
THE UNIVERSITY OF NOTTINGHAM

Department of Electrical and Electronic Engineering

INTER-CHIP COMMUNICATION IN AN ANALOGUE NEURAL

NETWORK UTILISING FREQUENCY DIVISION MULTIPLEXING

by

M. P. Craven B. Sc, M. Sc.

Thesis submitted to the University of Nottingham
for the Degree of Doctor of Philosophy

December 1993

CONTENTS

CONTENTS

ABSTRACT v

ACKNOWLEDGEMENTS vii

CHAPTER 1- INTRODUCTION 1
1.1 Connectivity Issues in VLSI and Neural Networks 1

1.2 Aims and Objectives 4

1.3 Structure of the Thesis 5

1.4 Novel Work 7

CHAPTER 2- ARTIFICIAL NEURAL NETWORKS AND THEIR

HARDWARE IMPLEMENTATIONS 9

2.1 Artificial Neural Network Models and Architectures 9

2.2 Hardware Implementations 15

2.2.1 Interface 16

2.2.2 Synapses and Neurons 17

2.2.3 Interconnect 22

2.2.4 Learning 24

2.2.5 General Issues and Trade-offs in VLSI Implementations 25

2.2.6 State-of-the-Art Analogue Neural Network Systems 27

CHAPTER 3- FREQUENCY DIVISION MULTIPLEXING FOR
ANALOGUE COMMUNICATIONS 33
3.1 Communications, Modulation, and Multiplexing 33
3.2 Multiplexing and Modulation Schemes for Neural Networks 35
3.3 Frequency Division Multiplexing 39
3.4 Neural Network Architecture Utilising FDM 45
3.5 Comparison of FDM and TDM 48

ll

CONTENTS

CHAPTER 4- SOFTWARE SIMULATIONS 56
4.1 Multilayer Perceptron Networks -A Brief Overview 56

4.1.1 The Backpropagation Learning Algorithm 59

4.1.2 The Weight Perturbation Learning Algorithm 63

4.2 Software Requirements for Simulation of Overlap in the MLP 66

4.2.1 Incorporating Overlap into the Standard MLP Model 66

4.2.2 Computer Hardware and Software Considerations 66

4.2.3 Data Acquisition and Storage 67

4.2.4 Network Parameters 68

4.2.5 Optimisation of Computation 71

4.3 Formal Software Design 73

4.4 Simulation Results 79

4.4.1 Three Bit Parity with Floating Point Weights 79

4.4.2 Text-to-Speech with Floating Point Weights 90

4.4.3 Text-to-Speech with Quantized Weights 94

4.4.4 Five Bit Parity comparing Backpropagation

and Weight Perturbation 100

4.5 Discussion 105

CHAPTER 5- VLSI IMPLEMENTATION OF FDM 107

5.1 Simulation Issues in Analogue VLSI 107
5.2 MOS Process Variations, Temperature Gradients, 109

and their Effects on Analogue Circuit Design
5.2.1 Process Variations 109
5.2.2 Temperature Gradients 112

5.3 Operational Transconductance Amplifiers 112
5.3.1 OTA Based Filters and Oscillators 113
5.3.2 Design of Linearised MOS Transconductors 117

in

CONTENTS

CHAPTER 5- (continued)
5.4 OTA Design and Simulation

5.4.1 Route to Silicon

5.4.2 Circuit Design

5.4.3 Layout and Post-layout Simulations

5.4.4 Simulation of OTA Filter and Oscillator Circuits

5.4.5 Post-fabrication Testing

5.4.6 SPICE Level 3 Simulations

5.5 Adaptive Tuning Techniques

5.5.1 Switched Capacitor Filter Limitations

5.5.2 Continuous Time Filters

5.6 VLSI Architecture for FDM Communications

5.7 Discussion

CHAFFER 6- CONCLUSIONS

6.1 Objectives Achieved

6.2 Further Work

6.2.1 Direct Extension of the Research

6.2.2 Other Ideas and Applications

6.3 Summary

REFERENCES

APPENDIX

Publications List

119

119

120

125

130

134

138

142

142

142

146

149

151

151

154

154

158

159

160

171

171

iv

ABSTRACT

ABSTRACT

As advances have been made in semiconductor processing technology, the

number of transistors on a chip has increased out of step with the number of

input/output pins, which has introduced a communications 'bottle-neck' in the

design of computer architectures. This is a major issue in the hardware design

of parallel structures implemented in either digital or analogue VLSI, and is

particularly relevant to the design of neural networks which need to be highly

interconnected.

This work reviews hardware implementations of neural networks, with an

emphasis on analogue implementations, and proposes a new method for

overcoming connectivity constraints, by the use of Frequency Division

Multiplexing (FDM) for the inter-chip communications. In this FDM scheme,

multiple analogue signals are transmitted between chips on a single wire by

modulating them at different frequencies.

The main theoretical work examines the number of signals which can be

packed into an FDM channel, depending on the quality factors of the filters

used for the demultiplexing, and a fractional overlap parameter which was

defined to take into account the inevitable overlapping of filter frequency

responses. It is seen that by increasing the amount of permissible overlap, it

is possible to communicate a larger number of signals in a given bandwidth.

Alternatively, the quality factors of the filters can be reduced, which is

advantageous for hardware implementation. Therefore, it was found necessary

to determine the amount of overlap which might be permissible in a neural

network implementation utilising FDM communications.

V

ABSTRACT

A software simulator is described, which was designed to test the effects of

overlap on Multilayer Perceptron neural networks. Results are presented for

networks trained with the backpropagation algorithm, and with the alternative

weight perturbation algorithm These were carried out using both floating point

and quantised weights to examine the combined effects of overlap and weight

quantisation. It is shown using examples of classification problems, that the

neural network learning is indeed highly tolerent to overlap, such that the

effect on performance (i. e. on convergence or generalisation) is negligible for

fractional overlaps of up to 30%, and some tolerence is achieved for higher

overlaps, before failure eventually occurs. The results of the simulations are

followed up by a closer examination of the mechanism of network failure.

The last section of the thesis investigates the VLSI implementation of the

FDM scheme, and proposes the use of the operational transconductance

amplifier (OTA) as a building block for implementation of the FDM circuitry

in analogue VLSL

A full custom VLSI design of an OTA is presented, which was designed and
fabricated through Eurochip, using HSPICE/Mentor Graphics CAD tools and

the Mietec 2.4p CMOS process. A VLSI architecture for inter-chip FDM is

also proposed, using adaptive tuning of the OTA-C filters and oscillators.

This forms the basis for a program of further work towards the VLSI

realisation of inter-chip FDM, which is outlined in the conclusions chapter.

vi

ACKNOWLIDGENUKN S

ACKNOWLEDGEMENTS

This work has been greatly assisted by the support and enthusiasm of my PhD

advisors, Dr. Mervyn Curtis and Dr. Barrie Hayes-Gill.

In addition, I would like to acknowledge the following people for their input

and discussions throughout the course of this project; Karl Sammut, Jim

Burniston, Mingjun Liu, Kalyani Char, Mark Rouse, Kate Knill, John Nicholls,

Piotr Wielinski, and Laurent Noel.

Thanks for financial support are due to the Science and Engineering Research

Council, and the The Royal Academy of Engineering.

vu

CHAPTER 1 IlVTRODUCTION

CHAPTER 1- INTRODUCTION

This introductory chapter begins by explaining the problem of connectivity

constraints in the implementation of parallel computer architectures,

particularly with respect to neural network hardware. The next section goes on

to put forward the aims and objectives of this thesis, to be espoused in the

following chapters. The structure of the thesis is then described and finally, the

novel ideas presented are summarised.

1.1 Connectivity Issues in VLSI and Neural Networks

Advances made in semiconductor processing technology have reduced the

minimum feature size and increased the sizes of chip possible in recent years,

making possible the design of VLSI circuits with several millions of

transistors. Studies have shown that this figure is likely to increase by an order

of magnitude up to the turn of the centurytu]. However, it is also the case that

packaging technology has not kept pace with process improvements. This has

had the effect of reducing the number of input/output pins on a chip relative

to the transistor count, thus introducing an I/O bottleneck in VLSI design.

The effect is particularly noticable in parallel (concurrent) processing

architectures, due to the large amount of data movement required between

processors, and between processors and memory. Construction of massively
parallel architectures requires the consideration of connectivities at different

levels; the chip level, board level, and system (or 'backplane') level.

Two paradigms have emerged for concurrent processing. The parallel

1

CHAPTER 1 WTRODUCTION

supercomputer paradigm has tended towards the use of a smaller number of

powerful state-of-the-art digital processors, and complex signal routing

strategies. The artificial neural network paradigm tends towards the use of

larger numbers of simpler processors, which may be digital or analogue and

which are highly connected.

In supercomputing and for digital computing in general, the emphasis is on

methods for achieving the highest computation speeds for ever increasing chip

size and complexity"'-Z2. Communicating signals off and between chips is seen

as the main obstacle to increasing overall system speed. The I/O bottleneck

situation has ensured that intense research will continue into packaging

technology over the next decade1l'-51, for both inter-chip and inter-board

connections. The past 10 years have seen a rapid migration from Dual Inline

Packages (DIP) to ceramic Pin Grid Arrays (PGA), Plastic Lead Chip Carriers

(PLCC) and Plastic Quad Flat Packs (PQFP), all developed to increase the

number of available external I/O pads. Surface Mount Technology (SMT) has

been used to achieve higher board level packing of chips. More recently,

Multichip Modules (MCM) using several chips on a single substrate have

enabled the production of packages with even more I/Os. Flip-chip-bonding

techniques are starting to find use for aligning chips on MCMs, and for

interfacing silicon to optoelectronic devices. The former gives the potential for

construction of three-dimensional (stacked) structures with vertical connections
between chips, thus utilising the chip area for interconnect in addition to the

perimeter. The latter will enable high bandwidth optical connections to be used
between chips. Both methods counteract latency by shortening connection time

delays between system elements. VLSI routing chips are also being used to

provide programmable interconnect between chips and boards. Advances in

2

CHAPTER 1 INTRODUCTION

some of these technologies are finding their place in lower-end products, and

will continue to do so as the technologies mature and costs lower.

In the artificial neural network case, it is hoped that massive parallelism can

be used to overcome the limitations of processor simplicity, lower accuracy,

and slower speeds which are the inevitable result of reducing the size and

complexity of the individual processor, or of using analogue processing. The

artificial neural network approach is inspired by the fact that the brain, which

consists of millions of highly connected neuron cells, is capable of very

sophisticated computation in spite of the slow processing speed of an

individual cell. Since high connectivity is very desirable in neural network

hardware, the number of achievable connections quickly becomes a serious

issue at all levels of physical design.

In the case of digital neural networks, the number of pins required for data

transfer between each processor and its memory increases linearly with the

number of processors, which can be a large increase for wide data paths. There

is therefore a tradeoff between data path width and the number of processors

per chip, necessitating processing of data over several clock cycles.

In analogue implementations, each signal needs to use no more than one wire

since analogue values are continuous (although the choice of a differential

representation may increase this to two). However, because the use of compact
analogue techniques allows the integration of more processors per chip, the

number of external data paths required can still be very large, and the problem
of connectivity remains. Neural networks have the potential to exploit massive

parallelism and adaptive capabilities in order to overcome the limitations of

3

CHAPTER 1 INTRODUCTION

analogue electronics, which is by its very nature of lower accuracy and more

subject to the physical realities of integrated circuit processing than its digital

counterpart.

Whilst the aforementioned advances in packaging will also find their use in

neural network VLSI implementations, any other method which can be used

to reduce the number of physical connections required whilst maintaining

adequate bandwidth is a subject for useful research.

This thesis presents the results of an investigation into one such method, that

of Frequency Division Multiplexing (FDM) of the inter-chip communications.

The vehicle chosen for the method is an analogue neural network architecture.

It will be argued that FDM is a solution to connectivity constraints in analogue

neural networks, especially when the neural network learning is able to

compensate for errors introduced by the use of a lower accuracy

implementation.

1.2 Aims and Objectives

The aim of this thesis is to present the idea of FDM for neural network

communications in a formal manner, and investigate the VLSI implementation

of such a technique.

This objective cannot be achieved out of context, and it is therefore necessary
to bring together the ideas which surround the research. To this end, this thesis

aims to review the current state of neural network hardware research, with an
emphasis on state-of-the-art analogue implementations. It aims also to provide

a review of analogue VLSI design techniques required before hardware

4

CHAPTER 1 INTRODUCTION

implementations can be considered.

The core of the thesis aims to construct a relevant theoretical basis for the

FDM technique, and investigate these claims by software simulations,

theoretical analysis, and some hardware implementations as far as allowed by

limited time and budgets.

The ultimate aim of such a project would be the VLSI implementation of a

neural network architecture utilising FDM, fully integrated into a system

environment with software interface. This is not a feasible prospect for a three

year funded postgraduate project, and it has been necessary to limit the work

to the communications part of the system. Thus, a further aim of this project

is to provide the necessary groundwork and results for continuation after this

thesis is written. For this reason, not only are the results from VLSI designs

presented here, but also a description of the CAD route used, and the

previously mentioned review of relevant analogue techniques. This reflects the

need of the full-custom integrated circuit designer to understand not only the

circuit theory for a design, but also the tools to be employed, and the features

of the fabrication process itself.

1.3 Structure of the Thesis

The main flow of the following chapters is from review, to software
simulation, and through to hardware implementation. The beginning of each
chapter contains a summary of the subject matter to be covered, and a brief

review of the background needed to fully understand it, in addition to that
covered in the main review chapter. The following is a short description of the

contents of the next five chapters.

5

CHAPTER 1 WTRODUCTION

Chapter 2 contains an introduction to artificial neural networks. The majority

of the chapter is focused on general issues, and the particulars of digital and

analogue VLSI implementations, with emphasis on analogue.

Chapter 3 presents the FDM technique. The chapter starts with a look at

multiplexing and modulation techniques for communications in analogue neural

networks, followed by development of the theoretical basis for inter-chip FDM.

This chapter also presents a layered neural network system level architecture

utilising FDM, and an implementation based comparison of FDM with Time

Division Multiplexing (TDM) for the communication of analogue information.

Chapter 4 is the software implementation chapter which begins with a more

detailed account of the particular multilayer neural network model chosen for

this work. The next part of the chapter describes the software development of

a simulator for the network. Software analysis is aimed at testing the

hypothesis put forward, that neural network learning algorithms are tolerant to

crosstalk which occurs due to overlap of amplitude responses in the FDM

channel. The final part of the chapter presents the results of these

investigations.

Chapter 5 is the VLSI chapter. The review section at the beginning looks at

analogue design techniques required for the design of active filter circuits, and

other circuits for implementing FDM communications between integrated

circuits. This is followed by a section on operational transconductance

amplifiers (OTAs), put forward here as the best building block for the VLSI

designs. The design of a prototype OTA chip is then presented including

theory, design route and results from fabrication. The final part of the chapter

6

CHAPTER 1 INTRODUCTION

considers the adaptive tuning of the filters and oscillators in the FDM system.

Chapter 6 concludes the thesis by bringing together the preceding chapters and

examining the actual objectives achieved, and presents a plan for future

developments of the technique and other related work.

1.4 Novel Work

A thesis of this sort is always the result of a mixture of work carried out by

the author, and review of work done by others. Whilst the work of others is

always credited and referenced throughout this thesis, the new ideas and results

are best summarised as follows.

Frequency Division Multiplexing is proposed and investigated for inter-chip

conmmunications. It is intended that the technique may be seen as not

necessarily restricted to neural networks, and will find applications in the VLSI

realisation of other highly connected systems.

In the process of this work, it was discovered that neural network learning is

highly tolerant to the mixing of signals in the FDM channel, caused by

overlapping of filter responses. A fractional overlap parameter is introduced

to enable the analysis of this effect. It is shown that the adaptive nature of a

neural network enables it to compensate for overlap errors. This has been

shown to be the case for linear overlap error in a multilayer perceptron

network trained to do pattern classification, using the backpropagation

algorithm.

A software simulator was designed to test the effects of overlap. Methods are

7

CHAPTER 1 INTRODUCTION

presented in this thesis for optimisation of simulator operation for binary-coded

inputs and outputs. The use of an output activation tolerance (defined as the

difference between the desired binary output activation used for the training,

and the analogue output activation which can be tolerated) is proposed as a

performance metric and for deciding when training is complete. Whilst not

particularly sophisticated, these techniques have been used to good advantage

in the simulator design and contributed to a reduction in training time.

An existing linearisation technique was used in the design of the OTA for

which the results from fabrication are presented. However, the technique had

not previously been reported in monolithic form and thus the implementation,

if not the circuit design itself, can be presented as novel.

8

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

CHAPTER 2- ARTIFICIAL NEURAL NETWORKS AND

THEIR HARDWARE IMPLEMENTATIONS

At the initiation of this project, there were few general texts on neural

networks. Today there are many, so rather than repeat the details of this work,

the following chapter presents only a brief overview of neural network

philosophy and models, pointing the reader towards the relevant texts for more

details. The majority of the chapter is concentrated in the area of Very Large

Scale Integration (VLSI) hardware implementations, which is not so well

catalogued in the literature. This description is more detailed for analogue

VLSI, but digital VLSI and general issues are also covered in some depth. No

attempt is made to cover optical implementations, although some references are

made to their existence.

2.1 Artificial Neural Network Models and Architectures

Interest in neural networks began as a desire to understand processes in the

biological brain and explain the workings of the senses and memory. Present

day models for artificial neural networks are based on, or at least inspired by,

this earlier work. The human brain is known to consist of -1010 neuronal cells,

with around 103-105 connections to any one cell from others. Electrical pulses

are communicated across synaptic clefts between neurons by means of

chemical ion transport, with a strength depending on the ion concentrations.
The higher level structure of the brain is a hierarchy of sub-networks of

neurons specialised to particular tasks. The collective parallel action of this

system is capable of performing computations which cannot be matched by the

fastest of supercomputers, in spite of the fact that the processing speed of a

9

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

biological neuron is only of the order of a millisecond compared to the sub-

nanosecond speed of a typical transistor. According to the connectionist

paradigm, as developed extensively by the Parallel Distributed Processing

(PDP) group of Rumelhart and McClellandi''1, the nature of brain-like systems
is contained in the massive parallelism of the networks, and both the

information and processing is distributed throughout. Since the neuron time-

constant is so large, many of the computations in the brain must take less than

100 computational steps, unthinkable for any of the algorithms used in present

day systems for sensory computation. Furthermore, the PDP group showed that

connectionist solutions to simple problems can reveal insights into how larger

collections of neurons might act. Connectionism is described as a micro-theory
for psychology, complementing many existing macro-theories.

In the understanding that it is the architecture of the brain which gives it its

power, simplified models have been developed which hope to exploit the

barest features of massive parallelism, both to help explain the operation of
biological neural networks, and to enable the use of artificial neural networks
in scientific and engineering applications. McCulloch and Pitti22J are credited

with the earliest massively parallel neural network model for explaining

computation in biological nets, published in 1943. In this model a neural

network is a fixed structure consisting of neurons connected by inhibitory and

excitatory synapses. Each neuron is an all-or-nothing process which outputs an

excitatory signal only if the sum of the signals accumulated from other neurons

exceeds a certain threshold. In addition, a neuron is switched off by any
inhibitory signal. Timing in the network is described by a period of latent

addition over which the summation of signals is performed, and a delay

associated with each synapse.

10

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

In 1949, Hebb17-31 proposed a theory for learning in neural networks whereby

connections to a neuron are strengthened if that neuron is excited. The variable

connection strengths are known as synaptic weights. The Hebbian Hypothesis

asserts that the alteration of synaptic weights during learning is the main

mechanism for information storage in biological neural networks.

A generic artificial neuron structure is shown in Fig 2.1. The neuron function

aggregates the weighted inputs according to some model. The synaptic weights

are modified by the learning process.

E: bemal Inpuft

of
Nam Stoss

from

other neaLmoB

INPUT OUTPUT

Fig 2.1 Artificial Neuron

To

Exbrnd ouqm

(ir

other neurons

The above ideas laid the foundations not only for further biological models,
but also for networks designed to solve specific types of problem. These can
be divided roughly into two categories, namely classification and association
problems.

11

sync Wdg

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

Classification uses the features present in input data to cluster like patterns and

distinguish unlike ones, thus partitioning the data into classes. Networks to

accomplish this can be trained using input patterns in known classes.

Alternatively, a network can be designed to perform its own clustering without

the need for a teacher.

Association is used either to reconstruct an input pattern from noisy or

incomplete data called Auto-association, or to perform a retrieval from an input

pattern to an associated output pattern called Hetero-association. Associative

networks perform memory-like functions.

Various models have been proposed to carry out the above tasks. All involve

architectures of interconnected neurons, so a general model can be used for a

low level description. Grossberg's neurodynamical model1244 is a good general

model which may be specialised to obtain many of the network architectures

and learning algorithms popular today, and is thus an important starting point

for neural network theory.

Grossberg's model is a set of linked differential equations describing the time

evolution of both the neuron states and the synaptic weights. In one set of

equations the change of each neuron state is expressed as a combination of its

present state, external inputs, and inhibitory or excitatory stimuli from other

neurons modified through the synaptic weights. At the same time, the weight
change for each synapse is expressed as a combination of the present weight
and the neuron state used as a learning stimulus. Since learning (or forgetting)

occurs constantly, the rate of change of weights must be slower than the rate
of change of neuron states in order for the network to perform any useful

12

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

function.

Neural network architectures can be divided usefully into categories. The main

divisions are Feedforward or Recurrent (Feedback), and Supervised or

Unsupervised (Self-Organising).

Feedforward networks consist of layers of neurons in which the information

flow from input to output of the network does not contain any feedback paths.

At any particular time, an input pattern results in an output determined

completely by the mapping function of the weights. The power of these

networks is in the internal representations formed by the hierarchy of neuron

layers. This type of network has the advantage of being unconditionally stable,

and fast. Examples of feedforward networks are the Multilayer Perceptron

(explained more fully in Chapter 4) or MadalineI79, and the

Cognitron/Neocognitronr'6''3 networks.

Recurrent networks contain feedback connections, and as such are more

general dynamical systems with the possibility of being stable or unstable. On

applying an input pattern to a stable network, it will settle into a non-varying

state in a short time, or after a few iterations in a discrete time system.

Recurrent networks are well suited to associative memory, optimisation, or

retrieval type tasks, as exemplified by the Hopfield network 81. Information

storage capacity is improved in comparison to feedforward networks.

Supervised networks are trained by an external teacher, so that a trained

supervised network gives specified responses to input stimuli. The weights are

calculated from examples of correct input/output mappings, by minimising the

13

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

error between the correct output and the output obtained by applying the input

to the untrained network. In the original Hopfield network, weights are

computed directly in order to minimise a global error function. In most other

networks, the weights are calculated iteratively by changing the weights in

small steps until the error is minimised.

Unsupervised networks do not require a teacher to provide the desired outputs,

and the weights are computed from example inputs only. In most examples

competitive learning is used, so that the weight vectors of certain neurons only

are modified. For each winning neuron (having the largest response to an

input), the weight vector is changed to be more like the input vector i. e. the

scalar product of the two vectors is increased. After training in this way,

different groups of neurons will respond to different inputs, so that automatic

clustering is achieved. Inhibitory stimuli can be used to ensure good

differentiation between the outputs of the winning neuron and its competitors.

These are most often implemented as lateral connections from one neuron to

other neurons in the same layer, over a limited spatial radius. The Kohonen

self-organising feature map is a good example using this local feedback

between neurons 91.

Both unsupervised and supervised networks as introduced above are less

general than the Grossberg model, where learning is a continuous plastic

process, adapting to new input data as need be. In most current neural network

models, the neuron is trained first with training data, after which the weights

are fixed and the network response is then stable. It is required that the

training set be complex enough so that the network can generalise its response

for any other input within the same statistical distribution. This is a reasonable

14

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

assumption to make unless there is a large shift in the form of the distribution

of input data after training, or the amount of available training data is limited.

On the other hand, too much adaptability can prevent the network from

learning long term regularities, forgetting old distributions as quickly as new

ones are learnt. Grossberg himself has attempted to address this trade-off

between stability and plasticity, in the development of the Adaptive Resonance

Theory (ART) together with Carpenter"'° ". ART networks retain the ability

to adapt to new data without upsetting that which is previously learnt, which

may be seen as the state-of-the-art in neural networks architectures, if not the

easiest to implement.

Texts describing the above (and more) models and architectures in greater

detail are to be found in the references 21
. Some of these are important early

books or papers on specific neural network models, some are collections of

papers, and some are the more recent general text books covering a wider

field.

2.2 Hardware Implementations

Most artificial neural network models have been implemented in software, but

the size and complexity of many problems has quickly exceeded the power of

conventional computer hardware. It is the goal of neural network engineers to

transfer the progress made into new hardware systems. These are intended to

accelerate future developments of algorithms and architectures, and to make

possible the use of dedicated neural networks in industrial applications.

The ideal logical model of a neural network is an arbitrarily large number of

neuron units, and an even larger number of synapses, one for each inter-neuron

15

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

connection. Signals are communicated from any neuron to any other as

required. For implementation purposes, this logical model must be mapped on

to the physical technology. At present there are three main avenues of

research, each with its own merits and associated problems, namely the digital

VLSI, analogue VLSI and optical approaches. This section does not consider

optical implementations which are altogether different from the VLSI

approach. (However, a useful starting article can be found in the

references12'61.)

The stated advantage of using a particular technology depends greatly on

which part of the problem is being addressed. For this reason is is instructive

to split the neural network system into parts, namely; interface, synapses,

neurons, interconnect and learning.

The interface is between the physical neural network and its environment.

Inside the network, the synapses associated with a neuron modify signals from

other neurons usually by multiplying each signal by a weight value. The

synapse is also responsible for local storage of the weight value i. e. memory.

The neuron body performs the processing of the modified signals typically by

performing summing and thresholding operations. Interconnect is the means

by which the signals are transferred around the network, and learning is the

process of adapting the synaptic weights. The following sub-sections consider

these parts in detail for electronic implementations.

2.2.1 Interface

In all envisaged implementations in the development phase, the neural network

will form the heart of a system interfaced to a host computer. The host may

16

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

be necessary not only to provide a user interface for controlling the network,

but also for long term storage of network values and parameters. The

communications overhead between host and dedicated hardware should be

considered in the overall performance of any system.

2.2.2 Synapses and Neurons

Because of their large number, small dimension synapses and neurons are

required if a neural network model is to be mapped directly into hardware.

Synapses in particular must be small because they are by far the most

numerous elements. In this case analogue VLSI technology is most suited to

the task, and is considered first in this sub-section.

In an early implementation, Graf and Jackell"I implemented a neural network

using resistors to perform the multiplication of neuron output voltages by

means of Ohm's Law. The resulting currents were summed into an amplifier

on a single wire making use of Kirchhoff's Current Law, thus performing part

of the neuron function. Similar current-mode processing has been adopted in

most analogue implementations to date. However, the use of fixed resistors in

this particular example means that the weights could not be made

electronically programmable. Switching of different resistor values could be

used to introduce a crude programmability, but unused resistors in every

synapse would consume a large amount of chip area.

In MOS technology, direct implementation of resistors is in any case

undesirable11, and multiplication can be achieved instead by the use of
transistors operating in the linear (triode) region[129], by analogue
multipliersUL3°', and by variable gain transconductance amplifierss2311. More

17

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

importantly, these methods also provide the means for implementing and

storing electronically programmable weights. One way of achieving local

weight storage in conventional technologies is by digital-to-analogue

conversion from local digital memory using a multiplying digital-to-analogue

converter (mDAC) for each synapse or group of synapses. If output from the

synapse is in the form of a current, it may be switched on to one of two wires

(excitatory or inhibitory) depending on the value of a sign bit, and summed

with currents from other synapses. The total resultant current may then be

computed by subtracting the currents on the two wires with a current mirror.

This method is practical only for very low resolution weights because of the

chip area required for the mDAC and local memory. Device matching may

also be a problem for higher resolutions, especially for the weighted-resistor

type DAC which requires a doubling in device area per bit resolution. Ladder-

resistor type DACs do not suffer so much from this problem2322.

Alternatively, the weight may be stored as charge on a capacitorr1331, but this

must be continually refreshed because of leakage. Refresh from external digital

memory may be done using a single multiplexed DAC or multiple DACs, in

which case the number of synapses is limited by the total refresh interval.

Local refresh is also possible. Vittoz 1 and Castellod23-q both describe local

analogue refresh schemes whereby weights are updated in parallel to the

nearest quantisation level of a global staircase voltage. In this case the step

size must be larger than the maximum voltage drop due to charge leakage, and

care must be taken to avoid charge injection due to switching. The advantage
of the method is in the use of a single "clock-like" signal for refreshing all the
synapses, removing the need for complex addressing.

18

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

Differential charge storage on pairs of capacitors helps to reduce the effects of

leakage, and also enables the storage of signed analogue weights depending on

which of the two capacitors has the larger charge. Here, charge injection has

been used beneficially to move charge between capacitor pairs whilst keeping

the total charge constantt2*.

The neuron itself is responsible for aggregating the inputs and thresholding the

output. Sigmoidal thresholding or hard-limiting is readily achieved due to

amplifier saturation for large inputs, but the load must be designed to sink or

source the maximum possible sum of currents from the synapses. It is therefore

necessary to increase the load if more synapses are added. To overcome this

problem, it has been suggested that the neuron function be distributed to each

synapse or group of synapses, so that the load grows in proportion to the

number of synapses requiredP-.

The above techniques have been used in continuous time analogue systems.

Where neuron information is represented as pulses, additional methods can be

used to perform the multiplication and summing operations'2'. Multiplication

can be carried out by modifying the rate, width and/or amplitude of the pulses,
depending on the coding technique used. Summation can be achieved by time

integration, or by the logical-ORing of pulse trains.

Less conventional techniques also have been found to be suitable for storing
analogue weights, especially for reducing leakage and refresh requirements.
One method employs Charge-Coupled-Device (CCD) techniques for storage

[2.391 and computation.

19

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

EEPROM type technology using MOS floating gatesl24° is also showing

promise for non-volatile storage. The gate threshold voltage is controlled by

the amount of charge in the floating gate. Refresh is unnecessary which is the

main advantage of the technique. Disadvantages are a charging time of the

order of lOms, and a limited number of read/write cycles before device failure,

which make it unsuitable for continuous adaption. In addition, external

voltages of around 20V are required for programming. More recently,

amorphous silicon has been investigated for use in neural network

applicationsi"411. The devices have a variable resistance, programmable by

voltage pulses in the range 1-5V.

Digital VLSI techniques are also suited to implementations of neurons and

synapsei"421. The main advantage of the digital approach is that it enables

short term solutions to the neural network hardware problem. Digital VLSI is

well established so that reliable design and testing may be carried out using

CAD tools, and results are readily reproducable so that performance is more

easily evaluated. Chips may be programmed to accommodate different network

architectures and learning algorithms. This flexibility is important for

developing and evaluating new learning algorithms, and provides a clear route

from existing neural networks implemented in software.

Unlike analogue implementations however, fully digital ones cannot attempt
to map a neural network directly to silicon. Due to the chip area consumed by

a digital multiplier, it is simply not possible to attempt to implement one

multiplier per synapse as in the analogue case. In order to implement a large

network, it is also necessary to map it to a smaller number of physical
neurons. The building block for dedicated digital implementations thus favours

20

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

a special purpose processing unit (containing, for example, a single synapse

and neuron) of which several may be integrated on a single chip or wafer.

Processors can then be multiplexed to implement a network.

Some issues facing the digital neural network designer are similar to those

facing the designer of any parallel system. For example, the choices between

Single-Instruction-Multiple-Data stream (SIMD) or Multiple-Instruction-

Multiple-Data stream (MIMT)) parallelism, distributed or shared memory, and

processor granularity are all relevant"".

S]MD schemes exploit well the regularity of neural network models, and

require only one controller for the processor array. In the ideal SIMD array,

each neuron would perform the same instruction at the same time. In practice,

some algorithms require different sets of neurons (e. g. in different layers) to

perform different functions, and so time-slicing of instructions is necessary.

Systolic array architectures have been proposed which allow an efficient use

of available processors for calculating sums of products1«, 11. Other SIND

machines use broadcast communication similar to that used in the Ring Array

Processor"'.

Alternatively, M MD schemes may be used. Most examples in the literature

have utilised existing microprocessor chips. This approach tends to be

expensive and limits implementation to the board level, but vastly reduces
development time compared to dedicated processor design. Digital signal

processors such as those in the Texas Instruments TMS320 or Motorola

DSP56000 families are an obvious choice for sums-of-products

calculationsc471. Inmos Transputers have also been used"'"', although the

21

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

hardware architecture of such a system is limited by the small number of direct

interconnects possible. In general, MIMD schemes are not optimal for neural

networks because of the chip area wasted in having one controller per

processor. In addition, MIMD control is complicated by the need to ensure

process sychronisation and to avoid deadlock in computation. As a result, there

are few reported dedicated designs of M tvID processors for neural networks.

Different methods of data representation may obviate the need for multipliers

in digital implementions. If weights and inputs are stored as binary logarithms,

multiplication and division can be achieved by addition and subtraction12 493.

Multiplication by table look-up has also been considered °. Emulating non-

linear thresholds is not straightforward, and a few researchers have developed

digital methods for efficient computation of sigmoids"sl"s31. Otherwise, a look-

up table must be used. Other issues for digital implementation include how to

best map a logical network on to the limited number of physical units 1, and

how to achieve global clocking to a large number of processors. Self-timing

has been investigated as an alternative to synchronous design, especially for

use in wafer-scale arrayst25].

2.2.3 Interconnect

Both analogue and digital VLSI implementations suffer from a

communications bottle-neck due to the planar nature of the technology, which
is not good for parallel computing in general, nor neural networks in particular.
This is the case both at the chip level and the system level.

In a typical neural network of N neurons the interconnect requirement is of
order N2 wires if full interconnection is required, an area increase of order N3

22

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

with N. For increasing N, the chip (or board) area will be consumed by

interconnect unless a third dimension is found to accommodate it. In analogue

implementations, certain signals may be communicated on a single wire if the

wire is allowed to perform the summing of the signals. This is the case where

currents are used, and where pulses are wire-Ored. Otherwise, some form of

explicit multiplexing must be usedt2'63.

Time division multiplexing (TDM) is the standard method for increasing the

number of logical commmunication channels in VLSI systems, without the use

of more interconnect wires. TDM is suited to digital communications since the

data is already represented as pulses. The main problem with TDM is the

inherent loss of parallelism which may be unacceptable in systems where there

is one processor for each neuron, as in analogue implementations"". In fully

digital implementations however, where it is also necessary to multiplex

processors, this may not represent such a large overhead increase.

Frequency division multiplexing (QDM) in VLS#2,8) has not been considered

by any group other than the author's. This is an alternative technique which

may provide a solution to the communications bottleneck in analogue

implementations without a serious loss of parallelism.

In addition to communication of activity between neurons, channels are needed
for communicating, updating and refreshing weights values. Clearly, in a
typical modular neural network system, many of the signals must be

communicated between modules and across the host/network interface. In

VLSI implementations, the number of I/O pads on a chip will therefore be a
limiting factor. There is no point having a neural network which can operate

23

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

internally at a high speed, if the inputs and results cannot be communicated off

the system in a comparable time. In digital VLSI, memory may be placed off-

chip to maximise the chip area for processors, replacing interprocessor I/O

with memory I/O. Analogue VLSI may suit single chip solutions where inter-

chip processor I/O is eliminated. However, in both cases there will be a need

to look at inter-chip I/O very carefully if expandable systems are to be

produced without loss in performance.

2.2.4 Learning

The learning algorithms used for modifying weights values using inputs and

training data are as an important part of the network system as the architecture

itself. Implementation of learning in VLSI systems takes three forms; off-chip,

'chip-in-the-loop' and on-chip learning.

In off-chip learning, weights values are calculated externally by software and

are then downloaded to the neural network which is then used only for recall.
This is the easiest but least favoured method, since braining times can be long.

It may be suitable for networks which do not need to adapt to new data once

trained, but it is not very well suited to analogue implementations where it

may be difficult to develop an accurate software model. Off-chip learning does

have the advantage in that it is easy to change the learning algorithm simply

by modification of software. It also allows the use of floating point arithmetic
for the algorithms which may not be feasible on a neural network chip.

'Chip-in-the-loop' training, as used by Intel for fine-tuning their commercial
ETANN chipr', may also be considered as an off-chip method since the

training algorithm is still run in software. However, in this case the neural
24

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

network is used in the training loop which removes the need for a software

model of the network itself, and compensates for device variability. The main

drawback of this method is the communications overhead in continually

reading and writing data across the network/host interface.

On-chip learning must be seen as the most desirable method, since it may open

the way to stand-alone neural network chips. The main advantage of running

the learning algorithm in hardware is the gain in speed. There is however, a

trade-off in flexibility, especially in analogue implementations where

'programming' of the learning algorithm is difficult. Other obstacles to the

development of on-chip learning are the extra chip area used, and the fact that

many of the current or popular algorithms (e. g. backpropagation) require global

data. One of the oldest algorithms, Hebbian Learning (which is local), was

implemented by Card and Moorer'6°°. On-chip learning feasability will benefit

greatly from the development of new local algorithms so that synapse

modification may be carried independently for individual neurons, and the need

for additional wiring for learning is removed. At the time of writing, on-chip

learning is emerging in both digital and analogue implementations2 61,21
.

2.2.5 General Issues and Trade-offs for VLSI Imvlementations

In hardware implementations which attempt to maximise the number of neuron

processors and synapses on chip, trade-offs between chip area and performance

are inevitable. The main area trade-offs are with resolution and dynamic range.

In digital implementions using multiply-accumulate neuron processors, the chip

area required per processor depends on the word lengths used in the system.

For maximum resolution, fixed point rather than floating point solutions are to

25

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

be preferred. The accumulator width limits the dynamic range, and hence the

maximum number of inputs, of a neuron. Weights values tend to be

problematic since the values change during training, and vary in range

depending on the application. Since the maximum absolute weight value tends

to increase during learning, some researchers have opted for a variable-fixed-

point method, which involves moving the binary point to increase range at the

expense of resolution during the training process. Scaling down of all weights

as soon as any weight overflows is another possibility.

Unfortunately, performance of some neural learning algorithms, notably

backpropagation, have been shown to become severely degraded as bit

resolution of weights is reduced, because quantisation limits the minimum step

size for the weight updates. Recently, probabalistic rounding or 'dithering'

methods using pseudo-random noise have been used to add extra bit resolution

to weight increments without increasing the word length in the multiplies 63 41.

Other parts of the system do not appear to be affected by lower resolutions,

due to the massive parallelism which means errors in one synapse or neuron

can be compensated by others. The fact that it is the algorithm rather than the

network which requires the higher resolution is an important concept.

Analogue implementations are similarly affected. Only in a few

implementations are values truly continuous. Quantisation of inputs and

weights occurs during D/A conversion and refresh26-9. Resolution is also

technology limited to about eight bits, after which device variations such as

mismatch and offsets tend to dominate, or synapse area becomes too large, as

mentioned earlier with reference to mDAC design. As another example, it has

been estimated that 30-bit resolution would be possible in EEPROM memory

26

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

if single electron charge increments could be used, but in practice the neuron

cicuitry is only capable of controlling or registering a 0.4% change' °'.

Fortunately, device variability is also compensated for by the parallelism and

the training process. For instance, offsets can be tuned away by the use of an

extra synapse trained specially for that purposer'663. In analogy with the use of

pseudo-random noise in digital circuits, analogue noise has been found to

improve convergence in network training even with high levels of

quantisation26. Use of noise is in fact an explicit training mechanism in some

physically inspired algorithms such as simulated annealing (used in the

Boltzmann MachineI2"), which uses a lowering of a temperature parameter to

reduce the 'thermal' noise as the network converges.

Dynamic range could be a problem, considering the move to lower power

supply voltages by many IC manufacturers, but the use of current-mode

processing helps to alleviate this somewhat. Gain normalisation has been used

to keep the maximum neuron output voltage constant automatically as more

synapses are addedi"'. Alternatively, the sigmoid gain may be set explicitly

depending on the fan-in 2. Modified algorithms which exert dynamic control

over the size of the weight increment also help to optimise learning in limited

precision implementationsr'610.

2.2.6 State-of-the-Art Analogue Neural Network Systems

The emphasis of this thesis is on analogue neural networks. Much progress has

been made in the field since the start of this project, and it is useful to

compare three of the most developed implementations. These are the

reconfigurable distributed neuron-synapse chip developed by AT&T' , the

multiple chip modular system of the University of Pennsylvania/Corticon

27

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

Inc? "3 and the Electrically Trainable Artificial Neural Network (ETANN) chip

of Intel Corporation'a401. All fully working experimental systems were reported

early in 1991.

The AT&T chip developed by Graf et al uses two modules which are repeated

on a single chip, expandable as a multichip system. The first module is a

square 4x4 distributed neuron-synapse array consisting of four fully

interconnected neurons each with four synapses. Each neuron-synapse is a

differential multiplying voltage-to-current (V-I) converter, with capacitive

weight storage. The combined loads of connected neuron-synapses performs

the sigmoid function. The second module is a 4x4 switch matrix designed to

sit between the faces of the first, which allows the input or output of any

neuron-synapse in a module adjacent to the switch matrix to be connected to

another. The configuration of the switches is set using a digital shift register.

The prototype chip was fabricated in 0.9}nn CMOS technology comprising 64

neuron-synapse modules (equivalent to 1024 synapses and 256 neurons) and

144 switch modules. The chip was embedded in a microcomputer system

which performs the learning algorithm and long term data storage.

Configuration data is downloaded from an off-chip EPROM. 8-bit Input data

and 7-bit+sign weights data is stored in off-chip digital memory and

transferred to the chip as analogue voltages using eight off-chip D/A

converters for the inputs and eight for the weights. Eight off-chip A/D

converters are also used to convert the network outputs back to 8-bit digital

values for use by the microcomputer. Training is accomplished using a chip-in-

the-loop weight perturbation method.

This chip has the advantage of being dynamically reconfigurable, by virtue of

28

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

its distributed structure and its programmable connections. The connectivity of

any neuron is, however, limited to those in adjacent modules. Results from

experiments with this chip have been reported as successful. Although not yet

demonstrated, the authors propose larger network implementations using

multiple chips or wafer scale integration.

In constrast, the University of Pennsylvania chip developed by Mueller et al

for acoustical pattern recognition is a board level design using combinations

of four IC modules. These consist of an 8 neuron block, an 8x16 synapse array

with 16 inputs, a 16x16 switch array, and a time constant module. The synapse

multiplies an analogue input by a digital value stored in a 6-bit logarithmic

form, to give a current output. A selection of signed weights between 1/400

and 10 are possible representing a range of 12-bits+sign. The neuron module

consists of 8 neurons performing the current summing and thresholding, and

an analogue multiplexer which allows the sampling of any neuron output

without interfering with network operation. The switch module allows

connection between any of the 16 horizontal wires and any of the 16 vertical

ones, and lines can be either routed though the switch modules or terminated

within the module if required. The switches are set digitally in order to

configure the connectivity of the network. The time constant module consists

of passive capacitors and variable active resistances implemented using

transconductance amplifiers. The neural network is constructed around the

neuron block, with up to two adjacent synapse arrays allowing a maximum of

32 inputs to a neuron. Neuron outputs are routed to other synapse arrays via

the switch modules, with optional time constant modules in between used to

introduce variable delays between neuron inputs and outputs. Two editors may

be used to set up the network, a physical editor to allow the setting of

29

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

parameters on a particular chip and a logical editor to set chip parameters

according to a symbolic description of the network. The network board is

controlled by a Programmable Array Logic (PAL) based controller, supervised

by a PC microcomputer. Chip-in-the-loop learning is performed using outputs

sampled from the network. A prototype system implementing 72 neurons has

been reported, consisting of 99 chips fabricated using a 2µm CMOS process,

assembled on three boards. The network has been tested on a variety of tasks

including the intended application in speech analysis. The system is being

developed in two ways. Firstly, it is intended to redesign the system for a

larger number of inputs per neuron so that a larger networks of over 1000

neurons will be possible. Secondly, software is being developed to allow

network compilation from a logical description, including automatic placing

and routing of network modules.

This idea has an advantage in its inherent modularity at the chip level, which

gives it flexibility over a single chip design, and there is room for

improvements with a scaling down of technology. On the other hand, the

overall network architecture must be decided before the modules are placed

and routed. Interconnectivity is better than the AT&T chip, but the weights

resolution is somewhat limited by the use of only 6 bits.

The Intel Electronically Trainable Artificial Neural Network (ETANN) chip is

a single chip solution as is the AT&T one, expandable to a multichip system.
The design consists of 64 neurons which have 64 direct analogue inputs and
64 additional feedback inputs. Two synapse arrays are used, with a synapse for

each of the two types of input to every neuron, and 16 internal bias weights
in each array giving a total of 10240 synapses. All the synapses are analogue

30

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

floating gate EEPROM cells with 6-bit typical resolution performing four-

quadrant analogue multiplication of input voltages to give output currents. The

64 neurons are implemented as 64 current summers and 64 sigmoids. Weights

are programmed serially by address using multiplexors. The chip has 64

analogue outputs. Training is accomplished by off-chip learning, and chip-in-

the-loop learning for fine tuning based on Widrow's Madaline III algorithm.

Off-chip training using an accurate software model is carried out initially

because of the long training time for EEPROM cells and their degradation with

repeated write cycles, and because weights may only be trained serially. Fine

tuning is necessary to optimise the weights for a particular chip, since no chip

will be identical because of process variability. The chip was fabricated using

a fpm CMOS process in a 208 pin package. The prototype system is based on

an eight socket board interfaced to a PC. The chip may be used in two modes,

depending on whether the feedback array is to be used in a recurrent network

such as the Hopfield net, or as a second synapse layer in a multilayer

feedforward net achieved by multiplexing the neuron layer.

The Intel chip has the advantage of maximum parallelism for the 64 neurons

available, making it fast in the the recall phase. Most of the I/O pins are used

for direct inputs and outputs of the 64 neurons. The full connectivity is not

scalable to the multiple chip system but direct connections between chips

avoids an I/O bottleneck. The chip is not at all optimised for learning.

Comparing the three implementations, some common strands are noticed.
Firstly, all synapses are implemented as V-I converters, so summing is

performed on a single wire for a row of synapses associated with a neuron.
The neuron acts as a load to convert back to the voltage domain. All use chip-

31

CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS

in-the-loop learning where the algorithm is performed off-chip, but outputs

from the physical chip are used in the calculations. This is required for

fabrication process invariance. All use analogue input and outputs to the

neurons, necessary to conserve pins. All suffer from limited connectivity to

some extent. All three systems require a digital host computer to control

learning and set network parameters, requiring external D/A and A/D

converters. The implementations are contrasted by their use of different

methods for weight storage, and their different approaches to modularity in

constructing a network from the chips.

In the next chapter, the problem of inter-chip communication is examined

further for analogue implementations, and the use of Frequency Division

Multiplexing is proposed as a technique for overcoming this.

32

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

CHAPTER 3- FREQUENCY DIVISION MULTIPLEXING

FOR ANALOGUE COMMUNICATIONS

In this chapter, a unique Frequency Division Multiplexing (FDM) scheme is

presented for communications in analogue neural networks. The concept and

its features are explained, in the context of electronic implementations where

a reduction in the number of chip pad I/Os is required. The choice of method

is justified in the context of other possible forms of modulation and

multiplexing schemes. A detailed theoretical analysis of the FDM method and

its comparison with Time Division Multiplexing (TDM) is made. The use of

overlap of FDM channels is proposed as a method for better utilising the

available bandwidth without causing degradation in neural network

performance, a hypothesis which this thesis aims to prove in Chapter 4.

3.1 Communications, Modulation and Multiplexing

Before continuing specifically with communications in neural networks, it is

helpful to consider the general criterion for deciding on a communications

scheme.

In standard information theoretic terms, a communications scheme consists of

an information source, a transmitter, channel, receiver and destination. Into the

channel are injected noise and distortion. The message is the original form of

the information which is converted by the transmitter into a signal of a form

suited to the channel chosen. After passing through the channel, the distorted

and noisy signal is decoded by the receiver into the destination message.

33

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

With this framework in mind, it is possible to decide on a communications

scheme suited to the type of information to be transferred.

In a telecommunications application, the information will consist either of

digital or analogue waveforms which are interfaced to a physical channel. The

transmitter typically modulates the waveform, and the receiver carries out the

detection and demodulation. Multiplexing may be used to make the best use

of an available physical channel by allowing many different messages to use

it.

The suitability of a modulation scheme is determined by the form of the signal

and tradeoffs between power requirements, signal-to-noise power ratio (SNR),

and bandwidth availability, which will be different depending on the

implementation and the physical environment. In addition to these general

criterion, the cost and complexity of the interface and channel, and speed of

transmission must also be considered for a specific application.

Traditionally, communications involved direct modulation of analogue

quantities such as speech and visual information. Analogue channels are also

often used for purely digital information e. g. in modem telephone

communications. Conversely, with the present availability of cheap and fast

computation, analogue signals are being represented and processed more often

as digital quantities e. g. in digital tape, compact disc, and NICAM stereo, and
in future commercialisation of digital TV and digital video. Telephone

systems have moved away from analogue towards digital representations, since

the expense of more complicated modulation schemes is less than that of

analogue amplifiers and repeaters which are replaced by simpler and more

34

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

reliable digital ones.

This trend has much to do with the predominance of digital technology for

integrated circuits and the use of optical fibres. The digital methods of

communications chosen complement digital processing to good advantage.

Now, with a re-emergence of analogue computation (especially in neural

networks) and advances in analogue VLSI techniques, analogue signal

communications deserves another look.

3.2 Multiplexing and Modulation Schemes for Neural Networks

To a great extent, the best multiplexing and modulation schemes to choose,

will depend on each other and on the form of the signal.

In analogue neural networks, the neural processing is analogue. At an instant,

this analogue quantity is most simply expressed as the DC value of a charge,

voltage or current. It may also be expressed as the amplitude, frequency, or

phase of a sinusoidal waveform, where conversion to these are by the

respective AM, FM and PM modulation schemes. Alternatively it can be

expressed as the amplitude, duration, position, width, or rate, of a pulsed

waveform, by respective modulation schemes PAM, PDM, PPM, PWM and

PRM. Combinations of these schemes are also possible. The final option

involves conversion to pure digital form by Pulse Code Modulation (PCM), or

Delta Modulation (DM).

Pulse-stream arithmetic for neural networks has been pioneered by A. F.

Murray et al of Edinburgh Universityt3.121, and is being developed by many

others. The paradigm is described as bringing together the simplicity of

35

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

analogue processing and the robustness of digital communication. Three

methods of modulation have subsequently been seriously considered for coding

the neural state, using PAM, PRM and PWM. PAM has been rejected by the

Edinburgh group for communication because of its potential succeptability to

amplitude noise and distortion, although variable pulse height has been used

for multiplication. PWM and PRM use only digital levels. PWM codes the

analogue neural state as the width of a single pulse of fixed amplitude, PPM

as the frequency of a series of pulses.

More importantly, the pulse-stream work has attempted to address the real

problem of inter-chip communications necessary for the construction of

expandable networks with many neurons and synapses. Along with the pulsed

form of the signals, Time Division Multiplexing (TDM) is a suitable form of

multiplexing to be used for the inter-chip communications, in order to reduce

the I/O count. A conventional synchronous TDM scheme has been proposed

utilising a fixed time frame, split into slotted segments with each neural state

occupying the same slot in each segmenF. 3]. A novel asynchronous TDM

scheme has also been reported which converts the time difference between

pulses in a PRM stream to a single pulse with a width equal to this interval13.41

Handshaking between chips is then used to transfer the pulse for each neuron

state in turn as soon as the previous pulse has been acknowledged, in a self-

timed manner. The pulse is then integrated to recover an analogue voltage

proportional to the width. The scheme also enables communication to several

chips by requiring all receiving chips to acknowledge before new data is

transmitted.

There are in general, however, some drawbacks to the use of TDM in neural

36

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

networks. The first of these is the increase in transmission time with the

number of channels, which is linear for synchronous TDM, and proportional

to the average neuron activation in the case of asynchronous TDM. In order

to maintain the same throughput per neuron, this increase in transmission time

requires an increase in bandwidth. This is of course a problem for any

multiplexing scheme, and it can easily be proved through application of the

sampling theorem that the theoretical minimum bandwidth for TDM is the

same as that for FDM (i. e. when comparing PAM with Single Side Band AM).

However, some modulation schemes are worse than others in exacerbating the

increase in bandwidth requirement, especially when one or other of amplitude

or phase information is exchanged for better noise immunity or simpler

circuitry. The second is a loss of parallelism inherent to the sequential nature

of TDM, which counteracts the central idea of neural network processing.

Thirdly, TDM is not necessarily suited to analogue processing if pulsed

modulation is not used, for example in a network where neurons perform the

direct sum of current values.

Frequency Division Multiplexing (FDM) is the other main form of

multiplexing in communication systems. Whereas in TDM signals occupy the

same frequencies at different times, in FDM the signals are transmitted at the

same time but at different frequencies. This makes FDM an inherently parallel

communication scheme, with no synchronisation required between signals

during transmission.

Two main forms of modulation are possible; amplitude modulation, and angle

modulation which encompasses both FM and PM. Of the two, amplitude

modulation is the most bandwidth efficient, but is subject to amplitude noise,

37

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

and cannot be broadbanded to increase the SNR. Angle modulation generally

requires a much higher bandwidth, but the SNR may be increased by

broadbanding according to the modulation index. Since the amplitude does not

carry any information, amplitude noise is not such a problem. Furthermore,

angle modulation generally requires more complex transmitters and receivers

than amplitude modulation.

Of the two FDM modulation schemes, it is proposed to use an amplitude

modulation method for neural network communications, for the following

reasons. Bandwidth efficiency is important if a largest number of signals are

to be multiplexed, which must be the aim of any multiplexing scheme for

neural networks. VLSI circuits will generally be less complex and more

compact than those for angle modulation, which is important for the technique

since it would not be desirable for an excessive silicon area to be consumed

by the communications circuitry. In addition, some analogue VLSI techniques

for design of suitable on-chip filter and oscillator circuits are already well

established, as covered in Chapter 5, which is useful for initial investigations.

The trade-off against noise immunity is therefore justified. This is not to say

that FM or PM methods should not be considered in future work. For example,

it has been proposed recently that angle modulation be used in VLSI neural

networks for encoding and multiplying weights valuestl-".

38

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

3.3 Frequency Division Multiplexing

The concept of the proposed FDM scheme for neural networks is shown in Fig

3.1. The neuron state modulates a unique carrier frequency generated by a

oscillator of constant frequency. The amplitude of the carrier represents the

neuron state which is retrieved by the use of a bandpass filter tuned to the

carrier frequency and a peak detector, together forming the demodulation

circuitry.

RECOVERED NEURON STATES

1ý T

BmxV= Bandpass
Filter and --- Filter and
Peak Detect Peak Detect

Faxpmncy c1 Proqua1cy c

Single FDM link

rw Fte1ucy w

Cxmiaonea --- commnea
osdawr osauator

NEURON STATES

Fig 3.1 Concept of FDM in a Analogue Neural Network

39

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

It is necessary to define a specification for the communications scheme in

terms of bandwidth. For example, a neural network could be used to process

continuous real-time acoustic signals. For amplitude modulation of telephone

quality speech a 4kHz baseband bandwidth is needed, or 8kHz for good quality

speech. Full audio range requires a bandwidth of 15-20kHz. In these cases

therefore, filters used for demodulation must be specified and spaced according

to the source bandwidth.

At the other extreme, if information throughput is not such an important

criterion, the network may be allowed to settle for as long as necessary to

perform the correct mapping. This would be the case where the neural network

inputs are in the form of slowly varying input patterns. For example in an

application such as letter-to-phoneme classification from binary coded inputs,

real-time performance is achieved at a rate of about 1 input/output mapping

per lOms, or a bandwidth of 100Hz. For such a small bandwidth, the

bandwidth allocation per neuron would then be defined mainly by the filter

characteristic rather than the source, and in particular by the quality factor, Q

and resonant angular frequency wo.

In both cases, the total bandwidth for the FDM channel is calculated from the

sum of the bandwidths of the individual filters. For ideal bandpass filters, with

vertical sidewalls as shown in Fig 3.2(a), this calculation is simple since it is

understood without ambiguity what is the value of each filter bandwidth. For

real filters, the filter characteristics must overlap to some extent as shown in

Fig 3.2(b). Crosstalk between channels is inevitable here, but the amount of
crosstalk depends on the degree to which the filter characteristics are allowed
to overlap. The conventional definition of filter bandwidth, between the -3dB

40

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

points, is not a very useful one here, since significant crosstalk would occur

outside this region. This is the situation to be covered by the following

arguments. An additional parameter will be used, as well as Q, to specify the

total bandwidth of a bank of filters by the degree of permissible overlap.

Amplitude Response

(a) Ideal Filters

Amplitude Response

ý1 ý2

(b) Real filters

Fig 3.2 Amplitude Response for a bank of bandpass filters

(1)3 (1)4

Frequency

Consider the standard transfer function for a 2-pole bandpass filter as follows,

H(s) _ (wJQ)s / [s 2+ (w, Q)s + 4] (3.1)

where wo is the resonant frequency. The normalised amplitude response is,

A((4 = (W, wYQ) /(-uß)2 + (tý, týQ)2 (3.2)

Rearranging equation (3.2) in terms of A(W) gives,

two = 1(A -2 _ 1)/4Q 2+1t (A -z _ 1ý
4Q

(3.3)

Equation (3.3) describes the two frequencies Co (either side of the resonant

peak) at which the gain of the filter is A, compared to the unity response at wo.
Thus, any signal of frequency outside this range will be attenuated by an

amount smaller than A. If the frequency responses of a bank of adjacent filters

41

wl 4) 2 03 04

Frequency

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

are overlapped so that the centre frequency of each successive filter coincides

with the frequency at amplitude A of its nearest neighbours, then the amplitude

A can be described as the fractional overlap for the bank of filters. Since this

overlap parameter is by definition a constant for the bank of filters, it is best

denoted by a different symbol, e.

The number or 'density' of filters per octave is then given by,

n= log 2/ logo fo) (3.4)

where the positive root of equation (3.3) is used. Figure 3.3 shows the Q

dependence of equation (3.3). It can be seen that the same filter density can

be obtained for lower values of Q if the value of fractional overlap is allowed

to increase. Alternatively, higher filter densities can be obtained for a particular

Q by increasing the overlap.

Filter Density/Octave
100

80

so

40

20

Fig 3.3 Filter Density vs. Fractional Overlap for a Bank of Second
Order Filters, showing Q dependence.

42

0
0 0.2 0.4 0.6 0.6

Fractional Band Overlap

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

Similar curves are obtained for higher order filters. Fig 3.4 is the

corresponding set of curves for a commercial switched-capacitor filter MF8,

calculated from the transfer function for a fourth order Chebyshev

implementation as specified in the manufacturer's data sheetd3'61.

Filter Density/Octave
B0

60

40

20

Fig 3.4 Filter Density vs. Fractional Overlap for a Bank of MF8 Fourth
Order Chebyshev Filters, showing Q dependence.

The previous theoretical analysis is independent of the low and high frequency

cutoffs of the FDM channel and these must also be specified. The highest

frequency is technology dependent. The lowest frequency is determined by the

throughput required.

At best, an interval equal to one cycle of the lowest frequency is required in

order to obtain the amplitude of any signal using a peak detector. Information

43

0 0.2 0.4 0.6 0.8
Fractional Band Overlap

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

throughput is, however, also limited by the transient response of the system,

notably by filter settling time. For a second order system stimulated with a step

input, it is well known that the 5%, 2% and 1% settling times (specified as a

percentage of final output) are approximately given by 6Q/w� 8Q/wo and 9Q/w0

respectively. It can thus be seen that in addition to frequency, Q is also an

important factor for specifying transient response. In particular, it is noted that

bandpass filters with high Q (good selectivity) have the slowest transient

response, which introduces a trade-off of throughput with filter density.

Up to now it has been assumed that we are dealing with a linear system. Non-

linearities are introduced in analogue computations and communications by the

non-ideal behaviour of the system elements, such as amplifier non-linearities.

Intermodulation distortion, which causes signals from one frequency band to

appear in others, is the main symptom of this, and, as is the case with any

non-linear system, the effects are difficult to analyse. Non-linearity should

therefore be avoided as far as possible in the design of the system elements.

Having introduced the ground-rules for FDM communications, the next section

describes a generic neural network architecture using the technique.

44

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

3.4 Neural Network Architecture utilising FDM.

The proposed architecture for a prototype 4x4 (4 input, 4 neuron) layered

analogue neural network utilising FDM consists of four functional blocks A,

B, C, and D, shown in Fig 3.5.
PDM Signal Output

Block A
Modulation

Block B
Neuruns

XI if
Block C
Synaptic
Weigbts +xw Snap of products
Army

+x shown here for
+x one neuron

Block D
DemodubWm

IPD PD P PD

ýi iii iii iý
FDM Signallau

Fig 3.5 4x4 Neural Layer Utilising FDM

irEr

n
Mimabcdd

0

O+ Oma

PD
Pmk
Daecýor

Bo*M
Faff

wawit
Slams

45

CHAPTER 3 FDM FOR ANALOGUE CONEWUMCATIONS

Block B contains a bank of neuron body elements which performs the

sigmoidal thresholding of analogue values from the weights array, Block C.

Each output from B forms the input to the modulation block, A, which is then

multiplied by a carrier generated by an oscillator of fixed frequency, using a

different frequency for each neuron. Block D contains a bank of bandpass

filters and peak detectors, comprising the demodulation circuitry. The

demodulated signals from D are then passed to Block C which performs the

sums of products.

Although details specific to electronic implementation are covered in Chapter

5, it is useful to stress the advantages of using current summing of the

unmodulated synapse outputs, and voltages for the modulated signals. Current

summation simplifies the weights array since the sum-of-products processing

for each neuron can be achieved on a single wire. The internal detail of Block

C in Fig 3.5 shows this for one of the neurons. Voltages, on the other hand,

are more easily distributed to multiple chips. The neuron body is therefore best

implemented as a IN converter, as used in all three of the implementations

discussed in Chapter 2, Section 2.2.6.

Blocks ABCD could be implemented as a single module, with the FDM input

and output channels being available as the only external connections. It can be

seen that the modulated output is easily distributed to the inputs of similar

modules if the same frequencies are used for A and D. Alternatively, the

system could be implemented as separate blocks, which would increase

flexibility at the expense of an increase in the number of external connections.
In this case it would be possible to increase the number of inputs to a neuron,
by current summing of the outputs of multiple copies of Block C into Block

46

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

B. In any case, the first layer of weights in the neural network requires direct

inputs into block C. It would therefore be necessary, in the single module

implementation, to use a separate input module without the demodulation

circuitry. The final outputs are also required in unmodulated form which would

also require a different output module.

It is not the intention of this thesis to design a fully operational neural

network, but rather to concentrate on the FDM communications technique.

Thus, for the purposes of this work the system is kept divided into its separate

blocks as described, and efforts are prioritised towards the specification and

prototyping of the communications circuitry i. e. blocks A and D. It is intended

that the communications circuitry may be integrated into an existing

experimental board level neural network, for future testing purpose.

47

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

3.5 Comparison of FDM and TDM

Although qualitative and quantitative comparisons of FDM and TDM are made

in many communications textbooks, it is difficult to make a fair comparison

for specific system implementation constraints. The following analysis attempts

to make a comparison of the bandwidth and power consumption of electronic

implementations of FDM and TDM communications by defining two building

blocks which can be used in either system. These are a voltage controlled

current source (transconductor) of maximum transconductance G, and a

minimum size capacitor C. In addition a maximum supply voltage of value V,

is specified. The use of a transconductance element is justified by the fact that

it has been chosen as a neural network building block by many designers,

(including the author) since it performs the desired voltage-to-current

transformation.

In order to compare the two implementations for the optimal bandwidth, a

PAM channel is chosen for the TDM system. For the FDM system, an AM

channel is used. The comparison is carried out for communicating N analogue

values Vth across a single wire, which are present in parallel as analogue

voltages at the input of the system and must end up as parallel voltages V..

at the output.

Considering first the TDM system, the analogue voltages are transmitted in

sequence as pulses with height Vth not greater than V,, and of fixed width r.
The transconductor and capacitor are used in a sample and hold configuration,

one for each signal, with final output voltages V... Since V0 jr=I/C, and
I=GVt, the total time for TDM transmission of N signals, N x, is given by,

48

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

Ta, =NC
V°`" (3.5)

G V.

where V,, /Vm is the ratio of the final output voltage and input pulse height,

which is a constant value for all pulses since it is dependent only on the pulse

width.

For minimum transmission time, it makes sense to choose a small Vp f Vth so

that the output does not have to ramp for too long. This must be traded off

with the noise immunity of the output which is best for large V(JVi.. The total

power consumption for the communication is (in the worst case with Vi . 7V,),

Pan = NkGV, 2 (3.6)

where k is a proportionality factor depending on the number of current mirrors

in each transconductor. The driver power requirement is assumed negligible in

comparison, a fair assumption for a transconductor with high input impedence.

For the FDM system, is it necessary to consider the allowed frequency range.

For a typical second order filter constructed from transconductors and

capacitors, the maximum angular frequency attainable is G/C, and the quality

factor can be determined by the use of a smaller feedback transconductor (for

an example of this see Chapter 5, Fig 5.4). For a similarly constructed

oscillator, the highest frequency of oscillation is also G/C, and feedback

controls the oscillation condition. The low frequency limit tom� can be

determined by summing the bandwidths of the N filters starting from

c=G/C. This is done by iterating equation (3.3) with A=: e (using the

negative root since the iteration is carried out for decreasing Co. The iteration

is started with uu, '4na, then o), is replaced by the calculated W at each iteration.

49

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

The resulting equation is,

N -1
cob. = (G /CJ

C
(E-z _1)/4Q 2+1- (E-2 -1)/4Q 2) (3.7)

Thus, the maximum period T is given by 2n/%.,

(N1
1)/4Q2

) (3.8)
per = 2ýt (C IG) 1)ý4Q i+1+ (E-z -1)/4

here using the fact that the two roots of equation (3.3) are reciprocal to change

the sign from - to + when the reciprocal of equation (3.7) is used.

In the worst case, for a step increase in amplitude, the 1% settling time T11.,

for the bank of filters is 9Q/q... So the worst case total transmission time for

FDM, Tfdm is approximately given by the sum of Td. and Tom,

N -1
Tfd�ý _ (2n + 9Q) (C /G)

((T-2
_ 1)/4Q 2+1+ (E -z _ 1)14Q 2) (3.9)

Equation (3.9) is minimised by choosing the value of overlap, e, and

optimising Q for the required number of signals, N. Clearly, increasing e

reduces Tfd. independently of Q and N, so the overlap should be as large as

allowed by the system. The effect of increasing or decreasing Q is not as

straightforward since it has opposing effects on rise time and filter density.

Minimisation of equation (3.9) is difficult to carry out analytically, but from

qualitative and numerical analysis it can be shown that for a 1% overlap

(E=0.01), and a range of values of Q (10-50), the value of T« increases

rapidly as Q is decreased and/or as N is increased, and is approximately

proportional to Q(Qc)''N for the smallest Q. (Note that this approximation is

valid because (Qe)<1 in these cases). For larger values of c (0.1-0.3), the

value of wem� is much less strongly dependent on Q and thus a minimum Tfd.

occurs when the rise time term begins to dominate. For the largest values of

50

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

e and Q in the above ranges, Tfd,, is approximately linearly proportional to

both N and -Q.

The total power consumption of the system of N filters and oscillators is,

N-i
Pf =2nk Vat E G1 (3.10)

i-O

where n is the number of transconductors in each filter, and G; is the

transconductance value required for each frequency, as follows,

G1 =G
(yc_2_1,4Q2+1

_ (c-2_1)/4Q2)t (3.11)

Lower frequencies require smaller transconductance values and therefore less

power (since the frequency G/C is lowered by reducing G with constant Q.

The factor of two in equation (3.10) assumes the use of similarly constructed

oscillators and filters.

It is necessary to put some figures into the above equations to obtain some

realistic timings and power consumption for the two implementations. The

minimum pulse width for PAM is usually specified as 0.5BT, where BT is the

baseband bandwidth for the technologyP"'". For a typical technology bandwidth

of 10MHz, this gives a value of t=50ns transmission time per signal. If N

outputs are to be added together as might be expected in a neuron, it is

reasonable to arrive at a figure of V. /Vi. =1/N, so that the total output would

not exceed the supply even if each of the Vt. were equal to V. This assumes

a situation where synapse weights are limited in the range [-1,1] so that the

largest possible sum-of-products is NV3. For a larger weight range V /Vi

would have to be proportionally smaller.

51

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

1000000

100000

10000

1000

100

10

I

Transmission Time (Microseconds)

05 10 15 20 25 30 35 40

Number of Signals In Channel

TDM Fal CO. O1/2O)-f- wl CO. O1/5O] FIJI CD. 1/20D

8 FORA CO. 1/50))f FC CO. 3120) 0ý FDA CO. 3/50)

Fig 3.6 Transmission times for FDM channels vs. Number of Signals, N for
various c and Q (individual FDM plots are labelled FDM(E/Q)).

Accepting these assumptions and using a minimum capacitance of 10pF, a

value of G=2001A/V would give the required drive for TDM. Using the same

G and C in the FDM implementation, ao of 20Mrads/s (3.18MHz) is

obtained. Substituting these values in equation 3.9 and plotting the values of

Tfd,, against N for different values of e and Q, yields the graph shown in Fig

3.6. Each line on the graph for FDM is labelled FDM(e/Q), and the lower plot

of the corresponding TDM plot is also shown for comparison.

For Eß. 01, Q=20, equation (3.9) gives an FDM transmission time of 1.3ms

for 4 signals. In comparison the TDM system requires only 2µs. Increasing the

Q to 50 reduces the FDM time to 320µs. However, doubling the number of

signals to 8 increases the FDM transmission time by several orders of

magnitude, whereas TDM time is only doubled. However, if e is allowed to

52

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

increase to 0.1 with Q remaining at 20, the same 4 signals are transmitted in

2Ops, and 8 signals in 50ps. For e=0.3 this is reduced further to 10µs for 4

signals, and only 16ps for 8 signals.

Comparing the timing for a larger number of signals, for example 40, TDM

takes 20ps, and FDM with eß. 3 and Q=20 takes 200ps. Whilst still an order

of magnitude larger than the TDM transmission time, this is much more

practical than a scheme which requires minimal overlap. FDM is simply not

realisable with e=0.01 for this many signals.

For the value of G chosen above, a supply of 10V, and a typical value of k=3

current mirrors per transconductor, the power consumption for the TDM

communication is 60mal per signal. For FDM the power consumption is

360mal for the highest frequency signal, using a value of n=3 transconductors

per filter and oscillator. Subsequent power consumption values depend on the

number and spacing of the lower frequencies. For c=0.3 and Q=20, the next

3 values are 332mW, 307mal, 283mal.

The conclusions of this comparison of FDM and TDM can now be made as

follows.

PAWFDM appears to have certain advantages over AM/FDM in terms of both

bandwidth and power consumption. For FDM, deliberate overlapping of second

order filter responses is necessary in order to achieve a practical transmission

time which is an order of magnitude longer than that for TDM in the above

analysis. Power consumption from the calculations is about 6 times greater for

FDM, although this figure is variable, depending on overlaps and quality

53

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

factors.

FDM has the advantage of being asynchronous and continuous time i. e. no

clock is needed in principle. However, it may be desirable in practice to use

a clock to delay the computation of the received signals until after the settling

time has elapsed. If this is the case, it is hard to see an advantage to using

FDM in this way, since this is not much different than waiting for all TDM

signals to appear at the output.

From the theory developed above, it is clear that practical FDM bandwidths

are achievable only if overlapping of filter responses is allowed, or if large

values of Q are used. It has been shown that increasing Q is not always the

correct solution, since this also has a detrimental effect on settling time.

Furthermore, electronic implementations of high Q circuits suffer from high

sensitivity to component values, which causes problems in matching oscillator

and filter centre frequencies. Also, high Q circuits generally use large ratios

of component values which often translates to large chip area requirements in

VLSL For the same reasons, the use of higher order filters is not desirable.

It is, however, reasonable to propose that the errors introduced by overlapping

filter characteristics will be compensated for when FDM is implemented as

part of an adaptive system such as a neural network, and therefore that larger

overlaps may be permissible than those required in straightforward

communications applications. This hypothesis requires proof, which is the

subject of the next chapter.

In defence of FDM, it should be stated that it has been necessary in the

54

CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS

analysis of this chapter to present the worst case scenario for FDM

communication in comparison with TDM, so as to justify the scheme in a fair

manner. In practice however, the FDM implementation constraints may not be

as great. If filters are not subject to step changes of input amplitude, the

settling times will be less than calculated. For slowly varying inputs settling

time is not such a problem, and since it is the settling time which dominates

the overall transmission time, this would be greatly reduced. As for TDM,

alternative implementations may introduce additional problems. If PWM is

used instead of PAM, the pulse widths must be greater for two reasons. Firstly,

width information is being used to code the neural state, so it is the maximum

(or average, for asynchronous PWM) width rather than the minimum width

which determines the transmission time. The minimum width itself must also

be greater so as to preserve sharp pulse transitions i. e. 'fine' pulse

reproduction. The 0-5/BT rule used for PAM does not apply to PWM since this

estimate ensures only 'coarse' pulse reproductionn3"71. Typical pulse widths

quoted in the literature are microseconds rather than nanoseconds. The same

arguments apply to PPM. The minimum width can be used for PRM, but in

this case, several pulses may need to be used in order to compute the rate.

Thus, the difference between transmission times for FDM and TDM may not

be as great as that predicted by the above analysis, depending on the form of

modulation employed.

In conclusion, the results from the analysis show that FDM can be justified as

a method of neural network communications, if overlap errors are proved not

to be a unsurmountable problem. The following chapter will show that

tolerance to overlap errors is indeed a feature of neural networks.

55

CHAPTER 4 SOFTWARE SIMULATIONS

CHAPTER 4- SOFTWARE SIMULATIONS

This chapter describes in detail the software implementation of a multilayer

perceptron (MLP) neural network, in which the usual model is modified to

incorporate the effect of overlap of neuron activations in the forward pass. The

software design is presented as a set of structured Warnier Diagrams, which

implements the MLP using floating point arithmetic, and training using the

backpropagation algorithm. This model is then modified further to include the

effect of weight quantization, and to allow a comparison of results with the

alternative weight perturbation training algorithm. The rest of the chapter is

devoted to simulations using the software. It is shown, using results from

various applications, that the neural network is remarkably tolerant to overlap

errors, confirming the hypothesis of the previous chapter. The first application

involves backpropagation learning of the 3-bit parity problem with various

degrees of overlap, using floating point weights. The second problem is text-

to-speech conversion based on the well known NETtalk application, which is

used to investigate the effect of overlap when weight values are quantized. The

third problem compares the learning of 5-bit parity using backpropagation and

weight perturbation algorithms, with varying degrees of overlap and weight

quantization.

4.1 Multilayer Perceptron Networks -A Brief Overview

The perceptron was a neuron-like adaptive element invented by Frank
Rosenblatt in 1958, followed two years later by a method of training called the

'perceptron rule' which used the difference between target and actual binary

56

CHAPTER 4 SOFTWARE SIMULATIONS

outputs in such a way as to reduce that error 4.13. Rosenblatt also introduced the

important idea that neural network information is stored in the connections (or

associations) between simple processes.

Later in 1960, Bernard Widrow and Marcian Hoff proposed a similar structure

called an adaline'4,21 (shown in Fig 4.1), which performed the sum-of-products

of binary input values (±1) with corresponding variable weight values (or

'gains'). A bias gain with constant input was added, and the output was

obtained using a hard-limiting threshold which quantized the final sum to ±1.

The adaline could thus be used to classify binary input patterns into two

categones.

+1

WEIGHTS w auks
/-"-w WI WEIGHT

i BINARY
OUTPUT

Qt

LIAS LEARNMIO
ALGORITHM

THMHOLD
DEVICE

ADAUN
DMWD dk
OUTPUT

Fig 4.1 Adaline with LMS Learning (After Widrow and
Hoff)

Widrow and Hoff also introduced a novel supervised learning algorithm which

trained the adaline to classify patterns from given data by adjusting the weights

according to the size of the linear error at the output of the summer before

57

CHAPTER 4 SOFTWARE SIMULATIONS

quantization. This algorithm was shown to be equivalent to minimising the

mean squared error for all patterns, and is thus commonly called the Least

Mean Squares (LMS) algorithm. Other common names are the Gradient

Descent Rule, Delta Rule or Widrow-Hoff algorithm.

The modem perceptron is essentially the same as the above, but some use

linear or smooth non-linear output functions rather than the hard-limiting

quantizer, and may or may not be limited to binary inputs.

It became clear also that by applying the same input vector to several neurons,

with different weights, a vector output could be obtained. This was introduced

in the Madaline networkta. 31.

Multilayer perceptron networksl4 4I are an extension of these ideas. Single layer

perceptron networks can only correctly classify linearly separable sets of input

vectors, which was recognised early on as a severe limitation"". By

connecting the outputs of a layer of neurons to the input of the next, a

multilayer network is obtained which gives an extra dimension. The network

now has two layers of neurons and weights, a 'hidden' layer and an 'output'

layer, and is usually called a two layer network. Networks with multiple

hidden layers are also possible. It can easily be proved that only MLPs with

non-linear hidden neurons are worth constructing, since a multilayer network

with linear hidden layers can always be reduced to a single layer network.

58

CHAPTER 4 SOFTWARE SIMULATIONS

M HIDDEN N OUTPUT
L INPUTS LAYER NEURONS LAYER NEURONS

yp1
_

Wji
81

Xpjý---IYpi wk)
ek

XP ypkjp_

Iý ý E F

Fig 4.2 Two Layer Perceptron Network

Fig 4.2 shows a two layer perceptron network, with L inputs, M hidden layer

neurons and N output layer neurons. The output function F is the sigmoidal

non-linearity, or logistic function 1/(l+e") which limits the output range

between 0 and 1. The inputs and outputs of each layer for a particular pattern

p are denoted by y,,; for the inputs to hidden layer (15i5G), yp; for the inputs

to the output layer (15j5M), and y, for the final outputs (15k5N). The

corresponding signals into the sigmoidal function are denoted by x,, and x Pe
The hidden layer weights are denoted by wj, ' and the output layer weights by

wk; ` and the corresponding threshold biases are O' and 8, t, at iteration t.

4.1.1 The Backpropagation Learning Algorithm

The problem with training multilayered networks with a supervised learning

algorithm is that the output values of the hidden layer neurons are not

specified in the training data, so the errors in the hidden layer cannot simply

be specified as the difference between the actual and desired responses, and so

the required weight changes cannot be found directly. The Backpropagation

59

CHAPTER 4 SOFTWARE SIMULATIONS

algorithm of Rumelhart, Hinton and Williams'" ' (also claimed to have been

discovered independently by Werbos and later by Parkerl4-71) was a real

breakthrough in that it enabled the training of hidden layer weights by

calculating the error terms for the hidden layer as a weighted combination of

the errors from the output layer. This is the 'backpropagation of errors' which

gives the algorithm its name. The process may be carried out repeatedly to

train networks with larger numbers of layers. The algorithm is often called the

generalised delta rule, since it can be seen as a extension of the single layer

delta rule. However, it should be noted that unlike the single layer algorithm,

backpropagation is not guaranteed to find the global minimum error, because

local minima may also exist.

Fig 4.3 describes the steps of the backpropagation algorithm It consists of two

phases, a recall phase (or forward pass) in which an input is presented to the

network and the actual outputs are calculated, and a learning phase (or

backward pass) in which the errors are calculated and the weights adjusted.

The weight changes for each neuron are determined by multiplying the

corresponding inputs by the error term 8 (constant for that neuron at iteration

t) and a learning rate 11 (constant for the entire network).

In this description of the backpropagation algorithm, each step in the algorithm

is repeated for all neurons in that layer before proceeding to the next step.

When the two phases are completed for one input pattern, the process is

repeated until each pattern in the training set has been presented. This is one

training epoch. In this work, weight updates are njade after each pattern is

presented. Alternatively weights changes may be accumulated over several

patterns, or over the whole epoch, before the updates are made.

60

CHAPTER 4 SOFTWARE SIMULATIONS

Expressions for the total number of additions and multiplications used in each

step were determined, which are used later to optimise the software

implementation of the algorithm. These are shown alongside the algorithm

steps in Fig 4.3.

Fig 4.3 The Backpropagation Algorithm

(a) Recall Phase

Description of Equation Total * in Total +
step Layer in Layer

Sum-of-
f

Lt
+e X =Ew 3'

ML M(L+1)
Products o i vi , ,

ý' Inputs and
Kidden Layer
Weights

Hidden Layer
y; _ (1 +e Sigmoid

Function

Sum-of-
products of

M
X=EW; yp, + 8k

NM N(M+1)

Hidden Layer
Activations and
Output Layer
weights

output Layer
ya ý1 +e Sigmoid

Function

61

CHAPTER 4 SOFTWARE SIMULATIONS

Fig 4.3 The Backpropagation Algorithm (continued)

(b) Learning Phase

Description of Equation Total * in Total +
step Layer in Layer

Output Layer sk = y, k
(1 - y1)(d, _ yam 2N 2N

Error Term

IfidIden Layer
Error Term

N
SP; yP; (1 - yPj) E ww SA

(N+2)M M+N

k- I

pdate Output [J ww wp + spk yP; 2M(N+1) M(N+1)
Layer weights
and Thresholds ek '= e" + Tj sý
Biases

Update Hidden
Wo I_ wit + ,nsy P, P

2L(M+1) L(M+1)
Layer weights
and Thresholds 07 ()j' +qS ; Biases P

A modification to the basic backpropagation algorithm (also introduced int4'6))

involves the addition of an 'acceleration' (or momentum) term to the weight

update equations which is usually a fraction of the weight change from the last

epoch. The weight change equation becomes;

w'. 1 = W' + 11 8y+a W-W ,_ 1)

where a is the momentum. Momentum can speed up training by biasing the

current weight change in favour of the last weight change. This effectively acts
like a low pass filter on small fluctuations in the weight step at successive

62

CHAPTER 4 SOFTWARE SIMULATIONS

iterations.

In general, backpropagation suffers from very slow (or lack of) convergence,

and the performance can be greatly affected by the choice of learning rate,

momentum, and the actual random weights chosen. Network paralysis and

local minima are also potential problems1`8 , although the latter seems not to

be as serious as was once feared.

For these reasons, many variations of backpropagation have been proposed and

research in this area is still very active. None, however, appear to have become

accepted as the best approach for all problems. Recent publications have

shown some advantage in using symmetric inputs and activation functions such

as the hyperbolic tangentt4-9.101. However, the bipolar nature of the inputs and

outputs may cause problems in some hardware implementations. Furthermore,

it does not allow the use of the optimisation methods to be proposed in Section

4.2. Most other variations use second derivatives to optimise the size of the

weight changes"-`-", which is equivalent to using a dynamically varying

learning rate. In these cases, learning speed (in terms of number of epochs)

and convergence tends to be improved over the standard backpropagation.

However there is a trade off with the increase in computational complexity,

and increased storage requirements which are not beneficial for hardware

implementations.

4.1.2 The Weight Perturbation Learning Algorithm

In the backpropagation algorithm, weight updates are calculated analytically

by use of the chain rule, starting with the error at the network outputs and

working back to find the gradient of the error with respect to the neuron

63

CHAPTER 4 SOFTWARE SIMULATIONS

weights. On-chip implementation of backpropagation learning in Analogue

VLSI is made difficult by the need to ensure sufficient accuracy in the

modelling of the algorithm, in the face of process variations. This may limit

successful implementation of backpropagation to a chip-in-the-loop training

type strategy, as proposed for use in this thesis. However, it is useful to

consider other algorithms where a fully on-chip neural network may be

required.

In weight perturbationl¢' , weight updates are calculated by changing each

weight value by a small amount, and examining the change in Mean Squared

Error (MSE), A,, at the outputs. If the perturbation, At, is small enough, a

good approximation to the error gradient, AE. JAt, is obtained directly, and the

algorithm has been shown to work well with larger perturbationsi¢'9. This has

an advantage for on-chip analogue implementation, since it is not necessary to

know the exact form of the sigmoidal transfer function, nor need the function

be the same for each neuron. Therefore the algorithm is likely to be more

tolerant to process variations. Furthermore, the number of steps in the

calculation of a weight change are reduced, so that any inaccuracies in one

step are not amplified to the extent they would be in an algorithm with more

steps, like backpropagation.

The main disadvantage of the algorithm is the number of times the simple

steps must be repeated - once for each weight in the network at every iteration.

In particular, a recall phase must be repeated for each weight perturbation in

order to calculate the new MSE, which is particularly intensive in sequentially

processed simulations.

64

CHAPTER 4 SOFTWARE SIMULATIONS

The learning phase for weight perturbation is shown in Fig 4.4, together with

the total number of multiplications and additions for each step. Note that it is

only necessary to find the Sum Squared Error (SSE), since division by the

number of outputs N and multiplication by ý can be carried out during weight

update, effectively incorporating them into the learning rate i. e. -AEp=

(Tl/2N)(Sp SP'). The total number of weights and threshold biases is denoted in

Fig 4.4 by W=M(L+1)+N(M+1).

Fig 4.4 The Weight Perturbation Algorithm Learning Phase

Description of Equation Total * Total +

step

Calculate initial N 2N
S=d

vi - y1)2
P(SSE (once

only)

Temporary wý = w;; + Ar

Weight

Perturbation

Perform Recall See Fig 43(a) WM(L+r V2

Calculate new ýN+ S; (dp - yp;)2
WN 2WN

SSE

Update Weight
tun,, wÄ +

(S WN 2WN

65

CHAPTER 4 SOFTWARE SIMULATIONS

4.2 Software Requirements for Simulation of Overlap in the MLP

4.2.1 Incorporating Overlap into the Standard MLP Model

It is possible to approximate the band overlap which occurs in demultiplexing

a frequency division multiplexed channel by mixing a proportion of the signal

from the adjacent bands into each band. This is incorporated into the standard

multilayer perceptron model using the fractional overlap parameter defined in

Chapter 3, which is multiplied by the activation of each adjacent neuron, and

then the two values are added to the activation of the central neuron before

multiplying by the weights, since in the proposed hardware system the weights

array is after the demultiplexing.

Thus, the recall phase is modified as follows;

m
xpk = Ewp (ye, +£ YP;

-1+8
Yp; . 1) + ek

where y. 0 and ypM+, are made zero to account for overlap at one side only at

the ends of the layer. c is the fractional overlap which can range from 0 (no

overlap) to 1 (full overlap). For cam, the software will implement the standard

multilayer perception architecture.

4.2.2 Computer Hardware and Software Considerations

Calculations in neural networks are by their nature computationally intensive

and require a large amount of storage for weights and neuron activations. For

small networks, a PC based system may be appropriate, but for larger

problems a mainframe solution may be required. The PC implementation is

often limited by a 64k segmentation of memory to ensure 8086 microprocessor

compatibility, and so large data structures cannot be defined easily. Neither is

it feasible to use disk storage and process the network data in blocks, because

66

CHAPTER 4 SOFTWARE SIMULATIONS

disk access would slow down the system. Both the backpropagation and weight

perturbation algorithms require all weights to be available at each iteration, and

if momentum is used weight changes from the last iteration must also be

available in memory.

It was decided to develop the software on an IBM PC to take advantage of the

good quality editing and debugging facilities, but to reserve the option of

porting it to a VAX mainframe as required. The high level language Pascal

was chosen for the programming since it is well supported on both systems

and is portable enough to be transferred between systems with only minor

modification. Borland Turbo Pascaff4171 was used for the PC software

development and smaller networks, and VAX Pascall4. ' for the larger

networks. In the later simulations involving weight quantization and weight

perturbation, aC language version of the software was also developed, for use

on Sun platforms.

4.2.3 Data Acquisition and Storage

The software system consists of the neural network program and its training

and weights data files. The program works most efficiently with all the data

stored in global memory arrays which can be loaded from disk files just once

at the start of the program It was decided to store the training data as ASCII

text, so that it could be generated by different computers and ported by

network to the program location. The data is efficiently stored as alternate lines

of input-output pairs separated by NewLine characters. This is a particularly

compact form of storage for the binary training data which is used for the two

applications in this study. Weights are continuous so must be stored as floating

point real numbers for compactness. Two weights files were specified, one

67

CHAPTER 4 SOFTWARE SIMULATIONS

with the initial weights which can be random or from a previous training

session, and one working weights file. This enables the network to be trained

several times with the same initial conditions, and thus compare the effects of

varying degrees of overlap with the same starting point.

4.2.4 Network Parameters

The parameters required by the backpropagation algorithm are the learning rate

and momentum, which can be varied according to the application. The weight

perturbation algorithm also requires a learning rate (momentum was not

specified for weight perturbation, since it is unlikely to be used in an on-chip

implementation). Some work has been done in an attempt to eliminate the need

for user input of the learning rateP`1, however in most applications the optimal

value is found experimentally. In addition, other parameters are needed to

initialise the network and monitor the learning. Unless existing weights are

available, the network must be initialised with small random values. The range

of these weights also depends on the application and size of network, but

typical values from the literature range from ±0.01 to ±1, with smaller ranges

used for larger networks.

It is also necessary to define a performance metric in order to decide when to

stop the training process. Since both learning algorithms act to minimise the

MSE, learning can be stopped when this error reaches a specified minimum

value. There are a number of problems with this approach, particularly for

classification problems. Firstly, because the error is averaged over all the

output neurons, some neurons may be more in error than others and so a large

error in a few neurons may be masked by lower errors in the majority.

68

CHAPTER 4 SOFTWARE SIMULATIONS

Secondly, the error is averaged over all input patterns which does not allow for

the potential of some patterns being more difficult to learn than others. It is

thus not always clear what is an acceptable minimum error. The calculation of

the sum-of-squares is also a computationally expensive process, especially

since it must be carried out at each iteration. It is noted that the MSE still

needs to be calculated for weight perturbation. However it is advantageous to

use the following method in addition, since it allows simple comparison of the

different algorithms, but introduces little computation in excess of that required

for the MSE.

It was decided to use a different metric which is clearer to analyses and

cheaper to compute. An output activation tolerance was defined for the output

neurons, similar to that suggested by Rumelhart et d4.61 where it was used to

help limit weight values. This is defined here as the difference between the

desired binary output activation used for the training, and the actual analogue

output activation which can be tolerated in a particular application. Learning

of a pattern is said to be complete when all neurons have been trained within

that tolerance. For example, using an output tolerance of 0.1, the neuron

activation would be correct if it was 0.9 for a desired output of 1, or 0.1 for

a desired output of 0. In this case 0.1 and 0.9 are the thresholds for correct

classification. Learning can be stopped when this condition is satisfied for a

given number of patterns, or prematurely after a given number of epochs. The

number of patterns learnt after each epoch can be calculated simply by

checking the outputs of the neurons at each iteration and comparing them to

the threshold. Therefore, squaring and summing operations are replaced by

comparing and counting operations. The metric also defines zero global error

relative to the threshold when all outputs are at or above threshold for all input

69

CHAPTER 4 SOFTWARE SIMULATIONS

patterns. Using thresholds in this way is also good for classification problems

because it allows selection of a margin of separation between classes. In

hardware implementations, it can also help to guard against noisy input data.

Use of a noise margin has also been suggested by Fahlman in his

backpropagation benchmarking studies, as an analogy with digital logic gate

thresholdsta. la3 To incorporate these ideas into the software, the output

activation tolerance and the number of patterns to be learnt to this tolerance

are the extra parameters required.

After training, the network may be tested using data not in the training set.

The output response for unknown data will rarely be as clear-cut as for the

training set. Therefore two options can be used for recall of test set data.

Firstly, the same performance measure can be used as before but with the

option of increasing the output tolerance if desired. Alternatively, the neuron

with the largest response can be chosen whatever the value.

During learning, a whole host of values can potentially be monitored and

displayed, including the values of the output activations, errors, weights values,

number of epochs elapsed and number of patterns learnt. These should be kept

to a minimum to reduce the overall computation time. It was decided to allow

the amount of display information to be varied by the user. Output activations,

number of epochs, and number of patterns learnt, can be selected for display

frequency. Rather than displaying the weights in the program, it was decided

to save the working weights file to disk at specified intervals. Infrequent disk

access does not slow down the simulation to any great extent, and also guards

against computer power failure during long simulation runs since the software

can be restarted from the last saved weights files rather than the beginning. An

70

CHAPTER 4 SOFTWARE SIMULATIONS

extra program was used to display the weights files in a readable format, since

they are stored as real values rather than text.

All the above techniques can be used for any neural network simulator. In

addition to the standard parameters, a single overlap parameter is required to

specify the amount of overlap between neuron activations.

4.2.5 Optimisation of Computation

Combining the expressions derived earlier, the number of calculations needed

per iteration to train a L-M-N MLP network is (NM+ML) multiplications and

(NM+ML+N+M) additions in the forward pass. In the backward pass the

number of multiplications is (3NM+2ML+2N+4M+2L) for backpropagation and

approximately (NM+ML)2+(NM)2 for weight perturbation. The number of

additions is (NM+ML+N+M) for backpropagation and approximately

(NM+ML)Z+5N(NM+ML) for weight perturbation. In addition there are (N+M)

sigmoid calculations in the forward pass which involve division and calculation

of exponentials. It can be seen that learning is more computationally intensive

than recall especially in the weight perturbation method, but that both

algorithms have to perform a very large number of calculations in both phases.

By examining the forms of the training data and the algorithms, it is possible

to reduce the computation time.

Firstly, if binary input data is used, it is not necessary to perform any

multiplications in the hidden layer during recall, and the sum-of-products is

calculated by simply adding a weight if the input is a 1, and ignoring the

calculation if the input is a zero. The computation is reduced to L comparisons

71

CHAPTER 4 SOFTWARE SIMULATIONS

and ML(,)+M additions, where L(J) is the number of l's in the input pattern.

The number of sigmoidal calculations in both layers may also be reduced since

the function saturates rapidly and is within 5E-8 of 0 or 1 (or 1 bit in 24) for

inputs greater than ±20. This procedure is also necessary to avoid floating

point overflow errors in calculating exponentials of large numbers. Thus, the

output is rounded safely to 0 or 1. It should be noted, however, that saturation

of neurons in this way is not necessarily desirable, since learning is very slow

for saturated outputs and is stopped when truncation occurs.

In backpropagation, a weight update is zero if either the output of the sigmoid

is truncated to zero, or if the input to that neuron is zero. The computation in

the backward pass is thus reduced to 2L(1)(M+1) multiplications and L(j)(M+1)

in the hidden layer. In the case of weight perturbation, a change to any weight

connected to an input which is a zero cannot influence the MSE, so those

weights need not be trained at that iteration. Furthermore, it is only necessary

to perform a partial recall for any particular weight perturbation, especially for

weights in the output layer where only one neuron is affected by the change.

In addition, there will be a small reduction in computation due to the number

of saturated neurons in either the hidden or output layer, which will increase

during learning.

If momentum is used there is an increase in computation which cannot be

eliminated by the above techniques without examining extra data from

previous iterations. Therefore, no further savings are possible. The additional

computational overhead is one multiplication and two additions per weight

update, or (2NM+2ML+2M+2L) multiplications and the same number of

72

CHAPTER 4 SOFTWARE SIMULATIONS

additions per iteration. It would therefore be sensible to ignore these steps if

momentum is zero by the use of a comparison, especially if momentum is

rarely used.

4.3 Formal Software Design

Incorporating the above considerations, the software was designed using the

Warnier-Orr formal design methodologyt4 20].

Use of a formal methodology increases the speed of design, reduces errors, and

ensures that the code produced conforms to specification. In the Warnier-Orr

technique, the program is combined from a hierarchy of procedures separated

using braces ({), called sequence constructs. The exclusive-or (®) symbol, or

selection construct, is used to denote exclusive choices specified by the

program or user. Numbers in brackets denote the repetition construct, used in

the form (n times) for a loop and in the form (0 or n times) for conditional

loops.

The Warnier Diagram for the software design is shown in Fig 4.5, which

describes the original design implementing backpropagation using floating

point arithmetic. Changes required by the extension of the design to include

quantization and weight perturbation algorithm are explained later.

Pascal code was then written to implement the design. The program was

written as a set of procedures to conform to the Warner diagram. The exact

code is not presented here since the program could be easily coded from the
Warner diagram in any chosen programming language, or on a different

hardware platform. It was found that the PC version could be converted to the

73

CHAPTER 4 SOFTWARE SIMULATIONS

VAX version by modifying only the code for the file declarations, the

date/time function and the randomization function. Translation to C was

achieved by use of an automatic Pascal-to-C converter, followed by

optimisation of the code.

It was noted that the recall phase during learning is almost the same as that for

recall only. Therefore the forward pass was written as a single procedure to be

called either directly from the main procedure, or as a call from the learn

procedure, but the actual function is dependent on the origin of the call in

order to implement the differences between the two.

74

CHAPTER 4

Fig 4.5 Warner Diagram of Neural Network Software Implementation

SOFTWARE SIMULATIONS

(a) Main Procedure

Program
OVERLAP

Enter
Filename
"name"

Define Neural
Network
structure

Get Training
Data

Get Weights
Data

--> Continued
in Fig 4.5(b)

--> Continued
in Fig 4.5(c)

--> Continued
in Fig 4.5(d)

Lear

ED

Recall

(1)

Exit Program

-> Continued

in Fig 4.5(e)

--> Continued
in Fig 4.5(t)

75

CHAPTER 4 SOFTWARE SIMULATIONS

Fig 4.5 (b), (c) & (d) Warnier Diagram (continued)

Inputs, L
Enter Layer
Sizes Hidden, M

Output, N
Enter

(b) Define Number of
Neural Test
Network Patterns, P
Structure

Existing
choose weights

Weights
Type Random

Weights

Open file
"name". in

Get an Input
Get an (L times)

(C) Get Training Input-Output
Data Pair Get a

(P times) Desired
Output
(N times)

close file
"name". in

Open
working
weights file
"nmme". wgt Get a

Hidden

weight
Get Hidden (L times)
Neuron
Weights Get a

ýd) Get Weights (M times) Hidden
Data Tbzeshdd

Get Output Get Output
Neuron Weight
Weights (M times) (N times)

Get Output
Threshold

close file
"name". wgt

76

Enter
weights
Range

Create
initial file
"name". sav

Crate
woddng file

"wgt

CHAPTER 4 SOFTWARE SIMULATIONS

Fig 4.5 (e) Warner Diagram (continued)

input Leaw
Display
puameten

Use
Defaults

Learn

Start a
Training
Rum
(n times)

Learning
Rate

Momentum

g OQVM
>acameters Tolemce

Number of
Patterns to
be learnt

Epochs
Display
Frequency

Enter
Display/ Weight Save
Save Frequency
Parameters

Select
Display! No
Display of
Out uts Enter p daring

Overlap
Factor

lumber of
Epochs, E

Display
Date and
rime

Display
Netwoh
Parmmaua

Start CPU
Timer

Peifoam a
Begin Backward
Training and a
(E times) Forward

Pass
Display (P fimes)
CPU Time
Elapsed

Display
Data and
rune

Do Recau
Phase

Check
Output with
De: iied
(N times)

Do Learning
Phase

Apply Input
(L wes)

Calculate
Hidden
Activations
(M rimes)

calculate
Output
Activalicas
with
Overlap
(N times)

Display
Output
(0 or N
times)

Calculate
Oaepnt
Enax
(N times)

C achte
Hidden
Errors by
BadcP .
(M times)

Update
Oast
Neuron
wette
(N tinm)

a np an
Output
weight
(N cam)

Gange an
Om d
Threshdd

Update
ifidd
Neuron
Weights
(M times)

Display No.
of Epochs
(0 or 1
time)

Display
Epochs,

Save Date and
Weights and Time
Display
% patums Save
lams weights
(0 or 1
time) Display %

Patterns

Change a
Hidden
Weight
(N tb na)

Change a
Hidden
Tlueshdd

77

CHAFFER 4 SOFTWARE SIMULATIONS

Fig 4.5 (f) Warner Diagram (continued)

Output
Tolerance

Use Largest
activation

Overlap
inter factor
tecall
Paz etea Display

Failed
Outputs
Only

Display an outputs

Select
Pattern
Number or
All patterns

Apply Input
Recall (L times)

Sit a
Recall Ran Calculate
(m times) Hidden

Activatims
(M times)

Perform
Forward Calcalate
Pass output
(1 or p Activations
times) with

Overlap
(N times)

Display
Display % Outputs
Correct (1 or N
clauific- times)

78

CHAPTER 4 SOFTWARE SIMULATIONS

4.4 Simulation Results

4.4.1 Three Bit Parity using Floating Point Weights

The first simulation involved training a 3-3-1 two layer perceptron network

with the three-bit parity problem, using the backpropagation algorithm with

floating point weights. The training set consists of the eight three bit binary

input patterns and the corresponding desired binary outputs. The output neuron

has a desired output ' 1' if the number of 'I's in the input is odd, otherwise the

desired output is V. Training neural networks to learn parity has been studied

by numerous workerst444 and it is therefore a good benchmark for testing a new

simulator, and for studying the effect of overlap on the learning performance.

It is a generalisation of the XOR problem and so it cannot be done with a

single layer network. It is a 'hard' problem because patterns differing by the

smallest Hamming distance (i. e. 1 bit), must be classified differently.

The network was trained with a learning rate of 0.5 and a momentum of 0.9,

as used by Rumelhart et at"'. The network was trained to an output activation

tolerance of 0.1 of the desired outputs for all eight patterns and learning was

said to be complete when all patterns were learnt. The number of epochs of the

8 input patterns was recorded for a set of 100 trials (i, e. the network was

trained on the same problem 100 times) for each value of overlap used,

ranging from 0 to 1 at intervals of 0.05. Each trial was started with a different

random set of weights in the range ±0.1. If learning was not complete by

10000 epochs, training was stopped and the trial was recorded as non-

converged. It is important to record the data in a way which captures the

overall effects of overlap on the learning. Some researchers have suggested

using the mean number of epochs of the converged trials as a measure of

network performance'4.21). This method has been criticised by Fablman14'41 since

79

CHAPTER 4 SOFTWARE SIMULATIONS

it gives no indication of the overall performance, especially if convergence is

poor. Fahlman decided instead to restart unconverged trials after a certain

number of epochs with new random weights, and record the sum of the

number of epochs in all trials until convergence was reached. However, this

method is again not very good if the proportion of non-converged trials is very

high as it may be for a large overlap. It was decided therefore to include the

10000 epochs for each non-converged trial in the calculation of the mean to

give a fairer weighting to trials with higher non-convergence, and to record the

number of non-converged trials separately. All the information can be

contained on a single graph shown in Fig 4.6, with the number of non-

converged trials in brackets.

Mean No. of Epochs for Convergence /1000
81

6

4

2

Fig 4.6 Learning Time vs. Overlap

As a general trend, the number of trials which did not converge is seen to

increase with increased overlap. The percentage of failures is insignificant for

an overlap up to 0.3, where it is seen that even without overlap the network

80

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fractional Overlap

CHAPTER 4 SO1W TWARIE: SIMULATIONS'

may still not converge to the required solution. The larger percentages of

failures are apparent for overlaps above 0.5.

% Trials
80

over I 89P. 0.0

Ov. r lp=0.1

60
Overlap-0.2

Orr 1m0.3

®
Ovw IapK0.4

D~ I upa. 5
40 ®

Over Iu0. S

[ý
0

Owrlep-0.7

20

0
0.500.1000.1500.2000.2500+ 3000.3500.4000.4500+ 5000. N. C.

fpocre

Fig 4.7 Learning Time Distributions for Varying Degrees of Overlap

Fig 4.7 shows in more detail, the distribution in the number of epochs needed

for convergence for the 100 trials, shown in groups of 500 epochs. Each group

of bars shows how the percentage of total trials requiring a specific range of

epochs varied as overlap was increased. The first group of bars shows the

percentage of trials which required between 500 and 999 epochs to converge,

which are seen to first increase, then decrease as overlap was increased from

0.1 to 0.7 at intervals of 0.1. The second group shows a similar variation.

Examination of the other groups reveal that as overlap is increased, there are

a small number of trials which require an increasingly larger number of epochs

to achieve convergence. For example at an overlap of 0.5, a sizable proportion

of the trials required between 1500 and 2999 epochs to converge, and at 0.6,

81

CHAPTER 4 SOFTWARE SIMULATIONS

there are more trials requiring over 4000 epochs. The N. C. (Not Converged)

group shows how the number of non-converged trials increased steadily for

overlaps greater than 0.3.

On examination of the results from both Fig 4.6 and 4.7, an overall

degradation of performance is observed. This is mainly due to the increase in

the number of unconverged trials, as the overlap between adjacent hidden layer

neurons was increased. However, it is clear from the variation of the learning

speed distributions in Fig 4.7 that for trials which did converge, the average

number of epochs needed for convergence was actually decreased for moderate

amounts of overlap. This decrease in learning time is most probably due to an

overall positive reinforcement of a neuron's output activation from overlap of

adjacent neurons, causing an increase in weight change increment and a

consequent increase in the learning speed. The increased number of non-

converged trials is due to negative reinforcement which causes non-

convergence by training of weights values in the wrong direction. Eventually,

even positive reinforcement may also cause non-convergence due to overly

large weight increments which could saturate a neuron irreversibly. This would

explain the eventual reduction in the mean learning speed of trials which did

converge, as well as the increased number of non-converged trials for larger

values of overlap. This phenomenon is now examined in more detail in the

following analyses.

Two sets of trials were carried out starting each set with a different random

weights file. For each set the trial was repeated for different values of overlap,

using the same starting weights file. The variation in the number of epochs

needed for convergence, as overlap was increased at intervals of 0.05, is shown

82

CHAPTER 4 SOFTWARE SIMULATIONS

in Fig 4.8. Both graphs start at zero overlap, and end at the highest overlap

value for which convergence was achieved. As before, a trial was said to be

not-converged if convergence was not achieved in 10000 presentations of the

training set.

No. of Epochs to Convergence /1000
7.

6

5

4

3

2

1

Fig 4.8 Variation in learning time with overlap for two sets of trials

Set (a) showed a gradual decrease in the learning time, followed a by rapid

failure as overlap was increased past 0.65. Set (b) initially showed the same

gradual decrease in learning time, but a gradual failure is also apparent starting

at an overlap of 0.45, with final non-convergence occurring at overlap greater

than 0.60. These observations conform to the shift in distributions of training

times shown in Fig 4.7, where an increase in overlap gave a decrease in the

average number of epochs required for convergence, provided convergence

occurred. However, the difference in the type of failure still needs to be

explained.

83

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fractional Overlap

CHAPTER 4 SOFTWARE SIMULATIONS

The weights values learnt using zero overlap for Set (a) are shown in Fig 4.9.

Similar weights were learnt for Set (b).

IDEN LAYER
WEIGHTS

Input 1 Input 2 Input 3 Threshold

Hidden 1 -6.77 -6.76 -6.74 9.10

Hidden 2 -625 -6.26 -6.28 2.02

Hidden 3 -2.92 -2.91 -2.90 7.08

OUTPUT LAYER
WEIGHTS

Hidden 1 Hidden 2 Hidden 3 Threshold

Output 9.08 -10.43 -831 3.54

Fig 4.9 Final weights values obtained after convergence using zero overlap

On examining these weights learnt with zero overlap, it can be seen that the

neural network has discovered a representation in the weights which can solve

the parity problem. Qualitatively, it can be noted that the weights between each

input and a particular hidden neuron are the same which makes the network

invariant to the order of bits in the input pattern. Therefore, it is the number

of 'true' bits in the input which determines whether the threshold bias weight

value is exceeded or not. The sigmoid function on the output of each neuron

causes the output activation to saturate quickly to '0' for negative sums, or ' 1'

for large positive ones. Hidden neuron 1 has an activation close to '0' if two

or more of the inputs are 'true', hidden neuron 2 has an activation close to '0'

if one or more bits are 'true', and the activation of neuron 3 is close to '0'

only if all three bits are 'true'. Thus, the hidden layer effectively counts the

number of 'true' bits in the input, irrespective of position, and encodes the

total count as the same number of '0' activations. The output layer then

84

CHAPTER 4 SOFTWARE SIMULATIONS

decodes the hidden layer activations. The output threshold bias is a small

positive number, the weights from hidden neurons 2 and 3 to the output are

large and negative, and the weight from hidden neuron 1 to the output is large

and positive. Therefore the output will be close to a '1' for hidden activations

'0 0 0' and 10 1' corresponding to even parity, and close to a '0' for hidden

activations 11 1' and '0 0 1', corresponding to odd parity. It can be seen that

the actual values of the weights and thresholds are not critical, for a similar

internal representation to be achieved. Fig 4.10 shows the internal values of the

network for all eight input patterns, rounded to integer values for clarity. The

same representation was discovered by the network in Set (b).

Inputs
'true' =T
'false' F
123

Hidden Layer
Sum of

Products
123

approximate
Hidden Layer
Activations

123

output
Sum of

Products

Approximate
output

Activation

FFF 000 111 -9 0

FFT -7 -6 -3 101 1 1

FTF -7 -6 -3 101 1 1

FTT -14 -12 -6 001 -8 0

TFF -7 -6 -3 101 1 1

TFT -14 -12 -6 001 -8 0

TTF -14 -12 -6 001 -8 0

TTT -21 -18 -9 000 0 1

Fig 4.10 Internal Representation for Backpropagation Learning of 3-bit Parity
with zero overlap

Rather than show all the available data, the direction of change (positive or

negative) of the final weight values as overlap was increased is shown in Fig

4.11 for Set (a). This helps to give an insight into why the network eventually

85

CHAPTER 4 SOFTWARE SIMULATIONS

fails to converge for large values of overlap.

HIDDEN Input 1 Input 2 Input 3 Threshold
LAYER

WEIGHTS

Hidden i - - - +

Hidden 2 - - - -
Hiý3 + + + -

OUTPUT Hidden 1 Hidden 2 Hidden 3 Threshold
LAYER

WEIGHTS
I Output + - + +

Fig 4.11 Direction of change of final weights values with increase in overlap
for Set (a)

As the overlap was increased the final weights values changed gradually. The

magnitude of the change was approximately the same for each weight and

threshold. Several mechanisms for failure appear possible in Set (a) depending

on the slight differences in the changes for different weights. In the hidden

layer, the weights and threshold of neurons 1 and 3 are moving in different

directions which would eventually cause a hidden layer activation to change

value from a '0' to '1' or vice-versa for some input pattern. In the output

layer, an increase in the weights from hidden neurons 1 and 3, faster than the

change in threshold and the other weight, would eventually cause the sum of

products to overcome the threshold when all hidden neurons were '11 1',

therefore giving the wrong result for the input 'F F F. This was in fact the

cause of failure in Set (a), at an overlap of 0.65, verified by examining the

exact weights values obtained.

86

CHAPTER 4 SOFTWARE SIMULATIONS

In Set (b), the weights movements were of similar magnitude but with different

directions, shown in Fig 4.12.

HIDDEN Input 1 Input 2 Input 3 Threshold
LAYER

WEIGHTS

Hidden i - - - -
Hidden 2 - - - +

Hidden 3 - - - +

OUTPUT Hidden 1 Hidden 2 Hidden 3 Threshold
LAYER

WEIGHTS

Output - + - -

Fig 4.12 Direction of change of final weights values with increase in overlap
for Set (b)

In this case the first signs of failure occurred when the weights of the third

hidden neuron became too small to overcome the rising threshold at an overlap

of 0.5, rather than a failure in the output layer as experienced in Set (a). At

this point the network weights changed in an entirely new way, some changing

direction, breaking the symmetry of the usual method, and the output layer

weights rose to much higher values. This 'phase' change was accompanied by

a great increase in the number of epochs required to find the new solution. The

new internal representation discovered is shown in Fig 4.13.

87

CHAPTER 4 SOFTWARE SIMULATIONS

Inputs
'true' =T
'false' =F
123

Hidden
Layer Sum
of Products

123

Hidden
Layer

Activations
123

Hidden Layer
Activations
Modified by

Overlap

Output
Sum of
Products

output
Activation

FFF 000 111 1.52.01.5 -3 0

FFT -9 -7 -7 011 0.5 1.5 1.5 4 1

FTF -2 -10 -12 110 1.5 1.5 0.5 2 1

FTT -11 -17 -3 001 0.00.51.5 -15 0

TFF -2 -10 -12 110 1.5 1.5 0.5 2 1

TFT -11 -17 -5 001 0.00.51.5 -15 0

TTF -4 -20 -24 100 1.50.50.0 -18 0

TTT -13 -27 -15 000 0.00.00.0 0 1

Fig 4.13 Alternative Internal Representation for Neural Network Learning of
3-bit Parity with overlap, Set (b)

It can be seen that the network has exploited the symmetry in the output layer

weights which allows the order of hidden activations to be exchanged without

affecting the final result. The number of '0' hidden layer activations is the

same as that for smaller amounts of overlap for the same input pattern. This

new weight combination will work even without overlap, but without the

additional constraint, the network finds the simpler solution first. The

subsequent large rise in learning time with overlap until non-convergence

shows that the alternative solution is more sensitive to the overlap value than

the first. Final non-convergence in Set (b) occurred at an overlap of 0.6, due

to a second hidden layer failure. The two sets of trials reveal two typical

responses of the parity network to overlap.

In summary, for the first case Set (a), changes in the output layer due to

88

CHAPTER 4 SOFTWARE SIMULATIONS

overlap eventually caused rapid, unrecoverable failure. In the second case,

changes in the hidden layer results in an alternative route to convergence,

requiring longer training, before final non-convergence occurs. In Fig 4.7, the

results from the 100 trials are split between these two cases for large overlap

which explains the overall nature of the graph. In both Set (a) and Set (b),

small overlaps, up to 0.5 have little effect on the way the solution is found,

which is an interesting and beneficial result.

In the light of these results it appears that the neural network is highly tolerant

to the mixing of hidden layer neuron outputs for the three bit parity problem,

and it is noteworthy that even for a large overlap the network can still

converge to the correct solution, albeit in a smaller number of cases.

89

CHAPTER 4 SOFTWARE SEMI ATIONS

4.4.2 Text-to-Speech using Floating Point Weights

The second network implementation was for a larger problem, involving a

larger number of hidden layer neurons. A network similar to the NETtalk text-

to-speech architecture of Sejnowski and Rosenbere-3' was chosen because

of the network's proven ability to generalise for unknown input data. (Learning

of the above parity problem cannot be used to examine generalisation because

the entire set of input/output patterns must be used to train the network

correctly). NETtalk cannot be described as a state-of-the-art system, since it

relies only on statistical pattern recognition, and is lacking in the

morphological analysis and other higher level knowledge bases present in more

advanced systems"41, but it is useful as a demonstration of a typical

application for neural networks and gives an insight into how internal

representations are formed in hidden layers'" 1. NETtalk was a multilayer

perceptron network trained to learn text-to-speech conversion by training on

example pairs of letter and phoneme data from English text, using the

backpropagation algorithm The input data was presented as a window of seven

characters which was moved along the running text. The network was trained

to pick out the correct phoneme for the central letter of the seven, the other

letters being used to provide a context for the transcription. Fig 4.14 shows a

schematic of the NETtalk architecture. In this implementation` 1a 196-100-46

network was used, which is different to NETtalk only by virtue of how the

training data was obtained.

The inputs consist of 7 groups of 28 bits, of which one bit in each group is a
'1' and the rest '0'. The ' 1' represents the selection from a set of 28 possible

characters, the 26 letters of the alphabet plus 2 for punctuation. Hence, only

seven of the inputs are ' 1' for any input pattern. A hidden layer of 80-120

90

CHAPTER 4 SOFTWARE SIMULATIONS

neurons has been found necessary to be able to capture the regularities in

English text, so 100 was chosen for this application as a trade-off between

performance and training speed. The phoneme classification was made by

selection of one of a representative set of 46 phonemes.

PHONEME

/

000000000

000000000000000 000000000

0000 0000 0000 0000 0000 0000 0000

a-c a t-
TDR

Fig 4.14 Schematic of NETtalk Architecture (after
Sejnowsld and Rosenberg)

The network was trained using words from a file of text containing 566 of the

most commonly written American-English words, obtained from the statistical

analysis of Brown's Corpus by Kucera and Francis'
, and phoneme data

derived from a specially designed computer program based on the letter-to-

phoneme rules of Elovitz et at4"281. The final training set consisted of 2856

letter to phoneme mappings, one for each letter of the 566 words placed

centrally in the seven character window. The 46 output neurons classified the

phonetic translation of the input data using a slightly extended set of the

International Phonetic Alphabet. The extension was necessary because in some

cases, single letters mapped onto two consecutive phonemes in Elovitz's rules,

which cannot be handled by a network which is capable only of one-to-one

mappings. It was therefore necessary to invent extra 'compound' phonemes.

91

CHAPTER 4 SOFTWARE SIMULATIONS

It was decided not to be overly concerned with obtaining good performance

of the rule-based program in producing 'correct' spoken English for every

word, since the aim of the exercise is not to produce the best text-to-speech

system, rather to test the effect of overlap on a large neural network. All data

produced by the rule-base can be treated as correct for the purpose of training

the neural network, since the performance of neural network can be measured

against the rule-base data, correct or otherwise.

A few initial trials with zero overlap were done to find an optimum learning

rate and momentum, which were found to be 0.9 and 0.0 respectively. An

output activation tolerance of 0.3 was chosen. For each value of overlap, the

network was trained starting with the same (initially random) weights file, and

the number of patterns learnt after each pass of the data set was recorded for

80 epochs.

Percentage of Patterns Learnt

100

80

60

40

20

Fig 4.15 Learning curves for text-to-speech showing overlap dependence

92

a
0 10 20 30 40 50 60 70 80 90

No. of Presentations of Inputs CEpochs)

CHAFFER 4 SOFTWARE SIMULATIONS

Fig 4.15 shows the learning curves obtained. Even without overlap, the

network was unable to learn the entire training set in 80 epochs. The reasons

for this are as follows. Firstly, two of the words in the training set, 'Thought'

and 'Though', cannot be distinguished by this method using only a seven

character window. Secondly, the network learns to distinguish between 'c', 's'

and 'z' sounds fairly late on in the training run, and does not achieve the

correct results for all words at 80 epochs. This second case could have been

overcome by further training, but it was decided that to do this for all trials

would not warrant the extra computer processing time required.

The learning curves for the network with overlap, and the network with zero

overlap, are almost indistinguishable for overlaps up to 0.3. The performance

of the network is then seen to degrade gracefully up to an overlap of 0.5. At

0.5 overlap a slight peak in the percentage of patterns learnt is noticeable at

about 50 epochs after which the number learnt decreases slowly. The network

failed to converge at an overlap of 0.6, and the number of patterns learnt

decreased rapidly to zero after pealing at about 17 epochs.

Generalisation for unknown inputs was then tested, for the values of overlap

up to 0.5. For each input pattern, the 'correct' phoneme was chosen as the

output neuron with the largest activation. The network was tested initially on

the original training set for each value of overlap, using the final weights learnt

in the first part of the simulation. A 720 word sample of text containing words

not in the original training set was then tested on the network and the

percentage of correct letter-to-phoneme transcriptions was recorded. Fig 4.16

shows the results obtained for the generalisation experiment. From the graphs

93

CHAPTER 4 SOFTWARE SIMULATIONS

it is clear that the neural network performance degrades as the fractional

overlap is increased, both for the original training set and the new data.

However, significant degradation occurred only for overlaps greater than 0.3,

as was the case for the parity simulations.

Percentage Correct Transcriptions

100

90

60

40

2C

Fig 4.16 Generalisation results showing variation with overlap

4.4.3 Text-to-Syeech using Quantized Weights

It has been discovered that the gradient descent algorithms are very sensitive

to quantization of weights values during learnine16-'I. As explained earlier

(Section 2.2.5, p26), quantization is almost inevitable in both analogue and

digital implementations of neural networks. The most damaging effect of

quantization is the truncation of weight updates to zero. In chip-in-the-loop

training, the weight update may be calculated using floating point arithmetic.

However, the update may be transferred to the chip only if it is equal or

greater than the least significant bit (LSB) of the stored weight. Thus it is

94

0 0.1 0.2 0.3 0.4 0.5 0,6
FractIonnI Overlap

CHAPTER 4 SOFTWARE SIMULATIONS

necessary to consider the combined effects of weight quantization and overlap

on neural network learning, and to discover if either has a dominant effect.

Typical weight quantization in analogue neural networks is 12 bits or less.

Therefore the text-to-speech simulations were repeated for 12,10, and 8-bit

quantization of weights. In addition a probabilistic update strategy, 4"30' was also

tested for the 8-bit case, whereby a weight is updated by one LSB with

probability Aw/LSB, if the calculated weight update Aw is less than the LSB

value.

Quantization as used in the simulations is defined as follows. Firstly the

integer part of each weight is clipped to ±16, using 5 bits. This choice is made

on the basis of the weight ranges required by floating point simulations. The

remaining bits are available for the fractional part. Thus the LSB values of 12,

10 and 8-bit weights are 1/128,1/32,1/8 respectively.

The Pascal code was first ported to C to take advantage of newer Sun

workstation performance, and then modified in two ways. The random weight

generation procedure was altered to introduce quantization to the initial random

weights file. The weights are generated, as before, as real numbers in a fixed

range after which each value is quantized. In C this is easily done by

multiplying a real valued weight by the LSB denominator (i. e. 128,32 or 8),

converting to integer type, converting back to real, then finally dividing by the

same LSB denominator. Since the magnitudes of initial weights are much

smaller than 16, clipping is not necessary.

The same procedure is also carried out for each weight update during learning.

Furthermore each updated weight value is checked to see whether it is now

95

CHAPTER 4 SOFTWARE SIMULATIONS

greater then 16, or less than -16. If so, the value is clipped. The above

procedure ensures that weights continue to be quantized throughout learning.

In order to implement probabilistic update for the 8-bit case a random number

is generated in the range 0 to 1/8. If this number is less than the magnitude of

the calculated update, the weight is updated by one LSB in the direction of the

calculated update, otherwise the weight is not updated.

Simulations of text-to-speech learning were carried out as follows. For each

value of overlap from 0.0 to 0.5 at intervals of 0.1, the network was trained

for 80 epochs on the training set used in the previous section. The fully

floating point simulation was repeated first, since a different initial random

weights file was used. Next, weights were clipped to ±16 but were not

quantized. Then, various levels of quantized weights were used with 12,10

and 8 bits. Finally the 8-bit with probabilistic update simulation was

performed. During each training run, the number of patterns learnt, MSE,

maximum and minimum weights, mean and standard deviation of the weight

set, and the average number of zero weight updates per epoch, were monitored.

The generalisation simulation was then carried out for each network. Graphical

results for the learning and generalisation simulations are shown in Fig 4.17

and Fig 4.18. Fig 4.19 shows the data obtained from monitoring the learning

simulation.

96

CHAPTER 4 SOFTWARE SIMULATIONS

% Patterns warnt

so

40

213 -

0.1 0.2 0.3 0.4 0.5 0.8

Fractional Overlap

Fleati Point --4- FP Clipped /-18 12 bit

10 bit --X- 8 lilt 08 bit " Qm. £tt

Fig 4.17 Text-to-speech learning with overlap for various degrees of
weight quantization

x Patterns correct
100

eo

50,

40

20

OR- lot
p 0.1 0.2 0.3 0.4 0.5 0.6

Fractional Overlap

-'- FIYKInt Point W Clipped N-16 It bit

-e- 10 bit " bit 6 bit " dab. Isst.

Fig 4.18 Text-to-Speech generalisation with overlap for various degrees
of weight quantization

97

CHAPTER 4 SOFPWARE SIMULATIONS

Fig 4.19 Table of data measured after training text-to-speech for 80 epochs

Description Overlap Final

MSE

(x10a)

Maximum

Weight

Minimum

Weight

Mean

Weight

Standard

Deviation

of Weight

Set

% Zero

Updates

Floating 0.0 0.47 172.16 272.24 -0.187 7.579 0

Paint

Weights
0.1 0.72 620.13 -438.88 -0.263 11.747 0

02 0.93 640.82 -506.52 -0.074 16.221 0

0.3 0.76 664.95 -363.03 -0.349 14.060 0

0.4 1.65 390.93 -667.03 -0.284 16.411 0

0.5 3.92 2003.43 -772.78 -0281 26.2076 0

Floating 0.0 0.52 16.00 -16.00 -0.242 4.780 0

Paint

Wem,
0.1 0.63 16.00 -16.00 -0.273 4.874 0

Clippw 0.2 0.80 16.00 -16.00 -0.262 5.364 0

+/-16 0.3 1.18 16.00 -16.00 -0.314 5.920 0

0.4 138 16.00 -16.00 -0.379 7.615 0

0.5 4.70 16.00 -16.00 -0.311 9.815 0

12-bit 0.0 1.86 16.00 -16.00 -0.118 3.844 98.45

Qwmdzad
0.1 2.35 16.00 -16.00 -0.093 4.200 98.61

0.2 338 16.00 -16.00 -0.108 3.907 98.88

0.3 2.80 16.00 -16.00 -0.104 5.078 98.64

0.4 4.00 16.00 -16.00 -0.174 5.949 98.87

0.5 6.45 16.00 -16.00 -0.068 4.660 98.86

98

CHAPTER 4 SOFTWARE SIMULATIONS

Fig 4.19 Table of data measured after training text-to-speech for 80 epochs

(continued)

Description Overlap Final

MSE

(x103)

Maximum

Weight

Minimum

Weight

Mean

Weight

Standard

Deviation

of Weight

Set

% Zero

Updates

10-bit 0.0 4.20 16.00 -16.00 -0.135 2.991 99.84

Qaantized
0.1 4.52 16.00 -16.00 -0.100 3.096 99.84

0.2 5.52 16.00 -16.00 -0.100 3.100 99.88

03 5.58 16.00 -16.00 -0.048 3517 99.86

0.4 1750 16.00 -16.00 -0.071 3.477 99.83

0.5 28.76 16.00 -16.00 -0.056 3.372 99.86

8-bit 0.0 0.81 16.00 -16.00 -0213 6.207 99.73

Qtumfised

+Pmbabala
0.1 0.86 16.00 -16.00 -0.236 6.279 99.75

-tic update 0.2 1.07 16.00 -16.00 -0.254 6.663 99.74

03 1.46 16.00 -16.00 -0.276 7.078 99.74

0.4 1.73 16.00 -16.00 -0384 7.883 99.73

05 3.99 16.00 -16.00 -0229 9.180 99.64

It can be seen from the graphs and data that both learning and generalisation

are severely affected by quantization. Weight clipping by itself only reduces

the percentage of patterns learnt by around 1% at all values of overlap used,

and a similar percentage for generalization. But with 12-bit quantization, the

percentage of zero weight updates are nearly 99% and reduction in percentage

patterns learnt is 10-20% for all values of overlap. For 10-bit weights, the

99

CHAPTER 4 SOFTWARE SEM ULATIONS

percentage of zero weight updates is over 99.8%, and the reduction in

percentage patterns learnt is 30-40% up to an overlap of 0.3, above which

rapid failure ensues. With 8-bit quantization the number of zero updates is over

99.9%, such that learning is impossible for any value of overlap. With 8-bit

probabilistic update however, the results are much better, with a reduction of

only 2% in the percentage of patterns learnt for all values of overlap, even

though the number of zero weight updates is nearly the same as in the 10-bit

case.

From this data it appears that quantization has the dominant effect, causing a

severe reduction in performance in both learning and generalization ability.

The overlap has a consistent effect, which is to further reduce performance of

both learning and generalisation. The added effect of overlap is more marked

as quantization is introduced. However with probabilistic update, the results

show that the backpropagation algorithm has a good tolerance to overlap which

is similar to that achieved in simulations with floating point weights.

It is also noted that the standard deviation of the weight set for the 8-bit

probabilistic update simulation is no larger than that of the floating point

algorithm without overlap (which was used to determine a suitable weight

range) for overlaps up to 0.3. In these cases, more than 95% of weights have

magnitudes less than 16, which justifies the weight range chosen.

4.4.4 Five Bit Parity comparing Backurovaaation and Weight Perturbation

In order to compare the performance of backpropagation and weight

perturbation algorithms with weight quantization and overlap, a 5-10-1 MLP

network was trained to learn 5-bit parity. A new problem was chosen for two

100

CHAPTER 4 SOFTWARE SIMULATIONS

reasons. Firstly, the 3-bit parity network was considered too trivial for an

adequate comparison. Secondly, it was not feasible to repeat the text-to-speech

training with weight perturbation, because of the large number of weights in

the text-to-speech network which would require an excessive amount of time

to train.

A few initial training runs were carried out to find the optimum learning rate

for the learning of all 32 binary patterns, which was found to be 1.0.

Momentum was not used since it is unlikely to be employed in on-chip

training algorithms because of the extra memory required. The existing weight

range of ±16 was found to be adequate for the simulations - none of the

weights were clipped in the initial training runs.

Floating point backpropagation was first compared with weight perturbation

using a very small perturbation of 0.0001. Backpropagation took 2715 epochs

for complete convergence, and weight perturbation took 14595 epochs, which

Mwn epUM-w MT-W
0.1+

0.42

0.1

0.09

0.0

0.04

a. 02

Epochs Clbrk. d every 50)

-0 .V Ion - . IOrrt Pwreiaattm

Fig 4.20 Learning Trajectories for 5-bit Parity comparing Backpropagation
and Weight Perturbation with a small perturbation Aß. 0001

101

CHAPTER 4 SOFTWARE SIMULATIONS

was surprising since the results were expected to be the same. However the

reason for this is seen by comparing the learning trajectories as shown in Fig

4.20. The trajectories are plotted up to the point that the backpropagation run

converged, using an output activation tolerance of 0.1. Although the learning

trajectories are almost identical to begin with (less than 0.2% difference after

200 epochs) as expected due to the close approximation of the error gradient

when a small perturbation is used, the learning trajectories are then seen to

diverge. This suggests that learning of 5-bit parity is very sensitive to small

differences in weight values.

The size of perturbation was then increased to 0.125 which is the size of the

LSB for an 8-bit quantized weight, and is about 1% of the maximum weight.

The increase in perturbation size is necessary to test the effect of quantization,

since it must be at least as big as the maximum LSB value used. This new

value of perturbation was used in all subsequent simulations.

The training was repeated for values of overlap from 0.0 to 0.5 at intervals of

0.1, using weights clipped to ±16, then 12,10, and 8-bit quantized weights,

and finally 8-bit weights with probabilistic update. The results from the

simulations are shown in Fig 4.21, which gives the number of epochs required

to train the network to correctly classify all 32 patterns, where possible. The

numbers in brackets denote the number of patterns learnt after 30000 epochs,

if the network did not converge.

For backpropagation the overall results are comparable to those for text-to-

speech, in that performance is severely reduced by quantization.

102

CHAPTER 4 SOFTWARE SIMULATIONS

Fig 4.21 5-bit Parity Results

(a) Backpropagation

Overlap

0.0 0.1 0.2 0.3 0.4 0.5

FP Clipped

+1-16

2715 4924 3256 (29) (24) 4968

12-bit (24) (6) 1493 1531 (25) (28)

10-bit (10) (0) (0) (9) (1) (3)

8-bit (0) (0) (0) (0) (0) (0)

8-bit +

prob-

romAing

3419 5447 1816 1120 5573 (26)

(b) Weight Perturbation

Overlap

0.0 0.1 0.2 0.3 0.4 0.5

PP Clipped

+/- 16

11708 2272 1775 1832 2082 3312

1 2-bit t (26) 1317 (25) (26) (21) (2)

10-bit (0) (0) (7) (2) (8) (10)

8-bit (0) (0) (0) (0) (0) (0)

8arit+

Pich

romfing

(30) 2410 9024 10600 10963 4309

103

CHAPTER 4 SOFTWARE SIMULATIONS

For the floating point simulation, the network is able to converge for values

of overlap up to 0.2 but the number of epochs required is increased over that

for zero overlap. Strangely, the speed of convergence is increased for 12-bit

quantization but this is only achieved for overlaps of 0.2 and 0.3. The network

fails to converge for 10-bit and 8-bit quantization. However, for 8-bit

quantization with probabilistic update, the network is able to converge for

overlaps up to 0.4 at a rate which is sometimes faster and sometimes slower

than in the corresponding floating point simulations.

In the case of weight perturbation, the qualitative results are similar, with

reduced performance at 12-bit quantization, and no convergence for the 10-bit

and 8-bit simulations for any amount of overlap. However, with clipped

weights, the network converges for all overlaps up to 0.5, and at a much faster

rate than the case with zero overlap. The 8-bit probabilistic update simulation

converges for all overlaps except zero.

on this limited amount of data, it is only possible to draw general conclusions

and to make some speculations. Firstly both training algorithms exhibit a

tolerance to overlap for both the floating point and 8-bit probabilistic update

training runs, but this tolerance is not as good as for the text-to-speech

problem. The reason for the poor performance of weight perturbation at zero

overlap cannot be explained at this time. However, it is interesting to note that

the networks trained by weight perturbation converged more consistently at

higher overlaps than by backpropagation. This may have something to do with

the fact that the learning phase for weight perturbation explicitly incorporates

the effect of overlap, since calculation of the perturbed MSE involves a recall

phase. This may be seen as further evidence of the tolerance of weight

104

CHAPTER 4 SOFTWARE SIMULATIONS

perturbation to particular constraints imposed by hardware implementation.

4.4.5 Discussion

Different simulations were carried out to investigate the effect of the mixing

of hidden neuron outputs, in order to simulate the band overlap which would

occur between the frequency responses of closely spaced filters in the proposed

frequency division multiplexed communication system between neural layers

in a neural network.

The effects of gradual degradation on the ability of the backpropagation

algorithm to train a neural network has been investigated by examining the

weights values learnt, as overlap was increased, in the 3-bit parity problem. It

was seen that failure to converge is due to the training of weights (or

thresholds) in the wrong direction, due to the modification in the outputs of

neurons by others. Failure may occur in either the hidden layer or the output

layer. In the 3-bit parity simulations, it was shown that the network may find

an alternative path to convergence when constrained by overlap. This is not

necessarily a desirable feature and it would not be wise to implement a

network architecture using such a high degree of overlap, but it is interesting

that an alternative method was found by the network for solving the parity

problem, which would not have been found without the additional constraints

being present

The results of the text-to-speech simulations using backpropagation with

quantized weights, suggest that weight storage on-chip may be quantized to 8

bits without a severe loss in performance, provided a probabilistic update

strategy is used in the chip-in-the-loop training. The reduction in the

105

CHAPTER 4 SOFTWARE SIMULATIONS

percentage of patterns learned using 8-bit weights and probabilistic update with

an overlap of 0.3 is only 5%, compared to the fully floating point simulation

with no overlap.

The results from the comparison of backpropagation with weight perturbation

learning 5-bit parity are somewhat less conclusive. However, it is clear that a

probabilistic update strategy must by employed in either algorithm, in order for

the network to converge consistently with quantized weights.

Although it is not possible to say with certainty that the algorithms will exhibit

a similar degree of tolerance for other problems, some tolerance to overlap is

probable, since the mechanisms for compensating the overlap errors will be

similar. The tolerance to overlap exhibited by the networks and algorithm

justifies the proposed use of moderate degrees of overlapping of filter

responses in the implementation of FDM communications. An overlap of 0.3

appears to be an upper limit for minimal degradation. This will allow the use

of lower Q filters, and/or increase the number of signals able to be transmitted

in a given bandwidth.

106

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

CHAPTER 5- VLSI IMPLEMENTATION OF FDM

This chapter turns to the VLSI part of this thesis, starting with remarks on the

use of SPICE simulation for analogue VLSI design. The next section discusses

techniques for minimising the effects of fabrication process variations. This is

followed by a brief introduction to filter and oscillator VLSI design using

Operational Transconductance Amplifier (OTA) building blocks. The design

of a CMOS differential OTA chip is then presented, including a description of

the route through to fabrication and testing. Simulation results using the OTA

in filter and oscillator circuits are also presented. The remaining sections of the

chapter cover tuning techniques needed to ensure matching of frequencies

between chips, and the specification for VLSI implementation of the FDM

communications.

5.1 Simulation Issues in Analogue VLSI

Whereas many high level simulators exist for digital systems, the device level

simulator, SPICE (including variants HSPICE, PSPICE), is still the accepted

tool for use in most analogue circuit designs. This is because analogue design

is much more susceptible to the characteristics of particular devices, making

'black-box' behavioral modelling much less straightforward. This is also true

for analogue VLSI design. There are numerous SPICE transistor models of

varying accuracy suitable for analogue VLSI, which use as input, process

parameter values supplied by the chip manufacturer. Since the exact values of

transistor parameters are important in defining analogue operation, any

inaccuracies or variations in the SPICE parameters can have a significant effect

on performance. Passive components are also a problem for analogue VLSI

107

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

simulation. In the case of on-chip capacitors or resistors, these are as much

subject to process effects as transistors, but they are not modelled as such by

SPICE.

When compared to digital, analogue VLSI circuits are much more sensitive to

the exact layout of the components. Layout is more involved than in digital

systems, where it is often possible to use the schematic information to

accomplish layout automatically. Gate arrays and standard cell libraries are

readily available. In contrast, high performance analogue circuits often require

a full custom layout. Some layout information may be back-annotated into

SPICE after layout (such as MOS transistor source/drain dimensions), and a

more accurate simulation can then be carried out. Even so, this approach may

result in a circuit being rejected after the lengthy design and layout procedure,

for other reasons. Fabrication variations can cause mismatch in components on

chip, and variations from chip to chip, which are difficult to include in

simulations. A further problem for system level simulations is lengthy

simulation times, although this may be overcome if higher level sub-circuit

models are available.

In the light of these problems, it is often desirable to try to minimise and

cancel out vors where possible by careful design, rather than attempt to

simulate the devices more accurately. In addition, where absolute component

values cannot be guaranteed, adaptive methods can be used to ensure accurate

performance of the system. This is the approach taken in the work to be

described in this chapter, since the accuracy of simulation possible was limited

by the availability of process data from the foundry.

108

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

5.2 MOS Process Variations, Temperature Gradients, and their Effects on

Analogue Circuit Design

5.2.1 Process Variations

With the increasing trend towards mixed analogue and digital integrated

circuits and the use of CMOS technology, it is usually necessary to design

analogue VLSI circuits capable of being manufactured using a digital CMOS

process. It is important to have an understanding of the uncertainties in the

fabrication process and to be able to analyse the effect of these variations on

circuit parameters, thus making it possible to minimise errors.

It is generally accepted that the uncertainties in the absolute values of MOS

passive components or transistors are around 10%, mainly due to variations in

oxide thickness and doping in the fabrication process. In the case of integrated

RC filters, Gregorian and Teures point out 11 that the combination of errors in

resistor and capacitor values lead to overall errors of around 20% in RC time

constants, since resistors and capacitors are produced in different IC processing

steps, so that errors are independent. This magnitude of error is clearly

unacceptable even for low selectivity filters or oscillators.

Relative errors between similar components on the same chip however, are not

as serious, since process variations have a more uniform effect on similar

components, resulting in a good matching characteristics. J. this case, it is the

accuracy of the ratio of component values which must be considered. The

error in this ratio is called the tracking error which is around 1% for a typical

process, an order of magnitude lower than the absolute error. The same ratios

are also reproducible on chips from different wafers, even though the absolute

109

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

values may be very different.

Some matching is also to be expected over a single wafer, and errors may be

smaller than those between chips on completely different wafers. However, for

a large number of chips, some will inevitably be on different wafers so it is

not really sensible to rely on matching except for components on the same

chip.

The main causes of physical fabrication errors in addition to variations in

oxide thickness and mobility, are mask undercut and random errors. Additional

errors are due to parasitics such as stray capacitances. The effects of these

depend very much on the physical geometry of the device.

Gregorian and TemesE511 discuss all these effects on integrated MOS capacitors.

Undercut is the lateral etching which occurs at the same time as the desired

vertical etching through a mask in the manufacturing process. The reduction

in area leads to a reduction in C, which depends on the perimeter of the

component. The smallest practical perimeter-to-area ratio is best achieved by

making the capacitor square. In addition, the capacitance is subject to a

random variation, due to uneven edges of both the masks and the materials

deposited, caused by non-uniform etching. The effect of the random errors is

such that an 8-bit accuracy in the absolute value is the best that can be

expected from the processes 21. Values for bottom plate stray capacitance are 15-

30% of C for metal/poly over diffusion capacitors depending on oxide

thickness and the construction of the device, and 5-20% of C for poly-over-

poly and metal-over-poly devices. Poly-over-poly capacitors are generally

preferred due to the uniformity of the oxide layer which can be achieved

110

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

between polysilicon layers.

Minimum tracking errors are obtained by ensuring a constant ratio of area to

perimeter, and a uniform etch around the capacitor plates"". In practice this

means designing a small unit capacitor square, and combining squares in rows

and columns to obtain higher values, since the amount of under-etching will

be approximately the same for each square.

Common centroid layout154,51 is used to make a layout insensitive to first order

variations, by distributing the component topology and using symmetry to

cancel out the errors, using the fact that process parameter gradients across

chip (e. g. oxide thickness) are approximately constant over small distances.

Sensitivity analysis is often used to quantify the effect of mismatch or

temperature gradient on system design parameters, such as frequency or Q in

filters, where sensitivity is defined as the relative change in a parameter due

to a change in a component value. Conventional design aims to minimise

sensitivities whilst satisfying the specification. In the case of common centroid

layout, it is not necessary to know the absolute value of the sensitivities

because they cancel out.

According to Eric Vittozts'63, the main mismatch in transistors can be described

by the variation in the threshold voltage and transconductance parameter. The

effect on circuit parameters depends on the circuit configuration.

111

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

In order to minimise mismatch, Vittoz summarises the following rules for

layout of analogue components (both active and passive) to be optimally

matched.

VITTOZ'S RULES FOR OPTIMAL
MATCH NG IN ANALOGUE LAYOUTS

1. Same structure
2. Same area
3. Same shape, same size
4. Minimum distance
5. Common-centroid geometries
6. Same orientation
7. Same surroundings
8. Non minimum size

5 . 2.2 2 Temperature Gradients

Temperature differences between different parts of a chip, can also lead to

mismatch. The values of temperature coefficients for component values may

be very small (e. g. 20ppm/C for capacitors), but temperatures may be high,

especially close to high power devices such as output transistors. To reduce

these effects common centroid layout can be used in the same way as for

process variation. In addition, matched components should be placed close

together, have similar surroundings, and should be as far as possible from

output transistors.

5.3 Operational Transconductance Amplifiers

The operational transconductance amplifier (OTA), or voltage-controlled

current source (VCCS), has gained increased popularity in analogue circuit

design in recent years. Neural network designers also, have not failed to notice

112

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

the advantages of using OTAs in analogue implementations [5. '_l0
, and it is in

this spirit that the use of the OTA is proposed as the building block for the

FDM circuitry. The subsequent sub-sections introduce the use of OTAs in filter

and oscillator circuits and explain the need for linearising techniques.

5.3.1 OTA Based Filters and Oscillators

The OTA symbol and equivalent circuit are shown in Fig 5.1. The transfer

function i.. /v;, is determined by the small signal transconductance gain gm. Cm

and go are the lumped input capacitance and output conductance, which model

the main parasitics, but will be neglected at this stage.

gout

Vin 9m

i out

vin Cis 9 9o

.T
M$ y

Fig 5.1 OTA Symbol and Equivalent Circuit Model

Initial research using the OTA as a building block for filter and oscillator

circuits has been proposed and carried out by several groups, initially using the

commercial CA3080 IC, and more recently using specially designed OTAs.

H. S. Malvarý5 "1 used the differential CA3080 in the place of analogue

multipliers to synthesise a second order bandpass filter configuration (Fig 5.2).

Malvar combined the OTA with a fixed capacitor load C to form an integrator

building block with transfer function H(s)=gm/sC. The integrators were used

to replace the fixed integrators of the usual biquad circuit, and a third OTA of

gain gq was used to control the Q of the filter independently of w,. The gm

and gq are, in turn, controlled by the respective external currents Is and IBQ.

113

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Is

VLP

Fig 5.2 OTA based filter with Q control (after Malvar
1982)

The resistors Rl and KR, were used for attenuation to ensure linear operation,

since the CA3080 is only linear for a small input range. This should be

contrasted with the performance of filter circuits using conventional op-amps,

which are highly linear, but cannot be easily tuned electronically.

A. R. Saha et aP'22 describe an RC sinewave oscillator using differential OTAs

shown in Fig 5.3. The oscillation condition g jý: 1 is controlled by gm, and the

oscillating frequency w,, =g. N{C1C2(1+R/r)} is controlled independently using

resistor K Advantages of this configuration were reported as low component

count, low sensitivity and simple control of frequency by a single resistor. The

use of low valued, grounded capacitors also make it more suitable for IC

fabrication.

114

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

/Ota

1

Fig 5.3 Sine-wave oscillator with
single resistor control (after Saha 1983)

Later work has concentrated on eliminating resistors from designs. This

simplifies the IC fabrication, and also makes possible fully integrated MOS

implementations which can exploit the advantages of on-chip capacitors and

good device matching. In his subsequent paper on the subjectis'13i, Malvar

describes a biquad filter structure using only OTA and capacitor components,

which he called an Active-C (now more often termed OTA-C) implementation.

This circuit was also built using CA3080 devices. In their tutorial pap&5141,
Geiger and Sanchez-Sinencio describe a wealth of circuits using OTA building

blocks, including several second order filter sections using two or three OTAs.

Fig 5.4 shows a bandpass filter from this paper using two grounded capacitors

and three OTAs with 0)1=sl(gm, gm2/C1C2) and Q=-1/gm3 AgmIgm2C jCl)"

115

CHAPTER 5 VLSI I PLEMENI'ATION OF FDM

out

Fig 5.4 OTA-C bandpass filter (after Geiger 1985)

Many more OTA based filter circuits have since been proposed, some designed

by converting well known active RC circuitsP15 "

/Out

Fig 5.5 Resistor-less sinusoidal oscillator with low
component count (after Senani 1989)

Abuelma'atti and Ahnaskatits 171 and Senanils"181 both describe OTA-C

oscillators using only OTAs and capacitors. Senani's circuit, shown in Fig 5.5,

in particular is ideal for integration since it uses only three OTAs and two

grounded capacitors, whilst still allowing independent control over frequency

116

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

w. =4(gm1gm, JC1C2) and oscillation condition Cgra2>CIgm3. A technique for

generating all possible OTA-C sinusoidal oscillator structures employing two

capacitors has also been reported, some being suitable for integratiods191.

To date, the latest research in OTA based filters and oscillators has

concentrated on adaptive tuning methods (see later), design techniques for

achieving ever higher resonant frequencies15 20.21], and improvements in OTA

design, particularly in CMOS technology.

5.3.2 Design of Linearised MOS Transconductors

The simplest CMOS differential OTA is the standard op-amp input stage which

is constructed from a source-coupled differential pair with differential-to-single

ended conversion using a current mirror load (Fig 5.6).

V

vini

_ss

Fig 5.6 Basic CMOS
Transconductance Amplifier

Large signal analysis of this circuit using the square-law relationship for MOS

transistors shows that the dynamic range is limited to 20% of the supply

voltage in order to maintain less than 1% non-linearity, measured as percentage

117

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

deviation from ideal output for a given gain and input voltage1s-22]. The non-

linearity is caused by the transistors going out of the saturation region.

Non-linearity in analogue signal processing systems causes harmonic distortion

(mainly third order), and the creation of intermodulation products. It can be

shown that the input range must be limited to 40% of supply in order to

achieve a Total Harmonic Distortion of less than 1%. For these reasons,

linearisation of OTA circuits is highly desirable, and is the subject of much

fruitful current research often directly related to filter and oscillator

2"35] designts'

118

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

5.4 OTA Design and Simulation

5.4.1 Route to Silicon

It was decided to design an OTA using techniques which would yield a

compact yet linearised design, which would be able to be used in filter and

oscillator configurations" IC design fabrication facilities were provided

through the Esprit/EUROCHIP scheme, using the CMOS 2.4pm n-well

Double-Layer-MetalDouble-Layer-Polysilicon (DLM/DLP) process of Mietec

in Belgium. HSPICE and Mentor Graphics CAD software were available for

simulation and layout.

The CAD route is described as follows. The initial design was simulated using

HSPICE. Mentor Graphics NETED schematic entry was used and designs were

simulated using ACCUSIM, the Mentor SPICE simulator, using the SPICE

MOS transistor Level 2 parameters provided in the Mieter documentation. The

graphical input of the netlist using NETED was preferred over the HSPICE

netlist entry. Final checking was done using HSPICE, also with Level 2

parameters, carried out by exporting the SPICE file from ACCUSIM. Level 3

MOS transistor parameters were not available until after fabrication.

Since compact circuitry was required, it was decided not to use the Mietec

Analogue Standard Cell Library throughout and opt instead for a full custom

design. In addition, the lack of any simulation models for the analogue core

cells would have made accurate design difficult, if not impossible. It was

however decided to use the standard cell I/O pads to speed up the design

process. The initial layout was drawn up on paper which was transferred to

software using Mentor CHIPGRAPH together with mask definitions contained

119

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

in the Mietec Design Kit software supplied by Eurochip. Design-Rule-

Checking (DRC) files for use with the Mentor REMEDI DRC package were

not available as part of the first release of the Design Kit. Therefore all DRC

for the chip was done using the Mietec design rule document at the layout

stage, and then by the lead-site at Rutherford Laboratories using the automatic

design rule checker, DRACULA.

5.4.2 Circuit Design

The linearisation technique used was the Bias Offset technique of Wang and

Guggenbiihl 2 -", which uses the square law characteristics of MOS transistors

in saturation to synthesise a linear transfer function. Manipulation of the

square-law has been used by numerous researchers to eliminate unwanted

terms in the construction of building blocks for analogue computation,

including the author of this thesisis']. Fig 5.7 shows the OTA architecture as

proposed by Wang, using identical nMOS transistors for both the differential

pairs and the voltage shifters. In the diagram, I. is the value of the current

source, V,. is the input voltage, and Vb is the bias offset voltage. Il and 12 are

the output currents.

It can be shownts*2'281 that the output currents of the cross coupled pairs are,

11 22 12=
KVjVj. C)

22

where K=µC01W/L and p, Cam, W, and L are the mobility, gate oxide

capacitance per unit area, channel width and channel length respectively.

120

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

The single ended output current is,

low _ (Il - I2) = KVbVý (5.2)

The slope of the transfer function is therefore controlled linearly by the bias

offset Vb, (gm=KVb) and is independent of I. which offers a significant

advantage over previous designs which control the gain by adjusting the source

bias current I., in terms of sensitivity and ease of control. Linearity is

maintained provided all transistors remain in saturation. The range of Vm is

limited to,

J['.. 3Vb Vb (5.3)

K42

Since K and Vb should be small to maximise linearity for a particular I,,, but

large to maximise gain, it can be seen that there is a trade-off between gain

and input range which necessitates careful design of W and L values.

'M

Fig 5.7 Linearised CMOS OTA (after Wang
1990)

121

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Designed MOS Transistor Widths and Lengths (miemm)

MP1-8 MP9,10 ! W11 M212 Mn3,14 MN1-4 MN5

W 4.8 11.6 240 19.2 4.8 14.4 4.8

L 4.8 19.2 4.8 4.8 19.2 4.8 9.6

Lwl I
Vsb

iMI 111b MOPG Mº, o

MP13 i vpT

Mpg IMP4

MP14 WI MP2

V+

MPb

MN5 I MNI 1! 11 MN2 UNS

Fig 5.8 Monolithic n-well implementation of OTA

Vdd
-o
lomwx

We

I
Out

P---!:

MPS

MN4
I va

In the monolithic implementation designed herels-111 for fabrication by the

Mietet process (Fig 5.8), pMOS transistors (MP1-4) were used for the

differential pairs since each may be placed in a separate n-well with body

connected to source, thereby reducing potential distortion due to the body

effect. Single ended current output was obtained by the use of three current

mirrors (MN1-4 MP9,10), and a current source was provided by a single

transistor (MP11), with the current set by a potential divider network (MN5

MP12-14). The two voltage bias offsets were implemented using transistors

MP5-8.

122

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

W/L ratios were calculated using the square-law MOS transistor model. The

actual W and L values used are shown with the circuit diagram in Fig 5.8.

Mietec's typical SPICE Level 2 pMOS and nMOS transistor parameters were

used in the hand calculations, namely transconductances Kp=17pA/V2,

KN=57pA/V2 and thresholds IVTI=0.9V. V(-5V and V,, =-5V were used.

The current source L was designed to have a value 15NA when biased at

Vab=3.5V. The bias network was optimised for low current I=12.2pA, and

small transistor areas. The gain and saturation conditions were determined

using the values of K=Kp(W/L) and Vb. Current L,.. in the bias offset

transistors depends on Vb. Estimated power consumption for the OTA is

calculated from the total DC current 2L +I+ 21, E = 316µA with

Vb=1.39V, which gives 3.16mW with a ±5V supply.

Transfer functions for the OTA were simulated using both SPICE Level 1 and

Level 2 models using parameters supplied for 'typical', 'slow' and 'fast'

Mietec processes. The results are shown in Fig 5.9.

'Slow' models have smaller transconductance gains Kp and KN, and 'fast'

models have larger gains, with other parameters scaled accordingly. The

Mietec process has a 2.4pm smallest feature size which is obtained by

shrinking a 3pm layout by 80%. Therefore all simulations were done using

multiples of 2.4pm for the W and L values which enabled layout to be carried

out using multiples of 3pm, thus simplifying layout measurements. An output

load resistance of 43.8kf2 was used to give a voltage gain close to unity. The

voltage offset bias of 1.39v used in the simulations gave an estimated

tranconductance gain of 23.6pA/V, using Level 1 simulation, confirming hand

123

CHAPTER 5 VLSI EVIPLEMENTATION OF FDM

calculations.

Output Voltage
4

3

2

0

-1

-2

-3

-4
-5 -4 -3

Level 1 Level 2 CTyPIcal)

Level 2C Fest) --- Level 2 (Slow)

Fig 5.9 SPICE simulation using Level 1 and Level 2 MOS models

Use of the Level 2 model gave similar results. The small signal

transconductance gain was 22.6pA/V for the Level 2 (typical) simulation. The

gains for the Level 2 (fast) and Level 2 (slow) simulations were 26.6pA/V and

17.8pA/V respectively, which is a spread of approximately ±5pA/V about the

typical gain characteristic. It was also found that the input referred offset is

dependent on the process parameters, ranging from -120mV in the 'slow' case

to 67mV in the 'fast' case. 'Typical' offset was -20mV. In addition to transfer

function measurements, the variation of DC gain G. with applied absolute bias

offset voltage VB (so Vb =5- VB) was also simulated. Each gain value was

obtained by measuring the slope of the voltage transfer function around the

zero input voltage point, and dividing by the load resistance. Results from this

simulation are shown together with measured results in Section 5.4.5 (Fig

5.16). The power consumption using SPICE Level 2 was 3.73mW.

124

-2 -1 012345

Input Voltage

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

5.4.3 Layout and Post-layout Simulations

The OTA was divided into 3 main sections for the purpose of layout; the OTA

body consisting of differential pairs and current mirrors, the current source

transistor, and the potential divider network for biasing the current source. It

was decided to design these as seperate cells of height 260µm so as to fit the

Mietec Standard Cell format specified in the Mietec Design Kit. The drawn

cell width for the cells were 70µm, 40pm and 160pm respectively for the

current source bias, current source and OTA body. Non-minimum sizes were

used wherever possible to reduce the effect of area reductions due to mask

undercut and overetching. Therefore all transistors have minimum drawn

lengths or widths of 6µm except the current source, which was redesigned to

length 4.5pm in order to reduce its overall size. The OTA body was designed

to be as symmetrical as possible, not only in the position of the transistors, but

also in the connections between them. All pMOS Transistors with different

source voltages are placed in seperate n-wells with body-to-source connections

in order to minimise body effect. All nMOS transistors have source-to-

substrate connections.

Fig 5.10 shows the 3 cells connected together revealing the compact nature of

the overall design. The total drawn OTA dimensions are 260µm x 270µm

which gives a total area after the 80% shrink of 45000pm2. It was noted that

since the exact size of the current source is not critical, it may be possible to

use the same current source bias network for several OTAs, with a saving in

area and power consumption.

After layout, the MOS transistor source and drain areas were measured, for use
in AC characterisation. SPICE Level 2 models junction and sidewall parasitic

125

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Fig 5.10 Layout of OTA

capacitance between the source and drain regions and the substrate, requiring

knowledge of the junction areas and sidewall perimeters. The area is obtained

from the product of LJ (junction length) and W (transistor width) both scaled

by 80%, and the perimeter is obtained from 2(L, J+W). Junction capacitance per

unit area and junction sidewall capacitance per unit length are specified in the

SPICE parameter list. In addition, parasitic capacitance between the gate and

each junction due to overlap caused by lateral etching is modelled using the

undercut parameter LD, and the respective overlap capacitances per unit area.

The measured drain dimensions were added to the SPICE Level 2 netlist. The

source dimensions were not used in practice, since the use of substrate

connections acts to short out any junction capacitances.

126

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Fig 5.11 shows the results of the Level 2 AC analysis using the modified

netlist. It can be seen that the simulation predicts a flat response up to 1MHz.

0Th POST LAYOUT AC ANALYSIS
0. OEC09 ii' 0' 0

1.16

Ö 9IS. IN _--"... "......

N Fit. IN _

ti 0
mm E-

c3

N ill. IN C,
eä

Sol. IM=

all. IN:

1.
E 1.111161 . '. tuud. ' a. uni. I'iu, . samel, 'J send. 'aiiu . us 1u,

ä
30.1 311.1 1.89 30.0[100.1E 1.11 ion

l. 1 NEITZ CL00I 311.01

Fig 5.11 HSPICE Level 2 AC Analysis of OTA

The prototype 40-pin d. i. l. chip 'NEURAL' shown in Fig 5.12 was designed

to measure the performance of the separate cells (OTA1), and complete OTAs

constructed by abutment of the three cells (OTA2,3). Also included were 3

double-poly capacitors of area 6400µm2,25600pm2, and 5760µm2

corresponding to capacitances of 3.2pF, 12.8pF and 28.8pF respectively. lOpF

is the typical capacitor value used in subsequent integrator, filter and oscillator

simulations. 1pF is the smallest practical value limited by parasitic errors. This

should be compared to the later result given for an OTA loaded only by

another OTA which has an input capacitance of approximately 10fF. 100pF is

the largest practical value limited by area. From the Mietec data, the

capacitance is (0.5±0.1) fF/}un2 (typical) for poly-over-poly capacitors.

Therefore a lOpF capacitor has an area of 20000pm2.

A Mieter standard cell library bandgap voltage reference cell (CHBGPC) was

also included for additional fabrication tolerance testing, since this provides a

127

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

simple comparison with documented values. Two pins were connected

internally in order to provide an independent measure of I/O pad capacitance

if required. Four types of standard cell I/O pad were used. Power pads PFVDD

and PFVSS were used for the power supplies. Diode protected pads PFPDD

were used for inputs, except for the capacitors since the use of such pads

might introduce unwanted parasitic. Direct PFPAD pads were used for all

outputs and the capacitors. Two pins, In and Out, were connected internally via

pads PFPDD and PFPAD in order to provide an independent measure of I/O

pad capacitance. The pins Vdda are separate positive (+5V) power rails, Vssa

is the negative (-5V) power rail connected to substrate. For each OTA; Vsb is

a test output to measure the current source bias voltage, Vb is the bias offset

input, Vminus and Vplus are the inverting and non-inverting inputs, and lout

is the current output. In OTA1, extra test pins were used; Vsblin and Isslout

are the current source input and output nodes used for independent

measurement of the current When Vsblin and Isslout are connected to

V sb 1 out and Isslin respectively, OTA 1 is architecturally equivalent to

OTA2,3. C1-3 are the top plates of each capacitor.

128

CHAPTER 5 VLSI JMPLEMENTATION OF FDM

Pm Name Dae/eim Band Pin Type Pm Name 1a itim Band Pm T)p

1 Vdda3 OTA3 +5v Sapply I PFVDD 21 VddIk1 OTAI +5v SuFoy 21 PPVDD
2 Vsb3 OTA3 Bin * 2 PPPAD 22 l Iaat OTA1 Sowoe qp 22 PPPAD
3 bat3 OTA3 Oatput 3 PPPAD 23 ILlä OTAI Scum j/p 23 PFPAD
4 Vb3 OTA3 Clan CmaW 4 PPPPD 24 Imtl OTAI Output 24 PFPAD
S NC Na C r. r -d 25 Vbl 0TA1 Gain Col 25 PPPPD
6 NC Na Cited 26 NC Na Geed
7 NC Na C®ected 27 Vmmsl OTAI -ve iipat 27 PPPPD
8 Vmmm3 OTA3 -w spat 8 PPPPD 28 VpIusl OTAI +ve mpat 28 PFPPD
9 Vpms3 OTA3 +ve mpm 9 PPPPD 29 Vsblm OTAI Bin äpt 29 PPPPD
10 ST Vruf Ststop j/p 10 PFPPD 30 Viblaat OTAI Bin q'p 30 PPPAD
11 Vref Vdtye Ref, q/p 11 PPPAD 31 Visa -ve Supply (-SV) 31 PFVSS
12 Out OaW Pad 12 PPPAD 32 VpI 2 0TA2 +ve mpt 32 PPPPD
13 In Ii ist Pad 13 PPPPD 33 Vm®d OTA2 -we iipst 33 P1'PPD
14 Vddb4 Vref +Sv Soppty 14 PFVDD 34 NC Not Camxrod
15 NC Na t', wd 35 NC Na '.. -. '
16 NC Na t' wd 36 NC Na C®eeed
17 NC Not C®ecod 37 Vb2 OTA1(3ain Cm4d 37 PPPPD
18 C3 Capýeioý 80p. 80µ 18 PPPAD 38 Icad OTA2 OaVu 38 PPPAD
19 C2 C 160p: 16Dp 19 PPPAD 39 Vsb2 OTA2 Bin 4 39 PPPAD
20 Cl Cýpýcilor 240pz240µ 20 PPPAD 40 Vddm2 OTA2 +5v Supply 40 PPVDD

NEURAL. IC (EURE 351&_01)
1 OTA3 OrTA2 I

Vb3

MC
NC

NC

Vmhiu, 3 =

VpIut3
8T

Vrd

out
In T

Vdds4 1

NC 1

WC

NC

Ref.

1+- I

cs -1

C

cl

OTA1

Fig 5.12 'NEURAL' IC pin allocation

Vdds2
°ý- vob2

kM2
sL Vb2

NC
21-

NC
34 NC

vmkxn2

- vpkm2
ML visa

Vublout
Vublin

pd v-sl
vminwl

NC

Vb1
84

bjn
123 1a1 1n

Iplout
Vdda1

129

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

5.4.4 Simulation of OTA Filter and Oscillator Circuits

Further information is obtained from small signal (AC) analysis at the circuit

level. Ideally, the OTA is a voltage controlled current source. As stated

previously, the main non-idealities can be modelled adequately by introducing

a lumped input capacitance, and output conductance to the ideal VCCS. The

output conductance can be determined from the small signal values given by

SPICE, using an integrator circuit, since the combination of output

conductance and integrator capacitor form a low pass filter. The capacitor can

be chosen to be much larger than any parasitic capacitances, so that these

higher frequency poles can be neglected in the analysis. The 'leaky' integrator

has the amplitude response,

A(uO =
gm

(5.4)
uoC2 + g0

where gm and g, are the small signal transconductance gain and output

conductance respectively. C is the integrator capacitor. The DC voltage gain

is given by gm/go and the -3dB frequency by gJC. Therefore it is simple to

obtain gm and go from the SPICE AC analysis.

Fig 5.13 shows the values of gm and g, obtained for varying values of bias

offset Vb using a lOpF capacitor. It is clear that the output conductance cannot

be ignored in the calculation of filter transfer characteristics. There is a small

variation in go with Vb due to variation in the DC bias point, but the value will
be assumed constant in the following simplified analysis.

130

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Bias Offset V.,
Vohs

Tnmooadndan
Gain g. pA/V

Outp Condudaax
g,. pAN

4.0 61.09 11.25

3.5 61.09 11.25

3.0 60.27 11.27

2.5 52.26 11.29

2.0 43.50 11.33

13 33.15 11.39

1.0 22.34 11.54

Fig 5.13 Small Signal parameters obtained
from SPICE simulation of OTA-C integrators

An integrator circuit was also simulated replacing C with an OTA input, in

order to verify the size of the lumped parasitic capacitance. This was found to

be of the order of 10fF, too small to be of significance in this analysis.

Further simulation was carried out for the filter of Fig 5.4 and the oscillator

of Fig 5.5. Analysis of the filter circuit using the non-ideal OTA as a building

block results in the transfer function,

H(s)=
Cl 8m3 s+ 8o 8m3 (5.5)

Ci C2 s2+ (Cl g +2C, 80+C2 8o)s + 8mu 8, ßz+280 +8,9=3

Compared to the ideal case, the output conductance terms cause a lowering in

the values of Q and centre frequency gain obtained. They also introduce a
dependence between the tuning of Q and the centre frequency, since g. 3now
affects the centre frequency.

131

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Fig 5.14 shows the values of centre frequency and corresponding gains for

different values of offset bias Vb3 and C2 obtained from both SPICE Level 2

simulation and analytical determination of the amplitude response using

equation (5.5). In this simulation Vbl and Vb2 were both fixed at 3V and C,

was fixed at lOpF. The values of g1 and go used in the calculations were

obtained from Fig 5.13. The results show that the analytical approach is a

reasonably good approximation to that of the full simulation approach, when

the values of gm and go are known.

Cl. Bias Oct Ba Vb3,
Vohs

SPICE Cwae
FtegomaykBz

Glcalated
Cerra

Frequmcy kHz

SPICE Cmbe C1 th d
Ftegomcy Ceare

Voltage Gain Fregoeocy
Voltage Gain

3.0 324 324 0.353 0.351

1.0 310 312 0.167 0.163

3.0 1060 1061 0.671 0.650

1.0 995 1017 0,433 OA04

Fig 5.14 Comparison of SPICE Level 2 simulations and analytical
calculations of OTA-C Bandpass filter characteristics.

For the oscillator, similar analysis using the non-ideal OTA results in the

characteristic equation,

C1C2s 2+[Cl(g�a+g)-C2(g�ý-2gý)]s+8 8, ý+2g +go(2gý g2) =0 (5.6)

Again, the ideal equation is modified by the output conductance. In particular,

132

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

the oscillation condition is modified to,

C2 gna > Cl (gw + go) + 2C2 go (5.7)

It is seen that non-zero output conductance also introduces a dependence

between oscillation condition and oscillation frequency.

SPICE transient analysis was used to simulate the OTA-C oscillator circuit,

using capacitor values of lOpF, and Vbl and Vb3 fixed at 3V. Vb2 was gradually

increased until oscillation occurred, and then further increased to determine the

approximate frequency of oscillation. This was necessary because simulation

time is much reduced for a small deviation in Vb2 above the point of onset of

oscillation. The error introduced by this approximation is not very large.

Using the previously determined values for gm and go, oscillation was predicted

to occur for g., =57. OpA/V corresponding to Vbz=2.8V. SPICE Level 2

transient analysis yielded Vb2=2.9V as the minimum voltage required for

oscillation to occur, corresponding to gw7-58.5pA/V.

A comparison of the SPICE simulation and calculated values of oscillation

frequency, for Vb2 3. OV, gave 360kHz and 340kHz respectively.

These simulations conclude the SPICE Level 2 results obtained for the OTA,

showing how it fits into the overall scheme as a building block for filter and

oscillator designs. From the above results it is clear that further design could

have been carried out to reduce the output conductance of the OTA, and thus

minimise the non-ideal behaviour of the filter and oscillator circuits. However,

133

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

it was decided to proceed with fabrication in part to verify the feasibility of the

Mietec route to silicon, and in part to obtain results quickly enough to obtain

a comparison of simulated and actual performance of the IC, so as to verify

the accuracy of the simulation models used.

5.4.5 Post-fabrication Testing

Seven chips were used for testing. The test procedure was begun with static

measurements, followed by transfer function determination and dynamic

testing. A power supply of ±5V was used throughout. For the DC tests the

output of each OTA was measured by connecting the output to a grounded

43.8kg2 resistor, the same value as used in the simulations.

DC tests included the Mietec Standard Cell (CHBGPC) bandgap reference

voltage measured with respect to Vss, the Source Bias Voltages Vb of OTA1-3

on each chip, and the power supply current of each OTA. The outputs were

buffered using a zeroed FET input op-amp, the output of which was measured

with a calibrated voltmeter. The buffering is especially important for the

voltage reference, since it has high output impedance. By virtue of the voltage

reference and each OTA having a separate power supply, it was possible to

ground all pins not being used in each test, and thus isolate different parts of

the chip during measurement.

Results from all chips were consistent, with little variation from chip to chip

and between OTAs on the same chip, but were found to be quite different

from those predicted by simulation. The measurement of source bias voltage
V, bfor all 21 OTAs gave values 3.61±0.01V. In comparison with simulation

results 3.52V (typ), 3.31V (slow), and 3.74V (fast) this indicates a process

134

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

which is 'faster' than typical. Power consumption values were measured to be

3.6±0.3mW, close to the simulated value of 3.73mW. Of more concern were

the reference cell voltages, which were all outside the range specified by

Mietec. Measurement gave values of 1.24±0.03 compared to the documented

values of 1.14 (typ), 1.09V (min) and 1.19 (max).

Results of measurement of transfer functions at fixed gain are shown in Fig

5.15. Results for OTAI only are shown, but results for OTA2,3 closely

matched those of OTA1. Gain was fixed by using Vb=1.39V for all OTAs, as

used in the simulations. Also shown is a comparison with the simulations using

'typical', 'fast', and 'slow' SPICE Level 2 parameters. It can be seen

immediately that these results obtained are different from those predicted by

simulation. Gains are lower than typical by a factor of 2 and offsets are higher

by a factor of 10. Linearity is maintained over an input range greater than

predicted. Linearity error compared to straight line best fit is less than 2% for

a dynamic range of ±3V for all 21 OTA transfer curves, using a power supply

of ±5V. The simulation results predict the same linearity for inputs only up to

±2V.

DC gain G. was varied with VB (so Vb =5- VB) to obtain the curves shown

in Fig 5.16. Each gain value was obtained by measuring the slope of the

voltage transfer function around the zero input voltage point, and dividing by

the load resistance. It can be seen that values of gain from 5 to 35pA/V are

attainable. Variation of gain of similar components from chip to chip is small.

The standard deviation of the gain values measured for all 21 OTAs from the

gain curves was at most 5.7% of the mean. Again there is a large discrepancy

between the measured results and the 'typical' simulation plot which is also

135

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

shown in the diagram.

Common mode rejection ratio (CMRR), and power supply rejection ratios were

measured for balanced supply (PSRR) and single rail (PSRR+) supply

deviations.

CMRR is defined as gnVgnn expressed in dB, where gnu is a common mode

gain derived from the rate of change of offset voltage with applied common

mode input voltage. The measured value of CMRR was 22±2dB for all OTAs.

PSRR is defined as gm/gm1 expressed in dB, where grn1 is a balanced power

supply gain derived from the rate of change of offset voltage with power

supply voltage, where both positive and negative supplies are deviated

simultaneously in opposite directions. The measured value of PSRR was

30±1dB for all OTAs.

PSRR+ is defined as gni/gm expressed in dB, where gm is a power supply

gain derived from the rate of change of offset voltage with power supply

voltage, where only the positive rail is deviated. The measured value of PSRR+

was 46±3dB for all OTAs.

Capacitor measurements were carried out using a Boonton capacitance meter

(model 72B) with zero bias. Values for Cl, C2 and C3 were found to be 33pF,

18.3pF and 7. OpF respectively. Differential measurement was used to cancel

out I/O and lead capacitance which was carried out by connecting the 'in' and

'out' terminals of the chip to the DIFF input of the meter.

136

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

z

1

0

-1

-p

-3

Output Voltage /Volts (Rload=43.8k)
3

-4
-6 -4 -2 0246

Input Voltage V+ /Volts (V-=OVA

Fig 5.15 Measured transfer characteristics for OTA1
comparing simulation results

t}}
=i}}

}
}

MnsLr M

E
Y /

[[[I OO O

}
Slow

ý; e-,

Oo
Now

ypica r- I

Fast

Traroeonduotanee GalnEGO Mlcrosnot/Volt
su

40
{

Imulation
Typical)

80

20

MM rMrý

10

0
0123fs

Blas Volta" CVID Aft its

Fig 5.16 Measured gain characteristics for OTA1
comparing simulation results

137

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

5.4.6 SPICE Level 3 Simulations

It is clear from the above comparison of measurements with SPICE Level 2

simulations that the accuracy of the simulation was not good enough. At the

time of design, only MOS Level 2 model parameters were available from

Mietec. After the chips were received and tested, extracted Level 3 parameters

from the process were received via Eurochip which has enabled further

simulation to be carried out retrospectively, in an attempt to reconcile

simulation and measurement. The following graphs from HSPICE show much

better agreement between simulation and measurement using MOS Level 3

model parameters. Fig 5.17 shows the comparison of the transfer functions and

Fig 5.18 shows the comparison of the gain characteristic. In both figures, the

solid line is the measurement and the broken line is the simulation. Fig 5.19

shows the simulated SPICE Level 3 frequency response curve. The range of

the flat response is the same as that predicted by SPICE Level 2 (Fig 5.11).

The DC gain is smaller since gm is smaller but the same resistive load was

used as in the Level 2 simulations.

A comparison of the Level 3 simulation with the analytical approach using

equation (5.6) was also carried out for the bandpass filter circuit of Fig 5.13.

Values of gm and g, were obtained from Level 3 simulation of an integrator

with a lOpF load and equation (5.5) and are shown in Fig 5.20. The values of

capacitors in the filter were also lOpF. The result of the comparisons are

shown in Fig 5.21.

It is seen that the simplified calculations using equation (5.6) give a good

approximation to the simulated results, as they did for Level 2. This also
suggests that the values of gm and go are critical in determining the difference

138

CHAPTER 5 VLSI EWPLEMENTATION OF FDM

in the results obtained in Level 2 and Level 3 simulations. Both values are

strongly dependent on the value of channel length modulation parameter ?.

used in the SPICE MOS models as the gradient of the Ift-V4, characteristic. In

the case of Level 2, ?. is supplied by the foundary and entered explicitly into

the model as a fixed parameter i. e. the I1-Vd, slope is assumed constant. In

Level 3, channel length modulation is calculated by SPICE, so that the It-Vth

slope may vary with V. It is suggested that the reason for the poor

performance of the Level 2 simulations is due to the highly non-linear Iý, -Vd,

slope of the Mietec transistors, which cannot be modelled in Level 2. Mietec

have also recently recommended (in document MIE/F/02, Revision 2,20/8/92)

an empirical method for calculating ? for different transistor lengths, in an

attempt to improve the Level 2 simulation, but preliminary investigations using

the technique have not shown any improvement in the accuracy of simulation

of the OTA.

/TO TRANSFER FUNCTION - EXTRACTED NOR LEVEL 1 PARRNETER$
14-DECSR 14,1115$

1.58 NEORRLJIEIItt

1.1.

V 511. IN. Z

T
1.

=

L--
_"..

".
518. IN

-1.51.. ..

-4.1 -2.1 1. R. 1 4.1
-5.1 INPUT_YOLTNIE (LIN) 5.1

Fig 5.17 Comparison of OTA transfer function measurement (solid line)
and HSPICE Level 3 simulation (broken line).

139

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

OTA AAIM CHARACTERISTIC - M09 LEVEL 9 PARAHETER9
14-DEC9t I4i9I'4!

L E5.1 _ \

15.1. ---

5.1 =i'ý' i' i' 1' ii 'ý i1'i "i "i " i' 1' ý'i
1.1 E. 1 9.1

84.18 VI (LIN)

NEURAL-GAIN,
." 15

Ct-

"J

"1

J

". y"- -V

I-

4. t
f . 49$

Fig 5.18 Comparison of OTA gain characteristic measurement (solid line)
and HSPICE Level 3 simulation (broken line).

OTR FREOUENCT RESPONSE - EXTRACTED 10$ LEVEL 3 PRRRNETERS
! 4-OEC9t l5itts11

= NEDRRLJIC. 3

r M. IN

L
T

'.
.

'. '.
. '. '. IM.

N

1.
t. .. ion.. i mud. I Alud. I I, uia. $. iilink IJnr.. sjiud. L11u1a 11.1 111.1 1. IK 11.1E 111.1E 1. SX 11.11 1.1 HERTZ (LOO) 111.11

Fig 5.19 HSPICE Level 3 AC Analysis of OTA

140

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Bias Off* Vb.
Volts

Trai caa&xctance
Ciam S. pA/V

Output Conductance
&. PAN

4.0 36.8 3.13

3.5 36.80 3.13

3.0 32.80 3.16

23 25.81 3.17

2.0 19.77 3.19

1' 14.25 3.23

1.0 9.10 3.26

Fig 5.20 Small Signal Parameters obtained from SPICE Level 3 simulation of
OTA-C integrators.

Bias Offsets, Volts

Vbl Vb2 Vb3

SPICE
Cmae

X07.
kHz

Cal fated
Cmae

X07.
kHz

SPICE
croft

F eq c7
Voltage

Gain

Calailued
COMM

Fm4-w7
Voltage

Gain

3.0 3.0 1.0 532 534 0ä71 0.541

2.5 2.5 1.0 428 426 0.352 0.533

2.0 2.0 1.0 336 334 0.539 0331

1.5 1.5 1.0 252 253 0.332 0.531

1.0 1.0 1.0 174 184 0.522 0333

3.0 3.0 3.0 563 551 0.830 0.779

3.0 3.0 2.5 558 546 0.792 0.734

3.0 3.0 2.0 553 542 0.742 0.676

3.0 3.0 1.5 546 537 0.672 0.603

Fig 5.21 Comparison of SPICE Level 3 simulations and analytical calculations
of OTA-C bandpass filter characteristics.

141

CHAPTER S VLSI IMPLEMENTATION OF FDM

5.5 Adaptive Tuning Techniques

This section considers the VLSI implementation of filters and oscillator circuits

with respect to process variation, and discusses in particular existing methods

for adaptive tuning of OTA-C circuits.

5.5.1 Switched Capacitor Filter Limitations

Designers of switched capacitor filters generally use ratios throughout the

circuit and the transfer functions thus obtained are subject only to tracking

errors, which may be minimised by careful design. Broad tuning is

accomplished using the switching clock frequency. At higher baseband

frequencies lowering of the switching-to-signal frequency ratio is often

required which puts additional constraints on the anti-aliasing filters used to

prevent aliasing of higher frequencies back into the baseband. As sampled data

systems, all switched capacitor circuits are susceptible to the aliasing of h. f.

noise and clock/signal mixing products, and detailed analysis is difficult .
Switch feedthrough is also a problem. Therefore switched capacitor filters are

used extensively for audio applications, but not so much for higher

frequencies, although some examples exist--9j in addition, specw simulators

are often required for switched capacitor circuits which makes simulation of

mixed designs (digital, switched analogue and continuous-time analogue) a

difficult task.

5.5.2 Continuous Time Filters

For higher frequencies, continuous-time active filters are preferable. VLSI

implementations are based on MOS resistors'5'w or operational

transconductance amplifiersis"'41, and capacitors. The latter is the OTA-C type

of circuit discussed in section 5.3.1.

142

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

In continuous-time filter design, the filter poles usually depend on absolute

values of the circuit components rather than ratios, so ratios cannot be used

directly to ensure accurate transfer characteristics. Consequently, since absolute

values cannot be guaranteed, the circuit must be adaptively tuned by an

external signal. OTA-C filters are particularly good candidates for adaptive

tuning since the OTA gain is used as a design parameter of the transfer

function, which is controlled by an external voltage (or current).

The most obvious tuning technique is to use a Phase Locked Loop (PLL),

where a voltage controlled oscillator (VCO) is locked in phase to an external

signal, and therefore oscillates at the same frequency.

This technique, usually called master-slave tuning, was first used by Tan in

1977 for audio frequencies1540] and later by othersI5*41-'31 for higher frequencies.

The master is the VCO which incorporates a minimal 2nd order stage of

similar architecture to that present in the filter to be tuned (the slave), so that

the same control voltage (or current) is applied to the VCO and the filter

simultaneously, thus fixing the filter pole frequency relative to that of the

VCO. Fig 5.22 shows the basic technique. Accuracy depends on the good

tracking between VCO and filter component values on chip, i. e. on precise

component value ratios between master and slave.

There is a trade-off in practice between the need to make the VCO frequency

outside the filter pass band in order to avoid cross-talk between the filter and
VCO signals due to capacitive coupling, and the need to make the master and

slave identical in order to minimise matching error" A

143

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Fig 5.22 Adaptive ladder filter with tuning using an on-
chip VCO (after Tan 1977)

A more recent variation uses another filter as the master rather than a VCO,

sometimes called a Frequency Locked Loop (FLL)15 4. Using a master filter

rather than a VCO is thought to better model the slave's response, since the

slave is also a filteii5,461. In this case the master filter has an external fixed-

frequency input, and the filter is tuned by adapting the (frequency dependent)

phase difference between output and input so that it is consistent with the

desired resonant frequency. For a bandpass filter this can be achieved by

comparing the phase of the reference input signal with the lowpass (or

highpass) output of the master bandpass filter, as shown in Fig 5.23. For a
bandpass filter the output of the phase comparator is constant when the two

144

CHAPTER 5 VLSI I PLEMENTATION OF FDM

inputs differ in phase by 90 degrees, which occurs only at the bandpass centre

frequency.

MASTER FILTER

Vtd v1owpm

Vca01ol

SLAVE FILTER

Vin Vast

Fig 5.23 Frequency Locked Loop using a master filter

Comparison of an on-chip MOS resistor with a precise external resistance has

also been used for tuning continuous time monolithic filters"-').

At high frequencies there are inevitable phase shifts due to parasitics.

However, Van Peteghem shows that these effects do not cause frequency

tuning problems in the filter because the parasitic poles are at much higher

frequencies than the passbandt5*181 Parasitic phase shifts can, however, affect

gain at resonance and Q. For this reason, some designers have used multiple

tuning loops to control not only the cutoff or centre frequency, but also
This necessitates the use of several external signal frequencies. These

techniques are used mainly for high Q, high frequency circuits with tight

specification. Q control is not needed in systems requiring less fine selectivity.

145

CHAFFER 5 VLSI IMPLEMENTATION OF FDM

5.6 VLSI Architecture for FDM Communications

Considering the previous five sections, it is now possible to define the type of

architecture required for the VLSI inter-chip FDM communication system.

OTA-C circuits can be used to construct banks of oscillator and filter

circuitsts''s 491 This allows the use of a single OTA building block throughout

the system which will speed up the design process considerably. Typical OTA-

C implementations of oscillators and filters (as shown in Section 5.2) have

resonant frequencies proportional to products of the capacitances or

transconductance gains. Ratios of these products can then be used from filter

to filter and oscillator to oscillator, so that relative frequency values within

each bank can be ensured within the limitations of tracking error.

However, the modulation and demodulation circuitry are on different chips and

are therefore subject to the larger absolute errors caused by differences in the

fabrication process. Therefore, tuning is required for both chips. Precise

absolute frequencies are not necessary so long as the set of oscillator and filter

frequencies match up, which is a much reduced constraint when compared to

the specification for most filter designs. This situation is ideally suited to an

adaptive technique where both chips are tuned using the same external signal.

Because of low tracking errors on a chip, it is possible to use a single tuning

circuit for a bank of oscillators or filters. In contrast, a bank of switched-

capacitor filters would require a bank of anti-aliasing and/or smoothing filters.

This is, of course essential to the technique, because only one pin will be

necessary per chip for this purpose. In addition, the same phase comparator

circuits can be used for the modulation and demodulation systems.

146

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

Since the intended application for the FDM is a neural network, overlap of

filter responses can be tolerated up to 30%1'-"1 Therefore low Q filters can be

used, which have the advantage of reducing chip area requirements. In

addition, low Q filters will not be so severely affected by any parasitic phase

shifts in a tuning loop, because a small mismatch between oscillator and filter

frequencies will not cause such a large amplitude response error.

Therefore, the proposed VLSI implementation of the FDM communication is

constructed from OTA-C filter and oscillator circuits, with tuning based on the

master-slave technique. The form of this architecture is shown in Fig 5.24.

The filter chip has an on-chip master filter which models the architecture of

the bank of demodulation bandpass filters, and is used in a FLL. Because of

the intended simple nature of the slave filters, each filter (master and slaves)

can be constructed from a single second order stage. The master is locked in

centre frequency to an external clock folkand the same control voltage V gu

sets the centre frequency of all the filters in the bank which differ in frequency

by fixed component ratios.

The oscillator bank has an on-chip master oscillator which is locked to the

same external clock as the filter bank by a PLL The same control voltage

V sets the frequency of all oscillators in the bank. The amplitude of each

oscillator is modulated by its neural input.

In addition to frequency control, amplitude control is also needed for the

oscillators, to ensure start-up and for amplitude limiting. This can take the

form of the Automatic Gain Control circuits of Barrance"521.

147

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

to : Neuron Inputs in Upper Layer

VIOWPM

Piicmmvv.

ha

chip 2

Chip 1

p hm

III
Sk" I

Pilow 21-1---l
mave

N Mtw low

1n2

Sleeve 1 Slave 2 Slave N
Ooduatot Oedlhtor -- Qýd]Llor

ial in2 ioN

from: - Neuron Oaf in Lower Layer

Fig 5.24 Block diagram of the proposed FDM inter-chip communications
system VLSI implementation.

148

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

5.7 Discussion

The results of the VLSI design can be analysed in two ways. Firstly, it is seen

that the qualitative functional behaviour of the OTA circuit is correct. However

the output conductance may be improved and the chip area reduced by

subsequent design iterations. The output conductance can be improved by the

use of current mirrors with lower output conductance (such as the Wilson

current mirror). The overall chip area consumed by an OTA-C filter or

oscillator can be estimated by adding the areas of the OTAs and on-chip

capacitors. For a typical design consisting 3 OTAs and 2 capacitors of lOpF,

this area estimate is 200000µm2, which is rather large. The area of the OTA

is approximately twice that of a lOpF capacitor. Power consumption is

approximately l0mW. To reduce the chip area, some restructuring of the OTA

area would be advantageous. Optimisation of cell area at the filter/oscillator

level may be preferable to optimising a single OTA. A reduction in both the

transistor sizes of the OTA and the capacitance values should be considered.

Secondly, it has been shown that whereas the HSPICE simulation with Level

2 MOS models does not give adequate agreement of simulated and measured

results, use of Level 3 Models gives much better results and should therefore

be used in all future work.

It has also been shown in this chapter that analysis using a simplified OTA

model (specifying only gm and g,) can be used to give results which

approximate to those achieved by simulation, which is useful for hand

calculations. Variation in process parameters also give rise to different values

of frequency, Q, and different oscillation conditions than those calculated from

simulation, which also justifies the use of the analytical approach for hand

149

CHAPTER 5 VLSI IMPLEMENTATION OF FDM

calculations of approximate values. This could prove invaluable in the

appraisal of future designs of filter and oscillator circuits using OTAs.

A design route though to silicon has been proven using the Mietec 2.4µm

CMOS process for a full custom analogue design, which forms a basis for

future work on the VLSI implementation of the FDM system.

An adaptive solution to process variability in the FDM system has been

proposed, using the master-slave tuning method for both the filter and

oscillator circuits, employing the OTA as a functional building block.

150

CHAPTER 6 CONCLUSIONS

CHAPTER 6- CONCLUSIONS

This final chapter brings together the work presented in the thesis, with

reference to the Aims and Objectives summarised in Chapter 1. This chapter

also points the way to further work and research possibilities, using the thesis

as a starting point.

6.1 Objectives achieved

The first aim of the work was to investigate the proposed VLSI design of an

inter-chip Frequency Division Multiplexed (FDM) communication technique

with respect to past and current research in neural network hardware design.

This was achieved in Chapter 2 through a detailed coverage of published

research in the field, including a critical review of several state-of-the-art

analogue hardware implementations. It is seen that the communications

bottleneck is a real problem for the implementation of large neural networks

where the network must be implemented using several neural chips.

The next objective was to introduce the idea of FDM as a communication

method for highly connected architectures. This was carried out in Chapter 3,

comprising a mathematical formulation for the bandwidth achievable for a

bank of filters, as used to demodulate the FDM channel. This took into

account the effect of overlapping the amplitude response curves of the filters,

by introducing a fractional overlap parameter to the formulations. As

explained, increasing this overlap acts to increase the number of signals it is

possible to multiplex, at the expense of errors caused by crosstalk between

signals. Further analysis was carried out, this time using analogue electronic

151

CHAPTER 6 CONCLUSIONS

building blocks to construct a model of a hypothetical multiplexed

communication system utilising either TDM or FDM. This enabled a good

comparison to be made between the bandwidths achievable in these

implementations, and allowed estimates of power consumption to be made,

based on realistic architectures. It was concluded that FDM is indeed a

candidate for inter-chip communication of analogue information, provided a

degree of overlapping of filter responses is allowed, so as to give an

acceptably small spacing between carrier frequencies in the channel.

Chapter 4 examined the effect of such an overlap on neural network

performance. To this end, a flexible software simulator was designed to enable

the simulation of a multi-layer-perceptron neural network. The software

incorporated the fractional overlap defined earlier in the thesis, in order to

examine the effect of this overlap on the learning of classification problems.

The results of this work were encouraging, since it was shown that the neural

network model was highly tolerant to large overlap errors, even when weights

are quantised. Analysis of the learning performance for the classification

problems used, with varying amounts of overlap, showed there is practically

no degradation in either the speed of learning or number of classifications

learnt for overlaps of up to 30% of adjacent signal amplitudes. Even for

overlaps of 30-50%, it was shown that the neural network is still able to learn

many of the classifications, although both overall learning time and proportion

of non-converged trials is increased. It was shown that both the

backpropagation and weight perturbation learning algorithms perform well with

weights quantised to 8-bits, provided a probabilistic update strategy is

employed. The implications of this for electronic implementations are two-fold.
It is possible to overlap filter response so that as much as 30% crosstalk of

152

CHAPTER 6 CONCLUSIONS

adjacent signals have negligible effect on network operation, and the network

can still learn for larger overlaps. Thus, signals can be multiplexed in a given

bandwidth. Alternatively, lower Q factors for the filters can be tolerated.

Complementing the theoretical and software work, Chapter 5 achieved the

objective of defining the implementation of FDM in VLSI, including a review

of relevant analogue design techniques, active filter design, and the

presentation of results from the design of a prototype full-custom analogue

chip. This chip, an Operational Transconductance Amplifier, is a building

block for both oscillator and filter circuits which can be used in FDM circuitry.

The review sections show the advances which are being made in analogue

VLSI design of active circuits, which provides the basis for realisation of the

FDM scheme. In spite of the difficulty in achieving a good agreement between

the measured characteristics of the fabricated chip and the original simulations

using the SPICE Level 2 MOS transistor model, a more accurate Level 3

model used in retrospect gave a much closer agreement, and gives confidence
for the accuracy of future designs using the Mieter 2.4p process.

In addition, Chapter 5 has presented the architecture of a VLSI implementation

of FDM using an adaptive tuning method, which is necessary to ensure the

system will be tolerant to fabrication parameter variations. It was seen that

only one tuning circuit is needed per chip, since on-chip matching of

components ensures accurate ratios of frequencies to be achieved.

In summary, this work has developed the ideas for a technique which stands
to further the field of analogue neural network design by removing the
communications bottleneck in the system.

153

CHAPTER 6 CONCLUSIONS

6.2 Further Work

There are a number of ways in which further work may be carried out, using

this thesis as a basis.

6.2.1 Direct Extension of the Research

Firstly, direct extension of the work will involve more VLSI design. Chapter

5 provides a clear path for the realisation of the system architecture in VLSI,

but more work will be necessary to complete the design at the silicon level.

This will involve further simulation using circuit simulator and IC design CAD

tools, and fabrication of the chips thus designed. This will benefit from the

availability of more advanced design tools, such as interactive extraction of IC

layout information, and the existence of more accurate MOS transistor models

suited to analogue design.

The following text proposes a detailed work plan for the next stage of the

work. The final goal of this work is a complete FDM neural network. The

research is divided into three phases, which will yield intermediate results, and

allow the project to be evaluated at fixed stages. Phase 1 will be the

refinement and design of the FDM communications circuitry. Phase 2 will be

to implement in VLSI a small analogue FDM neural network, to verify the

idea. Phase 3 will be to extend Phase 2, and will be to construct a complete

neural network system under software control, implementing a large number

of neurons, which will be used for real world applications. Details of the three

phases are as follows.

PHASE 1: The goal of this first phase is to produce a prototype FDM inter-

chip communications system using around 8 different frequencies. This system

154

CHAPTER 6 CONCLUSIONS

will not contain any of the neural network components and will involve the

following tasks: -

11 Refine the existing OTA building block.

The transconductance amplifier will be refined to improve output conductance and reduce

chip area. Consequently, new prototypes will be produced and tested.

1.2 Design, layout, fabrication and testing of filter, oscillator, peak detector and phase-

locked loop (PLL) control circuitry.

OTA oscillators and filters will be designed, laid out and verified using the Eurochip

Mentor/Mietec route. Also included on this chip will be the PLL control circuitry and

peak detectors. A prototype chip will be fabricated and the results analysed. If necessary,

a second prototype will be produced before proceeding to task 13.

1.3 Integration of a small FDM system.

This is the goal of the first phase. Here a small non-neural network FDM system is to be

fabricated. This will incorporate the FDM modulation/demodulation scheme on two chips

implementing around 8 multiplexed channels (the exact number depending upon the

silicon area used). These two chips will communicate with each other via a single FDM

pin.

PHASE 2: The goal of the second phase will be to implement a small neural

network using a single FDM wire to communicate between chips. This will

involve the following tasks: -

2.1 VLSI design of neural synapses and neurons.

The synapses will be implemented as analogue multipliers and the neurons as current

summers incorporating a non-linearity function.

2.2 VLSI layout and prototyping of neural components.

The neural components in task 2.1 will be laid out and verified at the silicon level. A

155

CHAPTER 6 CONCLUSIONS

prototype chip will be fabricated and tested. Again, a second iteration may be necessary

at this stage.

23 Integration of a small neural network FDM system.

This is the goal of the second phase. Here, a small neural network system is to be

implemented, with around 8 neurons, the exact number depending upon the silicon area

taken up by each neuron. The FDM circuits from Phase 1 and the new neural components

will be laid out together on two chips, which will communicate using FDM. These

prototypes will be tested and the ability of the neural network to cope with various filter

overlaps will be analysed. The network will be trained using a number of test problems,

designed not to exceed the number of neurons available.

PHASE 3: The third phase will extend the work of Phase 2, and lead to the

realisation of a larger neural network architecture. It will then be possible to

train the network on a number of real world problems. This will include the

following tasks: -

31 Integration of a larger number of neurons.

This will be achieved by producing a larger chip and by combining multiple chips to
form layers of neurons, all communicating by FDM. The system will be embedded in a

microprocessor system with a software interface.

3.2 Train the neural network on real-world data.

The performance of the extended network will be verified by applying it to pattern

recognition problems. This will include speech and visual image data.

There is a great scope for the full realisation of this idea and the potential for

many important intermediate designs and spin-offs, for example; analogue
VLSI filter and oscillator designs, tuning techniques, and methods to ensure
invariance to IC processing parameters.

156

CHAPTER 6 CONCLUSIONS

Apart from this thesis, some work is being carried out in the research group

towards the realisation of the FDM technique in hardware at the system level,

which is currently in a stage of development. This work has involved

construction of analogue neural network hardware prototypes using off-the-

shelf components, implementing a small number of neurons which can

communicate using FDM. These neural network circuit boards are designed to

be interfaced to a host computer so that learning can be carried out in

software, using the neural network in the training loop.

A development route is therefore possible combining the above and the work

of this thesis, which would involve gradual replacement of the off-the-shelf

components on the circuit boards by the VLSI prototypes. In this way, it will

be possible to test individual VLSI circuits in a system environment before an

entirely VLSI neural network is constructed. This is a top-down hardware

approach for the neural system, but a bottom-up approach for the VLSI, which

enables all chips to be evaluated as the hardware design progresses without

losing sight of the system as a whole.

Between the system and VLSI circuit level, this project would also benefit

from more computer modelling of the neural network, as an extension of the

software simulation work reported on in Chapter 3. The simulations of Chapter

3 are somewhat abstracted from hardware implementation in that once the

overlap parameter is chosen, the mixing of neuron outputs are simply the linear

addition of a neuron's amplitude with its nearest neighbour's, multiplied by the

overlap parameter. This is justified for 'ideal' linear transfer functions for the

filters, but does not include the effects of non-linearity, nor of process

variations which may cause deviations from the desired frequency responses.

157

CHAPTER 6 CONCLUSIONS

These effects could be included into a more sophisticated computer model, to

further test the neural network learning performance.

Design of analogue memories and realisation of on-chip learning is a great

priority in the field of neural network hardware. Although the systems

considered above use a learning method based on an external digital

microprocessor for learning and permanent weight storage, work should be

carried out in the areas of on-chip weight storage and on-chip learning. It

should be possible to apply the FDM technique for the communication of

weight values in the neural network system, in addition to its use for

communicating the inputs and outputs.

6.2.2 Other Ideas and Applications

Analogue VLSI design is an exciting, active, and growing field. The findings

from further investigation in the FDM technique will be of importance for

applications in neural networks, and analogue signal processing in general.

The proposed chip consisting of a bank of analogue filters, would find

applications in speech processing, as an analogue spectral analyser for speech.

Similarly, a bank of oscillators would be used for the construction of a flexible

voice source.

The FDM technique will find use in a general sense for communication of

analogue information between chips and circuit boards. Considering the ability

of a neural network to compensate for crosstalk interference, it would be worth

investigating their application in other analogue and digital systems.

158

CHAPTER 6 CONCLUSIONS

6.3 Summary

In summary, the main points of this thesis are as follows.

* Frequency Division Multiplexing was proposed and justified as a

technique for inter-chip communication of analogue information.

* Neural Network learning has been discovered to be highly tolerant to

crosstalk between signals in an FDM channel, due to the adaptive

nature of neural networks. Defining an overlap parameter for the filter

frequency responses enables the analysis of the effects of this crosstalk.

* Overlapping of filter responses allows an increase in information

bandwidth, or the use of smaller quality factors which eases VLSI

design.

* Hardware implementation of the FDM idea can be achieved using

analogue VLSI techniques. Transconductance amplifiers are a good

building block for this.

* The full-custom analogue design route using Mentor Graphics full-

custom CAD software and the Mietec foundry was proven in the course

of this research, which is of benefit to other participants in the Ecad

and Eurochip schemes.

Adaptive tuning techniques should be used to compensate for VLSI
fabrication process variability, when applied to the tuning of banks of
filters and oscillators.

159

RF. FF. RENCES

REFERENCES

Chapter 1

[1.1] HENNESSY J. L. and JOUPPI N. P.: "Computer Technology and Architecture: An
Evolving Interaction", IEEE Computer, ppl8-29, Sept. 1991.

[1.2] WATSON G. F.: "Interconnection and Packaging", IEEE Spectrum (Special Issue: Super
Computers), pp69-71, Sept. 1992.

[13] OHSAKI T.: "Electronic Packaging in the 1990's -A Perspective From Asia", IEEE
Trans. Components, Hybrids and Manufacturing Technology, 14(2), pp254-261, June 1991.

[1.4] TUMMALA R. R.: "Electronic Packaging in the 1990's -A Perspective From America",
IEEE Trans. Components, Hybrids and Manufacturing Technology, 14(2), pp262-271, June
1991.

[1.5] WESSELY H., FRITZ 0., HORN M., KLIMKE P., KOSCHNOCK W. and SCH1MMT
K-H : "Electronic Packaging in the 1990's -A Perspective Fmom Europe", IEEE Trans.
Components, Hybrids and Manufacturing Technology, 14(2), pp272-284, June 1991.

Chapter 2

[2.1] RUMELHART D. E. and McCLELLAND J. L. (Eds.) : "Parallel Distributed Processing
: Explorations in the Microstructure of Cognition", Vol. I& II (MIT Press, Cambridge MA,
1986).

[22] McCULLOCH W. C. and PITTS W.: "A logical calculus of the ideas immanent in
nervous activity", Bulletin of Mathematical Biophysics, Vol. 5, ppl15-133,1943.

[2.3] HEBB D. O : "The Organisation of Behaviour", (Wiley, New York, 1949)

[2.4] GROSSBERG S.: "Some physiological and biochemical consequences of psychological
postulates", Proc. National Academy of Science U. S., Vol. 60, pp758-765,1968.

[2.5] WIDROW B., WINTER R. G. and BAXTER RA.: "Learning Phenomena in Layered
Neural Networks", Proc. IEEE Int. Conf. on Neural Networks, San Diego CA, pp4ll-429, 1988.

[2.6] FUKUSHIMA K. : "Cognitron: A Self Organising Multilayered Neural Network",
Biological Cybernetics, Vol. 20, ppl21-36,1975.

[2.7] FUKUSHIMA K., MIYAKE S. and TAKAYUKI L: "Neocognitron: A neural network
model for a mechanism of visual pattern recognition", IEEE Trans. Systems, Man and Cybernetics, 13(5), pp826-34,1983.

[2.8] HOPFIELD JJ.: "Neural networks and physical systems with emergent collective computational abilities", Proc. National Academy of Science, Vol. 79, pp2554-2558, April 1982.

160

REFERENCES

[2.9] KORONEN T. "The neural phonetic typewriter", IEEE Computer 21(3), ppl 1-22, March
1988.

[2.10] CARPENTER GA and GROSSBERG S.: "The ART of adaptive pattern recognition
by a self-organising neural network", IEEE Computer, 21(3), pp77-88, March 1988.

[2.11] CARPENTER GA and GROSSBERG S.: "An 3: Hierarchical search using chemical
transmitters in self organising pattern recognition architectures", Neural Networks, Vol. 3,
ppl29-152,1990.

[2.12] ROSENBLATT F.: 'Principles of Neurodynaznics', (Spartan Books, New York 1962)

[2.13] MINSKY M. L. and PAPERT S.: 'Perceptrons', (MIT Press, Cambridge MA, 1969).

[2.14] DENKER J. S. (ed.) : "Neural Networks for Computing, Proceedings of the Conference
of the American Institute of Physics held at Snowbird, Utah, 13-16 April 1986", (AIP, New
York, 1986).

[2.15] ANDERSON J. A. and ROSENFELD E. (eds.) : "Neurocomputing: Foundations for
Reasearch", (Mrr Press, Cambridge MA, 1988.

[2.16] HAKEN H. (ed.) : "Neural and Synergetic Computers, Proc. Int. Sym. at Schloss Elmau,
Bavaria, June 13-17,1988", (Springer, Berlin, 1988).

[2.17] NADEL L. et al. (eds.) : "Neural connections, mental computation", (MIT Press,
Cambridge MA, 1989).

[2.18] PAO Y-H : "Adaptive pattern recognition and neural networks", (Addison-Wesley,
Reading MA, 1989).

[2.19] ALEXANDER I. (ed.) : "Neural computing architectures: the design of brain-like
machines", (North Oxford, London, 1989).

[2.20] WASSERMAN P. D. : "Neural Computing: Theory and Practice", (Van Nostrand
Reinhold, New York, 1989).

[2.21] ALEXANDER I. and MORTON H.: "An introduction to neural computing", (Chapman
and Hall, London, 1990).

[2.22] HECHT-NIELSON R.: "Neurocomputing", (Addison-Wesley, Reading MA, 1990).

[2.23] MAREN AJ., HARSTON C. T. and ROBERT M. P.: "Handbook of neural computing
applications", (Academic Press, San Diego CA, 1990).

[2.24] EBERHART R. C. and DOBBINS R. W. (eds.) : "Neural Networks PC Tools -A Practical Guide", (Academic Press, San Diego CA, 1990).

[225] CARPENTER G. A. and GROSSBERG S. (eds.) : "Pattern recognition by self. organising
neural networks", (MIT Press, Cambridge MA, 1991).

[2.26] FARHAT NIL : "Optoelectronic Neural Networks and Learning Machines", IEEE Circuits and Devices Magazine, pp32.. 41, Sept 1989.

161

REFERENCES

[227] GRAF H. P. and JACKEL L. D.: "Analog Electronic Neural Network Circuits", IEEE
Circuits and Devices Magazine, pp44-50, July 1989.

[228] MEAD C. A. and MAHOWALD KA: "A Silicon Model of Early Visual Processing",
Neural Networks, 1, pp91-97,1988.

[229] LU T. C., CHIANG M. L. and KUO J. B : "A One-Transistor Synapse Circuit with an
Analog LMS Adaptive Feedback for Neural Network VLSI", Proc. IEEE Int. Symp. Circuits
and Systems, Singapore, pp1303-1306, June 1991.

[2.30] PAULOS J. J. and HOLLIS P. W.: "Neural Networks Using Analog Multipliers", IEEE
Proc. Int. Symp. Cicuits and Systems, pp498-502,1988

[2.31] REED R. D. and GEIGER RL.: "A Multiple-Input OTA Circuit for Neural Networks",
IEEE Trans. Circuits and Systems 36(5), pp767-769, May 1989.

[2.32] ZURADA J. M.: "Introduction to Artificial Neural Systems", p600, (West Publishing
Co. 1992)

[2.33] TSIVIDIS Y. and SATYANARAYANA S. : "Analogue Circuits for Variable-Synapse
Electronic Neural Networks", IEE Elec. Lett. 23(24), pp1313-1314, March 1987.

[2.34] VITPOZ E., OGUEY H., MAHER MA., NYS 0., DIJKSTRA E. and CHEVROULET
M.: "Analog Storage of Adjustable Synaptic Weights", Proc. IEEPJITG Ist Int. Workshop on
Microelectronics for Neural Networks, Dortmund, pp69-79, June 1990.

[2.35] CASTELLO It, CAVIGLIA D. D., FRANCIOTTA M. and MONTECCHI F. : "Self-
refreshing Analogue Memory Cell for Variable Synaptic Weights", IEE Elec. Lett 27(20),
pp1871-2, Sept 1991.

[2.36] SCHWARTZ D. B., HOWARD R. E. and HUBBARD W. E.: "A Programmable Analog
Neural Network Chip", IEEE J. Solid State Circuits 24(2), pp313-319, April 1989.

[2.37] SATYANARAYANA S., TSIVIDIS Y. and GRAF H. P.: "Analogue Neural Network
with Distributed Neurons", lEE Elec. Lett. 25(5), pp302-3, March 1989.

[2.38] MURRAY AF., DEL CORSO D. and TARASSENKO L.: "Pulse-Stream VLSI Neural
Networks Mixing Analog and Digital Techniques", IEEE Trans. Neural Networks, 2(2), pp193-
204, March 1991.

[2.39] AGRANAT AJ., NEUGEBAUER C. F., NELSON R. D. and YARIV A., "The CCD
Neural Processor: A Neural Network Integrated Circuit with 65536 Programmable Analog
Synapses", IEEE Trans. Circuits and Systems 37(8), pp1073-1075, August 1990.

[2.40] HOLLER M., TAM S., CASTRO H. and BENSON R. : "An Electrically Trainable
Artificial Neural Network (ETANN) with 10240 'Floating Gate' Synapses", IEEE Int. Joint
Conference on Neural Networks", Washington DC, June 1989.

[2.41] REEDER A. A., THOMAS I. P., SMITH C., WITI'GREFFE J. P. and GODFREY D. J.
: "Application of analogue amorphous silicon memory devices to resistive synapses for neural
networks", British Telecom Journal, 10(3), ppl55-160, July 1992.

162

REFERENCES

[2.42] ATLAS L . E. and SUZUKI Y.: "Digital systems for Artificial Neural Networks", IEEE
Circuits and Devices Magazine, pp2O-24, Nov 1989.

[2.43] JESSHOPE C. R., O'GORMAN R. and STEWART J. M. : "Design of SIMI)
microprocessor array", IEE Proceedings, Part E, 136(3), pp197-204, May 1989.

[2.44] KUNG S. Y. and HWANG JN.: "Digital VLSI Architectures for Neural Networks",
IEEE Proc. Int. Symp. Circuits and Systems, Vol 1, pp445-448,1989.

[2.45] JONES S. and SAN MUT K.: "Toroidal Neural Network: Architecture and Processor
Granularity Issues", Proc. IEEE/ITG Ist Int. Workshop on Microelectronics for Neural
Networks, Dortmund, pp142-152, June 1990.

[2.46] HAIvIMERSTROM D.: "A Highly Parallel Digital Architecture for Neural Network
Emulation", in J. G. Delgado-Frias, W. 1Vloore (Eds.), 'VLSI for Artificial Intelligence and
Neural Networks', Plenum Press 1991, pp357-366.

[2.47] MORGAN N., BECK J., KOHN P., BILMES J., ALLMAN E., and BEER J.: "The
RAP. A Ring Array Processor for Layered Network Calculations", Proc. Int. Conf. Application
Specific Array Processors, pp296-308,1990.

[2.48] AGLAN F., BRU B., DURANTON M., MAUDUI T N. and FRYDLENDER IL : "L:
Neuro Boards : Implementing some applications", Proc. IEEE/ITG/IFIP 2nd Int. Workshop on
Microelectronics for Neural Networks, Munich, pp447-453, Oct 1991.

[2.49] SPAANENBURG L., HOEFFLINGER B., NEUSSER S., NIJHUIS J. A. G. and
SIGGELKOW A. : "A Multiplier-less Digital Neural Network", Proc. IEEEJITG/IFIP 2nd Int.
Workshop on Microelectronics for Neural Networks, Munich, pp281-289, Oct 1991.

[230] AE. T and AIBARA R.: "Memory-based Architecture for Artificial Neural Networks",
Proc. IEEE/ITG/1FIP 2nd Int. Workshop on Microelectronics for Neural Networks, Munich,
pp135-142, Oct 1991.

[2.51] SAMMUT K. M. and JONES S. R.: "Implementing Nonlinear Activations in Neural
Network Emulators", IEE Elec. Lett 27(12), pp1037-1038, June 1991.

[232] ALIPPI C. and STORTI-GAJANI G.: "Simple Approximation of Sigmoid Functions:
Realistic Design of Digital Neural Networks Capable of Learning", IEEE Proc. Int. Symp.
Circuits and Systems, Singapore, pp1505-1508, June 1991.

[2.53] MYERS D. and HUTCHINSON R.: "Efficient Implementation of Piecewise Linear
Activation Function for Digital Neural Networks", IEE Elec. Lett. 25(4), pp1662-1663, Nov
1989.

[2.54] NAYLOR D. and JONES S. R : "How to efficiently map multilayer networks into linear
arrays", Proc. IFEE/ITG/IFIP 2nd lat. Workshop on Microelectronics for Neural Networks,
Munich, pp151-162, Oct 1991.

[2.55] NIELSON C. D., STRAUSTRUP J. and JONES S. R. : "Potential Performance
Advantages of Delay-Insensitivity", IFIP workshop on silicon architectures for neural nets, St.
Paul-de-Vence, France, Nov 1990.

163

REFERENCES

[2.56] BAILEY J. and HAMMERSTROM D. : "Why VLSI Implementations of Associative
VLCN Require Connection Multiplexing", Proc. IEEE Proc. Int. Conf. Neural Networks, San
Diego CA, Vol. 2, pp 173-180,1988.

[2.57] CRAVEN M. P., CURTIS K. M. and HAYES-GILL BR : "Frequency Division
Multiplexing in Analogue Neural Network", IEE Elec. Lett. 27(11) pp918-920, May 1991.

[2.58] CURTIS K. M., CRAVEN M. P. and HAYES-GILL BR : "A Novel Neural Network
VLSI Implementation", Proc. IEEE/iTG Ist Int. Workshop on Microelectronics for Neural
Networks, Dortmund, pp120-128, June 1990.

[2.59] CURTIS K. M., CRAVEN MP., HAYES-GILL BR and LIU M.: "An Optimised VLSI
Implementation for Analogue Neural Communications", Proc. IEEF, /ITG/IFIP 2nd Int.
Workshop on Microelectronics for Neural Networks, Munich, pp273-290, Oct 1991.,

[2.60] CARD H. C. and MOORE WR "Implementation of Plasticity in MOS Synapses", Ist
IEE Int. Conf. on Artificial Neural Networks, pp33-36,1989.

[2.61] YASUNAGA M., MASUDA N., YAGYU M., ASAI M., SHIBATA K., OOYAMA M.,
YAMADA M., SAKAGUCHI T. and HASHIMOTO M.: "A Self-Learning Digital Neural
Network Using Wafer-Scale LSI", IEEE J. Solid-State Circuits 28(2), pp106-114, February
1993.

[2.62] SHIMA T., KIMURA T., KAMATANI Y., ITAKURA T. and FUJITA Y. and IIDA
T.: "Neuro Chips with On-Chip Back-Propagation and/or Hebbian Learning", IEEE J. Solid-
State Circuits 27(2), pp1868-1876, December 1992.

[2.63] HOHFELD M. and FAHLMAN S. E.: "Probabalistic Rounding in Neural Network
Learning with Limited Precision", Proc. IEEE/ITG/IFIP 2nd lat. Workshop on Microelectronics
for Neural Networks, Munich, ppl-8, Oct 1991.

[2.64] ORREY D. A., MYERS DJ. and VINCENT J. M. "A High Performance Digital
Processor for Implementing Large Artificial Neural Networks", Proc. Custom Integrated
Circuits Conference, San Diego, May 1991.

[2.65] REYNARI L. M. and FILIPPI E. : "An Analysis on the Performance of Silicon
Implementations of Backpropagration Algorithms for Artificial Neural Networks", IEEE Trans.
Computers 40(12), pp1380-1389, Dec 1991.

[2.66] SATYANARAYANA S., TSIVIDIS Y. and GRAF H. P.: "A Reconfigurable VLSI
Neural Network", IEEE J. Solid State Circuits 27(1), pp67-81, Jan 1992.

[2.67] MURRAY AF.: "Analogue Noise-Enhanced Learning in Neural Network Circuits", IEE
Elec. Lett. 27(17), pp1546-1548, Aug 1991.

[2.68] HOLLIS P. W. and PAULOS JJ.: "Dynamic Gain Adaption for Learning with Limited
Resolution Bounded Weights", Technical Report NETR-90/5, North Carolina State University,
1990.

[2.69] VAN der SPIEGEL J., MUELLER P., BLACKMAN D., CHANCE P., DONHAM C.,
ETTIENNNE-CUMMIINGS R. and KINGET P.: "An Analog Neural Computer with Modular
Architecture fayReal-Tune Dynamic Computations", IEEE J. Solid State Circuits 27(1), pp82-

164

REFERENCES

92, Jan 1992.

Chapter 3

[3.1] MURRAY A. F., DEL CORSO D., and TARASSENKO L.: "Pulse-Stream VLSI Neural
Networks Mixing Analog and Digital Techniques", IEEE Trans. Neural Networks, 2(2), pp193-
204, March 1991.

[3.2] HAMILTON A., MURRAY AF., BAXTER DJ., CHURCHER S., REEKIE H. M. and
TARASSENKO L.: "Integrated Pulse-Stream Neural Networks: Results, Issues, and Pointers",
IEEE Trans. Neural Networks, 3(3), pp385-393, May 1992.

[3.3] DEL CORSO D., GREGORETTI F., PELLEGRINI C., and REYNERI LM.: "An
Artificial Neural Network Based on Multiplexing Pulse Streams, IEEEIITG Ist Int. Workshop
on Microelectronics for Neural Networks, Dortmund, pp120-128, June 1990.

[3.4] MURRAY AF., HAMILTON A., REEKIE H. M., CHURCHER S., BAXTER DJ.,
BUTLER Z. and TARASSENKO L.: "Innovations in Pulse Stream Neural VLSI - Arithmetic
and Communications", IEEE/ITG Ist Int. Workshop on Microelectronics for Neural Networks,
Dortmund, pp8-27, June 1990.

[3S] NUNALLY P. and HALLSE B. : "Introduction of New Angle Modulated Architectures
for the Realisation of Large Scale Neural Network Hardware", International Joint Conference
on Neural Networks 1990, Washington DC, Vol. 2, ppl71-174, January 1990.

[3.6] National Semiconductor Corp. Data Sheet, MF8 4th-Order Switched Capacitor Filter.

[3.7] STANLEY W. D : "Electronic Communication Systems", (Reston Publishing Co. Inc,
Reston Virginia, 1981), pp112-116.

Chapter 4

[4.1] ROSENBLATT F.: 'Principles of Neurodynamics', (Spartan Books, New York 1962)

[4.2] WIDROW B. and HOFF M. E. : 'Adaptive Switching Circuits' in IRE WESCON
Convention Record, Part 4 pp96-104,1960.

[43] WIDROW B., WINTER R. G. and BAXTER RA : 'Learning Phenomena in Layered
Neural Networks', Proc. IEEE Int. Conf. on Neural Networks, San Diego CA, pp411-429,
1988.

(4.4] RUMELHART D. E., and McCLELLAND (Eds.) : 'Parallel Distributed Processing :
Explorations in the Microstructure of Cognition, Vol I: Foundations' (MIT Press 1986).

[4.5] MINSKY M. L. and PAPERT S. : 'Perceptions', (Cambridge MA, MIT Press, 1969).

[4.6] RUMELHART D. E., HINTON G. E. and WILLIAMS M. J. : 'Learning Internal
Representations by Backpropagation of Errors', Nature 323, pp533-536,1986.

[4.7] WERBOS P. J : 'Backpropagation: Past and Future', Proc. IEEE Int. Conf. on Neural

165

REF tMCES

Networks, San Diego CA, pp343-353,1988.

[4.8] WASSERMAN P. D.: "Neural Computing: Theory and Practice", p57, (Van Nostrand
Reinhold, New York, 1989)

[4.9] STORNETTA W. S. and HUBERMAN B. A. : "An Improved Three-Layer, Back
Propagation Algorithm", Proc. IEEE Int Conf. on Neural Networks, San Diego CA, pp637-
642,1987.

[4.10] SMITH G. and WILSON WH.: "Back Propagation with Discrete Weights and
Activations", Technical Report, Discipline of Computer Science, Flinders University of South
Australia, June 1989.

[4.11] PARKER D. B. : "Optimal Algorithms for Adaptive Networks: Second Order
Backpropagation, Second Order Direct Propagation, and Second Order Hebbian Learning",
Proc. IEEE Int. Conf. on Neural Networks, San Diego CA, pp593-600,1987.

[4.12] WATROUS R. L.: "Learning Algorithms for Connectionist Networks: applied Gradient
Methods of Non-Linear Optimisation", Proc. IEEE Int. Conf. on Neural Networks, San Diego
CA, pp617-627,1987.

[4.13] KOLLIAS S. and ANASTASSIOUS D.: "Adaptive Training of Multilayer Neural
Networks Using A Least Squares Estimation Technique", Proc. IEEE Int. Conf. on Neural
Networks, San Diego CA, pp383-390,1987.

[4.14] FAHLMAN S. E.: "An Empirical Study of Learning Speed in Back-Propagation
Networks", Technical Report CMU-CS-88-162, Carnegie Mellon University, Pittsburgh PA,
June 1988.

[4.15] JABRI M. and FLOWER B. : "Weight Perturbation: An Optimal Archictecture and
Learning Technique for Analog VLSI Feedforward and Recurrent Multilayer Networks",
Neural Computation, 3, pp546-565,1991.

[4.16] TARRASENKO J. and TOMBS J. : "On-chip Learning With Analogue VLSI Neural
Networks", Proc. 3nd Int. Workshop on Microelectronics for Neural Networks, Edinburgh,
pp163-174, April 1993.

(4.17] Borland International, Turbo Pascal Owners Manual.

[4.18] Digital Equipment Corporation, VAX Pascal Reference Manual, AA-L369D-TE,
December 1989.

[4.19] REYNERI L. M. and FI[.. IPPI E.: "An Analysis on the Silicon Implementations of the
Backpropagation Algorithms for Artificial Neural Networks", IEEE Trans. Computers 40(12),
pp1380-1389, Dec 1991

[4.20] PRESSMAN RS., 'Software Engineering: A Practitioner's Approach', (McGraw-]Hill,
Singapore, 1982).

(4.21] JACOBS R. A.: 'Increased rates of Convergence Through Learning Rate Adgpaon',
Technical Report COINS TR 87-117, University of Massachusetts at Amherst, Dept, of Computer and Information Science, Amherst MA, 1987.

166

REFERENCES

[4.22] SEJNOWSKI TJ., and ROSENBERG CR.: 'NETtalk :a parallel network that learns
to read aloud', Technical Report JHU/EESC-86/01, John Hopkins University, 1986.

[4.23] SEJNOWSKI T. J., and ROSENBERG CR.: 'Parallel Networks that Learn to Pronouce
English Text', Complex Systems 1, pp145-168,1987.

[424] KLATT D. H.: 'Review of text-to-speech conversion for English', J. Acoustical Society
America 82(3), pp737-793, Sept 1987.

[4.25] ROSENBERG CR : 'Revealing the Structure of NETtalk's Internal Representations',
Proc. 9th Annual Conf. of The Cognitive Science Society, pp537-554, July 16-18,1987.

[4.26] CRAVEN M. P., CURTIS K. M., HAYES-GILL B Zt.: 'Frequency Division Multiplexing
in Analogue Neural Network', Elec. Lett. 27(11), pp918-920,1991.

[427] KUCERA H. and FRANCIS WN.: 'Computational Analysis of Present Day American
English', (Brown University Press, Providence RI, 1970).

[4.28] ELOVITZ H. S., JOHNSON R., McHUGH A., and SHORE JB.: 'Letter-to-Sound Rules
for Automatic Translation of English Text to Phonetics', IEEE Trans. Acoustics, Speech, and
Signal Processing, 24(6), 1976.

[4.29] HOLLIS P. W., HARPER J. S. and PAULOS JJ. : "The Effects of Precision Constraints
in a Backpropagation Learning Network", Neural Computation 2, pp363-373,1990

[4.30] HOME _D M. and FAHLMAN SM. : "Probabilistic Rounding in Neural Network
learning with Limited Precision", Proc. IEEE/1TG/IF1P 2nd Int. Workshop on Microelectronics
for Neural Networks, Munich, ppl-8, Oct 1991.

Chapter 5

[5.1] GREGORIAN K and TEMES G. C.: "Analog MOS Integrated Circuits", (Wiley 1986)

[52] SHYU J-B., TEMES G. C. and KRUMNIENACHER F.: "Random Error Effects in
Matched MOS Capacitors and Current Sources", Proc. IEEE Int. Symp. Circuits and Systems,
pp1415-1418,1985

[5.3] HODGES D. A., GRAY P. R.: "Potential of MOS Technologies for Analog Integrated
Circuits", MEE J. Solid State Circuits 13(3), pp285-294, June 1978.

[5.4] ALLEN P. E. and HOLBERG D. P.: "CMOS Analog Circuit Design", (Holt Rinehart and Winston, New York, 1987).

[5.5] SACKINGER E. and FORNERA L.: "On the placement of Critical Devices in Analog
Integrated Circuits", MEE Trans. Circuits and Systems 37(8), pp1052-1057, August 1990.

[5.6] VITTOZ E.: "The Design of High Performance Analog Circuits on Digital CMOS
Chips", IEEE J. Solid State Circuits 20(3), pp657-665, June 1985

[5.7] TSWIDIS Y. and SATYANARAYANA S.: "Analogue Circuits for Variable-synapse
Electronic Neural Networks", IEE Elec. Lett. 23(24), pp1213-1214, Nov 1987.

167

RFýýER LACES

[5.8] SATYANARAYANA S., TSIVIDIS Y. and GRAF H. P.: "Analogue Neural Network
with Distributed Neurons", IEE Elec. Lett. 25(5), pp302-304, Jan 1989.

[5.9] REED R. D. and GEIGER R. L.: "A Multiple Input OTA Circuit for Neural Networks",
IEEE Trans. Circuits and Systems 36(5), pp767-770, May 1989.

[5.10] LINARES-BARRANCO B, SANCHEZ-SINENCIO E., RODRIGUEZ-VAZQUEZ A.
and HUERTAS J. L.: "A Modular T-Mode Design Approach for Analog Neural Network
Hardware Implementaions", IEEE J. Solid State Circuits 27(5), pp701-713, May 1992.

[5.11] MALVAR H. S. : "Electronically Tunable Active Filters with Operational
Transconductance Amplifiers", IEEE Trans. Circuits and Systems 29(5), pp333-336, May 1982.

[5.12] SAHA A. R., NANDI R. and NANDI S.: "Integrable Tunable Sinusoid Oscillator using
DVCCS", IEE Elec. Lett. 19(18), pp745-746, Sept 1983.

[5.13] MALVAR H. S. : "Electronically Controlled Active-C Filters and Equalizers with
Operational Transconductance Amplifiers", IEEE Trans. Circuits and Systems 31(7), pp645-
649, July 1984.

[5.14] GEIGER R. L. and SANCHEZ-SINENCIO E.: "Active Filter Design Using Operational
Transconductance Amplifiers: A Tutorial", IEEE Circuits and Devices Magazine, pp20-32,
March 1985

[5.15] SANCHEZ-SINENCIO E., GEIGER R. L., and NEVAREZ-LOZANO H.: "Generation
of continuous time two integrator loop OTA filter structures", IEEE Trans. Circuits and
Systems 35(8), pp936-946, Aug 1988.

[5.16] ANANDA MOHAN P. V.: "Generation of OTA-C Filter Structures from Active RC
Filter Structures", IEEE Trans. Circuits and Systems 37(5), pp656-660, May 1990.

[5.17] ABUELMA'ATTI and ALMASKATI RH.: "Active-C Oscillator", Electronics and
Wireless World, pp796-797, No. 93,1987.

[5.18] SENANI R.: "New Electronically Tunable OTA-C Sinusoidal Osci lator", IEE Elec.
Lett. 25(4), pp286-287, Feb 1989.

[5.19] SENANI R., KUMAR B. A., TRIPATHI M. P. and KUMAR B. A.: "Systematic
Generation of OTA-C Sinusoidal Oscillators", IEE Elec. Lett., 26(18), pp1457-1459, Aug 1990.

[5.20] WANG Y. and ABIDI A. A: "CMOS Active Filter Design at Very High Frequencies",
IEEE J. Solid State Circuits 25(6), ppl562-1574, Dec 1990.

[5.21] SNELGROVE W. M. and SHOVAL A.: "A Balanced 0.9-µm CMOS Transconductance.
C Filter Tunable Over the VHF Range", IEEE J. Solid State Circuits 27(3), pp314-323, March
1992.

[5.22] DUPUIE S. T. and ISMAIL M.: "High Frequency CMOS Transconductors", in
"Analogue IC design: the current mode approa h" (C. Totm azou, FJ. Lidgey & D. G. Haigh
Eds.), Chap 5, ppl8l-238, (Peter Peregrinus Ltd, London 1990).

(523] NEDUNGADI A. and VISWANTHAN T. R. : "Design of linear CMOS

168

REFERENCES

transconductance elements", IEEE Trans. Circuits and Systems 31(10), pp891-894, Oct 1984.

[5.24] TORRANCE R. R., VISWANATHAN T. R. and HANSON J. V.: "CMOS Voltage to
Current Transducers", IEEE Trans. Circuits and Systems 32(11), pp1097-1104, Nov 1985.

[525] TSIVIDIS Y., CZARNUL Z. and FANG S. C.: "MOS Transconductors and Integrators
with High Linearity", IEE Elec. Lett 22(5), pp245-246, Feb 1986.

[5.26] CZARNUL Z. and TSIVIDIS Y. : "MOS Tunable Transconductor", BEE Elec. Lett.
22(13), pp721-722, June 1986.

[527] WANG Z. : "Novel Linearisation Technique for Implementing Large Signal MOS
Tunable Transconductor", IEE Elec. Lett. 26(2), pp138-139, Jan 1990.

[528] WANG Z. and GUGGENBUHL W. : "A Voltage-Controllable Linear MOS
Transconductor Using Bias Offset Technique", IEEE J. Solid State Circuits 25(1), pp315-317,
Feb 1990.

[529] VAN PETEGHAM P. M., FOSSATI H. M., RICE G. L. and LEE S.: "Design of a Very
Linear CMOS Transconductance Input Stage for Continuous-Tune Filters", IEEE J. Solid State
Circuits 25(2), pp497-501.

[530] STEFANELLI B. and KAISER A.: "CMOS Triode Transconductor with High Dynamic
Range", IEE Elec. Lett. 26(13), pp880-881, June 1990.

[53 11 WANG Z.: "Making CMOS OTA a Linear Transconductor", IEE Elec. Lett. 26(18),
pp1448-1449, Aug 1990.

[532] CZARNUL Z. and FUJII N.: "Highly-Linear Transconductor Cell Realised by Double
MOS Transistor Differential Pairs", IEE Elec. Lett. 26(21), pp1819-1821, Oct 1990.

[533] CZARNUL Z. and TAKAGI S.: "Design of Linear Tunable CMOS Differential
Transconductor Cells", IEE Elec. Lett 26(21), pp1809-1811, Oct 1990.

[534] INOUE T., UENO F., ARAMAKI Y., MATSUMOTO 0. and SUEFUJI M.: "A Design
of CMOS OTA's using Simple linearizing Techniques and their Application to High-
Frequency Continuous-Time Filters", Proc. MEE Int. Symp. Circuits and Systems, June 11-14
1991, Singapore, pp1741-1744.

[535] SEVENHANS J. and VAN PAEMEL M.: "Novel CMOS Linear OTA using Feedback
Control on Common Source Node", IEE Elec. Lett. 27(20), pp1873-1875, Sept 1991.

[536] CRAVEN M. P., HAYES-GILL B. R. and CURTIS K. M.: "A Fun Custom Analogue
IC using the Eurochip design route -A start-up experience with the Mietec 2.4 Micron
Process", Proc. 3rd Eurochip Workshop on VLSI Design Training, Grenoble France, Sept 30-
Oct 2 1992, pp136-141.

[537] CRAVEN M. P., HAYES-GILL BR and CURTIS K. M.: "Two Quadrant Analogue
Squarer Circuit Based on MOS Square-Law Characteristic", IBE Elec. Lett,, 27(25), Doc 1991.

[538] TSIVIDIS Y., BANU M. and KHOURY J. : "Continuous-T'une MOSFET-C Filters in VLSI", IEEE Trans. Circuits and Systems 33(2), pp125-140, Feb. 1986

169

REFERENCES

[5.39] SONG B-S : "A 10.7MHz Switched-Capacitor Bandpass Filter", IEEE Custom
Integrated Circuits Conference, ppl2.3.1-12.3.4,1988.

[5.40] TAN K -S. and GRAY P. R.: "Fully integrated analogue filters using bipolar-JFET
technology", IEEE J. Solid State Circuits 13(6), pp814-821, Dec. 1978

[5.41] BANU M. and TSIVIDIS Y.: "An Elliptic Continuous-Time CMOS Filter with on-chip
automatic tuning", IEEE J. Solid State Circuits 20(6), pp1114-1121, Dec. 1985

[5.42] KRUMMENACHER F. and JOEHL N.: "A 4-MHz CMOS Continuous-TIME Filter
with On-Chip Automatic Tuning", IEEE J. Solid State Circuits 23(3), pp750-758, June 1988

[5.43] PARK C. S. and SCHAUMANN R. : "Design of a 4-MHz Analogue Integrated CMOS
Transconductance-C Bandpass Filter", IEEE J. Solid State Circuits 23(4), pp987-996, August
1988

[5.44] SCHAUMANN R. and TAN MA.: "The Problem of On-Chip Automatic Tuning in
Continuous Time Integrated Filters", Proc. IEEE Int. Symp. Circuits and Systems, Vol 1,
pp106-109,1989.

[5.45] GOPINATHAN V., TSIVIDIS Y., TAN K -S. and HESTER RK. : "Design
Considerations for Iiigh-Frequency Continuous-Time Filters and Implementation of an
Antialiasing Filter for Digital Video", IEEE J. Solid State Circuits 25(6), pp1368-1378, Dec
1990

[5.46] KHORRAMABADI IL and GRAY P. R.: "High-Frequency CMOS Continuous-Time
Filters", IEEE Solid State Circuits 19(9), pp939-948, Dec. 1984

[5.47] CHIOU C -F. and SCHAUMANN R. : "Design and Performance of a Fully Integrated
Bipolar 10.7-MHz Analog Bandpass Filter", IEEE Trans. Circuits and Systems 33(2), pp116-
124, Feb. 1986

[5A8] VANPETEGHEM P. M. and SONG R.: "Tuning Strategies in High Frequency
Integrated Continuous-Time Filters", IEEE Trans. Circuits and Systems 36(1), pp136-139, Jan.
1989

[5.49] CURTIS K. M., CRAVEN M. P. and HAYES-GILL BK : "A Novel Neural Network
Architecture VLSI Implementation", 1TG/fEE 1st Ins. Workshop on Microelectronics for
Neural Networks, Dortmund, June 1990, pp120-128.

[5.50] CURTIS LM., CRAVEN M. P., HAYES-GILL BR I. M. M: "An Optimised VLSI
Implementation for Analogue Neural Communicaoions", TTG/IEEE 2nd Int. Workshop on
Microelectronics for Neutal Networics, Munich, June 1990, pp273-279.

[5.51] CRAVEN M. P., CURTIS K. M., HAYES-GILL B. R.: "Frequency Division Multiplexing
in an Analogue Neural Network", IEE Elec. Leu. 27(11), May 1991.

[5.52] LINARES-BARRANCO B., Phd Thesis : "Design of High Frequency Transconductance
Mode CMOS Voltage Controlled Oscillators", University of Seville, Spain, May 1990.

170

APPENDIX

APPENDIX

Publications List

The following papers were published jointly by the author of this thesis during
the course of the research program.

[1] CRAVEN M. P., CURTIS K. M. and HAYES-GILL B. R.: "Frequency Division
Multiplexing in Analogue Neural Network", IEE Electronics Letters, 27(11), May 1991.

[2] CRAVEN M. P., HAYES-GILL B. R. and CURTIS K. M.: "Two Quadrant Analogue
Squarer Circuit based on MOS Square-Law Characteristic", IEE Electronics Letters, 27(25),
December 1991.

[3] CRAVEN M. P., HAYES-GILL B. R. and CURTIS K. M.: "A Full Custom Analogue IC
using the Eurochip design route -A start-up experience with the Mietec 2.4p process", Proc.
3rd Eurochip Workshop on VLSI design training, Grenoble France, Sept 30- Oct 2 1992,
pp136-141.

[4] CURTIS K. M., CRAVEN M. P. and HAYES-GILL B. R : "A Novel Neural Network
Architecture VLSI Implementation", Proc. 1st International Workshop on
Microelectronics for Neural Networks, Dortmund, June 1990.

[5] CURTIS K. M., CRAVEN M. P. and HAYES-GILL B. R. : "An Optimised VLSI
Implementation for Analogue Neural Communications", Proc. IEEEE/ITO 2nd International
Workshop on Microelectronics for Neural Networks, Munich, August 1991.

[6] BURNISTON J., CURTIS K. M. and CRAVEN M. P. "A Hybrid Rule Based/Rule
Following Parallel Processing Architecture", Proc. International Conference and Exhibition on
Parallel Computing and Transputer Applications 1992, Barcelona Spain, 21-24 September
1992, Part 1, pp729-735.

171

