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Abstract 

Direction of arrival (DOA) estimation with the antenna array was a forever 

topic of scientist. In this dissertation, a detailed comparison of the direction of 

arrival (DOA) estimation algorithms, including three classic algorithms as 

MUSIC, Root-MUSIC and ESPRIT, was performed and an analysis of various 

array geometries’ (configurations) properties in DOA estimation was 

demonstrated. Cramer-Rao Bound (CRB) was used for theoretic analysis and 

Root Mean Square Error (RMSE), which determined the best performance for 

a given geometry, regardless the specific estimation algorithm used, was 

implemented in simulation comparison. 

In the first part, MUSIC, Root-MUSIC and ESPRIT were illustrated, where 

theoretic underlying of the algorithms were expressed by revisited, paseudo 

code algorithms, and compared in the aspects of accuracy and computational 

efficiency. Consequently, ESPRIT was found more efficient than the other two 

algorithms in computation. However, the accuracy of MUSIC was better than 

ESPRIT. 

In the second part, four particular array geometries, including Uniform Circular 

Array (UCA), L Shaped Array (LSA), Double L Shaped Array (DLSA) and 

Double Uniform Circular Array (DUCA), were analyzed in the area of 

directivity, accuracy and resolving ability. A simulation comparison of DOA 

estimation with these four array geometries by MUSIC algorithm in two 

dimensions was made then, since MUSIC had the best accuracy in these three 

algorithms. According to the analysis and comparison, it was found that L 
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Shaped Array (LSA) and Double L Shaped Array (DLSA) were more accurate 

than others, considering both azimuth and elevation estimation. Also, in the 

case of two dimensional DOA estimation, the Double L Shaped Array (DLSA) 

was shown a theoretically relative isotropy to other array geometries. From the 

simulation, the detection ability of Double L Shaped Array (DLSA) was 

proved the best in the array geometries discussed in this dissertation.  

These findings had significant implications for the further study of the array 

geometry in DOA estimation. 
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Chapter 1 Introduction 

In this chapter, we will introduce the development of smart antenna at first, and 

then demonstrate the outline of this dissertation. 

1.1 The development of Smart Antenna 

The static magnetic and electrostatic phenomenon was noted by human 

attention very early by Chinese ancient when the phenomenon that the magnet 

attracts iron and magnet guides friction electricity had been found. The system 

study of these phenomena began in the 16th century. In 1600s, British 

physician William Gilbert (William Gilbert, 1544 ~ 1603) concluded the 

previous research on magnetic thorough discussion of the nature of the 

geomagnetic records of a large number of experiments, and the magnetic 

transition formed experience to science. 

Then, the basic theories of electromagnetism were developed by many 

physicists in the 19th century. The Maxwell equations were unified by a set of 

equations of all these work, and revealed the nature of light as an 

electromagnetic wave. J.C. Maxwell set the theoretical basis for the 

development of electromagnetism. He stated the theory of electric and 

magnetic fields travelling through space, and cleared the way for smart antenna. 

We can never ignore Guglielmo Marconi, the Italian engineer. He specialized 

in the development of radio equipment and improvements and won the 1909 

Nobel Prize in Physics. In the spring of 1895, the use of electromagnetic waves 

for communication was tested, but failed because of the unsuccessful funding 

request to the Italian government. In 1896, the 14.4 km communications test 

was successfully carried out in the UK and patented. In 1897, he conducted a 

series of radio communication experiment, and set up a wireless telegraphy 

Company named after Marconi in London. In 1901, Marconi's research team 

received the first transatlantic radio signal sent from the United Kingdom in 

Newfoundland. In 1932, he found high-frequency waves. 

Besides the electromagnetic waves, the knowledge of antennas was essential in 

the development of smart antenna. Edison was one of the first to use antennas, 
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which are arrangements of conductors that generate a radiating electromagnetic 

field when an alternating voltage is applied [1]. The antenna was an instrument 

for transmitting or receiving radio waves, or in a more general work, it was a 

term of electronic devices of electromagnetic waves. The antenna was used in 

radio and television broadcasting, radar, point-to-point (P2P) wireless 

communication, and space exploration systems. In the physical perspective, the 

antenna was a combination of one or more conductors, which can generate 

associated radiated electromagnetic field by applying alternating voltage of the 

alternating current. Also, it could be placed in the electromagnetic field and 

generated an alternating current and an alternating voltage at its terminal due to 

the induction field inside in the antenna. 

The first type of smart antenna was the side lobe canceller developed at GE in 

the late 1950’s [2]. As figure 1.1 shows, with the help of low gain, broad beam 

antennas working as side lobe cancellation, side lobe cancellers have high gain 

antennas for receiving the wanted resource accompanied. 

 

Figure 1.1 Single Howells-Applebaum loop for a sidelobe canceler [2] 

Then researchers proposed the antenna array, which was a combination of 

antenna elements, and it was able to form beams by electronically adjusting the 

excitation at the antenna elements. With the combination of applications, signal 

processing algorithms, a correct electromagnetic model of an antenna array, the 

smart antenna was delivered to the electromagnetic world, and it will be the 

subject of this dissertation. 
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1.2 Smart Antenna in present age 

Since the 1990s, the array processing technology came into the field of mobile 

communications, and soon formed a new research focus - smart antenna. Smart 

antennas are widely used with its unique advantages in improving the quality 

of system communication, easing wireless communication growing 

contradiction with the lack of spectrum resources, reducing the overall system 

cost and improving system management. 

Smart antennas are devices which adapt their radiation pattern to achieve 

improved performance – either range or capacity or some combination of these 

[3]. 

The rapid growth in demand for mobile communications services has 

encouraged research into the design of wireless systems to improve spectrum 

efficiency, and increase link quality [4]. Using existing methods more effective 

by the smart antenna technology and developing its potential, we can 

significantly increase the wireless. With intelligent control of signal capacity 

and coverage, transmission and reception of the mobile network, 

communications applications can be greatly improved. 

In the communication system, the ability to distinguish different users is 

essential. We can add increased spatial difference with the help of the smart 

antenna, which is referred to as Space Division Multiple Access (SDMA). 

Conventionally, employment of the most common multiple access scheme is a  

Code Division Multiple Access (CDMA), Time Division Multiple Access 

(TDMA), and frequency division multiple access (FDMA).  

Potential benefits of the smart antenna show in many ways, such as anti-

multipath fading, reducing the delay extended to support smart antenna holding 

high data rate, interference suppression, reducing the distance effect, reducing 

the outage probability, to improve the BER (Bit Error Rate)performance, 

increasing system capacity, to improve spectral efficiency, supporting flexible 

and efficient handoff to expand cell coverage, flexible management of the 

district, to extend the battery life of mobile station, as well as lower 

maintenance and operating costs. 
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1.2.1 Smart Antenna and Antenna Array 

In strict definition, smart antennas are proper combination of antenna 

arrays and smart signal processing algorithms and software. Smart antennas are 

widely used in Direction of Arrival (DOA) estimation, beamforming, and 

communication, so there are an increasing number of researchers furthering the 

research of smart antenna.  

As researchers’ common view, the research of antenna arrays is part of smart 

antennas research. However, in some cases, smart antennas and antenna arrays 

can replace each other. For instance, in this dissertation, we discuss MUSIC, 

which is a DOA estimation algorithm of smart antennas, or we can say that 

MUSIC is a DOA estimation algorithm of antenna arrays. Therefore, the smart 

antenna and the antenna array may have the same usage in this dissertation.  

1.2.2 Types of Antenna Array 

The environment and the system’s requirements decide the type of Antenna 

Array. There are two main types of Antenna Array. They are as follows: 

Phased Array Antenna 

In this type of smart antenna, there will be a number of fixed beams between 

which the beam will be turned on or steered to the target signal. This can be 

done, only in the first stage of adjustment to help. In other words, as wanted by 

the moving target, the beam will be the Steering [3]. 

Adaptive Array Antenna 

Integrated with adaptive digital signal processing technology, the smart 

antenna uses digital signal processing algorithm to measure the signal strength 

of the beam, so that the antenna can dynamically change the beam which 

transmit power concentrated. The application of spatial processing can enhance 

the signal capacity, so that multiple users share a channel. 

Adaptive antenna array is a closed-loop feedback control system consisting of 

an antenna array and real-time adaptive signal receiver processor, which uses 

the feedback control method for automatic alignment of the antenna array 

pattern. It form nulling interference signal offset in the direction of the 
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interference, and can strengthen a useful signal, so as to achieve the purpose of 

anti-jamming [4]. 

1.2.3 Advantages and disadvantages of Antenna array 

In this section, we will introduce the characteristics of the antenna array. 

Advantages 

First of all, a high level of efficiency and power are provided by the smart 

antenna for the target signal. Smart antennas generate narrow pencil beams, 

when a big number of antenna elements are used in a high frequency condition. 

Thus, in the direction of the target signal, the efficiency is significantly high. 

With the help of adaptive array antennas, the same amount times the power 

gain will be produce, on condition that a fixed number of antenna elements are 

used. 

Another improvement is in the amount of interference which is suppressed. 

Phased array antennas suppress the interference with the narrow beam and 

adaptive array antennas suppress by adjusting the beam pattern [3].  

Disadvantages 

The main disadvantage is the cost. Actually, the cost of such devices will be 

more than before, not only in the electronics section, but in the energy section. 

That is to say the device is too expensive, and it will also decrease the life of 

other devices. Since the use of the RF electronics and A/D converter for each 

antenna, the costs are increasing. 

Moreover, the size of the antenna is another problem. Large base stations are 

needed to make this method to be efficient and it will increase the size, apart 

from this multiple external antennas needed on each terminal. 

1.3 Comparison of Antenna Array and Ordinary Antennas 

In the section, we compare the some properties (space, frequency and time) 

between Antenna Array and Ordinary Antennas, and demonstrate why we 

discuss Antenna Array in DOA (Direction of Arrival) estimation.  
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1.3.1 Efficiency and Power in space 

As the introduction in section 1.2.2, a higher level of efficiency and power are 

provided by the antenna array with proper software system than ordinary 

antenna for the target signal. The fact is that Antenna Array can generate 

narrow pencil beams in the target direction. However, ordinary antennas can 

generate pencil beams in fixed directions or relative similar power in all 

directions. In the case of DOA estimation, target resources come from random 

directions, so both ordinary antennas generating pencil beams in fixed 

directions and generating similar power in all directions cannot prove as strong 

power and high efficiency as antenna array does in the directions of resources, 

on condition that a fixed number of antenna elements and same total power are 

used. Therefore, with higher efficiency and stronger power, antenna array is 

more appropriate in DOA estimation that ordinary antennas. 

1.3.2 Efficiency and power in Frequency 

Frequency Spectrum detection and utilization is the fundamental problem of 

mobile communication development. Traditionally, antennas’ patterns change 

with frequency, which means ordinary antennas generate different power in a 

particular direction in various frequencies. Therefore, the DOA estimation 

power of ordinary antennas is excellent in some frequencies and is poor in 

some frequencies as well.  On the contract, antenna array can adapt to various 

frequencies and focus the majority of its power in resources directions by 

software control. Thus, theoretically, antenna arrays have a higher efficiency 

and flexibility than ordinary antennas in different frequencies.  

1.3.3 Estimation Time 

Antenna Arrays can estimate recourses directions in greatly shorter time than 

ordinary antennas. It is common that Ordinary antennas detect DOA of 

resources by mechanic movement, focusing pencil beams on the directions of 

signals. But antenna arrays do not need to move. Antenna arrays can replace 

the mechanic movement of ordinary antennas by digital calculation. In most 

case, mechanic movement of ordinary antenna cost a long time, especially for 
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large antenna. Thus, antenna arrays are more efficient in time than ordinary 

antennas in DOA estimation. 

1.3.4 Capacity and Quality of Service (QoS) 

Antenna Array can improve the capacity and quality of service of DOA 

estimation and communication from ordinary antennas. Examples are not rare 

in nowadays. TD-SCDMA system is a typical example of the application of 

antenna array technology. TD-SCDMA system is Time Division Duplex mode, 

so that the upper and lower radio frequency channel can be completely 

symmetric. It can be addressed problems of ordinary antennas, such as antenna 

uplink and downlink beamforming, anti-multipath interference simultaneously. 

Definitely, with the help of relay switch of frequency and space, antenna array 

can reduce the waste of resources of the frequency channel and improve the 

capacity from ordinary antennas. 

1.3.5 Conclusion 

In general, antenna arrays have higher efficiency in space, frequency and time 

than ordinary antennas. Thus, increasing number of ordinary antennas are 

replaced by antenna arrays in practice, and researchers have transfer their focus 

on antenna arrays from ordinary antennas. Consequently, in this dissertation, 

we analyze the performance of antenna arrays, which is more widely used than 

ordinary antennas, in DOA estimation. In the case of antenna arrays, MUSIC, 

Root-MUSIC and ESPRIT algorithms are three significant algorithms in DOA 

estimation by antenna arrays and we will demestrate them in Chapter 4 in 

details. 

1.4 Outline of this dissertation 

In this dissertation, we have research the algorithms of Direction of arrival 

(DOA) estimation and array geometries. The main objective of this dissertation 

is to develop excellent array geometries for DOA estimation. In chapter 2, we 

demonstrate the problem which is concerned in this dissertation. In this chapter, 

we focus on the problem statement of direction of arrival (DOA) estimation 

and array configuration. Then the chapter 3 describes some background 
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knowledge of DOA estimation, where the definition of Maxwell’s equations, 

plane wave, white noise, normal distribution and Cramer-Rao bound are 

demonstrate and forms a foundation for the rest of this work. In chapter 4 

Some DOA estimation algorithms such as MUSIC, Root-MUSIC, Bartlett, 

Capon and ESPRIT are expressed, which proves a correct description of DOA 

estimation algorithms combining with the electromagnetic characteristics of an 

antenna array. We analyze various array geometries, such as ULA, UCA, LSA, 

YSA, RA, DLSA and DUCA, in chapter 5 by way of the time delay. The 

chapter 6 shows the simulation of the problem discussed in this dissertation, 

where the accuracy and computation performance of MUSIC, Root-MUSIC 

and ESPRIT algorithms are discussed. Furthermore, the directivity, accuracy 

and resolving ability of UCA, DUCA, LSA and DLSA are compared in two 

dimensions case in this chapter. We draw a short conclusion of this dissertation 

in chapter 7 and discuss the direction of future work. Each chapter starts with 

an introductory section, which outlines the arrangement of the chapter, 

followed by one or more sections in detail. 

1.5 Reference 

[1]Roald Goossens, “Direction of Arrival Estimation and Beamsteering using 

Realistic Antenna Arrays”, PhD degree dissertation, September 2008. 

[2]Haupt, R.L.”The development of smart antennas”, Antennas and 

Propagation Society International Symposium, IEEE Volume: 4, Page(s): 48 - 

51 vol.4, 2001. 

[3].L.C.Godara, “Application of antenna arrays to mobile communication II: 

Beamforming & direction of arrival considerations”, Proceedings of IEEE, 

volume 85, issue 8, pages 1195-1245, August 1997. 

[4].Dau-Chyrh Chang, “Smart Antennas for Advanced Communication 

Systems”, Proceedings of the IEEE, Volume: PP,   Issue: 99, Page(s): 1 – 17, 

2012.  
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Chapter2 Problem Statement 

The outline was shown in chapter1, and we will declare problems discussed in 

this dissertation. The problem of central interest in this dissertation is the 

estimation of the DOA of emitter signals impinging on a receiving array with a 

known finite data. In this chapter, we demonstrate the problem of DOA 

estimation, eigendecomposition algorithms and property of array geometries 

respectively. 

2.1 Direction of Arrival (DOA) estimation 

With the development of antenna array, the Direction of Arrival (DOA) 

estimation technique becomes a vital part of smart antenna. The antenna array, 

which receives several signals, collecting data at all its elements with 

combination of the spatial information, has the ability to optimally process this 

data and estimate the Directions of Arrival (DOA) of the impinging signals 

with high-resolution signal estimation algorithms. Therefore, the high-

resolution DOA estimation algorithm is an essential part of smart antenna.  

We can classify the parameter estimation techniques into two main categories, 

namely parametric and spectral-based approaches [1].Parametric techniques 

make a simultaneous search for all interesting parameters and with the expense 

of an increased computational complexity, these approaches often lead to more 

accurate outcomes. Spectral-based approaches form some spectrum-like 

function of the interesting parameters, and the locations of the highest peaks of 

the function are regarded as the DOA estimates.  

DOA estimation is the forever topic of the researchers, and various algorithms 

were proposed, including Spectral Estimation Method first proposed by Bartlett 

[2] which estimates the DOA with the help of computing the spatial spectrum 

and deciding the local maximum then, Minimum Variance Distortionless 

Response (MVDR) Estimator which is spectrum estimation with Maximum-

likelihood (ML) method by J. Capon [3], Maximum-likelihood Method (MLM) 

which estimates the DOA by maximizing the log-likelihood function from a 

given set of array samples [4], MUSIC which scans all the angle by the noise 

subspace proposed by Schmidt [5], MUSIC improves the solution ability by 
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Barabell [6], ESPRIT  which promotes the computation efficiency by Roy [7], 

Weighted Subspace Fitting (WSF) Method  which is a unified approach to 

schemes [8,9]. There is a large number of DOA algorithms developed from a 

signal processing point of view, but discussing all these techniques is beyond 

the scope of this chapter. Thus, we focus on the eigendecomposition algorithm, 

including MUSIC, Root-MUSIC and ESPRIT algorithms, which are kinds of 

subspace method, a part of Spectral-based approaches in this dissertation. 

2.2 Performance of eigendecomposition algorithms 

Eigendecomposition algorithms, as their names suggest, are DOA estimation 

methods which exploit the underlying information for DOA estimation by 

decomposing the variance matrix to get eigenvectors and eigenvalues. As for 

eigendecomposition algorithms, the problem concerned by this dissertation is 

the performance of three outstanding eigendecomposition algorithms, MUSIC, 

Root-MUSIC and ESPRIT in DOA estimation.  

Eigendecomposition algorithms were the focus of the researchers in last three 

decades, and a great number of progresses were made, where include the 

discussion of maximum likelihood and Cramer-Rao Bound (CRB) of MUSIC 

by Stoica, P [10], promotion of MUSIC in two dimensions by Hung and Zhao 

[11, 12], the statistic performance of MUSIC by Kaveh[13], the resolution 

ability of MUSIC by Zhang[14], the development of ESPRIT in two 

dimensions[15]. Though MUSIC, Root-MUSIC and ESPRIT algorithms are 

developed for decades, where a lot detail of them have been researched, we try 

to compare some properties of them, which are necessary for the study of array 

geometries, in this dissertation. 

2.3 Property of array geometry 

It is not hard to accept that the array geometry represents the study of array 

continuation, which discuss and design the displacement of array elements. In 

this dissertation, what we are interested is the property of array geometry with 

given number of elements in DOA estimation. Definitely, different array 

configuration can lead to different characteristics in DOA estimation, and we 

try to find a optimal array geometry. 
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Actually, the study of array geometry became the peak topic in last years, 

which, of course, was based on the development of antenna array. Though 

there is not a long time for researchers, they have derived lots of outcomes, 

which are the basis of dissertation. In detail, Hua gave the CRB of array in two 

dimensions [16]. Gazzah, H showed the method of array geometry design 

based on CRB [17]. Baysal, U demonstrated the design of isotropic planar and 

three dimension array [18]. Goossens described the DOA estimation in 

complex array configuration [19]. The study of the array geometry is abstruse 

problem, so that we just intend to research some typical array geometries in 

this dissertation. 
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Chapter3 Background Knowledge 

In order to discuss eigendecomposition algorithms and array geometry, a 

thorough knowledge of the electromagnetic characteristics of an antenna array 

is essential. In this chapter, we will illustrate the knowledge of Maxwell’s 

equations, plane wave, propagation, white noise, normal distribution and 

Cramer-Rao Bound respectively. 

3.1 Maxwell’s equations 

Maxwell equations are four basic equation for the description of the electric 

and magnetic fields. Maxwell, a British physicist, established Maxwell 

equations in the 19th century. There are four differential forms of Maxwell's 

equations, which are often referred to as the Maxwell equations. Maxwell 

equations have become an integral base of the electric and magnetic fields. The 

equations system provides a rather complete overview of the basic laws of the 

electromagnetic field, and predicts the existence of electromagnetic waves. 

The Direction of Arrival (DOA) estimation algorithm which may take various 

forms generally follows from the homogeneous solution of the wave equation 

[1]. For analytical need, we can start from the Maxwell’s equations’ solution. 

In free space the equation can be written as: 

    ⃗⃗=0  (3.1) 

    ⃗⃗=0  (3.2) 

    ⃗⃗   
  ⃗⃗

  
  (3.3) 

    ⃗⃗      
  ⃗⃗

  
  (3.4) 

In equation 3.3 and 3.4, “×” and “.” represent the “curl” and “divergence” 

respectively. Furthermore, vector  ⃗⃗ denotes the electric field and vector  ⃗⃗ 

denotes the magnetic field, while    and    are the permeability and 

permittivity respectively. From 3.1, the following curl property of 3.5, 3.6 

results as: 

   (   ⃗⃗)   (   ⃗⃗)     ⃗⃗      ⃗⃗  (3.5) 
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   (   ⃗⃗)   
 

  
(   ⃗⃗)       

   ⃗⃗

   
  (3.6) 

    ⃗⃗  
 

  

  

   
 ⃗⃗     (3.7) 

Generally, the constant c is defined as the speed of light. In the case of free 

space, the speed of light follows from the derivation c = 1 / √     = 3 x   m/s. 

The homogeneous wave equation 3.7 sets the base of the motivation to our 

supposed data model which will be demonstrated in later chapters.  

3.2 Plane wave 

In the physics of wave propagation, a plane wave is a constant-frequency wave 

whose wave fronts are infinite parallel planes of constant peak-to-

peak amplitude normal to the phase velocity vector [2]. 

 

Figure 3.1 the plane wave [15] 

Actually, it is impossible to get or create a rare plane wave in practice and only 

can a plane wave with theoretically infinite extent travel in a plane wave mode. 

Actually, in the localized region of space many waves are regarded as plane 

waves approximately, e.g., an antenna generates a field which can be regarded 

as a plane wave, when it is far enough from the antenna which generates the 

wave in its so-called far-field region. Likely, when the degree of length is 

greatly larger than the wave’s wavelength, the wave can be regarded as plane 

waves. 
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3.2.1 Mathematical definition 

We define two functions as the sine or cosine functions which meet the 

conditions of having constant amplitude and a constant frequency along the 

direction of the x axis. As the equation [2] shown below, we use the cosine 

function to express the case of a plane wave propagating in the positive x axis. 

        (       )  (3.8) 

The equation 3.8 defines what the magnitude and phase of the plane wave are. 

In the equation, A represents the magnitude of the wave at the point in space 

and time which are equal to x and t. k denotes the number of wave.    is 

the amplitude of the wave and it is the peak magnitude of the oscillation. 

x denotes a point in the x axis.    denotes the wave’s angular 

frequency. t denotes a given particular point in time, and    denotes the wave 

phase shift with the units of radians.  

In detail,    is also a standard of how rapid the disturbance changing in a 

particular length of time at a known point in space with the units as radians per 

unit time. It must make clear that a positive phase shift will add a shift on the 

wave along the negative x axis direction at a given point of time. A phase shift 

which equals to 2π radians means shifting it one wavelength exactly.  

3.3 Propagation 

Many physical phenomena are either a result of waves propagating through a 

medium or exhibit a wave like physical manifestation [1]. Although we only 

discuss one element of equation 3.7 which is a vector equation, we can define a 

parameter  ⃗⃗ ( ⃗,t) [1] where t denotes the time and  ⃗ denotes the radius vector. 

Assume that outputs measured by array elements are proportional to the 

parameter  ⃗⃗ ( ⃗,t). Surely, any space of the form  ⃗⃗ ( ⃗,t) =  (   ⃗  ) , which 

will satisfy the equation 3.7,  provided | |      with T representing 

transposition period.  The function f depends on    ⃗   only, but in the 

direction of angle  , the solution can be regard as a wave propagating with the 

speed   | |   . The main idea herein is based on narrowband forcing 

functions. In details, in the classic book by Jordan [3] we can find the 
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generation of such a function. Furthermore, the paper [4] demonstrates 

propagation in complex notation. The waveform which is narrowband 

transmitted can be derived as: 

  ⃗⃗(   )   ( )     (3.9) 

Here s(t) denotes the varying amplitude with time related to      which is the 

carrier coefficient. When B represents the bandwidth of signal s(t), and 

| ⃗|      , we can express as 3.10: 

  ⃗⃗( ⃗  )   (   ⃗  )   (   ⃗  )   ( )  (    ⃗  )  (3.10) 

In the last equation 3.10, the so-called wave vector  ⃗⃗⃗ is used, and its magnitude 

      is the wave number. We can also write       , where as usual, 

the parameter    is the wavelength. Make sure that the direction of vector  ⃗⃗⃗ is 

the same with the direction of propagation, e.g., in the x-y plane we can get: 

  ⃗⃗⃗   (         )   (3.11) 

Here the parameter   denotes the direction of propagation, which is defined as 

counter clockwise relative the x axis. Since an isotropic point source generates 

a spherical propagating wave in which the distance from the source is 

reciprocally proportional to the amplitude, the equation 3.9 implicitly makes an 

assumption of far-field conditions. The distance between the receiving antenna 

array and the emitters determines whether we should consider the spherical 

degree of the wavefront, because all points located on the surface of the sphere 

with radius R, which is regarded as the wavefront, share the same phase 

parameter. In near field reception, papers [5, 6] consider for treatments of 

distance. In the far field case, it implies that the radius of spherical propagation 

is so large that a plane wave of constant phase can be concerned. Therefore, the 

result and conclusion in the plane wave can be expressed in 3.9. Equation 3.9 

contains both space and time information which can be used in DOA 

estimation or other works. We are sure that a linear space means the validity of 

superposition principles, and more than one propagating wave are allowed in 

the linear space.  
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3.4 White noise  

White noise is defined as the noise whose power spectral density is uniformly 

distributed in the entire frequency domain and all frequencies have the same 

energy of the random noise. In another word, the white noise is a 

random signal with a flat power spectral density [7]. The signal contains the 

equal power within a particular bandwidth at the center frequency. 

White noise is a power spectral density of a random signal of constant or 

random process. In other words, the power of the signal is the same in each 

frequency band. Since the white light is mixed by a variety of frequency (color) 

of a monochromatic light, similarly, with a flat power spectrum of this signal 

this nature is regarded as "white” and this signal therefore is called white noise. 

In opposite site, the other noise which does not have the properties mentioned 

above is referred to as color noise. 

An ideal white noise has infinite bandwidth, and thus its energy is infinite. 

Actually, an infinite bandwidth white noise signal is just a theoretical 

construction which cannot be reached [16]. Thus, it is impossible to get an 

ideal white noise in the real world definitely. In practice, the bandwidth of 

white noise is restricted by the transmission medium, the mechanism of noise 

generation, and finite observation capabilities. In fact, we often regard the 

signal with formation of limited bandwidth as white noise, because it makes us 

more convenient in the mathematical analysis. If a random signal is observed 

with a flat spectrum in a medium's widest possible bandwidth, we will refer it 

as "white noise" [7]. However, the white noise is more flexible in the data 

treatment, so it is a powerful tool for system analysis. Usually, a noise is 

considered as a white noise process as long as a noise process with the 

spectrum width is far greater than the bandwidth of the system and the 

bandwidth of its spectral density are substantial constants. 

Specifically, if the real and imaginary parts of noise distribution are according 

to a Gaussian distribution, and its power spectral density is uniformly 

distributed, we can define it as white Gaussian noise. 
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3.4.1 Mathematical definition 

White random vector 

A random vector V [7] is a white random vector only if its mean 

vector and autocorrelation matrix are corresponding to the follows: 

         (3.12) 

                 (3.13) 

As above equations show, the autocorrelation matrix of white random is equal 

to the multiple of the identity matrix and it is a zero mean vector. We can 

regard it as spherical correlation, when the autocorrelation matrix is the 

multiple of the identity. 

White random process 

Only if its mean function and autocorrelation function satisfy the following 

equation, can a time continuous random process  ( ) where      be regarded 

as a white noise signal: 

    ( )     (3.14) 

    (     )     (  ) (  )  
  

 
 (     )  (3.15) 

Here, when     , equation 3.15 will become equation 3.13. Since its 

autocorrelation function is the Dirac delta function, it is clear that the process is 

zero mean for all time and has infinite power at zero time shift. The 

following power spectral density function 3.16 can be implied from the 

autocorrelation function 3.15.  

      ( )  
  

 
  (3.16) 

The Fourier transform of the delta function is equal to one. We can define it 

white as an analogy to the frequency spectrum of white light, because this 

power spectral density function 3.16 is the same with each other at all 

frequencies. 
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3.5 Normal Distribution 

The normal distribution is the most important a probability distribution. The 

concept of normal distribution was first proposed in 1733 by the German 

mathematician and astronomer Moivre. However, due to the German 

mathematician Gauss applied it to astronomers, so the normal distribution is 

also called the Gaussian distribution. Gaussian impacted this work greatly on 

future generations, and many research outcomes attributed to the invention of 

the method are also base on this work. 

According to the probability theory, the normal distribution is a continuous 

probability distribution which has a bell-shaped probability density function, 

known as the Gaussian function or informally as the bell curve [8].
 

  ( )  
 

 √  
 
 

 

 
(
   

 
)
 

  (3.17) 

The parameter μ is called the mean, the median or the mode of the standard 

distribution. The parameter σ
2
 is the variance, which is a significant stand in 

this dissertation about DOA estimation comparison, and in any random 

variable case, it demonstrates the concentration degree of the distribution 

around its mean. Besides, the square root of σ
2
 is called the standard 

deviation or root mean square and describes the width of the density function. 

The mean μ determine the centre position of the normal curve; standard 

deviation σ determine the normal curve steep or flat level. The standard 

distribution is usually denoted by N (μ, σ2) [10]. Therefore, if a random 

function of x is distributed normally with mean μ and variance σ
2
, we can write 

it as 3.18: 

    (    )  (3.18) 

The typical normal distribution is shown as figure 3.2: 
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Figure 3.2 a typical normal distribution 

The normal distribution is considered the most prominent probability 

distribution in statistics [8]. In practice, the standard distribution is commonly 

appeared, and is used throughout natural sciences, statistics, and even social 

sciences as well. As for this dissertation, the observational error in the direction 

of arrival estimation is usually assumed to accord to the normal distribution. 

3.5.1 Standard normal distribution 

Standard normal distribution is the simplest case of a standard distribution, 

where     and     , and it can be described mathematically by 

the probability density function (PDF) as 3.19: 

  ( )  
 

√  
  

 

 
  

 (3.19) 

Where the factor  √ ⁄   in this equation expresses that the total area under the 

curve  ( ) must be equal to one, and the coefficient  √ ⁄   in the exponent 

ensures the "width" of the curve also equal to one. And the probability density 

functions for all other distributions are always denoted with letters p [9]. The 

standard normal distribution is common used in statistics and we will also use 

it in the simulation in this dissertation. 
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3.6 Cramer-Rao Bound 

In estimation theory and statistics field, the Cramer–Rao bound 

(CRB) or Cramer–Rao lower bound (CRLB), named after Harald 

Cramer and Calyampudi Radhakrishna Rao, were the first time to propose 

in[11][12]. The CRB expresses the lower bound on the variance of the 

estimators about a deterministic parameter. The lower bound is also referred as 

the Cramer–Rao inequality or the information inequality [13][14]. 

The Cramer-Rao Bound provides an unbeatable performance lower limit for 

any unbiased estimator. Therefore, it is regarded as a baseline for assessing the 

performance of a specific estimator and used to investigate the fundamental 

limits of parameter estimation problems [17]. When the exact minimum-mean-

square estimation error is difficult to evaluate, the CRB is available to solve the 

problem. 

3.6.1 Scalar unbiased Cramer–Rao bound 

Assuming   is an unknown deterministic parameter that is to be estimated by 

measurements data x, which are distributed according to a 

particular probability density function  (   ). And the variance of 

any unbiased estimator  ̂  of    is therefore bounded by the reciprocal value of 

the Fisher information    ( ) as 3.20: 

    ( ̂)     ( )   (3.20) 

Where the Fisher information    ( ) can be defined by 3.21: 

    ( )   [(
  (   )

  
)
 

]    [
   (   )

   
]  (3.21) 

Where E[] represents the expected value and: 

  (   )     ( )  (3.22) 

The equation 3.22 expresses the natural logarithm of the likelihood function. 
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3.6.2 Multivariate Cramer–Rao bound 

The Cramer–Rao inequality can provide a relatively simple lower bound of the 

variance of unbiased estimators [11]. In multi-parameter estimation can, we 

can express the CRB as: 

    ( ̂ )             (3.23) 

Where the ijth element of the Fisher information matrix Inf can be expressed as: 

        [ {
    [    ̅(   ̅)]

      
}]  (3.24) 

Where  ̅ is the parameter vector of components    and    to be estimated and 

    ̅(   ̅) is the probability density function (PDF) of the displace vector x 

depending on  . 
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Chapter4 Direction of Arrival estimation algorithm 

In previous chapters, the problems of Direction of Arrival (DOA) are 

introduced and the background knowledge of implementation on DOA 

estimation is demonstrated. In this chapter, the algorithms of DOA will be 

discussed. We exploit algorithms developed for ULA to estimate DOA as the 

simplest case. Moreover, we will make a comparison between MUSIC, Root-

MUSIC and ESPRIT algorithm in the aspect of theory and simulation. 

4.1Music Algorithm 

MUSIC is an acronym which stands for Multiple Signal classification [1]. 

MUSIC algorithm is a relatively simple and efficient spectral estimation 

method, based on the space of matrix eigenvalue decomposition method [2, 3]. 

In the geometric field, the signal processing of the observation space can be 

decomposed into signal subspace and noise subspace, and it has been proved in 

[1] that these two spaces are orthogonal. The eigenvectors of signal 

corresponding to the received signal subspace from the array data covariance 

matrix which composed of the noise subspace is the smallest eigenvalue from 

the covariance matrix of eigenvector. MUSIC algorithm uses the orthogonal 

between these two complementary spaces to estimate the orientation of the 

signal in space. Noise subspace of all vectors is used to construct the spectrum, 

in which the peak position corresponding to wave azimuth and elevation signal 

in the spectrum of all spatial orientation. MUSIC algorithm greatly improves 

the resolution direction finding, while adapting to the antenna array of arbitrary 

shape. But the prototype of the MUSIC algorithm requirements wave signal is 

irrelevant. 

4.1.1 The Data Formulation 

In order to demonstrate the algorithm, a few feasible assumptions must be 

proposed. First of all the transmission space in MUSIC algorithm is assumed to 

be isotropic and non-dispersed that means the radiation propagating straight 

and the signals are considered to be in the far-field of the smart antenna, so that 
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the radiation received by the array elements is in the form of a linear sum of 

plane waves.  

Mathematically, assume that the linear combinations of the D incident signals 

as well as noise are received by the smart antenna with M array elements and 

D   M. The received complex matrix X of the smart antenna in the multiple 

signal classification algorithms can be formulated as: 
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   (  ) (  ) (  )  (  )  
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  ]

 
 
 
 
 

  (4.1) 

or 

 X=AFi+W  (4.2) 

The incident signals are denoted in phase and amplitude at some arbitrary 

reference point by the complex parameters    ,   ,…   , and appear as the 

complex vector Fi. The noises appear as the complex vector W. The vector A, 

which represents the relation among array elements, is also complex.     are 

the elements of A,  and     depend on the relationship between the array 

element locations and signal arrival angles. Besides, the basic assumption of 

MUSIC algorithm is that the incident signals and the noise are uncorrelated and 

the noise is white noise. 

4.1.2 The Covariance Matrix 

MUSIC is an Eigen structure algorithm and it means that eigenvalue 

decomposition of the estimated covariance matrix R is the first step of this 

algorithm. Here, R can be implied by equation 4.2 

 R=E[   ]=E[            ]  (4.3) 

Here E[] denotes the expectation value. We can regard the noise as white noise 

which means the elements of vector W are mean zero, and variance   . The 

factor that the incident signals and the noise are uncorrelated is the basic 
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assumption, so that we can analyze the eigenvalues of the covariance matrix 

and get: 

 R= E[     ]         (4.4) 

Where    is the eigenvalue actually and this will be proved in 4.5. The incident 

signals represented by the complex vector Fi may be uncorrelated or may 

contain completely correlated pairs. Then, E[     ] reflects the degrees of 

arbitrary in pair-wise correlations occurring among the incident signals and it 

will be positive definite. 

As assumed in section 4.1.1, the number of incident wave fronts D is less than 

the number of array elements M, so the matrix  E[     ]   is singular, and it 

has a rank less than M. Therefore, the determinant of  E[     ]   is zero as 

equation 4.5: 

 |           |= |      |     (4.5) 

Only when    equal to one of the eigenvalues of R, this equation 4.5 is satisfied. 

Thus,    is the eigenvalues of R. Definitely,             must be 

nonnegative. And since A is full rank and          is positive,     must be the 

minimum eigenvalue denoted as     . Then, any measured covariance matrix 

R = E[   ] matrix can be written as:  

 R=                                        (4.6) 

Where      is the smallest solution to |      |   0. Based on the special 

case that the mean of the elements of the noise vector W is zero, and that 

variance of them is   , it implies that: 

        =      (4.7) 

4.1.3 Eigenvalue and Eigen Matrix 

Eigenvalue and Eigen structure are the key points of MUSIC. After 

decomposition we can get eigenvalues of R which directly determine the rank 

of             (it is D). Because of the complete set of eigenvalues of R,  

      is not always simple. Actually, in all cases, the eigenvalues of R and 

those of |           |= |      | differ by   , so        occurs repeated N 
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= M - D times.       must occur repeated N times, since the minimum 

eigenvalue of             is zero because of being singular. Thus, the 

number of incident signals sources satisfy 4.8: 

 D = M - N  (4.8) 

Where N is the multiplicity of      (R,    ), which means “     of R in the 

metric of   .”  

4.1.4 Signal and Noise Subspace 

It is important to know that the eigenvalues of R can be subdivided into two 

parts when the data consist of uncorrelated desired signals corrupted by 

uncorrelated white noise. The eigenvectors associated with      (R,   ) are 

perpendicular to the space which is spanned by the columns of the incident 

signal mode vectors A, so it is acceptable that for each of      which is equal to 

     (there are N), we have            *   = 0 or A*   = 0. 

Therefore, we can define the N×M dimensional noise subspace which is 

spanned by the N noise eigenvectors and the D dimensional signal subspace 

which is spanned by the D incident signal eigenvectors. These two subspaces 

are orthogonal. 

4.1.5 Direction of Arrival Scanning 

Then we can turn to solve for the incident signal vectors, the search for 

directions is made by scanning steering vectors that are as perpendicular to the 

noise subspace as possible, once the noise subspace has been estimated. If    

is defined to be the M   N dimensional noise subspace whose columns are the 

N noise eigenvectors, and we use the ordinary Euclidean distance from a vector 

 ⃗( )  which is a continuum function of azimuth   ,to the signal subspace for 

the judgment standard: 

     ⃗( )     
  ⃗( )  (4.9) 

For the convenient of distinction, we use the graph of 1/   rather than    , and 

define    ( ) that is: 
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    ( )  
 

 ⃗⃗( )     
  ⃗⃗( ) 

  (4.10) 

Where  ⃗( ) does not depend on the data. In this case, we get the DOA by 

searching for peaks in the    ( ) spectrum. Clearly, R is asymptotically 

perfectly measured so    is asymptotically perfectly measured. Then, it is 

acceptable that even for multiple incident signals MUSIC is asymptotically 

unbiased. The A matrix becomes available to compute other parameters of the 

incident signals, after finding the directions of arrival (DOA) of the D incident 

signals 

4.1.6 Conclusion 

MUSIC algorithm is an experimental and theoretical techniques involved in 

estimating the parameters of multiple signals received by a smart antenna [1]. 

MUSIC approach solve the problem of DOA by scanning peaks according to 

the spectrum which is decided by an M   N dimensional noise subspace with 

its N columns of the eigenvectors refer to the array correlation matrix R’s 

smallest eigenvalues.  

The steps of the MUSIC algorithm in practice can be shown in summary as: 

Step 0: Collect data, form correlation matrix R; 

Step 1: Calculate Eigen structure of R  in metric of   ; 

Step 2: Decide number of signals D; 

Step 3: Choose N columns to form the noise subspace   ;  

Step 4: Evaluate    ( ) versus  ;  

Step 5: Pick D peaks of    ( ). 

In conclusion, the MUSIC algorithm is significant because it can be 

implemented as a basic algorithm to provide asymptotically unbiased estimates 

of directions of arrival (DOA), number of signals, and then we can calculate 

strengths and cross correlations among the directional signals, directivity, and 

strength of noise interference. 
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4.2 Root-MUSIC Algorithm 

The Root-MUSIC method [4], as the name shown, is a polynomial-rooting 

promotion of the original MUSIC method. In the case of Uniform Linear Array 

(ULA), the scanning for DOA can be transformed into solving the roots of a 

corresponding polynomial. Root-MUSIC solves the rooting problem of a 

polynomial rather then finding the spectral peaks in the MUSIC algorithm. 

After lots of research and simulation, it is proved that Root-MUSIC has a better 

property than spectral MUSIC in some cases [5], such as resolution ability. The 

pre-process of Root-MUSIC is the same with MUSIC and the only difference 

between Root-MUSIC and MUSIC is the Direction Finding method. 

4.2.1 Direction of Arrival Scan 

From MUSIC algorithm, we can get: 

    ( )  
 

 ⃗⃗( )     
  ⃗⃗( )

   (4.10) 

Which is used to scan by degree. However, for the moment, if we restrict our 

attention to uniform linear arrays with inter element spacing  , so that the ith 

element of  ( ) may be written as: 

   ( )        (   )                  , M  (4.11) 

Let us restrict our attention to the denominator   
  ( ) , it may be written as: 

   
  ( )   ⃗( )     

  ⃗( )  

∑ ∑       (   )         
      (   )       

 

   

 

   
 

∑    
     (   )        

      
  (4.12) 

Where    is the sum of entries of     
  along the ith diagonal: 

    ∑     
 

     
  (4.13) 

If we define the polynomial  ( ) as: 

  ( )  ∑    
     

      
  (4.14) 
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On the unit circle, evaluating the spectrum    ( ) is equivalent to evaluating 

the polynomial  ( ). We can use the roots of  ( ) for direction of arrival 

estimation rather than scanning for peaks in    ( ) [4]. Definitely, peaks in 

   ( )are due to roots of  ( )lying close to the unit circle. Take the pole of 

 ( ) at    for example: 

    |  | 
    (  )  (4.15) 

It will result in a peak in    ( ) at: 

    ( )  (     )   (  )  (4.16) 

Therefore, after solving the polynomial  ( ), we can get D roots which locate 

near the unit circle mostly. Then, based on the relationship between   and  , 

direction of arrival can be found. 

4.2.2 Conclusion 

Root-MUSIC algorithm is used to calculate the direction of arrival by the 

underlying information of noise subspace and distinguish some nearby signal 

sources. The steps of the MUSIC algorithm in practice can be shown in 

summary as: 

Step 0: Collect data, form correlation matrix R; 

Step 1: Calculate eigenstructure of R in metric of   ; 

Step 2: Decide number of signals D; 

Step 3: Choose N columns to form the noise subspace   ;  

Step 4: Transform   ( )          ( );  

Step 5: Find roots of  ( )and choose D roots which are nearest to the unit 

circle; 

Step 6: Calculate the direction by D roots.  

It has been shown in [6, 7] that Root-MUSIC has identical asymptotic 

properties, though in a small number of date Root-MUSIC has empirically 

been found to perform greatly better. Comparing with MUSIC approach, Root-
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MUSIC has an especially better performance when dealing with some nearby 

signal sources. 

4.3 Bartlett Algorithm 

The Bartlett algorithm is a Fourier spectrum analysis method [16]. The main 

idea of Bartlett algorithm is to exclude the noise signal by the covariance 

matrix and find a set of weights that maximize the power of received signals. 

The received signals usually contain both information of direct path and 

multipath signals, which are most likely from different directions of arrival 

angles [17]. Actually, Bartlett algorithm is base of MUSIC algorithm, and the 

beginning steps of Bartlett Algorithm is the same with MUISC algorithm. So it 

is no hard to imply Bartlett algorithm from MUSIC algorithm as follows. 

4.3.1 Direction of Arrival Scan 

From MUSIC algorithm, we can get: 

    ( )  
 

 ⃗⃗( )     
  ⃗⃗( )

   (4.10) 

which is used to scan maximum value by degree. However, for the moment, we 

replace     
  by R , where R is the covariance matrix of data matrix X, and we 

can get the output power spectrum of Bartlett method as: 

   ( )  
 

 ⃗⃗( )   ⃗⃗( )
   (4.17) 

4.3.2 Conclusion 

Bartlett approach solves the problem of DOA by scanning peaks according to 

the spectrum which is decided by the array correlation matrix R.  

The steps of the Bartlett algorithm in practice can be shown in summary as: 

Step 0: Collect data, form correlation matrix R; 

Step 1: Decide number of signals D; 

Step 2: Evaluate   ( ) versus incident angle  ;  

Step 3: Pick D peaks of   ( ). 
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Bartlett algorithm is a significant approach in the development of DOA 

estimation, though the accuracy of Bartlett Algorithm is not as good as modern 

algorithms. MUSIC algorithm further Bartlett algorithm in the case of output 

power spectrum function and makes a better performance in DOA estimation. 

4.4 Capon Algorithm 

Capon algorithm employs a wavenumber window whose shape changes and it 

is a function of the wavenumber at which an estimate is obtained [18]. The key 

idea of Capon Algorithm is using a better factor as the inverse covariance 

matrix     to replace the factor R in the output power spectrum function of 

Bartlett algorithm. Actually, Capon algorithm is based on Bartlett algorithm, so 

it is easy to develop Capon algorithm from Bartlett algorithm. 

4.4.1 Direction of Arrival Scan 

From Bartlett algorithm, we can get: 

   ( )  
 

 ⃗⃗( )   ⃗⃗( )
   (4.10) 

which is used to scan peak values by degree. However, for the moment, we 

replace   by     and we can get the output power spectrum function of Capon 

algorithm as: 

   ( )  
 

 ⃗⃗( )     ⃗⃗( )
   (4.18) 

4.4.2 Conclusion 

Capon approach solves the problem of DOA by scanning peaks according to 

the spectrum which is decided by the array correlation inverse matrix    .  

The steps of the Capon algorithm in practice can be summarized as: 

Step 0: Collect data, form correlation matrix R; 

Step 1: Calculate the inverse matrix of R as    ; 

Step 2: Decide number of signals D; 

Step 3: Evaluate   ( ) versus incident angle  ;  
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Step 4: Pick D peaks of   ( ). 

Capon algorithm is a significant algorithm in the development of DOA 

estimation and it was widely implemented before the proposal of MUSIC 

algorithm. Application of this algorithm is given to seismic data obtained from 

the large aperture seismic array located in eastern Montana [18]. MUSIC 

algorithm further Capon algorithm in the output power spectrum function and 

replaces      by the noise subspace matrix     
 , improving the performance 

of DOA estimation. 

4.5 ESPRIT Algorithm 

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance 

Techniques [8]. The idea of ESPRIT is that the sensor array is decomposed into 

two identical sub-arrays. In the sub-arrays, two elements which are 

corresponding to each have the same pan. That is to say, the array has 

translational invariance. Every two shifts match the same array element pairs. 

Fortunately, in practice many of the arrays satisfy this condition, such as 

uniform linear array. It also has some improved algorithms, such as least 

squares ESPRIT, total least squares ESPRIT. 

ESPRIT algorithm has the following advantages: Firstly, it is different from 

MUSIC algorithm which scans all steering vector directly by the ordinary 

Euclidean distance; it greatly reduces the computation of the MUSIC algorithm. 

Secondly, it does not need to know precisely the array manifold vector, and not 

require the strict array calibration. However, both ESPRIT algorithm and 

MUSIC algorithm cannot deal with coherent signals. 

4.5.1 Array Geometry 

ESPRIT algorithm [9] is a robust and computationally efficient algorithm of 

DOA finding. The main idea of ESPRIT is using two identical arrays whose 

elements need to form doublets with an identical location vector, and the 

second element of each doublet should be located at the same distance and 

direction relative to the first element. 
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In detail, assume an array of arbitrary geometry composed of M sensor 

doublets. The elements in each doublet have identical sensitivity array 

elements and are separated by a known constant displacement matrix  . 

ESPRIT algorithm has a lot of advantages. Firstly, the nonzero sensitivity in all 

directions of arrival, the gain, phase of each sensor are not required. Secondly, 

there is no requirement that any of the doublets is the same sensitivity patterns 

though [8]. Lastly, the directivity sensitivity of the array elements in the 

doublets is arbitrary located. 

4.5.2 The Data Mode 

The ESPRIT algorithm is based on assumption that the underlying 2M-

dimensional signal subspace contain the entire given array output. Also, we 

should assume that signals received by the smart antenna with M array 

elements are linear combinations of the D narrow-band source signals as well 

as noise and D   M. The sources are located sufficiently far from the array so 

that the wave fronts impinging on the array elements are planar in 

homogeneous isotropic transmission space. The received vector X of the 

ESPRIT algorithm can be formulated as: 
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  (4.19) 

or 

 X=  Fi+W  (4.20) 

The incident signals, which appear as the complex vector Fi, are represented in 

amplitude and phase at some arbitrary reference point by the complex 

parameters    ,   ,…   . The noise appears as the complex vector W. As other 

researchers do, the sources in this model can be assumed to be deterministic 

signals or stationary zero mean random signals. Additive white noise which is 

assumed to be a stationary zero mean random signal with a spatial 
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covariance   , is present at all 2M array elements. The elements of X and 

   are also complex in general.     are the elements of   ,  and     depend on 

the relationship between signal arrival angles and the array element locations. 

In order to make a mathematical demonstration of the theory of the 

translational invariance of the array, we can regard the array as being consist of 

two subarrays,    and   . They are identical in all elements and geometrically 

located from each other by a given displacement matrix   with magnitude  . 

The combination signals impinged on each subarray can then be expressed as: 

    =AFi+W  (4.21) 

    =A Fi+W  (4.22) 

ESPRIT algorithm does not require the knowledge of the sensitivities, gain and 

phase patterns, so that the subarray location matrix   contents not only the 

information of scale for the problem, but also the reference of the direction. It 

is acceptable that the DOA finding outcomes are direction-of-arrival related to 

the direction of the location matrix  . Consequently, this fact supports the 

necessity for a corresponding location vector for each dimension with desired 

parameters. The subarray outputs    and    can be combined as 4.23: 

 X=[
  

  
]  (4.23) 

Defining the combination of          : 

  ̅=[
 
  

]  (4.24) 

 

4.5.3 Covariance matrix 

The main idea of ESPRIT is to develop the rotational invariance of the 

underlying information of signal subspace induced by the translational 

invariance of the sensor arrays [9]. The related signal subspace is X which 

contains the outputs from the two subarrays,   and   . The combination of the 

output of the arrays leads to two sets of eigenvectors,    and   , 

corresponding to   and    respectively.  
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After filtering the noise, the signal subspace can be obtained by collecting 

sufficient measurement data and finding any set of D linearly independent 

measurement vectors. These vectors can span the D-dimensional subspace [19]. 

Consequently, it is significant to filter the noise by covariance matrix. We can 

imply the signal subspace from knowledge of the covariance of the original 

data as 4.25:  

    =E[   ]= ̅E[    
 ] ̅       (4.25) 

4.5.4 Eigen matrix 

ESPRIT is an eigenstructure algorithm and it means that this algorithm relies 

on the eigenvalue decomposition of the estimated covariance matrix    . 

Because the rank of   , which is the eigen matrix of    , is the same with  ̅, 

there must exist a unique nonsingular matrix T to transform  ̅      . 

     ̅   (4.26) 

                                          . 

    [
  

  
]  [

  
   

]  (4.27) 

4.5.5 Direction of Arrival finding 

Make an assumption that: 

        |     (4.28) 

The rank of     is D, and D   M. It implies that there exists and only exist one 

matrix denoted as F with rank D to make: 

        |   [
  

  
]           =          =0

  (4.29) 

Where matrix F can span a null-space (the orthogonal space) of    |      Then 

we use the two subspace of F and define  : 

  =     
    (4.30) 
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From the equation           =0, we can get: 

      =   (4.31) 

In consequence, based on the theory of relevant matrix, the eigenvalues of   

are equal to the corresponded diagonal elements of  , and all the columns of 

matrix T are the eigenvectors of  . The above outcomes are the key relations 

of ESPRIT algorithm. Parameters of the signal are gain as non-linear functions 

of the eigenvalues of   .These eigenvalues can be regard as rotating a series of 

vectors   which span the M-dimensional signal subspace into another 

vectors   . 

Once we obtained  , we can calculate the direction directly by the 

configuration of the antenna arrays and the relationship among elements, which 

are represented in vector A.  

4.5.6 Conclusion 

ESPRIT is an eigenstructure algorithm which means that this algorithm is 

based on the covariance model and the computation step of ESPRIT algorithm 

can be summarized as follows: 

Step 0: From two identical subarrays, we get measurements and subarrays are 

displaced by          . Then calculate the covariance matrixes     of two 

arrays; 

Step 1: Find their eigenvalues    and eigenvectors    from the measurements; 

Step 2: Decide the number of directional sources; 

Step 3: Decompose   to obtain    and   where 

    [
  

  
]  (4.32) 

Step 4: Compute the eigendecomposition. Form an eigenmatrix and derive its 

eigenvectors, which are columns of a matrix     

    
    =[

  
 

  
 ]    |   =     

   (4.33) 

Step 5: Divide the matrix    into four D   D parts 
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    [
       

       
]  (4.34) 

Step 6: Calculate the eigenvalues of the matrix 

  =       
    (4.35) 

Step 7: Estimate the angle of arrival using the eigenvalues of  . 

In practice, ESPRIT algorithm is generally developed and implemented to a 

wide range of areas. ESPRIT maintains most of the essential advantages of the 

arbitrary displacement of array elements, and makes a definite reduction in 

computational complexity from MUSIC algorithm by adding a subspace 

constraint to the structure of the smart antenna. 

4.6 Summary and Conclusion of algorithms 

In this section, we will make a summary of above mentioned algorithm and 

review some performance of these algorithm researched by other researchers. 

The properties of these three algorithms can be summarized as table 4.1: 

Table 4.1 

Algorithm Consistency Coherent 

Signal 

Accuracy Resolution Computation 

efficiency 

MUSIC Yes No Exact Good Good 

Root-

MUSIC 

Yes Yes Good Exact Good 

ESPRIT Yes Yes Good Exact Efficient 

4.4.1 Consistency 

From the method described in section 4.1, 4.2 and 4.5, it is not difficult to 

figure out that all these three algorithms can deal with consistent insert angle as 

table 4.1 shows. Definitely, the MUSIC algorithm estimate DOA by scan 

incident angle one by one, and the step of scanning decide the estimation 
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accuracy. However, ESPRIT and Root-MUSIC algorithm can compute the 

incident angle directly by subspaces and polynomial respectively for all 

consistent DOA. 

4.4.2 Addressing Coherent signals 

Coherent signals are referred to signals which are greatly correlated with each 

other. When the coefficient of correlation [15] is equal to 1, we define signals 

as coherent signals. It is well accepted that MUSIC algorithm is the first 

significant and classical DOA estimation algorithm [14]. But one of its most 

serious problems is solving coherent signals. As developed algorithms base on 

MUSIC, ESPRIT and Root-MUSIC have overcome this problem.  

4.4.3 Accuracy 

The accuracy is the most effective evidence to judge am algorithm. According 

to above researches [11, 12], it is fair to say these three methods have great 

accuracy. In detail, some past simulation results of MUSIC, Root-MUSIC and 

ESPRIT algorithms show that their performance improves with more elements 

number of the array elements, with larger signal noise ratio (SNR), with larger 

snapshots of signals and greater angular separation between the signals. These 

improvements can be seen in form of the sharper peaks in the MUSIC 

simulation and smaller errors in angle detection in the ESPRIT and Root-

MUSIC simulation. 

However, it is said that there are more errors in DOA estimation by using 

ESPRIT algorithm compared to the MUSIC algorithm [13], which means that 

MUSIC is slightly more accurate than ESPRIT. In this dissertation, we will 

also simulate the accuracy of these three algorithms and prove the outcomes of 

above researches. The simulation and comparison about accuracy are 

demonstrated in chapter 6. 

4.4.4 Resolution ability 

The resolution is defined as the ability to distinguish two or more sources with 

the same of similar incident angle in this dissertation. As for MUSIC algorithm, 

the resolution ability is another weakness. It is not hard to understand that we 
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cannot decide the exact number of signal from one peak in the graph of 

MUSIC algorithm. A small step of scanning can improve the resolution ability 

but cannot solve this problem totally. However, ESPRIT and Root-MUSIC 

have excellent resolution, based on their idea of DOA estimation. 

4.4.5 Computation efficiency 

The computation efficiency is defined as the amount of calculation in a 

particular DOA estimation work. Definitely, the greatest improvement of 

ESPRIT is in the area of computation efficiency. A large number of researches 

prove that ESPRIT has better computation efficiency than MUSIC. The 

computation efficiency of Root-MUSIC is the worst in these three algorithms. 

In chapter 6, we will compare the computation efficiency by simulation. 

4.4.6 Implementation in Multiple dimensions array 

Multiple dimension DOA estimation is an interesting area of DOA in the long 

run. Some past researches proved that MUSIC and ESPRIT algorithms are 

convenient and efficient in two dimensions DOA. However, the Root-MUSIC 

is seldom used in two or more dimensions DOA, though it can be implemented 

in two or three dimensional arrays theoretically. According to the simulation 

results of [10], MUSIC algorithm shows slightly better performance than 

ESPRIT algorithm in two dimensions case, and for both algorithms, the Root 

Mean Square Error (RMSE) of azimuth are smaller than those of elevation. In 

section 6.2, we will discuss this in detail.  
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Chapter 5 Array Geometry 

Scientists never stop searching for smart antennas with a higher performance. 

Besides the promotion in algorithms which permit optimal use of existing array 

configurations, we can research and figure out array geometries with more 

excellent properties. 

Here, we will introduce some kinds of array geometries, which are also known 

as array configurations. Different kinds of array geometry with ten elements 

and inter-element spacing equal to 0.5m, which is half wavelength of the signal, 

are taken into account, and we try to analysis the characteristic of each array 

geometry based on the time delay between elements. The analyzing is the 

preparation of array geometry simulation and compare in later chapters.  

In this chapter, on one hand, we will demonstrate the configuration of elements. 

On the other hand, it will imply the delay, which is the key point effecting the 

DOA performance, among elements decided by the elements configuration. 

Definitely, the array geometry considerably decides the performance of DOA 

by way of different combination of elements delays. 

5.1 Data Model 

Before demonstration, it is necessary to make the assumption that a plane wave 

propagating through an isotropic space is received by the antenna array [1]. 

Then, the signal derived by any sensor can be represented as a time delayed 

version to the signal impinging on the reference sensor. 

First of all we should define the coordinate and incident angle. In this chapter, 

we consider the geometry in the rectangular coordinate system, defining the 

azimuth as   and the elevation as   . As shown in Figure, D narrow-band 

signals transmitted from far-field sources travel through a homogeneous 

isotropic medium and impinge on an array of M identical isotropic elements or 

sensors located at  ⃗  for m   [1, M]. Let us note the DOA of the dth source by 

[  ,  ], where elevation angle      [0,  ] and azimuth angle      [- , ]. 
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Figure 5.1 3D system showing a signal arriving from azimuth   and elevation 

  [1] 

The received signal of the antenna array is modeled as: 

  ( )   (   ) ( )   ( )  (5.1) 

where  ( ) is the M ×1 snapshot vector of the signals received simultaneously 

on all the sensors,  ( ) is the D×1 vector of the source signals,  ( ) is the M ×1 

noise vector that is assumed to be white, Gaussian and uncorrelated with the 

source signals. The M×D steering matrix  (   )=  ⃗(     )    ⃗(     )  

defines the array manifold and consists of the steering vectors  ⃗(     ) whose 

components are: 

  ⃗ (     )=        (     )  (5.2) 

where 

   (     )= ⃗⃗ 
 (     )    ⃗     (5.3) 

  (     ) is the propagation delay of source signal d received sensor m, c is 

the speed of light and  ⃗⃗ (     ) is the unit vector pointing towards the dth 

source. It is acceptable to regard the array steering vector as a unique function 

of the angle of arrival.  

In order to compare the performance of different geometry, firstly, we should 

consider the different delay of sources received by sensors.  
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5.2 One Dimension 

One dimension is the most easy and feasible case. In this case, since      

[0,  ], the unit vector pointing towards the dth source  ⃗⃗ (     ) can be shown 

as:  

  ⃗⃗( )=    ( )   (5.4) 

Definitely, there is only one kind of array geometry in one dimension case. 

5.2.1 Uniform Linear Array (ULA) 

Uniform linear array (ULA) composed of M (in this dissertation, M=10) 

elements placed on the x axes with inter-element spacing equal to p 

(p= 
 

 
 0.5m) is presented. The element placed at the origin is common for 

referencing purposes.  

Uniform linear array (ULA) is a classical kind of array geometry and it is the 

base configuration of the antenna arrays. Therefore, it is necessary to discuss 

the performance of DOA estimation by Uniform Linear Array. It is widely 

used because of its simple structure. Currently, a lot of DOA estimation 

algorithms are based on the uniform linear array, but the biggest drawback of 

the uniform linear array is that it can only estimate in the range of 0 ° to 180 °, 

and can only receive one-dimensional angular information, e.g.  . The 

displacement of sensors of Uniform linear array (ULA) discussed in this 

dissertation is shown as 5.2 and 5.3. In this chapter, the unit of position 

description is meter. 
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Figure5.2 3D view of Uniform linear array (ULA) 

 

Figure 5.3 x-y plane view of Uniform linear array (ULA) 

From figure 5.2 and figure 5.3, we are cleared that the array elements are 

located in the x axis. Then, we will attempt to express the received signal in 

each of the element in terms of the signal received in the first element or the 

reference element. In the figure, the Uniform linear array (ULA) receives the 
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signal from a direction of angle     relative to the array broadside. Besides, the 

location of elements can be represented as: 

  ⃗        (5.5) 

Where,    denotes the displacement of mth sensor. Then we can get the time 

delay based on propagation manifests in a phase shift in the received signal at 

the reference element. Now we can use   to express the time delay   (  ) . 

The delays of elements are representing as: 

   (  )=
     (  )

 
  (5.6) 

The equation 5.6 relates the incident signal with the time delay which can 

exploit from the data received by the array sensors.  

Uniform linear array (ULA) is the simplest configuration of array antenna, and 

thus it is commonly used in theoretic analysis. In this dissertation, we analyse 

the performance of MUSIC, Root-MUSIC and ESPRIT algorithms with 

Uniform linear array (ULA) as well. In practice, however, we always need a 

2D DOA estimation in the 3D space, so that we usually form plane antenna 

arrays with the same number of sensors. 

5.3 Two Dimensions 

Two dimensions is the most common case, which has been researched by 

scientist for decades. In this case, the unit vector pointing towards the dth 

source  ⃗⃗ (     ) can be shown as:  

  ⃗⃗(   )=    ( )    ( )    ( )    ( )     ( )   (5.7) 

There are various kinds of array geometry in two dimension case. In this 

chapter, we focus on some classical array configuration as Uniform Circle 

Array, L Shaped Array, Y Shaped Array and Rectangular Array. 

5.3.1 Uniform Circular Array (UCA) 

Uniform Circular Array (UCA) composed of M (in this dissertation, M=10) 

elements placed on the x- y plane with inter-element spacing equal to p 
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(p= 
 

 
 0.5m) is presented. Uniform Circle Array (UCA) is a significant kind of 

array geometry.  

Uniform Circular Array (UCA) is a classical kind of array geometry and it is 

the base configuration of the antenna arrays, so it is necessary to analyze the 

performance of DOA estimation by Uniform Circular Array. It is widely used 

because of its wonderful performance in two dimensions case with such a 

simple structure. Uniform Circular Array can provide constant DOA estimation 

within the range of 0 ° to 360 ° and resolute two-dimensional angular source of 

information, but its resolution is low and its CRB is relatively large. Given 

Uniform Circular Array more number of array elements to improve 

performance, the amount of calculation will be larger, and structures will 

become more complex. 

As Figure 5.4 shows, a UCA with 10 elements locate at x-y plane. Figure 5.4 

shows the 3D perspective and figure 5.5 shows the x-y plane perspective.   

 

Figure 5.4 3D view of UCA 
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Figure 5.5 x-y plane view of UCA 

Definitely, UCA is isotropic along the z-axis. Based on this characteristic, 

UCA has good performance in mutable incident angles estimation. In this 

dissertation, we consider the UCA with radius  , allowing that the elements are 

spaced by half a wavelength. The position vector can be shown as: 

  ⃗                     (5.8) 

Where    denotes the azimuth of mth array sensor. Then we can get the time 

delay based on propagation manifests in a phase shift in the received signal at 

the reference element as mentioned above. Here, we use   to express the time 

delay   (  ) . The delays of elements are representing as: 

    (     )=
    (  )    (     )

 
  (5.9) 

There is no denying that UCA is one of the most common array geometries in 

research, based on its unique characters. First of all, UCA is isotropic along the 

z axis according to the displacement in this dissertation, which means the 

azimuth will not affect the performance of DOA estimation. Also, UCA is not 

a concentrated displacement, so that there are some spaces for configuration 

development from it. e.g., adding two sensors above and below the centre of 

the circle, we can get a spherical array. 
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5.3.2 L Shaped Array (LSA) 

L Shaped Array (LSA) composed of two uniform linear sub-arrays placed on 

the x and y axes, with inter-element spacing equal to p (p= 
 

 
 0.5m) is 

presented. The element placed at the origin is common for referencing 

purposes.  

L-shaped array has characteristics of Uniform Linear Array and the planar 

array, such as simple structure, and the research outcomes of the ULA can be 

applied on the L-shaped array as well. The Cramer-Rao bounds (CRB) of the 

estimated wave directions based on the L-shaped array are about 37% smaller 

than those for the cross array [5]. Since the space is not full used by this 

configuration, this type of array geometry has not been researched much. Thus, 

it is innovative for this section to analyze the performance of L Shaped Array.  

Here, we choose ten elements in this case, where six elements placed on x axes 

and five elements placed on y axes in this dissertation. 
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Figure 5.6 3D view of LSA

 

Figure 5.7 x-y plane view of LSA 

L Shape Array (LSA) is a array geometry which is always used to compare the 

performance of DOA estimation with other geometry. It is not hard to make 

sense that LSA is no isotropic. The location of elements can be represented as: 

  ⃗             (5.10) 

And the delay of every element can be expressed as: 
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    (     )=
   (  )      (  )      (  ) 

 
  (5.11) 

LSA is not hard to image that it has a similar character with ULA in data 

processing, since it is a combination of two ULAs. However LSA improves 

ULA to 2D DOA estimation. From figure 5.6, it is not hard to find out that 

there are various kinds of L shaped configuration with the same number of 

elements, e.g. one element in x axis and nine elements in y axis, and two 

elements in x axis and eight elements in y axis etc. The properties of different 

LSA configurations are various. With the limitation of time, we just discuss the 

configuration with ten elements, where six elements placed on x axes and five 

elements placed on y axes in this dissertation. 

5.3.3 Y Shaped Array (YSA)  

Y Shaped Array (YSA) composed of three uniform linear sub-arrays placed on 

the x axes, 2/3 degree and -2/3 degree, with inter-element spacing equal to p 

(p= 
 

 
 0.5m) is presented. We take ten sensors in to account in this case, 

where there are four elements in every uniform linear sub array. The element 

placed at the origin is common for referencing purposes.  

The performance of Y shaped array is the best among ULA L Shaped Array 

and Y Shaped Array and that the proposed self-calibration algorithm can 

achieve the high resolution under the condition of unknown coupling [6]. 

However, this kind of array has not been research much even it is not difficult 

to image the array geometry. It is not clear about some features of Y Shaped 

Array and we try to gain some data of it in this dissertation. We try to analyze 

the performance of YSA in DOA estimation in this chapter. 
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Figure 5.8 3D view of YSA 

 

 

Figure 5.9 x-y plane view of YSA 

Y Shape Array (YSA) is a particular array geometry which has been proved 

has good performance. The location of element can be represented as: 

  ⃗                       (5.12) 



 

55 

 

The delay of elements can be shown as: 

    (     )=
     (  )    (     )

 
  (5.13) 

The YSA is symmetry along the axis of each sub arrays and the x-y plane, and 

this property can lead to some special performance is DOA estimation. Wu has 

performance analysis of DOA algorithm for Y-shaped array [2]. However, 

there were not many further research outcomes of YSA in last years.  

5.3.4 Rectangular Array (RA)  

The Rectangular Array composed of two uniform linear sub-arrays placed near 

the x axes in the x-y plane, and the axis of two ULA is (y=0.25m, z=0m) and 

(y=-0.25m, z=0m) in this case. The inter-element spacing equal to d 

(p= 
 

 
 0.5m) is presented. The element placed at (0, 0.25, 0)m is common for 

referencing purposes.  

The configuration of rectangular array is common when the number of 

elements is large, but in this case, the number of elements is not large enough. 

Here, we just try to compare the performance of DOA estimation of RA with 

other array geometries.  

 

Figure 5.10 3D view of RA 
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Figure 5.11 x-y plane view of RA 

The antenna array in Figure has a rectangular configuration composed by two 

ULAs placed in parallel on the x–y plane. The inter-sensor distance p is taken 

to be half a wavelength of the signal waves. Then the position vector can be 

expressed as: 

  ⃗             (5.14) 

The propagation delay for the dth source on the mth sensor is derived as: 

    (     )=
   (  )      (  )      (  ) 

 
  (5.15) 

RA is a widely implemented array geometry, because it is a kind of 

concentrated displacement, which means that a maximum number of array 

elements can be displace in a given plane space. In this way, we can improve 

the performance of smart antenna in a limited space by way of increasing the 

number of elements. 

5.4 Three Dimension 

The three dimension case is a new area in array geometry. There is no much 

research has been made in this case. In the 3D case, the position vector of 

sensors can be expressed as: 
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  ⃗⃗(   )=    ( )    ( )    ( )    ( )     ( )   (5.16) 

Definitely, the performance depends on the geometry of the antenna array. 

There are various kinds of array geometry in three dimension case. In this 

chapter, we focus on some classical array configuration as Double Uniform 

Circle Array and Double L Shaped Array. 

5.4.1 Double L Shaped Array (DLSA) 

The 3D Double L shaped array with M (in this dissertation, M=10) elements 

composed of three uniform linear sub-arrays placed on the x, y and z axes (four 

elements in each axes in this dissertation) with inter-element spacing equal to p 

(p= 
 

 
 0.5m) is presented. The element placed at the origin is common for 

referencing purposes. 

 

Figure 5.12 3D view of DLSA 

This antenna array configuration has already been proposed in [3] for the 

estimation of the 2D directions of arrival. DLSA consist of three ULAs and it 

is not difficult to find out that we can get a new DLSA by changing the scale of 

each ULA. e.g., we can remove one element from the z axis to x axis. In this 

dissertation, we study this particular configuration of DLSA shown as figure 

5.12 because it is the most symmetric one and thus it can be expected to give 
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the most isotropic accuracy and resolutions characteristics. Here, the position 

vector of the mth element is expressed as: 

  ⃗              (5.17) 

Then the propagation delay for the dth source on the mth sensor is derived as 

    (     )  

      (  )    (  )      (  )    (  )      (  ) 

 
  (5.18) 

DLSA is the simplest 3D displacement antenna array. With the 3D located 

sensors, we can easily guess that it has a better performance in 3D space, at 

least in some aspects. Not matter what the incident angle is, there are two sub 

arrays receiving the impinging signal at least, which means that DLAS does 

not have black spot in DOA estimation. 

5.4.2 Double Uniform Circular Array (DUCA) 

The Double Uniform Circular Array (DUCA) composed of two uniform circle 

sub-arrays (five elements in each sub-array) placed on the plane z=p/2 and z=-

p/2, with inter-element spacing equal to p (p= 
 

 
 0.5m) is presented.  

Double Uniform Circular Array is seldom referred by papers, so we cannot 

learn its characteristics from previous researchers. We try to analyze Double 

Uniform Circular Array in the same way with other array geometries. In this 

dissertation, we take ten sensors in to account, so the configuration is derived 

as. 
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Figure 5.13 3D view of DUCA 

 

Figure 5.14 x-y plane view of DUCA 

As figure 5.13 and 5.14 shows, each circle has five elements, and locates at 

z=0.25m and z=-0.25m plane respectively. Assume that the radius of the 

subarrays circle denotes as  . The displacement vector of the mth element can 

be expressed as: 

  ⃗                      (5.19) 
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Then the propagation delay for the dth source on the mth sensor is derived as: 

     (     )=
    (  )    (     )      (  )

 
  (5.20) 

In practice, DUCA is commonly implemented because we combine two UCA 

which can just receive signal in one surface to have the ability of DOA 

estimation in all space. However, if the sensor can receive signal from all space, 

the performance of DUCA will be particular. Hence, we try to discuss this kind 

of DUCA in this dissertation.   

5.5 General view of DOA estimation simulation by MUSIC 

In this dissertation, the main topic is the performance of array geometries in 

DOA estimation. Therefore, in order to simplify the computation, we ignore 

the mutual coupling of resources, which is not the most important factor of 

judgment of array geometries’ performance in DOA estimation. The simulation 

deals with one dimensional array, two dimensional array and three dimensional 

array respectively. 

5.5.1 Simulation of one dimensional case 

In this dissertation, we analyzed the performance of DOA estimation with 

various array geometries, where MUSIC algorithm was implemented. As 

demonstrated in section 4.1, the last step of MUSIC is scanning all the angles 

by equation 4.10. Then we can get a graph of    (   ). In this section, we 

tried to show the peak graph of array geometries mentioned above, and gained 

a general view of the graph which will be used in further data analysis.  

In 1D DOA estimation, the DOA peak graph of ULA is shown as figure 5.15, 

where the incident angles are 10, 80 and 130 degree. 
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Figure 5.15 ULA 

From figure 5.15, we can find out three peaks in the graph, whose incident 

angles are around 10, 80 and 130 degree respectively. The angles 80 and 130 

degree are distinguished easily because peaks are -5dB to lower than -20dB. 

However, the angle 10 degree is not easy to distinguish from the curve because 

the values of nearby angles are relative close to the peak. Therefore, it is 

reliable to predict that the incident angle will affect the ability of signal 

detection. When the incident angle comes close to 0 degree or 180 degree, 

which means that the incident signal is paralleled to the ULA, the ability of 

detection of the Uniform Linear Array will decrease greatly. 

5.5.2 Simulation of two dimensional case 

In 2D DOA estimation, the peak graph of two dimension and three dimension 

array geometries are shown as follows, where the incident angles (   ) are 

(       ), (       ), (        ). Here, the SNR=10 and snapshot is 50. 
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Figure 5.16     (   ) graph with UCA 

 

Figure 5.17    (   ) graph with LSA 
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Figure 5.18    (   ) graph with YSA 

 

Figure 5.19    (   ) graph with RA 

From figure 5.16, 5.17 and 5.18 we can discover three peaks without trouble. 

Relatively, the incident angle (       ) is not easy to find from the graph of 
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Rectangular Array (RA), so Rectangular Array is not as good as other three 

geometries to some degree. We will further comparison by data analysis in 

chapter 6. 

5.5.3 Simulation of three dimensional case 

 

Figure 5.20    (   ) graph with DLSA 
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Figure 5.21    (   ) graph with DUCA 

From figure 5.20 and figure 5.21, the condition of DOA estimation simulation 

is not poor, which means the Signal Noise Ratio (SNR) and snapshot is not low. 

However, peaks are not definite in graphs of Double Uniform Circular Array 

(DUCA), implying that it is difficult to detect peaks and errors are generated 

with limited number of array elements. We will validate this in section 6.2. 

5.6 Cramer-Rao Bound of array geometries 

In this section, we focus on the Cramer-Rao Bound (CRB) for different array 

geometries which has been introduced in this chapter. Here we try to formulate 

the problem of one signal with elevation and azimuth.  From [4] we can get 

method to calculate the CRB for one source. 

    (   )    (   )        (5.23) 

where   is the azimuth and   is the elevation as demonstrated in section 5.1. T 

and  (   ) can be expressed as 5.24 and 5.25 repectively: 

   
  (     )      

       
  (5.24) 
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  (     )        (5.25) 

Where U is the incident angle matrix and B is the array configuration matrix as 

5.26 and 5.27: 

   [
                 
                

     

]  (5.26) 

   
 

 
∑ ( ⃗   ⃗ )( ⃗   ⃗ )

  

   
  (5.27) 

Where M denotes the number of array elements.  ⃗  which is demonstrated 

above is the displace vector of the mth element.  ⃗  denotes the geometric centre 

of the array and can de expressed as: 

  ⃗  
 

 
∑  ⃗ 

 
     (5.28) 

From 5.23, it is clear that CRB consist of two parts ( (   ) and T).We 

can find out that T depends on the SNR, the number of snapshot n, the 

wavelength   and the number of elements M from 5.24.   (   ) is 

decided by array geometry through matrix B and the the incident angle (   ) 

through U based on equation 5.25.  

5.7 Conclusion 

In this chapter, we introduced different kinds of array geometries, and 

explained some parameters of them. Then we made a simulation of DOA 

estimation for three signal resources with these arrays by MUSIC algorithm 

and gained a general view of their performance. At the end of the chapter, we 

implied the CRB of array geometries, which will be taken in to simulation in 

chapter 6, from other papers. 
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Chapter6 Simulation and Comparison 

In this chapter, the simulation of questions mentioned in above chapters was 

made. The simulation consisted of two major parts that performance research 

of MUSIC, Root-MUSIC and ESPRIT algorithms and the property analyse of 

different array geometries. We used the Matlab 2012b to simulate the problems 

discussed in this dissertation. 

6.1 One dimension simulation of MUSIC, Root-MUSIC and 

ESPRIT algorithm 

In this section, we tried to compare the accuracy and computation efficiency of 

these three algorithms by simulation. Let’s defined the incident angle     [0,  ] 

measured anticlockwise relatively to the x-axis. 

6.1.1 Accuracy of algorithms 

As for the simulation of accuracy comparison, we set one source impinging on 

the Uniform Linear Array (ULA) with 10 elements placed on the x axes with 

inter-element spacing equal to p (p= 
 

 
 0.5m). It was a common method to 

change only one parameter in the comparison, so that we changed SNR, 

snapshot and incident angle respectively in this section. 

RMSE versus SNR  

We regarded the Root Mean Square Error (RMSE) as a measurement of 

accuracy. RMSE could be expressed as: 

     ( )  √∑ (    ( ))
  

   

 
  (6.1) 

As demonstrated in section 4.4.4, the parameter of SNR was an important 

element which will affect the accuracy deeply. Therefore, in the first place, we 

set the same condition but vary the SNR in the simulation. Here, we set the 

snapshot n=50, the incident angle   =80 degree, the times of trial was 100. The 

parameter SNR increased from 1dB to 30 dB. Besides, the step of MUSIC 
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algorithm in this case was 0.1 degree. We could get the graph of RMSE of 

three algorithms as figure 6.1 shows: 

 

Figure 6.1 RMSE by SNR 

In the figure 6.1 RMSEE, RMSEM and RMSER represent the RMSE of 

ESPRIT, MUSIC and Root-MUSIC respectively. Definitely, the RMSE of 

ESPRIT is bigger than MUSIC and Root-MUSIC, which means the accuracy 

of MUSIC and Root-MUSIC is better than ESPRIT. The simulation has proved 

previous conclusions of other researchers. As for the comparison between the 

MUSIC and Root-MUSIC, the performances of these two algorithms are 

similar. 

RMSE versus snapshot 

As demonstrated in section 4.4.4, the parameter of snapshot was another 

significant element which will affect the accuracy deeply. Therefore, we set the 

same condition but snapshot in the simulation. Here, we set the SNR=10 dB, 

the incident angle   =80 degree, the times of trial was 100. The parameter 

snapshot increased from 1 to 50. Besides, the step of MUSIC algorithm in this 

case was 0.1 degree. We got the graph of RMSE of three algorithms as figure 

6.2 shows: 
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Figure 6.2 RMSE by snapshot 

In the figure 6.2 RMSEE, RMSEM and RMSER represent the RMSE of 

ESPRIT, MUSIC and Root-MUSIC respectively. Obviously, the RMSE of 

ESPRIT is bigger than MUSIC and Root-MUSIC, which means the accuracy 

of MUSIC and Root-MUSIC is better than ESPRIT, and it is the same with 

figure 6.1. The simulation has proved previous researches of other researchers 

again. As for the comparison between the MUSIC and Root-MUSIC, the 

performances of these two algorithms are similar, from which we cannot tell a 

better one. 

RMSE versus incident angle 

We considered that the incident angle may affect the accuracy, so that we made 

a simulation of different incident angle. Here we set the same condition but 

incident angle in the simulation. As above, the SNR=10 dB, the snapshot n=50, 

the times of trial was 100. The parameter   increased from 0 to 180 degree. 

Besides, the step of MUSIC algorithm in this case wass 1 degree. We got the 

graph of RMSE of three algorithms as figure 6.3 and figure 6.4 and the DOA 

estimation of three algorithms was shown at figure 6.5. 
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Figure 6.3 the RMSE by incident angle (0 to 180 degree) 

 

Figure 6.4 the RMSE by incident angle (20 to 160 degree) 
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Figure 6.5 the DOA estimation by incident angle (0 to 180 degree) 

In the figure 6.3 and 6.4, RMSEE, RMSEM and RMSER represent the RMSE 

of ESPRIT, MUSIC and Root-MUSIC respectively and in figure 6.5 EDOAm, 

MDOAm, RDOAm represent the DOA estimation with ESPRIT, MUSIC and 

Root-MUSIC algorithm respectively. From figure 6.3 and figure 6.5, it is not 

hard to find out an unexpected outcome that both RMSE and DOA are 

seriously wrong in these entire three algorithms when the incident angle ranges 

from around 0 to 5 degree 175 to 180 degree. Definitely, it is the weakness of 

the configuration of ULA that lead to the problem. Here, the incident angle in 

the range which was surfed from mistakes means the signal is almost paralleled 

to the array. In this case, the ULA may have trouble in estimation and a little 

scale of noise can make big difference.  

From figure 6.4, which is a close view of RMSE with incident angle ranging 

from 20 degree to 160 degree, we can also find out that the accuracy of 

ESPRIT is not as good as Root-MUSIC. From 40 degree to 140 degree, the 

RMSE of MUSIC is smallest of three. Thus, it is fair to say that the MUSIC 

has better accuracy performance in the “face” case. Here, the scanning step of 

MUSIC is 1 degree, which means it may have better performance than this case 

with a smaller scanning step. 
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6.1.2 Computation efficiency of algorithms 

The computation efficiency is a vital property of an algorithm, which decides 

the calculation time and energy cost. Therefore, an algorithm with good 

computation efficiency performance is what we wanted. In this section, we 

regarded the computation time in Matlab (tic/toc) as a standard of computation 

efficiency. The simulation progress is 6.1.1. The outcome of calculation time 

could be represented as table 6.1. 

Table 6.1 Computation Time 

 SNR(1 to 30dB) Snapshot (1 to 50) 
Incident angle  

(0 to 180 degree) 

ESPRIT 9.859488 seconds 10.345005 seconds. 35.738154 seconds 

MUSIC 41.787838 seconds 71.628077 seconds 
261.868409 

seconds 

Root-

MUSIC 

390.086829 

seconds 

661.938485 

seconds 

2400.736639 

seconds 

In the simulation the number of trial was 100. In these three cases, ESPRIT 

was the most efficient algorithm, and MUSIC was the middle one. Though 

Root-MUSIC was good at estimating signal with the same incident angle, the 

computation efficiency was not good. Definitely, ESPRIT had an efficient 

calculation speed because it calculated the incident angle by subspace rather 

than scan angle by angle. As for Root-MUSIC, the progress to form and solve 

the polynomial took a long time, so that the efficiency of Root-MUSIC was not 

good. 

6.1.3 Conclusion 

According to the above analysis and simulation, we could draw a conclusion 

about the comparison of these three Eigen decomposing algorithms that 

ESPRIT was the most efficient algorithm in these three algorithms, where it 
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used around one fourth calculation time of MUSIC, and that MUSIC was the 

best in accuracy in these three algorithms.  

In detail, the ESPRIT was proposed in order to promote the computation 

efficiency from MUSIC, sacrificing a part of accuracy. Errors would be 

amplified in computational calculation with increasing steps in ESPRIT, which 

did not have feedback or calibration, so that the accuracy of ESPRIT was not 

as good as MUSIC, whose step of     (   ) scanning works as calibration. 

MUSIC algorithm, which was the most common used in practice, would got a 

balance between accuracy and efficiency with a proper step length. From 

section 4.1, it was clear that the only step of calculation was the computation of 

covariance and eigendecomposition, and few computational errors were added 

to the data. In this way, the excellent accuracy was proved. However, we could 

never ignore weakness of MUSIC, the ability of resolution. Therefore, previous 

researchers had proposed Root-MUSIC to improve the ability of resolution, 

increasing the computation amount meanwhile. 

6.2 Array geometry simulation  

Although above section deals with a comparison of classical DOA estimation 

algorithms from a signal impinging on ULA, the final target is to apply these 

algorithms in antenna arrays. 

In this section, we have tried to compare the performances of various array 

geometries with the some number of elements (10). Let us note the DOA of the 

dth source by (  ,  ), where elevation angle      [0,  ] and azimuth angle    

  [- , ] as figure 6.6 shows. 

This section will demonstrate and simulate the directivity, accuracy and 

detection ability of these array geometries in two dimensions case, including 

Uniform Circle Array (UCA), L Shaped Array (LSA), Double L Shaped Array 

(DLSA) and Double Uniform Circle Array (DUCA). As discussed in 6.1, we 

take MUSIC as the estimator in this section in order to have good accuracy 

outcomes. 
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Figure 6.6 the coordinate and incident angle (   ) [1] 

6.2.1 Directivity of array geometry in DOA estimation 

The array geometries mentioned in Chapter 5 are not isotropic in geometrical 

case, so it is easy to imply that they do not have isotropic performance in DOA 

estimation. Thus, it is interested to research to directivity of these array 

geometries.  

According to section 5.5 (figure 5.15 to 5.21), the magnitude of estimation 

outcomes by array geometries are different with various incident angle. Then, 

in section 5.6, equation 5.23, 5.25 and 5.26 which are rewritten as follow 

shows that CRB of array geometry depends on the incident angle. Therefore, 

we can demonstrate the directivity of array geometries in DOA estimation by 

their CRB of estimation which are calculated from constant various incident 

angles. Then we can discuss the relationship between symmetry and incident 

angle in different geometries by CRB.  

    (   )    (   )        (5.23) 

  (     )        (5.25) 

   [
                 
                

     

]  (5.26) 

In order to describe the directivity of array geometries by CRB, It is significant 

to ensure other parameters of array geometries and incident resources in the 
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same value, the so-called some condition. In the simulation progress, we set the 

power of incident resources SNR=10dB, the number of array elements M=10, 

the wavelength of incident resources  =1m and snapshot of data as 50. Here 

define the elevation angle     [0,   /2] and azimuth angle     [- , ], and 

denote the incident angle as (   ).  

The CRB of Uniform Circular Array (UCA), L Shaped Array (LSA), Double L 

Shaped Array (DLSA) and Double Uniform Circular Array (DUCA) will be 

simulated and analyzed in this section, and we try to demonstrate directivity of 

these array geometries by CRB of DOA estimation.  

Uniform Circular Array (UCA) 

In this section, we tried to demonstrate the directivity of UCA in DOA 

estimation by their CRB of estimation which is calculated from constant 

various incident angles. The configuration of UCA was demonstrated in 

section 5.3.1. Geometrically, UCA was isotropic in the x-y plane. Therefore, 

the variety of azimuth would not affect the performance of DOA estimation. 

Here, the simulation would get the CRB of azimuth and elevation in DOA 

estimation respectively.  

 

Figure 6.7 CRB ( ) of UCA in DOA estimation 
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Figure 6.7 describes the relationship between CRB of estimation of elevation   

and various incident angles in UCA. As figure 6.7 shows, the maximum 

magnitude of CRB is around 0.03 degree, which is much larger than CRB in 

other incident angles, when the elevation is near 90 degree. Thus, it is reliable 

to imply that the UCA has relatively poor performance in estimating elevation 

  when the elevation is around 90 degree, which means the incident signals are 

parallel to the UCA plane. Besides, figure 6.7 shows the general tendency of 

CRB of estimation of elevation   that with the increasing of elevation (0 to 85 

degree), the CRB of estimation of elevation   increases as well. 

Based on CRB of estimation of elevation   analysis, the directivity of UCA in 

the estimation of elevation   was that the performance of elevation estimation 

decreased with the increasing incident elevation and was not affected by 

incident azimuth. This inference was identical with the geometric configuration 

of UCA as well. 

Figure 6.8 CRB ( ) of UCA in DOA estimation 

Figure 6.8 describes the relationship between CRB of estimation of azimuth   

and various incident angles in UCA. According to the figure, the maximum 

magnitude of CRB of estimation of azimuth   is around 0.3 degree when the 

elevation is close to 0 degree. Thus, it is acceptable to imply that the UCA is 

not good at estimating azimuth   when the elevation locates around 0 degree. 
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This case describes the incident signals are perpendicular to the UCA in the x-y 

plane. Besides, figure 6.8 shows the general tendency of CRB of estimation of 

azimuth   that with the increasing of elevation (5 to 90 degree), the CRB of 

estimation of azimuth    decreases. 

According to the CRB of estimation of azimuth    analysis, the directivity of 

UCA in the estimation of azimuth   was that the performance of azimuth 

estimation increased with the increasing incident elevation and was not 

affected by incident azimuth. This inference was identical with the geometric 

configuration of UCA as well. 

L Shaped Array (LSA) 

In this section, we tried to demonstrate the directivity of LSA in DOA 

estimation by their CRB of estimation which was calculated from constant 

various incident angles. The configuration of LSA was demonstrated in section 

5.3.2. In order to make the simulation succinct and typical, we assumed 

elements of LSA displace on the positive axis of x and y axis, where six 

elements on x axis and five elements on y axis. According to geometrical 

configuration, it was not hart to understand that LSA was not isotropic or 

symmetrical along any axis or plane. Here, the simulation would gain the CRB 

of estimating azimuth and elevation respectively. 

 

Figure 6.9 CRB ( ) of LSA in DOA estimation 
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Figure 6.9 describes the relationship between CRB of estimation of elevation   

and various incident angles in LSA. As shown in figure 6.9, the maximum 

magnitude of CRB of estimation of elevation   is around 0.035 degree, when 

the elevation comes close to 90 degree. In a general view, figure 6.9 shows the 

tendency of CRB of estimation of elevation    that with the increasing of 

elevation (0 to 85 degree), the CRB of estimation of elevation    increases. 

Because of the large CRB value, LSA can have poor performance in estimating 

elevation   when elevation is around 90 degree.  

It is clear in figure 6.9 that the CRB of estimation of elevation   depends on 

azimuth    as there are peaks when azimuth are -125 and 55 degree. Thus, it is 

acceptable to imply the directivity of LSA that LSA is anisotropic and the 

relative weakness of elevation estimation is the case when the elevation is near 

90 degree and the azimuth is near -125 or 55 degree. 

From the CRB of estimation of elevation   analysis, the directivity of LSA in 

the estimation of elevation   was that the performance of elevation estimation 

decreased with the increasing incident elevation and is period with constant 

change of incident azimuth. Given an incident elevation, it would be worst 

performance in estimating elevation   when the incident azimuth was near -125 

or 55 degree. This inference was identical with the geometric configuration of 

LSA as well. 
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Figure 6.10 CRB ( ) of LSA in DOA estimation 

Figure 6.10 describes the relationship between CRB of estimation of azimuth   

and various incident angles in LSA. As shown in figure 6.10, the maximum 

magnitude of CRB of estimation of azimuth   is around 0.035 degree, when 

the elevation comes close to 0 degree. In a general view, figure 6.10 shows the 

tendency of CRB of estimation of azimuth    that with the increasing of 

elevation (5 to 90 degree), the CRB of estimation of azimuth    decreases. 

Theoretically, the LSA can have relatively poor performance in estimating 

azimuth when elevation is around 0 degree, which means the incident direction 

is perpendicular to x-y plane.  

It is definite in figure 6.10 that the CRB of estimation of azimuth   depends on 

azimuth as there are peaks when azimuths are -35 and 145 degree. Thus, it is 

acceptable to draw the conclusion in these cases that LSA is anisotropic and 

the relative weakness of azimuth estimation is the case when elevation is near 0 

degree and azimuth is near -35 or 145 degree. 

Based on CRB of estimation of azimuth    analysis, the directivity of LSA in 

the estimation of azimuth   was that the performance of azimuth estimation 

increased with the increasing incident elevation and was period with constant 

change of incident azimuth. Given an incident elevation, it would be worst 

performance in estimating azimuth   when the incident azimuth was near -35 
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or 145 degree. This inference was identical with the geometric configuration of 

LSA as well. 

Double L Shaped Array (DLSA) 

In this section, we tried to demonstrate the directivity of DLSA in DOA 

estimation by their CRB of estimation which was calculated from constant 

various incident angles. In section 5.4.1, the configuration of DLSA was 

demonstrated. Here, in order to make simulation typical and simple, we 

assumed elements of DLSA displace on the positive axis of x, y and z axis, 

where four elements in each axis. Geometrically, it was not difficult to accept 

that DLSA is symmetric along axis (       ). The simulation would get the 

CRB of estimating azimuth and elevation respectively.   

 

 

Figure 6.11 CRB ( ) of DLSA in DOA estimation 

Figure 6.11 describes the relationship between CRB of estimation of 

elevation   and various incident angles in DLSA. As figure 6.11 shows, the 

maximum magnitude of CRB is around         degree when the incident 

angle is around(         ). It is reliable to imply that the DLSA has relative 

worse performance in estimating elevation   when   is around -135 degree and 
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elevation is around 35 degree based on the peak of CRB of estimation of 

elevation   shown in the figure 6.11.  

According to this graph, it is fair to predict that DLAS is able to exactly 

estimate elevation of all incident angles, though a relative worse performance 

with incident angle (         ). Besides, the accuracy of estimation of 

elevation can displace coarsely isotropic along the axis(         ). 

From the CRB of estimation of elevation    analysis, the directivity of DLSA 

in the estimation of elevation   was that the performance of elevation 

estimation decreased when then the incident angle comes to (         ) and 

the performance can be similar with other incident angles. This inference was 

different from the geometric configuration of DLSA that the symmetric axis 

was (       ). 

 

Figure 6.12 CRB ( ) of DLSA in DOA estimation 

Figure 6.12 describes the relationship between CRB of estimation of azimuth   

and various incident angles in DLSA. As figure 6.12 shows, the maximum 

magnitude of CRB of estimation of azimuth   is around 0.05 degree when the 

elevation is near 0 degree. In a general view, figure 6.12 shows the tendency of 

CRB of estimation of azimuth    that with the increasing of elevation (5 to 90 

degree), the CRB of estimation of azimuth    decreases. Theoretically, the 
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DLSA can have relatively poor performance in estimating azimuth when 

elevation is around 0 degree, which means the incident direction is 

perpendicular to x-y plane.  

The incident azimuth affects the performance, according to the graph. The 

CRB of estimation of azimuth   depends on azimuth as there are peaks when 

azimuths are -45 and 135 degree. Thus, it is acceptable to draw the conclusion 

in this case that DLSA is anisotropic and the weak point of azimuth estimation 

is the case when elevation is near 0 degree and azimuth is near -45 or 135 

degree. 

According to the CRB of estimation of azimuth    analysis, the directivity of 

DLSA in the estimation of azimuth   was that the performance of azimuth 

estimation increased with the increasing incident elevation and was period with 

constant change of incident azimuth. Given an incident elevation, it would be 

worst performance in estimating azimuth   when the incident azimuth was 

near -45 or 135 degree. This inference was identical with the geometric 

configuration of DLSA in some extent. 

Double Uniform Circular Array (DUCA) 

In this section, we tried to demonstrate the directivity of DUCA in DOA 

estimation by their CRB of estimation which was calculated from constant 

various incident angles. In section 5.4.2, the configuration of DUCA was 

demonstrated. Here, in order to make simulation typical and simple, we 

assumed elements of DUCA displace on the planes which were paralleled to x-

y plane and z=0.25m and -0.25m respectively, where five elements located in 

each plane. Geometrically, it was not difficult to accept that DUCA was 

isotropic along z axis. The simulation could gain the CRB of estimating 

azimuth and elevation respectively.   
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Figure 6.13 CRB ( ) of DUCA in DOA estimation 

Figure 6.13 describes the relationship between CRB of estimation of 

elevation   and various incident angles in DUCA. As figure 6.13 shows, the 

maximum magnitude of CRB is around       degree, when the incident 

azimuth is -135 or 45 degree and the incident elevation is around 0 degree. As 

we can figure out two peaks from the graph, these mean largest CRB of 

estimation of elevation   values. Besides, the CRB of estimation of elevation   

trend to be the same with increasing elevation, not matter how azimuth changes. 

According to figure 6.13, it was reliable to say that the DUCA had relative 

worse performance in estimating   when azimuth   was around -135 or 45 

degree and elevation   was around 0 degree. But, anyway, the DUCA was able 

to exactly estimate elevation of all incident angles, though the performance 

could be various with different incident angles.  

As the simulation outcome of estimation of elevation   in UCA showed, UCA 

was isotropic along the z axis in elevation estimation. Similarly, the DUCA 

should be isotropic along the z axis as well, which meant that the azimuth did 

not affect CRB of estimation of elevation  . However, the simulation outcome 

that the performance of estimation of elevation   depended on incident azimuth 

  was conflict with the well accepted view and this was proved by the 

information shown in figure 6.13.  
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Reasons of the CRB of estimation depending on the azimuth could be the 

limitation of array elements or the inaccuracy of the equation 5.23, which did 

not consider all the conditions of configuration. In detail, there were only five 

elements in each circle plane in this case, and this number of array elements 

was not large enough to make the array isotropic along z axis in total. In 

contrast, the DUCA would have the isotropic along z axis property, if the 

number of elements was large enough.  

Based on CRB of estimation of elevation    analysis, the directivity of DUCA 

in the estimation of elevation   was that the performance of difference in 

elevation estimation decreased with the increasing incident elevation and was 

period with constant change of incident azimuth. Given an incident elevation, it 

would be worst performance in estimating elevation   when the incident 

azimuth was near -135 or 45 degree. This inference was different from the 

geometric configuration of DUCA. 

 

Figure 6.14 CRB ( ) of DUCA  

Figure 6.14 describes the relationship between CRB of estimation of azimuth   

and various incident angles in UCA. As figure 6.14 shows, the maximum 

magnitude of CRB of estimation of azimuth   is around 0.2 degree, when the 

elevation is near 0 degree. In a general view, figure 6.14 shows the tendency of 

CRB of estimation of azimuth    that with the increasing of elevation (5 to 90 
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degree), the CRB of estimation of azimuth    decreases. Theoretically, the 

DUCA can have relatively poor performance in estimating azimuth when 

elevation is around 0 degree, which means the incident direction is 

perpendicular to x-y plane.  

The incident azimuth affects the performance, according to the graph. The 

CRB of estimation of azimuth   depends on the azimuth as there are peaks 

when azimuths are -45 and 135 degree. Thus, it is acceptable to draw the 

conclusion in this case that DUCA is anisotropic and the weak point of azimuth 

estimation is the case when elevation is near 0 degree and azimuth is near -45 

or 135 degree. 

From the CRB of estimation of azimuth    analysis, the directivity of DUCA in 

the estimation of azimuth   was that the performance of azimuth estimation 

increased with the increasing incident elevation and was period with constant 

change of the incident azimuth. Given an incident elevation, it would be worst 

performance in estimating azimuth   when the incident azimuth was near -45 

or 135 degree. This inference was different from the geometric configuration of 

DUCA. 

Conclusion 

Generally, the directivity of estimation of above array geometries was identical 

with their geometric directivity. However, the directivity of estimation was 

different from geometric directivity in some cases, such as DUCA. From figure 

6.13, where there are two periods rather than five periods in the diversion of 

azimuth according to the geometry, we can imply that equation 5.23 cannot 

demonstrate the CRB of array configurations exactly.  

Also, according to the simulation and analysis mentioned above, we should 

make sure that the performance of estimation could be terrible when the 

elevation was near 0 degree or 90 degree. Therefore, we should try to prevent 

estimating signal with these incident angle not only in simulation but also in 

practice. When the elevation ranged from 10 to 80 degree, CRB value of 

estimation of various geometries located at a relative similar range and this 

range was called isotropic range by some researchers [2]. In this range, it was 

feasible to make further researches and comparisons of array geometries. It was 
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clear that we need take more differential geometries to analyze the directivity 

of the array geometry in further research. 

6.2.2 Accuracy of array geometry 

In this section, we tried to simulate the case that one signal with a particular 

incident angle impinges on various kind of array geometries and to research the 

accuracy by CRB and RMSE in this section. In order to set the same condition 

for all geometries, we should set all the conditions the same. We implemented 

MUSIC in all simulations is this section. Besides, the incident angle (   ) 

denoted the azimuth and the elevation respectively. 

CRB versus SNR 

Here, the incident angle(   ) is (         ). The number of snapshot was 50, 

 =1m and M=10. The CRB of UCA, LSA, DLSA and DUCA were shown in 

figure 6.15 and 6.16. 

 

Figure 6.15 CRB ( ) of different array geometries versus SNR 

Figure 6.15 demonstrates the relationship between the accuracy of elevation 

estimation and SNR. Here, CramerpLL, CramerpL, CramerpDC and CramerpC 

represent the Cramer-Rao Bound of elevation estimation of Double L Shaped 

Array, L Shaped Array, Double Uniform Circular Array and Uniform Circular 
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Array respectively. With this particular incident angle, we can find out the 

CRB of elevation estimation decreases with the incensement of SNR. In detail, 

performances of LSA, DLSA and UCA are better than DUCA’s. 

 

Figure 6.16 CRB ( ) of different array geometries versus SNR 

Figure 6.16 demonstrates the relationship between the accuracy of azimuth 

estimation and SNR. Here, CrameriLL, CrameriL, CrameriDC and CrameriC 

represent the Cramer-Rao Bound of azimuth estimation of Double L Shaped 

Array, L Shaped Array, Double Uniform Circular Array and Uniform Circular 

Array respectively. With the particular incident angle, we can find out the CRB 

of azimuth estimation decreases with the incensement of SNR. Relatively, 

performances of LSA, DLSA and UCA are better than DUCA’s, where the 

LSA has the best performance. 

CRB versus snapshot 

Similarly, the incident angle(   ) was (         ). SNR is 10dB,  =1m and 

M=10. The CRB of UCA, LSA, DLSA and DUCA were shown in figure 6.17 

and 6.18. 
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Figure 6.17 CRB ( ) of different array geometries versus snapshot 

Figure 6.17 describes the relationship between the accuracy of elevation 

estimation and snapshot. Here, CramerpLL, CramerpL, CramerpDC and 

CramerpC represent the Cramer-Rao Bound of elevation estimation of Double 

L Shaped Array, L Shaped Array, Double Uniform Circular Array and 

Uniform Circular Array respectively. With this particular incident angle, we 

can find out the CRB of elevation estimation decreases with the incensement of 

snapshot. In detail, performances of LSA, DLSA and UCA are similar, but 

better than DUCA’s. 
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Figure 6.18 CRB ( ) of different array geometries versus SNR 

Figure 6.18 explains the relationship between the accuracy of azimuth 

estimation and snapshot. Here, CrameriLL, CrameriL, CrameriDC and 

CrameriC represent the Cramer-Rao Bound of azimuth estimation of Double L 

Shaped Array, L Shaped Array, Double Uniform Circular Array and Uniform 

Circular Array respectively. With the particular incident angle, we can find out 

the CRB of azimuth estimation decreases with the incensement of snapshot. 

Relatively, performances of LSA, DLSA and UCA are better than DUCA’s, 

where the LSA has the best accuracy theoretically. 

Consequently, we could predict by the CRB performance that LSA, UCA and 

DLSA would have a good accuracy in simulation trials. 

RMSE versus SNR 

It was common to take RMSE as a measurement of accuracy as we did in this 

section. Here, the incident angle(   ) was (         ). The number of 

snapshot was 50 when SNR was a parameter, and SNR=10dB when snapshot 

was a parameter. The number of array elements was 10. The number of trials 

was an important factor, and definitely the more trials were the better outcome 

which was close to the true will be derived. In this simulation, we chose the 

number of trials as 500.  
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Figure 6.19 RMSE of elevation estimation of different array geometries versus 

SNR 

Figure 6.19 demonstrates the relationship between the RMSE of elevation 

estimation and SNR. Here, RMSEILL, RMSEIL, RMSEIDC and RMSEIC 

represent the Root Mean Square Error of elevation estimation of Double L 

Shaped Array, L Shaped Array, Double Uniform Circular Array and Uniform 

Circular Array respectively. With this particular incident angle, we can find out 

the RMSE of elevation estimation decreases with the incensement of SNR, and 

it is the same with CRB. As for all SNR value, RMSEs of LSA, DLSA and 

UCA are smaller than DUCA’s, and RMSEs of LSA, DLSA and UCA are 

similar meanwhile. 
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Figure 6.20 RMSE of azimuth estimation of different array geometries versus 

SNR 

Figure 6.20 shows the relationship between the RMSE of azimuth estimation 

and SNR. Here, RMSErLL, RMSErL, RMSErDC and RMSErC represent the 

Root Mean Square Error of azimuth estimation of Double L Shaped Array, L 

Shaped Array, Double Uniform Circular Array and Uniform Circular Array 

respectively. With this particular incident angle, we can see that the RMSE of 

azimuth estimation decreases with the incensement of SNR, and it is the same 

with CRB. For all SNR value, RMSEs of LSA, DLSA and DUCA are smaller 

than UCA’s, and RMSEs of LSA, DLSA and DUCA are similar, which is not 

the same with CRB shown in 6.16. 

RMSE versus snapshot 

Here, the incident angle(   ) was (         ). SNR=10dB and the number 

of array elements was 10. The number of trials was 500 as well. 
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Figure 6.21 RMSE of elevation estimation of different array geometries versus 

snapshot 

Figure 6.21 demonstrates the relationship between the RMSE of elevation 

estimation and snapshot. Here, RMSEILL, RMSEIL, RMSEIDC and RMSEIC 

represent the Root Mean Square Error of elevation estimation of Double L 

Shaped Array, L Shaped Array, Double Uniform Circular Array and Uniform 

Circular Array respectively. With this particular incident angle, we can find out 

the RMSE of elevation estimation decreases with the incensement of snapshot, 

and it is the same with CRB. As for all SNR value, RMSEs of LSA, DLSA and 

UCA are smaller than DUCA’s, and UCA has the best RMSE performance. 
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Figure 6.22 RMSE of azimuth estimation of different array geometries versus 

snapshot 

Figure 6.22 demonstrates the relationship between the accuracy of azimuth 

estimation and snapshot. Here, RMSErLL, RMSErL, RMSErDC and RMSErC 

represent the Root Mean Square Error of azimuth estimation of Double L 

Shaped Array, L Shaped Array, Double Uniform Circular Array and Uniform 

Circular Array respectively. With this particular incident angle, we can see that 

the RMSE of azimuth estimation decreases with the incensement of snapshot, 

and it is the same with CRB. For all SNR value, RMSEs of LSA, DLSA and 

DUCA are smaller than UCA’s, and RMSEs of LSA, DLSA and DUCA are 

similar, which is not the same with CRB shown in 6.18. 

Conclusion 

In general, as for this particular incident angle, accuracy performances of LSA 

and DLSA were better than the other two array geometries, because they were 

excellently adapted to both elevation and azimuth estimation. It was not hard to 

accept their adaptable performance, because DLSA had at least two sub arrays 

(one for LSA) to receive signals with whatever incident angles. 

Though UCA was isotropic to azimuth, the accuracy of azimuth estimation was 

worst in simulation. The particular incident angle could be a possible reason of 

the good performance in elevation estimation but poor performance in azimuth 
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estimation. The further feasible analysis needed the help of differential 

geometry. 

In this dissertation, we implemented DUCA in simulation and proved its poor 

accuracy. In a more general word, we could predict that array geometries, 

whose elements maybe prevented the signal from other elements, would not 

perform as good as those whose elements did not. e.g., the element of a cube 

shaped array would disturb other elements with 45 degree elevation and a 

particular azimuth. 

6.2.3 Resolving ability 

In this section we tried to research the detection ability of array geometries. 

Here, we defined the detection ability as the ability to generate the exact peak 

in the    ( ) graph, which was demonstrated in 4.2. In the simulation, if the 

estimation angle was near the incident angle within 3 degree (both azimuth and 

elevation), and the peak value was more than three times of the mean 

of    ( ), we would regard the detection as successful. The incident 

angle(   ) was (         ) in this case. 

Resolving ability versus SNR 

In the simulation, the snapshot number was 1, and the elements number was 10. 

SNR ranged from 1 to 20 dB. We made 50 trials in each SNR. 
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Figure 6.23 the number of detection versus SNR 

From the figure 6.23, we can figure out that DLSA has the best ability to 

resolve the signal, regardless of the accuracy. The resolving ability of LSA and 

UCA is acceptable even in poor condition, which means low SNR and low 

snapshots number. The DUCA is not good at the DOA estimation in low SNR 

case.  

Resolving ability versus snapshot 

In the simulation, the SNR was 0 dB, and the elements number was 10. The 

number of snapshots ranged from 1 to 20. We made 50 trials in each SNR. 
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Figure 6.24 the number of detection versus snapshot 

From the figure 6.24, we can figure out that DLSA has the best ability to 

resolve the signal, in the low snapshots number condition. The resolving ability 

of LSA and UCA is acceptable even in poor condition, which means low SNR 

and low snapshots number. The DUCA is not good at the DOA estimation in 

low SNR case.  

Conclusion 

According to the simulation is this section, it was fair to say that DLSA had a 

good performance in signal resolving. Here, the snapshot number decided the 

reaction time. e.g., the estimation could be made as once, if the number of 

snapshot was. As we known, SNR meant the ratio of signal power to noise 

power, and good resolving ability in low SNR represented the big chance to 

detect the signal in a noisy condition. 

6.3 Conclusion and comparison 

In this section, we simulated MUSIC, Root-MUSIC and ESPRIT with ULA of 

one dimension in 6.1 and various array geometries with MUSIC of two 

dimensions in 6.2. 
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From the simulation of these three algorithms, we could get the conclusion that 

MUSIC a good accuracy, which was better than ESPRIT and Root-MUSIC, 

and ESPRIT, had the best computation efficiency. 

From the analysis of array geometry, in general, we could declare that DLSA 

had good performance in the aspects of both accuracy and detection ability. 

Furthermore, the LSA and UCA were acceptable in the accuracy and detection 

ability test, and it meant that these two kinds of array geometries were able to 

be used in other researches.  We must note that DUCA has relative poor 

property in almost all simulation in this section. 
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Chapter7 Conclusion and Future work 

Previous chapters have analyzed eigendecomposition algorithms and array 

geometries. In this chapter, we will draw a conclusion of the whole dissertation 

and make a plan for the further research. 

7.1 Conclusion 

In this dissertation, we researched the algorithms of Direction of arrival 

estimation and array geometries. In chapter 2, we demonstrated the problem 

which was concerned in this dissertation. Then the chapter 3 described some 

background knowledge of DOA estimation. Some DOA estimation algorithms 

were expressed in chapter 4 and we analyzed various array geometries in 

chapter 5. The chapter 6 showed the simulation of the problem discussed in this 

dissertation and we draw the conclusion in this chapter. Based on the research 

of this dissertation, we could get some conclusion. 

ESPRIT was the most efficient algorithm in these three algorithms. This was 

because ESPRIT was proposed in order to promote the computation efficiency 

from MUSIC, sacrificing a part of accuracy. 

MUSIC had the best accuracy in these three algorithms.  

In the case of plane array, L Shaped Array (LSA) and Uniform Circle Array 

(UCA) had acceptable properties in DOA estimation. 

Double L Shaped Array (DLSA) had an unexpected ability in signal detection. 

DLSA showed an amazing adaptability to all kinds of incident angle. 

7.2 Future work 

It is true that this dissertation is not a perfect research of DOA estimation 

algorithms or array geometries. There are large number of places where can 

further the research. 

Firstly, we will further the research of DOA estimation. In detail, there will be 

lots of algorithms of DOA other than MUSIC, Root-MUSIC and ESPRIT, 

which will be taken into account in future. Moreover, definitely, MUSIC, 



 

100 

 

Root-MUSIC and ESPRIT have the potential to develop, as some researchers 

did. MUSIC, Root-MUSIC and ESPRIT are Eigen vector decomposition (EVD) 

methods, which is only one way to exploit the information of the data, and 

there are other ideas of processing the data in DOA estimation. 

Secondly, the array geometry is a new research area proposed in the last decade. 

Obviously, there will be new spaces, which are worth to be researched, 

everywhere in array geometry study. Practically, the simulation of the array 

directivity is available to be made. Furthermore, some array geometries 

changed from DLAS is interesting and we can further the research in this area. 

It is clear that the directivity, accuracy and detection ability are just some 

aspects of the study of array geometry. Also, it is possible to use differential 

geometry to analyze the array configuration in the future work. 

Thirdly, in this dissertation, idealized antenna models are used, but, in real case, 

the directivity of the antenna elements and the mutual coupling between them 

may affect the DOA estimation outcomes. Therefore, we will take account the 

mutual coupling between elements in the implement of accurate DOA 

estimation in further research. 

In general, the array geometry in DOA estimation, even in beam forming, is an 

interesting area and it is well worth further research in array geometry. 


