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Chapter 1

Introduction

In 1977, Joachim Cuntz introduced Cuntz algebras in [Cun77] which were the first ex-

ample of separable, unital, simple and purely infinite C∗-algebras. For a given natural

number n ∈ N \ {0}, the Cuntz algebra On is the C∗-algebra generated by n isometries

with orthogonal ranges summing up to identity. From the same paper it follows that

these C∗-algebras can be obtained by factorising the C∗-algebra generated by the creation

operators on the full Fock space over an n-dimensional Hilbert space, which is often called

Toeplitz algebra, by the compact operators on the Fock space. Together with Wolfgang

Krieger, Cuntz generalised these algebras to Cuntz-Krieger algebras in [CK80]. Given a

matrix A ∈Mn({0, 1}), the Cuntz-Krieger algebra OA is generated by n partial isometries

with orthogonal ranges whose relations are encoded in A. Shortly afterwards, Masatoshi

Enomoto and Yasou Watatani provided an intuitive framework for Cuntz-Krieger algebras

in [EW80] using finite dimensional directed graphs. The study of C∗-algebras that are

induced by graphs has henceforth been pursued and is presented well in [Rae05]. The

advantage of this theory is that some structural information of a graph C∗-algebra is

contained in and easier to extract from the underlying graph.

Another rich class of examples of C∗-algebras are crossed products, which were originally

motivated by the study of dynamical systems. Given a C∗-algebraA and an automorphism

α ∈ Aut(A), the crossed product of A with the integers with respect to α is a C∗-algebra

containing A such that α is inner. Since the construction of a crossed product with some

more general group only requires the existence of a Haar measure, crossed products can

be defined for any locally compact group. However, the corresponding crossed product

1
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does not contain a copy of that group in general. Since the crossed product of the complex

numbers with any locally compact group G with respect to the trivial action is isomorphic

to the (full) group C∗-algebra C∗(G), crossed products can be regarded as generalisations

of group C∗-algebras. A chapter on discrete crossed products can be found in [Dav96]

whereas [Wil07] provides a concise overview of the more general theory.

To a Hilbert A-correspondence (E,ϕ), that is a Hilbert A-module E together with a
∗-homomorphism ϕ : A → L(E) from the coefficient algebra of E into its adjointable

operators, Michael Pimsner associated two C∗-algebras, the Toeplitz algebra TE and the

Cuntz-Pimsner algebra OE . The latter one incorporates both Cuntz-Krieger algebras

and crossed products by the integers, the former one generalises the Toeplitz algebra Tn
generated by creation operators on the full Fock space of an n-dimensional Hilbert space

mentioned above. Pimsner fashioned uniqueness theorems for TE and OE , a semisplit

extension of OE and a KK-equivalence between TE and A in [Pim97]. Having started by

considering the concrete version of TE , that is the C∗-algebra T̃E generated by creation

operators on the Fock module, the Hilbert module equivalent of the full Fock space, one

defines a universal C∗-algebra TE and shows it can be represented faithfully on the Fock

module. The theorem ensuring this is called the gauge-invariant uniqueness theorem, since

a vital part of the proof involves the construction of a gauge action on both algebras. The

task of proving the desired isomorphism between TE and T̃E then reduces to the question

if the fixed point algebras of these actions are isomorphic. One benefits from the study

of Cuntz-Pimsner algebras, since it provides structural information for a wide class of

examples of C∗-algebras.

In [KP99], Alex Kumjian and David Pask introduced a higher dimensional analogue

of directed graphs called higher rank graphs. More precisely, a higher rank graph or

graph of rank k is a countable category Λ together with a functor d : Λ → Nk with the

factorisation property that for every morphism λ and every decomposition d(λ) = m + n

with m,n ∈ Nk there exist unique morphisms µ and ν such that d(µ) = m, d(ν) = n

and λ = µν. Rank one graphs correspond one to one to directed graphs by identifying a

directed graph with the category of its paths and choosing d(µ) = |µ|. They are based

on Robertson’s and Steger’s higher rank Cuntz-Krieger algebras which are associated to
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a collection of {0, 1}-matrices with certain commutation relations. Robertson and Steger

studied actions on the boundary of triangle buildings in [RS99] and noticed that crossed

products by these actions are generated by interacting Cuntz-Krieger families.

Certain higher rank graph C∗-algebras are examples of higher rank Cuntz-Pimsner

algebras associated to discrete product systems of Hilbert correspondences which were

introduced by Fowler in [Fow02]. Given a discrete semigroup (P,+), a product system

is a family of Hilbert A-correspondences X := (Xp, ϕp)p∈P such that the internal tensor

products are compatible with the semigroup structure of P , that is

Xs ⊗ϕt Xt
∼= Xs+t for all s, t ∈ P.

This thesis focusses on product systems X over the semigroup Nk and provides a gauge-

invariant uniqueness theorem for the higher rank Toeplitz algebra TX and a semisplit

extension of the higher rank Cuntz-Pimsner algebra OX.

There is an algebraic analogue of Pimsner’s work, started by Leavitt’s study of isomor-

phism classes of algebraic modules over rings in [Lea62]. For 1 ≤ m ≤ n and an arbitrary

field K, the Leavitt algebra LK(m,n) is an algebra with a universal isomorphism between

free modules of rank m and n respectively. In particular, LC(1, n) is isomorphic to a dense
∗-subalgebra of the Cuntz algebra On and both algebras are simple and purely infinite

for n ≤ 2. Similar to graph C∗-algebras generalising Cuntz-Krieger algebras, there is an

algebraic equivalent generalising Leavitt algebras, called the Leavitt algebra of a directed

graph or Leavitt path algebra. Given a ring R, Carlsen and Ortega present a method of

associating two rings to an R-system (P,Q, ψ) in [CO09], where P and Q are R-bimodules

and ψ : P⊗Q→ R is an R-bimodule homomorphism. In some respects, these rings behave

similar to the Toeplitz and Cuntz-Pimsner algebra of a Hilbert correspondence. There ex-

ists an algebraic version of the gauge-invariant uniqueness theorem for the Toeplitz ring in

this article and examples include Leavitt path algebras. The Leavitt path algebras of sep-

arated graphs introduced by Ara and Goodearl in [AG10] may be the algebraic analogue

of higher rank Cuntz-Pimsner algebras.
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As mentioned above, this thesis generalises Pimsner’s results on Toeplitz and Cuntz-

Pimsner algebras of a single Hilbert correspondence to Toeplitz and Cuntz-Pimsner alge-

bras of product systems over Nk in the sense of Fowler. The second chapter provides a

concise overview of the theory the results discussed in chapters three and four are based

upon. We will start by recalling some facts about C∗-algebras, some general constructions

such as universal C∗-algebras, inductive limits and crossed products and some examples.

For a more detailed description of the foundations of this subject, we refer to [Mur90]. The

next section revises the theory of Hilbert C∗-modules. On first sight, they appear to be-

have almost like Hilbert spaces since they are equipped with a map that apart from taking

values in a more general C∗-algebra than C closely resembles a scalar product. However,

the consequences of this generalisation are dire. A section on the main definitions and

results in Kasparov’s KK-theory concludes the second chapter.

Pimsner’s paper [Pim97] is investigated in the third chapter. We start by introducing

his construction of the concrete Toeplitz algebra T̃E and the Cuntz-Pimsner algebra OE
associated to a given HilbertA-correspondence E and consider the most common examples

of Cuntz-Pimsner algebras, namely Cuntz-Krieger algebras, graph C∗-algebras and crossed

products by the integers. In the next section, we define the abstract Toeplitz algebra

TE and prove that it is isomorphic to T̃E . This theorem is called the gauge-invariant

uniqueness theorem, since the proof makes heavy use of the gauge actions existing on

both T̃E and TE . Moreover, we retrace Pimsner’s construction of a semisplit extension

of OE the section after. It is based upon the insight that a small modification of the

coefficient algebra of E provides us with a bimodule, which enables us to define a two-

sided Fock module, that is a Fock module over Z rather than N. Since OE is isomorphic

to the C∗-algebra generated by creation operators on this two-sided Fock module we get

a completely positive map from this algebra onto the Toeplitz algebra involved which is

induced by the compression of the two-sided Fock module onto the Fock module over N.

This map lifts the quotient map from the Toeplitz algebra into the Cuntz-Pimsner algebra.

In order to get into the right mindset for this section, this idea is made more precise in

the motivating example 3.1.3. We conclude the chapter by working through Pimsner’s

proof of the KK-equivalence between TE and A and mention results on approximation

properties of OE including a novel proof for the fact that OE inherits nuclearity from the
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coefficient algebra of E.

After introducing the notion of product systems over discrete semigroups in the sense of

Fowler we associate to a product system X the higher rank Toeplitz and Cuntz-Pimsner

algebras TX and OX in the final chapter which contain TE and OE from the previous

chapter as the special case when considering a product system over N. We then restrict

our attention to the semigroup Nk and present the main results of this thesis, namely a

gauge-invariant uniqueness theorem of the corresponding higher rank covariant Toeplitz

algebra and a semisplit extension of the higher rank Cuntz-Pimsner algebra. This time,

we are going around the other way for the gauge-invariant uniqueness theorem, that is we

start with the universal object, the abstract Toeplitz algebra TX which is generated by all

Toeplitz representations of X and afterwards define the concrete Toeplitz algebra T̃X by

associating a Fock module to X which yields creation operators generating that algebra.

When fashioning gauge actions by Tk, we realise that this imposes an extra condition

on the Toeplitz representations which for X being a product system over Nk boils down

to them being doubly commuting. We will then see that the isomorphism between the

Toeplitz algebra T cov
X generated by all doubly commuting Toeplitz representations and

the concrete Toeplitz algebra T̃X can be obtained by almost the same methods that were

employed in the previous chapter. Due to the structure of Nk the fixed point algebras

of the gauge actions carry a different structure compared to the ones in chapter three,

which we will need to account for. The major obstacles in this chapter arise because Nk

has k generators rather than one generating N. They can still be overcome because of the

component-wise linear order of Nk and the isomorphisms χi,j relating the different base

fibres of the product system. From this point of view, the proof of the semisplit exact

Toeplitz extension is quite straightforward. Since those two results turn out nicely, one

may hope to answer the questions if T cov
X and A are KK-equivalent as well and if OX

inherits approximation properties from A. For this, we provide an overview of Deaconu’s

iteration of Pimsner’s construction from [Dea07], which explains how the algebras T cov
X

and OX fit into the framework of the third chapter. This will make the reason why the

approximation results "generalise" immediately apparent and enable us to both iterate

Pimsner’s KK-equivalence and fully understand the ideal structure of T cov
X for a product

system X over Nk with finitely generated full base fibres and non-degenerate left actions.
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Chapter 2

C∗-Algebras, Hilbert Modules and

Kasparov’s KK-Theory

2.1 A very short guide to C∗-algebras

We start by giving a brief overview of the theory of C∗-algebras, providing the neces-

sary definitions in order to establish a common language and stating the results that are

essential for the rest of this thesis.

2.1.1 Some definitions

The study of C∗-algebras originated in the theory of von Neumann algebras. An abstract

classification was first given by Gelfand and Naimark around 1943, the term “C∗-algebra”

was introduced by Segal in [Seg47]. See [GN94] for a corrected reprint of the original

paper.

2.1.1.1 Definition. Given an algebra A, an involution is a conjugate-linear map
∗ : A → A, a 7→ a∗ such that

(a∗)∗ = a

(ab)∗ = b∗a∗

for all a, b ∈ A. An algebra equipped with an involution is called a ∗-algebra. A Banach

algebra with involution is said to be a B∗-algebra. It is a C∗-algebra if it satisfies the

7
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C∗-equation, that is

‖a∗a‖ = ‖a‖2 for all a ∈ A.

We will call a norm with this property a C∗-norm.

2.1.1.2 Remark. On any ∗-algebra there exists at most one C∗-norm. See e.g. [Mur90,

corollary 2.1.2].

From now on A, B and C will always denote C∗-algebras.

2.1.1.3 Definition. A ∗-homomorphism is a linear map ϕ : A → B such that

ϕ(ab) = ϕ(a)ϕ(b)

ϕ(a∗) = ϕ(a)∗.

2.1.1.4 Remark. Given a B∗-algebra B and a C∗-algebra A, any ∗-homomorphism

ϕ : B → A is contractive, that is

‖ϕ(b)‖ ≤ ‖b‖ for all b ∈ B.

We assume without loss of generality that A and B are unital and that ϕ(1B) = 1A. Given

an invertible element b ∈ B its image ϕ(b) is invertible in A. Therefore, σ(ϕ(b)) ⊆ σ(b).

Hence, we know that ρ(ϕ(b)) ≤ ρ(b), where ρ denotes the spectral radius. Since the norm

of a selfadjoint element is greater or equal to its spectral radius in any Banach∗-algebra

and equality holds if and only if, in addition, the algebra is a C∗-algebra, we get that

‖ϕ(b)‖2 = ‖ϕ(b∗b)‖ = ρ(ϕ(b∗b)) ≤ ρ(b∗b) ≤ ‖b∗b‖ ≤ ‖b‖2.

Should A, B or ϕ not be unital consider the unitisations of A and B instead and extend

ϕ by ϕ(a, λ) = ϕ(a) + λ1.

2.1.1.5 Definition. A subset B ⊆ A is called a ∗-subalgebra ofA if it is closed with respect

to scalar multiplication, multiplication, addition and involution on A and C∗-subalgebra

if in addition to this it is norm-closed. Given some subset F ⊆ A, we denote by C∗(F )

the smallest C∗-subalgebra of A containing F .

2.1.1.6 Remark. Given a C∗-algebra A and a subset F ⊆ A, let F ∗ := {a ∈ A : a∗ ∈ F}.

Then C∗(F ) is the closure of the set spanned by all finite products of elements in F and
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F ∗, that is

C∗(F ) := span
{ n∏
k=1

ak : n ∈ N, an ∈ F ∪ F ∗ for all k = 1, . . . , n
}
.

2.1.1.7 Remark. Given a ∗-homomorphism ϕ : A → B, ker(ϕ) is an ideal in A and ϕ(A)

is a C∗-subalgebra of B. See [Mur90, 3.1.6] for details.

2.1.1.8 Remark. If both A and B are C∗-algebras and ϕ : B → A is injective, ϕ : B → ϕ(B)

is invertible. Since the inverse is a ∗-homomorphism between C∗-algebras, it is contractive.

Therefore, ϕ is a ∗-isometry.

2.1.1.9 Remark. Given a norm-closed two-sided ideal I that is also closed under the

involution, we define
A/I := {a+ I : a ∈ A}.

This is a C∗-algebra with respect to the norm ‖a+ I‖A/I := inf{‖a+ x‖ : x ∈ I}. From

now on, we always assume an ideal of a C∗-algebra to be closed under norm and involution

and two-sided unless stated otherwise.

2.1.1.10 Theorem. Let I / A be an ideal and B ⊆ A be a C∗-subalgebra of A. Then

B + I is a C∗-subalgebra of A and

B/(B ∩ I) ∼= (B + I)/I.
A proof can be found in [Lin01, corollary 1.5.16].

2.1.1.11 Definition. A C∗-algebra A is called simple, if any ideal of A is trivial, that is

equal to either {0} or A.

2.1.1.12 Definition. A C∗-algebra A is called separable, if it has a countable, norm-dense

subset.

2.1.1.13 Definition. If A contains a neutral element with respect to its multiplication,

A is called unital. We denote this element by 1.

Note that if such an element exists, it is unique. In this case, we call 1 a unit. If A does

not contain a unit, we can adjoin one.
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2.1.1.14 Remark. Given a non-unital C∗-algebra A, set A∼ := {(a, z) : a ∈ A, z ∈ C} with

coordinate-wise addition and scalar multiplication and define multiplication and involution

as follows:

(a, y)(b, z) := (ab+ za+ yb, yz)

(a, z)∗ := (a∗, z̄).

With respect to the norm

‖(a, λ)‖ := sup{‖ab+ λb‖ : ‖b‖ = 1}

A∼ is a C∗-algebra, contains A as closed two-sided ideal by the inclusion

ι : A ↪→ A∼, ι(a) := (a, 0)

and A∼
/
A ∼= C. Therefore, A∼ is the smallest unital C∗-algebra containing A as an ideal

and is called the unitisation of A. If A is unital, A∼ := A.

2.1.1.15 Example. Given a locally compact Hausdorff space X which is not compact,

C0(X)∼ ∼= C(X+),

where X+ denotes the one-point compactification of X.

2.1.1.16 Definition. An element a ∈ A is called

? selfadjoint if a = a∗,

? an orthogonal projection if a∗ = a = a2,

? normal if aa∗ = a∗a.

If A is unital, a ∈ A is called

? an isometry if a∗a = 1,

? a coisometry if aa∗ = 1,

? unitary if aa∗ = 1 = a∗a.
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2.1.1.17 Theorem. For a ∈ A self-adjoint the following conditions are equivalent:

? The spectrum of a is positive, that is σ(a) ⊆ R+.

? There exists a self-adjoint element b ∈ A such that b2 = a.

? There exists an element b ∈ A such that b∗b = a.

2.1.1.18 Definition. In this case, a is called positive. By A+ we denote the set of all

positive elements of A. This is actually a cone.

2.1.1.19 Definition. By Mn(A), we denote n × n matrices with A-valued entries. A

linear map ϕ : A → B is called positive if ϕ(a) ∈ B+ for every a ∈ A+, n-positive if

(ϕ(ai,j))1≤i,j≤n ∈ Mn(B)+ for all (ai,j)1≤i,j≤n ∈ Mn(A)+ and completely positive if ϕ is

n-positive for all n ∈ N.

2.1.1.20 Definition. A linear functional on A is a linear map ϕ : A → C. A functional

ϕ is called positive if ϕ(a) ≥ 0 for all a ∈ A+. A state is a positive linear functional of

norm one. We denote by S(A) the set of all states on A.

2.1.1.21 Definition. Let B be a C∗-subalgebra of A. A conditional expectation of A

onto B is a completely positive contractive map ψ : A → B such that

ψ(b) = b,

ψ(ba) = bψ(a),

ψ(ab) = ψ(a)b

for all a ∈ A and b ∈ B.

2.1.1.22 Theorem. Let B be a C∗-subalgebra of A and p : A → B a projection of norm

one. Then p is a conditional expectation.

For a proof and the following examples, see [Bla06, theorem II.6.10.2, ff.].

2.1.1.23 Example. Let (X,A, µ) be a probability space, B a sub σ-algebra of A,

A := L∞(X,A, µ) and B := L∞(X,B, µ). Then a conditional expectation in the sense of

probability theory is a conditional expectation in the sense of the previous definition.
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2.1.1.24 Example. For a unital C∗-algebra A and B := C1 a conditional expectation of

A onto B is a state on A.

2.1.1.25 Example. If a compact topological group G acts on a C∗-algebra A by automor-

phisms α = {αg}g∈G and g 7→ αg is continuous,

ψ(x) :=
∫
g∈G

αg(x)dµ(g)

defines a conditional expectation of A onto F , where µ denotes the normalised Haar mea-

sure on G and

F := {a ∈ A : αg(a) = a for all g ∈ G}

the fixed point algebra of the action α.

By the unitisation, we have considered the smallest way to embed a C∗-algebra A into

a unital one. We will now consider the largest algebra containing A as an essential ideal.

For a commutative C∗-algebra A = C0(X), where X is a locally compact Hausdorff space

which is not compact, this task corresponds to the question how X can be embedded into

a compact space. Having seen how A∼ corresponds to the one-point compactification of

X in 2.1.1.15, we will now consider the analogue of the Stone-Čech compactification.

2.1.1.26 Definition. For an ideal I CA, the set

I⊥ := {x ∈ A : Ix = {0}}

is called the annihilator of I. The ideal I is essential in A, if I⊥ = {0}.

2.1.1.27 Remark. The annihilator is the orthogonal complement of I in A considered a

Hilbert module over itself. An ideal I is essential if and only if I ∩ J 6= {0} for every

closed non-zero ideal J .

2.1.1.28 Example. Let X be a compact Hausdorff space and Y ⊂ X open. Then C0(Y ) is

an ideal in C(X) and C0(Y )⊥ = C0(Z), where Z denotes the interior of X \ Y . Therefore,

C0(Y ) is an essential ideal in C(X) if and only if Y is dense in X.

2.1.1.29 Definition. The multiplier algebra of a C∗-algebra A is the largest unital C∗-

algebra containing A as an essential ideal and is denoted byM(A).
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2.1.1.30 Example. For the commutative non-unital C∗-algebra C0(X), where X is a

locally compact Hausdorff space which is not compact, the following holds:

M
(
C0(X)

)
= C

(
β(X)

)
,

where β(X) denotes the Stone-Čech compactification of X.

There is an alternative approach towards the multiplier algebra.

2.1.1.31 Definition. For A, a double centraliser is a pair (L,R) of bounded linear maps

on A such that

L(ab) = L(a)b

R(ab) = aR(b)

R(a)b = aL(b)

for all a, b ∈ A.

Any element c ∈ A induces a double centraliser (Lc, Rc), where

Lc(a) := ca

Rc(a) := ac.

One can check that for any double centraliser (L,R), ‖L‖ = ‖R‖ and that the set of all

double centralisers of A is a C∗-algebra with respect to multiplication, involution and

norm

(L1, R1)(L2, R2) := (L1L2, R2R1)

(L,R)∗ := (R∗, L∗)

‖(L,R)‖ := ‖L‖ = ‖R‖

where L∗(a) := (L(a∗))∗. It coincides with the multiplier algebraM(A).

2.1.1.32 Remark. Any nondegenerate representation π : A → B(H) extends uniquely to a

representation π̃ :M(A)→ B(H).
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2.1.2 Some important properties

2.1.2.1 Definition. An approximate unit of a C∗-algebra A is a net {uλ}λ∈Λ ⊆ A+ of

positive elements in the closed unit ball of A such that

a = lim
λ
uλa for all a ∈ A.

2.1.2.2 Theorem. Every C∗-algebra has an approximate unit. Indeed, considering the

upwards-directed set Λ of all positive elements a ∈ A with ‖a‖ < 1 and setting uλ = λ,

{uλ}λ∈Λ is an approximate unit for A.

For a proof see e.g. [Mur90, 3.1.1.].

2.1.2.3 Remark. Hence, every separable C∗-algebra has a countable approximate unit.

2.1.2.4 Definition. A C∗-algebra is called σ-unital if it has a countable approximate

unit.

2.1.2.5 Definition. A positive element h ∈ A is called strictly positive if ρ(h) > 0 for all

states ρ ∈ S(A).

2.1.2.6 Definition. A C∗-subalgebra B of A is called hereditary if for all a ∈ A and

b ∈ B, 0 ≤ a ≤ b implies that a ∈ B. The subalgebra B is called full if it is not contained

in any proper closed two-sided ideal of A.

2.1.2.7 Remark. For any projection p ∈ M(A), pAp is a hereditary subalgebra of A and

will be called a corner of A.

2.1.2.8 Lemma. For any a ∈ A+, aAa is the hereditary C∗-algebra generated by a, that

is the smallest hereditary C∗-subalgebra of A containing a.

See [Lin01, lemma 1.5.9].

2.1.2.9 Theorem. Every hereditary C∗-subalgebra of a simple C∗-algebra is simple.

See [Mur90, 3.2.8] for a proof.

The first equivalence in the following proposition is derived from [Ped79, proposition

3.10.5], the latter one is due to [Lin01, theorem 1.5.10]
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2.1.2.10 Proposition. For a C∗-algebra A the following are equivalent:

? A contains a strictly positive element h.

? A is σ-unital.

? There exists a positive element h ∈ A+ such that

A = hAh

We will now construct a C∗-algebra, which is not σ-unital.

2.1.2.11 Example. Let H be a Hilbert space with orthonormal base {eλ}λ∈Λ, where Λ is

an uncountable set. Choosing a countably infinite subset Λ0 ( Λ and letting p ∈ B(H) be

the orthogonal projection of H onto H0 := span{eλ : λ ∈ Λ0}, we consider the ideal Ip
that is generated by p inside B(H). It holds that

K(H0) ( Ip ( B(H).

In order to see that Ip = B(H)pB(H) is not σ-unital, we show that it does not contain

a strictly positive element. For h ∈ B(H), we define the range projection RP(h) := PhH

to be the orthogonal projection onto the closed range of h. If RP(h) � idB(H), we can

find a nontrivial one-dimensional projection B(H) 3 q ≤ (idH−RP(h)). But then we can

define the linear map ρ0 : span{q} → C by ρ0(q) := 1 which yields a non-trivial state

ρ : B(H)→ C, where ρ(a) := ρ0(qaq). Since ρ vanishes on h, h cannot be strictly positive.

We are left to check that RP(h) � idH holds for all h ∈ Ip. For this, note that every

h ∈ Ip is a limit

h = lim
n→∞

hn,

where hn =
∑

i∈I xipyi are finite sums and xi, yi ∈ B(H). Since the range of p = RP(p) is

countably generated, so are the ranges of RP(hn). This limit converges only if the following

sum converges

h = h1 + (h2 − h1) + (h3 − h2) + . . . .

But since this is a countable sum, the range of RP(h) is countably generated as well. Since

the range of idH is uncountably generated, RP(h) is a proper subprojection of idH.
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The next corollary can be found in [Lan, lemma 6.1] and follows from the equivalence of

the first and the third assertion in the previous proposition.

2.1.2.12 Corollary. A positive element h ∈ A+ is strictly positive if and only if

hA = A.

2.1.2.13 Lemma. For a projection p ∈M(A) the following are equivalent

? π̃(p) 6= 0 for all nondegenerate representations π of A.

? π̃(p) 6= 0 for all irreducible representations π of A.

? pAp is full.

? pA is not contained in any proper closed two-sided ideal of A.

? Ap is not contained in any proper closed two-sided ideal of A.

? The norm-closed two-sided ideal inM(A) generated by p includes A.

? p is not contained in any proper strictly closed two-sided ideal ofM(A).

Check [Bro77] for the proof. We also quote corollary 2.9 from the same paper below.

2.1.2.14 Theorem (L. Brown). If the C∗-algebras A and B both contain a strictly positive

element, then the following assertions are equivalent:

? A and B are stably isomorphic.

? There is a C∗-algebra C with a strictly positive element such that each A and B is

isomorphic to a full corner of C.

? There is a C∗-algebra C such that both A and B are isomorphic to full hereditary

subalgebras of C.

Note that when A and B are stably isomorphic, they are Morita equivalent as well. In this

case, the C∗-algebra C from the previous theorem is a special case of the linking algebra

in Theorem 2.2.4.6.
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2.1.3 Universal C∗-algebras

We now want to build a C∗-algebra in a canonical way from a given set G := {xi : i ∈ I} of

generators and a set R of relations between the generators and their adjoints. A relation

has to be realisable as bounded linear operators on some Hilbert space and impose a norm

bound on each generator when realised as an operator on a Hilbert space. The general

form of a relation is

‖p(xi1 , . . . , xin , x∗i1 , . . . , x
∗
in)‖ ≤ m

for some polynomial p and m ≥ 0. A representation of (G,R) is a set of bounded linear

operators {Ti : i ∈ I} satisfying the relations R. It defines a ∗-representation of the free
∗-algebra FG over G. Define

‖x‖universal := sup{‖π(x)‖ : π representation of (G,R)}.

If the supremum is finite for all x ∈ FG, this is a seminorm on A. Let N ⊆ A be the

set of elements with seminorm equal to zero. The completion of A
/
N with respect to

‖ · ‖universal is called universal C∗-algebra of (G,R) and denoted by C∗(G,R).

2.1.3.1 Example. For any n ∈ N, the Toeplitz algebra Tn is the universal C∗-algebra

generated by isometries {T1, . . . , Tn} subject to relations

T ∗i Tj = δi,j id
n∑
i=1

TiT
∗
i ≤ id

In [Cun77] Cuntz introduced the following class of C∗-algebras.

2.1.3.2 Example. For any n ∈ N, the Cuntz algebra On is the universal C∗-algebra

generated by isometries {S1, . . . , Sn} subject to relations

S∗i Sj = δi,j id
n∑
i=1

SiS
∗
i = id

2.1.3.3 Lemma. The ideal generated inside Tn by id−
∑n

i=1 TiT
∗
i is isomorphic to the

compact operators of the full Fock space over an n-dimensional Hilbert space Hn := Cn
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and the following sequence is exact

0→ K
(
Γ(Hn)

)
→ Tn → On → 0.

2.1.3.4 Example. For any θ ∈ [0, 1] we define Aθ to be the universal C∗-algebra generated

by two unitaries S1, S2 subject to the relation

S1S2 = e2πiθS2S1.

For θ ∈ [0, 1] \ Q, the algebra Aθ is called irrational rotation algebra and possesses some

particularly nice properties. For example, for irrational θ every Aθ is simple and equipped

with a unique trace. For further discussion, see [Dav96].

2.1.3.5 Example. A directed graph G = (G0, G1, r, s) is called countable if both the set

G0 of vertices and the set G1 of edges are countable. For such a graph G, we define the

graph C∗-algebra C∗(G) to be the universal C∗-algebra generated by pairwise orthogonal

projections {Pv}v∈G0 and partial isometries {se}e∈G1 with orthogonal ranges such that

s∗ese = Pr(e)

ses
∗
e ≤ Ps(e)

Pv =
∑
s(e)=v

ses
∗
e if 0 < |s−1(e)| <∞.

These algebras are interesting because of the interplay between properties of the graph and

structural properties of the associated C∗-algebra.

2.1.4 Inductive limits of C∗-algebras

The direct or inductive limit construction provides a notion for the union of a collection

of objects that are not contained in the same space. We follow the approach from [WO].

2.1.4.1 Definition. A directed system of algebraic objects in the same category, be it

monoids, groups, algebras or ∗-algebras, consists of a family {Ai}i∈I over a directed index

set I of objects in the respective category and a collection of morphisms φi,j : Aj → Ai
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for j < i satisfying the coherence condition

φi,j = φi,k ◦ φk,j for j < k < i.

Given a directed system {Ai, φi,j} of algebraic objects, there exists a universal algebraic

object Aalg
∞ = limAi = lim{Ai, φi,j} in the same category as the Ai, called the algebraic

direct limit of {Ai, φi,j} and canonical morphisms φi : Ai → A∞ such that

Aalg
∞ =

⋃
i∈I

φi(Ai)

holds and the following diagram commutes for j < i:

Aj
φj //

φi,j

��

Aalg
∞

Ai

φi

>>}}}}}}}}}}}}}}}}}

2.1.4.2 Remark. The algebraic direct limit can be considered the subset of the algebraic

direct sum of the algebras Ai consisting of elements with “predictable tails”, that is

Aalg
∞ =

⊕
iAi

/
〈(0, . . . , 0, xi, 0, . . . , 0, φj(xi), 0, . . . ) : i ≤ j ∈ I〉,

where xi ∈ Ai. We would like to point out that this object differs from the one introduced

in [WO] right after theorem L.1.1.

2.1.4.3 Theorem (universal property). Let {Ai, φi,j} be a directed family of algebraic

objects, Aalg
∞ = limAi and N another algebraic object in the same category such that there

exists morphisms ψi : Ai → N with ψj = ψi ◦ φi,j for j < i. Then there exists a unique

morphism Ψ : A∞ → N such that the following diagram commutes for all i, j where j < i.

Aj
φj //

φi,j
��

ψj
MM

&&MMMMMMMMM
Aalg
∞

Ψ
��

Ai
φiqqq

88qqqqqqqq

ψi
//N
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2.1.4.4 Remark. Additionally, if all Ai are topological spaces, we equip Aalg
∞ with the final

topology with respect to {φi}i∈I . If N is a topological space and all ψi : Ai → N are

continuous, then Ψ is continuous as well.

Starting with a directed system {Ai, φi,j} of C∗-algebras and ∗-homomorphisms, we know

that Aalg
∞ is a ∗-algebra and all canonical homomorphisms φi : Ai → A∞ are ∗-homomor-

phisms.

2.1.4.5 Remark. There is a C∗-seminorm on Aalg
∞ given by

α(x) := lim sup{‖φij(aj)‖ : i ∈ I},

where x = φj(aj).

If every φi,j is injective, this is a C∗-norm. In general, we define the equivalence relation

x ∼ y ⇔ α(x− y) = 0 ⇔ x− y ∈ Nα,

where Nα := {x ∈ Aalg
∞ : α(x) = 0} is a two-sided ∗-ideal in Aalg

∞ . The quotient Aalg
∞
/
Nα

is a pre C∗-algebra with respect to ‖x+Nα‖ := α(x).

2.1.4.6 Definition. The completion of Aalg
∞
/
Nα with respect to the norm above is called

the C∗-algebraic direct limit of {Ai, φi,j} and will be denoted by lim
−→
Ai or A∞.

From now on, a limit of C∗-algebras denoted by limAi will always refer to this construction

as well.

2.1.4.7 Example. Let I := N, Ai := Mni and

φi,i+1 : A 7→ A⊗ id =

A 0

0 A

 .

Then lim
−→
Ai is the UHF-algebra corresponding to the supernatural number n∞. More

general, one may consider an arbitrary union of matrix algebras, that is Ai = Mni for some

sequence ni of natural numbers with respect to embeddings A 7→ A ⊗ id, a so-called UHF

algebra, which is short for uniformly hyperfinite. These embeddings force every number ni
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to divide its successor ni+1. For each prime number p there is a number

N ∪∞ 3 εp := sup{n ∈ N : pn divides ni for arbitrarily large i}.

The supernatural number associated to the directed system {Ai} is defined to be the formal

product ∏
p prime

pεp

and can be considered the limit of the prime factorisations of larger and larger ni. A

UHF algebra is determined by their supernatural number up to isomorphism by Glimm’s

theorem, see for example [Dav96, theorem III.5.2]. We will denote the UHF-algebra that

corresponds to the supernatural number ε by UHF(ε).

2.1.5 Discrete crossed products

For a given C∗-algebra A and an automorphism α ∈ Aut(A), the crossed product con-

struction supplies a C∗-algebra such that α is inner.

2.1.5.1 Definition. A C∗-algebraic dynamical system is a triple (A, G, α) consisting of

a C∗-algebra A, a discrete group G and a group homomorphism α : G → Aut(A). We

denote αs := α(s). A covariant representation of such a triple is a pair (U, π), where

π : A → B(H) is a ∗-representation and U : G→ B(H), s 7→ Us is a unitary representation

of G such that

Usπ(a)U∗s = π
(
αs(a)

)
for all a ∈ A, s ∈ G.

We now consider the space of finite formal sums

AG := CC(G,A) := {f =
∑
finite

ass : as ∈ A}

and aim to complete it to a C∗-algebra. With

tat−1 := αt(a)
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we get the following multiplication rule

f ∗ g =
∑
t∈G

∑
u∈G

attbuu =
∑
t∈G

∑
u∈G

attbut
−1tu

=
∑
t∈G

∑
u∈G

atαt(bu)tu =
∑
t∈G

∑
s∈G

atαt(bt−1s)s ,

where f, g ∈ AG. Since s∗ = s−1, we get that

(as)∗ = α−1
s (a∗)s−1

and hence an involution

f∗ =
∑
t∈G

αt(a∗t−1)t.

With this multiplication and involution, AG is a ∗-algebra. Given a covariant representa-

tion (π, U) of (A, G, α) we obtain a ∗-representation of AG by

σ(f) :=
∑
t∈G

π(at)Ut.

Given a ∗-representation σ, the neutral element e ∈ G and an approximate unit {eλ}λ∈Λ

of A, the restrictions

π(a) := σ(ae) and Ut := lim
λ∈Λ

σ(eλt)

are a covariant representation of (A, G, α).

2.1.5.2 Definition. The (full) crossed product A nα G is the enveloping C∗-algebra of

AG, that is the completion of AG with respect to the norm

‖f‖ := sup{‖σ(f)‖ : σ ∗-rep. of AG}.

2.1.5.3 Remark. For the sake of completeness, we mention that crossed products can be

defined for any locally compact group. In the more general case, one additionally requires

the unitary representation G → B(H) to be strongly continuous. The completion of the

continuous, compactly supported functions from G to A with respect to the norm

‖f‖1 :=
∫
s∈G
‖f(s)‖dµG(s)
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is denoted by L1(G,A) and is a ∗-algebra with respect to multiplication and involution

f ∗ g :=
∫
s,t∈G

f(t)αt
(
g(t−1s)

)
,

f∗(s) := ∆(s)−1αs
(
f(s−1)∗

)
,

where ∆ denotes the modular function that relates left and right Haar measure of G. The

crossed product Anα G is the completion of L1(G,A) with respect to the norm

‖f‖ := sup{‖π(f)‖ : π non-degenerate ∗-representation of L1(G,A)}.

2.1.5.4 Remark. The irrational rotation algebra from 2.1.3.4 is a crossed product by the

integers. For this we define the rotation automorphism

Rθ : T→ T, e2πit 7→ e2πi(θ+t)

for θ ∈ [0, 1] \ Q. This induces an automorphism ρθ of the continuous functions on the

complex unit circle by ρθ(f)(z) := f
(
Rθ(z)

)
and

Aθ = C(T)nρθ Z.

2.1.5.5 Remark. Given a nondegenerate faithful representation π : A → B(H), there

always exists a covariant representation (πα, λ) of (A, G, α) given by

(
πα(x)ξ

)
(t) := π

(
αt−1(x)

)(
ξ(t)

)
(
λ(t)ξ

)
(s) := ξ(t−1s).

The corresponding ∗-representation πα × λ of AG is faithful and

‖f‖r := ‖πα × λ(f)‖

is independent from the choice of π and defines a norm on AG. The completion of AG

with respect to ‖·‖r is called reduced crossed product and denoted by AnrαG. The reduced

and the full crossed product are isomorphic whenever G is amenable.

The following cyclic six-term exact sequence known as Pimsner-Voiculescu sequence is an
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important tool to calculate the K-theory of a full crossed product of a unital C∗-algebra

A by the integers with respect to any automorphism α and was originally developed in

[PV80] to calculate the K-groups of Aθ. For the proof, see theorem 2.4 in this paper.

2.1.5.6 Theorem. For a unital C∗-algebra A and an automorphism α of A the following

sequence is exact:

K0(A)
id−α∗ //K0(A) ι //K0(Anα Z)

��
K1(Anα Z)

OO

K1(A)ιoo K1(A) ,
id−α∗oo

where ι : A ↪→ Anα Z.

2.2 Hilbert C∗-modules

A Hilbert C∗-module is a Hilbert space with the scalar product taking values in an ar-

bitrary C∗-algebra rather than C. The concept was introduced by Kaplansky 1953 in

[Kap53] for commutative unital C∗-algebras and generalised to arbitrary C∗-algebras by

Paschke in [Pas73] and Rieffel in [Rie74] independently. A good overview about the topic

can be found in [Bla06], a more detailed treatment in [Lan]. After reviewing the definition

and some examples we will give an overview about the main results we require and see

how Hilbert C∗-modules form a category between Banach spaces and Hilbert spaces.

2.2.1 Definition and examples

When attempting to generalise the Hilbert space notion of a complex-valued scalar product

to a function mapping into an arbitrary C∗-algebra, one requires a suitable notion of

positivity. It turns out that the positive elements of the C∗-algebra are the suitable

equivalent to R+ inside C.

2.2.1.1 Definition. Let A be a C∗-algebra. A (right) pre-Hilbert A-module, or (right)

pre-Hilbert module over A is a right A-module E equipped with a sesquilinear map

〈·, ·〉 : E × E → A such that

? 〈x, ya〉 = 〈x, y〉a,
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? 〈x, y〉∗ = 〈y, x〉,

? 〈x, x〉 ≥ 0,

? 〈x, x〉 = 0 ⇒ x = 0,

where x, y ∈ E and a ∈ A. We assume sesquilinear maps to be conjugate linear in the

first variable and call a map with these properties an inner product.

2.2.1.2 Remark. It is easy to check that 〈·, ·〉 induces a norm on E by

‖x‖ := ‖〈x, x〉‖
1
2 .

See for example [Pas73, proposition 2.3].

2.2.1.3 Definition. If E is complete with respect to this norm, it is called a (right)

Hilbert A-module. The Hilbert module E is called full, if

span{〈x, y〉 : x, y ∈ E} = A.

A subset Z ⊆ E is called a generating set of E, if the closed submodule generated by Z

in E is E. A Hilbert module E is countably generated if it has a countable generating set.

2.2.1.4 Remark. One may just as well define left Hilbert modules. We prefer to work with

right modules so operators can act on the left hand side.

From now on, E and F and G will denote Hilbert A-modules.

2.2.1.5 Example. Hilbert spaces are Hilbert C-modules and vice versa.

2.2.1.6 Example. Any C∗-algebra A is a Hilbert A-module with respect to the inner

product 〈a, b〉 := a∗b and right action of A on itself by the algebra multiplication.

2.2.1.7 Example. Given a Hilbert space H and a C∗-algebra A, H ⊗ A is a Hilbert

A-module with (x⊗ a)b := x⊗ (ab) and inner product

〈x⊗ a, y ⊗ b〉H⊗A := 〈x, y〉Ha∗b.

This is a special case of the internal tensor product. See 2.2.3.4 for the definition.
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2.2.1.8 Example. For n Hilbert A-modules Ek, (k = 1, . . . , n), with inner products 〈·, ·〉k,

E1 ⊕ · · · ⊕ En is a Hilbert A-module with right action

(x1 ⊕ · · · ⊕ xn)a := (x1a)⊕ · · · ⊕ (xna)

and inner product

〈(x1, . . . , xn), (y1, . . . , yn)〉 :=
n∑
k=1

〈xk, yk〉k

for all (x1, . . . , xn), (y1, . . . , yn) ∈ E1 ⊕ · · · ⊕ En.

2.2.1.9 Example. For an arbitrary collection {Ei}i∈I of Hilbert A-modules with inner

products 〈·, ·〉i one can define

⊕
i∈I

Ei := {(xi)i∈I ∈
∏
i∈I

Ei :
∑
i

〈xi, xi〉i converges in A}.

In particular,

HA :=
⊕
i∈N
A

is called the standard Hilbert module of A.

2.2.1.10 Lemma. A C∗-algebra A considered a Hilbert module over itself is countably

generated if and only if it is σ-unital.

Proof. Let us assume that A is σ-unital. By 2.1.2.10 it has a strictly positive element

h ∈ A. But then {h} is a generating set.

Conversely, if A is countably generated with generating set {an : n ≥ 1}, we can assume

that an ≥ 0 and ‖an‖ ≤ 1 and define

h :=
∑
n

2−nan.

Since the an form a generating set of A, for every non-trivial state ρ there exists at least

one n such that ρ(an) 
 0. Therefore, h is strictly positive.
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2.2.2 Operators on Hilbert modules

In order to adjust the concept of bounded linear operators to the Hilbert module setting,

we will demonstrate a pitfall inherent to this setting before providing the definition that

generalises bounded linear operators.

2.2.2.1 Remark. Hilbert modules resemble Hilbert spaces in many respects. For example,

‖x‖ = sup{‖〈x, y〉‖ : y ∈ E, ‖y‖ ≤ 1}.

However, unlike Hilbert spaces Hilbert modules are not necessarily spanned by a closed

linear subspace and its orthogonal complement. For example, consider the C∗-algebra

C([0, 1]) of continuous functions over the unit interval a Hilbert module over itself with

closed linear subspace C0((0, 1]), that is the set of all continuous functions vanishing at

0. In this case, the orthogonal complement of this subspace is trivial but the subspace

itself is a proper ideal of C([0, 1]). As an immediate consequence not every bouded linear

operator needs to have an adjoint. Check out 2.2.2.4 for the respective example.

2.2.2.2 Definition. A map T : E → F is called adjointable, if there exists a map

T ∗ : F → E such that

〈Tx, y〉 = 〈x, T ∗y〉

for all x ∈ E, y ∈ F . We denote by L(E,F ) the set of all adjointable maps from E to F

and write L(E) for L(E,E).

2.2.2.3 Remark. Every T ∈ L(E,F ) is linear and bounded. It is easy to see that T has

to be A-linear. To see that it has to be bounded, we denote by E1 the unit ball of E and

define a map Tx : F → A for every x ∈ E1 by

Tx(y) := 〈Tx, y〉

for all y ∈ F . Since ‖Tx(y)‖ ≤ ‖T ∗(y)‖ for all x ∈ E1, the set {‖Tx‖ : x ∈ E1} is bounded

by Banach-Steinhaus. Therefore T is bounded.

2.2.2.4 Remark. To see that a bounded linear map need not be adjointable, consider the

Hilbert modules E := C0((0, 1]) := {f ∈ C([0, 1]) : f(0) = 0} and F := C([0, 1]) together

with inclusion map ι : E → F and the constant one function 1 ∈ F . If ι was adjointable,
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then ι∗1 = 1 ∈ E. Since this contradicts the definition of E, the bounded linear map ι is

not adjointable.

2.2.2.5 Remark. For every Hilbert A-module E, L(E) is a C∗-algebra. For this, see

[Bla06, proposition 13.2.2].

The generalisation of finite rank operators and compact operators in this setting resembles

the Hilbert space case as well.

2.2.2.6 Definition. For every x ∈ E and y ∈ F we define a map θx,y : F → E by

θx,y(z) := x〈y, z〉

for all z ∈ F and set

K(E,F ) := span{θx,y : x ∈ E, y ∈ F}.

We call θx,y a rank one operator and K(E,F ) the compact operators and denote K(E,E)

by K(E).

2.2.2.7 Remark. For a unital C∗-algebra A, the identity idA = θ1,1 is a rank one operator,

but idA is not a compact operator from the Banach space A into itself unless A is finite

dimensional.

2.2.2.8 Remark. It is easy to check that θx,y : F → E is adjointable, θ∗x,y = θy,x and that

the following relations hold

θx,yθu,v = θx〈y,u〉,v = θx,v〈u,y〉

Tθx,y = θTx,y

θx,yS = θx,S∗y

for x ∈ E, y, u ∈ F , v ∈ G, T ∈ L(E,G) and S ∈ L(G,F ).

In particular, K(E) is an ideal in L(E).

2.2.2.9 Remark. It holds that L(E) ∼=M(K(E)) ([Lan, theorem 2.4]).

2.2.2.10 Theorem (Kasparov’s stabilisation theorem). Let A be σ-unital. For every

countably generated Hilbert A-module X it holds that

X ⊕HA ∼= HA.
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Consult [Lan, theorem 6.2] for the proof.

The following definition and theorem can be found in [FL02, definition 2.1, theorem 4.1].

2.2.2.11 Definition. Let A be unital. A finite or countably infinite set {xi}i∈I is said

to be a frame of the Hilbert A-module X if there exist two real constants C,D > 0 such

that

C〈x, x〉 ≤
∑
i∈I
〈x, xi〉〈xi, x〉 ≤ D〈x, x〉 for all x ∈ X.

The frame is called standard if the sum in the middle converges in A in norm and nor-

malised tight if C = 1 = D. A sequence is called a (generalised) Riesz basis if {xi}i∈I is a

generating set and a frame with

∑
i∈S

xiai = 0 iff xiai = 0 for all i ∈ S,

where S ⊆ I and ai ∈ A.

The following theorems and their proofs can be found in [FL02].

2.2.2.12 Theorem. Every countably generated Hilbert module has a standard normalised

tight frame.

2.2.2.13 Theorem (frame transform and reconstruction formula). For a unital C∗-alge-

bra A and a finitely or countably generated Hilbert A-module X that possesses a standard

normalised tight frame {xi}i∈I the corresponding frame transform

θ : X → HA, θ(x) := {〈x, xi〉}i∈I

is isometric and adjointable. The adjoint θ∗ is surjective and θ∗(ei) = xi for every i ∈ I.

For every x ∈ X,

x =
∑
i

xi〈xi, x〉,

where the sum converges in norm.

2.2.3 Tensor products of Hilbert modules

Let E be a Hilbert A-module and F be a Hilbert B-module. We start by turning the

module tensor product E⊗F into an A⊗B-module. Considering E and F vector spaces,
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their algebraic tensor product E � F is an A� B module with right action

(x⊗ y)(a⊗ b) = xa⊗ yb.

Extending

〈x1 ⊗ y1, x2 ⊗ y2〉A⊗B := 〈x1, x2〉A � 〈y1, y2〉B

yields an A� B-valued inner product on E � F .

2.2.3.1 Definition. The Hilbert A⊗B-module we get by closing E � F with respect to

〈·, ·〉A⊗B is called outer or external tensor product of E and F and is denoted by E⊗̂F .

When, in addition, given a ∗-homomorphism ϕ : A → L(F ), we can construct a Hilbert

B-module from E and F . The ∗-homomorphism implements an additional left action of

A on the right Hilbert B-module F .

2.2.3.2 Definition. For two C∗-algebras A and B a (Hilbert) A-B-correspondence is a

pair (E,ϕ), where E is a Hilbert B-module and ϕ : A → L(E) is a ∗-homomorphism. It

is called non-degenerate if

ϕ(A)E = E

and faithful, if ϕ is injective. An A-correspondence refers to an A-A-correspondence.

2.2.3.3 Remark. Due to Cohen’s factorisation theorem it holds that

ϕ(A)E = ϕ(A)E.

It can be found in [Bla06, theorem II.5.3.7].

Given a Hilbert A-module E and a Hilbert A-B-correspondence F , the (algebraic) module

tensor product E � F of E and F is a B-module with (ξ ⊗ η)b = ξ ⊗ (ηb). On E � F , we

define a B-valued pairing by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉B := 〈η1, ϕ(〈ξ1, ξ2〉E)η2〉F .

This need not be an inner product, since it is not necessarily definite. One checks that it
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vanishes on elements of the form

ξa⊗ η − ξ ⊗ ϕ(a)η.

In fact, these elements span the kernel of this pairing [Lan, proof of proposition 4.5].

Hence, this pairing is an inner product on the quotient

E � F /span{ξa⊗ η − ξ ⊗ ϕ(a)η} .

2.2.3.4 Definition. The Hilbert B-module we get by completing the above quotient with

respect to 〈·, ·〉B is called the internal or inner tensor product of E and F or the tensor

product of E and F which is balanced over A. We denote it by E ⊗ϕ F . Given an

A-correspondence E, we write

E⊗n := E ⊗ϕ E ⊗ϕ · · · ⊗ϕ E︸ ︷︷ ︸
n times

for any n ∈ N with the convention that E0 := A.

2.2.3.5 Remark. For any adjointable operator T ∈ L(E) we can define T ⊗ id ∈ L(E⊗ϕF )

by

T ⊗ id(x⊗ y) := T (x)⊗ y.

Therefore, given an A-B-correspondence (E,ϕ) and a B-C-correspondence (F,ψ),

(E ⊗ψ F,ϕ⊗ id) is an A-C-correspondence with left action

(ϕ⊗ id)(a)(x⊗ y) :=
(
ϕ(a)(x)

)
⊗ y

for all a ∈ A, x ∈ E and y ∈ F . In particular, E⊗n is an A-correspondence with this left

action, which we will denote by ϕn for all n ≥ 1. For n = 0, ϕ0(a)b := ab.

2.2.3.6 Lemma. For E and F as above and for every x ∈ E the equation

Tx(y) := x⊗ y,
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defines an adjointable operator Tx ∈ L(F,E ⊗ϕ F ) with

T ∗x (z ⊗ y) = ϕ(〈x, z〉)y,

where y ∈ F . We call Tx creation operator by x and T ∗x annihilation operator by x. They

satisfy the following relations:

TxT
∗
z (e⊗ f) = Tx

(
ϕ(〈z, e〉)f

)
= x〈z, e〉 ⊗ f

= θx,z(e)⊗ f

T ∗z Tx = ϕ(〈z, x〉) .

In particular, ‖Tx‖2 = ‖ϕ(〈x, x〉)‖.

See [Lan, lemma 4.6] for proof.

2.2.3.7 Lemma. Given a countably generated Hilbert A-module F and a C∗-algebra B

with K(F ) ⊆ B ⊆ L(F ). Then

B ⊗ F ∼= F.

Proof. We will show that the map B⊗F → F , b⊗ξ 7→ b(ξ) is an isomorphism. Let {ξi}i∈I
be a standard normalised tight frame of F from 2.2.2.12 and Λ = {λ ⊂ I : λ finite}. Then

eλ := (
∑

i∈λ θξi,ξi), (λ ∈ Λ) is an approximate unit of K(F ). Since eλ(ξ) → ξ for all

ξ ∈ F , the map is surjective. Furthermore,

‖b⊗ ξ‖2 = ‖〈ξ, ϕ(b∗b)ξ〉‖ = ‖〈ϕ(b)ξ, ϕ(b)ξ〉‖

= ‖〈b(ξ), b(ξ)〉‖ = ‖b(ξ)‖2,

so the map is isometric and hence an isometry.

2.2.4 Hilbert bimodules

2.2.4.1 Definition. A (Hilbert) A-B-bimodule is a right Hilbert B-module E with right

B-linear B-valued inner product 〈·, ·〉B that is at the same time a left Hilbert A-module

with left A-linear A-valued inner product A〈·, ·〉 such that

A〈x, y〉z = x〈y, z〉B.
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for all x, y, z ∈ E. An A-B-bimodule is said to be full if it is full both as a left Hilbert

A-module and a right Hilbert B-module.

2.2.4.2 Remark. In the literature, full A-B-bimodules are called imprimitivity bimodules.

2.2.4.3 Example. A is a full A-A-bimodule with left A-linear inner product A〈a, b〉 := ab∗

and right A-linear inner product 〈a, b〉A := a∗b.

2.2.4.4 Example. Every Hilbert A-module E is a full K(E)-A bimodule with left K(E)-

linear inner product

K(E)〈x, y〉 := θx,y.

2.2.4.5 Definition. The C∗-algebras A and B are called Morita equivalent, if a full A-

B-bimodule exists.

2.2.4.6 Theorem. The C∗-algebras A and B are Morita equivalent if and only if they are

complementary full corners in some C∗-algebra C, meaning there is a projection p ∈M(C)

such that A ∼= pCp, B ∼= (1− p)C(1− p) and

CpC = C = C(1− p)C .

In this case, C is called linking algebra.

In general, since A is Morita equivalent to A⊗K, if A and B are stably isomorphic, then

A and B are Morita equivalent. In general, the converse implication does not hold. For

example, for a nonseparable Hilbert space H, K(H) is Morita equivalent to C but K(H)

and C are not stably isomorphic.

2.2.4.7 Theorem. If A and B are σ-unital, they are stably isomorphic if and only if they

are Morita equivalent.

For this, see [Bla06, II.7.6].

2.2.4.8 Definition. For an A-B-bimodule E, we set E∗ := {x∗ : x ∈ E} and define

x∗ + y∗ := (x+ y)∗

bx∗a := (a∗xb∗)∗

B〈x∗, y∗〉 := 〈x, y〉B

〈x∗, y∗〉A := A〈x, y〉 .
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With these operations, E∗ is a Hilbert B-A-bimodule called the opposite module of E.

2.2.4.9 Remark. In the previous definition, we think of E∗ equal to E as a set but equipped

with different module operations and respective inner products as a Hilbert bimodule.

There is no involution on an arbitrary Hilbert bimodule in general, so x∗ is just a symbol

reminding us to consider the element x as a member of E∗ rather than E which entails a

different multiplication with elements in the coefficient algebras A and B. However, when

considering a C∗-algebra A as an A-bimodule with left A-linear inner product A〈a, b〉 :=

ab∗ and right A-linear inner product 〈a, b〉A := a∗b, all the stars occuring when forming

the opposite module of A as above coincide with the involution of A.

2.2.4.10 Remark. With the obvious modifications, we can define the opposite module of

a Hilbert correspondence as well. Unlike the opposite module of a bimodule, the opposite

module of a correspondence lies in a different category, since it turns a right module into a

left module and vice versa. Obviously, E ∼= E∗ by x 7→ x∗. Moreover, K(E) ∼= E ⊗E∗ by

θx,y 7→ x⊗ y∗ and E∗ ⊗E ∼= span{〈x, y〉B : x, y ∈ E} by x∗ ⊗ y 7→ 〈x, y〉. So, E∗ ⊗E ∼= B

holds if and only if E is full as a right Hilbert B-module.

2.3 Kasparov’s KK-theory

We will now mention some basics on KK-theory in order to introduce the six-term cyclic

exact sequences in KK-theory arising from semisplit exact sequences of C∗-algebras, since

this result is crucial for what is to come in the following chapters.

2.3.1 The Kasparov groups KK0(A,B) and KK1(A,B)

2.3.1.1 Definition. A graded C∗-algebra is a C∗-algebra B equipped with an order two

automorphism βB, that is a ∗-automorphism with (βB)2 = id. We call βB grading auto-

morphism and say that B is graded by βB.

2.3.1.2 Remark. A graded C∗-algebra B decomposes into the eigenspaces of βB, that is

B = B0 ⊕ B1, where

B0 := {b ∈ B : βB(b) = b} and B1 := {b ∈ B : βB(b) = −b}.
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This is just a Banach space decomposition (unlike B0, B1 is not a C∗-algebra). Elements

of Bi are called homogeneous of degree i.

For the rest of the section, A and B will denote σ-unital graded C∗-algebras unless stated

otherwise.

2.3.1.3 Definition. A graded homomorphism φ : A → B between the graded C∗-algebras

A and B is a ∗-homomorphism, that commutes with the gradings, that is φ ◦ βA = βB ◦φ.

In other words, considering φ : A0 ⊕A1 → B0 ⊕ B1 an operator matrix, φ is diagonal.

A graded Hilbert B-module over the graded C∗-algebra B is a Hilbert B-module E

equipped with a linear bijection SE : E → E, called grading operator, satisfying

SE(ξb) = SE(ξ)βB(b) for ξ ∈ E, b ∈ B, (2.3.1)

〈SE(ξ), SE(η)〉 = βB(〈ξ, η〉) for ξ, η ∈ E, (2.3.2)

(SE)2 = id (2.3.3)

2.3.1.4 Remark. Again we have E = E0 ⊕E1, where Ei are the eigenspaces of SE . Equa-

tions (2.3.1) and (2.3.2) imply that EiBj ⊆ Ei+j and 〈Ei, Ej〉 ⊆ Bi+j for i, j ∈ {0, 1}.

Equation (2.3.3) implies that ‖SE‖ ≤ 1.

2.3.1.5 Example. Any C∗-algebra B is graded by βB = idB and any Hilbert B-module E

is graded by SE = idE. This is called the trivial grading.

2.3.1.6 Example. Given a C∗-algebra B,

βB⊕B : B ⊕ B, (a, b) 7→

0 1

1 0

 (a, b) = (b, a)

defines a grading on B ⊕ B, called the odd grading. We denote B ⊕ B with this grading by

B(1).

2.3.1.7 Example. Any graded C∗-algebra B is a graded Hilbert B-module E = BB with

SE = βB.

2.3.1.8 Example. The grading SE of a Hilbert module E induces an order two ∗-auto-
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morphism of L(E) by

βL(E) : L(E)→ L(E), T 7→ SETS
−1
E .

The grading that L(E) inherits from E is called induced grading. Since SE(K(E)) ⊆ K(E),

we obtain a grading of the compact operators on E as well. This is the default grading on

L(E) and K(E).

2.3.1.9 Example. Given two graded Hilbert B-modules E and F , their direct sum E⊕F

is graded by SE ⊕ SF . This is the common grading on direct sums.

2.3.1.10 Definition. A Kasparov A-B-module is a triple E = (E, φ, F ), where E is a

countably generated Hilbert B-module, φ : A → L(E) is compatible with the respective

gradings, that is φ ◦ βA = βB ◦ φ, and F ∈ L(E) is an element of degree 1, such that

[F, φ(a)] = (Fφ(a)− φ(a)F ) ∈ K(E) for all a ∈ A

(F 2 − id)φ(a) ∈ K(E) for all a ∈ A

(F ∗ − F )φ(a) ∈ K(E) for all a ∈ A

We will denote the set of all Kasparov A-B-modules by E(A,B). A Kasparov module is

called degenerate, if

[F, φ(a)] = (F 2 − id)φ(a) = (F − F ∗)φ(a) = 0 for all a ∈ A.

The set of all degenerate Kasparov A-B-modules is denoted by D(A,B).

We will now define three equivalence relations on E(A,B).

2.3.1.11 Definition. Two Kasparov A-B-modules E1 = (E1, φ1, F1) and E2 = (E2, φ2, F2)

are isomorphic when there is a Hilbert B-module isomorphism ψ : E1 → E2 such that

ψ ◦ SE1 = SE2 ◦ ψ,

ψ ◦ F1 = F2 ◦ ψ,

ψ ◦ φ1(a) = φ2(a) ◦ ψ

for all a ∈ A. We write E1
∼= E2 in this case.
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Clearly, ∼= defines an equivalence relation on E(A,B). For E1, . . . , En ∈ E(A,B) and 0 the

trivial Kasparov module (0, 0, 0) it holds that

(E1 ⊕ E2)⊕ E3
∼= E1 ⊕ (E2 ⊕ E3) ∼= E1 ⊕ E2 ⊕ E3,

Eσ(1) ⊕ · · · ⊕ Eσ(n)
∼= E1 ⊕ · · · ⊕ En,

E1 ⊕ 0 ∼= E1,

where σ : {1, . . . , n} → {1, . . . , n} denotes any permutation. For the next definition we

need to introduce some notation. Denote by

IB := C(I,B) = C(I)⊗ B

all continuous B-valued functions over the unit interval I = [0, 1] and by πt : IB → B the

point evaluation at t ∈ I. If B is graded by βB we consider IB graded by id⊗βB. Then

every πt is a graded homomorphism and for E = (E, φ, F ) ∈ E(A, IB) we obtain

Eπt := (E ⊗πt B, πt ◦ φ, πt ◦ F ) ∈ E(A,B)

for every t ∈ I.

2.3.1.12 Definition. Two Kasparov modules E and F ∈ E(A,B) are called homotopic if

there exists a Kasparov module G ∈ E(A, IB) such that Gπ0
∼= E and Gπ1

∼= F . We write

E ∼ F , if there exists a finite sequence of Kasparov modules E1, . . . , Ed ∈ E(A,B) such

that E1 = E , Ed = F and Ei is homotopic to Ei+1 for all 1 ≤ i ≤ d− 1.

2.3.1.13 Remark. ∼ defines an equivalence relation on E(A,B).

2.3.1.14 Definition. Two Kasparov modules E and F ∈ E(A,B) are called opera-

tor homotopic if there exist a graded Hilbert B-module E, a graded homomorphism

φ : A → L(E) and a norm-continuous path (Ft)t∈I of adjointable operators on E such

that

F0
∼= E ,

F1
∼= F ,

Ft = (E, φ, Ft) ∈ E(A,B)
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for all t ∈ I. We write E ≈ F when there are degenerate Kasparov modules Ed and

Fd ∈ D(A,B) such that E ⊕ Ed is operator homotopic to F ⊕ Fd.

2.3.1.15 Remark. ≈ defines an equivalence relation on E(A,B).

2.3.1.16 Definition. For two graded C∗-algebras A and B we now define

KK(A,B) := KK0(A,B) := E(A,B)/∼
and denote the class of E ∈ E(A,B) by [E ]. Furthermore,

K̂K(A,B) := K̂K0(A,B) := E(A,B)/≈.
In this quotient, the class of E ∈ E(A,B) is denoted by {E}.

2.3.1.17 Remark. Some useful facts:

(a) Any degenerate Kasparov module E ∈ D(A,B) is homotopic to 0,

see [Bla06, proposition 17.2.3].

(b) For E , F ∈ E(A,B), E ≈ F implies that E ∼ F , see [JT91, lemma 2.1.21].

(c) KK(A,B) and K̂K(A,B) are abelian groups with the respective additions

[E ] + [F ] := [E ⊕ F ]

{E}+ {F} := {E ⊕ F}

The inverse element of some (E, φ, F ) ∈ KK(A,B) is (−E, φ̃,−F ), where −E is

identical to E as a Hilbert B-module but graded by −SE and φ− := φ ◦ βA, for

details see [Bla06, proposition 17.3.3] or [JT91, theorem 2.1.23].

2.3.1.18 Definition. We define

KK1(A,B) := KK(A,B(1)),

where B(1) denotes B ⊕ B with the odd grading from example 2.3.1.6.

2.3.1.19 Theorem. If A is separable and B is σ-unital KK1(A,B) is isomorphic to

Ext−1(A,B), the group of invertible extensions of A by B.
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For this, see [JT91, corollary 3.3.11].

2.3.1.20 Remark. Both KK0(· , ·) and KK1(· , ·) are bifunctors from pairs of C∗-algebras to

the category of abelian groups which are contravariant in the first variable and covariant

in the second one.

2.3.1.21 Remark. KK-theory incorporates K-homology within its first and K-theory within

its second variable. In particular,

KK0(C,A) = K0(A) and KK1(C,A) = K1(A).

For this see [Bla98, 17.5.4].

2.3.1.22 Remark. The following definition is equivalent to the one given above.

KK1(A,B) := KK0(A,B ⊗̂C1),

where ⊗̂ as in [Bla98, 14.4.1 and 14.4.2] and C1 denotes C2 with the odd grading, which

is a complex Clifford algebra. For example, Blackadar follows this approach. It allows a

more elegant formulation of Bott periodicity for KK-theory. For this, note that for graded

C∗-algebras A, B and D the map

E(A,B)→ E(A⊗̂D,B ⊗̂D)

(E, φ, F ) 7→ (E ⊗̂D, φ⊗ id, F ⊗ id)

induces a homomorphism τD : KK(A,B)→ KK(A⊗̂D,B ⊗̂D).

2.3.1.23 Theorem. For any graded, σ-unital C∗-algebras A and B, the map

τC1 : KK(A,B)→ KK(A⊗̂C1,B ⊗̂C1)

is an isomorphism. In particular,

KK1(A,B) ∼= KK0(A⊗̂C1,B)

and

KK0(A,B) ∼= KK1(A,B ⊗̂C1) ∼= KK1(A⊗̂C1,B) ∼= KK0(A⊗̂C1,B ⊗̂C1)
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2.3.2 The Kasparov product

The Kasparov product provides a map

⊗̂D : KK(A,D)×KK(D,B)→ KK(A,B).

For fixed elements x ∈ KK(A,D) and y ∈ KK(D,B) choose the respective representatives

(E1, φ1, F1) ∈ E(A,D) and (E2, φ2, F2) ∈ E(D,B). We will associate the product with

the class of the module (E, φ, F1]F2) ∈ E(A,B), where E := E1 ⊗φ2 E2 and φ := φ1 ⊗ id.

All the work is put into finding a suitable operator F1]F2. For this, we want to form

a combination of F1 ⊗ id and id⊗F2. It is easy to make sense of the first expression

by 2.2.3.5, whereas the second one is troublesome. Given a countably generated, graded

Hilbert D-module E1, a countably generated, graded Hilbert B-module E2, a graded
∗-homomorphism ψ : D → L(E2) and F2 ∈ L(E2) such that [F2, ψ(D)] ⊆ K(E2), we

are looking for F ∈ L(E), where E = E1 ⊗ψ E2 which acts like id⊗F2 up to compacts.

Connections were introduced by Connes and Skandalis in [CS84].

2.3.2.1 Definition. An operator F ∈ L(E) is called an F2-connection for E1 if for any

x ∈ E1,

Tx ◦ F2 − (−1)δx·δF2F ◦ Tx ⊆ K(E2, E),

F2 ◦ T ∗x − (−1)δx·δF2T ∗x ◦ F ⊆ K(E,E2),

where Tx ∈ L(E2, E) denotes the creation operator as in 2.2.3.6.

2.3.2.2 Remark. For x ∈ E1 let

T̃x :=

 0 T ∗x

Tx 0


and for F ∈ L(E) let F̃ := F2 ⊕F ∈ L(E2 ⊕E). Then, F is an F2-connection if and only

if

[T̃x, F̃ ] ∈ K(E2 ⊕ E) for all x ∈ E1.

2.3.2.3 Definition. Let F be an F2-connection for E. The triple (E, φ, F ) is called a

Kasparov product of (E1, φ1, F1) and (E2, φ2, F2) if (E, φ, F ) is a Kasparov A-B-module
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and

φ(a) [F1 ⊗ 1, F ]φ(a) ≥ 0 mod K(E)

for all a ∈ A. The set of all F such that (E, φ, F ) is a Kasparov product is denoted by

F1]DF2.

2.3.2.4 Theorem. If A is separable and D is σ-unital, the Kasparov product for (E1, φ1, F1)

and (E2, φ2, F2) exists and is unique up to operator homotopy. Actually, the Kasparov

product defines a bilinear function

⊗̂D : KK(A,D)×KK(D,B)→ KK(A,B).

See [Bla98, theorems 18.4.3 and 18.4.4]

2.3.3 Six-term cyclic exact sequences in KK-theory

There is a version of the six-term cyclic exact sequence for both C∗-algebraic K-theory

and K-homology in the setting of KK-theory.

2.3.3.1 Definition. A short exact sequence 0→ I → A q→ A
/
I → 0 is called semisplit,

if there exists a linear, completely positive, contractive map p : A
/
I → A such that

q ◦ p = idA/I .

In this case, p is called completely positive cross section of q. An ideal I /A is said to be

semisplit, if the respective short exact sequence 0→ I → A → I
/
A → 0 is semisplit.

2.3.3.2 Remark. There is a 1:1-correspondence between semisplit stable ideals and in-

vertible extensions. If A is nuclear, then every ideal of A is semisplit. For this see

[Bla98, theorems 15.7.1 and 15.8.4].

2.3.3.3 Theorem. For a semisplit exact sequence

0→ I → A q→ A
/
I → 0

of σ-unital C∗-algebras and for any separable graded C∗-algebra D, there exist connecting
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maps such that the following diagram is exact:

KK0(D, I) // KK0(D,A) // KK0(D,A
/
I)

��
KK1(D,A

/
I)

OO

KK1(D,A)oo KK1(D, I)oo

If A is separable, then there exist connecting maps such that for every separable graded

C∗-algebra D the diagram below is exact as well.

KK0(I,D)

��

KK0(A,D)oo KK0(A
/
I,D)oo

KK1(A
/
I,D) // KK1(A,D) // KK1(I,D)

OO

See [Bla98, 19.5.7] or [Ska91].

2.3.3.4 Remark. Recall from 2.3.1.19 that invertible extensions Ext(A,B)−1 are isomorphic

to KK1(A,B) and let x ∈ KK1(A
/
I,A) be the element that corresponds to a given

semisplit exact sequence

0→ I → A q→ A
/
I → 0.

Then for any separable C∗-algebra D, the connecting maps in the above diagrams are

given by the Kasparov products

KKi(D,A
/
I) → KKi+1(D, I)

y 7→ yx

and

KKi(A
/
I,D) → KKi+1(I,D)

y 7→ xy ,

where i, i+ 1 ∈ {0, 1} due to Bott periodicity.



Chapter 3

The Toeplitz and Cuntz-Pimsner

algebra of a Hilbert correspondence

3.1 Construction of T̃E and OE

In [Pim97], Pimsner associated C∗-algebras to Hilbert C∗-correspondences that gener-

alise Cuntz-Krieger algebras and crossed products of C∗-algebras by the integers. In this

section, we will give Pimsner’s definition and study the main examples.

3.1.1 Definitions

We start by constructing a Hilbert correspondence that is a suitable domain for creation

and annihilation operators.

3.1.1.1 Definition. Given an A-correspondence (E,ϕ), we define the Fock module of E

by

Γ(E) :=
⊕
n∈N0

E⊗n,

where E⊗n is the Hilbert A-module from 2.2.3.4. The Fock module Γ(E) is a Hilbert

A-correspondence with left action

ϕΓ(E) := ⊕ϕn,

where ϕn as in 2.2.3.5. We will denote this action by ϕ⊗ id.

43
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3.1.1.2 Remark. For every x ∈ E and F := E⊗n let Tx ∈ L(E⊗n, E⊗n+1) denote the

creation operator from 2.2.3.6. By extending those operators to the Fock module linearly,

we get adjointable operators on the Fock module and denote them by Tx as well.

3.1.1.3 Definition. We will call the adjointable operator Tx ∈ L(Γ(E)) from the previous

remark creation operator on the Fock module. The concrete C∗-algebra

T̃E := C∗{Tx : x ∈ E} ⊆ L
(
Γ(E)

)
,

which is generated by all creation operators inside the adjointable operators on the Fock

module is called concrete Toeplitz algebra of E. In addition, let Pn denote the orthogonal

projection of Γ(E) onto
⊕n

i=0E
⊗i and

JΓ(E) :=
⋃

n,m∈N
PnL

(
Γ(E)

)
Pm

the C∗-algebra generated by all Pn.

3.1.1.4 Definition. The C∗-algebra

OE := C∗{Sx : x ∈ E} ⊆ M(JΓ(E))
/
JΓ(E)

is called Cuntz-Pimsner algebra of E, where Sx denotes the class of Tx in the corona

algebraM(JΓ(E))
/
JΓ(E).

3.1.1.5 Remark. Therefore,

OE =
(
T̃E + JΓ(E)

)/
JΓ(E)

∼= T̃E
/
T̃E ∩ JΓ(E)

.

If ϕ is injective, ‖Sξ‖ = ‖ξ‖. If L(E) = K(E) which happens precisely when E is finitely

generated, then JΓ(E) coincides with K
(
Γ(E)

)
.

3.1.1.6 Remark. In fact, there is an explicit description of the intersection T̃E ∩ JΓ(E).

Denote by Iϕ := ϕ−1(K(E)). Since this is an ideal in A, we get that Γ(E)Iϕ is a

submodule of Γ(E). For this submodule, K
(
Γ(E)Iϕ

) ∼= T̃E ∩ JΓ(E) holds because the

operators in the Toeplitz algebra with finite-dimensional image originate from the relation
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T ∗ξ Tη = ϕ⊗ id(〈ξ, η〉). Therefore,

OE ∼= T̃E
/
K
(
Γ(E)Iϕ

)
.

In other words, the following short sequence is exact:

0→ K
(
Γ(E)Iϕ

)
→ T̃E → OE → 0 .

See [MS00] for this approach.

3.1.2 Examples

Cuntz-Pimsner algebras generalise some well-known C∗-algebras.

3.1.2.1 Example (Cuntz algebras). Consider a d-dimensional Hilbert space Hd = Cd

with orthonormal basis {e1, . . . , ed} a Hilbert C-correspondence with trivial action of C

from the left as in example 2.2.1.5. Then Γ(Hd) is the full Fock space over Hd, which is

spanned by complex polynomials in d non commuting variables e1, . . . , ed. Since

C∗{Tξ : ξ ∈ Hd} = C∗{Tj : 1 ≤ j ≤ d} ⊆ L
(
Γ(Hd)

)
,

where Tj := Tej , THd is the Toeplitz algebra on Γ(Hd) in the sense of [Pop89]. The Hilbert

C-module Hd is finitely generated, so Iϕ = C and hence K
(
Γ(Hd)Iϕ

)
= K

(
Γ(Hd)

)
. Since

K
(
Γ(Hd)

)
3 PΩ = idΓ(Hd)−

d∑
j=1

TjT
∗
j ,

where PΩ is the orthogonal projection onto the vacuum vector Ω of Γ(Hd), we know that

idΓ(Hd)/K =
d∑
j=1

SjS
∗
j ,

where Sj = [Tj ]. Since Sj are isometries with orthogonal ranges, OHd equals the d-

dimensional Cuntz algebra Od.

3.1.2.2 Example (Cuntz-Krieger algebras). Starting with a Cuntz-Krieger matrix A, that
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is A = (aij)di,j=1 ∈Md({0, 1}) such that no row and no column vanishes, we define

EA := span{ei ⊗ ej : aij = 1} ⊆ Cd ⊗ Cd,

where {ej}dj=1 is the standard orthonormal base of Cd. Extending

〈ei ⊗ ej , ek ⊗ el〉 := δikδjlej

to EA linearly yields a Cd-valued inner product. Together with component wise multipli-

cation, EA is a Hilbert Cd-module. A left action of Cd on EA is defined by

ϕ(x1, . . . , xd)(y1, . . . , yd) = (x1y1, . . . , xdyd).

The respective Cuntz-Pimsner algebra OEA coincides with the Cuntz-Krieger algebra OA.

3.1.2.3 Example (Graph algebras). In order to generalise the previous example, let

G = (G0, G1, r, s) be a directed countable graph with vertices G0, edges G1, range map

r : G1 → G0 and source map s : G1 → G0. Let A := C0(G0) and complete E := CC(G1)

with respect to the norm induced by the A-valued inner product

〈ξ, η〉(v) :=
∑
r(e)=v

ξ(e)η(e).

The right action is given by

(ξf)(e) := ξ(e)f
(
r(e)

)
and the left action ϕ : A → L(E) by

ϕ(f)ξ(e) := f
(
s(e)

)
ξ(e).

3.1.2.4 Remark. Since ker(ϕ) = C0

(
{v ∈ G0 : |s−1(v)| = 0}

)
need not be trivial, in [Kat04],

[Kat06a], [Kat06b] and [Kat08] Katsura refined Pimsner’s original definition dropping the

assumption that ϕ is injective and postulating Cuntz-Pimsner covariance for elements in

Iϕ ∩ ker(ϕ)⊥ rather than in Iϕ in order to include examples of graphs with sources. A

short motivation for why this is desirable can be found in [Rae05, example 8.13].

3.1.2.5 Example (Crossed products). As Pimsner states in [Pim97], crossed products
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are examples of Cuntz-Pimsner algebras as well. We will now check the details, which are

omitted in the paper. Given a C∗-algebra A with unit 1 together with a ∗-automorphism

π, consider E := A a Hilbert A-module as in 2.2.1.6 with left action a · b := π(a)b. Then

E ⊗π E is isomorphic to E as a right Hilbert A-module via a⊗ b 7→ π(a)b. Since

a(x⊗ y) =
(
π(a)x

)
⊗ y ∼= π2(a)π(x)y,

this isomorphism does not preserve the left action of A. By the same argument it holds

for any n ∈ N that E⊗n is isomorphic to the Hilbert A-correspondence E equipped with

the left action

a(x1 ⊗ · · · ⊗ xn) = πn(a)πn−1(x1) . . . π(xn−1)xn.

Hence, Γ(E) ∼=
⊕

n∈N0
A with left action

π(a)(x0, x1, x2, x3, . . . ) := (ax0, π(a)x1, π
2(a)x2, π

3(a)x3, . . . ) .

One checks that T ∗1aT1 = π(a) and that [T1] is unitary in OE, so OE is a quotient of

Aoπ Z. In other words, there exists an ideal I /Aoπ Z such that

OE ∼= Aoπ Z
/
I.

We will now see that I is trivial. Any faithful representation ϕ : A → B(H) yields a

representation (ϕ̃, U) of Aoπ Z on l2(Z;H), where

ϕ̃(a) =



. . .

ϕ(π−1(a))

ϕ(a)

ϕ(π(a))
. . .


and U :=



. . .

. . . 0

1 0

1 0
. . . . . .


.

Actually, this is a covariant representation, that is U∗ϕ̃(a)U = ϕ̃(π(a)). By compression

with the orthogonal projection V of l2(Z;H) onto l2(N;H) we obtain the completely positive

map

x 7→ V xV
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for which V ϕ̃(a)V = π(a), where the left action by a on the Fock module is component-

wisely represented on H via ϕ, and V UV = T1. We notice that this map is injective and

that the intersection of its image with the compacts is trivial. Hence

Aoπ Z→ TE → TE
/
I ∼= Aoπ Z

/
I

is injective, so the ideal I is trivial. In other words, the Cuntz-Pimsner algebra OE
coincides with the full crossed product Aoπ Z.

3.1.2.6 Remark. One may just as well define the Cuntz-Pimsner algebra for theA-correspondence

(A, π), where π is an endomorphism. Therefore, Pimsner’s construction provides a canon-

ical way to define crossed products of C∗-algebras by endomorphisms.

3.1.3 Motivating example

We now consider example 3.1.2.1 with d := 1 that is, the Hilbert C-correspondence E := C

with trivial left action ϕ(z1)(z2) := z1 · z2. The full Fock module over C is l2(N), the

space of square-summable complex sequences over N and the Toeplitz algebra TE which is

generated by the right shift S(a0, a1, a2, . . . ) := (0, a0, a1, a2, . . . ) on l2(N) coincides with

the regular Toeplitz algebra T1 from 2.1.3.1. Since Iϕ = C, 3.1.1.6 implies that

OE = T1
/
K
(
l2(N)

) = O1,

which is isomorphic to C(T). On the other hand, O1 is isomorphic to any C∗-algebra

generated by a unitary with full spectrum so, in particular, to the C∗-algebra which is

generated by the right shift Ŝ on l2(Z). This yields a completely positive map from O1 to

T1 by compression. More precisely, the map

l2(Z)→ l2(N)

(. . . , a−1, a0, a1, . . . ) 7→ (a0, a1, a2, . . . )

induces a map B(l2(Z)) → B(l2(N)) and its restriction to O1 is a completely positive lift

of the quotient map T1 → O1. In other words, the short exact sequence

0→ K
(
l2(N)

)
→ T1 → O1 → 0
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is semisplit, hence induces two six-term cyclic exact sequences in KK-theory by theorem

2.3.3.3.

When analysing Pimsner’s construction of a semisplit extension of the Cuntz-Pimsner

algebra OE , where (E,ϕ) is any Hilbert A-correspondence such that ϕ : A → L(E) is

injective, one comes to realise that Pimsner’s proof generalises this example. He first

showed that the Toeplitz algebra is a universal object by the gauge-invariant uniqueness

theorem, which we will state and prove in the following section. This is particularly

helpful for the fourth chapter, since we will then start with the universal object and

faithfully represent it on the respective Fock module by generalising this theorem to our

new setting. The intention of defining a two-sided Fock module generalising l2(Z) is

hindered by the fact that for a natural number n there is no obvious notion of a negative

tensor power E⊗−n of an A-correspondence E. However, if E⊗n was an A-bimodule, that

is possessed a left Hilbert A-module structure compatible with the right Hilbert A-module

structure of E⊗n, one remains in the same category when taking the opposite module of

E⊗n. In this case, we may define E⊗−n to be the the opposite module of E⊗n. Recall

from 2.2.4.4 that every E⊗n is a K(E⊗n) - A bimodule. For this reason, Pimsner sets

FE := C∗{K(E⊗n) : n ∈ N} and extends the scalars of the Hilbert A-correspondence E

to FE by considering the correspondence E∞ := E ⊗A FE instead. After checking that

E∞ is in fact a Hilbert FE-bimodule, one defines a two-sided Fock module ΓZ(E∞) as

suggested above. The Cuntz-Pimsner algebra OE∞ is then isomorphic to both OE and

the C∗-algebra generated by creation operators on ΓZ(E∞). The completely positive map

L
(
ΓZ(E∞)

)
→ L

(
Γ(E∞)

)
gained by compressing ΓZ(E∞) onto Γ(E∞) lifts the quotient

map TE∞ → OE yielding six-term cyclic exact sequences in KK-theory for the slightly

modified Toeplitz-extension of the Cuntz-Pimsner algebra.

3.2 A gauge-invariant uniqueness theorem for T̃E

In this section, we will reproduce Pimsner’s uniqueness theorem for the Toeplitz algebra

T̃E associated to a Hilbert A-correspondence (E,ϕ). In other words, we will see that T̃E ,

the C∗-algebra generated by creation operators on the Fock module of E, is a universal

C∗-algebra.
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3.2.1 The abstract Toeplitz algebra

3.2.1.1 Definition. A Toeplitz representation of an A-correspondence (E,ϕ) on a C∗-

algebra B is a tuple (τ, σ), where τ : E → B is a linear map and σ : A → B is a
∗-homomorphism such that

(TR1) τ(xa) = τ(x)σ(a),

(TR2) τ(x)∗τ(y) = σ(〈x, y〉),

(TR3) τ(ϕ(a)x) = σ(a)τ(x)

for all x, y ∈ E and a ∈ A. The C∗-algebra generated by all Toeplitz representations of

(E,ϕ) is called the abstract Toeplitz algebra of E and is denoted by TE .

See for example [Dea07] for this definition.

3.2.1.2 Remark. The Fock representation (T, ϕ ⊗ id), where T (x) := Tx is a Toeplitz

representation of (E,ϕ).

3.2.1.3 Remark. Alternatively, we can consider TE the universal C∗-algebra with genera-

tors {tx : x ∈ E}∪{a : a ∈ A}, where the latter set retains the structure of A, and subject

to relations

(TR1’) txa = txa,

(TR2’) t∗xty = 〈x, y〉,

(TR3’) atx = tϕ(a)x .

3.2.2 The abstract and the concrete gauge action

We start by noticing that every product of generators of the universal Toeplitz algebra

can be written in the following way.

3.2.2.1 Lemma. Any finite product with factors in {tx : x ∈ E}∪{t∗x : x ∈ E}∪A inside

TE reduces to

tx1 . . . txkt
∗
y1
. . . t∗yl , (3.2.1)

where x1, . . . , xk, y1, . . . , yl ∈ E, k, l ∈ N with the convention that this represents elements

in A if k = 0 = l.
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Proof. Given a product t = t1t2t3 . . . tn, where ti ∈ {tx : x ∈ E} ∪ {t∗x : x ∈ E}, which

is not in the required shape already, we use relation (TR2) to eliminate any t∗y on the

left hand side of a tx and then use relations (TR1) and (TR3) to absorb elements of A if

necessary.

Since TE is spanned by products in {tx : x ∈ E}∪{t∗x : x ∈ E}∪A, by the previous lemma

products of the form (3.2.1) already span TE . The same holds for T̃E as well.

3.2.2.2 Definition. For any finite product t = tx1 . . . txkt
∗
y1
. . . t∗yl ∈ TE , we define the

degree of t to be k − l. We write deg(t) = k − l. In particular, deg(a) = 0, deg(tx) = 1

and deg(t∗y) = −1.

3.2.2.3 Remark. If {tx : x ∈ E} ∪ A satisfies relations (TR1’) - (TR3’), for every z ∈ T

the set {z · tx : x ∈ E} ∪ A does as well. Defining

λ(z)(t) := zdeg(t)t

for any finite product t and linearly extending this to TE yields an action

λ : T→ Aut(TE).

We define another action λ̃ : T→ Aut(T̃E) by linearly extending

λ̃(z)(Tx1 . . . TxkT
∗
y1
. . . T ∗yl) := zk−l(Tx1 . . . TxkT

∗
y1
. . . T ∗yl).

3.2.2.4 Definition. The action λ : T→ Aut(TE) from the previous remark is called the

abstract gauge action, λ̃ : T→ Aut(T̃E) is called concrete gauge action.

3.2.3 The theorem

We will now prove the following theorem.

3.2.3.1 Proposition. It holds that

TE ∼= T̃E .

In other words, the Fock representation of E is faithful.
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We denote by F and F̃ the fixed point algebras of the abstract gauge action λ and concrete

gauge action λ̃ as above. These actions yield conditional expectations ψλ and ψλ̃ as in

example 2.1.1.25 by

ψλ(t) :=
∫
z∈T

λz(t)dµ(z) ,

ψλ̃(T ) :=
∫
z∈T

λ̃z(T )dµ(z)

and the following diagram commutes:

TE

ψλ

��

π // T̃E

ψλ̃

��
F

π|F // F̃ ,

Here, π denotes the quotient homomorphism from TE onto T̃E and π|F its restriction to

F .

Suppose π|F was injective. Since ψλ is faithful, this implies that ψλ̃ ◦ π is injective.

Since ψλ̃ is faithful, π has to be injective. Obviously, π is surjective, so TE and T̃E are

isometric. We will now show that π|F is injective, that is the fixed point algebras of the

abstract and the concrete gauge action coincide.

For this, we take a closer look at the fixed point algebras F and F̃ of the actions λ and

λ̃. They are spanned by all products of degree zero respectively, so by Lemma 3.2.2.1 we

know that

F = A ∪ span{tx1 . . . txnt
∗
y1
. . . t∗yn : n ∈ N, xi, yi ∈ E}

= A ∪
⋃
n∈N

span{tx1 . . . txnt
∗
y1
. . . t∗yn : xi, yi ∈ E},

F̃ = A ∪ span{Tx1 . . . TxnT
∗
y1
. . . T ∗yn : n ∈ N, xi, yi ∈ E}

= A ∪
⋃
n∈N

span{Tx1 . . . TxnT
∗
y1
. . . T ∗yn : xi, yi ∈ E} .
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3.2.3.2 Lemma. Let A and B be C∗-algebras, A ⊆ B and E ⊆ B a closed subspace such

that xa ∈ E and x∗y ∈ A for every x, y ∈ E and a ∈ A. Then the following holds:

1. E with inner product 〈x, y〉 := x∗y is a right Hilbert A-module with ‖x‖E = ‖x‖B.

2. Elements t ∈ B with tx ∈ E and t∗x ∈ E for all x ∈ E define elements in L(E) by

left multiplication. In particular, xy∗ ∈ K(E) for all x, y ∈ E.

3. Moreover, span{xy∗ : x, y ∈ E} ∼= K(E).

Here, 1. and 2. are obvious and a proof of 3. can be found in [Pim97, lemma 3.2]. We now

continue investigating the structure of the fixed point algebras F and F̃ .

Let E1 := span{tx : x ∈ E} ⊆ TE and E′1 := span{Tx : x ∈ E} ⊆ T̃E . By the previous

lemma, we get

span{txt∗y : x, y ∈ E} ∼= K(E) ∼= span{TxT ∗y : x, y ∈ E}.

Applying the same argument to

En := span{tx : x ∈ E⊗n} ∼= span{tx1 . . . txn : x1, . . . , xn ∈ E}

and

E′n := span{Tx : x ∈ E⊗n} ∼= span{Tx1 . . . Txn : x1, . . . , xn ∈ E}

we get that

span{txt∗y : x, y ∈ E⊗n} ∼= K(E⊗n) ∼= span{TxT ∗y : x, y ∈ E⊗n}.

In other words, we saw that the span of products of length 2n in and degree zero inside

TE and T̃E , which are the building blocks of F and F̃ respectively, are isomorphic to

K(E⊗n). It is now left to show that the respective ways they are put together in F and

F̃ are compatible.
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We know that the fixed point algebra F is the universal C∗-algebra generated by

{K(E⊗n) : n ∈ N} subject to relations

ab = (a⊗ id)b ,

ba = b(a⊗ id)

where a ∈ K(E⊗n), b ∈ K(E⊗m) and n < m. For any TxT ∗y ∈ K(E⊗n) ⊆ F̃ and z ∈ E⊗k

we know that

TxT
∗
y (z) =


0, if k < n

θx,y(z), if k = n

θx,y ⊗ id(z), if k > n .

So F̃ =
⊕
n∈N
K(E⊗n) with

(a, b) · (a′, b′) = (aa′, (a⊗ id)b′ + b(a′ ⊗ id) + bb′),

where (a, b), (a′, b′) ∈ K(E⊗n)⊕K(E⊗m) and n < m.

3.2.3.3 Lemma. Given two C∗-algebras A and B and a ∗-homomorphism η : A →M(B)

the universal C∗-algebra C1 generated by A and B subject to relations

ab = η(a)b,

ba = b η(a)

is isomorphic to C2 := A⊕ B with

(a, b) · (a′, b′) := (aa′, η(a)b′ + bη(a′) + bb′).

Proof. For the elements (a, 0) and (0, b) ∈ C2 it holds that (a, 0) · (0, b) = (0, η(a)b) and

(0, b) · (a, 0) = (0, b η(a)), so C2 is a quotient of C1. On the other hand, for (a + b),

(a′ + b′) ∈ C1 the following equation holds:

(a+ b)(a′ + b′) = (aa′ + η(a)b′ + b η(a′) + bb′)
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Therefore, C1 is a quotient of C2. Since both are universal C∗-algebras, they are isomorphic.

We will now prove that F and F̃ are isomorphic by induction.

Let A := K(E), B := K(E⊗2) and η : A → L(E⊗2), θx,y 7→ θx,y ⊗ id. By the previous

lemma, we know that C∗{K(E),K(E⊗2)} with respect to the above relations is isomorphic

to K(E)⊕K(E⊗2) with the above product.

Assume now thatAn := C∗{K(E⊗k) : 1 ≤ k ≤ n} is isomorphic toA′n :=
⊕

1≤k≤nK(E⊗k)

and let B := K(E⊗n+1). We define

ηk,n : K(E⊗k) → L(E⊗n+1)

a 7→ a⊗ id⊗ · · · ⊗ id .︸ ︷︷ ︸
n+1−k times

and

ηn : An →M(B) ∼= L(E⊗n+1)

(ak)nk=1 7→
∑n

k=1 ηk,n(ak)

where ak ∈ K(E⊗k). By applying the lemma again, we know that

C∗{An,B} = C∗{K(E⊗k) : a ≤ k ≤ n+ 1} ∼= An ⊕ B .

The latter is isomorphic to A′n ⊕ B =
⊕n+1

k=1 K(E⊗k) by induction hypothesis. We hence

know that

F = C∗{K(E⊗k) : k ∈ N} ∼=
⊕
k∈N
K(E⊗k) = F̃ .

This finishes the proof of theorem 3.2.3.1.

Theorem 3.2.3.1 enables us to formulate the universal property of TE in the following

way.

3.2.3.4 Corollary. For any countably generated full isometric Hilbert A-correspondence

(E,ϕ), any C∗-algebra B and any ∗-homomorphism σ : A → B with the property that there
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exist elements t̃x ∈ B such that

αt̃x + βt̃y = t̃αx+βy,

t̃xa = t̃x · σ(a),

t̃∗x · t̃y = σ(〈x, y〉),

t̃ϕ(a)x = σ(a) · t̃x

for all α, β ∈ C, x, y ∈ E and a ∈ A there exists a unique extension σ̃ : TE → B of σ such

that the following diagram commutes:

A σ //

ϕ⊗id

��

B

TE

σ̃

??~~~~~~~~~~~~~~~~

3.2.3.5 Remark. If E is finitely generated, it possesses a normalised standard tight frame

{ui}i=1,...,n with

x =
n∑
i=1

ui〈ui, x〉

and OE is the universal C∗-algebra generated by {Si}i=1,...,n and A subject to relations

n∑
i=1

SiS
∗
i = id,

S∗i Sj = 〈ui, uj〉,

a · Sj =
n∑
i=1

Si〈ui, aui〉.

The Toeplitz algebra is the universal C∗-algebra generated by {Si}i=1,...,n and A satisfying

the second and third relation. This approach can be found in [KPW98].
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3.3 A semisplit Toeplitz extension of OE

In this section, we will recall Pimsner’s construction of a semisplit Toeplitz extension of

a Cuntz-Pimsner algebra. In general, one does not know if the Toeplitz extension from

3.1.1.6 is semisplit or not, but by extending the coefficient algebra A of the underlying

Hilbert module E to FE and associating a new Hilbert FE-module E∞, TE embeds into

TE∞ . This embedding yields an isomorphism between the Cuntz-Pimsner algebras of

E and E∞. Since E∞ is in fact a Hilbert bimodule, one can define a two-sided Fock

module ΓZ(E∞). Then the Cuntz-Pimsner algebra OE∞ is isomorphic to the C∗-algebra

that is generated by multiplication operators on ΓZ(E∞) and the completely positive map

L
(
ΓZ(E∞)

)
→ L

(
Γ(E∞)

)
induced by compression yields the desired lift of the quotient

map.

3.3.1 Extending the scalars

3.3.1.1 Definition. For any A-correspondence (E,ϕ), we define the C∗-algebra

FE :=
⋃
n∈N0

K(E⊗n)

inside lim
−→
L(E⊗n) with respect to the inclusions T 7→ T ⊗ id with the convention that

K(E⊗0) := A. In addition, we define the Hilbert FE-module

E∞ := E ⊗i FE ,

where i : A ↪→ FE and set

FkE :=
⋃
n≥k
K(E⊗n)

3.3.1.2 Remark. If ϕ(A) contains K(E), it follows that K(E⊗n) ⊇ K(E⊗n+1). In this case,

FE = A.

3.3.1.3 Example. If E := C as in example 3.1.3, ϕ(C) = C = K(E), so FE = C. In this

special case the construction below produces exactly the completely positive lift we already

considered.

3.3.1.4 Example. Consider now the slightly more general Hilbert C-module E := Hd as in
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example 3.1.2.1 with d ≥ 2. Since K(Cd) ∼= Md(C), we have K(E⊗n) ∼= Md(C)⊗ · · · ⊗Md(C)︸ ︷︷ ︸
n times

and ⊗
n

Md(C)→
⊗
n+1

Md(C), A 7→ A⊗ id .

So in this case, FE = UHF(d∞) 6= UHF(1∞) = C.

3.3.1.5 Lemma. Let E be a Hilbert A-module and (F,ϕ) an A-B-correspondence. Then

the map

ψ : L(E ⊗ϕ F ) 3 T 7→ T̃ ∈ L
(
E ⊗K(F )

)
,

which acts on elementary tensors by T̃ (ξ ⊗ (µ ⊗ η∗)) := (T (ξ ⊗ µ)) ⊗ η∗, is an isomor-

phism. In other words, the adjointable operators and the compact operators on E ⊗ϕ F

are isomorphic to the ones on E ⊗K(F ).

In this proof, we omit the indices of the internal tensor product.

Proof. It holds that E ⊗ K(F ) ∼= E ⊗ F ⊗ F ∗, where F ∗ denotes the opposite module of

F . With this identification, the above map ψ becomes

L(E ⊗ F )→ L(E ⊗ F ⊗ F ∗),

T 7→ T ⊗ id .

In order to see that the inverse of this map is of the same form again, note that

E ⊗ F ∼= (E ⊗ F )⊗ (F ∗ ⊗ F )︸ ︷︷ ︸
=span{〈x,y〉:x,y∈F}

∼= (E ⊗ (F ⊗ F ∗))⊗ F ∼= (E ⊗K(F ))⊗ F.

The map

L
(
E ⊗K(F )

)
→ L

(
E ⊗K(F )⊗ F

)
,

T 7→ T ⊗ id .

is the inverse of the previous one.

3.3.1.6 Theorem. It holds that

1. K(E∞) is isomorphic to F1
E.
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2. K(E⊗n∞ ) is isomorphic to FnE.

3. E⊗n∞ is isomorphic to E⊗n ⊗FE.

4. Γ(E∞) is isomorphic to Γ(E)⊗FE.

Proof. We will proof the above assertions step by step.

1. : By the preceding lemma,

K
(
E ⊗K(E⊗n)

)
= K(E⊗n+1) for all n ∈ N0.

Since K(E∞) = limK
(
E ⊗K(E⊗n)

)
, this implies the claim.

2. : Apply (1) to E⊗n.

3. : E⊗n∞ = E⊗FE ⊗E⊗· · ·⊗E⊗FE = E⊗n⊗FE . This is true, since K(E) ⊆ FE ⊆

L(E) implies that FE ⊗ E = E.

4. follows from (3).

3.3.1.7 Remark. E∞ is actually an FE bimodule with right FE-linear scalar product

〈ξ ⊗ a, η ⊗ b〉FE := a∗〈ξ, η〉b,

left FE-linear scalar product

FE 〈ξ ⊗ a, η ⊗ b〉 := θξ,η ⊗ ab∗

and left action ϕ∞ : FE = K(E)⊗FE → L(E∞), where ϕ∞(a⊗ b)(ξ ⊗ c) := a(ξ)⊗ bc.

By this remark, E∗∞ is an FE-bimodule as well, although it is not full in general.

3.3.2 The two-sided Fock module

After establishing that E∞ is a Hilbert bimodule we can make the following definitions.
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3.3.2.1 Definition. E⊗−n∞ := E∗⊗n∞ for every n ∈ N and

ΓZ(E∞) :=
⊕
n∈Z

E⊗n∞

We also write ΓZ(E∞)n := ΓZ(E∞)⊗FnE .

With the above notation we observe that

ΓZ(E∞)1 ⊗ E∞ = ΓZ(E∞)⊗F1
E ⊗ E ⊗FE ∼= ΓZ(E∞) ,

ΓZ(E∞)⊗ E∗∞ = · · · ⊕ (E∗∞ ⊗ E∗∞)⊕ (FE ⊗ E∗∞)⊕ (E∞ ⊗ E∗∞)⊗ (E2
∞ ⊗ E∗∞)⊗ . . .

= ΓZ(E∞)⊗K(E∞) = ΓZ(E∞)1

which provides us with the following two ∗-homomorphisms.

3.3.2.2 Definition. We set

α : L
(
ΓZ(E∞)1

)
→ L

(
ΓZ(E∞)

) ∼= L
(
ΓZ(E∞)1 ⊗ E∞

)
,

T 7→ T ⊗ id

β : L
(
ΓZ(E∞)

)
→ L

(
ΓZ(E∞)1

) ∼= L
(
ΓZ(E∞)⊗ E∗∞

)
,

T 7→ T ⊗ id

3.3.2.3 Remark. The ∗-homomorphisms α and β have the following properties:

(i) αβ = idΓZ(E∞) and βα = idΓZ(E∞)1 .

(ii) {αn}n∈N is an action of N as isometric endomorphisms of L
(
ΓZ(E∞)

)
, where

αn : L
(
ΓZ(E∞)1

)
→ L

(
ΓZ(E∞)

) ∼= L
(
ΓZ(E∞)1 ⊗ E∞ ⊗ · · · ⊗ E∞︸ ︷︷ ︸

n times

)
,

T 7→ T ⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
n times

.

(iii) For elements T ∈ αn
(
L
(
ΓZ(E∞)

))
, α−n(T ) := βn(T ) makes sense.

3.3.2.4 Definition. For every ξ ∈ E∞ and every ξ∗ ∈ E∗∞ we define operators Mξ and
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Mξ∗ ∈ L
(
ΓZ(E∞)

)
by

Mξ(η) := ξ ⊗ η ,

Mξ∗(η) := ξ∗ ⊗ η ,

where ξ ⊗ η∗ ∈ F1
E
∼= K(E∞) and ξ∗ ⊗ η ∈ FE .

The proof of the following lemma is straightforward.

3.3.2.5 Lemma. For those operators the following properties hold

1. MξMζ∗ = ξ ⊗ ζ∗, Mζ∗Mξ = ζ∗ ⊗ ξ and M∗ξ = Mξ∗.

2. Mξ is an element of the fixed point algebra of the action (αn)n∈Z.

3. Denoting by pm ∈ L
(
ΓZ(E∞)

)
the orthogonal projection onto

⊕
n≥mE

⊗n
∞ it holds

that αn(pm) = pn+m.

3.3.3 A semisplit extension

3.3.3.1 Proposition. The Toeplitz extension of OE∞ is semisplit. Moreover,

1. the map

L
(
Γ(E)

)
→ L

(
Γ(E∞)

) ∼= L(Γ(E)⊗FE
)
, T 7→ T ⊗ id

induces an inclusion TE ↪→ TE∞ and an isomorphism OE ∼= OE∞ .

2. the map Sξ 7→Mξ for every ξ ∈ E extends to an isomorphism

OE ∼= C∗{Mξ : ξ ∈ E} ⊆ L
(
ΓZ(E∞)

)
.

3. the compression map L
(
ΓZ(E∞)

)
3 T 7→ p0Tp0 ∈ L

(
Γ(E∞)

)
defines a completely

positive map φ : OE → TE∞, which is a cross section to the quotient map TE∞ → OE.

3.3.3.2 Remark (ad 2.). E is a subset of E∞ = E ⊗FE , so Mξ with ξ ∈ E makes sense.

Proof. 1. : The isometry L(E) 3 T 7→ T ⊗ id ∈ L(E ⊗FE) induces an isomorphism

TE ∼= C∗{Tξ : ξ ∈ E} ⊆ TE∞ ⊆ L
(
Γ(E∞)

)
.
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Moreover, it sends {Pn}n∈N0 , which is the approximate unit of JΓ(E) consisting of

the orthogonal projections on the first n direct summands of Γ(E) to {p0 − pn}n∈N

with pn as in the previous lemma, which is an approximate unit for JΓ(E∞). Hence

OE = C∗{Sξ : ξ ∈ E}︸ ︷︷ ︸
=OE∞

⊆M(JΓ(E∞))
/
JΓ(E∞)

.

To prove assertions 2. and 3. note that

Mξpn = pn+1Mξpn and pnMξ = pnMξpn−1

for every ξ ∈ E∞ and every n ∈ Z. This implies on the one hand that

φ(T ) = p0Tp0 ∈M(JΓ(E∞)) for all T ∈ C∗{Mξ}

and on the other hand that π ◦ φ : C∗{Mξ : ξ ∈ E∞} → OE∞ ∼= OE is a ∗-homo-

morphism that maps Mξ to Sξ, where π :M(JΓ(E∞))→M(JΓ(E∞))
/
JΓ(E∞) is the

quotient map. We now want to construct an inverse map for π ◦ φ.

For this, note that

{T ∈ L
(
Γ(E∞)

)
: sot∗- lim

n→∞
α−n(T ) exists }

is a C∗-algebra. Of course, T being in this set this implies that T ∈ im(αn) for every

n ∈ N. Since

lim
n→∞

α−n(Tξ)pi = lim
n→∞

α−n(p0Mξp0)pi

= lim
n→∞

p−nMξp−npi = Mξpi ,

lim
n→∞

α−n(T ∗ξ )pi = lim
n→∞

α−n(p0M
∗
ξ p0)pi

= lim
n→∞

p−nM
∗
ξ p−npi = M∗ξ pi,

this C∗-algebra contains TE∞ . Since the above limit vanishes for elements of JΓ(E∞)

that lie in im(αn) for every n ∈ N, the above limit defines a ∗-homomorphism from

the quotient algebra to L(E∞) that maps Sξ to Mξ, which shows assertion 2.
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We are left to show that im(φ) ⊆ TE∞ . It holds that

p0Mξ1Mξ2 . . .Mξnp0 = p0Mξ1p0Mξ2p0 . . . p0Mξnp0

= Tξ1Tξ2 . . . Tξn ,

p0M
∗
ξ1M

∗
ξ2 . . .M

∗
ξnp0 = p0M

∗
ξ1p0M

∗
ξ2p0 . . . p0M

∗
ξnp0

= T ∗ξ1T
∗
ξ2 . . . T

∗
ξn and

p0M
∗
ζMξp0 = T ∗ζ Tξ

for all ξ1, . . . , ξn, ζ ∈ E∞. The linear combinations of words in Sξ1 , . . . , Sξn , S∗ζ1 , . . . , S
∗
ζm

and a ∈ FE are dense in OE∞ . Since the operators M∗ζMξ generate FE , the above

argument concludes the proof.

3.3.3.3 Corollary. For any graded, separable C∗-algebra B the following cyclic sequence

is exact:

KK0

(
B,K(Γ(E∞)Iϕ)

)
// KK0(B, TE∞) // KK0(B,OE)

��
KK1(B,OE)

OO

KK1(B, TE∞)oo KK1
(
B,K(Γ(E∞)Iϕ)

)
oo

If TE∞ is separable, then the following cyclic sequence is exact as well:

KK0

(
K(Γ(E∞)Iϕ),B

)
��

KK0(TE∞ ,B)oo KK0(OE ,B)oo

KK1(OE ,B) // KK1(TE∞ ,B) // KK1
(
K(Γ(E∞)Iϕ),B

)
OO

3.3.3.4 Remark. Note that TE is separable if and only if E is countably generated and its

coefficient algebra A is separable.

Proof. By, 2.3.3.3 the short semisplit exact sequence

0→ K(Γ(E∞)IE∞)→ TE∞ → OE∞ ∼= OE → 0

gained in the previous theorem induces the above sequences.
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3.4 Other properties

In this section, we discuss which properties TE and OE inherit from the coefficient algebra

A of the Hilbert A-correspondence E.

3.4.1 A KK-equivalence between TE and A

Given a separable C∗-algebra A and a Hilbert A-correspondence (E,ϕ) such that E is

countably generated and full, Pimsner shows in [Pim97, theorem 4.4] that A and TE are

KK-equivalent, that is there exist elements α ∈ KK(A, TE) and β ∈ KK(TE ,A) for which

the identities α ◦ β = idA and β ◦ α = idTE hold. Note that if two C∗-algebras are

KK-equivalent, in particular all their KK-groups are isomorphic. Hence after proving the

KK-equivalence between TE and A, we can consider KK(A,B) instead of KK(TE ,B) and

KK(B,A) instead of KK(B, TE) for every graded separable C∗-algebra B in the previous

cyclic exact sequences, which is why 3.4.1.3 follows from the previous corollary once the

KK-equivalence is shown. We now present Pimsner’s construction and proof.

There is a natural inclusion i : A → TE via i(a)(Tξ) := Tϕ(a)ξ for all ξ ∈ E. This

induces the element [i] := (TE , i, idTE ⊕0) ∈ KK(A, TE), where we consider TE a Hilbert

TE-module equipped with the trivial grading. We will denote this element by α.

Now consider the graded Hilbert A-module Γ(E)⊕Γ(E), where the first summand has

degree zero and the second one degree one and define the flip T ∈ L
(
Γ(E) ⊕ Γ(E)

)
via

T (ξ ⊗ ζ) = (ζ ⊗ ξ). For the left action of TE on this module let π0 : TE → L
(
Γ(E)

)
be

the natural action of TE on Γ(E) and π1 : TE → L
(
Γ(E)

)
be the map that restricts both

the left action of A and the operators in TE to tensors of length greater or equal to one,

that is

π1(Tξ)(η0, η1, η2, . . . ) = π0(Tξ)(0, η1, η2, . . . ) = (0, 0, ξ ⊗ η1, ξ ⊗ η2, . . . )

π1(a)(η0, η1, η2, . . . ) = π0(a)(0, η1, η2, . . . ) = (0, ϕ(a)η1, ϕ(a)η2, . . . )

We set π : TE → L
(
Γ(E)⊕ Γ(E)

)
, t 7→ π1(t)⊕ π2(t).

3.4.1.1 Lemma. For all t ∈ TE, π0(t)− π1(t) ∈ K
(
Γ(E)

)
holds.
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Proof. Since every t ∈ TE is a sum of products of the form Tξ1 . . . TξkT
∗
ζl
. . . T ∗ζ1 it suffices

to prove the claim for the creation operators {Tξ : ξ ∈ E}. But

π0(Tξ)(a, 0, . . . )− π1(Tξ)(a, 0, . . . ) = (0, ξa, 0, . . . ),

π0(Tξ)(η)− π1(Tξ)(η) = 0

for all a ∈ A and all η ∈ E⊗n, where n ∈ N.

This lemma implies that

[T, π(a)](ξ, ζ) =
(
π1(a)ζ, π0(a)ξ

)
−
(
π0(a)ζ, π1(a)ξ

)
=
(
−
(
π0(a)− π1(a)

)
ζ,
(
π0(a)− π1(a)

)
ξ
)

is an element of K
(
Γ(E)⊕ Γ(E)

)
. Moreover, (T 2 − idΓ(E)⊕Γ(E))π(a) = 0 and T is selfad-

joint. Therefore,
(
Γ(E)⊕ Γ(E), π, T

)
defines a Kasparov module. We denote its class in

KK(TE ,A) by β.

3.4.1.2 Theorem. For a separable C∗-algebra A, a countably generated Hilbert A-module

E and α ∈ KK(A, TE), β ∈ KK(TE ,A) as above the following equations hold:

α⊗TE β = 1A,

β ⊗A α = 1TE .

Proof. Let us start with the first equality.

α⊗TE β = 1A: Since α is induced by the ∗-homomorphism i : A → TE , it holds that

α⊗TE β = [Γ(E)⊕ Γ(E), π ◦ i, T ] ∈ KK(A,A).

Since π decomposes into a direct sum by definition so does π ◦ i, and π0 ◦ i is the natural

representation of A on the first factor Γ(E) ⊕ 0 whereas π1 ◦ i = (id−q0)π0 ◦ i, where

q0 ∈ L
(
Γ(E)

)
is the orthogonal projection onto the zero component, that is A ⊆ Γ(E).

Hence the Kasparov module α⊗ β decomposes into the direct sum of Kasparov modules

corresponding to A ⊕ A and
⊕∞

n=1E
⊗n ⊕

⊕∞
n=1E

⊗n. The first module represents the

class of 1A whereas the second one is degenerate.
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β ⊗A α = 1TE : Note that β ⊗A α is given by the Kasparov module

[Γ(E)⊗i TE ⊕ Γ(E)⊗i TE , (π0 ⊗ 1)⊕ (π1 ⊗ 1), T ⊗ 1].

We will now prove the second equality by showing that the Kasparov module β⊗Aα−1TE
is degenerate. For this, represent β ⊗A α− 1TE by

[Γ(E)⊗i TE ⊕ Γ(E)⊗i TE , (π0 ⊗ 1)⊕ π′1, T ⊗ 1],

where π′1 : TE → L
(
Γ(E)⊗ TE

)
, t 7→ τ1(t) + π1 ⊗ 1(t), where for t ∈ TE , τ1(t) multiplies

with t from the left on TE ∼= A⊗ TE ⊆ Γ(E)⊗ TE and equals zero on
⊕∞

n=1E
⊗n ⊗ TE .

We are left to prove that π0 ⊗ 1 and π′1 are connected by a one-parameter family of
∗-homomorphisms π′t : TE → L

(
Γ(E) ⊗ TE

)
, where t ∈ [0, 1], such that both of the

following assertions hold:

1. the map [0, 1] 3 t 7→ π′t(x) is continuous for every t ∈ TE

2. π′t(x)− π′0(x) ∈ K
(
Γ(E)⊗ TE

)
for every x ∈ TE .

For this, note that

π0 ⊗ 1(Tξ) = τ0(Tξ) + π1 ⊗i 1(Tξ),

for all ξ ∈ E, where τ0(Tξ)(t) = ξ⊗t for t ∈ TE ∼= A⊗TE and zero for t ∈
⊕∞

n=1E
⊗n⊗TE .

The images of τ0(Tξ), τ1(Tζ) and π1 ⊗ 1(Tµ) are pairwise orthogonal for ξ, ζ, µ ∈ E. So

for fixed t ∈ I the operators defined by

tξ := cos(
π

2
t)τ0(Tξ) + sin(

π

2
t)τ1(Tξ) + π1 ⊗ 1(Tξ)

satisfy the universal relations (TR1), (TR2) and (TR3) of the Toeplitz algebra from defi-

nition 3.2.1.1. By the universal property of the Toeplitz algebras we discussed in 3.2.3.4,

there exists a ∗-representations π′t : TE → L
(
Γ(E) ⊗ TE

)
which maps the creation oper-

ators Tξ to tξ. For every x ∈ TE , the continuity of [0, 1] 3 t 7→ π′t(x) is obvious since

it is continuous for all creation operators Tξ, which generate TE . This proves 1. Since,

π′t(Tξ)−π′0(Tξ) = cos(π2 t)τ0(Tξ)+sin(π2 t)τ1(Tξ) ∈ K
(
Γ(E)⊗TE

)
, 2. holds as well. We have

shown that the Kasparov module above is operator homotopic and therefore homotopic

to a degenerate one.
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Combining the previous theorem with 3.3.3.3, we get the following Corollary.

3.4.1.3 Corollary. For any graded, separable C∗-algebra B the following cyclic sequence

is exact:

KK0(B,K
(
Γ(E∞)Iϕ)

)
// KK0(B,FE) // KK0(B,OE)

��
KK1(B,OE)

OO

KK1(B,FE)oo KK1(B,K
(
Γ(E∞)Iϕ)

)
oo

If TE∞ is separable, then the following cyclic sequence is exact as well:

KK0(K
(
Γ(E∞)Iϕ

)
,B)

��

KK0(FE ,B)oo KK0(OE ,B)oo

KK1(OE ,B) // KK1(FE ,B) // KK1(K
(
Γ(E∞)Iϕ

)
,B)

OO

3.4.2 Approximation properties of OE

Given a Hilbert A-module E, [SZ10] contains a more general result quoted below which

implies that the Cuntz-Pimsner algebra OE inherits nuclearity from A. We now give a

novel proof of this fact.

3.4.2.1 Theorem. Let A be a nuclear C∗-algebra and E a countably generated Hilbert

A-module. Then OE is nuclear.

Proof. Let B be a C∗-algebra. Then, by [BO08, theorem 5.3.5] the gauge action λ of T on

OE extends to an action λ⊗ id of T on OE⊗maxB and OE⊗minB with fixed point algebras

Fmax and Fmin respectively, yielding conditional expectations θmax : OE ⊗max B → Fmax

and θmin : OE ⊗min B → Fmin by

θmin(S ⊗ b) :=
∫
t∈T

λt ⊗min id(S ⊗min b)dµ(t) ,

θmax(S ⊗ b) :=
∫
t∈T

λt ⊗max id(S ⊗max b)dµ(t)
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for S ∈ OE and b ∈ B. From this integral representation, we learn that Fmax = FE⊗maxB

and Fmin = FE ⊗min B.

To see that θmin is faithful, fix an element 0 ≤ x ∈ OE ⊗min B. The positivity of x

implies that λt ⊗min id(x) ≥ 0 for all t ∈ T. If x is strictly positive, there exists a state

ϕ : OE ⊗Fmin → C with ϕ(x) 6= 0. We get

ϕ

(∫
t∈T

λt ⊗min id(x)dµ(t)
)

=
∫
t∈T

ϕ
(
(λt ⊗min id)(x)

)
dµ(t).

In particular, ϕ
(
(λ1 ⊗min id)(x)

)

 0. Since t 7→ ϕ

(
(λt ⊗min id)(x)

)
is continuous, there

exists an ε > 0 such that ϕ
(
(λt ⊗min id)(x)

)

 0 for t ∈ (1− ε, 1]. Therefore,

θmin(x) :=
∫
t∈T

λt ⊗min id(x)dµ(t) 
 0.

The conditional expectation θmax is faithful for the same reasons.

By the universal property of the maximal tensor product we therefore get the following

commutative diagram:

OE ⊗max B
π //

θmax

��

OE ⊗min B

θmin

��
FE ⊗max B

π|Fmax // F ⊗min B

SinceA is nuclear, K(E⊗n) is as well for all n ∈ N and therefore so is FE = limn→∞K(E⊗n).

Hence, π|Fmax is an isomorphism. Since both θmax and θmin are faithful, so is π.

Nuclearity is one of many approximation properties a C∗-algebra may possess. The fol-

lowing definition lists some others.

3.4.2.2 Definition. We say that a C∗-algebra A possesses

1. the completely positive approximation property if there exist nets of completely pos-
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itive contractions ϕλ : A →Mnλ and ψλ : Mnλ → A such that

lim
λ
ψλ ◦ ϕλ(x) = x for all x ∈ A.

2. the completely bounded approximation property if there exists a net (ϕλ : A → A)

of finite rank maps such that

ϕλ(x)→ x for all x ∈ A and sup
λ
‖ϕλ‖ <∞.

3. the strong operator approximation property if there exists a net ϕλ : A → A of finite

rank maps such that

(ϕλ ⊗ id)(x)→ x for all x ∈ A⊗ B(l2(N)) ,

where ⊗ denotes the minimal tensor product.

4. nuclear embeddability if for every faithful representation of A on a Hilbert space

H there exist nets of completely positive contractions ϕλ : A → Mnλ and

ψλ : Mnλ → B(H) such that

ψλ ◦ ϕλ(x)→ x for all x ∈ A.

5. the operator approximation property if there exists a net ϕλ : A → A of finite rank

maps such that

(ϕλ ⊗ id)(x)→ x for all x ∈ A⊗K
(
l2(N)

)
.

The following result was achieved by Skalski and Zacharias in [SZ10].

3.4.2.3 Theorem. Let (E,ϕ) be a finitely generated A-correspondence. If A possesses

one of the five approximation properties above, so does OE.
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Chapter 4

Higher rank Toeplitz and

Cuntz-Pimsner algebras

Having recalled how to associate the C∗-algebras TE andOE to a HilbertA-correspondence

E and the results Pimsner achieved for these algebras, we will now start with certain

families of Hilbert correspondences, so-called discrete product systems, and associate a

Toeplitz and a Cuntz-Pimsner type algebra by imitating Pimsner’s construction. This

was introduced in [Fow02]. Thereafter, we generalise the main theorems from the previous

chapter to product systems over Nk in the second and third section of this chapter. In the

final section, we investigate the implications of [Dea07] to the special case we considered.

This chapter contains the main theorems of this thesis in 4.2.3.1, 4.3.3.1 and 4.4.1.4.

4.1 Definitions

4.1.1 Discrete product systems

Given a discrete semigroup P , we will now formalise what we consider a P -family of Hilbert

A-correspondences respecting the semigroup structure of P by the following definition. It

first appeared in [Fow02].

4.1.1.1 Definition. Let (P,+) be a countable monoid, meaning P is a countable semi-

group with identity e. A (discrete) product system is a triple (X, p, (ϕs)s∈P ) consisting

of a semigroup X, a semigroup homomorphism p : X → P and a family (ϕs)s∈P of

71
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∗-homomorphisms such that

1. Xs := p−1(s) is a Hilbert A-module for all s ∈ P .

2. ϕs implements a left action of A on Xs, that is ϕs : A → L(Xs).

3. the fibre of the neutral element is trivial, meaning Xe = A and ϕe(a)b = ab.

4. the multiplications Xe ×Xs → Xs and Xs ×Xe → Xs satisfy

ax = ϕs(a)x and xa = x · a,

where a ∈ Xe and x ∈ Xs.

5. the map ψs,t : Xs × Xt 3 (x, y) 7→ xy ∈ Xs+t extends to an isomorphism of the

Hilbert A-correspondences Xs ⊗ϕt Xt and Xs+t for all s, t ∈ P \ {e}.

4.1.1.2 Remark. If P is an abelian semigroup, the last condition yields isomorphisms

χs,t : Xs ⊗Xt → Xt ⊗Xs by

Xs ⊗Xt

ψs,t∼= Xs+t = Xt+s

ψ−1
t,s∼= Xt ⊗Xs.

4.1.1.3 Remark. In this case, the condition that ψs,t in definition 4.1.1.1 is an isomorphism

of Hilbert correspondences together with 4.1.1.2 implies that χs,t intertwines ϕs and ϕt,

that is

(
(ϕt(a)⊗ idXs) ◦ χs,t

)
(Xs ⊗Xt) =

(
χs,t ◦ (ϕs(a)⊗ idXt)

)
(Xs ⊗Xt)

for all a ∈ A and s, t ∈ P .

For the rest of the chapter, we will consider the semigroup P = Nk unless stated otherwise.

By ei := (δi,j)j=1,...,k ∈ Nk we denote the standard generators of Nk and

Xi := Xei
= p−1(ei).

4.1.1.4 Definition. For a product system X over Nk and (n1, . . . , nk) = n ∈ Nk we define
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the n-th generalised power of X to be

X⊗n := X⊗n1
1 ⊗ · · · ⊗X⊗nkk

with the notation from the third chapter that X⊗ni := Xi⊗ϕi · · ·⊗ϕiXi denotes the n-fold

internal tensor product of the correspondence (Xi, ϕi) and the convention that X⊗0
i := A.

4.1.1.5 Remark. It holds that

Xn = Xn1e1+···+nkek
∼= Xn1e1 ⊗ · · · ⊗Xnkek

∼= X⊗n.

In other words, there is a 1:1-correspondence between product systems X over Nk and

a collection of Hilbert correspondences (X1, . . . , Xk) together with ∗-isomorphisms

χi,j : Xi ⊗Xj −→ Xj ⊗Xi.

4.1.1.6 Remark. By the definition of product systems and the previous remark, we know

that for every n = (n1, . . . , nk), (X⊗n, ϕn) is an A-correspondence. By recalling the

induced left action on the internal tensor product of Hilbert correspondences from 2.2.3.5,

we see that ϕn acts by ϕni0 on X⊗ni0i0
and trivially elsewhere, where

i0 := min{i : 1 ≤ i ≤ k, ni 6= 0}.

Hence given an elementary tensor in X⊗n, a ∈ A acts on its first component by the

respective left action and by the identity everywhere else.

4.1.1.7 Remark. Given two generalised powers X⊗n and X⊗m of a product system X over

Nk, X⊗n ⊗ϕm X⊗m is isomorphic to a generalised power. In other words, we can use the

isomorphisms χi,j : Xi ⊗Xj → Xj ⊗Xi to rearrange a word x ∈ X⊗n ⊗X⊗m such that

x ∼= x
(1)
1 ⊗ · · · ⊗ x

(1)
n1+m1

⊗ x(2)
1 ⊗ · · · ⊗ x

(2)
n2+m2

⊗ · · · ⊗ x(k)
1 ⊗ · · · ⊗ x

(k)
nk+mk

,

where x(i)
j is the empty word if nj +mj = 0 and an element of Xi for all 1 ≤ j ≤ nj +mj

otherwise. For now, we denote by χ the appropriate composition of χi,j that identifies a

word in X⊗n ⊗X⊗m with a word in the generalised power X⊗n+m subject to the above

isomorphism.

4.1.1.8 Example. For an A-correspondence (E,ϕ), the set {ξ ∈ E⊗n : n ∈ N} of ele-
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ments in arbitrary tensor powers of E with semigroup operation ⊗ and ∗-homomorphisms

ϕn := ϕ⊗ id as in 2.2.3.5 is a product system over N. By remark 4.1.1.5, a product system

X over N corresponds 1:1 to the Hilbert correspondence X1 =: E.

4.1.2 Representations of product systems

To associate C∗-algebras to a product system, Fowler made the following definitions.

4.1.2.1 Definition. For a product system X over P , a Toeplitz representation of X on a

C∗-algebra B is a tuple (t, σ), where σ : A → B is a ∗-homomorphism and t : X→ B is a

linear contractive map such that

1. For all s ∈ P , (ts, σ) is a Toeplitz representation of Xs in the sense of definition

3.2.1.1, i.e.

(i) ts(xsa) = ts(xs)σ(a),

(ii) ts(xs)∗ts(ys) = σ(〈xs, ys〉),

(iii) ts(ϕs(a)xs) = σ(a)ts(xs)

for all xs, ys ∈ Xs and a ∈ A and

2. t(xy) = t(x)t(y) for all x, y ∈ X,

where ts denotes the restriction of t to Xs for s ∈ P .

4.1.2.2 Remark. The fibres ts : Xs → B of a Toeplitz representation t of X induce ∗-ho-

momorphisms σ̃s : K(Xs)→ B by

σ̃s(θξ,η) := ts(ξ)ts(η)∗.

4.1.2.3 Definition. Let Is := ϕ−1
s (K(Xs)) denote the ideal in A one gets by forming the

pre-image of the compacts of Xs under ϕs. A Toeplitz representation of X is said to be

Cuntz-Pimsner covariant if every (ts, σ) is Cuntz-Pimsner covariant, that is

σ(a) = (σ̃s ◦ ϕ)(a) for all a ∈ Is.
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In other words, the diagram

Is

σ

��?
??

??
??

??
??

??
??

?

ϕs

}}{{
{{

{{
{{

{{
{{

{{
{{

{

K(Xs)
σ̃s // B

commutes for all s ∈ P .

4.1.2.4 Definition. The universal C∗-algebra generated by all Toeplitz representations of

X is called Toeplitz algebra of X and denoted by TX. The universal C∗-algebra generated

by all Cuntz-Pimsner covariant representations of X is called Cuntz-Pimsner algebra of X

and denoted by OX.

4.1.2.5 Example. For product systems X over N, we get that TX = TX1 and OX = OX1 .

In this sense, the higher rank Toeplitz and Cuntz-Pimsner algebras generalise Pimsner’s

original construction. See [Fow02, proposition 2.11] for details.

4.1.2.6 Example. Given a k-graph Λ, one can associate to it a product system EΛ

of directed graphs over Nk, see [SY10, example 1.5, (4)]. To any directed graph E =

(E0, E1, s, r) one can associate a Hilbert C0(E0)-correspondence as in [FS02, 2.3]. Putting

those two together, one obtains for the given k-graph a product system X(EΛ) of Hilbert

correspondences as in [FS02, proposition 3.2]. If Λ is row-finite and has no sources, the

graph C∗-algebra C∗(Λ) is isomorphic to OX(EΛ) as stated in [FS02, corollary 4.4].

4.2 A gauge-invariant uniqueness theorem for T cov
X

4.2.1 The Fock representation of X

Similar to the one-dimensional case, there always exists at least one Toeplitz representation

of X, namely the higher rank Fock representation. It is obtained by associating elements

of the product system with creation operators on the higher rank analogue of the Fock

module.
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4.2.1.1 Definition. For a product system X over Nk we define the (higher rank) Fock

module of X by

Γ(X) :=
⊕
n∈Nk

X⊗n =

(xn) ∈
∏

n∈Nk
X⊗n :

∑
n∈Nk
〈xn, xn〉X⊗n converges in A

 .

4.2.1.2 Remark. This is an A-correspondence with inner product

〈x, y〉Γ(X) =
∑
n∈Nk
〈xn, yn〉X⊗n

and left action ϕΓ(X) = ⊕ϕn, with ϕn as in 4.1.1.6, which we will just denote by ϕ.

We will now define creation operators on Γ(X).

4.2.1.3 Definition. For every 1 ≤ i ≤ k and x(i) ∈ Xi we define

Tx(i)(xn) := χ(x(i) ⊗ xn) ∈ X⊗ei+n

for all xn ∈ X⊗n and n ∈ Nk and extend this linearly to Γ(X). This operator Tx(i) is

called a creation operator by x(i).

4.2.1.4 Remark. In fact, Tx(i) is adjointable with T ∗
x(i) vanishing on all X⊗n with ni = 0.

If ni 6= 0 we know that

T ∗
x(i)(x) = ϕ(〈x(i), x

(i)
1 〉)x̃,

where Xi ⊗X⊗(n−ei) 3 (x(i)
1 ⊗ x̃)

χ
= x ∈ X⊗n. We call T ∗

x(i) annihilation operator by x(i).

4.2.1.5 Definition. The concrete Toeplitz algebra associated to X is the concrete C∗-

algebra

T̃X := C∗{Tx(i) : 1 ≤ i ≤ k} ⊆ L
(
Γ(X)

)
generated by the creation operators inside the adjointable operators on the Fock module.

4.2.1.6 Remark. Fowler made these definitions for much more arbitrary product systems.

In this remark, we quickly recall his argument: If X is a product system over some

semigroup P , the Fock module Γ(X) =
⊕

s∈P Xs as above makes sense. If P is left-

cancellative then for any x ∈ X and ⊕xs ∈ Γ(X), p(xxs) = p(xxt) if and only if s = t
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so

yt =

 xxs if t = p(x)s

0 else

defines an element in Πt∈PXt. Since 〈xxt, xxt〉 ≤ ‖x‖2〈xt, xt〉 for each t ∈ P , ⊕yt is

an element of the Fock module and one checks that T (x)(⊕xt) := ⊕yt defines an ad-

jointable operator. The map t : X → L
(
Γ(X)

)
is a Toeplitz representation, called the

Fock representation of X.

4.2.1.7 Lemma. The Fock representation

Tn : X⊗n → L
(
Γ(X)

)
, x

(1)
1 ⊗ x

(1)
2 ⊗ · · · ⊗ x

(k)
lk
7→ T

x
(1)
1

T
x

(1)
2

. . . T
x

(k)
lk

σ : A → L
(
Γ(X)

)
, a 7→ ϕ(a) = ⊕ϕn(a)

is a Toeplitz representation of the product system X over Nk.

Proof. Let xn, yn ∈ X⊗n and zm ∈ X⊗m. Then

1. (Tn, σ) is a Toeplitz representation of the Hilbert module X⊗n, since

(i) Tn(xna)(zm) = xna⊗ zm = xn ⊗ ϕm(a)zm = Tn(xn) ◦ σ(a)(xm),

(ii) Tn(xn)∗Tn(yn)(zm) = Tn(xn)∗(yn⊗xm) = ϕm(〈xn, yn〉)(zm) = σ(〈xn, yn〉)(zm),

(iii) Tn

(
ϕn(a)xn

)
(zm) = ϕn+m(a)(xn ⊗ zm) = (σ(a) ◦ Tn(xn)(zm),

2. Tn+m(xn ⊗ zm) = Tn(xn)Tm(zm).

4.2.1.8 Remark. For the rest of this section, we require the range of the representation of

a product system to be bounded linear operators on some Hilbert space rather than an

abstract C∗-algebra, since we are about to employ the evaluation maps

B(H)→ H, T 7→ T (ξ)

for ξ ∈ H. However, since we can represent any C∗-algebra on its GNS Hilbert space

faithfully this does not pose a problem.
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4.2.2 The abstract and the concrete gauge action

In this setting, we take an approach towards defining the gauge-action on the abstract

Toeplitz algebra which differs a little from the one in the previous chapter because it

makes things easier. Instead of defining the action we require on the abstract Toeplitz

algebra right away, we first define an action of the complex k-torus on the product system

over Nk. The idea behind this is to multiply each base fibre by a complex phase. Note that

this makes sense, since every Hilbert module carries a complex vector space structure.

4.2.2.1 Remark. Given a product system X over Nk, every

z = (z1, . . . , zk) ∈ Tk =
{
z ∈ Ck : |zi| = 1 for all i = 1, . . . , k

}
in the complex k-torus induces an automorphism of X. By this, we mean a bijective

semigroup homomorphism h : X → X under which the fibres of the product system and

the respective left actions and inner products remain invariant, that is h restricted to each

fibre is an automorphism of Hilbert correspondences. For this, we make the following

definition: Given an element z ∈ Tk, let

λz(x) := znx := zn1
1 · . . . · z

nk
k x

for x ∈ X⊗n. Since this extends to an automorphism of X, we get an action

λ : Tk → Aut(X) (4.2.1)

of the k-torus on the product system. For any Toeplitz representation (t, σ), the tuple

(t ◦ λ, σ) is a Toeplitz representation as well. Therefore, λ induces an action of Tk on TX
which we will also denote by λ. In particular, it induces an action of Tk on the concrete

Toeplitz algebra T̃X by composition of λ with the Fock representation.

4.2.2.2 Remark. The restriction ti : Xi → B(H) of a Toeplitz representation t to a fibre

Xi induces a contraction t̃i : Xi ⊗H → H by

t̃i(x⊗ h) := ti(x)(h)

for all x ∈ Xi and all h ∈ H.
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4.2.2.3 Definition. A Toeplitz representation (σ, t) of X is called doubly commuting, if

t̃∗j t̃i = (idXj ⊗t̃i)(χi,j ⊗ idH)(idXi ⊗t̃∗j ).

In other words, the following diagram commutes:

H
t̃∗j

%%LLLLLLLLLLL

Xi ⊗H

t̃i

88rrrrrrrrrrr

idXi ⊗ t̃
∗
j

��

Xj ⊗H

Xi⊗Xj ⊗H
χi,j⊗idH // Xj ⊗Xi ⊗H

idXj ⊗ t̃i

OO

We will call the universal C∗-algebra generated by all doubly commuting Toeplitz repre-

sentations of X the covariant Toeplitz algebra of X and denote it by T cov
X .

4.2.2.4 Remark. By [Sol08, lemma 3.11], a Toeplitz representation is doubly commuting

if and only if

t̃nt̃
∗
nt̃mt̃

∗
m = t̃n∨mt̃

∗
n∨m

for all n,m ∈ Nk, where n ∨m denotes the component-wise maximum of n and m. We

write i∨j := ei∨ej Note that this means that doubly commuting Toeplitz representations

in the sense of Solel are Nica-covariant representations in the sense of [Fow02, definition 5.1]

for the quasi-lattice ordered semigroup (Zk,Nk), as Solel stated in this lemma. Moreover,

for a ∈ K(Xi) and b ∈ K(Xj) it holds that (a⊗ idXj )(idXi ⊗ b) ∈ K(Xi∨j), so any product

system over Nk is automatically compactly aligned in the sense of [Fow02, definition 5.7].

Of course, all the left actions are by compact operators since we assumed all base fibres to

be finitely generated, so one can alternatively use [Fow02, proposition 5.8] to see that all

the product systems we are considering in this chapter are compactly aligned. Therefore,

the covariant Toeplitz algebra T cov
X from the previous definition coincides with Fowler’s

covariant Toeplitz algebra.

Because of the equivalent definition of doubly commuting discussed above, two things

become apparent: Firstly, the Fock representation is doubly commuting since for x(i) ∈ Xi

and y(j) ∈ Xj an annihilation operator T ∗
y(j) does not interfere with a creation operator

Tx(i) when i 6= j. Therefore, T̃X can be considered as a quotient of T cov
X . Secondly,
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since there is a one-to one map between doubly commuting Toeplitz representations of

Hilbert correspondences (σ, t) and their associated contractions t̃ by [Sol08, lemma 2.4] it

is immediate that every finite product of generators t(x(i)) and their adjoints t(y(j))∗ in

T cov
X has a canonical form analogous to 3.2.2.1. For x(i) ∈ Xi, y(j) ∈ Xj we will call t(x(i))

(abstract) creation operator and t(y(j))∗ (abstract) annihilation operator. We now provide

the explicit calculation of this shape for the Fock representation to get an idea how the

Nica-covariance condition works.

4.2.2.5 Lemma. If all Xi, 1 ≤ i ≤ k, are finitely generated, then every finite product of

creation operators and their adjoints inside T̃X is a linear combination of products of the

form

T (x(1)
1 ) . . . T (x(1)

l1
)T (x(2)

1 ) . . . T (x(k)
lk

)T (y(1)
1 )∗ . . . T (y(1)

m1
)∗T (y(2)

1 )∗ . . . T (y(k)
mk

)∗,

where x(i)
j , y

(i)
j ∈ Xi and li,mi ∈ N0 for 1 ≤ i ≤ k.

Proof. Since terms of the form T (x(i))∗T (y(i)) = ϕ(〈x(i), y(i)〉) are A-scalar, our only

concern are mixed terms, that is terms of the form T (x(i))∗T (y(j)), where 1 ≤ i, j ≤ k,

i 6= j, x(i) ∈ Xi, and y(j) ∈ Xj .

Let {x(i)
k }

N
k=1 be a normalised tight frame of Xi and {y(j)

l }
M
l=1 be a normalised tight

frame of Xj . Then
N∑
k=1

T (x(i)
k )T (x(i)

k )∗

is the orthogonal projection onto the submodule of Γ(X) spanned by all elements with

non-trivial Xi component. In particular,(
N∑
k=1

T (x(i)
k )T (x(i)

k )∗
)
T (x(i)) = T (x(i)).
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Furthermore, T (y(j)) with i 6= j commutes with this projection, so we know that

T (x(i))∗T (y(j)) = T (x(i))∗
(

N∑
k=1

T (x(i)
k )T (x(i)

k )∗
)
T (y(j))

= T (x(i))∗T (y(j))

(
N∑
k=1

T (x(i)
k )T (x(i)

k )∗
)

= T (x(i))∗
N∑
k=1

T (y(j))T (x(i)
k )T (x(i)

k )∗

T (x(i))∗T (y(j)) ∼= T (x(i))∗
N∑
k=1

T (χj,i(y(j) ⊗ x(i)
k ))T ∗

x
(i)
k

= T (x(i))∗
N∑
k=1

M∑
l=1

T (x(i)
k )T (ϕj(ak)y

(j)
l bl)T ∗

x
(i)
k

=
N∑
k=1

M∑
l=1

T (x(i))∗T (x(i)
k )︸ ︷︷ ︸

=ϕ
“
〈x(i),x

(i)
k 〉
” T (ϕj(ak)y

(j)
l bl)T ∗

x
(i)
k

=
N∑
k=1

M∑
l=1

T
(
ϕj

(
〈x(i), x

(i)
k 〉ak

)
y

(j)
l bl

)
T ∗
x

(i)
k

where

χj,i(y(j) ⊗ x(i)
k ) =

N∑
k=1

M∑
l=1

x
(i)
k ak ⊗ y

(j)
l bl =

N∑
k=1

M∑
l=1

x
(i)
k ⊗ ϕj(ak)y

(j)
l bl

for some ak, bl ∈ A. Hence T (x(i))∗T (y(j)) has the desired form.

We now check that the composition of λ : Tk → X and a doubly commuting Toeplitz

representation is a doubly commuting Toeplitz representation.

4.2.2.6 Lemma. Given a doubly commuting Toeplitz representation {σ, t} of X, it holds

that {σ, t ◦ λz} is a doubly commuting representation of X as well.
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Proof. It holds that

( ˜t(j) ◦ λz)∗( ˜t(i) ◦ λz) = zzt̃(j)∗t̃(i)

= zz(idXj ⊗t̃(i))(χi,j ⊗ idH)(idXi ⊗t̃(j)∗)

= (idXj ⊗ ˜t(i) ◦ λz)(χi,j ⊗ idH)(idXi ⊗( ˜t(j) ◦ λz)∗).

4.2.2.7 Remark (Gauge action on T cov
X ). By the previous lemma, λ as in equation 4.2.1

induces an action of Tk on T cov
X which we call the abstract gauge action and denote by

λ as well. It yields a conditional expectation ψ from T cov
X onto the fixed point algebra

F of λ which is spanned by products of degree zero of abstract creation and annihilation

operators in T cov
X by

ψ(t) :=
∫
z∈Tk

λz(t)dµ(z),

where µ is the normalised Haar measure on Tk.

4.2.2.8 Remark (Gauge action on T̃X). Since T̃X is a λ-invariant quotient of T cov
X , λ induces

an action of Tk on T̃X as well. It can even be unitarily implemented: For (z1, . . . , zk) =

z ∈ Tk, define the unitary operator Uz ∈ L
(
ΓNkX

)
by

Uz(x) = znx

for every x ∈ X⊗n. Then

λ̃z(t) := U∗z tUz

defines an action of Tk on T̃X which we will call it the concrete gauge action. It yields a

second faithful conditional expectation ψ̃ by

ψ̃(t) :=
∫
z∈Tk

λ̃z(t)dµ(z)

onto the fixed point algebra F̃ of λ̃ which is spanned by products of degree zero in T̃X.
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4.2.3 The theorem

We use the rest of this section to prove the gauge-invariant uniqueness theorem for the

covariant Toeplitz algebra of a discrete product system. Despite of the fact that this

theorem is a special case of [Fow02, theorem 6.3] it deserves separate consideration, since

we can apply Pimsner’s methods to our setting, which is not possible in greater generality.

4.2.3.1 Proposition (gauge-invariant uniqueness theorem). For a product system X over

Nk with finitely generated base fibres X1, . . . , Xk it holds that

T cov
X
∼= T̃X.

As mentioned above, since the Fock representation is a doubly commuting Toeplitz rep-

resentation of X, we know that T̃X is a quotient of T cov
X . Together with the faithful

conditional expectations ψ and ψ̃ constructed from the abstract and the concrete gauge

action in remarks 4.2.2.8 and 4.2.2.7 the following diagram commutes.

T cov
X

f //

ψ

��

T̃X

ψ̃

��
F

g // F̃

Since ψ and ψ̃ are faithful, showing that F and F̃ are isomorphic implies that g ◦ ψ is

faithful. Since the diagram commutes, ψ̃ ◦ f must be faithful as well, which implies that f

is injective. But since T̃X is a quotient of T cov
X , the two algebras will then be isomorphic.

It therefore remains to be seen that the fixed point algebras F and F̃ of the abstract and

the concrete gauge action are isomorphic.

From 4.2.2.4 and 4.2.2.5 we know that a product of (abstract or concrete) creation

operators and annihilation operators can be reduced to a linear combination of products

in which all the creation operators go to the left and all the annihilation operators go

to the right. Such a product is an element of the fixed point algebra of the respective

gauge action if and only if for every i = 1, . . . , k there are as many creation operators
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by an element in Xi as there are annihilation operators. If this is the case, we call the

product balanced. Note that compared to the previous chapter we no longer think of the

length of such a product as a single integer but as a k-tuple of integers. So the building

blocks of both F and F̃ are balanced products of n creation and equally many annihilation

operators for all n ∈ Nk inside T cov
X and T̃X respectively. From 3.2.3.2 we conclude that

for any fixed n = (n1, . . . , nk) ∈ Nk, the closure of the span of products of the form

t(x(1)
1 ) . . . t(x(1)

n1
) . . . t(x(k)

1 ) . . . t(x(k)
nk

)t(y(1)
1 )∗ . . . t(y(1)

n1
)∗ . . . t(y(k)

1 )∗ . . . t(y(k)
nk

)∗

is isomorphic to K(X⊗n) inside F and the closure of the span of products of the form

T (x(1)
1 ) . . . T (x(1)

n1
) . . . T (x(k)

1 ) . . . T (x(k)
nk

)T (y(1)
1 )∗ . . . T (y(1)

n1
)∗ . . . T (y(k)

1 )∗ . . . T (y(k)
nk

)∗

is isomorphic to K(X⊗n) inside F̃ . All that is left to check if the way those building blocks

are put together in the respective algebras is compatible. Given any n,m ∈ Nk they are

either comparable or they are not. If m and n are comparable, one of them majorises

the other one, say n ≤ m. In this case, the product of two elements a ∈ K(X⊗n) and

b ∈ K(X⊗m) makes sense with

ab := (a⊗ id)b

ba := b(a⊗ id).

because of the embedding

K(X⊗n) 3 a 7→ a⊗ id ∈M
(
K(X⊗n+p)

) ∼= L(X⊗n+p)

for any n,p ∈ Nk, where n + p = m. In fact, if n and m are comparable, by 3.2.3.3 we

know that the ways that we are required to put K(X⊗n) and K(X⊗m) together inside F

and F̃ respectively are compatible, so we are left to show they are compatible if n and m

are not comparable.
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For n and m not comparable we define n∨m := max(ni,mi)ki=1 as in 4.2.2.4. By using

the isomorphisms χi,j appropriately, we get that

X⊗n ⊗X⊗p1 ∼= X⊗n∨m ∼= X⊗m ⊗X⊗p2

with p1 = n∨m−n and p2 = n∨m−m. Denoting the former isomorphism by χp1 and

the latter one by χp2 , we can embed both K(X⊗n) and K(X⊗m) intoM
(
K(X⊗n∨m)

)
by

a 7→ χp1(a⊗ id)χ−1
p1

and

b 7→ χp2(b⊗ id)χ−1
p2
,

respectively. For example, if k = 2, n = (1, 0) and m = (0, 1),

K(X⊗(1,0)) 3 a 7→ a⊗ id ∈M
(
K(X⊗(1,1))

)
and

K(X⊗(0,1)) 3 b 7→ χ2,1(b⊗ id)χ1,2 ∈M
(
K(X⊗(1,1))

)
.

4.2.3.2 Lemma. Given C∗-algebras A,B,D and ∗-homomorphisms π1 : A →M(D) and

π2 : B →M(D), the universal C∗-algebra C1 generated by A, B and D subject to relations

ab = ba = 0

ad = π1(a)d

da = dπ1(a)

bd = π2(b)d

db = dπ2(b)

is isomorphic to the direct sum C2 := A⊕ B ⊕D with

(a1, b1, d1)(a2, b2, d2) := (a1a2, b1b2, π1(a1)d2 + π2(b1)d2 + d1π1(a2) + d1π2(b2) + d1d2).
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Proof. For (a, 0, 0), (0, b, 0), (0, 0, d) ∈ C2 the equalities below hold.

(a, 0, 0)(0, b, 0) = (0, 0, 0), (0, b, 0)(a, 0, 0) = (0, 0, 0)

(a, 0, 0)(0, 0, c) = (0, 0, π1(a)c), (0, 0, c)(a, 0, 0) = (0, 0, cπ1(a))

(0, b, 0)(0, 0, c) = (0, 0, π2(b)c), (0, 0, c)(0, b, 0) = (0, 0, cπ2(b))

Since C1 is the universal C∗-algebra with these relations, C2 is a quotient of C1. Conversely,

(a+ b+ c)(a′ + b′ + c′) = aa′ + ab′ + ac′ + ba′ + bb′ + bc′ + ca′ + cb′ + cc′

= aa′ + bb′ + π1(a)c′ + π2(b)c′ + cπ1(a′) + cπ2(b′) + cc′,

for (a + b + c), (a′ + b′ + c′) ∈ C1, so C1 is a quotient of C2. Hence, C1 and C2 are

isomorphic.

We are now ready to see that the respective fixed point algebras of the abstract and the con-

crete gauge action are isomorphic: Take any two k-tuples m,n ∈ Nk. If m and n are com-

parable, we use lemma 3.2.3.3 to see that C∗{K(X⊗m),K(X⊗n)} and K(X⊗m)⊕K(X⊗n)

are isomorphic. If m and n are not comparable, C∗{K(X⊗m),K(X⊗n),K(X⊗m∨n)} and

K(X⊗m)⊕K(X⊗n)⊕K(X⊗m∨n) are isomorphic by the previous lemma. When adding the

next building block K(X⊗p) we either apply 3.2.3.3 if p and m∨n are comparable or the

previous lemma if they are not in order to see that the resulting C∗-algebras are isomor-

phic again. Iterating this procedure finishes the proof of 4.2.3.1, since F = C∗{K(X⊗n) :

n ∈ Nk} and F̃ =
⊕

n∈Nk K(X⊗n).

4.3 A semisplit Toeplitz extension of OX

4.3.1 Extending the scalars

We now construct a semisplit Toeplitz extension of a slightly modified higher rank Cuntz-

Pimsner algebra. For this, we start by modifying the coefficient algebra of the product

system X.

4.3.1.1 Definition. Inside the direct limit lim
−→
{L(X⊗n) : n ∈ Nk} with respect to the
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embeddings

L(X⊗n) → L(X⊗(n+m))

T 7→ T ⊗ idX⊗m

we define

FX := C∗{K(X⊗n) : n ∈ Nk}

with the convention that K(X⊗0) := A. For every m ∈ Nk, we set

Fm
X := C∗{K(X⊗n) : m ≤ n} ,

X∞ := (X1 ⊗FX, . . . , Xk ⊗FX) .

In order to see that X∞ is a product system over FX, we require left actions of FX on

Xi ⊗FX and isomorphisms

χi,j : (Xi ⊗FX)⊗ (Xj ⊗FX)→ (Xj ⊗FX)⊗ (Xi ⊗FX).

Not only Xi⊗FX but all mixed powers are FX-bimodules as we shall see in 4.3.2.1. This

is why we do not investigate the left action on the Xi ⊗FX. The isomorphisms are given

in 4.3.2.6.

4.3.2 Tools

4.3.2.1 Lemma. With ei = (δi,j)kj=1 ∈ Nk we get that

1. K(X⊗ei∞ ) = Fei
X

2. X⊗n
∞ = X⊗n ⊗FX

3. K(X⊗n
∞ ) = Fn

X

4. In particular, ΓNk(X∞) = ΓNk(X)⊗FX.

Proof. We will proof the claims of this lemma step by step.
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1. : By 3.3.1.5, we know that K
(
X⊗ei ⊗ K(X⊗n)

) ∼= K(X⊗(ei+n)). The fact that

K(X⊗ei∞ ) ∼= K(Xei
⊗FX) ∼= limK

(
X⊗ei ⊗K(X⊗n)

)
implies the claim.

2. : Since K(Xi) ∼= K(X⊗ei) ⊆ FX for all 1 ≤ i ≤ k, we get that

X⊗n
∞ = X1 ⊗FX ⊗ · · · ⊗X1 ⊗FX︸ ︷︷ ︸

n1 times

⊗ · · · ⊗Xk ⊗FX ⊗ · · · ⊗Xk ⊗FX︸ ︷︷ ︸
nk times

∼= X⊗n1
1 ⊗ · · · ⊗X⊗nkk ⊗FX = X⊗n ⊗FX,

where 2.2.3.7 yields the penultimate isomorphism.

3. : By 2., we get K(X⊗n
∞ ) ∼= K(X⊗n

∞ ⊗FX). Now, apply the same argument as in 1.

4. : Apply 2. to X⊗n for all n ∈ Nk.

4.3.2.2 Remark. By 4.3.2.1 1., we get that for all 1 ≤ i ≤ k, Xi ⊗ FX is an FX-bimodule

with left FX-linear inner product

FX
〈ξi ⊗ a, ηi ⊗ b〉 = θξi⊗a,ηi⊗b,

where ξi, ηi ∈ Xi and a, b ∈ FX. The same holds for every generalised power of X∞, so

the opposite module of X⊗n
∞ is again an FX-bimodule for every n ∈ Nk \ {0}.

4.3.2.3 Definition. For all n ∈ Nk \ {0} we set

X⊗−n
∞ := (X⊗n

∞ )∗.

So we can define a two-sided Fock module by

ΓZk(X∞) :=
⊕
n∈Zk

X⊗n
∞ .

Furthermore, we set

Γn
Zk(X∞) := ΓZk(X∞)⊗Fn

X.
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4.3.2.4 Lemma. It holds that

1. ΓZk(X∞) ∼= ΓZk(X∞)⊗X⊗ei∞

2. Γei

Zk(X∞)⊗X⊗ei∞ ∼= ΓZk(X∞)

3. ΓZk(X∞)⊗X⊗−ei∞
∼= Γei

Zk(X∞)

Proof. We show these claims one by one as well.

1. Considering the generalised powers of X∞ appearing in the Fock module individually,

we see that

X⊗n
∞ ⊗X⊗ei

∞ =

 X⊗(n+ei)
∞ for n 6= −ei,

span{〈ξ, η〉 : ξ, η ∈ X⊗ei∞ } = FX for n = −ei

2. By 4.3.2.1 we know that Fei
X
∼= K(X⊗ei∞ ), so by 2.2.3.7, Fei

X ⊗X⊗ei∞
∼= X⊗ei∞ . The

first assertion of the lemma now implies the claim.

3. It holds that

ΓZk(X∞)⊗X⊗−ei
∞

1.∼= ΓZk(X∞)⊗X⊗ei∞ ⊗ (X⊗ei∞ )∗ ∼= ΓZk(X∞)⊗K(X⊗ei
∞ )

4.3.2.1∼= ΓZk(X∞)⊗Fei
X .

4.3.2.5 Definition. For every 1 ≤ i ≤ k, we define ∗-homomorphisms αi and βi by

αi : L
(
Γei

Zk(X∞)
)
→ L

(
Γei

Zk(X∞)
)
⊗ (Xi ⊗FX) ∼= L

(
ΓZk(X∞)

)
T 7→ T ⊗ id ,

βi : L
(
ΓZk(X∞)

)
→ L

(
ΓZk(X∞)

)
⊗ (Xi ⊗FX) ∼= L

(
Γei

Zk(X∞)
)

T 7→ T ⊗ id

4.3.2.6 Remark. It holds that αi ◦ βi = id
L
(

ΓZk (X∞)
) and βi ◦ αi = id

L
(

Γ
ei
Zk

(X∞)
).
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Moreover,

Xi ⊗FX ⊗Xj ⊗FX

2.2.3.7∼= Xi ⊗Xj ⊗FX

χi,j⊗id
∼= Xj ⊗Xi ⊗FX

2.2.3.7∼= Xj ⊗FX ⊗Xi ⊗FX.

In other words, the isomorphisms χi,j : Xi ⊗Xj → Xj ⊗Xi induce isomorphisms

(X⊗ei
∞ ⊗X⊗ej

∞ )→ (X⊗ej
∞ ⊗X⊗ei

∞ ).

We can hence define

αn := αn1
1 ◦ · · · ◦ α

nk
k .

In the same manner, we can define βn. Then αn ◦ βn and βn ◦ αn are the respective

identities as well. We hence get an action of Zk via the endomorphisms αn.

We now define two-sided creation operators on ΓZk(X∞).

4.3.2.7 Definition. For every x(i) ∈ Xi⊗FX, every (y(i))∗ ∈ (Xi⊗FX)∗ and every word

µ ∈ X⊗n we define

Mx(i)(µ) := x(i) ⊗ µ ,

M(y(i))∗(µ) := (y(i))∗ ⊗ µ

and extend both of these linearly to operators on the full Fock module ΓZk(X∞).

4.3.2.8 Remark. In the second equation, the first Xi-component of µ is moved to the front

by appropriate use of the isomorphisms χi,j . The inner product of y(i) with it then acts

on the next component via ϕ. If µ has trivial Xi-component, M(y(i))∗(µ) = 0.

4.3.2.9 Lemma. Let x(i) ∈ Xi ⊗FX, (y(i))∗ ∈ (Xi ⊗FX)∗.

1. The two-sided creation operators satisfy the following properties:

Mx(i)M(y(i))∗ = x(i) ⊗ (y(i))∗ ∈ Fei
X

M(y(i))∗Mx(i) = 〈y(i), x(i)〉 ∈ FX

M∗
x(i) = M(x(i))∗
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2. Mx(i) belongs to the fixed point algebra of (αn)n∈Zk .

3. Let Pm be the orthogonal projection of the two-sided Fock module onto
⊕

n≥m X⊗n
∞ .

Then

αn(Pm) = Pn+m.

Proof. The first two claims are clear by definition. To see the third one, we check that for

every ηi ⊗ η ∈ Xi ⊗X⊗n, x(i) ∈ Xi, ν ∈ X⊗n the following equation holds:

〈M∗
x(i)(ηi ⊗ η), ν〉 = 〈ηi ⊗ η,Mx(i)(ν)〉 = 〈η, ϕ

(
〈ηi, x(i)〉

)
ν〉

= 〈η, ϕ
(
〈x(i), ηi〉

)∗
ν〉 = 〈ϕ

(
〈x(i), ηi〉

)
η, ν〉

= 〈M(x(i))∗(ηi ⊗ η), ν〉

4.3.2.10 Definition. Inside T cov
X
∼= T̃X, we denote by

Ii := 〈idΓNk (X)−Pei
〉 for all 1 ≤ i ≤ k

the ideal generated by the projection onto
⊕

n∈Nk
ni 6=0

X⊗n for all 1 ≤ i ≤ k and by

I := I1 + · · ·+ Ik = 〈idΓNk (X)−Pei
: 1 ≤ i ≤ k〉

the sum ideal.

4.3.2.11 Lemma. Let X = (X1, . . . , Xk) be a product system over Nk. If Xi is finitely

generated for all 1 ≤ i ≤ k it holds that

T cov
X
/
I ∼= OX.

Proof. First we have to check that I ⊆ T cov
X if all the Xi are finitely generated. Let

{x(i)
j }

li
j=1 be a frame of Xi. Then

id−Pei
=

li∑
j=1

Ti(x
(i)
j )Ti(x

(i)
j )∗,

hence T cov
X contains (id−Pei

) for all 1 ≤ i ≤ k and therefore the ideal they generate.
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To see that OX contains the quotient T cov
X

/
I, we recall that a Toeplitz representation

{Ti : Xi → B(H)}ki=1 of X is Cuntz-Pimsner covariant if and only if

li∑
j=1

Ti(x
(i)
j )Ti(x

(i)
j )∗ = idH (4.3.1)

for all 1 ≤ i ≤ k. Since this relation holds in the quotient and OX is universal for

Cuntz-Pimsner covariant Toeplitz representations, T cov
X

/
I is a quotient of OX.

To see the other inclusion, consider the following diagram.

T cov
X
/
I

��

T cov
X

��

π

||yy
yy

yy
yy

yy
yy

yy
yy

yy
y

oo

OX
// B(H)

By a diagram chasing argument, we will now see that the quotient T cov
X

/
I is universal for

Cuntz-Pimsner covariant Toeplitz representations of X.

Since all Xi are finitely generated, A acts by compact operators on all Xi. Hence every

Cuntz-Pimsner covariant Toeplitz representation is Nica-covariant by [Fow02, proposition

5.4] and therefore doubly commuting by [Sol08, lemma 3.11, remark 3.12]. Since T cov
X is

universal for doubly commuting Toeplitz representations, OX is a quotient of T cov
X . In the

diagram, π denotes the quotient homomorphism. By (4.3.1) we know that π(Pei
) = 0,

hence π factors through T cov
X

/
I.

4.3.3 A semisplit extension

We are now equipped to prove that the Toeplitz extension of OX is semisplit.
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4.3.3.1 Proposition. The following assertions hold:

1. : The embedding

L
(
ΓNk(X)

)
→ L

(
ΓNk(X)⊗FX

) ∼= L
(
ΓNk(X∞)

)
T 7→ T ⊗ id

induces an embedding T cov
X ↪→ T cov

X∞
and an isomorphism OX

∼= OX∞.

2. OX is isomorphic to the C∗-algebra generated by the Mx(i) ∈ L
(
ΓZ(X)

)
.

3. The compression map ψ : L
(
ΓZ(X)

)
3 T 7→ P0TP0 ∈ L

(
ΓN(X)

)
defines a com-

pletely positive map φ : OX → T cov
X∞

which is a cross section to the quotient map

π : T cov
X∞
→ OX. In other words, the short exact sequence

0→ I → T cov
X∞ → OX → 0

is semisplit.

Proof. 1. : Let (eλ)λ∈Λ be an approximate unit for A. Since A ⊆ FX it holds that

T cov
X 3 T ⊗ eλ id = Teλ ⊗ id .

The latter converges to T ⊗ id in norm.

To see the second assertion, note that

OX
∼= C∗{Sξ ⊗ id : ξ ∈ X} ⊆ C∗{Sξ⊗a : ξ ∈ X, a ∈ FX} = OX∞ .

We now need to see that

Sξ⊗a = Sξa. (4.3.2)

The latter expression in this equation makes sense when considering FX a subset

of OX by identifying θξ,η with SξS∗η . Due to this identification it holds that every
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a ∈ FX can be approximated by a finite sum,

a ≈
∑
i

SξiS
∗
ηi (4.3.3)

for some ξi and ηi in the appropriate generalised powers of X.

Now, showing equation (4.3.2) is equivalent to showing that

Tξ⊗a − (Tξ ⊗ id)
∑
i

(Tξi ⊗ id)(T ∗ηi ⊗ id) ∈ I. (4.3.4)

We will show this equation for every finite approximation of a as in (4.3.3). Let∑
i SξiS

∗
ηi be such an approximation with ξi, ηi ∈ X⊗ni . Then Tξ⊗

P
i SξiS

∗
ηi

and∑
i(Tξ ⊗ id)(Tξi ⊗ id)(Tηi ⊗ id)∗ agree on sufficiently large generalised powers of X.

In other words, it holds that

Tξ⊗
P
i SξiS

∗
ηi

(ζ ⊗ b) =
∑
i

(Tξ ⊗ id)(Tξi ⊗ id)(Tηi ⊗ id)∗(ζ ⊗ b)

for all ζ ⊗ b ∈ X⊗m ⊗FX, where m ≥ n = max{ni}. This implies that

Tξ⊗
P
i SξiS

∗
ηi
Pn =

∑
i

(Tξ ⊗ id)(Tξi ⊗ id)(Tηi ⊗ id)∗Pn,

so the difference between the elements in question can only be non-trivial on the

range of id−Pn. But since this projection lies in the ideal I, equality holds every-

where. Since equation (4.3.4) holds for all approximations of a, it holds for a as

well.

2. : We start by noticing that the following equations hold

Mx(i)Pn = PmMx(i)Pn for all m ≤ n + ei (4.3.5)

PnMx(i) = PnMx(i)Pm for all m ≥ n− ei (4.3.6)

and define the set

L
(
ΓN(X)

)
α

:= {T ∈ L
(
ΓN(X)

) ∼= P0L
(
ΓZ(X)

)
P0 : sot-lim

n1,...,nk→∞
α−n(T ) exists}.
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Note, that this is actually a C∗-algebra. We check that the Toeplitz-algebra is

contained in this C∗-algebra.

For this, let Tx(i) ∈ T cov
X∞

, where x(i) ∈ Xi ⊗FX.

lim
n→∞

α−n(Tx(i))Pm = limn→∞ α
−n(P0Mx(i)P0)Pm

= limn→∞ P−nMx(i)P−nPm = Mx(i)Pm and

lim
n→∞

α−n(T ∗
x(i))Pk = limn→∞ α

−n(P0M
∗
x(i)P0)Pk

= limn→∞ P−nM
∗
x(i)P−nPk = M∗

x(i)Pk

where m ≤ n + ei and k ≤ n − ei. We hence know that T cov
X ⊆ L

(
ΓN(X)

)
α
.

Furthermore, the above limit vanishes for elements in I, so limn→∞ α
−n defines a

linear map from T cov
X

/
I ∼= OX → C∗{Mx(i)} mapping Sx(i) to Mx(i) .

To see that it is a ∗-homomorphism, we show that T 7→ α−n(T ) is a ∗-homomor-

phism for all n ∈ Nk:

α−n(Tx(i))α−n(Ty(i)) =α−n(P0Mx(i)P0)α−n(P0My(i)P0) = (P−nMx(i)P−n)My(i)P−n

(6)
=P−nMx(i)My(i)P−n = α−n(Tx(i)Ty(i))

α−n(T ∗
x(i))α−n(Ty(i)) =α−n(P0M

∗
x(i)P0)α−n(P0My(i)P0) = P−nM

∗
x(i)(P−nMy(i)P−n)

(5)
=P−nM

∗
x(i)My(i)P−n = α−n(M∗

x(i)My(i))

α−n(Tx(i))α−n(T ∗
y(i)) =α−n(P0Mx(i)P0)α−n(P0M

∗
y(i)P0) = (P−nMx(i)P−n)M∗

y(i)P−n

(6)
=P−nMx(i)M∗y(i)P−n = α−n(Mx(i)M∗y(i))

α−n(Tx(i))∗ =P−nT
∗
x(i)P−n = α−n(T ∗

x(i))

Furthermore, the map π◦ψ : C∗{Mx(i)} → OX is a ∗-homomorphism, since it is an

inverse map of limn→∞ α
−n. Because it sends generators of C∗{Mx(i)} to generators
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of OX, i.e.

(π ◦ ψ)(Mx(i)) = π(Tx(i)) = Sx(i) for all x(i) ∈ Xi, 1 ≤ i ≤ k,

it is surjective, so C∗{Mx(i)} and OX are isomorphic.

3. : follows from 2.

4.3.3.2 Corollary. From 2.3.3.3, we get the following six-term cyclic exact sequence in

KK-theory:

For any separable graded C∗-algebra D,

KK0(D, I) // KK0(D, T cov
X∞

) // KK0(D,OX)

��
KK1(D,OX)

OO

KK1(D, T cov
X∞

)oo KK1(D, I)oo

is exact. If T cov
X∞

is separable, then

KK0(I,D)

��

KK0(T cov
X∞

,D)oo KK0(OX,D)oo

KK1(OX,D) // KK1(T cov
X∞

,D) // KK1(I,D)

OO

is exact for every separable graded D as well.

4.4 Other properties

After proving results 4.2.3.1 and 4.3.3.1 which generalise 3.2.3.1 and 3.3.3.1 respectively

it is a valid question to wonder if there is an adaption of 3.4.1.2 and 3.4.2.3 to this setting

as well.
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4.4.1 Are T cov
X and A KK-equivalent?

In [Dea07], Deaconu shows how to iterate Pimsner’s construction of the Toeplitz and

Cuntz-Pimsner algebra which we will now sketch. Note that the entire construction is due

to Deaconu.

Given a Hilbert A-module E, a C∗-algebra B and a ∗-homomorphism ρ : A → B which

is assumed to be injective, the internal tensor product E⊗ρB is a Hilbert B-module with

inner product

〈ξ1 ⊗ b1, ξ2 ⊗ b2〉 = b∗1ρ(〈ξ1, ξ2〉)b2

and right action

(ξ ⊗ b1)b2 = ξ ⊗ (b1b2).

Moreover, one knows that

K(E ⊗ρ B) ∼= (E ⊗ B)⊗ (E ⊗ B)∗ ∼= E ⊗ B ⊗ E∗ ,

so if E is full, K(E⊗B) ∼= B holds. If B is unital, one gets an embedding K(E) ↪→ K(E⊗B)

by x ⊗ y∗ 7→ x ⊗ 1B ⊗ y∗. If, in addition, E is an A-correspondence together with some
∗-homomorphism ϕ : A → L(E) and there is a ∗-homomorphism ϕB : B → L(E) extending

ϕ, (E⊗ρB, ϕB) is a B-correspondence, so one can form (E⊗B)⊗n for n ∈ N. If (E⊗B, ϕB) is

non-degenerate, one have (E⊗B)⊗n ∼= E⊗n⊗B. Therefore, TE⊗B is represented faithfully

by creation operators on Γ(E ⊗ B) ∼= Γ(E)⊗ B.

Now, let finitely generated Hilbert A-modules X1 and X2 together with non-degenerate

left actions ϕi : A → L(Xi), i = 1, 2 and a ∗-isomorphism χ1,2 : X1 ⊗ϕ2 X2 → X2 ⊗ϕ1 X1

be given. Since TX1 ⊇ {ϕ1(〈ξ, η〉) : ξ, η ∈ X1} = A, one knows that X2⊗i TX1 is a Hilbert

TX1-module with respect to the embedding i : A ↪→ TX1 with inner product and right

action by TX1 as above. One gets a left action of X1 on X2 ⊗ TX1 by

X1 ⊗ϕ2 X2 ⊗i TX1

χ1,2⊗ id
−−−−−→ X2 ⊗ϕ1 X1 ⊗i TX1

χ1,2⊗ id
−−−−−→ X2 ⊗ TX1 ,

where the latter map is the absorption of X1 into TX1 . Since X1 generates TX1 , a left

action of X1 on X2⊗TX1 extends to a left action of TX1 on X2⊗TX1 . Moreover, this action
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is non-degenerate and extends ϕ2 because of 4.1.1.3, so X2⊗TX1 is a TX1-correspondence.

By the same argument, X1 ⊗ TX2 is a TX2-correspondence. So one might as well consider

the Toeplitz algebras TX2⊗TX1
and TX1⊗TX2

and investigate how they relate to each other.

Note, that these algebras are special cases of Pimsner’s original construction. Regardless

of the additional structure on X1 ⊗ TX2 and X2 ⊗ TX1 either one of these modules is still

a Hilbert C∗-correspondence. Moreover,

Γ(X2 ⊗ TX1) ∼= Γ(X2)⊗ TX1 ,

Γ(X2 ⊗ TX1) ∼= Γ(X2)⊗ TX1 .

After introducing this construction, Deaconu then states the following theorem in [Dea07,

lemma 4.1].

4.4.1.1 Theorem. Given two finitely generated, full and non-degenerate Hilbert A-corres–

pondences (X1, ϕ1) and (X2, ϕ2) one gets

TX1⊗TX2

∼= TX2⊗TX1
.

Proof. By applying 3.2.3.1 twice, we know that both algebras are represented faithfully on

L(
⊕

n,m∈NX
⊗n
1 ⊗X⊗m2 ). Moreover, both algebras are generated by TX1 and TX2 subject

to the commutation relation given by χ1,2.

Having looked at the proof, we realise that the C∗-algebra considered in the previous

theorem is isomorphic to the higher rank Toeplitz algebra of the product system over

N2 determined by X(1,0) := X1 and X(0,1) := X2 and ∗-isomorphism χ1,2 as in 4.1.1.5.

Therefore, the examples 4.4, 4.5 and 4.6 from Deaconu’s paper are examples of higher-

rank Cuntz-Pimsner algebras as well. Deaconu deduces this in [Dea07, remark 4.3] from

applying the more general gauge-invariant uniqueness theorem [Fow02, theorem 6.3]. Our

contribution is to use the previous gauge-invariant uniqueness theorem for product systems

from 4.2.3.1 instead, which is sufficient for this purpose and a lot easier to prove.

4.4.1.2 Corollary. Let X be a product system over N2 such that the fibres X1 := X(1,0)

and X2 := X(0,1) are finitely generated, full and the respective left actions are non-

degenerate. Then

T cov
X
∼= TX1⊗TX2

.



99 Chapter 4 : Higher rank Toeplitz and Cuntz-Pimsner algebras

By iterating this construction we get the following theorem.

4.4.1.3 Theorem. Let X be a product system of Hilbert A-correspondences over Nk and

Xi := Xei
for 1 ≤ i ≤ k. It holds that

T cov
X
∼= TX1⊗TX2⊗...⊗TXk

.

4.4.1.4 Corollary. Under the same prerequisites as in the previous theorem we get that

T cov
X ∼KK A .

Proof. By the previous identification and the KK-equivalence between the Toeplitz algebra

of a Hilbert module and its coefficient algebra by 3.4.1.2 we know that

TX1⊗TX2⊗...⊗TXk
∼KK TX2⊗TX3⊗...⊗TXk

∼KK · · · ∼KK A.

When combining the previous corollary with 4.3.3.2, the following corollary in obvious.

4.4.1.5 Corollary. For a product system X over Nk with finitely generated, full base fibres

X1, . . . , Xk and non-degenerate left actions the following two six-term cyclic sequences are

exact for every separable graded C∗-algebra D:

KK0(D, I) // KK0(D,FX) // KK0(D,OX)

��
KK1(D,OX)

OO

KK1(D,FX)oo KK1(D, I)oo

KK0(I,D)

��

KK0(FX,D)oo KK0(OX,D)oo

KK1(OX,D) // KK1(FX,D) // KK1(I,D)

OO

4.4.1.6 Remark. When defining TX1⊗OX2
, OX2⊗TX1

, OX1⊗OX2
and OX2⊗OX1

the same

way, one can show that OX2⊗TX1

∼= TX1⊗OX2
and OX1⊗OX2

∼= OX2⊗OX1

∼= OX. Iterating

this result again, we learn that Toeplitz and Cuntz-Pimsner algebras of product systems
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over Nk with finitely generated, non-degenerate base fibres X1, . . . , Xk are isomorphic

to Toeplitz and Cuntz-Pimsner algebras generated by a single Hilbert correspondence.

Therefore, the approximation results from the previous chapter hold as well.

4.4.2 The irrational rotation algebra revisited

In the final section, we will have a look at the simplest example of the Toeplitz and Cuntz-

Pimsner algebra of a product system over N2 and take it a little step further in order to

understand the role of the isomorphism χ1,2 : X1⊗X2 → X2⊗X1 and the ideal structure

inside T cov
X . For this, trivial base fibres X1 = C = X2 will suffice.

4.4.2.1 Example. Consider the product system X with base fibres X1 = C = X2 and

isomorphism χ1,2 : X1⊗X2 → X2⊗X1, x⊗ y 7→ y⊗x. Then Γ(X) = l2(N)⊗ l2(N), each

base fibre generates a copy of the Toeplitz algebra T1 and T cov
X = T1⊗T1 since the respective

creation operators commute on the Fock module. Inside T cov
X we get the ideals I1 = K⊗T1

and I2 = T1 ⊗ K. Now, starting with the Toeplitz extension 0 → K → T1 → C(T) → 0 of

O1
∼= C(T) from motivating example 3.1.3 we get the following exact sequences

0→ K⊗ T → T ⊗ T → C(T)⊗ T → 0

0→ T ⊗K→ T ⊗ T → T ⊗ C(T)→ 0

yielding the following diagram with exact rows and columns:

0

��

0

��

0

��
0 // K⊗K //

��

T ⊗K //

��

C(T)⊗K //

��

0

0 // K⊗ T //

��

T ⊗ T //

��

C(T)⊗ T //

��

0

0 // K⊗ C(T) //

��

T ⊗ C(T) //

��

C(T)⊗ C(T) //

��

0

0 0 0

.

Exactly the same diagram shows up in [DH71], where Douglas and Howe investigate



101 Chapter 4 : Higher rank Toeplitz and Cuntz-Pimsner algebras

Toeplitz operators on the quarter plane. The preceding diagram yields the following short

exact sequences:

0→ T ⊗K+K⊗ T → T ⊗ T → C(T)⊗ C(T)→ 0

0→ K⊗K→ T ⊗ T → C(T)⊗K+K⊗ C(T)→ 0.

Note that the former sequence corresponds to 4.3.2.11 and OX
∼= C(T)⊗ C(T).

4.4.2.2 Example. We get a more complicated object by slightly modifying the previous

isomorphism. When considering the product system X1 = C = X2 together with the

isomorphism

χ1,2 : X1 ⊗X2
∼=−→ X2 ⊗X1,

x1 ⊗ x2 7→ e2πiθx2 ⊗ x1

for some θ ∈ [0, 1] \ Q, the corresponding higher rank Cuntz-Pimsner algebra OX is the

irrational rotation algebra Aθ. The explicit calculation of the K-groups of Aθ can be found

in [Dav96, example VIII.5.2].

Finally, we quote [Dea07, lemma 5.2] to deal with the ideal structure of T cov
X for a product

system X over N2.

4.4.2.3 Lemma. Two closed two-sided ideals I and J in A yield the following commu-

tative diagram with exact rows and columns

0

��

0

��

0

��

0 // I ∩ J

��

// I //

��

I/(I ∩ J )

��

// 0

0 // J //

��

A //

��

A/J
��

// 0

0 // J /(I ∩ J ) //

��

A/I //

��

A/(I + J ) //

��

0

0 0 0
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from which we get

0→ I + J → A → A
/

(I + J )→ 0

and

0→ I ∩ J → I + J → I
/

(I ∩ J )⊕ J
/

(I ∩ J )→ 0.

4.4.2.4 Corollary. For a product system X over N2 with finitely generated, full base fibres

X1 and X2 and non-degenerate left actions we get the following diagram with exact rows

and columns:

0

��

0

��

0

��

0 // I1 ∩ I2

��

// I1
//

��

I1
/

(I1 ∩ I2)

��

// 0

0 // I2
//

��

T cov
X

//

��

TX1⊗OX2

��

// 0

0 // I2
/

(I1 ∩ I2) //

��

TX2⊗OX1
//

��

OX
∼= OX1⊗OX2

//

��

0

0 0 0

4.4.2.5 Remark. For a product system X over Nk, we get the k-dimensional analogue of

this diagram.



Bibliography

[AG10] Pere Ara and Ken R. Goodearl, Leavitt path algebras of separated graphs,

arXiv:1004.4979v1 [math.RA] (2010).

[Bla98] Bruce Blackadar, K-theory for operator algebras, second ed., Mathematical Sci-

ences Research Institute Publications, vol. 5, Cambridge University Press, Cam-

bridge, 1998.

[Bla06] , Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122,

Springer-Verlag, Berlin, 2006, Theory of C∗-algebras and von Neumann alge-

bras, Operator Algebras and Non-commutative Geometry, III.

[BO08] Nathanial P. Brown and Narutaka Ozawa, C∗-algebras and finite-dimensional

approximations, Graduate Studies in Mathematics, vol. 88, American Mathe-

matical Society, Providence, RI, 2008.

[Bro77] Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of C∗-

algebras, Pacific J. Math. 71 (1977), no. 2, 335–348.

[CK80] Joachim Cuntz and Wolfgang Krieger, A class of C∗-algebras and topological

Markov chains, Invent. Math. 56 (1980), no. 3, 251–268.

[CO09] Toke M. Carlsen and Eduard Ortega, Algebraic cuntz pimsner rings, arXiv:

0810.3254v4 [math.RA] (2009).

[CS84] A. Connes and G. Skandalis, The longitudinal index theorem for foliations, Publ.

Res. Inst. Math. Sci. 20 (1984), no. 6, 1139–1183.

[Cun77] Joachim Cuntz, Simple C∗-algebras generated by isometries, Comm. Math.

Phys. 57 (1977), no. 2, 173–185.

103



Bibliography 104

[Dav96] Kenneth R. Davidson, C∗-algebras by example, Fields Institute Monographs,

vol. 6, American Mathematical Society, Providence, RI, 1996.

[Dea07] Valentin Deaconu, Iterating the Pimsner construction, New York J. Math. 13

(2007), 199–213.

[DH71] R. G. Douglas and Roger Howe, On the C∗-algebra of Toeplitz operators on the

quarterplane, Trans. Amer. Math. Soc. 158 (1971), 203–217.

[EW80] Masatoshi Enomoto and Yasuo Watatani, A graph theory for C∗-algebras, Math.

Japon. 25 (1980), no. 4, 435–442.

[FL02] Michael Frank and David R. Larson, Frames in Hilbert C∗-modules and C∗-

algebras, J. Operator Theory 48 (2002), no. 2, 273–314.

[Fow02] Neal J. Fowler, Discrete product systems of Hilbert bimodules, Pacific J. Math.

204 (2002), no. 2, 335–375.

[FS02] Neal J. Fowler and Aidan Sims, Product systems over right-angled Artin semi-

groups, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1487–1509 (electronic). MR

1873016 (2002j:18006)

[GN94] I. Gel′fand and M. Neumark, On the imbedding of normed rings into the ring

of operators in Hilbert space, C∗-algebras: 1943–1993 (San Antonio, TX, 1993),

Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, Corrected

reprint of the 1943 original [MR 5, 147], pp. 2–19.

[JT91] Kjeld Knudsen Jensen and Klaus Thomsen, Elements of KK-theory, Mathe-

matics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1991.

[Kap53] Irving Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953),

839–858.

[Kat04] Takeshi Katsura, A class of C∗-algebras generalizing both graph algebras and

homeomorphism C∗-algebras. I. Fundamental results, Trans. Amer. Math. Soc.

356 (2004), no. 11, 4287–4322.

[Kat06a] , A class of C∗-algebras generalizing both graph algebras and homeomor-

phism C∗-algebras. II. Examples, Internat. J. Math. 17 (2006), no. 7, 791–833.



105 Bibliography

[Kat06b] , A class of C∗-algebras generalizing both graph algebras and homeomor-

phism C∗-algebras. III. Ideal structures, Ergodic Theory Dynam. Systems 26

(2006), no. 6, 1805–1854.

[Kat08] , A class of C∗-algebras generalizing both graph algebras and homeomor-

phism C∗-algebras. IV. Pure infiniteness, J. Funct. Anal. 254 (2008), no. 5,

1161–1187.

[KP99] Alex Kumjian and David Pask, C∗-algebras of directed graphs and group actions,

Ergodic Theory Dynam. Systems 19 (1999), no. 6, 1503–1519.

[KPW98] Tsuyoshi Kajiwara, Claudia Pinzari, and Yasuo Watatani, Ideal structure and

simplicity of the C∗-algebras generated by Hilbert bimodules, J. Funct. Anal. 159

(1998), no. 2, 295–322.

[Lan] E. C. Lance, Hilbert C∗-modules, London Mathematical Society Lecture Note

Series, vol. 210.

[Lea62] Bill Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 42 (1962),

113–130.

[Lin01] Huaxin Lin, An introduction to the classification of amenable C∗-algebras, World

Scientific Publishing Co. Inc., River Edge, NJ, 2001.

[MS00] Paul S. Muhly and Baruch Solel, On the Morita equivalence of tensor algebras,

Proc. London Math. Soc. (3) 81 (2000), no. 1, 113–168.

[Mur90] Gerard J. Murphy, C∗-algebras and operator theory, Academic Press Inc.,

Boston, MA, 1990.

[Pas73] William L. Paschke, Inner product modules over B∗-algebras, Trans. Amer.

Math. Soc. 182 (1973), 443–468.

[Ped79] Gert K. Pedersen, C∗-algebras and their automorphism groups, London Math-

ematical Society Monographs, vol. 14, Academic Press Inc. [Harcourt Brace

Jovanovich Publishers], London, 1979.

[Pim97] Michael V. Pimsner, A class of C∗-algebras generalizing both Cuntz-Krieger

algebras and crossed products by Z, Free probability theory (Waterloo, ON,



Bibliography 106

1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997,

pp. 189–212.

[Pop89] Gelu Popescu, Multi-analytic operators and some factorization theorems, Indi-

ana Univ. Math. J. 38 (1989), no. 3, 693–710.

[PV80] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of

certain cross-product C∗-algebras, J. Operator Theory 4 (1980), no. 1, 93–118.

[Rae05] Iain Raeburn, Graph algebras, CBMS Regional Conference Series in Mathemat-

ics, vol. 103, Published for the Conference Board of the Mathematical Sciences,

Washington, DC, 2005.

[Rie74] Marc A. Rieffel, Induced representations of C∗-algebras, Advances in Math. 13

(1974), 176–257.

[RS99] Guyan Robertson and Tim Steger, Affine buildings, tiling systems and higher

rank Cuntz-Krieger algebras, J. Reine Angew. Math. 513 (1999), 115–144.

[Seg47] I. E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math.

Soc. 53 (1947), 73–88.

[Ska91] Georges Skandalis, Kasparov’s bivariant K-theory and applications, Exp. Math.

9 (1991), 193–249.

[Sol08] Baruch Solel, Regular dilations of representations of product systems, Math.

Proc. R. Ir. Acad. 108 (2008), no. 1, 89–110.

[SY10] Aidan Sims and Trent Yeend, C∗-algebras associated to product systems of

Hilbert bimodules, J. Operator Theory 64 (2010), no. 2, 349–376. MR 2718947

(2011j:46092)

[SZ10] Adam Skalski and Joachim Zacharias, On approximation properties of pimsner

algebras and crossed products by hilbert bimodules, Rocky Mount. Jorn. Math.

40 (2010).

[Wil07] Dana P. Williams, Crossed products of C∗-algebras, Mathematical Surveys and

Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007.

[WO] N. E. Wegge-Olsen, K-theory and C∗-algebras, Oxford Science Publications.


	1 Introduction
	2 C*-Algebras, Hilbert Modules and Kasparov's KK-Theory
	2.1 A very short guide to C*-algebras
	2.1.1 Some definitions
	2.1.2 Some important properties
	2.1.3 Universal C*-algebras
	2.1.4 Inductive limits of C*-algebras
	2.1.5 Discrete crossed products

	2.2 Hilbert C*-modules
	2.2.1 Definition and examples
	2.2.2 Operators on Hilbert modules
	2.2.3 Tensor products of Hilbert modules
	2.2.4 Hilbert bimodules

	2.3 Kasparov's KK-theory
	2.3.1 The Kasparov groups KK0(A,B) and KK1(A,B)
	2.3.2 The Kasparov product
	2.3.3 Six-term cyclic exact sequences in KK-theory


	3 The Toeplitz and Cuntz-Pimsner algebra of a Hilbert correspondence
	3.1 Construction of T"0365TE and OE
	3.1.1 Definitions
	3.1.2 Examples
	3.1.3 Motivating example

	3.2 A gauge-invariant uniqueness theorem for T"0365TE
	3.2.1 The abstract Toeplitz algebra
	3.2.2 The abstract and the concrete gauge action
	3.2.3 The theorem

	3.3 A semisplit Toeplitz extension of OE
	3.3.1 Extending the scalars
	3.3.2 The two-sided Fock module
	3.3.3 A semisplit extension

	3.4 Other properties
	3.4.1 A KK-equivalence between TE and A
	3.4.2 Approximation properties of OE


	4 Higher rank Toeplitz and Cuntz-Pimsner algebras
	4.1 Definitions
	4.1.1 Discrete product systems
	4.1.2 Representations of product systems

	4.2 A gauge-invariant uniqueness theorem for TcovX
	4.2.1 The Fock representation of X
	4.2.2 The abstract and the concrete gauge action
	4.2.3 The theorem

	4.3 A semisplit Toeplitz extension of OX
	4.3.1 Extending the scalars
	4.3.2 Tools
	4.3.3 A semisplit extension

	4.4 Other properties
	4.4.1 Are TcovX and A KK-equivalent?
	4.4.2 The irrational rotation algebra revisited



