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ABSTRACT 

ABSTRACT 

As advances have been made in semiconductor processing technology, the 

number of transistors on a chip has increased out of step with the number of 

input/output pins, which has introduced a communications 'bottle-neck' in the 

design of computer architectures. This is a major issue in the hardware design 

of parallel structures implemented in either digital or analogue VLSI, and is 

particularly relevant to the design of neural networks which need to be highly 

interconnected. 

This work reviews hardware implementations of neural networks, with an 

emphasis on analogue implementations, and proposes a new method for 

overcoming connectivity constraints, by the use of Frequency Division 

Multiplexing (FDM) for the inter-chip communications. In this FDM scheme, 

multiple analogue signals are transmitted between chips on a single wire by 

modulating them at different frequencies. 

The main theoretical work examines the number of signals which can be 

packed into an FDM channel, depending on the quality factors of the filters 

used for the demultiplexing, and a fractional overlap parameter which was 

defined to take into account the inevitable overlapping of filter frequency 

responses. It is seen that by increasing the amount of permissible overlap, it 

is possible to communicate a larger number of signals in a given bandwidth. 

Alternatively, the quality factors of the filters can be reduced, which is 

advantageous for hardware implementation. Therefore, it was found necessary 

to determine the amount of overlap which might be permissible in a neural 

network implementation utilising FDM communications. 
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ABSTRACT 

A software simulator is described, which was designed to test the effects of 

overlap on Multilayer Perceptron neural networks. Results are presented for 

networks trained with the backpropagation algorithm, and with the alternative 

weight perturbation algorithm These were carried out using both floating point 

and quantised weights to examine the combined effects of overlap and weight 

quantisation. It is shown using examples of classification problems, that the 

neural network learning is indeed highly tolerent to overlap, such that the 

effect on performance (i. e. on convergence or generalisation) is negligible for 

fractional overlaps of up to 30%, and some tolerence is achieved for higher 

overlaps, before failure eventually occurs. The results of the simulations are 

followed up by a closer examination of the mechanism of network failure. 

The last section of the thesis investigates the VLSI implementation of the 

FDM scheme, and proposes the use of the operational transconductance 

amplifier (OTA) as a building block for implementation of the FDM circuitry 

in analogue VLSL 

A full custom VLSI design of an OTA is presented, which was designed and 
fabricated through Eurochip, using HSPICE/Mentor Graphics CAD tools and 

the Mietec 2.4p CMOS process. A VLSI architecture for inter-chip FDM is 

also proposed, using adaptive tuning of the OTA-C filters and oscillators. 

This forms the basis for a program of further work towards the VLSI 

realisation of inter-chip FDM, which is outlined in the conclusions chapter. 
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CHAPTER 1 IlVTRODUCTION 

CHAPTER 1- INTRODUCTION 

This introductory chapter begins by explaining the problem of connectivity 

constraints in the implementation of parallel computer architectures, 

particularly with respect to neural network hardware. The next section goes on 

to put forward the aims and objectives of this thesis, to be espoused in the 

following chapters. The structure of the thesis is then described and finally, the 

novel ideas presented are summarised. 

1.1 Connectivity Issues in VLSI and Neural Networks 

Advances made in semiconductor processing technology have reduced the 

minimum feature size and increased the sizes of chip possible in recent years, 

making possible the design of VLSI circuits with several millions of 

transistors. Studies have shown that this figure is likely to increase by an order 

of magnitude up to the turn of the centurytu]. However, it is also the case that 

packaging technology has not kept pace with process improvements. This has 

had the effect of reducing the number of input/output pins on a chip relative 

to the transistor count, thus introducing an I/O bottleneck in VLSI design. 

The effect is particularly noticable in parallel (concurrent) processing 

architectures, due to the large amount of data movement required between 

processors, and between processors and memory. Construction of massively 
parallel architectures requires the consideration of connectivities at different 

levels; the chip level, board level, and system (or 'backplane') level. 

Two paradigms have emerged for concurrent processing. The parallel 
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CHAPTER 1 WTRODUCTION 

supercomputer paradigm has tended towards the use of a smaller number of 

powerful state-of-the-art digital processors, and complex signal routing 

strategies. The artificial neural network paradigm tends towards the use of 

larger numbers of simpler processors, which may be digital or analogue and 

which are highly connected. 

In supercomputing and for digital computing in general, the emphasis is on 

methods for achieving the highest computation speeds for ever increasing chip 

size and complexity"'-Z2. Communicating signals off and between chips is seen 

as the main obstacle to increasing overall system speed. The I/O bottleneck 

situation has ensured that intense research will continue into packaging 

technology over the next decade1l'-51, for both inter-chip and inter-board 

connections. The past 10 years have seen a rapid migration from Dual Inline 

Packages (DIP) to ceramic Pin Grid Arrays (PGA), Plastic Lead Chip Carriers 

(PLCC) and Plastic Quad Flat Packs (PQFP), all developed to increase the 

number of available external I/O pads. Surface Mount Technology (SMT) has 

been used to achieve higher board level packing of chips. More recently, 

Multichip Modules (MCM) using several chips on a single substrate have 

enabled the production of packages with even more I/Os. Flip-chip-bonding 

techniques are starting to find use for aligning chips on MCMs, and for 

interfacing silicon to optoelectronic devices. The former gives the potential for 

construction of three-dimensional (stacked) structures with vertical connections 
between chips, thus utilising the chip area for interconnect in addition to the 

perimeter. The latter will enable high bandwidth optical connections to be used 
between chips. Both methods counteract latency by shortening connection time 

delays between system elements. VLSI routing chips are also being used to 

provide programmable interconnect between chips and boards. Advances in 
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CHAPTER 1 INTRODUCTION 

some of these technologies are finding their place in lower-end products, and 

will continue to do so as the technologies mature and costs lower. 

In the artificial neural network case, it is hoped that massive parallelism can 

be used to overcome the limitations of processor simplicity, lower accuracy, 

and slower speeds which are the inevitable result of reducing the size and 

complexity of the individual processor, or of using analogue processing. The 

artificial neural network approach is inspired by the fact that the brain, which 

consists of millions of highly connected neuron cells, is capable of very 

sophisticated computation in spite of the slow processing speed of an 

individual cell. Since high connectivity is very desirable in neural network 

hardware, the number of achievable connections quickly becomes a serious 

issue at all levels of physical design. 

In the case of digital neural networks, the number of pins required for data 

transfer between each processor and its memory increases linearly with the 

number of processors, which can be a large increase for wide data paths. There 

is therefore a tradeoff between data path width and the number of processors 

per chip, necessitating processing of data over several clock cycles. 

In analogue implementations, each signal needs to use no more than one wire 

since analogue values are continuous (although the choice of a differential 

representation may increase this to two). However, because the use of compact 
analogue techniques allows the integration of more processors per chip, the 

number of external data paths required can still be very large, and the problem 
of connectivity remains. Neural networks have the potential to exploit massive 

parallelism and adaptive capabilities in order to overcome the limitations of 
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CHAPTER 1 INTRODUCTION 

analogue electronics, which is by its very nature of lower accuracy and more 

subject to the physical realities of integrated circuit processing than its digital 

counterpart. 

Whilst the aforementioned advances in packaging will also find their use in 

neural network VLSI implementations, any other method which can be used 

to reduce the number of physical connections required whilst maintaining 

adequate bandwidth is a subject for useful research. 

This thesis presents the results of an investigation into one such method, that 

of Frequency Division Multiplexing (FDM) of the inter-chip communications. 

The vehicle chosen for the method is an analogue neural network architecture. 

It will be argued that FDM is a solution to connectivity constraints in analogue 

neural networks, especially when the neural network learning is able to 

compensate for errors introduced by the use of a lower accuracy 

implementation. 

1.2 Aims and Objectives 

The aim of this thesis is to present the idea of FDM for neural network 

communications in a formal manner, and investigate the VLSI implementation 

of such a technique. 

This objective cannot be achieved out of context, and it is therefore necessary 
to bring together the ideas which surround the research. To this end, this thesis 

aims to review the current state of neural network hardware research, with an 
emphasis on state-of-the-art analogue implementations. It aims also to provide 

a review of analogue VLSI design techniques required before hardware 
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CHAPTER 1 INTRODUCTION 

implementations can be considered. 

The core of the thesis aims to construct a relevant theoretical basis for the 

FDM technique, and investigate these claims by software simulations, 

theoretical analysis, and some hardware implementations as far as allowed by 

limited time and budgets. 

The ultimate aim of such a project would be the VLSI implementation of a 

neural network architecture utilising FDM, fully integrated into a system 

environment with software interface. This is not a feasible prospect for a three 

year funded postgraduate project, and it has been necessary to limit the work 

to the communications part of the system. Thus, a further aim of this project 

is to provide the necessary groundwork and results for continuation after this 

thesis is written. For this reason, not only are the results from VLSI designs 

presented here, but also a description of the CAD route used, and the 

previously mentioned review of relevant analogue techniques. This reflects the 

need of the full-custom integrated circuit designer to understand not only the 

circuit theory for a design, but also the tools to be employed, and the features 

of the fabrication process itself. 

1.3 Structure of the Thesis 

The main flow of the following chapters is from review, to software 
simulation, and through to hardware implementation. The beginning of each 
chapter contains a summary of the subject matter to be covered, and a brief 

review of the background needed to fully understand it, in addition to that 
covered in the main review chapter. The following is a short description of the 

contents of the next five chapters. 

5 



CHAPTER 1 WTRODUCTION 

Chapter 2 contains an introduction to artificial neural networks. The majority 

of the chapter is focused on general issues, and the particulars of digital and 

analogue VLSI implementations, with emphasis on analogue. 

Chapter 3 presents the FDM technique. The chapter starts with a look at 

multiplexing and modulation techniques for communications in analogue neural 

networks, followed by development of the theoretical basis for inter-chip FDM. 

This chapter also presents a layered neural network system level architecture 

utilising FDM, and an implementation based comparison of FDM with Time 

Division Multiplexing (TDM) for the communication of analogue information. 

Chapter 4 is the software implementation chapter which begins with a more 

detailed account of the particular multilayer neural network model chosen for 

this work. The next part of the chapter describes the software development of 

a simulator for the network. Software analysis is aimed at testing the 

hypothesis put forward, that neural network learning algorithms are tolerant to 

crosstalk which occurs due to overlap of amplitude responses in the FDM 

channel. The final part of the chapter presents the results of these 

investigations. 

Chapter 5 is the VLSI chapter. The review section at the beginning looks at 

analogue design techniques required for the design of active filter circuits, and 

other circuits for implementing FDM communications between integrated 

circuits. This is followed by a section on operational transconductance 

amplifiers (OTAs), put forward here as the best building block for the VLSI 

designs. The design of a prototype OTA chip is then presented including 

theory, design route and results from fabrication. The final part of the chapter 
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CHAPTER 1 INTRODUCTION 

considers the adaptive tuning of the filters and oscillators in the FDM system. 

Chapter 6 concludes the thesis by bringing together the preceding chapters and 

examining the actual objectives achieved, and presents a plan for future 

developments of the technique and other related work. 

1.4 Novel Work 

A thesis of this sort is always the result of a mixture of work carried out by 

the author, and review of work done by others. Whilst the work of others is 

always credited and referenced throughout this thesis, the new ideas and results 

are best summarised as follows. 

Frequency Division Multiplexing is proposed and investigated for inter-chip 

conmmunications. It is intended that the technique may be seen as not 

necessarily restricted to neural networks, and will find applications in the VLSI 

realisation of other highly connected systems. 

In the process of this work, it was discovered that neural network learning is 

highly tolerant to the mixing of signals in the FDM channel, caused by 

overlapping of filter responses. A fractional overlap parameter is introduced 

to enable the analysis of this effect. It is shown that the adaptive nature of a 

neural network enables it to compensate for overlap errors. This has been 

shown to be the case for linear overlap error in a multilayer perceptron 

network trained to do pattern classification, using the backpropagation 

algorithm. 

A software simulator was designed to test the effects of overlap. Methods are 

7 



CHAPTER 1 INTRODUCTION 

presented in this thesis for optimisation of simulator operation for binary-coded 

inputs and outputs. The use of an output activation tolerance (defined as the 

difference between the desired binary output activation used for the training, 

and the analogue output activation which can be tolerated) is proposed as a 

performance metric and for deciding when training is complete. Whilst not 

particularly sophisticated, these techniques have been used to good advantage 

in the simulator design and contributed to a reduction in training time. 

An existing linearisation technique was used in the design of the OTA for 

which the results from fabrication are presented. However, the technique had 

not previously been reported in monolithic form and thus the implementation, 

if not the circuit design itself, can be presented as novel. 
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CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS 

CHAPTER 2- ARTIFICIAL NEURAL NETWORKS AND 

THEIR HARDWARE IMPLEMENTATIONS 

At the initiation of this project, there were few general texts on neural 

networks. Today there are many, so rather than repeat the details of this work, 

the following chapter presents only a brief overview of neural network 

philosophy and models, pointing the reader towards the relevant texts for more 

details. The majority of the chapter is concentrated in the area of Very Large 

Scale Integration (VLSI) hardware implementations, which is not so well 

catalogued in the literature. This description is more detailed for analogue 

VLSI, but digital VLSI and general issues are also covered in some depth. No 

attempt is made to cover optical implementations, although some references are 

made to their existence. 

2.1 Artificial Neural Network Models and Architectures 

Interest in neural networks began as a desire to understand processes in the 

biological brain and explain the workings of the senses and memory. Present 

day models for artificial neural networks are based on, or at least inspired by, 

this earlier work. The human brain is known to consist of -1010 neuronal cells, 

with around 103-105 connections to any one cell from others. Electrical pulses 

are communicated across synaptic clefts between neurons by means of 

chemical ion transport, with a strength depending on the ion concentrations. 
The higher level structure of the brain is a hierarchy of sub-networks of 

neurons specialised to particular tasks. The collective parallel action of this 

system is capable of performing computations which cannot be matched by the 

fastest of supercomputers, in spite of the fact that the processing speed of a 
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CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS 

biological neuron is only of the order of a millisecond compared to the sub- 

nanosecond speed of a typical transistor. According to the connectionist 

paradigm, as developed extensively by the Parallel Distributed Processing 

(PDP) group of Rumelhart and McClellandi''1, the nature of brain-like systems 
is contained in the massive parallelism of the networks, and both the 

information and processing is distributed throughout. Since the neuron time- 

constant is so large, many of the computations in the brain must take less than 

100 computational steps, unthinkable for any of the algorithms used in present 

day systems for sensory computation. Furthermore, the PDP group showed that 

connectionist solutions to simple problems can reveal insights into how larger 

collections of neurons might act. Connectionism is described as a micro-theory 
for psychology, complementing many existing macro-theories. 

In the understanding that it is the architecture of the brain which gives it its 

power, simplified models have been developed which hope to exploit the 

barest features of massive parallelism, both to help explain the operation of 
biological neural networks, and to enable the use of artificial neural networks 
in scientific and engineering applications. McCulloch and Pitti22J are credited 

with the earliest massively parallel neural network model for explaining 

computation in biological nets, published in 1943. In this model a neural 

network is a fixed structure consisting of neurons connected by inhibitory and 

excitatory synapses. Each neuron is an all-or-nothing process which outputs an 

excitatory signal only if the sum of the signals accumulated from other neurons 

exceeds a certain threshold. In addition, a neuron is switched off by any 
inhibitory signal. Timing in the network is described by a period of latent 

addition over which the summation of signals is performed, and a delay 

associated with each synapse. 

10 



CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS 

In 1949, Hebb17-31 proposed a theory for learning in neural networks whereby 

connections to a neuron are strengthened if that neuron is excited. The variable 

connection strengths are known as synaptic weights. The Hebbian Hypothesis 

asserts that the alteration of synaptic weights during learning is the main 

mechanism for information storage in biological neural networks. 

A generic artificial neuron structure is shown in Fig 2.1. The neuron function 

aggregates the weighted inputs according to some model. The synaptic weights 

are modified by the learning process. 
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The above ideas laid the foundations not only for further biological models, 
but also for networks designed to solve specific types of problem. These can 
be divided roughly into two categories, namely classification and association 
problems. 
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CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS 

Classification uses the features present in input data to cluster like patterns and 

distinguish unlike ones, thus partitioning the data into classes. Networks to 

accomplish this can be trained using input patterns in known classes. 

Alternatively, a network can be designed to perform its own clustering without 

the need for a teacher. 

Association is used either to reconstruct an input pattern from noisy or 

incomplete data called Auto-association, or to perform a retrieval from an input 

pattern to an associated output pattern called Hetero-association. Associative 

networks perform memory-like functions. 

Various models have been proposed to carry out the above tasks. All involve 

architectures of interconnected neurons, so a general model can be used for a 

low level description. Grossberg's neurodynamical model1244 is a good general 

model which may be specialised to obtain many of the network architectures 

and learning algorithms popular today, and is thus an important starting point 

for neural network theory. 

Grossberg's model is a set of linked differential equations describing the time 

evolution of both the neuron states and the synaptic weights. In one set of 

equations the change of each neuron state is expressed as a combination of its 

present state, external inputs, and inhibitory or excitatory stimuli from other 

neurons modified through the synaptic weights. At the same time, the weight 
change for each synapse is expressed as a combination of the present weight 
and the neuron state used as a learning stimulus. Since learning (or forgetting) 

occurs constantly, the rate of change of weights must be slower than the rate 
of change of neuron states in order for the network to perform any useful 

12 



CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS 

function. 

Neural network architectures can be divided usefully into categories. The main 

divisions are Feedforward or Recurrent (Feedback), and Supervised or 

Unsupervised (Self-Organising). 

Feedforward networks consist of layers of neurons in which the information 

flow from input to output of the network does not contain any feedback paths. 

At any particular time, an input pattern results in an output determined 

completely by the mapping function of the weights. The power of these 

networks is in the internal representations formed by the hierarchy of neuron 

layers. This type of network has the advantage of being unconditionally stable, 

and fast. Examples of feedforward networks are the Multilayer Perceptron 

(explained more fully in Chapter 4) or MadalineI79, and the 

Cognitron/Neocognitronr'6''3 networks. 

Recurrent networks contain feedback connections, and as such are more 

general dynamical systems with the possibility of being stable or unstable. On 

applying an input pattern to a stable network, it will settle into a non-varying 

state in a short time, or after a few iterations in a discrete time system. 

Recurrent networks are well suited to associative memory, optimisation, or 

retrieval type tasks, as exemplified by the Hopfield network 81. Information 

storage capacity is improved in comparison to feedforward networks. 

Supervised networks are trained by an external teacher, so that a trained 

supervised network gives specified responses to input stimuli. The weights are 

calculated from examples of correct input/output mappings, by minimising the 

13 
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error between the correct output and the output obtained by applying the input 

to the untrained network. In the original Hopfield network, weights are 

computed directly in order to minimise a global error function. In most other 

networks, the weights are calculated iteratively by changing the weights in 

small steps until the error is minimised. 

Unsupervised networks do not require a teacher to provide the desired outputs, 

and the weights are computed from example inputs only. In most examples 

competitive learning is used, so that the weight vectors of certain neurons only 

are modified. For each winning neuron (having the largest response to an 

input), the weight vector is changed to be more like the input vector i. e. the 

scalar product of the two vectors is increased. After training in this way, 

different groups of neurons will respond to different inputs, so that automatic 

clustering is achieved. Inhibitory stimuli can be used to ensure good 

differentiation between the outputs of the winning neuron and its competitors. 

These are most often implemented as lateral connections from one neuron to 

other neurons in the same layer, over a limited spatial radius. The Kohonen 

self-organising feature map is a good example using this local feedback 

between neurons 91. 

Both unsupervised and supervised networks as introduced above are less 

general than the Grossberg model, where learning is a continuous plastic 

process, adapting to new input data as need be. In most current neural network 

models, the neuron is trained first with training data, after which the weights 

are fixed and the network response is then stable. It is required that the 

training set be complex enough so that the network can generalise its response 

for any other input within the same statistical distribution. This is a reasonable 

14 
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assumption to make unless there is a large shift in the form of the distribution 

of input data after training, or the amount of available training data is limited. 

On the other hand, too much adaptability can prevent the network from 

learning long term regularities, forgetting old distributions as quickly as new 

ones are learnt. Grossberg himself has attempted to address this trade-off 

between stability and plasticity, in the development of the Adaptive Resonance 

Theory (ART) together with Carpenter"'° ". ART networks retain the ability 

to adapt to new data without upsetting that which is previously learnt, which 

may be seen as the state-of-the-art in neural networks architectures, if not the 

easiest to implement. 

Texts describing the above (and more) models and architectures in greater 

detail are to be found in the references 21 
. Some of these are important early 

books or papers on specific neural network models, some are collections of 

papers, and some are the more recent general text books covering a wider 

field. 

2.2 Hardware Implementations 

Most artificial neural network models have been implemented in software, but 

the size and complexity of many problems has quickly exceeded the power of 

conventional computer hardware. It is the goal of neural network engineers to 

transfer the progress made into new hardware systems. These are intended to 

accelerate future developments of algorithms and architectures, and to make 

possible the use of dedicated neural networks in industrial applications. 

The ideal logical model of a neural network is an arbitrarily large number of 

neuron units, and an even larger number of synapses, one for each inter-neuron 
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CHAPTER 2 ANN HARDWARE IMPLEMENTATIONS 

connection. Signals are communicated from any neuron to any other as 

required. For implementation purposes, this logical model must be mapped on 

to the physical technology. At present there are three main avenues of 

research, each with its own merits and associated problems, namely the digital 

VLSI, analogue VLSI and optical approaches. This section does not consider 

optical implementations which are altogether different from the VLSI 

approach. (However, a useful starting article can be found in the 

references12'61. ) 

The stated advantage of using a particular technology depends greatly on 

which part of the problem is being addressed. For this reason is is instructive 

to split the neural network system into parts, namely; interface, synapses, 

neurons, interconnect and learning. 

The interface is between the physical neural network and its environment. 

Inside the network, the synapses associated with a neuron modify signals from 

other neurons usually by multiplying each signal by a weight value. The 

synapse is also responsible for local storage of the weight value i. e. memory. 

The neuron body performs the processing of the modified signals typically by 

performing summing and thresholding operations. Interconnect is the means 

by which the signals are transferred around the network, and learning is the 

process of adapting the synaptic weights. The following sub-sections consider 

these parts in detail for electronic implementations. 

2.2.1 Interface 

In all envisaged implementations in the development phase, the neural network 

will form the heart of a system interfaced to a host computer. The host may 
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be necessary not only to provide a user interface for controlling the network, 

but also for long term storage of network values and parameters. The 

communications overhead between host and dedicated hardware should be 

considered in the overall performance of any system. 

2.2.2 Synapses and Neurons 

Because of their large number, small dimension synapses and neurons are 

required if a neural network model is to be mapped directly into hardware. 

Synapses in particular must be small because they are by far the most 

numerous elements. In this case analogue VLSI technology is most suited to 

the task, and is considered first in this sub-section. 

In an early implementation, Graf and Jackell"I implemented a neural network 

using resistors to perform the multiplication of neuron output voltages by 

means of Ohm's Law. The resulting currents were summed into an amplifier 

on a single wire making use of Kirchhoff's Current Law, thus performing part 

of the neuron function. Similar current-mode processing has been adopted in 

most analogue implementations to date. However, the use of fixed resistors in 

this particular example means that the weights could not be made 

electronically programmable. Switching of different resistor values could be 

used to introduce a crude programmability, but unused resistors in every 

synapse would consume a large amount of chip area. 

In MOS technology, direct implementation of resistors is in any case 

undesirable11, and multiplication can be achieved instead by the use of 
transistors operating in the linear (triode) region[129], by analogue 
multipliersUL3°', and by variable gain transconductance amplifierss2311. More 
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importantly, these methods also provide the means for implementing and 

storing electronically programmable weights. One way of achieving local 

weight storage in conventional technologies is by digital-to-analogue 

conversion from local digital memory using a multiplying digital-to-analogue 

converter (mDAC) for each synapse or group of synapses. If output from the 

synapse is in the form of a current, it may be switched on to one of two wires 

(excitatory or inhibitory) depending on the value of a sign bit, and summed 

with currents from other synapses. The total resultant current may then be 

computed by subtracting the currents on the two wires with a current mirror. 

This method is practical only for very low resolution weights because of the 

chip area required for the mDAC and local memory. Device matching may 

also be a problem for higher resolutions, especially for the weighted-resistor 

type DAC which requires a doubling in device area per bit resolution. Ladder- 

resistor type DACs do not suffer so much from this problem2322. 

Alternatively, the weight may be stored as charge on a capacitorr1331, but this 

must be continually refreshed because of leakage. Refresh from external digital 

memory may be done using a single multiplexed DAC or multiple DACs, in 

which case the number of synapses is limited by the total refresh interval. 

Local refresh is also possible. Vittoz 1 and Castellod23-q both describe local 

analogue refresh schemes whereby weights are updated in parallel to the 

nearest quantisation level of a global staircase voltage. In this case the step 

size must be larger than the maximum voltage drop due to charge leakage, and 

care must be taken to avoid charge injection due to switching. The advantage 
of the method is in the use of a single "clock-like" signal for refreshing all the 
synapses, removing the need for complex addressing. 
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Differential charge storage on pairs of capacitors helps to reduce the effects of 

leakage, and also enables the storage of signed analogue weights depending on 

which of the two capacitors has the larger charge. Here, charge injection has 

been used beneficially to move charge between capacitor pairs whilst keeping 

the total charge constantt2*. 

The neuron itself is responsible for aggregating the inputs and thresholding the 

output. Sigmoidal thresholding or hard-limiting is readily achieved due to 

amplifier saturation for large inputs, but the load must be designed to sink or 

source the maximum possible sum of currents from the synapses. It is therefore 

necessary to increase the load if more synapses are added. To overcome this 

problem, it has been suggested that the neuron function be distributed to each 

synapse or group of synapses, so that the load grows in proportion to the 

number of synapses requiredP-. 

The above techniques have been used in continuous time analogue systems. 

Where neuron information is represented as pulses, additional methods can be 

used to perform the multiplication and summing operations'2'. Multiplication 

can be carried out by modifying the rate, width and/or amplitude of the pulses, 
depending on the coding technique used. Summation can be achieved by time 

integration, or by the logical-ORing of pulse trains. 

Less conventional techniques also have been found to be suitable for storing 
analogue weights, especially for reducing leakage and refresh requirements. 
One method employs Charge-Coupled-Device (CCD) techniques for storage 

[2.391 and computation. 
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EEPROM type technology using MOS floating gatesl24° is also showing 

promise for non-volatile storage. The gate threshold voltage is controlled by 

the amount of charge in the floating gate. Refresh is unnecessary which is the 

main advantage of the technique. Disadvantages are a charging time of the 

order of lOms, and a limited number of read/write cycles before device failure, 

which make it unsuitable for continuous adaption. In addition, external 

voltages of around 20V are required for programming. More recently, 

amorphous silicon has been investigated for use in neural network 

applicationsi"411. The devices have a variable resistance, programmable by 

voltage pulses in the range 1-5V. 

Digital VLSI techniques are also suited to implementations of neurons and 

synapsei"421. The main advantage of the digital approach is that it enables 

short term solutions to the neural network hardware problem. Digital VLSI is 

well established so that reliable design and testing may be carried out using 

CAD tools, and results are readily reproducable so that performance is more 

easily evaluated. Chips may be programmed to accommodate different network 

architectures and learning algorithms. This flexibility is important for 

developing and evaluating new learning algorithms, and provides a clear route 

from existing neural networks implemented in software. 

Unlike analogue implementations however, fully digital ones cannot attempt 
to map a neural network directly to silicon. Due to the chip area consumed by 

a digital multiplier, it is simply not possible to attempt to implement one 

multiplier per synapse as in the analogue case. In order to implement a large 

network, it is also necessary to map it to a smaller number of physical 
neurons. The building block for dedicated digital implementations thus favours 
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a special purpose processing unit (containing, for example, a single synapse 

and neuron) of which several may be integrated on a single chip or wafer. 

Processors can then be multiplexed to implement a network. 

Some issues facing the digital neural network designer are similar to those 

facing the designer of any parallel system. For example, the choices between 

Single-Instruction-Multiple-Data stream (SIMD) or Multiple-Instruction- 

Multiple-Data stream (MIMT)) parallelism, distributed or shared memory, and 

processor granularity are all relevant"". 

S]MD schemes exploit well the regularity of neural network models, and 

require only one controller for the processor array. In the ideal SIMD array, 

each neuron would perform the same instruction at the same time. In practice, 

some algorithms require different sets of neurons (e. g. in different layers) to 

perform different functions, and so time-slicing of instructions is necessary. 

Systolic array architectures have been proposed which allow an efficient use 

of available processors for calculating sums of products1«, 11. Other SIND 

machines use broadcast communication similar to that used in the Ring Array 

Processor"'. 

Alternatively, M MD schemes may be used. Most examples in the literature 

have utilised existing microprocessor chips. This approach tends to be 

expensive and limits implementation to the board level, but vastly reduces 
development time compared to dedicated processor design. Digital signal 

processors such as those in the Texas Instruments TMS320 or Motorola 

DSP56000 families are an obvious choice for sums-of-products 

calculationsc471. Inmos Transputers have also been used"'"', although the 
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hardware architecture of such a system is limited by the small number of direct 

interconnects possible. In general, MIMD schemes are not optimal for neural 

networks because of the chip area wasted in having one controller per 

processor. In addition, MIMD control is complicated by the need to ensure 

process sychronisation and to avoid deadlock in computation. As a result, there 

are few reported dedicated designs of M tvID processors for neural networks. 

Different methods of data representation may obviate the need for multipliers 

in digital implementions. If weights and inputs are stored as binary logarithms, 

multiplication and division can be achieved by addition and subtraction12 493. 

Multiplication by table look-up has also been considered °. Emulating non- 

linear thresholds is not straightforward, and a few researchers have developed 

digital methods for efficient computation of sigmoids"sl"s31. Otherwise, a look- 

up table must be used. Other issues for digital implementation include how to 

best map a logical network on to the limited number of physical units 1, and 

how to achieve global clocking to a large number of processors. Self-timing 

has been investigated as an alternative to synchronous design, especially for 

use in wafer-scale arrayst25 ]. 

2.2.3 Interconnect 

Both analogue and digital VLSI implementations suffer from a 

communications bottle-neck due to the planar nature of the technology, which 
is not good for parallel computing in general, nor neural networks in particular. 
This is the case both at the chip level and the system level. 

In a typical neural network of N neurons the interconnect requirement is of 
order N2 wires if full interconnection is required, an area increase of order N3 
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with N. For increasing N, the chip (or board) area will be consumed by 

interconnect unless a third dimension is found to accommodate it. In analogue 

implementations, certain signals may be communicated on a single wire if the 

wire is allowed to perform the summing of the signals. This is the case where 

currents are used, and where pulses are wire-Ored. Otherwise, some form of 

explicit multiplexing must be usedt2'63. 

Time division multiplexing (TDM) is the standard method for increasing the 

number of logical commmunication channels in VLSI systems, without the use 

of more interconnect wires. TDM is suited to digital communications since the 

data is already represented as pulses. The main problem with TDM is the 

inherent loss of parallelism which may be unacceptable in systems where there 

is one processor for each neuron, as in analogue implementations"". In fully 

digital implementations however, where it is also necessary to multiplex 

processors, this may not represent such a large overhead increase. 

Frequency division multiplexing (QDM) in VLS#2,8) has not been considered 

by any group other than the author's. This is an alternative technique which 

may provide a solution to the communications bottleneck in analogue 

implementations without a serious loss of parallelism. 

In addition to communication of activity between neurons, channels are needed 
for communicating, updating and refreshing weights values. Clearly, in a 
typical modular neural network system, many of the signals must be 

communicated between modules and across the host/network interface. In 

VLSI implementations, the number of I/O pads on a chip will therefore be a 
limiting factor. There is no point having a neural network which can operate 
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internally at a high speed, if the inputs and results cannot be communicated off 

the system in a comparable time. In digital VLSI, memory may be placed off- 

chip to maximise the chip area for processors, replacing interprocessor I/O 

with memory I/O. Analogue VLSI may suit single chip solutions where inter- 

chip processor I/O is eliminated. However, in both cases there will be a need 

to look at inter-chip I/O very carefully if expandable systems are to be 

produced without loss in performance. 

2.2.4 Learning 

The learning algorithms used for modifying weights values using inputs and 

training data are as an important part of the network system as the architecture 

itself. Implementation of learning in VLSI systems takes three forms; off-chip, 

'chip-in-the-loop' and on-chip learning. 

In off-chip learning, weights values are calculated externally by software and 

are then downloaded to the neural network which is then used only for recall. 
This is the easiest but least favoured method, since braining times can be long. 

It may be suitable for networks which do not need to adapt to new data once 

trained, but it is not very well suited to analogue implementations where it 

may be difficult to develop an accurate software model. Off-chip learning does 

have the advantage in that it is easy to change the learning algorithm simply 

by modification of software. It also allows the use of floating point arithmetic 
for the algorithms which may not be feasible on a neural network chip. 

'Chip-in-the-loop' training, as used by Intel for fine-tuning their commercial 
ETANN chipr', may also be considered as an off-chip method since the 

training algorithm is still run in software. However, in this case the neural 
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network is used in the training loop which removes the need for a software 

model of the network itself, and compensates for device variability. The main 

drawback of this method is the communications overhead in continually 

reading and writing data across the network/host interface. 

On-chip learning must be seen as the most desirable method, since it may open 

the way to stand-alone neural network chips. The main advantage of running 

the learning algorithm in hardware is the gain in speed. There is however, a 

trade-off in flexibility, especially in analogue implementations where 

'programming' of the learning algorithm is difficult. Other obstacles to the 

development of on-chip learning are the extra chip area used, and the fact that 

many of the current or popular algorithms (e. g. backpropagation) require global 

data. One of the oldest algorithms, Hebbian Learning (which is local), was 

implemented by Card and Moorer'6°°. On-chip learning feasability will benefit 

greatly from the development of new local algorithms so that synapse 

modification may be carried independently for individual neurons, and the need 

for additional wiring for learning is removed. At the time of writing, on-chip 

learning is emerging in both digital and analogue implementations2 61,21 
. 

2.2.5 General Issues and Trade-offs for VLSI Imvlementations 

In hardware implementations which attempt to maximise the number of neuron 

processors and synapses on chip, trade-offs between chip area and performance 

are inevitable. The main area trade-offs are with resolution and dynamic range. 

In digital implementions using multiply-accumulate neuron processors, the chip 

area required per processor depends on the word lengths used in the system. 

For maximum resolution, fixed point rather than floating point solutions are to 
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be preferred. The accumulator width limits the dynamic range, and hence the 

maximum number of inputs, of a neuron. Weights values tend to be 

problematic since the values change during training, and vary in range 

depending on the application. Since the maximum absolute weight value tends 

to increase during learning, some researchers have opted for a variable-fixed- 

point method, which involves moving the binary point to increase range at the 

expense of resolution during the training process. Scaling down of all weights 

as soon as any weight overflows is another possibility. 

Unfortunately, performance of some neural learning algorithms, notably 

backpropagation, have been shown to become severely degraded as bit 

resolution of weights is reduced, because quantisation limits the minimum step 

size for the weight updates. Recently, probabalistic rounding or 'dithering' 

methods using pseudo-random noise have been used to add extra bit resolution 

to weight increments without increasing the word length in the multiplies 63 41. 

Other parts of the system do not appear to be affected by lower resolutions, 

due to the massive parallelism which means errors in one synapse or neuron 

can be compensated by others. The fact that it is the algorithm rather than the 

network which requires the higher resolution is an important concept. 

Analogue implementations are similarly affected. Only in a few 

implementations are values truly continuous. Quantisation of inputs and 

weights occurs during D/A conversion and refresh26-9. Resolution is also 

technology limited to about eight bits, after which device variations such as 

mismatch and offsets tend to dominate, or synapse area becomes too large, as 

mentioned earlier with reference to mDAC design. As another example, it has 

been estimated that 30-bit resolution would be possible in EEPROM memory 
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if single electron charge increments could be used, but in practice the neuron 

cicuitry is only capable of controlling or registering a 0.4% change' °'. 

Fortunately, device variability is also compensated for by the parallelism and 

the training process. For instance, offsets can be tuned away by the use of an 

extra synapse trained specially for that purposer'663. In analogy with the use of 

pseudo-random noise in digital circuits, analogue noise has been found to 

improve convergence in network training even with high levels of 

quantisation26. Use of noise is in fact an explicit training mechanism in some 

physically inspired algorithms such as simulated annealing (used in the 

Boltzmann MachineI2"), which uses a lowering of a temperature parameter to 

reduce the 'thermal' noise as the network converges. 

Dynamic range could be a problem, considering the move to lower power 

supply voltages by many IC manufacturers, but the use of current-mode 

processing helps to alleviate this somewhat. Gain normalisation has been used 

to keep the maximum neuron output voltage constant automatically as more 

synapses are addedi"'. Alternatively, the sigmoid gain may be set explicitly 

depending on the fan-in 2. Modified algorithms which exert dynamic control 

over the size of the weight increment also help to optimise learning in limited 

precision implementationsr'610. 

2.2.6 State-of-the-Art Analogue Neural Network Systems 

The emphasis of this thesis is on analogue neural networks. Much progress has 

been made in the field since the start of this project, and it is useful to 

compare three of the most developed implementations. These are the 

reconfigurable distributed neuron-synapse chip developed by AT&T' , the 

multiple chip modular system of the University of Pennsylvania/Corticon 
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Inc? "3 and the Electrically Trainable Artificial Neural Network (ETANN) chip 

of Intel Corporation'a401. All fully working experimental systems were reported 

early in 1991. 

The AT&T chip developed by Graf et al uses two modules which are repeated 

on a single chip, expandable as a multichip system. The first module is a 

square 4x4 distributed neuron-synapse array consisting of four fully 

interconnected neurons each with four synapses. Each neuron-synapse is a 

differential multiplying voltage-to-current (V-I) converter, with capacitive 

weight storage. The combined loads of connected neuron-synapses performs 

the sigmoid function. The second module is a 4x4 switch matrix designed to 

sit between the faces of the first, which allows the input or output of any 

neuron-synapse in a module adjacent to the switch matrix to be connected to 

another. The configuration of the switches is set using a digital shift register. 

The prototype chip was fabricated in 0.9}nn CMOS technology comprising 64 

neuron-synapse modules (equivalent to 1024 synapses and 256 neurons) and 

144 switch modules. The chip was embedded in a microcomputer system 

which performs the learning algorithm and long term data storage. 

Configuration data is downloaded from an off-chip EPROM. 8-bit Input data 

and 7-bit+sign weights data is stored in off-chip digital memory and 

transferred to the chip as analogue voltages using eight off-chip D/A 

converters for the inputs and eight for the weights. Eight off-chip A/D 

converters are also used to convert the network outputs back to 8-bit digital 

values for use by the microcomputer. Training is accomplished using a chip-in- 

the-loop weight perturbation method. 

This chip has the advantage of being dynamically reconfigurable, by virtue of 
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its distributed structure and its programmable connections. The connectivity of 

any neuron is, however, limited to those in adjacent modules. Results from 

experiments with this chip have been reported as successful. Although not yet 

demonstrated, the authors propose larger network implementations using 

multiple chips or wafer scale integration. 

In constrast, the University of Pennsylvania chip developed by Mueller et al 

for acoustical pattern recognition is a board level design using combinations 

of four IC modules. These consist of an 8 neuron block, an 8x16 synapse array 

with 16 inputs, a 16x16 switch array, and a time constant module. The synapse 

multiplies an analogue input by a digital value stored in a 6-bit logarithmic 

form, to give a current output. A selection of signed weights between 1/400 

and 10 are possible representing a range of 12-bits+sign. The neuron module 

consists of 8 neurons performing the current summing and thresholding, and 

an analogue multiplexer which allows the sampling of any neuron output 

without interfering with network operation. The switch module allows 

connection between any of the 16 horizontal wires and any of the 16 vertical 

ones, and lines can be either routed though the switch modules or terminated 

within the module if required. The switches are set digitally in order to 

configure the connectivity of the network. The time constant module consists 

of passive capacitors and variable active resistances implemented using 

transconductance amplifiers. The neural network is constructed around the 

neuron block, with up to two adjacent synapse arrays allowing a maximum of 

32 inputs to a neuron. Neuron outputs are routed to other synapse arrays via 

the switch modules, with optional time constant modules in between used to 

introduce variable delays between neuron inputs and outputs. Two editors may 

be used to set up the network, a physical editor to allow the setting of 
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parameters on a particular chip and a logical editor to set chip parameters 

according to a symbolic description of the network. The network board is 

controlled by a Programmable Array Logic (PAL) based controller, supervised 

by a PC microcomputer. Chip-in-the-loop learning is performed using outputs 

sampled from the network. A prototype system implementing 72 neurons has 

been reported, consisting of 99 chips fabricated using a 2µm CMOS process, 

assembled on three boards. The network has been tested on a variety of tasks 

including the intended application in speech analysis. The system is being 

developed in two ways. Firstly, it is intended to redesign the system for a 

larger number of inputs per neuron so that a larger networks of over 1000 

neurons will be possible. Secondly, software is being developed to allow 

network compilation from a logical description, including automatic placing 

and routing of network modules. 

This idea has an advantage in its inherent modularity at the chip level, which 

gives it flexibility over a single chip design, and there is room for 

improvements with a scaling down of technology. On the other hand, the 

overall network architecture must be decided before the modules are placed 

and routed. Interconnectivity is better than the AT&T chip, but the weights 

resolution is somewhat limited by the use of only 6 bits. 

The Intel Electronically Trainable Artificial Neural Network (ETANN) chip is 

a single chip solution as is the AT&T one, expandable to a multichip system. 
The design consists of 64 neurons which have 64 direct analogue inputs and 
64 additional feedback inputs. Two synapse arrays are used, with a synapse for 

each of the two types of input to every neuron, and 16 internal bias weights 
in each array giving a total of 10240 synapses. All the synapses are analogue 
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floating gate EEPROM cells with 6-bit typical resolution performing four- 

quadrant analogue multiplication of input voltages to give output currents. The 

64 neurons are implemented as 64 current summers and 64 sigmoids. Weights 

are programmed serially by address using multiplexors. The chip has 64 

analogue outputs. Training is accomplished by off-chip learning, and chip-in- 

the-loop learning for fine tuning based on Widrow's Madaline III algorithm. 

Off-chip training using an accurate software model is carried out initially 

because of the long training time for EEPROM cells and their degradation with 

repeated write cycles, and because weights may only be trained serially. Fine 

tuning is necessary to optimise the weights for a particular chip, since no chip 

will be identical because of process variability. The chip was fabricated using 

a fpm CMOS process in a 208 pin package. The prototype system is based on 

an eight socket board interfaced to a PC. The chip may be used in two modes, 

depending on whether the feedback array is to be used in a recurrent network 

such as the Hopfield net, or as a second synapse layer in a multilayer 

feedforward net achieved by multiplexing the neuron layer. 

The Intel chip has the advantage of maximum parallelism for the 64 neurons 

available, making it fast in the the recall phase. Most of the I/O pins are used 

for direct inputs and outputs of the 64 neurons. The full connectivity is not 

scalable to the multiple chip system but direct connections between chips 

avoids an I/O bottleneck. The chip is not at all optimised for learning. 

Comparing the three implementations, some common strands are noticed. 
Firstly, all synapses are implemented as V-I converters, so summing is 

performed on a single wire for a row of synapses associated with a neuron. 
The neuron acts as a load to convert back to the voltage domain. All use chip- 
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in-the-loop learning where the algorithm is performed off-chip, but outputs 

from the physical chip are used in the calculations. This is required for 

fabrication process invariance. All use analogue input and outputs to the 

neurons, necessary to conserve pins. All suffer from limited connectivity to 

some extent. All three systems require a digital host computer to control 

learning and set network parameters, requiring external D/A and A/D 

converters. The implementations are contrasted by their use of different 

methods for weight storage, and their different approaches to modularity in 

constructing a network from the chips. 

In the next chapter, the problem of inter-chip communication is examined 

further for analogue implementations, and the use of Frequency Division 

Multiplexing is proposed as a technique for overcoming this. 
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CHAPTER 3- FREQUENCY DIVISION MULTIPLEXING 

FOR ANALOGUE COMMUNICATIONS 

In this chapter, a unique Frequency Division Multiplexing (FDM) scheme is 

presented for communications in analogue neural networks. The concept and 

its features are explained, in the context of electronic implementations where 

a reduction in the number of chip pad I/Os is required. The choice of method 

is justified in the context of other possible forms of modulation and 

multiplexing schemes. A detailed theoretical analysis of the FDM method and 

its comparison with Time Division Multiplexing (TDM) is made. The use of 

overlap of FDM channels is proposed as a method for better utilising the 

available bandwidth without causing degradation in neural network 

performance, a hypothesis which this thesis aims to prove in Chapter 4. 

3.1 Communications, Modulation and Multiplexing 

Before continuing specifically with communications in neural networks, it is 

helpful to consider the general criterion for deciding on a communications 

scheme. 

In standard information theoretic terms, a communications scheme consists of 

an information source, a transmitter, channel, receiver and destination. Into the 

channel are injected noise and distortion. The message is the original form of 

the information which is converted by the transmitter into a signal of a form 

suited to the channel chosen. After passing through the channel, the distorted 

and noisy signal is decoded by the receiver into the destination message. 
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With this framework in mind, it is possible to decide on a communications 

scheme suited to the type of information to be transferred. 

In a telecommunications application, the information will consist either of 

digital or analogue waveforms which are interfaced to a physical channel. The 

transmitter typically modulates the waveform, and the receiver carries out the 

detection and demodulation. Multiplexing may be used to make the best use 

of an available physical channel by allowing many different messages to use 

it. 

The suitability of a modulation scheme is determined by the form of the signal 

and tradeoffs between power requirements, signal-to-noise power ratio (SNR), 

and bandwidth availability, which will be different depending on the 

implementation and the physical environment. In addition to these general 

criterion, the cost and complexity of the interface and channel, and speed of 

transmission must also be considered for a specific application. 

Traditionally, communications involved direct modulation of analogue 

quantities such as speech and visual information. Analogue channels are also 

often used for purely digital information e. g. in modem telephone 

communications. Conversely, with the present availability of cheap and fast 

computation, analogue signals are being represented and processed more often 

as digital quantities e. g. in digital tape, compact disc, and NICAM stereo, and 
in future commercialisation of digital TV and digital video. Telephone 

systems have moved away from analogue towards digital representations, since 

the expense of more complicated modulation schemes is less than that of 

analogue amplifiers and repeaters which are replaced by simpler and more 
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reliable digital ones. 

This trend has much to do with the predominance of digital technology for 

integrated circuits and the use of optical fibres. The digital methods of 

communications chosen complement digital processing to good advantage. 

Now, with a re-emergence of analogue computation (especially in neural 

networks) and advances in analogue VLSI techniques, analogue signal 

communications deserves another look. 

3.2 Multiplexing and Modulation Schemes for Neural Networks 

To a great extent, the best multiplexing and modulation schemes to choose, 

will depend on each other and on the form of the signal. 

In analogue neural networks, the neural processing is analogue. At an instant, 

this analogue quantity is most simply expressed as the DC value of a charge, 

voltage or current. It may also be expressed as the amplitude, frequency, or 

phase of a sinusoidal waveform, where conversion to these are by the 

respective AM, FM and PM modulation schemes. Alternatively it can be 

expressed as the amplitude, duration, position, width, or rate, of a pulsed 

waveform, by respective modulation schemes PAM, PDM, PPM, PWM and 

PRM. Combinations of these schemes are also possible. The final option 

involves conversion to pure digital form by Pulse Code Modulation (PCM), or 

Delta Modulation (DM). 

Pulse-stream arithmetic for neural networks has been pioneered by A. F. 

Murray et al of Edinburgh Universityt3.121, and is being developed by many 

others. The paradigm is described as bringing together the simplicity of 

35 



CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS 

analogue processing and the robustness of digital communication. Three 

methods of modulation have subsequently been seriously considered for coding 

the neural state, using PAM, PRM and PWM. PAM has been rejected by the 

Edinburgh group for communication because of its potential succeptability to 

amplitude noise and distortion, although variable pulse height has been used 

for multiplication. PWM and PRM use only digital levels. PWM codes the 

analogue neural state as the width of a single pulse of fixed amplitude, PPM 

as the frequency of a series of pulses. 

More importantly, the pulse-stream work has attempted to address the real 

problem of inter-chip communications necessary for the construction of 

expandable networks with many neurons and synapses. Along with the pulsed 

form of the signals, Time Division Multiplexing (TDM) is a suitable form of 

multiplexing to be used for the inter-chip communications, in order to reduce 

the I/O count. A conventional synchronous TDM scheme has been proposed 

utilising a fixed time frame, split into slotted segments with each neural state 

occupying the same slot in each segmenF. 3]. A novel asynchronous TDM 

scheme has also been reported which converts the time difference between 

pulses in a PRM stream to a single pulse with a width equal to this interval13.41 

Handshaking between chips is then used to transfer the pulse for each neuron 

state in turn as soon as the previous pulse has been acknowledged, in a self- 

timed manner. The pulse is then integrated to recover an analogue voltage 

proportional to the width. The scheme also enables communication to several 

chips by requiring all receiving chips to acknowledge before new data is 

transmitted. 

There are in general, however, some drawbacks to the use of TDM in neural 
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networks. The first of these is the increase in transmission time with the 

number of channels, which is linear for synchronous TDM, and proportional 

to the average neuron activation in the case of asynchronous TDM. In order 

to maintain the same throughput per neuron, this increase in transmission time 

requires an increase in bandwidth. This is of course a problem for any 

multiplexing scheme, and it can easily be proved through application of the 

sampling theorem that the theoretical minimum bandwidth for TDM is the 

same as that for FDM (i. e. when comparing PAM with Single Side Band AM). 

However, some modulation schemes are worse than others in exacerbating the 

increase in bandwidth requirement, especially when one or other of amplitude 

or phase information is exchanged for better noise immunity or simpler 

circuitry. The second is a loss of parallelism inherent to the sequential nature 

of TDM, which counteracts the central idea of neural network processing. 

Thirdly, TDM is not necessarily suited to analogue processing if pulsed 

modulation is not used, for example in a network where neurons perform the 

direct sum of current values. 

Frequency Division Multiplexing (FDM) is the other main form of 

multiplexing in communication systems. Whereas in TDM signals occupy the 

same frequencies at different times, in FDM the signals are transmitted at the 

same time but at different frequencies. This makes FDM an inherently parallel 

communication scheme, with no synchronisation required between signals 

during transmission. 

Two main forms of modulation are possible; amplitude modulation, and angle 

modulation which encompasses both FM and PM. Of the two, amplitude 

modulation is the most bandwidth efficient, but is subject to amplitude noise, 
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and cannot be broadbanded to increase the SNR. Angle modulation generally 

requires a much higher bandwidth, but the SNR may be increased by 

broadbanding according to the modulation index. Since the amplitude does not 

carry any information, amplitude noise is not such a problem. Furthermore, 

angle modulation generally requires more complex transmitters and receivers 

than amplitude modulation. 

Of the two FDM modulation schemes, it is proposed to use an amplitude 

modulation method for neural network communications, for the following 

reasons. Bandwidth efficiency is important if a largest number of signals are 

to be multiplexed, which must be the aim of any multiplexing scheme for 

neural networks. VLSI circuits will generally be less complex and more 

compact than those for angle modulation, which is important for the technique 

since it would not be desirable for an excessive silicon area to be consumed 

by the communications circuitry. In addition, some analogue VLSI techniques 

for design of suitable on-chip filter and oscillator circuits are already well 

established, as covered in Chapter 5, which is useful for initial investigations. 

The trade-off against noise immunity is therefore justified. This is not to say 

that FM or PM methods should not be considered in future work. For example, 

it has been proposed recently that angle modulation be used in VLSI neural 

networks for encoding and multiplying weights valuestl-". 
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3.3 Frequency Division Multiplexing 

The concept of the proposed FDM scheme for neural networks is shown in Fig 

3.1. The neuron state modulates a unique carrier frequency generated by a 

oscillator of constant frequency. The amplitude of the carrier represents the 

neuron state which is retrieved by the use of a bandpass filter tuned to the 

carrier frequency and a peak detector, together forming the demodulation 

circuitry. 

RECOVERED NEURON STATES 

1ý T 

BmxV= Bandpass 
Filter and --- Filter and 
Peak Detect Peak Detect 

Faxpmncy c1 Proqua1cy c 

Single FDM link 

rw Fte1ucy w 

Cxmiaonea --- commnea 
osdawr osauator 

NEURON STATES 

Fig 3.1 Concept of FDM in a Analogue Neural Network 
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It is necessary to define a specification for the communications scheme in 

terms of bandwidth. For example, a neural network could be used to process 

continuous real-time acoustic signals. For amplitude modulation of telephone 

quality speech a 4kHz baseband bandwidth is needed, or 8kHz for good quality 

speech. Full audio range requires a bandwidth of 15-20kHz. In these cases 

therefore, filters used for demodulation must be specified and spaced according 

to the source bandwidth. 

At the other extreme, if information throughput is not such an important 

criterion, the network may be allowed to settle for as long as necessary to 

perform the correct mapping. This would be the case where the neural network 

inputs are in the form of slowly varying input patterns. For example in an 

application such as letter-to-phoneme classification from binary coded inputs, 

real-time performance is achieved at a rate of about 1 input/output mapping 

per lOms, or a bandwidth of 100Hz. For such a small bandwidth, the 

bandwidth allocation per neuron would then be defined mainly by the filter 

characteristic rather than the source, and in particular by the quality factor, Q 

and resonant angular frequency wo. 

In both cases, the total bandwidth for the FDM channel is calculated from the 

sum of the bandwidths of the individual filters. For ideal bandpass filters, with 

vertical sidewalls as shown in Fig 3.2(a), this calculation is simple since it is 

understood without ambiguity what is the value of each filter bandwidth. For 

real filters, the filter characteristics must overlap to some extent as shown in 

Fig 3.2(b). Crosstalk between channels is inevitable here, but the amount of 
crosstalk depends on the degree to which the filter characteristics are allowed 
to overlap. The conventional definition of filter bandwidth, between the -3dB 
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points, is not a very useful one here, since significant crosstalk would occur 

outside this region. This is the situation to be covered by the following 

arguments. An additional parameter will be used, as well as Q, to specify the 

total bandwidth of a bank of filters by the degree of permissible overlap. 

Amplitude Response 

(a) Ideal Filters 

Amplitude Response 

ý1 ý2 

(b) Real filters 

Fig 3.2 Amplitude Response for a bank of bandpass filters 

(1)3 (1)4 

Frequency 

Consider the standard transfer function for a 2-pole bandpass filter as follows, 

H(s) _ (wJQ)s / [s 2+ (w, Q)s + 4] (3.1) 

where wo is the resonant frequency. The normalised amplitude response is, 

A((4 = (W, wYQ) /( -uß)2 + (tý, týQ)2 (3.2) 

Rearranging equation (3.2) in terms of A(W) gives, 

two = 1(A -2 _ 1)/4Q 2+1t (A -z _ 1ý 
4Q 

(3.3) 

Equation (3.3) describes the two frequencies Co (either side of the resonant 

peak) at which the gain of the filter is A, compared to the unity response at wo. 
Thus, any signal of frequency outside this range will be attenuated by an 

amount smaller than A. If the frequency responses of a bank of adjacent filters 
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are overlapped so that the centre frequency of each successive filter coincides 

with the frequency at amplitude A of its nearest neighbours, then the amplitude 

A can be described as the fractional overlap for the bank of filters. Since this 

overlap parameter is by definition a constant for the bank of filters, it is best 

denoted by a different symbol, e. 

The number or 'density' of filters per octave is then given by, 

n= log 2/ logo fo ) (3.4) 

where the positive root of equation (3.3) is used. Figure 3.3 shows the Q 

dependence of equation (3.3). It can be seen that the same filter density can 

be obtained for lower values of Q if the value of fractional overlap is allowed 

to increase. Alternatively, higher filter densities can be obtained for a particular 

Q by increasing the overlap. 

Filter Density/Octave 
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80 
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20 

Fig 3.3 Filter Density vs. Fractional Overlap for a Bank of Second 
Order Filters, showing Q dependence. 
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Similar curves are obtained for higher order filters. Fig 3.4 is the 

corresponding set of curves for a commercial switched-capacitor filter MF8, 

calculated from the transfer function for a fourth order Chebyshev 

implementation as specified in the manufacturer's data sheetd3'61. 

Filter Density/Octave 
B0 

60 

40 

20 

Fig 3.4 Filter Density vs. Fractional Overlap for a Bank of MF8 Fourth 
Order Chebyshev Filters, showing Q dependence. 

The previous theoretical analysis is independent of the low and high frequency 

cutoffs of the FDM channel and these must also be specified. The highest 

frequency is technology dependent. The lowest frequency is determined by the 

throughput required. 

At best, an interval equal to one cycle of the lowest frequency is required in 

order to obtain the amplitude of any signal using a peak detector. Information 

43 

0 0.2 0.4 0.6 0.8 
Fractional Band Overlap 



CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS 

throughput is, however, also limited by the transient response of the system, 

notably by filter settling time. For a second order system stimulated with a step 

input, it is well known that the 5%, 2% and 1% settling times (specified as a 

percentage of final output) are approximately given by 6Q/w� 8Q/wo and 9Q/w0 

respectively. It can thus be seen that in addition to frequency, Q is also an 

important factor for specifying transient response. In particular, it is noted that 

bandpass filters with high Q (good selectivity) have the slowest transient 

response, which introduces a trade-off of throughput with filter density. 

Up to now it has been assumed that we are dealing with a linear system. Non- 

linearities are introduced in analogue computations and communications by the 

non-ideal behaviour of the system elements, such as amplifier non-linearities. 

Intermodulation distortion, which causes signals from one frequency band to 

appear in others, is the main symptom of this, and, as is the case with any 

non-linear system, the effects are difficult to analyse. Non-linearity should 

therefore be avoided as far as possible in the design of the system elements. 

Having introduced the ground-rules for FDM communications, the next section 

describes a generic neural network architecture using the technique. 
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3.4 Neural Network Architecture utilising FDM. 

The proposed architecture for a prototype 4x4 (4 input, 4 neuron) layered 

analogue neural network utilising FDM consists of four functional blocks A, 

B, C, and D, shown in Fig 3.5. 
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Fig 3.5 4x4 Neural Layer Utilising FDM 
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Block B contains a bank of neuron body elements which performs the 

sigmoidal thresholding of analogue values from the weights array, Block C. 

Each output from B forms the input to the modulation block, A, which is then 

multiplied by a carrier generated by an oscillator of fixed frequency, using a 

different frequency for each neuron. Block D contains a bank of bandpass 

filters and peak detectors, comprising the demodulation circuitry. The 

demodulated signals from D are then passed to Block C which performs the 

sums of products. 

Although details specific to electronic implementation are covered in Chapter 

5, it is useful to stress the advantages of using current summing of the 

unmodulated synapse outputs, and voltages for the modulated signals. Current 

summation simplifies the weights array since the sum-of-products processing 

for each neuron can be achieved on a single wire. The internal detail of Block 

C in Fig 3.5 shows this for one of the neurons. Voltages, on the other hand, 

are more easily distributed to multiple chips. The neuron body is therefore best 

implemented as a IN converter, as used in all three of the implementations 

discussed in Chapter 2, Section 2.2.6. 

Blocks ABCD could be implemented as a single module, with the FDM input 

and output channels being available as the only external connections. It can be 

seen that the modulated output is easily distributed to the inputs of similar 

modules if the same frequencies are used for A and D. Alternatively, the 

system could be implemented as separate blocks, which would increase 

flexibility at the expense of an increase in the number of external connections. 
In this case it would be possible to increase the number of inputs to a neuron, 
by current summing of the outputs of multiple copies of Block C into Block 
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B. In any case, the first layer of weights in the neural network requires direct 

inputs into block C. It would therefore be necessary, in the single module 

implementation, to use a separate input module without the demodulation 

circuitry. The final outputs are also required in unmodulated form which would 

also require a different output module. 

It is not the intention of this thesis to design a fully operational neural 

network, but rather to concentrate on the FDM communications technique. 

Thus, for the purposes of this work the system is kept divided into its separate 

blocks as described, and efforts are prioritised towards the specification and 

prototyping of the communications circuitry i. e. blocks A and D. It is intended 

that the communications circuitry may be integrated into an existing 

experimental board level neural network, for future testing purpose. 
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3.5 Comparison of FDM and TDM 

Although qualitative and quantitative comparisons of FDM and TDM are made 

in many communications textbooks, it is difficult to make a fair comparison 

for specific system implementation constraints. The following analysis attempts 

to make a comparison of the bandwidth and power consumption of electronic 

implementations of FDM and TDM communications by defining two building 

blocks which can be used in either system. These are a voltage controlled 

current source (transconductor) of maximum transconductance G, and a 

minimum size capacitor C. In addition a maximum supply voltage of value V, 

is specified. The use of a transconductance element is justified by the fact that 

it has been chosen as a neural network building block by many designers, 

(including the author) since it performs the desired voltage-to-current 

transformation. 

In order to compare the two implementations for the optimal bandwidth, a 

PAM channel is chosen for the TDM system. For the FDM system, an AM 

channel is used. The comparison is carried out for communicating N analogue 

values Vth across a single wire, which are present in parallel as analogue 

voltages at the input of the system and must end up as parallel voltages V.. 

at the output. 

Considering first the TDM system, the analogue voltages are transmitted in 

sequence as pulses with height Vth not greater than V,, and of fixed width r. 
The transconductor and capacitor are used in a sample and hold configuration, 

one for each signal, with final output voltages V... Since V0 jr=I/C, and 
I=GVt, the total time for TDM transmission of N signals, N x, is given by, 
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Ta, =NC 
V°`" (3.5) 

G V. 

where V,, /Vm is the ratio of the final output voltage and input pulse height, 

which is a constant value for all pulses since it is dependent only on the pulse 

width. 

For minimum transmission time, it makes sense to choose a small Vp f Vth so 

that the output does not have to ramp for too long. This must be traded off 

with the noise immunity of the output which is best for large V(JVi.. The total 

power consumption for the communication is (in the worst case with Vi . 7V, ), 

Pan = NkGV, 2 (3.6) 

where k is a proportionality factor depending on the number of current mirrors 

in each transconductor. The driver power requirement is assumed negligible in 

comparison, a fair assumption for a transconductor with high input impedence. 

For the FDM system, is it necessary to consider the allowed frequency range. 

For a typical second order filter constructed from transconductors and 

capacitors, the maximum angular frequency attainable is G/C, and the quality 

factor can be determined by the use of a smaller feedback transconductor (for 

an example of this see Chapter 5, Fig 5.4). For a similarly constructed 

oscillator, the highest frequency of oscillation is also G/C, and feedback 

controls the oscillation condition. The low frequency limit tom� can be 

determined by summing the bandwidths of the N filters starting from 

c=G/C. This is done by iterating equation (3.3) with A=: e (using the 

negative root since the iteration is carried out for decreasing Co. The iteration 

is started with uu, '4na, then o), is replaced by the calculated W at each iteration. 
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The resulting equation is, 

N -1 
cob. = (G /CJ 

C 
(E-z _1 )/4Q 2+1- (E-2 -1)/4Q 2) (3.7) 

Thus, the maximum period T is given by 2n/%., 

(N1 
1)/4Q2 

) (3.8) 
per = 2ýt (C IG) 1)ý4Q i+1+ (E-z -1)/4 

here using the fact that the two roots of equation (3.3) are reciprocal to change 

the sign from - to + when the reciprocal of equation (3.7) is used. 

In the worst case, for a step increase in amplitude, the 1% settling time T11., 

for the bank of filters is 9Q/q... So the worst case total transmission time for 

FDM, Tfdm is approximately given by the sum of Td. and Tom, 

N -1 
Tfd�ý _ (2n + 9Q) (C /G) 

((T-2 
_ 1)/4Q 2+1+ (E -z _ 1)14Q 2) (3.9) 

Equation (3.9) is minimised by choosing the value of overlap, e, and 

optimising Q for the required number of signals, N. Clearly, increasing e 

reduces Tfd. independently of Q and N, so the overlap should be as large as 

allowed by the system. The effect of increasing or decreasing Q is not as 

straightforward since it has opposing effects on rise time and filter density. 

Minimisation of equation (3.9) is difficult to carry out analytically, but from 

qualitative and numerical analysis it can be shown that for a 1% overlap 

(E=0.01), and a range of values of Q (10-50), the value of T« increases 

rapidly as Q is decreased and/or as N is increased, and is approximately 

proportional to Q(Qc)''N for the smallest Q. (Note that this approximation is 

valid because (Qe)<1 in these cases). For larger values of c (0.1-0.3), the 

value of wem� is much less strongly dependent on Q and thus a minimum Tfd. 

occurs when the rise time term begins to dominate. For the largest values of 
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e and Q in the above ranges, Tfd,, is approximately linearly proportional to 

both N and -Q. 

The total power consumption of the system of N filters and oscillators is, 

N-i 
Pf =2nk Vat E G1 (3.10) 

i-O 

where n is the number of transconductors in each filter, and G; is the 

transconductance value required for each frequency, as follows, 

G1 =G 
(yc_2_1,4Q2+1 

_ (c-2_1)/4Q2)t (3.11) 

Lower frequencies require smaller transconductance values and therefore less 

power (since the frequency G/C is lowered by reducing G with constant Q. 

The factor of two in equation (3.10) assumes the use of similarly constructed 

oscillators and filters. 

It is necessary to put some figures into the above equations to obtain some 

realistic timings and power consumption for the two implementations. The 

minimum pulse width for PAM is usually specified as 0.5BT, where BT is the 

baseband bandwidth for the technologyP"'". For a typical technology bandwidth 

of 10MHz, this gives a value of t=50ns transmission time per signal. If N 

outputs are to be added together as might be expected in a neuron, it is 

reasonable to arrive at a figure of V. /Vi. =1/N, so that the total output would 

not exceed the supply even if each of the Vt. were equal to V. This assumes 

a situation where synapse weights are limited in the range [-1,1] so that the 

largest possible sum-of-products is NV3. For a larger weight range V /Vi 

would have to be proportionally smaller. 
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Fig 3.6 Transmission times for FDM channels vs. Number of Signals, N for 
various c and Q (individual FDM plots are labelled FDM(E/Q) ). 

Accepting these assumptions and using a minimum capacitance of 10pF, a 

value of G=2001A/V would give the required drive for TDM. Using the same 

G and C in the FDM implementation, ao of 20Mrads/s (3.18MHz) is 

obtained. Substituting these values in equation 3.9 and plotting the values of 

Tfd,, against N for different values of e and Q, yields the graph shown in Fig 

3.6. Each line on the graph for FDM is labelled FDM(e/Q), and the lower plot 

of the corresponding TDM plot is also shown for comparison. 

For Eß. 01, Q=20, equation (3.9) gives an FDM transmission time of 1.3ms 

for 4 signals. In comparison the TDM system requires only 2µs. Increasing the 

Q to 50 reduces the FDM time to 320µs. However, doubling the number of 

signals to 8 increases the FDM transmission time by several orders of 

magnitude, whereas TDM time is only doubled. However, if e is allowed to 

52 



CHAPTER 3 FDM FOR ANALOGUE COMMUNICATIONS 

increase to 0.1 with Q remaining at 20, the same 4 signals are transmitted in 

2Ops, and 8 signals in 50ps. For e=0.3 this is reduced further to 10µs for 4 

signals, and only 16ps for 8 signals. 

Comparing the timing for a larger number of signals, for example 40, TDM 

takes 20ps, and FDM with eß. 3 and Q=20 takes 200ps. Whilst still an order 

of magnitude larger than the TDM transmission time, this is much more 

practical than a scheme which requires minimal overlap. FDM is simply not 

realisable with e=0.01 for this many signals. 

For the value of G chosen above, a supply of 10V, and a typical value of k=3 

current mirrors per transconductor, the power consumption for the TDM 

communication is 60mal per signal. For FDM the power consumption is 

360mal for the highest frequency signal, using a value of n=3 transconductors 

per filter and oscillator. Subsequent power consumption values depend on the 

number and spacing of the lower frequencies. For c=0.3 and Q=20, the next 

3 values are 332mW, 307mal, 283mal. 

The conclusions of this comparison of FDM and TDM can now be made as 

follows. 

PAWFDM appears to have certain advantages over AM/FDM in terms of both 

bandwidth and power consumption. For FDM, deliberate overlapping of second 

order filter responses is necessary in order to achieve a practical transmission 

time which is an order of magnitude longer than that for TDM in the above 

analysis. Power consumption from the calculations is about 6 times greater for 

FDM, although this figure is variable, depending on overlaps and quality 
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factors. 

FDM has the advantage of being asynchronous and continuous time i. e. no 

clock is needed in principle. However, it may be desirable in practice to use 

a clock to delay the computation of the received signals until after the settling 

time has elapsed. If this is the case, it is hard to see an advantage to using 

FDM in this way, since this is not much different than waiting for all TDM 

signals to appear at the output. 

From the theory developed above, it is clear that practical FDM bandwidths 

are achievable only if overlapping of filter responses is allowed, or if large 

values of Q are used. It has been shown that increasing Q is not always the 

correct solution, since this also has a detrimental effect on settling time. 

Furthermore, electronic implementations of high Q circuits suffer from high 

sensitivity to component values, which causes problems in matching oscillator 

and filter centre frequencies. Also, high Q circuits generally use large ratios 

of component values which often translates to large chip area requirements in 

VLSL For the same reasons, the use of higher order filters is not desirable. 

It is, however, reasonable to propose that the errors introduced by overlapping 

filter characteristics will be compensated for when FDM is implemented as 

part of an adaptive system such as a neural network, and therefore that larger 

overlaps may be permissible than those required in straightforward 

communications applications. This hypothesis requires proof, which is the 

subject of the next chapter. 

In defence of FDM, it should be stated that it has been necessary in the 
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analysis of this chapter to present the worst case scenario for FDM 

communication in comparison with TDM, so as to justify the scheme in a fair 

manner. In practice however, the FDM implementation constraints may not be 

as great. If filters are not subject to step changes of input amplitude, the 

settling times will be less than calculated. For slowly varying inputs settling 

time is not such a problem, and since it is the settling time which dominates 

the overall transmission time, this would be greatly reduced. As for TDM, 

alternative implementations may introduce additional problems. If PWM is 

used instead of PAM, the pulse widths must be greater for two reasons. Firstly, 

width information is being used to code the neural state, so it is the maximum 

(or average, for asynchronous PWM) width rather than the minimum width 

which determines the transmission time. The minimum width itself must also 

be greater so as to preserve sharp pulse transitions i. e. 'fine' pulse 

reproduction. The 0-5/BT rule used for PAM does not apply to PWM since this 

estimate ensures only 'coarse' pulse reproductionn3"71. Typical pulse widths 

quoted in the literature are microseconds rather than nanoseconds. The same 

arguments apply to PPM. The minimum width can be used for PRM, but in 

this case, several pulses may need to be used in order to compute the rate. 

Thus, the difference between transmission times for FDM and TDM may not 

be as great as that predicted by the above analysis, depending on the form of 

modulation employed. 

In conclusion, the results from the analysis show that FDM can be justified as 

a method of neural network communications, if overlap errors are proved not 

to be a unsurmountable problem. The following chapter will show that 

tolerance to overlap errors is indeed a feature of neural networks. 
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CHAPTER 4- SOFTWARE SIMULATIONS 

This chapter describes in detail the software implementation of a multilayer 

perceptron (MLP) neural network, in which the usual model is modified to 

incorporate the effect of overlap of neuron activations in the forward pass. The 

software design is presented as a set of structured Warnier Diagrams, which 

implements the MLP using floating point arithmetic, and training using the 

backpropagation algorithm. This model is then modified further to include the 

effect of weight quantization, and to allow a comparison of results with the 

alternative weight perturbation training algorithm. The rest of the chapter is 

devoted to simulations using the software. It is shown, using results from 

various applications, that the neural network is remarkably tolerant to overlap 

errors, confirming the hypothesis of the previous chapter. The first application 

involves backpropagation learning of the 3-bit parity problem with various 

degrees of overlap, using floating point weights. The second problem is text- 

to-speech conversion based on the well known NETtalk application, which is 

used to investigate the effect of overlap when weight values are quantized. The 

third problem compares the learning of 5-bit parity using backpropagation and 

weight perturbation algorithms, with varying degrees of overlap and weight 

quantization. 

4.1 Multilayer Perceptron Networks -A Brief Overview 

The perceptron was a neuron-like adaptive element invented by Frank 
Rosenblatt in 1958, followed two years later by a method of training called the 

'perceptron rule' which used the difference between target and actual binary 
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outputs in such a way as to reduce that error 4.13. Rosenblatt also introduced the 

important idea that neural network information is stored in the connections (or 

associations) between simple processes. 

Later in 1960, Bernard Widrow and Marcian Hoff proposed a similar structure 

called an adaline'4,21 (shown in Fig 4.1), which performed the sum-of-products 

of binary input values (±1) with corresponding variable weight values (or 

'gains'). A bias gain with constant input was added, and the output was 

obtained using a hard-limiting threshold which quantized the final sum to ±1. 

The adaline could thus be used to classify binary input patterns into two 

categones. 
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Fig 4.1 Adaline with LMS Learning (After Widrow and 
Hoff) 

Widrow and Hoff also introduced a novel supervised learning algorithm which 

trained the adaline to classify patterns from given data by adjusting the weights 

according to the size of the linear error at the output of the summer before 
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quantization. This algorithm was shown to be equivalent to minimising the 

mean squared error for all patterns, and is thus commonly called the Least 

Mean Squares (LMS) algorithm. Other common names are the Gradient 

Descent Rule, Delta Rule or Widrow-Hoff algorithm. 

The modem perceptron is essentially the same as the above, but some use 

linear or smooth non-linear output functions rather than the hard-limiting 

quantizer, and may or may not be limited to binary inputs. 

It became clear also that by applying the same input vector to several neurons, 

with different weights, a vector output could be obtained. This was introduced 

in the Madaline networkta. 31. 

Multilayer perceptron networksl4 4I are an extension of these ideas. Single layer 

perceptron networks can only correctly classify linearly separable sets of input 

vectors, which was recognised early on as a severe limitation"". By 

connecting the outputs of a layer of neurons to the input of the next, a 

multilayer network is obtained which gives an extra dimension. The network 

now has two layers of neurons and weights, a 'hidden' layer and an 'output' 

layer, and is usually called a two layer network. Networks with multiple 

hidden layers are also possible. It can easily be proved that only MLPs with 

non-linear hidden neurons are worth constructing, since a multilayer network 

with linear hidden layers can always be reduced to a single layer network. 
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Fig 4.2 Two Layer Perceptron Network 

Fig 4.2 shows a two layer perceptron network, with L inputs, M hidden layer 

neurons and N output layer neurons. The output function F is the sigmoidal 

non-linearity, or logistic function 1/(l+e") which limits the output range 

between 0 and 1. The inputs and outputs of each layer for a particular pattern 

p are denoted by y,,; for the inputs to hidden layer (15i5G), yp; for the inputs 

to the output layer (15j5M), and y, for the final outputs (15k5N). The 

corresponding signals into the sigmoidal function are denoted by x,, and x Pe 
The hidden layer weights are denoted by wj, ' and the output layer weights by 

wk; ` and the corresponding threshold biases are O' and 8, t, at iteration t. 

4.1.1 The Backpropagation Learning Algorithm 

The problem with training multilayered networks with a supervised learning 

algorithm is that the output values of the hidden layer neurons are not 

specified in the training data, so the errors in the hidden layer cannot simply 

be specified as the difference between the actual and desired responses, and so 

the required weight changes cannot be found directly. The Backpropagation 
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algorithm of Rumelhart, Hinton and Williams'" ' (also claimed to have been 

discovered independently by Werbos and later by Parkerl4-71) was a real 

breakthrough in that it enabled the training of hidden layer weights by 

calculating the error terms for the hidden layer as a weighted combination of 

the errors from the output layer. This is the 'backpropagation of errors' which 

gives the algorithm its name. The process may be carried out repeatedly to 

train networks with larger numbers of layers. The algorithm is often called the 

generalised delta rule, since it can be seen as a extension of the single layer 

delta rule. However, it should be noted that unlike the single layer algorithm, 

backpropagation is not guaranteed to find the global minimum error, because 

local minima may also exist. 

Fig 4.3 describes the steps of the backpropagation algorithm It consists of two 

phases, a recall phase (or forward pass) in which an input is presented to the 

network and the actual outputs are calculated, and a learning phase (or 

backward pass) in which the errors are calculated and the weights adjusted. 

The weight changes for each neuron are determined by multiplying the 

corresponding inputs by the error term 8 (constant for that neuron at iteration 

t) and a learning rate 11 (constant for the entire network). 

In this description of the backpropagation algorithm, each step in the algorithm 

is repeated for all neurons in that layer before proceeding to the next step. 

When the two phases are completed for one input pattern, the process is 

repeated until each pattern in the training set has been presented. This is one 

training epoch. In this work, weight updates are njade after each pattern is 

presented. Alternatively weights changes may be accumulated over several 

patterns, or over the whole epoch, before the updates are made. 
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Expressions for the total number of additions and multiplications used in each 

step were determined, which are used later to optimise the software 

implementation of the algorithm. These are shown alongside the algorithm 

steps in Fig 4.3. 

Fig 4.3 The Backpropagation Algorithm 

(a) Recall Phase 
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Fig 4.3 The Backpropagation Algorithm (continued) 

(b) Learning Phase 
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A modification to the basic backpropagation algorithm (also introduced int4'6)) 

involves the addition of an 'acceleration' (or momentum) term to the weight 

update equations which is usually a fraction of the weight change from the last 

epoch. The weight change equation becomes; 

w'. 1 = W' + 11 8y+a W-W ,_ 1) 

where a is the momentum. Momentum can speed up training by biasing the 

current weight change in favour of the last weight change. This effectively acts 
like a low pass filter on small fluctuations in the weight step at successive 
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iterations. 

In general, backpropagation suffers from very slow (or lack of) convergence, 

and the performance can be greatly affected by the choice of learning rate, 

momentum, and the actual random weights chosen. Network paralysis and 

local minima are also potential problems1`8 , although the latter seems not to 

be as serious as was once feared. 

For these reasons, many variations of backpropagation have been proposed and 

research in this area is still very active. None, however, appear to have become 

accepted as the best approach for all problems. Recent publications have 

shown some advantage in using symmetric inputs and activation functions such 

as the hyperbolic tangentt4-9.101. However, the bipolar nature of the inputs and 

outputs may cause problems in some hardware implementations. Furthermore, 

it does not allow the use of the optimisation methods to be proposed in Section 

4.2. Most other variations use second derivatives to optimise the size of the 

weight changes"-`-", which is equivalent to using a dynamically varying 

learning rate. In these cases, learning speed (in terms of number of epochs) 

and convergence tends to be improved over the standard backpropagation. 

However there is a trade off with the increase in computational complexity, 

and increased storage requirements which are not beneficial for hardware 

implementations. 

4.1.2 The Weight Perturbation Learning Algorithm 

In the backpropagation algorithm, weight updates are calculated analytically 

by use of the chain rule, starting with the error at the network outputs and 

working back to find the gradient of the error with respect to the neuron 
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weights. On-chip implementation of backpropagation learning in Analogue 

VLSI is made difficult by the need to ensure sufficient accuracy in the 

modelling of the algorithm, in the face of process variations. This may limit 

successful implementation of backpropagation to a chip-in-the-loop training 

type strategy, as proposed for use in this thesis. However, it is useful to 

consider other algorithms where a fully on-chip neural network may be 

required. 

In weight perturbationl¢' , weight updates are calculated by changing each 

weight value by a small amount, and examining the change in Mean Squared 

Error (MSE), A,, at the outputs. If the perturbation, At, is small enough, a 

good approximation to the error gradient, AE. JAt, is obtained directly, and the 

algorithm has been shown to work well with larger perturbationsi¢'9. This has 

an advantage for on-chip analogue implementation, since it is not necessary to 

know the exact form of the sigmoidal transfer function, nor need the function 

be the same for each neuron. Therefore the algorithm is likely to be more 

tolerant to process variations. Furthermore, the number of steps in the 

calculation of a weight change are reduced, so that any inaccuracies in one 

step are not amplified to the extent they would be in an algorithm with more 

steps, like backpropagation. 

The main disadvantage of the algorithm is the number of times the simple 

steps must be repeated - once for each weight in the network at every iteration. 

In particular, a recall phase must be repeated for each weight perturbation in 

order to calculate the new MSE, which is particularly intensive in sequentially 

processed simulations. 
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The learning phase for weight perturbation is shown in Fig 4.4, together with 

the total number of multiplications and additions for each step. Note that it is 

only necessary to find the Sum Squared Error (SSE), since division by the 

number of outputs N and multiplication by ý can be carried out during weight 

update, effectively incorporating them into the learning rate i. e. -AEp= 

(Tl/2N)(Sp SP'). The total number of weights and threshold biases is denoted in 

Fig 4.4 by W=M(L+1)+N(M+1). 

Fig 4.4 The Weight Perturbation Algorithm Learning Phase 
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4.2 Software Requirements for Simulation of Overlap in the MLP 

4.2.1 Incorporating Overlap into the Standard MLP Model 

It is possible to approximate the band overlap which occurs in demultiplexing 

a frequency division multiplexed channel by mixing a proportion of the signal 

from the adjacent bands into each band. This is incorporated into the standard 

multilayer perceptron model using the fractional overlap parameter defined in 

Chapter 3, which is multiplied by the activation of each adjacent neuron, and 

then the two values are added to the activation of the central neuron before 

multiplying by the weights, since in the proposed hardware system the weights 

array is after the demultiplexing. 

Thus, the recall phase is modified as follows; 

m 
xpk = Ewp (ye, +£ YP; 

-1+8 
Yp; . 1) + ek 

where y. 0 and ypM+, are made zero to account for overlap at one side only at 

the ends of the layer. c is the fractional overlap which can range from 0 (no 

overlap) to 1 (full overlap). For cam, the software will implement the standard 

multilayer perception architecture. 

4.2.2 Computer Hardware and Software Considerations 

Calculations in neural networks are by their nature computationally intensive 

and require a large amount of storage for weights and neuron activations. For 

small networks, a PC based system may be appropriate, but for larger 

problems a mainframe solution may be required. The PC implementation is 

often limited by a 64k segmentation of memory to ensure 8086 microprocessor 

compatibility, and so large data structures cannot be defined easily. Neither is 

it feasible to use disk storage and process the network data in blocks, because 
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disk access would slow down the system. Both the backpropagation and weight 

perturbation algorithms require all weights to be available at each iteration, and 

if momentum is used weight changes from the last iteration must also be 

available in memory. 

It was decided to develop the software on an IBM PC to take advantage of the 

good quality editing and debugging facilities, but to reserve the option of 

porting it to a VAX mainframe as required. The high level language Pascal 

was chosen for the programming since it is well supported on both systems 

and is portable enough to be transferred between systems with only minor 

modification. Borland Turbo Pascaff4171 was used for the PC software 

development and smaller networks, and VAX Pascall4. ' for the larger 

networks. In the later simulations involving weight quantization and weight 

perturbation, aC language version of the software was also developed, for use 

on Sun platforms. 

4.2.3 Data Acquisition and Storage 

The software system consists of the neural network program and its training 

and weights data files. The program works most efficiently with all the data 

stored in global memory arrays which can be loaded from disk files just once 

at the start of the program It was decided to store the training data as ASCII 

text, so that it could be generated by different computers and ported by 

network to the program location. The data is efficiently stored as alternate lines 

of input-output pairs separated by NewLine characters. This is a particularly 

compact form of storage for the binary training data which is used for the two 

applications in this study. Weights are continuous so must be stored as floating 

point real numbers for compactness. Two weights files were specified, one 
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with the initial weights which can be random or from a previous training 

session, and one working weights file. This enables the network to be trained 

several times with the same initial conditions, and thus compare the effects of 

varying degrees of overlap with the same starting point. 

4.2.4 Network Parameters 

The parameters required by the backpropagation algorithm are the learning rate 

and momentum, which can be varied according to the application. The weight 

perturbation algorithm also requires a learning rate (momentum was not 

specified for weight perturbation, since it is unlikely to be used in an on-chip 

implementation). Some work has been done in an attempt to eliminate the need 

for user input of the learning rateP`1, however in most applications the optimal 

value is found experimentally. In addition, other parameters are needed to 

initialise the network and monitor the learning. Unless existing weights are 

available, the network must be initialised with small random values. The range 

of these weights also depends on the application and size of network, but 

typical values from the literature range from ±0.01 to ±1, with smaller ranges 

used for larger networks. 

It is also necessary to define a performance metric in order to decide when to 

stop the training process. Since both learning algorithms act to minimise the 

MSE, learning can be stopped when this error reaches a specified minimum 

value. There are a number of problems with this approach, particularly for 

classification problems. Firstly, because the error is averaged over all the 

output neurons, some neurons may be more in error than others and so a large 

error in a few neurons may be masked by lower errors in the majority. 
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Secondly, the error is averaged over all input patterns which does not allow for 

the potential of some patterns being more difficult to learn than others. It is 

thus not always clear what is an acceptable minimum error. The calculation of 

the sum-of-squares is also a computationally expensive process, especially 

since it must be carried out at each iteration. It is noted that the MSE still 

needs to be calculated for weight perturbation. However it is advantageous to 

use the following method in addition, since it allows simple comparison of the 

different algorithms, but introduces little computation in excess of that required 

for the MSE. 

It was decided to use a different metric which is clearer to analyses and 

cheaper to compute. An output activation tolerance was defined for the output 

neurons, similar to that suggested by Rumelhart et d4.61 where it was used to 

help limit weight values. This is defined here as the difference between the 

desired binary output activation used for the training, and the actual analogue 

output activation which can be tolerated in a particular application. Learning 

of a pattern is said to be complete when all neurons have been trained within 

that tolerance. For example, using an output tolerance of 0.1, the neuron 

activation would be correct if it was 0.9 for a desired output of 1, or 0.1 for 

a desired output of 0. In this case 0.1 and 0.9 are the thresholds for correct 

classification. Learning can be stopped when this condition is satisfied for a 

given number of patterns, or prematurely after a given number of epochs. The 

number of patterns learnt after each epoch can be calculated simply by 

checking the outputs of the neurons at each iteration and comparing them to 

the threshold. Therefore, squaring and summing operations are replaced by 

comparing and counting operations. The metric also defines zero global error 

relative to the threshold when all outputs are at or above threshold for all input 
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patterns. Using thresholds in this way is also good for classification problems 

because it allows selection of a margin of separation between classes. In 

hardware implementations, it can also help to guard against noisy input data. 

Use of a noise margin has also been suggested by Fahlman in his 

backpropagation benchmarking studies, as an analogy with digital logic gate 

thresholdsta. la3 To incorporate these ideas into the software, the output 

activation tolerance and the number of patterns to be learnt to this tolerance 

are the extra parameters required. 

After training, the network may be tested using data not in the training set. 

The output response for unknown data will rarely be as clear-cut as for the 

training set. Therefore two options can be used for recall of test set data. 

Firstly, the same performance measure can be used as before but with the 

option of increasing the output tolerance if desired. Alternatively, the neuron 

with the largest response can be chosen whatever the value. 

During learning, a whole host of values can potentially be monitored and 

displayed, including the values of the output activations, errors, weights values, 

number of epochs elapsed and number of patterns learnt. These should be kept 

to a minimum to reduce the overall computation time. It was decided to allow 

the amount of display information to be varied by the user. Output activations, 

number of epochs, and number of patterns learnt, can be selected for display 

frequency. Rather than displaying the weights in the program, it was decided 

to save the working weights file to disk at specified intervals. Infrequent disk 

access does not slow down the simulation to any great extent, and also guards 

against computer power failure during long simulation runs since the software 

can be restarted from the last saved weights files rather than the beginning. An 
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extra program was used to display the weights files in a readable format, since 

they are stored as real values rather than text. 

All the above techniques can be used for any neural network simulator. In 

addition to the standard parameters, a single overlap parameter is required to 

specify the amount of overlap between neuron activations. 

4.2.5 Optimisation of Computation 

Combining the expressions derived earlier, the number of calculations needed 

per iteration to train a L-M-N MLP network is (NM+ML) multiplications and 

(NM+ML+N+M) additions in the forward pass. In the backward pass the 

number of multiplications is (3NM+2ML+2N+4M+2L) for backpropagation and 

approximately (NM+ML)2+(NM)2 for weight perturbation. The number of 

additions is (NM+ML+N+M) for backpropagation and approximately 

(NM+ML)Z+5N(NM+ML) for weight perturbation. In addition there are (N+M) 

sigmoid calculations in the forward pass which involve division and calculation 

of exponentials. It can be seen that learning is more computationally intensive 

than recall especially in the weight perturbation method, but that both 

algorithms have to perform a very large number of calculations in both phases. 

By examining the forms of the training data and the algorithms, it is possible 

to reduce the computation time. 

Firstly, if binary input data is used, it is not necessary to perform any 

multiplications in the hidden layer during recall, and the sum-of-products is 

calculated by simply adding a weight if the input is a 1, and ignoring the 

calculation if the input is a zero. The computation is reduced to L comparisons 
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and ML(, )+M additions, where L(J) is the number of l's in the input pattern. 

The number of sigmoidal calculations in both layers may also be reduced since 

the function saturates rapidly and is within 5E-8 of 0 or 1 (or 1 bit in 24) for 

inputs greater than ±20. This procedure is also necessary to avoid floating 

point overflow errors in calculating exponentials of large numbers. Thus, the 

output is rounded safely to 0 or 1. It should be noted, however, that saturation 

of neurons in this way is not necessarily desirable, since learning is very slow 

for saturated outputs and is stopped when truncation occurs. 

In backpropagation, a weight update is zero if either the output of the sigmoid 

is truncated to zero, or if the input to that neuron is zero. The computation in 

the backward pass is thus reduced to 2L(1)(M+1) multiplications and L(j)(M+1) 

in the hidden layer. In the case of weight perturbation, a change to any weight 

connected to an input which is a zero cannot influence the MSE, so those 

weights need not be trained at that iteration. Furthermore, it is only necessary 

to perform a partial recall for any particular weight perturbation, especially for 

weights in the output layer where only one neuron is affected by the change. 

In addition, there will be a small reduction in computation due to the number 

of saturated neurons in either the hidden or output layer, which will increase 

during learning. 

If momentum is used there is an increase in computation which cannot be 

eliminated by the above techniques without examining extra data from 

previous iterations. Therefore, no further savings are possible. The additional 

computational overhead is one multiplication and two additions per weight 

update, or (2NM+2ML+2M+2L) multiplications and the same number of 
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additions per iteration. It would therefore be sensible to ignore these steps if 

momentum is zero by the use of a comparison, especially if momentum is 

rarely used. 

4.3 Formal Software Design 

Incorporating the above considerations, the software was designed using the 

Warnier-Orr formal design methodologyt4 20]. 

Use of a formal methodology increases the speed of design, reduces errors, and 

ensures that the code produced conforms to specification. In the Warnier-Orr 

technique, the program is combined from a hierarchy of procedures separated 

using braces ({), called sequence constructs. The exclusive-or (®) symbol, or 

selection construct, is used to denote exclusive choices specified by the 

program or user. Numbers in brackets denote the repetition construct, used in 

the form (n times) for a loop and in the form (0 or n times) for conditional 

loops. 

The Warnier Diagram for the software design is shown in Fig 4.5, which 

describes the original design implementing backpropagation using floating 

point arithmetic. Changes required by the extension of the design to include 

quantization and weight perturbation algorithm are explained later. 

Pascal code was then written to implement the design. The program was 

written as a set of procedures to conform to the Warner diagram. The exact 

code is not presented here since the program could be easily coded from the 
Warner diagram in any chosen programming language, or on a different 

hardware platform. It was found that the PC version could be converted to the 
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VAX version by modifying only the code for the file declarations, the 

date/time function and the randomization function. Translation to C was 

achieved by use of an automatic Pascal-to-C converter, followed by 

optimisation of the code. 

It was noted that the recall phase during learning is almost the same as that for 

recall only. Therefore the forward pass was written as a single procedure to be 

called either directly from the main procedure, or as a call from the learn 

procedure, but the actual function is dependent on the origin of the call in 

order to implement the differences between the two. 
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Fig 4.5 Warner Diagram of Neural Network Software Implementation 
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Fig 4.5 (b), (c) & (d) Warnier Diagram (continued) 
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Fig 4.5 (e) Warner Diagram (continued) 
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Fig 4.5 (f) Warner Diagram (continued) 
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4.4 Simulation Results 

4.4.1 Three Bit Parity using Floating Point Weights 

The first simulation involved training a 3-3-1 two layer perceptron network 

with the three-bit parity problem, using the backpropagation algorithm with 

floating point weights. The training set consists of the eight three bit binary 

input patterns and the corresponding desired binary outputs. The output neuron 

has a desired output ' 1' if the number of 'I's in the input is odd, otherwise the 

desired output is V. Training neural networks to learn parity has been studied 

by numerous workerst444 and it is therefore a good benchmark for testing a new 

simulator, and for studying the effect of overlap on the learning performance. 

It is a generalisation of the XOR problem and so it cannot be done with a 

single layer network. It is a 'hard' problem because patterns differing by the 

smallest Hamming distance (i. e. 1 bit), must be classified differently. 

The network was trained with a learning rate of 0.5 and a momentum of 0.9, 

as used by Rumelhart et at"'. The network was trained to an output activation 

tolerance of 0.1 of the desired outputs for all eight patterns and learning was 

said to be complete when all patterns were learnt. The number of epochs of the 

8 input patterns was recorded for a set of 100 trials (i, e. the network was 

trained on the same problem 100 times) for each value of overlap used, 

ranging from 0 to 1 at intervals of 0.05. Each trial was started with a different 

random set of weights in the range ±0.1. If learning was not complete by 

10000 epochs, training was stopped and the trial was recorded as non- 

converged. It is important to record the data in a way which captures the 

overall effects of overlap on the learning. Some researchers have suggested 

using the mean number of epochs of the converged trials as a measure of 

network performance'4.21). This method has been criticised by Fablman14'41 since 
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it gives no indication of the overall performance, especially if convergence is 

poor. Fahlman decided instead to restart unconverged trials after a certain 

number of epochs with new random weights, and record the sum of the 

number of epochs in all trials until convergence was reached. However, this 

method is again not very good if the proportion of non-converged trials is very 

high as it may be for a large overlap. It was decided therefore to include the 

10000 epochs for each non-converged trial in the calculation of the mean to 

give a fairer weighting to trials with higher non-convergence, and to record the 

number of non-converged trials separately. All the information can be 

contained on a single graph shown in Fig 4.6, with the number of non- 

converged trials in brackets. 
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Fig 4.6 Learning Time vs. Overlap 
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may still not converge to the required solution. The larger percentages of 

failures are apparent for overlaps above 0.5. 

% Trials 
80 

over I 89P. 0.0 

Ov. r lp=0.1 

60 
Overlap-0.2 

Orr 1m0.3 

® 
Ovw IapK0.4 

D~ I upa. 5 
40 ® 

Over Iu0. S 

[ý 
0 

Owrlep-0.7 
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0 
0.500.1000.1500.2000.2500+ 3000.3500.4000.4500+ 5000. N. C. 

fpocre 

Fig 4.7 Learning Time Distributions for Varying Degrees of Overlap 

Fig 4.7 shows in more detail, the distribution in the number of epochs needed 

for convergence for the 100 trials, shown in groups of 500 epochs. Each group 

of bars shows how the percentage of total trials requiring a specific range of 

epochs varied as overlap was increased. The first group of bars shows the 

percentage of trials which required between 500 and 999 epochs to converge, 

which are seen to first increase, then decrease as overlap was increased from 

0.1 to 0.7 at intervals of 0.1. The second group shows a similar variation. 

Examination of the other groups reveal that as overlap is increased, there are 

a small number of trials which require an increasingly larger number of epochs 

to achieve convergence. For example at an overlap of 0.5, a sizable proportion 

of the trials required between 1500 and 2999 epochs to converge, and at 0.6, 
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there are more trials requiring over 4000 epochs. The N. C. (Not Converged) 

group shows how the number of non-converged trials increased steadily for 

overlaps greater than 0.3. 

On examination of the results from both Fig 4.6 and 4.7, an overall 

degradation of performance is observed. This is mainly due to the increase in 

the number of unconverged trials, as the overlap between adjacent hidden layer 

neurons was increased. However, it is clear from the variation of the learning 

speed distributions in Fig 4.7 that for trials which did converge, the average 

number of epochs needed for convergence was actually decreased for moderate 

amounts of overlap. This decrease in learning time is most probably due to an 

overall positive reinforcement of a neuron's output activation from overlap of 

adjacent neurons, causing an increase in weight change increment and a 

consequent increase in the learning speed. The increased number of non- 

converged trials is due to negative reinforcement which causes non- 

convergence by training of weights values in the wrong direction. Eventually, 

even positive reinforcement may also cause non-convergence due to overly 

large weight increments which could saturate a neuron irreversibly. This would 

explain the eventual reduction in the mean learning speed of trials which did 

converge, as well as the increased number of non-converged trials for larger 

values of overlap. This phenomenon is now examined in more detail in the 

following analyses. 

Two sets of trials were carried out starting each set with a different random 

weights file. For each set the trial was repeated for different values of overlap, 

using the same starting weights file. The variation in the number of epochs 

needed for convergence, as overlap was increased at intervals of 0.05, is shown 
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in Fig 4.8. Both graphs start at zero overlap, and end at the highest overlap 

value for which convergence was achieved. As before, a trial was said to be 

not-converged if convergence was not achieved in 10000 presentations of the 

training set. 

No. of Epochs to Convergence /1000 
7. 

6 

5 

4 

3 

2 

1 

Fig 4.8 Variation in learning time with overlap for two sets of trials 

Set (a) showed a gradual decrease in the learning time, followed a by rapid 

failure as overlap was increased past 0.65. Set (b) initially showed the same 

gradual decrease in learning time, but a gradual failure is also apparent starting 

at an overlap of 0.45, with final non-convergence occurring at overlap greater 

than 0.60. These observations conform to the shift in distributions of training 

times shown in Fig 4.7, where an increase in overlap gave a decrease in the 

average number of epochs required for convergence, provided convergence 

occurred. However, the difference in the type of failure still needs to be 

explained. 
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The weights values learnt using zero overlap for Set (a) are shown in Fig 4.9. 

Similar weights were learnt for Set (b). 

IDEN LAYER 
WEIGHTS 

Input 1 Input 2 Input 3 Threshold 

Hidden 1 -6.77 -6.76 -6.74 9.10 

Hidden 2 -625 -6.26 -6.28 2.02 

Hidden 3 -2.92 -2.91 -2.90 7.08 

OUTPUT LAYER 
WEIGHTS 

Hidden 1 Hidden 2 Hidden 3 Threshold 

Output 9.08 -10.43 -831 3.54 

Fig 4.9 Final weights values obtained after convergence using zero overlap 

On examining these weights learnt with zero overlap, it can be seen that the 

neural network has discovered a representation in the weights which can solve 

the parity problem. Qualitatively, it can be noted that the weights between each 

input and a particular hidden neuron are the same which makes the network 

invariant to the order of bits in the input pattern. Therefore, it is the number 

of 'true' bits in the input which determines whether the threshold bias weight 

value is exceeded or not. The sigmoid function on the output of each neuron 

causes the output activation to saturate quickly to '0' for negative sums, or ' 1' 

for large positive ones. Hidden neuron 1 has an activation close to '0' if two 

or more of the inputs are 'true', hidden neuron 2 has an activation close to '0' 

if one or more bits are 'true', and the activation of neuron 3 is close to '0' 

only if all three bits are 'true'. Thus, the hidden layer effectively counts the 

number of 'true' bits in the input, irrespective of position, and encodes the 

total count as the same number of '0' activations. The output layer then 
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decodes the hidden layer activations. The output threshold bias is a small 

positive number, the weights from hidden neurons 2 and 3 to the output are 

large and negative, and the weight from hidden neuron 1 to the output is large 

and positive. Therefore the output will be close to a '1' for hidden activations 

'0 0 0' and 10 1' corresponding to even parity, and close to a '0' for hidden 

activations 11 1' and '0 0 1', corresponding to odd parity. It can be seen that 

the actual values of the weights and thresholds are not critical, for a similar 

internal representation to be achieved. Fig 4.10 shows the internal values of the 

network for all eight input patterns, rounded to integer values for clarity. The 

same representation was discovered by the network in Set (b). 

Inputs 
'true' =T 
'false' F 
123 

Hidden Layer 
Sum of 

Products 
123 

approximate 
Hidden Layer 
Activations 

123 

output 
Sum of 

Products 

Approximate 
output 

Activation 

FFF 000 111 -9 0 

FFT -7 -6 -3 101 1 1 

FTF -7 -6 -3 101 1 1 

FTT -14 -12 -6 001 -8 0 

TFF -7 -6 -3 101 1 1 

TFT -14 -12 -6 001 -8 0 

TTF -14 -12 -6 001 -8 0 

TTT -21 -18 -9 000 0 1 

Fig 4.10 Internal Representation for Backpropagation Learning of 3-bit Parity 
with zero overlap 

Rather than show all the available data, the direction of change (positive or 

negative) of the final weight values as overlap was increased is shown in Fig 

4.11 for Set (a). This helps to give an insight into why the network eventually 
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fails to converge for large values of overlap. 

HIDDEN Input 1 Input 2 Input 3 Threshold 
LAYER 

WEIGHTS 

Hidden i - - - + 

Hidden 2 - - - - 
Hiý3 + + + - 

OUTPUT Hidden 1 Hidden 2 Hidden 3 Threshold 
LAYER 

WEIGHTS 
I Output + - + + 

Fig 4.11 Direction of change of final weights values with increase in overlap 
for Set (a) 

As the overlap was increased the final weights values changed gradually. The 

magnitude of the change was approximately the same for each weight and 

threshold. Several mechanisms for failure appear possible in Set (a) depending 

on the slight differences in the changes for different weights. In the hidden 

layer, the weights and threshold of neurons 1 and 3 are moving in different 

directions which would eventually cause a hidden layer activation to change 

value from a '0' to '1' or vice-versa for some input pattern. In the output 

layer, an increase in the weights from hidden neurons 1 and 3, faster than the 

change in threshold and the other weight, would eventually cause the sum of 

products to overcome the threshold when all hidden neurons were '11 1', 

therefore giving the wrong result for the input 'F F F. This was in fact the 

cause of failure in Set (a), at an overlap of 0.65, verified by examining the 

exact weights values obtained. 
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In Set (b), the weights movements were of similar magnitude but with different 

directions, shown in Fig 4.12. 

HIDDEN Input 1 Input 2 Input 3 Threshold 
LAYER 

WEIGHTS 

Hidden i - - - - 
Hidden 2 - - - + 

Hidden 3 - - - + 

OUTPUT Hidden 1 Hidden 2 Hidden 3 Threshold 
LAYER 

WEIGHTS 

Output - + - - 

Fig 4.12 Direction of change of final weights values with increase in overlap 
for Set (b) 

In this case the first signs of failure occurred when the weights of the third 

hidden neuron became too small to overcome the rising threshold at an overlap 

of 0.5, rather than a failure in the output layer as experienced in Set (a). At 

this point the network weights changed in an entirely new way, some changing 

direction, breaking the symmetry of the usual method, and the output layer 

weights rose to much higher values. This 'phase' change was accompanied by 

a great increase in the number of epochs required to find the new solution. The 

new internal representation discovered is shown in Fig 4.13. 
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Inputs 
'true' =T 
'false' =F 
123 

Hidden 
Layer Sum 
of Products 

123 

Hidden 
Layer 

Activations 
123 

Hidden Layer 
Activations 
Modified by 

Overlap 

Output 
Sum of 
Products 

output 
Activation 

FFF 000 111 1.52.01.5 -3 0 

FFT -9 -7 -7 011 0.5 1.5 1.5 4 1 

FTF -2 -10 -12 110 1.5 1.5 0.5 2 1 

FTT -11 -17 -3 001 0.00.51.5 -15 0 

TFF -2 -10 -12 110 1.5 1.5 0.5 2 1 

TFT -11 -17 -5 001 0.00.51.5 -15 0 

TTF -4 -20 -24 100 1.50.50.0 -18 0 

TTT -13 -27 -15 000 0.00.00.0 0 1 

Fig 4.13 Alternative Internal Representation for Neural Network Learning of 
3-bit Parity with overlap, Set (b) 

It can be seen that the network has exploited the symmetry in the output layer 

weights which allows the order of hidden activations to be exchanged without 

affecting the final result. The number of '0' hidden layer activations is the 

same as that for smaller amounts of overlap for the same input pattern. This 

new weight combination will work even without overlap, but without the 

additional constraint, the network finds the simpler solution first. The 

subsequent large rise in learning time with overlap until non-convergence 

shows that the alternative solution is more sensitive to the overlap value than 

the first. Final non-convergence in Set (b) occurred at an overlap of 0.6, due 

to a second hidden layer failure. The two sets of trials reveal two typical 

responses of the parity network to overlap. 

In summary, for the first case Set (a), changes in the output layer due to 
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overlap eventually caused rapid, unrecoverable failure. In the second case, 

changes in the hidden layer results in an alternative route to convergence, 

requiring longer training, before final non-convergence occurs. In Fig 4.7, the 

results from the 100 trials are split between these two cases for large overlap 

which explains the overall nature of the graph. In both Set (a) and Set (b), 

small overlaps, up to 0.5 have little effect on the way the solution is found, 

which is an interesting and beneficial result. 

In the light of these results it appears that the neural network is highly tolerant 

to the mixing of hidden layer neuron outputs for the three bit parity problem, 

and it is noteworthy that even for a large overlap the network can still 

converge to the correct solution, albeit in a smaller number of cases. 
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4.4.2 Text-to-Speech using Floating Point Weights 

The second network implementation was for a larger problem, involving a 

larger number of hidden layer neurons. A network similar to the NETtalk text- 

to-speech architecture of Sejnowski and Rosenbere-3' was chosen because 

of the network's proven ability to generalise for unknown input data. (Learning 

of the above parity problem cannot be used to examine generalisation because 

the entire set of input/output patterns must be used to train the network 

correctly). NETtalk cannot be described as a state-of-the-art system, since it 

relies only on statistical pattern recognition, and is lacking in the 

morphological analysis and other higher level knowledge bases present in more 

advanced systems"41, but it is useful as a demonstration of a typical 

application for neural networks and gives an insight into how internal 

representations are formed in hidden layers'" 1. NETtalk was a multilayer 

perceptron network trained to learn text-to-speech conversion by training on 

example pairs of letter and phoneme data from English text, using the 

backpropagation algorithm The input data was presented as a window of seven 

characters which was moved along the running text. The network was trained 

to pick out the correct phoneme for the central letter of the seven, the other 

letters being used to provide a context for the transcription. Fig 4.14 shows a 

schematic of the NETtalk architecture. In this implementation` 1a 196-100-46 

network was used, which is different to NETtalk only by virtue of how the 

training data was obtained. 

The inputs consist of 7 groups of 28 bits, of which one bit in each group is a 
'1' and the rest '0'. The ' 1' represents the selection from a set of 28 possible 

characters, the 26 letters of the alphabet plus 2 for punctuation. Hence, only 

seven of the inputs are ' 1' for any input pattern. A hidden layer of 80-120 
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neurons has been found necessary to be able to capture the regularities in 

English text, so 100 was chosen for this application as a trade-off between 

performance and training speed. The phoneme classification was made by 

selection of one of a representative set of 46 phonemes. 

PHONEME 

/ 

000000000 

000000000000000 000000000 

0000 0000 0000 0000 0000 0000 0000 

a-c a t- 
TDR 

Fig 4.14 Schematic of NETtalk Architecture (after 
Sejnowsld and Rosenberg) 

The network was trained using words from a file of text containing 566 of the 

most commonly written American-English words, obtained from the statistical 

analysis of Brown's Corpus by Kucera and Francis' 
, and phoneme data 

derived from a specially designed computer program based on the letter-to- 

phoneme rules of Elovitz et at4"281. The final training set consisted of 2856 

letter to phoneme mappings, one for each letter of the 566 words placed 

centrally in the seven character window. The 46 output neurons classified the 

phonetic translation of the input data using a slightly extended set of the 

International Phonetic Alphabet. The extension was necessary because in some 

cases, single letters mapped onto two consecutive phonemes in Elovitz's rules, 

which cannot be handled by a network which is capable only of one-to-one 

mappings. It was therefore necessary to invent extra 'compound' phonemes. 
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It was decided not to be overly concerned with obtaining good performance 

of the rule-based program in producing 'correct' spoken English for every 

word, since the aim of the exercise is not to produce the best text-to-speech 

system, rather to test the effect of overlap on a large neural network. All data 

produced by the rule-base can be treated as correct for the purpose of training 

the neural network, since the performance of neural network can be measured 

against the rule-base data, correct or otherwise. 

A few initial trials with zero overlap were done to find an optimum learning 

rate and momentum, which were found to be 0.9 and 0.0 respectively. An 

output activation tolerance of 0.3 was chosen. For each value of overlap, the 

network was trained starting with the same (initially random) weights file, and 

the number of patterns learnt after each pass of the data set was recorded for 

80 epochs. 

Percentage of Patterns Learnt 

100 

80 

60 

40 

20 

Fig 4.15 Learning curves for text-to-speech showing overlap dependence 
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Fig 4.15 shows the learning curves obtained. Even without overlap, the 

network was unable to learn the entire training set in 80 epochs. The reasons 

for this are as follows. Firstly, two of the words in the training set, 'Thought' 

and 'Though', cannot be distinguished by this method using only a seven 

character window. Secondly, the network learns to distinguish between 'c', 's' 

and 'z' sounds fairly late on in the training run, and does not achieve the 

correct results for all words at 80 epochs. This second case could have been 

overcome by further training, but it was decided that to do this for all trials 

would not warrant the extra computer processing time required. 

The learning curves for the network with overlap, and the network with zero 

overlap, are almost indistinguishable for overlaps up to 0.3. The performance 

of the network is then seen to degrade gracefully up to an overlap of 0.5. At 

0.5 overlap a slight peak in the percentage of patterns learnt is noticeable at 

about 50 epochs after which the number learnt decreases slowly. The network 

failed to converge at an overlap of 0.6, and the number of patterns learnt 

decreased rapidly to zero after pealing at about 17 epochs. 

Generalisation for unknown inputs was then tested, for the values of overlap 

up to 0.5. For each input pattern, the 'correct' phoneme was chosen as the 

output neuron with the largest activation. The network was tested initially on 

the original training set for each value of overlap, using the final weights learnt 

in the first part of the simulation. A 720 word sample of text containing words 

not in the original training set was then tested on the network and the 

percentage of correct letter-to-phoneme transcriptions was recorded. Fig 4.16 

shows the results obtained for the generalisation experiment. From the graphs 

93 



CHAPTER 4 SOFTWARE SIMULATIONS 

it is clear that the neural network performance degrades as the fractional 

overlap is increased, both for the original training set and the new data. 

However, significant degradation occurred only for overlaps greater than 0.3, 

as was the case for the parity simulations. 

Percentage Correct Transcriptions 

100 

90 

60 

40 

2C 

Fig 4.16 Generalisation results showing variation with overlap 

4.4.3 Text-to-Syeech using Quantized Weights 

It has been discovered that the gradient descent algorithms are very sensitive 

to quantization of weights values during learnine16-'I. As explained earlier 

(Section 2.2.5, p26), quantization is almost inevitable in both analogue and 

digital implementations of neural networks. The most damaging effect of 

quantization is the truncation of weight updates to zero. In chip-in-the-loop 

training, the weight update may be calculated using floating point arithmetic. 

However, the update may be transferred to the chip only if it is equal or 

greater than the least significant bit (LSB) of the stored weight. Thus it is 
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necessary to consider the combined effects of weight quantization and overlap 

on neural network learning, and to discover if either has a dominant effect. 

Typical weight quantization in analogue neural networks is 12 bits or less. 

Therefore the text-to-speech simulations were repeated for 12,10, and 8-bit 

quantization of weights. In addition a probabilistic update strategy, 4"30' was also 

tested for the 8-bit case, whereby a weight is updated by one LSB with 

probability Aw/LSB, if the calculated weight update Aw is less than the LSB 

value. 

Quantization as used in the simulations is defined as follows. Firstly the 

integer part of each weight is clipped to ±16, using 5 bits. This choice is made 

on the basis of the weight ranges required by floating point simulations. The 

remaining bits are available for the fractional part. Thus the LSB values of 12, 

10 and 8-bit weights are 1/128,1/32,1/8 respectively. 

The Pascal code was first ported to C to take advantage of newer Sun 

workstation performance, and then modified in two ways. The random weight 

generation procedure was altered to introduce quantization to the initial random 

weights file. The weights are generated, as before, as real numbers in a fixed 

range after which each value is quantized. In C this is easily done by 

multiplying a real valued weight by the LSB denominator (i. e. 128,32 or 8), 

converting to integer type, converting back to real, then finally dividing by the 

same LSB denominator. Since the magnitudes of initial weights are much 

smaller than 16, clipping is not necessary. 

The same procedure is also carried out for each weight update during learning. 

Furthermore each updated weight value is checked to see whether it is now 
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greater then 16, or less than -16. If so, the value is clipped. The above 

procedure ensures that weights continue to be quantized throughout learning. 

In order to implement probabilistic update for the 8-bit case a random number 

is generated in the range 0 to 1/8. If this number is less than the magnitude of 

the calculated update, the weight is updated by one LSB in the direction of the 

calculated update, otherwise the weight is not updated. 

Simulations of text-to-speech learning were carried out as follows. For each 

value of overlap from 0.0 to 0.5 at intervals of 0.1, the network was trained 

for 80 epochs on the training set used in the previous section. The fully 

floating point simulation was repeated first, since a different initial random 

weights file was used. Next, weights were clipped to ±16 but were not 

quantized. Then, various levels of quantized weights were used with 12,10 

and 8 bits. Finally the 8-bit with probabilistic update simulation was 

performed. During each training run, the number of patterns learnt, MSE, 

maximum and minimum weights, mean and standard deviation of the weight 

set, and the average number of zero weight updates per epoch, were monitored. 

The generalisation simulation was then carried out for each network. Graphical 

results for the learning and generalisation simulations are shown in Fig 4.17 

and Fig 4.18. Fig 4.19 shows the data obtained from monitoring the learning 

simulation. 
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Fig 4.17 Text-to-speech learning with overlap for various degrees of 
weight quantization 

x Patterns correct 
100 

eo 

50, 

40 

20 

OR- lot 
p 0.1 0.2 0.3 0.4 0.5 0.6 

Fractional Overlap 

-'- FIYKInt Point W Clipped N-16 It bit 

-e- 10 bit " bit 6 bit " dab. Isst. 

Fig 4.18 Text-to-Speech generalisation with overlap for various degrees 
of weight quantization 
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Fig 4.19 Table of data measured after training text-to-speech for 80 epochs 

Description Overlap Final 

MSE 

(x10a) 

Maximum 

Weight 

Minimum 

Weight 

Mean 

Weight 

Standard 

Deviation 

of Weight 

Set 

% Zero 

Updates 

Floating 0.0 0.47 172.16 272.24 -0.187 7.579 0 

Paint 

Weights 
0.1 0.72 620.13 -438.88 -0.263 11.747 0 

02 0.93 640.82 -506.52 -0.074 16.221 0 

0.3 0.76 664.95 -363.03 -0.349 14.060 0 

0.4 1.65 390.93 -667.03 -0.284 16.411 0 

0.5 3.92 2003.43 -772.78 -0281 26.2076 0 

Floating 0.0 0.52 16.00 -16.00 -0.242 4.780 0 

Paint 

Wem, 
0.1 0.63 16.00 -16.00 -0.273 4.874 0 

Clippw 0.2 0.80 16.00 -16.00 -0.262 5.364 0 

+/-16 0.3 1.18 16.00 -16.00 -0.314 5.920 0 

0.4 138 16.00 -16.00 -0.379 7.615 0 

0.5 4.70 16.00 -16.00 -0.311 9.815 0 

12-bit 0.0 1.86 16.00 -16.00 -0.118 3.844 98.45 

Qwmdzad 
0.1 2.35 16.00 -16.00 -0.093 4.200 98.61 

0.2 338 16.00 -16.00 -0.108 3.907 98.88 

0.3 2.80 16.00 -16.00 -0.104 5.078 98.64 

0.4 4.00 16.00 -16.00 -0.174 5.949 98.87 

0.5 6.45 16.00 -16.00 -0.068 4.660 98.86 
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Fig 4.19 Table of data measured after training text-to-speech for 80 epochs 

(continued) 

Description Overlap Final 

MSE 

(x103) 

Maximum 

Weight 

Minimum 

Weight 

Mean 

Weight 

Standard 

Deviation 

of Weight 

Set 

% Zero 

Updates 

10-bit 0.0 4.20 16.00 -16.00 -0.135 2.991 99.84 

Qaantized 
0.1 4.52 16.00 -16.00 -0.100 3.096 99.84 

0.2 5.52 16.00 -16.00 -0.100 3.100 99.88 

03 5.58 16.00 -16.00 -0.048 3517 99.86 

0.4 1750 16.00 -16.00 -0.071 3.477 99.83 

0.5 28.76 16.00 -16.00 -0.056 3.372 99.86 

8-bit 0.0 0.81 16.00 -16.00 -0213 6.207 99.73 

Qtumfised 

+Pmbabala 
0.1 0.86 16.00 -16.00 -0.236 6.279 99.75 

-tic update 0.2 1.07 16.00 -16.00 -0.254 6.663 99.74 

03 1.46 16.00 -16.00 -0.276 7.078 99.74 

0.4 1.73 16.00 -16.00 -0384 7.883 99.73 

05 3.99 16.00 -16.00 -0229 9.180 99.64 

It can be seen from the graphs and data that both learning and generalisation 

are severely affected by quantization. Weight clipping by itself only reduces 

the percentage of patterns learnt by around 1% at all values of overlap used, 

and a similar percentage for generalization. But with 12-bit quantization, the 

percentage of zero weight updates are nearly 99% and reduction in percentage 

patterns learnt is 10-20% for all values of overlap. For 10-bit weights, the 
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percentage of zero weight updates is over 99.8%, and the reduction in 

percentage patterns learnt is 30-40% up to an overlap of 0.3, above which 

rapid failure ensues. With 8-bit quantization the number of zero updates is over 

99.9%, such that learning is impossible for any value of overlap. With 8-bit 

probabilistic update however, the results are much better, with a reduction of 

only 2% in the percentage of patterns learnt for all values of overlap, even 

though the number of zero weight updates is nearly the same as in the 10-bit 

case. 

From this data it appears that quantization has the dominant effect, causing a 

severe reduction in performance in both learning and generalization ability. 

The overlap has a consistent effect, which is to further reduce performance of 

both learning and generalisation. The added effect of overlap is more marked 

as quantization is introduced. However with probabilistic update, the results 

show that the backpropagation algorithm has a good tolerance to overlap which 

is similar to that achieved in simulations with floating point weights. 

It is also noted that the standard deviation of the weight set for the 8-bit 

probabilistic update simulation is no larger than that of the floating point 

algorithm without overlap (which was used to determine a suitable weight 

range) for overlaps up to 0.3. In these cases, more than 95% of weights have 

magnitudes less than 16, which justifies the weight range chosen. 

4.4.4 Five Bit Parity comparing Backurovaaation and Weight Perturbation 

In order to compare the performance of backpropagation and weight 

perturbation algorithms with weight quantization and overlap, a 5-10-1 MLP 

network was trained to learn 5-bit parity. A new problem was chosen for two 
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reasons. Firstly, the 3-bit parity network was considered too trivial for an 

adequate comparison. Secondly, it was not feasible to repeat the text-to-speech 

training with weight perturbation, because of the large number of weights in 

the text-to-speech network which would require an excessive amount of time 

to train. 

A few initial training runs were carried out to find the optimum learning rate 

for the learning of all 32 binary patterns, which was found to be 1.0. 

Momentum was not used since it is unlikely to be employed in on-chip 

training algorithms because of the extra memory required. The existing weight 

range of ±16 was found to be adequate for the simulations - none of the 

weights were clipped in the initial training runs. 

Floating point backpropagation was first compared with weight perturbation 

using a very small perturbation of 0.0001. Backpropagation took 2715 epochs 

for complete convergence, and weight perturbation took 14595 epochs, which 

Mwn epUM-w MT-W 
0.1+ 

0.42 

0.1 

0.09 

0.0 

0.04 

a. 02 

Epochs Clbrk. d every 50) 
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Fig 4.20 Learning Trajectories for 5-bit Parity comparing Backpropagation 
and Weight Perturbation with a small perturbation Aß. 0001 
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was surprising since the results were expected to be the same. However the 

reason for this is seen by comparing the learning trajectories as shown in Fig 

4.20. The trajectories are plotted up to the point that the backpropagation run 

converged, using an output activation tolerance of 0.1. Although the learning 

trajectories are almost identical to begin with (less than 0.2% difference after 

200 epochs) as expected due to the close approximation of the error gradient 

when a small perturbation is used, the learning trajectories are then seen to 

diverge. This suggests that learning of 5-bit parity is very sensitive to small 

differences in weight values. 

The size of perturbation was then increased to 0.125 which is the size of the 

LSB for an 8-bit quantized weight, and is about 1% of the maximum weight. 

The increase in perturbation size is necessary to test the effect of quantization, 

since it must be at least as big as the maximum LSB value used. This new 

value of perturbation was used in all subsequent simulations. 

The training was repeated for values of overlap from 0.0 to 0.5 at intervals of 

0.1, using weights clipped to ±16, then 12,10, and 8-bit quantized weights, 

and finally 8-bit weights with probabilistic update. The results from the 

simulations are shown in Fig 4.21, which gives the number of epochs required 

to train the network to correctly classify all 32 patterns, where possible. The 

numbers in brackets denote the number of patterns learnt after 30000 epochs, 

if the network did not converge. 

For backpropagation the overall results are comparable to those for text-to- 

speech, in that performance is severely reduced by quantization. 
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Fig 4.21 5-bit Parity Results 

(a) Backpropagation 

Overlap 

0.0 0.1 0.2 0.3 0.4 0.5 

FP Clipped 

+1-16 

2715 4924 3256 (29) (24) 4968 

12-bit (24) (6) 1493 1531 (25) (28) 

10-bit (10) (0) (0) (9) (1) (3) 

8-bit (0) (0) (0) (0) (0) (0) 

8-bit + 

prob- 

romAing 

3419 5447 1816 1120 5573 (26) 

(b) Weight Perturbation 

Overlap 

0.0 0.1 0.2 0.3 0.4 0.5 

PP Clipped 

+/- 16 

11708 2272 1775 1832 2082 3312 

1 2-bit t (26) 1317 (25) (26) (21) (2) 

10-bit (0) (0) (7) (2) (8) (10) 

8-bit (0) (0) (0) (0) (0) (0) 

8arit+ 

Pich 

romfing 

(30) 2410 9024 10600 10963 4309 
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For the floating point simulation, the network is able to converge for values 

of overlap up to 0.2 but the number of epochs required is increased over that 

for zero overlap. Strangely, the speed of convergence is increased for 12-bit 

quantization but this is only achieved for overlaps of 0.2 and 0.3. The network 

fails to converge for 10-bit and 8-bit quantization. However, for 8-bit 

quantization with probabilistic update, the network is able to converge for 

overlaps up to 0.4 at a rate which is sometimes faster and sometimes slower 

than in the corresponding floating point simulations. 

In the case of weight perturbation, the qualitative results are similar, with 

reduced performance at 12-bit quantization, and no convergence for the 10-bit 

and 8-bit simulations for any amount of overlap. However, with clipped 

weights, the network converges for all overlaps up to 0.5, and at a much faster 

rate than the case with zero overlap. The 8-bit probabilistic update simulation 

converges for all overlaps except zero. 

on this limited amount of data, it is only possible to draw general conclusions 

and to make some speculations. Firstly both training algorithms exhibit a 

tolerance to overlap for both the floating point and 8-bit probabilistic update 

training runs, but this tolerance is not as good as for the text-to-speech 

problem. The reason for the poor performance of weight perturbation at zero 

overlap cannot be explained at this time. However, it is interesting to note that 

the networks trained by weight perturbation converged more consistently at 

higher overlaps than by backpropagation. This may have something to do with 

the fact that the learning phase for weight perturbation explicitly incorporates 

the effect of overlap, since calculation of the perturbed MSE involves a recall 

phase. This may be seen as further evidence of the tolerance of weight 
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perturbation to particular constraints imposed by hardware implementation. 

4.4.5 Discussion 

Different simulations were carried out to investigate the effect of the mixing 

of hidden neuron outputs, in order to simulate the band overlap which would 

occur between the frequency responses of closely spaced filters in the proposed 

frequency division multiplexed communication system between neural layers 

in a neural network. 

The effects of gradual degradation on the ability of the backpropagation 

algorithm to train a neural network has been investigated by examining the 

weights values learnt, as overlap was increased, in the 3-bit parity problem. It 

was seen that failure to converge is due to the training of weights (or 

thresholds) in the wrong direction, due to the modification in the outputs of 

neurons by others. Failure may occur in either the hidden layer or the output 

layer. In the 3-bit parity simulations, it was shown that the network may find 

an alternative path to convergence when constrained by overlap. This is not 

necessarily a desirable feature and it would not be wise to implement a 

network architecture using such a high degree of overlap, but it is interesting 

that an alternative method was found by the network for solving the parity 

problem, which would not have been found without the additional constraints 

being present 

The results of the text-to-speech simulations using backpropagation with 

quantized weights, suggest that weight storage on-chip may be quantized to 8 

bits without a severe loss in performance, provided a probabilistic update 

strategy is used in the chip-in-the-loop training. The reduction in the 
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percentage of patterns learned using 8-bit weights and probabilistic update with 

an overlap of 0.3 is only 5%, compared to the fully floating point simulation 

with no overlap. 

The results from the comparison of backpropagation with weight perturbation 

learning 5-bit parity are somewhat less conclusive. However, it is clear that a 

probabilistic update strategy must by employed in either algorithm, in order for 

the network to converge consistently with quantized weights. 

Although it is not possible to say with certainty that the algorithms will exhibit 

a similar degree of tolerance for other problems, some tolerance to overlap is 

probable, since the mechanisms for compensating the overlap errors will be 

similar. The tolerance to overlap exhibited by the networks and algorithm 

justifies the proposed use of moderate degrees of overlapping of filter 

responses in the implementation of FDM communications. An overlap of 0.3 

appears to be an upper limit for minimal degradation. This will allow the use 

of lower Q filters, and/or increase the number of signals able to be transmitted 

in a given bandwidth. 
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CHAPTER 5- VLSI IMPLEMENTATION OF FDM 

This chapter turns to the VLSI part of this thesis, starting with remarks on the 

use of SPICE simulation for analogue VLSI design. The next section discusses 

techniques for minimising the effects of fabrication process variations. This is 

followed by a brief introduction to filter and oscillator VLSI design using 

Operational Transconductance Amplifier (OTA) building blocks. The design 

of a CMOS differential OTA chip is then presented, including a description of 

the route through to fabrication and testing. Simulation results using the OTA 

in filter and oscillator circuits are also presented. The remaining sections of the 

chapter cover tuning techniques needed to ensure matching of frequencies 

between chips, and the specification for VLSI implementation of the FDM 

communications. 

5.1 Simulation Issues in Analogue VLSI 

Whereas many high level simulators exist for digital systems, the device level 

simulator, SPICE (including variants HSPICE, PSPICE), is still the accepted 

tool for use in most analogue circuit designs. This is because analogue design 

is much more susceptible to the characteristics of particular devices, making 

'black-box' behavioral modelling much less straightforward. This is also true 

for analogue VLSI design. There are numerous SPICE transistor models of 

varying accuracy suitable for analogue VLSI, which use as input, process 

parameter values supplied by the chip manufacturer. Since the exact values of 

transistor parameters are important in defining analogue operation, any 

inaccuracies or variations in the SPICE parameters can have a significant effect 

on performance. Passive components are also a problem for analogue VLSI 
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simulation. In the case of on-chip capacitors or resistors, these are as much 

subject to process effects as transistors, but they are not modelled as such by 

SPICE. 

When compared to digital, analogue VLSI circuits are much more sensitive to 

the exact layout of the components. Layout is more involved than in digital 

systems, where it is often possible to use the schematic information to 

accomplish layout automatically. Gate arrays and standard cell libraries are 

readily available. In contrast, high performance analogue circuits often require 

a full custom layout. Some layout information may be back-annotated into 

SPICE after layout (such as MOS transistor source/drain dimensions), and a 

more accurate simulation can then be carried out. Even so, this approach may 

result in a circuit being rejected after the lengthy design and layout procedure, 

for other reasons. Fabrication variations can cause mismatch in components on 

chip, and variations from chip to chip, which are difficult to include in 

simulations. A further problem for system level simulations is lengthy 

simulation times, although this may be overcome if higher level sub-circuit 

models are available. 

In the light of these problems, it is often desirable to try to minimise and 

cancel out vors where possible by careful design, rather than attempt to 

simulate the devices more accurately. In addition, where absolute component 

values cannot be guaranteed, adaptive methods can be used to ensure accurate 

performance of the system. This is the approach taken in the work to be 

described in this chapter, since the accuracy of simulation possible was limited 

by the availability of process data from the foundry. 
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5.2 MOS Process Variations, Temperature Gradients, and their Effects on 

Analogue Circuit Design 

5.2.1 Process Variations 

With the increasing trend towards mixed analogue and digital integrated 

circuits and the use of CMOS technology, it is usually necessary to design 

analogue VLSI circuits capable of being manufactured using a digital CMOS 

process. It is important to have an understanding of the uncertainties in the 

fabrication process and to be able to analyse the effect of these variations on 

circuit parameters, thus making it possible to minimise errors. 

It is generally accepted that the uncertainties in the absolute values of MOS 

passive components or transistors are around 10%, mainly due to variations in 

oxide thickness and doping in the fabrication process. In the case of integrated 

RC filters, Gregorian and Teures point out 11 that the combination of errors in 

resistor and capacitor values lead to overall errors of around 20% in RC time 

constants, since resistors and capacitors are produced in different IC processing 

steps, so that errors are independent. This magnitude of error is clearly 

unacceptable even for low selectivity filters or oscillators. 

Relative errors between similar components on the same chip however, are not 

as serious, since process variations have a more uniform effect on similar 

components, resulting in a good matching characteristics. J. this case, it is the 

accuracy of the ratio of component values which must be considered. The 

error in this ratio is called the tracking error which is around 1% for a typical 

process, an order of magnitude lower than the absolute error. The same ratios 

are also reproducible on chips from different wafers, even though the absolute 
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values may be very different. 

Some matching is also to be expected over a single wafer, and errors may be 

smaller than those between chips on completely different wafers. However, for 

a large number of chips, some will inevitably be on different wafers so it is 

not really sensible to rely on matching except for components on the same 

chip. 

The main causes of physical fabrication errors in addition to variations in 

oxide thickness and mobility, are mask undercut and random errors. Additional 

errors are due to parasitics such as stray capacitances. The effects of these 

depend very much on the physical geometry of the device. 

Gregorian and TemesE511 discuss all these effects on integrated MOS capacitors. 

Undercut is the lateral etching which occurs at the same time as the desired 

vertical etching through a mask in the manufacturing process. The reduction 

in area leads to a reduction in C, which depends on the perimeter of the 

component. The smallest practical perimeter-to-area ratio is best achieved by 

making the capacitor square. In addition, the capacitance is subject to a 

random variation, due to uneven edges of both the masks and the materials 

deposited, caused by non-uniform etching. The effect of the random errors is 

such that an 8-bit accuracy in the absolute value is the best that can be 

expected from the processes 21. Values for bottom plate stray capacitance are 15- 

30% of C for metal/poly over diffusion capacitors depending on oxide 

thickness and the construction of the device, and 5-20% of C for poly-over- 

poly and metal-over-poly devices. Poly-over-poly capacitors are generally 

preferred due to the uniformity of the oxide layer which can be achieved 
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between polysilicon layers. 

Minimum tracking errors are obtained by ensuring a constant ratio of area to 

perimeter, and a uniform etch around the capacitor plates"". In practice this 

means designing a small unit capacitor square, and combining squares in rows 

and columns to obtain higher values, since the amount of under-etching will 

be approximately the same for each square. 

Common centroid layout154,51 is used to make a layout insensitive to first order 

variations, by distributing the component topology and using symmetry to 

cancel out the errors, using the fact that process parameter gradients across 

chip (e. g. oxide thickness) are approximately constant over small distances. 

Sensitivity analysis is often used to quantify the effect of mismatch or 

temperature gradient on system design parameters, such as frequency or Q in 

filters, where sensitivity is defined as the relative change in a parameter due 

to a change in a component value. Conventional design aims to minimise 

sensitivities whilst satisfying the specification. In the case of common centroid 

layout, it is not necessary to know the absolute value of the sensitivities 

because they cancel out. 

According to Eric Vittozts'63, the main mismatch in transistors can be described 

by the variation in the threshold voltage and transconductance parameter. The 

effect on circuit parameters depends on the circuit configuration. 
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In order to minimise mismatch, Vittoz summarises the following rules for 

layout of analogue components (both active and passive) to be optimally 

matched. 

VITTOZ'S RULES FOR OPTIMAL 
MATCH NG IN ANALOGUE LAYOUTS 

1. Same structure 
2. Same area 
3. Same shape, same size 
4. Minimum distance 
5. Common-centroid geometries 
6. Same orientation 
7. Same surroundings 
8. Non minimum size 

5 . 2.2 2 Temperature Gradients 

Temperature differences between different parts of a chip, can also lead to 

mismatch. The values of temperature coefficients for component values may 

be very small (e. g. 20ppm/C for capacitors), but temperatures may be high, 

especially close to high power devices such as output transistors. To reduce 

these effects common centroid layout can be used in the same way as for 

process variation. In addition, matched components should be placed close 

together, have similar surroundings, and should be as far as possible from 

output transistors. 

5.3 Operational Transconductance Amplifiers 

The operational transconductance amplifier (OTA), or voltage-controlled 

current source (VCCS), has gained increased popularity in analogue circuit 

design in recent years. Neural network designers also, have not failed to notice 
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the advantages of using OTAs in analogue implementations [5. '_l0 
, and it is in 

this spirit that the use of the OTA is proposed as the building block for the 

FDM circuitry. The subsequent sub-sections introduce the use of OTAs in filter 

and oscillator circuits and explain the need for linearising techniques. 

5.3.1 OTA Based Filters and Oscillators 

The OTA symbol and equivalent circuit are shown in Fig 5.1. The transfer 

function i.. /v;, is determined by the small signal transconductance gain gm. Cm 

and go are the lumped input capacitance and output conductance, which model 

the main parasitics, but will be neglected at this stage. 

gout 

Vin 9m 

i out 

vin Cis 9 9o 

.T 
M$ y 

Fig 5.1 OTA Symbol and Equivalent Circuit Model 

Initial research using the OTA as a building block for filter and oscillator 

circuits has been proposed and carried out by several groups, initially using the 

commercial CA3080 IC, and more recently using specially designed OTAs. 

H. S. Malvarý5 "1 used the differential CA3080 in the place of analogue 

multipliers to synthesise a second order bandpass filter configuration (Fig 5.2). 

Malvar combined the OTA with a fixed capacitor load C to form an integrator 

building block with transfer function H(s)=gm/sC. The integrators were used 

to replace the fixed integrators of the usual biquad circuit, and a third OTA of 

gain gq was used to control the Q of the filter independently of w,. The gm 

and gq are, in turn, controlled by the respective external currents Is and IBQ. 
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Is 

VLP 

Fig 5.2 OTA based filter with Q control (after Malvar 
1982) 

The resistors Rl and KR, were used for attenuation to ensure linear operation, 

since the CA3080 is only linear for a small input range. This should be 

contrasted with the performance of filter circuits using conventional op-amps, 

which are highly linear, but cannot be easily tuned electronically. 

A. R. Saha et aP'22 describe an RC sinewave oscillator using differential OTAs 

shown in Fig 5.3. The oscillation condition g jý: 1 is controlled by gm, and the 

oscillating frequency w,, =g. N{C1C2(1+R/r)} is controlled independently using 

resistor K Advantages of this configuration were reported as low component 

count, low sensitivity and simple control of frequency by a single resistor. The 

use of low valued, grounded capacitors also make it more suitable for IC 

fabrication. 
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/Ota 

1 

Fig 5.3 Sine-wave oscillator with 
single resistor control (after Saha 1983) 

Later work has concentrated on eliminating resistors from designs. This 

simplifies the IC fabrication, and also makes possible fully integrated MOS 

implementations which can exploit the advantages of on-chip capacitors and 

good device matching. In his subsequent paper on the subjectis'13i, Malvar 

describes a biquad filter structure using only OTA and capacitor components, 

which he called an Active-C (now more often termed OTA-C) implementation. 

This circuit was also built using CA3080 devices. In their tutorial pap&5141, 
Geiger and Sanchez-Sinencio describe a wealth of circuits using OTA building 

blocks, including several second order filter sections using two or three OTAs. 

Fig 5.4 shows a bandpass filter from this paper using two grounded capacitors 

and three OTAs with 0)1=sl(gm, gm2/C1C2) and Q=-1/gm3 AgmIgm2C jCl)" 
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out 

Fig 5.4 OTA-C bandpass filter (after Geiger 1985) 

Many more OTA based filter circuits have since been proposed, some designed 

by converting well known active RC circuitsP15 " 

/Out 

Fig 5.5 Resistor-less sinusoidal oscillator with low 
component count (after Senani 1989) 

Abuelma'atti and Ahnaskatits 171 and Senanils"181 both describe OTA-C 

oscillators using only OTAs and capacitors. Senani's circuit, shown in Fig 5.5, 

in particular is ideal for integration since it uses only three OTAs and two 

grounded capacitors, whilst still allowing independent control over frequency 
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w. =4(gm1gm, JC1C2) and oscillation condition Cgra2>CIgm3. A technique for 

generating all possible OTA-C sinusoidal oscillator structures employing two 

capacitors has also been reported, some being suitable for integratiods191. 

To date, the latest research in OTA based filters and oscillators has 

concentrated on adaptive tuning methods (see later), design techniques for 

achieving ever higher resonant frequencies15 20.21], and improvements in OTA 

design, particularly in CMOS technology. 

5.3.2 Design of Linearised MOS Transconductors 

The simplest CMOS differential OTA is the standard op-amp input stage which 

is constructed from a source-coupled differential pair with differential-to-single 

ended conversion using a current mirror load (Fig 5.6). 

V 

vini 

_ss 

Fig 5.6 Basic CMOS 
Transconductance Amplifier 

Large signal analysis of this circuit using the square-law relationship for MOS 

transistors shows that the dynamic range is limited to 20% of the supply 

voltage in order to maintain less than 1% non-linearity, measured as percentage 
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deviation from ideal output for a given gain and input voltage1s-22]. The non- 

linearity is caused by the transistors going out of the saturation region. 

Non-linearity in analogue signal processing systems causes harmonic distortion 

(mainly third order), and the creation of intermodulation products. It can be 

shown that the input range must be limited to 40% of supply in order to 

achieve a Total Harmonic Distortion of less than 1%. For these reasons, 

linearisation of OTA circuits is highly desirable, and is the subject of much 

fruitful current research often directly related to filter and oscillator 

2"35] designts' 
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5.4 OTA Design and Simulation 

5.4.1 Route to Silicon 

It was decided to design an OTA using techniques which would yield a 

compact yet linearised design, which would be able to be used in filter and 

oscillator configurations" IC design fabrication facilities were provided 

through the Esprit/EUROCHIP scheme, using the CMOS 2.4pm n-well 

Double-Layer-MetalDouble-Layer-Polysilicon (DLM/DLP) process of Mietec 

in Belgium. HSPICE and Mentor Graphics CAD software were available for 

simulation and layout. 

The CAD route is described as follows. The initial design was simulated using 

HSPICE. Mentor Graphics NETED schematic entry was used and designs were 

simulated using ACCUSIM, the Mentor SPICE simulator, using the SPICE 

MOS transistor Level 2 parameters provided in the Mieter documentation. The 

graphical input of the netlist using NETED was preferred over the HSPICE 

netlist entry. Final checking was done using HSPICE, also with Level 2 

parameters, carried out by exporting the SPICE file from ACCUSIM. Level 3 

MOS transistor parameters were not available until after fabrication. 

Since compact circuitry was required, it was decided not to use the Mietec 

Analogue Standard Cell Library throughout and opt instead for a full custom 

design. In addition, the lack of any simulation models for the analogue core 

cells would have made accurate design difficult, if not impossible. It was 

however decided to use the standard cell I/O pads to speed up the design 

process. The initial layout was drawn up on paper which was transferred to 

software using Mentor CHIPGRAPH together with mask definitions contained 
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in the Mietec Design Kit software supplied by Eurochip. Design-Rule- 

Checking (DRC) files for use with the Mentor REMEDI DRC package were 

not available as part of the first release of the Design Kit. Therefore all DRC 

for the chip was done using the Mietec design rule document at the layout 

stage, and then by the lead-site at Rutherford Laboratories using the automatic 

design rule checker, DRACULA. 

5.4.2 Circuit Design 

The linearisation technique used was the Bias Offset technique of Wang and 

Guggenbiihl 2 -", which uses the square law characteristics of MOS transistors 

in saturation to synthesise a linear transfer function. Manipulation of the 

square-law has been used by numerous researchers to eliminate unwanted 

terms in the construction of building blocks for analogue computation, 

including the author of this thesisis']. Fig 5.7 shows the OTA architecture as 

proposed by Wang, using identical nMOS transistors for both the differential 

pairs and the voltage shifters. In the diagram, I. is the value of the current 

source, V,. is the input voltage, and Vb is the bias offset voltage. Il and 12 are 

the output currents. 

It can be shownts*2'281 that the output currents of the cross coupled pairs are, 

11 22 12= 
KVjVj. C) 

22 

where K=µC01W/L and p, Cam, W, and L are the mobility, gate oxide 

capacitance per unit area, channel width and channel length respectively. 
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The single ended output current is, 

low _ (Il - I2) = KVbVý (5.2) 

The slope of the transfer function is therefore controlled linearly by the bias 

offset Vb, (gm=KVb) and is independent of I. which offers a significant 

advantage over previous designs which control the gain by adjusting the source 

bias current I., in terms of sensitivity and ease of control. Linearity is 

maintained provided all transistors remain in saturation. The range of Vm is 

limited to, 

J['.. 3Vb Vb (5.3) 

K42 

Since K and Vb should be small to maximise linearity for a particular I,,, but 

large to maximise gain, it can be seen that there is a trade-off between gain 

and input range which necessitates careful design of W and L values. 

'M 

Fig 5.7 Linearised CMOS OTA (after Wang 
1990) 
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Designed MOS Transistor Widths and Lengths (miemm) 

MP1-8 MP9,10 ! W11 M212 Mn3,14 MN1-4 MN5 

W 4.8 11.6 240 19.2 4.8 14.4 4.8 

L 4.8 19.2 4.8 4.8 19.2 4.8 9.6 

Lwl I 
Vsb 

iMI 111b MOPG Mº, o 

MP13 i vpT 

Mpg IMP4 

MP14 WI MP2 

V+ 

MPb 

MN5 I MNI 1! 11 MN2 UNS 

Fig 5.8 Monolithic n-well implementation of OTA 
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In the monolithic implementation designed herels-111 for fabrication by the 

Mietet process (Fig 5.8), pMOS transistors (MP1-4) were used for the 

differential pairs since each may be placed in a separate n-well with body 

connected to source, thereby reducing potential distortion due to the body 

effect. Single ended current output was obtained by the use of three current 

mirrors (MN1-4 MP9,10), and a current source was provided by a single 

transistor (MP11), with the current set by a potential divider network (MN5 

MP12-14). The two voltage bias offsets were implemented using transistors 

MP5-8. 
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W/L ratios were calculated using the square-law MOS transistor model. The 

actual W and L values used are shown with the circuit diagram in Fig 5.8. 

Mietec's typical SPICE Level 2 pMOS and nMOS transistor parameters were 

used in the hand calculations, namely transconductances Kp=17pA/V2, 

KN=57pA/V2 and thresholds IVTI=0.9V. V(-5V and V,, =-5V were used. 

The current source L was designed to have a value 15NA when biased at 

Vab=3.5V. The bias network was optimised for low current I=12.2pA, and 

small transistor areas. The gain and saturation conditions were determined 

using the values of K=Kp(W/L) and Vb. Current L,.. in the bias offset 

transistors depends on Vb. Estimated power consumption for the OTA is 

calculated from the total DC current 2L +I+ 21, E = 316µA with 

Vb=1.39V, which gives 3.16mW with a ±5V supply. 

Transfer functions for the OTA were simulated using both SPICE Level 1 and 

Level 2 models using parameters supplied for 'typical', 'slow' and 'fast' 

Mietec processes. The results are shown in Fig 5.9. 

'Slow' models have smaller transconductance gains Kp and KN, and 'fast' 

models have larger gains, with other parameters scaled accordingly. The 

Mietec process has a 2.4pm smallest feature size which is obtained by 

shrinking a 3pm layout by 80%. Therefore all simulations were done using 

multiples of 2.4pm for the W and L values which enabled layout to be carried 

out using multiples of 3pm, thus simplifying layout measurements. An output 

load resistance of 43.8kf2 was used to give a voltage gain close to unity. The 

voltage offset bias of 1.39v used in the simulations gave an estimated 

tranconductance gain of 23.6pA/V, using Level 1 simulation, confirming hand 

123 



CHAPTER 5 VLSI EVIPLEMENTATION OF FDM 

calculations. 

Output Voltage 
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-4 
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Level 1 Level 2 CTyPIcal) 

Level 2C Fest) --- Level 2 (Slow) 

Fig 5.9 SPICE simulation using Level 1 and Level 2 MOS models 

Use of the Level 2 model gave similar results. The small signal 

transconductance gain was 22.6pA/V for the Level 2 (typical) simulation. The 

gains for the Level 2 (fast) and Level 2 (slow) simulations were 26.6pA/V and 

17.8pA/V respectively, which is a spread of approximately ±5pA/V about the 

typical gain characteristic. It was also found that the input referred offset is 

dependent on the process parameters, ranging from -120mV in the 'slow' case 

to 67mV in the 'fast' case. 'Typical' offset was -20mV. In addition to transfer 

function measurements, the variation of DC gain G. with applied absolute bias 

offset voltage VB (so Vb =5- VB) was also simulated. Each gain value was 

obtained by measuring the slope of the voltage transfer function around the 

zero input voltage point, and dividing by the load resistance. Results from this 

simulation are shown together with measured results in Section 5.4.5 (Fig 

5.16). The power consumption using SPICE Level 2 was 3.73mW. 
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5.4.3 Layout and Post-layout Simulations 

The OTA was divided into 3 main sections for the purpose of layout; the OTA 

body consisting of differential pairs and current mirrors, the current source 

transistor, and the potential divider network for biasing the current source. It 

was decided to design these as seperate cells of height 260µm so as to fit the 

Mietec Standard Cell format specified in the Mietec Design Kit. The drawn 

cell width for the cells were 70µm, 40pm and 160pm respectively for the 

current source bias, current source and OTA body. Non-minimum sizes were 

used wherever possible to reduce the effect of area reductions due to mask 

undercut and overetching. Therefore all transistors have minimum drawn 

lengths or widths of 6µm except the current source, which was redesigned to 

length 4.5pm in order to reduce its overall size. The OTA body was designed 

to be as symmetrical as possible, not only in the position of the transistors, but 

also in the connections between them. All pMOS Transistors with different 

source voltages are placed in seperate n-wells with body-to-source connections 

in order to minimise body effect. All nMOS transistors have source-to- 

substrate connections. 

Fig 5.10 shows the 3 cells connected together revealing the compact nature of 

the overall design. The total drawn OTA dimensions are 260µm x 270µm 

which gives a total area after the 80% shrink of 45000pm2. It was noted that 

since the exact size of the current source is not critical, it may be possible to 

use the same current source bias network for several OTAs, with a saving in 

area and power consumption. 

After layout, the MOS transistor source and drain areas were measured, for use 
in AC characterisation. SPICE Level 2 models junction and sidewall parasitic 
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Fig 5.10 Layout of OTA 

capacitance between the source and drain regions and the substrate, requiring 

knowledge of the junction areas and sidewall perimeters. The area is obtained 

from the product of LJ (junction length) and W (transistor width) both scaled 

by 80%, and the perimeter is obtained from 2(L, J+W). Junction capacitance per 

unit area and junction sidewall capacitance per unit length are specified in the 

SPICE parameter list. In addition, parasitic capacitance between the gate and 

each junction due to overlap caused by lateral etching is modelled using the 

undercut parameter LD, and the respective overlap capacitances per unit area. 

The measured drain dimensions were added to the SPICE Level 2 netlist. The 

source dimensions were not used in practice, since the use of substrate 

connections acts to short out any junction capacitances. 
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Fig 5.11 shows the results of the Level 2 AC analysis using the modified 

netlist. It can be seen that the simulation predicts a flat response up to 1MHz. 
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Fig 5.11 HSPICE Level 2 AC Analysis of OTA 

The prototype 40-pin d. i. l. chip 'NEURAL' shown in Fig 5.12 was designed 

to measure the performance of the separate cells (OTA1), and complete OTAs 

constructed by abutment of the three cells (OTA2,3). Also included were 3 

double-poly capacitors of area 6400µm2,25600pm2, and 5760µm2 

corresponding to capacitances of 3.2pF, 12.8pF and 28.8pF respectively. lOpF 

is the typical capacitor value used in subsequent integrator, filter and oscillator 

simulations. 1pF is the smallest practical value limited by parasitic errors. This 

should be compared to the later result given for an OTA loaded only by 

another OTA which has an input capacitance of approximately 10fF. 100pF is 

the largest practical value limited by area. From the Mietec data, the 

capacitance is (0.5±0.1) fF/}un2 (typical) for poly-over-poly capacitors. 

Therefore a lOpF capacitor has an area of 20000pm2. 

A Mieter standard cell library bandgap voltage reference cell (CHBGPC) was 

also included for additional fabrication tolerance testing, since this provides a 
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simple comparison with documented values. Two pins were connected 

internally in order to provide an independent measure of I/O pad capacitance 

if required. Four types of standard cell I/O pad were used. Power pads PFVDD 

and PFVSS were used for the power supplies. Diode protected pads PFPDD 

were used for inputs, except for the capacitors since the use of such pads 

might introduce unwanted parasitic. Direct PFPAD pads were used for all 

outputs and the capacitors. Two pins, In and Out, were connected internally via 

pads PFPDD and PFPAD in order to provide an independent measure of I/O 

pad capacitance. The pins Vdda are separate positive (+5V) power rails, Vssa 

is the negative (-5V) power rail connected to substrate. For each OTA; Vsb is 

a test output to measure the current source bias voltage, Vb is the bias offset 

input, Vminus and Vplus are the inverting and non-inverting inputs, and lout 

is the current output. In OTA1, extra test pins were used; Vsblin and Isslout 

are the current source input and output nodes used for independent 

measurement of the current When Vsblin and Isslout are connected to 

V sb 1 out and Isslin respectively, OTA 1 is architecturally equivalent to 

OTA2,3. C1-3 are the top plates of each capacitor. 
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Pm Name Dae/eim Band Pin Type Pm Name 1a itim Band Pm T )p 

1 Vdda3 OTA3 +5v Sapply I PFVDD 21 VddIk1 OTAI +5v SuFoy 21 PPVDD 
2 Vsb3 OTA3 Bin * 2 PPPAD 22 l Iaat OTA1 Sowoe qp 22 PPPAD 
3 bat3 OTA3 Oatput 3 PPPAD 23 ILlä OTAI Scum j/p 23 PFPAD 
4 Vb3 OTA3 Clan CmaW 4 PPPPD 24 Imtl OTAI Output 24 PFPAD 
S NC Na C r. r -d 25 Vbl 0TA1 Gain Col 25 PPPPD 
6 NC Na Cited 26 NC Na Geed 
7 NC Na C®ected 27 Vmmsl OTAI -ve iipat 27 PPPPD 
8 Vmmm3 OTA3 -w spat 8 PPPPD 28 VpIusl OTAI +ve mpat 28 PFPPD 
9 Vpms3 OTA3 +ve mpm 9 PPPPD 29 Vsblm OTAI Bin äpt 29 PPPPD 
10 ST Vruf Ststop j/p 10 PFPPD 30 Viblaat OTAI Bin q'p 30 PPPAD 
11 Vref Vdtye Ref, q/p 11 PPPAD 31 Visa -ve Supply (-SV) 31 PFVSS 
12 Out OaW Pad 12 PPPAD 32 VpI 2 0TA2 +ve mpt 32 PPPPD 
13 In Ii ist Pad 13 PPPPD 33 Vm®d OTA2 -we iipst 33 P1'PPD 
14 Vddb4 Vref +Sv Soppty 14 PFVDD 34 NC Not Camxrod 
15 NC Na t', wd 35 NC Na '.. -. ' 
16 NC Na t' wd 36 NC Na C®eeed 
17 NC Not C®ecod 37 Vb2 OTA1(3ain Cm4d 37 PPPPD 
18 C3 Capýeioý 80p. 80µ 18 PPPAD 38 Icad OTA2 OaVu 38 PPPAD 
19 C2 C 160p: 16Dp 19 PPPAD 39 Vsb2 OTA2 Bin 4 39 PPPAD 
20 Cl Cýpýcilor 240pz240µ 20 PPPAD 40 Vddm2 OTA2 +5v Supply 40 PPVDD 

NEURAL. IC (EURE 351&_01) 
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Fig 5.12 'NEURAL' IC pin allocation 
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5.4.4 Simulation of OTA Filter and Oscillator Circuits 

Further information is obtained from small signal (AC) analysis at the circuit 

level. Ideally, the OTA is a voltage controlled current source. As stated 

previously, the main non-idealities can be modelled adequately by introducing 

a lumped input capacitance, and output conductance to the ideal VCCS. The 

output conductance can be determined from the small signal values given by 

SPICE, using an integrator circuit, since the combination of output 

conductance and integrator capacitor form a low pass filter. The capacitor can 

be chosen to be much larger than any parasitic capacitances, so that these 

higher frequency poles can be neglected in the analysis. The 'leaky' integrator 

has the amplitude response, 

A(uO = 
gm 

(5.4) 
uoC2 + g0 

where gm and g, are the small signal transconductance gain and output 

conductance respectively. C is the integrator capacitor. The DC voltage gain 

is given by gm/go and the -3dB frequency by gJC. Therefore it is simple to 

obtain gm and go from the SPICE AC analysis. 

Fig 5.13 shows the values of gm and g, obtained for varying values of bias 

offset Vb using a lOpF capacitor. It is clear that the output conductance cannot 

be ignored in the calculation of filter transfer characteristics. There is a small 

variation in go with Vb due to variation in the DC bias point, but the value will 
be assumed constant in the following simplified analysis. 
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Bias Offset V., 
Vohs 

Tnmooadndan 
Gain g. pA/V 

Outp Condudaax 
g,. pAN 

4.0 61.09 11.25 

3.5 61.09 11.25 

3.0 60.27 11.27 

2.5 52.26 11.29 

2.0 43.50 11.33 

13 33.15 11.39 

1.0 22.34 11.54 

Fig 5.13 Small Signal parameters obtained 
from SPICE simulation of OTA-C integrators 

An integrator circuit was also simulated replacing C with an OTA input, in 

order to verify the size of the lumped parasitic capacitance. This was found to 

be of the order of 10fF, too small to be of significance in this analysis. 

Further simulation was carried out for the filter of Fig 5.4 and the oscillator 

of Fig 5.5. Analysis of the filter circuit using the non-ideal OTA as a building 

block results in the transfer function, 

H(s)= 
Cl 8m3 s+ 8o 8m3 (5.5) 

Ci C2 s2+ (Cl g +2C, 80+C2 8o )s + 8mu 8, ßz+280 +8,9=3 

Compared to the ideal case, the output conductance terms cause a lowering in 

the values of Q and centre frequency gain obtained. They also introduce a 
dependence between the tuning of Q and the centre frequency, since g. 3now 
affects the centre frequency. 

131 



CHAPTER 5 VLSI IMPLEMENTATION OF FDM 

Fig 5.14 shows the values of centre frequency and corresponding gains for 

different values of offset bias Vb3 and C2 obtained from both SPICE Level 2 

simulation and analytical determination of the amplitude response using 

equation (5.5). In this simulation Vbl and Vb2 were both fixed at 3V and C, 

was fixed at lOpF. The values of g1 and go used in the calculations were 

obtained from Fig 5.13. The results show that the analytical approach is a 

reasonably good approximation to that of the full simulation approach, when 

the values of gm and go are known. 

Cl. Bias Oct Ba Vb3, 
Vohs 

SPICE Cwae 
FtegomaykBz 

Glcalated 
Cerra 

Frequmcy kHz 

SPICE Cmbe C1 th d 
Ftegomcy Ceare 

Voltage Gain Fregoeocy 
Voltage Gain 

3.0 324 324 0.353 0.351 

1.0 310 312 0.167 0.163 

3.0 1060 1061 0.671 0.650 

1.0 995 1017 0,433 OA04 

Fig 5.14 Comparison of SPICE Level 2 simulations and analytical 
calculations of OTA-C Bandpass filter characteristics. 

For the oscillator, similar analysis using the non-ideal OTA results in the 

characteristic equation, 

C1C2s 2+[Cl(g�a+g)-C2(g�ý-2gý)]s+8 8, ý+2g +go(2gý g2) =0 (5.6) 

Again, the ideal equation is modified by the output conductance. In particular, 
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the oscillation condition is modified to, 

C2 gna > Cl (gw + go) + 2C2 go (5.7) 

It is seen that non-zero output conductance also introduces a dependence 

between oscillation condition and oscillation frequency. 

SPICE transient analysis was used to simulate the OTA-C oscillator circuit, 

using capacitor values of lOpF, and Vbl and Vb3 fixed at 3V. Vb2 was gradually 

increased until oscillation occurred, and then further increased to determine the 

approximate frequency of oscillation. This was necessary because simulation 

time is much reduced for a small deviation in Vb2 above the point of onset of 

oscillation. The error introduced by this approximation is not very large. 

Using the previously determined values for gm and go, oscillation was predicted 

to occur for g., =57. OpA/V corresponding to Vbz=2.8V. SPICE Level 2 

transient analysis yielded Vb2=2.9V as the minimum voltage required for 

oscillation to occur, corresponding to gw7-58.5pA/V. 

A comparison of the SPICE simulation and calculated values of oscillation 

frequency, for Vb2 3. OV, gave 360kHz and 340kHz respectively. 

These simulations conclude the SPICE Level 2 results obtained for the OTA, 

showing how it fits into the overall scheme as a building block for filter and 

oscillator designs. From the above results it is clear that further design could 

have been carried out to reduce the output conductance of the OTA, and thus 

minimise the non-ideal behaviour of the filter and oscillator circuits. However, 
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it was decided to proceed with fabrication in part to verify the feasibility of the 

Mietec route to silicon, and in part to obtain results quickly enough to obtain 

a comparison of simulated and actual performance of the IC, so as to verify 

the accuracy of the simulation models used. 

5.4.5 Post-fabrication Testing 

Seven chips were used for testing. The test procedure was begun with static 

measurements, followed by transfer function determination and dynamic 

testing. A power supply of ±5V was used throughout. For the DC tests the 

output of each OTA was measured by connecting the output to a grounded 

43.8kg2 resistor, the same value as used in the simulations. 

DC tests included the Mietec Standard Cell (CHBGPC) bandgap reference 

voltage measured with respect to Vss, the Source Bias Voltages Vb of OTA1-3 

on each chip, and the power supply current of each OTA. The outputs were 

buffered using a zeroed FET input op-amp, the output of which was measured 

with a calibrated voltmeter. The buffering is especially important for the 

voltage reference, since it has high output impedance. By virtue of the voltage 

reference and each OTA having a separate power supply, it was possible to 

ground all pins not being used in each test, and thus isolate different parts of 

the chip during measurement. 

Results from all chips were consistent, with little variation from chip to chip 

and between OTAs on the same chip, but were found to be quite different 

from those predicted by simulation. The measurement of source bias voltage 
V, bfor all 21 OTAs gave values 3.61±0.01V. In comparison with simulation 

results 3.52V (typ), 3.31V (slow), and 3.74V (fast) this indicates a process 
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which is 'faster' than typical. Power consumption values were measured to be 

3.6±0.3mW, close to the simulated value of 3.73mW. Of more concern were 

the reference cell voltages, which were all outside the range specified by 

Mietec. Measurement gave values of 1.24±0.03 compared to the documented 

values of 1.14 (typ), 1.09V (min) and 1.19 (max). 

Results of measurement of transfer functions at fixed gain are shown in Fig 

5.15. Results for OTAI only are shown, but results for OTA2,3 closely 

matched those of OTA1. Gain was fixed by using Vb=1.39V for all OTAs, as 

used in the simulations. Also shown is a comparison with the simulations using 

'typical', 'fast', and 'slow' SPICE Level 2 parameters. It can be seen 

immediately that these results obtained are different from those predicted by 

simulation. Gains are lower than typical by a factor of 2 and offsets are higher 

by a factor of 10. Linearity is maintained over an input range greater than 

predicted. Linearity error compared to straight line best fit is less than 2% for 

a dynamic range of ±3V for all 21 OTA transfer curves, using a power supply 

of ±5V. The simulation results predict the same linearity for inputs only up to 

±2V. 

DC gain G. was varied with VB (so Vb =5- VB) to obtain the curves shown 

in Fig 5.16. Each gain value was obtained by measuring the slope of the 

voltage transfer function around the zero input voltage point, and dividing by 

the load resistance. It can be seen that values of gain from 5 to 35pA/V are 

attainable. Variation of gain of similar components from chip to chip is small. 

The standard deviation of the gain values measured for all 21 OTAs from the 

gain curves was at most 5.7% of the mean. Again there is a large discrepancy 

between the measured results and the 'typical' simulation plot which is also 
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shown in the diagram. 

Common mode rejection ratio (CMRR), and power supply rejection ratios were 

measured for balanced supply (PSRR) and single rail (PSRR+) supply 

deviations. 

CMRR is defined as gnVgnn expressed in dB, where gnu is a common mode 

gain derived from the rate of change of offset voltage with applied common 

mode input voltage. The measured value of CMRR was 22±2dB for all OTAs. 

PSRR is defined as gm/gm1 expressed in dB, where grn1 is a balanced power 

supply gain derived from the rate of change of offset voltage with power 

supply voltage, where both positive and negative supplies are deviated 

simultaneously in opposite directions. The measured value of PSRR was 

30±1dB for all OTAs. 

PSRR+ is defined as gni/gm expressed in dB, where gm is a power supply 

gain derived from the rate of change of offset voltage with power supply 

voltage, where only the positive rail is deviated. The measured value of PSRR+ 

was 46±3dB for all OTAs. 

Capacitor measurements were carried out using a Boonton capacitance meter 

(model 72B) with zero bias. Values for Cl, C2 and C3 were found to be 33pF, 

18.3pF and 7. OpF respectively. Differential measurement was used to cancel 

out I/O and lead capacitance which was carried out by connecting the 'in' and 

'out' terminals of the chip to the DIFF input of the meter. 
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Fig 5.15 Measured transfer characteristics for OTA1 
comparing simulation results 

t}} 
=i}} 

} 
} 

MnsLr M 

E 
Y / 

[[[ I OO O 

} 
Slow 

ý; e-, 

Oo 
Now 

ypica r- I 

Fast 

Traroeonduotanee GalnEGO Mlcrosnot/Volt 
su 

40 
{ 

Imulation 
Typical) 

80 

20 

MM rMrý 

10 

0 
0123fs 

Blas Volta" CVID Aft its 

Fig 5.16 Measured gain characteristics for OTA1 
comparing simulation results 
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5.4.6 SPICE Level 3 Simulations 

It is clear from the above comparison of measurements with SPICE Level 2 

simulations that the accuracy of the simulation was not good enough. At the 

time of design, only MOS Level 2 model parameters were available from 

Mietec. After the chips were received and tested, extracted Level 3 parameters 

from the process were received via Eurochip which has enabled further 

simulation to be carried out retrospectively, in an attempt to reconcile 

simulation and measurement. The following graphs from HSPICE show much 

better agreement between simulation and measurement using MOS Level 3 

model parameters. Fig 5.17 shows the comparison of the transfer functions and 

Fig 5.18 shows the comparison of the gain characteristic. In both figures, the 

solid line is the measurement and the broken line is the simulation. Fig 5.19 

shows the simulated SPICE Level 3 frequency response curve. The range of 

the flat response is the same as that predicted by SPICE Level 2 (Fig 5.11). 

The DC gain is smaller since gm is smaller but the same resistive load was 

used as in the Level 2 simulations. 

A comparison of the Level 3 simulation with the analytical approach using 

equation (5.6) was also carried out for the bandpass filter circuit of Fig 5.13. 

Values of gm and g, were obtained from Level 3 simulation of an integrator 

with a lOpF load and equation (5.5) and are shown in Fig 5.20. The values of 

capacitors in the filter were also lOpF. The result of the comparisons are 

shown in Fig 5.21. 

It is seen that the simplified calculations using equation (5.6) give a good 

approximation to the simulated results, as they did for Level 2. This also 
suggests that the values of gm and go are critical in determining the difference 

138 



CHAPTER 5 VLSI EWPLEMENTATION OF FDM 

in the results obtained in Level 2 and Level 3 simulations. Both values are 

strongly dependent on the value of channel length modulation parameter ?. 

used in the SPICE MOS models as the gradient of the Ift-V4, characteristic. In 

the case of Level 2, ?. is supplied by the foundary and entered explicitly into 

the model as a fixed parameter i. e. the I1-Vd, slope is assumed constant. In 

Level 3, channel length modulation is calculated by SPICE, so that the It-Vth 

slope may vary with V. It is suggested that the reason for the poor 

performance of the Level 2 simulations is due to the highly non-linear Iý, -Vd, 

slope of the Mietec transistors, which cannot be modelled in Level 2. Mietec 

have also recently recommended (in document MIE/F/02, Revision 2,20/8/92) 

an empirical method for calculating ? for different transistor lengths, in an 

attempt to improve the Level 2 simulation, but preliminary investigations using 

the technique have not shown any improvement in the accuracy of simulation 

of the OTA. 
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Fig 5.17 Comparison of OTA transfer function measurement (solid line) 
and HSPICE Level 3 simulation (broken line). 
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Fig 5.18 Comparison of OTA gain characteristic measurement (solid line) 
and HSPICE Level 3 simulation (broken line). 
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Fig 5.19 HSPICE Level 3 AC Analysis of OTA 
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Bias Off* Vb. 
Volts 

Trai caa&xctance 
Ciam S. pA/V 

Output Conductance 
&. PAN 

4.0 36.8 3.13 

3.5 36.80 3.13 

3.0 32.80 3.16 

23 25.81 3.17 

2.0 19.77 3.19 

1' 14.25 3.23 

1.0 9.10 3.26 

Fig 5.20 Small Signal Parameters obtained from SPICE Level 3 simulation of 
OTA-C integrators. 

Bias Offsets, Volts 

Vbl Vb2 Vb3 

SPICE 
Cmae 

X07. 
kHz 

Cal fated 
Cmae 

X07. 
kHz 

SPICE 
croft 

F eq c7 
Voltage 

Gain 

Calailued 
COMM 

Fm4-w7 
Voltage 

Gain 

3.0 3.0 1.0 532 534 0ä71 0.541 

2.5 2.5 1.0 428 426 0.352 0.533 

2.0 2.0 1.0 336 334 0.539 0331 

1.5 1.5 1.0 252 253 0.332 0.531 

1.0 1.0 1.0 174 184 0.522 0333 

3.0 3.0 3.0 563 551 0.830 0.779 

3.0 3.0 2.5 558 546 0.792 0.734 

3.0 3.0 2.0 553 542 0.742 0.676 

3.0 3.0 1.5 546 537 0.672 0.603 

Fig 5.21 Comparison of SPICE Level 3 simulations and analytical calculations 
of OTA-C bandpass filter characteristics. 
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5.5 Adaptive Tuning Techniques 

This section considers the VLSI implementation of filters and oscillator circuits 

with respect to process variation, and discusses in particular existing methods 

for adaptive tuning of OTA-C circuits. 

5.5.1 Switched Capacitor Filter Limitations 

Designers of switched capacitor filters generally use ratios throughout the 

circuit and the transfer functions thus obtained are subject only to tracking 

errors, which may be minimised by careful design. Broad tuning is 

accomplished using the switching clock frequency. At higher baseband 

frequencies lowering of the switching-to-signal frequency ratio is often 

required which puts additional constraints on the anti-aliasing filters used to 

prevent aliasing of higher frequencies back into the baseband. As sampled data 

systems, all switched capacitor circuits are susceptible to the aliasing of h. f. 

noise and clock/signal mixing products, and detailed analysis is difficult . 
Switch feedthrough is also a problem. Therefore switched capacitor filters are 

used extensively for audio applications, but not so much for higher 

frequencies, although some examples exist--9j in addition, specw simulators 

are often required for switched capacitor circuits which makes simulation of 

mixed designs (digital, switched analogue and continuous-time analogue) a 

difficult task. 

5.5.2 Continuous Time Filters 

For higher frequencies, continuous-time active filters are preferable. VLSI 

implementations are based on MOS resistors'5'w or operational 

transconductance amplifiersis"'41, and capacitors. The latter is the OTA-C type 

of circuit discussed in section 5.3.1. 
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In continuous-time filter design, the filter poles usually depend on absolute 

values of the circuit components rather than ratios, so ratios cannot be used 

directly to ensure accurate transfer characteristics. Consequently, since absolute 

values cannot be guaranteed, the circuit must be adaptively tuned by an 

external signal. OTA-C filters are particularly good candidates for adaptive 

tuning since the OTA gain is used as a design parameter of the transfer 

function, which is controlled by an external voltage (or current). 

The most obvious tuning technique is to use a Phase Locked Loop (PLL), 

where a voltage controlled oscillator (VCO) is locked in phase to an external 

signal, and therefore oscillates at the same frequency. 

This technique, usually called master-slave tuning, was first used by Tan in 

1977 for audio frequencies1540] and later by othersI5*41-'31 for higher frequencies. 

The master is the VCO which incorporates a minimal 2nd order stage of 

similar architecture to that present in the filter to be tuned (the slave), so that 

the same control voltage (or current) is applied to the VCO and the filter 

simultaneously, thus fixing the filter pole frequency relative to that of the 

VCO. Fig 5.22 shows the basic technique. Accuracy depends on the good 

tracking between VCO and filter component values on chip, i. e. on precise 

component value ratios between master and slave. 

There is a trade-off in practice between the need to make the VCO frequency 

outside the filter pass band in order to avoid cross-talk between the filter and 
VCO signals due to capacitive coupling, and the need to make the master and 

slave identical in order to minimise matching error" A 
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Fig 5.22 Adaptive ladder filter with tuning using an on- 
chip VCO (after Tan 1977) 

A more recent variation uses another filter as the master rather than a VCO, 

sometimes called a Frequency Locked Loop (FLL)15 4. Using a master filter 

rather than a VCO is thought to better model the slave's response, since the 

slave is also a filteii5,461. In this case the master filter has an external fixed- 

frequency input, and the filter is tuned by adapting the (frequency dependent) 

phase difference between output and input so that it is consistent with the 

desired resonant frequency. For a bandpass filter this can be achieved by 

comparing the phase of the reference input signal with the lowpass (or 

highpass) output of the master bandpass filter, as shown in Fig 5.23. For a 
bandpass filter the output of the phase comparator is constant when the two 
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inputs differ in phase by 90 degrees, which occurs only at the bandpass centre 

frequency. 

MASTER FILTER 

Vtd v1owpm 

Vca01ol 

SLAVE FILTER 

Vin Vast 

Fig 5.23 Frequency Locked Loop using a master filter 

Comparison of an on-chip MOS resistor with a precise external resistance has 

also been used for tuning continuous time monolithic filters"-'). 

At high frequencies there are inevitable phase shifts due to parasitics. 

However, Van Peteghem shows that these effects do not cause frequency 

tuning problems in the filter because the parasitic poles are at much higher 

frequencies than the passbandt5*181 Parasitic phase shifts can, however, affect 

gain at resonance and Q. For this reason, some designers have used multiple 

tuning loops to control not only the cutoff or centre frequency, but also 
This necessitates the use of several external signal frequencies. These 

techniques are used mainly for high Q, high frequency circuits with tight 

specification. Q control is not needed in systems requiring less fine selectivity. 
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5.6 VLSI Architecture for FDM Communications 

Considering the previous five sections, it is now possible to define the type of 

architecture required for the VLSI inter-chip FDM communication system. 

OTA-C circuits can be used to construct banks of oscillator and filter 

circuitsts''s 491 This allows the use of a single OTA building block throughout 

the system which will speed up the design process considerably. Typical OTA- 

C implementations of oscillators and filters (as shown in Section 5.2) have 

resonant frequencies proportional to products of the capacitances or 

transconductance gains. Ratios of these products can then be used from filter 

to filter and oscillator to oscillator, so that relative frequency values within 

each bank can be ensured within the limitations of tracking error. 

However, the modulation and demodulation circuitry are on different chips and 

are therefore subject to the larger absolute errors caused by differences in the 

fabrication process. Therefore, tuning is required for both chips. Precise 

absolute frequencies are not necessary so long as the set of oscillator and filter 

frequencies match up, which is a much reduced constraint when compared to 

the specification for most filter designs. This situation is ideally suited to an 

adaptive technique where both chips are tuned using the same external signal. 

Because of low tracking errors on a chip, it is possible to use a single tuning 

circuit for a bank of oscillators or filters. In contrast, a bank of switched- 

capacitor filters would require a bank of anti-aliasing and/or smoothing filters. 

This is, of course essential to the technique, because only one pin will be 

necessary per chip for this purpose. In addition, the same phase comparator 

circuits can be used for the modulation and demodulation systems. 
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Since the intended application for the FDM is a neural network, overlap of 

filter responses can be tolerated up to 30%1'-"1 Therefore low Q filters can be 

used, which have the advantage of reducing chip area requirements. In 

addition, low Q filters will not be so severely affected by any parasitic phase 

shifts in a tuning loop, because a small mismatch between oscillator and filter 

frequencies will not cause such a large amplitude response error. 

Therefore, the proposed VLSI implementation of the FDM communication is 

constructed from OTA-C filter and oscillator circuits, with tuning based on the 

master-slave technique. The form of this architecture is shown in Fig 5.24. 

The filter chip has an on-chip master filter which models the architecture of 

the bank of demodulation bandpass filters, and is used in a FLL. Because of 

the intended simple nature of the slave filters, each filter (master and slaves) 

can be constructed from a single second order stage. The master is locked in 

centre frequency to an external clock folkand the same control voltage V gu 

sets the centre frequency of all the filters in the bank which differ in frequency 

by fixed component ratios. 

The oscillator bank has an on-chip master oscillator which is locked to the 

same external clock as the filter bank by a PLL The same control voltage 

V sets the frequency of all oscillators in the bank. The amplitude of each 

oscillator is modulated by its neural input. 

In addition to frequency control, amplitude control is also needed for the 

oscillators, to ensure start-up and for amplitude limiting. This can take the 

form of the Automatic Gain Control circuits of Barrance"521. 
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Fig 5.24 Block diagram of the proposed FDM inter-chip communications 
system VLSI implementation. 
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5.7 Discussion 

The results of the VLSI design can be analysed in two ways. Firstly, it is seen 

that the qualitative functional behaviour of the OTA circuit is correct. However 

the output conductance may be improved and the chip area reduced by 

subsequent design iterations. The output conductance can be improved by the 

use of current mirrors with lower output conductance (such as the Wilson 

current mirror). The overall chip area consumed by an OTA-C filter or 

oscillator can be estimated by adding the areas of the OTAs and on-chip 

capacitors. For a typical design consisting 3 OTAs and 2 capacitors of lOpF, 

this area estimate is 200000µm2, which is rather large. The area of the OTA 

is approximately twice that of a lOpF capacitor. Power consumption is 

approximately l0mW. To reduce the chip area, some restructuring of the OTA 

area would be advantageous. Optimisation of cell area at the filter/oscillator 

level may be preferable to optimising a single OTA. A reduction in both the 

transistor sizes of the OTA and the capacitance values should be considered. 

Secondly, it has been shown that whereas the HSPICE simulation with Level 

2 MOS models does not give adequate agreement of simulated and measured 

results, use of Level 3 Models gives much better results and should therefore 

be used in all future work. 

It has also been shown in this chapter that analysis using a simplified OTA 

model (specifying only gm and g, ) can be used to give results which 

approximate to those achieved by simulation, which is useful for hand 

calculations. Variation in process parameters also give rise to different values 

of frequency, Q, and different oscillation conditions than those calculated from 

simulation, which also justifies the use of the analytical approach for hand 
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calculations of approximate values. This could prove invaluable in the 

appraisal of future designs of filter and oscillator circuits using OTAs. 

A design route though to silicon has been proven using the Mietec 2.4µm 

CMOS process for a full custom analogue design, which forms a basis for 

future work on the VLSI implementation of the FDM system. 

An adaptive solution to process variability in the FDM system has been 

proposed, using the master-slave tuning method for both the filter and 

oscillator circuits, employing the OTA as a functional building block. 
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CHAPTER 6- CONCLUSIONS 

This final chapter brings together the work presented in the thesis, with 

reference to the Aims and Objectives summarised in Chapter 1. This chapter 

also points the way to further work and research possibilities, using the thesis 

as a starting point. 

6.1 Objectives achieved 

The first aim of the work was to investigate the proposed VLSI design of an 

inter-chip Frequency Division Multiplexed (FDM) communication technique 

with respect to past and current research in neural network hardware design. 

This was achieved in Chapter 2 through a detailed coverage of published 

research in the field, including a critical review of several state-of-the-art 

analogue hardware implementations. It is seen that the communications 

bottleneck is a real problem for the implementation of large neural networks 

where the network must be implemented using several neural chips. 

The next objective was to introduce the idea of FDM as a communication 

method for highly connected architectures. This was carried out in Chapter 3, 

comprising a mathematical formulation for the bandwidth achievable for a 

bank of filters, as used to demodulate the FDM channel. This took into 

account the effect of overlapping the amplitude response curves of the filters, 

by introducing a fractional overlap parameter to the formulations. As 

explained, increasing this overlap acts to increase the number of signals it is 

possible to multiplex, at the expense of errors caused by crosstalk between 

signals. Further analysis was carried out, this time using analogue electronic 
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building blocks to construct a model of a hypothetical multiplexed 

communication system utilising either TDM or FDM. This enabled a good 

comparison to be made between the bandwidths achievable in these 

implementations, and allowed estimates of power consumption to be made, 

based on realistic architectures. It was concluded that FDM is indeed a 

candidate for inter-chip communication of analogue information, provided a 

degree of overlapping of filter responses is allowed, so as to give an 

acceptably small spacing between carrier frequencies in the channel. 

Chapter 4 examined the effect of such an overlap on neural network 

performance. To this end, a flexible software simulator was designed to enable 

the simulation of a multi-layer-perceptron neural network. The software 

incorporated the fractional overlap defined earlier in the thesis, in order to 

examine the effect of this overlap on the learning of classification problems. 

The results of this work were encouraging, since it was shown that the neural 

network model was highly tolerant to large overlap errors, even when weights 

are quantised. Analysis of the learning performance for the classification 

problems used, with varying amounts of overlap, showed there is practically 

no degradation in either the speed of learning or number of classifications 

learnt for overlaps of up to 30% of adjacent signal amplitudes. Even for 

overlaps of 30-50%, it was shown that the neural network is still able to learn 

many of the classifications, although both overall learning time and proportion 

of non-converged trials is increased. It was shown that both the 

backpropagation and weight perturbation learning algorithms perform well with 

weights quantised to 8-bits, provided a probabilistic update strategy is 

employed. The implications of this for electronic implementations are two-fold. 
It is possible to overlap filter response so that as much as 30% crosstalk of 
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adjacent signals have negligible effect on network operation, and the network 

can still learn for larger overlaps. Thus, signals can be multiplexed in a given 

bandwidth. Alternatively, lower Q factors for the filters can be tolerated. 

Complementing the theoretical and software work, Chapter 5 achieved the 

objective of defining the implementation of FDM in VLSI, including a review 

of relevant analogue design techniques, active filter design, and the 

presentation of results from the design of a prototype full-custom analogue 

chip. This chip, an Operational Transconductance Amplifier, is a building 

block for both oscillator and filter circuits which can be used in FDM circuitry. 

The review sections show the advances which are being made in analogue 

VLSI design of active circuits, which provides the basis for realisation of the 

FDM scheme. In spite of the difficulty in achieving a good agreement between 

the measured characteristics of the fabricated chip and the original simulations 

using the SPICE Level 2 MOS transistor model, a more accurate Level 3 

model used in retrospect gave a much closer agreement, and gives confidence 
for the accuracy of future designs using the Mieter 2.4p process. 

In addition, Chapter 5 has presented the architecture of a VLSI implementation 

of FDM using an adaptive tuning method, which is necessary to ensure the 

system will be tolerant to fabrication parameter variations. It was seen that 

only one tuning circuit is needed per chip, since on-chip matching of 

components ensures accurate ratios of frequencies to be achieved. 

In summary, this work has developed the ideas for a technique which stands 
to further the field of analogue neural network design by removing the 
communications bottleneck in the system. 
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6.2 Further Work 

There are a number of ways in which further work may be carried out, using 

this thesis as a basis. 

6.2.1 Direct Extension of the Research 

Firstly, direct extension of the work will involve more VLSI design. Chapter 

5 provides a clear path for the realisation of the system architecture in VLSI, 

but more work will be necessary to complete the design at the silicon level. 

This will involve further simulation using circuit simulator and IC design CAD 

tools, and fabrication of the chips thus designed. This will benefit from the 

availability of more advanced design tools, such as interactive extraction of IC 

layout information, and the existence of more accurate MOS transistor models 

suited to analogue design. 

The following text proposes a detailed work plan for the next stage of the 

work. The final goal of this work is a complete FDM neural network. The 

research is divided into three phases, which will yield intermediate results, and 

allow the project to be evaluated at fixed stages. Phase 1 will be the 

refinement and design of the FDM communications circuitry. Phase 2 will be 

to implement in VLSI a small analogue FDM neural network, to verify the 

idea. Phase 3 will be to extend Phase 2, and will be to construct a complete 

neural network system under software control, implementing a large number 

of neurons, which will be used for real world applications. Details of the three 

phases are as follows. 

PHASE 1: The goal of this first phase is to produce a prototype FDM inter- 

chip communications system using around 8 different frequencies. This system 
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will not contain any of the neural network components and will involve the 

following tasks: - 

11 Refine the existing OTA building block. 

The transconductance amplifier will be refined to improve output conductance and reduce 

chip area. Consequently, new prototypes will be produced and tested. 

1.2 Design, layout, fabrication and testing of filter, oscillator, peak detector and phase- 

locked loop (PLL) control circuitry. 

OTA oscillators and filters will be designed, laid out and verified using the Eurochip 

Mentor/Mietec route. Also included on this chip will be the PLL control circuitry and 

peak detectors. A prototype chip will be fabricated and the results analysed. If necessary, 

a second prototype will be produced before proceeding to task 13. 

1.3 Integration of a small FDM system. 

This is the goal of the first phase. Here a small non-neural network FDM system is to be 

fabricated. This will incorporate the FDM modulation/demodulation scheme on two chips 

implementing around 8 multiplexed channels (the exact number depending upon the 

silicon area used). These two chips will communicate with each other via a single FDM 

pin. 

PHASE 2: The goal of the second phase will be to implement a small neural 

network using a single FDM wire to communicate between chips. This will 

involve the following tasks: - 

2.1 VLSI design of neural synapses and neurons. 

The synapses will be implemented as analogue multipliers and the neurons as current 

summers incorporating a non-linearity function. 

2.2 VLSI layout and prototyping of neural components. 

The neural components in task 2.1 will be laid out and verified at the silicon level. A 
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prototype chip will be fabricated and tested. Again, a second iteration may be necessary 

at this stage. 

23 Integration of a small neural network FDM system. 

This is the goal of the second phase. Here, a small neural network system is to be 

implemented, with around 8 neurons, the exact number depending upon the silicon area 

taken up by each neuron. The FDM circuits from Phase 1 and the new neural components 

will be laid out together on two chips, which will communicate using FDM. These 

prototypes will be tested and the ability of the neural network to cope with various filter 

overlaps will be analysed. The network will be trained using a number of test problems, 

designed not to exceed the number of neurons available. 

PHASE 3: The third phase will extend the work of Phase 2, and lead to the 

realisation of a larger neural network architecture. It will then be possible to 

train the network on a number of real world problems. This will include the 

following tasks: - 

31 Integration of a larger number of neurons. 

This will be achieved by producing a larger chip and by combining multiple chips to 
form layers of neurons, all communicating by FDM. The system will be embedded in a 

microprocessor system with a software interface. 

3.2 Train the neural network on real-world data. 

The performance of the extended network will be verified by applying it to pattern 

recognition problems. This will include speech and visual image data. 

There is a great scope for the full realisation of this idea and the potential for 

many important intermediate designs and spin-offs, for example; analogue 
VLSI filter and oscillator designs, tuning techniques, and methods to ensure 
invariance to IC processing parameters. 
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Apart from this thesis, some work is being carried out in the research group 

towards the realisation of the FDM technique in hardware at the system level, 

which is currently in a stage of development. This work has involved 

construction of analogue neural network hardware prototypes using off-the- 

shelf components, implementing a small number of neurons which can 

communicate using FDM. These neural network circuit boards are designed to 

be interfaced to a host computer so that learning can be carried out in 

software, using the neural network in the training loop. 

A development route is therefore possible combining the above and the work 

of this thesis, which would involve gradual replacement of the off-the-shelf 

components on the circuit boards by the VLSI prototypes. In this way, it will 

be possible to test individual VLSI circuits in a system environment before an 

entirely VLSI neural network is constructed. This is a top-down hardware 

approach for the neural system, but a bottom-up approach for the VLSI, which 

enables all chips to be evaluated as the hardware design progresses without 

losing sight of the system as a whole. 

Between the system and VLSI circuit level, this project would also benefit 

from more computer modelling of the neural network, as an extension of the 

software simulation work reported on in Chapter 3. The simulations of Chapter 

3 are somewhat abstracted from hardware implementation in that once the 

overlap parameter is chosen, the mixing of neuron outputs are simply the linear 

addition of a neuron's amplitude with its nearest neighbour's, multiplied by the 

overlap parameter. This is justified for 'ideal' linear transfer functions for the 

filters, but does not include the effects of non-linearity, nor of process 

variations which may cause deviations from the desired frequency responses. 
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These effects could be included into a more sophisticated computer model, to 

further test the neural network learning performance. 

Design of analogue memories and realisation of on-chip learning is a great 

priority in the field of neural network hardware. Although the systems 

considered above use a learning method based on an external digital 

microprocessor for learning and permanent weight storage, work should be 

carried out in the areas of on-chip weight storage and on-chip learning. It 

should be possible to apply the FDM technique for the communication of 

weight values in the neural network system, in addition to its use for 

communicating the inputs and outputs. 

6.2.2 Other Ideas and Applications 

Analogue VLSI design is an exciting, active, and growing field. The findings 

from further investigation in the FDM technique will be of importance for 

applications in neural networks, and analogue signal processing in general. 

The proposed chip consisting of a bank of analogue filters, would find 

applications in speech processing, as an analogue spectral analyser for speech. 

Similarly, a bank of oscillators would be used for the construction of a flexible 

voice source. 

The FDM technique will find use in a general sense for communication of 

analogue information between chips and circuit boards. Considering the ability 

of a neural network to compensate for crosstalk interference, it would be worth 

investigating their application in other analogue and digital systems. 
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6.3 Summary 

In summary, the main points of this thesis are as follows. 

* Frequency Division Multiplexing was proposed and justified as a 

technique for inter-chip communication of analogue information. 

* Neural Network learning has been discovered to be highly tolerant to 

crosstalk between signals in an FDM channel, due to the adaptive 

nature of neural networks. Defining an overlap parameter for the filter 

frequency responses enables the analysis of the effects of this crosstalk. 

* Overlapping of filter responses allows an increase in information 

bandwidth, or the use of smaller quality factors which eases VLSI 

design. 

* Hardware implementation of the FDM idea can be achieved using 

analogue VLSI techniques. Transconductance amplifiers are a good 

building block for this. 

* The full-custom analogue design route using Mentor Graphics full- 

custom CAD software and the Mietec foundry was proven in the course 

of this research, which is of benefit to other participants in the Ecad 

and Eurochip schemes. 

Adaptive tuning techniques should be used to compensate for VLSI 
fabrication process variability, when applied to the tuning of banks of 
filters and oscillators. 
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