hydrolysis to release benzoyl moiety and a glycine residue which might be used for 

the synthesis of phenylalanine and benzoic acid required for Taxol synthesis. The 
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enhanced production of Taxol upon addition of mevalonate led the authors to 

speculate that Taxol can be synthesised via the mevalonate pathway under particular 

conditions (Cusidö et al., 2002). 

Recently, US. Patent. No. 0086397 (Bringi et al., 2011) describes the ability of all 

known Taxus species to produce Taxol and its derivatives in very high yield in cell 

culture. Modifications of the culture conditions using a two-batch cell culture process 

with enhancement agents jasmonates, ethylene inhibitor silver nitrate, auxin and 

inhibitors of the phenylpropanoid pathway have enhanced the yield of a range of 

taxanes. The authors reported the highest yield obtained to date in cell culture of 

Taxol, baccatin III and other taxanes in the amount of 350 mg/L/day, 250 mg/L/day 

and 400 mg/L/day respectively. 

Despite the effectiveness of Taxus cell culture for the production of Taxol and related 

taxanes, this method has proven challenging due to the low and often unstable 

pattern of production of the drug as well as high production cost and selectivity over 

unwanted by-products. 

1.5.2.4 Agrobacterium transformation of Taxus tissue 

The successful Agrobacterium-mediated transformation of Taxus cell lines (Han et 

al., 1994) and the maintenance of the transgenic Taxus cell suspension culture on a 

long-term basis (Ketchum et al., 2007b) have been documented. With most of the 

steps of the Taxol pathway elucidated and the enzymes involved cloned, this 

transformation methodology could allow the overexpression of the genes responsible 

for the rate-limiting steps, or block particular steps in the pathway by antisense, co- 
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suppression or RNA interference (RNAi) methods. For instance, the taxoid 140- 

hydroxylase involved in the bifurcation of the Taxol biosynthetic pathway to a large 

family of 14f -hydroxy taxoid side-products (Menhard et al., 1998; Ketchum et al., 

2003) could be silenced. This method could also allow the redirection of these side 

routes for the production of novel taxanes with enhanced solubility and MDR 

modulating ability. Other important taxanes, for instance 13-acetyl-9- 

dihydrobaccatin III is present abundantly (2.5g/Kg of dry plant) in T. Canadensis 

(Canadian yew) (Ketchum et al., 1999b) and has been used as starting material for 

the synthesis of 7-protected baccatin III (Zamir et al., 2003). Genetically 

manipulating the genes towards the synthesis of this dihydrobaccatin III in Taxus 

cells might increase its production yield and it can subsequently be used for the 

synthesis of baccatin III and hence Taxol. 

Methyl jasmonate elicitation affects the Taxol biosynthetic pathway at the mRNA 

expression level, which in turn has been reported to affect respective taxane 

accumulation (Nims et al., 2006). By using Agrobacterium-mediated transformation 

of Taxus cells, the enzymes expressed at low levels in methyl jasmonate elicited cell 

cultures, can be overexpressed to increase Taxol production yields. 

1.5.3 Production of taxanes by endophytic fungi 

Taxol, an antifungal agent has been reported as a metabolite in the endophytic fungus 

Taxomyces andreanae associated with T. brevifolia (Stierle et al. 1993). This 

demonstrated that organisms other than Tazus species can produce Taxol and related 

taxanes, which has led to the hypothesis of horizontal gene transfer between Taws 
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species and their corresponding endophytic organisms. Although the yield of Taxol 

from the fungus T. andreanae was as low as 24-50 ng/1, the short generation time 

and high growth rate of the fungi make it a potentially more reliable, cheap and 

renewable way of optimising the production of Taxol and related taxanes. Other 

reports of Taxol-producing endophytes include Pestalotiopsis microspora NE-32, 

isolated from the inner bark of a Himalayan yew tree T wallichiana which yielded 

Taxol at titers 55±10 gg/L (Strobel et al., 1996), and the Tubercularia fungi (strain 

TF5) isolated from Taxus mairei (Chinese southern yew) (Wang et al., 2000). 

The evergreens most resembling Taxus and growing in similar damp habitats but not 

producing Taxol, are bald cypress - Taxodium distichum. 9 of the 16 strains of the 

endophytic Pestalotiopsis microspora living in the bark, phloem and xylem of T. 

distichum were found to produce Taxol in a range of 24 - 1487 ng/L (Li et al., 1996). 

Other reports of Taxol production in endophytic fungus not associated with the 

Taxus trees have been documented in Capsicum annuum plant pathogen 

Colletotrichum capsici, at level 687 µg/L, which was 13,740-fold more that reported 

in T. andreanae (Kumaran et al., 2011). Pandi and co-workers reported the 

accumulation of 245 µg/L Taxol from the Lasiodiplodia theobromae (Pandi et al., 

2011), an endophytic fungus of the medicinal plant Morinda citrffolia which has in 

the past been reported to be used for treatment against cancers. These two recently 

isolated plant pathogenic fungi as well as the other Taxol producing fungi could 

serve as potential targets for genetic engineering to enhance the production of Taxol. 
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1.5.4 Biosynthesis of taxanes in transgenic Saccharomyces cerevisiae 

Saccharomyces cerevisiae has been successfully employed as host for the 

engineered, multi-step production of terpenoids. In order to reconstitute the Taxol 

biosynthetic pathway in yeast, the cDNAs encoding a truncated version of GGPPS 

and TXS, the taxoid hydroxylases 5a, 10(3 and 13a and the acyltransferases T5AT, 

TBT and DBAT, were transferred into yeast under the control of GAL promoters 

(Dejong et al., 2005). The protein levels for most hydroxylases was found to have 

increased steadily in the transformed yeast microsomal extracts, except for the 

T5OH. The engineered yeast cells successfully produced taxadiene via the MVA 

pathway, indicating that this pathway could be utilised for the synthesis of taxanes, 

as previously suggested by Cusidö et al. (2002). Taxadien-5a-ol was produced in 

very small amounts (-P25 µg/L), but neither taxadien-5a-yl acetate nor taxadien-5a- 

acetoxy-100-ol was detected during this study. These results postulated that the first 

two enzymes GGPPS and TXS cooperated well with each other yielding 0.5 mg 

taxadiene per g DW cells, however, a pathway restriction was encountered at the 5a- 

hydroxylation step. The authors hypothesised that this might have been due to the 

limited expression of this CYP or to the low endogenous levels of NADPH-CPR in 

yeast, indicating the need for a Taxus CPR to maximize redox efficiency with the 

CYP hydroxylases in microbes. 

In 2008, Engels and co-workers developed a system to optimise the supply of GGPP 

in yeast as substrate for the production of taxadiene. The authors made use of a 

truncated version of 3-hydroxyl-3-methylglutaryl-CoA reductase (tHMG-CoA 

reductase), the rate-controlling enzyme of the MVA pathway, which converts 3- 

hydroxyl-3-methylglutaryl-CoA to mevalonate in yeast. This has prevented the 
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steroid-based negative feedback of the MVA pathway, resulting in an increased 

supply of IPP. A mutant allele upc2.1 of the key regulator of steroid uptake, was 

used to allow steroid uptake under aerobic conditions, hence diverting the IPP 

precursor flux away from steroid production and towards taxane biosynthesis. The 

authors also made use of the GGPPS from the thermophilic archeon Sulfolobus 

acidocaldarius which uses DMAPP as precursor for GGPP synthesis, reducing the 

competition for FPP by squalene synthase in yeast for steroid synthesis. A truncated 

form of TXS gene was expressed in combination with the S. acidocaldarius GGPPS, 

the tHMG-CoA reductase and the upc2 transcription factor gene all under the control 

of the constitutive phosphate glycerol kinase (PGK) promoter. This system resulted 

in a 40-fold increase in taxadiene levels yielding the olefin at level 8.7±0.85 mg/l. 

(Engels et al, 2008). 

1.5.5 Taxol precursor production in Escherichia coli 

The faster growth of Escherichia coli (E. coli) compared to yeast makes it a better 

system to large-scale microbial fermentation while using inexpensive renewable feed 

stocks (carbon and nitrogen sources). The upstream MEP pathway of Taxol 

biosynthesis is native to E. coli, where IPP and DMAPP couple to yield GGPP which 

is naturally produced at low level due to the limited pools of its precursors. 

Initial work in engineering the Taxol pathway in E. coli by Huang and co-workers 

(1998; 2001) has been limited to the production of taxadiene due to the absence of 

CYP-bound enzymes in the microbe. During the first attempt in 1998, the major 

limitation encountered was the formation of insoluble taxadiene synthase in inclusion 
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bodies. In 2001, the authors advanced this research by using a more soluble form of 

the TXS whereby the signal peptide was deleted in order to reduce membrane 

association. Engineering E. coli with a single vector carrying the enzymes 1- 

deoxyxylulose-5-phosphate synthase (DXS), IPP-DMAPP isomerase (IDI), GGPPS 

and the truncated form of TXS driven by a strong T7 promoter, led to an increase in 

production of soluble form of taxadiene with yields approaching 1.3 mg/L (Huang et 

al., 2001). 

Ajikumar et al. (2010) developed a combinational approach where the rate limiting 

enzymes of the MEP pathway (dxs, idi, ispD and ispF) were carefully optimised to 

find the most favourable order of genetic modification in transgenic E. coli to 

maximize the production of GGPP. A truncated form of T. brevifolia GGPPS and 

TXS were then genetically transplanted in this E. coli strain. A total of 32 constructs 

were prepared with varying promoter strengths (Trc, T5 and T7), plasmid copy 

number (5,10 and 20) and genotype. Three E. coli strains were found to accumulate 

the highest yield of taxadiene, where the maximum accumulation of 1020 ± 80 mg/L 

taxadiene was achieved in strain 26. This strain harboured an additional copy of the 

dxs-id-ispD-ispF operon of the MEP pathway chromosomally integrated under the 

control of a Trc promoter. The TG (TXS-GGPPS) genes were driven by a strong T7 

promoter while keeping a relatively low plasmid copy number. The authors also 

reported using fed-batch bioreactors with controlled glycerol feeding and a layer of 

organic solvent to prevent air stripping of the volatile taxadiene. 

The limitation of bacterial platforms for the expression of T5OH has been due to the 

absence of the endoplasmic reticulum and CYP-reductases (CPRs) and has also been 
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hampered at the translational incompatibility level of the membrane signal modules 

of microsomal CYP enzymes. To address the issue of translational incompatibility, 

the membrane anchor of T5OH was altered by truncation at 8,24 and 42 amino acids 

from the N-terminus of the transmembrane (TM) region of the gene to reduce 

membrane association. To provide for the efficient electron transfer to the 

cytochrome in host microbes, the three TM engineered T5OH were linked to the 

supporting 74 amino acids truncated Taxus CYP reductase (tTCPR) by a flexible 

peptide linker. The constructs At8T5aOH-tTCPR, At24T5aOH-tTCPR and 

At42T5aOH-tTCPR were respectively transformed into individual taxadiene 

producing strain 26. Among the chimeric constructs generated, At24T5aOH-tTCPR 

demonstrated the highest efficiency in converting 98% of the accumulated taxadiene 

to its oxygenated product taxadiene-5a-ol and its byproduct 5(12)-Oxa-3(11)- 

cyclotaxane (OCT), previously identified by Rontein and co-workers in 2008. The 

alcohol and the cyclotaxane both accumulated to -24 mg/L, however no taxadiene 

accumulation was detected, which demonstrated its near total conversion to the 

oxygenated and cyclotaxane products. The yield of these oxygenated compounds 

were further optimised by small-scale fermentations in bioreactors which enhanced 

their production to 58±3 mg/L, demonstrating a 24,000 fold increase of taxadiene- 

5a-ol compared to that previously recorded in S. cerevisiae (Dejong et al., 2005). 
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1.5.6 Taxane production in Arabidopsis and Nicotiana sylvestris 

The use of heterologous plant systems as a biological production approach for the 

synthesis of Taxol precursors has led to the use of the model plant Arabidopsis for 

the production of taxadiene (Besumbes et al., 2006). TXS expression was induced 

using a glucocorticoid-mediated system, which consistently resulted in an efficient 

recruitment of GGPP for the production of 600 ng taxadiene per g DW of mature 

leaves (Besumbes et al., 2006). Transgenic Arabidopsis expressing TXS under the 

control of a constitutive promoter, was reported to produce taxadiene at level 20 ng/g 

DW, which was 30 fold lower than when TXS was under the control of an inducible 

promoter. Plants constitutively producing taxadiene could have accumulated this 

olefin at high levels which might have been toxic to the transgenic lines, therefore 

only those accumulating the lowest level of taxadiene might have survived. 

Furthermore, plants constitutively expressing the TXS showed reduced hypocotyl 

length and retardation of growth and flowering, and a pale, bleached phenotype due 

to the reduced level of chlorophyll and carotenoids. The production of TXS enzyme 

in the plant cells might have interfered with the endogenous balance of isoprenoid 

production for the synthesis of the GA hormones, photosynthetic pigments such as 

carotenoids and affected the production of the isoprenoid phytol side chain of 

chlorophyll (Besumbes et al., 2004). A similar effect was observed in transgenic 

tomato plants constitutively overexpressing the phytoene synthase (Psyl) gene (Fray 

et al., 1995). These authors suggested the reduced stature in the high Psyl expressers 

to be due to the reduced GGPP pool available for GA and phytol biosynthetic 

pathway. 
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In an attempt to redirect the GGPP used for cembratrien-diol (CBR-diol) 

biosynthesis in the trichomes of Nicotiana sylvestris for the heterologous production 

of taxadiene, a TXS gene was engineered in the tobacco line where the CBR 

synthase (CBTS) was silenced using an intron hairpin RNAi construct (ihpCBTS) 

(Tissier et al., 2006). This resulted into -20 µg taxadiene/g of fresh leaves where the 

compound was reported to have successfully accumulated in the trichomes of this N. 

sylvestris line. Rontein and co-workers (2007) made use of this specific tobacco line 

to cross with transgenic N. sylvestris expressing T5OH under the control of a 

trichome specific promoter. When the TXS and T5OH were co-expressed, taxa- 

4(5), 11(12)-diene was found to be absent from the GC-MS profile but taxadiene-5a- 

of was not detected either. Instead a new isomer 5(12)-oxa-3(11)-cyclotaxane (OCT) 

was detected and quantified as 2gg/g FW leaf. 

OCT was found to be a very hydrophobic taxoid with the same molecular weight as 

that of taxa-4(20), 11(12)-dien-5a-ol, consistent with a single oxidation reaction on 

the taxadiene core. The three-dimensional model of OCT (Figure 1.12) displayed a 

globular shape featuring a C3/C-11 linkage and a C-5/C-12 ether bridge spanning the 

entire molecule. With this novel conformation of the cyclotaxane, the oxygen atom 

of the ether function is partially hidden inside the structure, explaining why OCT is 

very stable (at 200°C), insensitive to air oxidation and non-volatile in standard 

conditions. 
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Figure 1.12 Structure of taxa-4(20), 11(12)-diene-5a-ol and OCT. 

The hydroxyl group at C5 in taxa-4(20), 11(12)-diene-5a-ol is susceptible to modifications 
causing the compound to be unstable. OCT displays a globular shape with no free hydroxyl 
group, but an ether linkage between C5/C 12 whereby the oxygen molecule is hidden inside 
the structure, hence protected from air oxidation and other modifications (Rontein et al., 
2008). 

1.5.7 Redirection of GGPP for the production of taxadiene in tomato plant 

With the large number of pathways requiring GGPP as precursor (Figure 1.13), this 

C20 compound is tightly regulated in plant tissues. In tomato fruit, however, most of 

the GGPP is devoted to the biosynthesis of the accessory pigments carotenoids, 

which accounts for up to 2% of the fruit dry weight (Kovacs et al., 2007). The first 

step in the synthesis of carotenoids is the condensation of two molecules of the 

precursor GGPP to give the C40 phytoene, a reaction catalysed by the enzyme 

phytoene synthase (PSY-1) (Fraser et al., 1999). The yellow flesh (r) tomato mutant 

lacks a functional fruit Psy-1 gene and does not accumulate lycopene during ripening 

(Fray and Grierson, 1993). This mutation in Psy-1 means that the carotenoid 

synthesis in ripening fruits does not occur and the conversion of GGPP into phytoene 

does not take place, resulting in a potentially large pool of unutilised GGPP. 
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Figure 1.13 Schematic representation of the carotenoid pathway in tomato fruits 
(Fray et al., 1995). 

The pathways leading to production of carotenoids, phytol, gibberellins and other hormones 
all use GGPP as precursors except for the synthesis of zeatin, which uses the GGPP 
precursor DMAPP for its synthesis. 

By engineering r tomato mutants with the T. baccata TXS gene, Kovacs et al. (2007) 

reported the redirection of the large available pool of GGPP for the production of 

taxadiene. The authors made use of two specific plant binary vectors pBCTaxK and 

pRD12TaxK, where TXS gene was placed under the control of a CaMV 35S 

promoter and polygalacturonase (PG) promoter respectively. Hexane extracts from 

the leaf and fruit materials of the pBCTaxK and fruit extracts from pRB12TaxK 

expressing plants gave GC peaks characteristic of taxadiene. The crude taxadiene 

extracts were purified by flash column chromatography to give a >95% pure 
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taxadiene compound with calculated yields of 339 µg/g DW and 160 µg/g DW in 

ripe fruits and leaves of BCTaxK plants respectively, and 471 µg/g DW in 

RD 12TaxK fruits. These data showed a much higher accumulation of taxadiene 

when compared to the previously reported level in transgenic Arabidopsis 

(Besumbes et al., 2004) and tobacco trichomes (Tissier et al., 2006) expressing TXS. 

The transgenic tomato lines, however, demonstrated a slower growth rate than the 

controls and produced parthenocarpic fruits or fruits with less than ten viable seeds. 

The redirection of GGPP by TXS for the production of taxadiene might have reduced 

the level of available GGPP for the biosynthesis of phytohormones involved in 

growth and fruit development, therefore accounting for the phenotypes reported in 

these transgenic lines (Kovacs et al, 2007). 

1.6 Manipulation of other Isoprenoid and Drug Pathways in 

Transgenic Plants 

Humans have always used compounds derived from plants for treating diseases and 

to date many prescription drugs are still derived directly or indirectly from plants 

(Gomez-Galera et al., 2007). Besides Taxol, other plant-derived compounds, for 

instance, the terpenoid alkaloids vinblastine and vincristine (from the Madagascar 

periwinkle Catharanthus roseus) and the antimalarial drug artemisinin (from 

Artemisia annua) have received FDA approval for clinical use. The low 

accumulation level of important drugs in plants however, makes the drugs very 

costly and unaffordable to developing countries, which are the most affected by 

diseases such as malaria. Biotechnological tools such as genetic engineering have 
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therefore been used to manipulate the key endogenous biosynthetic genes in plants 

catalysing the slow steps of the particular biosynthetic pathways in order to select, 

increase and improve the production of important metabolites. 

Morphine alkaloids normally accumulate in the range 1.5-2.7% DW in the Papaver 

genus (poppies). The cultivation of P. somniferum, opium poppy remains critical for 

the production and supply of morphine, codeine, thebaine, oripavine and various 

semi-synthetic analgesics. Larkin et al (2007) reported an elevated level of these 

alkaloids in transgenic P. somniferum where the codeinone reductase (PsCorl. 1) 

catalysing the last step conversion of morphine intermediates codeinone to codeine 

was overexpressed. The total alkaloids in the transgenic plants were increased 

following expression of the gene, with an elevated level of morphine (25%), codeine 

(58%) and thebaine (75%) in the seed capsules. 

Amorpha-4,11-diene synthase (ADS) catalysing the committed step of artemisinin 

biosynthesis in Artemisia annua converting FPP into amorpha-4,11-diene has been 

the target for artemisinin metabolic engineering. Wu et al. (2006) engineered tobacco 

plants with a plastid-targeted ADS and avian farnesyl diphosphate synthase for the 

redirection of the intermediates IPP and DMAPP from the MEP pathway. Some of 

the transgenic tobacco lines accumulated more than 25 gg/g FW of amorpha-4,11- 

diene. This led the authors to suggest that the same methodology can be applied for 

the overexpression of these enzymes in the plastids of A. annua. 

Plants produce a vast array of secondary metabolites that have nutritional and 

pharmaceutical properties in humans. One such group of metabolites are the 

carotenoids, whereby the intermediates lycopene and ß-carotene have been reported 
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to reduce the onset of certain cancers and age-related macular degeneration 

(Reviewed in Farre et al., 2010). Fruits and vegetables are good sources of certain 

carotenoids, however staple food of plant origin, for instance rice generally lack 

these compounds, including provitamin A. The deficiency of provitamin A causes 

various symptoms such as blindness, and has been estimated to affect a large number 

of children, especially in developing countries. Rice endosperm contains neither ß- 

carotene nor C40 carotenoids. To improve the provitamin-A content of rice, Ye et al 

(2000) genetically engineered rice endosperm with carotenogenic genes phytoene 

synthase (psy) and lycopene ß-cyclase (lycb) from Narcissus pseudonarcissus 

(daffodil) and phytoene desaturase (crtl) from Erwinia uredovora, which redirected 

the GGPP in the endosperm for the accumulation of 1.6 gg/g carotenoid in the 

endosperm of the `Golden Rice'. In 2005, Paine et al. further increased the 

provitamin A level in another transgenic rice line (Golden Rice 2) by using a maize 

gene encoding psy in place of the daffodil. The authors reported the total carotenoid 

level in the homozygous transgenic rice to have increased by 23-fold to a maximum 

of 37pg/g compared to the original Golden Rice, with a preferential accumulation of 

31 µg/g ß-carotene. 

Tomato fruits and their processed products are one of the main sources of important 

carotenoids, hence much effort has been made towards genetically modifying food 

crops, especially tomato, to increase the level of carotenoids. Another successful 

example of plastidial isoprenoid metabolic engineering has been demonstrated by 

Fraser et al. (2002) who targeted a non-homologous bacterial phytoene synthase 

(crtB) from Erwinia uredovora to the chromoplasts of tomato plants. The use of the 

bacterial crtB with <35% homology to the endogenous tomato Psy under the control 
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of a fruit-specific polygalacturonase (PG) promoter circumvented gene-silencing of 

the Psyl gene and avoided the phenotypic effects previously observed while using 

the constitutive 35S CaMV promoter (Fray et al., 1995). Transgenic tomato fruits 

expressing the crtB exhibited a 1.6 - 2.0-fold increase in fruit carotenoids, with 

increased accumulation of phytoene, lycopene, ß-carotene and lutein. In 2004, 

D'Ambrosio et al. described the near conversion of all the lycopene to ß-carotene in 

transgenic tomatoes, by the constitutive expression of the tomato lycopene ß-cyclase 

cDNA which led to an increase in the total carotenoid accumulation in the fruits with 

a maximum of 202.6 µg/g FW ß-carotene. Another successful method used for the 

manipulation of the carotenoid pathway has been demonstrated by silencing the 

tomato endogenous De-etiolated gene regulating photomorphogenesis (Davuluri et 

al., 2005). As a result, the biosynthetic flux in the pathway was redirected towards 

carotenoid synthesis, which led to a 8-fold (130 µg/g DW) increase in ß-carotene 

accumulation in transgenic tomato chromoplasts. Besides the carotenoid content, 

flavonoid levels were also found to have increased by 1.9- to 3.5-fold when 

compared to the wild type tomato fruits. Wurbs et al. (2007) reported the plastid 

expression of a bacterial lycb gene by genetic engineering of the chloroplast genome. 

The authors made use of a plastid aptl promoter and the lycopene ß-cyclase gene 

from the carotenoid-producing eubacterium E. herbicola (crtY), which were 

transferred to tomato leaves by particle bombardment. The authors reported a four- 

fold enhanced provitamin A increase in the transplastomic lines with an 

accumulation of 286 gg/g DW ß-carotene in tomato fruits. 

Engineering plants with additional copies of carotenoid biosynthesis genes by 

nuclear transformation has frequently been associated with cosuppression (Fray and 
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Grierson, 1993; Fray et al., 1995). Targeting the biochemical pathways of important 

isoprenoids and other pharmacologically important drugs to the plastid genome of 

several crops has demonstrated many advantages to nuclear transformation, one such 

includes the absence of epigenetic effects, therefore eliminating the hurdles of gene 

silencing. The high transformation efficiency and greatly enhanced level of 

provitamin A and amorphadiene accumulation in transplastomic tomatoes (Wurbs et 

al., 2007) and in tobacco plastids (Wu et al., 2006) respectively, highlight the 

advantage of generating plastid transformation systems. Plastid engineering also 

allows the generation of large quantities of therapeutic proteins that could be harmful 

if accumulated in the cytoplasm of the transgenic plant cells. Furthermore, plastid 

engineering permits transgene containment by maternal inheritance, thereby reducing 

the potential of toxicity exerted by transgenic pollen and the possibility of 

outcrossing transgenes to related plants (Reviewed in Daniell et al., 2005). 
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1.7 Project Aims and Objectives 

This study sought to investigate the heterologous expression of the genes involved in 

the early steps of the Taxol biosynthetic pathway engineered in Nicotiana tabaccum. 

This plant system was preferentially used for its ease of Agrobacterium-mediated 

transformation and for its rapid growth. 

The aims of the first half of the study (chapter three) were to isolate and clone the 

genes encoding enzymes involved in the early steps of Taxol biosynthesis. Upon 

cloning and expression of such cDNAs in Arabidopsis and tobacco plants, the 

localisation of the enzymes were to be experimentally demonstrated using 

fluorescent tagged proteins (chapter four). 

The aims of the second half of the study (chapter five) were to transfer the cloned 

genes into tobacco plants and to produce transgenic lines expressing each transgene 

separately. Each transgenic tobacco line was to be crossed with each other in order to 

"stack" the first three genes of the Taxol biosynthetic pathway into individual lines. 

Plants expressing the first two genes were to be analysed for the presence of the first 

oxygenated taxane of the Taxol biosynthetic pathway and the resulting lines were to 

be crossed with transgenic lines expressing the gene encoding the third enzyme of 

the pathway. Plant materials from these transgenic lines expressing the three 

enzymes would be subjected to GC-MS analysis for the detection of the downstream 

taxanes. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Chemical Material 

2.1.1 Laboratory reagents 

All laboratory reagents were purchased from Sigma-Aldrich Co. Ltd. (Poole, Dorset, 

UK), VWR International Ltd. (Hunter Boulevard, Leicestershire, UK) or Fisher 

Scientific UK Ltd. (Loughborough, Leicestershire., UK), unless otherwise stated. 

Microbiological media were obtained from Oxoid Ltd. (Basingtoke, Hampshire, 

UK). Unless otherwise stated the reagents were of analytical grade or higher. 32P 

radiolabelled nucleotides were obtained from Amersham International UK and 

Perkin-Elmer. 

All media and solutions referred to in the text as sterile were autoclaved at 120 °C for 

30 min at a pressure of 15 psi prior to use, or (when autoclaving was not suitable) 

were filter sterilised using either a 45 µm or a 20 µm syringe filter (Anachem Ltd., 

Bedforshire, UK) 

2.1.2 Enzymes 

Restriction and modifying enzymes were purchased from Fermentas (York, UK), 

Promega (Delta House, Southampton, UK) or New England Biolabs (NEB) UK Ltd. 

(Hitchin, Hertfordshire, UK). 
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2.1.3 Oligonucleotides 

DNA oligonucleotides were purchased from Eurofins MWG Operon (Ebersberg, 

Germany) (see Appendix I). 

2.1.4 pDestination vectors 

The binary vectors with fluorescent protein tags (Cerulean, EGFP and Venus) used 

for localisation studies were kindly offered by Dr. Silin Zhong (Zhong et al., 2008), 

in other cases the vectors were purchased. 

2.2 Bacterial Strains 

The bacterial host for all routine cloning work was E. coli DH5a (genotype: 

lacZAM15, A(lacZYA-argF), U169, recAl, endAl, hsdR17 (rk , mk+), phoA, 

supE44k-thi-1, gyrA96, relAl). The Agrobacterium tumefaciens strain used in this 

study was GV3 101 (pMP90). 

2.3 Plant Materials and Growth Conditions 

The seeds of Arabidopsis thaliana seeds of the control ecotype (Columbia, Col-0) 

were obtained from the Nottingham Arabidopsis Stock Centre (NASC). The tobacco 

wild type seeds (Nicotiana tabacum var. Petit Havana) of the control cultivar were 

kindly provided by Dr. Rupert Fray (Division of Plant and Crop Sciences, The 

University of Nottingham, UK). Unless specific conditions are stated, the 

Arabidopsis and Nicotiana plants were grown in Levington M3 compost consisting 

of 20 mg/L Intercept (Scotts, Ipswich, UK) insecticide. The glasshouse for maintain 

tobacco plants were kept at minimum 16 h day regime at about 22-26°C. The 
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greenhouse for growing Arabidopsis was maintained with 22 h photoperiod at about 

21-23°C. 

2.4 Screening Seeds for Control and Transgenic Lines 

The collected seeds were first surface sterilised by soaking in 50% (v/v) bleach with 

a drop of Triton X-100 (BDH Chemical Ltd., UK) for 8 min and centrifuged in a 

bench-top microcentrifuge (Sigma 1-15) at 13000 g for 1 min. The bleach was 

discarded and the seeds were washed 5 times with SDW containing 0.5 % Triton by 

centrifugation each time at 13000 g for 1 min. This was followed by the addition of 

70% ethanol to the seeds and this solution containing the seeds was poured 

immediately onto a sterile filter paper. The seeds were allowed to dry in a laminar 

flow hood. After drying, the seeds were either sprinkled (to screen for transgenics) or 

displaced horizontally (for seeds from transgenic lines) onto autoclaved MS agar 

media (1% (w/v) agar), containing appropriate antibiotics, in petri dishes or sterile 

100mm x 100mm square plates for vertical growth respectively and sealed with 

pamf lm. The petri dishes were kept at 4°C without light for 2 days before 

transferring to the tissue culture room (18 h photoperiod, 23-25°C) to allow 

germination. For transgenic seeds carrying a construct with a fluorescent tag, the 

seedlings were allowed to grow on sterile square petri dishes for 1-2 weeks before 

confocal microscopy. To obtain seedlings for further transgenic analysis, the 

Arabidopsis seedlings that developed dark green true leaves and an extending root 

system were transferred to compost in 9 cm pots and grown in the growth room 

under general conditions as previously described (section 2.3). 
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2.5 Plant Transformations 

2.5.1 Arabidopsis transformation 

The floral dip method (Clough and Bent, 1998) was used to transform Arabidopsis 

using Agrobacterium tumefaciens strains GV3101 (pMP90). 100 mL of the 

Agrobacterium overnight culture grown to OD600 1.0 was spun down (3,000 x g, 

RT) and resuspended in 200-300 ml 5% (w/v) sucrose solution. Silwet-L77 (Lehle 

Seeds, TX, USA) was added to the Agrobacterium solution to a final concentration 

of 0.05% (v/v) prior to dipping. The aerial parts of flowering Arabidopsis plants 

grown in 9 cm pots were dipped into the Agrobacterium solution for 15 s with gentle 

agitation. The dipped plants were covered with folded plastic sleeves for 24 h to 

maintain humidity. After transformation, plants were watered and grown normally 

for 3-4 weeks; the seeds of the transformed plants were then harvested and screened 

on MS media with appropriate antibiotics according to the selection marker present 

in the transgene construct. The collected seeds were screened under methods 

described in section 2.4 and grown on appropriate antibiotics to select for 

transformants. 

2.5.2 Tobacco transformation 

The surface sterilised tobacco seeds were first germinated and grown in sterilised 

plastic pots with MSR3 medium (Appendix II) for 4-5 weeks. The first healthy fully 

expanded leaves were chosen and cut into 1 cm2 using surgical blades, forceps and 

placed in deep petri dish in sterile liquid MS, under sterile conditions. 
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Prior to day of tobacco transformation, a 10 ml overnight liquid culture of 

Agrobacterium (GV3101: pMP90) carrying the appropriate construct was spun down 

(3,000 x g, 10 min, RT) and suspended in 100 ml of liquid MS (Appendix II) to 

about an OD600 of 0.2 in a sterile flow hood. The leaf pieces were transferred to the 

Agrobacterium culture and incubated with gentle swirling for 10 minutes. The 

explants were blotted dry on autoclaved filter paper (Whatman, UK) to remove the 

excess Agrobacterim then placed on MI medium containing the appropriate 

antibiotics with the abaxial surface of the explants in contact with the callus inducing 

medium (MS with 0.5 mg/ml IAA and 0.75 mg/ml Zeatin). The explants were 

cultures at 25°C in the dark for 24-48 hours before being transferred to M13 medium 

(MS with 0.5 mg/ml IAA, 0.75 mg/ml Zeatin, 400 mg/L augmentin and appropriate 

antibiotic depending on the selection marker of the transgene construct) and sub- 

cultured to freshly prepared medium every two weeks. Once the shoots were 

regenerated from the calluses, they were to be separated from the explants with a 

sterile blade and grown on fresh M 13 medium for two more weeks after which they 

were placed into sterile pots with root inducing medium M13 (without hormones) 

and allowed to root. When a branching root system had been established, the whole 

plant is either transferred to compost in a9 cm pot and covered with a transparent 

plastic bag to maintain humidity. The small plants were then allowed to recover for 

one to two weeks before removing the plastic bag cover. The transgenic tobacco 

plants were re-potted and maintained in the greenhouse under general conditions as 

previously described (Section 2.3). 
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2.6 GENOMIC DNA EXTRACTION 

A simple and rapid method for the preparation of plant genomic DNA for 

Polymerase Chain Reaction (PCR) analysis was based on the protocol developed by 

Edwards et al. in 1991. Leaf tissue samples were collected by taking up 1 cm2 of 

material into the tube and the tissue was macerated using autoclaved sterile plastic 

pestels for each sample at room temperature (RT) in 400 µL of extraction buffer (see 

appendix II). The mixtures were left at room temperature until all the samples had 

been extracted. The extracts were heated at 65 °C for 10 min followed by 

centrifugation (13,000 rpm, 5 min, RT) using a table microcentrifuge. 350 µL of 

each supernatant was transferred to a fresh microcentrifuge tube to which 350 µL 

isopropanol was added and mixed by pipetting. DNA was allowed to precipitate by 

storing the sampled at -20 °C for at least 1 h. Following centrifugation (14,000 rmp, 

5 min, RT), the pellets were washed with 400 µL of 70% ethanol, vortexed and 

centrifuged as before. The ethanol was discarded and the pellets were air dried in a 

flow-hood or by vacuum, making sure to not over-dry the pellets. The pellets were 

dissolved in 50 µL SDW. The gDNA samples were RNase treated (section 2.7) and 

1-2µL of the samples were sufficient for a standard 20 µL PCR which was carried 

out for genotyping transgenic plants. 

2.7 RNase Treatment of DNA 

20 gg of total DNA samples were digested with 1 µL of RNase enzyme 

(Ribonuclease A) (QIAGEN) and 1x RNase R reaction buffer and the mixture made 

up to a final volume of 200 µl to allow easy layer pipetting. The tubes were 
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incubated at 37°C for 15 minutes. 1 µ1 of proteinase K (QIAGEN) was added to the 

tubes and incubated for a further 15 mins at 37°C. 

100 µl of phenol: Chloroform (1: 1 v/v) was added to each tube, vortexed and spun 

down for 10 mins at 14 000 rpm. The upper part of the aqueous phase was 

transferred to a sterile DNase-free tube to which l00µl of chloroform was added and 

the tubes vortexed and centrifuged for 10 mins at 14 000 rpm. The upper aqueous 

phase was transferred to a sterile eppendorf tube and 1/10th of 3M sodium acetate 

was added to each tube and vortexed. The DNA was precipitated by the addition of I 

volume of isopropanol the tubes were vortexed and centrifuged for 15 mins at 14000 

rpm. The supernatants were discarded and the pellets rinsed in 70% ethanol, 

centrifuged and again the ethanol removed. The pellets were either allowed to dry in 

a flow-hood or by vacuum, after which they were each resuspended in 50µ1 of 

DNase-free water. 

2.8 RNA Extraction 

2.8.1 MiniPrep 

RNA extractions from A. thaliana seeds were carried out using the RNeasy Mini Kit 

(QIAGEN), according to the manufacturer's instructions with slight modifications. 

150 mg of leaf tissue was ground to a fine powder under liquid nitrogen in a2 ml 

eppendorf tube and 500 pl of extraction buffer RLT was added. Tubes were then 

vortexed vigorously and incubated in a 60°C heat block for 5 min. the mixtures were 

then loaded onto the mini-prep columns and the following procedures were 

performed according to the manufacturer's protocol. The RNA was cleaned up, prior 
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to use for reverse transcription, with DNaseI provided with the RNeasy kit according 

to manufacturer's instructions. 

2.8.2 Phenol-chloroform method 

RNA extractions from mature green tobacco leaves were carried out using the 

extraction procedure based on a method developed by Goldsbrough and Cullis, 1981. 

1-7 g of fresh leaf tissue was ground to a fine powder in a pre-chilled mortar under 

liquid nitrogen. The frozen powder was transferred to a sterile acid-washed and 

autoclaved 50 ml tube which has been kept on ice while tissue preparation. 1 mug of 

RNA extraction buffer (See appendix II) was added to the powdered tissue and the 

sampled were left on the bench to thaw with occasional vortexing. An equal amount 

of phenol: chloroform (See appendix II) was subsequently added and the tubes were 

mixed by vigorous vortexing for 1 minute. The samples were held on ice until all 

samples were processed and again they were vortexed for 1 minute. Immediately, the 

aqueous phase and the organic phase were separated by centrifugation in a precooled 

centrifuge machine (10 000 rpm, 15 min, 10°C). The nucleic acids containing upper 

aqueous layer was then transferred to a new sterile 50 ml tube and total nucleic acids 

were precipitated by the addition of 1/10`h volume of 3M sodium acetate (pH 6.0) 

and 2.5 volume of ethanol (or 1 volume of isopropanol) and placed at -20°C for at 

least 30 minutes. Precipitated nucleic acids were then pelleted by centrifugation (10 

000 rpm, 10 mins, 4°C). The supernatant was decanted and the tubes were dried 

briefly on paper towels. The pellets were dissolved in 500 µl of RNase-free SDW 

and placed in an RNase-free microfuge tube, any insoluble debris was removed by 

snap spinning the samples. The RNA was subsequently precipitated from this 
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solution with an equal volume of 8M lithium chloride solution and kept at -20°C 

overnight to enrich and precipitate the RNA. RNA was recovered by centrifugation 

(13,000 rpm, 20 mins, 4°C) and the supernatant discarded. The RNA pellets were 

washed with 500 µl of RNase-free 70% ethanol, microfuged for a further 5 minutes, 

and again the supernatant was discarded. The final RNA pellets were dried in a 

laminar flow-hood or under vacuum, taking care not to over-dry them. The pellets 

were re-suspended in SDW (10 µl-2O0gl) depending on the size of the pellet and 

stored at -70°C. 

2.9 RNA Quantification and Analysis 

Total RNA from A. thaliana and N. tabacum were quantified using NanoDrop ND- 

100 Spectrophotometer (NanoDrop Technologies, Wilmington, Delaware, USA). 

The integrity of the RNA was confirmed by running 3 µL of the total RNA on a 1% 

agarose TAE agarose gel at 100 V for 15 min, staining with ethidium bromide and 

checking for the presence of ribosomal bands when viewed under UV light. RNA 

samples were either stored frozen at -80°C or kept on ice for immediate use. 

2.10 Gel Electrophoresis 

2.10.1 Non-denatured agarose gel 

0.7-I g Agarose (Bioline, UK) was melted in 1X TAE buffer (see appendix II) in a 

microwave oven and cooled down to -60 °C before ethidium bromide (EtBr) was 

added to a final concentration of 0.05-0.1 gg/mL to the gel solution in the conical 
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flask, swirled and poured in the tray containing suitable number of combs. The gel 

was then left on the bench to set for 15-30 min and transferred to an electrophoresis 

tank with 1X TAE buffer. 1X loading dye (see appendix II) was added to the samples 

if the dye was not added prior to PCR. 5µl of ladder (Hyperladderl used in most 

cases) as well as the samples (RNA/DNA) were loaded into separate wells and DNA 

was electrophoresed at 100 V for an appropriate time. The gel was subsequently 

exposed to UV light (Transilluminator, Syngene) and photographed using UVP 

Imagestore 5000. 

2.10.2 DNA extraction from agarose gel 

Gel extraction was carried out by using the QlAquick Gel Extraction Kit or 

MiniElute Kit (QIAGEN) according to the manufacturer's instruction. Alternatively, 

for rapid purification of DNA in an agarose gel, a spin column was assembled by 

placing a 0.5 mL tube inside a 1.5 mL tube and the bottom of the 0.5 mL tube was 

punctured with a needle. A small piece of sterile filter paper was placed inside the 

0.5 mL tube to cover the hole. The agarose gel slice containing the desired DNA 

band was then placed into the 0.5 mL tube and was snap frozen in liquid nitrogen 

before centrifugation (18000 g, 2 min). The flow-through liquid was collected into a 

new tube. To this liquid, 5 µL of Dextran solution (10mg/mL) was added. The 

mixture was vortexed, followed by addition of 3 volumes of pure ethanol, vortexed 

again and kept at -20 °C overnight. The tubes were centrifuged (18000 g, 10 min), 

the pellet was washed with 75% ethanol, air-dried and re-suspended in 20 µL of 

SDW. 
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2.11 Polymerase Chain Reaction (PCR) 

2.11.1 General PCR protocol for BiotagTM DNA polymerase (Bioline) 

The following PCR conditions (Table 2.1) were used to generate DNA fragments and 

probes for presence of the respective cDNA and northern analysis respectively, while 

using non-proof-reading DNA polymerase that also adds a single adenosine 

nucleotide (A-overhang) at the end of the PCR product. Variations in amplification 

conditions were required to accommodate primers of differing lengths during the 

amplification cycle. 

Reaction Mixture Set-up (100 µL) CR Conditions 

1 µL of forward primer (10 µM) Lid: 100 °C 

I µL of reverse primer (10 µM) 1: 95 °C, 3 min (initial denaturation) 

I µL of dNTPs (10 mM; Promega) 2: 94 °C, 30 sec (denaturation) 

1.5 µL of MgCl2 (50 mM; Bioline) 3: 56 °C, 30 sec (annealing) 

5 µL of IOx PCR Buffer (Bioline) 4: 72 °C, 1 min (extension) 

1 µL of DNA Template (-50 ng) 5: Go to 2, repeat for 35 cycles 
32.5 µL of SDW 6: 72 °C, 5 min (final extension) 

6. tL Cresol Red dye 7: Hold at 20 °C 

1 µL of DNA polymerase (5 U/gL) 

Table 2.1 PCR conditions while using BiotagTM Polymesse. 

The PCR mixture, as in Table 2.1, was kept on ice before being placed into the PCR 

machine. The annealing temperature was optimised for each of the primer pairs. The 

extension time was directly proportional to the length of the PCR product (1 min per 

1 kb). The PCR program used is shown above. 
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2.11.2 General PCR protocol for Phusion® High Fidelity DNA polymerase 

(FINNZYMES) 

The following PCR conditions (Table 2.2) were used to generate DNA fragments for 

cloning while using a proof-reading polymerase that allows for amplification of 

DNA fragments with very low error-rate. Variations in amplification conditions were 

required to accommodate primers of differing lengths during the amplification cycle. 

Reaction Mixture Set-up (50 µL) CR Conditions 

2.5 µL of forward primer (10 µM) Lid: 100 °C 

2.5 µL of reverse primer (10 µM) 1: 98 °C, 30 sec (initial denaturation) 

1.5 pL of dNTP (100 mM) 2: 98 °C, 10 sec (denaturation) 

10 µL of 5x Phusion HF Buffer 3: 58 °C, 20 sec (annealing) 

1 µL of DNA Template ('50 ng) 4: 72 °C, 30 sec (extension) 

33 µL of SDW 5: Go to 2, repeat for 30 cycles 

0.5 µL of Phusion polymerase (2 U/µL) 6: 72 °C, 7 min (final extension) 

7: Hold at 10 °C 

Table 2.2 PCR conditions while using Phusion® Polymerase. 

Phusion is a modified Pfu DNA polymerase which has an artificial DNA binding 

domain fused to the DNA polymerase domain. It has a superior thermostability, the 

fastest extension rate (15-30 sec per kb DNA) and a very low error rate (4.4 x 10'7) 

compared to other thermostable polymerases. The annealing temperature was 

dependent on the Tm of the oligos and the extension time was alternated depending 
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on the length of the fragment being amplified. PCR products produced by 

amplification with Phusion polymerase normally produce blunt ends. 

2.11.3 A- tailing 

A-tailing process is performed to add an overhang of adenosine residues to the blunt 

ends of a PCR product obtained by a proof-reading polymerase prior to cloning in 

TA cloning vectors such as pCR8/GW/TOPO (Invitrogen). The reaction conditions 

shown in Table 2.3 were used. 

Reaction Mixture Set-up Conditions 

15 µL of Phusion PCR product Lid: 100 °C 

1 µL of dATP (100 mM) 1: 70 °C, 60 min (extension) 

1 µL of 10 x PCR buffer (Bioline) 

I µL of MgC12 

0.5 µL BiotagTM Polymerase 

1.5 µL of SDW 

Table 2.3 Conditions required for a-tailing. 

2.12 Cloning DNA into Plasmid Vectors 

2.12.1 Ligation 

The appropriate plasmids were digested with the desired restriction endonuclease and 

dephosphorylated prior to gel extraction. Dephosphorylation was performed to 

inhibit recirculation in the self-ligation reaction by adding Antartic phosphatase 
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enzyme (NEB) (IU/µg vector) followed by a 37°C incubation for 30 minutes, 65°C 

for 5 minutes to deactivate the phosphatase. The tubes containing the reactions were 

immediately transferred on ice for 30 seconds to prevent any possibility of 

recirculation of the vectors. In a 10 µL ligation reaction, 50 ng of gel-extracted vector 

was mixed with 5-10 ng DNA fragment (typically 3: 1 insert to vector molar ratio), 

SDW, 2 µL of 5x ligation buffer and 1 µL of T4 DNA ligase (3 U/µL) were mixed 

and incubated overnight at 4 T. 

2.12.2 Gateway cloning 

To generate PCR product for gateway cloning, an extra nucleotide sequence CACC 

AAA was added to the forward PCR primer in front of the first ATG (CAC CAA 

AATGNNNNNNN) in some cases. The purified PCR product containing CACC in 

the 5' end was cloned to the pCR8 Entry vector (Invitrogen) through TOPO 

isomerase reaction according to the manufacturer's protocol. Once the DNA 

fragment was cloned into the entry vector (pCR8/GW/TOPO) which contains the 

attL sites, they were recombined into the desired destination vectors containing the 

attR sites through the LR reaction (Invitrogen). 

For directional cloning, PCR products were cloned into pDonor221 vector through 

the BP reaction (Invitrogen) according to the manufacturer's protocol. The DNA 

fragment of interest was amplified in a two-step PCR approach. The first PCR was 

performed with gene specific primers (GSP) (13aOH SP and 13aOH ASP, See 

appendix I) with an additional attB tag in the 5' end, the second round PCR was 

carried out with attB adaptor primers (Invitrogen) which recognise the tags of the 
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GSP primers. The GSP forward PCR primer has extra "aaaaagcaggctnn" in the 5' 

end and the GSP reverse primer has extra "agaaagctgggtt" at the 3' end. The 

sequences of the attB adaptor forward and reverse primers are described in Appendix 

I. The final PCR product was then cloned into pDonor221 vector through the BP 

reaction. In a 0.2 ml tube, 0.5 pl of pDonor221 (25 ng) was mixed with 1.5 µd of the 

purified PCR product (10-20 ng) and 0.5 pl of BP clonase II was added. The tube 

was incubated in a PCR machine at 25° for no less than 3 hours before 0.5 µl of 

proteinase K was added to inactivate the enzyme for 15 min at 37° C. The 3 µl BP 

reaction product was then used immediately for E. coli transformation and selected on 

solid LB medium (see appendix II) supplemented with 50 mg/1 kanamycin. Once the 

DNA fragment was cloned into the pCR8 or pDonor vectors, which contain attL 

sites, they were recombined to the pDestination vectors containing the attR sites 

through the LR reaction (Invitrogen). In a 0.5 mL PCR tube (thin-walled; eppendorf), 

I µL (50 ng) of pEntr plasmid, I gL (50 ng) of the destination vector, 0.5 µL LR 

clonease II were mixed and incubated at 25 °C for two hours. 0.5 µL of proteinase K 

was added to the LR reaction mix to remove the enzymes prior to E. coli 

transformation. 

2.12.3 E. coli transformation 

The E. coli competent cells were thawed on ice for 15-20 min. 5 µL of the ligation 

reaction mixture was added to the cells. The tube was then incubated on ice for 10-15 

min, heat shocked in a 42 °C water bath for 60-90 s, and immediately placed back on 

ice for 1 min. 600 µL of room temperature LB medium (see appendix II) was then 

added to the cells. Tubes were incubated at 37 °C for Ih before being spread onto 
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LB plates containing the appropriate antibiotics. The plates were incubated overnight 

in an inverted position in a 37 °C oven to allow the transformed cells to form 

colonies. 

2.12.4 Plasmid purification 

The small scale plasmid preparations were performed using QlAprep Spin Miniprep 

Kit (QIAGEN), following the manufacturer's instructions. For high copy number 

plasmids, 10 ml of overnight culture was used. An E. coli glycerol stock was prepared 

for each relevant colony from 0.5 ml of the overnight culture prior to the plasmid 

prep by adding an equal volume of 20% (v/v) glycerol. The glycerol stock was then 

snap frozen in liquid nitrogen and stored at -70°C. 

2.12.5 Large scale preparation of plasmid DNA 

100 ml of sterile LB media was inoculated from a single bacterial colony grown on a 

selection plate containing the appropriate antibiotics and the culture was incubates 

overnight in a 37°C shaker. Cells were pelleted by centrifugation at 4000xg in a 

sterile, clean centrifuge tube for 10 min at 4°C. The bacterial pellet was resuspended 

in 5 ml of solution 1 containg the following: 25 mM Tris-HC1 (pH 8.0), 50 mM 

EDTA (pH 8.0) and 1% (w/v) Glucose. This was added to 10 ml of solution 2 [200 

mM sodium hydroxide and 1% (w/v) SDS] and the contents were mixed well by 

inversion. As the cells lysed the suspension becomes viscous after which 7.5 ml of 

solution 3 [5M Potassium acetate pH 4.8] was added, mixed gently and placed on ice 

for 20 min. Cell debris and chromosomal DNA was removed by pelleting at 9000xg 
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for 30 min at 4°C followed by filtration through sterile muslin. The supernatant was 

precipitated with two volumes of ethanol (-45 ml). After 10 mins of ice, nucleic acid 

was pelleted by centrifugation at 8000xg for 10min at 4°C. The pellet was drained 

well, resuspended in 2 ml of sterile distilled water and transferred to a 14 ml 

centrifuge tube. 400 mg of ammonium acetate and added to dissolve. After 15min on 

ice this was spun at 10000xg for 10min at 4°C and the supernatant transferred to a 

fresh tube containing 4 ml of ethanol. This was left on ice for 30 min then centrifuges 

at 10000xg for 10 min at 4°C and the pellet was drained and resuspended in 1 ml of 

1mM EDTA. This was transferred to two Eppendorf tubes and 541 of a 10µg/m1 

solution of ribonuclease A was added to each sample. Following incubation for 15 

min at 37°C, an equal volume of phenol/chloroform was added, mixed by vortexing 

and the tubes were spun in table microcentrifuge for 5 min at maximum speed. The 

aqueous phases were transferred to new tubes containing an equal volume of 

chloroform and the phases were mixed by vortexing and centrifuged for 5 min at 

maximum speed. The aqueous phases were transferred to sterile tubes and 1/10 

volume of Sodium acetate and two volumes of ethanol added to each sample. After 

10 min on ice, DNA was precipitated by centrifugation for 10 min at high speed. The 

supernatant was discarded and the pellets were washed with 70% ethanol then 

resuspended in 200gl of 625 mM NaCl. These were pooled in one sterile tube and to 

this was added 100µ1 of 50% PEG-6000. DNA was precipitated for at least Ih at 4°C 

then pelleted at maximum speed in a microcentrifuge for 10 min. The pellet was 

washed with 70% ethanol, vacuum dried and resuspended in 200 µl sterile distilled 

water. The concentration was determined by reading the absorbency at 260 nm and 

the plasmid stock stored at -20°C. 
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2.12.6 Rapid boiling method for plasmid DNA extraction 

The Rapid Boiling method developed by Holmes and Quigley (1981) was used for 

the extraction of plasmid DNA which were used for restriction digests. Prior to the 

boil prep, the appropriate E. coli colonies were restreaked on LB plates containing the 

appropriate antibiotic and incubated overnight at 37°C. The colonies were 

respectively scrapped with the help of a bent sterile pipette tip and resuspended in 

2O0µ1 of STET solution (see appendix II) in sterile eppendorf tubes. The tubes were 

vortexed to break up the pellet and the tubes were immediately placed in an open- 

bottom rack placed in boiling water for 45-60 sec, ensuring that the tubes are at least 

half emerged in the boiling water. Here the cells are lysed allowing plasmids to 

escape, while the bacterial chromosomal DNA remains trapped in the cell debris. 

Boiling denatures the chromosomal DNA, after which reannealing allows the 

plasmids to reassociate. The tubes were spun down using a table microcentrifuge (14, 

000 rpm, 1 min, RT) to remove the chromosomal DNA along with the cell debris. 

The supernatant containgin the plasmid was transferred to a fresh sterile eppendorf 

tube to which 200µl isopropanol was added and the tubes were vortexed and allow 

DNA precipitation at -20°C for at least 30 mins. The tubes were then centrifuged (14, 

000 rpm, 10 min, RT) and the supernatants were decanted. The pellets were washed 

in 500µ1 of 70% DNase-free ethanol, vortexed and centrifuged for a further 5 mins 

(14,000 rpm, RT) down for 5 mins. The supernatants were discarded and the pellets 

air dried and suspended in a minimum of 3Oµ1 of DNase-free SDW. The DNA was 

then treated with RNase as previously described in section 2.7 prior to restriction 

digest of the plasmid DNA. 
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2.12.7 Restriction enzyme digestion 

Restriction digestion was performed to confirm the insertion into the vector. DNA 

digests were typically set up in a total volume of 20 µL or 50 gL in cases where the 

restricted fragment would be required for further cloning work. This reaction mix (20 

µL) consisted of 2 µL of buffer (specific for each restriction enzyme), 6 µL of water, 

2 µL of the desired restriction enzyme (in case of 2 enzymes being used then I µl 

each) and 0.1 - 0.5 µg of DNA (from the plasmid prep). Digests were incubated at 

37 °C for 1.5 -2 hrs. 5 µL of loading dye was added and the samples were then run 

on a 0.7% agarose gel. Where appropriate, 5µL of the plasmid prep of positive 

clones were sent for sequencing or the restricted fragments used for further cloning. 

2.12.8 Agrobacterium transformation 

1 µl of ligation mix or Iµ of the binary vector obtained by LR recombination was 

added to One Shot® of Agrobacterium tumefaciens strain GV310 in a sterile 

eppendorf tube and allowed to stand one ice for 1 hour. The plasmid and were then 

transferred a cuvette and was transformed into Agrobacterium by electroporation 

(Zabarovsky and Winberg, 1990). 600 µl sterile LB was immediately added to the 

cuvette and the content transferred to a sterile 1 mL eppendorf tube which was 

incubated for 2-3 hours in a 28-30 OC 
shaker. The bacterial sample were selected on 

LB agar plates containing 5 pg/ml tetracycline, 30 gg/ml gentamycin and suitable 

antibiotics depending on the resistance gene carried in the plasmid. 
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2.13 Northern Blot 

2.13.1 Electrophoresis of RNA 

The following procedures were carried out in the fume hood due to the toxicity of 

formaldehyde. To prepare the 100 mL formaldehyde northern gel, 90 mL of SDW, 2 

mL of sodium phosphate buffer (1 M, pH 6.8) and Ig of agarose were mixed in a 

250 mL flask and melted in a microwave oven. 8 mL of de-ionised formaldehyde 

(adjusted to pH 7.0 with NaOH) was added when the gel solution was cooled to 50- 

60 T. The gel solution was then poured into the gel caster tray and was left to set in 

the fume hood for 30 min before use. To prepare the RNA samples, in a 1.5 ml 

Eppendorf tube, 50% of the RNA (10 µg) is added to 50% of ethidium bromide 

sample buffer (see appendix II). The RNA samples are denatured at 65°C for 15 mins 

then snap cooled on ice for I min and then briefly centrifuged. 4 µL of Bromophenol 

blue loading dye (see appendix II) was added to the RNA samples immediately 

before gel electrophoresis. After loading the samples onto the formaldehyde gel, the 

gel was allowed to run at 80V for 30-40 min in gel running buffer (see appendix II) 

during which time the buffer was allowed to circulate using a circulator pump linked 

to the gel tank. The gel was then photographed under UV light to confirm equal 

loading and the gel run further for better rRNA separation if required. 
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2.13.2 Upward capillary blotting 

Nylon 

5000 weight 
Glass plate 
Stack of paper towels 
Whatman paper (same 
size as the membrane) 
Formaldehyde qel 

ter- Plate 

- 10x SSC 
Whatman paper 
(20 x 60 cm) 

Figure 2.1 Schematic diagram of the blotting assembly. 

From top: 500 g weight, paper towels, filter papers (3-4 layers), nylon membrane, 
formaldehyde gel, bridge-shaped filter paper (1 layer) and blotting buffer (10 x SSC) 

The best low-tech method for agarose transfer is by a passive and slighltly alkaline 

buffer to increase blot sensitivity by efficiently moving RNA. Prior to blotting, the 

corner of the gel near the loading site of the control sample was cut as an indication 

of the position of the samples. The formaldehyde gel was inversed and placed on the 

bridge-shaped filter paper soaked in 10 x SSC (Figure 2.1). This was followed by 

transfer of the denatured RNA to a GeneScreen hybridisation transfer membrane 

(PerkinElmer Life Sciences) soaked in 2x SSC prior to being placed on top of the 

gel. Care is taken so that no air bubble is trapped between the membrane and the gel. 

The upward capillary blotting assembled as shown in Figure 2.1 using 10 x SSC as 

transfer buffer as described by Sambrooks et al. 1989. The RNA was UV cross- 

linked to the membrane using StratalinkerTM 2400 (Stratagene) after the overnight 

blotting. 
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2.13.3 Hybridisation 

The UV cross-linked northern blot membrane was placed in a hybridisation bottle 

(Techne) with 80% of the total volume of the pre-hybridization buffer (see appendix 

II). Prehybridisation is done prior to probe hybridisation to prevent the probe from 

coating the membrane and to minimise background problems. The bottle was then 

incubated in a rolling hybridization oven (Techne) at 42 °C for 4 h. 

2.13.4 Radiolabelling of probes 

The fragments for labelling generated in section 2.11.1 were diluted to a final 

concentration of 2.5-25 ng in a 45 µ1 of 10 mM Tris HC1, pH 8.0. The DNA was 

denatured by heating the sample to 95-100°C for 5 mins and snap cooled in ice for a 

further 5 mins. A ProbeQuantTM G-50 Micro Column (GE Healthcare) used per 

reaction was equilibrated with 3 ml TE (pH 8.0) containing 0.1 % (w/v) SDS. The 

snap cooled probe was added to an individual tube of Ready-To-Go DNA Labelling 

beads (Amersham Biosciences) to which 5 
.d of 50 itCi [a-32P] dCTP (3000 

Ci/mmol) was added and gently mixed by pipetting the sample after which the 

sample was incubated at 37°C for 10 minutes. 400 µl of TE, 0.1% (w/v) SDS was 

added to the probe and this mixture was loaded onto the G-50 Micro column to 

remove any unincorporated nucleotides and allowed to flow through the column. The 

filtrate was collected in a sterile eppendorf tube and a further 400 µl of TE, 0.1% 

(w/v) SDS was added to the top of the column and collected in the same tube. The 

radio-labelled probe was denatured at 95° C for 5 mins and immediately transferred 

to the remaining hybridisation buffer (from section 2.13.3) and mixed gently. The 
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labelled mixture was carefully poured in the hybridisation bottle containing the 

membrane and the bottle incubated overnight at 42°C. 

2.13.5 Washing of membrane 

The hybridisation solution was decanted the next day and the membrane was washed 

in four steps to remove the unhybridised probe, as shown in table 2.5. Low 

stringency washes (2xSSC) remove the hybridisation solution and unhybridised 

probe. High stringency washes (0.1xSSC) remove partially hybridised molecules. 

SOLUTION DURATION TEMPERATURE 

First wash 2x SSC + 0.1% SDS 5 min Room temperature 

Second wash 2x SSC + 0.1% SDS 15 min 65°C 

Third wash Ix SSC + 0.1% SDS 10 min 42°C 

Fourth wash 0.1 x SSC + 0.1% SDS 10 min 65°C 

Table 2.4 Details of wash steps after membrane hybridisation. 

The duration of the fourth wash was optimized for each probe due to the differences 

in length and binding specificity of the probe. The remaining radioactivity of the 

membrane was monitored at the end of the washes by taking the membrane out of the 

hybridisation bottle, placing in a plastic wrap and scanned using the radioactivity 

monitor. 

2.13.6 Detection and quantification of radioactivity 

After all washes, the membrane was immediately sealed in a plastic wrap to keep it 

from drying out. The membrane was then placed under an X-ray (Kodak X-OMAT) 
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in an autoradiography cassette in the dark room under red light. The cassette was 

wrapped in a dark plastic bag to prevent any light exposure and stored -70°C for an 

appropriate length of time, depending on the counts on the membrane which can be 

determined using the radioactivity monitor. A membrane with <10 counts requires 

one week for exposure whilst those with >20 counts can produce enough signal on 

the film after 1-2 days. 

2.13.7 Development of autoradiography film 

The equipment and reagents used for developing films were purchased from Kodak. 

All procedures were carried out in a darkroom with red light according to the 

instruction of the manufacturer. The cassette containing the membrane was first 

warmed to room temperature or the film was immediately placed in a tank containing 

10% (v/v) developer, for about 5 minutes with occasional shaking until the bands are 

visible. The film was then placed into a 5% (v/v) fixer solution in a separate tank: at 

this point the film was no longer light sensitive. The film was then washed 

abundantly in water and allowed to dry. 

2.14 Reverse Transcription (Rt) 

The total RNA (5 µg) was mixed with 1 pL of oligo(dT)25 primer (0.5 µ&L, 

Invitrogen) and 1 µL dNTP mix (10 mM each) in a 0.5 mL nuclease-free eppendorf 

tube. RNase-free water was then added to bring the final volume to 13 µL. The tube 

was incubated at 65 °C for 5 min and snap cooled on ice for at least I min. The 

contents of the tube was collected by brief centrifugation after which 4 µL 5X RT 
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buffer, 1 µL RNaseOUTTM Recombinant RNase inhibitor (Invitrogen), 1 . tL OA M 

DTT and I µL Superscript1M III RT (200 U/µL, Invitrogen) were added to the tube 

and mixed by gentle pipetting. The tube was incubated at 50°C for 1 h. The reaction 

was terminated by incubating the tube at 70 °C for 15 min. The cDNA thus produced 

through reverse transcription was used for PCR. 

After confirming the presence of the transgene by PCR of genomic DNA, an RT- 

PCR was performed to check whether the transgene mRNA was transcribed, using 

gene specific primers to PCR the cDNA. In some cases, RT-PCR was performed to 

check the right size of the mRNA transcribed, thus confirming that no post- 

transcriptional modifications have occurred, for instant RNA splicing. 

2.15 GC-MS Analysis 

2.15.1 Preparation of hexane extracts from plants 

The extraction of crude oils and terpenes from 5g of fresh leaf material of transgenic 

and control plants was done using a Polytron homogenizer (Kinematica PTIO, 

Northern media supply LTP, North Humberside, UK) and 95% n-hexane as solvent. 

The extracts were centrifuged at 4000 rpm for 5 minutes after which the upper layer 

of supernatant was carefully transferred to a clean tube. Care was taken to not disturb 

the interphase between the aqueous layers. Alternatively, to obtain a more 

concentrated extract, the leaf tissue were ground in a mortar in hexane with the 

addition of a small quantity of refined sand. The extract was carefully transferred to a 

clean tube and the plant tissue re-extracted a further four times with the same volume 

of hexane to a total of 50 ml. Each of the subsequent extractions were pooled with 
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the first and the total extract was centrifuged for 5 minutes at 4000 g to remove any 

plant material, sand or any non-dissolved debris which might have been transferred. 

The solvent hexane containing the volatiles to be analysed were then individually 

dried in a rotary evaporator (BUCHI). The evaporation flask was washed twice with 

hexane then a final wash with ethanol, after drying each sample to prevent transfer of 

any contaminant to the following sample. The dried residue from each extract was 

taken up in a maximum of 2 ml of hexane and respectively transferred to 2m1 

eppendorf tubes and the lids closed properly to prevent the extracts from drying out. 

2.15.2 Gas Chromatography- Mass Spectrometry (GC-MS) analysis of crude 
hexane extracts 

In order to characterise the analytes within the crude hexane extracts, GC-MS 

analysis was performed on the samples by using a DSQ II mass spectrometer linked 

to a TRACE GC Ultra gas chromatograph (Thermo Scientific). 1d of each sample 

was respectively injected with an AS3000 auto-sampler in a split-less mode (injector 

250°C) onto a 30m x 0.25 mm ID fused silica capillary Zebron column ZB-1HT 

(Phenomenex, Macclesfield, UK) with a 0.25 µm film thickness. The ZB-1 HT 

column was prefentially used due to its mid-polarity properties allowing the analysis 

to be raised to temperature up to 430°C. Unless otherwise stated, the initial oven 

temperature was 160°, this was ramped to 300°C at 10°C/min after aI min delay. 

The spectrum was produced using helium as carrier gas and the charged particles 

were formed by electron impact ionisation. The mass spectrum for the appropriate 

compounds was analysed by the Thermo XcaliburTM mass spectrometry software. 
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2.16 Microscopy 

2.16.1 Confocal Scanning microscopy 

The Leica TCS SP2 AOBS confocal scanning microscope was used to study the 

localisation of proteins by imaging the transgenic plant materials carrying the 

transgene. The microscope is equipped with the Leica confocal software (LCS), a 

100 mW multi-line Argon laser (458 nm, 476 nm, 488 nm, 496 nm and 514 nm) and 

a1 mW He-Ne laser (543 nm) as excitation sources. The fluorescent protein signal 

was collected by the SP scanner (Table 2.5) and the auto-fluorescence of the 

chlorophyll was measured between 630 and 730 nm. The transmitted light image was 

collected in a separate detector. 

Fluorescence Protein Laser Emission collected 

CFP (cyan ) 458 nm 465-600 nm; used with YFP: 465-505 nm 

GFP (green) 488 nrn 500-600 nm 

YFP (yellow) 514 nm 525-600 nm; used with mRFP 1: 525-560 nm 

mRFP 1 (red) 543 nm 590-670 nm; used with YFP: 600-725 nm 

Table 2.5 Excitation and emission settings. 

The plant tissues were mounted on to the microscopic glass slide with a drop of 

water and covered gently with the No. 1.5 cover slip (0.17 mm thick, Scientific 

Laboratory Supply). The slide was observed under UV light. Once the desired focus 

and object lens have been achieved, the UV shutter was closed and the sample was 
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scanned by Leica TCS SP2. The appropriate laser intensity was selected in the Leica 

Control Software (LXS) accordingly and the live image was acquired through 

continuous scan mode. The scanner and detector was set to xyz scanning mode, 514 

x 514 image size, 8 bite image and 400 Hz scan rate unless otherwise mentioned. The 

pinhole was set to AE unit 1 as default. The voltage applied to the photomultiplier 

tube (PMT, AKA "detector gain value") was adjusted experimentally to obtain the 

best signal-to-noise ratio. The z-position and electric zoom were chosen accordingly 

and the series z-position scan and image maximal projection was carried out using 

LCS. Images were acquired using the 10x/0.4 HC PL APO CS object lens and the 

40x/0.7 HCX PL FLUOTAR object lens. The 63x/1.3 HCX PL APO CS and 

40x1.25-0.75 HCX PL APO CS object lenses were used to obtain images where 

fluorescent proteins were targeted to the endoplasmic reticulum. 

2.16.2 Transient expression in onion epidermial cells 

The gold powder (sphere 0.8-1.5 µm) was purchased from AlfaAesar and the 

Helium-driven PDS-1000/He biolistic Particle Delivery System was a product of 

Bio-Rad. The gold powder (30 mg) was first washed with 1 ml of ethanol and three 

times with SDW in a 1.5 ml Low-Bound centrifuge tube (Eppendorf) before 

suspension in 0.5 ml of SDW. The gold solution was then sonicated for 1 min in a 

water-bath sonicator (Fisher) and was dispensed to 30 µl aliquots in the Low-Bound 

centrifuge tubes. 

To prepare the DNA-coated gold particles, 30 µl of the resuspended gold particles 

was used per transfection shot of 2-3 µg of plasmid DNA from isolated E. coll. The 
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gold solution was sonicated for 10 s and vortexed vigorously for 1 min. The plasmid 

DNA was coated onto the gold particles by adding 50 µl of 2.5 M CaC12 solution and 

20 µl of 0.1 M Spermidine to the vortexing gold solution immediately. The tube was 

vortexed for 1 min before settling the gold on ice for 1-3 min. The gold was then 

pelleted by a1 sec pulse centrifugation and the supernatant was removed gently 

without disturbing the gold pellet. Ethanol (150 µl) was gently laid on top of the gold 

pellet and the tube was again pulse centrifuged for I sec. 

The gold pellet was then washed with 150 gl of ethanol three times without 

centrifugation and suspended in 30 µ1 of ethanol. The tube was vortexed for 2-3 sec 

and the gold powder was fully dispersed by pipetting. The gold solution was then 

loaded to three micro-carriers (Bio-Rad) and dried in a Petri dish with desiccators for 

about 20 min in a 30°C oven before shooting into the onion epidermal cells. 

The inner epidermal cell layer of the onion (locally purchased) was peeled and cut in 

two rectangular (1.5cm x 3.5cm) slivers and laid flat next to each other onto Petri 

dishes with solid MS (Ix MS, 3% Sucrose, pH 5.7 KOH) with the inner side down 

on the media. Water was sprayed onto the Petri dishes to keep the onion peel 

moisturised and to prevent it from rolling. The excessive water on the onion peels 

was removed by gently blotting with a piece of dry tissue. The gold powders coated 

with DNA were then bombarded into the onion cell under 26-28 cm Hg vacuum 

using 1,100 psi rupture disk. The Petri dish was then sealed with parafilm and 

covered with black cloth. The transformed onion peels were incubated overnight 

before scoring the transformed cells under the UV lamp. 
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2.17 Pollen Viability and Germination Assay 

Flower buds or free anthers were collected before anthesis, when pollen was mature 

but the anthers are non-dehiscent. The anthers were placed on a microscopic slide 

and dissected to release the pollen, using a Stemi SV6 microscope (Zeiss, Germany). 

The leftover plant debris was carefully removed under a dissecting microscope and 

2-3 drops of Alexander's stain added to the pollen on the slide. Any excess stain was 

thoroughly and carefully dried from the plant material with absorbent paper. To 

ensure that the stain has been completely absorbed into the pollen grains, 5-10 

minutes were allowed before observing the pollen under the microscope. A cover- 

slip was placed over each sample and even pressure was applied on the cover-slip to 

ensure that all the plant components converge to one plane. 

To assess the germination of the pollen, a growth medium was composed of MS, 

agar and 5% sucrose at pH 5.8. The medium was placed on microscopic slides and 

allowed to cool down. The anthers were placed on the MS-coated slides and 

dissected to release the pollen. The pollen were ensured to be distributed onto the 

germination medium. The slides were kept overnight in the dark at room 

temperature. The following day, 2-3 drops of Alexander's stain were applied to the 

coated pollen and allowed 5 minutes before observing under the microscope. The 

preparations were examined under a microscope (Nikon Optipot) and photographed 

by a Nikon DXM 120 camera linked to the microscope. The counts were based on the 

principle of pollen tube growth among the germinated pollen. 
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CHAPTER 3: CLONING OF TAXOL 

BIOSYNTHETIC GENES 

3.1 Introduction 

Using a range of techniques such as differential display of mRNA reverse- 

transcription PCR (DD-RT-PCR), homology-based cloning and use of an EST 

library from methyl jasmonate induced Taxus cell cultures, most of the steps and the 

genes involved in the Taxol biosynthetic pathway have been elucidated. The 

committed step of the pathway catalysed by the enzyme taxadiene synthase (TXS) 

establishes the taxane core, which subsequently undergoes extensive hydroxylations 

and further modifications to afford the advanced metabolite baccatin III to which the 

C 13 side chain is attached in an additional 5 steps to yield Taxol. 

In yew tree extracts, most characterised taxanes have C5 modifications 

(hydroxylation or acetylation) with the next most common modifications being those 

with esterification at their Cl 0/C9/C 13/C2 followed by taxanes with C7 and CI 

hydroxylation. However, 2a-hydroxylated taxoids have been reported to be in greater 

abundance than C-9 hydroxylated taxanes, which might suggest that C2 

hydroxylation usually occurs prior to C9. The C7-hydroxylase has been reported to 

hydroxylate only highly polyoxygenated and acylated taxanes, hence placing this 

hydroxylase in the mid-section of the Taxol biosynthetic pathway. For taxanes 

bearing an oxetane ring, the more abundant taxanes are those having a 

hydroxyl/acyl/benzoyl group at C2, C7, C9 with less abundant taxanes bearing an 
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additional group at CIO, which might suggest that the C10 hydroxylation occurs 

prior to the oxetane ring formation. The order of oxygenation of the taxane core is as 

yet undetermined, but based on the relative abundance of the naturally occurring 

taxoids (Baloglu and Kingston, 1999) and the relative frequency of oxygenations at 

their various positions, these data might suggest the favoured sequence of oxidation 

to progress from the C5 to CIO, followed by C2 and C9 then C13, C7 and finally Cl. 

Based on these published data, the genes involved in the early and mid-section steps 

of the Taxol biosynthetic pathway; C5-, C 10-, C 13-, C7-hydroxylases and the first 

acetyltransferase of the pathway were cloned as a starting material for this project 

with the aim of reconstituting the early steps of the pathway in heterologous plant 

system. 

3.1.1 Sequence analysis of Taxadiene synthase (TXS) 

Reverse transcription (RT)-PCR of the mRNA extracted from a T. baccata specimen 

growing in the University arboretum (Nottingham, UK) with primers, forward (5' - 

GAA ATG GCT CAG CTC TCA TTT AAT GC-3') and reverse (5'-TAG GAT CCT 

CAT ACT TGA ATT GGA TCA ATA TAA ACT TTT C-3') designed from the 

sequences of previously cloned TXS sequence, amplified a cDNA with an 

approximately 2600 bp open reading frame encoding a predicted protein of 862 

residues (Work previously carried out by Dr. Rupert Fray). The deduced full-length 

protein showed 100%, 98%, 98% and 97% homology to the previously cloned TXS 

enzymes from T chinensis, T. media, T. baccata and T brevifolia respectively 

(Figure 3.1). Sequence analysis of TXS revealed that the N-terminal domain of the 
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protein contains a cleavable putative chloroplast transit peptide (cTP) between amino 

acid residue 58 and 59, as predicted by the sub-cellular localisation prediction 

program PSORT (www. psort. org), indicating TXS to be located to the plastid. The 

TXS cDNA was previously cloned (work done by Dr. Rupert Fray) into a plant 

binary vector thus named pBCTaxK which has been used for plant transformation. 

AY461450 MAQLSFNAALKMNALGNKAIHDPTNCRAKSEGQMMWVCSKSGRTRVKMSRGSGGPGPVVM 60 
AY4424738 MAQLSFNAALKMNALGNKAIHDPTNCRAKSEGQMMWVCSKSGRTRVKMSRGSGGPGPVVM 60 
U48796 MAQLSFNAALKMNALGNKAIHDPTNCRAKSE'QMMWVCSISGRTRVKMSRGSGGPGPVVM 60 
AY007207 MAQLSFNAALKMNALGNKAIHDPTNCRAKSEGQMMWVCSKSGRTRVKMSRGSGGPGPVVM 60 
TXS MAQLSFNAALKMNALGNKAIHDPTNCRAKSEGQMMWVCSKSGRTRVKMSRGSGGPGPVVM 60 

AY461450 MSSSTGTSKVVSETSSTIVDDIPRLSANYHGDLWHHNVIQTLETPFRESST ERADELV 120 
AY4424738 MSSSTGTSKVVSETSSTIVDDIPRLSANYHGDLWHHNVIQTLETPFRESST ERADELV 120 
U48796 MSSSTGTSKVVSETSSTIVDDIPRLSANYHGDLWHHNVIQTLETPFRESSTYQERADELV 120 
AY007207 MSSSTGTSKVVSETSSTIVDDIPRLSANYHGDLWHHNVIQTLETPFRESSTYQERADELV 120 
TXS MSSSTGTSKVVSETSSTIVDDIPRLSANYHGDLWHHNVIQTLETPFRESSTYQERADELV 120 

AY461450 VKIKDMFNALGDGDISPSAYDTAWVARVAT SSDGSEKPRFPQALNW NQLQDGSWGI 180 
AY4424738 VKIKDMFNALGDGDISPSAYDTAWVARVAT SSDGSEKPRFPQALNWVVNNQLQDGSWGI 180 
U48796 VKIKDMFNALGDGDISPSAYDTAWVAR'ATISSDGSEKPRFPQALNWVFNNQLQDGSWGI 180 

AY007207 VKIKDMFNALGDGDISPSAYDTAWVARVATISSDGSEKPRFPQALNWVFNNQLQDGSWGI 180 

TXS VKIKDMFNALGDGDISPSAYDTAWVARVATISSDGSEKPRFPQALNWVFNNQLQDGSWGI 180 

AY461450 ESHFSLCDRLLNT SVIALSVWKTGHSQVEQGTEFIAENLRLLNEEDELSPDFEIIFPA 240 

AY4424738 ESHFSLCDRLLNT SVIALSVWKTGHSQVEQGTEFIAENLRLLNEEDELSPDFEIIFPA 240 

U48796 ESHFSLCDRLLNTTNSVIALSVWKTGHSQV, QGIEFIAENLRLLNEEDELSPDF, IIFPA 240 

AY007207 ESHFSLCDRLLNTTNSVIALSVWKTGHSQVEQGTEFIAENLRLLNEEDELSPDFEIIFPA 240 
TXS ESHFSLCDRLLNTTNSVIALSVWKTGHSQVEQGTEFIAENLRLLNEEDELSPDFEIIFPA 240 

AY461450 LLQKAKALGINLPYDLPFI LSTTREARLTDVSA'ADNIPANMLNALEGLEEVIDWNKI 300 
AY4424738 LLQKAKALGINLPYDLPFI LSTTREARLTDVSAAADNIPANMLNALEGLEEVIDWNKI 300 
U48796 LLQKAKALGINLPYDLPFIKYLSTTREARLTDVSAAADNIPANMLNALEGLEEVIDWNKI 300 

AY007207 LLQKAKALGINLPYDLPFIKYLSTTREARLTDVSAAADNIPANMLNALEGLEE DW KI 300 

TXS LLQKAKALGINLPYDLPFIKYLSTTREARLTDVSAAADNIPANMLNALEGLEE DW'KI 300 

AY461450 MRFQSKDGSFLSSPASTACVLMNTGDEKCFT LNNLLDKFGGCVPCMYSIDLLERLSLVD 360 

AY4424738 MRFQSKDGSFLSSPASTACVLMNTGDEKCFT LNNLLDKFGGCVPCMYSIDLLERLSLVD 360 

U48796 MRFQSKDGSFLSSPASTACVLMNTGDEKCFTFLNNLLDKFGGCVPCMYSIDLLERLSLVD 360 

AY007207 MRFQSKDGSFLSSPASTACVLMNTGDEKCFTFLNNLL FGGCVPCMYSIDLLERLSLVD 360 

TXS MRFQSKDGSFLSSPASTACVLMNTGDEKCFTFLNNLL FGGCVPCMYSIDLLERLSLVD 360 

AY461450 NIEHLGIGRHFKQEIKVALDYVYRHWSERGIGWGRDSLVPDLNTTALGLRTLRTHGYDVS 420 
AY4424738 NIEHLGIGRHFKQEIKVALDYVYRHWSERGIGWGRDSLVPDLNTTALGLRTLRTHGYDVS 420 
U48796 NIEHLGIGRHFKQEIKIALDYVYRHWSERGIGWGRDSLVPDLNTTALGLRTLR, HGYIVS 420 
AY007207 NIEHLGIGRHFKQEIKVALDYVYRHWSERGIGWGRDSLVPDLNTTALGLRTLRTHGYDVS 420 
TXS NIEHLGIGRHFKQEIKVALDYVYRHWSERGIGWGRDSLVPDLNTTALGLRTLRTHGYDVS 420 

AY461450 SDVLNNFKDENGRFFSSAGQTHVELRSWNLFRASDLAFPDEGAMDDARKFAEPYLRDAL 480 
AY4424738 SDVLNNFKDENGRFFSSAGQTHVELRSWNLFRASDLAFPDEGAMDDARKFAEPYLRDAL 480 
U48796 SDVLNNFKDENGRFFSSAGQTHVELRSWNLFRASDLAFPDEIPMDDARKFAEPYLR, AL 480 

AY007207 SDVLNNFKDENGRFFSSAGQTHVELRSW LFRASDLAFPDEGAMDDARKFAEPYLRDAL 480 
TXS 

' 
SDVLNNFKDENGRFFSSAGQTHVELRSW LFRASDLAFPDEGAMDDARKFAEPYLRDAL 480 
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AY461450 ATKISTNTKL KEIEYVVEYPWHMSIPRLEARSYIDSYDDDYVWQRKTLYRMPSLSNSKC 540 
AY4424738 ATKISTNTK KEIEYVVEYPWHMSIPRLEARSYIDSYDDDYVWQRKTLYRMPSLSNSKC 540 
U48796 ATKISTNTKLFKEIEYVVEYPWHMSIPRLEARSYIDSYDD, YVWQRKTLYRMPSLSNSKC 540 
AY007207 ATKISTNTKLFKEIEYVVEYPWHMSIPRýEARSYIDSYDDDYVWIRKTLYRMPSLSNSKC 540 
TXS ATKISTNTKLFKEIEYVVEYPWHMSIP. DyEARSYIDSYDDDYV"WIRKTLYRMPSLSNSKC 540 

AY461450 LELAKLDFNIVQSLHQEELKLLTRWWKESGMADINFTRHRVAEVYFSSATFEPEYSATRI 600 
AY4424738 LELAKLDFNIVQSLHQEELKLLTRWWKESGMADINFTRHRVAEVYFSSATFEPEYSATRI 600 
U48796 LELAKLDFNIVQSLHQEELKLLTRWWKESGMADINFTRHRVAEVYFSSATFEPEYSATRI 600 
AY007207 LELAKLDFNIVQSLHQEELKLLTRWWKESGMADINFTRHRVAEVYFSSATFEPEYSATRI 600 
TXS LELAKLDFNIVQSLHQEELKLLTRWWKESGMADINFTRHRVAEVYFSSATFEPEYSATRI 600 

AY461450 AFTKIGCLQVLFDDMADIFATLDELKSFTEGVKRWDTSLLHEIPECMQTCFKVWFKLMEE 660 
AY4424738 AFTKIGCLQVLFDDMADIFATLDELKSFTEGVKRWDTSLLHEIPECMQTCFKVWFKLMEE 660 
U48796 AFTKIGCLQVLFDDMADIFATLDELKSFTEGVKRWDTSLLHEIPECMQTCFKVWFKLMEE 660 
AY007207 AFTKIGCLQVLFDDMADIFATLDELKSFTEGVKRWDTSLLHEIPECMQTCFKVWFK EE 660 
TXS AFTKIGCLQVLFDDMADIFATLDELKSFTEGVKRWDTSLLHEIPECMQTCFKVWFK E 660 

AY461450 VNNDVVKVQGRDMLAHIRKPWELYFNCYVQEREWLEAGYIPTFEEYLKTYAISVGLGPCT 720 
AY4424738 VNNDVVKVQGRDMLAHIRKPWELYFNCYVQEREWLEAGYIPTFEEYLKTYAISVGLGPCT 720 
U48796 VNNDVVKVQGRDMLAHIRKPWELYFNCYVQEREWLEAGYIPTFEEYLKTYAISVGLGPCT 720 
AY007207 VNNDVVKVQGRDMLAHIRKPWELYFNCYVQEREWL GYIPTFEEYLKTYAISVGLGPCT 720 
TXS VNNDVVKVQGRDMLAHIRKPWELYFNCYVQEREW GYIPTFEEYLKTYAISVGLGPCT 720 

AY461450 LQPILLMGELVKDDVVEKVHYPSNMFELVSLSWRLTNDTKTYQAEKARGQQASGIACYMK 780 
AY4424738 LQPILLMGELVKDDVVEKVHYPSNMFELVSLSWRLTNDTKTYQAEKARGQQASGIACYMK 780 
U48796 LQPILLMGELVKDDVVEKVHYPSNMFELVSLSWRLTNDTKTYQAEKARGQQASGIACYMK 780 
AY007207 LQPILLMGELVKDDVVEKVHYPSNMFELVSLSWRLTNDTKTYQAEKARGQQASGIACYMK 780 
TXS LQPILLMGELVKDDVVEKVHYPSNMFELVSLSWRLTNDTKTYQAEKARGQQASGIACYMK 780 

AY461450 DNPGATEEDAIKHICRVVDRALKEASFEYFKPSNDIPMGCKSFIFNLRLCVQIFYKFIDG 840 
AY4424738 DNPGATEEDAIKHICRVVDRALKEASFEYFKPSNDIPMGCKSFIFNLRLCVQIFYKFIDG 840 
U4879 DNPGATEEDAIKHICRVVDRALKEASFEYFKPSNDIPMGCKSFIFNLRLCVQIFYKFIDG 840 
AY007207 DN ATEEDAIKHICRVVDRALKEASFEYFKPSNDIPMGCKSFIFNLRLCVQIFYKFIDG 840 
TXS 

G 
DN ATEEDAIKHICRWDRALKEASFEYFKPSNDIPMGCKSFIFNLRLCVQIFYKFIDG 840 

AY461450 YGIANEEIKDYIRKVYIDPIQV 862 
AY4424738 YGIANEEIKDYIRKVYIDPIQV 862 
U48796 YGIANEEIKDYIRKVYIDPIQV 862 
AY007207 YGIANEEIKDYIRKVYIDPIQV 862 

TXS YGIANEEIKDYIRKVYIDPIQV 862 

Figure 3.1 Multiple sequence alignment of TXS with its four Taxus homologues. 

The amino acid sequence alignment of TXS cloned from T. baccata and its homologues was 
generated by the "Protein Boxshade" program. The putative cTP cleavage site at as 58 in the 
TXS is indicated by the black arrow. T. brevifolia (U48796), T chinensis (AY007207), T. 
baccata (AY424738) and Taxus media (AY461450). Code: X= Similar, = Conservative 
amino acid substitution,, = Non-conservative amino acid substitution. 
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3.1.2 CYP monooxygenases and acetyl transferase of the early steps of the Taxol 

pathway 

All the oxygenases and acetyltransferase cloned during this research study were 

isolated by RT-PCR amplification from the mRNA extracted from aT baccata 

specimen growing in Warwick, UK (T baccata mRNA provided by Professor 

Graham Seymour, Plant Sciences Division, University of Nottingham, UK). The first 

hydroxylation of the olefin taxadiene is catalysed by the enzyme taxadiene-5a- 

hydroxylase (T5OH), which adds a hydroxyl group at the C-5 position of the taxane 

core. This enzyme, which is deemed to catalyse the slow step of the Taxol 

biosynthetic pathway, has been previously isolated by homology-based cloning from 

T. cuspidata (AY289209) and T. chinensis (AY741375). 

Based on the previously cloned T5OH sequences, the oligonucleotides 5Tax5alph 

(5'- CAC CAA AAT GGA CGC CCT GTA TAA GAG C-3') and 3Tax5alph 3'(5'- 

TTC TCC TTC AAT TGA CTA TGG TCT CGG-3') were used to amplify the 

-1600 bp T. baccata T5OH, with a proof-reading polymerase as described in section 

2.11.2 (Cloning done by former BSc student Sophia Sumal). The 1600 bp amplified 

product was incubated for an additional 1 hr with a non-proof reading polymerase 

(Taq) as described in section 2.11.3, to provide A overhangs, and cloned directly into 

pCR8/GW/TOPO vector (Invitrogen, USA), as described in section 2.12.2. The 

pCR8 vector carries a spectinomycin resistance gene (SpnR) (Figure 3.3) and is a T- 

tailed vector, with the T-overhangs to complementarily anneal to the A-overhang 

produced by A-tailing. A colony PCR was performed on a few of the colonies 

obtained on LB plates containing 100 gg/ml spectinomycin and two of the clones 

indicated the presence of the T5OH cDNA. These colonies were selected for plasmid 
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preparation (Section 2.12.4) and the plasmid DNA (Clone X and Clone Y) were 

sequenced (MWG, Germany) using the GW1 and GW2 primers (Appendix I) located 

on the pCR8 vector. 

Sequencing of the clones indicated the insertion of the T5OH cDNA in the wrong 

orientation in clone Y and nucleotide substitution in Clone X from T to C at position 

615 position (Figure 3.2). This change in nucleotide sequence resulted in a non- 

conservative amino acid mutation from TTG (Leucine) to TCG (Serine). This 

mutation might have affected the structure of T5OH, hence the shape and/or function 

of the enzyme. 

Clone X CACCAGGAGGGGTGAAGACCATATAGTTATGCGCTCTGCTCTTGCAGGTTTTTTCGGCCC 480 
AY289209 CACCAGGAGGGGTGAAGACCATATAGTTATGCGCTCTGCTCTTGCAGGTTTTTTCGGCCC 480 

Clone X TGGTGCGCTGCAGAGTTACATTGGTAAAATGAATACAGAGATCCAGAGTCATATCAACGA 540 
AY289209 TGGTGCGCTGCAGAGTTACATTGGTAAAATGAATACAGAGATCCAGAGTCATATCAACGA 540 

Clone X AAAATGGAAGGGAAAAGATGAGGTGAATGTACTTCCTTTGGTAAGAGAGCTCGTCTTCAA 600 

AY289209 AAAATGGAAGGGAAAAGATGAGGTGAATGTACTTCCTTTGGTAAGAGAGCTCGTCTTCAA 600 
S 

Clone X CATTTCGGCCATCTýGTTTTTCAACATATATGATAAGCAGGAACAGGATCGTCTGCATAA 660 

AY289209 CATTTCGGCCATCT NTTTTTCAACATATATGATAAGCAGGAACAGGATCGTCTGCATAA 660 
L 

Clone X GCTTTTGGAAACTATTCTGGTCGGAAGTTTTGCTCTTCCGATTGACTTGCCCGGATTTGG 720 
AY289209 GCTTTTGGAAACTATTCTGGTCGGAAGTTTTGCTCTTCCGATTGACTTGCCCGGATTTGG 720 

Clone X TTTCCATAGAGCACTCCAGGGACGGGCCAAGCTCAACAAAATTATGCTGTCTTTAATTAA 780 
AY289209 TTTCCATAGAGCACTCCAGGGACGGGCCAAGCTCAACAAAATTATGCTGTCTTTAATTAA 780 

Clone X AAAGAGAAAAGAAGATCTGCAGTCTGGATCGGCAACAGCCACGCAGGATCTGCTCTCTGT 840 

AY289209 AAAGAGAAAAGAAGATCTGCAGTCTGGATCGGCAACAGCCACGCAGGATCTGCTCTCTGT 840 

Figure 3.2 Sequence alignment of Clone X and T5OH from T. cuspidata. 

Nucleotide sequence alignment showing the 421 to 840 bp of the T5OH of Clone X aligned 
against that of T5OH T. cuspidata using Clustal W 1.2 Multiple sequence alignment program. 
Base change at position 615 from T to C results in amino acid change from Leucine to 
Serine. Colour code: X= Pstl sites,, = non-similar, X= similar. 
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3.2 Results 

3.2.1 Correcting the mutation in T5OH cDNA 

Clone Y carried the T5OH cDNA in the wrong orientation but no nucleotide 

substitution at position 615 was observed, unlike in the T5OH cDNA of Clone X. 

The pCR8 vector carries an EcoRl site on each of the TOPO cloning sites, but the 

presence of an EcoRl site within the T5OH cDNA meant that it could not be 

digested with the enzyme for reinsertion into the correct orientation. 

Sequence analysis indicated that the nucleotide change from TTG to TCG occurred 

between two PstI sites (Figure 3.2 & 3.3A). Hence, clones X and Y were both 

digested with PstI (section 2.12.6) to release a 309 bp fragment which was followed 

by dephosphorylation of Clone X as described in section 2.12.1. The fragments of 

size 309 bp and 4027 bp from clone Y and X respectively (Figure 3.3B) were gel 

extracted (section 2.10.2) and the 309 bp fragment from clone Y with the correct 

sequence was ligated (section 2.12.1) to the dephosphorylated linearised clone X 

vector. Following ligation, the mixture was transformed into one shot E. coli Max 

Efficiency cells (Invitrogen, UK) (section 2.12.3) and selected on LB plates 

containing 100 gg/m1 spectinomycin. The presence of the 309 bp insert was checked 

by PCR on the colonies resistant to spectinomycin, using 5Tax5alp and 3Tax5alph as 

primers (see appendix I). Figure 3.3C shows the presence of the correct size band in 

colony 2 indicating the insertion of the 309 bp fragment in the vector. The pure 

plasmid from colony 2, thus named, pCR8:: T5OH was sequenced with the GWI and 

GW2 primers prior to transfer in the plant binary vector pGWB8. 
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Figure 3.3 Clone pCR8CloneX 

(A) The linear schematic diagram of Clone X construct generated by TOPO cloning, 
showing the positions of the primers used for PCR amplification of the full length T5OH 

cDNA. Pstl restriction sites are also indicated where the clone X and Y were digested (B) 
Gel picture of Clone pCR8Clone X and pCR8CIoneY digested with Pstl enzyme to release a 
309 bp and a 4027 bp fragment. (C) Colony 2 showing the presence of the correct size of 
T5OH (-1500 bp), where A is clone X used as a control. The other bands having a lower 

weight than 1500 bp consist of the clones for which the digested vector from clone Y was 
not linearised to the 309 bp fragment (See B). 

3.2.2 Sequence analysis of T5OH and its homologues 

The deduced amino acid sequence of the T5OH protein indicated that the mutation 

has been successfully corrected. The T5OH clone contains an ORF of 1563 bp which 

translates into a protein of 503 amino acids. It has been shown by BLAST analysis 

(http: //www. ncbi. nim. nih. gov/BLAST/) that T5OH is a member of the cytochrome 

P450 family as previously reported (Jennewein et al., 2004a). Multiple sequence 
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comparison of the T5OH amino acid sequence with the previously isolated sequences 

available in Genbank showed 100% identity to the T. cuspidata (AY289209.2) and a 

98% identity to T. chinensis (AY741375) protein (Figure 3.5). 

The cDNA encoding the T. baccata T5OH used in this research project has a single 

nucleotide difference at position 1504 where the G-nucleotide at this position is 

deleted (Figure 3.4). This deletion resulted in a slight amino acid change in the C- 

terminus of the protein sequence when compared to the previously published T. 

cuspidata protein AY289209.1. The same amino acid change was previously 

reported by Rontein and co-workers (2008) which led to the GenBank entry being 

modified accordingly to AY289209.2. Instead of the IKLFPETIVN C-terminus 

previously described for AY289209.1, AY289209.2 and T. baccata T50H used in 

this case, have an amino acid sequence IKLFPRP (Figure 3.5). This change in 

nucleotide sequence has resulted in an amino acid change from glutamic acid (E) 

(GAG) to arginine (R) (AGA) and a frame-shift generating an alternative stop codon 

differing by five amino acids from the original one. 

Sequence analysis of T5OH (Figure 3.5) by the "Predictprotein" software 

(http: //www. predictprotein. org/) revealed the presence of a putative transmembrane 

domain TESFSIALSAIAGILLLLLLF at amino acids 22 to 43. This transmembrane 

region of T5OH might serve as a membrane anchor and halt translocation into the 

endoplasmic reticulum through the membrane translocation channel, suggesting that 

the activity of T5OH is associated to the outer face of the endoplasmic reticulum via 

this hydrophobic N-terminal membrane integration region. 
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AY289209.1 AAAATATCAGGGGATCCACTCCCTCCTCTTCCTTCCAAGGGATTTTCCATTAAACTGTTT 1500 
AY289209.2 AAAATATCAGGGGATCCACTCCCTCCTCTTCCTTCCAAGGGATTTTCCATTAAACTGTTT 1500 
T5OH AAAATATCAGGGGATCCACTCCCTCCTCTTCCTTCCAAGGGATTTTCCATTAAACTGTTT 1500 

E 

AY289209.1 CCCGAGACCATACGTCAAT GGAGAAAACCACAGTGCAGAACTGCTATTCTTGAATCC 1560 
AY289209.2 CCG-AGACCATAOTCAAT GGAGAAAACCACAGTGCAGAACTGCTATTCTTGAATCC 1559 
T5OH CCG-AGACCATA TCAAT GGAGAAAAGGGCG------------------------- 1534 

R 

Figure 3.4 Nucleotide sequence alignment of T5OH and its homologues. 

The sequence alignment of the T5OH nucleotide and its Taxus homologues AY289209.1 
and AY289209.2 was formatted by ClustalW Multisequence alignment program. The 
nucleotide difference at position 1504 in the republished AY289209.2 and T5OH 
demonstrates a deletion of the G-nucleotide at this position leading to a frame-shift and 
generation of an alternative carboxyl terminus different by five amino acids. Colour code: X 
= similar, X= nucleotide change, = nucleotide coding for stop codon, = alternative stop 
codon 

Sequence analysis of T5OH also revealed other characteristic sequence elements of 

CYP enzymes, including a highly conserved proline, phenylalanine, glycine (PFG) 

motif, a heme-iron ligand FGGGQRSCVG at amino acid 438-448 and the essential 

cysteine at position 445 of the protein which is a well-conserved region of the heme- 

binding domain of CYP proteins essential for enzyme binding and activity (Nelson, 

1999). Following confirmatory sequencing, the T5OH cDNA was cloned via an LR 

recombination reaction (section 2.12.2) into the plant binary vector pGWB8 

(Invitrogen) (Figure 3.6 A) and selected on LB plates containing Kanamycin (50 

pg/ml). Two colonies were checked by PCR for the presence of the T5OH cDNA 

transfer by using the set of primers 5Tax5alp and 3Tax5alp (Figure 3.6 B). The LR 

recombinated vector thus named pGWB8:: T5OH, was transformed into 

Agrobacterium strain GV3101 as described in section 2.12.7 which was used to 

transform a wild type Nicotiana tabacum var. Petit Havana line. 
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Clone X YATLYKKQAPNSPFCSCFSSSKMDALYKSTVAKFNEVTQLDC ESFSIALSAIAGILLL 60 
AY741375 ---------------------- MDALYKSTVAKFNEVTQLDC ESFSIALSIIAGILLL 38 
AY289209.1 ----------------------MDALYKSTVAKFNEVTQLDC ESFSIALSAIAGILLL 38 
AY289209.2 ----------------------MDALYKSTVAKFNEVTQLDC ESFSIALSAIAGILLL 38 
T50H --------------------- KMDALYKSTVAKFNEVTQLDC ESFSIALSAIAGILLL 39 

Clone X LL SKRHSSLKLPPGKLGIPFIGESFIFLRALRSNSLEQFFDERVKKFGLVFKTSLIG 120 
AY741375 LL SKRHSSLKLPPGKLGIPFIGESFIFLRALRSNSLEQFFDERVKKFGLVFKTSLIG 98 
AY289209.1 LL SKRHSSLKLPPGKLGIPFIGESFIFLRALRSNSLEQFFDERVKKFGLVFKTSLIG 98 
AY289209.2 LL SKRHSSLKLPPGKLGIPFIGESFIFLRALRSNSLEQFFDERVKKFGLVFKTSLIG 98 
T50H LL SKRHSSLKLPPGKLGIPFIGESFIFLRALRSNSLEQFFDERVKKFGLVFKTSLIG 99 

Clone X HPTVVLCGPAGNRLILSNEEKLVQMSWPAQFMKLMGENSVATRRGEDHIVMRSALAGFFG 180 
AY741375 HPTVVLCGPAGNRLILSNEEKLVQMSWPAQEMKLMGENSVATRRGEDHIVMRSALAGFFG 158 
AY289209.1 HPTVVLCGPAGNRLILSNEEKLVQMSWPAQFMKLMGENSVATRRGEDHIVMRSALAGFFG 158 
AY289209.2 HPTVVLCGPAGNRLILSNEEKLVQMSWPAQFMKLMGENSVATRRGEDHIVMRSALAGFFG 158 
T50H HPTVVLCGPAGNRLILSNEEKLVQMSWPAQFMKLMGENSVATRRGEDHIVMRSALAGFFG 159 

Clone X PGALQSYIGKMNTEIQSHINEKWKGKDEVNVLPLVRELVFNISAIIFFNIYDKQEQDRLH 240 
AY741375 PGALQSYIGKMNTEIQIHINEKWKGKDEVNVLPLVRELVFNISAILFFNIYDKQEQDRLH 218 
AY289209.1 PGALQSYIGKMNTEIQSHINEKWKGKDEVNVLPLVRELVFNISAILFFNIYDKQEQDRLH 218 
AY289209.2 PGALQSYIGKMNTEIQSHINEKWKGKDEVNVLPLVRELVFNISAILFFNIYDKQEQDRLH 218 
T5OH PGALQSYIGKMNTEIQSHINEKWKGKDEVNVLPLVRELVFNISAIIFFNIYDKQEQDRLH 219 

Clone X KLLETILVGSFALPIDLPGFGFHRALQGRAKLNKIMLSLIKKRKEDLQSGSATATQDLLS 300 
AY741375 KLLETILVGSFALPIDLPGFGFHRALQGRAILNKIMLSLIKKRKEDLQSGSATATQDLLS 278 
AY289209.1 KLLETILVGSFALPIDLPGFGFHRALQGRAKLNKIMLSLIKKRKEDLQSGSATATQDLLS 278 
AY289209.2 KLLETILVGSFALPIDLPGFGFHRALQGRAKLNKIMLSLIKKRKEDLQSGSATATQDLLS 278 
T5OH KLLETILVGSFALPIDLPGFGFHRALQGRAKLNKIMLSLIKKRKEDLQSGSATATQDLLS 279 

Clone X VLLTFRDDKGTPLTNDEILDNFSSLL SYDT TSPMALIFKLLSSNPECYQKVVQEQLE 360 
AY741375 VLLTFRDDKGTPLTNDEILDNFSSLL SYDT TSPMALIFKLLSSNPECYQKVVQEQLE 338 
AY289209.1 VLLTFRDDKGTPLTNDEILDNFSSLL SYDT TSPMALIFKLLSSNPECYQKVVQEQLE 338 
AY289209.2 VLLTFRDDKGTPLTNDEILDNFSSLL SYDT TSPMALIFKLLSSNPECYQKVVQEQLE 338 
T5OH VLLTFRDDKGTPLTNDEILDNFSSLL SYDT TSPMALIFKLLSSNPECYQKVVQEQLE 339 

Clone X ILSNKEEGEEITWKDLKAMKYTWQVA TL FPPVFGTFRKAITDIQYDGYTIPKGWKL 420 
AY741375 ILSNKEEGEEITWKDLKAMKYTWQVACETLR FPPVFGTFRKAITDIQYDGYT I PKGWKL 398 
AY289209.1 ILSNKEEGEEITWKDLKAMKYTWQVA TL FPPVFGTFRKAITDIQYDGYTIPKGWKL 398 
AY289209.2 ILSNKEEGEEITWKDLKAMKYTWQVA TL FPPVFGTFRKAITDIQYDGYTIPKGWKL 398 
T5OH ILSNKEEGEEITWKDLKAMKYTWQVA FPPVFGTFRKAITDIQYDGYTIPKGWKL 399 

Clone X LWTTYSTHPKDLYFNEPEKFMPSRFDQEGKHVAPYTF R EFSKMEILLF 480 
AY741375 LWTTYSTHPKDLYFIEPEKFMPSRFDQEGKHVAPYTF GQRS G EFSKMEILLF 458 
AY289209.1 LWTTYSTHPKDLYFNEPEKFMPSRFDQEGKHVAPYTF GQRS EFSKMEILLF 458 
AY289209.2 LWTTYSTHPKDLYFNEPEKFMPSRFDQEGKHVAPYTF GQRS G EFSKMEILLF 458 
T50H LWTTYSTHPKDLYFNEPEKFMPSRFDQEGKHVAPYTF GORS G EFSKMEILLF 459 

Clone X VHHFVKTFSSYTPVDPDEKISGDPLPPLPSKGFSIKLFPRP-SIEGEKGEFDPASV-QSG 538 
AY741375 VHHFVKTFSSYTPVDPDEKISGDPLPPLPSKGFSIKLFPET--IVN-------------- 502 
AY289209.1 VHHFVKTFSSYTPVDPDEKISGDPLPPLPSKGFSIKLFPET--IVN-------------- 502 
AY289209.2 VHHFVKTFSSYTPVDPDEKISGDPLPPLPSKGFSIKLFPRP------------------- 499 

T50H VHHFVKTFSSYTPVDPDEKISGDPLPPLPSKGFSIKLFPRP-SIEGEKGEFDPAFLYKVG 518 

Figure 3.5 Amino acid sequence alignment of the corrected T5OH and its Taxus 
homologues. 

The sequence alignment of the corrected mutation in T5OH and its Taxus homologues was 
formatted by T-coffee and produced by "Protein Boxshade" programs. The transmembrane 
helix is indicated by the green rectangle, the Glu-X-X-Arg indicated by the yellow box, the 
CYP cysteine heme-iron ligand signature is indicated by the blue rectangle and another 
conserved domain is indicated by the red rectangle. AY289209.1 AND AY289209.2 from T. 
cupidata; AY741375 from T. chinensis. Colour code: X= Similar, ,= Non-conservative 

amino acid substitution, M= Conserved Cysteine residue within the heme-binding region, 
= PFG domain, 0= amino acid change in Clone X corrected in T5OH 
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(A) Expression vector pGWB8:: T5OH consisting of full length T5OH eDNA driven by the 
constitutive 35S promoter. The vector carries the nptll and hpt genes conferring resistance 
against kanamycin and hygromycin respectively. The primers 5tax5alp and 3tax5alp are 
indicated which were used to amplify the whole length of the T5OH cDNA. (B) Gel pictures 
of PCR amplification of plasmids from E. coli colonies I and 2, with 5tax5alp and 3tax5alp 

showing the presence of a band size 1500 bp in both plasmids, indicating the transfer of the 
T5OH cDNA to the binary vector. H-1 = Hyperladderl DNA molecular marker (Bioline) 
+ve control = plasmid T5OH:: pCR8, -ve control = water 

3.2.3 Cloning and sequence analysis of Taxadiene-5acetyl-transferase (T5AT) 

Biochemical studies have suggested that the third specific step of the Taxol 

biosynthesis pathway is the acetylation of the C5-hydroxyl group of taxadiene-5a-ol 

to afford taxa-4(20), 11(12)-dien-5a-yl acetate (Wheeler et al., 2001). The taxadiene- 

5acetyl-transferase (T5AT) catalysing this acetylation reaction has been isolated 

from the Taxus species; T. cuspidata (AF190130), T. chinensis (AY078285) and 
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Taxus x media (AY453402). Based on these published sequences, the 

oligonucleotides 5Tax5Acyl and 3Tax5Acyl (see appendix I) were designed and 

used to amplify the T5AT cDNA (Figure 3.8 b) from the T. baccata mRNA, using a 

proof-reading polymerase as described in section 2.11.2 (Work done by former MSc 

student Raj Kamal Mann). The cloned full-length T5AT cDNA from T. baccata 

contained an ORF of 1317 bp encoding a protein of 439 amino acids. The cDNA was 

cloned into the entry vector pCR8/GW/TOPO (Invitrogen) and following sequence 

confirmation, the T5AT cDNA was transferred by LR recombination into the 

pGBPGWC plant binary vector. The construct thus named T5AT:: pGBPGWC was 

then transferred to Agrobacterium which was used for plant transformation. 

The cloned T5AT from T baccata had a 99% identity to both Taxus x media 

AY453402 and T. chinensis AY078285 and a 98% identity to T. cuspidata 

AF190130 (Figure 3.7). The isolated clone possesses a typical acyltransferase motif 

HXXXDG, characteristic of other Taxus acyltransferases, where the histidine may 

function in acyl group transfer from acetyl-CoA to the substrate alcohol taxadiene- 

5a-ol. This conserved motif has been suggested by St-Pierre et al., (1998) to lie at or 

close to the active centre of acyltransferases. 

Walker et al. in 2000 suggested that the sequence of the T5AT cloned from T. 

cuspidata did not appear to encode an organellar targeting information; however, 

"Predict protein" software indicated the presence of a transmembrane helix at amino 

acids 147-164 of the T5AT cloned from T. baccata (Figure 5.7), which might be 

involved in the translocation of enzyme into the ER. 
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AY453402 MEKTDLHVNLIE}IMVGPSLP PKTTLQLSSIDNLPGVRGSIFNALLIYNASPSPTMISA 60 
TSAT 

' 
MEKTDLHVNLIEKVMVGPSLP PKTTLQLSSIDNLPGVRGSIFNALLIYNASPSPTMISA 60 

AY078285 MEKTDLHVNLIEKVMVGPSLPLPKTTLQLSSIDNLPGVRGSIFNALLIYNASPSPTM, SA 60 
AF190130 MEKTDLHVNLIEKVMVGPSIPLPKTTLQLSSIDNLPGVRGSIFNALLIYNASPSPTMISA 60 

AY453402 DPAKLIREALAKILVYYPPFAGRLRETENGDLEVECTGEGAMFLEAMADNELSVLGDFDD 120 
T5AT DPAKLIREALAKILVYYPPFAGRLRETENGDLEVECTGEGAMFLEAMADNELSVLGDFDD 120 
AY078285 DPAKLIREALAKILVYYPPFAGRLRETENGDLEVECTGEGAMFLEAMADNELSVLGDFDD 120 
AF190130 DPAK, IREALAKILVYYPPFAGRLRETENGDLEVECTGEGAMFLEAMADNELSVLGDFDD 120 

AY453402 SNPSFQQLLFSLSLDTNFKDLPIL TRFT G DLRG. QFLKGLA 180 
T5AT 

E 

SNPSFQQLLFSLSLDTNFKDLPLL VTRFTCGGFWGVSFF G DGRG QFLKGLA 180 
AY078285 CGG SNPSFQQLLFSL LDTNFKDLPLL VTRFTCGGFVVGVSF. G DGRG. QFLKGLA 180 
AF190130 

' 

SNPSFQQLLFSL LDTNFKDLILL VTRFT FVVV F: G DGRG. QFLKGLA 180 

AY453402 EMARGEVKLSLEPIWNRELVKLDDPKYLQFFHFEFLRAPSIVEKIVQTYFIIDFETINYI 240 
TSAT EMARGEVKLSLEPIWNRELVKLDDPKYLQFFHFEFLRAPSIVEKIVQTYFIIDFETINYI 240 
AY078285 EMARGEVKLSLEPIWNRELVKLDDPKYLQFFHFEFLRAPSIVEKIVQTYFIIDFETINYI 240 
AF190130 EMARGEVKLSLEPIWNRELVKLDDPKYLQFFHFEFLRAPSIVEKIVQTYFIIDFETINYI 240 

AY453402 KQSVMEECKEFCSSFEVASAMTWIARTRAFQIPESEYVKILFGMDMRNSFNPPLPSGYYG 300 
T5AT KQSVMEECKEFCSSFEVASAMTWIARTRAFQIPESEYVKILFGMDMRNSFNPPLPSGYYG 300 
AY078285 KQSVMEECKEFCSSFEVASAMTWIARTRAFQIPESEYVKILFGMDMRNSFNPPLPSGYYG 300 
AF190130 KQSVMEECKEFCSSFEVASAMTWIARTRAFQIPESEYVKILFGMDMRNSFNPPLPSGYYG 300 

AY453402 NSIGTACAVDNVQDLLSGSLLRAIMIIKKSKVSLNDNFKSRAVVKPSELDVNMNHENVVA 360 
T5AT NSIGTACAVDNVQDLLSGSLLRAIMIIKKSKVSLNDNFKSRAVVKPSELDVNMNHENVVA 360 
AY078285 NSIGTACAVDNVQDLLSGSLLRAIMIIKKSKVSLNDNFKSRAVVKPSELDVNMNHENVVA 360 
AF190130 NSIGTACAVDNVQDLLSGSLLRAIMIIKKSKVSLNDNFKSRAWKPSELDVNMNHENVVA 360 

AY453402 FADWSRLGFDEVDFGWGNAVSVSPVQQQCELAMQNYFLFLKPSKNKPDGIKILMFLPLSK 420 
T5AT FADWSRLGFDEVDFGWGNAVSVSPVQQQCELAMQNYFLFLKPSKNKPDGIKILMFLPLSK 420 
AY078285 FADWSRLGFDEVDFGWGNAVSVSPVQQQCELAMQNYFLFLKPSKNKPDGIKILMFLPLSK 420 
AF190130 FADWSRLGFDEVDFGWGNAVSVSPVQQQ LAMQNYFLFLKPSKNKPDGIKILMFLPLSK 420 

AY453402 MKSFKIEMEAMMK, YVAKV 439 

T5AT MKSFKIEMEAMMKKYVAKV 439 
AY078285 MKSFKIEMEAMMKKYVAKV 439 

Figure 3.7 Sequence comparison of T5AT and its Taxus homologues. 

The sequence alignment of the T5AT protein and its homologues was generated by the 
"Protein Boxshade" program (http: //www. fr33. net/boxshadeprotein. php. ). The 
transmembrane anchor helix found at amino acid 147-164 is indicated by the red rectangle 
and the putative acyl HXXXDG group transfer motif is represented by the yellow rectangle. 
Taxus x media - AY453402, T. chinensis - AY078285, T. cuspidata - AF190130. Colour 

code: X= Similar, = Conservative amino acid substitution, = Non-conservative amino 
acid substitution. 
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Figure 3.8 pGBPGWC:: T5AT expression vector 

(A) Expression vector pGBPGWC:: T5AT consisting of full length T5AT cDNA driven by 
the constitutive 35S promoter. The vector carries the nos-bar gene conferring resistance 
against basta. The primers 5tax5acyl and 3tax5acyl are indicated which were used to amplify 
the whole length of the T5AT cDNA. (B) Gel picture of PCR amplification of the T5AT 
cDNA with 5tax5acyl and 3tax5acyl showing the presence of a band size of around 1300 bp, 
indicating the presence of the T5AT in the destination vector pGBPGWC. H-I - DNA 

molecular marker Hyperladderl 
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3.2.4 Cloning and sequence analysis of taxoid 1O -hydroxylase (T1OBOH) 

Two clones (AF318211 and AY563635) encoding the enzyme 1Oß-hydroxylase 

(T1OBOH) catalysing the fourth step of the Taxol biosynthetic pathway have been 

previously amplified from T cuspidata cell culture. Both proteins have demonstrated 

the ability of catalysing the conversion of the third intermediate of the Taxol 

biosynthetic pathway, taxadiene-5a-yl-acetate to taxadiene-5a, 10ß-diol 

monoacetate. 

RT-PCR of the T. baccata mRNA using the primers 5TaxlOhyd and 3Tax10hyd (see 

appendix I) designed from the previously published sequences of TIOBOH, 

amplified a cDNA with a 1458 bp open reading frame encoding a predicted protein 

of 485 amino acid residues (work done by former BSc student Zac Bourn). 

The deduced full-length T1OBOH cDNA was sequenced and the amino acid 

sequence was aligned to other TIOBOH Taxus homologues using ClustalW sequence 

alignment program. T1OBOH cloned from T. baccata showed 95% and 63% 

homology to the T cuspidata AY563635 and AF31811 respectively (Figure 3.9). 

Sequence analysis indicated the presence of two transmembrane helices at amino 

acid positions 11-28 (QLQSILFLTLLALLLLCLF) and 289-306 (LHASYETSV 

SPTVL) as predicted by the sub-cellular localisation prediction program 

Predictprotein (www. predictprotein. org). This suggested that T1OBOH is of a 

membrane protein localised to the ER. Sequence analysis also indicated other 

features of the CYP family including the PFG motif and the cysteine heme-iron 

ligand signature FGAGARICPG at amino acids 437-447. 
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Figure 3.9 Amino acid sequence alignment of T1OBOH to its T. cuspidata 
homologues 

The sequence alignment of the TIOBOH protein and its homologues was aligned by the 
ClustalW program and produced by "Protein Boxshade" program. The transmembrane 
anchor helices found at amino acid 11-28 and 289-306 are indicated by the green and red 
rectangles respectively. The CYP cysteine heme-iron ligand domain is represented by the 
blue rectangle. Colour code: j= Similar, X= Conservative amino acid substitution, X= 
Non-conservative amino acid substitution, ©= Conserved cysteine residue within the heme- 
binding region, a= PFG domain. T. cuspidata AY563635 and T. cuspidata AF31811 
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3.2.5 Cloning and sequence analysis of taxoid 13a-hydroxylase (T13OH) 

The taxoid 13a-hydroxylase (T130H) has been proposed to be involved in the early 

steps of the Taxol biosynthetic pathway and is also responsible for the early 

bifurcation from the Taxol pathway for the synthesis of dead-end metabolites or 

other taxanes. This enzyme demonstrated a preference for the conversion of the 

oxygenated compound taxadiene-5a-ol to form a more polar compound identified as 

taxa-4(20), 11(12)-dien-5a, 13a-diol (Wheeler et al., 2000). 

Based on the published sequences of T130H, forward primer 13aOH-SP and reverse 

primer l3aOH-ASP (Figure 3.1OA) were designed and used to amplify the full length 

T130H cDNA with an attB tag at each end. PCR amplification failed on many 

instances to amplify this CYP enzyme from the T. baccata cDNA giving unspecific 

secondary bands. A gradient PCR was done using the temperature range of 51 °C - 

71 °C and annealing temperature 61 °C which successfully amplified a fragment of 

size -1400 bp (Figure 3.1OB). The attBI and attB2 adapter sites were then attached 

to the PCR product and the final cDNA was cloned into a pDonor221 entry vector 

(Figure 3.10A) by a BP cloning reaction (section 2.12.2). The entry vector thus 

named T13OH:: pDonor was transformed into E. coli strain DH5a and the presence 

of the insert in the colonies resistant to kanamycin was verified by PCR using 

internal primers 13aOH-MidF and 13aOH-MidR (Appendix I). An amplified band of 

179 bp was obtained in only one colony (Figure 3.10 Q. The plasmid from this 

colony was sequenced using the vector specific primers M13F and M13R. A BLAST 

search of T13OH from T. baccata indicated a 99% similarity to T13OH from T. 

cuspidata (AY056019) and T. media (AAX20147) and a 97% similarity to T. 

wallichiana var. chinensis (AAX59903) (Figure 3.11). 
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(A) Entry vector pDonor22l:: T130H consisting of full length T130H cDNA cloned 
between the attL I and attL2 sites. The positions of the full-length primers 13aOH-SP and 
l3aOH-ASP and the internal primers 13aOH-MidF and l3aOH-MidR are indicated. (B) Gel 

picture of PCR amplification of the T13OH cDNA from T. baccata cDNA pool using 
primers 13aOH-SP and l3aOH-ASP amplified a fragment of size -1400 bp. (C) Gel picture 
of PCR amplification using the internal primers showing the presence of the amplified 
fragment of - 180 bp in colony 1. 

Amino acid changes from Asparagine (N) to Threonine (T) at position 17, and from 

Valine (V) to Alanine (A) at position 173, are present in the T baccata T13OH 

sequence, and might alter the protein folding and activity of this enzyme. Sequence 

analysis by "Predictprotein" software indicated that T13OH contains two 

transmembrane domains at amino acids 10-28 and 290-303, consistent with the 

activity of the enzyme being associated with the ER. Sequence analysis also revealed 

other characteristic sequence elements of CYP enzymes, including a highly 

conserved PFG motif, a heme-iron ligand FGGGMRVCPG at amino acids 423-433 

and the essential cysteine at position 430 for enzyme binding and activity. 
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AY056019 MDALKQLEV PSILFVTLAVMAGIILF SKRHSSVKLPPGNLGFPLVGETLQFVRSLGS 60 
AAX20147 MDALKQLEV PSILFVTLAVMAGIILF SKRHSSVKLPPGNLGFPLVGETLQFVRSLGS 60 
T130H MDALKQLEV PSILFVILAVMAGIILF SKRHSSVKLPPGNLGFPLVGETLQFVRSLGS 60 
AAX59903 MDALKQLEV PSILFVTLAVMIGIILF SKRHSSVKLPPGNLGFPLVGETLQFVR, LGS 60 

AY056019 STPQQFIEERMSKFGDVFKTSIIGHPTVVLCGPAGNRLVLSNENKLVQMSWPSSMMKLIG 120 
AAX20147 STPQQFIEERMSKFGDVFKTSIIGHPTVULCGPAGNRLVLSNENKLVQMSWPSSMMKLIG 120 
T130H STPQQFIEERMSKFGDVFKTSIIGHPTVVLCGPAGNRLVLSNENKLVQMSWPSSMMKLIG 120 
AAX59903 STPQQFIEERMSKFGDVFKTSIIGHPTVVLCGPAGNRLVLSNENKLVQMSWPSSMMKLIG 120 

AY056019 EDCLGGKTGEQHRIVRAALTRFLGPQALQNHFAKMSSGIQRHINEKWKGKDEATVLPLVK 180 
AAX20147 EDCLGGKTGEQHRIVRAALTRFLGPQALQNHFAKMSSGIQRHINEKWKGKDEATVLPLVK 180 
T130H EDCLGGKTGEQHRIVRAALTRFLGPQALQNHFAKMSSGIQRHINEKWKGKDE VLPLVK 180 
AAX59903 EDCLGGKTGEQHRIVRAALTRFLGPQALQNHFAKMSSGIQRHINEKW, GKDE TVLPLVK 180 

AY056019 DLVFSVASRLFFGITEEHLQEQLHNLLEVILVGSFSVPLNIPGFSYHKAI ARATLADIM 40 
AAX20147 DLVFSVASRLFFGITEEHLQEQLHNLLEVILVGSFSVPLNIPGFSYHKAI ARATLADIM 40 
T130H DLVFSVASRLFFGITEEHLQEQLHNLLEVILVGSFSVPLNIPGFSYHKAI ARATLADIM 40 
AAX59903 DLVFSVASRLFFGITEEHLQEQLHNLLEVILVGSFSVPLNIPGFSYHK ARATL DIM 40 

AY056019 T' EKRRNELRAGTASENQDLLSVLLTFTDERGNSLADKEILDNFSMLLHGSYDSTNSP 300 
AAX20147 TS EKRRNELRAGTASENQDLLSVLLTFTDERGNSLADKEILDNFSMLLHGSYDSTNSP 300 
T130H TS EKRRNELRAGTASENQDLLSVLLTFTDERGNSLADKEILDNFSMLLHGSYDSTNSP 300 
AAX59903 TS EKRRNELRAGTASENQDLLSVLLTFTDERGNSLADKEILDNFSMLLHGSYDSTNSP 300 

AY056019 LTMLIKVLASHPESYEKVAQEQFGILSTKMEGEEIAWKDLKEMKYSWQW TL YPPI 360 
AAX20147 LTMLIKVLASHPESYEKVAQEQFGILSTKMEGEEIAWKDLKEMKYSWQW TL YPPI 360 
T130H LTMLIKVLASHPESYEKVAQEQFGILSTKMEGEEIAWKDLKEMKYSWQWQ TLR YPPI 360 
AAX59903 LTMLIKVLASHPESYEKVAQEQFGILSTKMEGIEIAWKDLKEMKYSWQVICETLR IPPI 360 

AY056019 FGTFRKAITDIHYNGYTIPKGWKLLWTTYSTQTKEEYFKDADQF SRF EEGKHVTPYT 420 
AAX20147 FGTFRKAITDIHYNGYTIPKGWKLLWTTYSTQTKEEYFKDADQF SRF EEGKHVTPYT 420 
T130H FGTFRKAITDIHYNGYTIPKGWKLLWTTYSTQTKEEYFKDADQF SRF EEGKHVTPYT 420 
AAX59903 FGTFRKAITDIHYNGYTIPKGWKLLWTTYSTL KE, YFKIADQF SRFLEEGKHVTPYT 420 

AY056019 Y GMRV PG EFAKMETLLFLHHFVKAFSGLKAIDPNEKLSGKPLPPLPVNGLPIK 480 
AAX20147 Y GMRV PG EFAKMETLLFLHHFVKAFSGLKAIDPNEKLSGKPLPPLPVNGLPIK 480 
T130H Y GMRV PG EFAKMETLLFLHHFVKAFSGLKAIDPNEKLSGKPLPPLPVNGLPIK 480 
AAX59903 Y GMR PG EFAKMETLLFLHHFVKAISGLKAIDPNEKLSGKPLPPLPVNGLPIK 480 

AY056019 LYSRS 485 
AAx20147 LYSRS 485 
T130H LYSRS 485 
AAX59903 LYSRS 485 

Figure 3.11 Amino acid sequence comparison of T13OH and its Taxus 
homologues. 

The sequence alignment of the TI3OH protein and its homologues was aligned by the 
ClustalW program and produced by "Protein Boxshade" program. The transmembrane 

anchor helices found at amino acid 10-28 and 290-303 are indicated by the green rectangles. 
The CYP cysteine heme-iron ligand located between amino acids 422-433 is indicated by a 
blue rectangle. The CYP conserved domain PSRF and the Glu-X-X-Arg motif are indicated 
by the red and yellow boxes respectively. T. cuspidata (AY056019), Taxus x media 
(AAX20147), Taxus wallichiana var. chinensis (AAX59903). Colour code: X= Similar, 

= Conservative amino acid substitution,, = Non-conservative amino acid substitution, _ 
putative PFG domain, I= conserved cysteine residue within the heme-binding region. 
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Following confirmatory sequencing, the T 130H was cloned via an LR 

recombination reaction into the plant binary vector pGWB8 under the control of a 

35S CaMV promoter, to yield pGWB8:: T13OH (Figure 3.12 A). The presence of the 

T13OH insert in the colonies resistant to hygromycin (50 µg/ml) was verified by 

PCR using the internal primers 13aOH-MidF and 13aOH-MidR which gave an 

amplified fragment of 179 bp (Figure 3.12 B). The pGWB8:: T13OH plasmid from 

colony 1 was transformed into Agrobacterium strain GV3 101 to be used for future 

work. 

(A) 
13iOH. ASP ($) l3iOH ASP 

13aOH-SP 13aCH 

35S ý"sl \ý r....,... 
Pro.. Ie I B&OH AMR 

UsOH, MWE 

hpt 

npol pGWB8/T130H/pDONR221 
t bp 

Figure 3.12 T13OH:: pGWB8 expression vector 

(A) Expression vector pGWB8:: TI3OH consisting of full length T130H cDNA driven by 
the constitutive 35S promoter. The vector carries the nptll and hpt genes conferring 
resistance against kanamycin and hygromycin respectively. (B) Gel pictures of PCR 
amplification of plasmids from E. coli colonies with internal primers l3aOH-MidF and 
13aOH-MidR, showing the presence of a band size 179 bp in both the positive control and 
colony 1, indicating the transfer of the TI3OH cDNA to the binary vector in this colony. 
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3.2.6 Cloning and sequence analysis of taxoid 7ß-hydroxylase (T7OH) 

The taxoid 7ß-hydroxylase (T7OH) was demonstrated to possess a higher binding 

affinity to polyoxygenated and acylated taxoids bearing a 5a-acetoxy group, hence 

placing this 70 taxoid in the midsection of the Taxol pathway. Although the 70- 

hydroxyl group has been demonstrated not to be essential for antimitotic activity, this 

functional group is the most reactive and accessible hydroxyl of the taxane core, and 

has been modified for the synthesis of taxanes with improved activity. Hence, T7OH 

catalysing the hydroxylation of the C7 position of the taxane could prove useful for 

the synthesis of 7ß-hydroxy taxoids as starting materials for the subsequent 

modification at this position en route to novel taxanes and Taxol synthesis. 

RT-PCR of the T baccata mRNA using primers 7bOHF and 7bOHR (see Appendix 

I) designed from the previously isolated T7OH (AY307951) and a proof-reading 

polymerase, amplified an -1500 bp T7OH cDNA (Figure 3.13 B). The PCR 

amplified product was incubated for an additional ihr with a non-proof reading 

polymerase (Taq) as described in section 2.11.3, to provide A-overhangs, and cloned 

directly into pCR8/GW/TOPO vector (Invitrogen). The TOPO reaction was 

transformed into E. coli and the presence of the cDNA insert in the colonies resistant 

to spectinomycin was checked by PCR using the same full-length primers as above 

(Figure 3.13). The plasmids of colonies 1,2 and 4 thus named T7OH:: pCR8 carrying 

the T7OH were sequenced using the pCR8 specific primers GW 1 and GW2. 
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A 7hOHF GW1 B H-I T7OH 

170H 

attL1 
7bOHR 

GW2 

7bOHF G MI 

f41, 
12 

T70H :: pCR8 
4346 bp 

SpnR 

Figure 3.13 Entry vector T7OH:: pCR8 

C 

2000 bp-º 
1500 bp-+ 

H-I 1234 -re +ve 

(A) Schematic diagram of the entry vector T70H:: pCR8 carrying the SpnR gene and the 
T7OH cDNA between the attLl and attL2 insertion sites. The primers 7bOHF and 7bOHR 
are indicated which were used to amplify the whole length of the T7OH eDNA. The GWI 
and GW2 primers indicated were used for sequencing. The diagram also indicates the attLi 
and attL2 sites where the T7OH cDNA was inserted (B) Gel picture of PCR amplification of 
T7OH fragment using 7bOHF and 7bOHR primers shows the presence of a band size 1560 
bp (C) Gel picture of PCR amplification of the T7OH:: PCR8 transgene from Eco1i colonies 
I to 4 using the full-length primers 7bOHF and 7bOHR. -ve = water as control, +ve = T7OH 
fragment as positive control. 

Sequence comparison of the T7OH cloned from T. baccala and its T. cuspidata 

AY307951 homologue indicated that there has been a nucleotide change from G to A 

at position 488 (Figure 3.14 A). This resulted in an amino acid change from 

Tryptophan (TGG) to a premature STOP codon (TAG) and hence would result into a 

truncated protein. Site directed mutagenesis by using an oligonucleotide containing 

the correct sequence TGG instead of TAG could be used as part of the future work to 

amplify the gene, hence omitting the stop codon. 
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Nucleotide sequence analysis of T7OH cDNA also indicated that the sequence was 

interrupted by the presence of two unspliced introns (Figure 3.14 B). Despite the 

medicinal importance of Taxus, little genomic information is available for yew 

species, hence the number of the introns within the T7OH could not be ascertained. 

The joint region between the introns and exons of the T7OH possess the conserved 

5' splice donor site GT and the 3' splice acceptor site AG at the end of the intron, 

which play an important part during RNA splicing (Figure 3.14 B, Q. Sequence 

analysis revealed that the splice acceptor site for the first intron was changed from 

AGG to AGA (indicated by the arrow in Figure 3.14 B) which could explain the 

failure of first intron splicing. 

Following sequence analysis, the T7OH nucleotide sequence was translated using the 

ExPASy translate tool (http: //expasy. org/tools/dna. html) which omitted the introns 

within the T7OH sequence. The amino acid sequence was aligned to the previously 

isolated T7OH Taxus homologues using ClustalW sequence alignment program and 

showed 99% homology to the T cuspidata AY307951 and 97% identity to T. 

wallichiana var chinensis AAR21106 (Figure 3.15). 

Analysis of the deduced T7OH sequence by "PredictProtein" program revealed 

several features characteristic of CYP enzymes, such as an N-terminal membrane 

anchor at position 23-43, the highly conserved heure binding motif with PFG element 

(aa 438-440) and the essential cysteine at position 446 (Figure 3.15). 
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(A) 

T70H ATACTCTGCGGCCCTGCGGGAAACCGCTTAGTTCTTTCCAACGAGGAAAAACTGTTGCAC 480 
AY307951 ATACTCTGCGGCCCTGCGGGAAACCGCTTAGTTCTTTCCAACGAGGAAAAACTGTTGCAC 395 

Ter Lys(K) 
T70H GTGTCGTtTCCGCC ATTGCCAGAATCCTGGGTCTCAATTCTGTTGCAGTGAAAAGG 540 
AY307951 GTGTCGT TCCGCC AATTGCCAGAATCCTGGGTCTCAATTCTGTTGCAGTGAAAAGG 455 

Trp Gln(Q) 

(B) 

T70H TCTTCCAATCCAGAATGCTTTGAAAAAGTAGTTCAAGGTATGCAACGCTTCTGCTCTGTT 1140 

AY307951 TCTTCCAATCCAGAATGCTTTGAAAAAGTAGTTCAAG --------------------- 1032 

T70H TTCTTGATTTCTCGATGTTTGTGCTAGGCGCAATGTAATTTGTGTGGATACATTGATATA 1200 
AY307951 ------- ------------------------------ ------------------- 

T70H ATATTACAGAGCAATTGGAGATAGC[CAAATAAAAAGGAGGGAGAAGAAATCACAATGA 1260 
AY307951 ------- AGCAATTGGAGATAGC CAAATAAAAAGGAGGGAGAAGAAATCACAATGA 1083 

T70H AGGATATCAAAGCCATGAAATACACATGGCAAGTGCTCCAGGAAAGTCTACGGATGCTTT 1320 
AY307951 AGGATATCAAAGCCATGAAATACACATGGCAAGTGCTCCAGGAAAGTCTACGGATGCTTT 1143 

T70H CTCCAGTATTTGGAACACTTCGTAAGACCATGAATGACATTAATCAIGATGGTTACACAA 1380 
Ay307951 CTCCAGTATTTGGAACACTTCGTAAGACCATGAATGACATTAATCpIGATGGTTACACAA 1203 

T70H TTCCAAAAGGATGGCAGGTAAATCACTCCATACTTTTCATATGTCAATTTATGTTTTTCC 1440 
AY307951 TTCCAAAAGGATGGCAG ----------------------------------------- 1220 

T70H TTCTGAGATTCAATATATGAAATCCTGTTTTCCCCTTTGCACAATTTGTTACAGGTTGTA 1500 

AY307951 ---------------------------------------------------- GTTGTA 1226 

(C) 

Spüre Bench Splice 
do r site $jte acceptor site j(; 

uPUAGU ýC UPu=IýPy-Pyrich ýNCAG 

FNON Intron t Nuv 

Figure 3.14 Nucleotide sequence comparison of T7OH from T. baccata and its T. 

cuspidata homologue. 

(A) Sequence alignment indicating the nucleotide change in the coding region of the T7OH 

gene at position 488 from TGG to TAG to give the stop codon (Ter). (B) The nucleotide 
sequence alignments indicating the presence of the introns, the splice donor (GT) and 
acceptor (AG) sites required for splicing. The black arrow indicates the expected position of 
a Guanine nucleotide required for splicing. (C) The consensus sequence for splicing. The 5' 

splice site includes the GU at the 5' end of the intron and the 3' splice site terminated the 
intron with an AG sequence, upstream of which is found the pyrimidine rich site including 
the conserved adenine nucleotide important for splicing. Pu= A or G; Py =C or U. Colour 

code: X= similar,, = non-similar nucleotide, X= consensus features of plant introns. 
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T70H MDALSLVNSTVAKFNEVTQLQ PAILSTALTAIAGIIVLL TSKRRSSLKLPPGKLGL 60 
AY307951 MDALSLVNSTVAKFNEVTQLQ PAILSTALTAIAGIIVLL TSKRRSSLKLPPGKLGL 

T 

60 
AAR21106 MDALSLVNSTVAKFNEVTQLQ PAILS LTAIAGIIVLL TSKRRSSLKLPPGKLGL 60 

T70H PFIGETLEFVKALRSDTLRQFVEEREGKFGRVFKTSLLGKPTVILCGPAGNRLVLSNEEK 120 
AY307951 PFIGETLEFVKALRSDTLRQFVEEREGKFGRVFKTSLLGKPTVILCGPAGNRLVLSNEEK 120 
AAR21106 PFIGETLEFVKALRSDTLRQFVEEREGKFGRVFKTSLLGKPTVILCGPAGNRLVLSNEEK 120 

T70H LLHVSISA, IARILGLNSVAVKRGDDHRVLRVALAGFLGSAGLQLYIGKMSALIRNHINE 179 
AY307951 LLHVSWSAQIARILGLNSVAVKRGDDHRVLRVALAGFLGSAGLQLYIGKMSALIRNHINE 180 
AAR21106 LLHVSWSAQIARILGLNSVAVKRGDDHRVLRVALAGFLGSAGLQLYIGKMSALIRNHINE 180 

T7OH KWKGKDEVNVLSLVRDLVMDNSAILFFNIYDKERKQQLHEILKIILASHFGIPLNIPGFL 239 
AY307951 KWKGKDEVNVLSLVRDLVMDNSAILFFNIYDKERKQQLHEILKIILASHFGIPLNIPGFL 240 
AAR21106 KWKGKDEVNVLSLVRDLVMDNSAILFFNIYDKERKQQLHEILKIILASHFGIPLNIPGFL 240 

T7OH YRKALKGSLKRKKILSALLEKRKDELRSGLASSNQDLLSVLLSFRDERGKPLSDEAVLDN 299 
AY307951 YRKALKGSLKRKKILSALLEKRKDELRSILASSNQDLLSVLLSFRDERGKPLSDEAVLDN 300 
AAR21106 YRKALKGSLKRKKILSALLEKRKDELRSGLASSNQDLLSVLLSFR------- 'DEAVLDN 293 

T7OH CFAML SYDTT SQMTLILKMLSSNPECFEKVVQEQLEIASNKKEGEEITMKDIKAMKY 359 
AY307951 CFAML SYDTT SQMTLILKMLSSNPECFEKVVQEQLEIASNKKEGEEITMKDIKAMKY 360 
AAR21106 CFAML SYDTT SQMTLILKMLSSNPECFEKVVQEQLEIASNKKEGEEITMKDIKAMKY 353 

T7OH TWQVL ESL LSPV TLR TMNDINHDGYTIPKGWQVVWTTYSTHQKDIYFKQPDKF' 419 
AY307951 TWQVL ESL LSPV TLR TMNDINHDGYTIPKGWQVVWTTYSTHQKDIYFKQPDKFM 420 
AAR21106 TWQVL ESL LSPV TLR IMNDINHDGYTIPKGWQVVWTTYSTHQKDIYFKQPD'FM 413 

T7OH SRF EEDGHLDAYTF GRRT PG EYAKVEILLFLHHFVKAFSGYTPTDP, ERIC 479 

AY307951 SRF EEDGHLDAYTF GRRT PG EYAKVEILLFLHHFVKAFSGYTPTDPHERIC 480 

AAR21106 SRF EEDGHLDAYTF GR PG EYAKVIILLFLHHFVKAFSGYTPTDPHERIC 473 

T7OH GYPVPLVPVKGFPIKLIARS 499 

AY307951 GYPVPLVPVKGFPIKLIARS 500 

AAR21106 GYPVPLVPIKGFPIKLIARS 493 

Figure 3.15 Multiple sequence alignment of T7OH and its Taxus homologues. 

The sequence alignment of the T7OH protein and its homologues was aligned by the 
ClustalW program and produced by "Protein Boxshade" program. The transmembrane 

anchor helix found at amino acid 23-43 is indicated by the green rectangle. The CYP 

cysteine heme-iron ligand domain is represented by the blue rectangle and the Glu-X-X-Arg 
is represented by the yellow box. The other CYP conserved domains are indicated by the red 
rectangles. T cuspidata AY307951, T. wallichiana var chinensis AAR21106. Colour 

code: X= Similar, = Conservative amino acid substitution,, = Non-conservative amino 
acid substitution, M= Conserved cysteine residue, 0= PFG domain,, = STOP codon 
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3.3 Discussion 

3.3.1 Sequence analysis of the cloned T. baccata enzymes. 

Genes involved in the early and midsection of the Taxol biosynthetic pathway were 

cloned from T. baccata mRNA. BLAST database searching revealed a high level of 

conservation of the homologous taxoid hydroxylases among the different Taxus 

species. The cloned TXS from T. baccata used in this research demonstrated a 100% 

similarity to T. chinensis TXS protein but only a 98% to the previously cloned TXS 

from T. baccata. The genetic variation in the DNA sequence of this gene could be 

the result of single nucleotide polymorphism whereby a single nucleotide in the 

genome is altered, causing point mutations that have been evolutionarily successful 

enough to recur in a significant proportion of the population of the T. baccata 

species. This genetic variation also suggested the presence of a probable allele of the 

gene or the outcome of natural variation between the T. baccata species. 

The analysis of the deduced amino acid sequence of the hydroxylases cloned during 

this project revealed several typical characteristics of cytochrome P450 

monooxygenases, including an N-terminal hydrophobic helix required for anchoring 

in the ER membrane. The highest structural conservation among CYPs is found 

around the heure domain and comprise the heme-binding loop, containing the most 

characteristic CYP herne-binding structure (Phe-X-X-Gly-X-Arg-A-Cys-X-Gly or 

FXXGXXXCXG), with the conserved cysteine residue that serves as a ligand to the 

heme-iron (Hanemann et al., 1995). The region around the cysteine of the heme- 

binding domain is almost identical in most of the aligned hydroxylases sequences. 

The Glu and Arg of the E-X-X-R motif which has been proposed to be required for 
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the stabilisation of the core structure of the enzyme and the Arg (R) of the PXRF 

motif may altogether form an E-R-R triad salt bridge that locks the cysteine pocket in 

position and assures heure association with the protein (Hasemann et al., 1995). The 

conserved domain ASYDTT which contains a highly conserved Threonine that is 

thought to be involved in binding and activation of the enzyme was also observed in 

the oxygenases T5OH and T7OH cloned from T. baccata. 

Based on relative abundances of hydroxylated taxanes in Taxus species, almost all 

known taxoids are oxygenated at the C-5 positions (Baloglu and Kingston, 1999; Shi 

and Kiyota, 2005) suggesting the C-5 oxygenation to be the first hydroxylation of the 

taxadiene core. The enzyme T5OH catalysing this oxygenation reaction was cloned 

from T baccata and nucleotide sequence analysis revealed this clone to have a 

nucleotide change from TTG to TCG at position 616 which resulted into an amino 

acid substitution from Leucine to Serine. This mutation was corrected and the final 

sequence was confirmed by sequencing to share a 100% and 98% identity to the T. 

cuspidata and T chinensis protein sequences respectively. The T5OH used in this 

work has a slight nucleotide change in the C-terminus of the protein sequence which 

generated an alternative stop codon differing by five amino acids from the originally 

cloned T. cuspidata T5OH (AY289209.1). Instead of the IKLFPETIVN C-terminus 

previously described for T5OH, the CYP-T5OH used in this case has an amino acid 

sequence IKLFPRP, more closely related to that of other CYP oxygenases from the 

yew tree belonging to the CYP725 family. The minor differences observed are likely 

attributable to the species differences, to that the putative protein encoded by T5OH 
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should have the same function as that of the previously cloned taxadiene-5a- 

hydroxylases. 

Nucleotide sequence analysis of T7OH cloned from T. baccata indicated the 

presence of two introns which failed to splice out. The sequence analysis of the 

splice acceptor site at nucleotide position 1209 indicated the absence of the G- 

nucleotide which is required at the 5'-start point of the exon to aid the splicing 

process. The T7OH arisen by gene duplication could have subsequently acquired 

mutations at the splice site that might cause it to be non-functional and results into 

the formation of a non-processed pseudogene. The second intron possesses the 

correct splice acceptor site GAGG, hence this intron would have been spliced out 

during post-translational modification in plants. The presence of a functional protein 

could thus be verified by a western blot analysis to check the correct size of the 

protein formed. The premature stop codon at amino acid position 488 might have 

been the result of a PCR bias or the amplification of a pseudogene that shares similar 

sequences as the wild type T7OH. This sequenced cDNA possessed the same CYP 

features as the wild type one from T cuspidata and the loss of the pseudogene's 

functionality probably has no effect on the T. baccata's capability of producing 70- 

taxoids or Taxol, since an intact functional copy of the gene would still exist in the 

yew. To circumvent this premature stop codon issue, the cloned T7OH cDNA can be 

site directed mutagenated by using an oligonucleotide containing the correct 

sequence TGG instead of TAG, hence omitting the stop codon. In order to remove 

the unspliced introns, primers can be designed having appropriate restriction sites, 
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which would amplify the sequence omitting the introns and the premature stop 

codon. 

The enzyme T5AT catalysing the first acetyltransferase reaction of the Taxol 

biosynthetic pathway was successfully cloned from T baccata mRNA. Amino acid 

sequence analysis of this cloned T5AT indicated a few non-conservative amino acid 

substitutions when compared to the published sequences of the Taxus T5AT 

homologues. These changes in amino acids substitution might be the result of natural 

variation among the species and might not cause a conformational change in the 

protein structure and function of the acetyl transferase. BLAST database search 

indicated the T baccata T5AT to be more closely related to that of Tx media and T. 

chinensis than to the T5AT from T. cuspidata, contradictory to the fact that Tx 

media is known to be the hybrid arisen from T cuspidata and T. baccata. However, 

the four Taxus T5AT homologues showed high percentage of identity among 

themselves, suggesting that the transferase shares a common evolutionary origin 

based on their similar roles and conserved structural and sequence characteristics, 

such as the conserved HXXXDG domains. This conserved motif has been suggested 

by St-Pierre et al., (1998) to lie at or close to the active centre of the acyltransferases 

where the histidine residue of this element is essential for catalytic activity of the 

enzyme for acyl group transfer from acyl CoA to the substrate alcohol. 
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3.3.2 Evolutionary relationships of the enzymes of the Taxol biosynthetic 

pathway 

A phylogram (Figure 3.16) of the taxoid oxygenases cloned from T baccata and the 

Taxus 14-ß hydroxylase and 2a-hydroxylase previously isolated, was constructed by 

using "ClustalW alignment program" based on the amino acid sequence alignment. 

The pattern shows the early emergence of C 14 hydroxylation suggesting a side route 

after the C5 hydroxylation. This data correlates with previous reports that taxoid 140- 

hydroxylase is involved in the bifurcation of the Taxol biosynthetic pathway after the 

C5 hydroxylation and acetylation, leading to the formation of dead-end metabolites 

in Taxus (Ketchum et al., 2003; 2007a). Interestingly, the T5OH from T. baccata 

which oxygenates the C ring of the taxane core displays the highest similarity to this 

14ß-hydroxylase, which oxygenates the taxane A-ring. 

T50t 0.12222 

Tcus1401k 117051 

TOOK 019090 
T1001k 0.21314 

TlOIt 118142 
- Tcen201t 117817 

Figure 3.16 Phylogram for the cloned taxoid hydroxylases from T. baccata and 
other Taxus hydroxylases. 

The phylogram indicates the early emergence of the Tcusl4OH after C5 hydroxylation. 
T7OH and Tcan2OH are clustered next to each other, indicating the high sequence similarity 
between these two hydroxylases. T13OH appears to be more closely related to T5OH than it 
is to TIOBOH. T. canadensis 2a-hydroxylase (Tcan2OH) (AY518383), T. cuspidata 14ß- 
hydroxylase (Tcus 140H) (AY 188177). 
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T1OBOH and T13OH were found to be closely related in the phylogram constructed, 

which might support the previous report of their overlapping substrate selectivity 

(Wheeler et al., 2001). "ClustalW alignment program" indicated that T5OH 

displayed a higher similarity to the T13OH (62%) than to TIOBOH (61%). This 

could explain the preferential hydroxylation of the taxadiene-5a-ol by T13OH 

previously reported by Wheeler and co-workers (2001), than to the expected 

TI OBOH which has been shown to catalyse the fourth step of the Taxol biosynthetic 

pathway. The 2a- and 7ß-hydroxylases which hydroxylate highly functionalised 

taxoids were found to be more similar to each other (64% identity) than to the early 

pathway hydroxylases. These observations indicate the near impossibility of 

predicting hydroxylation regiochemistry based solely on homology. 

3.3.3 Evolutionary relationships of the T. baccata hydroxylases and other plant 
CYPs. 

Sequence and structure analysis have indicated that all the CYP genes diverge from 

only one evolutionary origin and can be depicted in a single phylogenetic tree 

(Nelson, 1999). The clones isolated during this research were subjected to extensive 

analysis and their sequences compared pairwise to the known plant CYP oxygenases 

sequences available in the NCBI database (http: //www. ncbi. nlm. nih. gov/) to provide 

a cladogram of these relationships. BLAST database searches indicated that the CYP 

oxygenases of the Taxol pathway show high sequence similarity with each other 

(-60%) but distant relationships (<50%) to other plant CYPs (Figure 3.17). Thus, 

the genes encoding the respective sequential oxygenation steps of the Taxol pathway 
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almost certainly arose by gene duplication and differentiation of an ancestral gene, 

which is mostly likely to be the T5OH gene. 

The sequences from all the CYPs shown in Figure 3.17 were aligned using the 

"Clustal W I. 2 Multiple sequence alignment program". The percentage similarities 

between the Taxus hydroxylases cloned and the other plant CYPs was generated 

using the Clustaw program. It was shown from the sequence alignment that the 

Taxus clones were related to the CYP725 family and resembled most closely the 

CYP707 (28-29%), CYP90 (23-30%), CYP85 (24-26%), and CYP88 (23-28% ) 

families which are known to be involved in the synthesis of other large terpenoids 

(e. g. gibberellins and steroids). The Tax us clones were also found to resemble 

CYP716 (33-44%) which have unknown function, however the other closest gene to 

the T. baccata clones outside the CYP725 family was identified in Arabidopsis as 

ArthCYP718, which is as yet uncharacterised. 

The CYP707 family sharing a 28-29% similarity to the cloned T. baccata 

hydroxylases consists of the hydroxylases involved in abscisic acid (ABA) 

biosynthesis. The CYP85 and CYP90 families sharing a 23-30% similarity to the 

taxoid hydroxylases, have been shown to catalyse the early steps of the growth- 

promoting plant steroids brassinosteroid (BR) biosynthetic pathway from the 

triterpenoid campesterol to brassinoide (Kim et al., 2005; Clouse and Sasse 1998). 

The early three-step oxidation of ent-kaurene to ent-kaurenoic acid involved in 

gibberellins (GA) biosynthesis and the late analogous oxidation to GA have 

previously been demonstrated to be catalysed by the sub-families CYP701 A and 

CYP88A respectively (Helliwell et al., 1999; 2001 a). These two CYP families were 
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observed to split within two clades, raising the possibility that these genes existed 

independently in a common progenitor of angiosperms and gymnosperms. 

The Loblolly pine (Pinus taeda) PitdCYP720B 1 gene encodes the multifunctional 

abietadienol/abietadienal oxidase which catalyses at least two oxidation steps in the 

conversion of abietadiene to abietic acid as part of diterpene resin acid (defence 

chemicals in conifers) biosynthesis (Ro et al., 2005). The CYP720BI found in Picea 

sitchensis (Sitka spruce) (PisiCYP720B 1) was separated from the PitdCYP720B 1 

into two clades, with PisiCYP720B1 demonstrating a closer homology to the 

CYP725 family. However, considering the close distance of the pine and the spruce 

to the Taxus CYP clones, it can be speculated that these genes form a functionally 

related family, acting on similar substrates or could possibly share a common 

ancestry. Additional members of the conifer CYP gene family with high similarity to 

loblolly CYP720B1 and the Taxus hydroxylases have emerged in the spruce database 

(Hamberger and Bohlmann, 2006). These enzymes, involving PisiP450-1 which is 

yet uncharacterised have been found to share close homology to the Taxus 

hydroxylases, possibly encoding an enzyme involved in the BR or GA biosynthetic 

pathway in conifers. Furthermore, the high sequence homology between the Taxus 

hydroxylases and the CYP716B Picea sitchensis family could be possibly due to 

both groups belonging to the taxa Coniferae or both families might each act on 

overlapping substrates, thereby enhancing diterpenoid chemical diversity in conifer 

defence. 
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Figure 3.17 Cladogram showing peptide sequence relationships between some 
published, related plant cytochrome P450s and those cloned from T. baccata. 

The Taxol biosynthetic genes cloned from T. baccata are represented by the red box. For the 
published sequences, the first four letters of each name are genus and species abbreviations, 
CYP is the abbreviation or cytochrome P450, the following two numbers indicate the P450 
family, and any additional letter or numbers refer to the subfamily. The genus and species 
abbreviations are as follows: Arth - Arabidopsis thuliana, Arlt - Arabidopsis lyrata, Clrh - 
Chlamydomonas reinhardtii, Metr - Medicago truncatula, Nitb - Nicotiana tabacum, Orsa - 
Oryza saliva, Pisa - Pisum sativum (pea), Pisi - Picea sitchensis (Sitka spruce), Pitd - Pinus 
taeda (loblolly pine), Soly - Solanum lycopersicum, Semo - Selaginella moellendorfi, 
Stre 130H - Stevia rebaudiana ent-kaurenoic acid 13-hydroxylase, Zema - Zea mays 
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Despite their biological importance in plant development, there has been no report of 

the functional identification of any gymnosperm gene of the CYP related family for 

biosynthesis or modification of GA, ABA or the BR phytohormones. As a result, the 

sequences of the genes cloned from T baccata could not be compared to the 

gymnosperm genes of these CYP related families. The close clustering of the 

gymnosperm taxoid hydroxylases (CYP725) with those of the angiosperm genes of 

the GA, ABA and BR metabolism, however, indicated the possible lineage-specific 

evolution of the Taxol biosynthetic pathway from other secondary metabolite 

pathways. 

The taxane hydroxylases were found to share high sequence similarity with the 

enzymes involved in the early steps of the GA biosynthetic pathway. This high 

sequence similarity and close clustering of these CYP families might indicate the 

possibility of the divergence of the taxoid family from the GA family. This might 

also suggest a common evolutionary origin between the GA and Taxol biosynthesis 

pathway, where the duplicated GA biosynthetic genes in the yew trees underwent 

various mutations to give the Taxol biosynthetic genes. It can also be hypothesised 

that a common ancestry CYP involved in GA phytohormone biosynthesis and 

secondary metabolism prior to the divergence of angiosperms and gymnosperms, 

evolved to acquire the novel biochemical functions of the taxane hydroxylases in the 

yew trees. 
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CHAPTER 4: LOCALISATION OF THE FIRST 

THREE ENZYMES OF THE TAXOL 

BIOSYNTHETIC PATHWAY 

4.1 Introduction 

The amino acid sequence of TXS catalysing the first committed step of Taxol 

biosynthetic pathway has indicated that the N-terminal domain of this protein 

contained a putative chloroplast transit peptide. This roughly 60-80 residue amino- 

terminal transit sequence has been previously suggested to be cleaved on maturation 

following plastid import (Williams et al., 2000b). This suggests that this protein is 

plastid-located, although there has been no report where the localisation of this 

protein has been experimentally demonstrated. 

Sequence analysis of T5OH indicated the presence of a transmembrane helix 

(Section 3.1.1), suggesting that this enzyme is membrane associated. Although the 

localisation of the T5OH has not yet been identified, previous reports have 

documented the enzyme to be restricted to the microsomal fraction prepared from 

Taxus suspension culture cells, further implying this enzyme to be localised to the 

ER (Jennewein et al., 2004a). 

With the cyclisation step of the Taxol biosynthetic pathway being localised to the 

plastid and the first oxygenation step speculated to take place in the ER, it was 

difficult to reconcile these assumptions with the putative ER membrane-bound 
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T5OH. The oxygenation of the taxadiene core could not take place if the taxadiene 

olefin remained in a different sub-cellular location from the T5OH. Hence, it was 

reasoned that the non-polar taxadiene most likely partition between the plastid 

membrane from where it is translocated by the T5OH which may be either spatially 

distributed between the plastid and the ER or associated with both organelles. As a 

result, the plastid-associated T5OH would appear to facilitate the movement of 

taxadiene from the plastid to the ER, as well as catalysing the formation of 

taxadiene-5a-ol. 

As mentioned in the previous chapter, T5OH appears to be closely related to the A. 

thaliana CYP70IA3 encoding the ent-kaurene oxidase (AtKOI) (Section 3.3.3). This 

GA biosynthetic enzyme has been shown to catalyse the three-step oxidation of the 

plastid synthesised ent-kaurene to ent-kaurenoic acid en route to GA synthesis 

(Helliwell et al., 1999). AtKO1 has been reported to be associated to both the ER and 

the plastid envelope, thus appears to link the plastid with the subsequent ER-located 

steps (Helliwell et al., 2001b). Based on the sequence similarity and close relatedness 

of T5OH and the AtKOl, it was speculated that T5OH might have similar 

localisation as that of AtKOI. This would suggest that taxadiene might bind to the 

T5OH associated on the plastid envelope and is transported to the ER where further 

modifications of the taxane core take place. 

The third step en route to Taxol has been reported to be catalysed by taxadiene-5a- 

acetyl transferase (T5AT) (Walker et al., 2000). The authors documented that the 

sequence of this protein did not encode any N-terminal targeting information, 

however sequence analysis by the "predictprotein" software has indicated a 

117 



Localisation of the First Three Enzymes of the Taxol Biosynthetic Pathway 

transmembrane anchor helix at amino acid 147-164, as described previously (Section 

3.2.4). The authors also reported the activity of T5AT to reside in the microsomal 

extracts, thus agreeing with the prediction of the protein to be located to the ER. 

Considering the third step of the Taxol biosynthetic pathway to be located in the ER, 

it could be speculated that the T5OH links the plastidial and the endoplasmic 

reticulum steps of the Taxol biosynthesis. 

The aim of this part of the study was to determine the subcellular localisation of the 

enzymes involved in the early steps of the Taxol biosynthetic pathway, which might 

also indicate whether the production of the taxadiene-5a-ol compound is associated 

with the movement of the taxadiene across the plastid membrane. The key question 

was how the plastid-located taxadiene interacted with the T5OH if they have 

different sub-cellular localisations. Confocal microscopy was thus used to localise 

protein fusions with green fluorescent proteins (GFP), yellow fluorescent protein 

(YFP) and cyan fluorescent protein (CFP) using stable transgenic plants. 

4.1.1 Fluorescent Proteins 

The green fluorescent protein (GFP) was first discovered in the jellyfish Aequorea 

victoria as a companion to the bioluminescent protein aequorin (Shimomura et al., 

1962). Since then, GFP has been widely used in various types of cells as a reporter 

gene due to its unique in vivo fluorescence ability and low toxicity to the host cell. 

The use of GFP in higher plants was not feasible until a cryptic intron inside the 

coding sequence of the GFP was removed (Haseloff et al., 1997). In addition, 

extensive mutagenesis screens have been carried out and numerous GFP variants 
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with distinct fluorescence characteristics have been generated. For instance, the S65T 

(Serine65 changed to Threonine) GFP stabilised the fluorochrome in a permanently 

ionized form with a single absorbance peak at 489 nm, which became the backbone 

of the commercially available enhanced GFP (Clontech). The identification of the 

spectra-shifted GFP variants, such as the blue-shifted cyan fluorescent protein (CFP) 

and the red-shifted yellow fluorescent protein (YFP) enables multiple proteins to be 

visualised simultaneously in the same cell (Heim et al., 1994). 

4.2 Results 

4.2.1 Taxadiene synthase is targeted to the plastids 

4.2.1.1 Preparation of Constructs 

The protein sequence of TXS, the terpene cyclase of Taxol biosynthesic pathway, 

was analysed using the ChloroP program which predicted the protein to contain a 

plastid transit peptide and a cleavable site at amino acid 58. ChloroP uses a neural 

network method to identify chloroplast transit peptides and their cleavage sites based 

on a training set of proteins with known subcellular localisations. 

In order to identify the localisation of the TXS protein, the TXS cDNA was 

amplified using a reverse primer designed to exclude the stop codon at the C- 

terminus of the TXS cDNA. The primers used for TXS-no stop codon (TXSns) 

amplification were TaxSynF (forward) and TaxSynRNS (reverse) (Appendix I), 

using the plasmid pBCTaxk carrying the full-length TXS cDNA as template, and a 

proof-reading enzyme. A 2.6 kb PCR product (Figure 4.1 B) was obtained which was 

gel purified, subsequently cloned in the entry vector pCR8 by TOPO cloning and 
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transformed into E. coli strain DH5a as described previously (Section 2.12.2 and 

2.12.3 respectively). The presence of the insert in the Eco1i colonies which were 

resistant to spectinomycin selection was verified by PCR using the primers TaxSynF 

and TaxSynRns. A band of - 2600 bp was obtained from colonies I and 5 (Figure 

4.1 C) and the respective plasmids thus named TXSns:: pCR8 were purified from the 

two colonies and sequenced with the primers M13Forward and Ml3Reverse (Figure 

4.1 A). The sequencing results confirmed that the stop codon had been deleted at the 

C-terminus of the TXS cDNA. 

ýA) Iýýý. sF TOPOC3 
(B) 
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Figure 4.1 Clone pCR8:: TXSns 

(A) The schematic diagram of the construct generated by TOPO cloning carrying the TXS-ns 

cDNA between the TOPO cloning sites (TOPO CS). The positions of the primers TaxSynF 

and TaxSynRns used for PCR amplification of the cDNA are indicated. (B) PCR product 
showing a band of size -2.6 Kb indicating the amplification of the TXSns. (C) Colonies I 

and 5 showing the presence of the correct size of TXSns (-2600 bp), where C is the positive 
control of the fragment prior to cloning and -ve is the negative water control. 
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The TXSns from plasmid 5 was fused in frame by LR recombination (Section 2.12.2) 

to the plant binary vector pGKPGWG (Zhong et al., 2008). Following selection on 

kanamycin, the presence of the TXSns insert was verified by PCR on the colonies 

resistant to the antibiotic. The presence of the expected 2.6 Kb bands were observed 

in a few colonies (Figure 4.2 B), and the plasmid thus named TXSns:: pGKPGWG 

(Figure 4.2 A) was purified. 
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promoter R8 L8 f 

ýNpol $ITxsnsc 
. 

aiis2 aitsi 
TNSos:: pGKPGWG 
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(B) 

Figure 4.2 TXSns:: pGKPGWG expression vector 

(A) Schematic diagram of the linear display of the expression vector TXSns:: pGKPGWG 
was generated by software VectorNTl (Invitrogen) and consists of TXSns cDNA driven by 
the constitutive 35S promoter. The primers TaxSynF and TaxSynRns are indicated which 
were used to check for the TXSns insert by PCR. Nptll; Kanamycin resistance gene, EGFP; 

enhanced GFP, LB; Left border, RB; Right border. (B) Gel picture of PCR amplification of 
plasmids from E. coli colonies I to 10, using primers TaxSynF and TaxSynRns. The presence 
of a band size -2600 bp in colonies 1,2,3,6,7 and 8 following LR recombination, indicates 

the presence of TXSns cDNA in the binary vector. 
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4.2.1.2 Transient Expression of Green Fluorescent Proteins 

Prior to investigating the localisation of TXS in stable transgenic plants, a transient 

expression system was developed to test the CloroP predictions for subcellular 

localisation of TXS and also to verify whether the TXSns:: pGKPGWG (TXS-GFP) 

construct was functional. Microprojectile bombardment of onion epidermis was 

chosen as the method to deliver the test transgene construct and onion epidermal 

cells were used as the recipient tissue due to their lack of intrinsic chlorophyll auto- 

fluorescence. The plasmid construct was precipitated on tungsten particles and used 

to bombard onion epidermis as previously described (Section 2.16.2). After 24 h, the 

bombarded cells were examined for GFP fluorescence using a confocal microscope 

and the image (Figure 4.3 A) showed that the TXS-GFP gave fluorescence associated 

with chloroplasts in the epidermal cells. 

Figure 4.3 Confocal images of a single onion epidermal cell following 
microprojectile bombardment. 

Images were taken 24 h after bombardment of onion epidermal tissue with tungsten particles 
coated with the TXSns-GFP plasmid construct under the control of the CaMV35S promoter. 
The cells expressing the GFP construct are epidermal cells and the green fluorescence is 

mainly found in the plastids which are indicated by the arrows. A) GFP image of the onion 
epidermal cell layer. B) Superimposed image on the bright-field image showing the 
epidermal cell image. 
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4.2.1.3 Sub-cellular localisation of TXS in stable transgenic plants 

The TXS-GFP construct which was used for transient expression in onion epidermis, 

was transformed into Agrobacterium strain GV3 101 as described previously (Section 

2.12.7). One of the colonies which showed the presence of the insert was used for 

transformation of wild type Arabidopsis thaliana as described in section 2.5.1. The 

seeds obtained following Agrobacterium transformation were screened and selected 

on MSR3 medium containing 50 µg/m1 kanamycin. The roots of the 1 week old 

transgenic lines were mounted on microscopic slides and observed under the 

confocal microscope. Figure 4.4 shows the expression of the GFP fusion protein 

mainly localised to the plastids of the transgenic Arabidopsis roots. Various parts of 

the lateral roots and root hairs of the transgenic plants were observed, which gave a 

consistent plastidial expression of the GFP. 

The presence of chloroplast in the epidermal cells of tobacco makes it an ideal 

system to study the targeting of GFP fused to TXS. The main aim of this area of 

research was to generate a transgenic tobacco line expressing the three downstream 

enzymes TXS, T5OH and T5AT fused to a fluorescent protein respectively while 

using constructs which confer different antibiotic resistance genes. Wild-type 

tobacco leaves were transformed with the same TXS-GFP construct using 

Agrobacterium-mediated transformation as previously described (Section 2.12.7) and 

the tobacco transformants were selected on 70 mg/L kanamycin. 
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Figure 4.4 Confocal images from transgenic Arabidopsis expressing the TXSns- 
GFP construct. 

(i-iv) show the TXS-GFP expression was predominantly observed in the plastids of the main 
and lateral roots as well as in the root hairs of the Arabidopsis plants. Scale bars of either 20 
pm or 50 pm was used. 
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The presence of the TXS-ns insert in the plants which were resistant to kanamycin 

were verified by PCR using the primers TaxSynF and TaxSynRns to give an 

amplified fragment of -2.6 Kb (Figure 4.5 A). The transgenic lines were transferred 

to the soil and allowed to grow for 3-4 weeks under controlled conditions. The lower 

surface of the epidermis and the roots of the transgenic plants were mounted on 

respective microscopic slides. The GFP fluorescence (green) and the chlorophyll 

auto-fluorescent (red) in the transgenic tobacco leaf epidermal cells were imaged 

simultaneously by using the confocal scanning microscope as previously mentioned 

(Section 2.16.1). The TXS-GFP protein was found to be present in plastids in the 

main root as well as root hairs of the tobacco plant (Figure 4.5B) and was associated 

with the chloroplasts of the tobacco epidermal cells (Figure 4.5C). 

The red auto-fluorescence of the guard cell chloroplasts co-localised with the GFP 

signal suggested that the TXS was targeted to the chloroplasts. The localisation of 

the fusion protein in Arabidopsis was identical to that in tobacco cells. Thus, 

evidence from protein localisation using either stable transgenic plants or transient 

expression indicated that the TXS was targeted to the plastids. These data were in 

agreement to previous published reports and the software "predictprotein" as well as 

ChloroP analysis which predicted TXS to be a chloroplast protein. 
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(C) 

Figure 4.5 Localisation of TXSns-GFP in guard and roots cells 

(A) Gel picture of PCR amplification of the TXSns:: pGKPGWG transgene from the 
transgenic plants lines 1-7 using the primers TaxSynF and TaxSynRns. The +ve control used 
was I µl of the plasmid TXSns:: pGKPGWG and the -ve control was I µd of water. A WT 

sample was also used as a negative control which indicates the absence of the 2.6 Kb TXS in 
WT tobacco plants. (B) The TXS-GFP expression was also predominantly observed in (i) 
the plastids of the root hairs of the tobacco plants. (ii) shows the phase contrasts of the 
tobacco roots. (C) The construct gave GFP fluorescence associated with the chloroplasts in 
the guard cells as well as in those of the surrounding epidermal leaf cells. The images show 
the separate GFP (i), chlorophyll (ii) channels, together with the merged channels (iii) and 
the phase contrast of the guard cells (iv). Where the chlorophyll and GFP signals overlap 
(iv), the image colour is shifted to orange. The chlorophyll signal from underlying mesophyll 
cells can also be seen; this signal is unavoidable due to the uneven nature of the leaf 

epidermis and the strength of the chlorophyll signal from the underlying mesophyll layer. 
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4.2.2 Taxadiene-5a-Hydroxylase is Targeted to the Plastid Envelope and ER 

4.2.2.1 Preparation of the construct TSOHns-YFP 

The CYP T5OH catalysing the first oxygenation of the Taxol biosynthetic pathway 

has been predicted to be located to the endoplasmic reticulum, consistent with the 

localisation of other plant CYPs. The sequence of T5OH cloned from T. baccata was 

analysed by ChloroP software and was predicted to not have a chloroplast transit 

peptide as would be expected for CYP enzymes. Taxadiene being a non-polar 

compound would need to be translocated across the plastid membrane to undergo 

oxygenation of its taxane core by the T5OH. It was reasoned that the T5OH should 

be spatially localised somewhere between the plastid and the ER to aid translocation 

of the taxadiene compound. 

In order to verify the localisation of this mono-oxygenase, the cDNA of T5OH 

cloned from T. baccata mRNA pool was amplified using the T5OH:: pCR8 (Section 

3.2.2) as template, Pfu DNA polymerase, the forward primer T5OH-F and the 

reverse primer T5OH-Rns (see Appendix I) designed to exclude the stop codon at the 

C-terminal of the cDNA. An -1.6 kb PCR product (Figure 4.6B) was obtained which 

was gel purified and subsequently cloned into the entry vector pCR8 by TOPO 

cloning and transformed into E. coli strain DH5a. The presence of the insert in the 

E. coli colonies which were resistant to spectinomycin was verified by PCR using the 

primers T5OH-F and T5OH-PstRev which amplified a fragment of 743 bp (Figure 

4.6A & Q. The purified plasmid from colonies 2,4 and 7 were sequenced with the 

pCR8 primers M13Forward and M13Reverse (Figure 4.6A). Amino acid sequence of 

T5OH initially cloned from T. baccata was aligned with that obtained from T5OHns 
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(Figure 4.6D) to confirm that the stop codon has been deleted from the C-terminal of 

the T5OH cDNA. 
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T5OH SCVGWEFSKMEILLFVHHFVKTFSSYTPVDPDEKISGDPLPPLPSKGFSIKLFPRP---- 499 
T50HNS SCVGWEFSKMEILLFVHHFVKTFSSYTPVDPDEKISGDPLPPLPSKGFSIKLFPRPKGEF 539 

Figure 4.6 Preparation of the T5OHns:: pCR8 construct 

(A) Schematic diagram of the construct generated by TOPO cloning carrying the cDNA 
T50H without its stop codon. The positions of the primers T5OH-F and T5OH-Rns used for 
PCR amplification of the cDNA and T5OH-PstRev are indicated (B) PCR product showing a 
band of size -1.6 Kb obtained using primers T5OH-F and T5OH-Rns indicating the presence 
of T5OHns cDNA (C) Colonies 1 to 10 showing the presence T50H obtained by PCR with 
primers T50H-F and T5OH-PstRev, where C is the positive control T50H:: pCR8. (D) 
Amino acid sequence alignment of T5OH which was used as template for the amplification 
of T5OHns and the amplified T5OHns without its stop codon. X= similar amino acid, X= 

part of pCR8 vector 
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Following sequencing which confirmed that the T5OHns has been amplified with a 

100% match to the T5OH cloned from T. baccata, the T5OHns from colony 7 was 

fused in frame by LR recombination to YFP in the plant binary vector pGKPGWY 

(Zhong et al., 2008) driven by a 35S promoter. The presence of the insert was 

verified by PCR on the colonies resistant to kanamycin, using the full-length primers 

T5OH-F and T5OH-Rns to give the expected band of -1.6 kb (Figure 4.7B). The 

resulting vector thus named T5OHns:: pGKPGWY (TSOH-YFP) (Figure 4.7A) was 

transformed into Agrobacterium which was used for Arabidopsis transformation as 

previously described (Section 2.5.1). 
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Figure 4.7 Presence of the insert T50H-YFP 

(A) Schematic diagram of the T5OH:: pGKPGWY construct generated by VectorNTl 
(Invitrogen). The primers are indicated by the red arrows. The construct carries the yellow 
fluorescent protein and the npttl gene which confers resistance against kanamycin. (B) Gel 

picture following PCR amplification using primers T50H-F and T5OH-Rns shows the 

presence of the -1.6 Kb insert T5OH in the E. coli colonies 1-5 after LR recombination. 
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The initial attempts to transform the binary vector pGHPGWY carrying the T5OHns, 

a YFP gene and conferring hygromycin resistance in plants were unsuccessful in 

both Arabidopsis and tobacco. Consequently, the binary pGKPGWY conferring 

kanamycin resistance was used instead for Arabidopsis transformation. 

Efforts to transform tobacco with the construct containing 35S:: T5OH:: YFP in many 

instances have returned only a few transgenic lines, where the T5OH transgene was 

not expressing when an RT-PCR was performed on the samples (data not shown). 

Seven transgenic lines carrying the TSOH gene (Figure 4.8A) were obtained after an 

elevated concentration of IAA was used in the regeneration medium, which 

facilitated the production of these transgenic lines. Of these transgenic lines, plants 

1-4 were found to express the T5OH-YFP transgene when assayed by RT-PCR 

(Figure 4.8B). 

However, when the epidermal cells of the leaves from these transgenic lines were 

observed under the confocal microscope, no YFP expression was observed. Thus, to 

accomplish the attempts to express and visualise the T5OH-YFP, the construct was 

transformed into Arabidopsis instead to test whether the construct was functional. 
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Figure 4.8 Analysis on transgenic tobacco plants 

(A) PCR analysis was carried out on the gDNA extracted from tobacco plants obtained 
following transformation with the T5OH-YFP construct. The primers TSOH-F and TSOH- 
PstRev were used which amplified a PCR fragment of size -700 bp (B) RT-PCR results 
following RNA extraction and DNase treatment of the RNAs from the transgenic lines 1-7. 
PCR performed with primers T5OH-F and T50H-Rns to give a band of -1500 bp, 
characteristic of T5OH DNA. (ii) A control was set up to check that the samples did not give 
positive results due to the presence of transgene DNA whereby the RT enzyme was not 
added during this reaction. +ve - positive control using T5OH:: pCR8 plasmid; -ve - 
negative control using water, WT - wild type, TSOH-WT - transgenic line expressing the 
gene T5OH without fluorescent tag. 

4.2.2.2 Sub-cellular localisation of TSOH in transgenic Arabidopsis 

Following Arabidopsis thaliana (ecotype Columbia, Col-0) transformation with 

Agrobacterium carrying the 35S:: T5OH:: YFP construct, the seeds were screened and 

selected on kanamycin. The presence of the T5OH fragment was confirmed by PCR 

analysis (Figure 4.9A) on the genomic DNA (gDNA) extracted from the single 

Arabidopsis line which was resistant to kanamycin. The transgenic line was grown to 

maturity and the expression of the T5OH transgene mRNA was confirmed by RT- 
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PCR (Figure 4.9B). The seeds from this plant were selected on kanamycin and the 

roots of the lines resistant to the antibiotic were mounted and observed under the 

confocal microscope (Section 2.6.1). 

(B) 

: 000 
1500 
1000 

Figure 4.9 Analysis on transgenic Arabidopsis 

(A) Gel picture of PCR analysis on the gDNA extracted from Arabidopsis line I 
(T5OHns+YFP) shows the presence of the -1.6 Kb T5OH fragment. -ve = water, +ve = 
35S:: T50H:: YFP construct (B) RT-PCR was carried out using the total RNA extracted 
from the Arabidopsis leaf tissue. The gel picture shows the RT-PCR results obtained while 
using the primers T5OH-F and T5OH-Rns. The length (-1.6 Kb) of the fragment confirmed 
the expression of the T5OHns transgene mRNA in line 1. +RT = reverse transcriptase 
enzyme added, -RT = reverse transcriptase enzyme omitted during first strand cDNA 
synthesis, H-1- Hyperladder I as molecular marker. 

Amino acid sequence analysis of T5OH as described in section 3.2.2 indicated a 

transmembrane helix at the N-terminal of the protein in agreement with the 

"predictprotein" results of T50H being located to the ER. T50H was not predicted 

to have a plastid transit peptide by ChloroP, as would be expected for CYP enzymes 

which are predominantly located in the ER. However, confocal images (Figure 4.10) 

of transgenic Arabidopsis roots showed that the T5OH-YFP was associated to the 

plastids (Figure 4.10 (iv) and (vi)) as well as localised to the ER network around the 

nucleus of the root cells (Figure 4.10 ii). 
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Figure 4.10 Localisation of T5OH-YFP. 

Confocal scanning fluorescence microscope images of T5OH-YFP expressed in Arabidopsis 
roots showed the T5OH was targeted to the endoplasmic reticulum around the nucleus (i) 

and the plastid (iv) & (vi). (i), (iii) and (v) show the phase contrast images of the same roots. 
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Most nuclear-encoded chloroplast proteins have a cleavable N-terminal transit 

peptide, although proteins targeted to the chloroplast outer envelope membrane 

generally lack this transit peptide (Keegstra and Cline, 1999), as is the case of the 

T5OH. Overall, the confocal images suggested that T5OH might be targeted to the 

outer envelope membrane of the plastid as well as being associated with the ER. This 

is consistent with the previous reports (Jennewein et al., 2004a) that the protein was 

found in microsomal extracts of Taxus culture cells, further implying that this 

enzyme is co-localised to the ER. 

With T5OH spatially distributed between the plastid and the ER, this has led to the 

suggestion that this enzyme might attach itself to the taxadiene at the plastid 

envelope and help its movement to the ER, where the first hydroxylation at the C-5 

position of the taxane core takes place by T5OH, in the presence of the cytochrome 

NADPH-reductases associated with the ER. 

4.2.3 Taxadiene-5acetyl transferase (T5AT) is targeted to the ER 

4.2.3.1 Sub-cellular localisation of TSATin transgenic tobacco plants 

Walker et al. (2000) reported that sequence analysis of the protein T5AT catalysing 

the third step of the Taxol biosynthetic pathway, did not appear to encode any N- 

terminal targeting information. However, the activity of this enzyme was reported to 

reside in the microsomal extracts, which led the authors to propose the protein to be 

localised to the ER. To study its localisation, T5AT cDNA was amplified without its 

stop codon using the T5AT:: pCR8 as template and the primers 5Tax5Acyl (forward) 

and 3Acetyl T-NSC (reverse) (Appendix I) (work performed by former MSc student 
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Raj Kamal Mann). The amplified fragment was fused in frame to the plant binary 

vector pGBPGWC (Zhong et al., 2008) to give the construct T5ATns:: pGBPGWC 

(T5AT-CFP) (Figure 4.11 A) which confers resistance against basta and carries a 

cyan fluorescent protein (CFP). This construct was transformed into wild type 

tobacco and the explants were selected on 10 mg/L Basta. The presence of the insert 

T5AT was verified by PCR and the transgenic plants were grown for I month. 

A northern blot assay was carried out on the total RNA extracted from the leaf 

tissues of 1 month-old transgenic plants carrying the T5AT-YFP construct, in order 

to investigate the level of T5AT transcript expression in these RNA samples. The 

probe (Figure 4.11 A) used for membrane hybridisation was prepared by PCR 

amplification of the T5AT using the primers 5Tax5Acyl and 3Acetyl T-NSC. The 

northern blot results (Figure 4.11B) indicated that the T5AT transgene was being 

expressed in all the transgenic lines, with line F having the lowest level of T5AT 

transcript expression. 

The lower surface of the epidermis of the transgenic plants were mounted on 

respective microscopic slides and observed with the confocal microscope. The 

confocal images of the CFP fluorescence in the 35:: T5AT:: CFP transgenic tobacco 

cells (Figure 4.12) showed that the T5AT-CFP fusion protein was localised in the 

ER, and did not co-localise with the red chlorophyll auto-fluorescence of the 

chloroplasts. Sequence analysis of the T5AT by the "predictprotein" software 

indicated the presence of a transmembrane helix at the N-terminal of the protein, 

suggesting the protein to be localised to the ER, consistent with the confocal images 

of the transgenic tobacco leaf epidermal cells. However, some of the CFP 
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fluorescence were observed in the cytoplasm of the trichomes of the tobacco leaves 

(Figure 4.12; iii, iv and v). This cytoplasmic signal may have been in the 

endoplasmic reticulum of the trichomes, but the images obtained did not allow a 

conclusive location to be determined. 
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Figure 4.11 Expression of T5AT in tobacco leaves 

(A) Schematic diagram of the T5AT:: pGBPGWC vector generated by VectorNTl. 
Expression is driven by a constitutive 35S promoter and TSAT is fused at its C-terminus to a 
CFP gene. The construct also carries the nos-Bar gene which confers resistance to basta 
herbicide. (B) Northern blot analysis was carried out using 10 µg of total RNA from the 
tobacco leaves and hybridised to 32P labelled cDNA probe which was generated by PCR 

using the T5AT:: pGBPGWG as template. WT - RNA from wild type tobacco, T5AT+Sc - 
Tobacco line expressing the full-length T5AT cDNA. 
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Figure 4.12 Localisation of T5AT-CFP 

Confocal scanning fluorescence microscope images of T5AT-CFP expressed in tobacco 
epidermal cells showed the T5AT was targeted to the ER and possibly to the cytoplasm. (i) 
and (ii) indicate that the CFP fluorescence is predominantly localised to the ER around the 
nucleus and in the ER network respectively. (iii), (iv) and (v) show the CFP fluorescence, 
Chlorophyll auto-fluorescence and the CFP (blue) superimposed on the chlorophyll auto- 
fluorescence (red) respectively in the trichome. 
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4.3 Discussion 

The sequence similarity and close clustering of the enzymes involved in the early 

steps of Taxol biosynthesis with those of the GA biosynthetic pathway (Section 

3.3.3) might indicate that they might share a common evolutionary ancestry. In both 

GA and Taxol biosynthesis, these enzymes carry out the cyclisation of GGPP 

followed by CYP catalysed hydroxylations of the resulting skeleton. The genes 

encoding the first three steps of the gibberellins biosynthetic pathway in Arabidopsis 

have been isolated and their sub-cellular localisation previously studied by Helliwell 

et al. (2001b). The first two enzymes copalyl diphosphate synthase (AtCPS 1) and 

ent-kaurene synthase (AtKS 1) of the terpene cyclase, were both reported to catalyse 

the first two steps of GA biosynthesis from GGPP to ent-kaurene and were both 

localised to the plastid stroma The first three oxidation steps from the non-polar ent- 

kaurene which was believed to partition into membranes, to ent-kaurenoic acid have 

been shown to be catalysed by the CYP ent-kaurene oxidase (AtKO1) (Helliwell et 

al., 1999). This enzyme has been localised to the outer envelope of the chloroplast, 

while the enzyme ent-kaurenoic acid oxidase (AtKAOI and AtKAO2 in 

Arabidopsis) catalysing the next three steps of the GA biosynthetic pathway, from 

ent-kaurenoic acid to GA12, has been localised to the ER (Helliwell et al., 2001a). 

The authors also reported some of the AtKO I to be located in the ER, which led to 

the suggestion that ent-kaurene export from the plastid is linked to its further 

oxidation where it forms more water-soluble intermediates which are further 

metabolised by the ER-localised AtKOI en route to GA. 
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It was reasoned that if the GA and Taxol biosynthetic enzymes share similar 

evolutionary origin and carry out similar kinds of reactions, the localisation of the 

early enzymes of Taxol and GA biosynthesis might also share similar sub-cellular 

localisation. Fusions of the Taxol biosynthesis enzymes TXS, T5OH and T5AT to 

fluorescent proteins were used to confirm the similar subcellular localisations of the 

early enzymes of the Taxol pathway to those of the GA pathway. Transgenic tobacco 

and Arabidopsis lines were constructed by Agrobacterium transformation with 

plasmid vectors containing a functional antibiotic resistance selectable marker and a 

fluorescent protein tag. 

The N-terminal pre-sequences of the T. baccata terpene TXS encodes a plastidial 

peptide sequence which was shown to direct the protein to chloroplasts in transient 

assays following microprojectile bombardment of onion epidermis. The TXS-GFP 

fusion was also found to be imported by A. thaliana and N. tabacum chloroplasts. 

These results are consistent with the previous prediction of the TXS enzyme being 

localised to the plastids where it is involved in the cyclisation of the GGPP from the 

MEP pathway to yield taxadiene, the first compound of the Taxol biosynthetic 

pathway. 

The first oxygenation of the Taxol pathway is catalysed by the cytochrome P450 

mono-oxygenase T5OH which has been proposed to be associated to the ER. The N- 

terminal portion of T5OH carries a potential transmembrane signal sequence, 

suggesting that the enzyme is localised to the ER. However, the results of the 

confocal microscopy during this research indicated that a substantial proportion of 

YFP fused to the T50H was localised to the plastids of Arabidopsis. Since the 
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sequence of this gene does not contain a cleavable transit peptide, it was speculated 

that the enzyme was localised on the outer face of the chloroplast envelope as well as 

being associated to the endoplasmic reticulum. Many proteins targeted to the 

chloroplast outer envelope membrane lack a cleavable transit peptide (Keegstra and 

Cline, 1999), as seems to be the case for T5OH and also for AtKOI (Helliwell et al., 

2001b). The interesting point that was clarified in this area of research, was that the 

T5OH has more than one localisation in the cells. This is consistent with the 

suggestion of Werck-Reichhart and Feyereisen (2000) that some P450 enzymes have 

more than one subcellular localisation. T5OH and the Arabidopsis ent-kaurene 

oxidase have high sequence similarity indicative of a common evolutionary origin, 

both carrying out the first CYP-catalysed oxygenation step of a cyclised diterpene 

and both appear to have a dual localisation to both the plastid envelope and the ER 

(Helliwell et al., 2001b; Section 4.2.2.2). The localisation of T5OH might suggest 

that this hydroxylase associated to the plastid-envelope is required for the export of 

taxadiene from the plastid to the ER as well as catalysing its conversion to taxadiene- 

5a-ol. 

The same construct, T5OH-YFP, used for Arabidopsis transformation was also used 

for tobacco transformation. However, only seven transgenic lines were recovered and 

this was only possible after an elevated level of auxin was used. Of these plants, only 

four were found to be expressing the T5OH-YFP transgene. Plants expressing the 

full-length T5OH mRNA without the fluorescent tag were separately generated and 

were all found to be sterile, with non-viable pollen. This suggests that an active 

enzymatic form of T5OH may have substrates upon which it can act in tobacco. This 

could result in the pollen-lethality either by generating a new, toxic compound, or by 
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depleting an essential substrate. However, none of the transgenic lines expressing the 

T5OH-YFP construct were found to be sterile, which could lead to the suggestion 

that the T5OH-YFP mRNA was not efficiently translated, or that the protein 

produced was rapidly turned over, which would also explain the absence of YFP 

fluorescence in these lines. 

Sequence analysis of T5AT indicated a transmembrane helix sequence, suggesting 

this enzyme to be localised to the ER. The prediction was shown to be correct for 

T5AT which was demonstrated to be localised to the ER of the epidermal cells of 

transgenic tobacco lines expressing the T5AT-GFP. This localisation data correlates 

with the previous report of this enzyme being present in Taxus microsomes (Wheeler 

et al., 2001) which led the authors to suggest the localisation of this enzyme to the 

ER. Furthermore, there was no overlap of the CFP and chlorophyll signals from the 

transgenic cells for this construct confirming that T5AT is not associated with the 

chloroplasts, but is ER-located. The "predictprotein" software also predicted the 

T5AT to be a soluble enzyme localised to the cytoplasm, in agreement to the 

apparent localisation of T5AT-CFP in the cytoplasm of the transgenic tobacco 

trichomes. This cytoplasmic signal may have been in the endoplasmic reticulum of 

the trichomes, but the images obtained did not allow a conclusive location to be 

determined. 

In conclusion, the confocal images of the translational fusion of the fluorescent 

proteins and the respective T. baccata genes have shown that TXS is targeted to the 

chloroplast, T5OH is associated to the outer envelope of the chloroplast as well as to 

the ER surrounding the nucleus, and T5AT is targeted to the ER. These results 
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confirmed that the stages of the Taxol biosynthetic pathway are compartmentalised 

within the plant cell, with T5OH potentially providing a crucial link between the 

plastid and ER-located steps of the Taxol biosynthetic pathway. These localisation 

data might provide an explanation to the previous hurdles encountered during the 

reconstitution of the Taxol biosynthetic pathway in S. cerevisiae (Dejong et al., 

2005) and in Ecoli (Huang et al., 1998; 2001). Both microbes lack the plastid 

organelles where TXS is targeted for the cyclisation of GGPP into taxadiene. The 

authors have reported the use of a truncated version of TXS where the plastidial 

sequence was deleted, to produce a more soluble form of the enzyme. However a 

maximum of only 0.5 mg/g DW of taxadiene was produced in yeast and 1.3 mg/L in 

E. coli which suggests a limited GGPP pool available in microbes for taxadiene 

synthesis. Dejong et al (2005) also reported a pathway restriction at the T5OH- 

hydroxylation step which led the authors to suggest that this might have been due to 

the low endogenous levels of NADPH-cytochrome P450 reductase (CPR) in yeast, 

required for redox coupling with the CYP T5OH. The localisation data of T5OH has 

indicated the association of this hydroxylase with the plastidial envelope and the ER, 

suggesting that in addition to being required for the synthesis of taxadiene-5a-ol, 

T5OH may also be needed for taxadiene translocation from the plastid to the ER 

where further modification of the taxane core takes place. The plastidial association 

of T5OH might provide an explanation of the pathway restriction in yeast which do 

not possess this particular organelle. Furthermore the low endogenous level of CPR 

in yeast might also restrict the action of the downstream CYP enzymes of the Taxol 

pathway which have all been suggested to be associated to the ER. 
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Taking into account these pathway restrictions previously encountered in these two 

microbes, it was reasoned that plants might provide a better system for the 

heterologous expression of the Taxol biosynthetic genes, where the presence of the 

large available pool of GGPP and the substantial number of plastids in plant cells 

would provide a better platform for taxadiene synthesis. Also, the high levels of 

endogenous CPR and the presence of endoplasmic reticulum in plants would allow 

further modifications of the taxane core by the CYP enzymes of the Taxol 

biosynthetic pathway which are responsible for nearly half of the steps of the 

pathway. 
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CHAPTER 5: HETEROLOGOUS EXPRESSION 

OF THE TAXOL BIOSYNTHETIC GENES 

5.1 Introduction 

The slow growth of yew trees and the relatively low content (0.01-0.1 % dry weight 

of bark) (Hezari et al., 1997) of Taxol extracted limit the supply of the drug. The 

presence of unwanted analogues with very similar structures to that of Taxol makes 

its purification difficult. Transferring genes of the Taxol biosynthetic pathway into 

heterologous organisms for their overexpression may provide a method for increased 

production of the taxanes of interest whilst preventing the formation of side products, 

which would decrease the production cost of these compounds. It might also address 

the issue of separation and purification of the desired compound compared to its 

extraction from the native plant source as well as providing a route to novel taxanes 

with improved solubility and similar antitumour properties to Taxol. 

Attempts for the reconstitution of the Taxol biosynthetic pathway in heterologous 

systems have been reported with mixed success in yeast, Ecoli, Arabfdopsis thaliana 

and Nicotiana sylvestris. The use of plant systems for the overexpression of the 

Taxol biosynthetic genes appears to be advantageous, due to the presence of plastids 

for the committed cyclisation of GGPP to taxadiene, and ER, where further 

modifications of the taxane core can take place. Also, the presence of high level of 

plant endogenous CPRs will be useful for the oxygenations of the taxadiene core by 
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the Taws CYP mono-oxygenases. The other advantage of using heterologous plant 

species as expression hosts is the potential for cheap and easily extractable source of 

taxadiene and the other downstream taxanes. 

A previous report on the constitutive expression of TXS in Arabidopsis has 

documented the production of taxadiene at level 20 ng/g DW (Besumbes et al., 

2004). Besides the low level of taxadiene produced in these Arabidopsis plants, the 

authors also reported pleiotropic effects associated with the constitutive expression 

of TXS; including reduced hypocotyl length, retardation of growth and flowering and 

pale, bleached phenotype. It was reasoned that the level of GGPP accumulation in 

Arabidopsis might be insignificant for its redirection for the production of taxanes in 

this plant system, without the adverse phenotypic effects. 

The successful production of taxadiene in yellow flesh tomato mutant at a level of 

339 µg/g DW in ripe fruits constitutively expressing TXS (Kovacs et al., 2007) has 

led to the speculation that the GGPP in the easily manipulated N. tabacum could be 

redirected for the production of taxadiene and downstream taxanes in the plant. 

These taxanes could be used as starting material for the semi-synthesis of novel 

taxanes with better solubility than Taxol, and having the ability of modulating MDR 

in drug-resistant tumour cells. 
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5.2 Results 

5.2.1 Analysis of taxadiene producing tobacco lines 

T. baccata TXS cDNA was cloned into the plant binary vector pBC35, under the 

transcriptional control of the CaMV 35S and terminator cassette. The resulting plant 

binary vector thus named pBCTax has been used to transform wild type (Wt) tobacco 

plants (work previously done by Dr. Katalin Kovacs, The University of Nottingham, 

UK). The seeds from these taxadiene producing tobacco lines were provided and 

were grown for one month on MSR3 medium containing kanamycin antibiotic. 

The crude hexane extracts from four independent lines constitutively expressing the 

TXS gene were analysed for the presence of taxadiene in the leaves. 1 t1 of the 

hexane extract from each leaf sample was subjected to chromatography-mass 

spectrometry (GC-MS) analysis. GC-MS analysis was performed on a GC 8000 gas 

chromatogram linked to an MD800 mass spectrometer (Fisons, Manchester UK). 

Samples were injected in split-less mode (injector 250°C) onto a 30m x 0.25 mm ID 

fused silica capillary column BP-5 (SGE, Milton Keynes UK) with a 1.0 µm film 

thickness. The initial oven temperature was 160°C, this was ramped to 300°C at 

10°/min after a1 min delay (using helium as the carrier gas). 

All four lines analysed were found to give a major GC peak at retention time (Rt) 

8.03 min and a smaller peak at Rt 7.20 min (Figure 5.1 i) which were both absent in 

the wildtype tobacco control. These peaks were scanned for the major ions at m/z 

122 (100%), 121,123 and 107, characteristic of taxadiene. The mass spectrum of the 

peak at Rt 8.03 was compared to that of taxadiene produced by the r tomato fruits 

(Figure 5.1 iii) (Kovacs et al., 2007) and was found to be almost identical to that of 
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taxa-4(5), 11(12)-diene. The mass spectrum at RT 7.20 min was not scanned but was 

speculated to be that of the taxa-4(20), 11(12)-diene isomer which has been 

previously reported to have an RT very close to that of taxa-4(5), 11(12)-diene 

(Williams et al., 2000). 

The line showing a more distinctive mass spectrum of taxadiene was transformed at 

many instances with a pGHPGWY (hygromycin resistant) into which T5OH was 

cloned, with the aim of generating transgenic lines co-expressing the two transgenes. 

Only a few transgenic lines were generated, however, the crude hexane extracts from 

these lines indicated no presence of taxadiene-5a-ol when subjected to GC-MS 

analysis (data not shown). As an alternative way of "stacking" the two transgenes 

TXS and T5OH in individual lines for the potential production of the downstream 

taxane, tobacco line producing taxadiene were to be cross-pollinated with lines 

expressing the T5OH transgene. 

The seeds from the tobacco line showing the best mass spectrum of taxadiene were 

sown and crude hexane extracts from 21 of the progeny from this line were analysed 

by GC-MS under the following conditions: the initial oven temperature was 60°C, 

This was ramped to 400°C at 10°/min after a1 min delay (using helium as the carrier 

gas). The 122 ion scan of the GC chromatograms indicated only three of the 

progenies (Line 1,3 and 9) to show a peak at RT 36.58 min having mass spectrum 

similar to authentic taxadiene (Figure 5.2 i showing 122 ion scan for line 1) which 

was absent in the Wt tobacco hexane extract (Figure 5.2 iii (a & b)). 
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Figure 5.1 GC-MS analysis of crude hexane extracts from taxadiene synthase 
expressing tobacco plants. 

GC-MS analysis of crude hexane extracts from TXS expressing tobacco plants (i) 122 ion 

scan of the GC chromatogram in extracts from transgenic leaf showing the peak at Rt 8.03 
for taxa-4(5), 1 1(12)-diene and the potential isomer taxa-4(20), 1 1(12)-diene at Rt -7.2 min. 
(ii) Mass spectrum of the peak with Rt 8.03 min from tobacco extracts is almost identical to 
that of (iii) taxa-4(5), l 1(12)-diene from transgenic tomato fruit expressing TXS. 
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Figure 5.2 GC-MS analysis of crude hexane extracts from TXS Line 1. 

The leaf exudates of TXS line I and Wt tobacco were subjected to GC-MS analysis. (i) GC 
profiles of 122 ion scan indicating the taxadiene peak at 36.58 minute. (ii) Mass spectral 
fragmentation of the peak at retention time 36.48 min having major ions characteristic of 
taxa-4(5), 11(12)-diene. (iii) (a) TIC in extracts from wild type tobacco and (b) 122 ion scan 
showing the absence of the peak characteristic of taxadiene at 36.58 minutes under the same 
GC-MS conditions. 
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The peak at Rt 36.58min gave a mass spectrum (Figure 5.2 ii) similar to that of 

taxadiene with major ions at m/z 122 (100%), 121, and 107, consistent with the data 

for authentic taxadiene (Williams et al., 2002a). The GC peak at RT 36.58 min was 

found to be much smaller when compared to the taxadiene peak from the parent line 

which might suggest that taxadiene was accumulated to a much lower level in the 

progeny when compared to other compounds produced in the leaves. Lines 1,3 and 9 

were used for further work as will be described in section 5.2.3. 

5.2.2 Generating new taxadiene producing tobacco lines 

Most of the progenies of the TXS expressing tobacco lines previously provided by 

Dr. Kovacs appeared to have lost the ability to produce taxadiene or the level of 

taxadiene appeared to have been constantly reduced in those plants. With the aim of 

generating more lines producing this important taxane and in higher level, the 

pBCTaxK binary construct (provided by Dr. Rupert Fray, The University of 

Nottingham, UK) was transferred into wild type tobacco by Agrobacterium-mediated 

transformation. The explants were selected on kanamycin and the presence of 

transgenic lines was verified by PCR on the gDNA extracted from the shooting 

callus by using the primers TaxMidl and Taxint35 (Figure 5.3 i). An amplified 

fragment of 722 bp was observed in most of the shooting calluses (Figure 5.3 ii). The 

transgenic plants were allowed to root in media containing auxin, before being 

transferred to soil and grown for one month. 
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Figure 5.3 PCR analysis to check for TXS gene in shooting callus 

(i) The schematic diagram of TXS cDNA and primers used for PCR analysis were generated 
by vector NTI (Invitrogen). (ii) Gel picture showing PCR amplification of leaf gDNA from 
lines 1-12 to check for the presence of TXS. PCR amplified fragment of 722 bp using the 
primers TaxMid I and Taxint35 confirms the presence of the TXS transgene in most of the 
shooting callus. H-I refers to the Hyperladderl molecular marker, Wt refers to wild type and 
-ve refers to the negative control where water was used instead of DNA. 

A northern blot assay was carried out on the total RNA extracted from the transgenic 

leaves to investigate the level of expression of the TXS transgene mRNA in the 

transgenic plants. Line 4 which was found to express the highest level of TXS 

mRNA (Figure 5.4) died at a very young stage (-1 month old), thereby preventing 

any further analysis of this line. This led to the speculation that the high level 

accumulation of taxadiene in this line might have been toxic/lethal to the plant. 
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Figure 5.4 Expression of TXS mRNA in transgenic tobacco plants. 

Northern analysis was performed using 10µg of total RNA extracted from transgenic tobacco 
lines. The northern blot membrane was hybridised with a full-length TXS cDNA probe 
generated by PCR amplification using the primers TaxSynF and TaxSynRns to give a 2.6 Kb 
fragment. The northern blot indicates varying levels of expression, with the highest TXS 
mRNA expression being in line 4 and 6. 

Following confirmatory expression results from the northern blot, crude hexane 

extracts from lines 1,3,5,6,9,10 and 12 were prepared and subjected to GC-MS 

analysis under the following conditions: the initial oven temperature was 160°C, this 

was ramped to 300°C at 10°/min after aI min hold (using Helium as carrier gas). 

The 122 ion scan of the GC chromatogram from the generated TXS expressing lines 

showed a peak at around 8.43 - 8.45 mins in the extracts from the transgenic lines, 

having a mass spectrum very similar to that of taxadiene (Figure 5.5 A (i & ii)). The 

mass spectrum of this peak gave major ions at m/z 122 (100%), 121,123,107,272, 

(Figure 5.5 C(i- iii)) consistent with the publised data for taxadiene (Kovacs et al., 

2007). Hexane extracts from wild type tobacco (Figure 5.5 b (i-iv)) was also 
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analysed as control and no peak characteristic of taxadiene was observed in the TIC 

or in the 122 ion scan. No further work has been done with these transgenic lines, but 

it might be useful quantifying and purifying the taxadiene produced for future work. 
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Figure 5.5 GC-MS analysis of crude hexane extracts from taxadiene synthase 
expressing tobacco plants. 

(A) (i) TIC and (ii) 122 ion scan of the GC chromatogram from extratcs of transgenic line 6. 
All the transgenic lines analysed gave a peak at around 8.43-8.45 minn (indicated by the 
arrow) representative of taxadiene. (B) i- iv show the TIC and 122 ion scan of the Wt 
tobacco extracts. No peak at same retention time as that of taxadiene was observed in the Wt 
(C) i- iii show the mass spectral fragmentation of the peaks at Rt 8.43-8.45 min from lines 
3,5 and 6 which were similar to published MS data for taxadiene. 

5.2.3 Generating tobacco lines expressing the taxadiene-5a-hydroxylase 

transgene 

As previously described in chapter three, the T5OH cDNA was placed under the 

control of a CaMV 35S promoter in the plant binary vector pGWB8 (Invitrogen). 

This construct was introduced into A. tumefaciens GV3101/pMP90, a disarmed 

derivative of the nopaline GV3101 strain and the bacterial colony showing the 

presence of the T5OH insert was used for transformation of wild type tobacco line as 

previously described (Section 2.12.7). The tobacco leaf-sections transfected by A. 

tumefaciens GV3 101 were placed on selection medium of MS agar with hormones 
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(0.5 mg/mL IAA and 0.75 mg/mL Zeatin) and antibiotics (70 mg/L kanamycin). 

Shoots began to develop in callus at the edge of the leaf-sections two weeks later. 

The shoots 1-2 cm in height were cut off from the callus and transferred to MS agar 

medium supplemented with 0.5 mg/mL IAA for rooting and 70 mg/L of kanamycin. 

8 independent transgenic lines transformed with T5OH:: pGWB8 were generated. 

The presence of the -1500 bp T5OH transgene in the genomic DNA of the putative 

transgenic lines generated were examined by PCR (Figure 5.6). 

Figure 5.6 PCR analysis on shooting callus for the presence of T5OH fragment. 

Gel picture showing the presence of PCR fragments of - 1500 bp in size. The PCR was 
performed using the primers 5Tax5alph and 3Tax5alph, amplifying the full-length of the 
T5OH cDNA from the gDNA of shooting callus. +ve = positive control (T5OH:: pGWB8 
plasmid), -ve = negative control (water). 

To verify the expression of the T5OH transgene mRNA in the transgenic lines, a 

nothern blot analysis was carried out on the RNA extracted from the lines A, B, G, L, 

N and 0 (lines C and F died prior to further analysis). The northern blot results 

(Figure 5.7 ii) indicated that the transgenic lines L, N and 0 expressed the highest 

level of T5OH mRNA transcripts. An RT-PCR was performed on the RNA from 

Line 0 to verify the size of the mRNA transcribed, and the full-length PCR fragment 

of size -1500 bp (Figure 5.7 iii) confirmed that no post-transcriptional modifications 
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such as "wrong" splicing had occurred in planta. Line L, N and 0 expressing high 

levels of T5OH mRNA were used for further work. 

1563 bp 

STaxSalph 3Tu5alph 

(ii) 

Figure 5.7 Expression analysis of T5OH transgene mRNA. 

Northern analysis was performed using 10µg of total RNA extracted from the transgenic and 
Wt tobacco lines. The northern blot membrane was hybridised to cDNA probe as shown in 
(i) generated by PCR amplification of the full-length T50H cDNA by the indicated primers. 
(ii) Northern blot results indicating the highest level of expression of the T5OH mRNA 
transcipt in lines N and O. Wt tobacco RNA was used as negative control. (iii) RT-PCR 
results using the primers 5Tax5alph and 3Tax5alph confirming the correct size of the 
expressed T5OH mRNA in line O. +RT = reverse transcriptase enzyme added, -RT = reverse 
transcriptase omitted during first strand cDNA synthesis, +ve = T5OH:: pGWB8 as positive 
control. 

5.2.3 Analysis of progeny from crosses between T5OH and TXS expressing lines 

With the aim of producing the first oxygenated taxane en route to Taxol, transgenic 

tobacco plants expressing the TXS transgene (Lines 1,3 and 9) (Section 5.2.1) were 

cross-pollinated to lines L and 0 expressing the T5OH transgene. These T5OH 

transgene expressing lines however demonstrated a male and possible female sterile 
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phenotype and typically showed no seed production, hence making crossing difficult. 

Taking this phenotype into account, the pollen from the taxadiene producing tobacco 

lines were used as the male gamete and gently rubbed on the stigma of the flowers 

from the T5OH expressing tobacco lines. These lines were crossed at multiple 

instances, however only a few progeny were obtained. Most of the pods acquired 

from the crosses contained a maximum of 3-4 seeds per pod. The seeds produced 

from the repeated crosses were sown in soil and allowed to grow under controlled 

conditions. The presence of the TXS and T5OH transgene in the progeny were 

identified by PCR on the genomic DNA extracted from the individual 2-3 weeks old 

lines. 

PCR analysis showed the presence of both TXS and T5OH transgenes in most 

progeny obtained from the crosses between TXS 3d+ T5OH L9 (Figure 5.8A). 

Only lines 2,5,8,9 and 11 from crosses between TXS 9C! ' + T5OH L9( Figure 5.8 

B) were found to be transgenic for both TXS and T5OH trangene. For the progenies 

obtained from crosses between TXS 1 Cr + T5OH 09 (Figure 5.8C), all the lines 

were shown to carry the TXS transgene while 29 out of the 36 progeny tested 

showed the presence of the T50H transgene. PCR analysis with the primers 

TaxMidl and Taxint35 amplified a TXS fragment of size 722 bp in the progeny 

transgenic for TXS. The presence of T5OH in progeny from crosses between TXS3 

+ T5OH-L and TXS9 + T5OH-L were identified using the primers 5aOH-Mid-F and 

3Tax5alph (Figure 5.8Ai & Bi) to give an amplified fragment of 859 bp. To check 

for the presence of T5OH in progenies from crosses between TXS 1+ T5OH-O, 

primers CaMV35 S promoter and T5OH-R-Pst primer (Appendix I) were used to 

amplify a T5OH fragment of 864 bp (Figure 5.8C (ii)). 
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Figure 5.8 PCR analysis on progenies from crosses between T5OH and TXS 
expressing lines. 

The positions of the primers used for each PCR and the expected fragment sizes were 
generated by Vector NTI. A(ii), B(ii) and C(i) show the result of PCR amplification of TXS 
transgene in gDNA extracted from progenies, using primers TaxMidI and Taxint35 to give a 
fragment of 722 bp. A(i) and B(i) show the gel pictures of PCR amplification of the T5OH 
transgene from the gDNA in the progenies using primers 5aOH-MidF and 3Tax5alph to give 
a fragment of size 859 bp. C(ii) shows the PCR amplified fragments of 864 bp using the 
primers 35S-promoter-F and T50H-PstRev. HI= Molecular marker Hyperladder I, TXS = 
pBCTaxK plasmid DNA, T5OH = T5OH:: pCR8 plasmid DNA, -ve = water 
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Following confirmation by PCR analysis, the lines carrying both TXS and T5OH 

transgenes were transferred to soil and allowed to grow for one month. Only lines 2, 

3,7,10,15,16,17 and 18 from cross between TXS 3+ T50H L and lines 1,5,9,11 

from cross between TXS 9+ T5OH L grew and survived. A possible explanation for 

the early death of the plants could be that these particular lines were expressing the 

transgenes at high level or the accumulation of a novel compound produced in these 

lines could have been toxic to the plants. 

The expression of the transgenes was examined by a northern blot assay on the RNA 

extracted from the leaves of each progeny carrying both TXS and T5OH transgenes. 

A full-length TXS cDNA probe was generated by PCR amplification using the 

primers TaxSynF and TaxSynRns and pBCTaxK as template. The cDNA probe for 

T5OH was generated by PCR amplification using the CaMV 35S-promoter-F and 

T5OH-PstRev primers and T5OH:: pGWB8 as template. The results of the northern 

blot analysis as well as the positions of the primers used to generate the probes are 

shown in Figure 5.9. 

The results indicated that only line 18 from crosses TXS 3+ T5OH L (Figure 5.9 A) 

expressed both TXS and T5OH mRNA transcript while no progenies from crosses 

TXS9 + T5OH L (Figure 5.9 B) expressed the T5OH mRNA. The progenies from 

crosses between TXS 1+ T50H 0 showed varying levels of expression of both TXS 

and T5OH transgenes in most of the lines. The size of the bands obtained from the 

progenies corresponded to those of the parent lines used for crossing, however the 

smeared RNA ladder (Figure 5.9 C) did not permit the band sizes to be confirmed. 
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Figure 5.9 Northern blot analysis on progenies carrying the TXS and T50H 
transgenes. 

The expression of the T5OH and TXS mRNAs was verified by northern blot analysis. 10µg 

of RNA was used for each sample, wild type tobacco RNA was used as the control and the 
parent line used for each cross were used also as control. A schematic diagram of each probe 
used for membrane hybridisation is shown which are of sizes -2.6 kb and 864 bp for TXS 

and T5OH respectively. (A) Line 18 from progenies obtained from crosses between TXS 3+ 
T5OH-L showed the expression of both transgenes while none of the progenies from crosses 
TXS9 + T50H-L (B) showed expression of the T5OH mRNA. (C) Most of the progenies 
obtained from crosses between TXS I+ T5OH-O showed the expression of both transgenes. 

To verify the band sizes of TXS and T5OH obtained from these progenies, an RT- 

PCR was carried out on the RNA samples using the full-length primers for the 

transgene cDNA amplification. A control RT-PCR reaction was also carried out 

following DNase treatment where the reverse transcriptase enzyme was not added 

(data not shown). The results indicated no DNA contamination in the DNase treated 
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samples. The RT-PCR results shown in Figure 5.10 correlated with those from the 

northern blot analysis. The PCR fragments of -2700 bp (Figure 5.1 OA) and -1500 bp 

(Figure 5.1OB) amplified, confirmed the expression of the TXS and T5OH mRNA 

respectively. 

(A) 

OB 
T50H \V't 

Figure 5.10 RT-PCR analysis of transgenic lines 

The size of the TXS and T50H mRNAs expressed in each of the transgenic lines were 
confirmed by RT-PCR using the full-length primers 5Tax5alph and 3Tax5alph for T5OH 

cDNA amplification and Txs-F and TxsRns for TXS cDNA amplification. A PCR fragment 

of size -1500 bp was observed in the lines expressing the T50H transgene and a PCR 
fragment of size -2700 bp characteristic of the full-length TXS cDNA was observed in lines 

expressing the TXS. The RNA from parent lines TXS-1 and T5OH-O used for crossing was 
used as positive control. +ve = plasmid carrying the cDNA, -ve = water 
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5.2.4 GC-MS analysis of crude hexane extracts from lines expressing TXS and 
T5OH 

Following northern blot analysis and RT-PCR confirming the expression of the TXS 

and T5OH transgenes in the progenies obtained from the crosses, the leaves from 

these lines were extracted in hexane as described previously (Section 2.15.1) and 1 

µl of each crude extract was subjected to GC-MS analysis (Section 2.15.2). The GC- 

MS conditions were slightly modified from those used by Rontein et al. (2008) who 

reported the presence of an oxidised taxane 5(12)-Oxa-3 (11)-cyclotaxane (OCT) 

OCT instead of taxadiene-5a-ol in trichome exudates from transgenic N. sylvestris 

expressing both TXS and T5OH transgenes. 

The crude extracts from the transgenic plants were injected with an AS3000 auto- 

sampler in split-less mode (injector 250°C) onto a 30m x 0.25 mm ID fused silica 

capillary column BP-5 (SGE, Milton Keynes UK) with a 1.0 µm film thickness. The 

initial oven temperature was 40°C, this was ramped to 100°C at 10°C/min (using 

helium as the carrier gas) followed by 3 °C/min to 360 °C and a 5-min hold. 

The parent line expressing TXS was analysed as the control and a peak at Rt 36.58 

min (Figure 5.11 A i) having a mass spectrum of taxadiene (Figure 5.11 A iv) was 

observed which correlates with the Rt for taxadiene (36.86 min) from previously 

published data by Rontein et al (2008). No new product was detected in the parent 

line expressing only T5OH. The major ions 95,105,120 and 288, characteristic of 

taxadiene-5a-ol (Hefner et al., 1996) as well as the ions 191,149 and 288 for OCT 

were scanned for in the GC chromatogram obtained from each TXS+T5OH 

expressing plants. In transgenic lines co-expressing the TXS and TSOH transgenes, 
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the taxadiene was absent from the GC-MS profile (Figure 5.11 B), but taxadiene-5a- 

of could not be detected either. Similar observations were previously reported in N. 

sylvestris coexpressing TXS and T5OH, whereby taxadiene was absent in the lines 

expressing both transgenes (Rontein et al., 2008). 

A hexane extract from the line 21 carrying both transgene TXS and T5OH but 

expressing only the TXS mRNA demonstrated the presence of taxadiene at Rt 36.48 

min (Figure 5.11 ii). This data indicated that the taxadiene peak disappeared only 

when T5OH was being expressed, where taxadiene could have been used up to 

produce novel compound(s). It could also be postulated that the taxadiene-5a-ol was 

produced but rapidly turned over, explaining why it was not detected. 
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Figure 5.11 Analysis of hexane extracts from transgenic lines. 

Line 13 

Line 19 

Lise 20 

96.09 

Analysis of the extracts was performed with GC-MS. (A) i& ii show the retention time of 
taxadiene (indicated by the arrows in i& ii) in the parent line and Line 21 respectively both 

express only TXS transgene. (iii) shows the absence of the taxadiene peak at Rt 36.58 in 

wild type extracts. (iv) Mass spectral fragmentation of the peak at Rt 36.48 min from extracts 
of TXS parent line and Line 21 expressing only TXS show major ions characteristic of taxa- 
4(5), 11(12)-diene. (B) 122 ion scan of the GC-spectrum from exudates of progenies co- 
expressing TXS and T5OH. The peak characteristic of taxadiene with retention time 36.48 

was absent in all these lines. The line name is indicated on the top right hand side of each 
figure. 
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The TIC chromatograms of lines 13,19 and 20 co-expressing TXS and T5OH at high 

levels were compared to that of the Wt tobacco extract (Figure 5.12A). The GC- 

chromatogram for each exudate was scanned for the compound OCT (major ions 191 

and 288), which was reported by Rontein et al. (2008) to occur at Rt 39.52 min. A 

peak was observed at retention time 39.40 min (Figure 5.12B i) in most of the 

transgenic lines which was also present around same Rt in the Wt extract. This peak 

demonstrated major ion 191 (Figure 5.12B ii), however the entire mass spectrum of 

this peak did not match the published one of OCT (Rontein et al., 2008). 

The GC-chromatograms from the Wt and transgenic extracts were scanned for the 

major ions 95,105,120 and 288 characteristic of taxadiene-5a-ol. Rontein et al. 

(2008) reported the peak for authentic taxadiene-5a-ol to occur at Rt 40.72 min under 

the same GC-MS conditions as used for this area of study. Ions scan showed the 

presence of new peaks between Rt 40.16 and 40.89 min, which was around the 

expected Rt for taxadiene-5a-ol. These peaks were scanned for the major ions of 

taxadiene-5a-ol, but this strategy failed to detect the compound. The peak for this 

oxidised taxane could have been overlaid by the major peaks at retention time 40.17 

- 43.49 min (See appendix III). 

The GC scans for ions of taxadiene-5a-ol for each transgenic line are shown in 

Appendix III. A few peaks present in the transgenic but absent in the Wt tobacco 

extracts were consistent in the extracts of most transgenic lines, however, none of 

them demonstrated mass spectrum of either taxadiene-5a-ol or OCT. 
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Figure 5.12 Diterpene analysis of hexane extracts from transgenic lines 

Analysis of the extracts was performed with GC-MS. (A) The TIC from WT and three of the 
highest expressing lines 13,19 and 20, demonstrated no novel peak expected at around 
36min (OCT) or 40 min (taxadiene-5a-ol). (B) (i) shows the OCT ions scan of the GC 
spectrum of line 20. The peak at Rt 35.87 was scanned for the ions 191 and 288 (OCT) but 
the mass spectrum (ii) did not match that of the OCT compound. 

It could also be hypothesised that the taxadiene-5a-ol compound was produced in a 

small amount in the transgenic tobacco lines, hence its detection was missed by the 

GC-MS analysis. The hydroxyl group at the C-5 position of the taxadiene-5a-ol 

could also have made this compound highly unstable, volatile and very reactive, 

hence it could have been either degraded or used up as substrate by other CYP 

enzymes in the plants. 
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5.2.5 Generating tobacco lines expressing TXS, T5OH and T5AT transgenes 

The third step of the Taxol biosynthetic pathway catalysed by the T5AT adds an 

acetyl group at the C5 position of taxadiene-5a-ol. Taking into account the possible 

unstable nature of taxadiene-5a-ol, it was reasoned that the addition of an acetyl 

group at the C5-hydroxyl position might improve the stability of the compound, 

although the acetylated product formed might be more volatile. 

A. tumefaciens strain GV3 101 carrying the plant expression vector pGBPGWC, 

harbouring the TSAT gene under the control of a CaMV 35S promoter, was used to 

transform Wt tobacco. The transfected leaf sections were placed on selection MS 

agar medium supplemented with hormones and 10 mg/L basta. The presence of the 

T5AT transgene in the shooting callus was verified by PCR analysis using the 

primers 5Tax5acyl and Acetyl-Rns (Appendix I), the positions of which are indicated 

in Figure 5.13 (A). Only one transgenic line was generated (Figure 5.12B) and this 

was transferred to soil and allowed to grow for one month. 

A northern blot assay was carried out on the total RNA extracted from the transgenic 

line 1, to confirm the expression of T5AT mRNA. The probe used for membrane 

hybridisation was generated by PCR amplification using the same primers as 

indicated in Figure 5.13A. The results of the northern blot indicated that T5AT 

mRNA was expressed at a relatively low level (Figure 5.13C) in Line 1 when 

compared to the transgenic tobacco line expressing T5AT-ns previously generated 

for localisation of the protein. 
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Figure 5.13 Generating transgenic tobacco plant expressing T5AT transgene. 

(A) Schematic diagram showing the size of the probe used for membrane hybridisation 
during northern blot assay. The positions of the primers 5Tax5acyl and Acetyl-Rns used for 
PCR amplification are also indicated (B) Gel picture of PCR fragments of 1300 bp showing 
the presence of the T5AT cDNA in gDNA of line I while using the above primers. +ve = 
T5AT:: pGBPGWC as template,. (C) Northern analysis was performed using 10µg of total 
RNA extracted from transgenic and Wt tobacco lines. The northern blot membrane was 
hybridised to cDNA probe (A). The first lane shows no expression in Wt tobacco line, 

second lane is the RNA from plants expressing the T5ATns:: pGBPGWC and the third lane 
indicates the expression of T5AT in transgenic tobacco line 1. 

In order to generate plants expressing the first three genes of the Taxol biosynthetic 

pathway, line I expressing T5AT mRNA transcripts was cross-pollinated to lines 13 

and 20 co-expressing high levels of TXS and T5OH transcript mRNA. A male 

sterility phenotype was observed in lines 13 and 20, therefore the reciprocal crosses 

174 



Heterologous expression of the Taxol biosynthetic genes 

were not possible. It was again observed that the number of seeds per pod were less 

than 2-3, and very few seed pods were obtained following crossing. The presence of 

the three transgenes TXS, T5OH and T5AT in progenies obtained from the two sets 

of crosses was examined by PCR analysis on the gDNA extracted from the plants 

(Figure 5.14). Line A consisted of progenies from crosses between Linel T5AT + 

Line 13 and Line B consisted of progenies from crosses between Linel T5AT + Line 

20. 

The PCR analysis results shown in Figure 5.14, indicated that three out of 10 

progenies from line A and 20 out of the 31 lines tested from Line B carried all three 

transgenes TXS, T5OH and T5AT. In some cases, the amplified bands following 

PCR were very faint as in the case of line A6 which showed a pale band for T5OH 

transgene (Figure 5.14 B). The lines showing the presence of all three transgenes 

(indicated by arrows in Figure 5.14) were used for further analysis. 

A northern blot assay was carried out on the total RNA extracted from the transgenic 

lines carrying all three transgenes. The primers used for the preparation of probes 

used for each membrane hybridization and the sizes of each probe are indicated in 

Figure 5.15. The results of the northern blot showed that progenies 1 and 10 from 

Line A and 18,23 and 19 from Line B expressed all the three transgenes, with line 

B19 expressing the highest level of the TXS, T5OH and T5AT mRNA transcript 

(Figure 5.15). 
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Figure 5.14 PCR analysis on progenies from lines A and B. 

(A), (B) and (C) show the presence of the DNA fragments amplified to show the presence of 
the transgenes T5AT, T50H and TXS respectively. The primers used were as follows: 
5tax5acyl and 3tax5acyl for amplification of full-length T5AT cDNA of -1300 bp, 
5tax5alph and 3tax5alph for amplification of full-length T5OH cDNA of - 1500 bp and 
internal primers TaxMidl and Taxint35 for amplification of fragment size -700 bp showing 
the presence of the TXS transgene. The lines carrying all three transgenes are indicated by 
the red arrows. The positive controls T5AT, T5OH and TXS indicate the PCR fragments 
obtained from the parent line in each case, -ve = water as negative control and H-I = 
Hyperladder I as marker. 
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Figure 5.15 Northern blot assays on progenies from crosses between Line 13 and 
T5AT and Line 20 and T5AT. 

The northern assay was carried out on 10µg of RNA. The full-length cDNA probes were 
used in the cases of TXS and T5AT while for T5OH probing, the CaMV35S promoter - 
T50H-PstRev PCR amplified probe was used for membrane hybridisation. The primers used 
for the preparation of each probe and the size of the probes are shown next to each respective 
northern blot. The lines expressing the three transgenes are indicated by the black arrows. 
The RNA from the parent lines used for crossing was used as a positive control for the 
respective northern blot and Wt tobacco RNA used as negative control. 
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5.2.6 GC-MS analysis of crude hexane extracts from lines expressing TXS, 

T5OH and T5AT. 

Taxadiene-5a-yl acetate, the first acetylated compound and the third downstream 

product of the Taxol biosynthetic pathway is formed by the action of T5AT on 

taxadiene-5a-ol. There has been no report on the properties of this acetylated 

compound but addition of an acetyl group on the C5-hydroxyl group could make the 

taxadiene-5a-ol more stable, hence its accumulation might make its detection by GC- 

MS analysis easier. The crude hexane extracts (Section 2.15.1) from the leaves of 

tobacco lines Al, A10, B18, B19 and B23 expressing TXS, T5OH and T5AT mRNA 

were analysed for the presence of taxadiene-5a-yl acetate. 

The hexane extracts were analysed using both a polar and a semi-polar column under 

the following GC-MS conditions: Using the 30m x 0.25 mm ID fused silica capillary 

Zebron column ZB-1HT (Semi-polar column): The initial oven temperature was 

100°C, this was ramped to 330°C at 10°C/min using helium as carrier gas. Using the 

ZB-FFAP (polar) column the samples were run after the following conditions: The 

initial oven temperature was 50°C with a2 min hold. This was ramped to 250°C at 

10°C/min with a3 min hold. The latter GC-MS conditions were slightly modified 

from the previously published conditions under which taxadiene-5a-yl acetate was 

detected (Walker et al., 1999). 

The TIC obtained from the samples under each of the GC-MS conditions were 

compared to that of the wild type tobacco extracts, the results obtained using the 

polar column ZB-FFAP are shown in Figure 5.16B. A few new peaks (indicated by 

red arrows in Figure 5.16B) which were absent in the Wt tobacco extract were 
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consistently found in each transgenic line. The GC-chromatogram obtained from 

each transgenic was scanned for the major ions 105,120,255 and 270, characteristic 

of taxadiene-5a-yl acetate (Walker et al., 2000), however, the mass spectrum 

obtained from these new peaks did not correspond to that of the acetylated taxane. 

It was therefore speculated that the taxadiene-5a-yl acetate was not present or could 

have been lost during hexane extraction due to its possibly high volatility. The failure 

to detect this compound could also mean that the substrate taxadiene-5a-ol was not 

present initially or that it was quickly turned over or converted to other compounds 

by the plants endogenous enzymes, hence the acetylated compound could not be 

detected in the extracts. The peaks present in the transgenics but absent from the Wt 

extracts might indicate an accumulation of an increased level of compounds in the 

plants as response to stress following the expression of the three transgenes. 
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Figure 5.16 TIC chromatograms for transgenic tobacco lines expressing 
T5AT+T5OH+TXS and for Wt tobacco. 

Analysis of the extracts was performed with GC-MS. TIC obtained from the hexane extracts 
from each line were compared. The peaks indicated by the red arrows were absent or very 
much reduced in the WT sample but present in most of the transgenics expressing the three 
transgenes. 
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5.2.7 Different phenotypes associated with the heterologous expression of the 

Taxol biosynthetic genes in transgenic plants. 

5.2.7.1 Growth retardation and dwarfism in transgenic tobacco plants. 

During this research, different phenotypes were observed in transgenic lines 

expressing the Taxol biosynthetic genes. Line 4 (Section 5.2.2) generated which was 

found to express the highest level of TXS died at a very young stage. A possible 

explanation for this observation would be that a high accumulation of taxadiene 

might have been lethal to the plant. It can also be postulated that a large percentage 

of the plant GGPP pool required for other isoprenoid biosynthesis producing 

precursors for the plant regulators cytokines, GA and ABA, might have been 

redirected in the presence of TXS for the production of taxadiene. This might have 

caused a hormonal imbalance obstructing the normal development of the plant, as 

has been proposed to be the case when phytoene synthase is over-expressed (Fray et 

al., 1995). 

A correlation between reduction in height and transgene mRNA levels was observed 

in tobacco plants constitutively expressing the Taxol biosynthetic genes. Severe 

dwarfism was observed in transgenic tobacco lines 15 and 31 (Figure 5.17) co- 

expressing TXS and T5AT. This reduced stature was much more pronounced in line 

31, which might suggest a high level of taxadiene production in this plant. These 

dwarf phenotypes could have also been the result of a hormonal imbalance in these 

plants due to the redirection by TXS of the GGPP normally used for the biosynthesis 

of the plant hormones GA and BRs involved in stem elongation and cell division. 

Line B30 (Figure 5.17) expressing only the T5OH mRNA was also found to have 

reduced internode lengths when compared to the wild type. A possible explanation 
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for this phenotype could be that the constitutive production of an active enzyme form 

of T5OH in this line might have been acting upon substrates which are involved in 

the GA or BR biosynthetic pathway, thereby disrupting these biosynthetic pathways. 

As a result, less GA or/ and BRs are formed, affecting cell division and stem 

elongation in the plant. Abnormal pigmentation was also observed in leaves from 

most transgenic lines expressing the Taxol biosynthetic genes, which could have 

been attributed to a reduced level of available GGPP for the synthesis of the 

carotenoids or of the phytol side chain of chlorophyll in the plants. Further work 

would be needed to test these hypotheses. 

Figure 5.17 Altered plant growth with constitutive expression of the Taxol 
biosynthetic genes. 

Reduced internode lengths were observed in lines BI5, B30 and B31. The wild type (Wt) 
tobacco is shown as control. Line B 19 constitutively expressing T50H and TXS were found 
to be sterile and possessed narrower leaves when compared to those of the Wt. The 
expression of the respective mRNAs are indicated above each plant, for instance Line B15 11 
co-expresses TXS and T5AT mRNA. 
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5.2.7.2 Pollen viability and germination test from plants expressing the Taxol 

biosynthetic genes 

As mentioned in section 5.2.3, the T5OH expressing lines were all found to be sterile 

and were almost male-infertile due to reduced pollen number, viability, and impaired 

pollen release in most cases. The purpose of this area of study was to determine the 

viability of the tobacco and tomato pollen of lines expressing T5OH and TXS 

respectively. To test pollen viability in these lines, the pollen grains were stained 

with Alexander's solution (see Appendix II) for around 10 minutes before being 

observed under a light microscope. Photographs of the pollen from each plant are 

presented in Figure 5.18 and Figure 5.19 all of which demonstrate clear 

differentiation of aborted and non-aborted pollen grains. In all tested samples, non- 

aborted pollen grains stained magenta-red and aborted pollen grains stained pale 

blue-green. 

It was found that nearly 99% of the pollen grains from Wt tobacco were viable, while 

the percentage of viable pollen grains from the parent line expressing T5OH mRNA 

as well as the progenies expressing T5OH, was decreased to less than 25% (Figure 

5.18, Column A). The percentage of pollen in taxadiene producing tobacco plants 

were reduced to -92%, however, unlike the severe male-sterile T5OH lines, the 

pollen grains from the taxadiene producing plant were still mostly viable. It was also 

noticed that the anthers from the T5OH expressing lines usually contained fewer 

pollen grains than that of the wild type tobacco plant and only produced about 20% 

of the pollen per anther of the wild type. This dramatically reduced number of pollen 

grains might account for much of the reduced male fertility in these T5OH 

expressing lines. 
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The pollen tube elongation was examined by growing the pollen on MS media 

overnight as previously described (Section 2.17). The pollen grains were incubated 

with Alexander's stain for 10 mins and observed under a light microscope. Most of 

the wild-type pollen tubes grew while the germination rate of T5OH expressing 

plants was considerably less. < 20% of the viable pollen from these transgenic lines 

were found to have germinated (Figure 5.18, Column B), indicating that pollen tube 

growth is very likely to have contributed to the male sterility in the T5OH expressing 

lines. 

The redirection of GGPP in yellow flesh tomato mutant for the production of 

taxadiene (Kovacs et al., 2007) has resulted into severely reduced seed formation, 

generally producing parthenocarpic fruits, or fruits with less than ten viable seeds. As 

part of this research, a pollen viability and germination test was carried out on the 

pollen from these r tomato plants producing taxadiene, referred to as pBCTaxK in 

Figure 5.19. The number of viable pollen per anther were considerably less in the 

transgenic lines when compared to wild type tomato plants (Figure 5.19, column A). 

The germination rate of the pollen tubes from these transgenic tomato lines was 

found to be almost nil, however the presence of seemingly viable pollen was 

observed (Figure 5.19, column B). This may suggest that the pollen development was 

affected at the pollen tube development stage which is regulated by the 

phytohormone brassinosteroid (Clouse and Sasse 1998). Furthermore, previous 

crosses of Wt pollen to taxadiene producing tomato lines have led to the production 

of infrequent or parthenocarpic fruits. This might suggest that taxadiene 

accumulation in these transgenic lines might have been toxic to the plant, thereby 

affecting the female reproductive organs as well as the pollen formation. 

185 



Heterologous expression of th I. ivol hio, ýnthctiC _cNCs 

(A) we ""-"0 
"" 

" Viable """ 
"""" 

" 
"1 t 

." S" T9 
" "" 

""1 

SO 

rss .. %- 

"oYiabl. : 

~ "i 

T5OH 

9) 
" 

Labl. 

50µm "" 

Li.. 20 

V ab1. 

No. - table 

U.. 19- 

tip 

Viable r 

, 1öß-\7 
bl. 

y" 

, qo 

(B) 

.ý 
" r' ýý 

ýp " 
10 Mý 4M\I ýý 

90H 

" 

c. ýr.. N. s " 
Pau- 11f 

List 20 

lo 

*OV1,61. 

10 pm 

Lin. 19 
"" 

ý" v«a-tau. 
" 

0 low- IF* 
00 do 

Figure 5.18 Comparison of pollen among the transgenics and wild-type tobacco. 

Column A show the results of the pollen viability test and column B shows the results of the 
pollen germination test. The viable and non-viable pollen are indicated. Alexander's stain 
coloured the aborted pollen grains blue-green, and non-aborted pollen grains stain magenta- 
red. Lines 19 and 20 expressed both TXS and T50H transgenes, Wt refers to wild type 
tobacco pollen, TXS refers to pollen from TXS expressing plants and T5OH refers to pollen 
from T5OH expressing plants. Scale bar 10µm, 50µm. 
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Figure 5.19 Comparison of pollen viability and germination between wild type 
and TXS expressing tomato. 

Column (A) shows the results of the pollen viability test, indicating around 99% viable 
pollen in Wt tomato while -50% viable pollen in TXS expressing tomato plant referred to as 
pBCTaxK. Column (B) shows the germination among the pollen where a larger rate of 
germination had taken place within the Wt but none in the pBCTaxK pollen. The aborted 
pollen grains have been stained blue-green, and non-aborted pollen grains stained magenta- 
red by Alexander's stain. Scale bar, 10µm and 50µm. 
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5. Z 73 Generating transgenic Arabidopsis carrying the Taxol biosynthetic genes. 

Taking into account the phenotypes observed in tobacco plants expressing the TXS 

and/or T5OH transgenes, these genes were transferred to A. thaliana to observe 

whether the same phenotypes were obtained when they were expressed. Transgenic 

Arabidopsis expressing the TXS transgene demonstrated severe dwarfism, 

concomitant growth retardation, reduced hypocotyl length and premature death of the 

plants. A plausible explanation for these phenotypic effects would appear to be that 

the high accumulation of taxadiene in these transgenic plants could have been lethal 

to the plant. Very few seeds were obtained from previously generated taxadiene 

producing Arabidopsis lines, whereby most of the progeny still carrying the 

transgene appeared to have lost the ability of expressing the transgene and to produce 

taxadiene (Previous work done by Dr. Rupert Fray). This might indicate that the 

constitutive production of an active TXS enzyme might have redirected the GGPP 

required for phytohormone biosynthesis and carotenoids pathway, for the formation 

of taxadiene. As a result, this could have caused a hormonal imbalance, thereby 

affecting pollen and seed development. It could also be hypothesised that the high 

level accumulation of taxadiene in these progeny might have been toxic to the plant, 

hence only lines expressing the lowest level of TXS or those not producing taxadiene 

survived. 

Transgenic Arabidopsis expressing the T5OH transgene mRNA were generated (data 

not shown), however these lines showed no phenotypic effect as observed in tobacco 

lines expressing this transgene. This could suggest that T5OH enzyme might be 

acting upon a substrate present in tobacco but not in Arabidopsis. As part of this area 

of study, more Wt Arabidopsis plants have been transformed with the constructs 
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carrying either TI OBOH or T5AT and transgenics were generated, however no 

further work or analysis have been carried out at this time. 

5.2.8 Yellow flesh tomato as an alternative and better system for the production 

of taxanes. 

5.2.8.1 GC-MS analysis of the crude hexane extracts from r mutant tomato 

expressing TXS 

The level of taxadiene accumulation in transgenic tobacco lines generated during this 

study was found to be relatively low when compared to other compounds 

accumulated in the plant. The presence of major peaks representative of plant 

isoprenoids (e. g phytol, cholesterol and other tobacco steroids) in the GC-MS 

chromatograms from these lines indicated that other terpenes might have dissolved in 

the extraction buffer used, which would have made the purification of taxadiene 

difficult. Furthermore, most of the progenies obtained from the parent line previously 

provided, appeared to have lost their ability to produce taxadiene. 

Yellow flesh tomato mutants were considered as an alternative method to co-express 

TXS and T5OH to produce taxadiene-5a-ol. A mutation in the Psy gene in this 

variety of tomato makes it an attractive system in which to express TXS, where the 

GGPP normally used for carotenoid synthesis has been previously demonstrated to 

be rerouted for the production of substantial amount of taxadiene in these mutants 

(Kovacs et al., 2007). Another advantage of using the r mutant lines is that the low 

carotenoid level in these tomatoes would allow the facile extraction of any taxane 

produced from these fruits due to reduced carotenoid level dissolving in the 
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extraction buffer. The use of r tomato mutant as a heterologous system for taxadiene 

production might also provide a cheap and easily extractable source of this important 

compound. 

The GC-MS results from yellow flesh tomato lines constitutively expressing TXS are 

shown in Figure 5.20. The 122 ion scan confirms the presence of the taxa- 

4(5), 11(12)-diene at Rt 12.33 min and its isomer taxa-4(20), 11(12)-diene at Rt 11.90 

min. The mass spectrum of both taxadiene isomers (Figure 5.20 ii and iii) correspond 

to the previously published data (Williams et al., 2000a) with taxa-4(5), 11(12) being 

principally produced at Rt 12.33 min and a very low-level coproduction of taxa- 

4(20), 11(12)-diene detected at Rt 11.90 min. 

Efforts have been made to transform the tomato cotyledons from the taxadiene 

producing plants with a hygromycin resistant construct carrying the T5OH cDNA 

(pGHPGWY), but no transgenic lines were generated. The elite lines producing the 

highest amount of taxadiene have been previously crossed with Wt yellow flesh 

tomato to generate more tomato line producing taxadiene, however fruits from these 

crosses were infrequent and parthenocarpic, which can be partially explained by the 

failure of pollen tube growth as described in the previous section. It was therefore 

reasoned that generating r tomato plants expressing T5OH for crossing with the 

taxadiene producing plants might not be successful, due to low fertility issues. 
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Figure 5.20 GC-MS analysis of crude hexane extracts from r tomato mutant 
expressing TXS. 

(i) GC profile of TIC in extracts from transgenic fruits showing a prominent peak at Rt 12.33 
min. (ii) 122 ion scan of the TIC showing the two peaks at Rt 11.90 min and 12.33 min. (iii) 
Mass spectrum of the peak observed at Rt 12.33 min shows the major ions characteristic of 
taxa-4(5), 11(12)-diene and (iv) mass spectrum of the peak at 11.90 min showing the 
presence of the isomer taxa-4(20), 11(12)-diene, these data match the published spectrum for 
the respective taxadiene isomers. 
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5.2.8.2 Preparation of TXS:: TSOH:: pGWB8 binary vector 

To resort to another method of co-expressing the TXS and T5OH transgene in r 

mutant tomato lines, a construct carrying both genes was prepared, to be transformed 

in these tomato mutants as part of future work. This vector will also be used to 

introduce cassettes carrying other downstream genes involved in the Taxol 

biosynthetic pathway in order to reconstruct the early steps of taxane diterpenoid 

metabolism in tomato. 

Using the plasmid pBCTaxK carrying the TXS gene as template, the 35S promoter- 

TXS-Terminator cassette was PCR amplified using standard cycling conditions with 

Phusion polymerase as the hot start version (Finnzymes), the forward primer TXSF- 

Pstl 5'- ccacctgcagccatggagtcaaagattc-3' and reverse primer TXSRev-Sbfl/Pstl 5'- 

cattctgca cc ccaggaaacagctat-3' (Figure 5.21 i). These primers were designed to 

introduce a Pstl restriction site immediately upstream of the ATG start codon of the 

CaMV promoter and downstream of the terminator end to enable cloning of this 

cassette into the Sbfi restriction site of the T5OH:: pGWB8 vector which was used as 

the destination vector. An Ascl site (underlined in reverse primer) was introduced as 

another restriction site to introduce, at a later stage, the T5AT cassette carrying the 

T5AT coding sequence along with its promoter and terminator. 

The -3400 bp PCR fragment (Figure 5.21 ii) carrying the 35S+TXS+Terminator 

cassette obtained following PCR amplification was gel purified using a MiniElute 

Kit (QIAGEN) and the resulting amplicon was digested with Pstl restriction enzymes 

overnight at 37°C. The digested sample was separated on an agarose gel (Figure 5.21 

iii) to give the expected bands of 3193 bp and 245 bp. The bigger fragment of 3193 
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bp carrying the 35S:: Txs and 245 bp PCR fragment being the terminator were each 

gel extracted and purified. 
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Figure 5.21 Preparation of the 35S+Txs and terminator fragments. 

The schematic diagram of the pBCTaxK vector generated by Vector NTI (Invitrogen) is 

shown in (i) and include the position of the primers TxsF-Pstl and TxsRev-Sbfl/Pstl used for 

the PCR amplification of 35S promoter-TXS-Terminator cassette. The Pst! restriction sites 
within this cassette and fragment sizes are also indicated (ii) A PCR fragment of around 
3400 bp was amplified using the indicated primers confirming the amplification of the 35S- 
TXS-Term cassette. (iii) Fragments obtained following Psil digest of the 35S-TXS-Term 

cassette gave a band of - 3400 bp carrying the 35S+TXS cDNA and a band of -240 bp for 

the terminator. 
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Large scale preparation of the plasmid T5OH:: pGWB8 was carried out following the 

protocol described in Section 2.12.5. The plasmid T5OH:: PGWB8 carrying an Sb I 

restriction site upstream of the 35S promoter, was linearised by a restriction digest 

reaction using the SbJI enzyme. The digested product was then dephosphorylated as 

previously described (Section 2.12.1) and gel purified. The linearised 

T5OH:: pGWB8 was then ligated to the 35S+TXS fragment of 3193 bp (Figure 5.21 

iii) as previously described (Section 2.12.1). The ligated mix was transformed into 

one shot of E. coli DH5a and selected on kanamycin. 

The presence of the ligated 35S:: TXS fragment was verified by PCR analysis using 

the primers TaxMidI and Taxint35 amplifying a TXS fragment of 722 bp which was 

present in only one colony (Figure 5.22 i). The positions of the primers are indicated 

in Figure 5.22 ii. This colony carrying the insert was restreaked on LB agar 

containing kanamycin. After 24 hours, a rapid "boil prep" was prepared on this 

colony as previously described in Section 2.12.6. Following RNase treatment of the 

plasmid obtained from the boiling prep, the vector was digested using the restriction 

enzymes HindIIl and PstI to verify the presence and orientation of the 35S:: TXS 

fragment in the pGWB8 vector. The expected band sizes following the respective 

digests are shown in Figure 5.22ii, and the results of the restriction digests (Figure 

5.22 iii) matched the expected fragment sizes indicating that the 35S+TXS was 

inserted in the correct orientation in the pGWB8 vector. 
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(i) Gel picture showing the presence of the TXS insert in colony 8 following PCR 
amplification using the primers TaxMidl and Taxint35. pBCTaxK plasmid DNA was used 
as +ve control and water as the -ve control (ii) The Schematic diagram of the 
35S+TXS:: pGWB8 construct was generated by Vector NTI. The Hindill and Pstl restriction 
sites are indicated in red and blue respectively. The fragment sizes produced following 
restriction digests are indicated above the arrows (iii) The results of the Hindill and Pstl 
restriction digests of plasmid 8 are shown to match the expected fragment sizes, indicating 
that the 35S+TXS fragment was inserted in the correct orientation in the pGWB8 plasmid. 
The undigested plasmid 8 (Und) was used as control, and H-I refers to the marker 
Hyperladder I. 
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Following confirmatory results from the digests, the 35S+TXS:: pGWB8 plasmid 

from colony 8 was purified and linearised by SbfI digestion, which cuts the vector 

downstream of the TXS coding sequence. The terminator of size 245 bp was ligated 

to the 35S+TXS:: pGWB8 linearised plasmid and the ligated mix was transformed 

into Ecoli. Kanamycin resistant Ecoli cells were confirmed by PCR analysis to 

carry the TXS, by using the primers TaxMid2 and TxsTev-Sbf IPstl primers (Figure 

5.23 i), which gave a band of size 1281 bp (Figure 5.23 ii). The presence of this 

fragment was observed in most colonies identified with strongest bands in colonies 6 

and 7. 

To confirm the presence of the terminator and its orientation in these two colonies, a 

restriction digest reaction using HindIIl enzyme was set up on plasmids purified 

from these two colonies. HindIII enzyme cuts within the terminator at 18084 bp and 

towards the end of the 35S-TXS cassette at 17661 bp to give a fragment of 423 bp 

(Figure 5.23 i). The plasmid from colony 8 carrying the 35S+TXS without its 

terminator was also digested using the HindII1 enzyme to be used as control. Figure 

5.23 iii shows the fragments obtained following the restriction digest whereby the 

-400 bp terminator fragment (Figure 5.23iii) was present in plasmids 6 and 7 but 

absent in colony 8 (35S+TXS) lacking the terminator. 

The plasmid 7 was sequenced using the primers shown in Figure 5.24 and the 

sequencing results indicated that a new Sbf i site was created next to the Ascl site 

downstream the TXS-terminator. 
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Figure 5.23 Preparation of the TXS:: TSOH:: pGWB8 construct 
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(i) Schematic diagram of the pGWB8 contruct carrying 35S+TXS+terminator cassette was 
generated by Vector NTI. The Hind! II restriction sites are indicated in blue, the primer sites 
of TaxMid2 and TXSRev-Sbfl/Pstl are indicated and the PCR fragment of 1281 bp 
generated using these primers is also shown in red (ii) Gel picture of PCR amplification 
using the above mentioned primers gave a more intense band of 1281 bp in colonies 6 and 7. 
The plasmid pBCTaxK DNA was used as +ve control and water as -ve control (iii) Results 
of Hindill restriction digests of plasmids 6 and 7 matched the expected fragment sizes as in 
(i). The plasmid carrying the 35S-TXS without the terminator was used as control and each 
respective undigested plasmid labelled as Und was also run alongside the digested ones as 
control. 
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A BLAST search (http: //www. ncbi. nlm. nih. gov/BLAST/) of the TXS sequence 

cloned into the pGWB8 vector indicated a 100% identity to T. baccata 

(AY424738.1) with no premature stop codon present within the TXS sequence. The 

sequence-verified plasmid 7 was transferred into Agrobacterium which was used to 

transform Wt Arabidopsis by the floral dip method as previously described (Section 

2.5.1). Further analysis was not carried out on the seeds obtained following 

transformation due to time limitation. 

ATGGCTCAGCTCTCATTTAATGCAGCGCTGAAGATGAATGCATTGGGGAACAAGGCAATCCACGATCCAACGAATTGCAGAGCCA 
AATCTGAGGGGCAAATGATGTGGGTTTGCTCCAAATCAGGGCGAACCAGAGTAAAAATGTCGAGAGGAAGTGGTGGTCCTGGTCC 
TGTCGTAATGATGAGCAGTAGCACTGGCACTAGCAAGGTGGTTTCCGAGACTTCCAGTACCATTGTGGATGATATCCCTCGACTC 
TCCGCCAATTATCATGGCGATCTGTGGCACCACAATGTTATACAAACTCTGGAGACACCATTTCGTGAGAGTTCTACTTTCCAAG 
AACGGGCAGACGAGCTGGTTGTGAAAATTAAAGATATGTTCAATGCGCTCGGAGACGGAGATATCAGTCCGTCTGCATACGACAC 
TGCGTGGGTGGCGAGGGTGGCGACCGTTTCCTCTGATGGATCTGAGAAGCCACGGTTTCCTCAGGCCCTCAACTGGGTTTTAAAC 
AACCAGCTCCAAGATGGATCATGGGGTATCGAATCGCACTTTAGTTTATGCGATCGATTGCTTAACACGGTCAATTCTGTTATCG 
CCCTCTCGGTTTGGAAAACAGGGCACAGCCAAGTAGAACAAGGTACTGAGTTTATTGCAGAGAATCTAAGATTACTCAATGAGGA 
AGATGAGTTGTCCCCGGATTTCGAAATAATCTTTCCTGCTCTGCTGCAAAAGGCAAAAGCGTTGGGGATCAATCTTCCTTACGAT 
CTTCCATTTATCAAATCTTTGTCGACAACACGGGAAGCCAGGCTTACAGATGTTTCTGCGGCAGCAGACAATATTCCAGCCAACA 
TGTTGAATGCGTTGGAGGGTCTGGAGGAAGTTATTGATTGGAACAAGATTATGAGGTTTCAAAGTAAAGATGGATCTTTCCTGAG 
CTCCCCTGCCTCCACTGCCTGTGTACTGATGAATACAGGGGACGAAAAATGTTTCACTCTTCTCAACAATCTGCTGGACAAATTC 
GGCGGCTGCGT TGGAACGCCTTTCGCTGGTTGATAACATTGAGCATCTCGGAATCGGTC 
GCCATTTCAAACAAGAAATCAAAGTAGCTCTTGATTATGTCTACAGACATTGGAGTGAAAGGGGCATCGGTTGGGGCAGAGACAG 
CCTTGTTCCAGATCTCAACACAACAGCCCTCGGCCTGCGAACTCTTCGCACGCACGGATACGATGTTTCTTCAGATGTTTTGAAT 
AATTTCAAAGATGAAAACGGGCGGTTCTTCTCCTCTGCGGGCCAAACCCATGTCGAATTGAGAAGCGTGGTGAATCTTTTCAGAG 
CTTCCGACCTTGCATTTCCTGACGAAGGAGCTATGGACGATGCTAGAAAATTTGCAGAACCATATCTTAGAGACGCACTTGCAAC 
GAAAATCTCAACCAATACAAAACTATACAAAGAGATTGAGTACGTGGTGGAGTACCCTTGGCACATGAGTATCCCACGCCTAGAA 
GCCAGAAGTTATATTGATTCGTATGACGACGATTATGTATGGCAGAGGAAGACTTTATACAGAAT 
ýATTGGCAAAATTGGACTTCAATATCGTACAATCTTTGCATCAAGAGGAGTTGAAGCTTCTAACAAGATGGTGGAA 

GGAATCTGGCA'PGGCAGATATAAATTTCACTCGACACCGAGTGGCGGAGGTTTATTTTTCATCAGCTACATTTGAACCCGAATAT 
TCTGCCACTAGAATTGCTTTCACAAAAATTGGTTGTTTACAAGTCCTTTTTGATGATATGGCTGACATCTTTGCAACACTAGATG 
AATTGAAAAGTTTCACTGAGGGAGTAAAGAGATGGGATACATCTTTGCTACATGAGATTCCAGAGTGTATGCAAACTTGCTTTAA 

AGTTTGGTTCAAATTAATGGAAGAAGTAAATAATGATGTGGTTAAGGTACAAGGACGTGACATGCTCGCTCACATAAGAAAACCC 
TGGGAGTTGTACTTCAATTGTTATGTACAAGAAAGGGAGTGGCTTGAAGCTGGGTATATACCAACTTTTGAAGAGTACTTAAAGA 
CTTATGCTATATCAGTAGGCCTTGGACCGTGTACCCTACAACCAATACTACTGATGGGTGAGCTTGTGAAAGATGATGTTGTTGA 

GAAAGTGCACTATCCCTCAAATATGTTTGAGCTTGTATCCTTGAGCTGGCGACTAACAAACGACACCAAAACATATCAGGCTGAA 
AAGGCTCGAGGAGAACAAGCCTCAGGCATAGCATGCTATATGAAGGATAATCCAGGAGCAACTGAGGAAGATGCCATCAAGCACA 

TATGT 
MIJIMIIIAAAGAAGCAAGCTTTGAATATTTCAAACCATCCAATGATATCCCAATGGGTTGCAAGTC 

CTTTATTTTTAACCTTAGATTGTGTGTCCAAATCTTTTACAAGTTTATAGATGGGTACGGAATCGCCAATGAGGAGATTAA, fC. '\- 

I A"rA'I'AAG; AAAAGTTTATAT'PGA'PCCAATTCAAGTAIGGATCCAATCGAATTCCCGCGGCCGGGGATCCTCTAGAGT ' : 'ACCT 

CI: Ac; (; % CTGAAATCACCAGTCTCTCTCTACAAATCTATCTCTCTCTATAATAATGTGTGAGTAGTTCCCAGATAAGGG 
AATTAGGGTTCTTATAGGGTTTCGCTCATGTGTTGAGCATATAAGAAACCCTTAGTATGTATTTGTATTTGTAAAATACTTCTAT 
CAATAAAATTTCTAATTCCTAAAACCAAAATCCAGGGAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCT GCAGG 

Asti Sbfl 

Figure 5.24 Nucleotide sequence of TXS+Terminator. 

Nucleotide sequence obtained from sequencing of the TXS: T50H: pGWB8 vector. The 

primers used for sequencing were: TaxSynF (X), TaxMidl (U, TaxMid2 (1) and Tax- 
Terminator (I). The two Pstl/Sbfl sites (X) are shown to have been recreated following 
ligation of the 35S+TXS to the Terminator (1) and to the pGWB8 vector (I., = Ascl site, 
X= Start codon, ®= Stop codon. 
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5.3 Discussion 

5.3.1 Novel taxanes were not detected in transgenic plants expressing the Taxol 

biosynthetic genes 

Previous work on the constitutive expression of TXS in yellow flesh tomato mutants 

(Kovacs et al., 2007) has resulted in a high level accumulation of taxadiene in both 

the fruit and leaves of the transgenic lines. Tobacco plants expressing the same 

pBCTaxK construct carrying the TXS gene initially provided at the beginning of the 

research, were found to accumulate a relatively high level of taxa-4(5), 11(12)-diene 

and low level of the isomer taxa-4(20), 11(12)-diene. The mass spectrum obtained for 

the taxa-4(5), 11(12)-diene from transgenic tobacco was very similar to that of pure 

taxadiene extracted from tomato fruits, when subjected to GC-MS analysis. 

However, taxadiene accumulation level in the progeny from this tobacco parent line 

appeared to have considerably reduced, and in most of the plants, the taxadiene peak 

was undetectable. It could be possible that progeny producing the lowest level of this 

olefin survived while a high accumulation of taxadiene in homozygous lines might 

have been lethal to the plants, as appeared to be the case in line 4 expressing the 

highest TXS mRNA level, which went on to die at a very young stage (- I month 

old). The constitutive production of the active TXS enzyme might have interfered 

with the endogenous production of plastidial isoprenoids, such as the diterpenoid 

hormones gibberellins and carotenoids and the side chain of chlorophylls, thus 

resulting in hormonal imbalance affecting the plant development. The large array of 

isoprenoids/terpenes produced in tobacco plants could also suggest a competition for 

the GGPP precursor, hence the recombinant TXS might not have been channeling 

significant amounts of GGPP away from the biosynthetic pathway of these plastidial 
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isoprenoids. This might account for the relatively smaller peak characteristic of 

taxadiene in the tobacco leaves when compared to that produced in tomato fruits. 

Taxadiene has been recently reported to be volatile (Ajukumar et al., 2010) which 

might also explain its low accumulation and hence detection level in the crude 

hexane extracts from the transgenic tobacco lines. 

With the aim of constructing the next step en route to Taxol in tobacco, transgenic 

plants co-expressing the TXS and T5OH transgenes were successfully generated. 

The GC-MS conditions under which these samples were analysed were slightly 

modified from the published GC-MS data under which an oxygenated taxane (OCT) 

was reported (Rontein et al., 2008). Under these conditions, the authors reported the 

presence of the taxadiene peak at Rt 36.86 min, in transgenic N. sylvestris expressing 

the TXS gene. A peak was observed at Rt 36.58 in the hexane extracts from 

transgenic N. tabacum line expressing the TXS transgene, having the similar mass 

spectrum to that of authentic taxadiene, which suggested that the peak observed in 

this parent line used for crossing, was indeed that of taxadiene. Consistent with the 

previous findings (Rontein et al., 2008; Ajikumar et al., 2010) the taxa-4(5), 11(12)- 

diene peak was absent from the GC-MS profile in transgenic N tabacum lines when 

TXS and T5OH were co-expressed. If this is due to the conversion of this olefin in 

these lines, this would indicate that the cytochrome P450 reductase from tobacco 

interacts well with the yew CYP enzymes and that the NADPH is an available and 

non-limiting co-substrate in these cells. 
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The first oxygenated step en route to Taxol has been proposed to be the slow step of 

the pathway due to the low detection of the T5OH mRNA in methyl jasmonate 

elicited Taxus cell cultures and to the rarely detectable level of taxadiene-5a-ol in 

these cultures (Croteau et al., 2006). In agreement with these observations, Ajikumar 

et al (2010) reported the production of only 60 mg of taxadien-5a-ol generated from 

1g of taxadiene by the E. coli strain co-expressing TXS and T5OH transgenes. This 

-20 fold less in the amount of taxadiene-5a-ol produced might be partially due to the 

volatile nature of this compound. The retention time for taxadiene-5a-ol under the 

GC-MS conditions (Rontein et al., 2008) used was expected around 40.72 min, 

however, the GC chromatogram of the hexane extracts from tobacco lines co- 

expressing TXS and T5OH failed to show the presence of this oxygenated 

compound. The GC chromatogram indicated major peaks around the same retention 

time as taxadiene-5a-ol which could have overlaid that of the taxadiene-5a-ol if 

present in very low level, hence making its detection impossible. The failure of 

detecting taxadiene-5a-ol in the trichomes of transgenic N. sylvestris co-expressing 

TXS and T5OH by Rontein et al. (2008) could also be due to the large surface area 

of the trichomes, thereby allowing the escape of the volatile taxadiene-5a-ol, as 

could have been the case in the N. tabacum expressing these two transgenes. The 

presence of other CYPs in tobacco could also suggest that the taxadiene-5a-ol was 

used as substrate by these mono-oxygenases and converted to other compounds in 

the plant. The stability of taxa-4(20), 11(12)-diene-5a-ol is unknown, hence it could 

be postulated that the product might have been synthesised in the transgenic plants 

but degraded prior to GC-MS analysis of the transgenic N. tabaccum. 
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The presence of the C5-hydroxyl group of taxadiene-5a-ol could also suggest that 

this compound is unstable and more susceptible to hydroxylation or acylation 

reactions, thus was rapidly modified in the transgenic N. tabacum. The complex 

structure of the taxadiene-5a-ol by-product OCT (Rontein et al., 2008) displays a 

globular shape in which the oxygen atom of the ether bond formed between C5-C 12 

of the taxane skeleton is partially hidden inside the structure. This has led to the 

suggestion that the structure of this compound makes it non-volatile in standard 

conditions and insensitive to air oxidation, hence making it stable enough to be 

detected by GC-MS analysis. Recently, OCT was also reported at similar 

accumulation levels to that of taxadiene-5a-ol produced in transgenic E. coif co- 

expressing the TXS and T5OH (Ajukumar et al., 2010). Williams et al. (2000b) 

previously documented the presence of the isomer taxa-3(4), 11(12)-diene along with 

the other taxadiene isomers in E. coli expressing a "pseudomature" form of TXS 

gene. This taxa-3(4), 11(12)-diene isomer appears to carry a C3=C4 double bond on 

the taxane skeleton and could be the potential substrate for the formation of OCT 

recently observed in the transgenic N. sylvestris trichomes and E. coli. 

The hexane extracts from N. tabacum co-expressing the T5OH and TXS were also 

scanned for the ions characteristic of OCT but no such compound was identified in 

any of the samples. It could be postulated that the taxa-3(4), 11(12)-diene isomer was 

modified to compounds which were used up as substrates in the leaves, hence would 

have not been available for the synthesis of OCT. It can also be hypothesised that 

OCT was produced in the transgenic plants but rapidly degraded by other 

cytochrome P450 enzymes present in the tobacco leaves but not in the trichomes of 
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the tobacco plants, explaining why the OCT was previously reported in the 

transgenic trichomes. 

Taking into account the possible unstable nature of taxadiene-5a-ol which suggests 

that it might have been rapidly modified to novel compounds, plants expressing the 

three downstream genes TXS, T5OH and T5AT of the Taxol biosynthetic pathway 

were generated. The presence of an acetyl group at the C5-position of taxadiene-5a- 

of was reasoned to probably stabilise this compound, and also prevent further 

modifications of the hydroxyl group at the C5 position of the taxadiene-5a-ol, thus 

allowing the accumulation of the acetylated compound in the transgenic tobacco. 

However, no peak characteristic of taxadiene-5a-yl acetate was observed, suggesting 

that the taxadiene-5a-ol might have been degraded by other CYPs associated to the 

endoplasmic reticulum, prior to being acetylated by the T5AT enzyme. Addition of 

an acetyl group to a compound might have also increased its volatility which might 

explain why the GC-MS analysis failed to detect this acetylated taxane. 

53.2 Heterologous expression of Taxol biosynthetic genes in plants causes 

growth defects 

GGPP is the immediate precursor of all isoprenoids and plays primary roles in the 

formation of the phytol moiety of chlorophylls, synthesis of carotenoids and 

phytohormones such as gibberellins and abscisic acid as well as for the synthesis of 

other isoprenoids. 
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The constitutive expression of the full length TXS in A. thaliana plants led to 

concomitant growth retardation, severe dwarfism and a lack of viable seed 

production, in agreement with the phenotypes previously reported in transgenic 

Arabidopsis producing taxadiene (Besumbes et al., 2006). These observations 

suggest a possible toxic effect of taxadiene and/or a hormonal imbalance due to 

redirection of GGPP by TXS for the production of taxadiene. As a result, the lower 

accumulation of endogenous plastid isoprenoid products such as GA which is 

responsible for cell elongation and seed production could account for this dwarf 

phenotype. 

Growth rate was also affected in transgenic tobacco lines expressing TXS, T5OH and 

T5AT. Line B30 expressing only the T5OH mRNA, and lines B15 and B31 co- 

expressing TXS and T5AT were found to have reduced internode lengths when 

compared to the wild type. Brassinosteroids are involved in growth-promotion and 

previous reports have demonstrated that disruptions of the BR biosynthetic pathway 

gives rise to dwarf plants (Reviewed in Clouse and Sasse, 1998). It can therefore be 

hypothesised that the dwarf phenotypes observed are due to the altered flux through 

the isoprenoid pathway, with the synthesis of high levels of taxadiene taking place in 

lines expressing the TXS transgene. In Line B30, it was postulated that an active 

enzyme form of T5OH might have acted on substrates involved in the GA/BRs 

biosynthetic pathways. As a result, this would have compromised the synthesis of 

these phytohormones which are crucial for plant development and stem elongation. 

A similar effect was previously seen in transgenic tomato plants engineered to 

constitutively over-express the phytoene synthase (psyl) gene (Fray et al., 1995) 

where the authors suggested that the reduced stature and pale nature of the psyl 
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expressing plants were attributed to reduced availability of GGPP for the GA and 

phytol biosynthetic pathways. 

Besides the dwarf phenotypes and slow growth, other phenotypes were observed as a 

result of the constitutive expression of TXS in the transgenic r tomato mutant. Most 

of the fruits producing high level of taxadiene were parthenocarpic or with less than 

ten viable seeds per fruit. A viability and germination test was performed on these 

transgenic lines and only around 50% of viable pollen grains were observed which 

all failed to germinate in the time period where -50% of the wild type tomato pollen 

grains germinated. The high level expression of the TXS in these plants appeared to 

have affected the fertility of the plants, possibly due to the reduced accumulation of 

GA and/or BR. These hormones are involved in pollen development and pollen tube 

growth respectively, and the GGPP normally used for their biosynthesis could have 

been redirected by TXS for the production of taxadiene, at the expense of these 

phytohormones. 

A male sterility phenotype was also observed in tobacco lines constitutively 

expressing the T5OH transgene, which was associated with abnormal seed formation 

and pollen infertility. The failure of germination of the viable pollen from lines 

expressing T5OH could be the result of a reduced level of production of 

brassinosteroid involved in pollen tube germination. Both gibberellins and 

brassinosteroids have been previously reported to be essential for the development of 

stamens and are involved in pollen fertility. This phenotype observed in these lines 

might suggest T5OH to be competing for a substrate involved in the GA or BRs 

biosynthesis pathway, leading to depleted levels of the respective bioactive hormone, 
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thereby affecting normal pollen development and germination. It could also be 

postulated that an active enzyme form of T5OH could have acted upon substrates in 

the transgenic lines for the synthesis of compound(s) which might have been toxic to 

the pollen and hence affected male sterility. When TXS expressing tobacco lines 

were crossed to the transgenic line expressing T5OH, reduced number of seeds per 

pod was obtained. This could suggest that the production of the T5OH enzyme might 

have affected the female reproductive organ as well as the production of pollen. 

Similar observation was made when wild type tomato lines were crossed to 

transgenic lines producing taxadiene, which could have been due to the toxic effect 

of the high accumulation level of this taxane, thereby affecting female sterility. 

In conclusion, taking into account the low accumulation level of taxadiene compared 

to the other compounds synthesised and the many phenotypes associated with the 

expression of the Taxol biosynthetic genes in transgenic tobacco, it was reasoned that 

this particular plant might not be suitable for the heterologous expression of the 

Taxol biosynthetic genes. The r tomato mutant were considered to be a better 

alternative system in which to express TXS, where it has previously been shown to 

be possible to redirect the GGPP normally used for carotenoid biosynthesis, for the 

production of significant level of taxadiene. Another advantage of using the r mutant 

lines is that the low carotenoid level in these tomatoes would allow the facile 

extraction of any taxane produced from these fruits due to less carotenoid dissolving 

in the extraction buffer. The new TXS+TSOH:: pGWB8 vector could be transformed 

into r mutant tomatoes, where a high level of taxadiene accumulation following the 

TXS expression should provide more substrate for the T5OH to catalyse into the 

taxadiene-5a-ol. 
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CHAPTER 6: CONCLUSIONS AND FUTURE 

WORK 

6.1 Discussion and Conclusion 

The low accumulation level of Taxol in the yew trees and the intense activity in 

developing new uses of the drug in cancer chemotherapy and in the treatment of 

other human maladies has driven an extensive search for new sources to replace the 

yew tree for the continued interest in the supply and cost of this valuable natural 

product. A range of studies have revealed several of the early and late steps of the 

Taxol biosynthetic pathway, however, the sequence of reactions and the enzymes 

involved in the mid-section of the pathway which includes the formation of the 

oxetane ring are still uncertain. To date, 14 of the 20 genes required for the 

biosynthesis of Taxol have been cloned and their sequences are available. This has 

opened up the possibility of metabolic engineering for the improvement of taxoid 

synthesis by transferring the entire pathway to a heterologous surrogate. 

The genes encoding the enzymes involved in the early steps of the pathway en route 

to Taxol were successfully cloned from T. baccata mRNA during this study. The 

sequence alignment of the hydroxylase genes T5OH, TI3OH, TIOBOH and T7OH 

with their respective Taxus homologues revealed a high level of conservation of the 

homologous taxoid hydroxylases among the different Taxus species. Minor genetic 

variation in the DNA sequences of the hydroxylases and acetyl transferase cloned 
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was observed when compared to their respective Taxus homologues, which could 

have been the result of single nucleotide polymorphism. BLAST database search 

indicated that these Taxus CYP oxygenases resembled the CYP families involved in 

gibberellic acid, abscisic acid and brassinosteroid biosynthetic pathways. Sequence 

analysis indicated that the Taxus hydroxylases share high similarity to the GA 

biosynthetic genes, indicating that these two pathways might share a common 

evolutionary ancestry. In both Taxol and GA biosynthesis, the early steps involve the 

cyclisation of GGPP in plastids followed by CYP-catalysed hydroxylation of the 

skeleton. It was reasoned that due to their sequence relatedness and possibly common 

ancestry, the enzymes of the early steps of GA and Taxol biosynthesis might be 

targeted to similar sub-cellular compartments. Localisation data obtained by 

translational fusion of the TXS, T5OH and T5AT to fluorescent proteins supported 

this suggestion, with similar localisation to the GA biosynthetic enzymes AtKS 1, 

AtKO 1 and AtKAO 1 respectively (Helliwell et al., 2001 b). 

TXS was found to reside in the plastids where it catalyses the cyclisation of GGPP to 

yield taxadiene. Due to its non-polar nature, taxadiene is likely to partition into 

plastidial membranes. From here, it is hydroxylated and translocated to the ER. 

TSOH carries out the first hydroxylation of the taxane core and was shown to be 

associated with both the plastidial envelope and the ER, as previously reported for 

the case for A. thaliana ent-kaurene oxidase (AtKO1) which catalyses the first 

oxygenation step of GA biosynthesis (Helliwell et al., 1999). T5OH may therefore 

not only catalyse the formation of taxadiene-5a-ol, but also link the plastid and the 

subsequent ER-located steps. The T5AT responsible for the first acetylation step of 

Taxol biosynthesis, has been previously reported in Taxus microsomes (Wheeler et 
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al., 2001) which led the authors to suggest the enzyme to be targeted to the ER, 

however there has been no report confirming its sub-cellular localisation. The 

translational fusion of T5AT with cyan fluorescent protein has confirmed the acetyl 

transferase to be associated to the ER (and possibly to the cytoplasm of transgenic 

tobacco trichomes). These data indicated that the taxadiene synthesised in the 

plastids possibly requires the action of T5OH for its translocation to the ER, where 

the first hydroxylation step and acetylation take place in the respective presence of 

cytochrome P450 reductases and acetyl-CoA, both associated to the ER membranes. 

The localisation of the early enzymes of Taxol biosynthesis may provide some 

insight into the pathway restriction previously encountered during the reconstitution 

of the Taxol biosynthetic pathway in yeast (Dejong et al., 2005). The authors 

reported a pathway constraint at the T5OH step which was suggested to be related to 

the inadequate level of endogenous CYP-reductases for redox coupling to the 

cytochrome for C5 oxygenation of taxadiene. Taking into account the plastidial 

localisation of TXS and the absence of plastids in yeast, it could be hypothesised that 

there cannot be the same spatial separation of steps in this microbe as would have 

been the case in plant system where both plastids and ER are present in significant 

amount. Therefore, it can be suggested that taxadiene export from the plastid by 

T5OH might be an essential step, whereby taxadiene is oxidised to form more 

soluble intermediates by the plastid-associated T5OH. These are possibly further 

metabolised to the final product, taxadiene-5a-ol, once coupled to the ER-associated 

T5OH. The possible requirement for compartmentalisation of the early enzymes of 

Taxol biosynthesis might explain why individual expression of the biosynthetic 

genes including TSOH in yeast or bacteria resulted in active enzymes, yet 
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simultaneous expression of these genes in yeast did not result in the production of the 

expected downstream products. Furthermore, yeasts and bacteria do not have the 

same post-translational modification mechanisms as plants, which may be required 

by the yew enzymes for optimal activity. Therefore, it was reasoned that the large 

number of plastids and ER present in plants might make them a better platform for 

coupling the consecutive CYP-catalysed steps of the Taxol pathway, which may not 

form properly in bacterial and yeast cells. 

The constitutive expression of TXS transgene in transgenic yellow flesh tomato 

mutants has been reported to produce taxadiene at levels 339 µg/g DW in ripe fruits 

and 160 gg/g DW in leaves of the transgenic plants (Kovacs et al., 2007). However, 

the plants showed a slower growth rate with production of parthenocarpic fruits or 

fruits with less than 10 viable seeds. The pollen viability and germination test carried 

out on the pollen grains from these taxadiene producing tomato plants showed that 

50% of the pollen were potentially viable but had a germination rate of almost nil. 

This observation could be explained by a possible reduction in the level of the plant 

hormones gibberellic acid and brassinosteroids available for pollen development, as a 

result of the redirection of the available GGPP by TXS, for the production of 

taxadiene. This sterility issue also meant that cross-pollinating these taxadiene 

producing r tomato lines to transgenic lines expressing the downstream enzymes of 

the Taxol biosynthetic pathway might not be successful. 

As an alternative to the r tomato mutants, tobacco plants were used, due to their high 

biomass yields, robust transformation technology and strong biosafety profile. 

Independent transgenic tobacco lines expressing each of the enzymes involved in the 
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early steps of the Taxol pathway were generated during this study. These lines were 

alternatively crossed with the aim of assembling the required enzymes for the 

production of taxanes, which on purification and further modifications by chemists 

would give taxane-related drugs with improved solubility and activity or novel 

functions. 

TXS expressing tobacco plants were shown to generate a minor product which was 

confirmed as taxa-4(5), 11(12)-diene, by comparison of mass spectrum to those of the 

authentic standard prepared by total synthesis (Rubenstein and Williams., 1995). 

These taxadiene producing lines were cross-pollinated to those expressing the 

highest level of T5OH mRNA and the progenies expressing high levels of both 

transgenes were selected for GC-MS analysis. The GC-chromatogram obtained from 

these lines did not show the presence of the taxadiene-5a-ol which has been 

demonstrated to be the product of the first hydroxylation step of Taxol biosynthesis 

(Hefner et al., 1996). However, the taxadiene drops to effectively zero in lines 

expressing both these transgenes but was still detected in line 21 carrying both genes 

but expressing only the TXS transgene. This suggested the possible near complete 

conversion of taxadiene in the presence of T5OH, to taxadiene-5a-ol or to other 

intermediates, which could have been rapidly turned over by the plants. The absence 

of the taxadiene peak also indicated that sufficient CYP-reductase was available for 

its complete hydroxylation to novel compounds in the plants. 

The production of taxadiene-5a-ol has been previously reported in insignificant level 

in Taxus cell cultures (Croteau et al., 2006), suggesting this step to be catalysed by 

the rate-limiting enzyme T5OH and also that the compound might be rapidly 
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degraded or of unstable nature. Furthermore, previous report of the expression of 

T5OH in E. coli strain producing -1 g/L taxadiene have documented a level 20-fold 

less in the amount of taxadiene-5a-ol accumulated with the reported absence of 

taxadiene in the bacterial cell culture (Ajukumar et al., 2010). These data might 

support the suggestion of a negative feedback on taxadiene production in the 

presence of T5OH. It can also be hypothesised that the taxadiene-5a-ol could have 

been rapidly turned-over in the transgenic tobacco lines or used as substrate for the 

synthesis of other compounds. The presence of the C5-hydroxyl group of taxadiene- 

5a-ol further accounts for the possible unstable nature of this compound implying 

that it is more susceptible to hydroxylation or acylation reactions. It can be 

postulated that taxadiene produced is protected whilst still in the plastids, but once 

moved out of these organelles to the ER, this olefin is degraded by endogenous plant 

enzymes, which might explain its absence in lines co-expressing the TXS and T5OH 

transgenes. 

Similar work on tobacco was reported by Rontein et al., (2007) who documented the 

presence of a taxane ether 5(12)-Oxa-3(11)-cyclotaxane (OCT) instead of the 

expected taxadiene-5a-ol, in the trichomes of transgenic N. sylvestris co-expressing 

TXS and T5OH transgenes. The three-dimensional model of OCT was reported to 

display a globular structure in which the oxygen atom of a C5-C12 ether linkage is 

partially hidden inside the structure, making this compound very stable, insensitive to 

air oxidation, and non-volatile in standard conditions. The GC-chromatograms 

obtained from the N. tabacum expressing TXS and T5OH were scanned for the 

major ions of OCT, however no peak having the mass spectrum fragmentation 

pattern as that of OCT was present in the transgenic tobacco crude extracts. It could 
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be speculated that if OCT was produced, then this compound was also degraded by 

plant catabolic enzymes. The C3-C11 linkage of OCT might also indicate that this 

compound is formed as a result of oxidation of the taxa-3(4), 11(12)-diene isomer 

initially reported in very low level in transgenic E. coli (Williams et al., 2000 b). 

Supposing that OCT is the actual oxygenated compound of taxa-3(4), 11(12)-diene, it 

could be hypothesised that this taxadiene isomer might have been produced in the 

transgenic tobacco cells but was rapidly broken down by enzymes absent in the 

trichome cells. 

Taking into account the unstable nature of taxadiene-5a-ol due to the presence of its 

C5-hydroxyl group, it was reasoned that the addition of an acetyl group at this 

position of the taxane core might make the compound more stable. A transgenic 

tobacco expressing the T5AT transgene was generated, which was crossed to tobacco 

lines co-expressing the TXS and T5OH transgenes. Progenies expressing all three 

transgenes were confirmed by northern analysis and their crude hexane extracts were 

analysed by GC-MS using the conditions under which authentic taxadiene-5a-yl 

acetate was previously reported (Walker et al., 1999). No peak having the mass 

spectrum characteristic of this acetylated compound was observed in these lines. 

However, by-standing minor peaks were observed in the total ion current from these 

transgenic lines, which were absent in the Wt extract. It can be speculated that if 

taxadiene-5a-yl acetate was produced it would have been catabolised to other 

compounds which were indicated by these by-standing peaks. T5AT has been 

demonstrated to be localised to the ER, thus it could also be suggested that the 

taxadiene-5a-ol might have been degraded by other catabolic enzymes also 

associated to the ER, prior to being acetylated by the T5AT which shares the same 
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location. Addition of an acetyl group to the taxadiene-5a-ol might have also 

increased the volatility of this compound, hence if present, could have been lost 

during hexane extraction. 

The expression of the early enzymes of the Taxol biosynthetic pathway was 

associated with slow growth of the plants, male sterility and severe dwarfism. As 

mentioned above, taxadiene production in Yellow flesh tomato plants affected the 

pollen growth and development, producing mostly parthenocarpic fruit in part due to 

incomplete pollination. The failure of the viable pollen grains to germinate might 

indicate a depleted level of brassinosteroids produced responsible for pollen tube 

growth, as a result of the redirection of GGPP by TXS for the production of 

taxadiene. Similarly, seed production was severely affected in transgenic Arabidopsis 

lines constitutively expressing the TXS transgene. The male sterility issues observed 

can therefore be associated with failure in pollen tube germination. Taxadiene itself 

has not been reported to be pharmacologically active, and its biological activity has 

not been extensively tested. The sterility problems in these transgenic lines could 

have also been the result of a possible cytotoxic effect of taxadiene on the pollen 

cells or the ovules. Previous crossing of Wt tomato lines to taxadiene producing ones 

gave parthenocarpic fruits with no viable seeds. This led to the speculation that 

taxadiene might have been toxic to the plant and affected the female reproductive 

system as well as pollen formation. The cytotoxic effect of taxadiene could therefore 

be further investigated by its exogenous application to the various stages of floral 

development as well as to pollen, stigma and ovaries of the Wt tobacco, tomato and 

Arabidopsis flowers. This would provide an insight to its effect on the mitotic 
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spindle formation, chromosomal segregation of the transgenic plant cells and to 

investigate the cell division of the microsporocytes and megasporocytes. 

Tobacco plants expressing T5OH also demonstrated a reduced formation of viable 

pollen, having a very low level of pollen tube growth. This indicates that this low 

germination rate was the cause of male sterility in these transgenic lines. The 

presence of the active enzymatic form of T5OH may be competing for substrates 

involved in the biosynthetic pathways of the phytohormones GA or BRs, leading to 

depleted levels of bioactive hormones, thereby affecting pollen development and 

pollen tube growth. Alternatively, T5OH may have promiscuous activity and act on 

endogenous substrate(s) leading to the synthesis of compounds which might have 

had an adverse effect on the floral reproductive organs. 

Transgenic Arabidopsis plants constitutively expressing TXS showed severe 

dwarfism, in agreement with previous report (Besumbes et al., 2004) suggesting a 

possible competitive and toxic effect of TXS or taxadiene in these plants. The same 

phenotype was observed in transgenic tobacco lines co-expressing TXS and T5AT, 

suggesting that the redirection of GGPP by TXS for the production of taxadiene 

compromised the synthesis of GA and BRs involved in stem elongation and plant 

development. Similarly, the growth of tobacco line 30 transgenic for TXS, T5OH 

and T5AT but expressing only the T5OH transgene was affected resulting in shorter 

internodes when compared to the Wt control. However, unlike tobacco, Arabidopsis 

expressing the T5OH showed no concomitant dwarf phenotypes or reduction in seed 

production. This observation might suggest that the active enzymatic form of T5OH 
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may have substrates, upon which it can act in tobacco but which are absent in 

Arabidopsis. 

Individual transformation followed by crossing to "stack" transgenes can be very 

difficult for large numbers of transgenes because of time taken to stack all transgenes 

in one line and the risk of segregation of unlinked genes in later generation. Taking 

these hurdles into account, it was reasoned that stacking a combination of the 

downstream genes of the Taxol biosynthetic pathway in one plant binary vector and 

engineering it in plants to create diverse transgenic plants could provide a simpler 

way of reconstituting the Taxol pathway, preferentially in r mutant tomatoes. The 

GC-chromatogram of transgenic r mutant fruits expressing TXS demonstrated a 

major peak of taxadiene and minor by-standing peaks, which are possibly 

representative of other isoprenoids produced. Tobacco on the other hand has a large 

array of terpenes and other compounds in the leaves which have made the detection 

of novel taxanes by GC-MS analysis very difficult. Furthermore, the r mutant has a 

very low accumulation level of carotenoid and thus it was reasoned that using this 

genetic background should allow the facile extraction and down-stream processing of 

novel taxanes from the fruits. 

To address the sterility concerns observed in lines with the individual expression of 

the Taxol biosynthetic genes as well as to devising a simpler process of stacking the 

genes of the Taxol pathway in r tomato, a construct was prepared carrying the genes 

TXS and T5OH. A PCR-directed integration method was used to introduce the TXS 

cassette including the CaMV35S promoter and terminator, upstream of the T5OH 
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cassette in the plant binary vector pGWB8. Sequencing of the amplified TXS clone 

demonstrated a 100% identity to the published TXS T. baccata homologue with the 

reconstruction of two Sbfl restriction sites upstream and towards the end of the 

CaMV35S terminator respectively. This CaMV35S terminator was also amplified to 

include an Ascl restriction site towards the end of its sequence where other gene 

cassettes can be cloned into and the final vector transferred into yellow flesh tomato 

mutant. 

Although, heterologous plant expression might provide a simpler method of 

production when compared to semi-synthesis of yew-tree derived precursors, issues 

associated with deleterious phenotypes in the host plants will have to be addressed. 

Future Work 

As an alternative way of extracting the immediate Taxol precursors baccatin III and 

10-deacetylbaccatin III from the needles of the yew trees for its conversion to Taxol, 

the biosynthetic pathway en route to these precursors could be transferred to r mutant 

tomato. The other downstream genes of the Taxol pathway leading to the production 

of these late intermediates will be engineered in the vector TXS+T5OH:: pGWB8 

which will be transformed into yellow flesh tomato plants. This method will combine 

genetic engineering and semi-synthesis, whereby the late intermediates en route to 

Taxol will be extracted from the transgenic yellow flesh tomato plants and converted 

to paclitaxel by synthetic coupling of the C13 side chain or other advanced taxanes 

by chemists. Alternatively, this construct carrying only TXS and T5OH can be 
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transformed into r tomato and the transgenic lines expressing both transgenes if not 

sterile, will be crossed with transgenic tomato lines expressing the downstream Taxol 

biosynthetic enzymes. Using this method, different genes of the Taxol biosynthetic 

pathway will be assembled in various orders in individual lines to produce the 

desired molecules which are to be extracted and further modified by chemists to 

produce novel taxanes for example with better solubility than Taxol or those which 

have the ability of modulating MDR in cells resistant to Taxol. 

Engineering r tomato plants with these heterologous genes could be accompanied 

with deleterious phenotypic issues. To circumvent the issue of male sterility in 

tomato producing taxadiene, an inducible promoter can be placed upstream of the 

TXS cDNA in the TXS+T5OH:: pGWB8 vector. For example, the tetracycline 

inducible promoter would give finer control over the transgene expression which 

could be induced at the early stages of fruit development by the exogenous 

application of the antibiotic tetracycline. The TXS has been previously expressed 

under the control of the fruit-specific PG promoter, however fruit set was greatly 

affected in these transgenic lines. Other fruit-specific promoters could be used such 

as E8,2A II and P 119, which have been previously reported to drive the expression 

of exogenous genes in tomato fruits following ethylene production during fruit 

ripening. E8 promoter demonstrates low expression level in the absence of ethylene 

synthesis in unripe fruit and high expression level during ripening, 2A1 I is expressed 

at high levels in ripening fruits but also transiently in small green fruits, while P119 

promoter is expressed from the earliest stages in green finit though to red ripe stages, 

with increased level during ripening. It should also be considered that ethylene is 
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produced during floral development, hence the expression of the transgenes could 

affect fruit development. 

As an alternative to using a plant heterologous system, the Taxol biosynthetic 

pathway could be engineered in the rice pathogen Gibberella fujikuroi, which has 

been reported to produce high levels of gibberellic acid. The large GGPP pool 

available for GA biosynthesis could be redirected by TXS for the production of 

taxadiene. Furthermore the short generation time and high growth rate of the fungi 

might make it a more reliable, cheap and renewable way of optimising Taxol and 

related taxanes. 
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APPENDICES 

Appendix I 

Details of the primers used for the cloning of plasmids, RT-PCR analysis and 
for probe preparation for northern analysis. x- AttB adaptor sites 

Gene/Vector 
name 

Primer 
Name 

Sequences 5' º 3' 

5tax 5alp CAC CAA AAT GGA CGC CCT GTA TAA GAG C 
3tax 5alp TTC TCC TTC AAT TGA CTA TGG TCT CGG 

35S-Promoter-F CTATCCTTCGCAAGACCCTTC 
T5OH T50H-F ATG GAC GCC CTG TAT AAG AGC 

T5OH-Rns TGG TCT CGG AAA CAG TTT AAT G 
T5OH-PstRev GCCCGTCCCTGGAGTGCTCTATG 
5a-OH-MidF ATGATAAGCAGGAACAGGATC 
TaxSynRNS TAC TTG AAT TGG ATC AAT ATA AAC TTT TC 

TaxSynF ATG GCT CAG CTC TCA TTT AAT G 
TaxMid2 CCATCTTTGAGTAATTCAAAATGTTTAG 

TXS TaxMidl CCCTGTATGTATTCCATCGATCTGCTGG 
Taxint35 ATAAACCTCCGCCACTCGGTGTC 
TaxSyn-R TCATACTTGAATTGGATCAATATAAACTT 
Taxint53 CCTGAGCTCCCCTGCCTCCACTG 

T10BOH 5Tax10h d GTCGAAATGAATACCTTCAGTTTCCTC 
3Tax10h d TGATTACGATCTGGGAAATACTTTCAG 
Acetyl-Rns TAC TTT AGC CAC ATA TTT TTT CAT CA 

T5AT 5Tax5ac 1 TTAGA ATGG AGA AGA CAG ATT TAC AC 
3Tax5ac 1 TCGTTGCACTTTCATACTTTAGCCAC 
13aOHASP aga aag ctg to TTA AGA TCT GGA ATA GAG 
13aOH SP aaa aag cag ct ATG GAT GCC CTT AAG CAA 

T130H 13aOH-MidF GTTTCCCCTTCCATTCTTTTCGTTACC 
13AOH-MidR TTCAATAAACTGCTGTGGAGTGCTCG 
13aOH-RNS AGATCTGGAATAGAGTTTAATGGG 

13aOH-F ATGGATGCCCTTAAGCAATTG 
7 OH-R TCAGGATCTGGCGATAAGTTTTATTGG 

T7OH 7 OH-F ATGGATGCCCTTTCTCTTGTAAAC 

TXS-T5OH 
TXSRev- 
Sbfl/Pstl 

CATTCTGCAGGCGCGCCAGGAAACAGCTAT 

Vector TXSF-Pstl CCACCTGCAGCCATGGAGTCAAAGATTC 
Txs-Terminator CGTGTTGTTGACCGGGCCTTG 
attB 1 adapter GG GGA CAA GTT TGT ACA AAA AAG CAG GCT 

pCR8 attB2 adapter TGG GTC GAA AGA ACA TGT TTC ACC AGG GG 
primers GW 1 GTTGCAACAAATTGATGAGCAATGC 

GW2 GTTGCAACAAATTGATGAGCAATTA 
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Appendix II 

Phenol solutions (In a fume hood) 

Phenol Chloroform 

200 g Phenol 
400 mL 10 mM Tric Cl, pH 7.5 
0.2 g 8-hydroxyquinolene 
200 mL Chloroform 
8 mL Isoamylalcohol 
Stir on magnetic stirrer for 15 minutes, allow the phases to separate overnight. 

Phenol mixture 

100 g Phenol 
14 ml meta-cresol 
0.1 g 8-hydroxyquinolene 
30 ml water 

Growth media 

Luria-Bertani (LB) Media 

10 g Tryptone 
5g Yeast extract 
10 g NaCl 
Adjust pH to 7.0 with 5N NaOH 
SDW to 1L 
Autoclave at 121 °C for 30 mins (15 psi) 

LB agar (500 ml) 

Sg Tryptone 
2.5 g Yeast extract 
2.5 g NaCl 
3g Agar 
SDW to 500 mL 
Autoclave at 121 °C for 30 mins (15 
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Liquid MS (1L) 

4.3 g Murashige Skoog Salts 
30 g Sucrose 
Adjust pH to 5.8 
Autoclave at 121 °C for 30 mins (15 psi) 

MSR3 medium (1L) (For tobaccao micropropagation) 

4.3 g Murashige Skoog Salts 
30 g Sucrose 
6.5 g Agar 
Adjust pH to 5.8 
Autoclave at 121°C for 30 mins (15 psi) 

M1 medium (1L) 

4.3 g Murashige Skoog Salts 
30 g Sucrose 
6.5 g Agar 
Adjust pH to 5.8 
Autoclave at 121 °C for 30 mins (15 psi) 
When ready to pour (at about 60°C) add: 
- 500 mg/L Indole Acetic Acid (IAA) 

- 750 mg/L Zeatin 
- 0.01 g/L Nystatin 

M13 or Regeneration medium (1L) 

4.3 g Murashige Skoog Salts 
30 g Sucrose 
6.5 g Agar 
Adjust pH to 5.8 
Autoclave at 121°C for 30 mins (15 psi) 
When ready to pour (at about 60°C) add: 
- 400 mg/L Augmentin 

- 500 mg/L Indole Acetic Acid (IAA) 

- 750 mg/L Zeatin 

- 70 mg/L Kanamycin 

- 0.01 g/L Nystatin 

-5 mg/L Tetracyclin 
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General Solutions 

Alexander's strain solution was prepared by adding the following constituents in the order 
given below and stored in the dark. 

10 mL 95% alcohol 
I mL Malachite green (I% solution in 95% alcohol) 
50 mL Distilled water 
25 mL Glycerol 
5 mL Acid fuchsin (I% solution in water) 
0.5 mL Orange G (1% solution in water) 
4 mL Glacial acetic acid 
Add distilled water (4.5 mL) to a total of 100 mL. 

Basta (DL - phosphinothricin) (10 mg/ml) 
Add 10 ml sterile distilled water to 100 mg Basta 
Filter sterilisation through Millipore 0.22 pM 
Store at -20°C 

IAA (1 mg/ml) (Indole Acetic Acid) 

Add IN KOH drop wise to 100 mg IAA until dissolved. 
Make up to 100 mL with SDW and store at -20° 

Kanamycin Monosulphate (100 mg/L) 

Add 10 ml sterile distilled water to Ig Kanamycin 
Filter sterilisation through Millipore 0.22 pM 
Store at -20°C 

Nystatin (20mg/ml) 

Add 10 ml methanol to 200 mg Nystatin 
Store at -20°C 

Plant RNA Extraction buffer (500 ml) 

5g of 1,5-Naphthalendisulfonic acid Disodium 
30 g of Sodium 4-aminosalicylate 
25 ml Phenol mixture 
The volume was adjusted to 500 ml and transferred to either a brown bottle or a bottle 
covered with Aluminium foil to prevent exposure to HILL The extraction buffer was 
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stored at 4°C and shaken prior to use. 

Rapid DNA extraction buffer 

200 mM Tric Cl, pH 7.5 
250 mM NaCl 
25 mM EDTA 
0.5 % SDS (Sodium dodecyl sulphate) 

Rifampicin (50 mg/ml) 

Add 10 ml methanol to 0.5 g Rifampicin 
Store at -20°C 

R3 vitamins (1L) 

Ig Thiamine 
0.5 g Nicotinic acid 
0.5 g Pyridoxine 
Filter sterile with 20 µm Millipore filters 

STET solution 

10 mM Tris-Cl (pH 8.0) 
0.1 M NaCl 
1 mM EDTA (pH 8.0) 
5% (v/v) Triton X-100 

1.1 M spermidine stock 

1g Spermidine powder (S0266-1G, SIGMA) 
68 ml H2O 
(The solution deaminates quickly and releases NH3. It can only be stored at -20°c for 1 
month) 

Tetracycline (5mg/ml) 

Add 10 ml of 70% EtOH to 50 mg Tetracycline 
Store at -20°C 
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5X TBE Buffer 

108 g Tris 
55 g Boric Acid 
40 mL 0.5 EDTA, pH 8.0 

Zeatin (1mg/ml) 

Add IN KOH drop wise to 100 mg Zeatin until dissolved. 
Make up to 100 mL with SDW and store at -20°C 

Sodium Phosphate Buffer (1M, pH 6.6) 

35.2 ml of IM Disodium hydrogen phosphate 
64.8 ml of 1M Sodium dihydrogen phosphate 

20 x SSC (Saline-Sodium citrate) (1L) 

175.3 g Sodium chloride 
88.2 g Sodium citrate 
Dissolved with deionised water and make up to 1L 
Adjust pH with HCl to pH 7.0 
Autoclave at 121 °C for 30 mins to sterilise 

Northern Blot Gel Running Buffer 

Ig agarose 
90 ml SDW 
2 ml Sodium Phosphate buffer (IM, pH 6.6) 
8 ml formaldehyde pH7 (add when cool) 

Running buffer for Northern Gel 

593.5 ml SDW 
50 ml formaldehyde pH7 
6.5 ml Sodium phosphate buffer (1 M, pH 6.6) 

Ethidium bromide buffer 

1000 µl deionised formamide 
500 µl SDW 
330 1 formaldehyde 
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40 µl of 0.5 M EDTA (pH 8) 
40 pl of 1M Sodium phosphate buffer, pH 6.5 

Bromophenol blue loading dye 

0.25 % (w/v) Bromophenol Blue 
0.25 % (w/v) Xylenecynol FF 
40 % (w/v) sucrose in SDW 
Filter sterilise 

Pre-hybridisation solution 

50 % (v/v) deionised formamide 
20 % (v/v) 5M NaCl 
16 % (v/v) of 50% Dextran sulphate solution 
10 % (v/v) of 10% SDS (sodium dodecyl sulfate) solution (added last) 
4% (v/v) of 200 pg/ml Salmon spern DNA (ssDNA) 
ssDNA was denatured at 95 °C for 10 minutes prior to adding to the pre-hybridisation 
solution. 

50 x TAE (per litre) 

Tris Base 242 g 
Glacial HOAc 57.1 ml 
0.5M EDTA 8.0 100 ml 
Add deionised water to 500 ml 
Autoclave at 121°C for 30 mins (15 psi) to sterilise 

SOC Medium (lx Stock) -for higher efficiency transformation/ liter 

Bacto-Yeast Extract 5g 
Bacto-Tryptone 20 g 
5M NaC12 ml 
KC10.19 g 
IM MgC12 10 ml 
IM MgSO4 10 ml 
D-glucose 3.6 g 
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Appendix III 

Chromatograms for each extract from tobacco lines D expressing TXS and 
T5OH, scanned for taxadiene-5a-ol ions. 
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