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ABSTRACT 

An Investigation Into the Cold Start Performance of Automotive Diesel 
Engines 

John Antony Burrows, 1998 

The cold start performance of automotive diesel engines is currently poor when 

compared to similar gasoline units. This thesis describes an experimental and 

theoretical investigation into the factors limiting diesel cold start behaviour. 

Studies have been carried out on IDI and DI designs of engine. Start behaviour 

has been characterised in terms of times taken to complete various stages of start

up, engine speed variations and processes which affect these. Combustion and 

friction behaviour have been investigated in detail. 

Engine friction losses are dependent on temperature. During start-up these losses 

are relatively high compared to those when the engine is fully-warm. The work 

output from combustion is low at low speeds, and prone to a further deterioration 

at lower temperatures. Consequently, combustion output during cold cranking is 

initially insufficient to overcome frictional losses. The start times are extended 

by the need to keep the starter motor engaged until heat generated in the engine 

causes frictional losses to fall. Eventually, when combustion output is able to 

overcome friction without the aid of starter motor work, idle speed is reached. 

Changes to fuel injection and glowplug parameters have been used to achieve a 

limited improvement in low-temperature starting. 

Measurements of engine friction have been carried out to determine the influence 

of temperature and speed, and the relative contributions from each of the main 

component assemblies. At low temperatures, much of the friction originates in 

hydrodynamically lubricated components such as journal bearings, due to high 

oil viscosity at low temperature. Additionally, engine friction as rotation begins 
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has been shown to be far higher than measured by conventional "steady-state" 

motoring tests (over twice the quasi-steady state friction at -200 e). This initially 

high friction transient decays towards the quasi-steady values throughout the 

start. 

For crankshaft bearings, a friction model has been developed for cold start-up 

through to fully warm engine conditions. The friction behaviour in the bearings 

is dependent on thermal conditions around the friction surfaces. Models for the 

starter system and blowby processes are also presented as part of a broader 

theoretical investigation to assess the impact of design changes on start quality . 

.. 
11 
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NOMENCLATURE 

a, b Constants in the Walther Equation [mixed units] 

FR Friction Ratio: subscript denotes at time t or initial value ('t' or 'I') [-] 

K Constant in Bishop's Equation [s/m] 

n Friction index (0.19-0.24 for gasoline, 0.24-0.39 for diesel) [-] 

n Step number [-] 

P Pressure [Pa] 

rc Compression ratio [-] 

Sp Mean piston speed [m1 s ] 

t Time: subscript denotes to fIrst fIre, sustained fire or idle speed ('ff, 

'sf or 'idle') [s] 

T Absolute temperature [K] 

V Volume [m3] 

ApMEP Rise in FMEP due to gas pressure above the pistons [Pa] 

v Kinematic viscosity [cSt, mm2/s] 

'tpR Time constant of friction ratio [s] 

In the starter motor model: 

I Electrical Current: subscript denotes battery, glowplugs or starter ('B', 

'G' or'S') [A] 

IENG Engine inertia [kg.m2
] 

P OUT Starter motor output power [W] 

R Electrical resistance: subscript denotes battery, leads, glowplugs or 

starter ('b', 'L', 'G' or'S') [0] 

V Voltage: subscript denotes battery or starter ('b' or'S') [V] 

W INERTIA Work done on engine inertia [1] 

1'\ Starter motor effIciency [-] 

u> Angular velocity: subscript denotes beginning or end of stroke ('B' or 

'E') or starter velocity ('S') [rad/s] 
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In the blowby model: 

A Effective orifice area [m2] 

Cd Discharge coefficient [-] 

m 

n· mm 

P 

R 

y 

aP 

at 

P 

Constants: subscripts as defined in the text [mixed units] 

Mass of gas: subscripts as defined in the text [kg] 

Minimum cyclic engine speed [ rpm] 

Gas pressure: subscripts as defined in the text [Pa] 

Gas constant [J/kg.K] 

Ratio of specific heats for air [-] 

Pressure drop across orifice [Pa] 

Time step [s] 

Blowby gas density [kglm3
] 

In the fuel injection model: 

Injector nozzle area [m2] 

Discharge coefficient [-] 

Mass of fuel [kg] 

aP 

Pfue1 

Pressure drop across nozzle [Pa] 

Fuel density [kg/m3
] 

In the bearing friction model: 

c Bearing radial clearance [m] 

Cm Specific heat capacity of thermal inertia (mass) [J/kg.K] 

D Bearing diameter [m] 

F Frictional force [N] 

L Bearing length [m] 

mm Mass of thermal inertia (mass) [kg] 

P pump Oil pump gauge pressure [Pa] 

it Oil mass flow rate: subscript denotes flow due to oil pump pressure, 

due to pumping action within the bearing, or total (,pressure', 

'pumped' or 'total') [kg/s] 

v 



q" 

Q 

R 

R 

T 

U 

dT 

dToIL 

1'\ 

P 

a 

Non-dimensional oil flow coefficient [-] 

Heat flow: subscript denotes convection or conduction out of the oil 

('conv' or 'cond'), or conduction from mass to block ('mb') [W] 

Bearing radius [m] 

Thermal resistance: subscript denotes oil to block, oil to mass, or 

mass to block ('ob', 'om' or'mb') [K/W] 

Temperature: subscript denotes oil feed or metal (,feed' or 'metal') [K] 

Average oil film temperature [K] 

Bearing surface speed [m/s] 

Temperature rise of thermal inertia (mass) above block [K] 

Temperature rise in oil [K] 

Dynamic viscosity [Pa.s] 

Density of oil [kg/m3] 

Specific heat of oil [J/kg.K] 
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Chapter 1 

INTRODUCTION 

This thesis is concerned with the cold-start behaviour of diesel engines, which 

factors control this behaviour, and how starting can be improved through design 

or calibration developments. The engine design must create a suitable air-fuel 

mixture in the cylinder and generate high enough pressure and, through 

compression heating, temperature for successful ignition to occur. Low fuel 

volatility, high losses, and reduced cranking speeds at sub-zero temperatures 

make starting particularly difficult to achieve. While the use of starting aids such 

as glowplugs can greatly extend the temperature range over which starting is 

possible, there is continuing pressure for improvements in consistency and start 

times at lower temperatures. 

Until recently, most small capacity automotive diesel engines have been indirect

injection (IDI) engine designs with generally poor cold starting characteristics 

compared to gasoline spark-ignition engines. The contrast highlights the need for 

improvement in the diesel engine case. Parasitic load on the engine, increased by 

the trend towards "extra" ancillaries such as power-assisted steering and air

conditioning, can exacerbate the general problem of long starting times. 

Customer perception, and the possible durability implications of extended 

cranking times have also put pressure on start performance. The desire to build 

a single vehicle to operate in all climates (the so-called "world" car) means that 

special provision for cold-climate territories is now less acceptable; all vehicles 

will be expected to start well at low temperature. 

Concerns over emissions could become a powerful driving force for further 

improvements. Research commissioned by Lucas [1.1] showed that the emissions 

benefits of diesel compared to gasoline became more pronounced as the journey 
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length is decreased (the trend in modem driving patterns [1.2]). The adoption of 

exhaust gas recirculation (EGR) and exhaust afiertreatment promises to reduce 

tailpipe emissions further. With the introduction of emissions test cycles 

including the start-up period [1.3], these potential benefits could be lost due to 

starting; long periods of cranking with excess fuel and many misfires could be 

disastrous. 

The aim of the work described in this thesis has been to examine the mechanisms 

of cold starting, to understand and ultimately improve start performance. 

Investigations have been carried out using several Ford diesel engines and one 

competitor engine, all of a broadly similar configuration, but including both IDI 

and DI (Direct Injection) designs. Combustion studies were primarily undertaken 

on a Ford 1.8 litre illI turbocharged engine fitted into a Sierra vehicle. Motoring 

studies have been performed using an intercooled variant of the above engine, 

and a 2.2 litre DI engine code named "P-type". Additional data has been obtained 

from a DI variant of the IDI engine, code named "L-type", and a Volkswagen 

1.9 litre DI engine of similar specification. Key dimensions of all test engines can 

be found in Appendix A. Investigations of performance at temperatures below 

-2S0C were possible, but most work was carried out at or above -20°C. 

1.1 Cold Start Performance 

An illustration of typical engine speed variation during starting at O°C is given 

in Figure 1.1; the data were recorded from the Ford 1.8 litre IDI engine. The cold 

start can be divided into several stages: the time until combustion commences, 

the time until engine rotation continues without the starter motor, and the total 

time to idle speed. Here, these are referred to as time to first fire, time to 

sustained fire and time to idle (tm 4,fand 4dle) respectively. These can be identified 

from speed traces: 4r by the rapid speed rise in the expansion stroke, 4,f when the 

engine exceeds the maximum operating speed of the starter, and tid1e when the 

known idle speed is exceeded. Misfiring cycles may also be identified by a 
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deceleration over the stroke, allowing calculation of the misfire rate as a 

percentage of total cycles to idle speed. In the figure shown, the engine starts 

quickly, firing after about 0.3 seconds and reaching idle speed at 0.8 seconds. 

Figure 1.2 illustrates a characteristic start at -20°C, showing how the cold start 

extends as the temperature falls (note the different time scale). In this case, the 

engine is reluctant to start, firing after 1.2 seconds and reaching idle speed at 

36.0 seconds. The poor combustion during starting leads to the emission of 

significant pollutants; the 28 misfiring cycles alone could produce almost 

1500 mg of unburned hydrocarbons. This rapid deterioration in start quality as 

the temperature drops is not acceptable, particularly in view of recent 

improvements made by some manufacturers which give start times of only a few 

seconds at -29°C. 

1.2 Diesel Cold Start: Previous Work 

1.2.1 Factors Controlling Start Quality 

In early work, Austen and Lyn [1.4] reported that the start time of an automotive 

diesel engine under test rose sharply with falling temperature, even if cranking 

at constant speed. Any drop in cranking speed was shown to make the situation 

worse by lowering the compression pressure and temperature. This falling 

cranking speed at lower temperatures has been widely reported for all engine 

types over many years, for example by Brunner and Ruf in 1959 [1.5], 

Caracciolo and McMillan in 1979 [1.6] and Buck and Lohuis in 1994 [1.7]. This 

is related closely to the increase in viscosity of the engine oil at lower 

temperatures [1.5-1.12], especially if the viscosity is evaluated under proper 

shear conditions, such as using the Cold Cranking Simulator (CCS) viscosity 

test [1.13]. Additionally, battery performance suffers as the temperature drops, 

as reported by Brunner and Ruf [1.5], leading to a further reduction in cranking 

speed. They found that warming the battery could have a considerable impact on 
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cranking perfonnance (verified by the work of Stewart [1.9] and Caracciolo and 

McMillan [1.6]), giving a corresponding improvement in start quality. 

Reductions in cranking speed have a direct impact on the temperature and 

pressure achieved in the cylinder [1.4], due to increasing blowby of cylinder 

gasses past the pistons and heat transfer losses. Henein and co-workers [l.I2] 

measured the in-cylinder conditions in a cranking DI engine. Reducing the 

ambient temperature from +20°C to -20°C caused the speed to drop sharply, 

reducing peak temperature and pressure considerably. The total energy loss 

(representing blowby and heat transfer) rose by over 40%. In earlier work using 

a different DI engine, Henein [1.14] found that blowby loss could account for 

over 10% of the charge at cranking speeds, leading to an estimated temperature 

reduction of about 100°C. Numerous proposals have been made to describe 

instantaneous spatially-averaged heat transfer from the cylinder [1.15], including 

widely used models by Annand [1. 16] and W oschni [1. 17, 1. 18] . Although not 

generally developed for use in divided-chamber designs, similar correlations 

applied by Harigaya, Ohyagi and Tsuji [1.19] to IDI engines have given 

satisfactory results. All the models predict a rise in heat transfer losses as the time 

available increases (that is, with falling cranking speed) and with reducing metal 

temperatures. IDI designs suffer greater loss than DI, due to higher gas velocities 

and increased surface area. 

In order to achieve satisfactory combustion, the injected fuel must be subjected 

to adequate temperature and pressure for a minimum period of time, called the 

ignition delay. This delay period extends as the temperature and pressure are 

reduced, up to a point where ignition fails completely. Lyn and Valdmanis [1.20] 

showed that this delay could not only be extended by the lower temperature and 

pressure during starting, but also by the need to evaporate the large quantities of 

fuel typically used in cold start strategies. Under starting conditions, which are 

adverse for ignition, mixture formation was found to become an important factor. 

Biddulph and Lyn [1.21] studied how the in-cylinder temperature required for 
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ignition varied at cranking speeds from 100 to 300 rpm, in engines without 

starting aids. For a DI engine, about 650 to 700K was required for ignition, while 

620 to 700K was required in the IDI engine. These figures agree closely with the 

finding of Henein and others [1.22], that steady combustion in an unaided DI 

engine would only occur when the cylinder gas temperature exceeded 640K. 

The situation is not helped by the poor performance of injection systems under 

cold starting conditions. According to Henein [1.14, 1.23], low speed and 

temperature leads to reduced injection pressure and hence inferior spray 

atomization. In conjunction with low compression temperatures and gas 

velocities, poor evaporation results. Added to the sometimes poor control of fuel 

quantity [1.22] and timing under these conditions, these factors contribute to 

increasingly unsteady combustion as the start temperature decreases. 

1.2.2 Fuelling Strategies 

The main fuelling strategy used to assist in starting diesels at low temperatures 

is the inj ection of excess fuel. Biddulph and Lyn [1.21] presented data for both 

DI and IDI engines, showing that increased fuelling led to reduced cold start 

times. Austen and Lyn [1.4] provided evidence that, during starting, the excess 

fuel not only increased the effective compression ratio, but also reduced blowby 

by helping to seal the piston rings. During unaided starting, accumulated fuel in 

the cylinder produced progressively higher temperatures and pressures on 

successive cycles until the onset of firing. They showed that the manual injection 

of fuel before cranking lead to higher compression pressure and immediate firing, 

although a considerable quantity of fuel was used (1.5 cm3 per cylinder). 

Additionally, other workers [1.14] have suggested that fuel could improve 

starting by lubricating the upper portion of the cylinder bore. 

Studies into the impact of injection timing on start performance have produced 

conflicting recommendations. Lyn and Valdmanis [1.20] presented ignition delay 
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results for a number of engines and suggested using injection timing of 

5-10° before top dead centre (BTDC) during starting. This represents a 

retardation of about 5° compared to normal operation in the engines studied. 

Phatak and Nakamura [1.24], testing with a DI engine, found that retarding from 

23° to 20° BTDC improved start quality. However, other work by Zahdeh and 

Henein [1.25] has shown that an advance may be required during starting to 

avoid erratic combustion with many misfIres. Their tests on a DI engine 

performed best with injection 23° BTDC, with many misfires observed when the 

timing was retarded to 10° BTDC. 

Injector design and placing can have a critical impact on cold start behaviour. 

Lyn and Valdmanis [1.20], in their study of ignition delay during unaided 

starting, found that injector design (hole-type, pintle and pintaux nozzles) had 

only a secondary effect in their IDI engine, operating without starting aids. Some 

effect was seen due to inj ection pressure, with increased pressure was found to 

slightly reduce ignition delay. Injector type was, however, found to affect work 

output after combustion commenced. The work of Biddulph and Lyn [1.21] 

showed a marked decrease in ignition delay when changing from pintle to 

pintaux nozzles in an IDI engine. Firing could be achieved with lower 

compression temperatures, and a considerable improvement in overall start 

quality was observed. In a study of injection parameters in a DI engine, Phatak 

and Nakamura [1.26] found that, for a number of injector and chamber designs, 

spray impingement on the chamber wall was detrimental to starting. In tests 

without cold starting aids, injector types promoting organised but non-uniform 

mixing gave the best performance. 

1.2.3 Starting Aids 

Starting aids may be broadly divided into three categories: those which attempt 

to ignite the mixture directly once it is in the combustion chamber, those which 
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heat the fuel or air charge (either as it enters the engine or in the cylinder), and 

those which heat part or all of the engine itself. 

For small automotive diesel engines operating at low ambient temperature, the 

glowplug is currently the preferred starting aid. Falling into the fIrst category, the 

plug protrudes into the combustion chamber (or prechamber in IDI engines) and 

helps to ignite the fuel/air mixture. French and Scott [1.27] found that optimum 

glowplug performance required a tip temperature of about 850°C, positioned to 

receive a fuel/air mixture at the fringe of the fuel spray. They found that the 

function of the plug was not to act as a heat source for the bulk gas, but rather as 

a "hot spot" in the chamber to initiate ignition. This confIrms work by Austen 

and Lyn [1.4], who additionally showed that the relative placement of the 

glowplug and fuel injector had a strong influence on ignition delay. Phatak and 

Nakamura [1.26] also found that the plug should be positioned out of the direct 

fuel spray, but where it would receive a fuel/air mixture. Extended operation of 

the glowplugs was found to be benefIcial, ensuring steady combustion both 

during and immediately after cold starting, and allowing operation down to at 

least -29°C. Other methods of igniting the mixture directly have been studied, 

such as spark or railplugs [1.28, 1.29], but so far with limited practical 

application. 

Methods which heat the fuel or air charge aim to achieve higher temperatures at 

the time of fuel injection, to assist in forming a flammable mixture and achieving 

proper combustion. Heating of the fuel has been shown to be impractical [1.4] 

due to the very high heat transfer from the fuel both as it passes through the 

injector and within the combustion chamber. The compression temperature and 

pressure can be raised by introducing a greater air mass into the 

cylinder [1.26, 1.30], but commonly used systems rely on applying heat to the 

air charge as it passes into the engine. Heat may be supplied in several 

ways [1.31, 1.32], but the normal method is by placing heaters in the inlet 

system, either electrically powered or using small auxiliary burners. These 
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methods were investigated by Austen and Lyn [1.4] and found to give a 

significant reduction in start time. 

Perhaps the most desirable starting aid would be to heat the entire engine, thereby 

raising the effective ambient temperature of the start. Here, in addition to 

improving the combustion characteristics, other factors which influence starting 

are also improved. Lubricating oil viscosity is lowered (and hence friction is 

lowered), fuel injection behaviour is enhanced and cylinder heat transfer losses 

are reduced. If the entire engine enclosure could be heated, ancillary friction 

would also be reduced, and a deterioration in battery performance avoided. 

Again, the heat source can be electrical, by combustion or by other methods such 

as latent heat storage devices (similar to those discussed by Tsantis and co

workers [1.32]). In practice, the energy can only be supplied in a limited number 

of ways, typically to the water jacket, fuel system or sump oil. Theoretical and 

experimental studies by Stecki and others [1.33] showed the benefits of heating 

the engine in this way, but also the limitations. Even when using quite high 

heating powers (over 4kW), a heating duration of up to 35 minutes was required 

to start the engine at temperatures below -23°C. 

1.2.4 Design and Operational Variables 

Several design parameters can be varied to improve starting, in addition to those 

mentioned above. For example, it is known that higher compression ratio is 

helpful, as demonstrated by Phatak and Nakamura [1.24]. They have also 

proposed that engines with rapid, uniform mixing will be more difficult to 

start [1.26]; this was suggested as a factor contributing to the poor behaviour of 

swirl chamber illI designs, in addition to the increased heat losses. Other factors, 

such as the number of cylinders and the surface to volume ratio of the cylinders 

can also have a significant impact. However, most of these are chosen to optimise 

other performance considerations and cannot be altered simply to assist starting. 
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Many of the problems are related to the cranking speed reductions at low 

temperatures. According to Mina [1.34], following work by Poublon, Patterson 

and Boerma [1.35], it is important to prevent the engine from slowing down 

excessively as the piston approaches TDC. He recommended using a higher 

inertia flywheel or increasing the inertia of the starter motor. However, as 

pointed out by earlier workers [1.4], the ideal situation for starting would be to 

have very rapid compression (giving minimal losses ) followed by a long dwell 

period near TDC (to allow for the ignition delay period). Biddulph and 

Lyn [1.21] showed that cranking their IDI engine at higher speed would lead to 

better starts, but that there was an optimum cranking speed for their DI engine. 

Cranking the DI engine too fast could cause a deterioration in start quality, as the 

high temperature and pressure needed for ignition was not held for long enough. 

Reducing the high levels of friction under cold conditions would be useful, not 

only raising the cranking speed but reducing the combustion work required to 

accelerate the engine. Without changes to basic engine design, this could best be 

achieved by selecting engine oil of the lowest possible low temperature viscosity. 

In their review of the effect of engine oil on performance, Stewart and 

Selby [1.8] covered many factors relevant to the selection of oils which are still 

applicable today. It is known that losses begin to heat the oil at the friction 

surfaces as soon as the engine starts cranking and that this heat is eventually seen 

as a rise in general oil temperature (for example, as reported by KytO for engine 

and gearbox operation [1.36, 1.37]). This temperature rise is opposed by 

conduction from the oil to the cold metal surfaces, and by the constant supply of 

cold oil from the sump. In a journal bearing under "normal" conditions, 

calculation shows [1.38] that a higher oil supply pressure lowers the oil film 

temperature and increases frictional losses . This gives the possibility that both 

the absolute frictional loss and its rate of decline after the start of cranking could 

be controlled by optimisation of the lubrication system. 
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1.3 Objectives of this Thesis 

The ultimate aim of this work was to investigate the limits on cold start 

performance and how this can be improved for a series of engine design types. 

In practical terms, a start time of six seconds at -20°C represents a benchmark 

standard. The first obj ective was to gain an understanding of the mechanisms 

limiting start performance in the engines studied. However, a large investment 

is made in modern engine designs, which are highly optimised for "normal" 

(fully warm) performance. At the time of undertaking this work, it was very 

unlikely that any changes would be implemented which could have an impact on 

operation beyond cold starting. Further objectives were therefore weighted 

towards investigation of those factors influencing cold start only. 

Combustion studies can attempt to improve start quality by changes to fuelling 

(such as timing, quantity and rate of fuel injection) and starting aid parameters 

(such as glowplug timing, temperature and dimensions). Similarly, friction 

studies seek to identify and reduce sources of friction either by changes to 

component design or lubrication (such as oil viscosity, lubrication circuit changes 

and delivery pressures). Finally, changes in blowby and heat transfer losses could 

affect starting by limiting ignition and reducing useful work output. The main 

objectives of this work were therefore identified as: 

To understand the factors limiting cold start performance in the 

engines studied. 

To examine the effect of changes to combustion during starting (with 

investigations primarily limited to fuelling parameters and starting 

aids). 

To investigate engine friction during starting, identifying the main 

sources and possible methods of reduction. 
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To quantify the effect of blowby on in-cylinder conditions and 

identify the likely result of piston or ring changes on start quality. 

1.4 Thesis Layout 

Chapter 2 describes the equipment used during this work, including test facilities 

and data acquisition systems. In Chapters 3 and 4, the cold start behaviour of the 

Ford 1.8 litre IDI engine is investigated. Measurements are made to determine 

how important start characteristics change with falling temperature in the 

standard engine. A model is developed to allow the output of the starter motor 

to be estimated with reasonable accuracy, which is used along with recorded 

cylinder pressure and speed data to evaluate actual frictional losses throughout 

starting. Comparing these with measured combustion output, represented as 

indicated mean effective pressure (IMEP), important information about cold 

starting is revealed. 

In Chapter 5, measurements of the levels of blowby loss under motoring 

conditions are presented. A simple correlation is developed for cycle-averaged 

blowby, which is demonstrated to be applicable throughout cold starting until 

idle speed is reached. An improved model is presented, based on a more realistic 

model of gas flow. This predicts instantaneous mass flow rates, and is suitable 

for use in cycle simulation and theoretical investigations of blowby effects. 

Chapter 6 describes how minor changes in the combustion system alter cold start 

performance in the Ford 1.8 litre IDI engine. These include fuelling changes 

(timing, quantity, and rate of injection), and changes to the glowplugs 

(temperature, timing and protrusion into the prechamber). In Chapters 7 and 8, 

engine friction is examined. Chapter 7 describes steady motored friction, 

measured in a number of engines, and the relative contributions of each engine 

component assembly are identified. Changes with speed and temperature have 

been investigated, along with the differences between the friction characteristics 
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of the engmes. Chapter 8 details investigations into actual friction levels 

encountered during starting, which may be considerably larger than the steady 

state measured values. By reference to lubrication theory a qualitative description 

of the processes is developed, which attempts to describe not only the magnitude 

of this friction "spike", but also its duration. 

The final chapter includes a general summary and statement of the major 

conclusions of this work. 

1.5 Thesis Contribution to Diesel Engine Cold Starting 

This thesis furthers understanding of diesel cold starting in a number of areas: 

Development of a starter system model allows engine friction to be 

found throughout cold starting from engine speed and lMEP 

measurements (given a knowledge of engine, starter and battery 

parameters). This allows simple determination of engine friction 

during this critical phase with a minimum of equipment. Results from 

a series of free-start tests have been verified by direct measurement 

on a motored engine, and found to agree closely. This representation 

can also be used as a sub-model for more complete engine simulation 

programs. 

Measurement of low temperature engine friction and its breakdown 

under quasi-steady conditions has revealed a very different 

distribution throughout the engine at low temperatures to that 

measured when fully warm. Additional measurements revealed 

initially higher levels of friction when the engine begins turning at 

low temperature; the magnitude and duration of this phase has been 

characterised for the data available. A simple model, initially 
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covering journal bearings only, has been devised to explain the 

observed behaviour. 

Combustion, friction and starter motor work have been examined to 

formulate a qualitative description of cold start processes. An 

understanding of the balance which occurs allows a number of 

strategies for improvement to be identified, and the likely 

effectiveness of each assessed. 
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Chapter 2 

EXPERIMENTAL FACILITIES AND DATA 
ACQUISITION 

2.1 Introduction 

Cold start behaviour studies are generally carried out over a range of sub-zero 

temperatures. A test temperature of -29°C (corresponding to -20 0 P) is important 

as a benchmark used by several vehicle manufacturers for the lowest temperature 

at which engines should start without external aids. However, carrying out 

parametric studies at this limit is made difficult by the low rate at which tests can 

be performed. Most of the work reported in this thesis was carried out at a 

temperature of -25°C or higher, to allow testing to progress more rapidly. Up to 

six cold start tests were possible each day. Temperatures up to fully warm (over 

100°C) were possible. 

Investigations have been carried out on several Pord diesel engines, and one 

competitor engine. The engine data recorded were selected from an extensive 

array of possible instruments according to the requirements of the test sequence. 

These included measurement of turning torque, speed, cylinder pressures, fuel 

injection parameters and engine temperatures. Sampling according to crank angle 

or time was used, as required. 

2.2 Cold Cell Facilities 

Several facilities for low-temperature studies have been developed for use in this 

investigation. These have been based around the common philosophy of 

enclosing the engine or engine compartment in a sealed cold cell. In some cases, 

the engine was mounted inside the cell on a test bed, and coupled to a 
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motor/regenerator outside the cell. When the test engine was mounted in a 

vehicle, the cold cell enclosed the entire vehicle front end, forward of the 

windscreen. In all cases, cooling and operating arrangements were similar. 

To lower the engine temperature to the target values, refrigerated coolant was 

circulated through the engine block and head coolant paths. A small refrigeration 

plant of typically 2.5 kW heat rejection rate at the minimum rated temperature 

of -30°C is used. This chiller cools a mixture of 50/50 percent tap water and 

BS6580 ethylene glycol antifreeze, which is then pumped through the test engine 

and enclosure. This internal (or forced) cooling of the engine structure has been 

found to be particularly effective in previous studies undertaken at 

Nottingham [2.1]; the soaking times needed with conventional external cooling 

arrangements can be substantially reduced. Low temperature test conditions 

(-20°C) can be achieved in typically three hours starting from ambient, and 

subsequent tests can be carried out at relatively short intervals (usually one hour 

apart). Figure 2.1 gives a schematic of the arrangement used. 

When the engine is to be cooled, circuit valves are set to allow the coolant to 

circulate from the chiller plant through the radiator and engine block. The engine 

thermostat is either removed or fixed open to allow coolant flow. A fan on the 

radiator (permanently active during cold soaking) cools the air in the enclosure, 

promoting surface heat transfer. Since the engine oil is very slow to lose heat, 

finned heat exchanger piping is placed in the sump to provide extra cooling. 

Control of the temperature across the entire rig (including coolant, metal, oil and 

air temperatures) is better than ±1 °C. To reach the minimum test temperature of 

-25°C ±l°C required just under five hours from laboratory ambient. 

Temperatures to -29°C were possible, but over eight hours were required for 

soaking down. 

For "normal" operations including hot running, the cooling circuit is restored to 

its normal configuration, with a valve (C in the figure) used to control the 
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temperature, replacing the thermostat. Depending on test requirements, extra 

cooling may be provided for in the sump, augmenting the action of the normal 

engine oil cooler (not shown). This may be required since the usual air flow over 

the engine and radiator due to motion of the vehicle is not present in the test rig. 

Other modifications may be made depending on test requirements, described in 

the relevant sections. 

Firing-engine studies were carried out with the engine mounted in a test vehicle. 

The engine intake, electrical and fuel systems were enclosed in a temperature

controlled cell. This is similar to installations previously used at 

Nottingham [2.1], and is shown in Figure 2.2. The basic enclosure is constructed 

of 60 mm thick "Styrofoam" insulating material, clad in aluminium sheet. Special 

attention is given to sealing around the vehicle, including possible paths behind 

body panels, through the ventilation system and around underbody features. 

Around the transmission and exhaust, where the irregular shape prevented 

accurate fitting of the enclosure, glass fibre insulation was used. This has good 

insulation properties, while being unaffected by the high temperatures of the 

exhaust system. 

Since the seal around the vehicle cannot be perfect, problems can arise where 

damp air from the laboratory leaks into the enclosure, causing excessive frost to 

form on the radiator. This reduces its effectiveness to the point where the 

enclosure air temperature eventually begins to rise. To avoid this, a feed of dry 

air was used. Air from the laboratory compressor was dried using a desiccator, 

reducing the dew point to below -70°C. It was then passed through a pressure 

regulator and air cooler, allowing a feed temperature into the enclosure down to 

-27°C. This arrangement maintains a dry atmosphere within the enclosure, 

preventing frosting. In addition, it allows the engine to be run for extended 

periods with the enclosure sealed, if required. 
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The vehicle electrical system was modified to allow the use of an external battery 

to power the starter motor and glowplugs. A fully charged battery of the type 

normally in the vehicle was used for each test, soaked to test temperature. A fuel 

tank of approximately 4 litres capacity, also cooled to test temperature, was used 

to feed the engine with Gulf 40 reference fuel. The small size of this tank ensured 

that the fuel used was always fresh. Motorcraft SAE 10W/30 oil was used 

throughout unless otherwise noted. Most testing consisted of free starts, with the 

vehicle out of gear and the clutch disengaged. However, the drive wheels were 

placed on a chassis rolls dynamometer to allow operation under load when 

required. The dynamometer (absorbing only) was primarily used when running 

at high temperatures to condition the engine between series of tests. Exhaust 

gasses were taken from the tailpipe to an extractor and safely vented outside. 

2.3 Instrumentation 

Good data acquisition IS particularly important when investigating low 

temperature behaviour since, often, each test represents a considerable investment 

of time and effort. It is vital that as much information as possible is recovered 

from each test sequence, and that any possible problems are identified easily. 

Therefore, the acquisition system was designed to allow a large amount of useful 

data to be collected from each test. Instrument calibrations were checked at 

intervals throughout the life of each sensor, and through the entire measuring 

chain wherever possible. Data were sampled from different sensors depending 

on test requirements, but the sections below give an outline of the instruments 

used. 

Data acquisition was controlled by an IBM-PC compatible used with a 

commercial input/output card. Software was developed in-house to allow 16 

input channels to be sampled at Yz 0 (crank angle) intervals at speeds to over 

2000 rpm. Typically about 200 engine revolutions were captured, but the 

maximum limit depended only on free memory and the number of channels to 
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be sampled. The 12-bit digital data were recorded to hard disc in compressed 

form, along with calibration information to allow later analysis. Before each test 

the software checked the calibration of the system against two internal reference 

voltages, to identify any possible problems. This system was also able to record 

data at fixed time intervals if required, with sample rate (up to 25 kHz) specified 

in a small configuration file that also controlled parameters such as channels to 

sample and calibration information. 

Crank position was derived from an optical shaft encoder on the crankshaft, 

having two outputs: 720 pulses per revolution (used to trigger data sampling) and 

one pulse per revolution (used to identify the TDC position). The TDC marker 

pulse was placed as accurately as possible using the mechanical timing marks on 

the engine, and then the methods of Douaud and Eyzat [2.2] used to identify the 

exact position of TDC in cylinder 1. This encoder was also used to provide 

engine speed data, using a specially developed circuit to process the 720 pulses 

into a DC voltage. The circuit was based on a phase-locked loop, giving an 

output representing speeds up to 2000 rpm with a frequency response of about 

30 Hz, allowing relevant changes throughout starting to be accurately recorded. 

Calibration was performed using a signal generator and frequency meter to 

simulate input from the shaft encoder. 

Cylinder pressures were measured using Kistler 6123 piezo-electric transducers 

(200 bar range), mounted flush with the top of the main combustion chamber, 

used with Kistler 5011 charge amplifiers. Pressure transducer/amplifier pairs 

were calibrated using a Budenberg deadweight tester. Due to durability problems, 

the protective coating recommended by previous investigators to reduce 

measuring errors (originally by Brown [2.3]) could not be used. 

For fuel injection analysis, a Kistler type 4065A strain gauge pressure sensor was 

mounted in the high pressure fuel pipe, as close as possible to the cylinder 1 

injector. Used with a Kistler type 4617 amplifier, this had a full scale output at 
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1000 bar. The measuring chain was calibrated using the deadweight tester, as 

above. Needle lift in the cylinder 1 was measured using a specially modified fuel 

injector, driven by a Lucas FM oscillator and amplifier designed for this purpose. 

This was calibrated by moving the needle by external means and measuring the 

displacement by a "Millivision" position sensor (resolution better than 

0.005 mm). 

Temperatures were measured at several points around the installation using 

K-type thermocouples, calibrated against a standard PRT probe in a calibration 

bath. Enclosure air, engine coolant, sump oil, metal temperatures and others were 

recorded as required. Sampling of temperatures could be either continuous 

(simultaneously with other engine data) or immediately before and after the test. 

Reference junction compensation was performed in software, using the facilities 

of the data acquisition board designed for this purpose. 

2.4 Test Procedures 

Most of the testing reported here can be divided into two types: free-starts, and 

motored engine studies for friction breakdown analysis. Free-starts (engine start

up in neutral, without external assistance) were used to analyse cold start 

behaviour in firing engines. These allowed the influence of temperature, oil 

viscosity, cranking speed, fuelling parameters and so on to be studied. Motored 

friction analysis was used to assess the friction behaviour of various engine 

assemblies at different speeds and temperatures. Motoring friction testing and 

other procedures, such as the measurement of blowby losses, are described in the 

relevant chapters. The description below is for free-start tests, but similar 

consideration were applied in all testing. 

After ensuring that there was fuel in the tank, that the engine oil was clean and 

at the correct level, and that there were sufficient fully charged batteries in the 

test cell, the cooling phase began. This involved lowering the entire engine bay, 
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including fuel and batteries, to the selected test temperature over a period of 

several hours. Once at the target temperature, the engine was cranked (without 

fuel injection) to ensure that the lubrication system was fully primed. This is 

referred to here as pre-cranking, and its importance is discussed below. After this 

period of cranking the starter battery was replaced with one of the fully charged 

batteries in the test cell. A further hour was then allowed, holding at the selected 

test temperature, to ensure that all temperatures were steady across the entire rig. 

After this time, the first cold start attempt was made. 

Each cold start was designed to simulate normal operation closely, although 

compromises were made to allow more rapid testing. The ignition switch was 

closed to allow operation of the glowplugs for a time determined by the standard 

electronic controller supplied with the vehicle. Then, with the gearbox in neutral 

and the clutch disengaged, cranking commenced. This continued until either the 

engine started (reaching idle speed) or the test failed (after about 350 

revolutions); in the latter case an extra battery was added to achieve a start. In all 

cases, the engine was run for 20 to 30 seconds at moderate speed (about 

2000 rpm) to expel any unburned fuel left over from the attempt. The forced 

cooling was maintained throughout the test to prevent undue temperature rise, 

thus allowing the next test to be performed quickly. After changing to the next 

fully charged battery and waiting a further hour for temperatures to stabilise, the 

next cold start attempt was made. At the end of each day the engine was 

conditioned by bringing it to normal operating temperature and running under 

load for about 30 minutes. This conditioning run was carried out to encourage 

any fuel or water to evaporate from the sump oil, and deposits in the combustion 

chamber to be removed. Care was taken throughout testing to ensure the 

cleanliness of the engine oil, with the oil and filter being changed regularly: 

typically every 25 tests (under three hours total running time). 

Under this regime up to six starts could be made each day. Analysis of the data 

collected shows that there was no measurable change in engine performance 
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between the first and last tests. This is illustrated in Figure 2.3, showing the start 

time and variability for an "average" sequence of consecutive tests, performed as 

described above. The data here are derived from about fifty cold starts collected 

at -20°C using the same oil type and engine configuration, but using different 

injection timings. For this reason, the results are normalised by dividing by the 

average start time for each injection timing, thus removing this as an influencing 

variable. The figure shows that start time and variability are independent of test 

number, confirming that later tests are not influenced by earlier ones. 

If the engine is not pre-cranked, the first test is clearly quite different, as shown 

in Figure 2.4. This graph is based on a reduced number of tests, but clearly shows 

that starts are considerably shorter for the first test in each sequence, with 

increased variability. It has been found that this effect is caused by differences 

in the state of the lubrication circuit at the start of each test series, following a 

period of conditioning and a lengthy standing time. Although this may be closer 

to conditions in actual service, only one test per day could be achieved if this test 

method were employed. Additionally, the increased variability shows that 

conditions are not accurately repeated for this first test. For these reasons 

(extremely low test throughput and poor repeatability), pre-cranking was 

employed before testing, as described above. 

2.5 Discussion 

While care was taken with the installation and calibration of the equipment, there 

are naturally limits on the accuracy of any data collected. These arise due to 

uncertainties in calibration of the measuring chain and limits in equipment 

performance. Careful calibration reduces these errors to a low level in most 

cases: for example, temperature, speed, and fuel line pressure measurements are 

estimated to be within 1 % FSD. However, some operations present special 

difficulties; in particular, a number of measurements require accurate pressure

volume data to be obtained. Brown [2.3] calculated that, for diesel combustion 
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studies, the error in pressure-volume phasing should be less than 0.1 ° to keep 

IMEP errors below 1 %. Ball and others state that this phase error translates to a 

possible 4% error in FMEP [2.4]. Other authors [2.5, 2.6] suggest that a less 

onerous limit may be acceptable: 0.2° to 0.3°, depending on the rates of pressure 

rise. In the work described here, the methods of Douaud and Eyzat [2.2] were 

applied to achieve the best possible accuracy, estimated at between 0.1 ° and 0.20 

(crank angle). The sample interval used here (0.5° crank angle) was adequate for 

even the most sensitive analysis [2.6]. 

The difficulties faced when measunng cylinder pressure are widely 

reported [2.3, 2.5, 2.6], particularly the problems associated with short term drift 

in the pressure sensors [2.7]. Due to installation and operational difficulties, this 

work used non-cooled transducers showing moderate short term drift [2.8] 

without any protective coating [2.3]. The resulting drift (caused by thermal 

"shock" to the sensor during compression and combustion) may reduce the 

measured IMEP by 0.2 to 0.4 bar, depending on operating conditions. This also 

makes meaningful analysis of the gas exchange process impossible, so this part 

of the cycle was neglected (pressures set to atmospheric). This simplification was 

tolerable since, at the low speeds studied here, very little pumping work was 

required. To obtain a reference point for the recorded pressures, atmospheric 

pressure was selected at TDC in the open part of the cycle. At this point the 

piston is stationary, with both inlet and exhaust valves open, while the low engine 

speeds mean that the turbocharger is inactive and the pressure drops across the 

inlet and exhaust systems are minimal. Selection of this reference point has no 

impact on IMEP or friction calculations. Note that only one pressure transducer 

was used in each cylinder, placed in the main combustion chamber. This allowed 

accurate calculation ofIMEP, but any combustion calculations will be subject to 

errors due to the (unmeasured) pressure drop through the prechamber throat. 

To achieve a higher rate of testing, compromises were made during the free start 

testing programme, which may lead to differences compared to "normal" cold 
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climate operation in the field. The rapid rate of cooling employed before the first 

test may cause the engine oil to behave differently to the more traditional cold 

soaking schedule, as shown by Henderson [2.9] and May and Smith [2.10]. The 

forced cooling was maintained throughout testing, preventing any rise in water 

jacket temperature through the start. This has been found to reduce variability 

and slightly lengthen starts. With the tests carried out at one hour intervals and 

a period of pre-cranking before the first test, it was found that the lubrication 

system remained primed between tests, especially at lower temperatures. Thus 

the effect of leaving the vehicle to stand overnight is not simulated, where the 

engine oil would drain to some extent from the engine, oil pump and filter. In 

addition, modifications to allow a separate battery for each test (for glowplug and 

starter power) may alter start performance. Longer battery leads are generally 

required, but different cable types and the slight reduction in battery load (since 

the cranking battery does not power other vehicle systems) makes the overall 

effect unclear. However, the limitations described above are offset by the ability 

to achieve relatively rapid testing with good repeatability. These tests allow 

direct comparison when anyone variable is altered. 

2.6 Conclusions 

The experimental arrangement developed at Nottingham has proved capable of 

supporting a test schedule of typically six tests at -20°C each working day. An 

absolute minimum temperature of -29°C could be achieved, but only one test 

cycle per day was possible in this case. The minimum test temperature was 

limited by the capacity of the cooling plant used. 

Several possible difficulties have been identified, resulting either from measuring 

problems or limitations in the experimental methods. These have been minimised 

wherever possible (consistent with the required rate of testing) to allow collection 

of the best possible data. While it is accepted that the results obtained may not 

be exactly representative of actual conditions in service, it is felt that they give 
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a good approximation and are suitable for the research purposes described in this 

thesis. 
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Chapter 3 

BASIC START 
ENGINE 

3.1 Introduction 

CHARACTERISTICS, IDI 

The following contains details of cold start data collected from the Ford 1.8 litre 

illI diesel engine in standard production form. This engine variant was used for 

most of the starting and combustion studies described in this thesis, and is 

representative of IDI designs in current production. Detailed analysis of the 

starting process covering combustion calculations, friction measurements, and 

energy balance evaluations is given in later chapters. Here, the aim has been to 

identify the general changes in start characteristics which occur with falling 

temperature, and to provide a reference set of data against which the effect of 

engine modifications may be evaluated. Characterisation of start behaviour is 

made in terms of the times to complete each of the three main phases identified 

within the start: the period up to the start of combustion, the period throughout 

which input is required from the starter motor, and the total period up to idle 

speed. These initial investigations cover the effects of cranking speed, oil 

viscosity and ancillary loads as start temperature is lowered. 

3.2 Basic Start Performance 

The Ford 1.8 litre illI diesel engine was used in its production form, as fitted into 

a 1994 model "Sierra" vehicle, with the standard mechanical fuel injection 

system used throughout [3.1]. The turbocharged engine variant was used, as 

detailed in Appendix A. Motorcraft engine oil was used, with SAE lOW /30 grade 

used down to -20°C and 5W/30 below this point, unless otherwise noted. 
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As described in Chapter 1, a typical cold start can be divided into several stages. 

Here, the duration the phases are called the time to first fire, time to sustained fire 

and time to idle (4r, tsf and ~dle)· Also recorded for each start are the misfire rate , 

glowplug pre-heat times (the period before cranking when the glowplugs are 

active) and the minimum, average and maximum cranking speeds. 

3.2.1 Effect of Ambient Temperature 

As test temperature is lowered, the time to achieve first fire rises slowly at first, 

and then relatively rapidly below -10°C, as shown in Figure 3. 1. The time to idle 

speed rises in a similar manner, but the changes are much more pronounced: 

above O°C, idle is reached in under one second, rising sharply below -10°C to an 

average of about 34 seconds at -20°e. This rapid rise below a critical temperature 

suggests that, below this point, either: useful combustion cannot be achieved, or 

combustion output is unable to overcome rising friction and other losses. 

Cranking speed falls progressively with falling temperature due to the increase 

in frictional losses associated with rising oil viscosity [3.2, 3.3] and a 

simultaneous fall in battery output [3.4, 3.5]. This is illustrated in Figure 3.2, 

showing data collected using SAE 10W/30 viscosity oil down to -20°C, the 

minimum temperature for which this oil is recommended. The reduction in 

cranking speed makes starting progressively more difficult as blowby (the flow 

of cylinder gasses past the pistons into the crankcase) and heat transfer losses 

increase, leading to difficulty achieving ignition and a loss of useful output 

during combustion. Indeed, the manufacturer of this engine specifies the less 

viscous SAE 5W/30 grade oil below -20°C partly in order to maintain an 

adequate cranking speed for starting. 

Instantaneous engine speed traces show that, for temperatures above -10°C, firing 

commences in four to six strokes. The difference in times to first fire is due to 

changes in engine cranking speed, which alter the time to the first and subsequent 
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fuel injections. For the data collected below -10°C, combustion may commence 

much later, with up to twelve strokes required before firing is observed. This not 

only contributes to the longer average time to first fire, but to the increased 

variability observed. After firing is achieved, combustion is fairly consistent: 

misfires occur in only 10-15% of cycles up to idle, and are largely unaffected by 

changing temperature. 

Changes in time to first fire make up only a small part of the observed change in 

time to idle speed. Therefore the problem is not in obtaining firing cycles but in 

achieving enough useful combustion work to overcome friction and other losses. 

Once enough combustion output is available (that is, after achieving sustained 

fire at tsf) idle speed is quickly reached, but tests show that below a critical 

temperature, there is an extensive period of firing-assisted cranking. Speeds 

during this phase are well above those achieved by unaided cranking, but 

combustion does not provide quite enough power to complete the speed run-up 

to idle. This phase makes up an increasing proportion of the start time as 

temperature decreases, as Figure 3.3 shows. 

3.2.2 Effect of Cranking Speed 

In order to separate the effects of temperature and cranking speed, tests were 

performed where the power to the starter motor was deliberately reduced by 

introducing extra resistance into the starter circuit. This had the effect of 

lowering cranking speed at any given temperature. The speeds achieved are 

presented in Figure 3.4; temperatures below -10°C were not included due to the 

extremely low minimum speeds obtained. 

Reducing cranking speed causes start quality to deteriorate considerably, 

especially at lower temperatures, as shown in Figure 3.5. The increased time to 

first fire is partly due to the longer time to the first and subsequent injections, but 

also because filing does not commence for several strokes. At normal cranking 
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speeds, firing typically commences after five fuel injections at -10°C and three 

at -1°C. Lower speeds require double the number of injections to achieve first 

fire under the same conditions. In the limiting case, cranking too slowly leads to 

complete failure of combustion, making starting impossible. The figure shows 

that time to idle speed is lengthened considerably over this temperature range. In 

this case, this is mostly as a result of changing time to first fire, although there 

could be an effect on firing assisted cranking that is not apparent at these 

temperatures. 

3.2.3 Effect of Oil Viscosity 

In order to reach idle speed, the useful work produced by combustion must 

exceed all the losses in the engine and associated equipment. This suggests that 

start performance will be improved when using a lower viscosity engine oil to 

reduce friction [3.2, 3.3]. To examine this possibility, start tests were repeated 

using a less viscous SAE 5W/30 graded engine oil. The kinematic viscosity of 

this oil is similar to the SAE 10W/30 at higher temperatures, but considerably 

reduced at lower temperatures, as shown in Figure 3.6 [3.6]. 

At higher temperatures, oil viscosity is relatively low and the absolute difference 

between SAE 5W/30 and 10W30 oils has a negligible effect on cranking speeds. 

At sub-zero temperature the effect is more marked, with a 13% rise in cranking 

speed observed at -25°C, as illustrated in Figure 3.7. Start quality is also 

improved slightly by changing to the lower viscosity oil. The data given in 

Figure 3.8 reveal that this improvement is due to shortening of the firing-assisted 

cranking phase rather than the time to achieve first fire. Note that in exploratory 

tests at -25°C with the SAE 10W/30 oil, no starts could be achieved within 350 

engine revolutions. 

28 



3.2.4 Effect of Ancillary Loads 

High frictional losses in engme ancillaries and their associated drive 

arrangements may be expected to lengthen starting times, both by reducing 

cranking speeds and by absorbing some of the combustion energy which would 

otherwise be available to accelerate the engine. Conversely, any reduction in this 

parasitic loss would he expected to improve stmi quality, in a similar way to 

reduced oil viscosity. This has been investigated by carrying out tests where the 

non-essential ancillaries were removed from the test engine. By removing the 

relevant drive belts, losses due to the power steering pump, coolant pump, 

alternator, two poly-vee drive belts and idlers were eliminated. Comparative tests 

were performed using the less viscous SAE 5W/30 graded engine oil, to make the 

effect of changing ancillary loads more easily measurable. Figure 3.9 shows the 

impact of removing the ancillary loads on time to idle speed. Changes to 

cranking speed and first fire were minimal. It can be seen that the impact at 

higher temperatures (over -10°C) is negligible, but that the effect becomes 

significant by -20°C where a reduction of over six seconds (about 25%) in start 

time results. 

3.3 Conclusions 

Reducing ambient temperature causes a progressive fall in cranking speed, due 

to reduced starter output (primarily due to reducing battery performance) coupled 

with increasing friction (due to rising oil viscosity). Lower cranking speeds 

correspond to a greater delay before firing commences. This longer delay is due 

to increased heat transfer and blowby losses which lower temperature and 

pressure in the cylinder at the time of fuel injection. If the cranking speed drops 

too far firing cycles may either fail to occur or become so infrequent that starting 

fails. 
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Starting at temperatures above -looe is rapid. Firing commences almost 

immediately and the engine reaches idle speed in typically under one second. As 

the temperature drops below this range, a period of firing-assisted cranking 

begins to become dominant. During this phase many firing cycles occur, but not 

enough output is generated to accelerate the engine up to idle speed. A plateau 

speed is reached at which the starter motor remains engaged and assists in 

maintaining engine rotation. Typically this is in the range from 200 to 400 rpm. 

After a period of this firing-assisted cranking, which may account for up to 95% 

of the total start duration, the engine will accelerate to idle speed without further 

need of the starter motor (sustained fire is reached). The periods up to first fire 

and after sustained fire are relatively insensitive to start temperature. As 

described in later chapters, combustion and starter motor output are balanced 

against frictional losses during the firing-assisted cranking phase. The engine 

cannot be accelerated further because the power output of the starter motor falls 

rapidly towards zero at engine speeds above about 500 rpm. 

Measures taken to reduce total engine friction, such as removing ancillaries and 

using less viscous oils, shorten start times by reducing the firing-assisted 

cranking phase. These do not significantly alter other stages of the start-up. At 

higher temperatures rapid starts are possible because the friction losses are 

relatively low compared to the work output produced by combustion. In this case, 

the firing-assisted cranking phase of the start-up is effectively eliminated. 
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Chapter 4 

CONSTRAINTS ON START QUALITY, IDI 
ENGINE 

4.1 Introduction 

The data presented in Chapter 3 shows that, at lower temperatures, a long period 

of firing-assisted cranking makes up much of the total start time of the Ford 

1.8 litre IDI diesel engine. During this period, a balance is maintained between 

frictional losses and the work available from the starter and combustion. A more 

detailed understanding of this constraint is developed in the following, based on 

further experimental studies and construction of a model which allows the 

relevant effects to be studied more systematically. 

Understanding conditions controlling speed variations during low temperature 

starting has been approached by investigating the balance of work done on the 

crankshaft. The terms taken into account are: the work done on the piston by 

cylinder gasses, the work done on the engine by the starter, the total frictional 

losses in the engine and ancillaries (but not including gas pumping work), and the 

effective brake output available at the crankshaft. In each case, these are 

expressed as mean effective pressure values (IMEP, SMEP, FMEP and EMEP 

respectively), obtained by dividing the work per cycle by the cylinder volume 

displaced: 

MEP [bar] 
Work per cycle [J] 

(4.1) 
Swept Volume [m 3] x 10 5 [Pa Ibar ] 
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From equilibrium of work input and output at the crankshaft, the relationship 

between these four pressures is given by: 

ThlliP + SMEP = EMEP + FMEP (4.2) 

In order to eliminate the effect of reciprocating masses, the energy balance is 

evaluated for each complete stroke. 

Il\1EP is evaluated in the conventional way from pressure-volume data recorded 

in all four cylinders of the engine, over a range of speeds and temperatures. In 

the ideal case, IMEP would be evaluated based on the integral of cylinder 

pressure with cylinder volume over the complete cycle. This would give the net 

Il\1EP acting on the piston and includes any contribution during the gas exchange 

phase. However, as described in Chapter 2, thermal shock in the cylinder 

pressure sensor prevented analysis of the open part of the cycle. IMEP was 

therefore evaluated only over the closed part (compression and expansion 

strokes), ignoring the gas exchange phase; this is referred to as the gross IMEP. 

The difference between gross and net values is associated with undesirable flow 

losses through the inlet, exhaust and valves, and possible action of the 

turbocharger at higher speeds. However, since the cycles of interest here occur 

at low engine speeds, the work done on the gasses during the neglected strokes 

is insignificant. In this analysis, gross IMEP values are used throughout, but are 

almost identical to net figures. 

EMEP represents the effective brake output. Brake output at the flywheel, 

BMEP, would normally be evaluated by analysis of output torque, measured at 

steady speed by a dynamometer. In the free start testing reported here BMEP is 

zero, as the engine is started in neutral with no output taken from the flywheel. 

Instead EMEP is used, representing the energy which goes into accelerating the 

engine. It was evaluated by considering the change in engine speed over the 
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stroke, coupled with the known inertia. This allows the work done W to , INERTIA, 

be evaluated from: 

(4.3) 

where CJ)B and CJ)E are the engine angular velocity at the beginning and end of the 

stroke respectively, and IENG is the engine inertia. Inertia for the total engine is 

approximated by that for the flywheel and pressure plate assembly, crankshaft 

and big ends (Appendix A). WINERTIA is then used to derive EMEP, using 

equation (4.1). This leaves the starter and friction work, SMEP and FMEP, 

unknown in equation (4.2). Although the friction contribution is not measured 

directly, starter input was calculated using a suitable model, described below, 

when the FMEP can then be inferred. 

4.2 Starter Model Development 

To calculate starter motor input, models for the entire electrical system involved 

in starter operation are required: the battery, connecting leads, starter motor and 

gearing, and any other relevant electrical loads. The model has been developed 

from a set of assumptions and component experiments. It allows the starter input 

to be calculated over a more general range of speeds and temperatures without 

further specific measurements being made. 

4.2.1 Battery and Lead Characteristics 

The lead-acid batteries used in this work (specified in Appendix A) are described 

in the model by the equivalent circuit of Figure 4.1, with the lower graph 

showing values used at different temperatures. These values were determined by 

measurements made on a set of five fully charged batteries, soaked to the test 

temperature for several hours. 
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Open circuit voltage, Vb, was measured directly at the battery terminals with no 

current flowing. Since this value drops as the battery becomes discharged, it was 

measured both before and after a cold start. The mean of these two figures was 

then used, in an effort to obtain a value close to the "average" condition during 

starting. The five-battery average figures are shown, rising from 12.0 V at -29°C 

to 12.8 V at +10°C. 

Internal resistance, ~, is a measure of the drop in voltage at the battery terminals 

when current is drawn, and cannot be measured directly. Instead, a high power 

resistor was used to draw up to 250 A, with the battery terminal voltage and 

current recorded throughout. Simple application of Ohm's Law then allows 

calculation of ~. Again, the five-battery averages are shown, falling from 

7.5 mn at -29°C to 5.9 mn at +10°C. 

Lead resistance, ~, could not be measured accurately by direct methods, due to 

its very low value. Instead, it was calculated by measuring the voltage drop 

across the lead with a known current flowing (again, up to about 250 A). As 

before, Ohm's Law allowed the resistance to be calculated: for the installation 

here, a total lead resistance of 1.09 mn was measured. This included not only the 

leads themselves, but all associated crimped and bolted connections. 

The combined effects of the changes in Rb and Vb result in a considerable fall in 

battery output with changing temperature. For example, if 400 A (not an 

unreasonable starting current) is drawn at + 10°C, about 4.2 kW will be delivered 

to the load; at -29°C this drops to about 3.6 kW. An additional 170 W must be 

subtracted from these figures if the resistance of the leads is included. These 

effects add to the difficulty in starting the engine at low temperatures both by 

reducing cranking speeds (making it more difficult to achieve firing cycles), and 

by reducing the energy input by the starter during the phase of firing-assisted 

cranking. 
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4.2.2 Starter Motor Characteristics 

The manufacturer of the motor supplied data in the form of graphs showing 

starter voltage, speed, and torque against starter current, measured at various 

temperatures from -29°C to +10°C [4.1, 4.2]. This information enables the 

calculation of the effective electrical "resistance" of the motor at each 

temperature and speed, as well as the input and output power at each condition 

to allow determination of the efficiency. The effective resistance and efficiency 

were found to vary only slightly with changing temperature over the range for 

which data were supplied, and subsequently these variations have been neglected. 

However, both parameters are strongly dependent on starter speed, <">s, as 

Figure 4.2 shows. They are represented in the model as functions of starter speed: 

Rs( CA>s) and fls( CA>s) for effective resistance and efficiency respectively. Thus, if 

the starter motor speed and terminal voltage, V s, are known, the output power, 

P OUT, can be calculated from: 

(4.4) 

A model in this form can be used to estimate starter output at any given speed, 

over the temperature range -29°C to + 1 O°e. There is no reason to believe that the 

model could not be extended to cover a greater range of temperatures provided 

that data were available to verify that single curves for starter effective resistance 

and efficiency were still valid. 

4.2.3 Complete Starting System Model 

The complete starting system was modelled by combining the component 

elements described above; the equivalent circuit is shown in Figure 4.3. During 

test work, the starting system was powered using a separate battery to that 
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supplying other vehicle systems. In this case, the only electrical loads to be 

considered are those associated with the glowplugs and the motor itself. 

Equation (4.4) can be used to calculate starter output power, if the voltage across 

the motor, V s, is known. If the glowplugs and associated cables are represented 

by a resistance Ro, then the total battery current, IE, must be evaluated. This is 

equal to the sum of starter and glowplug currents (IE = Is + IG)' It was found that 

the glowplug current (controlled by the resistance Ro) required a complex model 

to give a good representation, due to a basic dependence temperature coupled to 

rapid changes in current with time. However, the contribution to IE is typically 

less than 10% at cranking speeds and can be neglected under these conditions. At 

the higher speeds reached during firing-assisted cranking, the starter current is 

lower and IG becomes more significant. Under these conditions, however, the 

contribution of the starter is relatively small compared to combustion work, so 

the accuracy of the starter model is correspondingly less important. This allows 

the simplifying assumption to be made that the glowplug resistance is infinite and 

hence the current is zero (Ro = 00, IG = 0). Therefore, since IE = Is, the voltage 

across the starter motor is given by: 

(4.5) 

Combining equations (4.4) and (4.5) gives an equation for output power, POUT: 

Pour = (4.6) 
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Figure 4.4 shows how modelled output power and torque change with speed. 

Solutions at -2 qoC and + 10°C are shown, demonstrating the considerable change 

in output with changing temperature. 

4.2.4 Application to Engine Start Data 

The model described by equation (4.6) allows the starter output power to be 

calculated at any speed, based on simple functions (or tables of values) 

describing changes in battery and starter motor performance with speed and 

temperature. The model allows the input from the starter motor to be calculated 

for real cold start tests, and hence values for engine friction can be inferred. The 

method used involves calculation of instantaneous starter speed to give starter 

input evaluated over each complete stroke. 

Instantaneous speed has been calculated in 360 steps per stroke, corresponding 

to the samples obtained during data acquisition. At the start of the first stroke, the 

starter speed was set to zero; subsequent strokes used an initial value based on the 

end of the previous stroke. Initially assuming the starter to be disengaged, speed 

at the next step was calculated using the known inertia of the starter and the value 

of POUT from equation (4.6). This was then compared with measured engine 

speed data; if it was higher (after accounting for the gearing), then the motor 

must be engaged with the flywheel and true starter speed was set from measured 

data. However, if the calculated value was lower, the starter was disengaged (on 

its overrun clutch) and the calculated speed was used as the initial condition for 

the next step. 

Figure 4.5 shows measured engine speed and calculated starter speed (referred 

to the crankshaft) for cranking at + 19°C. Note that, for demonstration purposes, 

the starter power was limited during this test by increasing the lead resistance 

(RL ~ 20 mn). This separates the two speed traces in the figure for clarity. Under 

these conditions the starter motor is free-running from about 180° to 270° (that 
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is, during the expansion stroke). When the starter motor re-engages with the 

flywheel, it causes a series of "spikes" in the measured engine speed trace, drives 

the engine through the compression stroke, and disengages again at about 360°. 

Although exaggerated by the lowered starter power in this case, this cycle of 

free-running and driving is typical of starter operation over a wide range of 

temperatures. 

During calculation, the work done by the starter, both on the engine and on its 

own inertia, was evaluated by integration of POUT with respect to time. At the end 

of each stroke, a simple energy balance is applied to evaluate the work done by 

the starter on the engine. The total work done, fPouT.dt, was known, as were the 

initial and final speeds of the starter motor. The useful work transferred to the 

engine was simply the total minus any change in rotational kinetic energy of the 

starter motor (ignoring friction in the starter). 

There are a number of factors which may affect the accuracy of model 

predictions. Potentially the most serious is that generic specifications are used to 

describe that starter and battery. The specification of starter characteristics is 

derived from typical values supplied by the manufacturer, and the parameters are 

for an "average" battery. In practice there are differences in battery performance 

and potentially large differences between starter motors. The actual variance of 

each specific component from these averages is unknown; calibration of each 

would be required for improved accuracy. Similarly, neglecting the effects of 

glowplug current, slight changes in starter characteristic with temperature, ohmic 

heating of the starter system, and changes due to battery discharge throughout 

starting. The impact of omitting these considerations is small but difficult to 

quantify. 

This model for SMEP was used in equation (4.2), leaving FMEP as the only 

unknown. Figure 4.6 shows how the separate terms make up the calculation of 

FMEP for a period of firing-assisted cranking at -200 e. EMEP was very small 
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over the interval shown, due the small speed changes throughout each revolution; 

it is not shown in the figure. The shape of the FMEP line gives a good indication 

that the SMEP calculation is quite accurate: the friction does not vary despite 

large fluctuations in measured IMEP. Over the 40 revolutions shown in the 

figure, FMEP falls smoothly from 9.5 bar to 7.6 bar. Data collected from a 

motored engine under similar conditions allowed direct measurement of FMEP; 

the initial value of 10.0 bar agrees well with the calculated value here. 

4.3 Basic Combustion Analysis 

The useful combustion output is represented by the indicated mean effective 

pressure, IMEP, described above. This gives a measure of the work done by the 

cylinder gasses on the piston. Examination of the way in which IMEP changes 

with speed and ambient temperature can give important insight into the 

mechanisms controlling cold starting, and areas requiring attention in order to 

improve performance may be identified. 

To achieve rapid cold starting, the combustion of fuel in the cylinder should 

commence within a few injections, and enough useful work should be transferred 

to the crankshaft in each stroke to accelerate the engine against friction and other 

losses. As described earlier, at lower temperatures combustion does not release 

enough usable energy to accelerate the engine without continued aid from the 

starter motor. At higher temperatures (above about -10°C) the situation is better, 

with combustion output quickly accelerating the engine to idle speed, either 

because IMEP is higher or FMEP is lower. Looking at the variation of IMEP 

with engine speed at two temperatures (Figure 4.7), indicates that changes in 

IMEP are not the prime effect. In the non-firing cycles under cranking 

conditions, blowby and heat transfer losses contribute about -2 bar to IMEP at 

both -20°C and + 10°C. In firing cycles, the IMEP at both temperatures appears 

to be similar up to about 450 rpm: starting from -2 bar at cranking speed, it rises 
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sharply to 4 bar at 250 rpm and thereafter more slowly to 5 bar at 350 rpm and 

almost 6 bar at 450 rpm. 

The speeds up to 450 rpm are critical during starting, since this covers the range 

of firing-assisted cranking which dominates start times at lower temperatures. 

Since, over this range, the IMEP is unaffected by temperature, it seems that 

changes in combustion are not the primary cause of reduced start quality at low 

temperatures. At higher speeds, as idle conditions are established, the 

characteristics appear to separate. The IMEP at -20°C is higher than at + 10°C. 

This may be explained by the action of the fuel pump idle governor, coupled with 

different friction levels in each case. At steady idle speed with no load on the 

engine, all the useful combustion output goes to overcoming friction, with the 

injection pump cutting down the fuel (therefore controlling IMEP) to balance ~he 

two. In this case we may surmise from the figure that the friction at idle speed 

is about 4 bar at + 10°C, rising to about 7 bar at -20°C. 

4.4 Friction Throughout Cold Starting 

Application of equation (4.2), in conjunction with the starter model of 

equation (4.6), allows engine friction throughout starting to be calculated from 

free start data. The results show that the initial level of friction is very dependent 

on start temperature, as Figure 4.8 shows. Comparing this with Figure 4.7, a 

fundamental difficulty with starting this engine is revealed: below -10°C, the 

maximum IMEP of about 7 bar is less than the initial FMEP values. However, 

FMEP falls steadily with time after the start of engine cranking, eventually 

allowing the speed run-up to idle to be completed. At -20°C, about 100 

revolutions were required before the friction drops to the point where IMEP 

exceeds FMEP and idle speed was reached. Start quality at these lower 

temperatures can therefore only be improved by either raising IMEP or reducing 

friction considerably. 
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Changing to the less viscous SAE 5W/30 oil gave slightly reduced friction levels 

(Figure 4.9), which would explain the previously reported improvements in start 

time noted in Chapter 3. With this oil, a reduced number of turns was required 

for the friction to reach the critical level (about 75 revolutions to reach 7 bar at 

-20°C). As an approximate measure, this equates to an improvement of 

4-8 seconds at typical firing-assisted cranking speeds of 200-400 rpm. this 

compares favourably with the improvement of about 8 seconds observed in start 

tests. The change in friction when the non-essential ancillaries were removed is 

less marked, as illustrated in Figure 4.10. The change was not easily measurable 

at higher temperatures, but the time to 7 bar reduced from 75 to about 60 

revolutions at -20°C. Making an estimate as before, this corresponds to about 

2-4'li seconds at typical firing assisted cranking speeds, compared with the 

measured change of about 6 seconds. 

4.5 Constraints on Start Quality 

The work described in previous sections allows the main constraints on start 

quality to be identified. At higher temperatures (Figure 4.11), firing commences 

almost immediately (on the second stroke), with the lMEP exceeding the FMEP 

(5'li bar against just over 4 bar). The engine quickly accelerates to idle speed, 

where the injection pump reduces fuelling until the combustion work matches the 

friction losses. This happens in only a few engine revolutions, with the start time 

being controlled by the rate of acceleration in the run-up phase. This is controlled 

by the effective brake MEP available, EMEP (equal to lMEP + SMEP - FMEP) 

and the inertia of the engine. 

At lower temperatures (Figure 4.12), about four strokes are required to achieve 

strong firing cycles, but this period is insignificant when compared with the total 

start duration of over 100 revolutions. The lMEP achieved after first fire is 

similar to the higher temperature case (about 5'li bar), but this is far short of the 

frictional loss of almost lObar, and an extended phase of firing-assisted cranking 
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is entered. The friction gradually falls, with the engine rotating at about 300 rpm 

under the influence of steady firing and the starter motor. As the FMEP falls 

further, the speed begins to climb. This has the effect of raising the IMEP 

because of the dependence ofIMEP on speed (refer to Figure 4.7), which causes 

the speed to rise further. However, the engine still does not start, since the output 

from the starter (still required to maintain rotation) falls off sharply as speed 

rises. Finally, after some 115 revolutions, the friction drops to such an extent that 

the IMEP is greater than FMEP, and the engine can run without the support of 

the starter motor. At this point, the engine runs quickly up to idle speed, and the 

start is complete. 

4.6 Conclusions 

The output available from combustion in the Ford 1.8 litre IDI engme IS 

insensitive to temperature, but extremely sensitive to engine speed. IMEP values 

of about 7 bar can be generated at engine speeds above about 500 rpm, but are 

considerably reduced at lower speeds. As geared, the starter motor work input to 

the crankshaft falls more rapidly than combustion work rises with engine speed. 

At low temperatures, the sum of SMEP and lMEP balances initial frictional 

losses at less than idle speed, and rapid starting is not achieved. 

A model for starter motor input has been developed. This, along with a simple 

energy balance equation, allows total engine friction to be evaluated throughout 

cold starting. The friction has been show to rise sharply with falling temperature, 

reaching an initial value of about 10 bar with the SAE 10W/30 grade oil at its 

minimum operational temperature of -20°C. However, this frictional loss is 

observed to fall steadily with time, allowing the engine start to be completed 

eventually even at the lowest temperature examined. Changes in start time due 

to viscosity reductions and the removal of non-essential ancillaries have been 

investigated. The experimental results have been explained by examination of the 
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resulting friction changes, showing that a given reduction produces a predictable 

improvement in start quality. 

Above a critical temperature, (about -12°C for 10W/30 and -15°C for 5W/30), 

the firing IMEP exceeds FMEP at the start of the test, and the engine will start 

quickly. Below this temperature, IMEP is insufficient to overcome initial friction 

and the start begins to extend. In this case, there is a period of firing-assisted 

cranking while the friction falls to meet the available Ir..1EP. Engine will not start 

until Ir..1EP exceeds FMEP; up to this point, the speed cannot exceed 

450-500 rpm, because input is needed from the starter motor. 

Decreasing either the time to first fire or the run-up time after sustained fire 

would give only a relatively small improvement, and would only be useful after 

other areas have been addressed. To achieve a more useful improvement in start 

times, two main strategies can be formulated from interpretation of the results 

obtained. These are based on either increasing Ir..1EP by changes to the 

combustion system, or decreasing the absolute level of friction. The former may 

be achieved by changes to blowby or heat transfer factors, fuelling strategies, 

combustion chamber design, or glowplug parameters. Measures which might be 

taken to reduce friction are more difficult to define and relevant further 

investigations are described in later chapters. However, it has been shown here 

that reducing Fr..1EP improves start time as expected, although only limited 

changes were possible. Changes to the lubrication system, ancillaries or bearing 

surfaces may give further improvements. Similar changes may also increase the 

rate at which friction falls during firing-assisted cranking. 
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Chapter 5 

BLOWBY MEASUREMENT AND ANALYSIS 

5.1 Introduction 

Blowby is the leakage flow of cylinder gasses past the pistons and into the 

crankcase. This flow occurs because of the imperfect sealing of the piston rings 

and the pressure differential between the cylinder and crankcase. The mass loss 

due to blowby, typically a few percent of the charge trapped at inlet valve 

closing, reduces the temperature and pressure of the charge, affecting the 

probability of successful compression ignition when fuel is inj ected. The effects 

of blow by on cold starting are potentially serious. Because cylinder pressure and 

temperature are changed, heat transfer losses are also altered. Without 

independent knowledge of either blowby or heat transfer, the influence of these 

cannot be separated. 

The study reported in this chapter has been carried out to assess the importance 

of blowby to cold start performance. The experimental work provides 

quantitative data on blowby rates. Initially, blowby was correlated using a simple 

function, developed from incompressible flow formulae. This correlation 

provides a conveniently simple rationalisation of net blowby per cycle. 

Subsequently, to examine conditions within the cycle, a model has been 

developed from a more fundamental description of the blowby process. 

5.2 Background 

Brunner and Ruf [5. 1] reported that lower cranking speeds were encountered at 

low temperature, due to increased engine friction and reduced battery 
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perfonnance. A reduction in cranking speed with falling temperature has been 

observed by many other investigators [5.2, 5.3, 5.4]. Henein and others [5.5, 5.6] 

have observed that blowby increases sharply as engine speed falls, reaching about 

10% of the trapped mass at 200 rpm. It was suggested that this level of blowby 

could result in reduction of some 100°C in peak cylinder temperature in the 

direct inj ection diesel engines studied. Therefore, this rapid rise in blowby is 

likely to have an important influence on cold starting. 

Henein reported no significant change in blowby with changing temperature at 

constant speed (from below -40°C to +20°C). Neveu [5.7] reported that, in two 

fully wann test engines at 1500 to 2500 rpm, blowby was reduced by using 

monograde engine oils of higher viscosity. It has been shown by Austen and 

Lyn [5.8] that fuel injected into a diesel engine under cranking conditions can 

reduce blowby by assisting ring sealing. Wentworth [5.9] reported that blowby 

flow was dominated by the area of the smallest piston ring gap, although 

Munro [5.10] points out that the ring gap "effective area" is altered by numerous 

factors including temperature effects (changing clearance, bore distortion), 

supporting lands (clearance, chamfers), groove, bore and ring condition 

(deposits, progressive wear) and motion effects (ring twist, piston slap). 

Measurements made by Furuhama and other workers [5.11] showed that the 

"effective area" through which blowby occurred could be up to at least six times 

that due to the ring gap. 

Many mathematical models describing blowby have been developed, of varying 

complexity. The simplest models assume a single piston ring, with compressible 

gas flow through the ring gap, such as that proposed by Rao, Gardiner and 

Bardon [5.12]. In this model, the ring gap was assumed to be fixed, with no 

movement of the ring from the bottom face of its groove, and with the gas flow 

being cooled to metal temperature by the large surface area. To obtain good 

agreement with experimental results, the leakage area had to be raised as a 

reciprocal function of speed below 1000 rpm. When used with suitable heat 

45 



transfer models, reasonable predictions of cylinder temperature and pressure in 

a small diesel engine were made. The model predicted that blowby (together with 

heat transfer) caused a significant reduction in peak cylinder temperature and 

pressure, especially at lower speeds, leading to possible starting difficulties. 

A more complex model considers the path from combustion chamber to 

crankcase as a series of connected volumes separated by the compression rings, 

such as that described by Munro [5.10]. In this work, similar assumptions to the 

above are employed. Additionally, it was assumed that the pressure was uniform 

within each volume, pressure above the top ring was equal to cylinder pressure, 

and that there was no pressure drop across the oil control ring. Munro reported 

that, for a variety of engines, the deduced leakage areas were 11;2 to 6 times those 

predicted by measurement of the ring gap; this agreed well with other 

workers [5.11]. No data were presented to allow correlation between this model 

and instantaneous measured results to be judged. 

The most complex model reviewed here is represented by the work of Namazian 

and Heywood [5.13]. This is based on the connected volume model described 

above, with additional allowance for piston ring motion, as suggested by 

Furuhama and other workers [5.11]. Experimental results were reported which 

verified that the gas flowing through the crevice regions could be assumed to be 

at metal temperature. Using similar assumptions to the works above, this model 

was able to make predictions that agreed closely with observed data. 

5.3 Experimental Study of Blowby 

An initial study was carried out using the Ford 1.8 litre IDI engine (turbocharged 

variant) under cranking conditions. Using this engine, the effects of ambient 

temperature and cranking speed were examined, along with measurement of the 

individual contribution of each cylinder to total blowby. This study was then 

extended to include the basic blowby characteristics of various other test engines 
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under unfuelled cranking (or motoring) conditions. Additionally, the impact of 

fuelling and firing cycles on blowby was examined. 

Figure 5.1 is a schematic of the system used to measure blowby to the crankcase. 

Blowby gas from the crankcase was exhausted to atmosphere through a (wet 

type) positive displacement gas meter, with measurement of gas temperature and 

pressure to allow the cumulative mass to be calculated. All possible leakage paths 

from the crankcase were sealed to ensure that all blowby was measured; pressure 

in the crankcase was not measurably changed by these alterations. The gas meter 

was initially calibrated by passing air through it and collecting the output over 

water in a large glass column, showing the meter to be accurate within 1 % if set 

up carefully. 

When tests at higher speeds caused excessive back pressure in the crankcase, or 

where firing operation caused the blowby gas temperature and pressure to 

fluctuate significantly, this method of directly coupling the gas meter to the 

engine could not be used. In these cases, the blowby gas was collected in a 

specially constructed bag, having a maximum volume of about 1.5 m3
. To 

measure the mass of gas collected, it was allowed to cool to a steady temperature 

and then evacuated through the gas meter at constant pressure. 

5.3.1 Correlation of Results 

Initially, a simple correlation was developed with the aim of synthesising results 

with the minimum of calculation effort. This is based on the Bernoulli equation 

for incompressible flow through an orifice: 

(5.1) 
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Here m bb is the mass flow rate of blowby gas, with Cd and A the orifice 

discharge coefficient and area respectively. The pressure drop across the orifice, 

aP, was calculated as the difference between the logged cylinder pressure and the 

known crankcase pressure. p is the gas density, evaluated at liner temperature 

and cylinder pressure, as in reference [5.13]. A calibration for the "effective 

blowby area" (Cd·A) is obtained by matching the integral of equation (5.1) over 

the cycle to measured values of blow by. This integration is done using measured 

cylinder pressure variations throughout the cycle. 

Calculations showed that, whilst correlation was very good at higher speeds (over 

the range 100 to 1000 rpm), equation (5.1) underestimates blowby rates at lower 

speeds by up to 5%. The discrepancy is similar to that found by Rao, Gardiner 

and Bardon [5.12]. Using data from the Ford 1.8 litre IDI engine (the only 

engine for which very low speed data are available), a modifying factor was 

derived to bring the predictions in line with measured values. This gave a 

correlation for blow by, described by: 

(5.2) 

Where Kul [-] and ~ [rpm-I] are constants and nmin is the minimum engine speed 

during the cycle. For the engine used here, ~ = 0.78 and ~ = 0.048 rpm-I was 

found to give the best fit to the experimental data. The effective blowby area was 

found to be about twice the calculated area of the smallest ring gap 

(Wentworth [5.9] states that blowby correlates with the smallest gap). Furuhama 

et al [5. 11] observed factors of up to six in their investigations under normal 

conditions. 

Figure 5.2 shows output crank angle resolved results predicted using the 

correlation for a typical cycle. The results show close agreement between 

predicted and measured values of blowby over the cycle. Overall, when using 
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experimental data from the Ford 1.8 litre IDI engine, this correlation gave an 

average error of 0.3%. The standard deviation was 4.6% over all test results , 

which is comparable to the spread of experimental data. These data cover 

ambient temperatures from -26°C to +20°C, at average speeds from about 70 rpm 

to 250 rpm, and are illustrated in Figure 5.3. Similar analysis of data from other 

test engines at higher speeds show that this accuracy is maintained up to at least 

1000 rpm. 

5.4 Blowby Model 

The simple correlation developed above allows the total (per cycle) blowby 

throughout cold starting to be calculated over a range of speeds and temperatures. 

This allows the analysis of factors which may be measured in terms of blowby 

fraction; for example the effects of speed, temperature, fuelling, piston and ring 

changes and others. However, to accurately determine the trapped mass at any 

point in the cycle (for example, as required for heat release calculations), a more 

complex model is needed. 

The model developed here is similar to that of Munro [5.10] and others. The 

blowby flow path is treated as a number of volumes connected by narrow 

passages. Within each volume the temperature and pressure of the gas is assumed 

to be constant, and the connecting orifices are assumed to be of fixed size. The 

piston rings are assumed to be against the bottom of the groove throughout the 

cycle; previous experimental studies by other workers [5.11] have shown that this 

is true throughout almost the entire compression and expansion strokes during 

normal operation. Figure 5.4 shows the system as modelled here, based on two 

compression rings. The oil control ring assumed to present a negligible resistance 

to blowby flow. Region (1) is above the top ring, region (2) is between the rings 

and region (3) is below the second ring, effectively in the crankcase. All regions 

are assumed to be at metal temperature, with region (1) assumed at cylinder 

pressure and region (3) at crankcase pressure. The initial mass in region (2) is set 

49 



by assuming it to be at the mean of cylinder and crankcase pressures. The 

pressures in the cylinder and crankcase are known, so we must solve for 

region (2) for each step at from time (n) to (n+l). Assuming no changes in gas 

temperature, we have: 

(5.3) 

Where: 

P2(n+l) - pressure in region (2) at step (n+l) [Pa] 

P2(n) - pressure in region (2) at step (n) [Pa] 

m2(n) = mass of gas in region (2) at step (n) [kg] 

1h12 - mass flow rate across plane (A) during the step [kg/s] 

1h23 - mass flow rate across plane (B) during the step [kg/s] 

at - time interval between step (n) and step (n+ 1) [s] 

The mass flow rates between regions (fi\2 across plane A and 1h23 across plane B) 

are modelled by the following equations for compressible gas flow through a 

restriction [5. 13]: 

CJ:~p" (:J ~ 2y l-(:.r P (2)-L m for- > _ y-I 

y-l P y+l 
0 

(5.4) 

( )'.' < (_2 F' C doA .P 
0 {y _2_ 2(y-l) P m for-

JRT y+l P y+l 
0 

Where: 

1h - mass flow rate [kg/ s ] 

Cd = orifice discharge coefficient [-] 

50 



A orifice area [m2] 

Po - upstream pressure [Pa] 

P downstream pressure [Pa] 

R = gas constant for air [J/kg.K] 

T - gas temperature (taken as metal temperature) [K] 

y ratio of specific heats for air [-] 

The values used for Po and P depend on the direction of flow: the higher pressure 

is always used as Po. The known levels of cycle-averaged blowby under different 

operating conditions allow solution for the effective blowby area (the product 

Cd·A), although here there are two orifices to be determined. 

This model was applied to the Ford 2.2 litre DI engine, code named P-type, for 

which full details of the pistons and ring pack were readily available. The critical 

parameters required were the inter-ring volume and the effective blowby areas, 

taken to be related to the first and second ring gaps. The inter-ring volume, 

including the space above and behind the second compression ring, was 

calculated from the manufacturers specifications. Similarly the ring gap areas, 

bounded by the ends of the ring, the piston and the cylinder bore, were calculated 

from specifications of average dimensions. When "calibrating" the model to fit 

experimental results, the effective areas for blowby through planes A and B 

(Figure 5.4) were modified together, keeping them in proportion to the two ring 

gap areas. This gave effective blowby areas of approximately twice the ring gap 

area. No correction needed for changing engine speeds. 

Accuracy was found to be similar to the simple correlation of equation (5.2), with 

similar predictions for blowby over the complete cycle. However, predictions 

within the cycle are quite different. Typical output from the model is shown in 

Figure 5.5, for operation at 200 rpm. Rising pressure in the cylinder (P 1) during 

the compression stroke forces gas from the combustion chamber into the inter

ring gap, raising the pressure in region two (P2). This in tum leads to blowby 

51 



into the crankcase. During the expansion stroke, this situation continues until 

cylinder pressure falls to equal the inter-ring pressure, after which they are 

approximately equal. Blowby continues into the crankcase, but there is minimal 

change in the mass trapped in the combustion chamber. The apparent fall in 

cumulative blowby from 4500 onwards is due to over-expansion of the charge 

(due to high levels of blowby and heat transfer) leading to a cylinder pressure 

slightly below ambient. Figure 5.6 shows similar calculations made at an engine 

speed of 1000 rpm. In this case the situation is similar, but the more rapid fall in 

cylinder pressure (with time) means that there is considerable flow from the 

inter-ring gap and back into the cylinder, as well as out into the crankcase, as 

previously reported by Namazian and Heywood [5.13]. 

5.5 Analysis and Discussion 

The interpretation of blowby effects requires some means of relating these to the 

level of leakage. Basing this on volume flow rate for a given brake output power 

as suggested by Munro [5.10], cannot be used under cranking conditions. 

Measurements based on blowby volume (or mass) per revolution are more useful, 

but make no allowance for different engine sizes or operating conditions. The 

measure adopted here is blowby fraction, defined as the mass of gas lost to 

blowby as a fraction of the trapped mass; similar measures have been used by 

other workers previously [5.5]. This form of normalisation takes account of 

differences in engine capacity and volumetric efficiency which would otherwise 

obscure comparisons of blowby across a range of engines. 

5.5.1 Effect of Ambient Temperature 

Henein [5.6] reported little change in blowby rates over a wide range of 

temperatures when measured in a direct injection diesel engine. Similar tests have 

been carried out by the author on the Ford 1.8 litre IDI engine, to record blowby 

fraction under unfuelled cranking conditions over a range of temperatures and 
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speeds. Engine speed was controlled by introducing resistive loss into the starter 

motor circuit to reduce starter power, with test durations being between 5 and 30 

revolutions, at temperatures from -26°C to +20°C. Figure 5.7 shows typical 

results when using SAE 10W/30 grade oil; results with SAE 5W/30 oil were 

similar. In the upper graph, lines of constant average speed are plotted against 

ambient temperature, with the data suggesting a rise in blowby fraction with 

rising temperature of about 3% from -20°C to +20°C. 

The reference speed commonly used to characterise conditions is the average 

over the engine cycle. This has been widely used by other investigators. 

However, the critical factors controlling blowby (apart from the leakage areas) 

are the pressure difference between cylinder and crankcase, and the time 

available for leakage. Examination of typical cylinder pressure and crankshaft 

speed traces shows that peak pressure and minimum engine speed both occur just 

before TDC in the compression stroke. It would therefore be expected that the 

conditions at this moment would correlate more closely with blowby fraction 

than the average condition over the cycle. Average engine speed should only be 

used if there is a clearly defined relationship between average and minimum 

cranking speeds. 

An apparent dependence of blowby fraction on temperature is observed when 

characterising cycles by average speed. However, this is directly attributable to 

fluctuations in cranking speed caused by the limited output power of the starter 

motor. The fluctuation changes both with temperature (due to changes in friction 

and battery performance) and with the method used to control average cranking 

speed (the addition of extra resistive losses). For example, at -20°C the starter 

circuit is used unmodified, giving an average speed of 155 rpm and a minimum 

speed of about 103 rpm. At + 20°C extra resistance is required in the starter 

circuit to achieve an average speed of 155 rpm, which gives a minimum speed 

of only about 82 rpm. Thus the use of resistive loss to control starter motor 

power upsets the relationship that would normally occur between average and 
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minimum cranking speeds. If minimum cranking speed is used to characterise 

test conditions, blowby rate becomes independent of ambient temperature over 

the range studied, as illustrated in the lower graph of Figure 5.7. This result 

supports Henein's conclusion that there is no measurable effect on blowby as the 

temperature is changed (here, from -20°C to +20°C). Any possible effects due 

to changing oil viscosity, component clearances, or other factors described in the 

literature were not observed here, possibly due to the relatively small changes in 

temperature that occur when the engine is not firing. 

5.5.2 Effect of Engine Speed 

Other workers [5.5, 5.6] have shown that the blowby fraction rises sharply at low 

engine speeds, particularly below about 1000 rpm. Using a vehicle starter motor, 

only a relatively narrow range of average cranking speeds could be investigated: 

typically up to 250 rpm at +20°C and up to 155 rpm at -20°C, with the minimum 

limited to about 75 rpm at all temperatures. However, as shown in Figure 5.8, a 

considerable effect due to engine speed may be observed, even over this limited 

range. The figure presents data from the unfuelled Ford IDI engine using 

SAE IOW/30 oil, as in the previous section. A range of temperatures are 

represented (-26°C to +20°C), but this has been demonstrated to have only a very 

small effect on blowby rates. 

Of particular interest is the very large change in blowby that can occur over the 

range of cranking speeds: under 12% of the charge is lost at an average speed of 

250 rpm, while over 30% is lost at 80 rpm. This underlines the need for a high 

cranking speed to avoid excessive charge loss and the possibility of cylinder 

temperature being too low for ignition. As described above, blowby fraction 

would be expected to depend on minimum engine speeds, as these relate to points 

of maximum cylinder pressure. Figure 5.8 also shows the blowby fraction plotted 

against this parameter, clearly showing an improved correlation over the use of 

average speed. 

54 



5.5.3 Contribution of Individual Cylinders 

To detennine the likely variation in blowby between engines of the same design, 

the contribution from individual cylinders in the Ford 1.8 litre IDI was measured. 

This was done under unfuelled cranking conditions, with all cylinders 

decompressed except the one under test. The cylinders were decompressed by 

removing the injectors and glowplugs. Analysis of instantaneous pressure in these 

decompressed cylinders showed that their blowby contribution is typically 200 

times less than the compressed cylinder at cranking speeds. Repeating the process 

for each cylinder in tum allowed the distribution of blowby losses across the 

engine to be examined. The total blowby previously measured for the unmodified 

engine was compared with the sum of individual cylinders as a check on the 

validity of results. The sum of the individual cylinders was found to vary from 

the expected total by less than 1 %; this slight difference is thought to be due to 

the small contribution from the decompressed cylinders. 

Measurements were made over a range of temperatures and cranking speeds, with 

Figure 5.9 showing typical results, normalised against average blowby fraction. 

Examination of the figure shows that the variation between cylinders is quite 

large: Cylinder 1 losses are 29% greater than the average, with cylinder 4 losses 

15% lower. This small sample size does not allow statistical analysis, but the 

variability of total blowby fraction between nominally similar engines could 

clearly be considerable. 

5.5.4 Blowby Variation Between Test Engines 

"Whole engine" blowby fraction has been measured on four engines under 

unfuelled cranking (or motoring) conditions. When correlated with minimum 

engine speed, blowby fraction has been found to be unaffected by test 

temperature over the range -20°C to +20°C, as described above. Blowby fraction 

is plotted against engine speed in Figure 5.10 for typical tests carried out at an 
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ambient temperature of +20°C. The general shape of the curves is similar in all 

cases, closely matching that found by Henein [5.5] in his investigations. Blowby 

levels are about 2% at higher speed, rising rapidly below about 1000 rpm to 10% 

at 200 rpm (average speeds). Data from the Ford 1.8 litre IDI and 1.9 litre 

Volkswagen engines extend below this speed range, and show that blowby rises 

prohibitively as the speed drops further. 

The data presented in the figure show that blowby fraction varies significantly 

between engines, even those of very similar design. For example, the P-type and 

L-type engines are of approximately equal size (2.2 and 1.8 litres respectively), 

both having similar piston and ring design and compression ratios; however, the 

P-type has only about 60% the blowby of the L-type. From the limited data 

available, the 1.9 litre Volkswagen engine seems to have lower blowby again. 

These results must, however, be viewed in the light of the known variability that 

may occur between individual cylinders in an engine, and therefore between 

engines of identical design. 

5.5.5 Effect of Firing 

If blowby predictions are to be useful in the analysis of cold starting, blowby 

behaviour during firing cycles must be modelled correctly. To examine firing 

cycles, the Ford IDI engine was started and allowed to reach a steady idling 

condition at 1000 rpm. The blowby gas was then collected over a fixed interval 

(using the collecting bag described above) and the total blowby mass measured. 

Pressure-volume data were captured from a number of cycles during the 

collection period. Predictions of blowby were made using the correlation of 

equation (5.2), since this is simpler to apply than the more detailed model and 

there is good agreement between these for the blowby total per cycle, as has been 

noted earlier. 
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Comparing with predicted blowby masses showed that the measured values were 

about 27% lower than expected. To determine the cause of this discrepancy, 

blowby volume flow rate was examined. It was assumed that the blowby 

correlation was correct for conditions during the starting phase and that, as idle 

speed is reached, conditions in the engine are the same as during this initial 

phase. If these assumptions hold, it should be possible to observe a fall in blowby 

of about 27% from reaching idle speed until steady conditions are achieved. The 

general arrangement of Figure 5.1 was used, but with the gas meter replaced by 

a rotameter covering a suitable range. Absolute calibration of this instrument was 

not required, as its known linearity allowed relative changes in flow rate to be 

identified. Figure 5.11 shows the changes in blowby, measured in arbitrary flow 

units. It was not possible to read the flow rate at zero time, so this was estimated 

by extrapolation back from data collected in the first few seconds, as shown by 

the fine line in the figure. In these tests the blowby flow rate fell, on average, 

from 16.8 to 12.4 (again, measured in arbitrary units). This represents a reduction 

of 26% and suggests that the correlation of (5.2) is valid, including for firing 

cycles, up to the point of achieving idle speed. 

Once sustained running has been achieved, changes within the engine cause the 

effective blowby area to change significantly. A number of mechanisms will 

contribute to producing this change. Component tolerance changes due to heating 

of the cylinder, piston and rings will alter the effective blowby area. Higher gas 

pressures may lead to a change in the sealing of the piston rings in their grooves. 

Other changes in the engine, for example changes in the thickness of oil films 

around the pistons and rings, may also be involved. In addition, the blowby 

correlation depends on estimation of the gas temperature as it passes around the 

piston. This becomes difficult after a significant number of firing cycles, when 

temperatures rise considerably. The higher gas temperatures and velocities may 

also cause the assumption that the flow is isothermal with the crevice walls to 

become less appropriate. 
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5.6 Conclusions 

Blowby loss is dominated by the effect of engine speed. For any given design, 

a fall in minimum engine speed (which occurs close to the point of peak cylinder 

pressure) causes a rise in blowby. This rise becomes prohibitive below average 

speeds of typically 100 to 200 rpm, which are often reached during cranking at 

low temperatures. 

Variation between different engines is considerable, with differences of over 

100% observed for test engines of similar size and specification. Measurements 

made in individual cylinders of one engine suggest that variation between 

nominally identical engines can be in the region of 30%, which is sufficient to 

cause differences between cylinder behaviour during starting. Changes in blowby 

characteristics due to ambient temperature, engine oil viscosity or firing cycles 

have not been detected in these tests. However, once steady idling conditions are 

reached, blowby has been shown to fall by almost 30% in one engine over a 

period of about five minutes. 

A simple correlation has been developed, treating blowby loss as incompressible 

flow through a single orifice. This requires a minimum of calculation and can 

predict total blowby per cycle throughout cold starting over a range of 

conditions. Based on measured values of cylinder pressure and metal 

temperature, the correlation can be used to examine factors affecting blowby on 

a cycle-averaged basis. These include the effects of speed, fuel injected during 

cranking and changing oil viscosity. Although suitable for analysis of average 

blowby throughout the cycle, this correlation cannot predict instantaneous rates. 

Also, as well as the calibration for orifice area, an additional factor is required 

at low speeds due to the simple treatment used. 

A more complex model predicts blowby based on consideration of compressible 

flow past two compression rings. It predicts similar blowby per cycle, but quite 
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different instantaneous mass flow rates. Since it more closely represents the 

physical processes involved, no correction at lower speed is required. Predictions 

using this model suggest that blowby losses before TDC may be higher than 

shown by the simple correlation, leading to significantly lower temperature and 

pressure. Some of this lost gas flows back into the cylinder from the inter-ring 

crevices during the expansion stroke, thus preventing it from being measured as 

blowby out of the crankcase vent. This model may be used wherever knowledge 

of the instantaneous blowby is required, for example during heat release 

calculations. Also, since both the rings and the volume between them are 

represented, it allows the effect of limited changes to piston and ring design to 

be assessed with respect to blowby performance. Indeed, predictions using this 

work have recently allowed a useful reduction in blowby of the L-type engine to 

be achieved. By reducing the area of the second ring gap, blowby in the L-type 

engine at low speed was reduced by 18-25%, in line with model 

predictions [5.14]. 
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Chapter 6 

COMBUSTION STUDIES 

6.1 Introduction 

This chapter describes investigations of how fuel injection parameters and 

glowplug design affect the cold start behaviour of the Ford 1.8 litre IDI engine. 

This power unit has been in production for several years and the degree to which 

cold start performance had been optimised was uncertain. Modifications that 

could affect aspects of performance other than starting have not been considered. 

Reported here is the effect of fuel injection quantity, timing and rate, and the 

glowplug dimensions, on-time and temperature. All results are based on free start 

tests, with the engine started as if in normal service. A fixed start-up temperature 

of -20°C was used throughout, to allow a reasonable testing rate while still 

operating at conditions adverse to good start quality. Methods have been 

develop2.c:l to allow comparison of combustion during cold starting on a more 

sophisticated basis than "time to idle speed" and similar. Analysis of cylinder 

pressure data allows the changes in start quality to be related to combustion, and 

the preferred fuelling and glowplug arrangements to be identified. The fuelling 

strategy currently implemented on production vehicles was found to be close to 

optimum, although improvements to glowplug design and operation were 

identified for the test engine used here. 

6.2 Fuelling Strategy 

The fuel injection pump fitted to the standard engine had no facilities to enable 

the fuelling strategy to be varied for testing purposes [6.1]. This was replaced 

with the IDI variant of the Lucas EPIC (Electronically Programmed Injection 
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Control) pump [6.2], which allowed the timing and fuelling to be set 

independently over a wide range. Figure 6.1 shows that start times using EPIC 

are similar to those for the standard fuel pump at -20°C, when using nominally 

similar fuelling parameters. Using the EPIC P\l111P gave a slight reduction in start 

times, along with a large reduction in variability. Examination of engine speed 

data shows that time to first fire was slightly increased, as EPIC requires one full 

engine revolution to achieve synchronisation before fuel injection; the standard 

pump injects in the first stroke. However, this disadvantage is more than offset 

by the improved control system of the EPIC pump, allowing timing control to be 

achieved within a few revolutions. At low temperature and speed the standard 

fuel pump may require most of the start (up to 100 revolutions) to achieve proper 

control. The EPIC pump was used throughout the work reported in this chapter. 

6.2.1 Analysis Methods 

Since the data here were collected from free starts, conditions in the engine were 

changing rapidly throughout each test. Combustion analysis is more difficult 

under these circumstances than when operating conditions are stable. The 

approach adopted here was to first analyse each cycle to obtain the required 

information and then to group together cycles having the same temperature, 

speed and timing. These groupings allowed engine performance to be analysed 

in terms of the behaviour of a "typical" cycle under each set of conditions; 

figures for typical IMEP, the probability of misfire, and so on, can be calculated. 

By pooling together data from several repeated cold starts, it was possible to 

ensure that each grouping contained enough cycles for analysis. Clearly, large 

numbers would give improved results, but the number of tests was constrained 

by time and resources, so groups of five or more cycles were used in this work. 

By comparing the "typical" figures from different groupings it becomes possible 

to see, for example, how IMEP varies with changing injection timing or engine 

speed. 
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In addition, some knowledge of the actual mass of fuel injected was required. 

Although the EPIC pump is designed to allow control of fuelling levels 

electronically, the unit cannot be reliably calibrated at the very low speeds 

considered here. To measure the injection mass, an instrumented injector was 

used in cylinder 1, measuring needle lift and fuel line pressure. Fuel injection 

was then calculated from the equation for incompressible flow through an 

orifice [6.3, 6.4]: 

(6.1) 

Where tit fuel is the mass flow rate of fuel, Cd and Anozzle the nozzle discharge 

coefficient and area, aP the pressure drop across the nozzle, and Pfuel is the fuel 

density. A calibration was performed through tests on a bench rig, to account for 

the approximations involved when applying this equation to the throttling-pintle 

type injector used here [6.5, 6.6]. The bench rig results relate effective discharge 

coefficient, Cd, as a function of needle lift under steady flow conditions. The 

resulting model was checked against actual operating conditions by starting and 

running the engine on three cylinders, collecting the fuel from the instrumented 

fourth injector for measurement. The final calibrated model was found to predict 

injected mass to within 5% for speeds up to 1000 rpm. 

An indication of the fuel burned in each cycle was derived from a simple heat 

release model developed at Nottingham by Tindle [6.7]. It was assumed that heat 

transfer losses could be represented using the Woschni correlation [6.8] and that 

the detailed blowby model of Chapter 5 was applicable. The combustion chamber 

gasses were assumed to be homogenous in composition, temperature and 

pressure [6.9, 6.10]. The calorific value of the fuel was estimated to be 

42.5 MJ/kg. The output parameters were the mass of fuel burned and the ignition 

delay, taken as the interval between start of injection and the earliest time heat 

release from burning fuel is detected. 
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6.2.2 Effect of Injection Quantity 

Previous studies have shown that increasing the mass of fuel injected can lead to 

improved cold starting in both DI and IDI engines [6.11, 6.12]. This was 

confirmed by the tests reported here, as illustrated in Figure 6.2. These data were 

recorded at -20°C with timing fixed at 4°BTDC, changing fuelling from about 

20 to 50 mg per injection. This improvement is due to two distinct changes as 

fuelling was increased: a reduction in the time to first fire, and subsequently a 

more rapid acceleration to idle speed. 

With increasing fuelling, the time to first fire fell from about 2.0 to 1.2 seconds 

(from the ninth to the fifth injection). Investigation of cylinder pressures during 

fuelled cranking showed that the cyclic peak pressure rose steadily as cranking 

progressed until firing commenced. Figure 6.3 shows the peak cylinder pressure 

with and without fuelling, with firing inhibited by disabling the glowplugs at a 

test temperature of -10°C. Since test conditions were similar, the pressure rise 

cannot be due to temperature or engine speed changes. However, this rise can be 

explained by a reduction in clearance volume equivalent to about 50 mm3 in each 

cycle; this is the volume of fuel injection used in these tests. Thus it appears that 

injecting more fuel shortens the time to first fire by increasing the effective 

compression ratio of the engine as fuel accumulated in the cylinders. It should be 

noted, however, that the improvement here is small compared to the total 

duration of the start. 

It has been suggested that fuel injected during cold starting may reduce blowby 

by helping to seal the piston rings [6.11], although the work concerned referred 

primarily to direct injection engines. To investigate this, the Ford 1.8 litre IDI 

engine was used to measure blowby after a period of cranking with fuel inj ection. 

Tests were carried out at -10°C with the glowplugs (normally used as a cold 

starting aid) disabled to prevent firing cycles from occurring. The engine was 

cranked for a number of cycles with injection enabled, to introduce a quantity of 
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fuel into the engine. A total inj ected volume of up to 1.4 ml per cylinder was 

used. The blowby correlation of Chapter 5 was then used to examine blowby loss 

during further (unfuelled) cranking. Using this correlation, changes due to the 

inj ected fuel would be detected by their impact on the effective blowby area. 

Calculation showed that no detectable change in blowby occurred, with the 

effective area being unchanged for tests with and without fuelling. Thus fuel 

injection cannot be shown to have a significant effect on blowby under normal 

cold starting conditions. 

After firing was achieved, the engine accelerated to idle speed more quickly at 

the higher fuelling levels. This change accounted for the greatest proportion of 

the improvement in start quality, falling from 77 to 22 seconds as the fuelling 

increased. Analysis of cylinder pressure data throughout starting showed that the 

IMEP at any given speed was higher when more fuel was injected. The results 

of heat release calculations presented in Figure 6.4 show that more fuel was 

burned. Referring to Figure 6.2, start times were very sensitive to fuelling below 

30 mg, with only a small sensitivity to changes above 40 mg. This agrees with 

the changes in IMEP and fuel burned, which showed a decreasing sensitivity as 

fuelling increased. 

Further studies were performed using the maximum fuel delivery settings for the 

injection pump. This provided 50 mg per injection and gave the shortest start 

times. The standard mechanical fuel pump has a peak cold start fuelling of about 

45 mg per injection. In these tests, fuelling had not reached the point where 

starting was actually impaired [6. 13], but the diminishing returns of higher 

fuelling levels must be balanced against the increased emissions of unburned 

hydrocarbons. Examination of cumulative fuel injected throughout starting 

showed that, under the conditions here, fuelling of 30-40 mg per injection 

allowed the engine to start with the lowest total fuel supplied. Below this range, 

although most of the fuel was burned (75% with 20 mg injection), the increased 

stmt duration meant that more fuel was required overall. Above this range, less 
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cycles were required to start but the fuel was used less efficiently (45% burned 

with 50 mg injection). Although 30-40 mg gave the best use of fuel, start times 

were 40-30 seconds over this range, compared with 25 seconds at 50 mg 

injection. 

6.2.3 Effect of Injection Timing 

Retarding the start of injection (SOl) timing can help cold starting in some 

cases [6.13, 6.14], although too much retardation can lead to erratic combustion 

with many misfires [6.3]. Figure 6.5 shows how start time changed as timing was 

swept from 1 OOB TDC (advanced) to 1 ° A TDC (retarded). Minimum start times 

were achieved with SOl at about 3Yz°BTDC, which corresponds to the timing 

used in the standard mechanically controlled fuel pump. 

Examination of individual cycles showed that injection timing must be selected 

according to conflicting requirements, giving maximum lMEP with minimum 

misfires. If the lMEP for firing cycles only is considered (indicated by the light 

lines in Figure 6.6), it is clear that retarding injection gives higher work done on 

the crankshaft. This can be explained by considering combustion phasing. At low 

speeds and temperatures, blowby and heat transfer losses are extremely high and 

cause a rapid decay of the pressure generated by the burning fuel. If combustion 

occurs too close to TDC, the pressure decays before the piston begins to move 

significantly and the useful output (calculated from JP.dV) is low. If combustion 

occurs later, the high pressures coincide with a greater rate of volume change, 

allowing more work to be transferred to the crankshaft. However, if injection is 

too late, the falling cylinder temperature and pressure after TDC do not allow 

proper ignition, and combustion fails. 

Analysis of individual cycles, both at Nottingham and elsewhere [6.15], has 

failed to show convincingly why some cycles fire properly while other apparently 

similar cycles misfire. The work at Nottingham included investigation of 
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injection timing and profile, in-cylinder pressure and temperature, and the time 

available for ignition, but no conclusion could be reached. When the lMEP from 

these misfiring cycles was included to calculate an "average" (indicated by the 

heavy lines in Figure 6.6), the onset of misfiring with SOl timing later than about 

SOBTDC lead to lower cycle-averaged IMEP overall. The shape of this "average" 

explains observed changes in start time. The best start times shown in Figure 6.S 

coincide with the highest values of average lMEP, which were achieved with a 

SOl timing of about 3 Yz°BTDC. 

6.2.4 Effect of Injection Rate 

Inj ection is significant as it affects fuel spray behaviour and the mixing of fuel 

and air. In this work, the rate of fuel injection was adjusted by changing the 

characteristics of the injection pump to examine the effect on start performance. 

Three injection pumps were used to cover a range of rates suitable for the test 

engine. These pumps, designated EPIC-10, EPIC-12 and EPIC-14, had injection 

rates in the ratio 1.0: 1.2: 1.4 respectively (a 40% variation from lowest to highest 

rate). Figure 6.7 shows how injection behaviour changed with these three pumps. 

The upper graph shows the rate of pressure rise in the fuel line prior to injection; 

at this point there is no fuel delivery. The pressure rise was approximately in 

proportion to the base injection rate of the pumps, with about 4S% variation from 

the lowest to highest rate. Once injection begins, complex interactions occur 

between the injector, fuel pump and connecting pipes. When the average 

injection rate was calculated (fuel mass injected divided by injection duration), 

about a 20% difference between the lowest and highest rates was observed, as 

shown in the lower graph. This was lower than the pump specifications 

suggested. 

Figure 6.8 shows start quality with the low and high rate pumps, measured as 

time to idle speed. Tests results obtained with the intermediate rate EPIC-12 

pump (not shown on the graph) generally lie on these lines. It is clear that the 
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changes in start times were not significant compared to the start-to-start 

variability. The fairly small change in rate was not enough to cause any 

significant effect on start performance. Analysis of IMEP with varying timing 

(similar to that shown in Figure 6.6) showed no measurable change in 

combustion output with changing rate. 

6.3 Glowplug Operation 

In the sections above, the impact of fuelling changes on start quality have been 

explored. The second route for improving the performance of this engine was to 

alter parameters of the glowplugs used as a starting aid. The placement of the 

plug in the swirl prechamber was fixed by production and operational 

considerations, but alterations to tip temperature, on-time and plug geometry 

were possible. 

6.3.1 Temperature and Timing 

Previously, French and Scott [6.16] examined the impact of the glowplug starting 

aid when used in a Ricardo Comet combustion chamber which is similar to that 

employed in the Ford IDI engine. They concluded that the glowplug acts as an 

ignition source, contributing little to heating the charge. This agrees with earlier 

work by Austen and Lyn [6.11], who showed that ignition fails if the surface 

temperature of the plug is lowered while maintaining the same total heat input. 

French and Scott found that ignition delay could be reduced to an almost constant 

value, relatively unaffected by in-cylinder conditions, if the glowplug tip 

exceeded about 850°C. Temperatures above this gave little further improvement. 

Lower temperatures caused a rapid rise in ignition delay. Longer delay translates 

into an increased likelihood of misfire under cold cranking conditions, where 

ignition must occur close to TDC before the temperature and pressure fall too far 

to support combustion. 
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Investigations of glowplug temperature effects were carried out on the Ford IDI 

engine using a specially modified glowplug with a thermocouple embedded in 

the tip. Controlling the tip temperature by switching the plug supply current, the 

effect of glowplug temperature on individual cycles during starting was 

examined. Tip temperatures from 400°C to 1000°C were investigated. Figure 6.9 

summarises results from a number of cold start tests at -20°C, using the EPIC 

fuel pump at maximum fuelling. All cycles up to engine speeds of 550 rpm are 

included. Injection timing was advanced (about 8°BTDC) to extend the start and 

allow enough data for interpretation to be collected, although the trends shown 

here are repeated at more normal timings. Variability of ignition delay is 

described here for firing cycles only by the coefficient of variation, COY, defined 

as the standard deviation divided by the mean (in milliseconds) and expressed as 

a percentage. The results show that a tip temperature of at least 850°C is 

desirable. Rising glowplug temperature reduced misfires, from 80% of cycles at 

400°C to under 5% at 900°C. Temperatures above 850-900°C gave no further 

reduction. There was also a reduction in the variability of ignition delay, with 

COY falling steadily from over 200% to about 50%. At low tip temperatures the 

delay period was very variable, with times up to 35 ms and many misfires, but 

above 850°C a fairly steady value of 8-10 ms was reached. 

A second possible change could be to consider the impact of pre-heat times on 

starting. It seems possible that a longer pre-heat could elevate the temperature of 

the swirl chamber walls, reducing gas heat transfer losses and enhancing fuel 

evaporation. In practice, related work by Tindle [6.17] showed that there was no 

benefit to increased times, and the data showed that less than 10 seconds pre-heat 

was actually required at -20°C (compared to about 20 seconds used on the 

standard test engine). Measurements in the swirl chamber showed only slightly 

higher temperatures after 60 seconds pre-heat than after 18 seconds, with most 

of the energy from the glowplug being conducted away to the coolant. 

Calculation and experiment also showed that the glowplug had only a minor 

effect on cylinder charge temperature during cranking. 
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6.3.2 Tip Protrusion 

In earlier work, researchers have found that the glowplug should be placed so 

that the hot tip is in the path of a fuel and air mixture for best start behaviour. 

Specifically, French and Scott [6.16] presented photographic evidence showing 

that, at starting speeds, the fuel and air mixture is close to the chamber wall in the 

Ricardo Comet type system. This suggests that the hot tip of the glowplug should 

be positioned with minimal protrusion into the swirl chamber. This low 

protrusion also minimises the obstruction presented to swirl flow [6.16, 6.18], 

and may help with mixing. 

The standard glowplug fitted to the IDI test engine was 21 mm long, giving a 

protrusion into the swirl chamber of 6 mm (here, designated STANDARD 

plugs). This was a slim plug with 3Yz mm tip diameter, designed to minimise the 

disturbance of air flow [6.1]. To investigate the effect of using less protrusion, 

tests were also carried out with plugs giving a protrusion of 1 Yz mm into the swirl 

chamber (here, designated RETRACTED plugs). The tip diameter was increased 

to about 5.3 mm to maintain the plug volume and hence the compression ratio. 

Figure 6.10 shows that the start times were significantly reduced from a 

minimum of 24.5 seconds to 20.3 seconds when using retracted plugs, although 

more advance was required for optimum performance. In Figure 6.11 we see that, 

at "best start" injection timing, the IMEP generated with the retracted plugs was 

slightly higher (typically about 0.5 bar), explaining the improved start quality. 

To distinguish between changes due to the location of the hot glowplug tip and 

the physical obstruction presented by the plug body, further tests were 

performed. Using each plug design in turn, the engine was cooled to +5°C and 

started without energising the glowplugs. Under these conditions starts were just 

possible with the standard plugs, with an average time to idle speed of 

27 seconds. Figure 6.12 shows how the start times reduced to an average of 

13 seconds when retracted plugs were used. Since the plugs were not energised 
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in these tests, the reduction must be due to the physical shape of the plug 

protruding into the swirl chamber, rather than the location of the hot tip. Tests 

undertaken by Ford support this finding, showing an improvement of some 5% 

in engine output at fully wann conditions. Although this test demonstrates that 

the obstruction presented by the standard glowplug is detrimental, practical 

difficulties meant that no tests were perfonned to identify the optimum position 

of the ignition "hot-spot". 

6.4 Conclusions 

Changes that can be made to a mature engine design to improved cold starting 

by increasing combustion output are necessarily limited. Here, the scope to 

optimise cold start fuelling strategies and starting aid parameters has been 

investigated for the Ford 1.8 litre IDI engine. 

Increasing fuel injection quantity improved start times both by reducing the time 

to first fire and increasing firing lMEP. This is attributable to an increase in the 

effective compression ratio due to the increased volume of fuel injected, and an 

increase in the quantity of fuel burned in firing cycles. Tests showed that 

accumulated fuel in the cylinder as cranking progresses raises the compression 

ratio until firing commences, and that increased injection mass shortens this time. 

Although start times are reduced with rising injection mass, much of the extra 

fuel is not burned and, by inference, emission of hydrocarbons increases. Under 

the test conditions here the fuel is best used with injection masses of 30-40 mg, 

and the shortest starts with the maximum possible mass of just over 50 mg. This 

"maximum possible fuel" strategy was already implemented in the standard test 

engme. 

Retarded injection timing, defined by start of injection (SOl), gives increased 

IMEP on firing cycles, but also gives rise to an increase in misfires. Later 

injection causes the highest pressures to coincide with a greater rate of cylinder 
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volume change, raising the amount of useful work done on the crankshaft. 

However, this is offset by the rising number of misfiring cycles that occur, due 

to the rapid fall in cylinder temperature and pressure from TDC onwards. The 

combination of these two effects gives the highest lMEP (and the quickest starts) 

with SOl set at about 3Y2°BTDC; this is close to the timing already used in the 

standard test engine. 

Changes to injection rate may well affect start quality, but operational limitations 

on durability, emissions and performance mean that only a relatively narrow 

range of rates are feasible. Within this range, effects on start quality are smal1. 

The effect of glowplug tip temperature on the time to reach idle speed and 

combustion parameters in individual cycles has been measured. A tip temperature 

of 850°C reduces misfires to a minimum; higher temperatures give no further 

improvement. Start tests and temperature measurements in the swirl chamber 

showed that, providing enough time is allowed for the glowplug to reach 850°C, 

extended pre-heat times offer very little benefit. At -20°C, a tip temperature of 

850°C and a pre-heat of under 10 seconds are required. 

Reducing the glowplug tip protrusion from 6 mm to 1 Y2 mm gave an 

improvement in start times by raising lMEP in firing cycles. This appears to be 

due, at least in part, to the removal of the physical obstruction from the swirl 

chamber to allow higher swirl rates and improved mixing. lMEP may also be 

improved by moving the hot tip of the plug to a more favourable position close 

to the chamber wall, but this has not been demonstrated directly. 

The investigations here have shown that the existing fuel injection alTangements 

on the standard engine are close to optimum, within the limits of the inj ection 

equipment. However, beneficial changes to start performance due to changes in 

glowplug parameters have been identified: reduced protrusion into the swirl 

chamber, a specific target tip temperature and reduced pre-heat times. These 
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changes have been implemented on more recent engme designs, glvmg 

improvements in start quality. 

72 



Chapter 7 

MOTORING FRICTION STUDIES 

7.1 Introduction 

The relative magnitude of indicated work produced by combustion and frictional 

dissipation during low-temperature starting have a strong influence on start-up 

behaviour, as has been described in Chapter 4. Investigations of combustion and 

the changes that may be made to improve IMEP were described in Chapter 6. 

Here, the focus is on work done to measure the level of mechanical friction in 

engines at low temperature. Additionally, by measuring the contribution of 

engine sub-assemblies to the total frictional load, further investigations may be 

targeted at the areas offering the largest potential benefits. Data are presented for 

the Ford 1.8 litre IDI and the 2.2 litre P-type, with reference to limited data from 

the 1.9 litre TDi Volkswagen (VW) engine and the Ford 1.8 litre DI L-type 

engIne. 

When an engine begins rotating, low-temperature friction changes particularly 

rapidly during the first few seconds before stabilising to relatively steady levels. 

This initial "transient" friction is described in a later chapter. In the quasi-steady 

state, the friction values can be related to measured oil temperature at a given 

time, independent of test history. The quasi-steady friction after start-up scales 

with earlier friction levels and also has an impact on idle quality, driveability, 

and emissions immediately after starting. Quasi-steady friction levels rise sharply 

with falling temperature, under the influence of rising oil viscosity. Typically, 

friction mean effective pressure at fully warm idle speed is about 1.0 bar, rising 

to between 4.3 and 5.0 bar at -20°C. These values are representative for all 

engines tested. However, the relative contribution of component parts to the total 

73 



IS engIne specific and temperature dependent, as will be described in the 

following sections. 

7.2 Measurement Method 

Friction for the whole engine under firing conditions has been calculated from 

data collected during free starts in the 1.8 litre IDI engine (described in 

Chapter 4). However, this method is difficult to apply during low speed and low 

temperature conditions. In addition, no breakdown of the friction due to each 

engine assembly can be obtained without using extra equipment [7.1]. In the 

work described here, friction was measured instead by the progressive 

breakdown of a motored engine. Differences between motoring and firing 

conditions have been reported by previous authors [7.2, 7.3, 7.4], but these are 

relatively small and motored engine results are generally accepted as salient to 

firing conditions. 

7.2.1 Test Equipment 

For motoring operation, the engine installation arrangement is similar to that used 

for the firing engine tests, as illustrated in Figure 7.1. Here, the engine was 

turned by a variable speed 24 kW DC motor, giving a turning torque of up to 

200 Nm and speeds up to 1000 rpm. Cooling arrangements were very similar to 

the firing rig, with the engine being force cooled via the block, radiator and 

sump. Sealing of the enclosure was very good, so the dry air feed was found to 

be unnecessary to avoid ice formation. To achieve higher temperatures, two 

electrical heaters totalling 5 kW were used to heat the oil, water and (using the 

radiator in the enclosure) cell air. As in the firing engine, Gulf 40 reference fuel 

and Motorcraft SAE 10W/30 engine oil were used unless otheIWise noted. To 

prevent firing in the engine, the fuel injection pump was connected to a set of 

injectors fitted into a manifold, returning fuel back to the tank. Through this 

arrangement, the load due to the fuel injection pump was maintained during 
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motored operation. The normal injectors in the head were left in place to 

maintain compression. 

Data acquisition was controlled by an IBM-PC compatible with a suitable 

analogue input card, allowing data to be sampled five times per second. Engine 

speed was derived from a tachometer circuit driven from the input shaft, 

calibrated at steady speeds against a commercial electronic (optical) tachometer. 

Temperatures around the engine and enclosure were measured using K-type 

thermocouples, calibrated against a PRT in a calibration bath. Here, the reference 

junction compensation was done electronically, using a standard integrated 

circuit. Turning torque was measured with an in-line torque transducer and 

electronic indicator unit, calibrated using a set of standard weights on a 

calibration arm. As with the firing test rig, errors were estimated to be better than 

1% FSD. 

When cylinder pressure-volume data were required, the acquisition system from 

the firing rig was temporarily employed. This provides the facility to acquire data 

at the necessary high rate. The pressure in cylinder 1 was measured using a 

Kistler 6123 pressure transducer fitted into a modified fuel injector, with crank 

angle data from a magnetic pickup placed on the teeth of the flywheel. The 

number of pulses per revolution depended on the engine, but 135 was a typical 

figure. By sampling using a suitable time interval, the data could later be post

processed to give data every Y2 0 crank angle. TDC was identified by one 

oversized tooth on the flywheel, with the exact position identified using the 

methods of Douaud and Eyzat [7.5]. 

7.2.2 General Engine Testing Procedures 

Preparation for testing was similar to the methods used for free start testing 

described earlier, taking care to ensure a steady temperature across the apparatus 

and suitable oil cleanliness. To obtain a large database in a reasonable time, the 
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method of "speed sweeps" was developed. In this methodology the engine was 

cooled to about -2S0C and held at this temperature for one hour. The chiller plant 

was then shut down and the engine rotated. Frictional heating caused the 

temperature to rise gradually, with the additional electrical heating being used 

above about 40°C. Due to the action of the oil cooler and vehicle radiator , 

temperatures across the rig generally remained uniform to within a few degrees. 

Here, no data were collected until the fIrst target temperature of -20°C (SOC 

above the initial soak temperature) by which time stable running conditions were 

established and the results were repeatable. At each selected temperature, data 

were collected at each speed from 1000 rpm to zero and back, in steps of 

100 rpm. In the worst case, due to the continuous rise in temperature, each speed 

sweep had to be fInished in under two minutes. This ensured that engine 

temperature was within ±Yz °C of the target value, and avoided difficulties when 

interpreting the data. 

Initially, friction in the complete engine was measured with all components 

driven and the engine compressed as normal. Total turning torque was used to 

find the mechanical friction loads by subtracting the known cylinder pumping 

losses, calculated using pressure-volume data collected under the same motoring 

conditions. The remainder was then attributable to the rubbing friction in the 

engine and ancillaries. Friction results from fIring and motored engine tests at 

1000 rpm are shown in Figure 7.2; the fIring data is reproduced from Chapter 4. 

The two sets of data were obtained from different 1.8 litre IDI engines, but the 

two engines differ only in minor features such as the ancillary drive arrangement. 

The agreement between fIring and motored results is very good, especially 

considering the known differences between fIring and motoring operation, and 

that friction in nominally identical engines can differ by 10% [7.4]. 

Due to limitations of the experimental equipment, fully-warm temperatures could 

not always be achieved in the motored engines. This meant that the results could 

not be directly compared with those from other sources, where testing was 
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typically carried out at nonnal operating temperature (typically 80-90°C). To 

overcome this problem, a method of predicting engine friction was developed 

based on earlier work carried out at Nottingham by Darnton and others [7.6]. 

They showed that, in their studies, friction during wann-up could be related to 

fully wann friction by using the viscosity such that: 

(7.1) 

Where "ref' denotes values measured at the fully-warm reference condition. The 

index n was found to be between O. 19 and 0.24 for the petrol engines tested in 

this previous work. Measured in a number of diesel engines, typical values of 

0.25 to 0.32 were found for n in this investigation. Viscosity was calculated 

based on oil temperature measured at the inlet to the block and using the Walther 

equation [7.7]: 

In In(v + 0.6) = a+ bln T (7.2) 

Here, T is absolute temperature, and a and b are constants determined from oil 

viscosity data supplied by the manufacturer. It follows from equation (7. 1) that 

the friction (FMEP) plotted against viscosity should be a straight line if log scales 

are used on each axis. Figure 7.3 presents the data for the full IDI engine as 

above, plotted in this way. Using graphs of this type, the friction at fully warm 

conditions may be estimated, based on data collected at lower temperatures. For 

example, the fully-warm (~85°C) viscosity of the SAE 10W/30 oil used here is 

14.7 cSt, while at 60°C (the highest temperature shown for the motored tests) it 

is 30.3 cSt. The fully warm FMEP may be estimated by linearly projecting the 

line down to 14.7 cSt with only a small uncertainty in value, comparable with the 

scatter between tests. Fully wann friction was measured directly where possible, 
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but this method was used to make an estimate when running temperatures could 

not be reached. 

To identify the contribution of each engine assembly, a progressive engine 

breakdown was performed. Starting with a complete engine, the remaining 

mechanical friction was measured after each engine assembly was sequentially 

removed. Thus the contribution of each sub-assembly could be identified, and the 

influence of speed and temperature investigated. At points in the investigation 

where oil pump load needed to be isolated, the drive from the crankshaft was 

replaced by small motor. This allowed the oil pump to be driven independently 

at engine speed, maintaining system oil pressures while still allowing the oil 

pump load to be identified. Finally, the main drive was disconnected from the 

engine entirely leaving one remaining bearing on the input shaft, but still 

measured by the torque transducer. Measuring the loss in this bearing allowed 

accurate determination of friction in the last engine assembly (the crankshaft). 

The effect of gas pressure on the pistons in a motored engine may increase the 

frictional loss by altering the load on the pistons, rings and bearings [7.2, 7.8]. 

This can give misleading results if compression is removed during a breakdown 

study, typically when removing the head or pistons. To avoid this, the engine was 

decompressed before removing other components by using spacers between the 

cylinder head and block, opening the cylinders to atmosphere. The spacers 

allowed normal conditions to be maintained: bolt tightening torques were 

unaltered, and the oil and water galleries were carried through to the head. 

Lengthened drives (belt or chain) were used to allow normal operation of the 

camshafts, valves and so on. The resulting cylinder pressures, measured at speeds 

up to 1000 rpm, were negligible. By measuring the total friction before and after 

this decompression, the effect of gas pressure was measured independently of any 

other assemblies. In this work, gas loading is assumed to act only on piston and 

ring friction, and is usually considered together with these elements. 
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7.3 Steady-State Friction Results 

7.3.1 Ford 1.8 litre IDI Engine 

Friction loads in the TCI (turbocharged and intercooled) variant of this engine 

(Appendix A) has been investigated. This is not identical to the engine used in 

the firing studies, as the TCI engine has slightly different ancillary drive 

arrangements and water pump capacity. However, the differences are small, and 

judged not to have a significant influence on the results described in the 

following. The total friction was broken down into the following components, 

determined by operational considerations: 

Crankshaft: the five main bearings, thrust bearings, and two oil seals. 

Oil pump: the oil pump ONLY, not including its drive shaft (see 

"Valvetrain Assembly" below). 

Piston Assemblies: the pistons and rings, and connecting rods 

(containing big and small end bearings). 

Gas loading: the extra friction associated with the effect of 

compression pressure on the pistons, rings, and bearings. This 

predominantly affects piston and ring friction. 

Valvetrain assembly: the camshaft, followers and valves, and toothed 

drive belt with tensioner. Also included was the water pump, a 

layshaft used to drive the oil pump (although NOT the oil pump 

itself), and a small vacuum pump. 

Fuel Injection Equipment (FIE): the injection pump and toothed drive 

belt, including the tensioner. 

Ancillaries: the non-essential ancillaries comprising alternator, air

conditioning pump (AirCon) and power assisted steering pump 

(PAS). This included the poly-vee drive belts and tensioners, with the 

alternator not charging and the normal steering circuit in place. 

Although measured, this component is not included in the analysis. 
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Values between 0.53 bar and 0.12 bar were recorded (highest to 

lowest). 

Friction measurements were taken over a range of speed and temperature. Data 

for engine speeds less than 1000 rpm were obtained with the engine 

decompressed, because of limitations associated with large torque fluctuations 

in the compressed engine. Consequently, the effect of gas loading on piston and 

ring friction could only be directly measured at 1000 rpm or above. Figure 7.4 

shows how the gas loading increased friction at this fixed speed, with the solid 

line showing the linear relation used in this work. To estimate the influence of 

gas loading at lower speeds, the empirical relation due to Bishop was used [7.8]. 

Neglecting any throttling in the inlet, this can be expressed in the form: 

a FMEP = 411 x stroke x [ 0 .088 r c + 0.182 r ;1.33- K.Sp> ] (7.3) 
bore 2 

Where d FMEP is the rise in friction due to gas loading of the pistons, rings and 

bearings, characterised by mean piston speed (Sp in mls) and compression ratio 

(rc). The constant in the original equation and the factors required to give this 

result in Pascals (when inputs are in S.l. units) are combined to give the factor 

of 411, having units of N/m. The constant K was 2.38x10-2 slm [7.8]. The 

equation gives a result slightly higher than the measured value (0.53 bar against 

0.33 bar measured). Equation (7.3) was applied to scale the measured data for 

speeds below 1000 rpm. As the speed drops from 1000 rpm to zero, Bishop's 

equation suggests only a small rise in the gas loading effect of about 15%; this 

compares with about a 35% change measured over the temperature range. 

Although the actual friction breakdown was performed with the engine 

decompressed throughout, the extra component due to gas loading must be 

considered with the piston and ring friction for analysis purposes. 
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A friction breakdown at 1000 rpm is given in Figure 7.5. This shows how the 

various component contributions make up the total friction over a range of 

temperatures. Data provided by Ford [7.9] for a similar engine under firing 

conditions allow comparison at the fully warm temperature of 82°C. These data 

were less detailed and the contributions from several assemblies have been 

necessarily added together for comparison. The total mechanical friction without 

the ancillaries (alternator, AirCon and PAS) of 1.02 bar compares favourably 

with the figure of 0.94 bar measured in the current work, and the fraction 

attributed to each assembly also agrees well. 

Total engine friction rises sharply as temperature falls, from under one bar at 

fully-warm to about 4Yz bar at -20°C. The proportion of the total friction due to 

each component changes markedly as the temperature is reduced, with the speed 

held at 1000 rpm. Under normal operating conditions the piston and ring friction 

(including the increase due to gas loading [7.2,7.8]), makes up about 65% of the 

total, with the cam assembly contributing 21%. The remaining 14% is split 

between the oil pump, crankshaft, and fuel injection system. Reducing the 

temperature to -20°C, the pistons and rings (with gas loading) still form most of 

the friction (47%). The valvetrain becomes less important (reduced to 14%), with 

the oil pump and FIE relatively unchanged. However, the crankshaft assembly, 

which contributed under 4% at 82°C is now responsible for 22% of the total. 

Examination of the data shows that the main rise in friction with falling 

temperature is due to the crankshaft and piston assemblies (excluding the gas 

loading effect): these two alone cause a rise of 2.4 bar at 1000 rpm. Both have 

a large component due to viscous friction losses in the main and big-end journal 

bearings [7.10], which would be expected to increase sharply with rising oil 

viscosity. Other components show a lower sensitivity to temperature. In the tests 

reported here the effect of gas loading on friction was not strongly influenced by 

temperature, and Bishop [7.8] reported no speed dependence, suggesting that it 

is a non-viscous friction effect. Similarly the friction contribution of the 
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valvetrain, which has flat followers on an overhead camshaft and operates in 

predominantly mixed and boundary lubrication regimes [7.10], showed a 

relatively low dependence on temperature. 

The variation of friction with speed, both fully warm and at -20°C, is illustrated 

in Figure 7.6. At high temperature, friction MEP is just under one bar and almost 

independent of speed over the range measured. There is a small increase at very 

low speeds, due to an upturn in valvetrain friction. This is consistent with a 

gradual increase in mixed and boundary lubrication, as reported by previous 

workers [7.10, 7.11]. Piston assembly friction (including the effect of gas 

loading) dominates engine friction at all speeds. At low temperature, total friction 

rises from under 2Yz bar at 100 rpm to 4Yz bar at 1000 rpm. Crankshaft and piston 

assembly friction show a considerable dependence on engine speed, consistent 

with a hydrodynamic lubrication regime [7.10]. The effect of gas loading on the 

pistons and rings is derived from (7.3), and shows a minimal speed effect. The 

valvetrain friction showed a slight speed dependence, and no upturn in friction 

was measured at speeds down to 100 rpm. This may be explained if the higher 

oil viscosity allows an increased proportion of hydrodynamic lubrication to occur 

at low temperatures. However, the limited effect of speed shows that mixed and 

boundary lubrication regimes are still prevalent. 

Tests have also been carried out at Nottingham on a direct injection variant of 

this engine (the L-type prototype engine [7.12]) for comparison. This early 

model had almost all major friction components in common with the IDI engine 

described here except for piston design. This engine was found to have similar 

characteristics to the IDI: a similar effect due to gas loading, and the same total 

and proportional breakdown of engine friction. 
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7.3.2 Ford 2.2 litre P-type Engine 

The second design for which friction characteristics have been detetmined is the 

Ford P-type engine. This is a 2.2 litre DI unit, having four valves per cylinder 

operated by twin overhead camshafts with roller followers (Appendix A). The 

valvetrain was driven using a duplex chain from the crankshaft, which also 

operated the fuel injection pump. Two balancer shafts were fitted, driven by a 

simplex chain. As before, the friction was broken down into components 

detetmined by operational considerations. These assemblies were the same as in 

the IDI case, with the following exceptions: 

Oil pump: including a component of the simplex chain associated 

with the oil pump drive. 

Valvetrain assembly: the camshafts, followers and valves, and duplex 

chain drive with tensioner. Also included were small vacuum and fuel 

lift pumps. 

Water pump: including its poly-vee belt drive and tensioner. To allow 

comparison with the IDI data, the water pump was added to the 

valvetrain friction in the analysis here. 

Balancer shafts: including the remainder of the simplex chain drive 

and tensioner (not included in "oil pump" above). 

No external ancillaries were fitted to this engine. 

Bishop's equation (7.3) predicts a reduced gas loading effect of 0.47 bar for the 

P-type engine, due to the lower compression ratio. However, the measured value 

was found to be only about 0.1 bar. The reason for this difference is unknown at 

present, but improvements in design since the fotmulation of equation (7.3) in 

1964 may be responsible. Additionally, it is known that the IDI engine has low 

tangential ring loads, relying on gas pressure to provide a seal. This would tend 

to make it more sensitive to gas pressure than designs with higher static ring 
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loading. As before, the equation was used to scale the measured value from 

1000 rpm tests to provide an estimate at lower speeds. 

Figure 7.7 shows the friction breakdown at 1000 rpm, similar to that presented 

above for the IDI engine. Data from a similar P-type engine under fIring 

conditions is presented for comparison at fully warm conditions [7.13]. The sets 

of test data for firing and motored operation are in good agreement, both in total 

friction and the relative contributions. The higher crankshaft friction recorded at 

Nottingham may be due to damage discovered in one of the main bearings, but 

the reasonable agreement with Ford data suggests that this did not have a major 

influence. Comparing the P-type results with those from the IDI engine (Figure 

7.5), the similarities are clear. At normal operating temperatures the P-type has 

slightly lower friction, despite the use of twin camshafts and four valves per 

cylinder. At low temperature the friction is higher (5.07 against 4.52 bar), but 

this extra is due to the balancer shafts, a feature not implemented on the IDI 

engine. The friction behaviour of the balancer shafts is similar to the crankshaft, 

suggesting predominantly hydrodynamic lubrication, giving a strong dependence 

on oil viscosity. 

The relative importance of friction contributions is also broadly similar to the IDI 

engine. At fully warm conditions, piston assembly friction (including gas 

loading) dominates, as before. This contributes 42% of the total, with valvetrain 

friction adding 26%. Both crankshaft and oil pump add about 12% each, with the 

remaining 8% from the balancers and fuel injection system. Reducing the 

temperature to -20°C, piston assemblies (with gas loading) still contribute 36%, 

with the valvetrain, oil pump and FIE remaining relatively unchanged. As in the 

IDI, the crankshaft assembly becomes more signifIcant (rising to 19%), along 

with the balancer shafts which rise to 12% of the total. As in the IDI engine, the 

largest increase in friction as the engine cools is contributed by components 

having a large proportion of hydrodynamic lubrication (predominantly from 

journal bearings): the balancer shafts, crankshaft, pistons and connecting rods. 
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The valvetrain friction once again shows only a relatively small change with 

temperature, although slightly greater than in the IDI engine. 

As above, changes with speed are illustrated in Figure 7.8 at fully warm and 

-20°C. As in the illI engine, the valvetrain is fairly insensitive to speed with the 

same rise in low-speed friction at higher temperatures, suggesting a large 

proportion of mixed and boundary lubrication. At low temperatures, this upturn 

is not observed. Piston assemblies and balancer shafts show a strong sensitivity 

to speed at -20°C, although the effect on the crankshaft is unclear: this may be 

due to damage to a main bearing noted above. In general, however, the friction 

behaviour of engine assemblies with changing speed and temperature is similar 

for P-type and IDI engines. 

7.3.3 Comparison with Competitor Engine: VW 1.9 TDi 

Friction breakdown results from the two Ford engines above were compared with 

data collected from a direct injection VW unit [7.14]. This engine was of 

comparable rating and mechanical design to the IDI and L-type engines, suitable 

for installation in the same classes of vehicle (Appendix A). 

The friction breakdown for all three engines is shown in Figure 7.9, at normal 

operating temperatures and 1000 rpm. Note that the VW tests did not separate the 

crankshaft and oil pump friction, so these are shown together for all engines. The 

Fuel Injection Equipment (FIE) figure for the VW is also an estimate. Although 

piston assembly friction is shown added to the gas loading effect, the two were 

measured separately. The gas loading effect was found to be between that of the 

IDI and P-type engines: 0.23 bar at 1000 rpm and +20°C. As before, Bishop's 

equation (7.3) was used to scale the VW result for speeds other than 1000 rpm. 

At this fully warm condition, the VW engine has significantly lower friction than 

the Ford engines, primarily due to the very low losses in the valvetrain assembly; 
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other contributions are comparable between engines. In all cases piston 

assemblies contribute the most friction, although the P-type engine suffers from 

higher valvetrain friction (twin camshafts) and the extra loss associated with the 

balancer shafts. At low temperature (Figure 7.10) the VW and IDI engines have 

similar friction mean effective pressures of about 4'lS. bar. The P-type engine 

produces a slightly higher value of about 5 bar. The P-type engine has low piston 

friction, but very high valvetrain friction, in conjunction with a considerable 

contribution from the balancer shafts. Piston friction is highest in the VW engine, 

although that may be expected due to the higher piston speeds associated with its 

longer stroke, but this disadvantage is offset by the lower crankshaft and 

valvetrain friction. 

7.4 Conclusions 

Motoring friction breakdown provides data on the relative contribution of each 

engine assembly to the total friction. Despite the known differences in local 

conditions within the engine, the motored breakdown agrees closely with results 

obtained from firing tests, both in terms of total friction and the proportion 

attributed to each sub-assembly. 

Variations in quasi-steady friction (that is, excluding the initial period where 

friction changes very rapidly) can be adequately represented by the simple 

equation (7.1), based on oil viscosity. This viscosity is calculated using the oil 

temperature measured at a representative point in the lubrication circuit: here, the 

inlet to the main gallery in the block. It allows the total engine friction to be 

predicted; based on measurements taken below +60°C, predictions of friction at 

up to +90°C have proved to be reliable. However, this range (+60°C to +90°C) 

represents only a relatively small viscosity change, with projections to lower 

temperatures (below -20°C) more difficult. 
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Measurement of low temperature friction in several engines has shown that the 

proportions attributable to each engine assembly may be quite different to those 

measured under normal operating conditions. Although friction from the piston 

group was the highest single element at all temperatures, other components 

become more significant as temperature is lowered. In particular, the low levels 

of friction normally seen from journal bearings rises very rapidly, giving 

unexpectedly high friction from the crankshaft of all three engines (and the 

balancer shafts of the P-type unit). Friction from the valvetrain appears to be less 

of a problem at lower temperatures because it is less sensitive to oil viscosity than 

the engine as a whole. 

A VW competitor engine was found to have similar or lower friction than Ford 

units at all conditions, despite having higher piston friction. The latter may be 

due to the high piston speed, since the VW had the longest stroke of the set of 

engines. However, this was more than offset by low crankshaft and particularly 

low valvetrain friction. 

In order to reduce cold friction, this work suggests that attention should clearly 

be paid to the piston group (piston and rings, small end and big end bearings). 

This makes the largest single contribution to total friction. The low piston friction 

in the P-type engine, both as a percentage and in absolute terms, shows that 

improvement of the IDI design is possible. An unexpected finding is that the 

crankshaft, and balancer shafts on the P-type engine, also merit investigation. 

The crankshaft friction can rise sharply with falling temperature, contributing 

typically 20% of the total at -20oe. The P-type balancer shafts, which are also 

basically a single shaft supported in journal bearings, show a similar 

characteristic, rising sharply to over 10% of the total at -20°e. Although these 

two components contribute less than 10% of the total under fully warm 

conditions, they clearly have a greater impact under cold starting conditions. 
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Chapter 8 

INITIAL FRICTION TRANSIENT 

8.1 Introduction 

The results described in the previous chapter were acquired during periods of 

engine motoring when quasi-steady conditions apply. In this case, friction can be 

related to the feed temperature of the lubricating oil. During the first seconds of 

engine running friction losses are higher (typically by a factor of two at -20° e) 

and initially change more rapidly than would be predicted by the quasi-steady 

dependence on oil feed temperature. Generally, an engine cold start is completed 

before these steady conditions can be established and hence this initial transient 

phase is particularly important. The investigation of friction during the transient 

phase is described in the following sections. 

The ratio of initial to corresponding steady state friction has been used to 

characterise initial friction values. This will be shown to be independent of oil 

viscosity, but dependent on test temperature. Test data from several Ford engines 

(both firing and motored) and the 1.9 litre TDi VW engine have been analysed 

to show that the duration of the transient is similar in the Ford engines tested, but 

considerably shorter in the competitor engine. In all cases, however, it exceeds 

the length of a typical cold start and, at lower temperatures, it is the 

characteristics of this initial friction transient that control the cold start duration 

in the Ford engines. 

Using friction data from breakdown tests on the engine, the relative contribution 

of each engine assembly to the initial transient level of friction has been 

examined. The largest contribution will be shown to come from components 
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having the highest proportion of hydrodynamic lubrication, especially journal 

bearings. Investigations of journal bearings suggest that the high initial friction 

levels are associated with differences between the oil temperature measured at 

the inlet to the block and that at the friction surfaces. A simple model of the 

crankshaft main bearings is developed, representing operation under quasi-steady 

conditions. This model is then extended to include the initial transient period, and 

is able to correctly predict the magnitude and duration of the friction transient 

with changes to temperature and speed. 

8.2 Magnitude of Start-up Friction 

Previously it has been shown that under quasi-steady conditions, engine friction 

can be related to oil feed temperature by an empirical equation based on oil 

viscosity [8.1] such that: 

FMEP (8.1) 

Equation (8.1) implies that the viscosity of the oil at the friction surfaces 

maintains a fixed relationship to the viscosity based on the measured oil 

temperature (at the inlet to the block). Under steady-state conditions this 

assumption holds because local heat generation is largely balanced by steady 

conduction to the surrounding engine structure. However, when the engine first 

begins turning, friction depends not only on engine temperature but also the time 

from the start of the test. Initially the entire system is at the cold-soak 

temperature, including the oil at the friction surfaces. At these points, frictional 

heating causes a rapid rise in oil and metal temperature until equilibrium is 

reached, causing the initially high level of friction to decay to a steady state 

value. Because the temperature changes are localised, general data such as feed 

oil, water or block temperature do not measure this phenomenon. 
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Paradoxically, the relative magnitude of the initial friction transient depends 

largely on the conditions at steady-state. Although the design of each bearing 

contact influences its cold friction, initial conditions are always the same: the 

entire engine structure and all lubricant and coolant at the cold starting 

temperature. Thus absolute value of friction is fixed by the basic engine design 

(dimensions, clearances and so on), and can theoretically be determined by 

consideration of each sliding contact throughout the engine, using these known 

initial conditions. Such analysis in the steady-state, however, additionally 

requires evaluation of local heat generation and how this is transported away 

from the contact surface. Under these conditions the materials and physical 

design of the entire structure can influence the results: coolant passages, 

supporting castings, lubrication circuit and so on. The duration of the initial 

transient is similarly influenced by these secondary design features, insomuch as 

they alter the time taken to reach steady conduction conditions. 

8.2.1 Experimental Measurement of Initial Friction 

Test methods were similar to those used to collect the "speed sweep" data 

previously described. To examine friction during the early seconds of motoring, 

data acquisition was started before the engine was rapidly accelerated and held 

at a steady test speed. As before, frictional heating (with additional electrical 

heating above +40°C) was used to provide the range of temperatures required for 

each test. Starting at different temperatures and running at different speeds 

allowed a matrix of test data to be built up. Typical data are shown in Figure 8. 1, 

with test results starting from -10°C to over +40°C for SAE 20W/50 oil. The 

figure shows how the initially high friction (here, up to 8 bar at -10°C) falls after 

the start of each test until it reaches a base level which then depends on 

temperature and falls from about 3lh bar at +5°C to llh bar at +60°C. Although 

not shown when presented in this form, the time taken for the initial friction to 

decay to the base level is typically 100 seconds for the data here. The base level 
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corresponds to the value measured in the "steady-state" testing previously 

described. 

Since the quasi-steady friction variations follow the form of (8.1), plotting the 

data against oil viscosity (evaluated at the oil feed temperature using the Walther 

equation as before) on log scales makes the effect of the initial transient clearer , 

as shown in Figure 8.2. In this figure, the "base" level of friction appears as an 

approximately straight line, falling from about 3 Y2 bar at 2500 cSt to 1 Y2 bar at 

75 cSt. Individual cold starts at different temperatures start with high friction and 

high viscosity (top right) and, along with falling viscosity, the friction falls until 

the steady-state value is reached; all tests fall on this single base line after the 

initial period. This initial friction transient has been defined here by using the 

ratio of the instantaneous to steady-state friction, such that: 

FMEP t 
FR

t 
= ----

FMEP 00 

(8.2) 

Where F~ (friction ratio) describes the friction transient at time t, FMEPt is the 

absolute friction measurement, and FMEP 00 is the steady-state friction at the 

corresponding temperature (conceptually at infinite time). 

Although motoring torque could be measured from the instant rotation started, 

a finite time is required to accelerate the engine up to test speed. During this 

time, the instantaneous evaluation of friction FMEP using inertia estimates with 

speed and torque data proved unreliable. Although the most rapid acceleration 

possible was employed, the time to reach test speed increased at higher target 

speeds and lower temperatures because of the limited motoring torque available. 

Attempts to project back to zero time proved unsuccessful, due to differences in 

the acceleration rate up to the desired speed. Instead, the initial friction ratio 

(FRJ was evaluated at a fixed time after the start of rotation. Across the range of 
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tests performed here, the target speed could be reached in typically five seconds 

in the worst case, so this time was selected. (Exceptionally, it was necessary to 

project back linearly to obtain a figure at this time). It was assumed that the value 

of FRr evaluated at five seconds was approximately equal to that at zero time due 

to the relatively short period involved and the lower rotation speed during 

acceleration. This method has some weakness since, for example, FRr is 

evaluated after a fixed time but a variable number of engine revolutions. 

However, it is a clearly defined methodology which yields repeatable and self

consistent results. The steady-state friction, FMEP 00 , was taken from friction 

breakdown data. 

8.2.2 Full-Engine Results 

Due to excessive torque fluctuations, motoring data could not be collected from 

engines running at less that about 1000 rpm unless the engine was decompressed 

by raising the head. This speed was therefore selected for tests to examine the 

behaviour of FRr in normal full-engine configurations, corresponding to the 

situation at idle speed just after cold starting. Motoring data were collected from 

the 1.8 litre IDI and the 2.2 litre P-type (series 0) DI engines. Additionally, the 

analysis has been extended to include data from motored tests on a 1.8 litre 

L-type (series 0) DI engine [8.2], and two gasoline spark ignition engines under 

firing conditions. The latter are Ford 1.1 litre "Valencia" [8.3] and 2.0 litre 

DOHC [8.1] engines. A single competitor engine, the 1.9 litre VW TDi (a DI 

engine), was also included. Where possible, the engines were tested without non

essential ancillaries such as alternator, air conditioning or power steering 

equipment. Data from the gasoline engines were collected with all normal 

ancillaries in place. 

The magnitude of the initial friction transient (FR0 at 1000 rpm, defined in 

equation (8.2), correlates reasonably well with oil viscosity, but better using the 

oil feed temperature directly. In the latter case, FRI becomes virtually 
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independent of engine type and oil viscosity grade, and dependent only on test 

temperature at a given speed, as shown in Figure 8.3. This characteristic can be 

represented by a straight line, demonstrated in Figure 8.4. The "best fit" line 

cannot pass below unity, as this would imply initial friction lower than the 

steady-state; this has not been observed. 

To investigate the effect of engine speed on FRr, the P-type engme was 

decompressed to allow steady running at speeds below 1000 rpm. A comparison 

of compressed and decompressed results at 1000 rpm shows that decompression 

has little effect on FRr at temperatures around -20°C, but caused a slight 

reduction above this, as shown in Figure 8.5. The reduction is relatively small, 

giving an average decrease in initial friction of about 7%. The cause in unclear, 

but has to be accepted since decompression of the engine was required to allow 

tests at lower speeds. 

Testing at speeds of 250, 500 and 700 rpm over a range of temperatures was 

completed. These results, along with comparable tests at 1000 rpm, are shown 

in Figure 8.6. Tests at lower speeds proved to be particularly demanding, with 

the reduced levels of steady-state friction amplifying the effect of measurement 

errors on FRI , increasing scatter. Considering data at or above 500 rpm, no 

significant change with speed is observed. However, despite small number of test 

results and the relatively high scatter, the data at 250 rpm are significantly lower, 

reduced by about 12%. Reference to Chapter 7 (Figure 7.8) shows that this 

behaviour is in line with total measured steady-state friction: rising from zero to 

about 500 rpm and then beginning to level out above this. 

8.2.3 Contribution by Component 

During the friction breakdown testing described in Chapter 7, data were collected 

to allow the contribution of each engine assembly to the total initial friction to 

be identified. This was carried out at -20°C and 1000 rpm to ensure that the 
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transient was large enough to be measured with reasonable accuracy as more 

engine assemblies were removed. These tests were carried out with the engine 

decompressed throughout. To measure the component of FRI associated with 

each assembly, equation (8.2) was used as before. In this case FMEP
t 
was the 

initial friction due ONLY to the engine component under consideration, 

measured as the difference between two builds starting under the same 

conditions: -20oe and 1000 rpm. As before, F~ is referred to a time five seconds 

after the start of engine rotation. FMEP co was the steady-state friction for the 

relevant engine assembly ONLY, taken from the friction breakdown data 

previously described. Thus the values of FRI calculated here refer to each engine 

assembly in isolation, as if it was tested alone. This normalisation for each 

assembly allows the sensitivity to initial conditions to be compared directly. To 

calculate the absolute contribution, the product of FRI and the steady-state 

friction can obviously be used. 

Data were collected from the 1.8 litre IDI and 2.2 litre P-type DI engines. 

Motored breakdown data were also available for the 1.8 litre L-type DI 

engine [8.2]. FRI is plotted in Figure 8.7, comparing each major assembly in 

these engines. For all engines, the crankshaft and pistons show the largest 

transients, with initial friction being between 1.9 and 2.4 times the steady-state 

value for these components. The values for the piston assemblies includes both 

connecting rod bearings but excludes the effect of gas loading. The balancer 

shafts in the P-type engine have an initial friction transient of a slightly lower 

value, about 1.7. The value of FRI for the valvetrain is lowest, varying between 

1.5 an 1.0 (in which case no transient effect is observed). 

The oil pumps fall into two groups with FRI at 1.0 for the P-type and about 2.2 

for the IDI and L-type. This variation is attributed to differences in oil pump 

design. The IDI and L-type both use an internal gear pump of common design, 

driven by a layshaft running in two small journal bearings. The P-type pump is 

of similar basic design, but having a smaller diameter rotor and without the 
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layshaft, being driven directly by a chain and sprocket. The combined result of 

these changes is to give the P-type oil pump a lower dependence on oil viscosity 

than the other design, as can be seen from the steady-state breakdown data of 

Chapter 7. At the test condition examined, it appears that the IDIIL-type design 

operates in the hydrodynamic lubrication regime to a greater extent than the 

P-type pump. The component of FMEP due to the actual pressure work done 

pumping the oil is very low. For example, the IDIIL-type pump produces a 

pressure rise of up to 3 Y2 bar and a flow of under 8 litres per minute at 1000 rpm. 

This adds only about 0.03 bar to FMEP, almost independent of temperature 

because of the action of the pressure relief valve in the pump outlet. 

All of these results suggest that the highest sensitivity to initial conditions, and 

the highest values of FRI, are associated with components which operate 

predominantly in the hydrodynamic lubrication regime. These include the piston 

assemblies (with the connecting rod bearings but excluding gas loading effects), 

crankshaft and, in the P-type unit, balancer shafts [8.4]. In all these cases friction 

is dominated by hydrodynamic operation, mostly in journal bearings. The 

valvetrain has a low sensitivity to oil viscosity due to the boundary and mixed 

lubrication regimes in which exist in its operation [8.4, 8.5]. Consequently, initial 

friction levels are only marginally higher than the projected steady-state values. 

The effect of this initial transient is very significant for the piston assemblies, 

crankshaft and (for P-type) balancer shafts, due to the size of FRI coupled with 

the large low-temperature friction. 

8.3 Duration of Start-up Friction 

The work above allows friction to be estimated as the engine starts turning, based 

on measured steady-state values and a simple function depending on engine 

temperature, FRI. However, friction immediately begins to decay towards the 

steady-state level and the rate of decay has an equally important influence on 
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cold start perfonnance at low temperatures. The decay can be described using an 

exponential function of the form: 

-t1 l' 
FR t = 1 + (FR

I 
- 1) e FR (8.3) 

A fit to the experimental results is illustrated in Figure 8.8. The time constant 'tFR 

depends on test conditions. From tests on a P-type engine carried out using 

SAE 10W/30 grade oil, Figure 8.9 shows the dependence on temperature (at 

1000 rpm) and speed (at a temperature of -20°C). Friction decays more slowly 

at lower temperatures, with time constants rising from about 7 seconds at +40°C 

to 36 seconds at -20°C. The lower graph shows how reducing speed (here, at 

-20°C) lengthens the decay time still further. Although P-type cold start times are 

not presented, they are similar to the 1.8 litre IDI engine; the initial friction 

transient therefore lasts for considerably longer than the start under all 

conditions. 

Data were also available from the 1.8 litre IDI engine and the VW competitor 

unit. Adding these to the results from the P-type (Figure 8.10) indicates that the 

two Ford engines behave in a similar manner: 'tFR falls as speed and temperature 

rise. The VW engine reaches its steady-state friction value far more quickly 

under all conditions. The transient at 1000 rpm takes approximately half the time 

of the Ford engines, and this difference becomes more marked as the speed 

decreases. A similar reduction of 'tFR in the Ford engines would have a very 

significant effect on low temperature starting, where a long period of firing

assisted cranking is required until the friction falls below a critical level. If the 

friction decay characteristics of the IDI engine matched those of the VW, cold 

start times at -20°C would reduce from about 30 seconds to under 15 seconds. 

As described above, changes to the oil viscosity grade were found to have no 

effect on FR:r, since the change in initial friction was matched by a corresponding 

change in steady state friction with changing oil. However, as shown in 
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Figure 8.11, using the more viscous SAE 20W/SO oil increases 'tFR from about 

30 seconds (with SAE 10W/30) to over 70 seconds at -10°C. The dependence of 

oil viscosity on temperature does not account for this effect, as plotting the time 

constant against kinematic viscosity of the oil at the inlet to the block shows that 

the two are not directly related. The explanation for this is uncertain: it is 

possible that a different additive blend is used for the higher viscosity oil, giving 

it a different dependence on shear rate. 

8.4 Theoretical Consideration 

To gain further insight into the conditions gIVmg nse to the friction 

characteristics during the early period of engine running, a special test rig was 

constructed. An isolated crankshaft running in main bearings was instrumented 

to record relevant data about torque, oil flow rates and local bearing temperature. 

The crankshaft, together with a separately driven oil pump to maintain normal 

oil flow, was motored in the block of a 1.8 litre Ford IDI engine. The assembly 

was installed in a refrigerated enclosure allowing temperatures from ambient to 

below -20°C. The development of this facility was carried out in collaboration 

with a co-worker, who undertook the test work. The results obtained are 

described in greater detail elsewhere [8.6]. Here, the results are used in 

conjunction with basic theoretical considerations to develop a model for bearing 

friction in the crankshaft. 

8.4.1 Overview of Test Data 

The crankshaft assembly was installed in a small refrigerated enclosure providing 

soak temperatures from ambient to below -20°C. A small DC motor turns both 

the oil pump and, through a torque measuring device, the crankshaft at speeds up 

to 1000 rpm. Temperature measurements included that of the oil after the oil 

pump, at the inlet to the block, as previously used to characterise oil temperature. 

Importantly, thermocouples were placed to measure the temperature in the main 
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bearing oil film. This was done by drilling through the bearing cap and shell, 

perpendicular to the bearing surface, and inserting a 0.5 mm diameter 

thermocouple. The thermocouple tip was located flush with the bearing surface, 

but not in contact with the walls of the drilling. In this way, the thermocouple 

was protected from damage by the rotating j oumal, but the temperature recorded 

closely approximated the actual oil temperature in the film. 

During a motored test at fixed speed starting at -20oe, the temperature measured 

in the bearing oil film was found to be quite different from the oil feed 

temperature, as shown in Figure 8.12. The small initial drop in oil feed 

temperature is due to an initial difference between block and oil temperatures. 

When the cold oil was picked up from the sump, the block was initially cooled 

slightly. Disregarding this fall, the oil feed temperature rises slowly but steadily 

after a short initial delay. However, at the low temperature shown here, the 

temperature in the bearing oil film rises very sharply as rotation begins, being 

about 4°e warmer than the feed when the first sample is taken after one second. 

This corresponds to a drop in oil viscosity of about 33% (from 3790 cSt to 

2540 cSt), which takes place before any data can be collected. By 50 seconds, 

viscosity has dropped a further 55% to 1120 cSt, accompanied by a significant 

fall in friction. 

The rapid change in oil film temperature is not characterised by oil feed or bulk 

structure temperatures, and provides a likely explanation for the initial transient 

friction. If the friction is plotted against viscosity on log scales (Figure 8.13), it 

can be seen that the initial friction transients (upper graph) are not observed if the 

temperature in the bearing is used to calculate viscosity (lower graph). That is, 

crankshaft frictional losses are linearly related to viscosity evaluated at the 

measured oil temperature in the journal bearing. To predict the film temperature, 

however, requires a description of thermal conditions around the rubbing 

surfaces. At the time of writing, work is ongoing at Nottingham to develop 

models for engine friction which take account of variations in local oil film 
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temperatures. Here, an interim model is developed to examine sensitivity of 

friction to various design variables. In this model, only the behaviour of the 

crankshaft journal bearings is considered, and use is made of experimental data 

to provide values for block and oil feed temperatures. 

8.4.2 Model for Quasi-Steady Condition 

The model is based on the Cameron's assumption [8.7] that energy dissipated due 

to friction is balanced by convective heat transport at fully warm, high speed 

conditions. For cold start conditions, this is modified to allow for conduction to 

the engine structure, originally neglected by Cameron. The effect of shear on the 

viscosity of multigrade oil is also modelled; at low temperatures, this is 

significant at even moderate speeds. Assuming that the bearing is fully flooded 

with oil and has low eccentricity, friction can be modelled by Petroffs 

equation [8.7]: 

F 
21t 11 URL 

(8.4) 
c 

Where F is the frictional force, f) is the dynamic viscosity, and U is the bearing 

surface speed. R, Land c are the bearing radius, length and radial clearance 

respectively. Petroffs equation is suitable for use during cold starting, which has 

conditions of high lubricant viscosity and low load engine operation [8.8]. 

Frictional heat input is simply F x U, and this is equated to heat transfer from the 

bearing by convection and conduction. Considering convection first: if the oil 

temperature rises linearly by AT oil between entering the centre groove and 

leaking out at the bearing edge, and 'ttota! is the volume oil flow rate, then: 

(8.5) 
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Where Q cony is the power convected from the bearing, p and CJ are the density and 

specific heat of the oil. The total oil flow consists of a component due to the 

pumping action of the hydrodynamic wedge in the rotating bearing (pumped 

flow, 4pumped ) and a component due to the feed pressure (pressure flow, 4
prcssurc

). 

From Cameron, using short bearing theory, the pumped flow through the bearing 

is given by: 

VcL 

2 
(8.6) 

with 4 ., the non-dimensional flow coefficient, put equal to 0.6x (2 - LID) with 

D the bearing diameter. Again from Cameron, assuming that the oil feed is 

through a central groove along 1800 of the circumference and with P pump equal 

to the gauge oil feed pressure, gives: 

(8.7) 

Experimental results collected by Bianco [8.6] show that these equations 

adequately predict oil flow for the range of conditions studied here. 

Considering conduction: assuming that all the metal in the engine is all at block 

temperature, and the oil is at this temperature as it enters the bearing and rises 

linearly by /::,. Toil before leaking out at the bearing edge. The average oil 

temperature, Toil' is given by: 

-
T oil = T fc:c:d + Yz /::,. T oil (8.8) 
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and, since the oil feed is at the metal temperature, (Tfeed = T
metal

), the temperature 

difference between oil film and metal is: 

-
T oil - T metal = Yz.1 T oil (8.9) 

U sing this temperature difference to characterise conduction, consideration of 

basic heat transfer gives an equation for heat flow from oil to block, Q
cond

: 

Y2 A Toil 
Qcond = (8.10) 

Here, Rob represents the thermal resistance between the oil film and the bulk of 

the block. The value of Rob will depend on a number of factors, including: 

The surface area over which heat transfer can occur, both into the 

journal and the bearing shell (21tDL). 

The thermal conductivities of the materials involved (oil, journal, 

shell and block). 

The thermal coupling between these materials (oil to surrounding 

metal, bearing shells to the block). 

The characteristic lengths involved (oil film thickness, bearing shell 

thickness) . 

In practice, the oil temperature would be expected to vary throughout its 

thickness, and the bearing surfaces would experience local heating. These factors 

are not explicitly modelled here, but are represented by a change in the effective 

thermal resistance to the block. This is a simplified description which requires 

the value of Rob to be derived from matching with experimental results. 

101 



In the steady-state, the heat generated must be balanced by heat removal, so 

FU = Q com + Q cand· The equations above can be solved iteratively for f:. Toil , 

provided the correct viscosity can be evaluated. According to Cameron, the 

effective temperature in the bearing can be calculated as the feed temperature 

(here, block temperature) plus about 0.8 times the temperature rise. The viscosity 

of multigrade oils is dependent on both temperature and the rate of shear. the 

effects of pressure are neglected here. Although normally associated with high 

bearing speeds, Bartz and Reynolds [8.9] showed that, at low temperatures, this 

loss can become significant at relatively low speeds. At cold start temperatures 

it cannot be neglected. The oil manufacturer and suppliers were unable or 

unwilling to provide the relevant information about the test oils used in this 

work, so a simple method was developed to characterise the shear effect. By 

measuring the turning torque on the crankshaft test rig over a range of speeds and 

temperatures, Petroffs equation (8.4) was solved to estimate the actual dynamic 

viscosity. Using the measured temperature in the oil film, the expected viscosity 

was compared with the actual to evaluate the percentage reduction. This did not 

yield enough data to justify the use of the more complex equations for viscosity 

shear loss [8.8, 8.10], but Cameron presented data showing that the viscosity 

reduction depends on shear stress (the product of shear rate and dynamic 

viscosity). The test results plotted in Figure 8.14 conform with this dependence: 

no viscosity loss occurs at shear stresses below about 7500 Pa, and above this 

threshold value the viscosity loss is linearly dependent on the log of shear stress. 

In the main bearings considered here no reduction would occur below about 

4000 rpm when fully warm, but some viscosity loss would be seen at 330 rpm 

at +20°C and at 15 rpm at -20°C. 

Using the shear/viscosity relation shown in Figure 8.14 allows the equations set 

above to be closed, subject to setting values for the thermal resistance ~b· Using 

Rab ::; 0.07 K!W gives good agreement between measured and predicted quasi

steady friction levels, as illustrated in Figure 8.15. Comparison with data 
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supplied by the engine manufacturer [8.11] shows that the model is still within 

20% of measured values at 6000 rpm and 85°C. 

Cameron [8.7] stated that most of the heat is removed by convection to the oil, 

and Dowson, Ruddy, Sharp and Taylor [8.12] calculated that the bearing friction 

could be significantly altered by the oil supply arrangement. Results from the 

model developed here show that, at low temperatures and speeds, convection has 

only a secondary effect and removes less than 10% of the generated heat. This 

means that, providing enough oil is supplied to maintain a lubricant film, the 

effect of oil flow rate on friction will only be small under cold starting 

conditions. This simple model cannot, however, predict friction during the initial 

transient period at the start of each test; this requires the way in which 

temperature changes with time to be modelled. 

8.4.3 Transient Model Development 

To represent the conditions affecting the crankshaft during transient operation, 

the model has been extended to include the influence of nearby thermal masses. 

Metal in close contact with the crankshaft bearings is represented by a thermal 

inertia, connected by thermal resistances, as shown diagrammatically in 

Figure 8.16. Heat generated in the oil film is conducted out to the metal around 

the bearing and then into the bulk of the block. In this simple treatment the block 

temperature is set from experimental results, above which each of the other 

temperatures are evaluated. The following physical significance can be attached 

to the various parts of the model: 

The thermal resistance from the oil to the thermal inertia, Rvm' 

controls conduction between the oil and the metal of the bearing. It 

governs the magnitude of initial friction. 

The thermal resistance from the thermal inertia to the block, Rub, 

controls conduction away from the metal of the bearing to the bulk 
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of the block. In conjunction with Rom it regulates the steady-state 

friction. 

The thermal inertia represents that body of metal in close contact with 

the journal bearing whose temperature controls heat transfer from the 

oil. Along with the thermal resistances, it sets the rate of decay of 

initial friction. 

The thermal inertia does not necessarily represent a specific component such as 

the bearing journal or cap, and must be calibrated against experimental data. 

Similarly, the thermal resistances must be calibrated, but should sum up to the 

value of Rob used above, to maintain the good steady-state match. 

The modified model was solved iteratively, as before, with the additional 

requirement to calculate changes to the nearby metal temperature with time. 

Denoting the temperature of the thermal inertia above the block as Il. T , the 

temperature rise at step n+ 1, a small time Il. t after step n, was calculated as: 

(8.11) 

Q flows into the mass and Qmb flows out of the mass to the block (both conv 

evaluated at step n), and the thermal inertia, mm.Cm, is the product of mass and 

specific heat. 

The modified model gives predictions of friction which are in good agreement 

with experimental results. A comparison of experimental and predicted results 

for start temperatures from -20oe to +20oe and speeds up to 1000 rpm is given 

in Figure 8.17. Future extensions to this model would include prediction of block 

temperature (currently underway at Nottingham) and modification for other 

engine components such as connecting rods, balancer shafts, and camshafts. 
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Similar methods could also be applied to other engine assemblies such as the 

pistons. However, in the form presented here, the sensitivity of cold friction to 

theoretical design changes can be examined easily. 

8.5 Conclusions 

Friction levels during cold starts can be much higher than values measured 

during steady motored tests. The oil films at the friction surfaces take some time 

to reach quasi-steady conditions, when the oil feed and film temperatures are 

related. Until equilibrium is reached, the local oil viscosity (and therefore 

friction) is far higher than under quasi-steady operation. This can lead to the full

engine friction at -20°C being about twice the steady state value, measured with 

the same indicated conditions. 

Journal bearings, which have already been shown to contribute heavily to low 

temperature friction under steady-state conditions, are a particular problem. 

Operating almost entirely in the hydrodynamic regime, they are especially 

sensitive to changes in oil viscosity. Elements such as camshafts, which operate 

with a significant proportion of boundary lubrication, are less prone to a large 

start-up spike. 

All measured engines show a similar relationship between steady state and initial 

friction, defined by the ratio FRI. This ratio is controlled by the two conditions 

involved: initial friction depends on the initial oil temperature and the bearing 

dimensions; steady state friction depends on the balance between frictional 

heating and conduction (and convection) away from the rubbing surfaces. At 

-20°C the initial friction is about twice the steady-state value, with the size of the 

initial transient dropping as temperature rises, being negligible above +40°C. 

Although fairly insensitive to speed (up to 1000 rpm), the transient is smaller at 

very low speeds. 
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The duration of the initial transient increases at low speeds and temperatures, 

making cold starting more difficult (low temperatures and low cranking / firing 

assisted cranking speeds). Although the Ford engines appear similar, a competitor 

engine of nominally similar design shows a far more rapid decay in this initial 

friction; the reason for this is unclear. The viscosity grade of the oil used also has 

a large impact on decay time, with a more viscous oil approximately doubling the 

duration in one engine. The reason for this change with viscosity grade remains 

an open issue at present. 

For multigrade oils, the sensitivity to shear stress acts to significantly reduce 

friction; at low temperatures (around -20°C) a reduction in viscosity occurs at 

very low speeds. This change is helpful during cold starting, when oil 

temperatures are lowest, giving highest shear stress (the product of shear rate and 

dynamic viscosity), conditions which promote viscosity reductions and lower 

friction. 

A model for crankshaft journal bearings based on lubrication theory and a simple 

heat transfer model has been shown to correctly predict friction over a wide 

range of cold starting speeds and temperatures. This may be used to examine the 

likely effect of design changes on cold start friction, and may be used as the basis 

of a more complete treatment of the entire engine. 
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Chapter 9 

SUMMARY AND CONCLUSIONS 

9.1 Overview 

The work presented in this thesis identifies a number of factors which 

significantly influence the cold start behaviour of diesel engines at low 

temperatures. Tests on an IDI engine in current production, along with 

development of a model for starter motor performance, have revealed that the 

relative magnitude of combustion work output and frictional losses is particularly 

important. As temperature reduces, increasing losses reduce the net work 

available to accelerate the engine to idle speed. Input is required from the starter 

motor until friction throughout the engine (FMEP) drops below the useful 

combustion output (IMEP). Low temperature starting is a balance between these 

two, with any shortfall in IMEP made up by the starter motor. 

Since the starter provides significant power output only at relatively low engine 

speeds, a successful start requires IMEP to exceed FMEP. At higher temperatures 

(typically above -lOoe for the IDI engine studied here) this occurs immediately, 

and a start is quickly achieved. After a few strokes, firing commences and the 

engine is rapidly accelerated to idle speed by combustion work. At lower 

temperatures, however, raised frictional losses are initially greater than the 

available combustion work, and start times are extended. Once firing is achieved, 

IMEP acts against friction to turn the engine, but input is still required from the 

starter. This leads to a period of firing-assisted cranking, where speeds are 

considerably above those during normal cranking, but the engine stalls if the 

starter is switched off. As cranking progresses, local heating within the engine 

lowers fiiction by reducing oil viscosity at critical bearing surfaces. This causes 
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an increase in engine speed, giving an improvement in IMEP (due to reduced 

blowby and heat transfer losses, and improved fuel utilisation). However, the 

rising speed also causes a sharp reduction in starter output, restoring the 

temporary equilibrium. Eventually, friction reduces and speed rises enough for 

IMEP to exceed FMEP and the starter is no longer required. A start is therefore 

achieved, providing enough energy is available from the battery to maintain 

cranking for long enough. 

Any mechanism that changes this balance will have an effect on cold starting: 

Heat transfer and gas leakage losses have an adverse effect and 

reducing these is advantageous. They reduce the probability of 

ignition during cranking and lower work output once firing is 

achieved, especially at low speeds. 

Poor combustion characteristics leading to misfire, poor fuel 

utilisation, or badly phased combustion have a similar effect to the 

above. Poor IMEP at low speeds is largely due to very low fuel 

utilisation. Improved combustion phasing can increase IMEP by 

increasing the useful output from a given amount of fuel burned. 

High frictional losses reduce cranking speed, making initial firing less 

likely. These also increase the work input required to tum the engine 

and accelerate to idle speed. Reducing friction improves starting, 

particularly at lower temperatures where the firing-assisted cranking 

phase accounts for a greater part of the start-up. If the friction fell 

more quickly during starting, this would shorten lower-temperature 

starts further. 

Starter motor and battery performance can have a significant impact, 

since adequate speed must be achieved for firing to be initiated. At 

lower temperatures input from the starter may also be required for 

some time, during the firing-assisted cranking phase. Here, higher 
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starter power (and therefore higher engine speed and IMEP) leads to 

a more rapid fall in friction and hence quicker starting. 

9.2 Combustion Behaviour 

There are three distinct phases of an engine start: from key on to first-fire, the 

phase of firing-assisted cranking, and finally the phase from this through the run

up to idle speed. During the first phase, the starter motor is required to tum the 

engine at a speed at which firing cycles can occur. In the second, the firing

assisted cranking phase, work from combustion accelerates the engine above 

normal cranking speed but idle cannot be reached. This phase does not occur at 

higher start temperatures, where lMEP immediately exceeds FMEP. The third 

phase is usually very short; input from the starter no longer required and the 

engine quickly accelerates to idle speed. Throughout all three phases, maximising 

combustion output and avoiding misfires is important. Requirements in these 

three phases are discussed below, using findings from the Ford 1.8 litre IDI 

engme. 

9.2.1 Time Before First Fire 

Glowplugs are typically powered on a short time before cranking commences and 

maintained at temperature until several seconds at idle running have elapsed. 

Here, it was found that a minimum tip temperature of 850°C is required for best 

performance [9.1]. This can be reached in under ten seconds at -20°e. Longer 

pre-heat times give no improvement in start quality. After the longer time, 

measurements by a co-worker showed that temperatures in the combustion 

chamber were only slightly higher [9.2]. Most of the extra energy was conducted 

away to the coolant, with the remainder being lost during the gas exchange part 

of the first cycle. These measurements showed that the glowplug did not act to 

raise the temperature of the metal or bulk cylinder gasses; rather the hot tip acts 

as an ignition source (as shown by previous studies [9.2, 9.3]). In the IDI engine 
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studied here, reducing the tip protrusion led to firing in earlier cycles. This is 

attributed to reducing the adverse effect on swirl in the prechamber [9.4] and 

possibly due to moving the location of the hot tip. 

At low temperatures, poor battery performance and high frictional losses lower 

cranking speeds and make ignition less likely. This is attributed to the detrimental 

changes in blowby, heat transfer and fuel injection/preparation. If cranking speed 

falls too low, ignition never occurs. Modelling and experiments show that 

blowby loss is strongly dependent on minimum cranking speed, which occurs 

simultaneously with peak cylinder pressure. Raising minimum speed, even if 

average cranking speed is reduced, should therefore result in reduced blow by. 

This may be achieved by either raising engine inertia, raising starter motor 

inertia [9.5] or changing the starter torque/speed relationship [9.6]. Reduced 

blowby or heat transfer would benefit this phase, since the resulting higher 

temperature and pressure around TDC would increase the probability of 

successful firing. 

Injection of excess fuel is helpful during this cranking phase. Fuel accumulated 

on successive cycles gradually increases the effective compression ratio, making 

ignition more likely. No fall in friction or blowby as a result of fuelling has been 

detected in the IDI engine, although in a DI, fuel may get to the piston rings more 

easily. Injection timing is not critical, as much of the fuel in the cylinder is 

carried over from previous cycles. 

9.2.2 Firing-Assisted Cranking 

In this phase, combustion is more likely than during unaided cranking, due to the 

higher speeds achieved (about 200-400 rpm at -20°C). However, the IMEP 

produced by firing cycles is very low at these speeds due to poor mixture 

preparation and high losses due to blowby and heat transfer. The glowplugs are 

still required to aid ignition and limit misfiring. Retracted glowplugs. which 
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move the hot tip close to the chamber wall and increase swirl in the prechamber, 

increase IMEP slightly in firing cycles and help to reduce start times. 

Reducing heat transfer and blowby losses may limit misfires and increase IMEP 

during firing-assisted cranking. The higher gas temperature and pressure during 

the ignition delay would reduce misfires and (through increased spray breakup 

and fuel evaporation) means more fuel may be burned. After ignition, reduced 

blowby would mean more air available for combustion; this is advantageous 

because the engine runs very rich during starting. Additionally, reducing these 

losses would clearly allow more of the energy from combustion to be available 

as IMEP. 

Injecting excess fuel is still beneficial in this phase, as it raises IMEP by allowing 

more fuel to be used. In the engine studied here, up to 50 mg of fuel was injected 

per cylinder per cycle. Although not more than 20-25 mg is burned the excess is 

still required for best starts, as lower quantities reduce the amount burned. Here, 

fuelling could not be increased enough to cause a deterioration in start quality, 

but calculations show that a maximum of 32 mg could be burned if all the air 

charge was used. In practice, 100% air utilisation seems impossible, primarily 

due to poor mixture preparation and the presence of crevice volumes where 

burning cannot occur. The 20-25 mg of fuel burned with 50 mg injected 

represents about 70-80% air utilisation. Injection of fuel further in excess of 

50 mg would be expected to increase emissions of unburned hydrocarbons for 

very little starting benefit. 

Fuel injection timing is important during firing-assisted cranking. Late injection 

raises IMEP in firing cycles at the expense of increased misfires. If injection is 

too early, blowby and heat transfer cause an adverse decay in cylinder pressure 

generated by combustion while the piston is still close to TDC. Because the 

piston motion is small in this region, little useful work is done on the crankshaft 

(calculated as the integral of cylinder pressure with volume, JP.dV). If injection 
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is too late, ignition cannot occur in the time available close to TDC before the 

downward motion of the piston causes temperature and pressure to fall rapidly, 

and a misfire occurs. 

9.2.3 Run-Up to Idle 

This phase begins when the indicated work done on the piston exceeds all other 

losses, and the engine can accelerate away from the starter and up to idle speed. 

As the speed rises, blowby and heat transfer fall, more fuel is burned and IMEP 

increases dramatically. The glowplugs are still required to control misfires, with 

the retracted plugs showing similar benefits to earlier phases. Injection timing 

and fuelling levels become much less critical: providing enough fuel is injected 

and the timing is approximately correct, the start is very unlikely to fail (falling 

back to one of the earlier phases) at this point. 

After idle speed is reached, glowplugs are required for a short period to control 

misfires. However, heat transfer and blowby losses drop quickly with rising 

metal temperatures, and combustion becomes stable and well controlled. After 

a short time, glowplugs are no longer required. As the engine oil warms and 

friction falls, the fuel delivery system can gradually reduce the volume injected 

to maintain a steady idle speed. 

9.3 Friction Characteristics 

Friction losses at fully-warm operation conditions scale up dramatically at low 

temperatures. At normal operating temperatures (80-90°C) the oil viscosity is 

relatively insensitive to temperature and temporary viscosity loss (due to shearing 

the oil) only occurs at fairly high speeds. Local frictional heating of the bearing 

and oil does occur, but temperature differences are limited and the sensitivity of 

viscosity to these changes low. 
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At low temperatures, oil viscosity depends strongly on shear rate. Large 

temperature differences are generated between the oil film and the surrounding 

metal, with oil viscosity being very sensitive to these variations. High friction 

power leads to considerable conduction to the metal around the friction surfaces. 

Conditions are unsteady during starting, with the thermal properties of engine 

components having a considerable effect on friction behaviour. These factors 

mean that low temperature friction characteristics differ greatly from "normal" 

measured values. In addition, friction as the engine begins turning is different to 

the quasi-steady conditions usually measured by motoring or firing tests. 

9.3.1 Quasi-Steady Operation 

This situation arises after typically 50 to 100 seconds of engine operation. After 

this time engine friction depends only on the current operating conditions and the 

viscosity of the engine oil. Oil viscosity is evaluated at the inlet temperature to 

the main gallery, using the Walther equation. This dependence has been 

characterised by: 

(9.1) 

This equation agrees well with measured results in a wide variety of engines over 

limited temperature ranges. Although typically in the range 0.19 to 0.24 for 

gasoline and 0.25 to 0.32 for diesel engines, the value of the index n depends on 

engine build and speed, and oil type. Additionally, if the temperature range is 

extended sufficiently, changes in index n are seen. 

The temperature used does NOT represent that of the oil at the rubbing surfaces, 

but is related to it. Local heating raises the oil film temperature to higher values 

than the feed temperature by typically 5 to 20°C. Using Petroffs model, the value 

ofn would be unity for hydrodynamically lubricated friction with no significant 
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change in viscosity due to local heating or temporary viscosity loss due to 

shearing. In reality, n is reduced because not all surfaces are hydrodynamically 

lubricated, viscosity is reduced when shear stress is applied to the oil, and local 

heating reduces viscosity from that calculated using the feed temperature. 

The relative contribution of each engme component changes with falling 

temperature. The large increase in oil viscosity with falling temperature causes 

friction components which are most sensitive to viscosity to increase most 

significantly. Engine assemblies operating primarily in the hydrodynamic 

lubrication regime (such as crankshaft main and big-end bearings) generally 

make a small contribution to friction under fully-warm conditions; with falling 

temperature these components become increasingly important. Assemblies 

having considerable mixed or boundary lubrication (for example, the valvetrain 

and piston rings) may often contribute considerably to fully-warm friction. 

However, they become less significant as temperature drops due to their 

relatively low sensitivity to oil viscosity. 

Although equation (9.1) characterises experimental data well over a substantial 

temperature range, it is purely empirical. As a first step towards developing a full 

model for low-temperature friction, a simple model based on the crankshaft has 

been implemented. This used Petroffs Equation to calculate frictional loss based 

on fully developed hydrodynamic lubrication in a journal bearing, with additional 

consideration for local heating effects and the impact of shear stress on oil 

viscosity. Although secondary effects are neglected (such as the crankshaft oil 

seals and thrust bearings), the model accurately predicts crankshaft friction for 

temperatures from -20°C to fully warm and speeds up to 1000 rpm. Beyond this 

range, the prediction was found to be within 20% of the fully-warm friction 

measured at 6000 rpm. 

According to calculations used in this model (verified by measurements), oil flow 

rate is very small at low speed and temperature, limiting the amount of heat 
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which can be removed by convection. Therefore oil flow rate has no significant 

effect on friction, providing the bearing is not starved. The model predicts that, 

at least in journal bearings, low temperature friction is dominated by the oil 

characteristics and the effects of conduction. The viscosity/temperature 

relationship of the oil, along with the dependence on shear stress, has a major 

impact on friction, since (according to Petroffs Equation) friction is proportional 

to local oil viscosity. Under quasi-steady conditions, local heat generated by 

friction is balanced by conduction out of the bearing to the block. This limits how 

far the oil temperature can rise, thus preventing a further fall in local oil 

viscosity. It is this balance between heat generation and removal, along with the 

oil characteristics and bearing geometry, which determines the steady-state 

friction. 

9.3.2 Initial Friction Transient 

The local heating of oil films and bearing surfaces which occurs throughout the 

engine, and a drop in viscosity due to shear stress in the oil, limit the rise in 

steady-state friction as temperature falls. However, some time is required for this 

heating to occur and initial friction values are higher than steady-state results 

imply. Measurements made in a crankshaft journal bearing show that, after an 

initial very rapid rise, temperatures in the oil film are controlled by conduction 

to the surrounding metal (see above). Thus the system experiences unsteady heat 

flow from the oil (where the frictional heating occurs) to both the journal and 

bearing shells. From here, it passes through to the block and the ambient air. 

Similar arguments would hold for the entire engine, with the dynamic behaviour 

of this system controlling the magnitude and duration of the initial friction. 

The transient period of friction change has been characterised using the ratio of 

measured initial friction to the quasi-steady friction under the same conditions 

(engine build, speed, oil feed temperature and so on). The value of this ratio at 

a known time after the start of engine rotation has been defined as F~, the 
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friction ratio at time t. Further, the initial magnitude and duration have been 

defined as FRJ and 'tpR' The time constant 'tpR was evaluated by assuming an 

exponential decay for the friction ratio, with the magnitude FR
J 
evaluated as F~ 

close to time zero. True measurement at zero time proved impossible due to 

experimental limitations, but FRI (here, evaluated at five seconds) was assumed 

to be approximately equal to FRo in this work. As cranking progresses, F~ drops 

from the value FRo towards unity at FR..,: that is, measured friction equals quasi

steady friction after enough time has elapsed. 

Before beginning this work, it was expected that the initial magnitude would be 

strongly related to oil viscosity, evaluated at the test temperature. Although 

viscosity gave a reasonable correlation, testing revealed that the strongest 

relationship was with actual test temperature. For tests at 1000 rpm, a single line 

relating FRJ to oil feed temperature could be used for different oil viscosity 

grades and for a number of different engines (including several gasoline and a 

competitor engine). At -20°C, initial friction was about twice the steady value; 

at +40°C this initial increase was not measurable. After accounting for this 

temperature dependence, no further correlation with engine or oil type was 

detected. However, values were seen to fall by about 10% when the speed was 

reduced from 1000 rpm to 250 rpm. The size of the transient is controlled by the 

difference in local oil temperature when rotation first starts (the cold start 

temperature) and that when steady state is reached (that is, local heat generation 

balanced by quasi-steady conduction to the structure of the engine). These results 

suggest that the factors controlling this relationship are common to a wide range 

of engine designs. 

Lower test temperatures (and hence higher oil viscosities) gave an increase in the 

initial friction ratio, as expected. However, increasing the oil viscosity by 

changing oil specification at the same temperature caused no definite change in 

FRI' This result is unexpected and the mechanism is unclear. It appears most 

likely that the metal temperatures in the engine play a dominant role in 
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detetmining the actual viscosity of the oil at the bearing surfaces. As viscosity 

rises at fixed temperature, initial friction rises but the steady state friction rises 

roughly in proportion, keeping FRI approximately constant. As start temperature 

falls, however, the difference between initial and steady oil temperature 

increases. Coupled with the increased sensitivity of viscosity to temperature, this 

gives a greater difference between initial and steady friction, and hence higher 

values of initial friction ratio. 

The duration of the transient, defined by 'tFlli increases with reducing temperature 

and engine speed. This has an adverse effect on cold start characteristics. At low 

temperatures and cranking speeds, when starting is most difficult, the initial 

friction transient takes the longest time to decay. In addition, limited data show 

that changing the oil in one engine for a higher viscosity grade resulted in a 

considerable increase in 'tFR. 

Not surprisingly, it was found that the engine assemblies having the largest rise 

in friction from high to low temperature also showed the largest initial friction 

transients. Components having a large proportion of hydrodynamic lubrication 

(crankshaft, balancer shafts) and therefore a strong dependence on oil viscosity, 

have high values of FRI. Components with mainly mixed or boundary lubrication 

(camshaft assemblies) and thus a weak dependence on oil viscosity, showed 

minimal friction transients at start-up. 

9.4 Conclusions 

GENERAL 

Forced cooling of a test engine allows a rapid rate of cold start 

testing, subject to minor limitations. Five tests per day are possible, 

instead of one using more conventional cold soaking. Test methods 

have been developed to allow the sensitivity to various combustion 
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parameters to be identified. Similar methods have been applied to 

motoring friction tests, allowing the contribution of each engine 

assembly to be identified at different speeds and temperatures. 

With falling temperature, rising engine friction and reduced battery 

performance lowers cranking speed significantly. This increases 

blowby and heat transfer losses, which in tum adversely affects 

combustion characteristics. After firing is achieved, the engine can 

require a considerable further period of starter motor assistance until 

total engine friction falls below the available combustion output. This 

extended phase of firing-assisted cranking is typical of the longest 

part of engine starting at low temperatures. 

MODELLING 

Blowby processes have been adequately described usmg a 

compressible flow model treating the leakage paths as a number of 

volumes connected by orifices. After calibration, this model is able 

to predict blowby changes with changing speed, temperature and 

engine design. 

A model describing the starting system (battery, leads and starter 

motor) has been developed, and applied to cold starting data. This 

allows the input from the starter to be determined, enabling the 

calculation of engine friction on a stroke by stroke basis. Results 

agree closely with data from motored engine tests. 

A simple model has been developed and applied to data collected 

from a crankshaft at various speeds and temperatures. Petroffs 

journal beating theory has been used with simple models for oil flow 

and heat transfer, and an empirical model for viscosity lost at high 
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shear stress. This allows the temperature and viscosity of the oil 

films, and therefore the friction in the bearings, to be predicted. 

GLOWPLUGS 

The glowplugs, used as a starting aid, do not raise bulk gas 

temperature or heat the combustion chamber walls significantly. They 

provide a hot spot in the chamber to initiate combustion of the air

fuel mixture. 

Raising the temperature of the glowplug tip reduces misfires and 

variability in ignition quality (defined by ignition delay). 

Temperatures above about 850°C provide only a marginal 

improvement, but misfires increase sharply if the temperature is 

reduced below this. 

In one engine, reducing the protrusion of the glowplug improves start 

performance, due to improved fuel utilisation. Although possibly 

affected by moving the position of the hot tip closer to the wall, this 

effect has been shown to be largely due to removing the physical 

obstruction from the swirl chamber. 

COMBUSTION 

During cranking, fuel remains in the cylinder between successive 

cycles. Accumulated fuel gradually raises the effective compression 

ratio, making combustion more likely. Increased fuel injection makes 

this process more rapid. 
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Increased fuel injection quantity gives an increase in the amount 

burned in firing cycles, raising IMEP. However, much of the fuel 

injected during cold starting has been found to remain unburned. 

Due to the high losses experienced during starting, retarded fuel 

injection has been shown to improve IMEP in firing cycles. This is 

due to the combustion energy being utilised more efficiently at a later 

crank angle. However, this is offset by an increasing likelihood of 

misfiring. In one test engine, optimum timing for start of injection 

has been found to be about 3'1z°BTDC. 

Changing the rate of injection has not been shown to significantly 

alter start performance, although only a narrow range of injection 

rates could be achieved in the test engine. 

FRICTION 

The variation of engine friction measured during warm-up under 

quasi-steady conditions can be characterised using the oil feed 

temperature to the main gallery. Using this temperature, whole

engine friction has been approximated by a simple equation relating 

friction to a measured reference value. Oil viscosity is the controlling 

parameter. Friction scales in proportion to viscosity n, where n was 

about 0.19 to 0.24 for gasoline and slightly higher (0.25 to 0.32) for 

diesel engines. 

Local heating of oil films and bearing surfaces throughout the engine 

significantly reduces friction in the steady-state case. This is 

especially relevant at low temperatures, where temporary viscosity 

loss under high shear stress causes a further reduction. 
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Initial friction at low temperature, as the engine first begins turning, 

is far higher than values measured at steady-state. This is because 

some time is required for local heating to raise oil and metal 

temperatures. At -20°C, initial friction is about twice the steady 

value; by +40°C this initial increase is not measurable. The duration 

of this high friction level depends strongly on engine design and oil 

type, but rises with falling temperature and speed. In all cases, the 

duration is longer than the cold start time. 

RECOMMENDATIONS FOR FURTHER WORK 

Further investigation of combustion parameters with the aim of 

raising IMEP at low speeds. This could include changes to fuel 

injector design or fuelling schedule, or changes to the combustion 

chamber design. 

Closer examination of the factors controlling the decay in initial 

friction to understand the differences between engine designs. This , 

may include changes in bearing geometry or oil feed arrangement, or 

changes in the thermal coupling of components around the bearing 

surfaces. 
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APPENDIX A 

Test Engine Specifications 

Ford 1.8L Ford 2.2L Ford 1.8L VW 1.9L 
IDI P-type L-type TDi 

In-line 4-cyl In-line 4-cyl In-line 4-cyl In-line 4-cyl 
8 valves 16 valves 8 valves 8 valves 

Indirect Direct Direct Direct Type Injection Injection Injection Injection 

Single ORC DORC Single ORC Single OHC 
Flat followers Roller Followers Flat followers Flat followers 

(Hydraulic) (Hydraulic) 

Turbocharged Turbocharged Turbocharged Turbocharged 

Inlet Air-to-air Water -to-air Air-to-air Air-to-air 
intercooler intercooler intercooler intercooler 
(TClonly) 

Volume 1753 cc 2198 cc 1753 cc 1896 cc 

Bore 82.5 mrn 86.0 mrn 82.5 mrn 79.5 mm 

Stroke 82.0 mrn 94.6 mrn 82.0 mm 95.5 mm 

Compression 
21.5 nominal 19.0 nominal 19.4 nominal 19.5 nominal 

Ratio 

Note: Series 0 engines are prototype level. 

Battery (all engines): Motorcraft 12 V, 650 A, 130 RC 
Lead acid, approximately 90 Ampere-Hours 

Ford 1.8L IDI (used in firing tests): 

Starter: 

Engine inertias: 

Bosch EV 12V 2.2 kW 
Starter Inertia = 0.00292 kg.m2 

Gearing to engine = 13.5: 1 

Crankshaft = 0.017 kg.m2 

Big-ends = 0.003 kg.m2 
Flywheel = 0.179 kg.m2 
Pressure-plate assembly = 0.038 kg.m2 
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Figure 8.2 

Initial Friction Transient, motored at 1000 rpm 

(Ford 2.2L P-type Engine, SAE 20W/SO oil) 
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Figure 8.3 

Initial Friction Ratio 

Showing negligable effect of engine and oil type 

(Firing and compressed motoring at 1000 rpm) 
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Figure 8.4 

Initial Friction Ratio, with Linear Fit 

(Firing and compressed motoring at 1000 rpm) 

(All engine types, various oil types) 
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Initial Friction Ratio After Decompression 
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(P-type 2.2L, Motoring at 1000 rpm, various oil types) 
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Typical Decay of Initial Friction Transient 
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