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ABSTRACT 

Within a closed environment, (e.g. building, car, aircraft) that is thermally and 

hygrically isolated from the exterior climate, one approach that can help reduce the 

energy required for indoor mechanical climate control whilst increasing comfort 

levels for occupants is to use hygrothermal coatings on top of existing materials. 

Hygrothermal coatings can re-introduce both thermal and hygric buffering within the 

isolated envelope. Understanding of the behaviour of these coatings allows them to 

be optimized for different environments.  

The overall aim of the research is to design the functional properties of inorganic, 

nano structured surface coatings i.e. mesoporous silica (MS) to produce desired 

hygrothermal behavioural responses to climatic variables in a controlled 

environment. This can be achieved through correlation of the hygrothermal 

properties of desiccant materials with their microstructural characteristics and 

understanding the hygrothermal behaviour of the materials under representative 

psychrometric conditions. 

Stage 1 was to characterise the hygrothermal properties of the MS and other 

conventional desiccant materials i.e. Silica Gel, Molecular Sieve, Clinoptilolite and 

Bentonite to produce a óTemplate of functional propertiesô and provide material 

input data for the numerical models. These tests included dynamic vapour sorption 

(DVS) techniques for moisture absorption including cyclic adsorption/desorption 

and sorption isotherms, wet-cup tests for vapour permeability, partial immersion 

tests for liquid water absorption, modified transient plane source (MTPS) tests for 

thermal conductivity and differential scanning calorimetry (DSC) for heat capacity.  

Stage 2 utilised techniques to classify the pore geometry of the desiccants, including 
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helium pycnometry for solid density, gravimetric testing for bulk density, N2 

physisorption for specific surface area, mesopore volume and mean pore diameter 

with small angle X-ray scattering and transmission electron microscopy used to 

corroborate the N2 results. Scanning electron microscopy (SEM) was used to confirm 

material composition and purity and to indicate macropore distribution. A correlation 

between the hygrothermal properties from Stage 1 with their microstructural 

characteristics was then sought. 

Stage 3 was a parametric analysis of the candidate materials hygrothermal behaviour 

using the validated 1D numerical simulation software WUFI Pro v5.1. Further 

analysis was carried out to assess how the numerical model could be used to tune the 

functional properties of the MS materials to suit differing psychrometric conditions 

in closed environments. A series of simulations using a representative climate 

(Nottingham) were also run to compare the hygrothermal behaviour of the MS 

materials to the conventional desiccants 

A series of energetic 3D physical and numerical models (WUFI Plus v 2.1) were 

designed to study the resultant relative humidity levels in both occupied and 

unoccupied spaces and under different air exchange rates due to the presence of the 

hygrothermal materials in a closed environment. The 3D model was also used to 

compare the operational energy usage of different retrofitting cases under the same 

representative climate used in Stage 3 with three different heating, cooling 

humidification and dehumidification (HCHD) control scenarios. 

The MS materials displayed significantly higher Moisture Buffer Values (MBV), 

equilibrium moisture contents (EMC) and faster response rates when compared to 

the conventional desiccants. It was shown that WUFI Pro can be used as a design 

tool for material functional properties, with the sorption isotherm, and in particular 
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adjustment of the w50 ï w80 gradient of the absorption branch isotherm being by far 

the most sensitive parameter. In the MS samples, the dynamic vapour sorption 

(DVS) response time has a significant and positive logarithmic relationship with 

both the mesopore diameter and the mesopore volume implying that mesopore 

geometry can be tuned in order to give the desired dynamic vapour sorption/ 

desorption response rate and storage capacity to suit a given set of interior 

psychrometric conditions. It is therefore possible to tune an MS material to suit a 

particular set of psychrometric conditions using WUFI Pro. 

The MS materials displayed outstanding passive buffering performance across a 

range of exterior climate conditions combined with numerous internal moisture and 

ventilation overloading scenarios, providing constant humidity buffering within the 

American Society of Heating, Refrigerating and Air Conditioning Engineers 

(ASHRAE) comfort limits. When compared against a retro-fitted gypsum-lined 

indoor environment there was a potential reduction in humidification/ 

dehumidification energy demand of up to 100% when using an MS material coating. 
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CFD  Computational Fluid Dynamics 

DSC  Differential Scanning Calorimetry 

DVS  Dynamic Vapour Sorption 

EMC  Equilibrium Moisture Content 

EMPD  Effective Moisture Penetration Depth 

HAM  Heat and Moisture 

HCHD  Heating Cooling Humidification and Dehumidification 

HVAC  Heating Ventilation and Air Conditioning 

MBV  Moisture Buffer Value 

MCM  Mobil Crystalline Material  

MS  Mesoporous Silica 

MTPS  Modified Transient Plane Source 

MVHR Mechanical Ventilation and Heat Recovery 

PIR  polyisocyanurate 

PTFE  Polytetrafluoroethylene 

RH  Relative Humidity 

SAXRS Small Angle X-Ray Scattering 

SBA  Santa Barbara Amorphous type material 

SEM  Scanning Electron Microscopy 

SE  Secondary Electrons 

SSA  Specific Surface Area 

TEM  Transmission Electron Microscopy 

VIP  Vacuum Insulation Panel 

WUFI  Wärme Und Feuchte Instationär 
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NOMENCLATURE  

A area m
2 

Aw liquid water absorption rate kg/m
2
s

0.5
 

cp constant pressure specific heat capacity J/(kg K) 

cp
*
 moisture content-dependent specific heat capacity J/(kg K) 

Cv  mass concentration of water vapour kg/m
3
 

D diffusion coefficient for water vapour in still air m
2
/s 

d thickness, depth m 

dp penetration depth m 

dV absolute humidity kg/m
3
 

g total rate of mass transfer kg/s m
2
 

gg evaporation/moisture generation rate g/h 

gl rate of liquid water transfer kg/s m
2
 

gv rate of water vapour transfer kg/s m
2 

gv,air rate of water vapour diffusion in still air kg/s m
2 

G water vapour flow rate kg/s 

H enthalpy J 

h  specific enthalpy J/kg 

L effective length m 

m mass kg 

n bulk porosity m
3
/m

3
 

P pressure Pa  

Q heat flow W 

q total heat flux W/m
2 

r radius m 

RH relative humidity % 

RHcoat near surface relative humidity of coating % 

RHie indoor environment relative humidity % 

RHoe outdoor environment relative humidity % 

R thermal resistance m
2 
K/W  

Ro  universal gas constant  J/kg mol K 

Rvap  individual gas constant of water vapour J/kg K 

t time s 

temc time interval to reach equilibrium moisture content  hr 

T thermodynamic temperature K 

V volume m
3 

w specific moisture content kg/m
3
 

wc capillary saturation specific moisture content kg/m
3 

wcoat specific moisture content of coating kg/m
3 

wr specific moisture content at hygroscopic limit kg/m
3
 

ws saturation specific moisture content kg/m
3
 

W Humidity ratio kg/kg 

W water vapour permeance kg/m
2
sPa 

x 1-dimensional distance m 

Ŭ thermal diffusivity m
2
/s 

ɓ thermal effusivity W s
1/2

/m
2
 K 

da  water vapour permeability of still air kg/m s Pa 
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d  water vapour permeability kg/m s Pa 

e emissivity - 

ɔ surface tension  N/m 

l wavelength m 

l dry state thermal conductivity W/(m K) 

l*
 moisture-dependent thermal conductivity W/(m K) 

m water vapour diffusion resistance factor - 

x moisture storage function kg/kg  

xa moisture capacity during absorption (from wetting curve) kg/kg 

xd moisture capacity during desorption (from drying curve kg/kg 

r density kg/m
3 

f angle of friction ° 

j relative humidity (decimal) - 

Y capillary potential Pa 

 

Subscripts 

ie indoor environment 

oe outdoor environment 

db dry bulb 

wb wet bulb 

sat saturation 
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1 CHAPTER 1: Introduction  

1.1 Introduction  

The current stock of UK housing (å 25 million) consists of approximately 8.1 

million (32%) ósolid-wallô type dwellings. With poor envelope materials and 

construction techniques there are large energy losses due to increased heat and mass 

transfer through the envelope and air infiltration and can result in space heating 

dominating domestic energy usage in temperate climates (Hong et al., 2006, Yoshino 

et al., 2006). As a consequence of this, these domestic buildings account for 

approximately 50% of total UK domestic sector CO2 emissions (CALEBRE, 2010).  

To improve occupant comfort and counteract operational losses, reducing energy 

consumption and CO2 emissions there has been a Government-led push in recent 

years to increase the insulative performance of these buildings (DCLG, 2007). The 

nature of UK domestic housing stock however, dictates that, in the majority of cases 

this insulation coupled with vapour barriers can only be placed on the internal 

surfaces of the building envelope, requiring high performance insulation 

technologies that are also thin to minimise interior space losses. Cases where this is 

applicable are: 

¶ Listed historic buildings where the outside appearance of the structure is 

protected and cannot be altered, for example by external insulation cladding 

systems 

¶ Buildings where local planning permission is unlikely to be accepted due to 

changes in the external appearance, e.g. housing estates 

¶ Terraced buildings where fitting external insulating to one building in 
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isolation would not be acceptable. 

Installation of insulation and vapour barriers to the interior of these buildings (i.e. 

retrofitting) can effectively create an internal closed environment. An internal closed 

environment can be classified as any internal space isolated from its external 

environment i.e. an isolated system (Brewster 2009), and can include domestic 

buildings, containers (storage & transportation), vehicles (air, motor, shipping), 

museums, heritage sensitive structures and archives. In the context of this research 

domestic buildings will be the focus. 

1.2 Hygrothermal Behaviour 

As building envelopes are subject to hygrothermal loads, the HCHD load of a 

buildings internal environment is sensitive to both the external and internal 

environmental loads experienced by the envelope. These include: 

¶ Heat transfer to and from the material arising from short and long wave 

radiation and sensible/latent heat gains 

¶ Heat storage within the material  

¶ Liquid and vapour moisture transfer to and from the material 

¶ Moisture storage within the material 

Internal hygrothermal loads can include sensible/latent heat gains and moisture 

vapour from occupants, heat-emitting devices or moisture generating devices whilst 

external loads include solar radiation, ground water, wind driven rain and moisture 

generation. Each of these hygrothermal loads does not act independently or in 1-

dimension (1D), but simultaneously as illustrated in Figure 1. The hygrothermal 

behaviour of a material can be defined as the change in a materialôs physical 
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properties as a result of the simultaneous absorption, storage and release of liquid 

and vapour in the form of heat and moisture (Künzel, 1995). This behaviour is 

determined by the materials hygrothermal properties (BSi, 2007a) and can be 

considered as a ótemplate of functional propertiesô: 

¶ Dry-state thermal conductivity, ɚ in W/(m K) and its moisture-dependency,  

ɚ* = f(w) 

¶ Specific heat capacity, cp in J/(kg K) and its moisture-dependency, cp* = f(w) 

¶ Bulk density, ɟd in kg/m
3
 

¶ Apparent porosity, n in m
3
/m

3
 

¶ Sorption isotherm(s) for water vapour and capillary water, where w = f(ű) in 

kg/m
3
 

¶ Water vapour permeability, W in kg/(m
2
 s Pa) 

¶ Liquid water absorption, Aw in kg/m
2
s

0.5
 

 
Figure 1 - Hygrothermal fluxes and their alternating directions across a building 

envelope. Adapted from: (ASHRAE, 2009a) 



CHAPTER 1: Introduction 

S Casey  4 

 

In a building specific internal closed environment the hygroscopic fabrics that were 

previously exposed (e.g. brick, masonry, gypsum, plaster or timber surfaces) are now 

thermally and hygrically isolated from the internal hygrothermal loads due to the 

retrofitting of the insulation/ vapour barriers. This can give rise to amplified maxima 

and minima in air temperature and relative humidity (RH) variations, negatively 

affecting occupant health and comfort (CIBSE, 2006, Hall, 2010, Jayamaha, 2006). 

Poor occupant health can manifest as ñsick building syndromeò caused by reduced 

levels of RH, whilst elevated RH levels can lead to irritation of the upper respiratory 

tract. Energy penalties can also be incurred due to the additional interior climate 

control required from mechanical systems such as Heating Ventilation and Air 

Conditioning (HVAC) (Kalamees et al., 2009, Liddament and Orme, 1998, Orme, 

2001). 

It has been shown that hygrothermal materials can be used to reduce the HCHD load 

by reducing temperature and relative humidity variations i.e. creating a passive 

buffering effect (Allinson and Hall, 2010, Cerolini et al., 2009, Hameury, 2005, 

Künzel et al., 2004, Osanyintola and Simonson, 2006, Ramos et al., 2010). 

Conventional humidity buffering materials (i.e. timber, natural fibres and clay) can 

require large material depths to effectively eliminate any significant variation in 

relative humidity as a function of time i.e. passive humidity buffering, incurring 

interior space losses. Many desiccants (i.e. natural and synthetic zeolites, molecular 

sieves and silica gels) have high specific surface area (SSA) and high porosity and 

exhibit good moisture vapour absorption however, predefined microstructural 

characteristics result in set levels of moisture uptake and storage (Gao et al., 2006, 

Ng et al., 2001). 

Hall and Allinson (2009a) concluded that it is not the moisture storage capacity of 
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hygrothermal materials, but the rate at which they respond to fluctuations in 

humidity variations that is key to providing humidity buffering. The performance of 

hygrothermal materials in this regard is related to optimising their response rate 

through manipulation of the pore structure to match any anticipated humidity 

fluctuations. It would therefore be advantageous to have a material that exhibits high 

specific surface area and high porosity to provide elevated moisture vapour storage 

levels, but where the pore geometry could be precision engineered to alter its 

hygrothermal behaviour and response rate, providing humidity buffering to suit 

different climates i.e. fluctuations of RH. With regard to health and safety in a 

domestic context, a material that is inorganic, non-combustible and inert would also 

be advantageous. 

Mesoporous Silica (MS) materials are inorganic and exhibit very high porosities 

(typically > 90%) coupled with large specific surface areas (from 750 ï 1500 m
2
/g). 

More importantly, they can also be synthesized using the surfactant method (see: 

Section 3.1.1) with a finely controlled, pre-determined pore geometry i.e. shape, 

diameter (Jana et al., 2004). 

1.3 Overall Aim  

The aim for this research is to characterise the functional properties of inorganic, 

nano-structured surface coatings and correlate these with mesopore geometry to 

produce desired hygrothermal behavioural response and buffering of changes in 

climatic variables within a closed environment.  

 



CHAPTER 1: Introduction 

S Casey  6 

 

1.4 Hypothesis 

The hypothesis as set out for this research is threefold;  

1. Pore geometry of mesoporous silica materials can be correlated with their 

hygrothermal behaviour.  

2. 1D hygrothermal numerical software (WUFI Pro v 5.1) can be used as a 

material selection tool by ótuningó material properties.  

3. Mesoporous silica materials can provide occupant comfort in closed spaces 

by maintaining relative humidity levels within ASHRAE comfort limits.  

1.5 Research Objectives 

To achieve this aim, the following research objectives have been set out; 

1. To identify (specific) candidate desiccant materials and appropriate 

experimental characterisation techniques, a state of the art literature review 

on the current use of hygrothermal materials, behaviour, modelling, theory 

and research in the field will be undertaken. 

2. To correlate pore geometry with hygrothermal behaviour by producing a 

ótemplate of functional propertiesô using experimental characterisation of the 

hygrothermal functional properties and pore networks of the materials as set 

out in Section 1.3. 

3. To determine the materials hygrothermal behaviour in terms of moisture 

uptake and response rate and tune behavioural response to climatic variables 

through parametric analysis, using the 1D hygrothermal numerical modelling 

package WUFI Pro v 5.1 (IBP, 2012b) validated using 1D physical 

modelling. 
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4. To determine RH buffering potential when using hygrothermal materials in a 

notional domestic building environment under different occupancies and 

ventilation scenarios with both parametrically varied and representative 

external climates using the 3D energetic numerical modelling package WUFI 

Plus v2.1.1.73 (IBP, 2012a) validated using 3D physical models.  

5. To determine occupant comfort conditions and any potential HCHD energy 

savings when using hygrothermal materials compared to standard retrofitting 

cases using the validated WUFI Plus v2.1.1.73 model. 

1.6 Limitations of the study 

Due to the time scale of the research, limitations will be set for this study. This 

research project is primarily focussed on gaining fundamental understanding of the 

structure-property relationships of desiccants so that response rate of interior 

hygrothermal material coatings can be tuned to suit varying climatic conditions. In 

this regard, this study does not focus on research into the manufacturing methods, 

including R&D, which may be used to produce a useable product for various 

markets. Areas such as product appearance (colour, texture etc.) and costs are also 

excluded, allowing the research to focus primarily on the functionality of the 

desiccants. 

For the numerical modelling used in this research it is assumed a thin powder 

coating of hygrothermal material will be used that will be attached to the buildingôs 

interior envelope wall. There are several manufacturing methods that could be used 

to apply this coating:  

¶ bonding to a supportive substrate surface using glue 

¶ sintering of the particles to form a rigid lattice 
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¶ containment of the powder particles within a permeable enclosure 

Manufacturing methods and product development including investigation of 

mechanical and structural properties of the coatings (i.e. stiffness, compressive 

strength etc.) however, does not form part of this research.  
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2 CHAPTER 2: Scientific Background 

2.1 Introduction   

This chapter provides a background to the research including a state of the art 

literature review on the current use of hygrothermal materials, behaviour, modelling, 

theory and research in the field, whilst also setting out the impetus for the use of MS 

materials over more traditional materials supported by relevant fundamental theory. 

2.2 Psychrometrics 

The air that occupies any environment is composed of many individual gases 

including nitrogen, oxygen, carbon dioxide and water vapour. There are also other 

constituents including other gases, air borne contaminants and pollutants (i.e. 

particulate matter and dust mites etc.). The field of psychrometrics is the study of the 

thermodynamic properties of air containing water vapour i.e. moist air. 

There are many terms associated with the study of moist air, with definitions often 

being misused. As there is extensive use of these terms in this thesis clarification is 

provided here: 

¶ Dry Air  is atmospheric air without any water vapour or contaminants present. 

¶ Moist air  can be defined as a binary mixture of dry air and water vapour. The 

amount of water vapour present can vary from zero (no water vapour) to a 

maximum level (saturated) that is dependent on temperature and pressure 

(ASHRAE, 2009a).  

¶ Humidity Ratio  (W). Can be referred to as the mixing ratio or moisture content 

and is defined as the ratio of the mass of water vapour, mv to the mass of ódryô 
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air, ma in the mixture: 

 7
ά

ά
 Eq 2.1  

¶ Absolute Humidity (dV) or vapour concentration is the mass of water vapour, mv 

per unit volume of ómoistô air, Va and is given by: 

 Ὠ
ά

ὠ
 Eq 2.2  

¶ Atmospheric Pressure (P0) is the pressure exerted by the air surrounding us and 

can vary with temperature, altitude, localised geographical position and weather 

conditions. At sea level (altitude = 0 m) and T = 15̄ C P0 = 101.325 kPa (Kaye 

and Laby, 2012).  

¶ Saturation Vapour Pressure (psat) can be defined as the upper limit for a given 

temperature at which an equilibrium exists between the condensed and vapour 

water phases (Trechsel, 1994). For T > 0̄ C, psat can be obtained from moist air 

property tables or calculated using Eq. 2.3 (ASHRAE, 2009a): 

 ÌÎ ὴ ὅȾὝ ὅ ὅὝ ὅὝ ὅὝ ὅ ÌÎ Ὕ Eq 2.3  

Where T is absolute temperature ( C̄ + 273), C1 = -5.80Ā10
3
, C2 = 1.392, C3 = -

4.86Ā10
-2

, C4 = 4.18Ā10
-5

, C5 = -1.45Ā10
-8

 and C6 = 6.546. 

¶ Partial Vapour Pressure (pv) is defined as the partial pressure of the water 

vapour portion of the moist air mixture. For any given T, pv cannot exceed psat. 

When pv = psat the moist air is described as saturated air. 

¶ Partial Air Pressure (pa) is the partial pressure of the dry air portion of the 

moist air mixture such that the total pressure of the mixture is the sum of the two 
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partial pressures, i.e. pa + pv.  

¶ Relative humidity (RH) can be defined as the ratio of partial vapour pressure to 

saturation vapour pressure within a finite volume at a given temperature. RH is 

commonly expressed as a percentage and it follows that at its highest level (RH = 

100%), the air is saturated. RH can be calculated using: 

 ὙὌ
ὴ

ὴ
Ͻρππ Eq 2.4  

¶ Dry Bulb Temperature (Tdb) is a measure of the heat content (i.e. internal 

energies of the gas and vapour) of ambient air. It can have units of Celsius (̄C) 

or Fahrenheit (̄F) with SI units of Kelvin (K = ̄C + 273.15). 

¶ Wet Bulb Temperature (Twb) is the temperature of adiabatic saturation. If a 

bulb thermometer is wrapped in a saturated wick (continuous water supply), 

evaporation will occur at constant T and RH from the wick until an equilibrium is 

reached with the surrounding air. When placed alongside a bare bulb 

thermometer, a depression in measured Twb will be evident in the wet-bulb due to 

evaporative cooling at the bulb surface. The ®DT from Tdb to Twb corresponds to 

relative humidity (%RH). For example, if Twb = Tdb then RH = 100% with no 

evaporation possible as the air is already at saturation. 

¶ Dew-Point (Dp) is the temperature at which the partial vapour pressure is equal 

to the saturation vapour pressure. It is the temperature at which condensation 

begins to occur under normal conditions when the moist air is cooled at constant 

pressure (BSi, 1981). At RH = 100% then Dp = Tdb. 

The psychrometric chart is used as a tool to ómapô changes in the conditions of moist 

air.  It is a plot of the relationship between Tdb, Twb and RH and can be used to 

determine any of the other psychrometric conditions. On the simplified chart (see 
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Figure 2), if the two parameters Tdb = 27̄ C and RH = 30% are chosen, the values for 

Twb and W can be estimated at å7.5̄ C and å0.0065 kg/kg respectively. This 

compares well with calculated values of 7.99C̄ and 0.0066 kg/kg. The chart can also 

be utilised to display extended periods of data for occurrence of Tdb and RH. 

 
Figure 2 - A simplified psychrometric chart. 

2.3 Occupant Comfort 

Occupant/ thermal comfort is a personôs perceived comfort level in relation to their 

environment. According to the standard BS EN ISO 7730:2005 (BSi, 2005a) comfort 

can be defined as the condition of mind which expresses satisfaction with the 

thermal environment. In the context of this research the environment is a closed 

space (see: Section 1.1). Comfort is not determined from temperature only (Parsons, 

2003), but from the interaction of other parameters including: 

1. air temperature 

2. mean radiant temperature 
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3. relative humidity 

4. air velocity 

5. metabolic heat generation  

6. clothing  

The human body is constantly subjected to the influences of the environmental 

factors (1, 2, 3 and 4) with utilisation of the personal factors (5 and 6) to achieve 

comfort. In an attempt to regulate itself at a constant temperature, the body uses 

biological thermoregulation processes to act against these influences; evaporation of 

sweat, respiratory evaporation, conduction, convection via the blood, radiation and 

metabolic storage. The thermoregulation process may be represented by the heat 

balance equation (ASHRAE, 2009a). 

 ὓ ὡ ή ή Ὓ Eq 2.5  

Where M is the total metabolic heat production rate, W is the rate of mechanical 

work accomplished, qsk and qres are the rates of heat loss from the skin and 

respiration respectively and S is the heat stored (all units are W/m
2
). Whilst it is 

possible to easily measure and monitor the environmental and personal factors 

contributing towards thermal comfort, it is less simple to measure the physiological 

phenomena as comfort is a subjective measure. There are two measures for comfort 

analysis:  

1. Personal and environmental -  how the person feels (hot/cold)  

2. Acceptance and/or tolerance of the thermal environment.  

The Predicted Mean Vote (PMV) and Percentage of People Dissatisfied (PPD) are 

used to give a qualitative indication of the personôs response. PMV and PPD can be 

calculated using the standard BS EN ISO 7730 (BSi, 2005a), whilst subjective 
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judgement scales can be found in BS EN ISO 10551 (BSi, 2001a). 

In addition to thermal comfort, there is also an expectation that an acceptable level of 

indoor air quality (IAQ), with respect to pollution, be provided for occupants. The 

causes of pollution will generally stem from one of (or a combination of) poorly 

maintained environments, poor ventilation, biological contamination, internal 

pollutant generation and external pollution ingress (Maroni et al., 1995). Typical 

pollutants found in the indoor environment can be seen in Table 1. The affect of poor 

IAQ can be manifested as poor health, with symptoms including dryness of the eyes, 

nasal cavity, mucous membranes and skin i.e. ñsick building syndromeò caused by 

reduced levels of RH, whilst elevated RH levels can lead to irritation of the upper 

respiratory including nasal congestion, sneezing, runny or itchy nose and throat 

irritation, as well as coughing, wheezing and asthma. Other health effects such as 

tiredness and headaches are also common. 

Type Pollutant Source 

Organic Volatile Organic Compounds (VOCs) Cleaning agents, Cosmetics, 

Furnishings, Tobacco 

 Pesticides Agricultural spraying 

 Formaldehyde Tobacco, Lacquers,  Varnish 

Inorganic Carbon Dioxide (CO2) Breathing, Combustion 

 Carbon Monoxide (CO) Combustion, Tobacco 

 Nitrogen Dioxide (NO2) Combustion, Tobacco 

Physical Particulate Matter (PM) Combustion, Biological, 

Tobacco, Aerosols 

 Man Made Mineral Fibre (MMMF) Furnishings, Insulation 

Biological Dust Mites Bedding, Furnishings 

 Allergens Pets, Vermin, Pollen 

 Bacteria HVAC, Humans, Animals, 

Dust Aerosols 

 Fungi/Mould Damp Organic Matter 

Table 1 - Types and sources of indoor pollutants (Spengler et al., 2001). 

As discussed in Section 1.1, an occupied closed environment can result in increased 

fluctuations of T and RH. Combining these can lead to moisture accumulation within 
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the indoor space due to decreased air exchange with the exterior environment, 

reducing IAQ. The relative impact of various pollutants, their associated biological 

problems and sources across the RH range can be seen in Figure 3. For this research 

the ASHRAE comfort zone is described as the acceptable range of RH at T å 23̄ C 

that will provide occupant comfort whilst minimising pollution and improve IAQ. It 

should be noted that whilst the ASHRAE standard (55-2004) recommends an upper 

limit RH = 70% at 23̄C, it does not specify a lower RH limit but recommends a 

minimum dew-point temperature of 2̄C. Many studies have suggested various RH 

ócomfort bandsô such as 30% to 60% at 18 to 24°C (Crump et al., 2002), 40% to 

60% (Hines et al., 1993) and 40% to 70% (Tsutsumi et al., 2007). The lower limit of 

RH = 40%, as suggested by Tsutsumi has been adopted here for a UK climate. 

 
Figure 3 - Factors influencing health and hygiene showing comfort range for RHie 

(40% to 70%). Adapted from: (Simonson et al., 2001).  

 

Guidelines for IAQ measurement can be found in the international standard BS ISO 

16814:2008 (BSi, 2008). With IAQ expressed either in terms of the health risk to the 

occupants or in terms of the acceptability, based on the occupants Perception of Air 

Quality (PAQ). The PAQ method of expressing IAQ uses subjective scales derived 
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from questionnaires similar to those used for PPD. 

2.4 Hygric  Theory 

As discussed in Section 1.2, there are functional properties that influence the hygric 

behaviour of a material. These include bulk density, ɟbulk apparent porosity, n 

sorption isotherm(s) for water vapour and capillary water, water vapour 

permeability, ŭ and the liquid water absorption, Aw. The following sections present 

theory relevant to these properties. 

2.4.1 Porosity 

A material that is described as hygroscopic (i.e. porous and permeable) will allow 

moisture to be transported into and within it. In order to accurately determine the 

moisture content of any specific material, it is necessary to understand the pore 

structure of that material. Considering a finite volume of porous material as a 

system, the soil model (Barnes, 2000) can be adapted from soil mechanics principles 

to show the relationship between mass, volume and constituents (see: Figure 4). 

Moisture entering the system can be classified as óabsorbedô whilst moisture leaving 

the system is classified as ódesorbedô.  

A material will have a total volume, Vt made up of solids, Vs and void spaces, Vv. 

When a liquid (i.e. water) enters the system it can displace any gas (i.e. air) present, 

Vg with an equivalent amount of liquid.  Likewise the material has masses equivalent 

to the volumes with the exception that the mass of air is assumed to be zero, ma = 0 

where the total mass, mt as the sum of the solid mass, ms and liquid mass, ml only. 
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Figure 4 - A three phase model for porous materials adapted from: (Barnes, 2000). 

There are many types of pores that are common in materials and a description of 

these are shown in Figure 5 and classified in Table 2. 

 

Figure 5 - Cross section of a porous solid showing typical pore types. 
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Pore Type Designation in Figure 5 

Open b, c, d, e, f 

Closed a 

Blind / Saccate b, f 

Through c, d 

Cylindrical c, f 

Funnel d 

Ink-bottle b 

Table 2 - Range of pore types and shapes (IUPAC, 1994) 

Porosity can be defined as the ratio of the total pore volume to the apparent volume 

of the particle or powder (IUPAC, 1994). It is important to note that this excludes 

inter-particle voids. In this research it is the open porosity that will be stated at all 

times (i.e. the volume of pores that are accessible to moisture vapour) as it is the 

open porosity that determines the maximum water content at saturation, wc of a 

material. Open porosity, n can be calculated if the solid density, ɟs and bulk density, 

ɟbulk are known. Solid density will be measured using gas pycnometry (see: Section 

3.2.1.1) and bulk density will be measured using gravimetric testing (see: Section 

3.2.1.2). Equation 2.6 is used to calculate n (%): 

 ὲ ρ
”

”
Ͻρππ Eq 2.6  

According to the International Union of Pure and Applied Chemistry (IUPAC) 

(McNaught and Wilkinson, 1997, Lal and Shukla, 2004) pores can be characterised 

as shown in Table 3.  

Pore Description Pore Size 

Ultra-micropore Ò 0.7nm  

Micropore Ò 2nm 

Mesopore Ó 2nm, Ò 50nm 

Macropore  Ó 50nm 

Table 3 ï Range and classification of pore sizes.  
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2.4.2 Moisture Storage 

Moisture can be stored in a material as vapour, liquid or solid (ice) or a mixture of all 

three states. Depending on the environmental conditions, the moisture can undergo 

phase transitions between these states. As the relative humidity of air surrounding a 

hygroscopic, capillary active material increases, the moisture content, w of the 

material will also increase due to vapour and liquid transfer (i.e. absorption) to the 

material and storage within the pore network. The classification of this moisture 

within the porous material is governed by internal void geometry and electrostatic 

surface charge for a given temperature and partial vapour pressure (Hall and 

Allinson, 2009a). A material will absorb and store moisture in three domains;  

1. Hygroscopic domain - Moisture vapour absorption  

2. Capillary domain ï Liquid water absorption  

3. Gravitational (Super Saturated) domain ï Liquid water absorption under an 

external pressure gradient. 

 
Figure 6 - A typical moisture vapour isotherm showing pore filling stages and 

transport mechanisms 
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Moisture vapour absorption data can be represented with a sorption isotherm (See: 

Figure 6) which defines the relationship between the external psychrometric 

conditions (i.e. RH and T) and moisture uptake. The absorption process occurs 

through monolayer adsorption to the pore walls (A), followed by multi-molecular 

formation (B) as pv increases followed by pore filling (C) occurring due to capillary 

(Kelvin) condensation. There are a number of different isotherm types which are 

characteristic of the porous nature of the materials being tested (see: Figure 7).  

A Type I isotherm typically has a concave curve, is usually reversible i.e. no 

hysteresis, and has a defined limiting value as p/p0 Ÿ 1. Type I isotherms are 

representative of microporous solids with relatively small external surfaces where 

the limiting uptake value is determined by the accessible micropore volume rather 

than by the internal surface area. Type II isotherms display unrestricted monolayer-

multilayer adsorption as evidenced by the increasing adsorption as p/p0 Ÿ 1 and are 

representative of a non-porous or macroporous adsorbent. Point B on the isotherm 

indicates the stage at which monolayer adsorption is complete and multilayer 

adsorption begins. Type III isotherms with convex curves over the entire range do 

not exhibit a Point B and are not common.  

Typically, for solids with pores in the mesoporous range and a tightly controlled 

mean pore diameter, a type IV isotherm would be expected. Type IV isotherms 

usually have characteristic hysteresis loops, which are associated with capillary 

condensation taking place in mesopores, and have a limiting uptake as p/p0 Ÿ 1. 

Type V isotherms display characteristics common to Type III and Type IV with 

weak adsorbent/adsorbate interaction but strong capillary condensation and 

associated hysteresis. Type VI isotherms are characteristic of stepwise multilayer 

adsorption on a uniform non-porous surface and are not common. Classification of 
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the full range of isotherms can be found in British and international standards (BSi, 

1996, IUPAC, 2004). 

 
Figure 7 ï Adsorption isotherm classification. Adapted from: (Sing et al., 1985) 

As discussed, some isotherms display hysteresis loops between the adsorption and 

desorption branches of the isotherm. This hysteresis is usually associated with 

capillary condensation in the mesoporous solids however it can also occur due to 

adsorption of the moisture vapour on the pore walls having a high enthalpy of 

vaporisation, requiring greater energy to desorb from the pore volume when ȹp/p0 is 

negative. As with isotherm shape, hysteresis can be indicative of many pore types. 

H1 hysteresis loops (see: Figure 8) typically seen in mesoporous solids are indicative 

of agglomerates (i.e. rigidly bound clusters of particles) and have near vertical and 

parallel isotherm branches due to their narrow pore size distribution. H2 loops have 

traditionally been associated with the difference between the condensation and 

evaporation mechanisms occurring within óink-bottleô type pores (see: Section 2.4.1) 

and are difficult to interpret correctly. Type H3 hysteresis loops are associated with 

Type III isotherm whilst H4 loops are associated with Type I isotherms. These loops 
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are often indicative of aggregates of plate-like particles which give rise to slit-shaped 

pores within the material. Many microporous solids display non reversible low 

pressure hysteresis as p/p0 Ÿ 0 as indicated by the dashed line in Figure 8. This can 

be due to the adsorption of molecules through pore entrances of about the same 

width as that of the adsorbate molecule or in some cases irreversible chemisorption 

of the molecules with the pore wall. Regeneration of these solids to a dry state is 

only possible by outgassing at high temperatures. 

 

Figure 8 - Isotherm hysteresis loop classification. Adapted from: (Sing et al., 1985) 

In the hygroscopic region of the adsorption isotherm, below the residual moisture 

content, (w < wr) (see: Figure 6) moisture is adsorbed as vapour through inter-

molecular adhesion to the pore wall surfaces (i.e. adsorbent ï adsorbate) and 

cohesion to other molecules (i.e. adsorbate ï adsorbate). This is due to both 

dispersion and dipole-dipole forces (known as Van der Waals forces and including 

hydrogen bonding). Where the adsorbent ï adsorbate forces are greater than the 

intermolecular forces of the water molecules, adsorbent or surface wetting occurs. 

The saturation vapour pressure, psat above a flat surface of liquid water is dependent 

upon the pressure applied by the air surrounding it (at r = Ð) and at a given DPa the 

psat can be calculated using Eq. 2.7 (Atkins and de Paula, 2006): 
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 ὴ ὴ ᶻὩ ЎȾ  Eq 2.7  

Equation 2.7 can be expanded to give Kelvinôs equation (see: Eq. 2.8) where, in a 

pore of radius r, the water will form a meniscus and be curved, also to a known 

radius, r. The condition ὴ  <  ὴ ᶻ  now exists where the saturation vapour pressure 

of liquid water inside the pore is less than that for a flat surface.  

 ὴ ὴ ᶻὩ ЎȾ  Eq 2.8  

The Kelvin equation can be rearranged to determine either the critical radius of a 

void (rcrit) for a given RH (pv/psat Ā 100) or the RH for a given rcrit at which 

condensation occurs in the pores (see Eq. 2.9). According to Kelvinôs law vapour 

entering a porous solid will begin to condense and pore filling occurs when the pore 

radius r is less than the critical pore radius (r < r crit). 

 ὙὌϷ ÅØÐ
ςɾ

Ò

ρ

Ὑ ”Ὕ
Ͻρππ Eq 2.9  

If the RH surrounding the solid increases with a corresponding increase of moisture 

vapour within the pore volume then it follows that rcrit also increases leading to 

greater pore condensation (filling) and therefore increased w. There is an equilibrium 

moisture content (EMC) reached for any given value of RH (0 to 100%) at a constant 

T for a particular material. EMC can be plotted against increasing (adsorption) and 

decreasing (desorption) levels of RH to give a materialôs sorption isotherm. The 

moisture storage function ɝu, is calculated from the slope of the linear portion of the 

sorption isotherm below w = w80 as, when RH passes 80% capillary condensation 

increasing more rapidly.  

In the capillary region (wr < w < wc), as the vapour pressure increases above the 
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hygroscopic range, where RH Ÿ 100%, capillarity becomes dominant increasing 

moisture storage. Moisture content within the pores increases due to capillary action 

where the water rises in the pore to achieve pressure equilibrium with the pore air 

(see: Section 2.4.3.3). In the gravitational region (wc < w < ws), where capillary 

potential approaches zero, Y Ÿ 0 the material is at capillary saturation. As no more 

moisture can enter the volume through capillarity, any further moisture storage can 

only occur with increased external pressure or by gravity (Hall and Allinson, 2009a).  

2.4.3 Moisture Transport  

As a fluid is absorbed, the nature of the porous network (geometry, radius, surface 

charge and temperature) determines its fluid phase and its associated transport 

mechanism. Similarly to moisture storage, there are different forms of mass transport 

mechanisms, vapour, capillary and solid transport. In the context of this research 

vapour and capillary transport will be considered. For any transport mechanism to 

occur there must be a driving potential. Table 4 contains the principle driving 

potentials for mass transport. 

Transport Mechanism Fluid State Driving Potential 

Vapour diffusion Vapour Vapour Pressure (ȹRH) 

Surface diffusion Adsorbate Concentration 

Capillary flow Liquid Capillary potential, Ɋ 

Gravitational flow Liquid Height (pressure) 

Table 4 - Principle moisture mechanisms, states and driving potentials. Adapted 

from: (Trechsel, 1994) 

2.4.3.1 Vapour Transport  

Due to the complex pore structures found in most materials, vapour transport may 

occur by any one, or a combination of: 

¶ Fickian diffusion 
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¶ Knudsen diffusion 

¶ Surface diffusion 

In general, Fickian diffusion occurs in larger pore sizes (macropores) that are air 

filled, with Knudsen diffusion occurring in very small pores. Surface diffusion 

occurs along the surfaces of the pore walls. 

The pore classification mentioned in the Section 2.4.1 is derived from the adsorption 

performance of a pore. In micropores the overlapping surface forces are dominant, 

whereas the surface force and capillary forces pervade in the mesoporous range 

(Roque-Malherbe, 2007). In the macroporous range the pore geometry contributes 

little to the adsorption due to the reduced specific surface area and greater pore size.  

 
Figure 9 - Moisture vapour molecular diffusion mechanisms in porous solids. 

Figure 9 shows that in larger pores (A) transport is by Fickian diffusion as the pore 

radius is larger than the mean molecular free path (MMFP) which is the average 

distance it travels before colliding with another molecule (Bird  et al., 2001). Here 
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collisions between molecules are more frequent than collisions with the pore walls. 

As the pore size decreases (B) Knudsen diffusion becomes dominant where the 

MMFP increases and collisions with the pore walls becomes more frequent. 

Monolayer and multilayer adsorption can be seen in C and D with surface diffusion 

occurring as the molecules migrate along the pore walls. The molecules can also fill 

the pore (E) due to capillary condensation. 

Fickian or molecular diffusion is the redistribution of a gas from a high 

concentration to a low concentration (ȹpv) through pores or void spaces in or above 

the macropore range. Fickôs law of diffusion is given as: 

 Ὣȟ Ὀ
ὅ

ὼ
 Eq 2.10  

Where Ὣȟ  is the mass flux, Ὀ is the coefficient of diffusion and ὅ is the mass 

concentration of water vapour in air. In ideal gas behaviour ὅ can be expressed in 

terms of pressure; ὅ ὴὓ ȾὙὝ. Substituting this into Eq. 2.10 gives: 

 Ὣȟ Ὀ
ὓ

ὙὝ

ὴ

ὼ
 Eq 2.11  

Where Mw is the molar mass of water.  The water vapour permeability of still air, ŭa 

is given as ὈϽὓ ȾὙὝ. This allows Fickôs law to be rewritten for water vapour 

flow in quiescent air as: 

 Ὣȟ 
ὴ

ὼ
 Eq 2.12  

The vapour permeability of a specific material, ŭ is the moisture transport that occurs 

within the material via Fickian diffusion. The vapour flow is given by:  
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 Ὣ 
ὴ

ὼ
 Eq 2.13  

In practice the product of the materials water vapour permeance, W and its thickness, 

d (see: Eq. 2.15) is used to calculate ŭ. The water vapour permeance is defined as the 

water vapour flow rate, G (i.e. ȹm/t) through the material divided by the product of 

the water vapour pressure difference, ȹpv between its two exposed surfaces and the 

exposed surface area, A: 

 ὡ
Ὣ

ὃϽЎὴ
 Eq 2.14  

  ὡϽὨ Eq 2.15  

The water vapour diffusion resistance factor, ɛ is also used to indicate a materialôs 

permeability to moisture vapour. It can be defined as the ratio of water vapour 

permeability of air, ŭair to that of the material, ŭ (See: Eq. 2.17). The resistance factor 

indicates the ratio of a materialôs vapour resistance to that of an equally thick layer 

of quiescent air under identical conditions. Calculation of ɛ is necessary as it is used 

as a primary material property input in the WUFI numerical models used later. Use 

of ɛ requires the calculation of ŭair using Eq. 2.16 and Eq. 2.17 (Trechsel, 1994).  

 ‘



 Eq 2.16  
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Eq 2.17  

2.4.3.2 Transition from Vapour to Capillary  Transfer 

As discussed previously, when the RH and thus w increases, a transition from the 

vapour diffusion to capillary flow occurs (see: Figure 10). Considering a typical 
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winter scenario, it can be seen from the figure that, even when interior RH levels 

(RHint) are lower than the exterior (RHext), Fickian diffusion will occur from interior 

to exterior due to the higher T and thus pv in the interior (Künzel, 1995). As w 

increases in the pore (w Ÿ wr), monolayer and multilayer adsorption occurs with 

surface diffusion occurring in the opposite direction to the vapour diffusion as the 

molecules migrate along the pore walls from the thicker sorbate film on the exterior 

side (higher RH) to the thinner interior film. With the onset of capillary flow as w 

increases (wr < w < wc) moisture flow is completely reversed from vapour diffusion. 

 
Figure 10 - Graphical representation showing the reversal of moisture transfer during 

the transition from vapour diffusion to capillary flow in a pore. Adapted from: 

(Künzel, 1995). 

2.4.3.3 Capillary Transfer 

Capillary flow or capillarity (sometimes referred to as suction) is the process of 

water rising in a capillary or pore in order to equilibrate the pressure differential 

caused by psat at the curved surface of water inside the pore being less than that of 
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the surrounding air. In a pore or capillary tube, the adhesion forces at the surface of 

the pore wall are greater than the intermolecular cohesion forces within the liquid. 

This gives rise to the characteristic óupwardô curve (see: Figure 11). Increased 

surface tension alongside an increased ratio of adhesion to cohesion will result in 

increased capillarity. 

 

Figure 11 - Capillary rise in a pore showing meniscus formation. 

The height of a water column in a pore can be calculated using Eq. 2.18 (Hall and 

Hoff, 2002) assuming pressure equilibrium has been reached (ὖ ὖ): 

 Ὤ
ς

ὶ”Ὣ
  Eq 2.18  

Liquid water absorption or water absorption coefficient, Aw by capillary action, is the 

ability of a homogenous permeable material to absorb and transfer liquid water. It 

can be defined as the mass of water absorbed by a sample per exposed surface area 

and per square root of time (kg/m
2
s

0.5
).  
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2.5 Thermal Theory 

As outlined in Section 1.2 the dry-state thermal conductivity, ɚ and specific heat 

capacity, cp (including their moisture-dependencies, ɚ* and cp* respectively) are 

functional properties of a material that contribute to its hygrothermal behaviour. 

Theory relevant to these properties is presented in the following sections. 

2.5.1 Heat Transfer  

Although heat transfer occurs through many mechanisms within the context of this 

research it is transfer by conduction that is of interest. Heat transfer via convection 

and thermal radiation are considered during the numerical modelling however, it was 

not necessary to investigate these properties experimentally. Heat transfer by 

conduction, Q is the transfer of energy between neighbouring molecules due to a 

temperature gradient (Baehr and Stephan, 2006). Thermal conductivity, l is the 

ability of a material to conduct energy in the form of heat. It can be defined as the 

quantity of heat transmitted, due to unit temperature gradient, in unit time under 

steady conditions in a direction normal to a surface of unit area, when the heat 

transfer is dependent only on the temperature gradient  (Kaye and Laby, 1995). It is 

derived from Fourierôs law (see: Figure 12) and can be expressed by Eq. 2.19: 

 l
ήὼ

ЎὝ
 Eq 2.19  

Where qx is the heat flow, x is the depth and ȹT is the temperature difference.  
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Figure 12 - Figure illustrating Fourier's law of steady state heat conduction. Adapted 

from: (Incropera et al., 2007). 

From the definition it can be seen that l is dependent on the surrounding 

psychrometric conditions. In a hygroscopic, permeable material an increase in RH 

results in an increase in w (see: Section 2.4.2). Increasing w, results in gradual 

capillary filling of the void spaces with formation of inter-particle menisci (Hall and 

Allinson, 2009b). Due to the higher thermal conductivity of liquid moisture over that 

of air, and the increased inter-particle contact from menisci bridging, there is an 

increase in the heat flow, qx of the moist sample (see: Figure 13).  

 
Figure 13 - Figure illustrating increased heat flow due to increasing moisture 

content. 

 

x 
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A greater increase in heat flow, qx can also occur due to convective heat transfer in 

the vapour phase within pore networks. As discussed in Hall M, 2010 when a 

temperature differential (ȹT = T2 ï T1) is placed across a material, moisture vapour 

on the higher temperature side (T2) will vaporise and migrate towards the cooler side 

(T1) via diffusion (see: Section 2.4.3.2). This combination of sensible transport via 

conduction in the material, convection in the vapour and latent transport when the 

vapour condenses at T1 significantly increases qx. This can be further increased as ȹT 

increases where liquid water can accumulate at T1 resulting in increased capillary 

potential, Ɋ and liquid transfer back to T2. These mechanisms can become cyclic 

resulting in significantly higher qx over that of a dry or inter particle wetted material. 

The thermal diffusivity, a is the rate at which heat diffuses through the material via 

conduction. Materials with high diffusivity will reach equilibrium with their 

surrounding environment more quickly. The diffusivity is a function of thermal 

conductivity, bulk density (for hygroscopic materials) and specific heat capacity: 

 
‗

” ὧ
 Eq 2.20  

The thermal effusivity, b is the magnitude of heat transferred on contact i.e. when 

touching a piece of steel and a piece of plastic, at equal temperatures, the steel will 

feel colder as there is a greater magnitude of heat transfer on contact due to its higher 

effusivity over that of the plastic. It can be calculated using Eq. 2.21: 

  ‗” ὧ Eq 2.21  

2.5.2 Heat Storage 

Specific heat capacity (at constant pressure), cp is the ability of a material of selected 
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mass to store energy in the form of heat. It can be defined as the quantity of heat 

necessary to raise the temperature of a unit mass of material by 1 K at constant 

pressure. It can be expressed by Eq. 2.22;  

 ὧ ά
Ўὗ

ЎὝ
 Eq 2.22  

Whilst it is the sensible heat storage of materials that is of interest here, a brief 

description of the theory surrounding latent heat storage is also presented. Sensible 

heat storage, Qs is the amount of heat stored due to heat transfer to a substance 

resulting in a temperature increase, as in (A), Figure 14. If there is an increase from 

an initial temperature, Ti to a final temperature, Tf molecules within a material will 

possess higher kinetic energy in the form of heat. Sensible heat is a function of the 

specific heat and mass of a substance. Most common building materials can be used 

as sensible heat stores providing cp is sufficiently high. The formula for Qs is given 

as: 

 ὗ άὧ Ὕ Ὕ  Eq 2.23  

Latent heat is the internal energy change associated with a change of phase of a 

material due to a temperature change. This phase change can occur as solid-liquid, 

liquid-gas or solid-solid. At the molecular level the internal energy is associated with 

the intermolecular forces between molecules. These forces are progressively weaker 

from solid ï liquid ï gas. Phase change will occur at an onset temperature, To when 

sufficient energy is added to a solid (or liquid) to break these intermolecular forces 

causing the substance to change to a gas. The portion of added energy is stored in the 

substance in the gaseous state and is termed the latent heat. It is difficult to achieve 

an isothermal phase change in experimental conditions where there is usually a small 
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DT due to thermal gradients (see: B, Figure 14). Materials that undergo phase change 

(PCMs) can be used to either store energy (heat) with little DT, or to control DT. The 

latent heat is a function of the sensible and latent phase and is given by: 

 ὗ άὧὝ Ὕ ὥɝὬ ὧὝ Ὕ  Eq 2.24  

Where ὥ  is the fraction of the material melted and ɝὬ  is the change in enthalpy 

associated with the phase change. 

 
Figure 14 - Figure showing sensible and latent heat storage. 

2.6 Hygric Materials 

Figure 15 contains a summary of many construction materials categorized by 

hygrothermal function. Both the óhygrothermalô and óthermalô sets of materials are 

routinely evidenced as building envelope materials (both internally and externally in 

certain cases) however, it is not common to discover those materials classed as 

óhygricô within the context of building physics.  

As stated in Section 2.4.1 only solids that have a porous network which is available 

for the adsorption of moisture vapour from its external environment (i.e. 
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hygroscopic) will be considered as candidate materials for this research. The 

following sections provide a review of the materials that fit this criterion. 

 

Figure 15 - Categorisation of Hygrothermal materials by hygrothermal function. 

2.6.1 Conventional Building Materials  

Many conventional or traditional building materials perform both hygric and thermal 

functions. These materials can be classified as hygrothermal as they provide some 

level of enthalpy buffering i.e. the buffering of sensible and latent heat energy 

simultaneously with moisture (Hall, 2010). They include gypsum plaster, timber, 

concrete, clay/brick and other earthen materials.  

2.6.1.1 Timber  

Timber is a natural fibrous material consisting of lignin, ash-forming minerals and 

extractives formed in a cellular structure (USDA, 1989) occurring in many different 






























































































































































































































































































































































































