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Abstract

This Ph.D. thesis considers making some contributions to the asset pricing and financial risk
management literature. First of all it offers some dynamics in the area of asset pricing which
are practically implementable for pricing European style options. More precisely it consid-
ers blending GARCH type non-Markovian dynamics with Lévy type Markovian innovations
to offer analytic valuation of European style derivatives(at this initial stage). Revealing
the mathematical underpinnings— required to replace conditional Gaussian innovations in
GARCH option pricing models by innovations coming from some Lévy processes(with one
sided and both sided jumps)—is the main focus. The necessity for this arises from the fact
that the non-normal(Lévy) innovations are crucial as heteroskedasticity alone doesn’t suffice
to capture the option smirk and the analytic valuation is highly expected because it makes
the model practically implementable. Thus besides incorporating non-normality particular
attention is paid to analytic valuation as well; though the Monte Carlo techniques can be
readily applied for the proposed dynamics. However an approximation is required to uphold
the analytic pricing, especially for innovations coming from Lévy processes which are not
Subordinator. These dynamics are capable of overcoming many deficiencies of benchmark
Black-Scholes model and can be used to price other derivatives such as Credit, Interest rate,
Commodity, Weather etc. The approach is built on a discrete time continuous state space
and upholds the no-arbitrage principle of derivative pricing through the use of conditional
Esscher transform to configure Equivalent Martingale Measure(EMM). Similar to the exist-
ing literature, established for GARCH with normal innovations, existence of EMM provides
de-facto evidence in support of no-arbitrage argument. Besides the main focus this research
has made some complementary contributions to the option pricing literature.

Since J.P.Morgan introduced RiskMetrics in 1994, the normal quantile based VaR has



been considered as industry standard for risk management. However VaR itself has inher-
ent inconsistencies which are exacerbated under the assumption of normality. The second
part of this thesis considers two frequently referred approaches to non-normality in risk
management : extreme value(EV) approach and Lévy approach. The idea is to reveal the
relative performance of various risk measures under full density based Lévy approach and
solely tail observation based EV approach. We provide empirical evidence which confirms
that though purely tail based risk measures value-at-risk(VaR) and its coherent version
expected shortfall(ES) are well comparable under both approaches, entire spectrum based
spectral risk measure(SRM) is misleading for EV approach. Backtesting risk measure VaR
is considered under both approaches. We plan to improve the computational efficiency of
estimation of Lévy coherent risk measures through application of characteristic function
based FRFT. Our ultimate goal is to see whether the conditional moment generating func-
tions —developed for GARCH-Lévy models in the first part of this thesis— can be adapted
to the characteristic function based FRFT technique in order to estimate the risk measures

in analytic fashion.
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Introduction

This introduction is in two sections, addressing respectively the motivation and the organ-

isation of the thesis.

Motivation

In continuous time stochastic differential equation approaches it is often felt necessary to
assume that the price process is Markovian, otherwise the equations may fail to produce
any solution. However the no-memory property of a Markov process is not a good reflection
of reality, and there is strong empirical evidence supporting the claim that stock price and
interest rate processes are non-Markovian. For example, asset returns exhibit volatility
clustering and strong time series structure, implying they are non-Markovian. Some critics
even go to the length of saying that it is inappropriate to assume an unrealistic model
in order to apply a theory which requires a Markovian modeling. A potential solution is
the use of hybrid models which have been a mainstay in the time series literature since
the GARCH model with student-t innovations was first proposed by Bollerslev(1987)[21].
However the latest time series analysis suggests that even these models may be inadequate
to describe patterns in volatility evolution. Volatility estimates from intraday returns and
high-low returns indicate long- lasting volatility shifts than are typically estimated in the
ARCH framework, and suggest either a long-memory or multifactor volatility process.
The latest developments in the literature of hybrid models explore discrete time models
but replace normal innovations to address skewness and kurtosis related deficiencies. Affine
GARCH type models are appealing in this regard: conditional normal innovations can be

replaced by innovations coming from Lévy family. In other words such approach blends



Markovian type innovations to non-Markovian type dynamics. GARCH type affine mod-
els with normal innovations, see Heston and Nandi(2000)(70], have two major advantages
for econometric work. First European call and put options with any maturity T can be
computed rapidly conditional upon the observed underlying asset price .S;; the value of
relevant underlying latent variable oy; various model parameters and the market price of
risk(A) which determines the risk-neutral probability measure. Also the joint characteris-
tic function associated with the joint conditional transition density p(Siyr, o¢47|St, o1, ©)
has an analytic solution, implying objective transition densities can also be evaluated via
Fourier inversion or other fast methods. As a result it becomes relatively straightforward
to infer o, values from observed option prices and to test whether the observed time series
properties of asset and/or option prices conditional on those values of o, are consistent
with the predicted properties. Under this backdrops researchers developing pricing models
along this mixture approach aspires to enrich the dynamics with useful stochastic proper-
ties of Lévy processes as innovations. After pioneering work of Heston and Nandi(2000)[70]
some researchers tried some simple non-normal(Lévy) innovations in GARCH framework

to analytically price European style options. This research attempts to answer:

e How the analytic GARCH approach with normal innovations fares among different
approaches which are developed as alternatives to Black and Scholes model? As
alternatives we consider Gram Charlier, jump-diffusion, pure jump and continuous
time stochastic volatility approaches. Moreover we answer this question in a more
realistic set-up where potential investors in derivatives market prefer using only the

most recent information.

o Isit possible to mathematically trace GARCH option pricing, with innovations coming
from standard both sided Lévy processes, in analytic fashion? If “yes”, does their exist

explicit relationship between statistical and risk-neutral dynamics?
o How to characterize the market price of risk under such dynamics?

o Is there any improved empirical evidence of pricing across various information aggre-

gations which benefits from analytic valuations?

xxi



A research attempting these questions shed lights on improved pricing of other derivatives—
e.g. credit, foreign exchange, interest rate etc— where rich stochastic properties blended with
time series structures of the dynamics are expected to remove the sources of mispricing.
The relatively recent literature of financial risk management also offers nice scopes for
contributions. One such scopes is the accurate quantification of VaR and coherent risk
measures (expected shortfall, ES, and spectral risk measure, SRM). Implementing coherent
risk measures ES and SRM for Lévy models in a comparative fashion, across leading indices,
is not available in the literature. Moreover in case of SRM there are some issues to address.

In this part we attempt to answer the question:

¢ Do the observations discarded by extreme value(EV) model and incorporated by Lévy

models play any role in the performance of tail based risk measures VaR and ES? How

about SRM?

Then the GARCH- Lévy dynamics come into the scenario which are expected to produce
some improved empirical results in risk management, in addition to their improved pricing
performance for derivatives. Moreover it will be of considerable practical help if analytic

estimation of risk measures can be obtained for these rich dynamics.

Organisation of the Thesis

This thesis is organized as follows.

Chapterl is an intuitive overview of GARCH features. Different characterizations of
GARCH dynamics are studied, and some limitations of GARCH models are reported.

Chapter2 revisits the basics of Lévy modeling and is contributory in nature. This chap-
ter makes a reformulation which demonstrates how the standard Lévy-Kintchine formula
may be interpreted as a series of shocks superimposed on a normal distribution. This
reformulation gives clear idea about how jumps come into the scenario and distort the ba-
sic path structures of Brownian motions in describing the returns of some financial asset.
Considering the Variance-Gamma (VG) process as an example it then reveals the detailed
mathematical intuitions which underlie the notion of time changing in finance. This in

essence helps us recognize and correct a misspecification in Geman(2002)(62] .
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Chapter3 is basically an empirical study based on chapter two. Recently Chourdakis
(2005)[29] introduces fractional FFT(FRFT) in option pricing which is superior to tradi-
tional FFT. Using S&P500 index options we empirically focus on exposition of trade-off
between models fitting performance and required calibration time for week by week dy-
namic calibration with FFT and FRFT specifications. In doing so we further investigate
whether FRFT exhibits any distinctive features in addition to its substantial reduction in
required computational time. More precisely for Black-Scholes and its time changed version
the Variance Gamma model we investigate cross-maturity and cross-strike features of FRFT
compared to those of FFT.

Chapter4 is another contributory chapter. In this chapter we consider number of avail-
able models which are developed as alternatives to the Black-Scholes model. The models
considered in this chapter include Black-Scholes (1973)[19], the Gram-Charlier (GC) ap-
proach of Backus et al. (1997)[9], the stochastic volatility (HS) model of Heston (1993)[69],
the closed-form GARCH process of Heston and Nandi (2000)[70] and a variety of Levy pro-
cesses including the Variance Gamma (VG), Normal Inverse Gaussian (NIG), CGMY and
Kou(2002)[75] jump-diffusion models. While most of the individual studies in the litera-
ture consider a cross-section of these models, we compare all these models using a common
point-in-time data that reflects the perspective of a new investor who wishes to choose
between models using only the most minimal recent data set. Moreover we compute the
hedge factors delta and gamma for each of these models and then examine the accuracy of
delta and delta-gamma approximations to the valuation of both individual options and an
illustrative option portfolio. Based on the relative performance of Heston Nandi(2000)[70]
model (CFG henceforth), in both pricing and approximation, we emphasize the necessity
of exploring closed form GARCH approach with non-normal (Lévy) innovations.

Chapter5 is the main chapter of this thesis. In general for analytic derivative pricing the
knowledge of the risk neutral distribution at maturity is essential. But the problem is that
for the standard GARCH set up only the one step ahead distribution is available. Heston and
Nandi(2000)[70] proposed a GARCH-like model with normal innovations where they were
able to compute the characteristic function of the underlying using a recursive procedure

and then used the Heston(1993)[69) approach to price option using Fourier inversion. For
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short maturity options, Christoffersen (2006)[33] observed some pricing biases in Heston
and Nandi’s(2000)[70} model and conjectured that this is due to the fact that single period
innovations are Normal. We reveal the mathematical underpinnings required to replace
conditional Gaussian innovations in GARCH option pricing models by innovations coming
from Lévy processes with both one sided and two sided jumps. The necessity for this arises
from the fact that the non-normal (Lévy) innovations are crucial as heteroskedasticity alone
doesn’t suffice to capture the option smirk and an analytic valuation is important because
it makes the model practically implementable. Though we didn’t explore this further,
it is obvious that like Heston and Nandi(2000){70} our approach is built on a discrete
time continuous state space and upholds the no-arbitrage principle of derivative pricing
through the use of a conditional Esscher transform to configure a Equivalent Martingale
Measure(EMM). Similar to the one in existing literature, established for GARCH with
normal innovations, the existence of EMM provides de-facto evidence in support of no-
arbitrage argument.

Naturally, we realize that the innovations coming from Lévy processes with two sided
jumps are mathematically cumbersome to deal with, as they require an approximation of
volatility dynamics to uphold the analytic valuation methodology in GARCH-Lévy frame-
work. All such cases considered are Brownian motions stochastically time changed by sub-
ordinators: VG-Brownian motion time changed by Gamma subordinator, NIG-Brownian
motion time changed by inverse Gaussian subordinators, CGMY-Brownian motions time
changed by tempered stable subordinators. We detailed the mathematical manipulations
required to obtain semi-analytic option prices under GARCH dynamics with all these three
innovations. However innovations coming from subordinated Lévy processes which can ex-
hibit only positive jumps, are relatively easier to deal with. This is because in this case
we do not require any approximation to obtain an analytic valuation. The case we exam-
ine most closely is “analytic GARCH option pricing with tempered stable innovations”.
The new GARCH-like processes with Lévy innovations, GARCH-Lévy model could be a
plausible name, are capable of capturing the conditional skewness and conditional kurtosis.

Moreover it is possible to obtain recursive relations for the evaluation of the charac-

teristic function multi-period ahead which can then yield the closed form prices, up to



numerical integration, for European Derivatives. We implement one of the four dynamics,
namely those of the GARCH-NIG model, which we examine in detail. The scale of involve-
ment in implementation is the reason behind the selective implementation, especially as
the coding involved requires enormous concentration and takes huge amount of calculation
time. However once codes are developed and verified, procedures become implementable
within manageable times. The point which we must stress here is that this is only possible
because of the development of analytic valuation methodology coupled with application of
FRFT.

Chapter6 comprises the risk management part of this thesis. In this chapter we revisit
the basics of financial risk management. We found that tail based risk measures VaR and
ES often forecast the risk almost equally well for both tail based EV model and full density
based Lévy models; observations discarded by EV but incorporated by Lévy models do not
make for any significant improvement in the performance of tail-based risk measures. It
then investigates Lévy spectral risk measure as an alternative to Generalized Pareto spectral
risk measure. In case of SRM, however, we observed that full density based Lévy models
perform consistently better than solely tail based EV model. To the best of our knowledge
this work is the first in its kind where coherent risk measures ES and SRM are implemented
for Lévy models in comparative fashion for most of the leading indices over the world. As
a consequence we provide clear empirical evidence against the use of SRM when investors
prefer EV model to full density based models. On the other hand if for some or other
reasons investors prefer to use SRM to quantify the underlying risk, it is better they use
Lévy models instead of EV. For the empirical work of this chapter we used the same data as
used by Cotter and Dowd(2006)[39]!. This is because in Cotter and Dowd(2006)[39] they
recommended using SRM with EV model to fix the margin requirement in clearing house,
without noticing the subtle issue that extreme value model’s calibration on few extreme
observations often generate inconsistent values of quantiles outside the extreme tail. These
quantiles, when used in estimation of SRM, provide a poor estimate of SRM. The idea
behind using the same data as in Cotter and Dowd(2006)(39] is just to reveal how poor the

EV SRM could be compare to Lévy SRM.

'The indices considered are S&P500, FTSE100, DAX, Hang-Seng and Nikkei225.

XXv



Part 1

Option Pricing



Chapter 1

Basic Dynamics and GARCH

In quantitative Finance and Economics proper characterization of return dynamics is always
a vibrant research topic. These dynamics are the fundamental tools for derivative research
in general and option pricing in particular. Such dynamics play a pivotal role in currently
much talked about financial risk management literature as well. The relative effectiveness

of such dynamics is governed by stochastic characteristics of underlying process.

1.1 Short Background on Development of Return Dynamics

We start by referring to the very basic idea of Brownian perturbation:
Wtk+1 = Wtk 4+ Ctk V At (11)

where tpy; —ty = At and k = 0,--- , N with to = 0. Here ¢;,’s are independent and
identically distributed random variables,(i.i.d henceforth), following €;, ~ N(0,1). In the

literature this is known as random walk. It follows that for j < k we have
k-1
Wtk - Wtj = Z €,V At. (12)
i=j

The right hand side is a sum of normal random variables , i.e. W;, —W;, is always a normal

random variable for any j < k. It follows immediately that

E(W,, —W,,) =0

k-1
Var(W, — Wi,) = EQ e, VAL) = (k — j)At =ty — t;.
i=j



Also an immediate consequence of increments over non-overlapping intervals ¢; < t; <
tj+1 < tg, with 1 < 7 < k , is that Wy, — Wi,,, and Wy, — W, are independent and hence
uncorrelated.

To see the intuitive relation of random walk and increments described in (1.2), consider
partitioning [0, 1] into “n” subintervals each having length “%.” Then for ¢t € [0,1] and [nt]
being the greatest integer part of its argument define:

1 [nt]
Stng) = NG ;e (1.3)

where ¢;’s are defined as before. Then clearly

1
Stnt) = Stat]-1 + nil 7 (1.4)

1

which is a special form of (1.1) with At = 7 and W; = S|y Furthermore for ¢t = 1:

1 n
Stnf = Sn = T > e (1.5)
=1

has a standard normal distribution. More importantly by central limit theorem, CLT hence-
forth, S, tends in distribution to a standard normal variable even when “¢;”’s are only i.i.d
and not necessarily normally distributed. To rap things up the process Si,y tends to a
standard Brownian motion in distribution as n — co. Equation (1.3) reveals the discrete

time intuition behind simulating standard Brownian motion in continuous time:
th = €tV dt (16)

The existence of such limit is well studied in the literature, see e.g. Billingsley(1999)(17].
Equation (1.6) plays an intuitive role in the derivation of celebrated Black-Schole-Merton’s

option pricing formula.

Definition 1.1 A stochastic process Wy is said to be a standard Brownian motion, SBM

henceforth, if it satisfies:
[SBM1] fort < s Wy — Ws = Wy_s ~ N(0,t — s). i.e Wy is stationary.

[SBM2] for 0 < t1 < to < t3 < t4, Wy, — Wy, is uncorrelated with Wy, — Wy, This is

known as independent increments property.



[SBM3] Wy, = 0.

The stationarity ,in particular in financial modeling, implies that the distribution of price
appreciation doesn’t depend on any particular time. As long as the length of the intervals,
over which the the price appreciation is observed, remain same the distribution will remain
same, no matter where it is observed. The independent increments property implies that
the distribution governing such price fluctuations over non-overlapping observation periods
are independent and hence uncorrelated.

Standard Brownian motions are not able to model the average tendency or drift of a
process governing the price fluctuation of assets, since over any time interval it models the
fluctuations by a zero mean distribution. Arithmetic Brownian motions, ABM henceforth,
are thus considered to overcome this limitation of SBM. Under ABM the price fluctuation on

an interval of length dt is governed by the stochastic differential equation, SDE henceforth,:
dSt = ,udt + UdBt (17)

where dB; is a SBM and p and o > 0 are constants. We will revisit the general structure
of SDE. For the moment we just mention that SDE’s describe the increments of a process,
say X, which is driven by one or several governing random processes. When there is only

one governing random process SDE’s are, in general, described as:
dXt = /L[t,Xt]dt-FO'[t,Xt]dBt (18)

where B; is a SBM and p&o are continuous functions of t&X. When p&o are functions
of t&X; only and doesn’t depend on any of X, values for h > 0, X; in (1.8) is known
as Markov process. So a diffusion process, represented by (1.8), is a Markov process. The

drift rate and variance rate’s are the limit’s:

o EXipar — X | 5t 1.9

) = o o
. VG,’I”[XH_At — Xt | St]

2 1.10

oft, X, = lim, At (1.10)

respectively, which are also known as instantaneous drift and instantaneous volatility. A

diffusion processes, hence a Markov process also, is not a martingale, unless the drift u[t,-X/]



is identically zero for all X; and ¢. The value space and the distribution of future values

depend on the function u and o.
Hence ABM, described in (1.7), is a diffusion process with ult, Xy =pand oft, Xy] = 0.

Clearly it is a Markov process and is not a martingale as long as p # 0. Its equivalent, and

more intuitive, integral form is:

t t t
/dSs:/ pds+/ odB, (1.11)
0 0 0

S, = So+ put + o B,. (1.12)

It now follows that

So
E(St - So) = E(/.Lt —+ O'Bt) = ,ut

and

Var(S; — So) =Var(ut+oB;) = ot

So mean and variance of price fluctuation over an interval of length ¢t changes linearly with
t. This model can be a suitable specification for an economic variable that grows, assuming
1> 0, at a constant rate and is characterized by increasing uncertainty. But as the process
can take negative values it is not suitable as a model for stock prices, since limited liability
prevents stock prices from going negative. The remedy is what follows: Geometric Brownian
Motion(GBM).

GBM is a model for describing the price fluctuation dS;, on an interval of length dt,
relative to the current value S;. This proportional change, or rate of return, is modeled as

an ABM. Consequently the governing SDE is:

d_;ﬁ = pdt + od B, (1.13)
t

where i and ¢ > 0 are constants. Comparing with (1.8) it follows that GBM is a diffusion
process with ult, S;] = pS: and oft, St] = 0S;. Hence S; governed by (1.13) is a Markov
process and is not a martingale as long as p # 0. Drift co-efficient pS; and diffusion co-
efficient ¢S, are both proportional to the latest known value of the price process S;, and

thus continuously changes. The higher the latest S; the greater the drift co-eflicient and



the larger the perturbation. So a bigger random increment is more likely. Ito’s formula,

which we will discuss later, leads to the integral form of (1.13):

t t ¢
1

/ din[S.] = / = Lo du + / oB,. (1.14)

0 0 2 0
That is Zn[%g] =[u—- %UQ]t + 0 B;. So log returns are normally distributed with parameters:
E(ln[S—O]) =E(lp—50%lt+0By) = [n - 502]t (1.15)

S. 1

Var(ln[—‘ST(t)]) = Var([u— 502]t +0B;) = ot (1.16)

Thus return’s % are log-normally distributed:

1
Sy = Spexp ([ — 502]75 + 0 By) (1.17)

Having an exponential representation, S; can never be negative. At S; = z it has the

log-normal density:

1 n{r)—m
flz) = 3B (1.18)
Uy 2T
where
1
m = E[In(S;)] = In[So] + [u — —2-02]23
and

v=+/Var[ln(S)] = \/;/ar([u - -;-a?]t +0B,) =0Vt

So GBM can be a suitable specification for an economic process which can not assume
negative values and whose variability depends linearly on the level of the variable. Thus
GMB is the traditional model for the stock prices. Celebrated Black-Schole-Merton ,BSM

henceforth, idea capitalizes on GBM for asset return.

Theorem 1.1 Consider a European option with pay-off V(S) and ezpiration time T. As-
sume the continuously compounded rate of interest is r. Then the current European option

price is determined by:

v(0,80) = e "TE[V(S7)] (1.19)

where E denotes the expectation under the risk neutral probability that is derived from the

risk-neutral process:

%ﬂ = rdt + odB;. (1.20)

t



BSM call option pricing formula takes the explicit form:

Theorem 1.2 Consider a Furopean call option with strike price K and ezxpiration time T.

If the underlying option pays no dividends and continuously compounded risk-free rate is r,

then the price of the contract at time t is given by:
C(t,Sy) = S:@(d1) — Ke T (dyp) (1.21)

where ® () denotes the cumulative distribution function of standard normal random variable
In(3)+(r+ 5 )(T1)

evaluated at the point z, d; = oy and
S, o2
dy = T n gy — dy — o /T

oI -t

1.2 Imperfections in Black-Schole’s Model

The seminal paper of Black-Schole was a break-through in option pricing literature. But

empirical evidence suggests that the model is in conflicts with some of the stylized facts:

e The scale invariance property of Brownian motion leads to the fact that Brownian motion
doesn’t distinguish itself between time scales where as real price behavior does. Prices
move essentially by jumps at intraday scales, at the scale of months they still manifest
discontinuous behavior and only after coarse graining their behavior over longer time
scale we get something resembling Brownian motion. Though Black-Schole’s model
can be chosen to give the right variance of return on a given time horizon, it doesn’t
behave properly under time aggregation, i.e. accross time scale. Since it is difficult
to model the behavior of asset treturns equally well across all time scales,ranging
from several minutes to several years, it is crucial to make the time scale explicit
in various applications from very onset. Thus Black-Scholes’s model is certainly not

outperforming one on various time scales of practical interest.

e Looking into the early studies in literature, Mandelbrot(1963)[82] and Fama(1965)[55]
had indicated that short-run returns in commodity and stock markets are not normally
distributed but have fat tailes and are peaked i.e. they have leptokurtic distribution.
However for longer investment horizons of a month or more the return distribution

seems to converge to a normal distribution.



* Relatively recent evidence has suggested that the assumption of constant volatility is

completely inconsistent in financial markets. See Fama(1976)[56).

¢ There is strong evidence in support of changes in stock prices being negatively correlated
with changes in volatility. The phenomenon which is often termed as “leverage effect.”

Black-Schole , assuming constant volatility, completely fails to report such subtle

effect.

e The most resounding failure of Black-Scholes model is its inability to recognize the
systematic pattern of impled volatilities exposed by market option prices. When
the Black-Scholes formula is inverted to compute the implied volatilities from re-
ported market option prices volatility estimates differ across exercise prices and time
to maturity. Two distinct patters are observed when implied volatilities are plotted
against strike -prices ( or against moneyness, a function of strike price), see Cont and
Tankov(2003)[38]. The patterns are “volatility smile” and “volatility skew”. As time
to maturity increases these curve typically flatten out. Volatility smile is associated
with a “U” shaped pattern of impled volatilities where at the money options have the
smallest implied volatility. This pattern is common with currency options and in stock
index option this pattern has been reported in the period prior to ‘87 market crash,see
Sheikh(1991)[107] and Rubinstein(1994)[96]. After the crash, however, skewed implied
volatility patterns are often observed: using post crash S&P 500 index options and
futures options Rubinstein(1994)[96] and Derman and Kani(1994)[41] showed that
implied volatilities decreases monotonically as the exercise price rises relative to the
index level. All these phenomena turn inconsistent with Black-Schole which suggests
a flat volatility surface across strike and maturity. It has been conjectured that the
underpricing by Black-Schole model, particularly in case of short-run options, is a

consequence of disregarding skewness and kurtosis of the return distribution.

e Recent research,see Cont and Tankov(2003)(38], has convincing evidence regarding the
presence of jumps in equity price dynamics. In fact inability to trade continuously
implies de facto jumps in return dynamics. These jumps contribute to (or may be

a source of) stochastic volatilty when they lead to finite variation trajectories in the



absence of diffusion term, which is mostly the case in practice. Black-Schole assuming
a continuous path with drift (and no other combination or superposition of processes

with it) contradicts with de facto presence of jumps.

1.3 Possible Remedies of the Imperfections

Researchers already have substantial contributions to remedied the imperfections surround-
ing Black-Scholes model. As hinted above it is crucial to include jumps in the return to make
the models more realistic across different time scales. As we will see, in this perspective,
Lévy process can yield some more realistic models for return dynamics. Approximation
of densities considering skewness and Kurtosis are found to improve the performance of
Black-Scholes model, see Backus et al(1997)[9]. We will revisit it later with some details.
Smile-Skew related remedies are still a vibrant research in empirical finance. Black-Schole’s
model is not the only continuous time model built on Brownian motion. Considering in-
stantaneous volatility as a local function of price and time, the nonlinear Markov diffusion

models are proposed in Dupire(1994)[49] and Derman et al(1994)[41]:

‘—ii = pdt + o(t, Sy)dB;. (1.22)
t

In the same line another proposal is the stochastic volatility model, see Heston(1993)[69]
and Hull et al(1987)[71], where the price S; is the component of a bivariate diffusion (St, 0¢)
driven by a two-dimensional Brownian motion (B}, Bf):

EZ% = pdt + o(t, S¢)dB} (1.23)
t

o= f(Y))  dY, = odt +vdB}. (1.24)

These models have more flexible statistical properties but as the uncertainty is modeled

by Brownian motion the perennial problem of continuity is still there which doesn’t seem
to be evidenced by real prices over the time scales of interest. Since continuity of paths
plays a crucial role in general properties of diffusion models question arises whether results
obtained and conclusions drawn from by studying these models are robust to the removal
of continuity hypothesis. Studies in quantitative finance in the framework of models with

jumps reveal that many results obtained in diffusion models are actually not robust to the



presence of jumps in the prices and thus deserve to be considered anew when jumps are
taken into account. Thus jumps added to diffusion models are shown to perform much
better. It was first introduced in Merton(1976)[85] and a recent reference showing nice

empirical performance is Kou(2002)[75]. It is shown that the dynamics:

ds, Nt
5" pdt + odB; + d(Z}(V; ~1)) (1.25)

where V; is a sequence of independent and identically distributed non-negative random
variables such that Y = log(V) has an asymmetric double exponential distribution and
N, is a Poissson process with rate A. With this jump incorporated dynamics , stochastic
volatility can also be incorporated which leads to stochastic volatility jump diffusion model.
This kind of models are found performing very well. However jump diffusion processes are
Lévy processes’ and Lévy processes have much more flexibility of characterizing the jumps

enhancing the performance of the model.

1.4 What is GARCH?

It has been observed for quite a long time that there are clustering in financial market volatil-
ity. A volatile period tends to persist for some time before the market returns to normality.
Given that volatility is unlikely to remain constant over time, how could it be modeled so
that it responds to time varying shocks? Engle answers this question in Engle(1982)[54] un-
der the name ARCH (Autoresgressive Conditional Heteroskedasticity)and its generalization,
see Bollerslev(1986)[20], is what known as GARCH. The ARCH approach was later found
to fit many financial time series and its widespread impact on finance has led to Nobel Com-
mittee’s recognition of Rob Engles work in 2003. GARCH is just another way of modeling
the volatility dynamics, specially in discrete time settings. Modeling conditional volatility
by GARCH has recently shown to perform much better in capturing empirically observed
characteristics in financial return, when option pricing is concerned, and is intuitively more
realistic in its approach. GARCH has the elaboration “Generalized Autoregressive Con-
ditional Heteroscedasticity.” Following the works Engle(1982)[54] and Bollerslev(1986){20]

a voluminous financial and econometric literature has developed on volatility estimation

1See Cont and Tankov(2003)(38], Kyprianou(2006)[76].
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and forecasting. By now the GARCH volatility models have become an important tool-kit
in empirical asset pricing and financial risk management. Most cited in this voluminous

literature concerning empirical finance are Campbell et al(1992)[28], French et al(1987)(58],
Glosten et al(1993)[67], and Pagan et al(1990)[90].

1.4.1 Intuition and Examples

Engel’s, see Engle(1982)[54], proposal to model the conditional variance 02 as a linear

function of p lagged squared innovations z? is what known in the literature as ARCH(p)

model:

2| i1 ~ N(0,07) (1.26)

Ut2 = fo + ﬁlth—l +o- ﬂpZ?—p (1.27)

where 3; > 0 for all 4, 3=1 Bi < 1 and F;_; represents the information set of all information
upto and including ¢ — 1. That is given the information §;_1, the next observation 2; has
normal distribution with conditional mean E(z; | §:—1) = 0, and conditional variance of
V(z | Ft-1) = o?. Following the idea of general stochastic process we can think of these
as the mean and variance of z;, computed over all paths which agree with §;_1. Equation
(1.27), specifies the way in which the conditional variance oy, is determined by the available
information. Note that oy, is defined in terms of square of past innovations. This together
with the assumptions that Gy > 0 and o; > 0 guarantees that o; > 0. Some common

features of ARCH models are:

e Typically q is of high order because of persistence of volatility in financial markets. The
way volatility o; is constructed in (1.27), it is known at time ¢t — 1. So one-step-ahead
forecast is readily available. Multi-step ahead forecasts can be formulated by assuming

E[Zt2+7'] = Ottr:

e It is surprising that if instead of restricting to paths which agree with the available

information F;_; we consider all possible paths, we have E[z;] = 0, V(2| = -——1_5:?:1 5

a finite constant. To see these consider ARCH(1) and observe that:
Elz] =E[ - - [E[E(2t | §1-1)] | 2] --- | Fol =0 (1.28)
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since by definition E(z; | §;—1) = 0. Similarly, since

E(z} | Fic1) =02 =Gy + Brzi 1,
E(Bo + Br127 1 | Fe—2) = Bo + B1(Bo + Brz2y)

repeatedly applying this argument we have:

E27] = E[ - [E[E(z2 | §-1)] | St—2] -+ | Fo]
=Bo(L+ P+ B+ + 8 + 628

That is for large t and 81 < 1, V([z;] = E[2?] = T@—%;. It then follows that Cov(z;, z;) =
0, if 4 # j. That is for an ARCH(q), V{z] = ﬁ%@’ hence unconditionally the
process is stationary as long as Zzz‘{ Bi < 1, which is assumed in the definition of the
model. It is only the conditional volatility which changes with time, not

the overall volatility.

e Though it is in the name ARCH model is not autoregressive. However if we add
nt = 22 — o2, (which, according to the definition of z; is a zero mean white noise) to
both sides of equation (1.27), we get:

q
22 =P+ Zﬁizf_i + 7.
i=1
That is the squared process z? is autoregressive with non-zero mean and au-

toregressive parameters g1, B2, , Bq.

e The ARCH(q) model is nonlinear. If we could express z; as z; = Y .o, Qi€—i,
(for some independent white noise e;), then we would have V(z; | §i-1) = V(2 |

er_1,€t—2,..) = V(et), a constant. This contradicts equation (1.26). So z; must be a

non-linear process.

e The observations z; of an ARCH(q) model is not Gaussian though the con-
ditional one is. Roughly the reason for this is that the unconditional distribution
is an average of the conditional distributions for each possible paths upto ¢t — 1. Al-
though each of these conditional distribution is Gaussian, the variance oy’s are not

equal across 't’. So unconditional distribution is the mixture of normal distribution

with unequal variances, which is not normal.
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¢ The distribution of z;, tends to be more long-tailed than normal, which allows outliers

to occur relatively often. The kurtosis in ARCH(1) process is shown, see Bera and

Higgins(1993)[13], to be:
Blzf] _.(1-5
=31 3ﬁ%) > 3, (1.29)

This is very important since it reflects models leptokurtic behavior which is consistent
with the short-run returns in financial data. Moreover once an outlier is included, it
will increase the conditional volatility for some time to come. The reason is that any

of the larger z;_;, being squared, will make an increasing impact on o; as it is defined.

e Since E(z; | F1-1) = 0, we see that z; are Martingale difference. Thus the best estimate
of z;, based on the available information is simply the trivial predictor, namely the

series mean 0. However although z; is not forecastable, the squared series zt2 is:

E(z2 | Feo1) = V(2 | Feo1) = 07 = Bo+ Przty + -+ Bpziy

e 2, are not independent, though they are uncorrelated.This is because if 2z, were
independent they would form a linear process however as we saw ARCH(q) is not

linear.

In application of ARCH(p) type models it’s often found that the required p is rather large
and so for the shake of a parsimonious parametrization a generalized ARCH(p,q), known
as GARCH(p,q), was introduced in Bollerslev(1986)[20] in such a way so that conditional

variance is also a function of its own lags of all order upto g¢:
2
02 = fo+ izl +  F Bortp + 107+ + O (1.30)

For GARCH(1,1), the constraints a; > 0 and B > 0 are needed to ensure positivity of o2.
For higher orders of GARCH the constraints on a; and (; are more complex, see Nelson

and Cao(1992)[88]. Using the similar intuition as ARCH the unconditional variance can be

shown to be:

5 _ o 1.31
7 1= 8-yl (1.31)

Hence the covariance stationarity in GARCH(p,q) model holds if and only if Zle B; +

Y oieg i < L.
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Convergence of Conditional Variances

Let us get some more insight of volatility forecast in GARCH(1,1) model. The one-step

ahead forecast of conditional variance at time ¢ is:
621 = Bo + B122 + aqo?. (1.32)
Making use of the fact that E(27,, | §:) = 02,,, the forecast of 07,, can be obtained as:

~2 2 2
Oiyo = Bo + Prziyy + 0104

= B0+ (61 + 1)ty . (1.33)

Similarly,

625 =Bo+ (B + 1)o7 5
= Bo+ Bo(B1 + 1) + (b1 + )02 4

= o + Bo(B1 + 1) + Bo(B1 + a1)® + (81 + a1)?B122 + a10?] (1.34)

Hence for a large arbitrary forecast horizon 7 , we get:

~92 ﬁO

Sttt = TGt ar) (B1+ 1) "M Br2} + cuoi). (1.35)

If oy + G1 < 1, as is assumed in the definition, and 7 gets larger and larger then the
second term on the right hand side of (1.35) dies out eventually and &2 - converges to the

unconditional variance ﬂﬁilo-f-?ﬁ

Exponential GARCH or EGARCH

To ensure positivity of conditional variance ARCH and GARCH models need to impose
non-negativity restrictions on the o;’s and §;’s. Moreover in this early characterization
of innovations the GARCH model assumes that the impact of news on the conditional
volatility depends only on the magnitude , but not on the sign, of the innovations. But as
mentioned above stylized facts suggests that changes in stock prices are negatively correlated
with changes in volatility; thus the primitive characterization can’t capture the so called

leverage effect. To overcome these drawbacks the exponential GARCH , or EGARCH
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in short, was introduced in Nelson et al(1991)[87] such that logarithm of the conditional

variance is specified as:

Zi— _ _
Ino? = By + B}~ + Iih <I——Zt—1| -E [l—zt—ll]) + aplno? ;. (1.36)
Ot—1 Ot—1 Ot—1

with z; ~ N(0,02). Then Z ~ N(0,1) and consequently E [Jz—t'] = \/g It is easy to

gt

see that the leverage effect is captured by BI. For “good news”, i.e. for % > 0, the

impact of the innovation z,_1 is (82 + 8}) l;ﬁ—:i[ and for “bad news”, i.e. for JZ;_i' <0, it
is (62 - B}) [z-1]

5., - Hence if B =0, Ino? responds symmetrically to |—?"—1| in other words

t-1"
non zero ﬁ% captures the leverage effects. Furthermore, since conditional volatility, oy, is
characterized in terms of log it is always positive and consequently there is no restriction

on the sign of the model parameters.

Integrated GARCH or IGARCH

For a GARCH(p,q) process, when Y, a; + Y ¢ f; = 1 the unconditional variance in
(1.31) blows up and the convergence of conditional variances in (1.35) is no longer mean-
ingful. Conditional variance is then described as an integrated GARCH, or IGARCH, and
there is no finite fourth moment. Conceptually an infinite variance is counter intuitive to
real phenomena in Economics and Finance. However based on the empirical findings in
support of GARCH(1,1) as the most popular model for many financial time series, a non-
stationary version of GARCH(1,1) (where the persistence parameters a; and $; sum to 1)

T™M

was incorporated to EWMA (exponentially weighted moving average) by Riskmetrics® ™.

To see this incorporation first make repeated use of (1.30) to obtain:

2 2 2
Oivo = Bo + B1zi41 + @104

= Bo + Boou + Bty + Bronzi + ofof (1.37)
So
T . T .
ol =060 o+ B ) o i+ afot. (1.38)
i=1 i=1
Thus for 7 — 0o and o < 1, we can infer that:
Bo Sy
ol=———+p1 Y il (1.39)
1—o P
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We have the EWMA model for sample standard deviation such that:

A2 1 9 9
Iy = (1 A+ N2 _|__,_+)\n> (o1 +/\Ut—2+'--+)\"af_(n_1)) (1.40)

If n — oo and A < 1, we get:

67 = (1= Nlof (1.41)
i=1

When z? is taken as proxy for o2, (1.39) and (1.41) are both autoregressive series with long

distributed lags, except that (1.39) has an additional constant term.

Nonlinear GARCH or NGARCH

A simple modification of GARCH(1,1) process, defined in (1.30), makes it possible for
innovations and volatilities to be negatively correlated,for > 0, a phenomenon described

as leverage effects:
ot11 = Bo+ Broe(z — 6)° + anoy. (1.42)

In the literature this is known as nonlinear GARCH or NGARCH. The point here is that
it is negative piece of news z; < 0, which has more impact on variance than a positive piece
of news z; > 0 provided # > 0. The persistence of variance in this model is 81 (1 + 6%) 4 a1

.. . . 2 Bo
and the long-run unconditional variance is 0° = 1= IR

GJR GARCH and TGARCH

Another GARCH(p,q) model allowing for asymmetric dependencies, i.e. incorporating

leverage effects, is Glosten-Jagannathan-Runkle GARCH or GJR-GARCH model:

q p
o} =Po+ Yy iot i+ Y (Bizi; +vilj-j7-5) - (1.43)
7=1 j=1
where,
1 if zp—j < 0
Lii—; = (1.44)
0 if Zt—j >0

The positivity of conditional variance is ensured by the restrictions Gg > 0, a; > 0,5; 2 0

and aj+v; >0fori=1---gand j = 1---p. Covariance stationarity holds if and only if:

Zai +y (ﬁj + %yj) <1 (1.45)

i=1 7j=1
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The TGARCH, i.e. threshold GARCH, is similar to GJR-GARCH except that it is

formulated with absolute return:
) q P
_ 2
i =Po+ Y ot i+ (B |z | +ylie—s | 2 |).- (1.46)
i=1 j=1
Positivity of the conditional variance is ensured with the restriction on the parameters as

before and restriction on covariance stationarity now becomes complicated and in case of

p = q =1 it takes the form:

1
of 5 182+ (B +1)?) + —=en (1 +m) < 1. (147)

1.5 GARCH Features for Derivative Pricing

At times when deterministic volatility in classical models was leading poor fit for options
data, researchers started thinking to capitalize on GARCH models to fit options data. This
was motivated by the success story of GARCH to fit return data. For the first time in lite-
rature , Duan(1995)[45] characterizes the relationship between market and risk-neutral pro-
bability distributions when the derivative under consideration follows a GARCH dynamic.
That was the foundation of pricing European option using GARCH process. Subsequently
the theoretical aspects of hedging in the GARCH option pricing model were considered in
Garcia and Renault(1998)[61]. Jumps were incorporated in returns and volatility extending
the GARCH option pricing model to give more realistic fit to real market option data. See
Duan et al(2004)[46).

In scientifically developed time-continuous stochastic differential equation models the
Markovian assumption of the underlying price process is required; otherwise the model
may fail to produce a solution. See e.g. Shreve(2004)[104], Fusai and Roncoroni(2008)[59].
However the Markov property, from realistic point of view, turns out to be too strong
to justify. Strong empirical evidence suggests that stock price processes and interest rate
processes are non-Markovian. See e.g. Poon(2005)[93], Jondeau et al(2007)(73]. In fact it is
now unanimously accepted that asset returns display the feature of volatility clustering and
are of strong time series structure, implying the non-Markovian property. In order to apply

sophisticated theory, it seems inappropriate to assume an unrealistic modeling assumption
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namely Markov structure of the dynamics. It is thus important to have a theory which,
from practical point of view, allows non-Markovian modeling for asset prices. Discrete time
GARCH processes have strong appeal under such background and can be more realistic

candidates for asset price modeling under no-arbitrage condition.

1.5.1 GARCH Option Pricing

The GARCH option pricing model assumes that the per unit expected return of the un-
derlying asset is equal to the risk free rate, r, plus a premium for taking the risk, A, and a
convexity adjustment term. Under such a specification the observed daily return is equal
to the expected return plus a innovation term. The most common and starting assumption
for the noise term is the conditional Gaussian distribution with mean zero and variance

following a GARCH(1,1) process with leverage. That is:

1
Rt+l = ZTL(SH_l) - l’I’L(St) =7+ )‘\/O't—t—l - §Ut+1 + VOt+12t+1 (148)

where z;41 ~ N(0,1) and the volatility dynamic is given by

oer1 = Po + Brow + Baoi(z — 6)2. (1.49)

With the assumption that specification (1.48) of the stock returns is under the physical, or

market, measure P, the equation

EP[exp (Rit1) | 3i] = exp (r + A\/oer1) (1.50)

signifies the role and meaning of \ as price of volatility risk. This model assumes that returns
are drawn from a normal distribution with time varying volatility accommodating leverage
effects. Because of this conditional heteroscedasticity or non-stationarity the unconditional
distribution is fat-tailed. To ensure covariance stationarity of the innovation process z; it

is required that the parameter’s satisfy
Bo(1+6%) + 61 <1,

which in turn ensures the positivity and finiteness of long run unconditional variance of the

process given by:
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Bo
1—-6a(1+ 92) - B

See Bollerslev(1986)[20], Berkes et al(2003)(14] and George(2001)(64].

(1.51)

It is easy to see that GARCH process defined by (1.48) and (1.49) reduces to the standard
homoskedastic lognormal process of the Black-Schole’s model if 1 = 0 and B2 = 0. That is
Black-Schole’s model is a special case of GARCH model. To utilize the GARCH approach
for option pricing the conventional risk-neutral valuation relationship has to be considered
in a local form(only one period ahead) which is known in the literature as local risk neutral
valuation relationship, LRNVR, see Duan(1995)[45]. This essentially implies that under

locally risk-neutral relationship we must have :

1 .
Rt+1 = ln(StH) - l')’L(St) =T - 50}.}.1 + VOt+12441 (152)
ot41 = Bo + Broe + Baoilz — (6+ M), (1.53)

where 2z} ~ N(0,1). This risk-neutral version, corresponding to Q (say), is characterized in

such a way so that is ensures:

E%fexp (Rst1) | §e] = exp {r} (1.54)

VP[Rit1 | &) = VO[Riy1 | 8] = ¢4t (1.55)

Denoting the new non-centrality parameter by 6* = 6 4+ A, and assuming the interest rate
r is a given constant, the risk neutral pricing measure is determined by four parameters
Bo, b1, B2 and 6*.

From (1.52), with MC(Monte Carlo) number of simulated hypothetical risk neutral
asset price paths on each time period from present to maturity, we can obtain hypothetical

asset price at maturity for each simulated path as :

T
j=1
1 T T
= S;exp r(T) — 3 Orgji ¢ T Z \ /Urz‘,t+jz;,t+j (1.56)
=1 =1
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Here S} is the present value of the underlying which is known. The equality in (1.56) follows
because it is the characterization of a general sample path and model assumption provides
a return specification of the form (1.52) for each such sample path and for each of the “T”
future time step. See Christoffersen(2003)[34]. Then the option price, say European call, is

calculated by taking the average over the future hypothetical payoffs and discounting them

to the present:

Cen = exp {—rT}EQmax {St,r — K,0}]
1 MC
A exp {—rT}W ; max {S} 47 — K, 0} (1.57)

Put option prices can also be obtained in the same way. As the number of Monte Carlo
replication, MC, gets infinitely large, the average will converge to the expectation. In
practice MC=10000 suffices to obtain a good enough estimate. In addition, control variate
technique can be used to reduce the variance of the option prices. Similarly option can be

priced for other characterization of GARCH processes such as EGARCH, TGARCH etc.

1.5.2 Physical and Risk-neutral Measures

Since switching between physical(or market) measure and risk-neutral measures will be a
frequent task, it is better to get some insight into it driven by Christoffersen(2003)[31].
It was basically introduced in Duan(1995)[45], under the name local risk neutral valua-
tion relationship(LRNVR), and plays an important role in making GARCH theory more
applicable.

Consider a general innovation functionf in (1.49).

oi+1 = Bo + Bror + Baoi fz)- (1.58)

The idea is that if f represents some sort of quantitative effect of innovation z; on an
economy in which the volatility process is driven by (1.58), then that quantitative effects
should remain same under both physical and risk-neutral measures.

We notice that solving for z;41 from risk-neutral dynamics (1.52) yields:

Tt+1
Rt+1 -7+ 5

* = (1.59)
Zt+1 Tt
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and solving from physical dynamics (1.49) yields:

_ Ot4+1 o
Biy1 =7+ 22 — A\ /o131 _ Ry —r4 5
VOt+1 VOt+1

Thus using the intuition above about the role of f in the economy and assuming it is

241 = - (1.60)

one-one , considering (1.59) and (1.60) we must have:

f(zi = A) = f(2) vf. (1.61)

So from now on we will switch between physical and risk-neutral measures by switching
between their corresponding innovations according to (1.61), namely z;,; — A = 2 or

ZZ_+_1 = A+ 2441.

1.6 Success and Limitations of GARCH Models

A major contribution of the ARCH literature is the findings that apparent changes in the
volatility of economic and financial time series may be predictable and possibly results from
a specific type of non-linear dependence rather than exogenous structural changes in the
variables, see e.g. Bera et al(1993)[13]. In case of financial data, however, large and small
errors tend to occur in cluster i.e. large returns are followed by large returns and small
by more small, see for example Christoffersen(2003)[34] for such empirical evidence. This
suggests that returns are serially correlated. Thus it is logically inconsistent and statistically
inefficient to use volatility measures that assume that volatility remains constant over some
period when the resulting series moves through time. As argued earlier, unconditional
distribution of z; is always leptokurtic which makes the ARCH return dynamics consistent
with the distributional properties of short-run returns in financial market. Furthermore
ARCH type models are relatively simpler and easier to handle. They take care of clustered
errors and non-linearities. Roughly speaking, such models can accommodate the changes in
the econometricians ability to forecast. In Stock(1998)[109], ARCH approach is supported
in an elegant way mentioning “any economic variable, in general, evolves on operational
time scale, while in practice it is measured on a calender time scale. And this inappropriate

use of calender time scale may lead to volatility clustering since relative to the calender

time, the variable may evolve more quickly or slowly.”
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It has already been established that GARCH models consistently outperforms EW)A in
all subperiods and under all evaluation measures. In Pagan et al(1990)[90] it has been estab-
lished that EGARCH is best specially when compared with some non-parametric methods.
To talk about limitation of GARCH approach it must be noted that since multi-period
distribution can not be derived in closed form, asset prices must be simulated and parame-
ter estimation involving such simulation is often time consuming. GARCH model features
an exponential decay in the autocorrelation , however it has been noted that squared and
absolute returns of financial asset typically have serial correlations and decay slowly. Some
findings indicated that GARCH superiority is confined to the stock market and for forecast-
ing volatility over shorter horizons only. In option pricing literature the simulation problem
is tackled by Heston and Nandi(2000)[70], for the first time in literature. They derived
recursive relations which are required to obtain multi-period ahead distributions. However
the recursions were possible solely because of a classic relation involving a standard normal
variate. This research mainly focuses on upholding similar recursive approach required in
closed form valuation but incorporates innovations from much richer stochastic processes
known as Lévy processes. In following chapters we study such processes with some details
and find scopes in the relevant literature to make some complementary contributions. We
consider relative performance of GARCH approach compare to other approaches to option

pricing which justifies why further development in this approach should be of interest.
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Chapter 2

Lévy Processes for Non-normality

Starting from Markowitz frontier analysis and Capital Asset Pricing Model(CAPM) of early
periods to until recently with Value-at-Risk(VAR)computations, assumption of normality
for asset returns has been dominant. A natural companion to such assumption is the conti-
nuity of paths. As discussed in chapterl, such assumption clearly contradicts many empirical
findings leading to serious imperfections of classical Black-Scholes model. In this chapter
we discuss the basics of Lévy modelling. In the following chapters some of these Lévy pro-
cesses, which are well cited for considerable success in capturing more realistic and flexible
modelling of real market data, will be investigated and compared with other approaches to
option pricing. Later these models will be further explored to deal with risk-management
issues. However some criticisms associated with Markov property of Lévy models could be
circumvented by considering GARCH-Lévy type dynamics for even more realistic modelling
of real market data. Such models blend the non-Markovian structure of GARCH dynamics
with potentially non-normal innovation’s coming from rich Lévy processes. This provides
remedy to imperfections around normal innovations and offers a way to get rid-off strong
Markov assumption. We need a concrete section to introduce the underpinnings of Lévy
processes. However this literature on Lévy processes has become very vast and is under
continuous up-gradation. In introducing the basics of Lévy processes our attention will be
to gather working knowledge with some in depth intuitions of working tools. Even so we

have to delve into some involved theoretical aspects.
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2.1 Basics of Lévy Modelling

This section is intended to make an effective excursion into the theory of Lévy processes.
Lévy processes belong to a particular family of stochastic processes with some natural
properties giving them the flexibility to capture many important aspects inherent in time

series data.

Definition 2.1 A cadlag stochastic process X = {Xet > 0}, on (9, F,P) with values in

R is called a Lévy process if it satisfies the following properties:

[L1] each Xy = 0 a.s.
[L2] X has independent and stationary increments, i.e.

(i) for every increasing sequence of times tg < t1 < ty < --- < t, the random
variables Xy, X4, — Xy, -+, Xt — X, are independent.
(11) Xorn — X; L Xi+h—t = Xp, i.e. the distribution of Xy, — X; does not depend

on t.
[L3] Xy is stochastically continuous, i.e.

}llll'l’%)P(lXt_}_h - th > 6) =0, Ve > 0.

In no way does condition [L3] imply that the sample paths are continuous, as we will see
in the case of the Poisson process. The intuitive meaning of [L3] is that for a given time
t (deterministic) the probability of seeing a jump at ¢ is zero, i.e. discontinuities (jumps)
do not occur at deterministic times and so occur at random times. It serves to exclude
processes with jumps at fixed times which can be regarded as “calender effects” and are

not interesting for our modeling purposes. All these facts together with the notion of jumps

yield the following result.
Proposition 2.1 If X = {Xy;t > 0} is a Lévy process then for fitedt > 0, AX; =0 a.s..

Proof. Consider a sequence {t,,n € N} in R* with ¢, /' t as n — o0.Since X has

cadlag paths
hm th == Xt_'

=00
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However by [L3] the sequence {Xi,;n € N} converges in probability to X; and so has
a subsequence which converges almost surely to X;. Hence the result follows from the

definition of jumps and the uniqueness of the limits. a

Remark 2.1 The above proposition shows that AX is not a straightforward process to

analyze.

Many important intuitions in theory of Lévy processes are direct consequence of infinite
divisibility of the underlying probability measure. Next section explains how one is related

with other.

2.1.1 Notion of Infinitely Divisible Distributions(IDD)

Increments of a Lévy process are in one-to-one correspondence with infinitely divisible dis-
tributions. We present, here a brief overview of this relation. For a more general discussion on
IDD’s we refer to Peter Major[81], Allun Gut(2005)[68] and Bulm and Rosenblat(1959)[24].

By sampling a Lévy process at times 0, A, 2A,3A,.----- we simply obtain a random
walk

n—1
Sn(A) = ZYk, where each Yy = Xpina — Xka,
k=0
are IID random variables whose distribution, by[L2],is the same as that of
D
Vi = Xge+1)a — Xea = Xp+1)a—ka = Xa, k=01,

Since this can be done for any sampling interval A we say that by sampling a Lévy
process with different A we specify a whole family of random walks Sp (D).

Choosing n/A = t, we see that foranyt >0and anyn > 1,
n—1
Sa(D) = D Vi
k=0
= (XA—-X())-}-(XQA—XA)—}—--'
+(X(n-na — X(n-2)a) + (Xna — X(n-1)a)
= Xpn = Xi.

That is, X; can be represented as the sum of n iid random variables whose distribution is

that of XA = X¢/n. Otherwise said, X is divided into n iid parts. A distribution having this

property is said to be infinitely divisible. Formally:

25



Definition 2.2 A distribution function F (or an F distributed random variable X )is said
to be infinitely divisible if for any positive integer n there exists independent and tdentically
distributed random variables Yy, Yo, Y, such that Y+ Yo+ -+ Y, is F distributed.

“Equivalently” a distribution function F is infinitely divisible if and only if its characteristic

function
Or(s) = /eiszdF(:v), s €R,
can be written for any integer n in the form
op = [W],
such that W is also a characteristic function of some distribution.
The following result characterizes IDD'’s.
Theorem 2.1 The following are equivalent:
[1] X is infinitely divisible.

t

[2] Fx has a convolution n'* root, for any n, that itself is the distribution function of a

random variable.

[8] ®F has an nt* root, for any n, that itself is the characteristic function of a random

variable.

For a detailed proof we refer to David Applebeum(2004)(2] and Sato(1999)[100]. If M;(R)
denotes the set of all Borel probability measures on R, a natural extension of the above the-
orem suggests us to generalize the definition of IDD to distributions that have a convolution

n'* root in Mi(R).
Proposition 2.2 F € M;(R) s infinitely divisible if and only if for each n € N there exists
F' e Mi(R),

for which
Or(s) = [Ppi/n(s)]”, for all s € R.

For a detailed intuitive proof see Mozumder(2007)[86].

26



Remark 2.2 In general the convolution n'* root of a probability measure is not unique. However
it is always unique when the measure is infinitely divisible. See Feller(1971)[57]. Thus if
some IDD is used in modelling the random shocks of returns over a fized time interval,
then the infinite divisibility of the underlying probability measure implies that those shocks
to returns are the convoluted sums of other shocks to returns over smaller subintervals of
that particular interval. Furthermore the shocks to returns over the smaller subintervals are
guaranteed to have unique distribution. The important fact is that those numerous shocks to
returns over smaller subintervals, resulting the shocks to returns on the larger time interval,
do not have to have the same distribution as the resulting one. In other words ®pi/m(s)
doesn’t have to represent the same distribution as ®r(s), a condition required when FY/™ are
said to be closed under convolution. In fact we will see that a class of the extremely useful
Lévy process, known as generalized hyperbolic Lévy process, is not closed under convolution,

though many of its useful subclasses are. Also see example 2.6.

Examples of IDD’s

Example 2.1 Gaussian random variables

A standard result about random variables, see Huynh et al(2008)[72], states that if F' has

the underlying random variable X ~ N(n,c2) then

Or(s) = eis"”%szag, seR.

So we can write

1 202

n
Or(s) = [eis%_f T] , s €R,

and hence we can recognize F' 1/n 45 the distribution with underlying random variable Y ~

N(Z, an) having the characteristic function

N

sl —1g20°
o, (s) =en72% | seR.

Bl

Then ®p(s) = [®pyn(s)]” and hence ' = (FY/ny*n which implies by Proposition

2.2, that Gaussian random variables are infinitely divisible.
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Example 2.2 Gamma random variables

If F has the underlying random variable X ~ G(a, 3) then

00 I@a
(I)F(s) :A ewxmxa"le—ﬂzdm.

Brls)= <ﬁfis>a: {(ﬁis)%r’ ek &1)

Since (F%s) " is the characteristic function of F'/™ ~ Gamma(2,B) , we get

That is

Bp(s) = [@piym(s)]®  implying that  F = (FY/™)*",
So gamma random variables are infinitely divisible.

Example 2.3 Poisson random variables

In the univariate case, as shown in Appendiz A, if F is from underlying random variable

X ~ Poisson(]) its characteristic function is then
Opr(s) = M1 s €R,

so we can write

Dp(s) = [e%(eis_l)]n, seR.

Thus we recognize F1/™ as the distribution of a Poz’sson(%) random variable with charac-

teristic function ® 1 (s) = 2 =1 Hence we get
D p(s) = [®pi/n(s))” implying that ~ F = (FY/™)™.
So Poisson random variables are infinitely divisible.

Example 2.4 Compound Poisson (CP) random variables

Definition 2.8 Suppose that {Zn,n € N} is a sequence of id random variables taking
values in R with common law Fz and let N ~ Poisson()) be independent of all Z,. Then
the compound Poisson random variable X, denoted CP(\ Fz), is defined to be X = Z1 +
Zo+ -+ Zn,with Z = 0 if N = 0, 50 that we can think of X as a random walk with a

random number of steps (jumps), controlled by a Poisson()\) random variable N and with

random step sizes Z;.
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Proposition 2.3 For X ~ CP(), Fz) and each s € R

Bx(s) =E [eiSEi”:lZi] = exp [ /_ Z(eisy — 1)AFz(dy)| .

Proof. Let ®; be the common characteristic function of Zy. By conditioning on the number

of jumps and then using independence we get for any s € R,
dx(s) = E [eis Tl Zi]

_ iE [eis(Zl+...+ZN) | N = n} P(N =n)
n=0

= iE [eis(Z1+Z2+...+Zn)] e—)\_)f‘i — e ZO [)\(I)igs)]n.

n—0 n:

That is
Dx(s) = exp [A(®@z(s) — 1)) (2.2)

Now with ®z(s) = [ e*VFz(dy) it follows that

Dx(s) = exp [)\ </_Z 'Yy (dy) — 1)}

Using [ Fz(dy) = 1 we get that
o0

Dx(s) = exp [A </°o 'Sy — 1> Fz(dy)J,

-0
so the proof is complete. a

Now from (2.2), above, it can be easily seen that

0x(s) = |ew |2 (0209 -1| ||, sem

implying that the compound Poisson distribution is infinitely divisible with each division
following a CP(2, Fz).

n

Example 2.5 Inverse Gaussian (IG) random variables

If F has underlying random variable X ~ IG(u,0) then for its density given by

1 2
— H _IE 2 d 4
f(z) = \/_2_ 372 exp {,uﬁ} exp{ 2( +6 3:)} x>0, and u, 6 >0,

the characteristic function can be obtained as:

o = Ooeisz—ﬂ—— exp {ub}exp { — E(H3 + 6%z) }dzx
F) = € o 2'Z

— exp{ — /1( —2t8 + 62 — 0)} s € R. (23)
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So we can write

Dr(s) = [el~HV A" seR

and hence we can recognize F1/™ as the distribution with underlying random variable Y ~

IG(£,0) having the characteristic function

Qrin(s) = e~ (V-2is+62-6)) s €R.

n
Then ®p(s) = [@Fun(s)} and hence F = (FY™)*™ which implies by Proposition 2.2 that

inverse Gaussian random variables are infinitely divisible.

We close this section with the following example which shows that the original random

variable and the divisor need not necessarily have the same distribution:

Example 2.6 Infinite divisibility with different distributions

Assume that Gy, Ga ~ Geo(p) are independent. Then

P(G1+G2=n) = ]E{P(G1+G2=TL|G1 :k)}

n
= > P(Gi=kGy=n—k)
k=0

= ) "1 -pp" (1 -p)
k=0

_ (”jl>p"(1 = (”*2‘ 1)p“<1 _pR

Here G1 and Gg have the same distribution it is G1 + G2 that is not geometric.
For more details on the characteristic function and IDD’s we refer to George Roussas(2005)[99]

and Peter Major[81].

2.1.2 Important Results Concerning IDD’s

Now we intend to discuss various results concerning IDD’s which are essential for gaining
working knowledge on applications of Lévy processes. The first result tells us what happen’s

when we add two IDD’s (or consider the convolution of two IDD measures).

Theorem 2.2 The sum of two infinitely divisible random variables is itself infinitely divis-

ible.
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The proof results from a similar argument used for Lévy processes. The result implies that
a finite sum of IDD’s is itself IDD.

With this proposition and the examples of IDD’s discussed above we now see how to
construct a new IDD, which is in fact the corner stone of the application of Lévy processes.

Let X = X1 + X5, where X1 ~ N(n,0?) and X3 ~ CP(\, Fz) are independent. Then

1 & -
O x(s) =exp {ins - -2-3202 —I—/ Ae™ —1)Fz(dy) |, s €R. (2.4)
—o0

By the above definition, Example 2.1, Proposition 2.3, and Theorem 2.1 X is infinitely
divisible. So IDD’s can be constructed by convolution of Gaussian and compound Poisson
random variables. So for time indexed IDD’s(Lévy processes) sample paths can be seen as
superposition of continuous Brownian motions and some jump processes.

The expression in (2.4) is close to the expression in the celebrated Lévy Kintchine

formula. This is further explored in the following section.

2.1.3 Lévy-Kintchine formula

Theorem 2.3 F € M;(R) is infinitely divisible if there exists scalars a,b € R and a mea-

sure v satisfying v({0}) = 0 and fR\{o} (Jz|> A1) v(dz) < oo such that for all s € R:
1 .
dr(s) =exp {ias - §s2b2 + / [e% -1 — isx]l{_l,l}(a:)} v(dz) (2.5)
R

Conversely any mapping of the above form is the characteristic function of an infinitely
divisible probability measure on R. Thus the parameters “a”, “b2” and the measure v char-
acterizes the distribution of the underlying infinitely divisible random variable and (a,b?,v)

together is known as the characteristic triplet or Lévy triplet of the underlying infinitely

divisible random wvariable.

A detailed proof can be found, for example, in Sato0(1999)[100], David Applebeum(2004)(2],
or Cont and Tankov(2004)[38]. We prefer the proof in David Applebeum(2004) (2] because
of its constructive nature. As indicated in the proof, it is worth noting that all infinitely di-

visible distributions can be constructed as weak limits of the convolution between Gaussian
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and independent compound Poisson variables. This is precisely the reason why the expres-
sion in (2.4) is close to the expression of this Lévy Kintchine formula. As it is the central
fact about versatility and predominant application of Lévy processes, we would like to gain

more insight about this fact. Consider the last term in (2.5), this can be written as:
exp [/ [eisx -1- isx]l{_l,l}(:c)] V(dl‘):l
R

= exp {/lxlg [eF — 1 — isz] V(dm)} exp {/|x|>1 ¢ — 1] l/(dI):' (2.6)

Now exploring the relation v(A) = AF(A), we can write the above equation as:

exp h/IR [ei” -1- is:c]I{_l,l}(m)] V(da:)}

=  exp / A —1- iszl_113(z)] F(dz)}
R

=  exp / Asj [€F — 1 — isz] F(dz)
|z{<1

(2.7)

exp [/ Xpj [€7% — 1] F(da)
|z}>1

As we will see, here A = Ap; + ;. Considering proposition 2.3, we can conclude that the
last part in (2.7) is the characteristic function of random jumps, satisfying | z |> 1, coming

from compound Poisson distribution with intensity

Ny = vlz]>1)
= AF(z|>1)

= A F(dz) (2.8)

jz|>1
and distribution of jumps:

v(dr)lg>1  v{dz)liz>

_ (2.9)
Y. N fiao1 F(d2)

Fj>1(dz) =

lz|>1}) . -
Then clearly, Fj>1({| z [>1}) = 7\%5;—1’_(‘1%‘) = 1. The random variable, J(say), describing
the jumps of all sizes( with intensity of jumps of all sizes v(R) = AF(R) = A) has distribution

F(z). Here “bj” stands for big jumps. That is the last part in (2.7) is the characteristic

function of a “C'P ()\bj, _F‘|J‘>1(d$))”.
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However it is a bit tricky to get the idea of the first part in (2.7), which we now explore

in full details. This part can be written as a limit corresponding to ¢; — 0, as i — oo:

exp [Z {)\Z;IEFcKIJISl [eis.] _ 1] _ is)\ggEFci<|J|51 [J]}} (2.10)
i

-

= exp Z {)\g’] /6‘<|z|<1 [eisx ~1— isz] F(dm)}] since J is F distributed

L <

= o [ {0 [ [ -1~ ia) Fﬁi<'f'§<dw>}}

L i

ooy exp {/ Asj [ei‘”’ — 1 —isz| F(dz) (2.11)
|z|<1

where Agj = AGL + )\g"; +-- 4 )\E’J + .-+ is the overall intensity of small jumps. The limit in
(2.11) is the characteristic function of a compensated (mean subtracted) square integrable
random variable, see Kyprianou(2006)[76]. For a general n each A} and Fe_ . s<1(dz) are

given by:

X = wen|z|< 1)

= M(en<|z|<1)

~ ) / F(dz) (2.12)
en<|z|<1
v(dz)le, <|z1<1 v(dz)le, <|z)<1
F dz) = n<lelsl _ n<lzl< (2.13)
En<|J|S1( ) )\:; )\fen<|x|Sl F(dm)

Overall intensity of small jumps with magnitude less than one is given by:

N = valz|SDAulels]<D)tule o<+
= v({alzlstU{alz|<1}u---U{a|z|<1U-)
"I (| z|<)
= AP(zl<1)

= A F(dz) (2.14)
lz|<1

Consider an arbitrary summand in (2.10):

exp {/\;g,]EFe,-<1J|51 [eisJ - 1] _ isA;ijEFEi<|J1§1 [J]}

= exp AgE st [ - 1]] exp [~isAgE w <= 7] (2.15)
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Considering proposition 2.3, the first part of the expression in (2.15) corresponds to a
. N ) . :
random variable ijl Jile;<ly1<1 ~ CP(AE F <15<1(dz)), with A;lj and F,c|y<1 are

s’
given as (2.12) and (2.13) respectively. Here N ~ Poisson(Ag:) and hence we obtain
E [Zj\;l Jj]I6<|J].|§1] = E[N|EF«<ini< [J] = )\Z@]EFCNJ'Sl [J], implying that the second part
in (2.15) is the characteristic function of a constant which is the mean of CP(AG: Fe, < 51<1(dx)).
Thus (2.15) is the characteristic function of a compensated(mean subtracted) compound
Poisson random variable of small jumps, which we denote as Zjvzl Jille, ¢ J],lSl_]EF <t [J] ~
CPC()\ZEaFei<|J|§1(d$))~
Hence applying the similar argument to each summand in (2.10), we see that (2.10) is

the characteristic function of the sum of possibly infinite number of compensated compound

Poisson random variables:

C’]DC(A61 Fel<|J|§1(dm)) + CPC<)\C2 F52<|J|§1(d$)) + ...

s3°? §5°

+CP (g, Foocpai<a(dz)) + - (2.16)

The compensation is required to obtain the convergence of numerous small jumps des-
cribed by possibly infinite number of compensated compound Poisson random variables, as
shown in (2.11), to a compensated square integrable random variable which characteristic
function is exactly the first part of the expression in equation (2.7).

Before we close the intuitive discussion on Lévy-kintchine formula for IDD, we see how
it generalizes the equation (2.4). When equation (2.4) characterizes the distribution of a
random variable X = n+ N(0,0%) + CP(), Fz), equation (2.5) characterizes the limiting
distribution of a sum of a+N(0,52)+CP (M, Flz>1(dx)) +3, {CPC(/\Z;, F6i<|J|S1(dx))} ,
where the rates and distribution of big and small jumps are as defined earlier.

We will see in next section that Lévy-Kintchine formula of Lévy processes attaches such
a limiting random variable at each time point constructing a general stochastic process, a
general Lévy process, which can be used to model random evolution of asset prices. In such
modelling approach randomly evolved sample paths of asset prices are the superposition of
four types of, but possibly infinitely many, randomly evolved sample paths:(i) a linear drift
such that on an unit time interval its change is described by the constant “a” ,(i1) a diffusion

process such that on unit time interval its distribution is described by a “N(0, b?)" (i) a
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compound Poisson process of big jumps such that on unit time its distribution is described
by a “CP ()\bj, F J|>1(da:))” and finally (iv) a limiting process of possibly infinitely many
compensated compound Poisson process of small jumps such at on unit time interval each
of them is described by “CPYNG, Fepui<a(dz)).”

We conclude that X in (2.7) leads to the following intuition:

A= Ap Ay

= Wlzl>D+u(z|<)

= MF(lz|>1)+AF(|z|<1)

= MF({lz|>1}u{lz[<1})

= MF(R)

= v(R) (2.17)
As A is the intensity, i.e. expected number of jumps of all sizes, Equation (2.17) leads to
the interpretation of Lévy measure as the expected number of jumps whose sizes belong to
a certain Borel set. For example v(A) is the expected number of jumps whose sizes belong

to A. This intuition extends from IDD to for Lévy processes. That is Lévy measure of Borel

set A is the expected number of jumps per unit time provided jump sizes belong to A.

Mathematical Fact about Lévy Measure

As introduced in Lévy-Kintchine formula v is a Borel measure defined on R \ {0}. We say

that v is a Lévy measure if
/ (\xIQ A1) v(dz) < o0 (2.18)
R\{0}
or equivalently
/ |z|2v(dT) < 0o and / v(dz) < oo. (2.19)
lz|<1 lzi>1

Since (|z|2A€) < (|z|> A1) for all 0 < e <1 it follows that

/ (lz> Ae) v(dz) < / (lz|> A 1) v(dz), if 0<e<l,
R\{0} R\{0}
and hence from (2.18) it follows that

/ (Ia:]2 A€) v(dz) < oo = v[(—¢, €)°] < o0 for, 0<e<l (2.20)
R\{0}
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So we have

/||< lz]2v(dz) < 0o and / v{dz) < oo, if 0<e<l. (2.21)
z|<e |z|>e

We will gain more insight on Lévy measure when we will study the results for Lévy

process using those for IDD’s.

The Lévy Exponent

Theorem 2.3 shows that the Lévy -Kintchine formula is related to the characteristic function
of an infinitely divisible distribution F (or an F distributed random variable).It can be
expressed, using two parameters “a”, “b?” and a measure “v”,as an exponential function

with a complex exponent,i.e.
p(s) =e¥) where ¥:R—C. (2.22)

The complex function ¥ is known as the characteristic exponent or Lévy exponent of F (or
an F distributed random variable).

Since we know that |®p(s)] < 1, see Allun Gut(2005)[68], then with the assumption
that ¥ = Re(¥) + iIm(¥) we have

V()

4(1)1:(3)’ - ‘eRe(\I/)-H'Im(\I/)t

_ ‘ eRe(\I/)’

eilm(\IJ)‘ — eRe¥)] < 1.

Hence eRe(Y) < 1implies that Re(¥) < 0, that is the characteristic exponent should always
have a non positive real part.

The following theorems enhance the appreciation of Lévy processes in applications.

Theorem 2.4 Any infinitely divisible probability measure can be constructed as the weak

limit of a sequence of compound Poisson distributions.

For a proof we refer to David Applebeum(2004)(2].

In a more general framework we have the following result.

Proposition 2.4 If {F,} is a sequence of infinitely divisible distributions and F, — F,
then F is infinitely divisible, i.e. weak limits of sequences of infinitely divisible probability
measures are infinitely divisible.

Again for an intuitive proof we refer to David Applebeum(2004)[2].
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2.2 IDD and Lévy Processes

The modeling intuitions described in section 2.1 needs to be incorporated into processes so
the the richness of IDD can be extracted at each time point. As we described in subsection
2.1.3, usefulness of such models-from practical point of view—is highly likely. In other
words the main target is to extract the richness of modeling through IDD in describing the

evolution of the Lévy process at each time point. The first result is at the core of such

possibility.

Theorem 2.5 If X = {Xy;t > 0} is a Lévy process, then X; is infinitely divisible for each
t>0.

The proof is based on David Applebeum(2004)[2], and is reproduced as it illuminates the
intuition.

Proof. For each n € N, we can write
Xy =Y () + Y3 (t) + - + Y (8),

where each

Yk”(t) = Xﬁ—ng——lzt, k=1,2,---,n,
= Xkt _kt ty, by [L2]-(ii) of Definition 2.1,
= X:t.

The last term in the above equality is independent of k,which shows that for all k,the

Y (t)’s are iid with the common distribution X:.Hence

By, (s) = [@X (s)]”, s €R,

which shows that X;, for each ¢ > 0,is infinitely divisible. a

Theorem?2.5 ensures that X; is infinitely divisible, for each t > 0. Hence by Lévy-
Kintchine formula its distribution is described by a characteristic function of the form
(2.5), through a set of parameters and a measure, at time £ = 1. The following argument
clarifies how to characterize the distribution for a general t, using the characterization at

¢+ — 1. This is one of the main facts about Lévy processes which tells us that characterizing

37



the distribution of the whole process is equivalent to characterizing it at a single point in
time t = 1.

In subsection 2.1.3, we saw that Lévy-Kintchine formula can be written in short as
dx,(s) = e¥®) for each t > 0 and s € R, where U(t,-) is a Lévy exponent of X;. The

following theorem shows that U(t,s) = t¥(s), for each t > 0 and s € R.

Theorem 2.6 If X is a Lévy process then E[e*Xt] = ®x,(s) = '¥), for each t > 0 and

s € R, where ¥ is the Lévy exponent of Xi.

For a proof, again, we refer to David Applebeum(2004)[2]. We now have the expression of

Lévy Kintchine formula for the Lévy process X = {Xy;t > 0}:

E[e*Xt] = exp {t [ias — %s2b2 + / [e —1 _ iszl_11}(z)] l/(d:l?)] } (2.23)

R\ {0}
Comparing (2.23) with (2.5) we observe that the former is simply a version of the latter
corresponding to t = 1. This, together with our intuitive interpretation of Lévy measure
of an infinitely divisible distribution(in subsection 2.1.3 following equation (2.17)), leads to

the following more convincing definition of the Lévy measure of a Lévy process.

Definition 2.4 [Lévy measure of a Lévy process]  For a Lévy process X = {X;;t > 0}

on R , the measure v on R defined by:
v(A)=E[t{te[0,1]| AX; #0,AX, € A}], A€ B(R), (2.24)

is called the Lévy measure of X. Here v(A) is the expected number, per unit time, of the

Jumps with sizes in the set A.

We are now in a position to relate the mathematical fact about the Lévy measure, as
discussed in subsection 2.1.3, with its definition. With this definition, the fact in second
part of (2.21) ensures that along any observation period the sample paths of Lévy processes
exhibit finite number of big jumps of magnitude greater than ¢, with 0 < ¢ < 1. However
the first part of (2.21), together with the above definition of Lévy measure, doesn’t ensure
anything about the finiteness of number of small jumps of magnitude less than ¢, with

0 < ¢ < 1. The first part in(2.21) ensures that even if it happens to be the case that

S, AX; = oo, we will always have S AKX P< o0
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Remark 2.3 Characteristic triplet of the Lévy process is just the characteristic triplet
of the infinitely divisible random wvariable Xi. It can be shown that this correspondence is
unique . Thus given a Lévy process there corresponds a unique IDD which is the distribution
of X1.1t follows that corresponding to every infinitely divisible distribution there exists a
Lévy process so that the characteristics of the process evaluated at t = 1 coincide with the

characteristics of the IDD.

Now let us get more insight into how characteristic triplet of a Lévy process characterizes
the distribution of innovations(and hence the distribution of return itself) in asset price
models on an arbitrary interval, say [t1,t2]. When Brownian motion is replaced by an

arbitrary Lévy process X; in equation (1.13)(with ¢ =1 for simplicity), we obtain:

f?—t = pdt + dX, (2.25)
t

Integrating on [t1, t2] we obtain an infinitely divisible random variable describing the random

evolution of log returns on [t1,t2] :

S
log <£> = u(te — t1) + X, — Xy
St

o

plte —t1) + Xtg—11) by [L2]-(ii) of Definition 2.1 (2.26)

According to the Lévy-Kintchine formula for Lévy process, see equation (2.23), the distri-

bution of X4, ) 18 characterized by a characteristic function given by:

. 1 ; )
E[etX¢t2-t1)] = exp {(tz —t1) [ias - 532b2 + /R\{o} [ —1— zs:z:]l{_l,l}(:v)] l/(dl‘):‘ }
(2.27)

Analogous to our intuitive development, from subsection 2.1.3, for (2.27), we can write
(2.26) as:
p(ts — 1) + a(ty — t1) + N0, [y/(ta — t1)b)%) + CP [(t2 — t1) Ay, Fi>1(dz)]

+ lim 3 {OP° [(t2 - )X P ()] |

5
K
TN
|
N——”

o

G0 1
Dyt q(ta—t1) + NO [V{t2 = t1)b]*) + CP [(ta — t1) Mo, Flgj>1(dz)]
+ lim Z {CPC [(tQ — t1)Ag F6i<|J|S1(dx)} } (2.28)
G0
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The distributions and rates , e.g. A, Fly>1(dz) and A%

579

defined in subsection2.1.3. As we saw in (2.11), in terms of distribution the compensation

F,<jy<1(dz), for each i, are

in last term ensures that the resulting process from the superposition of all the processes
involved(in last term) is an square integrable martingale. A resonably large i with a rea-
sonably small €;, can lead to a good approximate modelling tool with a large number of
compensated compound Poisson processes. We can obtain expected total number of jumps

of all sizes on [tg, 1] :

(ta—t1)A = (tg—tl))\bj+(t2—tl){/\Z;+/\§§-+~-~+A§;+m}
= (ta—t)hj + (t2 — t1) A
= (2—-t){v(lz[>1)+v(z|<1)}
= (L2-t)v{lz[>1}U{lz|<1})

= (t2 — t1)v(R). (2.29)

This is in agreement with the definition 2.4 of Lévy measure of a Lévy process. That is
considering jumps of all sizes, in other words the Borel set being R, the Lévy measure is the
expected number of jumps per unit time. Here \y; and \,; are as appeared in subsection
2.1.3.

So what equation (2.28) is all about? In terms of distribution it tells us that the
random variable describing the log returns on [t9,t1] is the sum of a constant and three
different types of, but possibly infinitely many, random variables. The underlying Lévy
measure ensures that the infinite(possibly) sum of compensated compound Poisson random
variables converges to a compensated square integrable random variable as shown in (2.11).
So the distribution of log-returns on [t2,t1] is the convolution of the respective distributions
of the summand random variables( considering the limiting one for the infinite sum). The
characteristic function (2.27) characterizes such a convoluted distribution. However impor-
tant idea is in terms of sample paths. Equation (2.28) describes that each sample path
of log returns on [tg, ¢1] is the superposition of four different types of but infinitely(possibly)
many sample paths on [tg,¢1] : a linear drift path, a Brownian motion path, a compound
Poisson process path of big jumps and infinitely(possibly) many compensated compound

Poisson process paths of small jumps. The infinite(possibly) superposition of sample paths
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of compensated compound Poisson processes converges to a sample paths of square inte-
grable martingale. So now one can see the significance of replacing the Brownian motion B,
by a Lévy process X in (2.25). With Lévy process it can model the jumps of all sizes in the
return paths, where as with Brownian motion it can only model the continuous evolution

of returns.

2.2.1 An Example

Consider a compound poisson process with Poisson rate A and jump sizes following a normal

distribution with density:

1 _ (z—p)*
f(z) = NorTi 2 (2.30)

Let us consider jumps with sizes in A = (—o0,5]. Then the compound Poisson process has

the Lévy measure:

5 z—p)? —
V(A) :)\/—5 f(x)dz = \/2)\7r_a/_ e S dp = AN <5 J“) (2.31)

Thus in general Lévy measure of jumps of sizes belonging to (—oo,k|, for k& > —oo0, is

v({(—o0,k)}) = AN (k—;"i) , which we know is the expected number of jumps, per unit
time, with sizes in (—oo, k]. Clearly for all jump sizes v({(—00,00)}) = AN (=) = A, s0
) is the average rate of jumps of the process. Since v(R) = X < 00, this implies that the
number of jumps on any time interval is finite, so expected number of jumps per unit time

is finite. Here we use the fact that N(z) = \/——15—7; . e~3%°dz. Thus

Asj

I

A /_ 11 f(z)dz

A 1 (e—w?
e 2% dz (2.32)
V2mo /—1

which, for a given set of parameters A\, W, 0, is a number. Similarly:

It

A (1 —/1 e—%’iﬁdx> (2.33)
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Distribution of big jumps can be obtained from (2.9). For example the probability of jumps

n (1.5,2) is

F-1({(1.5,2)}) =

JL 5 V()51
Abj

_(emw? w)?

2
_\/Ql\,r—,, Jise 27 dx
A flrl>1 F(dx)

T—

L f2 e~ 202 dz
2 1.5
_ Ve — (2.34)
) _

1
n \/217r0 f_l e 27 dr

For a general summand under the sum in (2.28) the rate and distribution are respectively

given by (2.12) and (2.13). For example for €, = 0.05 the rate and the probability of jump

sizes in [0.07,1] from the corresponding distribution are:

0.05
Asj

Fo05<171<1({[0.07,1]})

A / F(dz)
0.05<|z|<1
7z ([ )
e 202 dr (2.35)
2o \Jo.0s

fo o7 ¥(dz)z1<1

0.05
Ags
(z u)2
1 1
T Joore 7 dz
2
1 1 _ T—p)
WorT Joos€ 7 dz
fl _ (== u)ﬂd
e 22 dx
0.07 7 (2.36)
fl a2 22 dx
0.05 €

These kind of values for each summand, together with F(z) ~ N(u,o?), can be used in

(2.28) to simulate jumps in sample paths of log return on [t1, 2]( or on any other interval).

As discussed in the above example Lévy measure helps us decide whether the number

of jumps of the underlying process is finite or infinite. It is in fact a general property of

Lévy process:

Proposition 2.5 Let X; is a Lévy process with X1 having characteristic triplet (a, b?,v).

Then:

e if Y(R) < oo then almost all paths of X have a finite number of jumps on every compact

interval. In that case the Lévy process is said to be of finite activity.
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e if Y(R) = oo then almost all paths of X; have an infinite number of jumps on every

compact interval. In that case the Lévy process is said to be of infinite activity.

A proof can be found e.g. in Sato(1999)[100].

Before we rap this section up, we need to further emphasize the usefulness of LKF
for our study. In one sense LKF is the cornerstone of the entire thesis. Apart from it’s
intuitive appeal in revealing the path structure of general Lévy process, as explained in
section2.1.3, LKF has more significant use in option pricing and risk management. It pro-
vides the characterization of a particular Lévy process through it’s characteristic function.
We then have the elementary result in Statistics which ensures the existence of a unique
distribution function corresponding to a characteristic function. Since such a distribution
is the fundamental tool used in estimation of risk measures, we revisit the technique of
extracting the distribution from the characteristic function. This technique is known as
Fourier inversion. Moreover the characteristic function of a model can be utilized to obtain
the prices of European style derivatives, a technique frequently referred as Carr-Madan
formula, see Carr and Madan(1999)(27].

We can obtain the probability density f(z) by inverting the characteristic function, see

Whit and Abate(1992)[113]:

fla) = = / " emiuag () dy (2.37)

The probabilities can be expressed using Fourier integral theorem. For example:

Pla< X <b) = /bf(:c)da:
1 b

= 5%/ {/_Ze—m@(u)du} dzx (2.38)

Assuming the continuity of the underlying distribution, the Fubini’s theorem allow’s us to

interchange the integrals:

Pla<X <b)=— /oo {e_mb e } & (u)du (2.39)

21 J_oo | —tu —1iU

A more simplified form of such a probability is given by Gil-Pelaez(1951)[66]:

1 1 o0 eiua@(_u) _ e——iua@(u)
P(X<a) = §+_2_7; 0 57 du
o0 tuad( o0 —iuaq)
_L L red(y), L [T erOw) (2.40)
2 27 J e 27 Jo U
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We realize that for an arbitrary complex number z, z + Z = 2Re[z]. We know the charac-

teristic function is a hermitian function for which ®(—u) = ®(u).

1 o0 eiuaq) _ o0 —iua
R A I GOFYE Y e {OF
27 Jo iu 2m Jo iu
1 0o —iua(I) oo, —iua
- L [T, 1 / ()
2m Jo —u 21 Jo 1
1 00 —iua@ W
- L { ‘Blu) e (u)}du
T Jo i iU
1 [ e APy,
= ——/ Re [—L} du since z + Z = 2Re|z]. (2.41)
m™Jo mu

Using equation (2.41) into equation (2.40), we obtain the particular type of probability

which we will use in our pricing:

P(X>a) = 1-P(X <a)
- Ll [T r[sew), a2

Thus probabilities can be extracted no matter how involved the expression of the char-
acteristic function is. Only requirement is to calibrate the parameters of the characteristic

function using market data before applying (2.42).

2.3 LKF: Jump Processes for Non-normality

Theorem 2.5 shows that for a Lévy process X, infinite divisibility allows us to write the
random variable X;(for each fixed ¢ > 0) as the sum of n independent and identically
distributed random variables. Remembering Central limit theorem, CLT henceforth, the
infinite divisibility is the well-cited motivation for modeling stock return by the Gaussian
distribution, namely that this distribution is the limiting distribution of sum of n indepen-
dent random variables , upon some scaling, which usually represents the effects of various
shocks in the economy. More precisely, Lévy processes are premised on similar argument of
accommodating infinite economic shocks in the returns but not necessarily confining within
the world of Gaussianity and continuous paths of return dynamics. Lévy-Kintchine rep-
resentation ensures the infinite divisibility of the distribution of the underlying process at

eacht > 0 but at the same time it lays a foundation where we can see a general return
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dynamics as the superposition of different processes;such that limiting distribution needn’t
necessarily be Gaussian and can have jumps, of both finite and infinite number, in the
path. So this is easy to see how powerful this class of processes for modeling non-normality
in option pricing and addressing various other imperfections surrounding the benchmark
Black-Schole’s model. More interestingly we will now see that LKF implies that deviation
from normality, i.e. from the Brownian paths, makes it mandatory to consider jumpy paths
for the return dynamics.

We now revisit random measure oriented structural properties of Lévy processes; this
revisit is required to see another intuitive form of LKF. Also the ideas go into next sections
where subordinators and time changing are considered as tools to report and correct a mis-
specification in a classic work of Geman(2002)[62]; which is the complementary contribution
of this chapter. As discussed in proposition2.5 the infinite activity Lévy process can exhibit
infinite number of jumps per unit time along every sample path. At the same time proper-
ties of Lévy measure ensure that the number of big jumps per unit time is finite along every
sample path. So infinite activity Lévy process ensures infinitely many small jumps per unit
time along sample paths. This indicates that the small movements along the paths are so
frequent that it adequately allows us to exclude the necessity of considering an additional
and unrelated diffusion component. Thus along with finitely many big jumps(jumps larger
than ¢ in magnitude, for a very small €) the small jumps locally attribute to diffusion. And
the continuity requirement of the diffusion process forces the rate of local arrival of jumps
of all sizes to zero thus reduces the local variation of uncertainty in the price dimension
to be explained with a single instantaneous volatility parameter. That is where the words
pure jump find the justification: they are mutually exclusive of diffusion processes.

In our intuitive development in section 2.1.3 we saw that any Lévy process can be
expressed as the sum of three processes: (i) a Brownian motion with drift, (ii) a com-
pound Poisson process of big jumps and (iii) a limiting process of compensated com-
pound Poisson processes of small jumps. Each of these processes being semimartingale,
see Kyprianou(2006)[76] and Shiryaev(1999)[106], the superimposed resultant processes is
again a semimartingale. Thus any Lévy process is a semimartingale. We know stock price

processes have to be semimartingale under real probability measure and Lévy processes ap-

45



pear as a wide natural class of candidates for stock price dynamics. Now clearly continuity
of trajectories requires the components corresponding to the processes (ii) and (iii) above
to be zero. According to our development in subsection 2.1.3 and Lévy-Kintchine formula

of a general Lévy process (2.23) , this means that:
Xt = at + bBt

Thus we arrive to an important conclusion: The only Lévy process with the continuous
paths is the Brownian motion (with drift). The consequence is that if we use Lévy process
to describe the return or natural log of stock we obtain normality together with continu-
ity. In other words if the data exhibits deviation from normality we have no continuous
process left for modelling (as Brownian motion is the only continuous Lévy process). So
non-normality needs to be modeled using discontinuous(jumpy) Lévy processes.
Furthermore to obtain a finite quadratic variation(which is a better representation of stock
price dynamics) the diffusion component must be zero and the process must be a pure jump

Lévy process.

2.4 Random Measure of Jumps

We need this mathematical section for intuitive development in sections to follow. Since a
Lévy process is cadlag, the number of jumps AX, such that |[AX,| > ¢, before some time
¢, has to be finite for all € > 0. Hence if B € B(R), is bounded away from 0 (i.e. 0¢ B, the

closure of B), then for ¢ > 0
NP =t{s € [0,t] : AX, € B} = Jx([0,t] x B) (2.43)

is well defined and a.s. finite. The process N B is clearly a counting process, called a counting
process of B .It inherits the Lévy properties from X . Since the Poisson process is the only
non-trivial counting process which is Lévy then NP is a Poisson process with a certain
intensity vX (B) < oo.If B is a disjoint union of Borel sets B;, then NB =%, NPiHence
considering (2.24), vX(B) = ENE = SSEN;* = Y v(By). vis a Borel measure and as
indicated in (2.20) it holds that v(R\ (—¢, €)) < oo for all € > 0 . In particular v is o —finite.

Now to discuss the term Jx([0,t] x B) in (2.43) we need the idea of Poisson random
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measure . However we keep our discussion about this measure at an introductory level. For
more details see Bertoin(1996)[15] and Applebeum(2004)[2].

From the definition of the Poisson process we recall that the jump times 77,75 --- form
a random configuration of points on [0,00) and that the Poisson process N; counts the

number of such points in the interval [0,¢] see Cont and Tankov(2004)[38].This counting

procedure defines a measure on [0, 0o).

Definition 2.5 For any measurable set A C R" a positive integer valued counting measure
M(w,-) defined as
M(w, A) = #{i > 1;T;(w) € A}, w € Q, (2.44)

18 a random measure .

The very first property of a Poisson process ensures that M (A), for any bounded mea-
surable set A, is almost surely finite. The intensity A of the Poisson process determines the
average value of the random measure M, i.e. E[M(A)] = X A| where |A| is the Lebesgue
measure of A. M is also known as a random jump measure associated to the Poisson pro-
cess N . The Poisson process can be expressed in terms of the random measure M in the
following way:

Nyw) = M(w,[0,8) = |  M(w,ds).
0,4

The properties of the Poisson process , see Cont and Tankov(2004)(38], can be translated

into properties of the measure M. Some of the important ones are as follows.

[1] For disjoint intervals [t1,t1]),- - [ty tn], M([tk,tx])is the number of jumps of the
Poisson process in [tx,tx].It is a Poisson random variable with parameter Mty —
ti) . Generally for any measurable set A, M(A) follows a Poisson distribution with

parameter A|A|, where |A| = [, dz is the Lebesgue measure of A.

(2] For two disjoint intervals [ti, £;] and [t;,t;] where i # j, M([t;, £3]) and M([t;,t;]) are

independent random variables.

A natural extension of this notion of random measure is the Poisson random measure ,where

Rt is replaced by any £ C R and the Lebesgue measure by any Radon measure p on E.
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Definition 2.6 Let (Q,F,P)be a probability space, E C R and I a given positive Radon
measure on (E,E) . A Poisson random measure on E with intensity measure [ is an integer

valued random measure
M:QxE—-N, (vA)— Mw,A)
such that:

[1] for almost all w € Q, M(w, ) is an integer valued Radon measure on E, i.e. for any

bounded measurable A C E, M(A) < cois an integer valued random variable .

[2] for each measurable set A C E,M(-, A) = M(A)is a Poisson random variable with

parameter p(A), i.e.

P{M(A) =k} = e #A) [“(l’j)]k, Vk € N. (2.45)

[8] for disjoint measurable sets Ay,--- , A, € &, the corresponding random wvariables

M(Ay), -+ ,M(A;) are independent.

We state the following proposition, without proof, which ensures the existent of the Poisson

random measure .

Proposition 2.6 For any Radon measure pon E C R, there exists a Poisson random

measure M on E with intensity p.

For a proof see see Cont and Tankov(2004)[38].
It can be shown that to every cadlag process and in particular to every compound Poisson
process X = {Xy;t > 0} on Rwe can associate a random measure on R x [0, 00) describing

the jumps of X . For every measurable set B C R x [0,00)
Jx(B) = Jx (A x [tl,ti]) =t{te [tl,tll]; AX; € A}, (2.46)

that is Jx (A X [t1,t1]):=number of jumps in X occurring between time ?to ¢ whose

amplitude belongs to A.

The random measure Jy contains all information about the discontinuities (jumps) of

X. Tt tells us when the jumps occur and how big they are. Jx does not give any information
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regarding the continuous part of X. It is easy to see that X has continuous sample paths if
and only if Jx = 0 a.s. which implies that there are no jumps.
The following proposition shows that Jx is a Poisson random measure in the sense defined

above.

Proposition 2.7 Let X = {Xyt > 0} be a compound Poisson process with intensity
Aand jump size distribution F. Its jump measure Jx is a Poisson random measure on

R x [0, 00) with intensity measure p(dz x dt) = v(dz)dt = A\dF(z)dt.

For a proof see 38].

Equation (2.45) implies that, Jx(B) as defined in (2.46) satisfies:
E[J(dz x dt)] = p(dz x dt) = v(dz)dt = \dF(z)dt. (2.47)

Equation (2.47) bears important intuition. It extends the intuition of the definition 2.4 of
Lévy measure, as the expected number of jumps per unit time with jump sizes in a Borel
set A € B(R) , to the arrival rates of jump sizes in a spatial domain. More precisely if
B C R x [0,00) is of the form A X [to,t1], (2.47) means that integration of the Lévy density
over this spatial domain provides the arrival rate of jumps in this domain.

We are now in a position to relate our intuitive development in subsection 2.1.3 to
Lévy-Ito decomposition. Lévy-Ito decomposition states that every Lévy process X; can be

decomposed as:

X, =at+ B; + X! +lirr(1)X§, t>0, (2.48)
where
xt = o ©x (ds x dz) = > AX,
l2|>1 0<s<t
|AXS|>1

corresponds to discontinuous large jump process and

X;

I

s€(0,t) z{Jx(ds x dz) — v(dz)ds}
e<lzl<1

= [selo,g) z{Jx(ds x dx)}
e<|z|<1

corresponds to compensated small jump process.Clarly equation(2.48) bears the same intu-

. S
ition as we developed in subsection2.1.3 for X; = log(=g™).
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2.5 Subordinator and Its Application in Finance

Subordinators are essential tools to study the time changed processes in Finance. The
definition as well as mathematical characterization of Subordinators rely on the idea of

total variation of the process, among others.

Definition 2.7 (Bounded and unbounded variation) The total variation of a Tight

continuous function with left limit is defined as:

I1=n
I/ HTVZZSUP{Z | f(t) = ft—) [0=to<t1 <.+ <tp=t, neN}.
j=1

Clearly for an increasing function on [0,t] with f(0) = 0 this is just f(t) and for a difference
f =g — h of two increasing functions with f(0) = g(0) = 0 the total variation is at most
g(t) + h(t) < co. We will see that finite variation in one of the recent option pricing model,
namely Variance Gamma, is a direct consequence of this fact. Such functions are known as
functions of finite or bounded variation. A finite variation process is one such that each of
its sample paths are of finite variation.

In case the total variation of a function is infinite, the function is known as “of unbounded
variation”. Brownian motion, which is the only Lévy process with continuous sample paths,

has unbounded variation though it has a finite quadratic variation.
The variation of a Lévy process is completely characterized as:

Proposition 2.8 Let X; is a Lévy process with X having characteristic triplet (a, b2, v).

Then:

o ifb2 =0 and f|x]§1 | z | v(dz) < oo then almost all paths of X; have finite variation. The

converse is also true.

o ifb?> #0 and f|x|<1 | z | v(dz) = oo then almost all paths of X; have unbounded variation.

The converse s also true.

For a proof we refer to Sato(1999)[100]. The first part of this proposition simply tells us

that if the underlying process is not diffusive and if mathematical structure of the process
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guarantees that the total contribution of the absolute movements caused by small jumps
will be finite than almost all the sample paths of the process are guaranteed to be of finite
variation. The second part of this proposition is rather more convincing. It tells us that
if the paths of a process are observed to be of unbounded variation than there must be
diffusion and absolute contribution of the small jumps will be infinite. This proposition
implicitly implies that diffusion and total absolute contribution of the small jumps are
closely associated with each other; which goes with our intuition. However in practice the
compensated(mean subtracted) compound Poisson part in(2.28) yields the ground where
unbounded variation from small jumps becomes less likely.

In concise form this implies:

/000(1/\ |z |)v(de) = /01 | z | v(dz) + /loo v(dz)

finite if X, is of finite variation(so b* = 0).
_ (2.49)

o0 if X, is of unbounded variation.

Since by the property of Lévy measure, see (2.21), [ v(dz) < oo, unbounded variation

can be seen as resulting from diffusion and small jumps.

Definition 2.8 (Subordinator) Let {X¢;t > 0} be a Lévy process such that X1 has the
Lévy triplet (a,b? v). Then X, is an increasing process in t if and only if v(—o00,0] =
0, b2=0 fol zv(dr) < oo and d = a — fol zv(dz) > 0. Such an increasing process is known

as Subordinator.

In this case X; can be expressed as the sum of its jumps over times 0 to ¢ and linear drift:

X, :dt+/ six(ds x dz)=dt+ 3 AXe o t20, (2.50)
[0,5}xR

0<s<t
|AXs|>1

and its characteristic function can be expressed as
E[e***t] = exp [t{ids + /(ei“ - 1)1/(d:r)}] (2.51)

where d = a — f|:c|§1 zv(dz).

The idea is that in case of Subordinator, jumps are the only source of randomness and

finite variation ensures that small jumps are integrable. So usual compensation of small
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jumps in Lévy-Kintchine formula to ensure the integrability of Lévy measure is not needed
and the compensation part can be adjusted with the drift of the process yielding a new

drift.

We close this section with a proposition, putting all these facts together, which com-

pletely characterizes a Subordinator:

Proposition 2.9 Let {X;;t > 0} be a Lévy process on R. The following conditions are

equivalent:
fi] X: >0 a.s. for somet > 0.
[it] X¢ >0 a.s. for everyt > 0.
[iii] Sample paths of X, are almost surely non-decreasing:

t>{ = Xi>X; as

[iv] The characteristic triplet of Xy satisfies b = 0, v(—o0,0] =0,
JS(LAz)v(dr) < o0 and d = a — flmlél zv(dz) > 0, that is X; has no diffusion

component, only positive jumps of finite variation and positive drift.

For a proof see Cont and Tankov(2004) [38].

2.5.1 Time Change Through Subordinator

The main application of subordinator in finance is the so called “time change”, i.e. to model
the change from “calender time” to “business time”. Such time axis modeling by a positive
Lévy process(subordinators) has intuitive explanation in Finance. See Geman(2002)[62].
As we explained in section2.5 subordinator can only display positive jumps in positive
direction. Thus in case of subordinator drift being positive and there being no negative
jump, the diffusion component needs to be zero(otherwise there could be a negative change
with positive probability). Hence positive jumps, positivity being required for time chang-
ing, are the only source of randomness and finite variation ensures that small jumps are

summable. So usual compensation of small jumps in Lévy-Kintchine formula to ensure
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the integrability of Lévy measure is not needed and the compensation part can be ad-
justed with the drift of the process to give a new drift. See Cont and Tankov()2004[38],
Sato(1999)[{100] for details. The following theorem is very important in financial applica-
tion. It shows that when a Lévy process(modelling return dynamics) is subordinated by a
subordinator(modelling time change) the resulting process is still a Lévy process. Moreover
it shows how to get the characteristics of the resulting process. The proof of the theorem

can be found in Sato(1999)[100).

Theorem 2.7 Let T; be a subordinator with Lévy measure v, drift d . Its distribution at
time t, Pr, is characterized by the equation (2.51) and let A = Pr,. Further assume X;
is o R—valued Lévy process with Lévy triplet (a,b?,v). Its distribution Px,, att > 0 is
characterized by equation (2.23) and let uy = Px,. Then provided the processes X; and T,

are independent, the process defined as
Yi(w) = Xny(w) t20; (2.52)
is also a Lévy process. The distribution of Yy is given by:
o0
PlY; € B) = / p*(B)A\(ds), B e B(R). (2.53)
0

The Lévy triplet (ay, bz, vy) of Yi is given by:

ay = d.a+/0 p(ds) /|x|£1 zp®(dx), (2.54)
b2 = db (2.55)
v(B) = dv(B)+ /000 us(B)o(ds), B e B(R\{0}). (2.56)

Remark 2.4 We will see in details how to make use of each of these equations. We must
mention that all the time changed Lévy processes in finance have to be analytically developed

based on the above theorem. We would like to see such analytic development for one of the

successful time changed Lévy models in finance.

2.5.2 Analysis of Variance-Gamma Process

Variance gamma process was first introduced by Madan and Senata(1990)[79]. Subsequently

it was adapted to option pricing by Madan et al(1998)[80]. Brownian motion was time
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changed by an increasing gamma process. We present the detailed derivations in VG model
as a Brownian motion time changed by gamma subordinator. These derivations reveal the
stochastic intuitions behind time changed processes. Furthermore we realize that Geman
(2002)[62] had misspecified the expressions of some parameters in the paper when discussing
variance gamma process. Since Geman (2002)(62] didn’t go for the details derivation of the
Lévy measure of variance gamma process Geman (2002)[62] even didn’t realize that the
specification of the parameters do not yield the correct expression of the Lévy measure used
in the paper. We will go for the detailed derivations with the correct specification of those
parameters and will show how our specification of the parameters yields the expression of the
Lévy measure used in the work Geman (2002){62]. This is the reason why we considered VG
model for illustration. However other Lévy processes also have the facets of time changing
embedded. e.g. Normal Inverse Gaussian(NIG) process has the mathematical treatment as
Brownian motion time changed by IG subordinator; CGMY process has the mathematical
illustration as Brownian motion time changed by tempered stable(TS) subordinators.

We saw in example 2.2 that gamma random variable is infinitely divisible. Thus accord-
ing to the Lévy-Kintnchine formula of Lévy processes we can attach the gamma variable to

get a gamma process such that:

s 1 t 1
Tips—Ty =T —,= ) ingeneral Ty =T (—,—) (2.57)
e ('7 7) ® T\
where I'(a, 8) has the density:
/Ba
flz) = £ o 250, a>0, 8>0. (2.58)

(o)

We now show that gamma process is a subordinator.

Lemma 2.1 The generating triplet for the T'(a, B) distribution is (0,0,v°), where Lévy

measure V° is given by:

v¥(dz) = %e_ﬂxd:c, z>0. (2.59)

It then follows that gamma process T3, with o = % and 0 = %, in (2.57) is a subordinator
with triplet (0,0,tv°).
Proof. If F is the probability measure with density (2.58), then (2.1) shows that:

or -z - 2] - 23] o
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However:

0 T
So:
8 — is} e
(I)p S = [
(s) 3
® Q
= exp [/ [e* — 1] ;e—ﬂxda: (2.61)
0 &
Comparing (2.61) with (2.23) the result follows. 0

The following results, about Bessel function of third kind, will be used in next derivation.

Lemma 2.2 If K, is the modified Bessel function of third kind, then:

Kp(z) = —21- (g)p/ooo e"t"%t_p_ldt; z>0,p€R. (2.62)
K, 1(z) = (g)x—%e-f <1 + }; -((—n%@x)_i) (2.63)

Proof’s can be found in Watson(1944)[112].
Consider the process X; = oB; + 6t, where B, is a standard Brownian motion and
o > 0,0 € R are volatility and drift parameters,respectively. The Variance Gamma, VG
henceforth, process is defined as the process Y; subordinated to X by the I'—subordinator
T:
Y, = X1, = 0B, + 0T (2.64)
Gamma process is characterized as in (2.57) so that it ensures mean rate t and variance ¢

with the probability density:

Ki Y13 (2.65)
r

95



With this parametrization, (2.60) ensures that the Laplace transform of this gamma sub-

ordinator is:
Ele=T) = (14 s7) 7. (2.66)
Equation (2.64) shows that conditional on a jump of size T; = s in the time axis, the
move of the process Y; is normally distributed with mean 6s and variance o?s. Applying

conditioning we can now compute the characteristic function of compound random variable

(here normal compounded by gamma):
‘I)Yt(S) — ]E[eis(aBTt+0Tt)]
w .
_ / E [ezs(aBTt—i-@Tt) ‘ T, = u] th (u)du
0c>o 0
— / e’LS U'——S 0 Uth( )
0
o0
— / e—[%sza2—i59]uth (u)du
0

= (1 + [;s o? - zse] )—% [using (2.66)]

1 5
= : . (2.67)
1 —isfy + 55202y

We now use theorem 2.7 to obtain the Lévy triplet of VG process.

From (2.54):

oo 1
ayy = [drift subordinator].[drift subordinate] + / v(dz). / yP;p +o(dy).
0 1

0 z 1
= 0.[drift subordinate] + / £-Wle‘ﬂi:v. / yPig 1o(dy). [using Lemma2.1]
0 -1

T
S (%) z 1 (y— 05
= / ——-6_7d:c./ y———=¢ 2% dy € R. (2.68)
0 z 27T
From (2.55):
b?,g = [drift subordinator]. [diffusion subordinate] =0 [using lemma 2.1].  (2.69)
From (2.56):
vg(dz) = [drift subordinator].[Levy measure subordinate] + / Pip. yo(dz)0(ds)
0o (z— 3}2
= 0+ d:v/ - e 2a0s e Pods [with a = = , B=— and using Lemma2.1]
0 2ms 'Y
00 (z—08)2
= @ dx e (—Ea—%fs)_s 2e ﬁsds (270)
2T 0
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Now:

_(z=05)?
€ 2023 e.-ﬁs

2 2.2
T —21:36;0 s _
e 2s0 Bs
2 2
20 [—(g+-25)s—(25)12
= 6?6[ (ﬁ 20 )8 (5;2)8]

So from (2.70) we obtain:

o X _(e-89% 3 _
Vyg(dz) = dx e 2% s 2e P
oV2r 0

(8% z0 Sy 3 92 $2 1
= a2 T2 - —|s—|=]-|d 2.71
o2 dcc/o ’ 2exp{ <6+202>S (202> s] s (27

To evaluate the integral in (2.71) we need to use (2.62). Assume x = (a+ 2%25) and ' = Ks.

Thus rearranging the integrand in (2.71) we obtain:
— exp |—s — - —ds
0 K 4s K

— VR [T e |- - (=)

N

22k
(2.62) 2%k \ |1 T 579
=" VrKy ( o2 ) 2 2 (272)
Thus (2.71) turns into:
VEKL (\/Q—f,?-‘-)
dr) = ——et_—— dz
Vug(d2 oV 2T Y 3
1 i
VEE 1 eV
2 — 3
o o g F)
3\~ 2
= —Oi-exp (m—g—mvbi)dx
| z | o o
fh 62
= 1 exp % - L=l /2 + — |dz (2.73)
vl|z| o c \\y o

: : o
The last equality follows by plugging back the value of k with o = .
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2.5.3 Geman’s Misspecification and Our Correction

We gathered enough knowledge to report that Geman’s(2002)[62] identificationof the para-
meters of the VG model is wrong. Such identification do not yield the Lévy measure
mentioned in that paper. We identify the parameters correctly and show that our iden-
tification produces the expression of the Lévy measure which Geman(2002)[62]used in the
paper for numerical works. According to the theorem 2.7, the expression of Lévy measure
ought to be unique.

Geman et al(2001)(63] show that the VG process may be expressed as the difference of

two independent gamma processes:
Y, =Gl - GP (2.74)

where G¥ and G7 are interpreted as price changes from positive and negative shocks re-
spectively. This is clearly argued in Geman(2001)[63] and Geman(2002)[62]. The idea is
simple : the difference of two positive jump processes can describe a general stock price
path under the assumption that all possible movements in price are caused by frequent tiny
and occasional big jumps of both positive and negative types. Positive moves are caused
by a positive Gamma process and negative moves are caused by the negative of a positive

Gamma process. For the validity of (2.74), according to (2.66) and (2.67), it suffices to

have:
1—is6y+ %32027  \l-—ism,/) \1—1isn,
1
= - 2.75
1- 28(7717 - nn) + 5277p777L ( )
This is equivalent to:
Mp — T = 07 (2.76)
2
ay
TipNn. = T (277)

Equation (2.75) follows from the fact that VG process is characterized by VG characteristic
function. Since VG has equivalent characterization involving two Gamma processes; it’s

characteristic function has equivalent characterization involving characteristic functions of

corresponding Gamma processes.
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Geman(2002)[62] specified the solutions of (2.76) and (2.77) as:

1
Mp = — ; - (2.78)
57
1
n = 22 — . (279)
CZIETE

Then Geman(2002)[62] mentioned that these specifications the Lévy measure of the VG

process can be written as:

e—M:L'

C&——dz ifz >0,
Vyg(dz) = (2.80)

C%G]fd:c if £ <0,

i =1 S =L
with C =2, G = -, M_np'
However using our derived form of Lévy measure, see (2.73), we checked that solutions
(2.78) and (2.79) do not yield the expression of the Lévy measure (2.80). Moreover (2.78)
and (2.79) don’t even satisfy (2.76) and (2.77). We now solve equations (2.76) and (2.77)

separately for n, and n,.

For n, we write (2.76) as 1, = 1, + 7. Then from (2.77) we obtain:

2
g
(n + 6V = 5=
—20n £ 1/46%y2 + 802y
— g = n ; Y
@ [PEL b
B 4 2 2
Then again from (2.77) we obtain:
1
= — (2.81)
0 c 2
& (V-5

For 7, we write (2.76) as 1, = 1p — 0. Then (2.77) implies:
o2y
(=67 = 5

20n + /4622 + 802y
> np = 4

CoRY i i o
- 1 T3 T
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Then again from (2.77) we obtain:

1

Mn =

[ed

2 ([P Py, 6y
7?( it t3

(2.82)

Our solutions satisfy (??). Moreover using (2.73), we now prove that our solutions yield

the form of Lévy measure used by Geman(2002)[62].

From (4.14) for > 0 we obtain:

F
1 0 1 /2 62
Vpgldz) = — — 2
vg(dz) ’Y|$|exp 1(02 - 7—+—02>}da:
_ 1 [ 9 6242 o2y Gy
- le‘exp _Ia%/( 1 T3 2 dz
-Mzx
- ¢= z>0.
x
where C' = = andM —w1th np given by (2.81).
Slmllarlyfrom (2.73), since for £ < 0; | z |= —z i.e. £ = — | z |, we obtain:
1 0 1 /2 6
dz) = - — 4+ —4/—+=||d
Vg (dz) ’Hzlexp |x|< 2+0 7+ 2) T
0
vz 2
—G|x|
= o< z<0
T

where C = ;1; and G = n% with 7, given by (2.82).

imply (2.80).

2.6 Choosing a Pricing Measure In Incomplete Market

(2.83)

(2.84)

Equation (2.83) and (2.84) together

One of the downside of most of the otherwise sophisticated models is that these models

render the market incomplete. See Schouten(2003)[102]. So for Lévy models we need to

choose a pricing(martingale) measure out of many possibilities. Existence of a martingale

measure is related to the absence of arbitrage while uniqueness of a martingale measure is

related to the market completeness i.e. perfect hedging. In Lévy market there are many

equivalent martingale measures under which discounted asset price process is a martingale;
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so perfect hedging can not be obtained i.e. there always remain residual risk that can not be
hedged. In this section we provide detailed technical analysis to show how to choose a risk-
neutral distribution(martingale measure) corresponding to a physical(statistical) measure
underlying a Lévy process.

One approach to to find an equivalent martingale measure, which is analytically more
tractable and hence frequently used in the literature, is premised on conditional Esscher
transform proposed by Gerber and Shiu(1994)(65]. Given a statistical distribution P, de-
scribing the evolution of the true underlying return process ,the conditional Esscher trans-
form identifies an equivalent probability measure @ describing a corresponding martigale
process. The Esscher parameter plays the prominent role in identifying the measure @ so
that the discounted price process becomes martingale.

We consider S; = Spe”t, where X; is a Lévy process which can be seen as a continuously
compounded rate of return over a period of length t. According to section2.2 X; has an
infinitely divisible distribution with probability density function given by f(z,t). Assuming

that the moment generating function(mgf) of this density exists for each t, it is defined as:

M(u,t) = E[e*X]

- /m&W@@M. (2.85)

—00
Provided M(u,t) is continuous at ¢ = 0 it follows from infinite divisibility, see section2.2,
that M(u,t) = [M(u,1)]’. Let 6 be a real number such that M(0) = [%_ €% f(z)dz exists,

then the Esscher transform(with parameter 6) of the process {X:},5, is defined to be a

process with new probability density, for each ¢t > 0, given by:

L eexf(.’L‘,t) . egxf(xvt)
fUz,t;0) = [ et f(y,t)dy - M(6,1)

(2.86)

This implies that the Esscher equivalent measure is given by:

dQ €0Xt
Eﬁ E eﬁXt]

[A1(6,1)]*
= exp (60X, —tlog(M(0))) (2.87)
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The idea of equivalence comes through the fact that for a null event{}, when [, 0 f(z,t) =0,

(2.86) shows that f{} f9(z,t) = 0 too. Similarly for a whole event when [* f(z,t) =1,

(2.86) shows that [°0 f9(z,t) = [T —J—y)e(xf{ei’t = 1 too. Furthermore for all u € R, —T—E‘E:;tt]

is a martingale with constant expectation of 1 for each ¢. Equation (2.86) is the core of all
Esscher manipulation.

The mgf corresponding to f9 is:

M(u,5;6) = / 92, 1,0)

_ /—oo QUT e@a:f(m, t)
oo M(6,t)
1 - u+6)x
= D) /_oo e(uto) f(z,t)dz
M(u+0,t)
M(6,t)
M(u+6,1)]
[M(6, 1))
_ {M(u—{-ﬁ,l)}t
M(6,1)

= [M(u,1;0)]" (2.88)

Esscher parameter 6 is selected in a way so that the modified(actually shifted) probability
measure @ is a martingale measure which is equivalent to the statistical probability measure
P. The idea is to find 8 = 6%, so that the discounted stock price process {e_”St}tZO is a
martingale with respect to the probability measure corresponding to #*. Since the martingale
condition is Sy = EQ[e™"tS;] = e ™EQ[S] this translates into finding 6* which is a solution

to:

So = e TtSEQeX?) [sinceS; = Spe™?]

— e‘”S’o/ e f(z,t;0)dx

—00

0o Oz 't
= e S /_Oo exevf(g{t)—)dx [using(2.86))

. 00 6(0+1)xf($,t)
- ¢ tSO/_oo Mot
M6 +1,t)
M(6,1)
= e S[M(1,1;60)]"  [using(2.88)] (2.89)

— 6—T‘tSO
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The solution does not depend on ¢, so considering t = 1 we obtain:

M(O+1,1)

e"=M11,1;,0) = M@.1)

(2.90)

Finally the solution 6* of equation (2.90) provides the risk neutral density f7 of the log
returns over an interval of length ¢ through the real density f, as shown in (2.86). We will

frequently use equation (2.90) to select a pricing measure in the thesis.

2.7 Conclusion

In this chapter we have revisited the basic aspects of Lévy processes. We then demon-
strated how the standard Lévy-Kintchine formula may be interpreted as a series of shocks
superimposed on a normal distribution. Using this derivation we have been able to offer a
correct solution to the mis-specification in the characterization of the Lévy measure for the
VG model derived by Geman (2002)[62]. We analyzed LKF to characterize the distribu-
tional aspects of log-returns in a way which is suitable to infer the time changing effects of
return processes in finance. This requires revealing the detailed theoretical underpinnings
in order to replace diffusion by jumps. In other words analytic development of VG process,
time-changed version of Black-Scholes model, is revisited from the general theoretical per-
spective of time changing which is motivated by identifying and correcting a misspecification

in Geman(2002)[62].
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Chapter 3

Pricing with FFT and FRFT :

Dynamic Views

Most of the processes in finance and economics belong to a rich family of stochastic processes
known as Lévy processes. As we saw in previous chapter these processes can essentially
include jumps of various sizes, arriving at various rates, along randomly evolved paths
and Brownian motion is the only continuous member of this family. Complete charac-
terization of processes in this family comes through the celebrated Lévy -Kintchine for-
mula(LKF). Besides drift and diffusion components in such characterization, we saw that
a measure(commonly known as Lévy measure) plays pivotal role in suiting these processes
to different needs e.g. modeling jump effects. We reformulated the underlying random
variables, embedded in celebrated Lévy-Kintchine formula, in a form which is suitable to
infer time changing effects of Lévy processes used in financial modeling. In addition we saw
that this form of LKF clarifies the fact that Lévy measure of a process alone characterizes
both the rate and distribution of jumps of a particular size. Lévy triplet of all the time
changed processes can be characterized using a common theoretical framework and we ex-
plored this framework to revisit VG process as a time changed process. This recognizes a
simple misspecification in an earlier work of Geman(2000)[62].

In this chapter we conduct an empirical investigation using the VG process, which we
rigorously revisited in previous chapter. Recently Chourdakis(2005)[29] introduces frac-

tional FFT(FRFT) in option pricing. Chourdakis(2005)[29] presents detailed analysis to
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show how the computational efficiency improves with respect to various FRFT parameters
compare to those in FFT procedure. FRFT and FFT basically differ on required compu-
tational time as one has the flexibility to choose a parameter more than the other. In this
empirical chapter we focus on exposition of trade-off between models fitting performance
and required calibration time for week by week dynamic calibration with FFT and FRFT
specifications. Parameters time-varying feature in dynamic calibration is investigated which
provides information about the stability of the model across time. Furthermore we inves-
tigate whether FRFT exhibits any distinct feature in addition to substantial reduction in
required computational time. Saying otherwise, for Black-Scholes and its time changed
version Variance Gamma model we investigate cross-maturity and cross-strike features of
FRFT compare to those of FFT. To distinguish the effects of time changing under FRFT
and FFT we pretend that neither Black-Scholes nor VG model has closed form solutions
and models under FRFT and FFT are different. We obtain the Black-Scholes values for
both FRFT and FFT in the same way as we obtain for VG-FRFT and VG-FFT models.
After all VG is a pure jump Brownian motion for a change of calender time to business time,
as detailed in previous chapter. We consider weekly S&P500 index option, unlike most of
the studies considering daily prices.

The drifted Brownian motion, without time change, describes the assets log return
through two parameters pu and b as in (2.28)(without compound Poisson parts). As the
equation (2.64) shows VG is a Brownian motion with a change of calender time to business
time by a gamma process. Thus when Brownian motion encounters a time change, LKF
through (2.28), exemplifies thats jumps come into scenario and diffusion disappears. The
parameters ayg, and b,y play the same role for the VG process as a and b in (2.28) for
a general Lévy process. Thus b,g being zero, (2.28) shows that the dynamics of the log
returns has no diffusion. That is how equation (2.28) establishes that Brownian motion
is pure jump only in business time. Furthermore v,, completely describes the rate and
distribution of both small and big jumps, as explained in section 2.1.3, when jumps come

into the scenario as a consequence of time changing.
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3.1 Risk-neutral Specifications

The characteristic function of VG model under real measure if given by (2.67), which can

be written as:
t 1
Oy, (s) = exp {—;ln (1 — 186y + -2-820'2’)/) } (3.1)
We can extract two parts from (3.1). One is the drift part u = 0 and another is the non-drift

part ¢(s) = —%ln (1 —is6y + %52027) .The drift part under risk-neutral measure can now

be obtained, see Shiryaev(1999)[106], as:

L (s) = i {r— ﬂ(?‘ﬁ} st=i [r+$ln (1—07— %027)} st (3.2)

Finally the risk-neutral characteristic function can be obtained as:

v.(s) = exp{p™(s)+ o&(s)}

1 1 1
= exp {z [r + —In (1 — Oy — —o%)} st — Eln (1 — 180y + —32027)}
% 2 ¥ 2

(3.3)

Similarly the risk-neutral characteristic function of Black-Scholes model can be obtained

as:

1 1
B, (8) = exp {z (r - 502> st — 5320275} (3.4)
where the Brownian motion B; ~ N(ft, ot) has the following characteristic function under

the real measure:
-, 1
Op,(s) =exp {is,ut - 5520213}. (3.5)
Our empirical study is conducted under the risk-neutral measures utilizing the characteristic

functions (3.3) and (3.4).

3.2 Pricing with FFT and FRFT

We consider logarithm of the prices, s; = log(S:) and k = log(K) where K is the strike
price of the option. As in Carr and Madan(1999)[27] the value of an European call with

maturity T can be expressed as a function of k:

Cr(k) = /koo e T (e® — eF)gr(s)ds (3.6)
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Here gr(s) is the risk-neutral density of the log prices. To ensure square integrability of

Cr(k), Carr and Madan(1999)[27], introduced modified call prices:
cr(k) = e**Cp(k), a>0 (3.7)
where « is known as the dampening factor. Following Carr and Madan(1999)[27] an analytic

expression for the pricing formula (3.6) can be obtained as:

e

—ak fo'e) )
Cr(k) = /0 e (w)du (3.8)

™

where ¥ (u) has an analytic expression:

e Top(u — (a+ 1)i)
o +a—u?—i2a+1)u

Yr(u) = (3.9)

Here ® is the characteristic function of the model for which prices are computed. As
mentioned earlier in our empirical study we will consider ® for Black-Scholes and VG
models under risk-neutral dynamics, given by (3.4) and (3.3) respectively.

Using numerical integration technique, e.g. trapezoidal rule, the integral appearing in
(3.8) can be approximated as:

N-1

/Ooo e~ p(u)du ~ Z e~ R (us)n (3.10)

3=0
where KZ;T is same as Y with weights attached by integration rule. 7 is grid spacing such
that u; = nj and upper limit of integration is n.V.
For some integrable function f, the spirit of FFT lies in approximating the continuous

Fourier Transform by its discrete version:

N-—

/ e " f(u) e VNI f(u, (3.11)
0

Jj=0

’_A

Usual approach in the literature is to fine-tune (3.10) to (3.11) and then obtain the option

prices through (3.8). The technique is to consider only the useful log-strikes near log-spots:

For Lévy models Sy = 1, and then assuming b = NA equation (3.12) ensures that log-strikes

range is —b to b. Here A is the grid length of equidistant log-strikes. We can write the sum
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n (3.10) as

N-1 N-1 N
e ko (u)y = e~ (=) i ()
7=0 j=0
(w=n) S~ .
. N~
J=1) ¢TI G S () (3.13)
=0

With the following notation we obtain equation (3.13) in the form of (3.11) which is par-

ticularly suitable to apply FFT on the vector f with components f(u;):

Fluy) = €5 hr(uy)y (3.14)
nA = QNW (3.15)

So out of three parameters n, A\, N, two can be chosen arbitrarily and the other should satisfy
(3.15), the so called FFT condition. For better accuracy both n and X have to be small thus
N is required to be large. So there is a trade-off between accuracy and number of strikes(
hence computational time). In our empirical study we use FFT parameters as in Carr and
Madan(1999)(27].

FRFT is developed to get rid of condition (3.15), providing the flexibility to choose all
three parameters. So we can choose smaller N to consider only effective strikes around
spots, significantly reducing the computational time, in addition to choosing appropri-
ate grid spacing parameters 7 and A for satisfactory accuracy. It was first introduced
in Bailey and Swartztrauber(1991)[6] and is recently incorporated into option pricing in

Chourdakis(2005)[29]. FRFT is a fast and easy way to compute sums of the form:

N-1 . '
e i2mkie f (3.16)
7=0

Here ¢ is the fractional parameter. Clearly € = ]—{,— yields the usual FFT. Upon choice of
the parameter N, upper integration limit a and log-strike bound b, the grid spacing and

fractional parameters can be obtained as:

a
2b
A= N (3.18)
1 nA
== —_— = — .1
€ N = o (3.19)



In our empirical study we use a = 64, b = 0.3 and N = 32. Consistent way of choosing
FRFT parameters and related issues are discussed in Lee(2004)[78]. To compute N —point
FRFT for a vector z, the algorithm suggest, see Bailey and Swartztrauber(1991)[6], defining

2N — point vectors as:

(

xje—i”jze 0<ji<m
Y o= 9 (3.20)
| 0 ms<ji<om
gimi®e 0<j<m
Z; = (3.21)
ei7r(j—2m)2c m<j<2m

\

where ¢ is as given by (3.19). The FRFT is then computed as:
Gi(z,€) = e7™"¢ © D! [D;(y) © D;(2)] (3.22)

Here © stands for element wise multiplication, D;(.) is the discrete fourier transform com-
puted with the usual FFT procedure as in (3.11) and D! is the inverse fourier transform.
Our closed form Black-Scholes prices, used in comparison, are calculated under the

risk-neutral measure using the following celebrated result, see Black and Scholes(1973)[19]:

Theorem 3.1 Consider a European call option with strike price K and expiration time T.
If the underlying option pays no dividends and continuously compounded risk-free rate is r,

then the price of the contract at time t is given by:
C(t,8) = S;®(dy) — Ke " T=0%(dy) (3.23)

where ®(z) denotes the cumulative distribution function of standard normal random variable

I (5)+(r+ 5 )(T—8)] In(38)+(r— 2 )(T—1)]
R and dy = —5—"mL

evaluated at the point x, dy =
with do = d; —ov/T —t.
3.3 Empirical Study

Chourdakis(2005)[29] used some selected values of parameters and didn’t calibrate the mod-
els with real market data. We calibrate the models separately assuming FRFT and FFT as

different models. For this we consider options traded on S&P500 for the sample period of
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January’2007 to November’2007. For out-of-sample assessment we consider market prices
of options traded on last week of December 07. Though we present our in-sample analysis

only for one in-sample week, we investigate several other in-sample weeks as well.

Calibration Results

Specifications | RMSE | Average time (second) o 0 n
VG(FFT) 2.6931 20.97 0.1294 | -0.1802 | 0.0786
(0.0393) | (0.0268) | (0.0221)

VG(FRFT) 2.7234 0.45 0.1232 | -0.1837 | 0.0839
(0.0505) | (0.0313) | (0.0276)
BS(FFT) 3.1765 11.27 0.1320
(0.0360)
BS(FRFT) 3.2447 0.29 0.1308
(0.0362)
BS(closed form) | 3.1764 0.063 0.1320
(0.0360)

Figure 3.1: Calibration results under different specifications of Black-Scholes and Variance-
Gamma. We consider weekly traded options on SEP500 from January’07 to November’07.
The estimates reported are the average of dynamic weekly calibrations over this sample
period. The standard error of each estimate appears in parenthesis. The average(over 4/

weeks)weekly calibration time is also reported.

The parameters reported in table3.1 are the average of weekly estimates over the sample
period.

For in-sample prices figure3.2 shows the Black-Scholes fit and figure3.3 shows the VG
fit both for FRFT and FFT. For out-of-sample prices the corresponding fits are presented

in figure3.4 and figure3.5 respectively.

Though we present the out-sample fiton last week of December,2007; we investigate earlier weeks of

December as well. We observe that as we move from 1st week to last week, the out-of-sample fits get worse.
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Markat and model prices for BS(FFT) on July2007 Market and model prices for BS(FRFT) on July2007
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Figure 3.2: In-sample Black-Scholes fit under FFT(left) and FRFT(right). O(market),
*(model) and different colors are for different maturities as red(23dtm), blue(58dtm),

green(86dtm), ceylon(149dtm), yellow(240dtm) and black(331dtm).

3.3.1 Dynamic Distinction Between FFT and FRFT

We focus whether specifications with FFT and FRFT exhibit any distinctive feature for
dynamic weekly calibration over the sample period of January’07 to November’07. However
in figures we present the case with third weeks of each month, i.e. mid month. Figure3.6
presents the number of options used in such dynamic calibration. Volatility estimates at
each week under different specifications are shown in figure3.7(left). It shows that it is not
FFT and FRFT which cause difference in dynamic volatility estimation, rather it is time
change which systematically estimates slightly higher level of volatility. On the right hand
side, of figure3.7, we show that VG model exhibits better calibration performance than BS
model. We conjecture that VG estimate of dynamic volatility is a better reflection of true
volatility than the BS estimate, which possibly leaves a favorable calibration for the VG
model. After all VG model captures the volatility through all its three parameters where
as in case of BS model it is captured by its sole parameter. We see that for both BS and
VG, FFT performs slightly better than FRFT throughout the months. However figure3.8

shows the difference in time requirements for the dynamic calibrations with FFT and FRFT
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Figure 3.3: In-sample Variance Gamma fit under FFT(left) and FRFT(right). O(mar-
ket), *(model) and different colors are for different maturities as red(23dtm), blue(58dtm),

green(86dtm), ceylon(149dtm), yellow(240dtm) and black(331dtm,).

specifications. It is now a trade-off between slightly favorable, often negligible,calibration
performance and the requirement of significantly longer calibration time.

For weekly dynamic calibration the average of estimates are found to reflect models
inherent stability over the entire calibration period, for both FFT and FRFT specifications.
More specifically parameters time-varying tendency are found to be negligible under both
FFT and FRFT specifications, implying that the means of such estimates are rather a good
“make-do” approach to decide on the final parameter values over a long period. Though we
do not report, we observe that other choices such as median and mode of dynamic weekly
estimates are found to undermine the potentiality of time change, namely for such choice it
is observed that VG model is not necessarily performing better than Black-Scholes model.
In figures3.9 and 3.10 we graphically argue in favor of using the average of weekly parameter
estimates in pricing. For both BS and VG these figures show that mean deviation of the

dynamic estimates are roughly close to zero throughout the months.
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Figure 3.4: Out-of-sample Black-Scholes fit under FFT(left) and FRFT(right). O(mar-
ket), *(model) and different colors are for different maturities as red(23dtm), blue(51dtm),

green(86dtm), ceylon(114dtm), yellow(177dtm), black(268dtm), magenta(359dtm,).

3.3.2 Cross-maturity and Cross-strike investigation

We investigate the pricing errors for four model specifications BS(FRFT), BS(FFT), VG(FRFT)
and VG(FFT), across maturity and strike, relative to the closed form Black-Scholes prices.
Our motivation is to examine the impact of the FRFT and FFT valuation methods and the
impact of the underlying models(BS vs. VG) on the option prices.

To reveal the cross-strike features of FRFT and FFT under time changed and original
process we express pricing errors as function of strikes only, holding the maturity constant.
We consider three different maturities observed in the market: minimum, mean and maxi-

mum corresponding to short, medium and long term options respectively:
ERROR™(K,) = P™del(K, 1) — PBS(K; t). (3.24)

Similarly to reveal cross-maturity features of FRFT and FFT we express pricing errors
as function of maturities only, holding the strike constant. Three different strikes are con-

sidered: minimum, equal to asset and maximum of the observed strikes in the market; these

correspond to ITM, ATM and OTM options respectively:
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Figure 3.5: Out-of-sample Variance Gamma fit under FFT(left) and FRFT(right). 0(mar-
ket), *(model) and different colors are for different maturities as red(23dtm), blue(51dtm),

green(86dtm), ceylon(114dtm), yellow(177dtm), black(268dtm), magenta(359dtm).

ERROR™%(t,) = pmodel(i ¢) — PBS(K t)). (3.25)

We plot cross-strike(left) and cross-maturity(right) errors, for different specifications, in
figure3.11, using illustrative market data for the last week of July’07. Figure3.12 plots error
surfaces across all ranges of strikes and maturities.

The first empirical observation is that when Fractional parameter of FRFT induces
some unsystematic price fluctuations across strike(left panel in figure3.11) across-strike, its
influence across-maturity is rather systematic(right panel in figure3.11). For any fixed ma-
turity, across-strike prices under FRFT and FFT(for both BS and VG) eventually converge
to closed form Black-Scholes prices. The higher the fixed maturity is, the slower the rate
of convergence. For short term options FRFT fluctuations are closely around FFT fluc-
tuations; for medium and long term options they systematically get deviated from each
other. Over all across-strike the effect of time changing is rather systematic. Considering
equation(2.28) and the discussion following equation(2.73) this means that changing the
source of randomness from diffusion to jumps causes the prices to be higher for ITM and

lower for OTM options. This provides some remedy to the Black-Scholes models deficiency
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Figure 3.6: Number of options used in dynamic calibration. The case presented is for third
weeks of each month(mid-month). However in calibration we considerd all 44 week’s for the

sample period of Jan’07 to Nov’07

in 'under pricing the ITM’ and ’over pricing the OTM’ options. This remedy is apparently
the reason behind the VG models superior performance over BS model.

Across-maturity error patterns under VG model encounter a gradual reversal with re-
spect to moneyness criteria. For ITM options VG prices are ,on average, higher than BS
prices; for ATM it is ,on average, lower for short term options and higher for long term
options. Finally in case of OTM options it is lower than BS prices. FF'T and FRFT prices
increasingly differ with the change of moneyness criteria. The greatest deviation is observed

in case of OTM options. See figures3.11(right panel) and 3.12.

3.4 Conclusion

We calibrate the VG and BS models for weekly recorded option contracts using both FFT
and FRFT methods. We observe that fractional parameter of FRFT causes some unsys-
tematic price fluctuation across-strike. For short maturities FRFT prices fluctuate closely
around FFT prices. However as the maturities increases two specifications give deviated

prices. Across maturities FFT and FRFT prices increasingly differ with the change in mon-
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Figure 3.7: Dynamic distinction in volatility(left) and RMSE(right) estimation with FFT
and FRFT. The case presented is for third weeks of each month(mid-month). However in

calibration we considerd all 44 week’s for the sample period of Jan’07 to Nov’'07.

eyness status. These are related with characteristic function and moneyness grids in some
complicated ways. More importantly like other studies we found that FRFT is much faster
than FFT, economizing on 97-98% of the calculation time at a cost of small pricing errors.
These findings have important implications for the calibration of options models and for
options risk-management in general. We also observe that there are important differences
between BS and VG option values, implying that inappropriate use of BS in the context
where the true process was VG can lead to major pricing errors. Otherwise said, assuming
the market is under regular diffusive shocks can lead to major pricing errors when the true
market exhibits frequent small and big jump shocks. Models inherent stability in dynamic
calibration is found to be similar for both FFT and FRFT specifications. Consequently

mean values of dynamic weekly estimates are found to work well in out-of-sample as well.
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Figure 3.8: Dynamic distinction in required time for calibration with FFT(left) and
FRFT(right). The case presented is the required time for the calibration at third weeks of
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period of Jan’07 to Nov’07.
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Chapter 4

Existing Approaches to
Nonnormality: Pricing and

Approximation

This chapter carries out a comparative analysis of the calibration and performance of a va-
riety of options pricing models. These include Black-Scholes (1973){19], the Gram-Charlier
(GC) approach of Backus et al. (1997)[9], the stochastic volatility (HS) model of Heston
(1993)[69], the closed-form GARCH process of Heston and Nandi (2000){70] and a variety
of Lvy processes including the Variance Gamma (VG), Normal Inverse Gaussian (NIG),
CGMY and Kou(2002)[75] jump-diffusion models. Unlike most studies of option pricing,
we compare these models using a common point-in-time data that reflects the perspective
of a new investor who wishes to choose between models using only the most minimal recent
data set. For each of these models, we also examine the accuracy of delta and delta-gamma,
approximations to the valuation of both individual options and an illustrative option portfo-
lio. Based on the relative performance of Heston Nandi(2000)[70] model (CFG henceforth),
in both pricing and approximation, we emphasize the necessity of exploring similar closed

form GARCH approach with nonnormal(Lévy) innovations.
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4.1 Introduction

Empirical performance of alternative option pricing models was systematically documented
in Bakshi et al(1997)[7]. Authors alternative selections in Bakshi et al(1997)[7], were basi-
cally around continuous time stochastic volatility, with and without jumps, and stochastic
interest rate characterization. It is concluded that simple stochastic volatility(SV) has more
pronounced effect than stochastic volatility stochastic interest rate(SVSI) and its jump in-
cluded variant SVSI-J. However SV is just one way of incorporating skewness. We consider
empirical assessment of SV with other approaches of incorporating skewness and kurtosis:
Gram-Charlier approach, GARCH approach, pure jump Lévy approach and jump-diffusion
approach. Unlike Bakshi et al.[7], we consider single day traded options of weekly data for
our empirical investigation.

Gram-Charlier is a continuous time approach which explicitly incorporates skewness and
kurtosis to bench-mark Black-Schole(1973)[19] model. Since it doesn’t incorporate market
evidence of jumps into the return dynamics, it is a continuous path approach as well.
Moreover this approach still considers volatility as constant. On the other hand GARCH
is a discrete time approach which allows jumps to be incorporated in return dynamics.
However most attractive feature of GARCH models is the realistic modelling of volatility,
replacing the constant volatility phenomenon of the bench-mark model. Going with the
frequent reference in recent literature we consider a GARCH version which does not include
jumps in return dynamics. So our representative from the GARCH family is the Heston-
Nandi closed form GARCH model(CFG) with discrete time continuous path approach to
incorporating skewness and kurtosis to return dynamics. This model uses a GARCH(1,1)
structure to update daily volatilities. So when Gram-Charlier model incorporates skewness
and kurtosis without incorporating stochastic volatility and jumps, CFG model incorporates
skewness and kurtosis by incorporating stochastic volatility into the return dynamics. Since
our GARCH representative is the discrete time stochastic volatility model, we consider the
continuous time stochastic volatility model of Heston(HS) as well; given the fact that it is
another commonly used model. In this continuous volatility adjustment approach, volatility

is driven by a separate Stochastic Differential Equation(SDE) namely CIR process.

83



Our jump incorporating models are the frequently refereed Lévy models in option pric-
ing literature, see Schouten(2003)[102], Kyprianou(2006)[76] and the references therein.
So continuous time jumpy path approach to incorporating skewness and kurtosis is ex-
amined by Variance Gamma(VG), Normal Inverse Gaussin(NIG) and CGMY, a further
extension of VG, models. All these Lévy models are infinite activity pure jump (with
suitable parametrization of CGMY), where small jumps are so frequent that it renders dif-
fusion redundant, see Geman(2002)[62]. Nonetheless we consider a sole representative of
finite activity jump-diffusion Lévy model, namely Kou’s double exponential(DE) model, see
Kou(2002)[75].

Some of the Lévy models we consider(namely VG, NIG and CGMY) introduce skewness
and kurtosis through stochastic time changing feature of asset pricing. Excess kurtosis in
such models may result from the implicit stochastic volatility induced by time changing, see
Geman(2002)[62]. We didn’t consider Lévy stochastic volatility models which incorporate
stochastic volatility through separate dynamics. These models are rarely used in the market
because of their involved mathematical manipulation for marginal improvement in pricing.
So in this chapter by stochastic volatility we either mean Heston’s stochastic volatility(SV)
model or GARCH stochastic volatility(CFG) model. Stochastic time changing is believed to
improve the pricing performance significantly as documented in Geman(2002)[62] for intra
day tic data. This chapter assesses the time changed models compare to other common
approaches to pricing subject to an investor’s willingness to use most recent minimum
market information contained in a single day traded options.

The feasibility of approximating option portfolio and inherent pitfall in such appro-
ximation under BS pricing model, caused by non-linearity of realistic composition of the
portfolio, was investigated in Britten and Schaefer(1999){22]. It was further explored in
Christoffersen(2003)[31]. It is concluded that from the standpoint of reality, there is hardly
any alternative to the full valuation of the portfolio. However under normal market situ-
ation such approximation is justified in short period. We attempt to enrich the literature
by exploring whether various approaches to incorporating skewness and kurtosis to pricing
models discriminate the performance of such approximations. We consider complete pay-oft

profile of the portfolio instead of considering any particular risk measure.
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The performance of approximation, under various models, depends on models pricing
performance as well as their Delta and Gamma values. Though some models have closed
form Greeks, most of the sophisticated models don’t have any. There are several ways to
numerically compute the Greeks for those models, namely tree based approach, Monte-
Carlo approach and finite-difference approach. However for uniformity in comparison we
disregard the closed form formulas for Greeks, whenever available, and compute Greeks by
finite difference approach for all the models under investigation.

For empirical study we consider options traded on S&P500 index on Wednesday 23rd
January,2008. We consider the immediate next Thursday data for out-of-sample assessment
of the models.

This chapter is structured in the following way. Section 4.2 provides short description
of the models which consider different approaches to incorporating skewness and kurtosis.
Risk-neutral dynamics are revisited which are required for pricing options. Then in section
4.3 we discuss issues around the implementation of Greeks(A,T',) and approximation of
option prices. Comparative look into approximation pitfall is presented in section 4.4.
Section 4.5 deals with data and calibration issues. Our empirical findings are discussed
in section 4.6. We present pricing and approximation analysis separately. Finally the last

section concludes.

4.2 The Models and the Dynamics

Celebrated Black-Schole-Merton ,BS hereafter, idea capitalizes on Geometric Brownian mo-
tion(GBM) for asset return. BS provides a closed form solution to European option; a simple
derivative with non-linear pay-off. The basic idea of European style derivative pricing is
captured in the following central result, which proof can be found in any classic finance

book, e.g. Shiryaev(1999)(106]:

Theorem 4.1 Consider a European option with pay-off V(S) and expiration time T. As-

sume the continuously compounded rate of interest is r. Then the current European option

price is determined by:

(0, So) = e T E[V(ST)] (4.1)
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where E denotes the expectation under the risk neutral probability that is derived from the

risk-neutral process:

d
—L—gsi =rdt + odB,. (4.2)
t

BS considered normal distribution for log-returns and therefore fails to incorporate em-
pirical evidence of smile-skew effects resulting from skewness and kurtosis. Gram-Charlier
explicitly incorporates skewness and kurtosis in BS framework therefore ensures substantial
improvement in pricing performance. However more realistic pricing requires replacing the
Brownian motion B; by characteristically more rich Lévy processes. Lévy processes can
incorporate the empirical evidence of jumps in return in addition to structural feasibility
of allowing the return distributions to have skewness and kurtosis. This could often im-
prove the pricing performance significantly. A comprehensive survey of Lévy processes in
finance can be found in Schouten(2003)[102], Cont and Tankov(2004)(38], Liuren(2006)[77]
and accessible theoretical treatment of Lévy processes can be found in Kyprianou(2006)(76],
Sat0(1999)[100], Applebeum(2004)(2]. In practice for most of these Lévy models prices have
to be computed through numerical inversion of characteristic functions which is obviously
time consuming. This introduces some kind of trade off between quick implementation of BS
model obtaining more consistent prices from otherwise sophisticated models which require
considerable time to implement. Nonetheless despite this obvious drawback a plethora of
alternative option pricing models are developed in recent times and option pricing is still a
vibrant research area in its own merit. Moreover these alternative approaches can possibly
shed further lights on other aspects of the models e.g. hedging performance.

We briefly revisit the pricing models which are premised on diverse approaches of de-
velopment. The skewness and kurtosis in these models are incorporated and characterized

quite differently. For pricing the options we use risk-neutral characterization of each model.

4.2.1 Gram-Charlier model

The Gram-Charlier approach was first introduced in Backus et al(1997)[9]. An extension

of BS density was considered allowing for skewness and kurtosis:

F(a) = 9(@) ~ (@) + G 6'(a) (4.3)
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where superscripts on ¢ indicate the order of derivative of BS density, (1; = % and (o = %—1
are skewness and kurtosis on a horizon of ¢ and ¢11 and (o1 are per unit skewness and

kurtosis. In Backus et al(1997)[9] it was shown that with this density the call option price

can be written as:

cce ~ S,8(d)— Ke'd (d . \/Za)
{21

+S8:p(d)o %(2\/20 —d) — %(1 — d? + 3dv'to — 3to?) (4.4)

4.2.2 Heston Stochastic Volatility model

Stochastic volatility model of Heston, see Heston(1993)[69], assumes a diffusion process for

the stock price given by:

dS;

=5 = pdt+ V9 dB} (4.5)
t
(4.6)
and a CIR process for the volatility /J; given by:
d9, = k[6—9,)dt+o\/0.dB; (4.7)

dB;dB! = pdt.

The SV model has flexible distributional structure in which the correlation(p) between
volatility and asset returns serves to control the level of asymmetry and the volatility
variation coefficient( o) serves to control the level of kurtosis. The risk-neutral specification
is similar to one given in (4.7) but x and 6 replaced by k* = k + X and 6* = R’%, see

Heston(1993)[69], Rouah and Vainberg(2007)[97]. Here A is the market price of volatility

risk. The closed form solution, up to numerical integration, in Heston model is given by:

1 1 [ K*hn .
CHS = = St <§+;A R€|: iz ]d4>

—~Ke™ (% + % /OO Re [K—:f"’} dz) (4.8)
0
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where f; = exp {C’j + D;v + 123:} with

T — Iy = log(St)
".9 = '(9t
. 6 _ g.0di(T=1)
Cj = ZTZ(T—t)+H_2{(bj_ipaz'f-dj)(T—t)—Qlog I:]. g;e™ :I}
o 1—g,
bj —izpo+d; | 1— e%i (T-1)
D; = >
g 1 — gjedj(T—t)
g = bj —izpo + d;
’ bj —izpo — d;
dj = \/(izap —bj)? — (2iu;z — 22)0?
w o= L ogp= L
1 = 27 Ug = _5
by = K+A—po, by=kK+ A

4.2.3 Heston-Nandi GARCH model

Heston and Nandi(2000) provide a closed form pricing formula for a European option, where

the underlying follows the non-linear GARCH process:

S.
log( ;:1) = r4+ X0+ 01z zp ~ N(0,1)
oy = wtalz - 00¢)? + Bo? (4.9)

From GARCH characterization (4.9) the variance persistence of return process can be
derived to be 8 + a#?; so the process will be mean-reverting if § + ab? < 1. 1t is shown
in Heston and Nandi(2000)[70] that the risk-neutral characterization can be obtained by
plugging A\ = —% and 6* =6+ X+ % Furthermore Heston and Nandi(2000)[70] argued that

in this model a determines kurtosis and 6 determines skewness. This model has a moment

generating function(mgf) of the form:

f(z) = Sfexp {A(t;t+T,2) + B(t;t + T, 2)ot 1} (4.10)
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where A(t;t + T, z) and B(t;¢ + T, z) are given by the recursive relations:

Altit+T,2) = At+1;t4+T,2) + 2r + B(t + 1;t + T, 2)w
1
—iln(l —2aB(t+1;t+T,2))

1
B(t;t+T,2) = z(A+6)—592+ﬁB(t+1;t+T,z)

%(z—ﬂ)?‘
1-2aB(t+ 1;t+T,2)

(4.11)

Heston and Nandi(2000)[70] then shows that the closed form GARCH(CFG) price can be

obtained as:

corc = S (1+1 /wRe[K—ﬂf*qu)}dZ)
0

2 7 izf*(1)
1 1 00 Kiz *(
—~Ke (5 + ;/0 Re [%} dz) (4.12)

Here f* is the risk-neutral version of f.

4.2.4 Pure Jump Lévy models

The Lévy models we consider in this section assume that all possible movements in stock
price are caused by jumps. The Lévy measure of such a process ensures frequent arrival of
small jumps, so frequent that they render diffusion redundant, see Geman(2002)[62]. Hence
they are known as pure jump processes. As an illustration in chapter2 and chapter3 we
considered VG model to clarify how mathematics conforms with such an elegant intuition.

According to the Lévy-Kintchine formula the distribution of X, _¢) = log(%‘f) is char-

acterized by the characteristic function of an infinitely divisible random variable given by:

E[etsX (t2-t1)]

= exp {(tz —t1) [ias — %5262 + /R\{O} [eisz —1- iSIH{—l,l}(x)} V(dx)] }
(4.13)

where t; can naturally be zero. Scalars a,b € R and the measure v satisfies v({0}) = 0 and
fR\{o} (‘I|2 A 1) v(dz) < oo, which means that though numerous small jumps may not be
integrable, square of those jumps are always integrable,a requirement which helps us extract

a square integrable martingale process in the limit. In case of pure jump processes b is always
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zero. For further details see chapter2 and Cont et al(2004)[38], Kyprianou(2006)[76]. For
example the variance gamma process characterizes the random variable X; through the

parameters (o, 6,~) and the Lévy measure:

1 0 |z| [2 62

When integrated for jumps of all possible sizes (4.14) implies that the total rate is infinite,i.c.
f0°° Vyg(dz) = oo. However for any € > 0, we have [ €°° Vyg(dz) < 00, implying that it is small
jumps which are numerous and jumps exceeding any threshold ¢ > 0 are finite, arriving in
compound Poisson fashion. The Lévy measure when used in (4.13) with a = b = 0 yields

the following closed form characteristic function of the process X;:

1 v
i) = 4.15

For this pure jump Lévy model the skewness and Kurtosis of log returns over an interval of

length one is given by:

0v(30% + 2702
skew(Xy) = DB+ (4.16)
(02 + 762)2
ot
Kurt(X:) = 3(1+27—m07)3) (4.17)

The risk-neutral version of the characteristic function (4.15) required in Carr Madan

formula to price the options, see Carr and Madan(1999)[27], is given by:

. 1 1 t . 1
@%G’T”)(s) = exp {z [r + jy—ln <1 — 0y — 5027)} st — ;ln (1 — 180y + 532027) }

(4.18)

This risk-neutral form basically results from mean-correction of drift part, or introducing a
drift to a driftless process, see Schouten(2003)[102].

The VG model has alternative characterization as difference of two Gamma processes,
see Geman(2002)[62]). Using this characterization, VG model is generalized in Carr et
al(2002)[26] which introduces an additional parameter and is known as CGMY model. In
Carr et al(2002)[26], it has been shown that the success of VG model in explaining the

smile effect of the market is likely due to the fact that the underlying process is pure jump
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with infinite activity and finite variation. The new parameter Y in CGMY model permits
finite/infinite activity and finite/infinite variation. The CGMY process characterizes the
distribution of X; through the parameters (C,G,M,Y) and the Lévy measure:

Cérvdr itz >0,
Vegmy(dz) = (4.19)

Cimvds ifz <0,
Here C,G,M > 0 and Y < 2. Apparently ¥ = 0 implies the VG model characterized
as difference of two Gamma process. This Lévy measure when plugged in (4.13), with

a = b = 0 provides a closed form characteristic function:
By, (s) = exp {Ctr(—y) (M —is)Y = MY + (G +1is)¥ - GY) } (4.20)

Skewness and kurtosis of log-returns over an interval of length one is characterized by:

Shew(X,) = SO -G NG -Y) (4.21)
(C(MY=2 + GY=2)T(2 - Y))’
C(GY* 4+ MYYT'(4-Y)

(C(MY~24+GY-2)I'(2-Y))?

Kurt(X;) = 3+ (4.22)

When G = M, CGMY provides a symmetric model. For G < M it provides a left skewed
model often resembling features observed in market option data. Furthermore if Y < 0
the paths have finite jumps in any finite interval , otherwise the paths have infinitely many
jumps in any finite interval. For Y € [1,2) the process is of infinite variation. Finally the

mean-corrected risk-neutral version, required for FFT based Carr Madan pricing, is given

by:

(I)g{Ct'G'J\[Y;rn)(S) — exp {7, (’I" _ CF(—Y) ((M _ ].)Y - MY + (G + ]_)Y _ Gy)) st

FCIT(-Y) (M —is)Y = MY + (G +is)¥ - GY) } (4.23)

Another model of our consideration in pure jump category is Normal Inverse Gaus-
sian(NIG). We saw that VG process can be interpreted as Brownian motion fluctuating
not continuously but only at time points controlled by a Gamma Subordinator, so called
business times. A similar interpretation holds for the NIG process that can be viewed as

Brownian motion fluctuating only at Inverse Gaussian(IG) time. Intuitive interpretation
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of such time axis modelling by a subordinator is well documented in Geman(2002)[62],
Clark(1973)[37].
The NIG process characterizes the random variable X 1 through the parameters (a, 8, §)

and the Lévy measure:

Unig(dz) = %eﬂle (alz|)dz (4.24)

where Kj is a modified Bessel function of third kind with index 1. Like VG, NIG is an
infinite activity process with numerous arrival of small jumps. Plugging this Lévy measure

into (4.13) with @ = b = 0; we obtain a closed form characteristic function:

@x,(5) = exp { ~0t(\/o? = (B+ is)? — V/a? — 57 } (4.25)

For NIG model the skewness and kurtosis, of log returns over an interval of length one are

characterized by:

skew(X;) = 36 (4.26)

ab73 (a2 — B2)73

2 2
Kurt(X1) = 3<1+5“+*45> (4.27)

Ny

We obtain the risk-neutral form of the characteristic function by mean correction:

@&]YIG;M)(S) = exp {z (r +30(v/a?2 = (B+1)2 — /a2 — 62)> st
(VeI =B+ - V- )| (428)

4.2.5 A jump-diffusion model

We consider a jump diffusion model to examine the market response to diffusion combined
with jumps in contrast to those with pure jump models. When jump diffusion models are
a Lévy models, they are not pure jump because of the presence of diffusion. The choice
of Kou’s(2002)[75] double exponential model is motivated by the findings in Ramezani and
Zeng(1999)[94], where it is suggested that double exponential jump-diffusion model fits the
stock market data better than normal-diffusion model of Merton(1976)[85]. Kou assumes,
see Kou(2002)[75], in addition to drifted diffusion the log-returns have occasional jumps

following a double exponential distribution DE(p,n1,72). Here p is the probability of an
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upward jump and 71 and 72 govern the decay of the tails for the distribution of negative

and positive jumps respectively. The Lévy measure is given by:
v{dz) = [p)\me"mwllz@ + (1 - p))\nge_"2|m|]lx>0] dx (4.29)

where A = [ v(dz) < oo, so unlike pure jump processes Kou’s jump diffusion model is a
finite activity model. The Lévy measure, through (4.13)(this time with non zero a and b),

provides a closed form characteristic function:

. 1 . M (1-pm
® = ¢ — —b2s? -1 4.
x,(s) = exp { (zas 5 §°+isA oy + R } (4.30)

The skewness in this model is not explicitly characterized. However Kou(2002)[75] suggests

that the feature of heavier tails become more pronounced with the increase of either the

jump size expectation(%) or jump rate (A). The mean-corrected characteristic function is
J

obtained as:

JD; . 1 pm (1-p)nm2
(I)(Xt m)(s) = exp{z <r— 5(72 - A {771'*'1 + —— —1]) st

1 1-—
_ 8262 4 st [ pn_ (L=pme 1] } (4.31)
2 m + 18 o + 18

We consider logarithm of the prices, s; = log(S;) and k = log(K') where K is the strike
price of the option. As in Carr et al(1999)[27] the value of an European call with maturity

T can be expressed as a function of k:
o0
Cr(k) = / e T (ef — e®Vgr(s)ds (4.32)
k

Here gr(s) is the risk-neutral density of the log prices. To ensure square integrability of

Cr(k) Carr and Madan, see Carr et al(1999)[27], introduced modified call prices:
cr(k) = e**Cr(k), a>0 (4.33)

where «a is known as the dampening factor. Following Carr et al(1999)[27] an analytic

expression for the pricing formula (4.32) can be obtained as:

e—ak 00 )
Cr(k) = / e Ry (u)du (4.34)

g 0

where (1) has an analytic expression:

e Top(u— (a+1)i
br(v) = 54 _TELQ — E(QZ +)1))u (4.35)

93



Here ® is the characteristic function of the model for which prices need to be computed. In
our empirical study we will consider ® under the risk-neutral dynamics for all the considered
Lévy models.

Brownian motion, being the simplest and the only continuous member of the Lévy

family, can provide a closed form solution for European options:

Theorem 4.2 Consider a European call option with strike price K and ezpiration time T.
If the underlying option pays no dividends and continuously compounded risk-free rate is r,

then the price of the contract at time t is given by:
C(t,8) = 5:®(dy) — Ke " T Dd(dy) (4.36)

where ®(x) denotes the cumulative distribution function of standard normal random variable
2
In(B)++5 )-8
ovVT—t

N Sy
dy = L (K)J;‘ﬂ%t)(:” O with dy = dy — o/T—1.

evaluated at the point z, di =

For a proof see Black and Scholes(1973)[19].

4.3 Option Pricing and Delta-Gamma Approximation

For small fluctuations in underlying, option prices can be approximated using options Delta
and Gamma. Inconsistency and pitfall in such approximations arise from big fluctuations of
underlying, one point Delta and Gémma estimates, failure of Delta and Gamma to reflect
true non-linearity in the pay-off of the option portfolio. Though Delta and Gamma are given
in closed form only in few cases, Black-Scholes and Gram-Charlier in our case, in most cases
we can obtain them upon numerical integration. Finite-difference technique can be applied
to estimate all the Greeks reasonably quickly, see Duffy(2006)[48]. For the uniformity in
comparison we will apply finite difference approach to all models of our consideration. Finite
difference scheme of Greeks computation is extremely sensitive to the choice of amount of
perturbation. For comparison this amount should remain same for all models. Perturbation
chosen outside a particular range makes the Greek surfaces completely unstable and that

range varies for different Greeks as well as models under consideration. To our knowledge
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there is no working rule to choose perturbation which works for all the models. We basically

use trial and error approach to find a perturbation which works for all the models.
Suppose C™0%€(S,) for a particular model, be the price of an European option, when

the price of the underlying is S;. The Delta of that particular model can be obtained by

finite difference method:

gmodel _ B_C . CmOdd(S +dS) — Cmodel(s)
CE s

(4.37)

where dS is a small perturbation to the price of the underlying. Similarly to obtain Gamma,
which measures the sensitivity of Delta, we need to obtain two values of Delta. Let §; be

the ¢ as defined in (4.37) and the §5 is:

_ Cmodel(S + QdS) . Cmodel(s + dS)

5 4.38
: - (4.35)
Then the Gamma of a pricing model can be computed by finite difference:
826
model _ ~ Y
i EE
62 — &t
T T dS
_ Cmodel(§ 4 2d8) — 2C™del(§ 4 dS) + C™odel(S) (4.39)

(dS)?

In figure 4.7 we plot the Delta surfaces for all the models under considerations. Delta changes
dramatically when the option is close to ATM. For OTM option the delta converges to zero
and for ITM all the Delta surfaces converge to one. Similar surfaces for Gamma are plotted
in figure 4.8. Again for a short maturity option the Gamma changes dramatically when the
option is close to ATM. However in case of Gamma the surfaces converge to zero for both
ITM and OTM options.

The Delta Gamma approximations to model option prices for generic underlying asset

price S, close to current price Sy, are given by:

Cmodel(s) ~ Cmodel(st) + 6model(5 _ St) (4.40)

1
Cmodel(S) ~ Cmodel(st) + 5model(s _ St) + _Q_,Ymodel(S _ St)2 (4'41)

Sce Dowd(2005)[42] and Christoffersen(2003)[31]. For any generic underlying asset price

the option price is approximated using the same Delta and Gamma, which are calculated
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once(only for the current value of the underlying) no matter how deviated the future un-
derlying asset prices are. The issue is though the continuity assumption of BS model can
justify the fact that an ATM option will remain ATM for short maturity, in case of jumpy
Lévy models as well as stochastic volatility models this is hardly justified. For models us-
ing non-normal distributions, tail events have substantial mass. Thus even in short time
underlying can move significantly because of jumps and/or higher level of volatility ren-
dering the approximation inconsistent. Since option portfolio is a linear combination of
options, this inconsistency turns into pitfall in portfolio approximation. As mentioned in
Christoffersen(2003)[31], in fact there is no alternative to the true valuation of the portfo-
lio even for BS model. We investigate relative extent of pitfall in such approximation for

market models of our consideration.

4.4 Comparative Look into Approximation Pitfall

We consider a portfolio similar to one used in Britten and Schaefer(1999)(22] but constructed
from our data set. While the call options in the portfolio are traded in the market, the
put option is priced using put-call parity. The option portfolio is described in table4.4.
The portfolio in Britten and Schaefer(1999)[22] is used in Christoffersen(2003)[31], as well,
to investigate the pitfall in approximation but in case of Black-Schole-Merton model only.
So this section is an extension of similar analysis for Gram-Charlier, closed form GARCH
and various Levy option pricing models including Kou’s(2002)[75] double exponential jump-
diffusion model.

We consider a risk-management horizon of five trading days(seven calender days), which
corresponds to the sampling interval for our weekly data. As in Christoffersen(2003)[31]
instead of computing the VaR’s we will consider the complete pay-off profile of the portfolio—
under all considered models—for different future values of the underlying asset prices Si+s.
However given that we are dealing with jumpy Levy models as well as stochastic volatility
models, we consider a wider range of possible future values of the underlying in five trading

days. Let P, and P(Sy45) denote the portfolio value today and at the end of five trading
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days respectively. We have:

P, = my x put + mo * Cally + m3 x Cally (4.42)

P%(Si15) = P, + 6P % (Sp15 — Sy) (4.43)
1

P67(St+5) = B, + 6P % (St+5 — St) + '2' * ’)/p * (St+5 — St)2 (444)

Here 67 and P are model dependent portfolio hedge factors defined as:

6P = my * Oy + Mo * Opay, + Ocau, (4.45)
,Yp =Tmy * ’Y;T‘Llit + ma * ’YCTZlh + 72”2 (446)

m indicates the model dependence; i.e. 6P and P will be different for different models.
True value of the portfolio is obtained through full-valuation of the option portfolio

using model option prices:

Perect(G &) = mqxput™(K =1200,T =23 —7)
+mg * CallP (K = 1200,T =23 — 7)

+mg * Calll (K = 1550, T = 23 — 7) (4.47)

Each model m will have its own parameters to be used in pricing the options and evaluating
hedging co-efficient. The pattern of non-linearity exhibited in figure4.5 is basically caused
by the difference in strikes considered in the portfolio. Though for all models the approxi-
mations appear to be almost similar, in fact there are significant differences. Propagation
of important and apparently more consistent, compared to the stark non-linearity, portion

of the approximation errors are presented in figure4.6.

4.5 Data and Calibration

We consider options on S&P500 index traded on Wednesday 23rd January,2008. These are
daily traded options of weekly record. After cleaning the data, see Bakshi et al(1997)(7], we

have 178 options on that particular day traded in the market. For calibration we minimize

the RMSE defined as:

1 1< 9
_ _ Cmarket _ ymodel 4.48
RMSE mean price \| n ; ( L ¢ ) ( )
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For cross-sectional assessment we report APE, in addition to RMSE, which is defined as:

n market _ model

- (4.49)
mean price n

Table4.1 reports the calibration result for all considered models. After calibration, mod-
els pricing performance is investigated for different types of options belonging to different
moneyness and maturity criteria. For out-of-sample assessment we consider options traded

in the market on immediately next day, 24th of January 2008.

4.6 Empirical Analysis

Option models relative performance order in pricing need not necessarily be preserved in
option portfolio approximation based on pricing models Delta and Gamma. This is because
the definitions of Delta and Gamma, of a particular model, consider models parameters as
constant and generate perturbation in option prices for a small perturbation only in under-

lying. We separately investigate the empirical observations for pricing and approximation.

4.6.1 Pricing performance with one day information

We observe that for calibration with most recent minimal data, as in single day traded
options, Lévy models explicitly characterized by parameters modeling rate of decay on both
tails fail to exhibit their true potential. e.g. four parameter CGMY and five parameter DE
models are not performing better than three parameter VG and NIG models. Moreover
we observe that when jump incorporating Lévy models bring moderate improvements in
pricing performance it is stochastic volatility which brings more poignant improvement.
Specifically Heston’s SV and Heston Nandi CFG models show significant improvement over
constant volatility Lévy models with jumps. This empirical comparison of time continuous
Lévy and stochastic volatility approaches with discrete time GARCH volatility approach is
first, to the best of our knowledge, in the literature.

Another relevant observation is that though GC model shows some improvement over
BS model, it clearly falls behind the Lévy, GARCH and stochastic volatility models of our
consideration. GC model though explicitly incorporates skewness and kurtosis, thus exhibit-

ing pronounced smile-skew patterns, still embraces the assumption of constant volatility, a
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characteristic strongly contradicted in the market. On the other hand though stochastic
volatility and GARCH volatility models response to smile and skew are less pronounced,
they significantly outperform the GC model. The same conclusion holds when we consider
Lévy models which exhibit pronounced smile skew patterns, e.g see CGMY and VG impled
volatility graphs in figure4.3 and 4.4. This finding is in support of recent focus in the lite-
rature where Lévy innovations are blended in GARCH volatility structure. The approach
is in-line with Heston-Nandi GARCH volatility structure but it replaces conditional nor-
mal innovation by Lévy innovations, or possibly GC innovation. Among other attractions
this approach put together a remedy to volatility related imperfections with remedies to
cross-maturity and cross-strike related biases.

The empirical features observed are based on entire data set we consider. Table4.2 shows
models in-sample pricing performance for various categories of maturity and moneyness.
Models relative performance observed in in-sample case has overall satisfactory correspon-
dence in out-of sample pricing as well. In table4.3 we report RMSE and APE for different
categories of options for out of sample assessment. In sample(left) and out-of-sample(right)

APE for various categories are plotted in figure4.1.

4.6.2 Approximation performance with one day information

The non-linearity in approximation arises from particular choice of portfolio, namely the
choice of strike of the options in option portfolio. Theoretical values of the portfolio(solid
curves in figures4.5) exhibit little difference under different models. However the Delta and
Delta-Gamma approximations to the portfolio exhibit various degree of proximity to the
true portfolio valuation. These variation in approximations basically results from the use of
Delta and Gamma which are estimated only current value of the underlying. It is partially
caused by models response to true non-linearity of the portfolio as well as models sensitivity
to ITM and OTM options in the portfolio .

For call options, in the portfolio, with strike 1550 and maturity 16 days, 23 calender
days, the Delta and Gamma surfaces are plotted in figures4.7 and 4.8 respectively. As the
figure4.7 shows near ATM when Delta changes more dramatically for Lévy and GC models,

for stochastic volatility and GARCH models the changes are less dramatic. Consequently
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any risk-management model for option portfolio(with significant amount of ATM option),
which relies on fixed Delta(and\or) Gamma estimates, are susceptible to be more misleading
for Lévy and GC pricing models than those of stochastic volatility and GARCH volatility
models. Our empirical findings reported in figure4.6 and table4.5 reveal such magnitude of
mislead for effective market models.

Non-linearity of option prices is highest when the option is close to ATM. Figure4.8
shows that for Lévy and GC models the response to non-linearity is well captured by
gamma, compare to stochastic volatility and GARCH models. We observed this evidence
for other calibrations as well e.g. for calibrations not restricted to the use of minimal
recent information. Consequently figure4.6 and table4.5 imply that in approximating option
portfolio, pricing model’s sensitivity to ITM and OTM options is more significant than it’s
response to non-linearity of the portfolio caused by ATM options in the portfolio.

Finally in figure4.9 we plot the risk-neutral densities of all the pricing models derived
by inverting the corresponding characteristic functions. We used the parameters presented
in table4.1 which are calibrated from options traded on 23rd January, 2008. The tails and
peaks appear separately in figure4.10. Clearly stochastic volatility and GARCH volatility

models exhibit distinct features in tails and peaks respectively.

4.7 Conclusion

In this chapter we consider comparative investigation of Gram-Charlier, GARCH and Lévy
option pricing models from the perspective of a new investor willing to rely only on most
recent minimum market information. Like other studies we found that pure jump Lévy
processes with infinite activity and finite variation price the options better than the classi-
cal diffusions or jump-diffusion models. However we further observe that their performance
are far less appealing when compared with GARCH volatility model as well as diffusion
model combined with stochastic volatility. Though pure jump Lévy models can capture
pronounced smile-skew patterns we observe that it is stochastic volatility model, even with
less pronounced smile-skew patterns, which exhibits superior performance. Furthermore

model with less pronounced smile-skew patterns combined with jump and diffusion, instead
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of stochastic volatility, performs much worse compare to pure jump Lévy models. Thus pure
jump approach clearly have a preferential edge over diffusion and jump-diffusion models but
not over stochastic volatility and/or GARCH volatility models. Furthermore pronounced
smile-skew model combined with diffusion alone(GC model), without jump and stochas-
tic volatility, exhibits worse performance compare to pure jump, stochastic volatility and
GARCH volatility models.

In practice an option portfolio composed of options with various strikes lead to an
acute non-linearity in portfolio pay-off, so acute that it becomes imperative to rely on full
valuation of the portfolio over long period, no matter how skewness and kurtosis are being
incorporated into the model. Various models response to that non-linearity is far from prac-
tical and reliable. Nonetheless in short period approximation may be found useful. Models
performance in approximating option portfolio more importantly rely on their sensitivity to
ITM and OTM options in the portfolio than their ability to capture the non-linearity of the
portfolio caused by ATM options. All the approaches considered to incorporate skewness
and kurtosis provide significant improvement over benchmark model in such approximation.

Our investigation indicates that blending conditional updates of volatility with con-
ditional skewness and kurtosis might reflect the market reality better, which is a recent
approach in the literature. In this approach GARCH structure of volatility updates is aug-
mented with conditional Lévy innovations replacing conditional normal one. This will be

our main focus in next chapters.

101



Model RMSE Parameters
(o) (6) (v)
VG 0.1398
0.1694 —-0.6109 0.0343
(0.0020)  (0.0234)  (0.0023)
(@) 8) (6)
NIG 0.1392
64.4954 —~41.7570 1.1825
(0.0262)  (0.0243)  (0.0182)
(o) \\) (p) (m) (n2)
DE 0.1464
6 0.1900 0.3644 0.1183 13.2284 13.6686
(0.0017)  (0.0499)  (0.0768)  (0.0916)  (0.0679)
(©) (G) (M) (Y)
CGMY  0.1452 0.0772 7.1106 29.9656 1.3534
(0.0012)  (0.0063)  (0.0165)  (0.0044)
(@) 8) (w) (0) (a?)
CFG 0.0919 3.3794e-005 0.2500 2.2898e-005 0.500 0.0029
(3.46-06)  (1.6e-04)  (1.6c-04)  (3.4e-06) (1.6e-04)
(o) (71) (v2)
GC 0.1418 0.2036 —0.3103 0.157
(0.0018)  (0.0337)  (0.5562)
g 10 () 0) (o) (p) (Vo)
H 0.0 6.5460 0.0393 0.9287 —(0.4196 0.1955
(0.0393)  (0.0010)  (0.0025)  (0.0040)  (0.0196)
BS 0.1472 (@)
) 0.1974
(0.0017)

Table 4.1:  Model Calibration on 23rd Jan, 2008. The standard error of each parameter

appears in brackets. To obtain the standard errors we numerically compute the Jacobian

of mean squared error function for each model. Finite difference scheme is adopted for

calculating partial derivatives.
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Model/moneyness dtm < 60 60 < dtrn < 120 dtm > 120

s (APE) (RMSE) (APE) (RMSE) (APE) (RMSE)
(0.9700,1.0023)  14.7381  0.1761 54928  0.0640 85710  0.1069

[1.0023,1.0670) 11.0965  0.1113 7.9715 0.0804  4.8842 0.0547
[1.0670,1.1317) 3.5747 0.0396 4.3482 0.0450  2.7551 0.0343
[1.1317,1.1640) 0.7634 0.0076 0.3480 0.0035  0.5749 0.0057

VG
(0.9700,1.0023) 23.6845  0.2508 6.9573 0.0744  9.2028 0.1197
[1.0023,1.0670) 8.6847 0.0880 5.7726 0.0682  5.4350 0.0687
[1.0670,1.1317) 1.8637 0.0215 2.3219 0.0258  4.0018 0.0488

[1.1317,1.1640) 0.4273 0.0043 0.7177 0.0072 1.8879 0.0189

NI
G (0.9700,1.0023) 21.9036  0.2330 6.4282 0.0700  9.2617 0.1199

[1.0023,1.0670) 8.8586 0.0896 5.8994 0.0595  5.4089 0.0679
[1.0670,1.1317) 1.9946 0.0232 2.4824 0.0272  3.8766 0.0479
)

[1.1317,1.1640 0.3265 0.0033 0.6318 0.0063 1.7896 0.0179

COMY [0.9700,1.0023) 23.3115  0.2472 6.6727 0.0717 9.3591 0.1217

[1.0023,1.0670) 8.5860 0.0870 5.6628 0.0572 5.4674 0.0696
(1.0670,1.1317) 1.8451 0.0213 2.2825 0.0254  4.0690 0.0495

[1.1317,1.1640) 0.4406 0.0044 0.7314 0.0073 1.9116 0.0191

DE [0.9700,1.0023) 16.2895  0.1887 5.8654 0.0679  8.7540 0.1104

[1.0023,1.0670) 10.9436  0.1099 7.7095 0.0777  5.1056 0.0585
[1.0670,1.1317) 3.1877 0.0360 3.8732 0.0406 2.9592 0.0381
[1.1317,1.1640) 0.3868 0.0039 0.0157 0.0002 1.0035 0.0100

GC [0.9700,1.0023) 27.5277  0.2911 8.9009 0.0932  8.6363 0.1134
[1.0023,1.0670) 9.1792 0.0944 6.2943 0.0635 5.4157 0.0670
[1.0670,1.1317) 1.2034 0.0153 2.0068 0.0238  4.0332 0.0485
[1.1317,1.1640) 0.8612 0.0086 1.0335 0.0103  2.1388 0.0214

CrG [0.9700,1.0023) 25.3208  0.2764 3.9098 0.0451 2.2588 0.0266
[1.0023,1.0670) 3.4560 0.0384 4.5257 0.0471 2.5114 0.0301
[1.0670,1.1317) 1.1789 0.0134 3.1979 0.0333 1.3835 0.0140
[1.1317,1.1640) 0.1284 0.0013 0.0177 0.0001 0.2878 0.0029

HS (0.9700,1.0023) 10.4178  0.1165 5.3381 0.0606 3.4096 0.0399
(1.0023,1.0670) 2.6392 0.0288 2.6525 0.0285 3.1102 0.0395
[1.0670,1.1317) 1.1404 0.0133 2.1477 0.0228 4.2525 0.0489
[1.1317,1.1640) 0.2377 0.0024 0.4194 0.0042 1.5825 0.0158

Table 4.2: In-sample pricing performance on 23rd Jan,2008.
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Model/moneyness dtm < 60 60 < dtm < 120 dtm > 120

B (APE) (RMSE) (APE) (RMSE) (APE) (RMSE)
[0.9700,0.9961) 7.9965  0.0973  3.2136  0.0367  18.3521  0.3508

[0.9961,1.0484) 8.4986 0.0856 5.1048 0.0522 5.0215 0.0640
(1.0484,1.1006) 3.4449 0.0374 3.4104 0.0341 3.3697 0.0419
[1.1006,1.1267) 0.7420 0.0099 0.9100 0.0091 - -

VG [0.9700,0.9961) 15.8791  0.1717 3.0316 0.0363  19.0302 0.3488
[0.9961,1.0484) 6.3289 0.0657 3.0457 0.0316 6.1418 0.0808
[1.0484,1.1006) 1.3961 0.0146 1.1089 0.0111 4.7069 0.0575
[1.1006,1.1267) 1.8330 0.0189 0.7022 0.0070 - -

NIG [0.9700,0.9961) 13.9849  0.1526 2.7344 0.0337  19.0829 0.3488
[0.9961,1.0484) 6.4431 0.0663 3.1385 0.0325 6.0429 0.0800
[1.0484,1.1006) 1.5502 0.0163 1.2902 0.0129 4.5772 0.0565
[ )

1.1006,1.1267 1.7210 0.0178 0.5739 0.0057 - -

CoMY [0.9700,0.9961) 15.4815  0.1681 2.8410 0.0345 19.1794 0.3485

[0.9961,1.0484) 6.2042 0.0644 2.9172 0.0304 6.2677 0.0819
[1.0484,1.1006) 1.3650 0.0143 1.0605 0.0106 4.7781 0.0582

[1.10086,1.1267) 1.8456 0.0190 0.7276 0.0073 - -

DE [0.9700,0.9961) 9.0330 0.1084 3.1394 0.0366  18.4779 0.3501

[0.9961,1.0484) 8.4755 0.0854 4.8477 0.0495 5.2692 0.0686
[1.0484,1.1006) 3.0369 0.0336 2.9081 0.0291 3.6197 0.0462
(1.1006,1.1267) 0.9516 0.0119 0.4501 0.0045 - -

GC [0.9700,0.9961) 20.0068  0.2136 4.4467 0.0525  18.4013 0.3496
[0.9961,1.0484) 7.3136 0.0781 3.6779 0.0379 5.7994 0.0785
[1.0484,1.1006) 1.2652 0.0152 0.8125 0.0081 4.7123 0.0573
(1.1006,1.1267) 2.3124 0.0233 1.1224 0.0112 - -

CFG [0.9700,0.9961) 34,2457  0.3618 4.8611 0.0565  14.2848 0.3786
[0.9961,1.0484) 7.1414 0.0857 2.9455 0.0314 2.2500 0.0230
[1.0484,1.1006) 2.8828 0.0352 1.9730 0.0197 1.6160 0.0179
[1.1006,1.1267) 2.1397 0.0228 0.2038 0.0020 - =

HS [0.9700,0.9961) 19.1544  0.1956 9.6450 0.0640  16.9233 0.3908

(0.9961,1.0484 23641  0.0272  0.8576  0.0804  4.3251  0.0481

)
[1.0484,11006) ~ 1.0421 00128  0.7610  0.0450 54854  0.0630
)

[1.1006,1.1267 1.8298 0.0189 0.4693 0.0035 - -

Table 4.3: Out-of-sample performance for options traded on 24th January, 2008.
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(a) Options with 0-60 days to maturity (dtm)
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Figure 4.1: Models Pricing Performance for Options traded on SE&P500 Index on January
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