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ABSTRACT 

In this thesis perturbation and asymptotic methods for the 

solution of three non-linear problems are considered. 

In Part I approximate methods for the analysis of linear and 

non-linear waves are developed. Waves in a rod of varying cross-

section are examined as are waves propagating through an inhomogeneous 

region in which the wave speed is continuous but has discontinuous 

derivative. Iterative procedures are used in both these problems and 

an estimate is obtained for the region in which these methods converge. 

In Part II non-linear Rayleigh waves, elastic surface waves of 

permanent form, are analysed. A straight-forward perturbation about 

linear sinusoidal waveforms is shov.Jn to fail. Retaining the full 

solution of the linear equations it is found that the surface elevation 

profiles of non-distorting waveforms must satisfy a certain non-linear 

functional equation which reduces in the small strain limit to a 

quadratic functional equation. In Chapter Four, periodic, but 

non-sinusoidal surface waves on a compressible material with non-linear 

constitutive law are obtained. Non-periodic waveforms are also 

considered. Periodic Rayleigh waves on an incompressible material 

are obtained in Chapter Five. 

A fibre-reinforced belt stretched round a system of pulleys is 

analysed in Part III. The general theory, developed in Chapter Six, 

·is applied in Chapter Seven to the case of a belf round two pulleys. 

A mathematical consequence of using the ideal theory in which the 

constraints of incompressibility and inextensibility are imposed, is the 

occurrence of singular sheets of fibres which carry infinite stress, but 

finite force. The ideal theory also gives an undetermined contribution 
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to the tension carried by the fibres. This is determined by considering 

the case when the fibres are slightly extensible. The boundary layers 

are examined and the tension throughout the belt obtained. 
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CHAPTER 1 

INTRODUCTION 

Exact analytical solutions often cannot be found for physical 

problems involving non-linearities, variable coefficients, non-linear 

boundary conditions or unknown boundaries. When an exact solution can 

be found it may be of such complexity that it is not useful for 

mathematical or physical interpretation or numerical evaluation. 

Perturbation and asymptotic methods are frequently useful in providing 

an approximate solution from which the nature of the actual solution may 

be deduced. The expansions may be in terms of a small or large 

parameter or coordinate. In this thesis we consider three topics 

involving asymptotic or perturbation techniques. 

First in Chapter Two we consider approximate methods for linear 

and non-linear waves in inhomogeneous regions. Whitham (62), (63) 

and Luke (27) consider the slow variation in time and space of a 

non-linear wavetrain. In (37) Parker analyses the situation where 

non-linearity dominates dispersion and when the disturbances are 

'modulated simple waves'. We examine waves in a rod of varying cross

section for which we obtain a system of hyperbolic equations. We also 

consider a linear problem for wave propagation through an inhomogeneous 

region, in the example analysed the wave speed is continuous, but has 

discontinuous derivative. In both these examples we set up iterative 

procedures and derive an estimate for the region in which these 

procedures converge. In particular we obtain an estimate for the region 

in which an iteration based on 'modulated simple waves' converges. 

In the first case we show how iterative solution based on the 

usual procedure of integration along X = 0 and a = 0 may fail, where X is 
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the independent space variable and the curves a = constant denote the 

forward characteristics. We therefore amend the' procedure by 

integrating along the backward characteristics. The example under 

consideration is that of waves propagating along a rod with non-uniform, 

but slowly varying cross-section which allows us to use a perturbation 

method of solution. We consider 'modulated si~ple waves', set up an 

iterative procedure and derive an estimate for the region in which this 

procedure converges. 

In the second case, for wave propagation through an inhomogeneous 

region, we solve a particular example exactly, where the wave speed 

depends on a small parameter. We then consider the region in which the 

wave speed is varying and obtain asymptotic solutions in this region by 

series solutions and Laplace transforms. In this region we also 

transform the equation to characteristic coordinates and consider the 

solution using an iterative procedure based on Riemann's method. In 

Section 2.6 we examine a further method, which has the advantage that 

since it is applied directly to the wave equation, it is not restricted 

to the particular inhomogeneity considered in the earlier sections. 

In Part II, we consider non-linear Rayleigh waves, that is elastic 

surface waves of permanent form (46). Such waves may be expected to 

appear when a disturbance travels for large distances near the traction

free surface of a homogeneous elastic half-space. We show that a 

straight-forward perturbation about linear sinusoidal waveforms fails, 

since after the leading approximation, solutions can only be found which 

contain terms growing exponentially with depth. The assumption that 

the surface elevation is close to a sinusoidal wavetrain must be relaxed 

by allowing the leading approximation to the disturbance to be an arbitrary 

non-distorting solution of the linear elastic equations. The full 
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solution of the linear equations is retained and it is found that the 

surface elevation profiles of non-distorting waveforms must satisfy a 

certain non-linear functional equation. In the small strain limit, 

this reduces to a quadratic functional equation. This mathematical 

feature will arise whenever the linear waves have no dispersion. The 

general theory is developed in Chapter Three following the analysis of 

Parker in (41) and in Chapter Four this is applied to an example of a 

surface wave on a compressible material with non-linear constitutive 

law. In Chapter Five, Rayleigh waves on an incompressible material are 

examined. Methods are presented for the analysis of both periodic, 

but non-sinusoidal, waveforms and non-periodic waveforms. 

In Part III, we consider a third topic, the analysis of a fibre

reinforced belt stretched round a system of pulleys as has been 

considered by Everatt (11). The general theory is developed in Chapter 

Six and is applied in Chapter Seven to the case of a belt round two 

pulleys. The properties of a fibre-reinforced material have been 

considered by Spencer (52) and may be specified for the composite as a 

whole, although they derive ultimately from the properties and geometrical 

arrangement of its constituents. The ideal theory, in which the 

constraints of incompressibility and inextensibility are imposed, is 

considered. A mathematical consequence of this is the occurrence of 

singular sheets of fibres which carry infinite stress but finite force, 

as has been shown by Pipkin and Rogers (43). Also, use of the ideal 

theory leads to an undetermined contribution to the tension carried by 

the fibres, which Everatt does not calculate. To determine this 

function we consider the situation when the fibres are slightly extensible. 

We perform a perturbation analysis using the small parameter introduced 

here. The constraint of periodicity round the belt gives an equation 
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for this contribution to the tension. The boundary layers are also 

examined in more detail and the tension throughout the belt obtained. 

It is found that the large stresses are confined to narrow layers near 

the surfaces for a range of geometrical parameters. The method of 

determination of this tension function is analogous to the elimination 

of secular terms familiar in perturbation processes describing periodic 

oscillations. 
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PART I 
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INTRODUCTION 

There are two maln classes of linear waves: dispersive and 

non-dispersive. The dispersion relation between the frequency wand 

the wavenumber k may be used to distinguish between the two classes of 

waves. Waves are called non-dispersive if the phase speed w/k is 

independent of k, otherwise they are called dispersive. 

For dispersive waves, solutions representing infinitely long, 

periodic wavetrains may be readily obtained. Water waves and plasma 

waves are examples of these. For the usual linear examples these waves 

are sinusoidal and a general solution may then be constructed by the 

superposition of these wavetrains in a Fourier integral. Since the 

different uniform wavetrains generally have different velocities of 

propagation, a local disturbance expressed in this way tends to disperse 

into its various component waves. The saddle point or stationary phase 

approximation (10) shows for typical examples that a nearly uniform 

wavetrain eventually develops in any locality. 

The equations for a linear dispersive system are often obtained by 

linearization of governing equations, which are originally non-linear. 

In the examination of these non-linear equations the superposition 

principle cannot be applied and an approximation becomes necessary. 

Nayfeh and Mook (33) consider linear longitudinal waves along a uniform 

elastic bar as an example of non-dispersive waves and linear transverse 

waves along a uniform elastic bar as an example of dispersive waves. 

They extend this to consider the behaviour of non-linear waves in a bar, 

whose properties vary slowly along its length. For non-linear waveforms 

the speed is a function of the wavelength and the amplitude. In (62) 

Whitham introduces an averaging technique to determine the slow variation 

in time and space of a non-linear wavetrain. These slowly varying 
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wavetrains occur in two main problems, the first of which has already 

been mentioned, that of an initial disturbance in the linear theory 

dispersing into a slowly varying wavetrain. The second one occurs when 

wavetrains enter a slowly varying medium, examples of this are water 

waves over a sloping beach and plasma waves propagating through a slowly 

varying magnetic field. In (62) Whitham considers the first problem 

and in (63) he applies an averaging procedure to the Lagrangian of the 

original system to obtain the results in a simpler way and also to extend , 

the theory to include more space dimensions and the propagation ln a 

non-uniform medium. In (27) Luke shows how the same results may be 

obtained from the differential equation as the first approximation in a 

formal perturbation expansion. Whitham (64) justifies formally the 

results obtained by considering a perturbation expansion, but working 

directly on the variational principle rather than on the Euler equations 

as Luke does. 

For non-linear waves, not only does no superposition principle 

apply, so there is no guarantee that disturbances do resolve themselves 

into slowly modulating waves, but even if a single wave does emerge it 

may suffer continual profile distortion leading to shock formation. In 

some disturbances this is prevented by dispersion, in non-dispersive 

systems it arises for arbitrarily small non-linearity, provided that 

propagation distances are sufficiently large. In the work of Whitham 

and Luke, already discussed, the non-linear distortion is everywhere held 

in check by dispersion. In (37) Parker discusses the situation where 

non-linearity dominates dispersion, and where the disturbances are 

'modulated simple waves'. Each of these leads to asymptotic methods 

based on two scales of both length and time. In (38) Parker describes 

the underlying assumptions common to these techniques and also discusses 

the distinguishing features of the two procedures. 
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When the equations are linear and the coefficients independent 

of (~,t), where the xi are space coordinates and t is time, there exist 

1 i(k.x-wt). pane wave solutions u = Re(~oe - - ) correspondlng to wave vector ~ 

and frequency w. For non-constant coefficients there exist solutions 

having the limiting form 

and valid for large I~I and Iwl. These disturbances travel along the 

rays of geometric acoustics. 

For non-linear systems of equations, a similar description ,s 

applicable if the sinusoidal waveforms are replaced by non-distorting 

wave profiles or simple waves. In the non-distorting solutions, 

variables depend only on the single phase variable a = ~.; - wt, where 

the phase planes a = constant are perpendicular to the vector k and each 

propagates with the same speed w/I~I. In conservative dispersive systems 

the functions U,.(a) are periodic and the disturbances u. = U.(a) are , , 
known as periodic wavetrains. Important examples are cnoidal waves, 

involving the elliptic function cna, arising in water wave theory. For 

simple waves the variables ui = Ui(a) are again functions of a single 

variable a and the surfaces of constant a are plane. However, the 

'wavelets' a = constant are given implicitly by some equation 

and need not be parallel. Even when they are parallel, their propagation 

speed w/I~I usually depends on a, so that the wavelets tend either to 

coalesce or to spread out and the profile distorts. 

Both periodic wavetrains and simple waves may be used as 

approximations to the local behaviour in more general disturbances. 

Since the local structure of each type of wave is determined by the 



- 9 -

solution of certain ordinary differential equations, the functions Ui(a) 

contain some arbitrary constants of integration, and in the case of 

simple waves, also certain arbitrary functions related to the wave 

profile at a reference time. In (38) Parker describes procedures for 

disturbances in which these 'constants' and 'profile functions' slowly 

vary. For example, a periodic wavetrain may encounter a region having 

slowly varying physical properties. The consequent disturbance will 

approximate to a wavetrain in which the amplitude, wavelength and 

propagation direction slowly vary. Similarly an acoustic or elastic 

wave of arbitrary initial profile may be refracted and modulated by 

inhomogeneities or interactions with other 'slowly varying' disturbances. 

'Modulated simple wave' theory then determines how the profile of the 

wave changes as the disturbance propagates. 

In (30) Miura and Kruskal consider a non-linear generalization of 

the usual WKB method, which is similar to Whitham's averaging method 

and apply it to the Korteweg-de Vries equation. 

In (58) Varley and Cumberbatch derive equations which govern the 

mode of propagation and change in strengths of wavefronts whose 

behaviour are controlled by quite general systems of quasi-linear 

hyperbolic equations. A simple example of the type of problem under 

consideration is provided by the one-dimensional flow of a compressible 

gas which is generated by the motion of a piston in a cylindrical tube. 

If the piston is accelerated from rest, the wavefront, which separates 

the disturbed region from the undisturbed region, propagates with sound 

speed down the tube. The variation in particle acceleration behind 

the wavefront can be determined independently of the remaining flow up 

to the time that the acceleration becomes infinite when a shock begins 

to form. The general theory is applied to discuss conditions at the 

head of a sound wave of arbitrary initial form and strength and also 
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at the head of gravity waves on sloping beaches. Conditions under 

which shocks and bores occur are derived. If a shock does not form, 

the decay rate is always more rapid than that predicted by linear 

theory, which becomes progressively worse with increasing time. 

Asymptotically for 'large ' time, conditions at an expansion front 'forget ' 

the details of conditions at any finite time. This aspect of 

non-linearity is in direct contradiction with linear theory and has 

been noted for classes of exact solutions. In the next section we 

show how, for waves ln a rod, integration along X = 0 and a = 0, where a 

is a characteristic variable may fail if the cross-sectional area does 

not have suitable continuity properties. To overcome this we set up 

an iterative procedure and show that this converges for some region. 

A generalization of the technique of Varley and Cumberbatch is 

used by Varley (57) to discuss the mode of propagation and decay in 

strength of an acceleration front of arbitrary initial form and strength, 

as it advances into a finitely strained viscoelastic material, which 

until the time of arrival of the front is undergoing any admissible 

deformation. Such a front is produced, say, when the boundary of a 

material is suddenly accelerated from rest. 

Parker and Seymour (42) have applied the theory of 'modulated 

simple waves l to the problem of pulses in an inhomogeneous granular 

material. This theory yields exact equations for signal growth which 

are generalizations of those in acceleration wave theory. 

In Section 2.2 we consider waves in a rod of varying cross-section, 

which leads to a system of linear hyperbolic equations with non-uniform 

characteristic speed. We set up an iterative solution for these 

equations and show that for some region this procedure converges. In 

Section 2.3 we determine the solution to the wave equation for an example 

where the wave speed is continuous but has discontinuous derivative. 
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An asymptotic solution to this problem is considered in Section 2.4. 

In Section 2.5 an alternative method of solution is developed using 

Riemann's method and we show that an iterative solution to this equation 

converges for some region of the (x,t) plane. In Section 2.6 another 

method of solution is considered, which does not depend on any special 

choice of inhomogeneity. 
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CHAPTER 2 

WAVES IN INHOMOGENEOUS REGIONS 

2.1 CONVERGENCE OF AN ITERATIVE SCHEME FOR WAVES IN A NON-UNIFORM REGION 

We consider a rod of reference cross-sectional area A(X) and density 
-

p in its unstressed reference configuration, where X is a material 

coordinate. We let x = x(X,t) be a current coordinate and define the 

stretch A = ~~ and velocity u = %f. The compatibility condition 

then implies that 

aQ aA 
= (2.1.1) -aX at 

-We assume that the stress T is a function of A, so that the load is A T(A). 

The forces acting on a small section length 8X are shown in figure 2.1. 

/ -- " AT / 

";, 
" 

x 

Fi gure 2. 1 Forces acti ng on a sma 11 s ecti on 

The momentum equation gives 

a (A T) 
aX 

a --= -::=- (pA u) 
at 

- au 
= pA--=-

at 

" Z 
/ 

" /. 
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which may be rewritten 

We now 

Young's 

c 

au = P--:: 
at 

non-di mensiona 1 i ze by writing 

modulus, and defining 

[~) ; -
= , u = cou, A 

0 

-T(A) 

= 

= ET(A), where E 

A A t = t t 
0 0 

then the compatibility condition (2.1.1) becomes 

and the momentum equation (2.1.2) becomes 

T'(A) ~ + ~ T = au 
aX aX A at 

lS 

Equations (2.1.3) and (2.1.4) form a hyperbolic system with 

(2.1.2) 

a typi ca 1 

-X = c t X o 0 

(2.1.3) 

(2.1.4) 

characteristics ~~ = ±c(A) = ±/T'(A). Along the characteristic ~~ = +c(A), 

h aCt aCt 0 we introduce a label Ct, were at + c aX = . 

First we consider the case of uniform cross-section so that A'(X) = O. 

Multiplying equation (2.1.3) by ~ and adding it to equation (2.1.4) gives 

which may be written as 

Choosing ~ = ±c and introducing 0(1.) = JCdA we obtain 

(c aax ± adt] (0 ± u) = 0 . (2.1.5) 
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Therefore cr-u is the Riemann invariant taking a value r(a) which is 

constant along ~; = C(A), and similarly cr+u is constant along each curve 

~~ = -C(A), on which S is constant. 

In the remaining analysis we consider waves propagating along a 

rod with non-uniform, but slowly varying, cross-section. When variations 

in cr and u across the a curves are very much greater than variations along 

the a curves, this allows a 'modulated simple wave' formulation. We 

transform the (X,t) coordinates to (X,a) coordinates, where as above 

aa + C(A) aa o . ax = at 

Now 

:xlt = a I + a I aa I ax a aaXax t 

and 

= 2.[ 1£\ aa X at X 

hence writing ~~ = K gives ~~ - -CK, so derivatives are transformed as 

a [ = a I + K .1..1 
ax t ax a aal x 

Equations (2.1.3) and (2.1.4) then give 

au + au aA 0 (2.1.6) K - + CK - = ax da aa 

au 2 aA _ C2K aA A' {X~ T . (2.1.7) -cK - - c ax = A(X) aa aa 
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Multiplying equation (2.1.6) by c and adding it to equation (2.1.7) 

then gives 

c au _ c2 aA = 
ax aX (2.1.8) 

Equation (2.1.8) must then be solved with either equation (2.1.6) or 

(2.1.7). We rewrite. equation (2.1.6) in the form 

au + c aA = _ l ~ 
aa. aa. K aX 

and consider equations (2.1.8) and (2.1.9) 

From the compatibility condition 

we have 

aKI = _ ~ (CK)\ 
at X ax t 

wh i ch i mpl i es 

this gives 

ac + c aK + 2 ac = 0 
K ax aX K aa. 

which may be rewritten as 

a ( -1 -1) 
- K C aX 

We now define the slowness S(A) by 

S(A) 
-1 = C = 

_ -1 
LT' (A)] 2 

and the incremental arrival time ~ by 

(2.1.9) 

(2.1.10) 
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atl - ao. X 

with boundary condition chosen as Q,(o.,O) = 1 to make a. = t at X = 0. 

Equations (2.1.8), (2.1.9) and (2.1.10) then become 

aA s au = -S2 ~ T ax- ax A 

aA + s au = Q, au 
ao. ao. aX 

aQ, as 
= aX ao. 

(2.l.11) 

(2.l.12) 

(2.l.13) 

These are three equations for A, u and Q, as functions of a. and X. The 

time t is then found from 

t = J£(o.,X)do. (2.1.14) 

or alternatively t = JS(A)dX along the wavelets a. = constant, because 

5 = ~~I" . 
We introduce the function O(A) = JCdA as in the case of constant 

cross-section and we write T(A) = ~(o). Equations (2.1.11), (2.1.12) 

and (2.1.13) then become 

(2.l.15) 

a + U = Q,cu X (2.1.16) 
a. a. 

£X = S (2.l.17) 
a. 

which we rewri te in the form 

20 X + ~ s~ = Ux + Ox (2.1.18) 
A 
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a + U 
a. a. (2.1.19) 

(2.1.20) 

We may set up an iterative procedure: 

(2.1.21) 

= a(n) + u(n) 
X X (2.1.22) 

= s(n) 
a. (2.1.23) 

If we suppose that u(n-1)sQf+l, whereJbP 1S the space of functions with 

continuous X-derivative of order p, then u*n-1)siP, we also assume that 
( n-l ) (n-l ) p () () P 

t ,c s~, hence equation (2.1.21) implies u n + a n s~ , which 

gives u~n) + a~n)s~p-1. Equation (2.1.22) then implies that a~n)s~p-l, 

which gives a(n)s~p and hence u(n)s~. We therefore lo:se one order of 

differentiability per iteration. Hence if the differentiability of A is 

finite, for example if A is continuous, but AI is discontinuous, then the 

first iterate u(o) will be continuous but not differentiable, so that no 

more iterations can be performed to produce finite iterates. We therefore 

cannot carry out an iterative procedure by integrating along X = 0 and 

a = O. This shows the limitations of the Imodulated simple wave l 

formalism as already mentioned in connection with the work of Varley and 

Cumberbatch. We must modify the process to obtain bounded solutions at 

subsequent iterations. 

Equation (2.1.19) may be written as 

hence 
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We now write U+o = wand obtain the following equations 

(2.1.24) 

(2.1.25) 

£ = S 
X a. ( 2. 1 .26) 

where S(o) = s~, these may be used to set up an iterative procedure 

starting from ~(O): 

= w(n) 
X 

1 AI (n-l) (n-l) 
-- £ ~ 2 A (2.1.27) 

(2.1.28) 

(2.1.29) 

In equation (2.1.24) the left-hand side is a total derivative along 

~~ = -~£c, which is one of the exact characteristics of the s~stem (2.1.3) 

and (2.1.4), so that (2.1.27) determines w(n) by integrating along 

successive approximations to ~~ = -~£c. Equation (2.1.28) then determines 

o(n), which gives u(n) and equation (2.1.29) gives £(n) as a function of 

s(o(n)). The process is repeated iteratively, hence in general the 

solution to (2.1.27) lS found by solving 

dw(n) da. = = -1 
dX 

1 AI (n-l) (n-l) 
2A £ ~ 

1 (n-l) (n-l)· 
- - £ c 

2 

Starting the iterative procedure from ~(o) = 0, £(0) = 1 glves w(l) = o. 

Equation (2.1.28) then glves 
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backward 
\ craracteri s ti c 

\ 
\ 

\ 
\ 

I \ 
I \ 
I \ 

wavelet 

\ 

'-----------'--.--:....4 X 
wavefront U+c1':'" = 0 

Figure 2.2 The backward characteristics in the (X,a) plane 

wh i ch imp 1 i es 

1 

A~ r(a) , say (2. 1. 30) 

and also we obtain ~(l) from (2.1.29). This 1S the 'modulated simple 

wave' approximation. 

We shall show that this procedure converges under some conditions, 

but first we illustrate the practical process by considering the special 

case of the 'small amplitude, finite rate' (42) theory. This gives 
1 

m'(X) proportional to (A/Ao)2 so that 

= So - m'(X)r(a) 

~ (1 ) = 1 - m( X) r' (a) 

where s 1S independent of X. Equation (2.1.29) is then satisfied. 
o 

To solve equation (2.1.27) we need to integrate along the 8-characteristics, 

where 

dX 1 ~(l) 
da = - 2" s(l) 

= _ l rl - m( X) r' (a) ) 
2 s_ - m' (X)r(a) 

(2.1.31) 
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Integrating this we obtain a relationship between X and s. Then 

along 8=constant equation (2.1.27) gives 

dw(2) 
da 

however 

hence 

dw(2) 
da 

, 

from (2. 1 .30) , 

1 k~ AI 
= 2 A3/ 2 {l - m(X)rl(a)} 

the right-hand side of this is a known function of X and a, we substitute 

for X using the relationship obtained from (2.1.31) and then integrate 

along S = constant. 

We now show that the iterative procedure converges in some reglon 

behind the front X = X+(a) of a wave moving into a static region. 

Equation (2.1.24) implies that 

__ IX+ A I (X) - + -
w(X,a) P(X,X )dX , 

X A( X) 
(2. 1. 32) 

-
along S = constant, that is along S(X,a) 

+ = s ( X , a), S 0 th at S ( X , 0 ) = S ( X ,a) , 

(X+S"X o() 
J 

Figure 2.3 The region behind the wavefront 
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- + 
where P(X,X ) = S(o). 

Then 

+ 
Wx = a w = J x (A I p) dX + A I (X +) S ( x + 0) _ A I (X) ax a X A x A (x+) , A (X) S (X ,ex) • 

Now S(X+,O) = ° and equation (2.1.25) gives 

20
X 

+ ~ S 
A 

therefore 

X+ 

= I X a"x [ A ~ SJ dX - ~' S 

A I S 1 f x+ a (A I SJ -
Ox + If:" = 2" X ax AJ dX , 

where 0 is specified on X = 0. 

To determine the region for which the procedure converges we consider 

two successive iterations: 

X+ 
- l f .1..- (AI S( (n-2)))dX 
- 2 X ax A 0 

(2.l.33) 

X+ 
(n) AI S( (n)) 

Ox + A 0 = l f .1..- (~S( (n-l)))dX 
2 X ax A 0 

(2. l. 34) 

We assume in the following analysis that AI > 0, although we note that 

only AliA appears in the analysis and the case of AI < ° may be considered 
-1 AI _ B' 

by writing A = B since this gives - A - 11 . 

Now 

T T 
S = IS = - = C ITI (A) 

and for a typical non-linear stress-strain law we can choose a Lipschitz 

constant N > ° such that is(o(n)) - S(o(n-l)) I ~ Nlo(n) - o~-~i for a 

range of 0. 
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s 

Figure 2.4 The function S(o) 

Subtracting (2.1.33) from (2.1.34) we obtain 

+ I ~I I N I 0 ( n) _ 0 ( n - 1 ) I • 

Now for any function f(X), I ~;I ~ ddX I fl ' 

hence 

(2.1.35) 

X+ 
aax lo(n) - o(n-1)1 ~ 1 Ix I aax (~' [S(o(n-1)) - S(o(n-2))llldX 

~. ~ Nlo(n) _ 0(n-1) I 
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which gives 

Hence for AI > 0 

+ 
~ l( I (n) - cr (n-l ) I -N) A -N (X I a rA I ( (n 1) (2) J) I aX cr A .::. -2- J

x 
ax \.A S(cr - ) - S(cr n- ) dX 

and 

- + .d: ~ ( I a"x [~' (S(,,(n-l)) - S(,,(n-2))llldXdX , 

(n) (n-l) 
since cr = cr on X = 0 . 

Hence 

-
~; II A -N ( X) Ilzll X + - XI Iz { II a\ l~' Jill N II " ( n -

1 
) -" ( n -

2
) III 

in which K is an upper bound for I~;I ,we choose K = N, and the norms are 

given by 



max_ I f(Y) I 
O<Y<X 
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max 1 f (Y) 1 . 
X<Y<X+ 

We now let Ilf(Y)11 = max If(Y)1 over the region considered, then 

IIf(Y)lli 2.lI f (Y)II, i = 1,2, 

and 

(2. 1. 36) 

We now seek an upper bound on I la~n-1)_a~n-2)1 I. From (2.1.35) we have 

the inequality 

.. ..' (i) (i-1)11 Repeated appllcatlon of thlS lnequa11ty for I lax -aX gives 
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+ 

where 

Substituting this inequality into (2.1.36) gives 

+ ... + Mn - 3, I cr ( 2 ) - cr ( 1 ) " + Mn - 2, I cr ( 1 ) , I} , 

where 

We define 

and 

The T(n) then form a positive sequence which must tend to zero as n ~ 00 

if the iterative process is to converge. Repeated application of the 

inequality 
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gi ves 

(n) L(L M){ (n-2) + Mn-3 (1)1 
T 2.. + T + ... T j 

n-2 (1) 2.. ••• .::. L ( L +M ) T 

Therefore T(n) + 0 as n + 00 if (L+M) < 1, which may be rewritten as 

.J,. -

IIX'-XII(IIXII + G) < H , 

where Hand G are constants given by 

and 

Now 

and 

dX 1 = - - £c da. 2 
, 

hence 

X+ X a. (£c) - 2.. "2 max . 

Also 

£ = 1 + ( s dX a. 
0 

so that 

£ < 1 + I XI ! I s a \I 
I 
I 
i 
U c 

I"' " IR ~ ~ ,1;-""1 i i/2 I' 

?;b e:s I, IJIll1 II ~-', 1'1 
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This leads to an upper bound for X+-X in terms of X and a. 

For this non-linear analysis we have assumed that the behaviour 

of 5(cr), t, c is such that there exists a Lipschitz constant N where 

I 
d51 < N 
dcr -

and tc is bounded. The value of N depends on the range of cr occurrlng 

in the solution, this difficulty does not arise in the linear theory and 

so we now consider the linearized version, where the speed is constant 
1 1 c = C, say, hence s = -C = -- and 5 = cr. Then from equation (2.1.32) 

2:
1 

we find 

J
X+ AI 

W = X A crdX 

As before substituting into equation (2.1.25) for Wx we obtain the 

equation for cr: 

= 1 J x+ a (A I crJ -2" X -ax A dX . 

which gives 

In this linearized version s is constant, hence tx = sa = 0, but 

t(a,O) = 1, therefore t(a,X) := 1. The function w is obtained by 

integra ti ng 
dX 

becomes da = 

h 1 · h dX 1 t which in this situation along t e lnes were da = - 2 5 ' 

- ~. We may therefore find the curves explicitly and 

independently of the signal r(a) as X = - ~ + 0, where 0 is a constant. 
+ 

Now X+ is the point at which this line crosses the line a = 0, hence X = 0 
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+ Ca 
and X - X =~. The condition for convergence then becomes 

~ II ~ \I ( II X II + G) < H , (2.1.37) 

where the constants G and H will be the same as in the non-linear theory 

with N being 1. 

In the following sections we consider an explicit example for the 

linear theory, which may be used to check the predictions of this section. 
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2.2 SOLUTION OF THE WAVE EQUATION WITH WAVE SPEED HAVING DISCONTINUOUS 

FIRST DERIVATIVE 

In this section we consider a linear problem for wave propagation 

through an inhomogeneous region, which can be solved exactly using a 

Liouville-Green transformation (32). This allows the predictions of 

section 1.2 to be checked and also those of other procedures to be 

considered in later sections. We determine the exact solution to the 

problem of solving the one-dimensional wave equation 

(2.2.1 ) 

where k(x) is chosen so that solutions of the form u = v(x)e
iwt 

may be 

determined simply. The function v(x) then satisfies VII + k1.(x)w2 v = o. 

We choose 

k(x) = 

1 

1 
1 +sx 

1 
2" 

, 

, 

, 

x < 0 

-1 o < X < S 

-1 
x > S 

so that k(x) is a continuous function, but has discontinuous first 

derivative. 
-1 

The choice of k(x) for the interval 0 < x < s was 

motivated by considering the transformation 

1 

dy = k(sx)dx, W = [k(sx) ] 2 V(X) 

from which we obtain 

where 

o , 

1 __ 1_ d2 k + 1 ....l...( k_'...L)_2 

2k3 dx 2 4 k4 
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By choosing 

= A , (2.2.2) 

where A is constant, we obtain 

(2.2.3) 

so that solutions w(x) are sinusoidal. To solve (2.2.3) we write 

k'(X) = z, we obtain from (2.2.2) 

(2.2.4) 

where B is an arbitrary constant. 

Special cases of this arise for A = 0 or B = o. 

( i ) B = o. c From (2.2.4) we deduce that k = x+d ' for some constants 

c and d and from (2.2.3) 

= 1 1 --
4c2 

( i i ) 

k(x) = 

A = o. 
1 

We deduce that k = c and k2 = 1. Therefore choos i ng 
(x+d)2 1 

1 +e:x is an example of case (i) and so leads to an equation for w 

having constant coefficients. 

To solve equation (2.2.1) we consider the three regions x < 0, 

o < -1 d x < e: an x > e: -1 and solve the equation in these regions, matching 

the solutions on x = 0 and x -1 = e: 

Therefore in I a2u a2u x < 0 (2.2.5) = -
ax2 at2 

in a2u 1 a2 u o < x < 
-1 

(2.2.6) II = , e: 
ax2 (1 +e:X) 2 at2 

a2u 1 a2u -1 (2.2.7) ln III = 
4" at2 

, x > e: 
ax2 
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We assume that for x < 0 we have an incoming sinusoidal wave sin(x-t). 

The required solutions to (2.2.5) and (2.2.7) may then be written as: 

in I u = sin(x-t) + B1sin(x+t) + B2cos(x+t) (2.2.8) 

, (2.2.9) 

where A3 , A4 , B1 and B2 are arbitrary constants, the Bls being the 

constants for the reflected wave and the Als those for the transmitted 

wave. For region II we introduce the variable y as above where 

~~ = l~sx ' which gives y = ! log(l+sx), where 0 < y < ! log 2. Defining 
1 1 

v = k2 u = 1 u, (2.2.6) may be rewritten as 
(1 +sx) 2 

(2.2.10) 

the telegraph equation for which the general solution having period 2~ 

in tis 

Equation (2.2.10) may also be obtained by considering a linearization 

of (2.1.3) and (2.1.4), writing A = l+e, T = c2e gives 

u = e x t 

AI 
c2e + - c2e 

x. A 

We then introduce y and v by writing X = cy, u = v and obtain 
y 
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and 

Making the transformation v(y,t) = A-~ w(y,t), the function w(y,t) 

satisfies 

which is of the same form as (2.2.10), when 

~~2 (log A) + (~ (log A)]~ ~ constant. (2.2.12) 

The results to be obtained for equations (2.2.5)-(2.2.7) will 

therefore also apply for the linearization mentioned above of the 

example considered in section 2.1, when the cross-sectional area A 

satisfies (2.2.12). 

1 1 
Now u = (1+sx)2v, Y = - log (l+sx) so that from (2.2.11) in 

s 

region II we have 

n( 1 J1 1 :l + A2cos U 1 - 4 s2 2 -; log(l+sx) - ~ 

U( 1 ]1 1 ~ + B3sin 1 - 4 s2 2 ; 10g(1+sx) + :J 

(2.2.13) 

The constants AI, A2, A3 , A4, B1 , B2, 83 and B4 are found by matching 

the solutions at sx = 0 and 1. For all x, u and ux are continuous, 

so that u and u must be continuous at sX = 0 and 1. x 
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In I, 

u = cos(x-t) + B1cos(x+t) - B2sin(x+t) , x (2.2.14) 

ln II 

u = ~ (l+e:X)-~{AlSin[(l 1 J 1 1 ~ - - e:2 2 - log(l+e:x) x 4 e: 

+ A2cos [( 1 1 r· 1 - 4 e: 2 2 ~ log(l+e:x) - ~ 

+ B3Sin [(1 1 ) 1 1 - - e: 2 2 - log(l+e:x) 4 e: + J 
:J 

+ B4cos [(1 - - e: 2 2 - log(l+e:x) 1 ) 1 1 
4 e: + J} 

] 

_1 ( 
+ (1 +e:x) 211 1 J1 i( 1 r~ 1 - 4 e: 2 2{A 1cos U 1 -"4 e: 2 2 ~ log(l+e:x) - ~ 

- A2Sin[(1 _ - e: 2 2 - log(l+e:x) 1 J 1 1 
4 e: - ~ 

+ B3COS [(1 _ - e: 2 2 - log(l+e:x) 1 J 1 1 
4 e: + J :J 

- B 4 sin [( 1 - ~ e: 2 ) ~ ! log ( 1 +e: x) + ~}, (2.2.15) 

ln III 

(2.2.16) 

We make u continuous at x = 0, using equations (2.2.8) and (2.2.13) and 

equate coefficients of sin t and cos t to yield the conditions 

(2.2.17) 

(2.2.18) 
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Similarly making ux continuous at x = 0 and substituting for 8 3 and 84 

from (2.2.17) and (2.2.18) we obtain 

(2.2.19) 

(2.2.20) 

We write (1 -* E2) ~ ~ log 2 = y, then u and ux being continuous at EX = 1 

gives, on substituting for 83 and 84 from (2.2.16) and (2.2.17): 

(2.2.23) 

and 

(2.2.24) 

Equations (2.2.17) - (2.2.24) give eight equations for the eight unknowns 

AI' ... ' 84. We write n = (1 -} E2J~, hence y = : log 2. Equations 
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(2.2.18) and (2.2.19) may then be written 

(2.2.25) 

and 

_ e: 
-2 (2.2.26) 

Eliminating A3 and A4 from equations (2.2.21) - (2.2.24) gives 

Al{e: siny + 211COSy} + 2Azsiny + Bl{cosy + ~ siny+ncOsy} 

+ Bz{- siny + ~ COSy - nsiny} e: . = COSy + 2 Slny + nCOSy (2.2.27) 

and 

+ Bz{- f siny - (l1+l)cosy} . e: . = - slny + 2 COSy - 11slny (2.2.28) 

AI' Az , Bl and Bz may therefore be determined from equations (2.2.25) -
-

(2.2.28) and then B3, B4, A3 and A4 determined by (2.2.17), (2.2.18), 

(2.2.23) and (2.2.24). 

We now consider the asymptotic solution to these algebraic equations, 

for e: « 1, Isinyl, Icosyl « 1 and 11 = 1 - ~ e: z + .... Solving the 

equations to zero order we find that Al = 1, Az = 0, Bl = 0, Bz = 0, 

A3 = 12 cos (y - 2
1
e:]' A4 = 12 sin(y - ie:J, B3 = ° and B4 = 0. Hence to 

this order there is no reflected wave ln region I or II and the phase of 
1 the transmitted wave in region III is y = - log 2. We expand Al, ... ,B4 e: 

as Al = 1 + e:All + ... , ... , B4 = e:B41 + ... , and equating powers of e: 

we obtain 

2 
Al 1 e: 2y = + 16 cos + 

Az 
1 e: z . 2y + = - e: + 16 Sln ... 4 
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= 

= 12 sin (Y - 2
lc-] + e: 2 18

2 sinv cos (1 2) + 
"" I TE- Y ••• 

= e: • 2 - -zr Sln Y + ... 

= ~ (1 - cos2y) + 

e:. e: 2 - 4 Sln 2y + 16 cos 2y + ... 

- ~ cos 2 e:
2

. 2 4 y - 16 Sln y + ... 

The magnitude of the reflected wave in region I is IB2 + BZ ~ e:z ISinyl, 
1 2 

which depends crucially on the phase relationship, that is the travel 

time y = l log 2. The magnitude of the transmitted wave ln region II 
e: 

is IA1 + A~ and that of the reflected wave in that region is ;B~ + B~. 

In region III the transmitted wave has magnitude IA~ + At. The refl ected 

waves are due solely to the discontinuities at the interfaces. In the 

next section we consider the solution near a wavefront. 



- 37 -

2.3 CONSIDERATION OF THE PROBLEM INTRODUCED IN SECTION 2.2 IN THE REGION 

WHERE THE WAVE SPEED IS VARYING 

In this section we again consider equation (2.2.6) and make the 
1 

transformation u = v(1+sx)2, Y = log(l+sx) to obtain as ln (2.2.10) 

(2.3.1) 

Solutions to this equation may be found using various methods. 

First we observe that for sinusoidal wavetrains v = sin(Cy-t) 

satisfies (2.3.1) if C2 = 1 - ! s2, so that this solution may be written 

as 

(2.3.2) 

More generally, any solution to (2.3.1) may be obtained by writing 
00 

v = L 
p=O 

2p 
E v. 

P 
The choice v = sin(y-t) then allows us to write v as 

o 

v = sin(y-t) - ~ s2y(1-cos(y-t)) - 1~8 E4(y2sin(y-t) 

+ y(cos(y-t)-l)) + ... , (2.3.3) 

where we have not included a reflected wave, and we have imposed the 

condition v = 0 on y = t. It is readily shown on expanding (2.3.2) ln 

powers of s that the 0(1), 0(s2) and O(s~) terms of (2.3.2) and (2.3.3) 

agree. 

The method may also be used to construct solutions v(y,t) satisfying 

more general boundary conditions on Y = 0 and at a wavefront y = t. For 

this purpose it is easier to change coordinates to y and r,;, wherer,;= t - y 

so that equation (2.3.1) becomes 

v yy 2v yr,; 
(2.3.4) 



- 38 -

We are interested in the region t ~y, that is ~ ~ 0 and impose the 

boundary conditions 

v (y ,0) = 0, (2.3.5) 

We now solve this problem using Laplace transforms. The Laplace 

transform of v with respect to ~ is denoted by 

v (y ,s ) = 

Hence, using the boundary condition on ~ = 0, equation (2.3.4) is 

transformed into 

which may be solved using the boundary condition on y = 0 and imposing 

the restriction that v is bounded as y + 00. The solution is 

v = 

which may be inverted using Bessel functions to give the solution 

v (y ,I;;) 

1 

Ey fl;; J 1 [E/2 {r( r+2y)} 2J 
= v (I;;) - -- 1 Vo(l;;-r)dr . 

o 2 0 [r (r+2y)] 2 

Now the Bessel function J 1 (x) may be expanded as 

= ~ {l 
x2 

- "8 + •.. } 

Substituting this into the above expression for v(y,~) and performing 

the integrations gives an expansion for v: 

Considering the special case v = -sinl;; we obtain o 
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v (y ,r;,) = 
2 

. + e: y (1 ) - Slnr;, 8 - cosr;, + ... (2.3.6) 

We see that the terms in (2.3.6) agree with those in (2.3.3). We may 

also compare the solution with that obtained in Section 2.2, however ln 

that section we impose boundary conditions on y = 0 and e:y = log 2. 

The solutions are of a similar form if we neglect the reflected part ln 

region II which is due to the boundary e:y = log 2. 

We may use the above method of Laplace transforms imposing a 

boundary condition at e:y = log 2 and lifting the restriction that v is 

bounded as y ~ 00. We then obtain an additional term in v proportional 

to e(s+/s2+e:
2
/4' y, the arbitrary constants being determined from the 

boundary conditions. 

Equation (2.3.4) may also be solved by Riemann's method, see 

Section 2.4, where the Riemann function u is the Bessel function 
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2.4 FURTHER METHODS OF SOLVING THE PROBLEM IN SECTION 2.3 

We consider an alternative method of solution of equation (2.3.1) 

using Riemann IS method (7). First we transform the equation usin~ 
. t-y t+y characterlstic coordinates ~, n, where ~ = --4--' n = --4-- and we are 

interested in the region t ~ y, ~ ~ O. Equation (2.3.1) then becomes 

(2.4.1 ) 

We now define the linear operator L, by 

L(v) (2.4.2) 

This operator is self-adjoint with the property 

vL(u)-uL(v) = ~ (vun) - ~ (uv ) . 
a~ an ~ 

If D is a domain whose boundary is a regular closed curve C, it follows 

by Green's theorem that 

J
rf(U + V )dnd~ 

'n ~ 
D 

= f(Udr; - Vdn) 
C 

f f ctl·ons U V(r n) Now L(v) = 0 when v satisfies (2.4.1) and we or un , ':> , • 

choose u such that L(u) =-0, then vL(u)-uL(v) = 0, hence 

= o. (2.4.3) 

We choose C to be the contour PQRS shown in figure 2.5 and we choose u 

such that = 1 on PQ and SP, hence u = o on PQ, u = o on SP and 
u n ~ 

u(P) = 1. 

Equation (2.4.3) then gives 

J vu dn + J v d~ + J (vu + v u)ds = 0 

RS n SP ~ QR n s 
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u=1 

R 

Figure 2.5 The region of integration for Riemann's method 

hence 

v(P) = v(S) v(n,O)u (n,O)dn 
n 

o 
- f (vu + v u)ds . 

- n s s 

We impose the boundary conditions 

v(n,O) = g(n), v(s,s) = h(s) 

(2.4.4) 

The problem is therefore reduced to that of finding a function u such 

that L(u) = ° with u = 1 on s = 2 and n = n, this function is known as 

the Riemann function for L. 
00 u. r j 

I+', . ° .3. J . J= 
Following Copson (7) we write u as the summation u = 

where r = (2-s)(n-n). Choosing Uo 
= 1 the boundary conditions are 

satisfied and we find that L(u) = ° if u
j 

= (_E 2 )J, hence 

u = 

However, the Bessel function Jo(z) may be written ln the form (61) 



J (z) o 

00 

= I 
j=O 
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so comparing this with the expression for u, we find that u may be written 

as 

Substituting this into (2.4.4) we obtain 

v(P) = v(S) - In g(n)u (n,O)dn 
o n 

where we have used 

J~(z) = - J1(z) . 

Now the Bessel functions may be expanded as 

J (z) o 

We now choose g(n) = 0 and expanding the Bessel functions we obtain 

v(~,~) = h(~) - £2Js h(s)(n-s)ds + 0(£4) 
o 

(2.4.5) 

The problem could also be solved with boundary conditions applied 

on y = 0 and y = 1 that , s n - s = 0 and n - s = ~ , the regi on of 

integration is then shown in figure 2.6. 
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J '1..-:3= 0 

Figure 2.6 The reglon of integration with boundary conditions on y - 0 

and y = 1 

We now examine a direct iterative procedure for solving (2.4.1) 

analogous to that of Section 2.1. We assume that v is given along 

y = 0 and along, = O. 

~-------~y 

Figure 2.7 The region of integration with boundary conditions on y = 0 

and , = 0 

The solution may then be written in the form 
- -

v = -0 2 J' In v dnd, + f(~) + g(~) 
o , 

(2.4.6) 
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We let v = k(n) along, = 0 

and v = h(,) along, = n, 

hence f(2) and g(n) are given by 

h(~) = f(~) + g(~) 

We may set up an iterative procedure 

- -
v(n) = -0 2 f' rn v(n-l)dnd, + ftc) + g(n) , 

oJ, 

(2.4.7) 

where since f and g are determined from the boundary conditions, they 

are the same for each iteration. Hence 

We define T(n) = Iv(n) - v(n-l)1 

then 

where 

= rna x I f ( n , ,) I 
O~'<~ 

O<n<n 

therefore 
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The iterative procedure wi 11 therefore converge if e:2~(~ -
-

~l;;) < 1, 
which may be written in terms of y and t as 

e: 2 (t-y) (t+3y) < 32 , (2.4.9) 

this has asymptotes t = Y and t + 3y = O. Therefore as in Section 2.1, 

we have the limit of the region of convergence ln a region bounded by a 

curve crossing the t axis at a finite value of t, the region being shown 

in figure 2.8. 

\ 
c:t 

\ 
\ =0 

"II'---------~ (;. Y 

Figure 2.8 The region of convergence for the iterative procedure 

The estimates of the reglons of convergence obtained for the 

different procedures in this section and the previous ones are 

underestimates and the procedures probably converge everywhere. It may 

be shown that the condition (2.1.37) obtained in Section 2.1 is satisfied 

if (2.4.9) is satisfied when A is chosen to fulfil the condition (2.2.12), 
1/ /2e: y for example by choosing A = e . 

We now give the first few terms of the iterative procedure described 

above, choosing g(n) = 0: 



- 46 -

(2.4.10) 

From (2.4.8) we see that h(~) = f(~) and comparing (2.4.10) with (2.4.5) 

we see that the solutions obtained are the same. 

We have also solved the equation 

with boundary condition on ~ = 0 and n = 0, namely 

v(~,O) = sin~ v(O,n) = 0 

We have considered the solution using Laplace transforms, a series 

solution, a solution using Riemann's method and using an iterative 

procedure as in Section 2.3. Using Riemann's method and the method of 

Laplace transforms the solution involves a Bessel function, however 

expanding this we find that the solutions agree with 

v = sin~ + E2n(cOs~ - 1) + ... 

and certainly converge for E21~1 Inl < 1. 
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2.5 AN ALTERNATIVE APPROACH TO THE PROBLEM INTRODUCED IN SECTION 2.2 

We consider the equation (2.2.1) in the three regions with incoming 

wave sin(x-t). 

In region I, for x < 0, (2.5.1) 

which has solution u = sin(x-t) + k(x+t). 

In region II, for 0 < x < E- 1
, (2.5.2) 

In region III, for x > E- 1 
, (2.5.3) 

for which the general outgoing wave is u = h(~x-t), where k and hare 

arbitrary functions. 

To determine the solution in region II, we consider a two-timing 

approach and write X = EX, Y = g(X)/E. Derivatives are then transformed 

as 

d dY d d 
dX = dX av + ax ' 

so that equation (2.5.2) becomes 

(2.5.4) 

Now u = u(X,Y,t;E) and we seek an asymptotic solution u = Uo + EU 1 + .... 

Substituting this expansion into (2.5.4) gives to zero order an equation 

for u : o 

(1+X) 2g'2 U - U = 0 o,YY o,tt 
(2.5.5) 

We choose g(X) such that (1+X)29'2 = 1 + O(E), where the O(E) term is 

identically zero on a wavefront. It is not necessary to choose the 

particular form of wave speed l+Ex, any function F(EX) may replace (l+Ex) 

and then g(X) chosen to satisfy 
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(2.5.6) 

Equation (2.5.5) then has solution 

Uo = A(X)f(Y-t) + C(X)~(Y+t) 

and the equation for ul becomes 

l2(1+X){A'(X)f'(Y-t) + C'(X)~I(Y+t)} . 

This may be solved formally treating X as independent of Y and t. In 

general this gives 'secular terms' (32), which grow with Y-t and Y+t so 

that the expansion will not converge at large distances behind a wavefront. 

To eliminate secular terms we choose 

A(X) 2(1+X)A' (X) = 0 

C(X) - 2(1+X)C'(X) = 0 

1 
which give A(X) = a (1+X)2 

0 

1 
and C(X) = c (1+X)2 

0 

where ao and Co are constants. 

Hence 

The function ul may then be written 

u1 = Al (X)f 1 (Y-t) + C1 (X)~1 (Y+t) , 

which could be absorbed into u by perturbing A(X) as A 
o 

We now suppose that Uo has the specific form 

= a (l+X)~ + 0(£). o 
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1 

Uo = (1+X)2{aosin(Y-t) + bocos(Y-t) + cosin(Y+t) + docos(Y+t)}, 

where the choice of sines and cosines is crucial for the elimination of 

further secular terms, which is to be performed. We write u
1 

as 

The function u2 then satisfies 

- DIsin(Y+t) - 2(1+X){A~cos(Y-t) 

- B~sin(Y-t) + C~cos(Y+t) - D~sin(Y+t)} 

+ b cos(Y-t) + c sin(Y+t) + docos(Y+t)} . o 0 

Secular terms are eliminated by choosing 

Al - 2(1+X)Ai = l (l+X)~ b 
4 0 

which implies 

= 

and similarly 

= 

= 

= 

(l+X)~{Cl - ~ dolog(l+X)} 

(l+X)~{dl + ~ colog(l+X)} . 

Now in region I from (2.2.8) we may write 

u = sin(x-t) + R sin(x+t) + S cos(x+t) 
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and in region III from (2.2.9) we write 

u = K sin (~ - t) + L cos (~ - t) 

We now, as ln Section 2.2, make u and Ux continuous at x = 0 and x = E 

and obtain the arbitrary constants in the solutions. 

find that 

u = sin(x-t) - ~ sinv sin(x+t-v) 

and in region III 

In region I we 

u = 12 (cos (v - 2
1
E) + ~ log 2 sin (i E - v) + ... ) sin (~ - t J 

+ 12lsin(v - ;EJ + ~ log 2 COS(;E - v) + ... ) cos(~ - tJ, 

where v = l log 2. 
E 

Therefore, the reflected part in I depends crucially 

on liE in amplitude and in phase change, which is what is expected as the 

timing of the arrival of the reflected wave in II at the I - II boundary 

determines whether or not the wave is in phase and so reinforces the 

existing wave. In region II we find 

1 r: (1 J u = (1+Ex)2cinls- 10g(1+Ex) - t 

+ E{(1 109 (1+EX) + lJ cos[! 10g(1+Ex) - t) 

-! sin [~ log 2] sin l! log (1 +EX) + t} 

-! cos(! log 2} cos(! 10g(1+Ex) + t}} 
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This method has the advantage over those considered in Sections 2.3 

and 2.4 in that since we are working directly on the wave equation the 

method is not restricted to the particular inhomogeneity considered here. 

The function g(X) may be chosen to satisfy (2.5.6) for any function F(X). 

However, the method does depend crucially on the choice of Uo as a linear 

combination of sine and cosine functions of the variables Y-t and Y+t and 

so is not appropriate for signals behind the front of a wave advancing 

into a quiet region. 
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CONCLUSION 

In this chapter we have considered an iterative procedure for 

determining a non-linear wave propagating into a non-uniform region. 

We have shown that by using a straight-forward iterative process, 

integrating along X =0 and the forward characteristic only a finite 

number of iterations could be performed while obtaining bounded iterates. 

We therefore integrated along ~~ = -~£c, a backward characteristic and 

along a forward characteristic and found a bound on the region for which 

an iterative solution to these equations converges. To check this 

prediction we have analysed some linear problems, which are special cases 

of the general non-linear theory, since a variety of methods for solution 

of these linear equations are available. 

In Section 2.2 the wave equation with speed having a discontinuous 

first derivative was considered. An analytical solution was obtained, 

the coefficients in this being found from asymptotic expansions. In the 

next section we considered other methods of solving this problem for the 

region where the wave speed is varying, first transforming the equation. 

In Section 2.4 we used characteristic coordinates and considered 

Riemann's method of solution and also an iterative procedure similar to 

that used in Section 2.1. As in that section we obtained a bound on the 

region of convergence for this iterative procedure. In Section 2.5 we 

returned to the same formulation of the problem as in Section 2.2 and 

developed an asymptotic method which could be applied to other examples 

of inhomogeneity, although this method is restricted to a sinusoidal 

solution, since it depends on the elimination of secular terms. 
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PART I I 
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INTRODUCTION 

The simplest type of acoustic wave that can travel through an 

isotropic elastic material is a longitudinal wave, in which as the 

wave passes, the material is alternately compressed and expanded. A 

second kind of wave is the transverse, or shear wave, in which material 

particles oscillate from side to side at right angles to the direction 

of the acoustic signal. A third kind of wave for an elastic half-space 

with a free surface is one which moves without change of shape adjacent 

to the traction-free surface. The amplitude of the wave decays 

rapidly with depth so that the effect of the wave is confined to the 

vicinity of the free surface. Such waves incorporate both shear and 

longitudinal components, which are combined together in such a way as 

to satisfy the boundary conditions and travel along the surface of a 

solid, much like ripples on the surface of a pond, see Figure 1 

(22). In linear elasticity they are known as Rayleigh waves, after 

Lord Rayleigh, who in 1885 demonstrated theoretically their existence (46). 

Rayleigh waves form a principal part of a seismic signal. The other 

waves are attenuated throughout a three-dimensional volume, while 

Rayleigh waves only spread their energy in a two-dimensional region near 

the earth's surface. Seismograms show that longitudinal waves appear 

first, followed by shear waves and then Rayleigh waves in accord with 

the ordering of speeds c
R

2 ~ cS
2 ~ cL

2 where cR is the Rayleigh wave speed, 

C
s 

the shear wave speed and c
L 

the longitudinal wave speed (50). This 

ordering is to be expected, since the reaction of the material to the 

volume change in compression should be more vigorous than that to 

orientation change in shear, while the free surface permits a still easier 

distortion and hence a still lower speed. 
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More recently acoustic surface waves have been studied for a 

different application, to process signals in communication systems. 

In this application electrical signals are used to excite Rayleigh waves 

on the surface of a crystal a few centimetres long and one or two 

millimetres thick. The waves excited in this way are of frequency one 

million hertz or more and are employed to store and recognise electronic 

signals. The advantage provided by Rayleigh waves as opposed to 

longitudinal or shear waves which were used initially in electronic 

applications is that the waves may be detected at the surface and so are 

well adapted to the technology for creating microcircuits in thin flat 

structures. In typical applications most of the acoustic energy is 

contained within a distance of a few hundredths of a millimetre of the 

crystal surface. The waves can be excited easily anywhere on the 

surface and readily collected elsewhere on the same 'chip'. In recent 

years the technology of acoustic waves has expanded rapidly with the 

development of the interdigital transducer, an efficient type of 

transducer for converting the electrical signal into an acoustic surface 

wave and reconverting the acoustic wave back into an electrical signal. 

An interdigital transducer is normally placed in a piezoelectric material. 

Many applications of surface waves are described in the book by Viktorov 

(60). 

A considerable amount of theoretical work has been done on Rayleigh 

waves. Lapin has considered in (25) the reflection of a Rayleigh wave 

from periodic corrugations of a surface in oblique incidence, in (24) 

he examines the reflections from periodic irregularities of a liquid-solid 

interface and in (23) the scattering of surface waves propagating over 

an uneven liquid-solid interface. Barnett and Lothe (2) have examined 

the questions of existence and uniqueness of surface waves in an 
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anisotropic elastic body, which is not subjected to pre-stress and they 

have produced a theoretical framework within which these questions can 

be answered. Surface waves have also been investigated by, amongst 

others, Taylor and Crampin. In (55) Taylor and Crampin examine the 

propagation of a wave in a homogeneous piezo-electric half-space and in 

(54) Taylor considers the secular equation for the propagation velocity 

and its numerical solution. In (6) Chadwick and Jarvis investigate to 

what extent the theory of Barnett and Lothe is applicable when the 

reference state is not stress-free. 

The propagation of surface waves of small amplitude in an elastic 

body which is not stress-free in its undisturbed state was first studied 

by Hayes and Rivlin (17). They applied the theory of superposition of 

infinitesimal deformations in an isotropic elastic material to the study 

of the propagation of surface waves in a semi-infinite body which is 

subjected to a static pure homogeneous deformation, and is traction-free 

at its plane boundary. The same simplifications have been adopted by 

all subsequent writers on the subject. Hayes and Rivlin derived the 

secular equation determining the speed of propagation of a surface wave 

travelling along a principal axis of stretch. In (14) Flavin considered 

the problem of determining conditions on the pre-strain which are 

necessary and sufficient for the existence of a progressive surface 

wave. He considered incompressible materials of the neo-Hookean and 

Mooney types, materials which are described in Chapter Five, and in the 

case of a neo-Hookean material showed that there are three possibilities: 

a surface wave can propagate in every in-plane direction, in some 

directions only, forming two opposite sectors or in no direction. 

Willson (65) has investigated properties of surface waves for a variety 

of isotropic, elastic materials, compressible and incompressible and for 
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different states of pre-stress and pre-strain. In (65) Willson indicated 

that the possibilities exhibited by Flavin also apply when the transmitting 

material is compressible and characterised by a restricted form of the 

Hadamard strain-energy function. Braun (4) has also considered Rayleigh 

waves in a pre-stressed neo-Hookean material and Iwashimizu and Kobori 

(18) the Rayleigh wave in a finitely deformed elastic material. 

In standard analyses Rayleigh waves are sought in the form of 

disturbances having displacements whose horizontal variation is sinusoidal 

and which propagate without distortion at some speed c. Since the 

governing equations and boundary conditions involve no natural scale of 

length or time, this speed is independent of wavelength so that Rayleigh 

waves are non-dispersive and all wavelengths travel at the same speed cR' 

the 'Rayleigh wave speed'. Superposing these periodic solutions as a 

Fourier integral yields a representation of a disturbance having surface 

elevation of arbitrary profile. Each such surface wave propagates 

without distortion or attenuation at the speed CR· 

The existence of such a wide variety of Rayleigh waves in linear 

elasticity suggests the possibility that certain non-linear elastic 

surface waves may also propagate without distortion. Such waves with 

surface elevation profiles of permanent form may be expected to appear 

when a disturbance travels for large distances near the traction-free 

surface of a homogeneous elastic half-space. It might seem that such 

disturbances may be analysed by perturbation methods designed to elicit 

a relationship between amplitude, wavelength and propagation speed; 

however, it will be shown that such methods fail. If the leading 

approximation to the disturbance is taken as the standard Rayleigh wave 

having wavenumber k, the next approximation satisfies linear equations and 

boundary conditions which involve terms corresponding to the wavenumbers 2k 
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and zero. Solutions to these equations are readily constructed by 

separation of variables, but the boundary conditions can be satisfied 

only if the solutions contain terms which grow exponentially with depth. 

A similar situation arises at each later stage of the perturbation 

process, essentially because there is no dispersive effect to balance the 

non-linear effects. 

The shortcoming of the process lies not in the expansion procedure, 

but in the assumption that the surface elevation is close to a sinusoidal 

wavetrain. This assumption must be relaxed by allowing the leading 

approximation to the disturbance to be an arbitrary non-distorting 

solution of the linear elastic equations. We anticipate then that 

certain of these solutions are the infinitesimal-strain limits of non

linear disturbances which can travel without distortion at speeds close 

For this reason we represent the general linear Rayleigh wave 

in terms of a pair of conjugate harmonic functions, which like the 

representations in (5), does not unduly emphasise sinusoidal wave 

profiles. Using this representation as the leading term approxi~ation 

in an expansion in terms of strain amplitude, it is found that the 

surface elevation profiles of non-distorting waveforms must satisfy a 

certain non-linear functional equation. In the small-strain limit this 

reduces to a quadratic functional equation, solutions of which are 

computed for a compressible and an incompressible material. Methods are 

presented for the analysis of both periodic, but non-sinusoidal, waveforms 

and non-periodic waveforms. 

For periodic waveforms the quadratic functional equation reduces 

to a system of quadratic algebraic equations for the coefficients in a 

series representation. Solutions to this system of equations have been 

obtained by successively solving truncated systems of N equations 
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involving the first N coefficients. Two solutions were found for 

waves travelling at a speed different from that of the standard Rayleigh 

wave and one for a wave travelling at the same speed. Particle paths 

are plotted at various depths. In the search for non-periodic waveforms 

the problem reduces to that of solving a quadratic integral equation. 
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CHAPTER 3 

NON-LINEAR ELASTIC SURFACE WAVES 

3.1 LINEAR THEORY 

The basic theory has been developed in Parker (39) and (41), but 

it is outlined here for completeness. Two-dimensional plane-strain 

disturbances are considered in the elastic half-space X2 ~ 0, where 

(Xl' X2, X3) are the current rectangular cartesian coordinates and 

(Xl' X2, X3) are Lagrangian coordinates taken in an unstressed reference 

state. The current configuration may then be specified by x3 = X3 and 

X. = x.(X.,t) = X. + u.(X.,t) 
1 1 J 1 1 J 

i,j = 1,2. 

The associated components of velocity y, deformation gradient E and 

Piola-Kirchhoff (engineering) stress ~ are: 

aX. au· _ 1 _ 1 
Vi - at - at ' 

T .. 
1J 

aw 
= -:-=-

aF·· ' 1J 

aX. au. 
F .. =_l=o .. +~ 
lJ ax· 1J aA. 

J J 

i,j = 1,2, 

where W = W(f) is the strain-energy density. 

are: 

aT .. 
~ 
aX· 

J 

avo 
= _1 

P at 1 n X2 > 0, i,j=1,2, 

(3.1.1) 

The momentum equations 

(3.1.2) 

where p is the density in the reference configuration, assumed uniform. 

Vanishing of the tractions on the surface X2 = 0 then imposes the boundary 

condition 

T. 
12 

= 0 on X = 0 
2 

(3.1.3) 

Disturbances which propagate without change of form, travelling 
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at some speed c in the Xl direction, are described by the two-dimensional 

quantities ~ = ~(X,X2)' Y = y(X,X2), E = E(X,X2) and I = I(X,X
2
), where 

X = Xl - ct. Hence using the relationships: 

au av av a2 u v = -c --=- , = -c ---==- = c2 --- ax at ax ax2 

in (3.1.3) gives 

inX2 >O. (3.1.4) 

Solutions to (3.1.4) may be represented in terms of stress functions 

a i (X,X2 ) such that, using the comma notation to denote partial derivatives 
af af 

f,l = aX ' f,2 = aX
2 

of a function f(X,X
2
), 

TIl - P c2 U = a T12 = -a 1 1 1,1 1,2 
, , , 

(3.1.5) 
T21 - P c2 

u2 1 = a T22 = -a 
2,2 

, 
2 ,1 , 

whilst, without loss of generality, the boundary conditions (3.1.3) may 

be taken as 

(3.1.6) 

In linear elasticity, T •• is indistinguishable from the Cauchy stress 
lJ 

and the constitutive law for an isotropic material is 

T· • 
lJ 

= A o .. Uk k + 11 ( u. . + u
J
. i) 

lJ, 1,J , 
= T.. • 

Jl 
(3.1.7) 

Substituting this into equation (3.1.5) yields a set of four linear, 

homogeneous partial differential equations for u1 ' u2 ' a 1 and a
2

• 

equations may be combined into the form 

These 
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which are similar to two pairs of Cauchy-Riemann equations. Solutions 

which decay sufficiently rapidly as X2 + 00 and which also satisfy the 

boundary condition (3.1.8) are called non-distorting progressive surface 

waves. 

and 

so 

We define positive A and B by 

= 1 - pc
2 

> A2 
A+211 

introduce <PI, ¢2' 1JJ1 and 1JJ2 by 

PC2¢1 = (211 - PC2)ul - a2' pc2 1JJ1 = 

PC2¢2 = B(211U 1 - a2) PC2 1JJ2 = 

that 

a¢1 _ 1 ~ o , a1JJ l 1 a¢l = 0 = ax + A aX 2 aX A aX 2 

a¢2 1 a1JJ2 o , a1JJ 2 1 a¢2 
= 0 ax - B aX 2 

= -+--aX B aX2 

(3.1.8) 

A(211U 2 + a 1 ) 

(3.1.9) 

(211 - PC 2)U2 + al 

(3.1.10) 

. (3.1.11) 

Equations (3.1.10) show that ¢1 and 1JJ1 are conjugate harmonic functions of 

the coordinate pair (X, AX 2), while (3.1.11) show that ¢2 and 1JJ2 are 
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conjugate harmonic funct,·ons of (X BX) , 2· 

and a2 are given by 

-1 
u1 = B ~2 - ~1 

~2 = 2~(1;:2 ~2 - ~lJ, 

the boundary conditions (3.1.6) become 

We then write y = AX2, Y = BX2 and define the functions 

U(X,Y) = 

Equations (3.1.10) and (3.1.11) then simplify as 

au av ax - ay = 0, 

aU aV = 0, a-x-av 

av + au = ° 
aX ay 

~+~ = ° aX aY 

in y > ° 

in Y > ° , 
whilst the boundary conditions reduce to 

U(X,O) = u(X,O) , V(X,O) = Kv(X,O) , 

where K _ 

and u(X,O) , v(X,O) are related to the surface displacements by 

1-A2 l-A2 Ul(X,O) = u(X,O) , U2(X,O) = --2~ v(X,O) . 
1+A2 

(3.1.12) 

(3.1.13) 

(3.1.14) 

(3.1.15) 

(3.1.16) 

(3.1.17) 

(3.1.18) 

Equations (3.1.14) , (3.1.16) show that both V(X,n) and V(X,n) are 

harmonic in the half-plane n > ° and take identical values on n = o. 
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Additionally they must remain bounded as n + 00 so that ul and u2 decay 

as n + 00 • In (41) Parker makes precise the manner of decay for (A) 

periodic waveforms and (8) general waveforms. 

For case (A) he restricts attention to functions u(X,y), v(X,y), 

U(X,Y) and V(X,Y) which belong to the space~ (QI~), where n is the 
p 

subset of real two dimensional Euclidean space {(X,n): - 00 < X < 00, n > O} 

and functions belonging to.R,pCnllR) are periodic in X with period P and 

decay uniformly in X as n + 00. General waveforms, for case (8), are 

restricted by the requirements that u(X,y), v(X,y), U(X,Y) and V(X,Y) 

belong to ~~CQI~), whereJ6*(QI~) is the set of bounded real, infinitely 
1. 

differentiable functions ¢(X,n) for which (X2+ n2)2¢(X,n) remains 

bounded as (X~+ n2)~ + 00 for all n ~ O. The boundary values are 

correspondingly once continuously differentiable functions, the spaces 

for which are denoted by,g ~(tRl~), ..Q,;(lKlIR.) in cases (A) and (8) 

respectively. Then restricting the harmonic function V(X,n) - V(X,n) 

to either£ p(QltR) or Jb~(QIIR) is sufficient together with (3.1.16) to 

ensure that V(X,n) = V(X,n) throughout Q. Thus we may write 

v(X,y) = y(X,y) = y(X,AX2), V(X,Y) = y(X,Y) = y(X,BX2) , 

where y(X,n) is any harmonic function belonging tO~p(~I~) or ~~(QI~) 

in cases (A) or (8) respectively. Each such function has a unique 

harmonic conjugate S(X,n) belonging to the same subspace, so we may write 

u(X,y) = S(X,y) = S(X,AX2), U(X,y) = S(X,y) = S(X,BX2)· 

Then provided that 

K = 1 (3.1.19) 

the boundary condition (3.1.16)2 puts no further restrictions on 8(X,n) 
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and y(X,n). Condition (3.1.19) after substitution from equations 

(3.1.8) can be rewritten as the standard 'secular equation ' 

(3. 1. 20) 

defining the possible propagation speeds c of sinusoidal Rayleigh waves. 

For all realistic Poisson ratios (5), it defines only one real positive 

speed, which we denote by c = cR and which satisfies ° < pc~ <~. The 

corresponding quantities 

2 

BR = (1 - :::~J~ > AR 

defined by (3.1.8) are then real, and X, y and Y become y = ARX2 , 

Y = BRX2 , X = Xl - cRt. 

Each pair S(X,n), y(X,n) of conjugate harmonic functions belonging 

to ei ther ..& p (Q I rR) or .Q, .. (Q IIR) may be used to descri be an e 1 ast i c surface 

wave travelling at speed cR" The corresponding displacements are 

(3.1.21) 

The vertical displacement at the surface may be written ln the form 

1 - A2 
R 

2A cr (X) 
R 

= (3.1.22) 

where cr(X) = y(X,O) 

For periodic waves (case (A)) cr(X) may be any function inj,p(rRIIR), while 

general waves (case (B)) may have surface elevation given by any 
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Conversely, if any cr(X) belonging to either of these spaces is 

given, a unique linear Rayleigh wave may be determined. In case (B), 

S(X,n) and y(X,n) may be constructed from the boundary values y(X,O) = cr(X) 

either by the Poisson integral formulae or by Fourier transformation. 

In case (A) they may be represented as Fourier series in X. The 

special case cr(X) = cos kX gives 

S(X,n) = -kn -e sin kx, -kn y(X,n) = e cos kx, 

which represents the standard sinusoidal wavetrain having wavenumber k. 

It has period P whenever kP/2TI is an integer. 
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3.2 NON-LINEAR THEORY 

The constitutive law T = I(f) describing an isotropic elastic 

material may be approximated for small Ilui,jll, by the linear relation 

(3.1.7). In general, it may be split into its linear and non-linear 

parts as 

T·. = 1..0 .. uk k· + ll(U, . + u· .) + N. ,(uk 1) , 
1 J 1 J, 1 ,J J ,1 1 J , (3.2.1 ) 

where the non-linear terms satisfy INijl = o(llui,jll) as IluiJl1 -1- O. 

Consequently the Nij terms describe small corrections to (3.1.7) when 

the displacement gradient is small. 

As in the previous section stress functions ai(X,Xz) are introduced. 

Substituting the constitutive law (3.2.1) into the equations (2.1.5) gives 

AU + (A + 211)U Z z + aZ 1 = -N zz . 
1 ,1 " 

Taking linear combinations of these and introducing ¢l' ¢z, ~l and ~z as 

ln (3.1.9) gives 

(3.2.2) 

(3.2.3) 

which are coupled, non-linear versions of (3.1.10) and (3.1.11). Since 

• 
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the boundary conditions remain as ~2(X,O) = 1~~2 ~l(X,O), ¢2(X,O) = 

1!!2 ¢l(X,O) we introduce u, v, U and V as in (3.1.12) and (3.1.13). 

Equations (3.2.2) and (3.2.3) then become 

N22 - NIl (AN 12 
-1 

U - v + A N2l ) 
= V + U x y , = 

pc2 x y 
pc2 

-1 

Ux - Vy 
1+A2 (BN 22 - B N 11 } , 1+A2 = 2B Vx + Uy = ---

pc2 2B 

whilst the boundary conditions (3.1.16) remain unchanged as 

U(X,O) = u(X,O), V(X,O) = Kv(X,O) 

Here y = AX 2 and Y = BX 2, so that Y = Ay , 

B where A - A = 

and K _ (1+A2)2 = 
4AB 

(3.2.4) 

(N12 + N21J , 

pc2 

(3.2.5) 

(3.2.6) 

are functions of the square of the propagation speed c, as are A and B. 

Consequently, if c2 = C2(~~~/p) is the value for which d~ = 0, c2 may 
dc 

be expressed as a single-valued function of K in the interval c < c < (~/p)~ 

which includes c = cR and within this range we may regard c, A, B and A 

as functions of K. In terms of the solutions to (3.2.4) - (3.2.6) the 

displacements are: 

Ul(X,X2) 2 U(X,Y) - u(X,y) = 
1+A2 

, 

(3.2.7) 

U2(X,X 2) 
1 -~ V(X,Y) = A v (X,y) 1+A2 
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and the surface displacements as in (3.1.18) are 

l-A2 = u(X,O) , 
1+A2 

In the infinitesimal limit the right-hand sides of (3.2.4) and 

(3.2.5) are neglected~ As was shown in Section 3.1, the linearization 

(3.1.14) - (3.1.16) then possesses solutions only for K = 1. However, 

corresponding to this 'eigenvalue ' , v(X,O) or equivalently u(X,O), may 

be chosen to be any. function belonging to gp(1RIfR.) or.Q,~ (iRIR). Once 

non-linearity is included, linear superposition is lost. We expect 

(3.2.4) - (3.2.6) still to possess solutions, but only for certain 

families of functions v(X,O). Generally, corresponding to each such 

family we should expect the 'non-linear eigenvalue ' K to depend on the 

amplitude Iv(X,O)l max of the surface elevation. 

We now seek to examine which profiles out of the superabundance 

of linear Rayleigh wave profiles are the small-strain limits of non-linear 

surface waves of permanent form. This we do by considering the system 

(3.2.8) 

Ux - Vy = L(X,Y) , Vx + Uy = M(X,Y) (3.2.9) 

ln y > 0, Y = AY > 0, subject to the boundary conditions (3.2.6) with 

, 

for some constants 111 and 112' 

v(X,n) -+ 2AB112 
as n -+ (X) 

(This is equivalent to replacing N .. by 
lJ 

specified functions of (X,y) in (3.2.4) and of (X,Y) in (3.2.5) 

respectively.) We introduce the functions w(X,n) and v(X,n) defined 

for (X,n)e:r2 by 
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U(X,n) = u(X,n) + w(X,n), V(X,n) _ v(X,n) + v(X,n) . (3.2.10) 

Then (3.2.8) and (3.2.9) become 

(3.2.11) 

whilst the boundary conditions (3.2.6) give 

w(X,O) = 0 (3.2.12) 

and 

v(X,O) = (K-l)v(X,O) (3.2.13) 

~Ii th 

w(X,n) + (A2 - l)~l' v(X,n) + (1 + A2 - 2AB)~2 as n + 00 • 

The values of ~l and ~2 in case (A) are obtained from (3.2.8) - (3.2.13) 

by using Green1s theorem. 

We recall that w, v, M, m, Land £ are P-periodic in X and apply 

Greenls theorem to (3.2.11)2' using the boundary condition (3.2.12) 

then glves 

f
oo rP 

J {M(X,n) - m(X,n)} dXdn = P lim w = -P(1-A2)~1 . 
o 0 n+<» 

(3.2.14) 

Provided that this double integral exists, that L-£ and M-m have 

continuous pth-order derivatives in Q and that they decay sufficiently 

rapidly for (3.2.11) and (3.2.12) to possess a solution such that 

w(X,n) + (1-A2)~lE& p+l (Q"lftl), then this solution is unique. The 
p 

solution w(X,n) defines Vx and vn uniquely, so that there is a unlque 

solution v(X,n) to (3.2.11) having v(X,n) - (1 + A2 - 2AB)~2E~~+1(nl~). 

This function is a linear functional of L-£ and M-m, so that its boundary 

value may be expressed as 
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v(X,O) - (1 + A2 - 2AB)1l2 = i (L-9.,M-m) 

= t(L,M) -t(9.,m). (3.2.15) 

Equation (3.2.13) then gives 

(K-l )v(X,O) = 1. (L,M) -J:.(.~"m) + (1 + A2 - 2AB)1l2 (3.2.16) 

where~ is a linear functional which may be constructed (see section 3.4) 

by Fourier series procedures. The constant 112 is found by applying 

(3.2.13) to the two identities 

J
OO JP 
o 0 

{L(X,n) - 9.(X,n)1 dXdn = 

P 
+ J v(X,O)dX 

o 

J
OO JP P P 

9.(X,n)dXdn = - J 2AB1l2dX + J v(X,O)dX 
o 0 0 0 

which follow from (3.2.11)1 and (3.2.8)1' This leads to 

JOO ( {L(X,n) - Kt(X,n)} dXdn = -P~2(1 + A2 - 2KAB) 
o 0 

(3.2.17) 

Similarly, in case (B) Green's theorem may be used to show that 

if L, 9., M and m are integrable over the half-plane n > 0, then ~1 = ° 
and 112 = 0. Provided that L-9. and M-m have continuous pth-order 

derivatives in n and decay as X2 + n2 ~ 00 sufficiently rapidly for (3.2.11) 

and (3.2.12) to possess a solution, then there exist unique functions 

w(X,n), v(X,n)£,g~+l(nllR). Equations (3.2.15) and (3.2.16) still hold, 

but with III = 112 = 0, and where the linear functionaldL may be constructed 
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either by Fourier transforms or by Green1s function methods. 

1. 

2. 

3. 

From (3.2.15) we see that three situations may arise: 

tel-,\>"~ M-m) 

choice of multiplier determines K-l, and so specifies how the 

propagation speed c differs from the linear Rayleigh wave speed 

cR' Also it provides the boundary condition v(X,O) which 

determines unique solutions u(X,y) and v(X,y) to equation (3.2.8) 

and also determines U(X,n) = u(X,n) + w(X,n) and V(X,n) = 

v(X,n) + v(X,n). 

;((l,M) -t.('\>',m) = - (1 + AZ - 2AB)llz, with K = 1. In this case 

the speed c remains equal to the linear Rayleigh speed cR and 

equation (3.2.16) imposes no restriction on v(X,O). Each choice 

of profile v(X,O) allows u, v, U and V to be uniquely constructed. 

1jl,M) -1.('\>',m) = constant, v(X,O) = 0. In any such disturbance 

the surface Xz= ° would remain level and (3.2.14) would not 

restrict K. We shall show in section 3.3 that this possibility 

does not arise for weakly non-linear waves. 

Returning to equations (3.2.4) - (3.2.6) we see that '\>', m, Land M 

must be treated as non-linear functions of the first-order partial 

derivatives of u, v, U and V. Equation (3.2.13) is in reality a relation 

between v(X,O) and a certain non-linear functional of the first-order 

partial derivatives of u(X,y), v(X,y), U(X,V) and V(X,V). Since these 

functions are themselves solutions of equations (3.2.4) and (3.2.5), 

with boundary conditions (3.2.6) which include the data v(X,O), equation 

(3.2.14) is a non-linear functional equation for v(X,O). The manner in 
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which the various branches of its solution evolve from the infinitesimal 

limit Ilv(X,O) II = ° is investigated in section 3.3 by a perturbation 

analysis. 
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3.3 PERTURBATION ANALYSIS 

To study non-linear effects when the displacement gradients remain 

small, we regard displacement gradients u .. as O(e:) quantities, where e: 
1 ,J 

is a small parameter and we suppose that the length scale has been chosen 

so that typical magnitudes of u
1
' and u .. are comparable. Then, 

1 ,J 

provided that the strains remain within the range for which the stress-

strain law is analytic, the tenus (pC 2 )-lNij are O(e: 2 ) quantities. 

Equation (3.2.13) suggests that K-l is OCe:). Following Parker (41) 

we may write formal expansions 

1 22 
U. . = e:U. . + e: U. . + ... 
1,J 1,J 1,J 

, 
1 

K = 1 + e:K + 

which then would allow us to write 

N. '(U k Q) 2 (1 22 . e:) = ~e: M .. Uk + e: uk + ... , 
1 J , lJ - ,Q, ,Q, 

= 2 1 ) 
e: ~M i j (u k , Q,; 0 + O(e: 31J) 

where comparison with (3.2.1 ) shows that 

1 1 1 
1JM .. (u k t; 0) = c" k Uk u 

1 J , 1 J Q,mn ,t m, n 
(3.3. 1 ) 

and the coefficients Cijktmn are the second-order elastic moduli 

To leading order equation (3.2.14) then becomes a quadratic functional 
1 1 

equation involving the O(e:) terms u .. and K. 
1 ,J 

This formal expansion procedure involves cumbersome notation 

which we avoid by writing u, v, U and V in a form suitable for iterative 

solution of (3.2.4) - (3.2.6). Then anticipating that u, v, U and V 

will be close to a solution of the linearized problem, we write 
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u(X,y) = ES(X,y) + E2U(X,y;E), V(X,y) = EY(X,y) + E2V(X,y;E) 

(3.3.2) 

U(X,Y) = ES(X,Y) + E2U(X,Y;E), V(X,Y) = EY(X,Y) + E2V(X,y;E) 

(3.3.3) 

The substitution 

2 -1 E2_1 
(pc) N .. (uk ) = M. '(E Uk ;E) 

lJ ,i l-A2 lJ ,i 
(3.3.4) 

shows that all O(E) terms cancel from equations (3.2.4) - (3.2.6) when 

(3.3.2) and (3.3.3) are inserted. The surviving terms give the exact 

equations 

- -
i (X ,y;E) , - + u m( X ,y; E) (3.3.5) u - v = v = x y x y 

Ux 
-V = L(X,Y;E), V +U = ~~(X,Y;E) (3.3.6) 

Y x Y 

where 

M22 - M -1 - (AM12 + A M21 ) 1 1 m = i = , 
l-A2 l-A2 

(3.3.7) 

[1+A2
) BM22 

- 8- 1M 
C+

A2
J 

M + M 
[ 11 M 12 21 

= = 
l-A2 , 

l-A2 28 28 

These are analogous to (3.2.8) and (3.2.9), so that in a similar way to 

(3.2.10) we introduce the functions wand v where 

(3.3.8) 

which satisfy 

-w - v 
x n 

- -
v + W = M(X,n) - m(X,n) 
x n 

(3.3.9) 

wi th 
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w(X,O) = ° (3.3.10) 

~(X,O) = Klr(X,O) + EV(X,O)] (3.3.11) 

-
and w + (A2 - 1)~1' ~ + (1 + A2 - 2AB)~2 as n + 00. The compatibility 

condition for this system may be derived directly from (3.2.16) as the 

exact equation 

K[Y(X,O) + EV(X,O)j - ~2(1 + A2 - 2AB) = t.CC,M) -i(i,m) (3.3.12) 

We recall that A, B, c and A = B/A = Y/y are known functions of EK = K-l 
-1 

and the expressions of E uk required in M. _ for the right-hand side 
,£ lJ 

of (3.3.12) are the X and X2 derivatives of 

Similarly the formulae for ~1 and ~2 may be obtained from (3.2.14) and 

(3.2.17). Equation (3.3.12) may be solved iteratively. The iterates 
(n+l) (n+1) 

w , v to wand v are obtained by solving (3.3.9) and (3.3.10) 

with u(n), v(n), ... , the iterative approximations to u, v, .. _, on the 

right-hand sides. The condition (3.3.11) then requires that 

= K -lv(n+1) (X,O) - y(X,O) , (3.3.13) 
E 

from which we deduce that v(n+1)(X,0) must differ from KY(X,O) only by 

O(E) terms. Clearly not all families of harmonic functions will satisfy 

this criterion. To identify those which do, the limit E + ° must be 

consi dered. 

Parker (41) considers this limit and shows how the infinitely 

differentiable functions £(0), m(o), L(o), M(o), the first approximations 
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to 1, m, [and M, may be regarded as linear functionals of y(X,O). 

He writes this formally as 

l(O)(X,n) = T1y(X,O) , m(o)(X,n) = T2y (X,O) 

L(o)(X,n) = T3y (X,O) , M(o)(X,n) = T
4
y(X,O) 

(3.3.14) 

where the Ti are transformations, so that equation (3.3.11) may be written 

to this approximation as 

This equation is a quadratic functional equation for y(X,O), where 

y(X,O)sg ~(1RI1R) for case (A) and y(X,O)st~(fRl1R) for case (8). 

(3.3.15) 

The right-hand side of (3.3.15) is homogeneous of second degree in 

y(X,O) so that the equation is unchanged by the mapping y(X,O) + TY(X,O), 

K + TK, where T is any real parameter. Hence, any profile y(X,O) which 

satisfies (3.3.15) for some value of K may be scaled to give another 

profile, provided that K is multiplied by the same factor. To this 

approximation we may take c = C(K) as c = cR + SKC' (1), therefore the 

perturbation speed is proportional to K. 

Following Parker (41) we now examine the three possibilities 

introduced in Section 3.2. 

1. K f 0. Without loss of generality we may choose y(X,O) = o(X), 

where o(X) is a solution to (3.3.5) with K = 1, then for any real K 

the multiple y(X,O) = KO(X) is a solution to (3.3.15) as has been 

mentioned above. The disturbances with 

u(X,y) ~ SKS(X,y), v(X,y) ~ SKY(X,y) , 

U(X,Y) ~ SKS(X,Y), V(X,Y) ~ SKY(X,Y) 
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are then the limits of non-distorting progressive surface waves 

with propagation speed c ~ cR + EKcl(l). Clearly EK is a measure 

of the disturbance amplitude and may be regarded as either positive 

or negative. Thus if one non-distorting profile propagates faster 

than the standard Rayleigh wave the inverted profile travels more 

slowly. 

K = O. In this case (3.3.15) reduces to a homogeneous second 

degree equation. The amplitude of the solutions is then arbitrary 

and a normalization may be introduced. To this approximation 

profiles which are any multiple of a solution to the homogeneous 

equation all travel at the standard Rayleigh wave speed. In 

keeping with the terminology of hyperbolic waves these profiles 

will be called exceptional waveforms. 

3. The case y(X,O) = 0 gives ~(o) = m(o) = L(o) = M(o) = 0, so that 

u(l) = U(l) = V(l) = v(l) = 0 and we only obtain the trivial 

solution, so that this is not considered further. 
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3.4 CONSTRUCTION OF THE OPERATOR~(L,M) 

In (41) Parker shows how to construct the operator;L(L,M) required 

in the solution of (3.3.14). He treats the two cases of periodic and 

non-periodic waveforms separately. 

For periodic waveforms, case (A); the X-period P may be taken to 

be 2~, without loss of generality, since the governing equations (3.1.4) 

and (3.2.1) involve no intrinsic length scale. Any other wavelength 

may then be obtained by scaling Xl' X2 , t and ~ by the factor P/2~, which 

leaves the amplitudes of the strain, the velocity and the deformation 

gradient unchanged, but scales the displacement amplitude, the wavelength 

and the period by the same factor P/2~. Parker obtains solutions using 

Fourier series and states that equation (3.3.15) reduces to an infinite 

set of algebraic equations in the Fourier coefficients of y(X,n). 

For general waveforms, case (B), he derives two different 

representations for t.(L ,M). The first one uses Green's functions; 

however, the formulae obtained are cumbersome, so that a second 

representation using Fourier transforms is preferable for computational 

purposes. This has the additional advantage of being a generalisation 

of the method based on Fourier series for the periodic case. Parker 

obtains the following quadratic integral equation for the complex 

function r(k,O): 

Kr(k,O) = roo K(k,s)r(k-s,O)r(s,O)ds (3.4.1 ) 
)-00 

where 

r(k,n) = fro e-ikf(X,n)dX 
- 00 

is the Fourier transform of y(X,n). Equation (3.4.1) is analogous to 

the infinite set of algebraic equations to be solved for the Fourier 

coefficients in case (A). Parker notes two properties of the kernel 
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K(k,s), that the range of integration must be split at s = ° and s = k 

and that since each contribution is homogeneous of first degree in k and 

s, then if r(k,O) is one solution to (3.4.1) so also is a-2r(ak,O), for 

all a > 0. This situation arises because the original problem defines 

no length scale. The function a- 2r(ak,O) is the Fourier transform of 

ay(X/a,O), which is obtained from the profile y(X,O) by rescaling the 

amplitude and lengths by the factor a. 

Parker also shows by investigating the mappings T1 , T2, T3 , T4 and 

~ that the iterates u(n) - 2~~n), v(n) - 2AS~~n), V(n) - (1+A2)~~n) 

and U (n) - (1 +A2) ~~ n) be long to ei ther 1& p (ITIIR) or ,Q,*,Cf2IIR), when the 

initial function y(X,O) belongs to ti>(RlfR) or ~~((RI~) in cases (A) and 

(S) respectively. 
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3.5 AN ALTERNATIVE METHOD 

In this section we present another method of obtaining the 

condition (3.3.15) on the relationship between K and y(X,O). This is 

based on Fredholm's alternative theory (8). We consider the differential 

equations for u, y, U, V (3.3.5) and (3.3.6) with the boundary conditions 

U(X,O) = u(X,O) 

V(X,O) = Y(X,O) + K(Y(X,O) + EV(X,O)). 

Instead of using the two functions w(X,n), v(X,n) defined in (3.2.10), 

we introduce two new functions cr(X,n) and p(X,n) where cr(X,n) - a and 

p(X,n) - b belong to either2,p(Q"ltR) or{6~JnllR.) in cases (A) and (B) 

respectively where a and b are constants and 

cr + P = 0, 
x n 

cr - p = u . 
n x 

(J.5.1) 

Now 
-cr9- + pm = a (cru + P Y) + l (- crY + p u) , 

aX ay 

where 

cr = cr(X,y) and p = p (X ,y) , 

so that in case (A) 

00 P/2 

f f (cri + pm)dXdy 
o -P/2 f

oo f P / 2 a - - a - -= {-- (aU + pv) + -- (-crv + pu)dXdy 
o -P/2 ax ay 

= 
00 - P /2 fP /2 - - I r r:.u + p~ dy + (cr V - pu) dX 

)0 L -Pj2 -P/2. y=o 

P/2 I 
= f (av - pu) I dX. 

-Pj2 y=O 
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Similarly, for a = afX,Y) and p (X Y) \ = P , , 

I
OOIP/ 2 - P/2 

(aL + pM) dXdY = f (a'i - pU) I dX 
o -P/2 -P/2 y=o 

P/2 
= I ( 0 V + OK (y + £ V) - p jj~ dX 

-P/2 y=O 

I
P/ 2 - - P/2 

= (av - p u) I dX + ~ f (a (y + E v) ) I dX. 
-P /2 y=O) -P /2 y=O 

Therefore, 

(ooIP /2 
L (ar + pM)dXdY = 
o -P/2 

00 P/2 i f (ai + pm)dXdy 
o -P/2 

P/2 
+ KJ (a(y + EV))\ dX 

-P/2 y=O 

Similarly in case (8) we obtain 

00 00 

= (I (ai + pm)dXdy 
Jo - 00 

+ Kfoo (a(y + EV))I dX. 
-00 y=O 

(3.5.2) 

(3.5.3) 

Equations (3.5.2) and (3.5.3) must then be satisfied for all functions 

a and p satisfying the stated conditions. In each case we choose a 

basis for {a,p} and find that we obtain the same condition as (3.3.15). 
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3.6 A MODEL EQUATION 

In this section we illustrate some of the features of the solution 

by considering a simple system of equations, having a form similar to 

those obtained in the previous sections. Initially we consider a system 

of equations with a forcing function on the boundary Y = 0: 

cP = E cos X 

a1jJ _ ar- acp 
K -

aY 

(3.6.1 ) 

on Y = 0 

where cP and 1jJ are 2~-periodic in X and decay as Y ~ 00. We are interested 

in the region Y > O. 

Now 

= r~ ~ I dX 
JaY 
-~ Y=O 

that is 

rr f dXdY 
o -~ J~ acp 1 = a'( dX 

-~ Y=O 

and also 

= r *1 dX 
-~ Y=O 

= J~ ~ 1 dX K ay 
-~ Y=O 
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However ~2~ = 0 so that we obtain the condition 

(OOf'IT 
J f dXdY 
o -'IT 

= 0 (3.6.2) 

Choosing f = ~X~Y and assuming that ¢,~ are even functions of X implies 

that ~X~Y is an odd function so that condition (3.6.2) is satisfied. 

Writing ¢ = s¢, ~ = E~, the system (3.6.1) becomes 

(3.6.3) 
-
¢ = cos X 

on Y = 0 

~ a¢ = Kay aY 

a solution to thi s may be written ln the form 

-Y -
¢ = e cos X + s¢l + ... 

- -Y -
~ = Ke cos X + s~l + ... 

Equating terms of O(s) gives 

-2Y . = ~K2e Sln 2X 

with ¢1 = 0 on Y = 0 which has solution 

<Pi 
- _1 K2y 
- 8 e-2Y sin 2X. 

The function ~l must then satisfy 

~2~1 = 0 

a~l 1 3 sin 2X on Y = 0, = - - K 
aY 8 
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which has a solution 

~l 
1 3 -2Y = 16 K e sin 2X . 

In this example there is no difficulty in the perturbation scheme, the 

terms being obtained in order without any further constraint being 

imposed. 

To obtain a model equation in which we have to solve a system of 

algebraic equations to obtain the coefficients in ¢ and ~ we consider 

the system: 

<p = 0 

on Y = 0 

~ = a<p 
aY K av 

and we assume that <p, ~ + 0 as Y + 00. 
The compatibility condition 

(3.6.2) is satisfied since 

= 0 . 

In this system we need to solve first for ~ before we can obtain <p. 

We try a solution for ~ in the form 

00 

(A e-nY cos nX + B e- nY sin nX) 
n n L 

n=l 
= 

and find that the solution for <p may be written ln the form 

= I {cne-nY cos nX + Dne-ny sin nX 
n= 1 



where 

a. 
n 

8 
n 
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+ I n(n+2s) (B B + A A) -(n+2s)Y sin 
s=l 4s(n+s) n+s s n+s s e nX 

n-l 
= - ~ L (A A - B B ) 

4 r=l r n-r r n-r 

The condition ~(X,O) = 0 implies 

C = ~ n(n+2s) (A B A 
n s~l 4s(n+s) s n+s - n+sBs) , 

= 

co 

\ n(n+2s) (B A A 
- L 4s(n+s) n+sBs + n+s s) . s= 1 

Substituting for ~ and w in the condition ~~ = K ~~ on Y = 0 and equating 

coefficients of cos nX and sin nX yields the conditions 

co n(n+2s)2 = nKCn + Ka. + K L (A B - A B) n s=l 4s(n+s) s n+s n+s s 

= nKD + K8 n n + K ~ n(n+2s)2 (B B + A A) 
L 4s (n+s ) n+s s n+S s ' s= 1 

where C ,D a. and Q are glven above. n n n iJ n 
These equations are a simpler version of the type encountered in 

treating the Rayleigh wave. As in that problem, the system may be 

solved by a numerical procedure, see Section 4.2, in which we truncate 

the sequences An and Bn' The two equations may also be combined by 

writing F = A + iBn' the transformation F ~ einsF then corresponds n n n n 
to a translation in X. We seek a solution in which w is an odd 

function, that is An = 0 for all n. We then have to solve the system of 

equations 
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00 

(n+2s) B B n-1 
-B + K I +E:. I B B = o . n s= 1 2(n+s) s n+s 4 r n-r r=l 

We solve this by making the transforma ti on B -+ l/KQ . To obtain n n 
starting values to the numerjcal procedure we truncate the sequence B 

n 

after n = 3 and solve the equations 

Q + 2 Q Q + l Q2 -23 13 4 1 = 0 

= 0 

which have real analytical solutions 

Q1 = 1 .28, Q2 = 0.89, Q3 

Q1 = -1 .28, Q2 = 0.89, Q3 

Q1 = 2.04, Q2 = -2.69, Q3 

Q1 = -2.04, Q2 = -2.69, Q3 

= 0.57 . , 

= -0.57 . , 

= 2.75 , 

= -2.75 

We may then solve the system for n = 4, say, using as s tarti ng values 

exact solution obtained for Q1' Q2 and Q3 and setting Q4 = O. This 

process may be repeated i te ra t i ve 1 yin the hope that it converges as n 

increases. 

the 
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CHAPTER 4 

RAYLEIGH WAVES ON A COMPRESSIBLE MATERIAL WITH 

NON-LINEAR CONSTITUTIVE LAW 

4.1 THE FORM OF THE EQUATIONS 

In this chapter, as an example of the general theory, we consider 

a compressible material of the harmonic type introduced by John (19) 

and (20). Initially we consider periodic functions, that is case (A) 

of Chapter Three and e0amine the motion of particles in the medium, and 

the dependence of the wave speed on the form and amplitude of 

non-distorting wave profiles. In Section 4.4 we attempt to obtain 

solutions for non-periodic waveforms. 

The material we consider is a harmonic material as defined by 

John (19) and (20). In (19) he considers plane strain problems for a 

perfectly elastic material and seeks to find forms of the strain-energy 

function for which the equations of equilibrium and stress-strain 

relations simplify considerably. He finds these simplifications for 

materials of harmonic type, in which the strain-energy function in 

plane strain reduces to 

W(r,s) = 2~(G(r) - s) (4.1.1) 

where 

and G(r) is an arbitrary function. For consistency with the classical 

linear theory the following restrictions need to be imposed 

GtI (2) A+2~ = --
2~ 

(4.1.2) 
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A and l.l being the Lam~ constants of the linear theory. ~!ithout loss of 

generality it is assumed that G(2) = 1. John then reduces elastic 

equilibrium problems for materials with a strain-energy function of the 

form (4.1.1) to potential problems for which the existence of solutions 

is easily established on the basis of known properties of harmonic 

functions. For this reason materials with strain-energy function of 

the form (4.1.1) are called Iharmonic l materials. IHarmonic l materials 

give a mathematical model for which a qualitative discussion of problems 

involving large deformations can be carried out. For the behaviour of 

solutions of the equilibrium equations to conform with physical intuition 

the function G(r) must satisfy certain conditions. For example, if we 

assume that the tension increases as the material is expanded uniformly, 

then G1(r)/r must increase monotonically with r. In (59) Varley and 

Cumberbatch use and extend some of the results obtained by John to 

analyse plane strain or plane stress deformations of -finitely strained 

blocks or sheets of materials which contain holes, notches or inclusions. 

They show that the predictions of the theory agree well with experimental 

evidence. 

In this chapter we consider materials with the standard energy 

function 

(4.1.3) 

which are examples of harmonic materials (4.1.1) satisfying (4.1.2) 

where 

The strain-energy function may be written as 

J 

-'-) 2 + (F - F ) 2 + 41 
12 21 J 
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where F11 = 1 + U 
1 ,1 

U 
1 ,2 

F = U 
21 2,1 

, F = 1 + U 
22 2,2 

and the u .. are O(s) for i,j = 1,2. 
1 ,J In the analysis leading to (3.3.13) 

and (3.3.14) only the limiting behaviour as u .. -+ 0 is required so that 
1 , J 

it is sufficient to express W as 

2 {(A+2~)(U + 
(u 1 2 - U )2 

W = u2 2 + ' 2,1 + ... ) ~ 4~ 1,1 4 , 

(u 1 2 - U )2 

- U U + U U + ' 
2,1 + ... } 1,1 2,2 1,2 2,1 4 

from which we obtain the stress components 

T 11 = 

= 

= 

= 

(u + u ) + A+2~ (u + u )(u - u ) + O(s3) 
~ 1,2 2,1 1 1 2 2 1 2 2 1 , , , , 

) - A+~ (u + u )(u - u ) + O(s3) ~(u1,2 + u2,1 2 1 1 2 2 1 2 2 1 , , , , 

Hence the non-linear parts Nij of these Tij i,j = 1,2 may be written as 

N = A+2~ (u + u )(u - u ) + O(s3) 12 1,1 2,2 1,2 2,1 

N = A+
2

U (u + u )(u - u ) + O(s3) 
21 1,1 2,2 2,1 1,2 
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From (3.3.4) - (3.3.7) it is clear that we need to write N ,N ,N 
11 12 21 

and N22 in terms of u, v, U and V, this we do using (3.3.11) to give 

{ 2 2 fBS y(X,Y)+e:BUy(x,y0 - As (X,Y)+e:Au (X,y) 
l+A L ~ u y 

(4.1.4) 

It can be shown that for a general isotropic material in plane strain, 

second order elasticity theory involves only two material moduli other 

than A and ~ and that condition (4.1.4) results from the special choice 

of these parameters consistent with (4.1.3). From (3.3.4) we have 

M .. 
lJ 
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and from the definitions of A and B 

A +11 = (B2 - A2) 
pc2 (1-A2)(1-B2) 

- - -from which we obtain M in terms of A, B, B, y, u, v, U and V. In this 

and the following sections A and B refer to the approximations AR and SR' 

Equations (3.3.7) glve 

, 

L(O) = (1+A2)(B2-l) MIl 
(1-A2)2B2 

M( 0) = O. 

The fact that ~(o) and M(o) are zero 1S a direct consequence of (4.1.4). 

We therefore write Ml2 as a function of (X,y) and MIl as a function of 

(X,Y) for use in m(o) and L(o) respectively, so that we obtain the 

following expressions for ~(o), m(o), L(o) and M(o): 

(4.1.5) 

= 0, 

which may then be used in the equations for u(l), v(l), U(l) and v(l). 
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4.2 PERIODIC SOLUTIONS 

In this section we construct a 2rr-periodic waveform for the 

harmonic material, using a variant of the method outlined in section 3.3. 

In general y(X,n) may be represented as 

00 

I {cne-nncos nX + D e-nn sin nX} 
n=l n 

where the coefficients C and D are obtained by applying the condition n n 

(3.3.13). First we look for symmetric waveforms so y(X,n) is an even 

function and is represented by 

00 

\' -nn 
L Cne cos nX . 

n=l 

In section 4.3 we do consider the more general y(X,n) although the 

solutions obtained to this more general problem are reproductions of the 

f ( X ) ft t 1 t · . X Th e n n ( 0 ), m ( 0 ), L ( 0 ) case 0 even y ,n a er a rans a lon In. N 

M(O) are given by (4.1.5). 

The functions w(l)(X,n), v(l)(X,n) introduced in Section 3.3 must 

satisfy the equations 

v(l) = L(o) _ £,(0) 
n 

w(l) (X,O) = 0 , 

, 

, 

, v(l) + (l+A -2AB)~2 as n + 00 • 
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Eliminating the function v(l)(X,n) from these equations gives 

w(l) + w(l) = L(o) 
xx nn x 

t(o) + M(o) _ m(o) 
x n n 

(4.2.1 ) 

w(l) (X,O) = ° (4.2.2) 

(4.2.3) 

We solve (4.2.1) and (4.2.2) for w(l) and then use (4.2.3) to provide 

us with a condition on the relationship between K and y(X,n). The 

condition w(l) ~ (A -l)~l as n ~ 00 will then give ~l. 

In the example under consideration 

(1) + w(l) 
wxx nn 

w(l) (X,O) = ° (4.2.5) 

On substituting for y(X,n) as 
00 

L C e-nn 

n=l n 
cos nX, we find that w(l)(X,n) 

may be written in the form 

00 

W (n) + L W (n) Sln nX . 
o n=l n 

The functions Wn may be written for n > 1 as 
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00 -(n+2s)An 
+ I b e B 

s=l n 

1 (B B n- - r A + n-r)n 00 -((n+s)A + s)n 
+ I cne + Ide 

r= 1 s= 1 n 

00 

+ I 
s=l 

B -(s A + n+s)n 
f e 
n 

where gn' an' bn, cn ' dn and fn are constants given by 

2 ( A2) n - 1 + - a 
B2 n 

= (B2-A2)(1-A2) nIl nr(n-r) C C 
2AB(1+A2) r=l 2 r n-r 

= 
00 

I (B2-A2)(1-A2) 2 
2AB (1 +A2) s= 1 

_ (B2_A2)O-A2) n-l r(n-r) B 
= I 2 (rl\+n-r)CC 

A 2( 1 +A 2) r= 1 M r n - r 

(B2- A2)(1-A2) 

A2(1+A2) 

00 

I ((n+s)~ + s)s(n+s) CsCn+s s=l A 2 

_ (B2-A2)(1-A2) 00 B () - -- - L (s A + n+s) s n+s C C 
A2(1+A2) s=l 2 s n+s 

and from (4.2.5) gn + an + bn + cn + dn + fn = O. 

The function Wo(n) is readily found to be of the form an, where a 

lS a constant, so that the condition of w(l) being bounded as n ~ 00 implies 

that c = 0 and hence ~l = O. The constant ~2 may be found by solving for 

v(l) from the terms independent of X and it is found to be zero. 

Equating coefficients of sin nX in condition (4.2.6) then gives the 

following algebraic equation: 
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which may be written as 

n-l 00 

-2KnCn + r~l arnr(n-r)CrCn_r + SIl BsnS(n+s)CsCn+s = 0 (4.2.7) 

where 

a = rn 
(B2-A2)(1-A4) 1 2n 

8A2B {A+B - (2n-r)A + rB} 

and 

= (B2-A2)(1-N+) { n 

4A2B (n+s)(A+B) 
n _ n } 

nB+(n+2s)A (2n+s)A+sB 

Equation (4.2.7) is to be satisfied for n = 1,2, ... and so provides an 

infinite set of quadratic algebraic equations, which will need to be 

solved numerically after suitable truncation of the sequence {Cn}. 

As s ~ 00 for fixed n, Bsn + 00 so that we may hope to obtain solutions with 

C ~ 0 as n + 00. We first need to obtain values for A and B, this we n 
(1+A2)2 achieve by specifying Poisson1s ratio and solving the equation - 4AB- = 1 

to determine cR and A(=AR), B(=B R). Taking Poisson1s ratio to be 1/4 

we find that A = 0.3933 and B = 0.8475, we use these values to specify 

the coefficients in (4.2.7). 

We are seeking solutions for waves which may travel ~t a speed 

different from the linear Rayleigh speed cR' the difference ln the wave 

speeds may be written as a function of K and hence, for K F 0, as a 

function of the amplitude. We have 
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1 + KE (4.2.8) 

where 

A2 = 1 _ pC2 , 
fl 

2 PC 2 
B = 1 --

:\+2fl 

-
and we write c = cR + EC, where cR' the linear Rayleigh speed satisfies 

equation (4.2.8) with EK = O. 

Then 

-(dK 2 1 EK = EC -
C J c=c dc2 

R 
hence 

- (1-A2)(1-3A2) (1-B2) 
EK = ~ { R R + R 1 

cR A2(1+A2) B2 J 

R R R 

For the harmonic material under consideration with Poisson's ratio 1/4 

this reduces to 

= O.34l3K. 

Equations (3.3.11) glve the horizontal and vertical displacements 

n 2B Q = E I A Y (X ,y) - --2 Y (X, Y) + 0 ( E 2) , 
L! l+A 

therefore to first order u
1 

and u
2 

are given by 
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- £ t:A2 
00 

C e- nBX2 00 -nAX ul (X,X2) = I sin nX - I C e 2 sin n~ n=l n n , 
n= 1 

(4.2.9) 

£~ I -nAX 2B 
00 

-nBX ~ U2 (X, X2) = C e 2 cos nX I Cne 2COS nX . 
n=l n 

1+A2 n=l 

These displacements describe a Rayleigh wave of linear elasticity having 
00 

even surface elevation proportional to y(X,O) = I C
n 

cos nX. However, 
n=l 

in linear elasticity theory the coefficients {C } are arbitrary whereas 
n 

the present theory shows that a wave profile of moderate amplitude 

propagates without distortion at speed c ~ cR(l + sO.3413K) only if the 

coefficients satisfy (4.2.7). 

We now consider the two possibilities outlined ln Section 3.3 for 

K ~ 0 and K = O. 

1 • K 1= o. Clearly K may be scaled out of equation (4.2.7) by making 

the substitution nC = KP , the equation to be satisfied by Pn becoming n n 

n-l 
-2P + I n r= 1 

00 

a P P + I B P P rn r n-r s=l sn s n+s = 0 n=1,2, ... , (4.2.10) 

This gives an infinite system of quadratic equations to be satisfied by 

the P . 
n 

Solutions to this system of equations have been obtained by 

successively solving truncated systems of N equations involving only the 

The process was started for N = 3 since in 

this case the system may be solved analytically, the problem reducing to 

that of solving quadratic equations for PI and P2. These solutions are 

then used as the starting values for the numerical procedure in a similar 

way to that described for the model equation in Section 3.6. The 

numerical procedure used for solving this was obtained from the NAG 

library and was based on Newton's method but with the important feature 
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that if the full Newton-Raphson correction was too large, then the 

displacement from ~(k) was biased towards the steepest descent direction 

of f(~), where f(~) is the sum of squares of the residuals found by the 

ro uti n e, ( 28 ) and (45). The number of equations being solved was 

increased in steps of r, the starting values being the values found for 

the previous system for PI'···' PN . -r 
Starting value zero was given to 

Solutions were sought for r being one or two, but the 

convergence was found to be slow, for K f 0, so that in this case r was 

taken to be five, for which the solution was found to converge. This 

is similar to the method used in (36) by Olfe and Rottmann for obtaining 

solutions for deep-water waves of permanent form. 

The truncated system of three equations for PI' P2 and P3 gives 

= 

= 

4P 2 

(0.13 + 0.23) 
----- PI P2 • 

2 

(4.2.11 ) 

(4.2.12) 

(4.2.13) 

Solving equation (4.2.11) we find two values for P2 , equation (4.2.12) 

may then be solved for each of these to give two values for PI' without 

loss of generality we choose PI > 0 since changing the sign of PI is the 

same as changing the displacement by half a wavelength. P 3 is then 

obtained from (4.2.13). Different solutions to these equations were 

used as starting values. As has already been mentioned, solutions were 

sought for which as N, the number of unknowns was increased the Pi 

converged to a non-trivial solution. Two such solutions were found, 

although it seems probable that more could be found by considering different 

starting values to the system of equations. 
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Solution 1. Table 4.1 shows the first 18 values of the P , together 
n 

with the values of Cn/K which are given b C / P Y n K = n/n, obtained by 
increasing N to the value 43. 

performed, PI changes by less 

At the 8th iteration, the last 
-3 

than 10 and for n > 18, iCn/KI 

one 

< 2.10- 2 • 

Solution 2. The first 25 values of the P are given ln Table 4.2 for 
n 

N = 48 with the corresponding values of Cn/K. At the 9th iteration PI 
-3 changes by less than 2.10 and for n > 26, ICn/KI < 5.10- 2 • 

For solution 1 we see that ICI/CISI ~ 60, whereas for solution 2, 

IcI/cIsl ~ 31 from which we deduce that the decay of the oscillations in 

the C 's is faster for solution 1. n 

In figures 4.1 and 4.5 the horizontal and vertical displacements 

at the surface are plotted for solutions 1 and 2. For the standard 

Rayleigh wave with y ~ e-n cos X these would clearly be sine and cosine 

curves. As in that case the particle motion is retrograde, that is the 

sense of the rotary motion of a surface particle is such that the motion 

is in the opposite direction to that of the propagation of the wave at 

the peaks of the profile (9). In figure 4.2 the vertical displacement 

at various depths for solution 1 is shown. Figures 4.3, 4.4, 4.6-4.8 

compare the particle paths at various depths of the non-linear waves 

and the standard wave. For the standard wave the motion at any depth 

is elliptical with the sense of rotation being reversed at depth X2 ~ 1.21. 

The largest displacements do not occur at the surface but the vertical 

motions remain approximately of constant magnitude down to the depth 

X2 ~ 1 .21 ~ ~ x wavelength then dying away rapidly. For the non-linear 

waves the direction of rotation is again reversed, although the reversal 

is notably different from that of the standard wave. 



- 102 -

2. K = O. The case when there is no perturbation ln the wave speed 

from the Rayleigh speed is now discussed. Returning to equation (4.2.7) 

we make the substitution nCn = Qn to obtain the system of non-linear 

algebraic equations: 

n = 1,2, .... 

This is then solved by the same numerical method considered for the case 

K ~ O. In this problem we have an arbitrary scaling factor, that is if 

Q is a solution, 
n so also is TQ , where T is arbitrary. 

n So also, it is 

for solutions in which Q = 0, for n even, so that the n 
plausible to look 

even function y(X,n) has the property y(X+TI,n) = -y(X,n). An analytical 

solution is found by truncating the sequence after Qs, with Q2 = Q4 = 0, 

we choose Q1 = 1 and use this solution as a starting value for the 

numerical procedure, where again we increase the number of unknowns in 

steps of five. To ensure that the solution does not converge to 

trivial solution we rescale the Qn's after each iteration so that 

and these rescaled values are used as the starting values for the 

the 
N 
I Qn 2 

n=l 
next 

step of the iteration procedure. The values of the first 20 Qn/T and 

corresponding Cn/T are shown in Table 4.3 when N = 31, T being an 

arbitrary parameter. At the 13th iteration, the last one performed 

= 

Ql/T changed by less than 10- 3 and for n > 20, ICn/TI < 2.10-2. The 

displacements are again calculated from equation (4.2.9) and the horizontal 

and vertical displacements at the surface are shown in figure 4.9, as are 

the particle paths at various depths in figure 4.10. 

For all cases we may scale the solution in the X-direction by 

choosing a different period for the wave. For K > 0 the wave travels 

faster than the standard Rayleigh wave, whereas for K < 0 the wave travels 

mo re slow 1 y . We have assumed K > 0 in the figures, for K < 0 the surface 

1 
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elevation profiles will be inverted and the particle paths rotated through 

For K = 0 we may still scale ln the X-direction, but the inclusion 

of the arbitrary parameter T implies that the amplitude of the wave may 

also be scaled independently, since the speed c is independent of the 

amplitude in this case. 

We have attempted to find different periodic solutions by examlnlng 

the case of a forced wave in which the vertical traction was a specified 

periodic load of a small specified amplitude travelling at a speed close 

to the standard Rayleigh wave speed. We cho~se the load to be sinusoidal. 

Solutions were obtained for different values of the load amplitude and 

different values of K-l, which is proportional to the deviation of the 

speed from the linear Rayleigh speed. Solutions were sought for which 

the magnitude of the forcing function could be reduced to zero while 

the amplitude of the wave remained 0(1). However, in the procedures 

attempted it was not found possible to decrease the loading amplitude 

without a corresponding decrease in the wave amplitude. 
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Table 4.1 Solution 1 for K F 0 

n Pn C /K n 

1 1.2673 1.2673 

. 2 -1.5236 -0.7618 

3 1 .2415 0.4198 

4 -0.6711 -0.1678 

5 0.0425 0.0085 

6 0.4508 0.0751 

7 -0.6873 -0.0982 

8 0.6403 0.0800 

9 -0.3731 -0.0415 

10 0.0095 0.0009 

11 0.3122 0.0284 

12 -0.4845 -0.0404 

13 0.4629 0.0356 

14 -0.2744 -0.0196 

15 0.0019 0.0001 

16 0.2495 0.0156 

17 -0.3905 -0.0230 

18 0.3776 0.0210 
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Table 4.2 Solution 2 for K F 0 

n P C /K n n 
1 2.2565 2.2565 

2 6.0555 3.0277 

. 3 -5.1611 -1.7203 

4 -0.8027 -0.2007 

5 O. 1972 0.0392 

6 0.7890 0.1315 

7 2.6560 0.3794 

8 -2.8137 -0.3517 

9 -0.3836 -0.0426 

10 O. 1528 0.0153 

11 0.5758 0.0523 

12 1 .7775 o. 1481 

13 -2.1077 -0.1621 

14 -0.2217 -0.0158 

15 0.1547 0.0103 

16 0.4860 0.0304 

17 1 .3460 0.0792 

18 -1.7652 -0.0981 

19 -0.1263 -0.0066 

20 o. 1641 0.0082 

21 0.4378 0.0208 

22 1 .0877 0.0494 

23 -1.5741 -0.0684 

24 -0.0581 -0.0024 

25 0.1763 0.0071 
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Table 4.3 Solution for K = 0 

n Q IT C IT n n 

1 0.5632 0.5632 

. 3 -0.2324 -0.0775 

5 0.0849 0.0170 

7 0.0273 0.0039 

9 -0.1200 -0.0133 

11 o. 1948 0.0177 

13 -0.2505 -0.0193 

15 0.2853 0.0190 

17 -0.3012 -0.0177 

19 0.2970 0.0156 
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Figure 4.1 Horizontal and vertical displacements at the surface for 

solution 1 
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Figure 4.2 Vertical displacements at various depths for solution 1 
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Figure 4.3 Particle paths for solution 1 
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Figure 4.5 Horizontal and vertical displacements at the surface for 

solution 2 
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Figure 4.6 Particle paths for solution 2 
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Figure 4.7 Particle paths for solution 2 



- 114 -

X=O 7.. X~o.g 
-2 

-1 o -0.2 

-2 
X -=4 

2. 
X =2 

1.. 

-0.2 

2 

Figure 4.8 Particle paths for the standard harmonic wave with C1 = 1.3 
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Figure 4.9 Horizontal and vertical displacements for the wave with K = 0 
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Figure 4.10 Particle paths for the solution with K = 0 
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4.3 MORE GENERAL SOLUTIONS 

We consider here the solution for more general y(X,n) so that we 

no longer restrict attention to even functions. As was stated at the 

beginning of the previous section we may then represent y(X,n) by 
00 

I -nn -n n=l {Cne cos nX + One n sin nX}. The equations to be satisfied by 

the Cn's and On's may then be obtained as above. Alternatively, the 

problem may be formulated using complex functions. 

The equations to be solved (3.2.8) and (3.2.9) with boundary 

conditions (3.2.6) are 

u - v = t(X,y) v + u = m(X,y) 
x y , x Y 

(4.3.1) 

U - Vy = L(X,Y) Vx + Uy = M(X,Y) 
X 

with 

U(X,O) = u(X,O) 
(4.3.2) 

V(X,O) = (l+sK)v(X,O) . 

We introduce the complex functions w(z,z) and W(Z,Z) where z = X + iy, 

Z = X + iY and w, W are defined by w = u + iv, W = U + iV, bars denoting 

complex conjugates. We also define functions h(z,z) and H(Z,Z) by 

h = t + im, H = L + iM. 

w- = ~ h(z,z) z 

W- = ~ H(Z,Z) 
Z 

The equations (4.3.1) may then be written 

(4.3.3) 

The surface boundary conditions are 3pp1ied on z = z = Z = Z, conditions 

(4.3.2) therefore become 

W(Z,Z) = w(z,z) + sik Im(w(z,z)) (4.3.4) 



- 118 -

We let v(z,z) be an analytic function so that 

v- = 0 gives vw- = (vw)-Z Z z 

and 

II vWz dzdz = II (vW)z dzdz , (4.3.5) 

where the integrals are over the region where Im(z) .:.. o. 

The complex Stokes' theorem (34) states that if f(z,z) is a function 

of z = x + iy, z = x - iy which is continuous and differentiable in an 

area S enclosed by a contour C then 

and 

I f(z,z)dz = 2i II ~; dS 
C S 

J f(z,z)dz = 
C 

-2i ff ;~ dS 
S 

Using the first of these we have 

II(vW)z dS = ii f vwdz 

S C 

where S is the region z > z , 0 < Re(z) 

Si mi 1 arly wi th v(Z,Z) we obtain 

Hence 

and 

ff (vW)z dS 
S 

= ~ J vWdZ 21 
C 

using equation (4.3.5) we 

~Jf vh dS = 2\ I vW dz 

S C 

~rr vH dS = ;i I vW dZ . 
J J 
S C 

deduce 

-
< 21T and C 1S the line z = z. 

(4.3.6) 

(4.3.7) 
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Subtracting (4.3.6) from (4.3.7) and using the boundary condition (4.3.4) 

gives 

ff vH dS - ff vh dS 

S S 

= ~ J iKIm(w(z,z))dz 
C 

(4.3.8) 

This provides a condition on the solution which is analogous to (3.3.14). 

The functions hand Hare O(s), which implies that Wz and Wz are O(s) and so 

we may write w(z,i) = ~(z) + sw(z,z). However, hand H also decay so 

(w-~)/s is bounded, hence ~ decays as Im(z) + +00, Im(z) ~ 0 and is 
-

periodic in Re(z). Similarly we write W(Z,Z) = ~(Z) + sW(Z,Z) since 
00 

W(Z,Z) - w(z,z) = O(s) from equations (4.3.4). We choose ~(z,z) = I cne,nz, 
n=l 

Cn is complex and substituting for ~ in equation (4.3.8) we obtain the 

system of complex equations for the Cn's. 

n-l 
-2KC + I 

n r=l 

00 

arnr(n-r)C C + Is s(n+s)CsC = O. r n-r s=lsn n+s 
(4.3.9) 

In this equation the transformation Cn + einSCn leaves the equation 

unchanged and corresponds merely to a change of phase of the wave or a 

translation of the coordinate axes. 

Equation (4.3.9) may be solved by writing Cn = On + iEn and 

equating real and imaginary parts of equation (4.3.9). All the solutions 

found to these equations were reproductions of the case of even y(X,n) 

with a change of phase. 
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4.4 NON-PERIODIC WAVEFORMS 

In this section we consider the problem of obtaining non-periodic 

waveforms, case (B), we use Fourier transforms as introduced in section 3.4. 

As in section 4.2, we look for symmetric waveforms so that we represent 

y(X,n) by the Fourier cosine transform Joo E(s)e-Sn cos sX ds, S(X,n) may 

then be represented by the Fourier sine ~ransfonn C [-E(s)e -Sn sin sx] ds. 

As in Section 4.2, we introduce the function w(l) which satisfies the 

equations (4.2.4) - 4.2.6), which in this case become: 

W(l) + w(l) 
XX nn 

_ . (B2-A2)(1-A4) fooJoo rsE(r)E(s) e-(r+s)An/B 
8A2B2 0 0 2 

{(r-s)sin(r-s)X - (r+s)sin(r+s)X}drds 

+ (B2-A2)(1-A4) Joofoo _ rsE(r)E(s) (r! + sje-(rB/A+S)n 
4A3B 0 0 2 

{sin(r+s)X - sin(r-s)X}drds (4.4.1 ) 

w(l) (X,O) = 0 (4.4.2) 

(1) + (B2-A2)(1-A4) foofoo rsE(r)E(s) {sin(r+s)X + sin(r-s)X}drds -w (X, 0) -
n 4A3B 0 0 2 

= - K JOO sE(s)sin sX ds (4.4.3) 

Writing w(l)(X,n) in the form 

= W (n) + Joo W(r,n)sin rX dr 
o 0 

and substituting this into the equation (4.4.1) and boundary conditions 

(4.4.2) and (4.4.3) we find that Wo(n) = 0 and W(r,n) satisfies the 
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equation 

= (S2-A2)(1-A4) JrooJoo rs(E(r)E(s) e-(r+s)An/S 
8A2S2 0 0 2 

{(r-s)sin(r-s)X - (r+s)sin(r+s)X}drds 

{sin(r+s)X - sin(r-s)X}drds 

with foo W(r,O)sin rXdr : O. 
o 

This must be true for all X so that we obtain the following differential 

equation for W(r,n): 

W -r2W = (S2-A2)(1-A4) {foo E(s)E(r+s)s(r+s) 
nn 8A3S2 0 2 

_ r ~re-rAn/B + 2[S~2 + (r_S)B)e-(SB/A+r-S)J . 

o 

E(s)E(r-s)s(r-s) ds 1 
2 J 

wi th W ( r ,0) = 0 

Solving for Wand substituting the result into condition (4.4.3) and 

again using the fact that (4.4.3) must be true for all X we obtain a 
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condition to be satisfied by the function E(r): 

-rKE(r) r 

(r+s) (A+B) 

+ r ~ s ( r+s ) E (s) E (r+s) ds 
sB+(2r+s)~ 

rr I -1 r ] 
+ J

o 
l2(A+B) + sB+(2r-s)A s(r-s)E(s)E(r-s)ds} (4.4.4) 

which is similar to the equation (4.2.7) which the coefficients in the 

Fourier series must satisfy. 

To solve equation (4.4.4) we look for waves travelling at a speed 

different from the linear Rayleigh speed cR and make the transformation 

sE(s) = KF(s), since K is non-zero. The equation for F(s) may then be 

written in the form: 

-2F(r) + rr a(s,r)F(s)F(r-s)ds + roo s(s,r)F(s)F(r+s)ds = 0 (4.4.5) 
)0 )0 

where 

a(s,r) , 

S(s,r) = (B2-A2)(1-A4) [ r 
4A2B U r+s)( A+B) 

r 
(r+2s)A+Br 

Differentiating this equation with respect to r we find 

2F' (0) 

and since KF(s) = sE(s) 

KF' (0) = E(O) 

which gives an expression for E(O). 

(4.4.6) 

5 B + ( {r+s ) ~ . 
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Baker (1) suggests for equations of type (4.4.5) reduction to a 

system of non-linear algebraic equations. We attempt to solve (4.4.5) 

using various discretizations. We consider the equally spaced 

discretization points sJ' and for ss(s.,s. 1) we represent F(s) by the J J+ 
linear approximation 

Hence 

and 

F(s) [ 
F(Sj+l) - F(Sj) 1 

= F(SJ') + (s-s.) -so 
J Sj+l J 

(4.4.7) 

Sj+l 
J a(s,r)F(s)F(r-s)ds 
s . 

J 

s. 1 

J 
J+ 

s(s,r)F(s)F(r+s)ds 
s . 

J 

~ (
F(r-S '+1 )-F(r-s .)) J 

F(r-s
J
.) + J J (s-s.) ds 

s·l-s. J J+ J 

Sj+l F(s. -F(s.) Q 
= f s(s,r)fF(s.) + ( ~+l_s. J )(S-Sj) 

s . L J S J+ 1 J 
J 

F(r+s. )-F(r+s ')1 Q 
~(r+s.) + ( J+l _ J J(S-s,) ds. 

J s· 1 s. J J+ J 

Defining 
- j 

s j = N ' 
_ 1 

r - Si = N and 

then 

and 

s. 1 
f J+ a(s,r)F(s)F(r-s)ds ; 
Sj 

c .. X . X . . + D .. Xl' J' XJ. +1 1J J 1-J 1J-

+ E X X .. 1 + F .. X. lX, . 1 ij j l-J- lJ J+ l-J-

s j+ 1 
Iso s(s,r)F(s)F(r+s)ds ; GijXjXi+j + HijXi+jXj+l 

J 

(4.4.8) 

(4.4.9) 



where 

c· . lJ 

D .. 
lJ 

E .. 
lJ 

F .. 
lJ 

G .. 
lJ 

H .. 
lJ 

L .. 
lJ 

M .. 
lJ 
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s. 1 f J+ = a(s,r)(1+2j+j2-2sN-2jNs+s2N2)ds 
S . 
J 

s. 1 J J+ = a(s,r) (-j-j2+sN+2jNs-s2N2)ds 
S . 
J 

s. 1 
J J+ = a(s,r)(-j-j2+sN+2jNs-s2N2)ds 

S . 
J 

= D· . lJ 

s. 1 J+ 
= f a(s,r)(j2-2sjN+s2N2)ds 

S . 
J 

s. 1 
J J+ = s(s,r)(1+2j+j2-2sN-2sjN+s2N2)ds 
s . 

J 

s. 1 
= J J+ 8(s,r)(-j-j2+sN+2sjN-s2N2)ds 

Sj 

s j+ 1 
= f S(s,r)(-j-j2+sN+2sjN-s2N2)ds 

s . 
J 

= H·. lJ 

s. 1 
= J J+ 8(s,r)(j2-2sjN+s2N2)ds 

s . 
J 

These are evaluated analytically using a and S from (4.4.6) and the 

resulting algebraic equations substituted in (4.4.8) and (4.4.9) and these 

are then used in (4.4.5). We therefore have a system of algebraic 

quadratic equations for the Xi· 
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Initially, we assume that F(s) is only non-zero on the interval 

[O,lJ, which we may do without loss of generality since the s scale is 

arbitrary. From the definition of F(s) it is clear that F(O) = 0 and 

we are interested only in non-negative s, we therefore consider the 

points si = i/N for i = 1,2, ... ,N. Equation (4.4.5) then gives N 

equations for the N unknowns Xi' Solutions to these were sought using 

the same method as in the periodic case. However, we were unable to 

obtain solutions to these equations which converged as N was increased. 

We have also attempted to obtain a solution by approximating the 

function as above on [O,lJ, but for s > 1 assuming that F(s) can be 

approximated by some chosen function. Clearly we require F(s) to 

decay as s + 00 so we choose F(s) = k/s for s > 1, where the constant k 

is chosen so that F(s) is continuous at s = 1, that is k = F(l). We 

then divide the integral from 0 to 00 into three regions (0, l-r), 

( 1 - r, 1) and (1, 00), so th at: 

rOO 
J s(s,r)F(s)F(r+s)ds 
o 

l-r 
= f s(s,r)F(s)F(r+s)ds 

o 

1 
+ f s(s,r) F(s)F(l) ds 

l-r s+r 

[
00 F(1)2 

+ s(s,r) s(s+r) ds. 
1 

Again solving the system of equations for the Xi as above we were unable 

to find solutions which converged. 

A simpler method of solving (4.4.5) is to approximate the integrals 

by the trapezium rule. Initially we consider F(s) to be zero outside 

the interval [0,(1, as before we are interested in the region where s > 0 

and we have F(O) = O. Dividing the interval [O,lJ into N sections of 
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length liN, we may approximate equation (4.4.5) by 

- r-l 
-2F(r) + iN~(o,r)F(O)F(r) + 2 S~l ,,(~, rJ F[~J F[r - ~] 

+ a.(r,r)F(r)F(OU 

1 [ N-l 
+ 2N ~ ( 0 , r) F ( 0) F ( r) + 2 S ~ 1 B (~, r 1 F (~) F (~ + r J 

+ S(l ,r)F(l )F(l+rJ = 0 (4.4.10) 

Solutions were found numerically to these equations, however the maximum 

value of \F(s)\ was occurring at s = 1. We therefore attempted to add 

an approximation to F(s) for s > " the functions 

F(l)e'-s, F(l)e~('-S) and F(l)e!(l-S). With the 

£ill .Ull used were '2' 
S s 

function F(s) = £ill, 
s 

for s > 1. it was found that the solution for 0 ~ s ~ , was changed 

considerably so that F(s) ~ F(l) for s >~. The same situation was 
s 

found to occur with F(s) = £ill for s > 1. Choosing F(s) to be an 
S2 

exponential function F(l)e-s for s > , we found that the maximum value 

of \F(s)1 occurred at s = , and choosing F(s) = F(1)e(1-s)/2 for s > 1 

the magnitude of the solution decreased. 
(1-s)/4 

For F(s) = F(l)e for 

s > 1 the magnitude of the solution decreased further. 

Equation (4.4.4) may be rewritten in a form where the kernel 
2A 

functions depend only on r,s and A, with A = A+B· This is achieved by 

writing 

(B2-AZ)(1-A4) 
...l.. ____ ~ __ --'-_ sE(s) = KF(s) 

8A2B 

and obtai ni ng 



F(r) 

-where A < 1. 
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= rr [1 - _2r } F(s)F(r-s)ds 
Jo s+A(r-s) 

+ Joo 2 (~ -
r+s 

o 
r _ r_) F ( s ) F ( r+s ) ds , 

r+As S+Ar 

Comparing equation (4.4.11) with the equation (4.2.7) obtained when 

using Fourier series we see that making the transformation F(r/N) ~ NP. 
1 

we obtain equation (4.2.7) with the infinite sum replaced by the sum from 

1 to N-l. We therefore attempted to find a solution using that already 

obtained in the periodic case. Choosing N = 24 we found a solution for 

this value of N, however, proceeding to the case with N = 48 the solution 

changed a great deal and seemed to be tending to the trivial solution. 

Since the solution obtained for the Fourier series is oscillatory it 

seems probable that the approximation used for s > 1 should also be 

oscillatory. 
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CHAPTER 5 

RAYLEIGH WAVES ON AN INCOMPRESSIBLE MATERIAL 

5.1 INCOMPRESSIBLE MATERIALS 

In this chapter we consider the theory for an incompressible 

material, the analysis of which is similar to that already considered for 

a compressible material, but differs because the existence of a hydrostatic 

pressure means that the constitutive law cannot be written in the form 

(3.2.1). First we discuss different constitutive laws for rubberlike 

materials and then in the following sections we use one of these ln our 

analysis of waves on the surface of incompressible materials. 

One of the fundamental problems in the theory of elasticity is to 

find an appropriate expression for the strain-energy of a body subjected 

to a homogeneous strain. Rubber and similar substances have a low shear 

modulus which means that a moderate strain can lead to large shears. A 

different approach from that of the previous chapter is therefore required 

for any adequate theory of the elasticity of rubber-like materials, that 

is materials which are nearly incompressible. We model their behaviour 

by considering incompressible materials. 

There have been many attempts to reproduce theoretically the 

stress-strain curves obtained experimentally on the isothermal deformation 

of these types of materials. Most of these have followed Mooney (31) 

who expressed the strain-energy as a function of the principal stretches. 

He postulates that the elastic material considered, in addition to being 

homogeneous and free from hysteresis has the following properties: 

(1) is isotropic in the undeformed state and also after a positive 

or negative stretch-squeeze it remains isotropic in the plane at 

right angles to the stretch, 
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(2 ) the deformations are isochoric, that is Occur without change 

of volume and 

(3) the traction 1n simple shear in any isotropic plane 1S 

proporti ona 1 to the shear. 

Mooney deduces that the most general choice of W, the strain-energy 

function consistent with the three postulates is 

= Cl(Af+A~+A~-3) + c2(--1 + __ 1 + __ 1 - 3J 
lA2 A2 A2 

1 2 3 

(5.1.1) 

where C1 and C2 are constants and the principal stretch A. is the ratio 
1 

of final to initial length in the direction of the i-strain axis, the 

condition of constant volume requiring AIA2 A3 = 1. Mooney shows that 

calculated forces agree closely with experimental data on soft rubber from 

400% elongation to 50% compression. 

In (48) Rivlin also considers the development of a theory of large 

elastic deformations and deduces from a generalization, to the case of 

large strain, of Hooke's law that the strain-energy function may be 

written as 

W = ~ E(Ai + A~ + A~ - 3) (5.1.2) 

where AI' A2' A3 are the principal stretches and E is Young's modulus. 

This is therefore a special case of the Mooney material with the constant 

C2 being zero. 

material. 

Riv1in defines this as an incompressible neo-Hookean 

The strain invariants II' 12 and 13 are defined by 

= I 
2 

= 

so that both (5.1.1) and (5.1.2) may be written in terms of the strain 
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invariants. In (47) Rivlin reports on experiments on a rubber cylinder 

and concludes that the form (5.1.2) gives a first approximation to the 

strain-energy function and that a second approximation is provided by the 

form (5.1.1). The differences between the forms being more or less 

accentuated depending on the type of deformation studied. Mooney (31) 

points out that the strain-energy function can be expanded as an infinite 

series of II and 12 , Thus 

co 

(5.1.3) 

with C = 0, the C 's being constant. 
00 mn The neo-Hookean and Mooney forms 

are special cases of this. 

Any mathematical analysis based on the general expansion (5.1.3) or 

on more complicated forms of the strain-energy density as a function of 

the strain invariants, constructed to give closer approximations to the 

experimental data, tends to be cumbersome, particularly in relation to 

problems in which the principal axes of strain vary through the material. 

Thus an adequate correlation between theory and experiment for a wide 

range of strains has only been achieved at the expense of mathematical 

simp 1 i city. In (34) Ogden seeks a strain-energy function which provides 

an adequate representation of the mechanical response of rubber-like 

materials for large ranges of deformation, whilst being simple enough to 

be amenable to mathematical analysis. He defines the function ¢(a) by 

a f 0 

¢(a) = 

, a = 0 

which is symmetric in the Ai 's, the three principal stretches. He then 

proposes a strain-energy function W = L ~ ¢(a ), where the ~ 's are r r r r 

constants. He compares results obtained with experimental results on 
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rubber. For an incompressible material 1..11..21..3 = 1 and in (35) Ogden 

extends this theory to that for a compressible rubber-like material by 

adding to the strain-energy a function of the density ratio po/p = 1.. 1 1.. 2 1.. 3 ' 

which is zero when 1..11..21..3 = 1, that is when the material is incompressible. 

Levinson and Burges (26) have also considered the case of slightly 

compressible rubber-like materials as have Blatz and Ko (3). 

In the following sections we examine the case of Rayleigh waves on 

a Mooney-Rivlin material. 
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5.2 THE FORM OF THE EQUATIONS 

For the case of plane strain which is under consideration the 

strain invariants II, 12 and 13 reduce to: 

= F211 + F212 + F22 + F2 + 1 , 
1 22 

= 

, 

so that we have only two independent invariants II and 13 , say. For 

an incompressible material 13 = 1 from which we deduce that II = I2 . 

Also for an incompressible material the strain-energy function in the 

stress-strain relations is replaced formally by 

where p represents an arbitrary hydrostatic pressure and plays the role of 

a Lagrange multiplier, which is the reaction to the constraint of 

incompressibility. The example we consider is the Mooney-Rivlin material 

for which, in this situation of plane strain, we may replace the strain-

energy function W by 

so that using the incompressibility condition 

F F - F F = 1 , 
11 22 12 21 

we obtain the stress components L .. 
lJ 

as 

L 11 = 2CF 11 - pF 22 

L12 = 2CF 12 + pF21 
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1"21 = 2CF
21 

+ pF
12 , 

1"22 = 2CF22 - pF 11 

au· 
Using F .. = 8 .. +_1 the stress 

1J 1J aX. components may then be rewritten as 
J 

= 2C - P + 2C u 
1,1 

= 2C u + P u
2 

1 
1 ,2 , 

- p U 
2,2 

= 2C - P + 2C u2 2 - P u1 1 , , 

, 

We 1 et E denote a typi ca 1 magni tude of u. ., i,j = 1,2. 
1 ,J 

As for the 

compressible material we substitute for the stress components in the 

momentum equations and introduce the stress functions a.(X,X ), i = 1,2, 
1 2 

where 

2C - P + (2C - 2 - P u pc )u 1 1 , 2,2 

2C u . + P u2 1 1 ,2 , 

P u1 2 + (2C - pc 2 )u , 2,1 

2C - P - P u1· 1 + 2C u2 2 , , 

= a 
1 ,2 

= -a 
1 ,1 

= a 
2,2 

= -a 
2,1 

(5.2.1) 

These may be combined to give two palrs of equations similar to those 

obtained in the compressible case: 

= 

- "'2} + (1 - P2
cc

2
J a __ a __ {(p+2C-pc2 )u ~ ax {(p+2C)u 2 + a 1 } 

aX2 1 
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(5.2.2) 

= u 2E. + u ap 
2 ax 1 aX

2 

= U2 ~ - U ~ - pC 2 (U + U ) aX2 1 aX 2,2 1,1 

As in Section 3.3, we presuppose that the length scale has been chosen 

so that typi cal magni tudes of u. and u. . are comparab 1 e. The pressure· 
1 1 ,J ;h .. 

gradients :I. must then be O(s) to balance with the a;~' Also from 
J J 

the condition I3 = 1 it follows that u + u = -(u u - u u ) 1,1 2,2 1,1 2,2 1,2 2,1 
so that all the terms on the right hand side of equation (5.2.2) are 

second order. Again without loss of generality the boundary conditions 

may be taken as a1(X,O) = ° = a2(X,O). 

The functions ~1' ~2' ¢1 and ¢2 are introduced as before and are 

glven by 

PC2~2 

PC 2¢1 

PC2¢2 

where 

= (p + 2C)u 1 - a2 

= A[(p+2C)u2 + aJ 

= (p + 2C - pC2)u2 + a1 

= 1 _ pc 2 

2C 

Equations (5.2.2) may then be rewritten: 

(5.2.3) 

(5.2.4) 
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1 ap ap 
- {u - - u -} pC2 1 aX 2 aX2 

a1jJ 1 a<p 
_1 + __ 1 = 
aX A aX2 

= _1_ {u ~ + u 2e....} 
pC2 2 ax 1 aX 2 

(5.2.5) 

with the compatibility condition 

u + u = -(u u - u u ) 1,1 2,2 1,1 2,2 1,2 2,1 . (5.2.6) 

The boundary conditions become 

= ° 
and (5.2.7) 

a2(X,O) = (p(X,O)+2CA2)<P2(X,O) - (p(X,O)+2C)<Pl(X,O) 

= ° 
As in the compressible case, we introduce new variables y = AX2, Y = X2 

and define 

u(X,y) = <P 1 (X,X 2 ) v(X,y) = lJJ 1 (X,X2) , , 

U(X,Y) = ( 1 +A2) (X X ) 
2 <P2' 2 V(X,Y) = 

(1 +A2 ) 
2 lJJ2(X,X2) 

where the multiplier (1+A2)/2 has been chosen so that the boundary 

condition a2(X,O) = ° impl i es u(X,O) = U(X,O) to zero order. Equations 

(5.2.5) then become 
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av = 2Cs {( 2 U - uJ~x- _ (A-IV _ ~ V) ap } 
ay pc2 1+A2 a l+AL aX 2 

~+~ = 
2C{1+A22s { (A-lv - 2 V J ap + (, :A2 U - u )~E_J 

aX aY 2pc2 1 +A2 ax aX2J 

aU _ aV = 2C~1+A22s {- (_2 U - u 1 ~ - (A - 1 V __ 2_ vJ ap 1 

ax ar 2pc2 1 +A2 aX 1+A2 ax2 J 

_ L 2 au -AauJ[l av 2 av'} 
1+A2 W ay A ax - 1+A2 ax-J 

with boundary conditions 

- 2 1 -(2+sp(X,O)) 1+A2 V(X,O) - A (1+A2+sp (X,O))v(X,O) = ° 

(1+A2+sp(X,O)) ~ U(X,O) - (2+sp(X,O))u(X,O) = ° . 
1 +A 

(5.2.8) 

(5.2.9) 

The functions u, v, U and V are all O(s), so that to first order (5.2.8) 

and (5.2.9) give 

au av = ° ax - ay 

au _ ~ = ° 
dX ay 

with boundary conditions 

U(X,O) = u(X,O) 

V(X,O) = Kv(X,O) 

av + au = ° 
aX ay 

~ + ~ = ° ax ay 

, 

, 
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where K = (5.2.10) 

If y(X,n) is a harmonic function ln n > ° taking boundary values y(X,O) = 

o(X), with harmonic conjugate S(X,n), then a solution to the above system 

is 

u(X,n) = U(X,n) = S(X,n) 

v(X,n) = V(X,n) = y(X,n) 

with and boundary conditions y(X,O) = o(X). 

The displacementsul and u2 are glven by 

= 2 2 U ( X , Y ) - u ( X ,y) 
1 +A 

1 2 = A v(X,y) - 1+A2 V(X,Y) 

Choosing o(X) = cos X we find that 

s(X,n) 

which gives 

u = 1 

-n . = -e Sln X, 

1 y 2 -Y 
C'cos X{A e- - l+Aze } u2 = "-

from which we obtain 

u2 (X,0) = spc2 cos X 
4CA 

= s{~ S(X,Y) - S(X,y)} 
l+A 

= s{A1 y(X,y) -~ y(X,Y)} 
1 +A 

In this linear case the compatibility condition becomes 

= ° 
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and it is readily checked that this is satisfied for harmonic solutions 

S(X,n) and y(X,n). 

The condition (1+A2)2/4A = 1 gives on substituting for A an equation 

satisfied by c2 namely 

(5.2.11) 

which is equation (3.1.20) when the Poisson ratio is ~ and ~ = 2C, again 

this equation has only one real positive root for c2 . Linear Rayleigh 

waves for an incompressible material are regular limits of waves for a 

compressible material. 

We now write 

u(X,n) = e:S(X,n) + e: 2u (X,n;e:) 

v(X,n) = e:y(X,n) + e: 2v (X,n;e:) 
(5.2.12) 

U(X,n) = e:S(X,n) + e: 2U(X;q;e:) , 

V(X,n) = e:y(X,n) + e: 2V(X,n;e:) , 

where 

- 1 2 
U = U + e:u + ... , 1 2 

V = V + e:v + ... , u ... , 

1 2 
V = V + e:V + ... , 1 2 

P = P + e:p + ... (5.2.13) 

_ (1+A2)2 
and also write K - - 4A = 1 + Ke:. 

To solve (5.2.8) and (5.2.9) we need to find an expresslon for p, 

this may be obtained from (5.2.1): 

(5.2.14) 
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To O(E) this gives 

1 
P = 

which may be substituted into (5.2.8) and (5.2.9). Choosing 

y(X,n) = e-ncos X implies S(X,n) = -e-nsin X and taking the O(E2) terms 

in (5.2.8) and (5.2.9) gives equations for Q, 0, 0 and~. However, the 

solution to these equations satisfying the surface boundary conditions 

introduces terms in e2Y cos 2X and e2Y Sln 2X, which grow as Y + 00. We 

therefore cannot find an acceptable solution performing a straightforward 

expansion with y = e-n cos X. 

In the next section we consider perturbation procedures analogous 

to those ln Chapter Three, for solving the problem with a general surface 

elevation. We consider a periodic waveform in Section 5.3. 
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5.3 SOLUTIONS FOR THE PERIODIC WAVEFORM 

Substituting the expansions (5.2.13) into the equations (5.2.8) 

and the boundary conditions (5.2.9) gives equations of the form 

- -u - v = 2(X,y;s) Vx + uy = m(x,y;s) X y 
(5.3.1) 

U - V = [( X, Y; s) Vx + Uy = M(X,Y;s) X Y 

U(X,O) 
-

= u(X,O) + r1(X;s) 
(5.3.2) 

-
V(X,O) = v(X,O) + K [y (X ,0) + sv (X ,0)] + rz(X;s). 

As ln Section 3.3 we introduce functions w(X,n;s), v(X,n;s) where 

U(X,n;s) = u(X,n;s) + w(X,n;s) 

and 

V(X,n;s) = V(X,n;s) + v(X,n;s) . 

From (5.3.1) and (5.3.2) it can be deduced that the equations to be 

satisfied by w and ~ are 

-
wx(X,n;s) - ~ (X,n;s) = L(X,n;s) - .qX,n;s) 

n ( 5 .3. 3 ) 

vx(X,n;s) + w (X,n;s) = M(X,n;s) - m(X,n;e:) 
n 

wi th 

w(X,O;s) = r1(X;s) (5.3.4) 

v(X,O;s) = K [y (X ,0) + s V ( X , ° ; s )J + rz(X;s) 

and 

w(X,n;s) -+ (A2_1)il 1 
as n -+ 00 

v(X,n;s) -+ (1+A2-2A)~2 

We are considering solutions which are 2'IT-periodic in X, we therefore 
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consider the interval - ~ < X <~. The function v may be eliminated from 

the above equations to give 

-m 
n 

w(X,O) = r1 (X) ( 5 . 3 . 5 ) 

M ( X , ° ) - m ( X , ° ) - W 11 ( X , ° ) = K [Y X ( X , ° ) + e: V X ( X , ° ) ] + r 2 , X ( X ) 

w(X,n) + (A2_l)~1 as n + 00 • 

Clearly there cannot be a solution to this problem for all harmonic 

conjugate pairs S(X,n), y(X,n) and any value of K. We therefore 

investigate what conditions S, y and K must satisfy for a solution of 

(5.3.5) to exist. 

Again, we are considering solutions periodic in X, for simplicity 

we suppose that y(X,n) is an even function of X and choose 

00 

y(X,n) = L 
n=l 

C e-nn cos nX, 
n S(X,l1) 

00 

= - L cne-nl1s in nX. 
n= 1 

The vertical displacement at the surface is given to first order by 

U2(X,O) = e:(1-A)2 y(X,O). 
A(1+A2) 

Equations (5.3.5) may be solved by writing 

00 

w(X,n) = L W (n-)sin nX + W (n) , 
n=l n 0 

which gives 

00 

Wo(O) + L Wn(O)sin nX = rl(X) 
n=l 

(5.3.7) 
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00 

00 

M(X,O) - m(X,O) - W~(O) - I W'(O)sin nX 
n=l n 

We sol ve this to zero order. Solving (5.3.6) 

we find 
00 

sC2 
(l-AZlZ I Wo(n) = s 

4A -y- , 
s=l 

where 

]11 = (l-AZ) I 
8A s=l 

sCZ 
s 

(5.3.8) 

(5.3.9) 

to (5.3.8) for W (n) 
0 

This also satisfies (5.3.9). We solve (5.3.6) to (5.3.8) for Wn(n) 

and equating the coefficients of sin nX in (5.3.9) gives a condition on 

the Cn's of the form (4.2.7). In fact ln this problem it is simpler to 

use the method described in Section 3.5 to obtain this condition on the 

coefficients Cn' the only difference from the theory of that section 

being in that the boundary conditions have the extra terms r 1 (X), rz(X). 

As in Section 3.5 we choose two functions o(X,n), p(X,n) which are 

2TI-periodic in X, bounded in n > ° and satisfy Ox + Pn = 0, on - PX = 0. 

Then 

00 TI 

J r (o£+pm)dXdy 
oJ -TI 

and 

= J1T (av-pu) I dX 
-TI y=O 

= f1T (aV-pU) I dX 
-TI Y=O 

TI 
= J (ov+or2+oK(Y+£V) 

-TI 
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OOr'IT 

r J (aL+pM) dXdY = 
10 -'IT 
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00 'IT 

J f (ai+pm)dXdy 
o -'IT 

+ J~ (crr2 - pr l+Kcr(Y+EV))I dX. 
-'IT y=O 

We choose a basis for (a,p) as 

a = -nn e Sln nX = a , n 
-nn p = e cos nX = Pn 

(5.3.10) 

and , n = 0,1,2, ... 
-nn . + = -e Sln nX = Pn p 

Equation (5.3.10) is solved to zero order with the above bases and reduces 

to two equations which must be satisfied 

OOr'IT ( ) I e-ny(~ 0 sin nX + m(o) cos nX)dXdy 
oJ -'IT 

- J~ (r~O)sin nX - r\o)cos nX + Ksin nX y(X,O))dX, 
-'IT 

and 

fOOJr'IT e-ny(~(o)cos nX - m(o)sin nX)dXdy 
Jo -'IT 

n = 0,1,2, ... 

n=0,1,2, ... 

(5.3.11) 

(5.3.12) 
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00 

For the example under consideration with y = L cne-nncos nX, (5.3.11) 
n=l 

is trivially satisfied and (5.3.12) reduces to the same condition as 

that obtained from (5.3.9). 

therefore 

The equation to be solved for the C 's is 
n 

n-l 00 

-2KCn + L arnr(n-r)C Cn- r + L Ssns(n+s)CsCn+s = a 
r= 1 r s= 1 (5.3.13) 

where as In the compressible case, for fixed n, Ssn ~ a as s ~ 00, and 

a. rn 
= _ (1-A4 )(1-A)2 __ n ___ (1-A2)2 ~ + 2(1+A)nr 

8A2 n-r 4A r A(n-r) (n+r+A(n-r)) 

+ 2 (1-A2 ) n + _r__ l-A _ rn (1 +A)( 1 +A2 ) 
(1+A2) (2n-r+rA) n-r ( ) A(n-r)(r+(2n-r)A) 

(1-A4)(1-A)2 n2 _ (1-A2)2 (n+2s)n 
8A2 s(n+s) 4A s(n+s) 

(l-A) (n+s)n _ 2(3+A2)n ( 1 + 1 J 
+ A s(2n+s+As) 1+A2 (n+s)(l+A) 2n+s+sA 

8A ( n J 4n + (l-A)(n+s)n 
+ 1+A2 (n+2s)A+n + (1+A2)(n+s) As(2n+s+As) 

(1+A2)(l-A) L 1 s J 
A n~(l+A) + (n+s)(s+(2n+s)AU 

(l_A2) n(n+2s) + (l_A2) sn 
A s (An+n+2s ) A (n+s ) (n+2s+An) 

(1+A2)(1-A)n (1+A2)(1-A)ns 
+ 2As(l+A) - 2A(s+n)(s+(2n+s)A) 

The coefficients arn , Ssn depend on A, which is calculated from the 

condition K = 1, namely (1+A2)2/4A = 1, which has a solution A = 0.295598. 

Equation (5.3.13) may then be solved by the same numerical procedure as 

was used for the harmonic material. 
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As in the case of the harmonic material we can find the difference 

between the speed of a non-linear wave and the standard Rayleigh wave 

as a function of the amplitude. From equation (5.3.13) K = (1~~2)2 = l+KE 

with A2 = 1 - ~~2 and again writing c = cR + EC where cR is the standard 

Rayleigh wave speed, we find that 

SK = [ 
dK 1 -
-2 2cJ sC 
dc c=cR 

and hence 

-
which implies ~ = 0.1411 K. 

cR 

The horizontal and vertical displacements U1 (X,X2), U2(X'X2) are glven by 

= E[ 2 2 8(X,Y) - 8(X,y~ + O(s2) 
l+A ~ 

= E[Al y(X,y) - _2_ Y(X,y)1 + 0(s2) 
1+A2 ~ 

so that to first order ul and u2 are given by 

-nX 00 

= -s r ~ Ice 2 sin nX - I 
L 1 +A2 n= 1 n n= 1 

-nAX 
C e 2 sin 

n 
nXl 
J 

(5.3.14) 

n~ . 
AX -nX2 

= 11 ~ c e -n 2 cos nX - _2 - ICe cos 
SLA n~l n 1+A2 n=l n 

As in Section 4.2, we consider the cases for K f 0 and K = O. 

1. For K f 0 we again use the transformation nCn = KP n to obtain 

the equations 

n-l 
-2P + I 

n r=l 

00 

CL P P + I 
rn r n-r s= 1 

8 P P sn s n+s 
= 0 n = 1,2, ... 
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Proceeding as before, iterating in steps of five from the analytical 

solution for N = 3 we obtain two solutions. 

Solution 1. The first 23 values of the P IS and corresponding C /KIS 
n n 

are shown in Table 5.1 for N = 33. At the 6th iteration, the last one 

performed, Pn changes by less than 2.10- 3 and for n > 23, IC /KI < 2.10- 2 • 
n 

Solution 2. For n = 48, the first 23 values for the P IS and C /KIS 
n n 

are shown in Table 5.2. At the 9th iteration, PI changes by less than 

For solution 1 we see that IC 1/C23 1 ~ 87, whereas for solution 2 

IC 1/c23 1 ~ 33, so that as in the solutions obtained for the harmonic 

material the decay of the oscillations in the Cnls is faster for 

solution 1. 

In figures 5.1 and 5.4 the horizontal and vertical displacements at 

the surface for the two solutions are plotted, again the motion is 

retrograde as is expected but the displacements differ considerably from 

those for the standard Rayleigh wave, which are sine and cosine functions. 

The vertical displacements at various depths are shown in figure 5.5. 

The particle paths at various depths are compared for the non-linear 

waves and the standard wave in figures 5.2, 5.3 and 5.6-5.9. 

2. We have also obtained solutions for which there is no change in 

the wave speed that is K = O. 

and obtain the equations 

We then make the substitution nC n = Qn 

n = 1,2, ... 

This system of equations is solved in the same way as for the harmonic 

compressible material. Again any multiple of a solution is also a 
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N 
solution and the Qn's are rescaled after each iteration to make I Q~ = 1. 

n=l 
The Qn's were found to converge and the solution obtained when N = 31 is 

given in Table 5.3 for the first 20 Qn/T and Cn/T, T being an arbitrary 

parameter. For even n Qn and hence Cn are zero. At the 13th iteration 

Ql/T changed by less than 3.10- 3 and for n > 20, ICn/TI < 5.10- 3
• 

The displacements at the surface are shown as are the particle 

paths in figures 5.10 - 5.11, where we see that the sense of rotation 

changes as the depth increases and the disturbance then dies away. In 

this case where there is no change in the wave speed we can scale both 

the wavelength and the amplitude independently, as there is an arbitrary 

scaling parameter T in the Cn's. 
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Table 5.1 Solution 1 for K F 0 

n P C /K n n 

1 1 .0148 1.0148 

2 -1.2198 -0.6099 

3 0.9512 0.3171 

4 -0.4709 -0.1177 

5 -0.0304 -0.0061 

6 0.4050 0.0675 

7 -0.5665 -0.0809 

8 0.5031 0.0639 

9 -0.2724 -0.0303 

10 -0.0235 -0.0023 

11 0.2744 0.0249 

12 -0.3980 -0.0360 

13 0.3644 0.0257 

14 -0.2008 -0.0143 

15 -0.0226 -0.0015 

16 0.2205 0.0138 

17 -0.3228 -0.0193 

18 0.2998 0.0166 

19 -0.1648 -0.0087 

20 -0.0243 -0.0012 

21 O. 1963 0.0096 

22 -0.2883 -0.0131 

23 0.2689 0.0117 
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Table 5.2 Solution 2 for K f 0 

n P C /K n n 
1 1 .8180 1 .8180 

2 4.8745 2.4372 

3 -4.2058 -1.4019 

4 -0.6153 -0.1538 

5 0.0314 0.0063 

6 0.6379 0.1063 

7 2.2932 0.3276 

8 -2.3504 -0.2938 

9 -0.2944 -0.0327 

10 0.0699 0.0070 

11 0.4646 0.0422 

12 1.5247 0.1271 

13 -1 . 7541 -0.1349 

14 -0.1698 -0.0121 

15 0.0892 0.0059 

16 0.3921 0.0245 

17 1 . 1502 0.0677 

18 -1.4594 -0.0811 

19 -0.0954 -0.0050 

20 0.1022 0.0051 

21 0.3521 0.0168 

22 0.9241 0.0420 

23 -1.2871 -0.0560 
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Table 5.3 Solution for K = 0 

n Q IT n C IT n 
1 0.6614 0.6614 

3 -0.3459 -0.1153 

5 0.2453 0.0491 

7 -0.1956 -0.0279 

9 0.1655 0.0184 

11 -0.1451 -0.0132 

13 0.1305 0.0100 

15 -0.1197 -0.0080 

17 0.1116 0.0066 

19 -0.1059 -0.0056 
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Figure 5.1 Horizontal and vertical displacements at the surface for 

solution 1 
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Figure 5.2 Particle paths for solution 1 
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Figure 5.3 Particle paths for solution 1 



- 154 -

2 

-4 

-4 

-2 

o 2 TC" X 

2 

Figure 5.4 Horizontal and vertical displacements at the surface for 

solution 2 
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Figure 5.5 Vertical displacements at various depths for solution 2 
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Figure 5.6 Particle paths for solution 2 
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Figure 5.7 Particle paths for solution 2 
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Figure 5.8 Particle paths for solution 2 
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Figure 5.9 Particle paths for the standard Rayleigh wave with C1 = 1.8 
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Figure 5.10 Horizontal and vertical displacements at the surface for 

the solution with K = 0 
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Figure 5.11 Particle paths for the wave with K = 0 
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CONCLUSION 

In Chapter Five we have seen how to construct solutions for 

Rayleigh waves on an incompressible material using the method based on 

Fredholm's alternative theory introduced in Section 3.5. In Chapter 

Four we considered Rayleigh waves on the surface of a compressible, 

harmonic material. In both the compressible and incompressible 

materials we have obtained two periodic solutions travelling at a speed 

different from the standard Rayleigh wave speed and a solution 

travelling at the same speed. The solutions obtained for waves 

travelling at a speed different from the standard Rayleigh wave speed 

have very different elevations and particle paths from the standard 

wave, although as the depth increases the waveform tends to a sinusoidal 

form. Solutions 1 are similar for the two materials as are solutions 2. 

In Chapter Four we also attempted to find non-periodic waveforms, 

however we were unsuccessful in obtaining convergence of the numerical 

procedure. 

For the solutions obtained the steeper slopes for the elevation 

suggests that for a given peak displacement the maximum surface 

accelerations are considerably greater than for a standard sinusoidal 

waveform having the same amplitude. The acceleration of the wave is 

significant for earthquakes. 

In figure 2 we show how the speed varies with the strain amplitude 

for the different solutions obtained. The cases of waves travelling 

faster and more slowly than the standard wave are included. 
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Figure 2 The dependence of the speed on the fundamental amplitude lell 
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PART III 
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INTRODUCTION 

In the following two chapters we consider the analysis of a 

fibre-reinforced material in the form of a belt stretched round a 

system of pulleys. A great deal of attention has been given in recent 

years to studying the mechanics of a material reinforced with strong 

fibres having high extensional modulus (52). There are many materials 

of this type both artificial and natural. The fibre-reinforced 

material is regarded as a material with certain properties which may be 

specified for the composite as a whole. Although we are concerned 

primarily with continuum theories and macroscopic models of material 

behaviour, the properties of the composite material derive ultimately 

from the properties and geometrical arrangement of its constituents, 

this is considered in Section 7.6. 

Static deformations have been analysed using many different 

theories (44), whilst dynamic disturbances have been analysed mostly on 

the basis of small deformation theory (51) or of acceleration wave theory 

(16). Fibre-reinforced materials exhibit highly anisotropic elastic 

behaviour in the sense that their elastic moduli for extension in the 

fibre direction are frequently of the order of fifty or more times greater 

than their elastic moduli in transverse extension or shear. For this 

reason an approach commonly used for large deformations is to consider 

'ideally reinforced' materials (44). In this Pipkin and Rogers assume 

that the material is incompressible, that the fibres are inextensible and 

are continuously distributed throughout the material. Although no real 

material satisfies these constraints, the application of this ideal 

theory gives a good description of materials for which the bulk modulus 

and the extensional modulus in the fibre direction are large in 
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comparison to the shear moduli of the composite. Pipkin and Rogers 

show that plane strain static deformations with a reference 

configuration in which all fibres are straight and parallel are simply 

described. They show that every kinematically admissible deformation 

is also statically admissible. In (43) they consider a specific 

mixed boundary-value problem of a slab of fibre-reinforced material 

deformed so that one side parallel to the fibres is bonded to a rigid 

wall, in which case more than one kinematically admissible deformation 

satisfies the prescribed displacement boundary conditions. Pipkin 

and Rogers (43) show how to determine whether or not a given 

kinematically admissible deformation furnishes a solution, by using 

the prescribed traction boundary conditions. Pipkin and Rogers (43) 

also point out that solutions using the inextensible theory frequently 

predict the existence of singular fibres or sheets of fibres which 

carry infinite stress, but finite force. These singular fibres may 

occur either adjacent to the surface of a body or in its interior. 

In the case of incompressible plane strain, it is also possible for 

normal curves to be singular. 

In (49), Rogers and Pipkin apply the general theory developed ln 

(43) to the case in which the fibres are initially curved. The 

example they consider is that of a pressurized tube. They conclude 

that using the constraints of incompressibility and inextensibility 

the deformation of the tube can be completely specified when the shape 

of the deformed inner surface is known. A constitutive equation is 

not needed in determining the shape but only to evaluate the resultant 

shearing stress over a radial cross-section of the tube wall. A 

limitation of this theory using the constraints of incompressibility 

and inextensibility is that although the deformation is completely 
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determined, the stress field is still ambiguous to the extent of a 

tension which is constant along each fibre and the pressure arising as 

a reaction to it. Rogers and Pipkin note that this tension could be 

determined by formulating a theory of small displacements for slightly 

extensible and compressible materials, which is superposed on the 

solution for large displacements already obtained. 

As has already been mentioned, a mathematical consequence of 

considering inextensible fibres is the occurrence of singular sheets 

of fibres which carry infinite stress but finite force. Everstine and 

Pipkin (12) demonstrate, by considering some simple examples, that 

these singular sheets of fibres represent narrow bands of intense stress 

concentration. Everstine and Pipkin show that if ~ is a characteristic 
1 length of a problem, then these bands have width of order (~L/E)2~ 

and along them the stress decays in a length of order (~L/E)-~~, where 

~L is the shear modulus and E the extensional modulus. The inextensible 

theory corresponds to the limit ~L/E ~ o. Thus for ~L/E « 1 the 

singular fibres represent boundary layers across which certain components 

vary rapidly. Everstine and Pipkin point out that the equations are 

of a suitable form for the application of a boundary layer and singular 

perturbation ~nalysis. In (13) they develop such an analysis and apply 

it to the problem of the deflection of a cantilever beam under end 

load. Spencer (53) further develops this theory and compares its 

predictions with some exact solutions in anisotropic e1asticy. He does 

not assume that the material is incompressible as well as inextensible 

in the fibre direction, and includes the case of plane stress as well 

as plane strain. He shows that the problem reduces to the solution of 

Laplace1s equation for the two displacement components in appropriately 

scaled coordinates. Spencer remarks that it is often possible to 
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analyse the stress and deformation in boundary layers without requiring 

a complete solution elsewhere, and that since boundary layers are 

usually the regions of greatest stress, it is often sufficient to be 

able to analyse these regions. 

In (40) Parker considers plane strain disturbances of a slab of 

ideal fibre-reinforced material of uniform thickness with a reference 

configuration in which all fibres are straight and parallel. He notes 

that at each point the tangent and normal to the current 'fibre direction ' 

are important and changes to I fibre-normal I coordinates (s, X2 ), where 

at each instant the curves of constant X2 are fibres, whilst s = constant 

denotes that plane cross-section which is normal to the fibres and for 

which s measures length along some reference fibre. Parker shows that 

all kinematically admissible plane strain disturbances are also 

mechanically admissible, which is a generalization of the result obtained 

by Pipkin and Rogers (43) for static deformations. 

In the work presented here a fibre-reinforced material is 

considered in which the fibres are initially concentric circles. The 

problem of a fan belt stretched round pulleys is that considered by 

Everatt (11), but the approach here differs from that used by him ln 

that in a similar way to the method used by Parker (40) we change 

coordinates to (R, s) where R measures distance along fibre normals and 

s is constant along fibre normals. In Chapter 6 we consider the theory 

for a belt stretched round an arbitrary number of pulleys, before the 

particular case of a belt round two pulleys is analysed in more detail 

in Chapter 7. 

Everatt only considers the ideal theory and hence does not 

determine the arbitrary contribution to the tension which is constant 

along each fibre, which has already been mentioned in connection with 

the work of Rogers and Pipkin (49). To determine this function we 
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consider the case of fibres which are slightly extensible. We also 

consider this case to examine the boundary layers in more detail. 

Within these the fibres are subjected to large tractions which are 

required in order to balance the large gradients of shear which occur 

near boundaries of highly anisotropic materials. It is found that 

the large stresses are indeed confined to narrow layers near the 

surfaces for a range of geometrical parameters. This situation, 

where the fibres are slightly extensible, may be regarded as the start 

of a perturbation process. 

/ 
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CHAPTER 6 

THE GENERAL THEORY FOR A FIBRE-REINFORCED FAN-BELT STRETCHED 

ROUND A SYSTEM OF PULLEYS 

6.1 THE EQUATIONS OF EQUILIBRIUM IN POLAR COORDINATES 

The belt is assumed to be reinforced by virtually inextensible 

fibres lying in closed curves parallel to the surface of the belt. 

The fibres are assumed to be continuously distributed throughout the 

cross-section. The belt is assumed to be initially circular with 

inner radius R , moreover we assume that it deforms only in plane 
o 

strain. To analyse the configuration of the fan-belt, we consider an 

element which is deformed as shown in figure 6.1, where e is the 

inclination of a fibre to the reference direction, A is the fibre 

elongation, AB = ~ is the dilation and y is the shearing. 

Figure 6.1 An element in a typical state of deformation 

In plane strain, the deformation gradient has components 

F .. 
lJ = 

ax. 
1 

ax. 
J 

1,J = 1,2, 

where (Xl' X2) are Eulerian coordinates and (Xl' X2) are Lagrangian 
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coordinates. Making the transformation to polar coordinates (R, e) 

in the reference configuration where 

Xl = R cos e , X2 = R sin e 

1 eads to 

ax. ax. sin e ax. 
1 1 1 -- cos e- -aX I aR R ae , 

ax. ax. cos e ax. 
1 . e 1 1 

aX
2 

- sln - - + , aR R ae 

for i = 1 , 2. 

Therefore, the deformation gradient f is given by 

F = 
1 aX I --R ae cos e sin e 

1 aX2 
--R ae -sin e cos e 

Now 
1 aXil = B cos 8 - y B sin 8, 
R ae I R 

= - A sin 8, 

1 aX2 B . 8 + B· 8 = A cos 8, = Sln y cos 'R ae 
R 

where A and Bare as sholtm in fi gure 6.1. 

Hence 

F 
= C~s e 

-sin 

: ) ( :a : ) ( 'os e sin e). -
cos -sin e cos e Sln 8 

which we may wri te in the form KBHT --- , 
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where 

B 

= CB : ) -

and ~, ~ are the orthogonal matrices 

K = ( cos e -sin e ) , 

Sln e cos e 

The compatibility conditions 

a lax·1 = aR ael J 

must be satisfied for i = 1, 2. 

For i = 1, this gives 

H = ( c~s e 
Sln e 

:e(B cos e - y B sin e) = ;R[- AR sin e} 

that is 

-sin e ) 

cos e 

aB(COS e - y sin e) + B[- Sln e ~ - y cos e ae - ay sin el ae ae ae ae J 

= - A sin e - ~~ R sin e - AR cos e ~~ 

and for i = 2 

~(sin e + y cos e) + B[COS e ~ -ysine ~ + ~ cos eJ ae ae ae ae 

= A cos 8 aA R cos 8 - AR sin 8 ~ 
+ aR aR 

Eliminating sin 8 and cos 8 from these gives 



and 

aB ae 
ae - yB ae = -AR ~ aR 
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y ~Be + B ~ + B ~ = A + R ~ 
o ae ae aR 

(6.l.l) 

(6.l.2) 

We let Tij denote the components of the Piola-Kirchhoff stress, 

T .. NJ. the i component of the traction on an element of surface having 1J 
unit normal ~ in the reference configuration. Then for equilibrium of 

plane stress deformations we have 

aT .. 
1J 

ax. 
J 

= 0 , i ;j = 1, 2, 

which can be written in the form 

lr(T cos e + T. sin e) I + ~I- T. sin e + T. cos ~ = 0 . 
aR i 1 12 ~ ae L 11 12:J 

(6.1.3) 

We define T _ I~, where H is defined as above, 

then T. = T. cos e + T. sin e 1 1 1 1 12 

and Ti2 = -T. sin e + T. cos e 
1 1 12 

so (6.1.3) gi ves 

a a 0 - (R T. ) + - (T. ) = . aR 11 ae 12 
(6.1.4) 

If W is the strain-energy functi on, then 

Tik 
aW 

= aFik 

hence 
aW Hkj T .. = aFik 1J 

We define C = FH = KB 
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= ( B cos 8 - Y B sin 8 A sin 

B sin 8 + Y B cos 8 A cos 

= (C ll C12
) • 

C21 C22 

Hence F = f~T , 

which may be wri tten in component fom 

FQ,k = C Hk . Q,r r 

Then aw aW aFQ,k 
= aC .. 

lJ aFQ,k ac .. 
lJ 

= aW H 
aFik kj 

= T·· lJ 

aw is equivalent to --=-aF .. 
lJ 

Hence ~ = 

= T . . 
lJ 

: ) (6.l.5) 

To find expressions for T •• we therefore need to It/rite A, Band y as 
lJ 

functions of C .. , these we obtain from (6.1.5) as 
lJ 

A = B = 
C11 C22 - C12C

21 

[ C~2 + C~2P 

C C + C C 
21 22 11 12 

y = 
C C - C C 

11 22 12 21 

, 
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Hence 

= aW dW 1 ( . ) = ~B cos e + --- -Sln e - y cos e , 
o ay B 

L 
12 = aW . e aW yB + ~ (1+y2) 

= - aA s 1 n - aB A cos e ay A cos e , 

= aw. + ~ 1. (cos .) = as Sln e ay B e - y Sln e 

= = ~~ cos e - ~~ ~ sin e + ~~ (1~y2) sin e . 

These may usefully be expressed by resolving tractions along and normal 

to the fibres, defining L = ~TI' which implies that 

L = 

= 

aW y aw 
as - Bay 

1 aw 
Bay 

aW ( aA 
0 

0 

0 

)+ 
aW --aB 

1 

aw + --ay 

( 

aw 
aA 

1 

0 

1 

y 
B 

B 

-yB 
A 

0 

1 +y2 
A 

(6.1.6) 

0 

Substituting the expressions for Lij into the equilibrium conditions 

(6.1.4) we obtain 

~[ ~ R cos e + R ~ 1. (- sin e - y cos e)] 
aR aB ay B 

+ ~ [_ ~ sin e - ~ yB cos e + aW (1+y2) cos e) = 0 
ae aA aB A ay A 
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and ~(aw R sin e + ~ ~ (cos e - y sin e)] 
aRlaB ay B 

+ a (aw cos e aw yB s,'n e + _aw (1+y2) lJ 
ae aA - as A ay - A - sin e = O. 

Eliminating sin e and cos e from these we obtain 

R aW ae aw ae 
- B ay aR - aA ae = 0 (6.1.7) 

and 

a (R aWl a (aw) + (aw y aWJ ae aR B ay) + ae aA R as - B ay aR 

+ (_ yB ~ + (1 +y2) aW1
J 
~ = 0 

A aB A ay ae (6.1.8) 

We may regard these as the equilibrium equations resolved along and 

normal to the fibres. 

For an ideal material, which is incompressible and inextensible, 
aw aW we have the constraints A = B = 1 and we replace aA ' as by undetermined 

multipliers, so (6.1.1) and (6.1.2) give 

ae = R ~ 
y ae aR 

that is e is constant along ~~ = - ~ 

and a (e + y) = A = 1 ae 

so that e + y = e + r(R) , (6.1.9) 

where r(R) is an arbitrary function. This suggests the change of 

coordinates introduced in the next section. 
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6.2 THE CHANGE TO CURVILINEAR COORDINATES ALONG AND NORMAL TO THE FIBRES 

As was stated in the previous section, for the ideal case A = B = 1 

and also e is constant along the lines ~~ = - A~. Therefore, as was 

mentioned in the introduction to part III, we introduce a label s which 

is constant along the fibre normals and is such that Ros measures the 

unstretched distance a.10ng the reference fibre R = Ro; then s = s(R, e) 

satisfies 

AR ~ _ Bas = 
aR y ae 0 . 

We now change to independent variables (R, s) where e = 0(R, s) 

. d b ae - yB - ( R) Th th f· t d . t· is determlne y aR - - AR ,e 0' s = s. e 0 er lrs erlva lves 
-

of e, denoted by £ = ~~ , satisfies the compatibility condition 

h . a£ a r yB] 
tat 1 s aR + as tAR = 0 ,with £(Ro ' s) = 1. 

We are changing coordinates from (R, e) to (R, s) so that derivatives 

are transformed as: 

~I = ~I + yB a I 
aRle aR s AR£ as R 

= 1 a I 
£ as R 

The compatibility conditions (6.1.1) and (6.1.2) become 

and 

1 aB yB ae 
I as - T as 

= _ AR ~ _ yB ~ 
aR £ as 
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which imply 

ae 1 aB = ---aR ARQ, as (6.2.1 ) 

and 

(6.2.2) 

After transformation to coordinates (R, s), (6.1.7) and (6.1.8) become 

a [R (aw _ 1. aWl] + ~ ~ r R ~ _ yaw, 
aR aB Bay') ARt as l aB B ayj 

+ l_a [_ yB ~ + (1+y2) aWl _ B. ~r.ae + y. B ~} 
Q, as A aB A ay B aytaR" AM as 

(6.2.3) 

and 

+ R(aw _ 1. aWl (~ + ~ ~l + (- yB aw + (1+y2) aW~l ~ = 0 
aB B ay ~aR ARt as A as- A ay J Q, as 

(6.2.4) 

Now 
-1 

t· . = ( de t E) T i k F j k lJ 
and 

det F = det(~ ~ ~T) = det B = AB 

so that 
1 

Fjk t .. = AB Tik . 
lJ 

The Cauchy stress t can therefore be written ln the form 



where 

that is, from (6.1.6) 

a = l ~ (0 B aA 
o 

+ _1 ~ ( -y 
AB ay 

1 
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1 aw 
1\38" 

We now define two new functions T and p by -p = all' T = a 22 , where p 

is the transverse pressure and T is the tension in the fibre direction, 

these imply 

_p = l(aW _ :r aWJ 
A aB B ay 

which give 

a = -p 

1 aW 
ABay 

1 aw 
AB ay 

T 

(6.2.5) 

(6.2.6) 

" 

Substituting the expressions (6.2.5) and (6.2.6) into the equations 

(6.2.3) and (6.2.4) gives the following equations 

and 

~ (-RAp) + yB ~ (Ap) +l..L (BP +l aWJ RaW ae aR At as 2 as y A ay - B ay aR 

-~T~ = 0 
t as 

(6.2.7) 
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~(R ~J + yB ~(.l aWl 1 a ( - y aWJ aR B ay Ai as B ayJ + T as BT A ay 

- RAp (~ + ~ ~l +.l ~ ( B 1 aWJ aR ARi as i as y p + A ay = 0 . (6.2.8) 

Now i satisfies the compatibility condition 

~ + ~ (YBI
J 

= 0 
aR as AR (6.2.9) 

Substituting for ~~ from (6.2.2) gives 

A JL (Ri) - B ~ = - Ri ~ aR as as (6.2.10) 

Using (6.2.1), (6.2.2) and (6.2.9) equations (6.2.7) and (6.2.8) become 

and 

1 a (aWl a a A as ay - A aR (Rip) - AT aR (iR) 

= (T+p) Ri aA + .l ~(1 aA _ .l~} 
~ A ay A as B as 

= (Ri ~ _ (T+ )Bl~ _ Ri ~ ~ 
B ay p as A ay aR 

(6.2.11 ) 

(6.2.12) 

We therefore have to solve equations (6.2.1), (6.2.2), (6.2.10), (6.2.11) 

and (6.2.12) for y, p, T, i and 8. In the next section we consider 

solutions to the problem with A and B close to 1, that is solutions for a 

material which is nearly ideal. 
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6.3 DETERMINATION OF THE GEOMETRICAL CONFIGURATION USING THE IDEAL THEORY 

We are seeking solutions for a material which is nearly ideal, so 

we write A = 1 + E2Al and B = 1 + E2B1 • We also define ~~ = G. We 

regard equations (6.2.1), (6.2.2), (6.2.10), (6.2.11) and (6.2.12) as of 

the form 

(6.3.1 ) 

ae = (6.3.2) as 

(6.3.3) 

~~ -* (Rtp) - T aaR (tR) = f 4 (R, s) , (6.3.4) 

a a aT aR (tRG) + G aR (tR) + as =, fs(R, s) . (6.3.5) 

For the outer solution, that is the solution away from the boundaries, 

the f. IS are 0(E2) and hence vanish in the ideal theory. The functions 
1 

fi(R, s) are given by 

f 1 (R, s) = 

= (l-A) ~ (Rt) - (1-8) ~~ - Rt ~~ , 

a aA B aA aB 
= (1-8) as (e+y) - (l-A)t + Rt aR + YA as - Y as 

a a aA = -(1-A2) aR (Rtp) - (1-A2) T aR (tR) + (T+p)RtA aR 

+ G(-l- aA - l ~J 
H as B as 
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(1-B2) ~ + (Rt G _ (T+P)B) ~ _ RtG aA • 
as B as A aR 

We seek solutions to the system of equations (6.3.1) - (6.3.5) with y, 

p, T, t and ~-s periodic in s of period 2TI for all R in Ro ~ R ~ R
1

, 

where Rl is the initial external radius of the belt. Clearly, from the 

definition of the fils they will then be periodic in s for all R in 

Ro ~ R ~ RI. The compatibility conditions ensuring that this is possible 

give the information needed to determine the arbitrary function which 

the ideal theory contains. This is similar to the way in which 

compatibility conditions in the Rayleigh wave problem singled out certain 

waveforms from an arbitrary function. 

Integrating equation (6.3.1) with respect to R gives: 

e = ~(s) + F1(R, s) , (6.3.6) 

= t 
Ro 

and ~(s) is an arbitrary function. The function FI(R, s) is periodic 

in s, since f1(R, s) is periodic in s, hence ~-s is periodic with 

period 2TI. 

Substituting for ~ in equation (6.3.2) and integrating with respect 
as 

to R gives 

tR = ¢I(S) + R~'(S) + RF2(R, s) (6.3.7) 

where ¢I(S) is an arbitrary function and F2(R, s) 1S defined by 

lfR (aF 1 }-
F2 = R R ~~ + f2 dR . 

o 

We have chosen F2(Ro' s) = 0, so that the boundary condition t(Ro' s) = 1 

then yields the condition 1 = ~I(S) + ¢I(S) We therefore choose: 
Ro 
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and rewrite equation (6.3.7) as 

(6.3.8) 

substituting for i in equation (6.3.3) and integrating with respect to 

s gives: 

(6.3.9) 

where r (R) lS an arbi trary function and F3 is given by: 

rS 
F3 = J ( f 3 + F 2 ) ds . 

a 

From (6.3.9) we find that 

y(R, s + 21T) - y(R, s) + e(R, s + 21T ) - e(R, s) 

Ro (R - Ro J = R 21T + R (w(R, s + 21T) - l/J(R, s )) 

However, y, s-l/J and s-e are 21T-periodic in s, hence we must have 

This requires that: 

21T+S 
f (f3 + Fz)ds = 0 
s 

for all s, 

which is satisfied whenever 

(6.3.10) 

We now consider the boundary conditions. 

denote the tangential and normal tractions applied over the surface R = Rl 
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and P (s) and Q (s) denote those over the surface R = Ro. Hence: 

G(R
l

, s) 

p(R
l

, s) + 
= -Q (s) 

as is shown ln figure 6.2. 

Now W = W(y,A,B), and ln a similar way to that used by Green (16) 

we introduce W the Legendre transform of the strain energy W by 

A 

W = W(y,A,B) - WAA - WBB 

and defi ne 

" A 

WA = Tl , WB = T2 (6.3.11) 

Then 
" " " 
W" = -A, W" = -B and W = W 
Tl T2 Y Y 

(6.3.12) 

The assumptions A = 1 + e: 2Al' B = 1+ e:2Bl imply that: 

" r " " e: 2 " " 
W = J g( y) dy - T 1 - T 1 - T (ClIlT l + 2Cl12TlTZ + Cl22 TZ) + O(e: 4 ) , 

, (6.3.13) 

where Cl ll ' Cl 12 and Cl 22 are the compliances, which are assumed to be 

constant. From (6.3.12) we therefore deduce that: 

" A 

Al = ClllTl + Cl12T2 

A " 

Bl = Cl12Tl + Cl22T2· 

" 
Substituting for Tl , T2 from (6.3.11) using (6.3.5) and (6.3.6), we 

obtain expressions for Al and Bl : 

(6.3.14) 
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(6.3.15) 
A 

A aW 
From equation (6.3.13) for W, we see that -- = g(y) + O(s2). Now, 

A ay 
aW aW_ ay = ay = G, hence we see that the dominant dependence of G is on y and 

we choose G = G(y). 

In general, using the formula already obtained for y in equation 

(6.3.9), the calculated shear stress G is not compatible with the applied 

shear tractions. As has already been mentioned in connection with the 

work of Pipkin and Rogers (43), this is resolved by including concentrated 

loads acting along the boundaries. The consequent high tensions T 

along the fibres are balanced by large values of ~~. The severe 

gradients of shear allow G to adjust to the boundary conditions through 

a boundary layer as has been demonstrated for linearised static 

deformations by Everstine and Pipkin (13) and by Spencer (53). 

We define L-(s) and L+(s) as the concentrated loads carried by the 

layers immediately adjacent to the surfaces R = Ro' Rl respectively: 

RO+ 
= J TdR, 

Ro 

where the boundary layers are of thickness Ro+ - Ro and Rl - Rl 

respectively. For the ideal theory L- and L+ are concentrated loads 

and for the boundary layer analysis L- and L+ are given by 'inner' 

expansions. Similarly, we let G+(s), G-(s), p+(s) and p-(s) denote the 

shear stress and pressure adjacent to each of these layers; they are 

predicted by the outer solution, being the inner limits of the outer 

behaviour. These are shown in figure 6.2. 
-

Integrating equation (6.3.4) through the boundary layer R 1 to Rl 

we obtain the equilibrium equation: 

rr+ + \l + ~ R1i(R 1 , 5)L9 (5) + p (su - L (s) ds 

(6.3.16) 
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Figure 6.2 Forces acting on the boundary layers at R = Ro_and R = Rl 

and the resultant loads L+ and L- within these layers. 

and similarly integrating equation (6.3.4) through the boundary layer 

Ro to R~ we obtain 

+ 

f
Ro ~ aFi] 

= R l!4 + Tf2 + TasJdR. 
o 

(6.3.17) 

-
Integrating equation (6.3.5) from R 1 to Rl gives 

+ - + l rl_~5 aF Ll 
~Ls + ,Q, ( R l' s) R 1 ~ + ( s ) - G (s~ = - Gf - G -JdR (6.3.18) 2 as 

Rl 

and integrating this equation from Ro to R+ . o glves: 

~~- + J.(Ro • S)~-(s) - P-(SU 
R+ aF-

= J 0 ~5 - Gf2 - G asj dR. (6.3.19) 

Ro 
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Integrating equation (6.3.4) from R; to R~ through the belt and 

defining the resultant load 

Rl 
U(s) = r TdR + L+(s) + L-(s) 

J R+ 
o 

and the resultant shear load 

gives 

and 

r R~ 
S (s) = J GdR 

R+ 

dS 
ds 

o 

aFg Gf2 - G _1 dR . 
as 

(6.3.20) 

+ -
Substituting for p+, p-, ~~ and ~~ from equations (6.3.16) - (6.3.19), 

these equations become: 

(6.3.21 ) 

and 

ddU + R i(R ,s)P+(s) - R i(R ,s)P (s) + S d~ s 1 1 0 0 ds 

aF 
(fs - Gf2 - G as

1
)dR (6.3.22) 
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The right-hand sides of these equations are small, since ln the louter l 

region the functions fi and Fi are O(E2) so that the integrands are small 

and the region of integration is small in the linner l regions. 

In the ideal case the f. are zero, i=1, ... ,5, so that in this 
1 

case (6.3.21) and (6.3.22) become: 

and 

U d1/; = 0 
ds (6.3.23) 

(6.3.24) 

On the unloaded portions, that is the free sections of the belt between 
+ - + -the pulleys,P , P , Q and Q are zero and hence (6.3.23) and (6.3.24) 

reduce to: 

and 

dS W d1/; = 0 
ds - ds 

dU + S ~ = 0 
Os ds 

(6.3.25) 

on these portions, also since we are considering the ideal case e = 1/;(s). 

We therefore obtain the solutions 

S = y cos e + Z sin e 
(6.3.26) 

U = -y sin e + Z cos e 

on the unloaded portions. These show that the resultant load is constant 

with components Y and Z. 



- 189 -

Figure 6.3 The resultant loads acting on the belt 

We now turn our attention to the equation for the tension. 

Considering this for the ideal theory and applying the periodicity 

constraint yields an equation for r(R) the arbitrary function introduced 

in the expression (6.3.9) for y which ln the ideal case reduces to 

(6.3.27) 

Integrating equation (6.3.5) with respect to s gives for the ideal case: 

Now we are restricting attention to G = G(y) and Treloar (56) shows that 

G proportional to y is a good approximation to the experimental data, 

where the constant of proportionality is the shear modulus. We may 

therefore non-dimensionalize all stresses and loads with respect to this 

modulus and take 

G = y • (6.3.28) 

Substituting for y from equation (6.3.27), the above equation reduces to: 

(6.3.29) 
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Now T must be periodic in s with period 2~ and hence writing T(R,so) = 

T(R,so + 2~) and using the fact that w(so + 2~) - w(so) = 2~ for all s , 

we may obtain from (6.3.29) an equation which r(R) must satisfy, namely: 

d 1 JSo+2~ OR (Rr(R)) = -(so + ~ - 2~ wds) . 
So 

(6.3.30) 

It may easily be shown that the right-hand side of equation (6.3.30) is 

independent of so- We therefore choose So = 0 and obtain 

r(R) = _ l (~ ___ 1 f2~wdS) + ~ , 
R 2~ 0 R2 

(6.3.31) 

where k is a constant. 

In the ideal case (6.3.18) and (6.3.19) become: 

and 

If we are considering a belt which is stretched round the pulleys so that 

the same surface is always in contact with the pulleys, the pressure 

appl i ed on the outsi de of the bel t may be taken to be zero, that is p+ = 0 

for all s. Hence, substituting G = y in the above, we obtain: 

and 

dL 
ds 

+ - h Now Land L are 2~-periodic ln s, so t at 

and 

(6.3.32) 

(6.3.33) 

(6.3.34) 

(6.3.35) 
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for all so. Equation (6.3.34) therefore i mp1 i es that 

2 'ITS 0 
rSo+2'IT + 2'IT2 - ~ds + 2'ITR

1
r(R

1
) = 0 , for a 11 so' )so 

choosing So = 0 and substituting for r (R) from (6.3.31) this reduces to: 

2'ITk 
0 hence k = = 0 Rl 

and (6.3.31) becomes 

r(R) 1 't" = - R ('IT - 2 'IT 0 ~ ds) , (6.3.36) 

Equation (6.3.35) implies that 

J
so+2'IT 

P- (s) ds 
So 

= 0 (6.3.37) 

Therefore, the integral round the belt of the shear loading on the internal 

surface of the belt must be zero. 

We now consider a portion of the belt connecting two pulleys, the 

ith and (i+l)th, say. In general, we let the ith pulley be centred at 

(xi,Yi ) with radius r i , the belt joining the pulley at an angle 82i - l to 

the reference direction and leaving it at an angle 82i , 

Figure 6.4 The geometrical arrangement of the belt round two consecutive 

pulleys 



- 192 

The pulley centres are fixed and the horizontal and vertical components 

of the distance between them must be the same as those obtained from 

integrating round the inner fibre of the belt. These restraints give 

two relations between the angles and the distances: 

= 

= r. sin 82· - r. 1 sin 82· 1 + r
82i

+l 
1 1 1+ 1+)8 

2i 

sin e 
e ' (s) de 

cos e 
8'(s) de 

(6.3.38) 

(6.3.39) 

On the pulleys the radius of curvature of the belt is fixed, so that 

on the pulley radius 

1jJ' (s) 1 = r. 1 

therefore 

ljJ(s) = 2-+ 
r· 1 

r. , 
1 

A· 1 

(6.3.39 ) 

• 
(6.3.40) 

+ -
The portions of the belt between the pulleys are unloaded so that P , P , 

Q+ and Q- are all zero on these sections, and we have shown (6.3.25) that 

in this case, for the ideal material 

S = Y. cos 8 + Z. sin e 
1 1 

(6.3.41) 

for the portion of the belt between the pulleys of radii r. and r. 1· 1 1+ 

However, 

S = 

Hence: 

= J R 
1 rna ( s -1jJ) + r ( R) I dR 

R [R ~ 
a 

S = J

R
1 r(R)dR • 

Ra 

(6.3.42) 
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Equating the two expressions for S in (6.3.41) and (6.3.42) we obtain 

R rR1 
Ro(s-~) in ~ + J r(R)dR = Y.cose + Z.sine . 

o Ro ' , 

Differentiating (6.3.43) with respect to s gives: 

Hence 

R 
Ro(l-~') in __ 1 = (-Y.sine + Z.cose)w' . 

Ro ' , 

d~ = 
ds 

which may be integrated to give: 

R 
R in __ 1 (~-s) + Y.cosw + Z.sinw = constant 
o Ro ' , 

(6.3.43) 

(6.3.44) 

(6.3.45) 

on the free portion of the belt between the pulleys radii r. and r. l' 
1 1+ 

We now consider the pulley radius r. and suppose that we apply a , 
torque of moment Mi on this pulley. Taking moments about the centre of 

the pulley, 0i' we obtain: 

Figure 6.5 The load acting on the belt round the ith pulley 
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However, from (6.3.26): 

U = -Y.sine + Z.cose 
1 1 

Hence 

M. = r.~ Y.sine2· + z.cose2· + Y.sine2· 1 - Z.cose2· llU 
1 1 L 1 1 1 1 1 1- 1 1-

and also 

M. 
1 

P~(s)ds 
1 

In this section we have, therefore, shown how to obtain the 

(6.3.46) 

(6.3.47) 

geometrical configuration using the ideal theory. The periodicity 

constraints have been employed to determine the arbitrary function r(R) 

introduced in the solution for the shear y and the tension determined to 

within an arbitrary function To(R), which is constant along the fibres. 
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6.4 CALCULATION OF THE TENSION FUNCTION To(R), WHICH IS CONSTANT ALONG 

THE FIBRES 

The configurations in the previous section, described by the ideal 

theory involve an arbitrary function To(R), which can be obtained only by 

considering the effect of small extensibility and compressibility. We 

are considering a regular expansion and returning to equation (6.3.10) 

we find on substituting for F2 that: 

r
21f 1 JR J
o 

(f3 + R f2dR)ds = O. 

Now, 

f3 = (l-B) ~ (e+y) - (l-A)t + Rt ~ + ~ aA _ aB as aR A as Y as 

and f2 = (l-A) aaR (Rt) - (l-B) ~~ - Rt ~~ 

where A = 1 + s2Al 

and B = 1 + s2Bl 

so that, within the belt: 

and 

Substituting these into (6.4.1) gives 

2rr aA aA l aB l 1 fR fa QAl-BJl~ + R~ oR
l 

+ Y as - Y as + R ~'(sl (Bl-AlldR 

R aA --- ~f Rt a Rl d~ ds = 0 ( s 2) . 

Substituting for A and B in (6.4.2) gives the equation: 

(6.4:1 ) 

(6.4.2) 
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- 1 JR Rn ~ ~ - N ~RP + (N -N ) l (yG)J dR}ds R NL 11 aR Uo12 0 Uo12 Uo11 aR ~ 

• (6.4.3) 

We therefore need to substitute expressions for T and p in terms of 

known functions and To(R) to determine an equation for To(R). 

+ Integrating equation (6.3.4) for Ro to R gives: 

R R 
~ f GdR - R!J.p + Rop-(s) - 1Jl1 (s) r TdR = O(e: 2 ) • 
as + J + 

Ro Ro 

We now substitute G = y from (6.3.25) into this to give: 
R 

~ - 1/1' (s 8 Ro ~n RRo - R~p + Ro P - (s) - 1/1' (s) f R + T dR = O( 0
2

) • 

o 

Now from (6.3.17): 

hence 
R 

R~p = (1 - 1/I'(s))Ro ~n :a - RoQ-(s) - 1/I'(s)LL-(S) + fR+ Td~ 
o 

Also from equation (6.3.29): 
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(6.4.4) 

In order to obtain an equation for T(R) we therefore write Q-(s) and L-(s) 

in terms of functions already known. 

From equations (6.3.23) and (6.3.24) setting P-(s) and Q+(s) zero 

since the outer surface of the belt is unloaded we obtain: 

dS U d~ = RoQ-(s) 
ds ds (6.4.5) 

dU + S d~ = RoP-(s) 
ds ds (6.4.6) 

On the free portions of the belt Q-(s) and P-(s) are zero, since these 

sections are unloaded. We consider the situation on the pulleys, where 

~ = ~. Then, eliminating U(s) from equation (6.4.5) and (6.4.6) we , 
find 

where Q = Q. , P = P. on the pulley radi us r i . However: , , 
Rl R 

S(s) Ro(s - ~) f 1 r(R)dR , = tn - + 
Ro Ro 

which implies that: 

1 Rl rRl 
- {R (s - ~) tn -R + J r ( R) dR} 
r.2 0 0 R 

, 0 

Now equation (6.3.47) gives 

-
p. (s) ds = , M· , 

r· 
1 

dQi R -
= Ro ~ + r~ Pi' 1 = 1, 2. 

1 
(6.4.7) 

(6.4.8) 
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r27T _ 
and since from equation (6.3.37) J

o 
P (s)ds = 0, we have 

r
S2j Mi 

~ P j ( s ) ds = r . 
j s2J'-1 1 

jrfi 

(6.4.9) 

Hence, specifying a friction law will give one relationship between Q. 
1 

and p., which will make (6.4.7) into a differential equation for p.. The 
1 1 

conditions (6.4.8) and (6.4.9) determine the arbitrary constants introduced 

ln the solution of these equations. 

hence 

From equation (6.3.33), 

dL 
CIS 

= Ro(P-(s) - (s-w) - r(Ro)) 
Ro 

, 

L = Ro J: P-(slds - ~2 + J: wds - 5 Ror(Rol + ~ 

where L-(O) = ~ . 

Also, from equation (6.3.22), 

hence 

The constants ~- and ~+ are obtained by considering the analysis of the 

boundary layers on R = Ro and R = R1 , respectively. 

Substituting these functions into equation (6.4.3) we find that 
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the equation for To(R) is of the form 

+ d(R)To(R) + e(R)To'(R) = f(R). (6.4.10) 

This equation is analysed by defining 

= 

which gives 

f
2TIrR 1 f2TI 

J b(R,s)T(R)dR + ~ T(R) c(R,s)ds + d(R) T'(R) 
o Ro 0 

+ e(R) T"(R) = f(R) . (6.4.11 ) 

From the definition of T(R) we see that 

also T'(Ro)may be obtained by specifying the load, which is equivalent to 

specifying the separation L of the pulleys, see section 7.3. Solving 

(6.4.11) with these boundary conditions then gives us the function T(R) 

from which we may obtain the arbitrary function To(R) in the tension. 
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6.5 BOUNDARY LAYER ANALYSIS 

In this section we determine the constants ~- and ~+ introduced in 

the ideal solution for the concentrated loads L-(s) and L+(s) on the 

surfaces R = Ro and R = RI . 

In the boundary layers we write R = Ri + AI(s)p, i = 0,1, with 

p > 0 for the boundary layer near the inner surface R = Ro and P < 0 for 

the boundary layer near the outer surface R = RI and where Al is a small 

parameter with Al + 0 as S + O. The exact equations written 1n the 

boundary layer variables then become: 

(6.5.1 ) 

1 a (£ (R + A I (E) P )) - ~se = A(S\ ap i 0 

(6.5.2) 

a (e + y) - £ = s2A £ - E2 B ....L (e + y) as I I as 

+ (6.5.3) 

aG 1 a (( R + AI(s)p)£p) - (T-p) l (£(R. + AI(E)P)) 
as AI(E) ap i AI(E) ap , 

E2AI a E2A (T-p) 
.i.. (£(R. + A-I ( E) P ) £p) + I + AI(S)P)) = Al (E) ap ((Ri AI(S) ap , 

(6.5.4) 
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(6.5.5) 

Now within the boundary layers the fibres are subjected to large stresses 

in order to balance the large gradients of shear. From equation (6.5.5) 

we observe that T = 0(1/A1(s)), we therefore write: 

1 -
T = () T , Al S 

then from (6.2.14) and (6.2.15) Al and Bl may be written as: 

and 

We also write: 

8 = 80 + A1(s)8 1 + · ... 

£ = £0 + A1(s)£1 + · ... 

'Y = 'Yo + A1(s)'Y 1 + 

P = Po + A1(s)Pl + · .... 

and substitute G = 'Y. If we consider leading order terms, then 

- roo - + fO-L - J
o 

Tdp and L - _ooTdp, hence: 

~- -J: T_,(p,O)dp (6.5.6) 

and 

~+ - )0 T_,(p,O)dp, 
-00 

(6.5.7) 
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-
where T = T_1 + Al(s)To + .... 

The solutions in the boundary layers must also match with the 

solutions in the main part of the belt. We choose Al(s) = s and obtain 

from equations (6.5.1) - (6.5.5) the following equations: 

0(1) in (6.5.1) (6.5.8) 

O(l/s) in (6.5.2) = 0 (6.5.9) 

0(1) in (6.5.2) 
at l '18 0 aT_1 

R. -+ to -- = a,llRito ap 1 ap as (6.5.10) 

0(1) in (6.5.3) aas (8 0 +r 0) 
aT_1 

- to = Ri to a,ll ---a;;- (6.5.11 ) 

O(l/s) in (6.5.4) 

aT_1 = Ri t o(T_ 1+p_1)a,11 ap 
(6.5.12) 

O(l/s) in (6.5.5) (6.5.13) 

Equation (6.5.8) gives 8
0 

= ~o(s) and equation (6.5.9) gives ~o = to(s) 

matching with the solution (6.3.8) for t in the main part of the belt 

we obtain 

Equations (6.5.11) and (6.5.12) may then be written in the form: 

JL[y - ~ (s-~ )J as 0 R. 0 
1 

(6.5.14) 

and 
(6.5.15) 
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from which we may obtain T_1 with T_1 + 0 as p + 00 for the boundary layer 

on R = Ro and T_1 + 0 as p + -00 for the boundary layer on R = R
I

. The 

boundary conditions on Yo are Yo = 0 on R = Ro or R = R1 , that is on 

p = 0 and Yo + (s-Yo) + r(Ro) as p + 00 for the boundary layer on R = Ro 
Ro 

and y + ~ (s-~o) + r(R I ) as p + -00 for the boundary layer on R = RI . 
1 

To solve equations (6.5.14) and (6.5.15) we make the transformation of 

variables: 

y = 

and wri te 

u = R 
y - --.!. (s -~ ) o R. 0 

1 

then equations (6.5.14) and (6.5.15) become 

with 

and 

au av = ax ay 

au 
ay 

u = 

av = ---ax 

Ro 
- -- (s-~ ) + r(R i ) on y = 0 R. 0 

1 

v + 0 as y + 00 

for the boundary layer on R = Ro' 

while v + 0 as y + -00 

(6.5.16) 

(6.5.17) 
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for the boundary layer on R = R1 • 

From the solution to equations (6.5.16) and (6.5.17) we may determine the 

functions T_l(p,s) and hence from equations (6.5.6) and (6.5.7) the 
- + + constants ~ and ~ required for the loads L-(s) and L (s). 

In this chapter we have used the ideal theory to derive equations 

to determine the geometrical configuration of a fibre-reinforced belt 

stretched round a system of pulleys. The ideal theory may be used to 

determine the tension in the belt to within an arbitrary function To(R). 

We have shown how this function may be calculated by considering a belt of 

small extensibility and compressibility. In the next chapter we obtain 

solutions for the case of a belt stretched round two pulleys. 
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CHAPTER 7 

APPLICATION OF THE GENERAL THEORY OF A FAN-BELT TO THE 

SPECIFIC EXAMPLE OF A BELT STRETCHED ROUND TWO PULLEYS 

7.1 THE EQUATIONS OF THE GEOMETRICAL CONFIGURATION 

In this chapter we apply the theory developed in the previous 

chapter to the case of a belt stretched round two pulleys. The 

configuration is shown below where r l and r 2 the radii of the pulleys, 

the coordinates of their centres (x ,0), (x ,0), Rand R the initial 
1 2 0 1 

inner and outer radii of the belt and Ml the applied torque are all 

specified. We let L = IXI - x21. 

Figure 7.1 The geometrical arrangement of the belt round two pulleys 

We consider initially the ideal theory to determine the parameters 

8
1

, 8
2

, e
3

, e
4

, Sl' S2' S3' S4' Yl , Y2 , Zl' Z2 and the function r(R). 

Equation (6.3.40) applied at the points A, B, C and D gives relationships 

between s. and e.. We suppose without loss of generality, that ~(O) = 0 
1 1 

so that 
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on AB 1jJ(s) s 
= -- (7.1.1) r 1 

hence 8
1 = Sl 

(7.1.2) , 
rl 

and 82 
S2 

= (7.1.3) r 1 
, 

on CO 1jJ(s) = 2...+ A2 (7.1.4) r2 

hence 83 = S3 
A (7.1.5) -+ r2 2 

and 84 = S4 
A -+ (7.1.6) r4 2 . 

Equations (7.1.1) and (7.1.4) therefore give us the function 1jJ(s) round 

the pulleys in terms of the constant A2. On the free portions of the 

belt BC and OA equation (6.3.44) may be applied to find d~/ds: 

on integration this yields: 

R1 
Rotn --R 1jJ + Y.COS1jJ + Z.sin1jJ 

0 11 

Rl 
= Rotn ~ s + constant, 

o 

where the constant is chosen to make 1jJ(s) continuous. For BC making 1jJ 

continuous at B, we obtain 

R 
Rotn R~ (1jJ-82) + Y1cos1jJ + Zl sin1jJ - Y1coS8 2 - Zlsin8 2 

R1 
= Rotn ~ (S-S2) 

o 

and for OA, choosing the constant to make 1jJ continuous at 0 gives 

R 
Rotn ~ (1jJ-8 4) + Y2cos1jJ + Z2 sin1jJ - Y2COS8 4- Z2 sin8 4 

o 
Rl 

= Rotn ~ (S-S4) . 

With the solutions obtained 1jJ(s) is also continuous at C and A. 
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In order to determine r(R) from equation (6.3.46) we need to 

integrate w(s) round the belt, this we do by splitting the region of 

integration into the different sections of the belt: 

J
27T 

o wds = 

The integrals round the pulleys are determined from equations (7.1.1) 

and (7.1.4), whilst the integrals over the free portions may be rewritten 

as 

for, = 1 and 2. 

Equation (6.3.44) is then used for ~~ and hence r(R) is determined 

explicitly in terms of 81, 82, 83 , 84 , A2' Y1, YZ ' ZI and Z2' Equation 

(6.3.43) which was deduced from equating the two expressions obtained for 

the shear load S, may be applied at each of the points A, B, C and 0 

giving: 

at A: 
Rl (1 (7.1.7) Ro 81 (r 1 -1 ) in - + r(R)dR = Y2cOS8 1 + Zzsin8 1 Ro Ro 

R (1 (7.1.8) Ro82(r1-l) in _1 + r(R)dR = Y1COS8 z + Z1 sin8z 
Ro Ro 

at B: 

R Rl 
~(8 i rz -1) - r z A2) in ~ + f r(R)dR = Y1COS8 3 + Z1 sin8 3 (7.1.9) 

o Ro 
at C: 

Rl JR1 ( ) at 0: Ro(8
4
(r2-l) - r

Z
A2)in R: + r(R)dR = Y

2
COS8 4 + Zzsin8 4 7.1.10 

o Ro 

We now apply equations (6.3.38) and (6.3.39), obtained from equating the 

two expressions for the horizontal and vertical distances between the 

pulley centres, to the two free sections of the belt BC and DA, using the 

two expressions already found for dw/ds. This yields the four conditions: 
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R R 0 = Q,n 1 (r2 sin8
3 - r 1sin8 2 ) - Q,n ~ (sin8 - sin8 ) Ra o 3 2 

V Z + _1 (sin 2 8 - sin 2 82 ) - -f (sin28
3 - sin282.) 2 3 

Zl 
- 2 (8 3 - 8

2
) (7.1.11) 

0 Rl . R = Q,n R (-r 1 S1 n8 1 - r
2
sin8

4
) + Q,n _1 (sin8 1 + sin8

4
) 

0 Ro 

V 2 ( . 2 Z 
+ 2-- s 1 n 81 - sin 2 8 ) + 42. (sin281 + sin28 ) 4 4 

Z 
- ....2.. (2'IT + 81 - 8

4
) (7.1.12) 2 

(7.1.13) 

R Rl R 
L Q,n R~ = Q,n Ro (r2.cos 84 - r1cos8 1) + Q,n R~ (COS8 1 - COS8 4 ) 

+ ~2 (2~ + 91 - 94) + ~ (sin29 1 + sin29 4) 

Z 
- ~ (sin 2 81 - sin2 84 ) (7.1.14) 

Equation (6.3.46) gives: 

(7.1.15) 

Substituting the analytical expression for r(R) in terms of 6 1 , 82.' 83 , 84 , 

YI , Y2 , Zl and Z2. into (7.1.7) - (7.1.10), we therefore have nine equations 

(7.1.7) - (7.1.15) for the nine unknowns 81, 82.' 83 , 84 , A2.' VI' Y2.' ZI and 

Z2.. These are solved numerically and the solution is presented in Section 

7.2. 
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7.2 THE SOLUTION OF THE EQUATIONS IN THE IDEAL CASE 

In this section we determine the solution to the n1ne equations 

(7.1.7) - (7.1.15), obtained from the ideal theory, which give the 

configuration of the pulleys and belt. The equations were solved 

numerically for different values of the specified quantities: radii of 

the pulleys, their separation, the applied torque and the thickness of 

the belt, that is the initial inner and outer radii. We assume, without 

loss of generality, that the inner radius of the belt, Ro is 1. The 

distance round the inner fibre in the reference configuration is then 2~, 

thus to be physically realistic the radii and separation of the pulleys 

must be chosen so that the minimum distance round the inner fibre in the 

new configuration is not much greater than 2~. The numerical procedure 

used to solve these equations was based on Newton's method. 

When no torque is applied and the radii of the pulleys are equal, 

we have two axes of symmetry, one being the line joining the centres of 

the pulleys and the other being the perpendicular bisector to this line. 

We can then solve the equations analytically and this solution is used 

as a starting value for the cases of unequal pulley radii and when there 

1S an applied torque. The results obtained are shown in Table 7.1. 

A consequence of the symmetry for equal pulley radii is that ZI = Z2 = 0, 

as is shown in the table. We also observe that for the cases when there 

are two axes of symmetry, that is when the pulley radii are equal (0.3) 

and there is no applied torque the angles are the same in each case and we 

have ZI = Z2 = 0 and YI = -Y 2 . 



R1=1.1, L=1.8 

r 1=r2 =0.3 

M=O 

81 -0.4650 

82 0.4650 

83 2.6766 

84 3.6066 

Y1 -0.0347 

Yz 0.0347 

ZI 0 

Z2 0 

1.2 -7.3304 

Table 7.1 Solution of the equations in the ideal theory 

R1=1.1, L=1.8 R1=1.1, L=1.8 R1=1.1, L=1.8 R
1
=1.1, L=2.04 R1=1.3, L=1.8 

r 1=0.3,r2=0.35 r 1=0.3,rZ=0.3 r 1=0.3,rZ=0.35 r 1=r2=0.34 r 1=rZ=0.3 

M=O M=O.l M=O.l M=O M=O 

-0.5516 -0.0923 -0.2101 -1.2572 -0.4650 

0.5516 1.3587 1 .3324 1.2572 0.4650 

2.5568 1.7829 1.7548 1 .8843 2.6766 

3.7264 3.2339 3.3699 4.3988 3.6066 

-0.0433 -0.3433 -0.3472 -0.2564 -0.0955 

0.0433 0.0246 0.0294 0.2564 0.0955 

0.0002 0 0.0081 0 0 

_0.0002 0 -0.0002 0 0 

-5.8344 -6.0450 -4.9587 -6.0984 -7.3304 
- - - -- - - -- .~ 

R
1
=1.5, L=1.8 

r 1=rZ=0.3 

M=O 

-0.4650 

0.4650 

2.6766 

3.6066 

-0.1477 

O. 1477 

0 

0 

-7.3304 

N 
--' 
o 
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7.3 THE EQUATION FOR To(Bl 

Having determined the geometrical configuration of the belt and 

the function r(R) we now turn our attention to the calculation of To(R). 

We need to know the' appl i ed torque M and some details of the loads. For 

simplicity we consider a belt stretched round smooth pulleys so that P- = 0 

on the pulleys and since it is already zero on the free sections of the 

belt, P- = 0 round the belt, which implies that M = O. A consequence of 

M being zero is that r(R) is zero. 

From equation (6.4.3) we obtain the following equation for To(R): 

f
2TI as(s) ds f2TI a9(s)ds 

+ 0 (Ro+(R-Ro)~')2 + 0 R(Ro+(R-Ro)~')2 

r2TI alo(s)ds f2TI all(s) JR Q,nR dR ds 
+ J

O 
R(Ro+(R-Ro)~') + 0 R (Ro+(R-Ro)~') 

= g(R) , say (7.3.1) 
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where 

a2 = J:n 

{- ("11 - "12) Uf>-l/J)l/J' ds - J: (s-l/J) dS} l/J' 

+ Ro(l-l/J') f:(S-1/J)l/J'd~ + (2"12 - "11 - "22) (S-l/J) 2R021/J , 
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, 

, 

2 --a9 = (a12 - (22)(s-lJi)Ro lJill(Q +L ) , 

R 
We now write T(R) = I To(R)dR, which implies T'(R) = To(R) and T(Ro) = 0, 

R 
without loss of genera~ity as has been mentioned, we let Ro = 1 and we also 
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assume that the pulleys are of equal radii rl = r2 = r, say. We then 

have, as was stated in §7.2, two axes of symmetry. Equation (7.3.1) 

then becomes: 

J
R 4s 

+ a.22 T(R){ 2 + 2tnR1G(R)}dR = g(R) 
1 r2+ (R-1)1/r 

(7.3.2) 

where 

G(R) 

We write (7.3.2) in the form 

A(R)T"(R) + 8(R)T'(R) + C(R)T(R) 

R 
+ r D(R)T(R)dR = g(R) . (7.3.3) 

J 1 

-
To solve this we first solve the homogeneous problem for T: 

J
R -

A(R)~II(R) + 8(R)T'(R) + C(R);(R) + 1D(R)~(R)dR = 0 (7.3.4) 

with boundary conditions i' (1) = 1, ;(1) = 0 and then solve the 

inhomogeneous problem for t: 

A(R)f"(R) + B(R)i'(R) + C(R)i(R) + JRO(R)i(R)dR ~ g(R) (7.3.5) 
1 

with boundary conditions t ' (l) = 0, t(l) = O. We then write T = t + AT 
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so T(l) = 0 as required by the definition of T and T'(l) = A, which 

implies that To(l) = A, so that A is fixed by specifying the load, this 

is equivalent to specifying the separation of the pulleys, which we have 

already done. The constant A is found by equating the two expressions 

we have for the load on the free sections. 

A consequence of the assumption that the pulleys are smooth is that 

p = 0, hence from equations (6.4.5) and (6.4.7): 

RoQ,.(s) = dS - U dw 
ds ds 

and 

Now equation (6.3.20) gives 

J
Ri + 

U(s) = (T-p)dR + L (s) + L-(s) 
R+ o 

and equations (6.3.32) and (6.3.33) give: 

R2 s R S 

L+ = ~ f (s-w)ds + (R1-Ro) if f (s-w)w 'ds 
Rl 0 1 0 

and 

Using these expressions and equation (6.4.4) for T, we find: 

U(s) 
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From equation (6.3.42) we find that 

hence, 

rRl + _ 
- J r ( R) dR¢ ( s) + fl + fl }. 

Ro 

We are considering the case where no torque ;s applied that is M = 0, 

a consequence of which is that r(R) = O. Hence: 

and 

(7.3.6) 

Hence on the free section Be: 
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However from (6.3.26) 

on Be 

which implies that 

that is 

The right hand side of this 1S positive, which shows that the total load U 

is positive at s = 0, which is what is expected physically. The equation 

may be rewritten as: 

which gives 

A = (7.3.7) 

Having determined A the function T(R) may be calculated as T(R) + \;(R) 

and hence the function To(R) obtained. 

We have been considering the case when the radii of the pulleys are 

equal; however, the analysis for the solution of equation (7.3.1) is 

similar when different sized pulleys are considered. 

analysis we consider pulleys with the same radius, r. 

In the remaining 
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7.4 THE BOUNDARY LAYER EQUATIONS 
+ -As has already been stated, the constants ~ and ~ in the function 

L+ and L- are found from the boundary layer equations. We consider 

first the boundary layer on R = Ro, equations (6.5.16) and (6.5.17) give 

au rov = as ay 

au 
ay 

with v -+ 0 as y -+ + 00 

u -+ 0 as y -+ + 00 

u = -(s-~o) on y = o. 

Since the function ~o - s is 2~-periodic it may be written as a Fourier 

seri es, 

1 00 

~o - s = -2 Ao + I (A cos ns + B sin ns) 
n=l n n 

1 J2~ where A = - (~o-s)cos ns ds 
n ~ 0 

and f
2~ 

B = l (~o-s)sin ns ds 
n ~ 0 

so that Ao = 0, then 

00 

u (y ,s) = I e-nY(AnCOS ns + B sin ns) 
n=l n 

00 

v (y ,s) = I 
n=l 

e-nY(_B cos ns + A sin ns) 
n n 

which satisfy the required boundary conditions. 

Now: 

00 

= f v dy = 
o 

I [- Bnn cos ns + A: s; n ns 1 
n=l 



- 219 -

so that 

(7.4.1) 

For the boundary layer on R = Rl the equations to be satisfied are: 

au av = ax ay 

au av = ay ax 

where u and v are periodic in x of period 2~Rl' with u + 0 as y + -00 

u = 

= x(x) 

and v + 0 as y + - 00 

Now the function x(x) is periodic in x of period 2~Rl' it may therefore 

be written as a Fourier series 

00 

x(x) 1 I (C cos nx + 0 sin nx ) = 2" Co + 
n=l n Rl n Rl 

where 
_1_ t1TRI x(x) nx 

Cn = cos ~ dx 
~Rl 0 

and 

On = _1_ J21TR1 
x(x) sin nx dx 

~Rl 0 Rl 

which implies Co = o. 

Then: 
00 

eny/ R1 I (C cos nx + 0 . nx) u(y,x) = Sln Rl 
n=l n Rl n 

00 

eny/ R1 I (0 cos nx _ C . nx) 
v(y,x) = Sln Rl . 

n=l n Rl n 
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Also: 

o 
= J v dy = 

-00 

00 R 
I _1 (0 nx nx cos C s,"n -- ) n n -R - n n=l 1 RI 

hence 

(7.4.2) 

In this symmetric case A and C are zero for all nand B and On are zero n n n 
when n is odd. When n is even, n = 2m say 

(_l)m 4 J'IT/2 
~-'-- + - <j>(x) sin2mx dx 

m 'IT 0 

and (_l)m + i J'IT
R1/2 02m = <j>(x) sin 2mx dx , 

m 'IT 0 RI 

where ~(s) = <j>(x). 

The computed values of B2m and 02m are shown in Table 7.2. 

To solve the equations for T and T we need to specify the material 

to obtain values for the constants all' al2 and a22' this we do in Section 

7.6. First we examine the function To(R) to discover where it takes 

maximum and minimum values. The numerical solution to (7.3.4) and (7.3.5) 

is then presented in Section 7.7. 



- 221 -

Table 7.2 The Fourier coefficients in the boundary layers 

r=0.3 r=0.34 

R =1.1, l. 3, R =1. 1 R =1.3 R =1.5 R =1.1 1.5 

m 82m 
D

2m D
2m D2m 82m D

2m 

1 0.2296 0.2107 O. 1804 0.1572 0.6386 0.5917 

2 0.1013 0.0910 0.0750 0.0633 0.2103 0.1595 

3 0.0630 0.0552 0.0434 0.0352 0.0528 0.0112 

4 0.0437 0.0369 0.0269 0.0204 -0.0135 -0.0332 

5 0.0317 0.0253 0.0164 0.0108 -0.0306 -0.0272 

6 0.0232 0.0171 0.0089 0.0042 -0.0221 -0.0056 

7 0.0168 0.0109 0.0035 -0.0003 -0.0058 0.0095 

8 0.0118 0.0061 -0.0004 -0.0031 0.0067 0.0111 

9 0.0077 0.0024 -0.0029 -0.0044 0.0105 0.0037 

10 0.0044 -0.0004 -0.0042 -0.0044 0.0070 -0.0040 

11 0.0017 -0.0023 -0.0045 -0.0035 0.0005 -0.0061 

12 -0.0003 -0.0035 -0.0040 -0.0021 -0.0043 -0.0027 

13 -0.0019 -0.0041 -0.0030 -0.0004 -0.0053 0.0019 

14 -0.0030 -0.0041 -0.0016 0.0010 -0.0028 0.0038 

15 -0.0036 -0.0037 -0.0002 0.0019 0.0008 0.0022 

16 -0.0039 -0.0029 0.0009 0.0023 0.0031 -0.0009 

17 -0.0038 -0.0020 0.0018 0.0020 0.0030 -0.0026 

18 -0.0034 -0.0009 0.0022 0.0013 0.0010 -0.0018 

19 -0.0028 0.0001 0.0021 0.0004 -0.0012 0.0004 

20 -0.0021 0.0009 0.0016 -0.0005 -0.0023 0.0019 
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7.5 MAXIMA AND MINIMA FOR THE TENSION T 

For the case under examination r(R) = 0 and the equation for T 

becomes, from (6.3.29): 

T = To(R) - (~ + ~2) f:(S-~)~'dS + ~2 f:(S-~)dS , (7.5.1) 

where T(R,O) = To(R). 

Equation (7.5.1) may be rewritten in the form 

T(R,s) (7.5.2) 

Hence 

2 

= To(R) + ~ ((1-r)2 + (l-r)] 
2 R2 R 

and it is also found that 

, 

which we would expect in this case with two axes of symmetry. 

We now examine the function T to see where it takes its maximum 

and minimum values. Differentiating (7.5.2) with respect to s gives: 

~ = __ 1 (s-w)(l-w ' ) - l (s-w)w l 
• as R2 R 

aT Hence as = 0 when (a) s = W 

or when (b) ~(l-w') = WI 

h· h' l' I 1 w lC lmp les W = R . 

Since we are considering the symmetric case, we need only consider 

o ~ s ~ TI/2. On the pulley with 0 ~ s ~ S2' WI = l/r and l/R ! l/r so 

that case (b) cannot be satisfied. Also w = sIr and r ! 1 so case (a) 

cannot be satisfied unless s = O. On the free section 
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S2 2. s 2. rr/2 , 

so that ln case (b) R ~n Rl = -Y1sin¢ , which may be rewritten: 

R = 
(1-r)8 2 

COS8 2 
sin ¢ (7.5.3) 

(1-r)8 2 However, 0 < < 1 and ISin¢1 2. 1, whereas R e: [l,l.fl, hence (7.5.3) COS8 2 

cannot be satisfied on the free section. On the free section S2 ~ s 2. rr/2, 

s = ¢ only if s = rr/2. Hence the only values of s for which there might 

be a maximum or minimum value of T are 0, rr/2, rr, 3rr/2, 2rr. We need to 

consider ~~ to discover whether there are any maximum or minimum values for 

these values of s. Now 

1 1 JS ~TR = TOI (R) - - (s-¢)Z + -- (S-¢)¢I ds 
a R RZ 0 '. 

(7.5.4) 

and on s 
aT = ¢, aR = TOI(R), hence the maximum and minimum values will occur 

only on s = 0, rr/2, •••. at radii where TO'(R) = 0 or R = Ro, RI · 
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7.6 THE CALCULAT ION OF CONSTANTS FOR THE COMPOS ITE ~I\ATERIAL 

In order to obtain the constants all' a12 and a22 we need to consider 

the composition of the material in more detail. We are considering a 

matrix material reinforced by strong continuous fibres. We suppose that 

the matrix is rubber and the fibres steel. The suffix R is used to denote 

quantities associated with the rubber and the suffix S to denote quantities 

associated with the steel. The elastic constants of the materials are 

denoted by A and ~ with v being Poisson1s ratio. We assume that the 

volume concentrations of the two materials are cR and cs' where cR + Cs = 1. 

Both materials are assumed to be isotropic. 

We consider an element of the composite and recall from the definitions 

of Al and Bl that: 

and 

9-1 = £2~12T - a22P + (a22 - a12)Y~ 

defining T(l) = T - yG and T(2) = - p + yG, these may be rewritten as 

A-l (7.6.1) 

and 
(7.6.2) 

We non-dimensionalise G by taking G = y, so that for the case of y = a the 

stresses acting on the element are ~LT(l) and ~TT(2) as ;s shown in the 

diagram, where ~L and ~T are the axial and transverse shear moduli of the 

composite. 
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Figure 7.2 The stresses acting on ~n element 

To determine the axial extensional modulus EL and ~L we first 

consider axial extension and suppose that both constituents undergo an 

axial extension e under a mean axial stress cr as shown in figure 7.3(a). 

Clearly: 

(7.6.3) 

.( E .... ,C ~ 
) 

")e 
A)C s 

) 

( a ) Fi bre di recti on 
( b) 

Figure 7.3 Extension and shear of the constituents 

In axial shear shown in figure 7.3(b), the shear stress T is approximately 

related to the mean shear strain y by: 
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y = [CR + CSJ T 

flR flS 
hence 

1 cR Cs = -+- (7.6.4) flL flR flS 

For the case when T(2) = 0, we only have axial extensions and 

T (1 ) 
flL 

However, from (7.6.1) with T(2) = 0 , 

(7.6.5) 

(7.6.6) 

therefore from (7.6.5) and (7.6.6) we obtain an expression for all: 

Also from 

B-1 

= 
flL 
E[ 

(7.6.2) with T(2) = o we find that 

Eliminating T(l) from (7.6.6) and (7.6.8) we obtain 

(7.6.7) 

(7.6.8) 

(7.6.9) 

To determine al2 from (7.6.9), having already found all' we therefore 

need to find an expression for (B-l)/(A-l) in terms of known physical 

constants of the materials. The case being considered is shown in figure 

7.4, where fR and fS are the transverse extensions of the constituents, 

which will be negative in the case under consideration with T(2) = o. 
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~_C~R~ ______________ ~I ~fR 
!--_C~s ______ --JI ~ f 

h S 

A-1 

Figure 7.4 Axial extension of an element 

Clearly the total transverse extension B-1 = cRfR + cSfS 

hence 

(7.6.10) 

Now for each constituent we have G22 = 0, e33 = 0, ell = A-1, e22 = f and 

022 ;s defined as 

hence 

v 
= 1 -v 

and substituting for e22 and ell we obtain 

fR vR 
- A-l = l-v R 

and 
fS Vs 

-- = A-l l-vS 

Substituting these expressions into (7.6.10) we obtain 

B-1 = A-l 
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and using this in (7.6.9) gives 

(7.6.11) 

We therefore have obtained expressions for all and al2 in terms of known 

physical constants. We now calculate a22' 

We suppose that the constituents undergo an axial extension e2 
with the axial stress in the rubber being oR and that in the steel being oS' 

We also assume that the rubber undergoes an extension e
R 

in the direction 

transverse to the fibre and the steel undergoes an extension e
S 

in that 

direction, the stress in this transverse direction being the same, ° say, 

for both constituents, as shown in figure 7.5. 

(J 

~~ 
e.,. 

0-" :-1 ~ cr' 
Rub ber (fl. ~ l 

:~ ~I ~ 
Steel 0"'3 (5 ~a; 

tr es 

Figure 7.5 The constituents in axial and transverse extension 

Now CR0 2 + cs0 3 = o . (7.6.12) 

For the rubber 

° = (AR + 2~R)eR + ARe2 (7.6.13) 

and 

°2 = AReR + (AR + 2].lR)e 2 . (7.6.14) 

For the steel 

° = (AS + 2~s)es + Ase2 (7.6.15) 

and 

°3 = Ases + (AS + 2~s)e2 . (7.6.16) 
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The extension in the transverse direction e is given by 

, (7.6.17) 

where as before ~L is the shear modulus of the composite. From (7.6.13) 

and (7.6.15) we obtain 

From (7.6.13) and (7.6.14) 

From (7.6.15) and (7.6.16) 

which becomes on using (7.6.12) 

Eliminating 02 between (7.6.19) and (7.6.20) gives: 

Eliminating e between (7 .. 6.18) and (7.6.21) gives: s 

(7.6.18) 

(7.6.19) 

(7.6.20) 

(7.6.21) 

(7.6.22) 
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Eliminating eR between (7.6.18) and (7.6.21) gives: 

(7.6.23) 

Substituting the expressions for eR and eS obtained in (7.6.22) and 

(7.6.23) into equation (7.6.17) gives: 

(7.6.24) 

where 

(7.6.25) 

and 

(7.6.26) 

Now A and ~ are defined by: 

A = Ev (7.6.27) 
( 1 - 2 v )( 1 +v ) 

E (7.6.28) 
~ = 2( 1 +v) 

where E is the extensional modulus. 

We therefore have expressions for all' all and a22 in terms of 
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physical constants of the material, which we obtain from (15) and (21). 

For steel we take ES = 2.119 X lOll Nm- z 

and 'V
S = 0.291 

and for rubber ER 1 . 18 x 106 -2 = Nm 

and 'V R = 0.49997 . 

Using these values in (7.6.27) and (7.6.28) the elastic constants are 

cilculated to be: 

As 1.143 x lO ll -2 = Nm 

8.207 x 10 10 -2 
11s = Nm 

AR 6.556 x 109 -2 = Nm 

3.93 x 105 -2 
11R = Nm . 

Using these in the expressions for K1 and KZ (7.6.25) and (7.6.26) we 

fi nd that: 

We now choose the volume concentrations of the rubber and the steel 

to be equal, that is cR = Cs = 1 ' then from (7.6.3): 

and from (7.6.4): 

1 _ 1- (_1 +_1 ) 
11L - 2 11R 11S 
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which gives: 

~L = 7.86 x 105 -2 
Nm • 

Therefore, from (7.6.7): 

~L 
= -- = 7.422 X 10-6 

EL 

and from (7.6.11) 

= 

= -0.705 

which gives: 

and from (7.6.24): 

= 2.493 X 10-4 

Choosing E: 
-2 = 10 we find that 

= 0.074 

= -0.052 

= 2.493. 

In section 7.7 we also consider an example with E: 

we use 

= 7.4 X 10-4 

= -5.2 X 10-4 

-1 = 10 so that 
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In the above analysis we have assumed that the volume concentrations of 

the rubber and steel are equal; however, choosing cR = ~, Cs = j , we 

find that 

= 0.083 CLll 

= -0.067 

= 2.5 

which are not very different from those obtained above. The remaining 
1 

calculations are performed with cR = Cs = 2 . 
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7.7 THE SOLUTION FOR TolBl 

In this section we compute the functions ~(R) and T(R) introduced 

in equations (7.3.3) and (7.3.4). We approximate the integrals involved 

in these equations using the trapezium rule and divide the width of the 

belt, that is Rl - 1 into M equal intervals and divide the length of the 

free portion of the belt, that is BC into N equal intervals and similarly 

for OA. We discretize T(R), writing Tn = T(l+nh), where Mh = Rl - 1, 

that is h = (Rl - l)/M. From the definition of T we have TO = O. We 

also define An = A(l + nh), Bn = B(l + nh), Cn = C(l + nh), On = 0(1 + nh) 

and gn = g(l + nh). Equation (6.3) then discretizes to 

A [Tn+l - 2Tn + Tn-1J + B (Tn+l - Tn-l) + C T 
n h2 n 2h n n 

which may be rearranged to give: 

A B 2A hO (A B J 
( n + n) T + (C

n 
- _n + _nJ T + .-!! - .-!! + hO -1 T -1 h2 2h n+ 1 h2 2 n h 2h n n 

= 9 n 
n=l, ... ,M-l 

" 
We have the initial condition on T'(l) for the two cases T and T. 

(7.7.1) 

For the homogeneous problem gn = 0 for all nand T'(l) = 1, which 

we approximate by 

= 1 , 

which implies Tl = h 
(7.7.2) 

Equation (7.7.1) therefore gives, on setting r = 1, . 
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from which we obtain TZ· The process is repeated iteratively to find 

the remaining ~nls. The solution obtained was found to have derivative 

almost 1 for all R, so that"the approximation of ~1(1) was accurate 

enough. However, for the inhomogeneous problem the boundary condition 

~I(l) = 0 and a higher order approximation for TI(l) was used. 

Using forward di ffe rences: 

T I (x) = ~GT(X) - ~i\2T(X8 + Rz I (x) , 

where ~T(X) = T(x+h) - T(X) 

~ZT(X) = T(x+2h) - 2T(x+h) + T(X) 

and h (3) 
RZI(x) = 3 T (n) 

from which we obtain 

The condition ~I(l) = 0 therefore implies that 

From equation (7.7.1) we then deduce that 

gl hZ 
= 

o ~} - 2A1 + 1 2 

and the remaining ~ IS are obtained iteratively. 
n 

(7.7.3) 

We consider solutions for the radius of the pulleys r = 0.3, the 

separation of the 'centres of the pulleys L = 1.8 and the thickness of the 

b 1 1, 0.1,0.3 and 0.5, where as has already been stated, we have e t, R1 -
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taken the initial inner radius of the belt to be 1. We have also 

examined the case where r = 0.34, RI-l=O.l and L is chosen so that r/L 
stays the same as in the above mentioned cases, that is we choose 

L = 2.04, this is equivalent to changing the initial lnner radius of the 

belt. 

The solutions obtained for T and ~ are shown in Tables 7.3-7.7. 

Solutions were also computed for different values of M and N, for example 

N = 40, M = 40; N = 40, M = 50; N = 30, M = 30 and the results were 

found to differ from those tabulated by less than 1%. 

= ~'(R)+A~'(R) 

where A is given by equation (7.3.7) with Ro = 1 

82 
+ -- (l-r)..2 Q,nR- YIsin8 2 - 11 - 11 - ~ (RI) 

A = 2 
or( RI ) 

For each of the cases under consideration we calculate 11 
+ and 11 from 

(7.4.1) and (7.4.2) and hence obtain A. The values of ~'(R) and ~'(R) 

are calculated from the functions T(R) and ;(R), using central differences 

for all except the end points. For R = 1 the forward difference formula 

(7.7.3) is used and the similar backward difference formula for R = RI · 

The function To(R) can then be computed and is shown in Tables 7.3-7.7. 

Following Nayfeh (32) who defines the composite solution yC in terms 

of the outer solution yO, the inner solution yl and the inner limit of the 

outer solution (yo)i as 

we write the total function T as: 
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T - ( T ) + (T -1 J (T -1 J centre --E-- on R=l boundary + --E-- on R=R I boundary 
layer layer 

co 

+ L 
n=l 

co 

e-n(R-l)/Eiall (-B cos ns) 
n 

We consider this at s = 0, S2 and TI/2, remembering that we have two axes 

of symmetry in the problem: 

co 

T(R,O) - To(R) - 1 L B
2m 

e-2m(R-l)/E~ 
E~ m=l 

co 

+ 1 L 
E~ m=l 

1 ~ 2 e -2m(R-l)/E~ L B2m cos mr 2e 
Ei~ m=l 

~ (2m ( R 1 ~ 2m(R-Rd/E~1 
L D2m cos RI 82 r+ 1- Je 

m=l 

1 I B (_l)m e-2m(R-l)/E/all 
r-- 2m E vall m= 1 
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These are plotted in the various cases considered in figures 7.6 - 7.10 

and the values are given in Tables 7.8 - 7.12. 

We have shown in section 7.S that the maxl'mum d ' an mlnimum values of 

T(R,s) occur on s = 0, ; , ~, ~, 2~ 

Now dL = <IS (s-w) , 

and since it can easily be shown that 

1 + (Rl-l)w' F 0 on the belt, 

the maximum and minimum values of L-(s) and L+(s) also occur at s = 0, 
'IT 3~ 
2' ~, T' 2~. 

From the graphs of the tension T for E = 10- 2
, through the belt 

we see that for Rl = 1.1, that is when the thickness of the belt is 0.1, 

the boundary layer thickness is less than l/lSth of the thickness of the 

belt and in the other cases, Rl = 1.3, 1.5, the thickness of the boundary 

layer is less than 1/30th of the thickness of the belt. We also observe 

that for the main part of the belt the inner part is in compression and 

the outer part is in tension. At s = 0 for all cases considered the 

boundary layer on the inner surface is in compression and the one on the 

outer surface is in tension. This is also the case at 8 = 8 2 , S = S2' the 

point where the belt leaves the pulley, although here the magnitude of the 

tension is less than that at s = o. For the case where the thickness of 

the belt is 1.1, with E = 10-2 and the radius of the pulley is 0.3, we 

see that at s = ~/2 the tension in the boundary layer has changed sign, so 

that the inner boundary layer is in tension and the outer boundary layer 

in compression. For the other cases the magnitude of the tension in the 
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boundary layer is less than that in the main part of the belt, but the 

inner boundary is still in compression and the outer boundary in tension. 

We deduce that the maximum and minimum values of the tension occur 

on or close to the inner and outer surfaces of the belt at s = nTI/2, 

n = 0,1,2, .... 

We have also considered the case where we choose the small parameter, 

€, to be 10-1
, the tension was calculated in this case for R1 = 1.1 and 

r = 0.3. Again the boundary layer is reasonably thin and the tension 

does not vary much round the belt. 
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Table 7.3 Solution for T, T, To with M=30, N=40 at radius 

R = 1+n(Rl-1)/M and E = 10-2
, r=0.3, R -1.1 

"- -n T T To 

0 0.0000 0.0000 -30.44 
1 0.0042 0.0033 -27.92 
2 0.0167 0.0067 -25.49 
3 0.0373 0.0100 -23.06 
4 0.0660 0.0134 -21.27 
5 0.1026 0.0168 -18.93 
6 0.1469 0.0202 -16.62 
7 0.1988 0.0236 -14.67 
8 0.2582 0.0271 -12.45 
9 0.3248 0.0305 -9.99 

10 0.3986 0.0339 -8.19 

11 0.4793 0.0374 -6.70 

12 0.5670 0.0409 -4.05 

13 0.6613 0.0443 -2.07 

14 0.7622 0.478 -0.73 

15 0.8696 0.0513 1. 19 

16 0.9832 0.0548 3.05 

17 1 .1030 0.0583 4.88 

18 1.2288 0.0618 6.65 

19 1.3605 0.0653 8.39 

20 1 .4978 0.0688 10.68 

21 1 .6408 0.0722 12.36 

22 1 .7892 0.0757 13.34 

23 1.9429 0.0792 14.93 

24 2.1018 0.0827 16.46 

25 2.2657 0.0862 17.93 

26 2.4345 0.0897 19.37 

27 2.6080 0.0932 20.78 

28 2.7861 0.0967 22. 16 

29 2.9688 0.1002 24.09 

30 3.1558 0.1036 25.69 
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Table 7.4 Solution for i, ~, To with M=30, N=40 at radius 

R = 1+n(R1 -l)/M and E = 10-2
, r=0.3, Rl =1.3 

"- -n 'T 'T To 

0 0.0000 0.0000 -232.10 
1 0.1047 0.0100 -211.16 
2 0.4186 0.0201 -195.24 
3 0.9347 0.0304 -177.71 
4 1.6456 0.0407 -158.61 
5 2.5438 0.0511 -142.58 
6 3.6217 0.0615 -124.99 
7 4.8715 0.0719 -108. 19 
8 6.2856 0.0824 -92. 18 
9 7.8556 0.0928 -71.98 

10 9.5736 0.1032 -60.29 
11 11 .4311 O. 1135 -44.44 
12 13.4197 0.1237 -29.44 
13 15.5308 O. 1338 -15.29 

14 17.7559 O. 1437 -4.34 

15 20.0860 0.1535 10.37 

16 22.5125 O. 1681 28.85 

17 25.0264 0.1724 41.79 

18 27.6189 O. 1816 53.83 

19 30.2809 O. 1904 67.30 

20 33.0036 O. 1990 79.89 

21 35.7780 0.2073 91 .58 

22 38.5952 0.2153 102.38 

23 41.4464 0.2229 114.63 

24 44.3228 0.2302 123.67 

25 47.2156 0.2371 128.65 

26 50.0161 0.2436 143.80 

27 53.0161 0.2497 159.92 

28 55.9070 0.2553 162.88 

29 58.7804 0.2606 1 70.02 

30 61.6284 0.2654 172.13 
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Table 7.5 Solution for T, ~, To with M=30, N=40 at radius 

-2 R = 1+n(R1-1)/M and E = 10 ,r=0.3, Rl=~ 

A -n T T To 

0 0.0000 0.0000 -434.89 
1 0.3192 0.0167 -400.93 
2 1 .2769 0.0336 -368.16 
3 2.8336 0.0508 -342.14 
4 4.9486 0.0682 -314.23 
5 7.5801 0.0855 -280.20 
6 10.6850 0.1028 -248.78 
7 14.2189 O. 1198 -215.69 
8 18. 1366 O. 1366 -185.35 
9 22.3918 O. 1529 -147.46 

10 26.9377 0.1687 -124.39 
11 31.7272 0.1839 -93.80 
12 36.7128 O. 1983 -61 . 71 
13 41.8473 0.2119 -32.43 

14 47.0837 0.2246 -1 .62 

15 52.3756 0.2363 26.44 

16 57.6775 0.2470 56.15 

17 62.9449 0.2564 83.21 

18 68. 1343 0.2647 107 . 71 

19 73.2037 0.2717 134.10 

20 78.1129 0.2773 158. 11 

21 82.8229 0.2816 179.85 

22 87.2971 0.2845 203.78 

23 91.5004 0.2859 225.68 

24 95.3999 0.2859 245.68 

25 98.9649 0.2844 263.90 

26 102.1669 0.2814 276. 12 

27 104.9795 0.2770 291.17 

28 107.3787 0.2710 304.86 

29 109.3429 0.2636 317.32 

30 110.8527 0.2548 307.45 
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Table 7.6 Solution for i, T, To with M=30, N=40 at radius 

R = 1+n(R1-1)/M and € = 10-2 , r=0.34, Rl=~ 

n A -
To T T 

0 0.0000 0.0000 -222.67 
1 0.0289 0.0033 -205.33 
2' O. 1157 0.0067 -188.05 
3 0.2598 0.0100 -170.92 
4 0.4607 0.0134 -158.39 
5 0.7180 0.0168 -143.76 
6 1 .0313 0.0203 -127.05 
7 1 .4001 0.0237 -108.23 

8 1 .8240 0.0271 -93.99 

9 2.3025 0.0306 -82. 12 
10 2.8352 0.0341 -65.92 

11 3.4217 0.0376 -52.07 

12 4.0617 0.0412 -36.11 

13 4.7546 0.0447 -20.27 

14 5.5002 0.0483 -8.97 

15 6.2981 0.0519 6.66 

16 7.1478 0.0555 22.14 

17 8.0489 0.0591 35.30 

18 9.0012 0.0628 46.11 

19 10.0041 0.0665 65.72 

20 11.0574 0.0701 76.32 

21 12.1607 0.0739 89.00 

22 13.3135 0.0776 106.05 

23 14.5155 0.0813 118.52 

24 15.7664 0.0851 128.68 

25 17.0657 0.0889 143. 14 

26 18.4130 0.0927 157.51 

27 19.8081 0.0965 169.53 

28 21.2504 0.1004 183.66 

29 22.7397 0.1042 197.67 

30 24.2754 0.1081 207 . 14 
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Table 7.7 Solution for T, ;, To with M=30, N=40 at radius 

R = 1+n(R1 -l)/M and E = 10- 1
, r=0.3, Rl=~ 

" -n T T To 

0 0.0000 0.0000 -30.06 
1 0.0042 0.0033 -27.54 
2 0.0166 0.0067 -25.10 
3 0.0373 0.0100 -22.67 
4 0.0659 0.0134 -20.90 
5 0.1024 0.0168 -18.56 
6 O. 1466 0.0202 -16.28 
7 O. 1983 0.0236 -14.36 
8 0.2573 0.0271 -12.17 
9 0.3236 0.0305 -9.72 

10 0.3969 0.0339 -7.92 
11 0.4772 0.0374 -5.47 
12 0.5642 0.0409 -3.87 
13 0.6578 0.0443 -1 .91 

14 0.7579 0.0478 -0.60 

15 0.8642 0.0513 1.27 

16 0.9768 0.0548 3.10 

17 1 .0953 0.0583 4.87 

18 1.2197 0.0618 6.61 

19 1.3498 0.0653 8.31 

20 1 .4855 0.0688 10.54 

21 1.6265 0.0722 12. 15 

22 1.7729 0.0757 13. 12 

23 1.9244 0.0792 14.64 

24 2.0809 0.827 16. 11 

25 2.2422 0.0862 17.43 

26 2.4082 0.0897 18.93 

27 2.5788 0.0932 20.26 

28 2.7537 0.0967 21 .57 

29 2.9330 0.1002 23.44 

30 3.1164 0.1036 24.97 
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Table 7.8 The tension T at radius R = 1+n(R
l
-1)/30 with 

-2 
s = 10 ,r=0.3, Rl=~ 

n 8 = 0 8 = 8 Tf 
8 = -2 2 

0 -215.79 -155.98 26.11 
1 -34.99 -34.56 -21 .10 
2' -26.08 -25.93 -24.63 
3 -23. 11 -22.98 -22.74 
4 -21.27 -21 . 15 -20.99 
5 -18.93 -18.80 -18.66 
6 -16.62 -16.49 -16.35 
7 -14.67 -14.54 -14.40 
8 -12.45 -12.33 -12.18 
9 -9.99 -9.87 -9.72 

10 -8.19 -8.07 -7.92 
11 -6.70 -6.58 -6.43 
12 -4.05 -3.93 -3.78 
13 -2.07 -1 .95 -1.80 

14 0.73 0.85 0.99 

15 1 . 19 1 .31 1.45 

16 3.05 3.17 3.31 

17 4.88 5.00 5. 14 

18 6.65 6.77 6.91 

19 8.39 8.51 8.65 

20 10.68 10.80 10.94 

21 12.36 12.48 12.62 

22 13.34 13.46 13.60 

23 14.93 15.05 15. 19 

24 16.46 16.58 16.72 

25 17.93 18.05 18. 18 

26 19.38 19.49 19.61 

27 20.88 20.99 20.94 

28 23.07 23.13 21 .51 

29 32.87 32.40 16.34 

30 186.59 130.15 -30.04 
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Table 7.9 The tension T at radius R = 1+n(Rl -1)/30 with 
-2 

E = 10 ,r=0.3, Rl=~ 

n e = 0 e = e 11' e = -2 2 
0 -420.79 -360.84 -170.81 
1 -211.21 -211 .09 -210.83 
2 -195.24 -195.11 -194.97 
3 -177 . 71 -177.59 -177.44 
4 -158.61 -158.49 -158.34 
5 -142.58 -142.46 -142.32 
6 -124.99 -124.87 -124.73 
7 -108. 19 -108.07 -107.93 
8 -92. 18 -92.06 -91.92 
9 -71.98 -71.87 -71.73 

10 -60.29 -60. 18 -60.04 
11 -44.44 -44.33 -44. 19 
12 -29.44 -29.33 -29. 19 
13 -15.29 -15.18 -15.05 
14 -4.34 -4.23 -4.10 
15 10.37 10.48 10.61 
16 28.85 28.96 29.09 

17 41.79 41.89 42.03 

18 53.83 53.93 54.06 

19 67.30 67.40 67.53 

20 79.89 79.99 80.12 

21 91 .58 91.68 91 .81 

22 102.38 102.48 102.61 

23 114.63 114.73 114.85 

24 123.67 123.77 123.89 

25 128.65 128.74 128.87 

26 143.80 143.89 144.02 

27 159.92 160.01 160.14 

28 162.88 162.97 163.10 

29 170.25 170.32 170.00 

30 296.62 246.42 123.63 
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Table 7.10 The tension T at radius R - 1+n(R
1
-1)/30 with 

-2 
E = 10 ,r=0.3, Rl=~ 

n 8 = 0 8 = 8 
'IT 

8 = -2 2 
0 -623.62 -563.67 -373.56 
1 -400.93 -400.80 -400.66 
2 -368.16 -368.03 -367.89 
3 -342.14 -342.02 -341 .88 
4 -314.23 -314.11 -313.97 
5 -280.20 -280.09 -279.95 
6 -248.69 -248.67 -248.53 
7 -215.69 -215.58 -215.44 
8 -185.35 -185.24 -185.11 
9 -147.46 -147.35 -147.22 

10 -124.39 -124.29 -124.15 

11 -93.80 -93.70 -93.57 

12 -61 .71 -61 .61 -61 .48 

13 -32.43 -32.33 -32.21 

14 -1 .62 -1.52 -1.40 

15 26.44 26.53 26.66 

16 56. 15 56.24 56.37 

17 83.21 83.30 83.43 

18 107 . 71 107.80 107.93 

19 134.10 134. 19 134.31 

20 158.11 158.20 158.32 

21 179.85 179.94 180.05 

22 203.78 203.86 203.98 

23 225.68 225.76 225.88 

24 245.68 245.76 245.88 

25 263.90 263.98 264.10 

26 276. 12 276.20 276.31 

27 291 . 17 291.25 291.36 

28 304.86 304.94 305.05 

29 317.34 317.41 317.49 

30 409.73 363.93 265.12 
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Table 7.11 The tension T at radius R - 1+n(R
1
-1)/30 with 

-2 
€ = 10 ,r=0.34, Rl=~ 

n 8 = 0 8 = 8 8 = 2:. 2 2 
0 -533.79 -354.03 -46.21 
1 -226.20 -217.69 -184.96 
2 -189.81 -188.34 -185.65 
3 -171.07 -170.17 -170.12 
4 -158.40 -157.55 -157.73 
5 -143.76 -142.91 -143.12 
6 -127.05 -126.21 -126.41 
7 -108.23 -107.39 -107.59 
8 -93.99 -93. 16 -93.35 
9 -82.12 -81.29 -81.49 

10 -65.92 -65.09 -65.29 

11 -52.07 -51.25 -51 .44 

12 -36. 11 -35.29 -35.48 

13 -20.27 -19.45 -19.64 

14 -8.97 -8. 16 -8.35 

15 6.66 7.47 7.28 

16 22.14 22.95 22.76 

17 35.30 36.10 35.92 

18 46.11 46.91 46.73 

19 65.72 66.52 66.33 

20 76.32 77.11 76.93 

21 89.00 89.79 89.61 

22 106.05 106.83 106.66 

23 118.52 119.30 119.13 

24 128.68 129.46 129.28 

25 143. 14 143.92 143.74 

26 157.54 158.30 158.08 

27 169.80 170.45 169.85 

28 186.21 185.78 181.73 

29 221.83 210.71 175.47 

30 468. 19 298.91 40.52 
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Table 7.12 The tension T at radius R = 1+n(R1-1)/30 with 
-1 

s = 10 ,r=0.3, R1=~ 

n 8 = 0 8 = 8 'IT' 
8 = -2 2 

0 -48.58 -42.49 -24. 17 
1 -38.40 -36.07 -22.59 
2 -32. 19 -31.16 -20.99 
3 -27.62 -27.05 -19.27 
4 -24.49 -24. 11 -18.10 
5 -21.22 -20.93 -16.27 
6 -18.27 -18.04 -14.40 
7 -15.86 -15.66 -12.82 
8 -13.30 -13.12 -10.91 

9 -10.56 -10.40 -8.70 
10 -8.54 -8.39 -7.09 
11 -5.91 -5.77 -4.80 
12 -4. 15 -4.02 -3.34 
13 -2.06 -1 .94 -1 .50 
14 -0.64 -0.51 -0.30 

15 1 .35 1.45 1.46 
16 3.29 3.39 3.18 

17 5.19 5.28 4.83 

18 7.07 7 . 15 6.45 

19 8.93 9.00 8.00 

20 11 .36 11 .42 10.06 

21 13.21 13.25 11 .47 

22 14.49 14.51 12.20 

23 16.41 16.39 13.43 

24 18.40 18.33 14.55 

25 20.41 20.25 15.46 

26 22.85 22.55 16.47 

27 25.51 24.94 17.23 

28 28.82 27.70 17.87 

29 33.93 31 .52 18.97 

30 41 .06 35.51 19.63 
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Figure 7.6 The tension with E = 10-2
, r = 0.3, R, = 1.1 
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CONCLUSION 

In the previous two chapters we have shown how to calculate the 

geometrical configuration of a fan-belt using the ideal theory and then 

considered the theory for a slightly compressible and extensible material 

in order to obtain the tension in the belt. We have shown that the 

boundary layer is confined to the vicinity of the surfaces of the belt, 

that the tension does not vary greatly round the length of the belt and 

that the function To(R) determined by the non-ideal theory forms the 

major contribution to the tension. The use of compatibility conditions 

to determine the function To(R) is similar to their use in the Rayleigh 

wave problem of Chapters Three to Five to single out certain functions 

from the arbitrary waveforms. 



- 256 -

REFERENCES 

1. Baker, C. 1977. The numerical treatment of integral equations, 

Clarendon Press. 

2. Barnett, D.M. and Lothe, J. 1974. Consideration of the existence 

of surface wave (Rayleigh wave) solutions in anisotropic 

elastic crystals. J. Phys. F. 4, 671-686. 

3. Blatz, P.J. and Ko, W.L. 1962. Application of finite elasticity 

theory to the deformation of rubbery materials. Trans. 

Soc. Rheol. 6,223-251. 

4. Braun, M. 1978. Rayleigh waves in a pre-stressed neo-Hookean 

material. Conference on non-linear deformation waves, 

Tallinn. 

5. Chadwick, P. 1976. Surface and interfacial waves of arbitrary 

form in isotropic elastic media. J. Elast. 6, 73-80. 

6. Chadwick, P. and Jarvis, D.A. 1979. Surface waves in a pre-stressed 

elastic body. Proc. Roy. Soc. Lond. A 366, 517-536. 

7. Copson, E.T. 1975. Partial differential equations, Cambridge 

University Press. 

8. Courant, R. and Hilbert, D. 1953. Methods of mathematical physics, 

Volume 1, Interscience. 

9. Currie, P.K., Hayes, M.A. and O'Leary, P.M. 1977. Viscoelastic 

Rayleigh waves. Q. Appl. Math. 35,35-53. 

10. Erdelyi, A. 1956. Asymptotic expansions, Dover. 

11. Everatt, E.B. 1972. Applications of the theory of ideal fibre

reinforced materials, M.Phil. thesis, Nottingham. 

12. Everstine, G.e. and Pipkin, A.C. 1971. Stress channelling in 

transversely isotropic elastic composites. Z. angew. 

Math. Phys. 22, 825-834. 



- 257 -

13. Everstine, G.C. and Pipkin, A.C. 1973. Boundary layers in 

fibre-reinforced materials. J. Appl. Mech. 40,518-522. 

14. Flavin, J.N. 1963. Surface waves in pre-stressed Mooney material. 

Quart. J. Mech. Appl. Math. 16,441-449. 

15. Forsythe, W.E. 1969. Smithsonian physical tables. 

16. Green, W.A. 1978. Wave propagation in strongly anisotropic 

elastic materials. Arch. Mech. 30, 297-307. 

17. Hayes, M.A. and Rivlin, R.S. 1961. Surface waves in deformed 

elastic materials. Arch. Rat. Mech. Anal. 8,358-380. 

18. Iwashimizu, Y. and Kobori, O. 1978. The Rayleigh wave in a 

finitely deformed elastic material. J. Acoust. Soc. Am. 

64, 910-916. 

19. John, F. 1960. Plane strain problems for a perfectly elastic 

material of harmonic type. Comm. Pure Appl. Math. 13, 

239-296. 

20. John, F. 1966. Plane elastic waves of finite amplitude 

Hadamard materials and harmonic materials. Comm. Pure 

Appl. Math. 19,309-341. 

21. Kaye, G.W.C. and Laby, T.H. 1911. Tables of physical and 

chemical constants, Longmans. 

22. Kino, G.S. and Shaw, J. 1972. Acoustic surface waves. Sci. 

Amer. 227, 51-68. 

23. Lapin, A.D. 1970. Scattering of surface waves propagating over 

an uneven liquid-solid interface. Sov. Phys. Acoust. 15, 

336-339. 

24. Lapin, A.D. 1978. Reflection of a surface wave from periodic 

irregularities of a liquid-solid interface. Sov. Phys. 

Acoust. 24, 209-212. 

25. Lapin, A.D. 1979. Reflection of a Rayleigh wave from periodic 

corrugations of a surface in oblique incidence. Sov. 



- 258 -

Phys. Acoust. 25, 432-434. 

26. Levinson, M. and Burgess, I.W. 1971. A comparison of some 

simple constitutive relations for slightly compressible 

rubber-like materials. Int. J. Mech. Sci. 13, 563-572. 

27. Luke, J.e. 1966. A perturbation method for non-linear 

dispersive wave problems. Proc. Roy. Soc. Lond. A. 292, 

403-412. 

28. Marquardt, D.W. 1963. An algorithm for least squares estimation 

of non-linear problems. J. Soc. Ind. Appl. Math. 11, 

431-441. 

29. Milne-Thomson, L.M. 1960. Plane elastic systems, Springer-Verlag. 

30. Miura, R.M. and Kruskal, M.D. 1974. Application of a non-linear 

W.K.B. method to the Korteweg-DeVries equation. Siam J. 

Appl. Math. ~, 376-395. 

31. Mooney, M. 1940. A theory of large elastic deformation. J. Appl. 

Phys. 11, 582 -592. 

32. Nayfeh, A.H. 1973. Perturbation methods, Wiley. 

33. Nayfeh, A.H. and Mook, D.T. 1979. Non-linear oscillations, Wiley. 

34. Ogden, R.W. 1972. Large deformation isotropic elasticity - on 

the correlation of theory and experiment for incompressible 

rubber-like solids. Proc. Roy. Soc. Lond. A. 326, 565-584. 

35. Ogden, R.W. 1972. Large deformation isotropic elasticity: on 

the correlation of theory and experiment for compressible 

rubber-like solids. Proc. Roy. Soc. Lond. A 328, 567-583. 

36. Olfe, D.B. and Rottman, J.W. 1980. Some new highest-wave 

solutions for deep-water waves of permanent form. J. Fluid 

Mech. 100, 801-810. 

37. Parker, D.F. 1971. An asymptotic theory for oscillatory non-linear 

signals. J. Inst. Math. Applics. 7,92-110. 



- 259 -

38. Parker, D.F. 1977. Locally 'simple' unsteady deformations. 

Rheol. Acta 16, 134-145. 

39. Parker, D.F. 1978. Investigations into non-linear Rayleigh waves. 

Tech. Report 78-26 I.A.M.S., University of British 

Columbia. 

40. Parker, D.F. 1980. Dynamic flexural deformations in an ideal 

fibre-reinforced slab. J. Eng. Math. 14, 57-75. 

41. Parker, D.F. An analysis of non-linear elastic surface waves of 

permanent form. To appear. 

42. Parker, D.F. and Seymour, B.R. 1980. Finite amplitude one-dimensional 

pulses in an inhomogeneous granular material. Arch. Rat. 

Mech. Anal. 72,265-284. 

43. Pipkin, A.C. and Rogers, T.G. 1971. Plane deformations of 

incompressible fibre-reinforced materials. J. Appl. Mech. 

38, 634-640. 

44. Pipkin, A.C. and Rogers, T.G. 1971. A mixed boundary-value 

problem for fibre-reinforced materials. Q. Appl. Math. 29, 

151-155. 

45. Rabinowitz, P. 1970. Numerical methods for non-linear algebraic 

in 'A hybrid method for non-linear equations' by M.J.D. 

Powell, Gordon and Breach Science Publishers. 

46. Rayleigh. 1885. On waves propagated along the plane surface of 

an elastic solid. Proc. Lond. Math. Soc. 17,4-11. 

47. Rivlin, R.S. 1947. Torsion of a rubber cylinder. J. Appl. Phys. 

18, 444-449. 

48. Rivlin, R.S. 1948. Large elastic deformations of isotropic 

materials. Phil. Trans. Roy. Soc. A 240,459-525. 

49. Rogers, T.G. and Pipkin, A.C. 1971. Finite lateral compression 

of a fibre-reinforced tube. Quart. J. Mech. Appl. Math. 

24, 311-330. 



- 260 -

50. Segel, L.A. 1977. Mathematics applied to continuum mechanics, 

Macmillan Publishing Co., Inc. 

51. Shaw, L. and Spencer, A.J.M. 1977. Impulsive loading of ideal 

fibre-reinforced rigid-plastic beams. Int. J. Solids 

Struct. 13, 823-854. 

52. Spencer, A.J.M. 1972. Deformations of fibre-reinforced materials, 

Oxford University Press. 

53. Spencer, A.J.M. 1974. Boundary layers in highly anisotropic 

plane elasticity. Int. J. Solids Struct. 10, 1103-1123. 

54. Taylor, D.B. 1981. Surface waves in anisotropic media: the 

secular equation and its numerical solution. Proc. Roy. 

Soc. Lond. A. 376, 265-300. 

55. Taylor, D.B. and Crampin, S. 1978. Surface waves ln anisotropic 

media: propagation in a homogeneous piezoelastic half-space. 

Proc. Roy. Soc. Lond. A. 364, 161-179. 

56. Treloar, L.R.G. 1975. The physics of rubber elasticity, Clarendon 

Press. 

57. Varley, E. 1965. Acceleration fronts in viscoelastic materials. 

Arch. Rat. Mech. Anal. 19,215-225. 

58. Varley, E. and Cumberbatch, E. 1965. Non-linear theory of 

wave-front propagation. J. Inst. Maths. Applics. l, 101-112. 

59. Varley, E. and Cumberbatch, E. 1980. Finite deformations of 

elastic materials surrounding cylindrical holes. J. Elast. 

10, 341-406. 

60. Viktorov, I.A. 1967. Rayleigh and Lamb waves, Plenum Press. 

61. Watson, G.N. 1966. Theory of Bessel functions, Cambridge 

University Press. 

62. Whitham, G.B. 1965. Non-linear dispersive waves. Proc. Roy. Soc. 

Lond. A 283, 238-261. 



- 261 -

63. Whitham, G.B. 1965. A general approach to linear and non-linear 

dispersive waves. J. Fluid Mech. 22, 273-283. 

64. Whitham, G.B. 1970. Two-timing, variational principles and 

waves. J. Fluid Mech. 44, 373-395. 

65. Willson, A.J. 1977. Plate waves in Hadamard materials. J. Elast. 

7,103-111. 


	290539_0001
	290539_0002
	290539_0003
	290539_0004
	290539_0005
	290539_0006
	290539_0007
	290539_0008
	290539_0009
	290539_0010
	290539_0011
	290539_0012
	290539_0013
	290539_0014
	290539_0015
	290539_0016
	290539_0017
	290539_0018
	290539_0019
	290539_0020
	290539_0021
	290539_0022
	290539_0023
	290539_0024
	290539_0025
	290539_0026
	290539_0027
	290539_0028
	290539_0029
	290539_0030
	290539_0031
	290539_0032
	290539_0033
	290539_0034
	290539_0035
	290539_0036
	290539_0037
	290539_0038
	290539_0039
	290539_0040
	290539_0041
	290539_0042
	290539_0043
	290539_0044
	290539_0045
	290539_0046
	290539_0047
	290539_0048
	290539_0049
	290539_0050
	290539_0051
	290539_0052
	290539_0053
	290539_0054
	290539_0055
	290539_0056
	290539_0057
	290539_0058
	290539_0059
	290539_0060
	290539_0061
	290539_0062
	290539_0063
	290539_0064
	290539_0065
	290539_0066
	290539_0067
	290539_0068
	290539_0069
	290539_0070
	290539_0071
	290539_0072
	290539_0073
	290539_0074
	290539_0075
	290539_0076
	290539_0077
	290539_0078
	290539_0079
	290539_0080
	290539_0081
	290539_0082
	290539_0083
	290539_0084
	290539_0085
	290539_0086
	290539_0087
	290539_0088
	290539_0089
	290539_0090
	290539_0091
	290539_0092
	290539_0093
	290539_0094
	290539_0095
	290539_0096
	290539_0097
	290539_0098
	290539_0099
	290539_0100
	290539_0101
	290539_0102
	290539_0103
	290539_0104
	290539_0105
	290539_0106
	290539_0107
	290539_0108
	290539_0109
	290539_0110
	290539_0111
	290539_0112
	290539_0113
	290539_0114
	290539_0115
	290539_0116
	290539_0117
	290539_0118
	290539_0119
	290539_0120
	290539_0121
	290539_0122
	290539_0123
	290539_0124
	290539_0125
	290539_0126
	290539_0127
	290539_0128
	290539_0129
	290539_0130
	290539_0131
	290539_0132
	290539_0133
	290539_0134
	290539_0135
	290539_0136
	290539_0137
	290539_0138
	290539_0139
	290539_0140
	290539_0141
	290539_0142
	290539_0143
	290539_0144
	290539_0145
	290539_0146
	290539_0147
	290539_0148
	290539_0149
	290539_0150
	290539_0151
	290539_0152
	290539_0153
	290539_0154
	290539_0155
	290539_0156
	290539_0157
	290539_0158
	290539_0159
	290539_0160
	290539_0161
	290539_0162
	290539_0163
	290539_0164
	290539_0165
	290539_0166
	290539_0167
	290539_0168
	290539_0169
	290539_0170
	290539_0171
	290539_0172
	290539_0173
	290539_0174
	290539_0175
	290539_0176
	290539_0177
	290539_0178
	290539_0179
	290539_0180
	290539_0181
	290539_0182
	290539_0183
	290539_0184
	290539_0185
	290539_0186
	290539_0187
	290539_0188
	290539_0189
	290539_0190
	290539_0191
	290539_0192
	290539_0193
	290539_0194
	290539_0195
	290539_0196
	290539_0197
	290539_0198
	290539_0199
	290539_0200
	290539_0201
	290539_0202
	290539_0203
	290539_0204
	290539_0205
	290539_0206
	290539_0207
	290539_0208
	290539_0209
	290539_0210
	290539_0211
	290539_0212
	290539_0213
	290539_0214
	290539_0215
	290539_0216
	290539_0217
	290539_0218
	290539_0219
	290539_0220
	290539_0221
	290539_0222
	290539_0223
	290539_0224
	290539_0225
	290539_0226
	290539_0227
	290539_0228
	290539_0229
	290539_0230
	290539_0231
	290539_0232
	290539_0233
	290539_0234
	290539_0235
	290539_0236
	290539_0237
	290539_0238
	290539_0239
	290539_0240
	290539_0241
	290539_0242
	290539_0243
	290539_0244
	290539_0245
	290539_0246
	290539_0247
	290539_0248
	290539_0249
	290539_0250
	290539_0251
	290539_0252
	290539_0253
	290539_0254
	290539_0255
	290539_0256
	290539_0257
	290539_0258
	290539_0259
	290539_0260
	290539_0261
	290539_0262
	290539_0263
	290539_0264
	290539_0265
	290539_0266
	290539_0267
	290539_0268

