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SUMMARY 

The aim of this project was to examine the application of fracture 

mechanics to static and fatigue failure in GRP. The performance of two 

materials commonly used in-shipbuilding was compared, and the stress 

intensity factor approach was chosen as being most useful in the design 

of GRP structures. 

The literature survey showed that the conditions for its valid 

application to fracture toughness measurement were not established. 

Fracture toughness tests were carried out to examine the effect on 

critical stress intensity factor, Kcj of prolonged water immersion, 

specimen geometry and size. For the latter, a machine was designed and 

developed to apply static and pulsating loads to sheets of GRP up to one 

metre square. The material reinforced with woven roving fabric (WRF/PR) 

had a much higher fracture toughness than the material reinforced with 

chopped strand mat (CSM/PR), and was found to be virtually notch 

insensitive, implying that the Kc approach is not applicable. Large 

specimens of CSM/PR failed at very low stresses compared with small 

specimens. This material is notch sensitive and some of the conditions 

for the valid fracture toughness testing of notch sensitive GRP were 

established. The critical stress intensity factor of both materials 

was little affected by water immersion. 

Fatigue crack proPagation tests were carried out to establish 

crack growth laws and examine the effect on growth rate of prolonged 

water immersion. Growth laws were found that were applicable to dry 
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and wet CSM/PR, but water immersion greatly increased the rate of 

fatigue crack growth. The resistance to fatigue cracking of WRF/PR 

is superior to CSM/PR, because crack growth is blocked by rovings 

running normal to the crack, so that a growth law could not be found. 

Prolonged water immersion was found to destroy this blocking mechanism 

greatly reducing the resistance to fatigue crack growth, and a growth 

law could be determined. The material is still superior to CSM/PR 

in the wet condition. 

The finite element method was used to determine the stress 

intensity factors of fracture toughness specimens, and compliance- 

crack length relations in fatigue crack propagation specimens. 
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Nomenclature 

A Constant in fatigLIe crack propagation law 

a Crack length or half-crack length 

BEND 3 or 4 point bend type fracture toughness test specimen 

C Specimen compliance 

CN Centre notch type fracture toughness test specimen 

CSM Chopped strand mat reinforcement 

DEN Double edge notch type fracture toughness test specimens 

E Young's modulus 

G Strain energy release rate 

GRP Glass reinforced plastic(s) 

i Rice's J integral 

K Stress intensity factor 

LK Stress intensity factor range, K 
max -K min 

L Length of specimen between grips 

M Constant in fatigue crack propagation law 

N Number of loading cycles in fatigue test 

p Load 

PR Polyester resin 

r Distance from crack tip 

ry Irwin's correction factor 

S 

S 12 Material compliances 
S 22 

S 66. 
SEN Single edge notch type fracture toughness test specimen 

Ti 
Types of tensile specimen 

T2 



.. v- 

t Specimen thickness 

UTS Ultimate tensile strength 

UIV Displacements in the x, y directions respectively 

W Specimen width 

WRF Wover, roving fabric reinforcement 

XIYIZ Cartesian coordinates 

0G Gross stress applied to fracture toughness specimen 

CN Net stress on uncracked section 

CUTS Ultimate tensile stress 

0, r Polar coordinates 

Suffices 

c Critical value, value of failure 

D Dimensionless form 

01 i Initial value 

IJIIJII Crack extension by modes I, II or III (see Fig. 2.1) 
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CHAPTER 1 INTRODUCTION 

The savings in weight which can be achieved and the ease with 

which complicated shapes can be moulded makes GRP a useful substitute 

for steel and aluminium. To make it useable in highly stressed 

structures, much research has been carried out to establish static 

and fatigue failure criteria. The onset of debonding or resin cracking 

when used as a static failure criterion leads to uneconomic use of the 

material and is irrelevant to the type of failure by rapid crack propagation 

that has been experienced in some large structures. It has been shown 

(61), that in the presence of a stress concentrator, debonding and 

resin cracking occur at lower stresses in larger test specimens. 

When either debonding or resin cracking is used as a criterion 

for fatigue failureq stress-log life curves extrapolate to zero stress 

at long lLves. There is no proven fatigue limit as found in many steels. 

A pilot study by Bishop (8) shows that fracture mechanics may 

provide a way of describing static and fatigue failure in some GRP. 

A considerable body of work on the application of the critical stress 

intensity factor approach in metals already exists, so that it is often 

possible to say what size of crack is tolerable in a structure at the 

design stage. It would be useful if this work could be applied to GRP. 

Comparatively little has been done in this direction, which provides the 

theme for the research described in this thesis. This work has been 

sponsored by the Ministry of Defence (Procu rement Executive), and 

supervised by Dr. M. J. Owen, Department of Mechanical Engineeringi 

University of Nottingham. Mr. J. England, Admiralty Materials Laboratoryl 

has monitored the work for M. O. D. 
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The aim of this project is to explore the application of fracture 

mechanics, in particular the stress intensity factor method, to the 

description of static and fatigue failure in GRP, and to examine the 

difficulties encountered in previous attempts to do this. This leads 

to the division of the work into two main objectives: 

1) To establish the requirements for a valid fracture 

toughness test on GRP, i. e. to obtain Kc values which are 

reasonably independent of specimen geometry, so that the 

failure of large specimens can be predicted from small ones. 

2) To find a fatigue crack propagation law which is 

applicable to GRP beyond 20000 cycles. ' 

The performance of two GRP materials in these respects was compared. 

The materials are described in detail in Appendix I. Because the 

sponsors are interested in using these materials in a marine environment, 

the effect of prolonged water immersion on their fracture toughness and 

fatigue crack growth was also examined. 

To investigate the failure of large specimens, a testing machine 

had to be designed and developed, capable of applying static and pulsating 

loads to sheets of GRP up to 1m square. 

Use was made of the University of Nottingham's library of computer 

programs for the analysis of finite element problems, PAFEC, to examine 

the behaviour of the centre notch (CN) specimen used in fracture 

toughness and fatigue crack propagation tests. 
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CHAPTER 2 LITERATURE SURVEY 

2-. 1 Introduction 

The first part of the literature survey describes briefly four 

single parameter methods used to describe fracture toughness, their 

theoretical basis and practical application. There follows a discussion 

of results obtained from fracture toughness tests on various GRPq and 

the testing methods used. Comparison is difficult because of the variety 

of size and type of specimen, and reinforcing materials. 

The second part of the survey describes several investigations 

into the damage caused in GRP by water, and the effect of this on tensile 

strength, stiffness, and fatigue resistance. Various types of water 

environment have been studied, but all have similar effects on GRP 

properties. No work has been found concerning its effects on fracture 

toughness or fatigue crack propagation. 

The survey ends with a description of fatigue crack propagation 

laws and their application to GRP. 

2.2 Single parameter methods of fracture toughness testing 

Griffiths (1) suggested a thermodynamic approach to the problem 

of the strength of cracked bodies. The condition that a crack may extend 

is that the strain energy release, LTi, due to a small amount of crack 

extension. L a, is equal to the energy needed to form a new surface 

corresponding to na, LA . The energy release rate equals the rate 

at which the energy is used up to form new surfaces when crack extension 

is just about to take place. 



auan 
aa -Fa 2.2.1 

Irwin and Kies (2) showed that this applied to the failure of 

cracked steel plates provided initial crack growth is slow, so that the 

amount of strain energy used up in kinetic energy is small. It was 

shown that G, (the symbol G was adopted later for the strain energy 

release rate), is related to the compliance of the specimen, C,, which 

is the displacement of its loading points per unit of load P: 

G p2 dC 
2t * da 2.2.2 

By measuring the compliance of sp*ecimens with different crack 

lengths, the relation between C and a can be foixnd and hence dC/da. 

To determine the critical strain energy release rate, Gc, requires the 

load PC and crack length aC at failure. 

Westergaard (3) showed that for*a straight crack in an infinite 

plate the stress distribution is of the form: 

aij = 
C) AFil a f. . 

(o ) 
j -2r Ij 

2.2.3 

where 0 is the uniform stress applied to the body normal to the crack, 

r is the distance from the crack tip, and f ij(e 
) are functions of e 

The quantity 2ýT-ta determines the magnitude of the stress field 

and is defined as KI, the stress intensity factor for crack propagation 
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by the opening mode I, (see fig. 2.1). If the plate is subjected to 

uniform shear stress, crack propagation is by mode II and the stress 

intensity factor is KII TFT1 a. These simple expressions for K have 

been modified to apply to cracked bodies of many different geometries, 

(4). In general 

(3, FTE 
a. 2.2.4 

where Y is a geometrical correction term, usually a function of (a/V). 

Geometrical corrections are compared in fig. 2.2, expriýssed in the form 

K/(Od/"-W--). The equivalence of K to G has been shown by Irwin 

For an isotropic material: 

G=K2 /E 2.2.5a 

for an anisotropic material (12) 

s 11 s 22 12 +S 66 2 
(S22 2S 

G=2- 

_ýSj 
1+ 2SJJ 

K 2.2.5b 

where E is Young's modulus and the S 
ij are material compliances. 

Failure of a cracked body occurs when the intensity of the crack 

tip stress field, K, reaches a critical value Kc, at which catastrophic 

crack extension takes place. In steel (6) it was found that as specimen 

thickness increased, the adjacent lower stressed material prevented the 

more highly stressed material at the crack tip from contracting in the 

direction perpendicular to the plane of the specimen. Kc decreased 

with increasing specimen thickness until these conditions of plane strain 

were established then no further change with thickness took place. Irwin 

(7) accounted for crack tip yielding in ductile materials by adding a 
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length ry to the original crack length, a, when calculating Kc: 

r for plane stress, 
[K for plane strain 

yTTay 
2.2.6 

where Oy is the yield stress. Iterative computation has to be used 

to find Kc. The resulting size of ry should be small compared with a. 

This correction has been applied to fracture toughness testing of GRP 

to allow for the damage that occurs at the crack tip in several 

different forms. The application of the KC approach to GRP is new, 

but has predicted the failure of plates containing round holes and 

cracked beams, (8)(9). 

Rice (10) found that the line integral: 

fU 
dx +. 

a2 
ds) 2.2.7 

r-I 
02T E) x1 

where f- is a path surrounding a crack tip, and has a constant value 

whichever path F is selected for the integral evaluation. U0 Is the 

strain energy density, -" is the surface traction with respect to the T 

outward normal n; u is the displacement vector and ds is a segment of 

the curve F. Rice considered small scale yielding at the crack tip, 

-and found that at distances large compared with the plastic zone size 

but still small compared with specimen size, the elastic singularity 

still defined the stress field. J is related to the rate of change of 

potential energy, V, and crack length: 

-E)v 2.2.8 E) a 
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In a linearly elastic material, V= -U, so that J=G, and the strain 

energy release rate approach may be regarded as a special case of the 

J integral. 

Begley and Landes (11) have described the use of the J integral 

in fracture toughness testing of high strength steels, using 3-point 

bend specimens. J was determined from the relationship 2.2.8, failure 

occurring when J= Jc* Light (12) used a 3-dimensional finite element 

model to find J by the energy method and by directly evaluating 2.2.7. 

In 3-point bend specimens they were equivalent up to general yield, 

but they diverge as yield is approached in tension specimens. To 

overcome this, a new parameter was proposed, Q, where if U and U are 

elastic and plastic strain energies 

6u 
e- 6u 

p= 
Q6 - 2.2.9 

which is similar to a generalised theory of fracture mechanics proposed 

by Andrews (13). 

The strain energy density factor, Sq (14) is a single parameter 

method of describing mixed mode fractures. Considering the strain energy 

dU per unit thickness in an element around the crack tip of volume t. dA: 

dU ' (. K2+ 2a KK+aK2) dhe da -r 11 1 12 1 11 22 11 2.2.10 

where a ij are functions of e and the material's elastic constants. 

The magnitude of the singularity is: 

S=aK2+ 2a KK+aK22.2.11 11 1 12 1 11 22 11 
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Crack extension occurs when S reaches a critical value S and takes 
c 

place in the direction 9 in which dS/d9 = 0. Wu (15) found this by 

plotting the strength field vector of the material and the stress 

field vector T of the specimen around the crack tip. Where they 

coincide indicates the direction of crack extension and the magnitude 

of the stress field required for it to take place. 

2.3 Fracture toughness measurement in GRP 

In the work discussed below, which is displayed in table 2.1, K 
c 

values are to be assumed calculated using the failure load of the specimen 

and the initial crack length unless otherwise stated. Corrected K 
c 

values do not appear in table 2.1 since the methods of correction used 

vary so widely Dimensions of specimen types are shown in fig. 2-3- 

Wu and Reuter (16) investigated the effect of crack length and 

orientation on Kc values obtained from centrally notched (CN) specimens 

of a unidirectional glass/epoxy composite. The crack was stained so 

that extension could be recorded by photographs taken at intervals 

during the loading. A critical speed above which crack extension was 

judged to have become unstable was used as a criterion for finding the 

load and crack length with which to calculate KC. Kc calculated from 

the initial crack length and critical load varied from about 1-3 (shortest 

crack) to 1.8 MPa mi (longest crack). Using the observed critical crack 

lengths increased KC by an average of 11% and cut down the variation 

slightly. 

Sanford and Stonesifer (17) obtained similar results using small 

double edge notch (DEN) and single edge notch (SEN) tensile specimens 

of various epoxy resins reinforced with unidirectional glass fibres. 
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It was found that the effect on Kc and Gc of changing the resin system 

and curing process, both of which may affect bond strength, could be 

examined, but there was a difference between results obtained from the 

two specimen types. In all cases SEN Kc was higher than DEN Kc by about 

19%. GC was evaluated by the compliance method described in section 2.2. 

Alterations in resin system, curing schedule, fibre strength, and fibre 

diameter do not cause the same fractional changes in Kc and GC. 

Beaumont and Phillips (18) obtained KC and Gc values for chopped 

fibre mat/polyester resin using, 3-point bend (BEND) and DEN specimens. 

In BEND specimens, Gc was evaluated from the total strain energy (given 

by the area under the load displacement curve), divided by the fracture 

surface area. In DEN specimens it was converted from Kc using equation 

2.2-5a. The BEND Kc and Gc values were fairly independent of crack 
1 -2 length, the mean being 8.0 MPa m7 and 15 kJm respectively. The grooved 

DEN specimens gave Kc and Gc values that varied little from 6 MPa m4 and 

2 6 kJm7 . As in the Sanford and Stonesifer work, specimens of different 

geometry give different values of fracture toughness. 

The same authors (19) used BEND specimens to find Gc as beforej 

and CN specimens to find Kc in unidirectional glass fibre/epoxy resin. 

The notches were perpendicular to the fibres and the specimens were 

found to be notch insensitive, failure occurring when the stress on the 

nett section reached the failure stress of the material. 

McGarry et al (20) used DEN and CN specimens to measure Kc in 

several GRP materials. The results from crossplied unidirectional 

fibre/epoxy DEN specimens were substantially constant over the range 

of crack lengths tested, but Kc from DEN and CN specimens of balanced 



-10. - 

weave fabric/polyester resin rose slightly with increasing crack length, 

the DEN values being slightly higher than the CN. In tests on chopped 

fibre mat/polyester resin DEN specimens, the presence of a damage zone 

was noted. Its radius was estimated to be 2.03 mm, added to the initial 

crack length, and Kc calculated using this new crack length. It is not 

known whether this zone corresponded to sub-critical crack growth. The 

correction does not eliminate variation in Kc with crack length. 

Hamilton and Berg (21) compared Kc from DEN and CN specimens of 

unidirectional fibre/epoxy resin laid up 600AO'Aoo. The specimens 

used here were 254 mm wide and exhibited transverse buckling. DEN 

specimens twisted and CN specimens bulged around the crack. This causes 

crack propagation to take place by a mixture of modes I and III, and was 

used to explain the difference in Kc obtained from the two specimen types. 

By doubling the thickness and so reducing buckling, the average Kc value 

from CN specimens increased by 15% while that from the DEN specimens 

decreased by 10%. The difference in results from the two types was 

reduced from 44% to 4%. 

Owen and Bishop (8) used the results of DEN fracture toughness 

tests to predict the failure of specimens of several GRP materials 

containing round holes. Irwin's correction, (equation 2.2.6), was used 

in the plane stress form to account for variation in Kc with width. 

In the absence of a yield stress, several values were tried until one 

close to the estimated resin cracking stress produced Kc values constant 

over the width range 75-150 mm. This process could not be extended to 

include unpublished values from a 600 mm wide specimen. DEN specimens 

of Tyglass Y221 fabric polyester resin had to be grooved to make the 

crack propagate across the warp direction fibres, otherwise it tended 

to run parallel with these fibres to the grips. 
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Owen and Rose (22) examined the effect. on Kc of adding different 

quantities of flexible resin to reinforced and unreinforced polyester 

resin. CN specimens were used, and in the unreinforced resin they were 

able to observe sub-critical crack growth. The plane stress Irwin 

correction was used with 0y equal to the 0.1% offset stress. 

Holdsworth et al (23) outlined a compliance method for obtaining 

GC that allowed for irrecoverable energy, which was similar to that. used 

by Begley and Landes (11) for finding J. The area beneath the unloading 

line of a load-displacement plot taken from a CN specimen, Ur , varied 

linearly with the square of the maximum load, p2 , for P up to 95% of 

the failure load. If this is true, the unloading specimen compliance, 

C, = 2U 
r/p2 

is constant to failure and there is no sub-critical crack 

growth. Ur was found by measuring the specimen unloading compliance Cl" 

The material tested was chopped strand mat/polyester resin. Kc was 

also found using CN specimens. It was calculated using Irwin's tangent 

formula and the polynomial formula of Isida (4). Irwin's correction 

was applied to both, putting Oy equal to the resin cracking stress of 

the material. The iterative computation did not always converge in the 

Isida formula. Corrected K from both formulae were converted to G 
C? 

and found to be in good agreement. 

Holdsworth (24) also examined the effect of specimen size and 

geometry on Kc values in chopped strand mat/polyester resin, chopped 

strand mat/urethane resin and woven fabric/polyester resin. There is 

considerable scatter in results which tends to obscure the real variation 

of Kc with geometry. This is due to specimen glass content which varied 

between 25 and 34%. In CN and DEN specimens there was a region of crack 
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length between (a/W) = 0.15 and 0.25 where Kc was fairly constant. This 

region corresponded to a maximum or a minimum depending on specimen 

type. Kc tended to increase with specimen width in all types, but 

least in BEND specimens. There was little difference between uncorrected 

Kc calculated using Irwin's or Isida's formula (4), but whereas correction 

increased Irwin Kc by approximately 10%, corrected Isida KC could not 

always be obtained, and were as much as 40% higher. Holdsworth et al 

then used corrected Kc values found from 250 mm wide CN specimens and 

calculated using Irwin's formula, to predict fairly accurately the 

failure stress of specimens of the same width containing round hole, 

and box section beams containing holes or cracks. 

Mandell et al. (25) used an anisotropic hybrid finite element 

analysis to find the compliance of SEN specimens and found the geometrical 

correction term Y in equation 2.2.4 appropriate for the chopped strand 

mat/polyester resin material under investigation. The compliance was 

related to Y through equations 2.2.2 and 2.2-5b. The anisotropic finite 

element Y values agreed well with those calculated from experimental 

compliances, but was about 10% less than the isotropic analytical Y 

values, (4). 

Gagar and Broutman (26) also used Irwin's correction, (2.2.6), 

to allow for the damage zone at the crack tip in SEN specimens of chopped 

strand mat/polyester resin, but with ()y equal to 30% of the specimen 

failure stress. At this load debonding began at the crack tip. This 

procedure gave values of ry that were in reasonable agreement with 

observed values. Microscopic examination of specimens loaded to various 

fractions of the failure load revealed debonding but no sub-critical 
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crack growth. Keeping specimens at these loads, cracks were observed 

to grow steadily until instability occurred and the specimen broke, (27). 

The increase in crack length to the point of instability was added to 

the initial crack length and used to calculate KC, which was found to 

be independent of the applied load, and 69% higher than the uncorrected 

K value in table 2.1. The effect of size and crack length on K found cc 

using these methods of correction was not examined, but it was shown to 

be independent of thickness. 

SEN specimens were used by Barnby and Spencer (28)(29), to determine 

K IC and K He for various fibre and crack orientations. To allow for the 

effect on Y in equation 2.2.4 of the anisotropy and inhomogeneity of 

the unidirectional/epoxy resin under investigation, it was found by the 

experimental compliance method outlined by Mandell et al*(25). Agreement 

between theoretical and experimental Y values is not as good as that 

obtained on the same specimen type by Mandell et al (25) and Walters (56), 

possibly because the compliance was measured over a shorter gauge length 

than the length of the specimen. Critical load was given by the 5% 

offset slope procedure described by Srawley and Brown (6). The effect 

of size and crack length on values of K Ic so obtained was not investigated, 

but the presence of a damage zone at the crack tip parallel with the 

fibres was noted. 

2.4 Effect of water immersion on GRP 

Fried et al (30) subjected filament wound epoxy resin laminates 

to immersion in water at pressures of 0,45-9, and 91.7 MPa for several 

months and then examined the deterioration in compressive strength, 
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interlaminar shear strength and modulus. Strength properties decreased 

by about 10% over the first six months and then no further. This 

reduction was independent of the pressure at which the specimens had 

been immersed. 

Wyatt and Ashbee (31) immersed very thin laminates of treated 

and untreated chopped F-glass fibres and polyester resin in water at 

20 and 100 0 C, and observed the incidence of debonding by optical 

retardation. Untreated fibres debonded after 5 minutes immersion in 

boiling water and after 15 hours at 20 0 C. Where the fibres were treated 

with a coupling agent, no debonding occurred after ten months immersion 

at 200C. At 1000C, resin swelling reverses the compressive shrinkage 

along the fibres that takes place during curing and the resulting nett 

tensile stress causes rapid debonding. Resin swelling at 200C is 

insufficient to produce a tensile stress, but while . treated fibres retain 

their bond strength, untreated ones are hydro]ýhyllic. 

In investigating the effect of moisture on glass-epoxy laminates, 

Vaughan and McPherson (32) found that keeping the pre-preg in an 

atmosphere at 95% relative humidity and 380C, reduced the tensile 

strength of the laminate by about 10%. This was attributed to the 

effect of the moisture on the resin, as the coupling agent-glass interface 

was unaffected. 

Pritchard and Taneja, (33) also found the tensile strength of 

chopped strand mat/polyester resin was reduced by 10% and the flexural 

modulus by 3% when immersed in a stream of hot water. Applying strain 

on the specimen being immersed increased the rate at which water was 

absorbed. The treatment caused gel coat cracks, debonding and resin 

cracks associated with debonded fibre bundles. Damage was worse near 

the exposed surfaces. 
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Blaga and Yamasaki (34)(35) examined the effect of weathering on 

chopped strand mat/polyester resin, both artificial and outdoor. They 

divided the damage process into two stages. The first was failure of 

the glass-resin interface which required stresses induced either by 

thermal cycling or moisture absorption as already described. The *econd 

stage was surface cracking due to radiation. The breakdown of the 

interface region was attributed to the chemical action of water and 

induced stresses. As the spray was on for only a short period of the 

cycle, the moisture contribution to the induced stresses is small. 

The effect of steam and oil on the fracture toughness and fatigue 

strength of carbon- fibre reinforced plastics (CFRP) was investigated by 

Beaumont and Harris (36). Specimens were immersed in steam for 48 h at 

IOOOC and in oil for 150 h at 1000C before testing, and were kept in 

these environments while being tested. CFRP fail at lower strains than 

GRP so there is no resin cracking prior to failure. To examine 

environmental attack on the resin and resin/fibre interface and compare 

the performance of treated and untreated CFRP,, bending or torsion 

specimens were used rather than tension specimens. Fracture toughness 

was measured using 3-Point bend specimens with fractures going normal 

or parallel to the fibres. With the fracture normal to the fibres, 

treated and untreated CFRP were found to be unaffected by oil or steam, 

but in the parallel direction it was reduced by about 16% by both 

environments. Water at room temperature was found to have little effect 

on the fatigue life of untreated CFRP tested in tension or flexure, 

but steam had a more serious effect on specimens tested in torsion 

which depended on the failure criteria used. Fatigue crack propagation 

studies were carried out by measuring the density of cracks across the 
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specimen cross-section. After a given number of cycles, crack density 

was highest in the steam treated specimens. 

Romans et al, (37) subjected rings of filament wound S-glass strands 

in epoxy resin to repeated constant compressive displIacement under 

distilled water to compare the performance of different resins in this 

environment. The specimen was said to have failed when the load fell 

by 20%. (Similar'criteria were used in the torsion tests of Beaumont 

and Harris (36). ) Glass content was found to have a profound influence 

on the fatigue life of the specimens. 

2.5 Stress intensity approach to fatigue crack proDagation 

Paris (38), and Weertman (39) suggested that crack growth in metals 

is related to stress intensity factor through the relationship: 

da 
= A8e jN- 2.5.1 

where a is the crack length, N is the number of cycles, LK is the stress 

intensity factor range, and A, m are constants. A critical analysis of 

crack propagation laws put forward by other workers led Paris and 

Erdogan (40) to conclude that they were not universally applicable, 

. 
but that equation 2.5-1, with m 4, was. It has since been applied to 

many metals and shown to be useful in predicting the safe life of cracked 

components. 

Equation 2.5.1 still predicts a finite rate of crack growth as 
nK approaches Kc. Forman et al (41) overcame this difficulty by 

introducing Kc into the fatigue crack propagation equation: 
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da A R)K nK 2-5.2 
dN - 

where R=K 
min 

A 
max . 

As K 
max -- 

KC, da/dN Walton et al (42) 

suggest that: 

da A8K K () 
J-2 2.5.3 

dN -Icy 

where y 
is the yield stress, but found equation 2.5.1 valid up to 

0.8 K 
C 

To determine the constants A, m, from crack length-cycle data 

various numerical methods have been used. In polynomial curve fitting 

(43), polynomials of high order, though fitting the a9N data betterl 

are likely to have inflexions that cause large variations in da/dN. 

This can be improved by using cubic spline fitting (44). Alternativelyq 

the data smoothing techniques proposed by Munro (45) and Smith (46) 

can be used. 

The fatigue crack growth equation has been shown to apply to 

polymers by Borduas et al (47) and Owen and Rose (22). Mukherjee and 

Burns (48) have applied a modified form to PMMA that accounts for changes 

in iýean stress intensity factor. 

Relatively few fatigue crack growth studies have been done on 

0amposite materials. Hertzberg et al (49) tried to start crack growth 

in unidirectional Boron fibre/epoxy resin and glass fibre/epoxy resin 

perpendicular to the fibres but found it to be unstable. This was 

attributed to the brittleness of the resin. Sih et al (50) examined 

the propagation of cracks parallel to the fibres of similar material. 

Beaumont and Harris (36) also found it impossible to establish stable 
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fatigue crack growth across the fibres of unidirectional materialg 

(CFRP), even when the centre notch specimens were grooved along the 

crack. Thornton (51) found a form of equation 2.5-1 applicable to a 

random metal fibre/epoxy resin composite. Concentrations of fibres 

were found to hold up crack growth causing scatter in the results. 

Owen and Bishop (52) showed how the crack growth law could be applied 

to safe life design in polyester resin reinforced with chopped strand 

mat or woven fabric up to 20000 cycles. A compliance approach was 

applied to the problem of measuring crack length where damage obscures 

the crack tip. Harris et al (53) found that 2.5.1 adequately described 

fatigue crack growth in a unidirectional all metal composite, but at 

high fibre contents the crack tended to propagate along the fibres, to 

the grips causing the specimen to split. Crack growth rate decreased 

with increasing fibre content. 

2.6 Discussion and conclusions 

The most useful fracture toughness testing parameter in predicting 

the failure of a cracked structure is the critical stress intensity 

factor, Kcs It is now possible to evaluate the stress intensity factor 

for a great number of different geometries either from established 

analytical formulaeg or using finite element analysis with 2-dimensional 

anisotropic elements. The other methods would require the difficult 

determination of the change in strain energy9 potential energy or 

compliance of the structure with crack length. 

Comparison of the GRP fracture toughness values given in table 2.1 

is difficult because of the wide variety of specimen types and test 
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methods used. In all materi4ls, Kc and Gc vary with 1) specimen type, 

2) specimen size, 3) crack length, and 4) glass content. Variation of 

Kc with crack length is also encountered in fracture toughness specimens 

of polymers (54). 

Hamilton and Berg (21) showed that in crossplied unidirectional 

GRP, the difference in Kc from DEN and CN specimens was due to transverse 

buckling. In table 2.1 this difference is least where thick specimens 

have been tested so reducing this buckling. This does not apply to 

BEND specimens, whose Kc valuesdiffered widely from those given by 

tension specimens. 

To evaluate Kc, values, of a critical load, Pc. and critical crack 

length, ac, at failure arý needed for use with a stress intensity formula 

appropriate to the specimen geometry under test. In the work reviewed 

here, Pc was either the peak load indicated by a load displacement 

recording taken during the test, or given by the offset slope method (6). 

The crack length originally cut in the specimen, a0, is often used for 

ac, but many investigators added small increments to a0 to allow for 

crack tip damage or sub-critical crack growth. These increments were 

either found by observation or calculated from equation 2.2.6. Since 

. 
GRP exhibit no yield stress, the following have been used in 2.2.6: 

1) the stress to give a constant KC value over a range of widths (8); 

2) the 0.1% proof stress (22); 

3) the resin cracking stress (24); 

4) the stress at which debonding occurs at the crack tip (26). 

The convergence of the iterative computation used to calculate KC was 

not always obtained, (24). Owen and Bishop (8) and Holdsworth (9) used 
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corrected Kc values from DEN and CN specimens to successfully predict 

the failure stresses of cracked GRP structures. Corrected K values c 
from both these types of specimen vary with crack length, so Kc was 

chosen from the centre of a range of crack length where it is approximately 

constant. 

None of the correction methods used give Kc values that are any 

more constant with crack length than uncorrected results. Many are used 

without considering whether they reduce the effects of specimen geometry 

variations on K (22)(26)(27). Only the elaborate measurements of crack c 
length and velocity at failure by Wu and Reuter (16) gave a constant KC 

over a small range of short cracks. Such measurements are difficult in 

GRP where damage obscures the position of the crack tip, (22). The size 

and shape of the crack tip damage zone depended on the reinforcement 

used and the strength of the bond between fibres and resin. In random 

strand or fibre materials, it was close to and collinear with the original 

crack. In woven fabric materials, it often extended over a large area 

of the specimen, and in crossed unidirectional plied materials, several 

cracks extend from the crack tip, following the directions of the fibres 

in each ply. It is unlikely that any correction method would be suitable 

for all GRP. 

The most common material tested has been chopped strand mat in 

polyester or epoxy resin. Allowing for differences in glass content 

indicated by the ultimate tensile strength in the fourth column of table 

2.19 there is little difference in Kc obtained from different types of 

tension specimen. The difference between corrected results is greater. 

For example, Owen and Bishop's (8) corrected Kc values are about 10% 
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greater than the uncorrected ones, Holdsworth's (24) increased by up 

to 40%, and Gagar and Broutman's stress rupture method increased KC 

by 69%, (27). 

Water absorbed by GRP attacks the fibre/resin interface causing 

debonding damage. The rate at which debonding occurs increases with 

temperature, and the damage is more extensive if the material is under 

tensile strain while under water. Prolonged immersion at room temper ature 

causes a reduction in tensile strength and stiffness of about 10%. The 

effect of oil and steam on the fracture toughness of CFRP is noticeable 

only when the fracture is parallel with the fibres (36). When specimens 

are used whose strength depends on the properties of the resin and fibre/ 

resin interface, the fatigue life of CFRP is considerably reduced by 

exposure to these environments. GRP is similarly affected by testing 

in water at room temperature. The resin cracking in GRP subjected to 

fatigue accelerates water absorption and damage (37). The reduction in 

fatigue life is proportionately much greater than the reduction in 

strength and stiffness. 

The Paris fatigue crack propagation law has been shown to apply 

to GRP up to 20 000 cycles, (52). Resistance to crack growth ; -n GRP 

is expected to depend on glass content, (53) and to be adversely affected 

by water absorption. It may be difficult to propagate cracks across 

the fibres of unidirectional materials with high fibre contents or 

brittle resin matrices. 
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CHAPTER 

THE EFFECT OF GLASS CONTRIT AND WATER ABSORPTION 

ON MATERIAL PROPERTIES 

3.1 Introduct--'on 

The two GRP materials investigated in this project, described in 

detail in Appendix I, are designated CSM/PR, (specimen numbers prefixed 

RC), and WRF/IPR, (specimen numbers designated RCW). The ultimate tensile 

strength, (UTS), and material compliances, S 
ill 

S 
12' 

S 22' and S66 were 

determined. The material compliances are given by: 

s 11 s 
12 0a1 

e2s 12 
s 22 0 C' 2 

e600s 66 06 

Some specimens were subjected to prolonged water immersion under pressure 

before testing, to see how this treatment affected strength and compliance. 

The objectives were firstly to expose any anisotropy in these 

materials; secondly, to see if their differences in fracture toughness 

and fatigue crack propagation resistance corresponded to their difference-s 

in UTS; thirdly, the material compliances are required for finite 

; lement predictions of stress intensity factor and specimen compliance. 

There was scatter in all the UTS and compliance results, partly due to 

variations in specimen glass content. 

3.2 Specimens and methods 

For measurement of UTS and material compliances, S 
11 and S 221 

initially the tensile specimens shown. in fig- 3.1a were used ('Ll). 
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The larger specimen recommended in BS 2782, part 3 1970 (see fig. 3.1b, 

designated T2) provides a more representative sample for materials like 

WRF/PR and superseded T1 for all tensile tests. Blanks for Tj specimens 

were cut from laminates using a diamond impregnated slitting wheel and 

shaped with a tungsten carbide tipped router. T2 specimens required 

no shaping, the ends were reinforced with material cut from the same 

laminate and bonded to the main part of the specimen with Araldite. 

Plans showing how the laminates were divided up into specimens 

were made to record the position and direction of each one relative to 

the warp direction of the top ply. The lay up angles of each ply are 

also referred to the top ply warp direction. 

To find the material compliances S and S 
12 66' the central 

deflection of a square plate of the material subjected to a twisting 

moment was measured as suggested by Tsai (55). The deflection, W 
01 

is plotted against load P to obtain W0 /P in the expression: - 

4h3 wo 
s 3.2.1 

9 31 2P 

then 
sG=s 66 for 0= 00,900 

sG= 2(S 22 -s 12 
)f or 0 +450 3.2.2 

sG= 2(S 11 -s 12 
) for 9 -45 

0 

The loading arrangement and dimensions of the plate are shown in fig. 3-1c. 

Tensile tests were carried out in a modified Type "Ell Tensometer 

universal ".. esting machine, extension being measured by a Hounsfield 

extensometer linked to the chart drive. After testing, the glass content 
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of all tensile and plate twist specimens was determined as follows. 

Approximately 10 gms of material was cut from the specimen, and placed 

in a weighed tray. In WRF/PR tensile specimens, there was severe resin 

shedding around the break so this material had to be taken from near 

the ends. Tray and specimen were weighed together and placed in a 

muffle furnace heated to 600 0 C. After 12 hours, all the resin had 

burnt away, the tray and contents were weighed and the glass content 

by weight of the specimen calculated. 

3.3 UTS and material compliances of dry CSM/PR and WRF/PR 

The variations in UTS and S 
ill S 22 values obtained from individual 

specimens were attributed to the following causes; 1) glass content, 

2) anisotropy, 3) curing schedule, 4) variation in resin and glass 

properties. For the UTS and S 
ill 

S 
22 values obtained from CSM/PR laminates 

RCl and RC21 (3 Ply 00 /90'/Oo, curing schedule A), a linear variation 

with glass content was assumed, (fig. 3.2), and there can be seen to be 

no difference between 00 and 900 specimens large enough to indicate 

anisotropy. The UTS and S 
11'22 values at 35% glass content are estimated 

1 from fig. 3.2 to be 118.1 MPa and mo94 GPa- . The onset of debonding 

and resin cracking was very difficult to detect. Debonding occurred at 

very low loads, and the resin cracking stress, (table 3-1), varies 

between specimens more than the UTS. 

In the manufacture of subsequent laminates, the curing schedule 

was changed to B. UTS and S 
11122 values from CSM/PR laminates RC12- 

(3 Ply 00/90'/0'), RC17, (6 ply 00/900/00/900/00/goo), RC181 (9 ply 

00/900/00/900/00/900/0c)/900/00) and RC28 (3 ply 00/900/00) are shown 

plotted against glass content in fig. 3.3. 
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The RC28 specimens were type T2 for comparison with WRF/PR T2 specimens. 

There are no definite trends in fig. 3.3 that can be attributed to 

specimen type, specimen direction, or specimen thickness. Straight 

lines were fitted to the data in fig. 3.3 using the least squares method. 

The UTS and S 11'22 at 35% glass content were found to be 124.8 KPa and 

0.1004 GPa-1. The difference in these values for B cured material and 

the values quoted for A cured material is small compared with the scatter 

in the data in figs. 3.2 and 3.3. No effect on the UTS and material 

compliances S 
11122 due to change in curing schedule could be detected. 

This scatter arises because CSM is a random reinforcement, and it is 

possible for a large proportion of the specimen fibres to be so aligned 

to contribute little to its strength or stiffness. There may also be 

variation in the properties of the resin and glass. The narrow range 

over which glass content varies amplifies these effects. 

The RC28 specimens were cut . from a laminate measuring 915 mm 

square. Laminates of this size were to be made into large fracture 

toughness specimens, and the RC28 specimens were to determine the 

variation in glass content and possible anisotropy in such a specimen. 

The positions and glass contents of these specimens are shown in fig. 3.4. 

The coefficient of variation of the glass contents in fig. 3.4 is 6%. 

No difference in the strength or compliance properties of WRF/PR 

specimens cut in the 00 and 900 directions could be detected using Ti 

or T2 specimens. This might have been expected from the imbalanced 

weave of the fabric reinforcement, (table Al). Using T2 specimens, 

cut from laminates RCW25, (3 Ply 00/00/00), RCW30, (6 ply 00/00/00/00/00/00), 

and RCW29, (9 ply 00/00/00/00/00/00/00/00/00), the UTS and S 
11'12 values 
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in table 3.3 and fig- 3.5 were obtained. Straight lines were fitted 

to the data using the least squares method. There is less scatter due 

to the regular structure of the reinforcing material. The UTS and 

S 
11'22 values at 65% glass content were found to be 385.2 MPa and 

ox4037 GPa71. 

For comparison with the reinforced materials, the UTS and S 
11 

values for the polyester resin were determined using Tj specimens. 

There was considerable scatter in the results, the coefficient of 

variation of the UTS from 9 specimens being 28%. The mean values of 

UTS and S 
11 were found to be 8.2-MPa and 1.567 GPa-1. Several of the 

specimens broke in more than one place. 

Four plate twist specimens of CSM/PR were cut with () = 00,0 02 

+450 and +450. The W0 /P and SG values obtained showed variation which 

was more attributable to glass content than orientation, (fig. 3.6 and 

table 3-5). Eight plate twist specimens of WRF/PR were cut with 4 at 
0 0. 'Pig. 3.7 s 0 and 4 at e= +45 hows large differences between 

the 00 and +45 0 specimens. Assuming a linear variation between SG and 

glass content, (fig. 3.8 and 3-9), SG at 35% (CSM/PR) and 65% (WRF/PR) 

glass contents, were found and S 
121 

S 66 calculated using equations 3.2.2. 

3.4 The effect of water immersion on UTS and material compliances 

Tensile (T2), plate twist and fracture toughness specimens were 

immersed in tap water under a pressure of 6.9 MPa at ambient temperature 

for 16 weeks. 7his treatment is used by the Admiralty Materials 

Laboratory to simulate several years immersion at ordinary ambient 

pressure. The water absorbed during this treatment is expressed as the 

percentage increase in weight of the specimen. From table 3.6 the water 
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absorbed can be seen to depend on the material rather than the type or 

size of specimen except where the ends of the specimen have been 

reinforced, (marked R in table 3.6). Since all the water immersion 

specimens were cut from material of the same thickness, the proportion 

of the area of the unsealed, cut edges to the total surface area of the 

specimen varies. The nominal value of this for each specimen type and 

material is given in table 3.6. No effect on the amount of water 

absorbed by the specimens. due to this could be found, so moulded and 

cut surfaces allow water to pass through at the same rate. The mean 

amount of water absorbed by CSM/PR specimens was 1.2% and by WRF/PR 

specimens 0.63% (excluding specimens with reinforced ends). 

The same sort of damage caused by water absorption was found to 

be evenly distributed throughout all the different specimens. The plate 

twist specimens shown in plate 1 were typical. In both materials, the 

damage took the form of patches of debonded fibres. There was no surface 

or interior cracking of the resin. 

The values of UTS and S 
11'22 obtained from 4 CSM/PR and 4 WRF/PR 

T2 specimens, their glass contents, and amount of water absorbed is given 

in table 3.7. From table 3.7 it can be seen that the amount of water absor- 

bed is independent of glass content. The mean glass content of each of 

these groups of specimens was used to estimate the UTS and S 
11122 values 

that would have been obtained had the specimens been tested dry. The 

same procedure was used to find the probable dry SG value of water 

treated plate. twist specimens, and hence S 
12 and S 66' The changes in 

UTS and material compliances due to water immersion are summarised in 

table 3.8 and are small compared with changes due to glass content. 
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3.5 Conclusions 

The UTS and material compliances found for CSM/PR and WRF/PR and 

the effect of the water immersion treatment is summarised in table 3.8. 

Since the scatter in results is mostly due to variation in glass content, 

consistent UTS and material compliance values can be obtained by assuming 

a linear variation of properties with glass content and quoting values 

at a particular glass content. In CSM/PR, S 
11 ý- S 22 and there is 

negligible difference between SG obtained from 00 and +450 plate twist 

specimens, so the material is regarded as plane isotropic. In WRF/PR 

S 11 ý- S 22 and different values of S. were obtained from 00 and +450 

specimens, the material is orthotropic. No difference in UTS and 

material compliance due to the alteration in curing schedule could be 

detected. 

The amount of water absorbed by specimens of CSM/PR and I%FRF/PR 

is not affected by size, geometry (unless the ends are reinforced), 

or glass content in the ranges used. This is borne out by the similarity 

of debonding damage throughout specimens of the same material. The 

effect on UTS and material compliances of the water immersion treatment 

is generally small compared with variations due to other causes. It is 

comparable with that found by Pritchard and Taneja (33) in another 

CSM/PR material, when subjected to prolonged immersion in a stream of 

hot water. 

An exception to this can be seen from table 3.8 to be the large 

increase in the S 12 of WRF/PR (169%) due to water absorption. This 

corresponds to the greater W0 /P values, (fig& 3-7), obtained from wet 

00 plate twist specimens. There is, howeverl a loss of accuracy in the 
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use of equations 3.2.2 to determine S 
12' which may have been diminished 

further by the rather small length/thickness ratio of the plate twist 

specimens, The S 12' S 66 values obtained here are adequate for use 

in the finite element analysis, described in the next chapter. 
I 
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CHAPTER 4 

DETERMINATION OF STRESS INTENSITY FACTOR 

AND COMPLIANCE USING THE FINITE ELEMENT METHOD 

4.1 Introduction 

It has been shown that stress intensity factor values obtained 

from finite element models of GRP fracture toughness specimens agree well 

with those from analytical solutions, (25)(56)(61) provided the crack 

is orientated parallel to one of the principal planes of the material. 

The length/width ratio, (L/W), of the. models used has always been 2 or 

greater. In the next chapter, fracture toughness tests are described 

which use 915 mm wide centre notch, (CN), specimens with L/W reduced to 

0.82 to save material. The grips are closer to the crack and the 

constraints they apply may have an appreciable effect on the stress 

intensity at the crack tip, particularly of a long crack. A finite 

element model of a CN specimen was set up for solution by the University 

of Nottingham PAFEC system, (Program for Automatic Finite Element 

Calculations) to assess the effect of a) crack length, b) end restraints, 

and c) length/width ratio on stress intensity factor values. 

In the fatigue crack propagation tests described in Chapter 

the crack length is found by measuring the compliance of the specimen 

under test. The compliance of a specimen is the inverse of its stiffness, 

the displacement being measured at gaugc points on the centreline of the 

specimen, an equal distance above and below the crack. This compliance 

is then compared with values obtained from a calibration specimen in 

which the crack length has been altered with a jewellers saw and measured 

with a travelling microscope. Changes in specimen compliance due to 
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crack length are small compared with differences that may exist between 

the compliance of the test and calibration specimens due to glass content. 

Holdsworth (23) had to use a correction factor to ensure that the 

compliance of specimens whose glass content is not the same as that of 

the calibration specimen fitted the calibration curve. The finite 

element model of the CN specimen was used to determine the compliance 

calibration curve of the fatigue crack propagation specimens used in 

this project. Expressing the specimen compliance in. dimensionless form 

provides a theoretical justification for Holdsworth's procedure, by 

showing that in this form the compliance is independent of glass content 

provided that displacement is measured close to the crack. 

4.2 The finite element model 

The finite element model is that used by Walters (56) to determine 

the stress intensity factor in single edge notch specimens of varying 

crack length, (fig. 4.1). It uses a relatively small number of 8-noded 

isoparametric anisotropic elements, compared with the large numbers of 

triangular or rectangular elements used in previous investigations. 

The elements become smaller as they approach the line of the crack, 

and around the tip of the crack blocks of the smallest elements are 

nested which can be moved along the bottom edge of the model to alter 

the crack length. By altering the boundary constraints of the model 

to those shown in fig. 4.11 a quarter of the CN type specimen can be 

modelled, which is sufficient, as CSM/PR is isotropic, and in WRF/PR 

specimens the crack lies in one of the principal planes of the material. 

By identifying the appropriate node as the crack tip, the mid-side 
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nodes adjacent to the tip are automatically moved closer to it by a 

quarter of the element side's length, in order to model better the 

r-I strain singularity. 

Various methods can be used to obtain the stress intensity factor, 

K, from the finite element solution to a cracked structure. The simplest, 

as suggested by Chan et al (57), uses the displacements of the nodes 

along the crack in conjunction with the Westergaard (3) equations for 

the displacements u and v near the crack tip: 

Kjor4 
e ', -v 20 U=, Cos I+V+ sin 4.2.1 

G. (2TEA T 

Kjor; 9[220. ] V=, sin v- Cos IT 4.2.2 
G. (2TE A 

for plane stress, where r, () are polar coordinates with their origin 

at the crack tip, the line = TE being the crack. G is the shear 

modulus, and V is Poisson's ratio. K, is K in mode I, (see fig. 2.1), 

Setting () = TE in equation 4.2.2 gives: 

2TE]i 
r 

4.2.3 

-where K, now refers to a local value of K at distance r from the tip 

along the crack, and E is Young's modulus. Plotting KI against r there 

is a region where the relationship is linear which can be extrapolated 

back to r=0 to obtain K at the crack tip. Bishop (61), extended this 

method to anisotropic materials, and Walters (56) set up a sub-routine 

(SINTFAC) to apply this method in conjunction with PAFEC, taking v from 

the nodal displacements along the crack. For an anisotropic material, 

(orthotropic): 
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Kv 
Pl P2 

4.2.4 Is 22 2r 
I' 

Pi +P2 

where 22 
Pil P 12 

+ 66 slý 
+ 

66 LL2 4.2.5 2s 
11 2S 11 s2s2 4S 2-s 11 

and S ill S 121 S 221 S 66 are the material compliances. 

For comparison with the analytic formula used for K, (equation 5.2.2), 

KA where K is determined from the finite element model and K from 

the formula was plotted against. r/ld. 

Specimen compliance was found from the load applied to the model 

and the displacement of a point on it corresponding to the position 

of gauge points on actual specimens. 

4.3 Effect of specimen eometry and end constraints on K 

KA is shown plotted against r1W for specimens of the two materials 

with various crack lengths, end restraints and length/width ratios in 

fig. 4.2 and 4.3. The relationship is not linear up to r=0 due to 

the inability of the elements to cope with the singularity at the crack 

tip. Further refinement of the mesh near the crack tip by nesting blocks 

of elements in the elements immediately adjacent to it had no effect on 

K A. The extrapolated values of KA at r=0 for the various conditions 

are summarised in table 4.1. The crack lengths examined were a/W = 0.05 

and 0.30, and the length/width ratios 0.75 and 2.00. 

Initially, a uniform load was applied along the top edge of the 

model with no constraints, and there was some variation in displacement. 

All the loaded nodes were then constrained to have equal displacement. 
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A further restraint was added by specifying no lateral displacement 

of the loaded nodes. Both had a negligible effect on models with 

L/W = 2. When these restraints, which are meant to represent those 

applied to specimens by testing machine grips, were removed from models 

with a O/V = 0.3 and L/W = 0.75, K*/K at r=0 was found to increase by 

about 48% in both materials. These do not appear in fig. 4.2 or 4.3 

because there was no linear region which could be extrapolated to r=0. 

Agreement between the finite element and analytic solutions for K 

ib closest in models with the shortest crack length and having the 

isotropic compliances of CSM/PR. In both materials the finite element 

solution is up to 8% higher at the longer crack length with L/W = 21 

but reducing the specimen length actually improves the agreement in 

CSM/PR models. In WRF/PR models with the longer crack the finite element 

sOlution is less than the analytic by 8.5%. Even the largest of these 

differences is small'compared with variations in Kc values due to other 

causes. 

4.4 The compliance of CN specimens 

Irwin (58) has given the following expression for the compliance, C, 

- of an isotropic CN specimen: 

l[ ch (1 S12 ). Z 
. Tra 2 -1 ct 2w sin W c cosh Ua 

1-sw11 

w sh 
Tt y 
w 

s 
12 X 4.4.1 w 

where S 
ill 

S 
12 are the isotropic material compliances for which 

S 66 ` 2(S il -S 12). The distance from the crack to the gauge points 
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above and below it is y, (fig. 2.1) and t is the specimen thickness. 

The specimen compliance is expressed in a dimensionless formt CD* 

Examining the terms in equation 4.4.1, CD should be constant if S 
11/S22 

is constant, 

The compliances of CSM/PR and WRF/PR and a third material 

not used in this project but with S 
11 j& S 221 

(the compliances of this 

material were taken from Bishop (61)), were used to obtain specimen 

compliances from the finite element model, and were then increased by 

50% and a second solution obtained with the compliances all increased 

in proportion. This was an attempt to model an increase in material 

compliance due to a drop in glass content. The CD values obtained are 

given in table 4.2. CD from CSM/PR and WRF/PR is only slightly affected 

by the change, but in the third material CD rises by 32%. The approach 

seems inappropriate for anisotropic materials where S 11 
#S 

22* 
Close examination of the materia 1 compliance/glass content 

relations set out in Chapter 2 shows that the assumption that S increases 
12 

in proportion to. S 
11 as glass content changes is not justified. However, 

in equation 4.4.1 CD is still independent of S 
12 

/S 
11 provided y/W is 

small. The second and third term of the expression become small compared- 

with the first term which contains no S 
12 term. 

The compliance CD of 100 mm wide and 915 mm wide CN specimens used 

in fatigue crack propagation tests, both with gauge point distance y=4 

was estimated from finite element models with CSM/PR and WRF/PR material 

compliances. The crack length was varied by moving the nested blocks 

of small elements near the crack from block to block and altering the 

constraints along the model's bottom edge accordingly. CD against (a/V) 
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is shown in fig. 4.4 with equation 4.4.1 for comparison. The isotropic 

compliances of CSM/PR were used in the equation with y=4 mm and 

GO nun. 

In CSM/PR agreement between 100 mm, 915 mm and equation 

4.4.1 is good at small crack lengths. 915 mm specimens of WRF/PR and 

CSM/PR agree closer at all crack lengths than the 100 mm specimens 

because yl*W is smaller. The finite element CD was compared with CD 

values obtained from calibration specimens of the two materials, the 

crack length being increased with a jewellers saw and measured with a 

travelling microscope. The agreement is good considering that S 11 was 

estimated from the glass content of the specimens using the relations 
in fig. 3.3 and 3-5. The CD measurements from 915 mm specimens are 
higher than the finite element prediction because part of the crack 

opening displacement was due to a small amount of transverse buckling 

taking place around the transducer mountings near the centre of the cracks 

which could not be eliminated. 

In the finite element analysis of specimen compliance, it was found 

that end restraints had little effect on specimens with L/W = 2. Walters 

(56) found good agreement between K values obtained directly from the 

finite element model using the KA method described here, and those 

obtained from the specimen compliance using the relation between K-and 

strain energy release rate, G. From equations 2.2.2 and 2.2-5b: 

K2 S22 S22 

OGeTW 2S 1s 11 

2S 12 +S 66 dCD 
2S 11 daD 4.4.2 

or for an isotropic material: 
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K2 dCD 

daD 
GJ W" 

where CD= ct/s 
11 and aD = (a/W). However, in the compliance 

relations obtained from the CN model, there were slight inflections 

in polynomials, (of order 4) that were fitted to the curves for 100 mm 

models, which would lead to large errors in estimating dC D/d(a/W), though 

adequate for finding (a/W). This method was also used by Mandell et 

al (25). 

4.5 Conclusions 

The analytical expression for K used to calculate Kc in all CN 

specimens, (equation 2.2.2) is adequate for those with L/W = 0.82. 

Agreement between finite and analytical values of K is best at short 

crack lengths. The discrepancy between Kc evaluated by the two methods 

at long crack lengths would be small compared with changes in Kc due to 

crack length and specimen size. 

Specimen compliance expressed in the dimensionless form CD provides 

a means of estimating crack length that is independent of glass content 

provided the gauge length over which the compliance is measured is 

smalL, (see section 6.2 for the application of this method). 
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CHAPTER 

THE K APPROACH TO FRACTURE TOUGHNESS MEASUREMENT 
c 

IN CSM/PR AND WRF/PR 

5.1 Introduction 

In section 2-3 it was shown that measuripg the fracture toughness 

of GRP using the critical stress intensity factor (K 
C) approach produced 

candidate values for Kc which varied with a) specimen type, b) specimen 

size, and c) crack length. The aims of this part of the project were 

firstly to determine the effect on the Kc values of CSM/PR and WRF/PR 

of changes in specimen size and geometry and the extent to which small 

specimens can be used to predict the failure of very large cracked 

specimens, representing the size of real structures. If Kc varies with 

crack length, in constant 8K range fatigue crack propagation tests, the 

ratio between 8K and Kc will also vary and may affect the crack growth 

rate. 

Secondly, to compare the fracture toughness of the two GRP materials 

in the dry state and after the water immersion treatment described in 

section 3.4. 

Most fracture toughness testing standards, (6) are concerned with 

ductile metals. In ductile specimens plastic yielding begins at the 

crack tip, and slip occurs at 450 to the crack plane in thin spFcimens. 

In thick specimens, conditions of plane strain exist across the crack 

front, except near the ends. Near the ends of the crack front the 

material is close to free surfaces and able to contract. Away from the 

ends, the plane strain conditions arise because the material adjacent 
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to the crack front is at a much lower stress than the material closest 

to the crack front and prevents it from contracting. 

This restraint causes tensile stresses across the crack front. 

In GRP the inter-ply strength is low and would not sustain plane strain 

conditions. The conditions in the whole specimen are plane stress, 

and the layers behave as if separated. There should therefore be no 

difference between Kc values obtained from specimens of few or very 

many plies. In shipbuilding, GRP is used in thicknesses up to 50 plies. 

Considerable savings in material and time would be made if Kc values 

could be obtained from thin specimens that would be applicable to thicker 

material. 

5.2 Specimens and methods 

For measuring the fracture toughness of CSM/PR material double 

edge notch, (DEN), and centre notch, (CN), specimens were used. These 

specimens are shown in fig. 2.1. For WRF/PR, only CN specimens were 

used. Specimens were Cut from laminates using a diamond impregnated 

slitting wheel. Notches were made using aI mm thick jewellers saw, 

a 1.5 mm hole being made in the middle of CN specimens for this purpose. 

Specimens up to 150 mm wide were tested in a modified Týpe "Ell 

Tensometer or Instron 1195 machine both with autographic load- 

displacement recording facilities. In the former the testing speed 

was 0.0212 mm/sec and in the latter, 0.0167 mm/sec. At this low speedl 

such a small difference has a negligible effect on results. The capacity 

of these machines being only 100 kN, a 5W kN Denison machine had to be 

used to test specimens of WRF/PR greater than 3 plies thick and 50 mm 

wide, or containing very small cracks. 
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For testing sheets of GRP up to 1000 mm wide, a testing machine 

had to be specially designed and constructed. It was designed to apply 

a static load up to 1000 0 and a pulsating load up to 
_500 

kN. A sketch 

of the testing frame is shown in fig. 5.1; plate 2 shows the layout 

of the testing facility. The frame is made of two pairs of 610 x 229 

(2411 x 9") universal beams (A in fig. 5-1), the upper pair being 

supported on two pairs of 203 x 203 (8" x 8") universal columns (B). 

The upper pair of beams support a hydraulic loading cylinder (C) which 

applies the load to the specimen grips (D). The lower grip is raised 

and lowered electrically by a mechanism housed in the lower pair of 

beams (E). The frame is free standing at supports (F). The strain 

energy stored in the frame must be small compared with that stored in 
4 

the specimen, so that the energy required to form new crack surfaces 

comes from the specimen rather than the loading frame. The frame must 

therefore be stiff, and the volume of material used in its construction 

kept as low as possible. To reduce friction no seals were used between 

the loading cylinder and piston; by using a long, plain piston friction 

is cut down and a long leakage path created which controls losses. To 

avoid having a gland in the base of the loading cylinderg a yoke and two 

connecting rods (R and S in fig. 5.1) are used to transmit the load from 

the piston to the upper grips. 

A diagram of the hydraulic system for supplying pressure to the 

loading cylinder is shown in fig. 5.2. It is possible to supply the 

loading cylinder with pulsating pressure, steady pressure, or both. 

The dynamic supply is provided by a twin-cylinder pulsating pump (G) 

which has already been used successfully for other work (59). Two 
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opposed pistons (H) are made to reciprocate by rotating eccentrics, M. 

As they move outward these pistons cut off the oil supply ports (J) 

compressing the oil now trapped in the system, forcing the piston in 

the loading cylinder upwards. By altering the position of the supply 

ports along the cylinder, the volume of oil trapped in the system by 

each stroke is changed, and hence the delivery pressure varied. The 

position of the supply ports is altered by an electric motor, which can 

be operated manually or by an automatic control system. A radial- 

piston pump (K) supplies static pressure, which can be varied by bleeding 

back to the open reservoir through a control/safety valve (L). By opening 

or closing valves. P or Q static or dynamic pressure can be applied to 

the loading cylinder. 

Load measurement was by a 4-arm strain-gauge bridge attached to 

the centre of the yoke R in fig. 5.1. The bridge power supply was 

stabilized at 10V dc, and the output was fed via an-amplifier to the Y 

side of an X-Y plotter. 

In tests on small DEN specimens of CSM/PRq the opening of the 

crack was measured by a clip gauge bearing on steel blocks fixed to the 

specimen above and below the crack. The output of the clip gauge strain 

. 
gauges was fed to the chart drive of the Type "Ell Tensometer. In later 

tests on CN specimens, the machine crosshead movement was used in place 

of the clip gauge output. The measurement of specimen compliance using 

the finite element method described in the previous chapter provides a 

relation between the displacement at the centre of the crack and the ends 

of the specimen, and has shown that for long cracks, the compliance 

measured at these two places is the same. 
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On the specially built machine, displacement measurements were 

made using LVDT or linear resistance transducers, the output being fed 

to the X side of the X-Y plotter. Initially, 2 X-Y plotters were used 

to monitor the displacement of the upper grips and the central opening 

of the crack. The load/displacement plots using these outputs gave the 

same failure load, so only the crack opening was monitored in subsequent 

tests. 

Various off-set slope methods have been used to find the failure 

load in fracture toughness tests. The simplest and most consistent 

was found to be the peak load indicated by the load displacement recording. 

The amount of crack growth occurring prior to the peak load being reached 

was very small compared with the sawn crack length, so this initial 

crack length was used to calculate Kc. For DEN specimens, the formula 

was used: 

lLa 2TE ai 
Kc CG tan .0+0.1 sin -w015.2.1 

and for CN specimens, the polynomial formula (6) was used: 

a 
1.77 + o. 454 

(a01.02 ( EL 02+5.4 (ao )3 
c0 CG Ww -2 

. where a CG is the gross stress applied to the ends of the specimen at 

failure, a0 is the initial crack length, and W is the specimen width. 

5.3 The effect on Kc of specimen size, thickness and water absorption 

Geometrically similar specimens were used to compare the effects 

5.2.2 

of specimen size, thickness and water absorption on the fracture toughness 

of CSM/PR and WRF/PR. The half-crack length/width ratio,, (a 
0 

A), was 
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kept as close to 0.1667 as possible on all specimens. For DEN specimens 

the length/width ratio, (IvV)s was 2.67, and 2.00 for CN specimens. 

DEN specimens were made in widths 75,100, and 150 mm and CN specimens 

509 100, and 150 mm. Thickness variation was achieved by cutting specimens 

from laminates of 3,6, and 9 plies, the lay of both materials being as 

described in section 3.3. 

Kc values obtained from DEN specimens of 3 Ply CSM/PRq (table 5-09 

using the peak recorded load and the initial crack length in equation 

5.2.1 were found to vary with width and glass content. The glass content 

of each specimen was determined by burning the resin off about 10 gm of 

the material cut from the specimen after testing. (See section 3.2 

for details of this procedure. ) Assuming a linear variation of K with c 

glass content, (fig. 5-3), it was possible to estimate that KC at 35% 

glass content from the 1.50 mm specimens was 21.9% higher than the 75 mm 

value, (see summary of Kc values, table 5.4). The glass contents of the 

100 mm specimens were all around 31%, but their Kc does not differ greatly 

from that of the 150 mm specimens at this glass content. The specimens 

were found to twist axially about 10 during testing. 

The Kc values obtained from 3,6, and 9 ply CN specimens of CSM/PR 

(table 5.2) were also plotted against specimen glass content (fig. 5.4) 

which shows no variation definitely attributable to thickness. Assuming 
k 

a linear relation, the least squares method was used to determine Kc at 

35% glass content for each width and thickness, (see table 5.4). Three 

ply specimens of CSM/PR were subjected to the water immersion treatment 

described in section 3.4 and, using the above procedure, their Kc values 

at 35% glass content were determined, (see fig. 5.5 and table 5-3). 
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The Kc values from 50,100, and 150 mm wide specimens were found to be 

reduced by 15%, 5%, and 8% respectively. 

Three, 6 and 9 ply CN specimens of WRF/PR were tested and their 

glass contents determined to find KC at 65%. The glass content of 

WRF/PR did not vary as widely as CSM/PR, so that it was impossible to 

detect a quantifiable dependence on glass content, (fig. 5.6 and table 

5-5)- Where it was inappropriate to estimate Kc at 65%, the mean values 

only are given in table 5.7. To prevent grip failures the ends of 100 

and 150 mm wide specimens were reinforced with strips of GRP material 

bonded on with Araldite. Nine ply 100 mm specimens had to be t ested in 

a 5W 0 Denison machine using wedge grips. 

Plates 3 and 4 show 50 mm wide 3,6, and 9 ply CN specimens of 

CSM/PR and WRF/PR. In the CSM/PR specimens, the fracture damage is 

confined to a narrow region, collinear with the original crack which 

broadens towards the edges, no strand protruding from the surface is 

greater than about 8 mm long. In the WRF/PR specimens, the fracture 

damage at the edges reaches the grips, and rovings up to 50 mm long 

are protruding from the surface. In both materials, there is no change 

in damage zone size with thickness. Plate 5 shows 150 mm wide CN specimens 

of 3 ply CSM/PR and WRF/PR. The CSM/PR damage zone is confined to a 

narrow region along the fracture surface, but the-damage in the WRF/PR 

specimen extends nearly to the grips on one edge. In VW/PR specimens, 

the crack does not travel across the specimen, but one or other of the 

uncracked ligaments gives way suddenly and completely. 

KC values obtained from dry and wet WRF/PR specimens are summarized 

in table 5-7. Variation in thickness does not have an appreciable effect 
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on KC0 The water immersion treatment reduces the Kc of 50,100, and 

150 mm wide CN specimens of 3 ply WRF/PR by 11%, 14%. and 15% respectively. 

Fig. 5.8 summarizes the Kc values obtained from the different 

widths of specimen used, 3,6, and 9 ply results being combined. The 

effect of water immersion on Kc is small compared with the increases 

in Kc with width, and of the same order as the difference in Kc obtained 

from DEN and CN specimens. The difference in Kc values obtained from 

DEN and CN specimens could be due to the change in curing schedule,, 
(Appendix I), but it is more likely to be due to geometry, (24). The 

fracture toughness of WRF/PR measured by the critical stress intensity 

factor method is about 4 times that of CSM/PR, but shows a much greater 

increase with specimen size. 

5.4 The effect on Kc of varying (a 
0 
/W) 

Assuming a constant value of Kc with (a 
0 
A), equation 5.2.2 implies 

that a CG --. e- oo as (a 
0 
I'W)---0, and a finite value as (ao/V)------ 0.5- 

Taking into account the upper bound put on CICG by the material UTS, 

KC cannot be expected to remain constant as (a 
0 
/, W) lo 0, or when there 

is a very small uncracked ligament, as (aoA)----w-0-5. 

100 mm wide CN specimens of CSM/PR and WRF/PR,, each containing 

notches of different length, were used to determine KC as (a 
0 
/W) varied 

from 0 to 0.4. CSM/PR specimens with (%A) < 0-03 had to be reinforced 

. at the ends to prevent grip failures. For the same reason the ends of 

all WRF/PR specimens had to be reinforced and specimens with (aO/W) < 0.05 
. 

had to be tested in the Denison machine using wedge grips. The glass 

content of each specimen was determined after testing. 
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The Kc values obtained from CSM/PR specimens, a CGI the gross 

stress applied along each end of the specimen at failure, ()CNI the nett 

stress on the uncracked ligaments at failure, are given in table 5.9 and 

shown plotted against (a 
0 
/W) in fig- 5.9. In previous sections, linear 

relationships have been assumed between UTS and glass content, and Kc 

and glass content. If these are of the type: 

a=A (GC) +BK=A (GC) +B UTS 11c22 5.4.1 

where GC is the glass content, and A,, B19 A 2' B2 are constants, it can 

be shown that: 

KcA2B2 

UTS A0 UTS 
-6 

UTS 
5.4.2 

Thus provided 0 UTS >> B1, B 2' Kc A)UTS should be roughly constant and 

independent of glass content. From the glass content of 150 mm wide 

CN specimens of CSM/PR, the specimen UTS was estimated using the relation 
r- 

shown in fig. 3.3, and the dimensionless group K DC =Kc /(a UTSN W 

evaluated. Table 5.8 shows this quantity to be sunstantially c6nstant. 

Accordingly, the Kc and failure stresses of the 100 mm wide CN specimens 

. given in table 5.9 were expressed inthe forms: 

(0 /0 
DCG CGý 

OUTS) 
DCN CN UTS 

KDC =K0w c UTS Jv 

5.4-3 

where 0 UTS was found from the specimen glass content. These quantities 

are plotted against (ao/W) in fig. 5.10. Comparing this figure with 
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fig. 5.9, it can be seen that some of the scatter associated with glass 

content variation has been removed. In both figures it can be seen 

that there is a narrow range between (a 
01W) = 0.15 and 0.3 where Kc is 

reasonably constant with crack length. Outside this range, Kc falls by 

up to 30%. A plate without a notch broke at an applied stress equal 

to the material UTS given in table 3.8. 

The Kc values obtained from WRF/PR specimens are shown in fig. 5-111 

(see table 5.10), and in the dimensionless forms, (equations 5.4-3), 

in fig- 5-12. Fig. 5.12 shows that the range of glass content variation 

in the WRF/PR specimens is so small that the use of the dimensionless 

expressions has no effect on the scatter in KcIa CGI and (3CN* 

WRF/PR specimens tested in the Instron 1195 and Denison machines 

are shown in plate 6. Typically, the specimens with short cracks failed 

by tensile roving breakage on one side, then a vertical crack propagated 

to the grips on the other. Bolted grips were used on the specimen in 

plate 6aq and the specimens in plate 6b and c with shorter cracks were 

tested in the Denison using wedge grips. In plate 6c, (a 
0 
/W) = 0.02 and 

the failure occurred away from the crack, near the grips. This failure 

is similar to that observed in an unnotched 100 mm wide plateg which 

failed at an applied stress roughly equal to the nett section failure 

stress of the cracked specimens. This nett section stress can be seen 

from fig. 5.11 to be independent of crack length. If unnotched plates 

fail at the same stress, the specimens are apparently insensitive to the 

introduction of cracks. 

Finite element analysis of a WRF/PR plate using the model described 

in section 4.2 with the nested elements removed, and one edge restrained 
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to simulate gripping, showed a concentration of tensile stress at the 

edge of the plate where it enters the grips of 2.7 times the applied 

stress. The restraint applied by the grips is not perfect, so this 

figure is an upper bound. It accounts for the failure of the unnotched 

plate at 0.6 of the material UTSJ and it is clearly a more severe stress 

concentration than the small crack in plate 6c. 

As crack length increases, the area of critical stress concentration 

is transferred to the region ahead of the crack. Analysis of an unnotched 
CSM/PR plate shows the stress concentration to be 2.4, but it does not 

appear to have the same effect, the material being more sensitive to 

sawn cracks and resin cracks. Crack length having no effect on C3 in CN 
WRF/PR specimens, KC rises to a maximum at (ao/'W) = 0.19 and falls away 

sharply as (a 
0 

/W) 0 or 0 -5. 

In the tests on CSM/PR specimens, the change in Compliance shown 

on load/displacement recordings was the same as that found on a specimen 

with no notch, and is due to non-linearity in the material compliances 

rather than sub-critical crack growth. This supports Holdsworth's view 

that there is no sub-critical crack growth in CSM/PR. In the WRF/PR 

specimens there was a large amount of specimen extension and crack 

opening during loading but no growth collinear with the original crack. 

5-5 The failure of large specimens of CSM/PR and-WRF/PR 

The 1000 kN testing-machine described in section 5.2 was used to 

test several large CN specimens of CSM/PR and WRF/PR. To reduce the 

amount of material used in the specimens their length/width ratio was 

reduced to 0.82, their width being 915 mm and crack lengths various. 
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All 915 mm specimens except RC35/CNJOOO and RCW31/CNJOOO were reinforced 

at the ends to prevent grip failures. It has been shown that KC is 

independent of thickness so the material used was only 3 layers thick, 

but transverse buckling must be prevented if the results are to be 

applicable to thicker specimens. In the first test, on a CSM/PR 

specimen with (a 
0 

/V) = 0.219, the restraints used to prevent buckling 

were inadequate, and the test was repeated. The second specimen was 

sandwiched between a thick wooden plank and a thick Perspex block, 

both 219 mm wide extending across. the middle of the specimen, (see 

fig. 5-1). The Kc values found in these first two tests are given in 

table 5.11, (RC3., /CNIOOO and RC36/CNIOOO). The improved buckling 5 

restraints increase Kc by 33.6%. Hamilton and Berg (21), showed that 

reducing transverse buckling by increasing thickness also increased the 

KC values obtained from CN specimens of GRP. 

K 
cl 

a CGI and C)CN obtained from all tests on 915 mm CSM/PR 

specimens except the first are shown plotted against (a 
0 
/W) in fig. 5.13 

which suggests that there may be a larger range of (a 
0 
/W) over which KC 

is constant. In RC37/CN1000, where (ao/W) = 0.006, the failure did not 

originate at the central sawn crack but in the resin rich edge of the 

specimen where several cracks appeared early in the test, (see plates 

?a and b). The failure stress of this specimen is about half the material 

UTS as found from T2 specimens, 66.8 MPa. Testing these specimens with 

smaller cracks would probably result in similar failures. The presence 

of very small cracks or resin rich regions in which cracks develop at 

low stresses results in substantial reductions in failure stress of 

large CSM/PR specimens. The load/displacement recordings were linear 

up to failure, showing that there was no sub-critical crack growth. 
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Two 915 mm Wide specimens of WRF/PR were tested, (table 5.11). 

In RCý31/CN1000 with (ao/W) = 0.220, there was about 30 mm of collinear 

crack growth after the peak load had been reached and then the crack 

propagated down to the grips on each, the uncracked ligament sections 

pulling away from the bolts. The failure of the second specimen is 

shown in plate 7c. On reaching the peak load, the crack propagated 

horizontally to the edge on the right hand side and then down to the 

grips on the other side as in the previous specimen. 
Comparing Kc values obtained from 100 mm and 915 mm CN specimens 

of the two materials, with (a 
O/V) = 0.055 and 0.22, those from WRF/PR 

show the greatest changes with crack length and width. For both crack 

lengthsq in CSM/PR K from 915 mm specimens is 50% higher, but in WRF/PR .c 
it is 230% higher. Large specimens of CSM/PR fail at stresses less than 

half the material UTS, but large specimens of WRF/PR fail at approximately 

the same stresses as the smaller specimens. 

Fig. 5-14a shows Kc plotted against W-W-for CSM/PR specimens 

with (a /W) = 0.1667 using the results obtained in section 5.3, and 0 

estimating KC from fig. 5.13. Also included are KC values found by 

Holdsworth (24) and Bishop (61) which are given in table 2.1. For the 

materials in fig. 5-14a, Kc appears to vary linearly with WT. Fig. 5-14b 

shows that WRF/PR Kc varies linearly with W. 

The trial of various yield stresses in Irwin's correction, 

(equation 2.2.6), by Owen and Bishop (8) to find aKc value that is 

independent of width implies that since K 
C. 

is constant, ry is also 

constant. The method is therefore equivalent to adding equal increments 

of crack length to the initial crack length of the different sized specimens 

and seeing which one produces Kc that are independent of width. This 
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procedure was applied to the results obtained for 50,1009 150, and 

915 mm CN specimens of CSM/PRj and the Kc values obtained are given in 

table 
. 
5.12. There appear to be increments which make any 2 out of 4 

roughly equal, but none make all Kc values equal. 

. 
5.6 Conclusions 

The effect of specimen type on Kc values obtained from CSM/PR 

specimens is smaller than variations caused by size and crack length. 

Hamilton and Berg (21), showed the effect may be reduced by testing 

thicker specimens. 

Kc does not change with specimen thickness so it is unlikely that 

either material is capable of supporting plane strain conditions. 

The effect of damage caused by the water immersion treatment 

reduces Kc by roughly 10% in each material which is small compared with 

variations due to other causes. 

WRF/PR shows a much greater increase in Kc with size than CSM/PR. 

915 mm specimens of WRF/PR fail at the same stresses as 100 mm ones. 

The smaller increase in Kc with size in CSM/PR specimens means that 

91,9 mm specimens fail at much lower stresses than 100 mm ones with the 

same crack length. 

The failure stress of 100 mm CN specimens of CSM/PR is sensitive 

to small cracks and there is a narrow range of crack length over which 

K is fairly constant. The failure stress of 100 mm WRF/PR specimens c 
is insensitive to increases in crack length. 

Kc values from 100 mm wide CN specimens of CSM/PR could be used 

to provide a lower bound for the prediction of failure in bigger 

specimens and structures of this material, but the Kc approach is not 
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appropriate for WRF/PR. Kc values from small specimens would give very 

conservative failure predictions in large structures, the material 

being less sensitive to cracks than CSM/PR. The relationships 

suggested in fig. 5.14 could be used to obtain a closer approximation in 

CSM/PR. 

The use of Irwin's correction does not eliminate changes in Kc 

with specimen size. 



-53- 

CRAPTER 6 FATIGUE CRACK GROWTH IN CSM/PR AND WRF/PR 

6.1 Introduction 

The published work discussed in section 2.5 shows that the fatigue 

crack propagation law, 

da A ZMC 

that is found to apply to many metals, may also apply to some GRP. 

The first objective of. this part of the project was to determine fatigue 

crack propagation laws for the two materials under investigation for 

periods greater than 20000 cycles. 

The effect of damage due to prolonged water immersion on the 

strength, stiffness, and fracture toughness of CS. M/'PR and WRF/PR has 

been shown to be small. Other workers, (section 2.4), have shown that 

water has a more serious effect on fatigue strength, so it is likely to 

affect fatigue crack growth rate. The second objective is therefore 

to find out how crack growth is affected by water immersion treatment 

described in section 3.4. 

- 6.2 Test methods 

CN specimens were used for all fatigue crack propagation tests 

as shown in fig. 2.1. The 35 kN hydraulic pulsator testing machines 

have been described by Owen (60). Load measurement is by strain gauged 

load cells powered by a stabilised voltage supply. The output is fed 

via an amplifier to a digital voltmeter. The amplifier gain can be 

adjusted so that the DVM reads in kN. For dynamic measurement, the 
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bridge output is fed directly to an oscilloscope set to a high gain. 

On beginning a test, the oscilloscope trace is set to a zero position, 

the load cell is unbalanced so that an amount equal to minus the desired 

load appears on the DVM. Dynamic load is then applied until the peak 

of the load trace touches the zero position on the oscilloscope screen. 

A tension-tension load cycle was applied to the specimens. The 

load required to give a desired K 
max value was calculated from equation 

5.2.2, and 10% of this applied statically to the specimen as a base load 

to prevent it going into compression. The cycle shape is such that 

the minimum tensile load in it is small compared with the maximum load 

and so can be regarded as nominally zero-tension. K 
max = 8K, the stress 

intensity factor range. 

Measurement of crack length was by the compliance method. 

Specimen compliance was measured using an X-Y plotter. The load cell 

output was fed to the Y side, and the displacement of 2 steel blocks 

fixed above and below the centre of the crack recorded by an LVDT 

transducer, (fig. 6.1), fed to the X side. The specimen was loaded to 

about 3 kN and unloaded 3 times, and the loading and unloading slopes 

measured from the plotter recording. 

At the beginning of a test the sawn crack was measured with a 

travelling microscope and a value of the dimensionless compliance CD 

corresponding to the crack length found from the appropriate finite 

element compliance-crack length relation, (fig. 4.4). The initial 

compliance was then measured, and the value of CD assigned to the mean 

of the slopes on the plotter. This is allowable because CD is constant 

at a particular crack length regardless of specimen glass content, and 
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gives a constant by which all plotter slopes taken from a specimen 

during a test can be converted to CD values. Note that this method does 
I 

not require the plotter gains to be calibrated in Newtons and millimetres, 

but merely to be constant throughout a test. Crack length is expressed 

in the dimensionless form, (a/W) =a D* 
The test method chosen was to cycle several specimens each at a 

constant value of 8 K. This requires the load to be reduced according 

to equation 5.2.2 as the crack length increases. If the crack growth 

law, 6.1.19 holds, then aD should vary linearly with N and a constant 

value of daD /dN be obtained from each specimen. Plotting log LK against 

log daD/dN linearises equation 6.1.1 so that the constants A and m may 

be obtained easily:. 

log(da/dN) =m log 8K + log A 6.2.1 

The alternative is to cycle at constant load. To find A,, m the 

numerical methods described in section 2.5 have to be used on the aD IN 

curve to obtain daD/dN. Only one specimen need be tested to find A and 

m but if there is scatter in the aD, N curve daD/dN may be grossly in 

error. There being only a limited amount of time and material available, 

this method was used on the 915 mm wide specimen. 

Having measured the initial compliance, a specimen would be cycled 

for about 200-500 cycles at the initial load. The load was then removed 

and the compliance again measured. A computer program containing 

equation 5.2.2 and the polynomials fitted to the compliance-crack curves 

for the appropriate material and specimen, was used to calcul ate the 

increase in crack length and the new load to keep tS K constant. Longer 
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periods of cycling followed by load adjustment were repeated until either 

the specimen broke or a large number of aD, N results had been obtained. 

The cycling frequency on the Owen machines was 1.67 Hz,,, and on the large 

machine 3.00 Hz. The ends of WRF/PR specimens loaded greater than 23 kN 

had to be reinforced to prevent grip failures. Water immersed specimens 

were tested in a water jacket to prevent drying out under test. 

6-3 Fatigue crack propagation in dry and wet CSM/PR 

Fatigue crack propagation tests were carried out on 100 mm wide 

CN specimens of CSM/PR with (a 
0 
/W) = 0.1667. Stable crack growth took 

place in a narrow band of nK values below Kc, and was collinear with 

the original crack, (plate 8). The crack length found by the compliance 

method corresponded reasonably well with the length of crack growth in 

the specimen. 

It was found that the glass content of the specimens greatly 

affected the rate of crack growth. Curves of aD versus cycles from . 

specimens tested at various ISK ranges are shown in fig. 6.2. In two 

specimens subjected to different 8K ranges, MK = 8.0 MPa mi 0 and 

nK = 9.5 MPa m'M), crack growth occurs at the same rate. In the specimen 

subjected to LK = 7.75 MPa 
J-6 

for more than 2 million cyclesq, the 

rate of crack growth was very low. A higher propagation rate was 

observed in the specimen tested at LK = 7.5 MPa mhl, which failed at 

397640 cycles, (see table 6.1). 8K can be expressed in the dimensionless 

form 3K =nK/(O UTS 
J-W), which was described in section 5.4, where D 

OUTS is the local UTS of the material found from the glass content. 

From table 6.1, the 6K 
D values of the specimens tested at 8.0 and 9.0 

MPa m; are approximately the same, and 6K D of the 7.5 MPa m4 specimen 
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is higher than that of the 7.75 MPa m4 specimen, which accounts for the 

observed rates of crack growth. 

The curves in fig. 6.2 exhibit three phases of crack growth. An 

initial short phase of rapid crack growth, a longer period of steady 

crack growth at a roughly constant rate, and a final phase of rapid 

propagation as failure takes place. Usually in the later stages of 

a test, growth continued on one side of the specimen in preference to 

the other. The width of material remaining on this side was thus less 

than indicated by the mean length found from the compliance measurements. 

Premature failure of the specimen occurredq an example of which in 

fig. 6.2 is LK = 8.25 MPA m; V. 

The rate of crack growth, daD/dNq in the central phase was 

determined by using the least squares method to fit a straight line 

through the points in this region. They are the thin dashed lines in 

fig. 6.2. A logarithmic graph of daD/dN against KD is shown in fig. 6-3- 

The constants A and m were determined from the least squares fit of 

equation 6.2.1 to the points in the figure giving: 

daD 78 20-33 
--3.37 x 10 K 6-3.1 
dN -D 

. orthe following may be expected from dry CSM/PR with a glass content 

of 35%: 

da 
=x 10-26 ZIK20-33 6-3.2 UN- 1*19 

where a is in metres and nK in MPa m4. 

In fig. 6.29 it can be seen that the central phase of the aD 9N 

curves of specimens tested at 6K values close to Kc tends to be curved 
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rather than straight. It has been shown in section 5.4 that KC falls 

as aD increases beyond 0.2. Therefore as the crack in a cycled specimen 

lengthens beyond aD=0.2, the Kc value of the specimen gradually 

approaches the ISK range at which the specimen is being tested. It 

might be expected therefore that daD/dN increases with a, ) rather than 

remaining constant. The crack propagation law due to Forman et al (41) 

equation 2.5.2, was devised to allow for the effect of K on crack c 
propagation rate. If K 

min' 
01 it becomes: 

da A 8km 
ji ý (T 

c 
6-3.3 

Clearly if Kc is constant with crack length, cycling at constant 8K 

would still cause growth at constant da/dNq but if as a increases, 

K- 8K, then da/dN-*5. A quadratic polynomial was fitted to the 
c 

K Dc versus aD data for 100 mm wide CN specimens of CSM/PR given in 

fig. 5.10 of the form: 

Kc=B+ BlaD +Ba2 D02D 

Substituting into 6.3.3 gives: 

6.3.4 

m daD A 6KD 6.3.5 
dN B0+B1 aD +B2 aD - 8KD 

Integrating along the a D' N curves in fig. 6.2 where JýK is constant 

with aD givesq (see Appendix IV: 

22B336 8KD] - (a -aj)i) + 
Bl 

(a a)+ 
ý2 (a _a . 3.6 i[12 D- Di 3D Di 
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where aDi, Ni are initial values at the beginning of the region of steady 

crack growth, and : 

k= 1/(A LKM) 6.3.7 

To fit equation 6.3.6 to the points in fig. 6.2 the least squares 

method was used to find a value of k which made the sum of the squares 

of the residuals a minimum, (see Appendix II). The solid lines in fig. 

6.2 were determined in this way. The fit is reasonable except where 

premature failure occurs. Equation 6.3.7 can be expressed: 

-log k=m log 8 KD + log A 6.3.8 

so that A and m can be found by plotting -log k against log 4a K D' 
Fig. 6.4 gives values for A and m as follows, (least squares fit): 

daD 2.31 x 10 3 8K D 
15-97 

dN (K Dc - nK D) 
6.3.9 

or, at 35% glass content: 

da 2.94 x 10-26 8K15.97 6-3.10 
dN (KC - ZýK ) 

Three specimens of CSM/PR were subjected to the water immersion 

treatment described in section 3.4 and cycled at various constant LK 

values. Comparing dry and wet specimens in table 6.1 tested at similar 

8K values, growth takes place at a rate at least three orders of 

magnitude higher in the wet specimens. As tests were conducted at low 

8K compared with Kc, there is no discernable increase in daD/dN with aD 
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until just before failure, (see fig. 6.5). Equation 6.1.1 was applied 

as before, and fig. 6.6 gives values of A and m as follows: 

da D5 12.86 
dN = 1.32 x 10 8K D 6-3.11 

or, at 35% glass content: 

da -17 12.86 TN- 3.92 x 10 8K 6-3.12 

Comparing equations 6.3-12 with 6-3.29 the constant A appears to correspond 

to the large increase in da/dN due to water damage, (table 6.1), while 

the lower index, m, in the wet version indicates how close to K the 
c 

values of LK are, "at which observable rates of crack growth are taking 

place. Fatigued wet and dry CSM/PR specimens are shown in plate 

6.4 Fatigue crack propagation in dry and wet WRF/PR 

Fatigue crack propagation tests were carried out on 100 mm wide CN 

specimens of WRF/PR with (a 
0 
1W) = 0.1667. Fracture toughness tests on 

this material have shown that even large specimens are notch insensitive, 

unlike CSM/PR. In the last section, stable crack growth in CN specimens 

of CSM/PR was described which was collinear with the original crack, and 

occurred over a narrow range of ISK D values. The behaviour of WRF/PR 

specimens was completely different, although the apparent crack growth 

took place over roughly the same range of nKD values. 

Although an increase in compliance was recorded as the specimens 

were cycled, it did not correspond to observable, collinear crack growth. 

The load was reduced to keep nK constant as crack length apparently 

increased. The curves of (a/W) against cycles (N) for the values of 6K D 
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tested are shown in fig. 6.7, and can be divided into 4 phases as shown 

in the inset. Phase I corresponds to the rapid growth of vertical 

shear cracks at each end of the initial crack and normal to it. This 

occurs over the first few hundred loading cycles, blunting the initial 

crack and blocking horizontal crack growth. The compliance measurements 

indicate a large increase in horizontal crack growth which will henceforth 

be called "apparent crack growth". 

In phase 2 the vertical shear cracks grow steadily accompanied 

by increasing cross-over damage in the uncracked ligaments, (see plates 

9a and b). The change in specimen compliance in this phase is due to 

lengthening of the vertical cracks, which increases the length of the 

ligaments whose compliance is really being measured, (see fig. 6.8). 

In phase 3 the rate of apparent crack growth decreases abruptly. The 

vertical cracks have stopped growing, probably because the load which 

is steadily being reduced is no longer large enough to propagate them. 

Apparent crack growth in this phase is caused by increasing cross-over 

damage in the ligaments and resin shedding around the horizontal rovings 

bridging the vertical cracks. Cross-over damage becomes concentrated 

at the tip of one of the vertical cracks. 

In the final phase, the fibres bridging the vertical crack give 

way and there is a large increase in specimen compliance. Load is 

transferred to the damaged section of the ligaments adjacent to the 

tips of the vertical cracks. Horizontal crack propagation then takes 

place across this region, continuing steadily until the ligament gives 

way, (plate 9c). The mechanism of this failure is shown schematically 

in fig. 6.8. 
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Damaged sections were cut from specimens which had failed in this 

way, and from specimens where the load was too low for the final phase 

to occur, even after long periods of cycling. The resin was burnt 

from the samples in a muffle furnace to examine the damage to the 

rovings. The failed final phase sections showed breakage of the rovings 

bridging the vertical cracks, and that the horizontal failure comprised 

breakage of individual rovings up to 10 mm away from the mean line of 

the failure, so that the section was still held together by friction. 

In the phase 3 sections, some of the rovings bridging the vertical 

cracks had broken, and there was some breakage of vertical strands. 

To see whether specimen size affected this behaviourg a 915 mm 

CN specimen with an initial total crack length of 100 mm was subjected 

to cycling at a constant load of 125 kN in the testing machine described 

in section 5.2. The test was carried out at constant load because the 

crack growth rate in fig. 6.7 appears to be independent of n Kq (table 

6.2). The same vertical cracks occurred at each end of the central 

crack, increasing in length as cycling progressed. The graph of apparent 

(a/W) with cycles is shown in fig. 6.9. 

The fatigue crack propagation behaviour of this material is changed 

by the water immersion treatment. There is initially a sharp rise in 

compliance due to the growth of vertical cracks at-the crack tips, but 

their length is much shorter than the vertical cracks in the dry specimens, 

and they appear ineffective in preventing horizontal crack propagation. 

However, for a given LK range, the apparent initial crack growth in 

the wet specimens is larger, so that some horizontal crack growth may 

be taking place, (see plate 9d). There is no growth of vertical cracks, 
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the specimen passes directly from phase 1 to the final phase. Examination 

of the glass in failed sections shows a horizontal failure similar to 

that occurring in the dry specimens but closer to the line of the 

original crack. Increases in specimen compliance with cycling is due 

to horizontal crack growth, which takes the form of progressive cross- 

over damage and vertical roving breakage. 

The damage caused by prolonged water immersion eliminates the 

crack blunting mechanism in WRF/PR, rendering it sensitive to the presence 

of cracks. Fatigue life of cracked specimens is reduced accordingly. 

The curves of (aD) against cycles, (fig. 6.10), for t. he wet specimens 

can be seen to be unlike those for the dry ones, (fig. 6-7)- Comparing 

specimens subjected to the same 6K range , 
(8K = 22 MPa mil 41 KD --z 0.17) 

the dry specimen was still intact after 4904000 cycles, while the wet 

one broke after 271680 cycles. In the dry specimens, the period taken 

up by phase 2, vertical crack growthq increases with 6K, but the growth 

rate is about the same (see table 6.2). In phase 3, the growth rate is 

also roughly independent of LK, but it lasts for a shorter period as 

nK increases. In the wet specimens, the growth rate is constant with 

cycles and increases with nK as in CSM/PR specimens. At aK=22MPa m4, 

the rate of apparent phase 2 crack growth in the dry specimens is 

2.15 x 10-7, while the rate of crack growth in the wet specimens is 

4.1 x 10-7. The latter is more serious because it corresponds more 

closely to horizontal crack growth. 

Fig. 6.11 shows that for the wet specimens a linear relationship 

exists between log(daD/dN) and log(8K D 
), so that equation 6.1.1 seems 

appropriate. From fig. 6.11 values of A and m may be found giving: 
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daD 
5.6 

dN = 0.00794 8 KD 6.4.1 

or, at 65% glass content: 

da 
= 1.66 x 10-15, nýK5.6 jN- 6.4.2 

As in wet CSM/PR, the values of 8K at which these specimens 

were tested is too low to be affected by the variation in Kc with crack 

length. 

Comparing this work with that of other investigators, the type of 

vertical crack propagation found in dry WRF/PR occurs in unidirectional 

composites, (49)(53)- Owen and Bishop (52) subjected CN specimens of 

a woven fabric/polye'ster resin to constant 8K range cycling (from 3.5 

to 15.9 MPa m4l Kc = 21 MPa ml) and found that although a large damage 

zone formed ahead of the crack comprising vertical cracks and cross- 

over damage, horizontal crack growth did take place and equation 6.1.1 

was applicable. The woven fabric (Tyglass Y449) is much finer than 

the ECK25 used in WRF/PR, which would be little affected by cycling 

atnK= 15.9 MPa m4. The glass content of the Owen and Bishop material 

. was 57% compared with 66% in WRF/PR, insufficient to account for their 

difference in crack growth resistance. 

6-5 Conclusions 

The rate of fatigue crack propagation in CSM/PR is dependent 

on glass content. 

Equation 6.1.1 is valid for CSM/PR up to two million cycles, but 

equation 6.3.3 is a better description of crack growth at nK values 
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close to Kc. At lower 8K, they are equivalent. 

The resistance to fatigue crack propagation of WRF/PR is superior 

to CSM/PR and is due to crack blunting which blocks horizontal crack 

growth. The application of growth laws is inappropriate. 

For marine applications, the most important finding is the severe 

reduction in fatigue crack growth resistance caused by prolonged water 

immersion. Although the resistance of WRF/PR is still greater than 

CSM/PR, its crack blunting mechanism is destroyed, and the growth law 

becomes applicable. 
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CHAPTER 

CONCLUSIONS AND SUGGEStIONS FOR FUTURE WORK 

The static and fatigue properties of both GRP materials tested 

in this project are dependant on glass content. This is most serious 

in CSM/FR, because even when prepared under laboratory conditions, the 

glass content of a large laminate can vary up to tlO% of the mean. In 

commercial laminates, there is likely to be a larger variation. It is 

easier to produce WRF/PR laminates with the same glass content, (see 

Appendix I), and variation within the laminate is less. 

Of the two materials, the tensile strength and fracture toughness 

of WRF/PR is superior, failure stress being virtually insensitive to 

the presence of cracks of specimen size. The K. approach is not 

appropriate for this material. Tests on the largest specimens of 

CSMIPR show that it is possible for failures by rapid crack propagation 

to occur in large structures made of notch sensitive GRP material. 

Resin rich regions act as crack initiation sites for these failures and 

the KC method can be used to estimate the failure of larger cracked 

specimens of notch sensitive material. Some of the requirements for 

valid fracture toughness testing of GRP using the critical stress 

intensity factor approach'have been established from the literature 

survey, and the results given in Chapter 5. They are as follows: 

1) Allowance should be made for variations in specimen glass content, 

and KC should be quoted at a particular glass content. 

2) The specimen should either be thick enough for transverse buckling 

to be negligable, or supports should be used to prevent it. Kc should 

then be independant of specimen thickness, and among tension specimens, 

variations due to geometry should be reduced. 

3) The material under test should be notch sensitive. The greater the 
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notch sensitivity, the more applicable the K approach. c 

, The specimen should be as big as is practicable,, since the load/ 

displacement recordings of large specimens show the least deviation 

from linearity. 

AK that is entirely independant of crack length or width of c 

specimen has not been found, but the work of Holdsworth (24) and 

Bishop (61) shows that Kc from specimens with (a. /W) not tending to 0 

0r0.5 can be used to predict the failure of structures Of comparable 

size. 

The Paris fatigue crack propagation law describes low rates of 

crack grovth in CSM/PR adequately up to 2 million cycles - Higher rates 

of growth are better described by using Forman's law and allowing for 

the variation in KC with crack length. WRF/PR is much more resistant 

to fatigue cracking than CSM/PR, because the Progress of the cracks is 

blocked by rovings normal to the crack. The growth laws do not provide 

an adequate description of this behaviour. 

Perhaps the most important results obtained regarding the use of 

GRP in shipbuilding are those concerning the effect of Prolonged water 

immersion on CSM/PR and WRF/PR. The effect on tensile strength, stiff- 

ness and fracture toughness is small in proportion to the greater 

reduction in resistance to fatigue crack propagation. In CSM/PR the 

rate of crack growth at a given LK value is increased by at least 

three orders of magnitude. In WRF/PR, the fatigue crack blocking 

mechanism is destroyed, so that the Paris crack growth law becomes 

applicable, but the material is still superior to CSM/PR. 

Future investigations could be directed at finding a resin or 

glass treatment which makes the glass-resin interface less susceptible 

to attack by water. Flexible resins which crack at higher strains may 

be more resistant to fatigue crack growth in hostile environments. 
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More tests should be conducted on large specimens to examine 

fully the effect of specimen size and crack length on fracture tough- 

ness and fatigue crack propagation. A control system based on a diode 

function generator to keep LK constant as the crack length increases 

was designed and a prototype built, intended for use with the machine 

described in section. 5.2. Its development would greatly shorten 

fatigue crack propagation test programs which when carried out by the 

methods described in section 6.2 are extremely time consuming. 
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Table 3.1 Tensile and Compliance Tests, CSIYPR 

Specimen No. Resin Cracking Ultimate Tensile Glass Content S 11 S 22 and Direction Stress Stress by weight 
MPa MPa % GPa- I GPa-1 

RCJ/T1/j 00 74-3 95-70 31.47 1 

RCJ/T1/2 ? 5-9 120.42 34-57 
RC2, /Tl/5 52.2 103-36 33.62 
RC2, /Tl/7 5o. 8 lo6.43 33-80 
RC2, /Ti/8 4?. 4 111.61 34.11 

Mean value 6o. 1 10? -50 33-51 
Highest value 75.9 120.42 34-5? 
Lowest value 47.4 95-70 31.4? 

RCI/T1/11 900 41.4 lo4.3o 33-? 0 
RCJ/T1/12 48. o 96.95 32.93 
RC? _/Ti/6 

4o. 1 96-5? 32.90 
RC2, /Tl/10 38.6 106-54 33.4? 

Mean value 42,. 0 101.09 33.25 
Highest value 48. o 1o6-54 33-? 0 
Lowest value 38.6 96-5? 32.90 

RCI/T1/14 00 34.12 o. io6o 
RC2/Tl/13 36.46 0.1000 
RC2/Tl/14 37-18 0.0987 

Mean value 35-92 0.1010, 
Highest value 3? -18 0.1060 
Lowest value 34.12 o. o987 

RQ1/Ti/1.5 90o 33-77 o. 116q 
RCI/Ti/16 32.48 0.124? 
RC2/TI/11 33-99 0-1141 
RC2, /TI/12 33.48 0-1159 

Mean value 33.43 0.11? 9 
Highest value 33-99 0.1247 
Lowest value 32.48 0.1141 
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Table 3.2 Tensile and Compliance Tests. L 2§M JPR 

Specimen No. Ultimate Tensile Glass Content S S 
and Direction Strength by Weight 22 

HPa % GPa- 1 GPa-1 

3-layer 

RC12IT111 00 1o6.18 32.89 0.1118 

RC12/Tl/2 130.48 35-94 0-0959 

RC12/Tl/5 121-33 38.27 0.0970 

RC12/Ti/6 117.27 35-03 0.1067 

Mean value 118.82 35-53 0.1029 

Highest value 13o. 48 38.27 0.1118 

Lowest value 106.18 32.89 0-0959 

RC12/Tl/3 900 118.28 34.8o 0.1062 
RC12/TI/4 124. o8 32.44 0-1155 

RCJ? _/Tl/7 
125-91 34.24 0.1072 

RCJP_/Ti/8 129.28 39-54 0-0953 

Mean value 124-39 35.26 o. 1o61 
Highest value 129.28 39-54 0-1155 
Lowest value 118.28 32.44 0-0953 

Mean of all RC12/ 
T1 Specimens 121.60 35-94 0.1045 0.1045 
Highest value 130.48 38.27 0-1155 0.1155 
Lowest value 118.28 32.44 0-0953 0-0953 
Coefficient of 
Variation % 6.45 6.97 0.728 0.728 

6-layer 

RC17/T1/1 goo 131-01 37.68 0.08766 

RC17/TI/2 00 141-33 37.64 0-10? 3 

RC17/Tl/3 00 127.47 35.82 0.1110 

9-layer 

RC18/T1/1 goo 141.14 36.09 o. o8671 

RC18/Tl/2 00 136.23 36.64 0.1025 

RC 18/T1/3 00 135-57 36.09 0.1076 
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Table_3.2 Tensile and Compliance Tests, CSK/PR (continued) 

Specimen No. Ultimate Tensile Glass Content S 
11 S 22 

and Direction Stress by weight 
MPa % GPa-1 GPa- 1 

3-layer 

RC28/T2/13 00 118.9o 34.49 o. ogo47 
RC28/T2, /14 122.84 37-20 o. og4o8 

RC28/T? -/15 
133.43 34.88 0.10268 

RC28/T? -/16 
126.63 36-03 0.09580 

RC28/T? -/17 
125-77 37.82 0.100? 4 

Mean value 125-51 36. o8 o. o9675 
Highest value 133.43 37.82 0.10268 

Lowest value 118-go 34.49 o. ogo47 

Coefficient of 
variation% 4.27 3.98 5-13 

RC28/T? -/1 900 102.21 34.21 ox9618 
RC28/T? -/2 

122.25 33-13 o. o8448 
RC28/T? -/3 124.64 36.76 o. o8487 

RC28/T2/4 i 2o. 68 31-53 o. 11623 
RC28/T? -/5 137.69 35-39 0- 109 58 
RC28/T2/6 139-72 36-92 o. o9863 
RC28/T2/7 137.8o 37-06 0.08495 
IRC28/TZ/8 144.17 37.62 o. ogi8o 
RC28/T? -/9 

125-92 34-54 0.08959 

RC28/T? -/10 
117-95 32.96 o. o9482 

RC28/T? _/Il 114.68 32. o4 0.10778 

RC28/T? -/12 102.89 32.21 0.10895 

Mean value 124.22 34-53 0.09732 

Highest value 144.17 37.62 0.11623 
Lowest value 102.21 31-53 0.08448 
coefficient of 
variation % 11.11 6-32 11.28 

Mean value of all 
RC28 specimens 124.60 34.99 0.09716 9716 

Highest value 144.17 37.62 0.11623 o. 11623 
Lowest value 102.21 31-53 o. o8448 ox8448 
coefficient of 
variation %1 9.44 5.95 9.71 9.71 
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Table 3-3: Tensile and Compliance Tests. WRF/pR 

Specimen No. Ultimate Tensile Glass Content S 11 S 22 and Direction Stress by weight 
mpa % GPa-1 GPa-1 

3-Layer 

RCW25/172/7 00 246.16 53-59 0-05227 
RCW25/T2/8 248.05 52.6o 0-05068 
RCW25/T2/9 231.6o 50-00 0-05564 
RCW25/T2/10 233-03 50.45 0-05567 
RCW25/T2/11 246.05 51.14 0-05027 
RCW25/T2/12 248.76 51.68 0-05099 

Mean value 242.27 51-58 0-05259 
Highest value 248-76 53-59 0-05567 
Lowest value 231.60 50-00 0-5027 
Coefficient of 

variation % 3.22 2.61 4.7o 

RCW25/T2/1 900 238.13 49.83 0.06144 
RCW25IT212 247.12 50-79 0-05575 
RCW25/T2/3 253.61 51-? 9 0-05460 
RCW25/T2/4 232-59* 49.06 0-05994 
RCW2-5/T2/-5 252.01 50-94 0-05011 
RCW25/T2/6 234.25 

. 50-03 0.04865 

Mean value 242.95 50.41 0-05509 
Highest value 253.61 51-79 0.06144 
Lowest value 232-59 49.06 0.04865 
Coefficient of 

variation % 3.77 1.91 9.27 

Mean value of a12 
RCW25 specimens 242.61 50-99 0-05384 0-05384 

Highest value 253.61 53-59 ox6144 0.06144 
Lowest value 231.60 49.06 O. o4865 0.04865 
Coefficient of 
variation % 3.34 2.49 7-50 7.50 

6-Layer 

RCW30IT211 0o 362.85 62-71 0.03858 
RCW30/T2/2 900 319-72 64.92 0.04379 
RCW30/T2/3 00 421.21 66.69 m4o6o 
RCW30/T2/4 00 432-52 67.44 0.03790 
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Table ý. 3: Tensile and Compliance Tests, WRF/PR (continued) 

Specimen No. 
and Direction 

Ultimate Tensile 
Stress 
Mpa, 

Glass Content 
by weight 

% 

S 

GPa 

S 
22 

GPa 

RCW29/T2/1 00 351.49 69.98 0.03315 

RCW29/T2/2 900 402.25 69.23 0-03594 

RCW29/T2/3 00 446.88 ? 0-13 0.03315 
RCW29/T2/4 00 415.46 69-57 0.03551 
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Table 3.4 : Tensile and Compliance Tests on Polyester Resin 

Specimen No. Ultimate 
tensile stress 

MPA 

Sil 

GPa-1 

RCRJ/T1/I 4.12 1.586 

RCRJ/TI/2 9.36 1.547 

RCRI/T1/3 4.97 1.575 

RCR1/T1/4 7.66 1.529 

RCRJ/T1/5 10-03 1.599 

RCRJ/T1A '00 90 - 

RCR1/T1/7 lo. 98 - 

RCR1/T1/8 8.18 
- 

RCRJ/Tl/g 9.43 - 

Mean value 8.19 1.567 

Highest value lo. 98 1.599 

Lowest value 4.12 1.529 

Coefficient of 28.0 1 8 
Variation % . 



-85- 

Table 3-5: SG values from plate twist tests 

Specimen No., Direction, Glass Content SG 

and Material by weight 
% GPa-1 

PT5 00 CSM/PR 31.41 0.32o8 

PT6 450 Dry 36.96 0.2583 

PT7 00 35-58 0.2796 

PT8 45 0 34.1.5 0.2857 

PT9 450 WRF/PR 62-55 0.1212 

PT10 450 Dry 6o. 38 0.1253 

PTII 00 56.85 0.2775 

PT12 00 55-76 0.2883 

PT13 00 64.81 0.2146 

PT14 00 63-17 0.2456 

PT15 450 64-32 0.0990 

PT16 450 63-95 0.1092 

PTJ? 00 CSM/PR 36.88 0.2670 
PT18 450 Wet 37-71 0.2550 
PT19 00 37-97 0.2408 
PT20 4.50 36-33 0.2830 

PT21 
1 450 WRF/PR 6?. 68 o. o987 

PT22 450 Wet 69.22 0-1130 

PT23 45 0 68.06 o. o982 
PT24 450 68.19 0.0963 

PT25 00 67-81 0.24og 

PT26 00 68-38 0.2404 

PT27 00 67.45 0.2353 
PT28 00 68.09 0.2351 
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Table 3.6: Water absorption by CSM/PR and WRF/PR specimens 

Material Specimen 
Type 

Nominal total 
surface area 

mm 
2 

% cut edge 
area of 
total area 

Increase in 
weight due to 
water absorption 

CSM/PR Plate twist 6162 10.87 1-15 
Nominal T2 14924 22.94 0.82 R 
thickness CN50 17451 8.31 1.28 

3.2 mm CNJOO 55121 5.66 1.27 
CN150 118709 3.97 1.19 

WIRF/PR Plate twist 5911 7.09 0.69 
Nominal T2 13640 15.69 0.51 R 
thickness CN50 16907 5.36 0-55 
2.0 mm CNJOO 53573 2.94 0.65 

1 

CN150 

1 

121230 

. 

5.96 
1 

0.62 

Specimens marked R had reinforced ends 
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Table 3.7: Tensile and compliance tests, wet CSM/PR nnd WPXIIPR 

Specimen No. Ultimate Glass Water S S 
22 

and direction Tensile Content Intake 
Strength by weight by weight 

- - MPa % % GPa GPa 

RC46/T1/1 00 137-09 38.15 0.802 mo6o 
RC46/T1/2 00 137-17 38.41 o. 8o8 0.1010 
RC46/T1/3 00 134.12 39.67 0.859 0.10314 
RC46/Ti/4 00 136-54 40.66 o. 819 o. o942 

Mean value 136.23 39.22 0.822 0.1012 
Highest value 137-17 40.66 o. 859 mo6o 
Lowest value 134.12 38.15 0.802 0.0942 

RCW45/T1/1 00 379-37 69.81 o. 46o 0.03471 
RCW45/Tl/2 00 349-74 70-05 o. 483 0.03459 
RCW45/T1/3 00 339-02 68.71 0.530 0.03851 
RCW45/TI/4 00 333.68 67-18 0.547 0.03981 

Mean value 350.45 68.94 0.505 0.03691 
Highest value 379-37 70-05 0.547 0.03981 
Lowest value 333.68 67-18 o. 46o 1 01,03459. 1 
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Table 4.1: Summaryof k*A values and key to figs. 4.2 and 

a/w aD L/W Material End 
Constraint 

K*A at r/N 
=0 

0-05 0 0.? 5 CSM/PR Constrained* 1.035 

0-05 0 0.75 WRF/PR Constrained 1. o18 

0-05 0 2.00 CSM/PR Free 1.000 

0.05 2.00 WRF/PR Free 0.998 

0.30 0.75 CSM/PR Constrained 0.997 

0.30 0.75 WRF/PR Constrained 0.915 

0.30 2.00 CSM/PR Constrained 1.079 

0.30 A 2.00 WRF/PR Constrained 1.047 

0.30 0 2.00 CSM/PR Free 1.075 

0.30 2.00 WRF/PR Free 1.054 

"Constrained" implies: - 
1) All nodes at loaded end of specimen are displaced the same 

amount in the direction of load, y. 

2) No displacement in x direction by nodes at loaded end of 

specimen. 
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Table 5.4: Summary of Mean Kc Values and Kc Values at 35% 
Glass Content, CSM/PR 

Nominal Width Number of Number of Mean K 35% Glass 

mm Layers Specimens 
c 

4 
MPa m 

Content 
*I Mpa M7 

DEN 75 Dry 3 3 7.95 8.36 

100 3 4 9.01 - 
150 3 3 9.37 10.19 

CN 50 Dry 3 4 10-35 9.97 
100 3 4 10.90 10-57 
150 3 3 11-52 11-53 

CN 50 Wet 3 5 8.63 8.67 
100 3 5 9.92 lo. o4 
150 3 5 io. 14 10.60 

CN 50 Dry 6 5 10.24 9.79 

100 6 5 lo. 89 10-77 
150 6 11.62 11.40 

CN 50 Dry 9 5 10.26 10.26 

100 9 5 lo. 96 lo. 67 

150 9 6 12.08 11.23 

CN 50 Dry 3,6,9 14 10.27 9.89 

100 3,6,9 14 10.92 lo. 63 

150 3,6,9 15 11.78 11.41 
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Table 5.7: Summary of I-lean Kc Values and Kc Values at 65% Glass Content, 
WRF/PR 

Nominal Plumber of Plumber of Mean K 65% Glass 
Width Layers Specimens C 

I Content K 
mm 14Pa m-ýý Ic 

MPa m7 

CN 50 Dry 3 4 35.89 35.84 

100 3 4 46.13 43.83 

150 3 4 55-31 50.63 

CN 50 Wet 3 4 31.83 - 
100 3 4 38-36 
150 3 4 43-52 

CN 5o Dry 6 3 28.42 - 
100 6 2 39.87 - 
50 9 3 31.40 - 

CN 100 Dry 9 3 45.66 - 
50 3,6,9 10 32.3 - 

100 3,6,9 9 44-58 42-59 
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Table 5.8 :Kc and KDC for 150 mm wide CN specimens of CSM/PR 

Specimen 
No. 

Glass Content 
by veight 

Local UTS 
MPa 

Kc 

MPa, ml 

K 
DO 

RC13/0150/6 34.23 122.10 3-1.4o 0.2409 

RC13/0150/7 34-50 123.06 11.61 0.2434 

RC14/0150/6 37-19 132-58 12.11 0.2357 

RC14/0150/7 35.26 125-75 11.41 0.2342 

RC15/CN15o/6 37.41 133-36 12-38 0.2399 

RC15/0150/7 35-65 127-13 11.64 0.2366 

RC24/CN150/5 36.07 128.62 11-56 0.2321 

RC18-/CN150/1 34.27 122.24 10.90 0.2301 

RC20/0150/1 39-99 142.49 13-11 0.2376 

RC20/CN150/2 37-33 133-08 12.11 0.2351 

RC20/CN150/3 38-06 135.66 12-36 0.2353 

RC17/CN150/1 36.64 130.64 11-74 0.2323 

RC21/CN150/1 34.46 122.92 11.45 0.2407 

RC21/CN15012 36.48 130-07 11-71 0.2326 

RC21/0150/3 35.27 125-79 11-30 0.2320 

Mean value 36.19 11-79 0.2359 

Highest value 39-99 13.3-1 0.2434 

Lovest value 34.23 10.90 0.2301 

Coefficient of 
Y&riation % 

4.52 4.64 1.66 

U 
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Table 5.12: Corrected KC values, CSM/PR 

Increment 
ry mm 

K 
c 

W= 50 mm 

K 
c 

W =. 100 mm 

K 
c 

W= 150 mm 

K 
c 

W= 915 mm 

0 9.89 lo. 63 11.41 16.02 

2 11.34 11.41 11.97 16.1.5 

4 12.83 12.19 12.52 16.27 

6 14.42 12.98 13.08 16.4o 

8 16.15 13-79 13.65 16-53 

10 18. o7 14.63 14.22 16.66 

12 20.23 15.50 14.8o 16.79 

14 22.66 16.41 15.40 16.91 

16 25.41 17.36 16.01 ir?. o4 
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APPENDIX I: MATERIALS AND LAMINATE MAKIN' -L VIV 

The two GRP materials which have been used in this project both had 

a matrix of polyester resin. In CSM/PR, the reinforcement was chopped 

strand mat, and in WRF/PR it was woven roving fabric. A full description 

of resin, reinforcements, catalystg and accelerator is given in Table Al. 

The first two laminates, RCl and RC2 were made with 11% catalyst and 

0.5% accelerator. They took about 48 h to gel, and were then kept at 800C 

for 3 h. This process (schedule A), is similar to that adopted by other 

workers, (24) (61). To cut down the gel time, 2% catalyst with 1% 

accelerator was used in all subsequent laminates. The cur-Ing schedule 

was also changed to one more appropriate for shipbuilding materials. 
On completing laying up, the laminate was left for 72 h at room tempera- 

ture, and then kept at 400C for a further 72 hj (schedule B). 

All laminates were laid up by hand on glass plates covered with a 

sheet of Melinex release film. In CSM/PR, the desired glass content 

was 35% by weight, and to achieve this it was necessary to weigh the 

reinforcement and calculate the amount of resin needed in each ply. 

Spacers were placed on each side of the laminate, fastened at the 

corners, to prevent the mat spreading when rolled, and to maintain the 

desired thickness. These were sprayed with mould release agent. The 

-resin was spread evenly over each layer and rolled with split washer 

rollers to ensure proper wetting out. When the last layer had been 

wetted out, the spacers were unfastened, moved away from the edges of 

the laminate, and scraped clean of fibres and resin. Surplus resin 

was then deposited across the middle of the laminate, a sheet of Melinex 

placed over it and rolled slowly with a 100 mm diameter solid roller to 

remove air which becomes entrained in the surplus resin. A glass plate 
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was then placed on top of the Melinex, held down by weights distributed 

evenly over its surface. 

Spacers were unnecessary for WRF/PR laminates which did not 

spread on rolling. The glass content could be kept at about 65% 

simply by rolling out the excess resin, and the thickness of laminates 

with the same number of plies was consistent. 

In the making of large laminates, 1m square, the bottom glass 

plate was supported by pads attached to a rigid framework to keep the 

laminate flat. To minimise handling the glass plates, the framework 

was mounted on a trolley and could be slid into the oven on rollers. 

The thickness of 3,6 and 9 layer CSM/PR at 35% glass content I 

was 3.2,6.4 and 9.6 mm respectively. In WRF/PR at 65% the thickness 

of 3,6 and 9 layer material was 2.1,4.2 and 6.3 mm respectively. 
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APPENDIX II: INTEGRATION OF THE FORMAN CRACK GROWTH EQUATION 

The rate of fatigue crack propagation is given by: 

da 
2(A 

8Km 
A2.1 TN- « -K 

-8 K) 
c 

where A, m are constants. This can be expressed in the dimensionless 

orm: 

daD ALK Dm 
W(K 

Dc - LK 
D) 

A2.2 

in which aD = (a/W) 
I ýSKD = (ISK/ (3UýCS JW-), and, for 100 mm wide CN 

specimens of CSM/PR: 

KDC = Bo + BlaD +B 2aD 
2 A2.3 

where B0=0.188, B1= 0-938, and B2=-2.333. Substituting A2.3 into 

A2.2 gives: 

daD AnK Dm A2.4 dN ([Bo - 8KD] +B1aD+B 2aD 
2) 

If LKD is kept constant with increasing aD integration gives: 

N-N. 
ALe 

aDi 

([B 
0- 

8KD] + BlaD +B2aD2 )daD 

where a Di' Ni are values of aD, N at the start of the integration. 

N-N33 22)+ B2 
(aD - aýj) A2.. 5 k[(Bo - LKD)(aD - aDj) + 

Ll (a 
D aDi 

23 

where 

J/A nKm A2.6 



-11 1. 

For each aDj N curve in Fig. 6.2, a value of k can be found which 

gives the best fit of equation A2.5. The sum of the squares of residuals, 

R, is S, and there are n points: 

i= 

a N' (N 1_1,, )2 =S A2.7 Di j 

"0000, 
j 

0.10" where N=N-N. The criterion for a 

DjI 
N 

best fit is that S should be a minimum with 

respect to k: 

dS 
WE 0 

nI-B 
sNk (Bo a+ 

Ll (2_a2 KD) (aD 
Di) 2 aD Di 

2 B23 
+T aý 

dS B, 22 1: ( 
-2 M[ (B - LK (a -a+- (aD - dk -10 D) D Di 2 8LDi 

A2.8 

B2 
(aD3 3 B' 

(aD2 _ 
2i 

+3 aDi + 2k [ (Bo - LK 
D) 

(aD - aDj) +2 aD 

B2332 
(a 

D aýj) or: 

J=ni= 

N. =k+ 
B' 

(aD2 2+ B2 
(aD3 (Bo - INKD) (aD aDi) 2a3 Di 

A2. 

Thus k can be determined from aD, N data and hence A and m from the 

logarithmic form of equation A2.6 
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FIG. 2.3 Types of Fracture Mechanics 
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FIG. 3.1 Tensile and compliance 
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FIG. 3.2 UTS, Resin cracking stress, S1, S 22 vs. Glass content 
Type T1 specimens of CSM/PR. 3-loyer laminates. RCI. RC2. 
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FIG. 3.3 U TS, S1, S 22 vs. Glass content 
Type T1 and T2 specimens of CSM/PR. 3.6,9 -layer laminates 
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FIG. 4.1 Finite element model 
of CN specimen 
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FIG. 4.3 K*/K vs. r/W, a/W=0.30 
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FIG. 6.1 Measurement 
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PLATE 1. 

1) CSM/PR dry 2) WRF/PR dry 

CSM/PR wet 4) WRF/PR wet 
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PLATE 2.10OOkN testing installation 





PLATE 2.10OOkN testing installation 



369 

PIATE 3.50MM wide CN specimens of CSM/PR, thickness 3,6, and 9 plies 

369 

PLATE 4.50mm wide CN specimens of WRF/PR, thickness 3,6, and 9 plies 
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PLATE 3. 

PLATE 4. 
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PLATE 5.150 mm wide CN specimens of CSMIPR and WRF/PR, 3 plies 





PLATE 5.150 mm wide CN specimens of CSM/PR and WRF/PR, 3 plies 
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pLATE 8. Fatigue crack propagation in wet and dry CSM/PR specimens 
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