

Division of Drug Delivery and Tissue Engineering School of Pharmacy

Effect of Proinflammatory Cytokines on Lung and Intestinal Mucosal Permeability *in Vitro*

Abdullah Alshehri, BSc.

Thesis submitted to the University of Nottingham for the degree of Master of Research

September 2012

Abstract

Transport of therapeutics across mucosal barriers provides an attractive route for noninvasive drug delivery, if sufficient drug permeability can be achieved. In inflammatory conditions of the epithelial mucosa, the barrier characteristics were observed to be modified with the permeability of noxious molecules increased significantly due to, at least in part, elevated levels of proinflammatory cytokines leading to tight junction disruption. This work aims to investigate the effect of selected cytokines on the barrier characteristics of airway and intestinal cell cultures in vitro in order to improve the understanding of transport features across inflamed epithelial cell layers. Data indicated that a three-four days short-term treatment with tumor necrosis factors-alpha (TNF- α) produced a significant effect on Calu-3 cell layers and some effect on Caco-2 cells, as shown by decreased transepithelial resistance (TEER values and increased permeability of model permeant (fluorescein isothiocyanate dextran with molecular weight of 10kDa, FD10). On the other hand, short-term treatments with proinflammatory cytokines interleukin-4 and interleukin-13 IL-4 and IL-13 did not show significant effects on the tested cell lines. Combined effect of cytokines was shown to cause a significant effect on Calu-3 apparent permeability coefficient (P_{app}) when the combination contains TNF- α , while the P_{app} across Caco-2 layers was observed to be influenced by IL-4/IL-13 combination; the effect being reduced when TNF- α was present. In the situation of long-term treatment (for the duration of cell culture), IL-4 and IL-13 did not produce a significant effect on TEER and P_{app} for both cell lines when incubated for 21 days. TNF- α however produced a significant effect on FD10 permeability across layers of both cell lines. Finally, the work examined the expression features of tight junction proteins (TJP2 and TJP3) and endocytosis pathway components (LAMP1, RAB4A, and RAB5A) in the cell layers following a prolonged exposure to the proinflammatory mediator TNF-α. Results

demonstrated that expression of the tested TJ proteins was downregulated, though endocytosis related proteins did not show alteration in their expression. These results therefore indicated that the presence of proinflammatory cytokines could be involved in the improvement in the transport of macromolecules through epithelial mucosa by affecting a TJ opening.

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful. All praises to Allah for the strengths and His blessing in completing this thesis.

First of all, I would like to express my deepest gratefulness to my supervisor, Dr Snow Stolnik-Trenkic, for her supervision, outstanding guidance from the very early stage of this research and providing me with an excellent atmosphere for doing research. Above all and the most needed, she provided me unlimited encouragement and support.

I gratefully acknowledge to my co-supervisor, Dr Driton Vllasaliu, for his advice, supervision, crucial contribution and patiently corrected my writing. His invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research.

I would like to express my appreciation Dr Franco Falcone for his support and knowledge regarding gene expression work. In addition, I wish to extend my appreciation to Dr Ian Sayers for his help in the analysis of microarray gene expression data. Not forget, great appreciation go to the rest of Snow's group members that help me from time to time during the lab work.

I wish to express my deepest appreciation to my government in the Kingdom of Saudi Arabia, especially King Abdulaziz City for Science and Technology (KACST) for their financial support.

My parents deserve special mention for their inseparable support and prayers. My Father, Ali, in the first place is the person who put the fundament my learning character and showing me

iii

the joy of intellectual pursuit ever since I was a child. My Mother, Zinah, is the one who sincerely raised me with her caring and gently love.

Finally, words fail to express my appreciation to my wife, Amani. She was always there cheering me up and stood by me through the good times and bad.

Table of Contents

Abstracti
Acknowledgementsiii
List of Figuresix
List of Tablesxii
List of Abbreviationsxiii
Chapter 1: Introduction
1.1 Mucosal Drug Delivery1
1.1.1 Transport Pathways across Epithelial Mucosa1
1.1.2 Mucosal Barriers
1.1.3 The Role of Epithelial Membrane Proteins on the Regulation of Transport Processes
1.2 Effect of Cytokines on Mucosal Barriers Characteristics in Airway and Intestinal Inflammatory Diseases
1.2.1 Proinflammatory Cytokines
1.2.2 Proinflammatory Cytokines and Inflamed Mucosa11
1.3 Cell Culture Models of Epithelium14
1.3.1 Calu-3 Cell Line
1.3.2 Caco-2 Cell Line
1.4 Conclusion19
1.5 Project Aims
1.6 References
Chapter 2: Materials and General Methods
2.1 Materials
2.1.1 Cells and Cell Culture Consumables
2.1.2 Biological Agents
2.1.3 Model Macromolecular Drug
2.1.4 PCR
2.2 Methods
2.2.1 Cell Maintenance
2.2.2 Measurement of Transepithelial Electrical Resistance (TEER)

2.2.3 Effect of Cytokines on Tight Junctions: Measurement of TEER
2.2.4 Effect of Cytokines on Tight Junctions: Measurement of Permeability
2.2.5 Confocal Microscopy Imaging of Tight Junction Protein, Zonula Occludens (ZO-1)
2.2.6 Collection of Gene Microarray Data from GEO
2.2.7 Statistical Analysis
Chapter 3: Effect of Cytokines on Barrier Characteristics of Human Airway Epithelial Cell Layers (Calu-3)
3.1 Introduction
3.2 Methods
3.2.1 Effect of Site-Specific Cytokine Addition on Epithelial Barrier
3.2.2 Effect of Cytokines on Zonula Occludens-1 Protein
3.3 Results
3.3.1 Effect of Site-Specific Cytokine Application on Calu-3 Barrier for 3 days
3.3.2 Effect of Basolateral Cytokine Application on Cell Layer Barrier: a Comparison between Different Cytokines
3.3.3 Effect of Combined Cytokine Application on Calu-3 Layer
3.4 Discussion
3.5 Conclusion
3.6 References:
Chapter 4: Effect of Cytokines on Barrier Characteristics of Human Intestinal Epithelial Cell Layers (Caco-2)
4.1 Introduction
4.2 Methods
4.2.1 Effect of Site-Specific Cytokine Addition on Epithelial Barrier
4.3 Results
4.3.1 Effect of Site-Specific Cytokine Application on Caco-2 Barrier
4.3.2 Effect of Basolateral Cytokine Application on Cell Layer Barrier: a Comparison between Different Cytokines
4.3.3 Effect of Combined Cytokine Application on Caco-2 Barrier
4.4 Discussion
4.5 Conclusion
4.6 References
Chapter 5: Effect of Long-Term Cytokines Treatment on Barrier Characteristics of Human Airway and Intestinal Epithelial Cell Layers

5.1 Introduction	
5.2 Methods	
5.2.1 Effect of Cytokines on Calu-3 and Caco-2 TEER	
5.2.2 Effect of Cytokines on Calu-3 and Caco-2 Permeability	
5.3 Results	
5.3.1 Effect of Long-Term Cytokines Application on Calu-3 and Ca Properties	aco-2 Barrier
5.4 Discussion	
5.5 Conclusion	116
5.6 References	117
Chapter 6: Effect of Cytokines on the Expression of Human Intestinal and Airw Barrier Genes	ay Epithelial
6.1 Introduction	
6.2 Methods	
6.2.1 Cell Culture and Cytokine Treatment	
6.2.2 Primer Design for PCR	
6.2.3 PCR Analysis	
6.3 Results	
6.3.1 Expression Analysis of Candidate Genes	
6.3.2 Effect of TNF- α on the Expression of Caco-2 and Calu-3 Barrier Gene	es 131
6.4 Discussion	
6.5 Conclusion	
6.6 References	
Chapter 7: Summary and Future Work	
7.1 Overall Summary	
7.2 Future Work	
Chapter 8: Appendices	
8.1 The Effect of TNF- α on Calu-3 Cell Layers at Concentrations of (10, 25,	and 50ng/ml) 150
8.2 Affymetrix Array of Candidate Genes from (GeneCards)	151
8.3 Normalizing Gene expression Data from (GEO)	
8.3.1 Study 1	
8.3.2 Study 2	
8.3.3 Study 3	

3.2.4 Study 4

List of Figures

Figure 1.1 Transport mechanisms across epithelial mucosa
Figure 1.2 The tight junction complex composed of several proteins
Figure 1.3 Schematic representation of IL-4 and IL-13 receptors
Figure 1.4 Schematic representation of the mechanism of TNF- α effect on tight junction
complex during inflammation reaction
Figure 1.5 Schematic represent the structure of Calu-3 monolayers
Figure 1.6 Schematic represent the structure of Caco-2 monolayers
Figure 2.1 Schematic representation of the Voltohmmeter (EVOM, World Precision
Instruments) system used to measure transepithelial electrical resistance
Figure 3.1 TEER measurements of Calu-3 cells cultured on filters using AIC conditions and
treated by a) TNF- α (25ng/ml), b) IL-4 (5ng/ml), c) IL-13 (5ng/ml) for 72 hours
Figure 3.2 Effect of 96 hours cytokine treatment on FD10 permeability across Calu-3 layers
at 37°C. Exposure to a) TNF- α (25ng/ml), b) IL-4 (5 ng/ml) and c) IL-13 (5 ng/ml)52
Figure 3.3 Effect of 96 hours cytokine treatment on FD10 permeability across Calu-3 layers
at 4°C. Exposure to a) TNF- α (25ng/ml), b) IL-4 (5 ng/ml) and c) IL-13 (5 ng/ml)55
Figure 3.4 TEER measurements of Calu-3 cells cultured on filters using AIC conditions and
treated for 96 hours with cytokines (IL-4 and IL-13 at (5 ng/ml) and TNF- α at (25 ng/ml) 56
Figure 3.5 Effect of tested cytokines on FD10 permeability across Calu-3 layers at 37°C.
Cytokines treatment for 96 hours
Figure 3.6 Effect of tested cytokines on FD10 permeability across Calu-3 layers at 4°C.
Cytokines treatment for 96 hours
Figure 3.7 a) Immunostaining for ZO-1 tight junction protein in cell layers treated with TNF-
α for four days

Figure 3.8 TEER measurements of Calu-3 cells cultured on filters using AIC conditions and
treated by cytokines combinations (IL-4 and IL-13 at (5ng/ml) and TNF- α at (25ng/ml)) for 4
days
Figure 3.11 Immunostaning of TJs protein (ZO-1) of Calu-3 cells pre-treated with cytokines
combinations for 4 days
Figure 4.1 TEER measurements of Caco-2 cells cultured on filters treated by a) TNF- α
(25ng/ml), b) IL-4 (5ng/ml), c) IL-13 (5ng/ml) for 96 hours
Figure 4.2 Effect of a) TNF-a (25ng/ml), b) IL-4 (5ng/ml), c) IL-13 (5ng/ml) on FD10
permeability across Caco-2 layers at 37°C
Figure 4.3 Effect of a) TNF-a (25ng/ml), b) IL-4 (5ng/ml), c) IL-13 (5ng/ml) on FD10
permeability across Caco-2 layers at 4°C
Figure 4.4 TEER measurements of Caco-2 cells cultured on filters and treated by individual
cytokines {IL-4 and IL-13 at (5ng/ml) and TNF- α at (25ng/ml)} for 4days
Figure 4.5 Effect of individual cytokines on FD10 permeability across Caco-2 layers at 37°C.
Figure 4.6 Effect of individual cytokines on FD10 permeability across Caco-2 layers at 4°C.
Figure 4.7 TEER measurements of Caco-2 cells cultured on filters and treated by combined
cytokines {IL-4 and IL-13 at (5ng/ml) and TNF- α at (25ng/ml)} for 4 days
Figure 4.8 Effect of combined cytokines on FD10 permeability across Caco-2 layers at 37°C.
Figure 4.9 Effect of combined cytokines on FD10 permeability across Caco-2 layers at 4°C.
Figure 5.1 TEER profiles of a) Calu-3 and b) Caco-2 cells cultured on Transwell® filters and
treated for 21 days with IL-4, IL-13 (5ng/ml) and TNF-α (25ng/ml)108

Comparison of the effect of long-term and short-term TNF- α (25ng/ml) Figure 5.3 Figure 6.1 Graph shows significant difference between the expression of normal control Figure 6.2 Graph shows significant difference between the expression of normal control Figure 6.3 Graph shows significant difference between the expression of normal control Figure 6.4 Graph shows significant difference between the expression of normal control Figure 6.5 Graph shows significant difference between the expression of normal control Figure 6.6 Effect of time-dependent proinflammatory cytokine TNF- α (25ng/ml) treatment on

List of Tables

Table 2.1 Summary of four studies examined from GEO database
Table 6.1 Several genes whose expression features could play key roles in remodelling of the
epithelium in inflammatory conditions
Table 6.2 List of forward and reverse primers that used to examine the expression features of
candidate genes
Table 6.3. Summary of gene expression data analysis result for a list of candidate genes
examined by GEO database

List of Abbreviations

%	Percentage
0	Degree
°C	Degree Celsius
Å	Angstrom
AB/AM	Antibiotic/Antimycotic
AHR	Airway Hyper Reactivity
AIC	Air-Interfaced Culture
ATCC	American Type Culture Collection
bp	Base Pair
BSA	Bovine Serum Albumin
cDNA	Complementary Deoxyribonucleic Acid
CAV1	Caveolin 1 protein
CDH1	E-cadherin
CLTC	Clathrin Heavy Chain
CLDN	Claudin
cm ²	Square Centimetre
CO2	Carbon dioxide
CUBN	Intrinsic Factor-cobalamin Receptor

Da	Dalton
DABCO	1,4-Diazabicyclo-octane
DNA	Deoxyribonucleic Acid
DMEM	Dulbeco's Modified Eagles Medium
DMSO	Dimethylsulphoxide
ECACC	European Collection of Cell Cultures
EDTA	Ethylene Diamine Tetraacetic Acid
EEA1	Early Endosome Antigen 1
EMEM	Essential Minimum Eagle's Medium
EVOM	Epithelial Voltohmmeter
FBS	Foetal Bovine Serum
FCGRT	Fc Fragment of IgG Receptor Transporter Alpha
FD10	Fluorescein Isothiocyanate-dextran 10 kilodalton
FDA	Food and Drug Administration
FITC	Fluorescein Isothiocyanate
FPR1	Formyl Peptide Receptor 1
FOLR1	Folate Receptor 1
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GEO	Gene Expression Omnibus

GI	Gastro Intestinal
HBSS	Hank's Balanced Salt Solution
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IBD	Irritable Bowel Disease
IL-4	Interleukin-4
IL-4Rα	Interleukin-4 Receptor Alpha
IL-13	Interleukin-13
IL-13Ra	Interleukin-13 Receptor Alpha
JAM	Junctional Adhesion Molecules
kDa	Kilodalton
LCC	Liquid-covered Culture
M6PR	Mannose-6-phosphate Receptor
М	Molar
mM	Millimoles
ml	Millilitre
MLCK	Myosin Light-chain Kinase
mRNA	Messenger Ribonucleic acid
MW	Molecular weight
NCBI	National Centre for Biotechnology Information
NF-kB	Nuclear Factor Kappa B

nm	Nanometer
LAMP1	Lysosomal-associated Membrane Protein 1
OCLN	Occludin
P _{app}	Apparent permeability coefficient
PCR	Polymerase Chain Reaction
PBS	Phosphate Buffered Saline
RAB	RAS Oncogene Family
SD	Standard deviation
TBE	Tris-Borate-EDTA
TEER	Transepithelial Electrical Resistance
Th-cell	T Helper Cell
TJ	Tight Junction
TJP	Tight Junction Protein
TNF-α	Tumor Necrosis Factor-alpha
v/v	Volume per unit Volume
w/v	Weight per unit Volume
ZO-1	Zonula occludens-1
μl	Microlitre
μm	Micrometer
Ω	Ohm (electrical resistance unit)

Chapter 1

Introduction

1.1.1 Mucosal Drug Delivery

In the field of drug delivery, mucosal delivery is considered a very attractive option for the administration of therapeutic drugs [1]. Currently, considerable effort in pharmaceutical research is focusing on the epithelial drug transport mechanisms involved in mucosal drug delivery [1]. One of the main advantages of mucosal delivery is patients` compliance when using non-invasive methods [2]. Furthermore, mucosally-delivered therapeutics have the capacity to escape the hepatic first-pass mechanism [2]. The mucosal epithelia considered for drug delivery includes several routes: oral, buccal, pulmonary, vaginal, nasal and ocular [1].

1.1.2 Transport Pathways across Epithelial Mucosa

Macromolecules and nanoparticles have been shown to be transported across epithelial mucosa using different mechanisms [3]. The paracellular pathway is one of the major potential mechanisms of transmucosal transport, particularly for hydrophilic and relatively smaller macromolecules [4]. In this route, hydrophilic macromolecules and, according to some authors, nanoparticles pass through restrictive complexes between adjacent cells called tight junctions [4][5]. Hydrophobic and bigger macromolecules, and nanoparticles can be also able to cross the mucosal cell layer through a transcellular pathway [6]. Transcellular transport may occur by transcytosis (carrier-mediated mechanism) [4][7]. In this pathway, the material binds to specific receptors and is captured in vesicles that move the

macromolecules from the apical to the basolateral side [7][8]. Figure 1.1 shows a summary of the potential transport pathways.

Figure 1.1 Transport mechanisms across epithelial mucosa.
A) Paracellular pathway (red). B) Transcellular pathway (green). C) Transcytosis pathway (carrier-mediated) (blue).

1.1.2 Mucosal Barriers

Understanding the physiology of mucosal tissue is important in the field of drug delivery, because it may lead to improvements in the absorption properties of new therapeutic agents. To achieve delivery, different barriers that mucosa present need to overcome successfully. In the following sections, some of these barriers will be described in more detail.

1.1.2.1 Tight Junctions Barrier

Typically cells in mucosal tissue are connected apically by a strong paracellular complex of proteins, known as tight junctions (TJ). This makes the mucosal barrier very restrictive against the free diffusion of solutes [9][10]. Moreover, the transport selectivity of water, substances and ions could be controlled by the tight junction complex [9]. Several protein components have been reported to play a key role in tight junction function and structure [11], as shown in figure 1.2. Tight junction proteins (zonula occludens - ZO-1, ZO-2, ZO-3), trans membrane proteins (claudins, occludin) and the junctional adhesion molecule (JAM) have been documented to contribute to the TJ structure [9].

It has been suggested that the molecules with molecular weights of more than 3.5 kDa would not be able to cross the paracellular route in healthy barriers because the space width of a TJ is about 15 Å [12][13]. When the tight junction function has been disrupted, the free diffusion of noxious substances would be increased, and several diseases could be significantly stimulated [10]. It has been shown in a number of inflammation studies that intestinal and respiratory inflammatory conditions are essentially associated with defectiveness in tight junctions [14][15][16]. This observation will be described later in this chapter.

Basolateral side

Figure 1.2 The tight junction complex composed of several proteins such as claudins, occludin and junctional adhesion molecule (JAM), which 'seal' the intercellular space tightly.

1.1.2.2 Mucus Barrier

The mucus barrier that covers most epithelial membranes plays an important physiological function *in vivo* [17][18]. It is secreted by mucosal gland or goblet cells [7]. Intestinal and respiratory tissues, for example, are known to secrete mucus to protect their mucosa from the free diffusion of harmful agents from the external environment [19][12]. Moreover, other functions have been observed with mucus in the human body, such as lubrication [20], antimicrobial effects, and water balance [21]. Drug absorption was also documented to be affected by the mucus layers [21].

Mucus constituents are usually dependent on the tissue type, but it is generally composed of water, glycoproteins and lipids, in addition to other components present in low amounts, such as minerals [21]. One of the most common components of mucus is mucin. This macromolecular compound forms a very viscous layer on epithelium, which has a profound effect on the transport of molecules [21][22]. The transport of molecules across the mucus layer depends on several factors, such as the molecular size and affinity for mucus components [21]. It must be noted that a good understanding of mucus production in normal and diseased tissues would improve drug delivery efficiency across mucosa [21]. The alteration in mucus properties has been reported in different disease conditions, including mucus over-secretion or changes in mucus viscosity or thickness [23][24].

1.1.3 The Role of Epithelial Membrane Proteins on the Regulation of Transport Processes

A number of investigations have demonstrated that several membrane proteins play an essential function in the regulation of transport processes across mucosal membranes in humans. TJP2 and TJP3 proteins were reported to be significantly involved in the permeability of substances across intercellular route [25][26][27]. Furthermore, several other proteins were suggested to contribute in the regulation of transport processes involved in the transcytosis pathway. These include, for example, RAB4A, RAB5A and LAMP1 [28][29][30].

TJP2 (ZO-2) and TJP3 (ZO-3) are major components of the tight junction complex regulation and formation which controls the transport across paracellular route of epithelial monolayers [31][5][32]. In healthy epithelial tissue, TJP2 and TJP3 contribute to the prevention of the transport of noxious elements across epithelium into the systemic circulation, while in

inflamed tissue the tight junctions were reported to be damaged in inflamed tissue and characterised by an increased permeability of substances using the paracellular route [33].

RAB4A has been documented to regulate the endocytosis pathway of transport and cell-cell adhesions of epithelial cells [29][34]. Moreover, RAB5A and LAMP1 contribute in early and late endosomal process, respectively [30][35]. A study reported that LAMP1 plays multiple functions in transport across cells *via* endocytosis [36]. RAB4A and RAB5A are important members of the RAB family and have a role in the regulation of early and recycling endosomes processes, respectively, and also the endocytosis pathway of transport in a wide range of cells [34][37][38][39].

It might be worth examining the expression features of these proteins in normal and inflammatory conditions in order to establish an understanding of their involvement in transport process regulation. Also, a study on the expression of these proteins will determine whether the inflammation reaction influences the transport across the mucosal tissue by remodelling the tight junction complex (the paracellular route) or by affecting the transcytosis mechanism.

1.2 Effect of Cytokines on Mucosal Barriers Characteristics in Airway and Intestinal Inflammatory Diseases

1.2.1 Proinflammatory Cytokines

Cytokines are relatively small endogenous proteins with low molecular weights between 8 and 40 kDa [40], which are mainly released by immune cells [41]. In terms of the site of production, cytokines can be categorised into two groups: (i) T-helper 1 cytokines, such as TNF- α , and (ii) T-helper 2 cytokines, such as IL-4 and IL-13 [42]. Cytokines play an

essential physiological function in the human body by providing a connection between the immune system and the (inflamed) tissues [43] in order to stimulate a host defence mechanism [40][44]. One study, for instance, demonstrated that the human immune system can be induced by cytokines during inflammation reactions [42].

Nowadays, numerous laboratories use cytokines to examine the immune reactions of human mucosa *in vitro* [42]. Moreover, proinflammatory cytokines have been shown to have a significant effect on the structure and function of epithelial cell layers of *in vitro* models [18]. An experimental *in vitro* study on epithelial models has, for example, demonstrated that proinflammatory cytokines play a key role in tight junction dysfunction [18]. Recent research stated that a wide array of proinflammatory cytokines play a role in tight junction remodelling through the disruption of occludin and claudin regulation [45][46][10]. The regulation of tight junction proteins by proinflammatory cytokines is believed to be one of the major mechanisms behind the development of inflammatory disorders [45]. At present, several cytokine antagonist agents are under clinical investigation due to the possible benefit of using these agents when treating inflammatory disorders of airways and the intestines [18][47]. In the experimental chapters in this thesis, three proinflammatory cytokines, IL-4, IL-13, and TNF- α , were used to investigate their effect on the barrier characteristics of airway and intestinal epithelia.

1.2.1.1 Interleukin 4 and 13 (IL-4 and IL-13)

The proinflammatory cytokines that were selected for use in this project are interleukin 4 and 13. Interleukins are a group of cytokines that include several cytokines, such as IL-4 and IL-13, which play a significant function in the regulation of the epithelial paracellular pathway [45]. Both IL-4 and IL-13 are released endogenously from T-helper 2 cells [18]. An inflamed

epithelial membrane can be considered as one of the main sources of these interleukins in such inflammation reactions [18][16]. It has been reported that both IL-4 and IL-13 play an essential role in increasing the permeability of mucosa during inflammatory disorders [48]. With regard to the effect of combined cytokines, synergetic influence has been reported with IL-4 and IL-13 when combined with TNF- α [49].

Figure 1.3 illustrates that IL-4 and IL-13 share the receptors; therefore, numerous investigations have stated that these interleukins furthermore share a similar physiological function [48]. Both IL-4 and IL-13 have the ability to bind the IL-4R α /IL-13R α 1 complex, which then activates the inflammation response in several diseases [50].

Figure 1.3 Schematic representation of IL-4 and IL-13 receptors to show that these interleukins share the same receptors (IL- $4R\alpha/IL-13R\alpha 1$) [50].

IL-4 and IL-13 have been shown to play important functions in the development of asthma [51] and some intestinal disorders [52]. Several studies have documented that the treatment of

respiratory and intestinal epithelium with IL-4 could increase the permeability of the cell layer [45]. IL-4 appears to induce paracellular permeability via the downregulation of tight junction proteins, particularly ZO-1 and occludin [45]. A similar effect has been observed with IL-13, showing an increase in the permeability of the paracellular route and down regulation of tight junction proteins [45]. IL-4 and IL-13 play a significant role in the progression of intestinal [52] and pulmonary inflammation reactions [53] by remodelling the tight junction complex structure and function [52]. Interestingly, both IL-4 and IL-13 have dual inflammatory properties by showing anti-inflammatory effects in some cases and proinflammatory actions in other conditions [40].

1.2.1.2 Tumour Necrosis Factor-alpha (TNF-α)

The further important proinflammatory cytokine that the project will focus on is TNF- α . TNF- α is a low molecular weight cytokine that is released by Th-1 cells [54]. Several cytokines that are released in inflammation reactions have been shown to be induced initially by TNF- α [55]. TNF- α has been reported to be involved in some intestinal and respiratory inflammatory disorders by causing the dysfunction of tight junctions [45]. The mechanism of TNF- α influence on tight junctions might be via inducing nuclear factor kappa B (NF-kB), which activates the expression of myosin light chain kinase protein (MLCK). This protein, in turn, plays a role in the down regulation of ZO-1 protein [45][56], as shown in figure 1.4. Moreover, treatment of the epithelial cell layers with TNF- α might provide alterations in the function and structure of tight junctions function and structure, and therefore change the permeability properties of the membrane [45]. Most of the effect of TNF- α effect has been seen when combined with other cytokines [57].

Figure 1.4 Schematic representation of the mechanism of TNF- α effect on tight junction complex during inflammation reaction.

A biopsy from an asthmatic individual demonstrated an increased TNF- α level and suggested that the use of anti-TNF- α could decrease the severity of asthma [15]. The level of TNF- α mRNA was shown to be expressed in asthma [32][15], leading to increased mucus generation, AHR and other features of asthma [33].

A number of strategies have been recommended to control asthma, such as antagonising the effect of multifunctional cytokines, for instance blocking the TNF- α receptor [10][19][58][23]. A recent investigation documented that the treatment of asthmatic patients with anti-TNF- α improved the acute and chronic symptoms significantly [20]. In addition, one of the possible therapeutic approaches that could help in asthma management is to protect the tight junction complex from the disruptive effects of cytokines [10].

Chapter 1

Introduction

1.2.2 Proinflammatory Cytokines and Inflamed Mucosa

A number of research publications have reported that the main component of the paracellular pathway, the tight junction complex, can be controlled by cytokines [54]. In several intestinal and respiratory inflammatory disorders, cytokines have been shown to play an important function in remodelling the tight junction complex, and therefore increasing the permeability of noxious substances through the paracellular space [45]. Alterations in the structure and function of tight junctions structure and function could increase the risk of such inflammatory diseases [54]. It should be noted that inflammation reactions could be induced by the downregulation of anti-inflammatory cytokines or by an increase in the release of pro-inflammatory cytokines [48].

Proinflammatory cytokines could increase the permeability of harmful agents through intercellular pathways by disruption of the tight junction complex, and this might be one of the contributing factors to several inflammatory disorders, such as asthma and inflammatory bowel disease (IBD) [45][59]. The inflamed airway and intestinal cells in asthma and IBD, respectively, have been observed to be damaged due to the significant effect of proinflammatory cytokines [60][61][15]. Recently, increased paracellular permeability and decreased TEER have been shown for treatment of *in vitro* models of epithelium with such cytokines, which suggested the significant effect of pro-inflammatory agents on epithelial layer integrity [48]. Cytokines promote dysfunction of the tight junction barrier by disregulating the ZO proteins [54]. Two of the most common respiratory and intestinal diseases that are significantly stimulated by pro-inflammatory cytokines are asthma and IBD, which will be discussed in the following sections.

1.2.2.1The Contribution of Pro-inflammatory Cytokines to Inflamed AirwayMucosa

Asthma is a broad term that covers chronic inflammation reactions in the airway epithelium, characterised by various signs such as Airway Hyper Reactivity (AHR), increased mucus secretion and reversible bronchoconstriction [34]. By improving our understanding of inflammatory diseases of the lung, such as asthma, recent efforts have shifted the focus towards studying the biology and physiology of the epithelium [62]. Remodelling of the respiratory epithelium is one of the crucial characteristic features of asthma [63]. Alterations in the structure of the epithelium in such inflammatory processes may, in turn, cause increased mucus secretion by relevant components of the mucosa (goblet cells), dysfunction of epithelial tight junctions and fibrosis [63].

Recent evidence points to an impaired barrier functionality of the epithelium in asthmatic patients, which results in increased permeability to exogenous substances and stimulation of inflammation processes in the lung [62]. Obtaining a full understanding of the pathological mechanisms involved in the regulation of the epithelial barrier is an essential prerequisite for the development of effective therapeutic agents to treat asthma [62].

A significant development in the pathophysiology of asthma in recent years has been the understanding of the involvement of cytokines in the disease [64][57]. Inflammatory and immunological cells have been documented to be the main sites of pro-inflammatory cytokine production in airway inflammation reactions [47]. Derived from Th-2 lymphocytes, cytokines mediate the inflammatory response in asthma [65] and are involved in the structural alterations in the airway epithelium of asthmatic patients [66], as well as in the activation of goblet cells, demonstrated by increased mucus production in asthma [67][65]. Recent studies have reported that cytokines play a key role in the regulation of tight junction

function in epithelial cells [54]. For example, work by Relova et al. [68] indicated that the disruptive airway barrier in asthma may occur due to the effect of pro-inflammatory cytokines.

The actual mechanism of morphological and physiological modifications in inflamed airway epithelium by pro-inflammatory cytokines is still poorly understood [47]. The suggested mechanisms of airway remodelling are by (i) stimulating fibroblast cells, as shown with IL-4 and IL-13, or by (ii) hyper secretion of mucus, as shown with TNF- α [10]. Furthermore, eosinophils have been reported to contribute fundamentally to the alteration of airway epithelium structures by the release of numerous proinflammatory cytokines [21][22].

TNF- α and other pro-inflammatory cytokines have been shown to be over-expressed in lung inflammatory diseases [69]. IL-4 was shown to be involved in the pathogenicity of asthma [70], while IL-13, which binds the alpha chain of the IL-4 receptor [70], could produce an even greater pro-inflammatory effect on airway epithelial cells in asthma than IL-4 [51]. Blocking IL-13 binding has shown a significant impact towards decreasing the severity of asthma [22]. To protect the respiratory tissue and suppress inflammation, cytokine inhibition may be a novel therapeutic target which could decrease the severity of asthma [71].

1.2.2.2 Proinflammatory Cytokines Contribution to Inflamed Intestinal Mucosa

Irritable bowel disease (IBD) covers several inflammatory disorders in the GI tract, such as Crohn's and ulcerative colitis, which are mainly stimulated by cytokines [58]. The disruption of the intestinal tight junction barrier is one of the important features of Crohn's disease [59][33]. Several inflammatory disorders have shown elevated levels of TNF- α and interleukins [8]. TNF- α plays a significant role in the dysfunction of the intestinal epithelial barrier, which actually presents a major mechanism behind the development of intestinal inflammatory diseases [8][17]. Furthermore, TNF- α was reported to act as stimulator of other

proinflammatory cytokines in intestinal inflammatory diseases, including IL-4 and IL-13 [59].

Numerous studies have documented that the intestinal tight junction complex is mainly regulated by the myosin light-chain kinase (MLCK) protein [52][59]. Upregulation of MLCK protein expression, which is associated with TNF- α treatment, was reported in the *in vitro* model of intestinal epithelium [59][56]. Figure 1.4 shows the mechanism of TNF- α involvement in tight junction complex disruption.

The mucus barrier in the intestine plays an important function in protecting the body from the external environment [8]. In Crohn's disease, the intestinal mucus layer has been reported in several clinical investigations to be thicker than normal condition as a main feature of intestinal inflammation in several clinical investigations [8]. The proinflammatory cytokines have been found to play central roles in inducing mucus production and increasing the thickness of the mucus layer in intestinal inflammatory disorders [8].

1.1.4 Cell Culture Models of Epithelium

Epithelial cell layer is a biophysical barrier which provides a formidable obstacle to the entry of noxious materials into the body [72]. Pharmaceutical laboratories have made considerable efforts to establish a well-characterised *in vitro* model of epithelium in order to (i) examine the cell barrier characteristics, (ii) investigate the drug transport properties in normal and diseased tissue [72][73], and (iii) predict the *in vivo* absorption of new therapeutic molecules [74]. Using primary cells in *in vitro* models would be ideal, but associated difficulties have been reported with primary models such as short lifespan [75] and the high cost of such cell cultures [72].

Nowadays, established and validated *in vitro* models of epithelial cell lines are a common strategy in drug development to evaluate the mechanism of the transport of molecules across the membrane of target epithelium [76][74], and also to examine other important aspects of drug delivery. The majority of research laboratories currently use cell culture models based on established cell lines, due to various advantages, such as cost effectiveness, high reproducibility, a decrease in the use of animal models and the ease of use and maintenance [74][73].

In this project, cell line models of lung and intestinal epithelium were used to examine the effect of proinflammatory cytokines on the barrier characteristics of epithelial cell layers. These cell lines are Calu-3 and Caco-2, which will described in more details in the following sections.

1.3.1 Calu-3 Cell Line

Calu-3 is a well-characterised epithelial cell line, which originated primarily from a bronchial carcinoma of a sub-mucosal gland in a 25 year old Caucasian, and forms confluent monolayers in culture [72][77][78][79][80]. This cell line is widely used in numerous respiratory research studies to represent an *in vitro* model of airway mucosa [81][82]. Currently, Calu-3 is the 'standard' layer forming cell line for lung research in pharmaceutical laboratories [83] and has been employed in several different applications, such as drug transport, metabolic property studies and epithelial barrier characteristics of airways [83][84][85].

A number of other of cell lines were examined as *in vitro* models of lung epithelium. However most of these are either difficult to maintain, such as the NHBE cell line [86],

15

unable to form restrictive tight junctions and failed to provide appropriate TEER values, such as A549 [85], or failed to produce a phenotype similar to the relevant tissue [72]. There are several advantages when using Calu-3 cells in studies as a model of lung epithelium *in vitro*. Calu-3 has the ability to produce mucus and tight junction complexes with appropriate TEER values [87] that closely mimic the *in vivo* situation [75][83]. Moreover, the protein components of tight junction structures, such as *Zonula occludens* proteins and the adherin protein E-cadherin, were shown to be expressed in the Calu-3 cell line [75][85]. The formation of tight junction structures has mainly been assessed by TEER measurements [80]. The Calu-3 cell line has been reported to form ciliated columnar cells, mimicking the *in vivo* epithelium phenotype of the upper airway tract lining, as shown in figure 1.5 [72].

Figure 1.5 Schematic represent the structure of Calu-3 monolayers (ciliated columnar cells, mucus and tight junctions).

One of the key factors that influence epithelial cells culture in general, and Calu-3 in particular, is the culture system [80]. Calu-3 cells are usually cultured using two conditions: (i) liquid-liquid culture (LLC), where the culture medium covers both the apical and

basolateral cell sides, and (ii) air-interface culture (AIC), where the culture medium is present only on the basolateral side [72]. AIC culture creates conditions where cells demonstrate more cilia formation and mucus covering the cell surface [72][76]. Furthermore, the apical side of AIC cultures cells is exposed to air that mimics the *in vivo* conditions of the airway mucosa [79]. Also, TEER measurements in AIC were shown to correlate better to the *in vivo* conditions than LLC, showing physiological values of ~300 Ω .cm² [83]. Microscopic investigations moreover confirmed that in the AIC system cellular appearance approximates the *in vivo* conditions more than in LLC [83].

It must be noted that numerous factors could affect the quality of Calu-3 culture, such as the culture medium components and the number of passages [72]. Moreover, the number of cells seeded per cm² of Transwell[®] filters also influences the time needed by cells to reach confluence; the usual seeding density used with Calu-3 is 100.000 cells/cm² [86][80]. With such a seeding density, Calu-3 cells cultured on Transwell[®] filters will typically form polarised confluent monolayers within approximately 14 days of culture [80]. As has been shown in numerous studies, the relationship between the TEER value and the apparent permeability coefficient is inversely proportional [85][88]. This observation is due to the restrictiveness on tight junction that control the transport of molecules across epithelial membrane [88].

1.3.2 Caco-2 Cell Line

Caco-2 is a well-characterised epithelial cell line that was originally isolated from a human colo-rectal adenocarcinoma, which is used widely in intestinal research [89][17][90][74]. The Caco-2 cell line is the most commonly used tool for predicting drug transport across the intestinal system [89][6]. Caco-2 cells cultures have been shown to produce realistic TEER

values and have the ability to form confluent monolayers when cultured on Transwell[®] filters [48]. The inter-laboratory protocols and facilities have an essential influence on Caco-2 cells development [4][91]. Also, several further factors could have a significant impact on Caco-2 cultures, such as medium components, the number of passages and the surface of the culture [4]. As illustrated in figure 1.6, Caco-2 cell line grown on Transwell support forms non-ciliated simple columnar cells, which are phenotypically similar to the *in vivo* situation of the colon [17].

Figure 1.6 Schematic represent the structure of Caco-2 monolayers (simple columnar non-ciliated cells and tight junctions).

TEER measurements confirmed that Caco-2 cells have the capacity to form restrictive intercellular tight junction complexes *in vitro*, with TEER values > 400 Ω .cm² [17][91][92]. Moreover, the tight junction proteins which play a key function in TJ formation were shown to be expressed in Caco-2 cell line [17][92]. When Caco-2 cells are cultured on Transwell[®]

filters with a seeding density of approximately 100.000 cells/cm², cells will typically form confluent monolayers after 3 weeks [17]. Unlike the Calu-3 cell line, no mucus has been reported to be produced in Caco-2 cells [76]. Moreover, the paracellular space in Caco-2 cells has been found to be larger than in Calu-3 cells [76]. A study documented that transport through the passive transcellular pathway substantially contributes to the transport of molecules across the Caco-2 cell layer , which mimics the *in vivo* system [19][6]. As shown in Calu-3 cell line, an inverse relationship was observed between TEER and the apparent permeability coefficient (P_{app}) in Caco-2 cells [19][6].

1.4 Conclusion

In the area of drug delivery, studies on the further characterisation of epithelial cell barriers would be useful to expand the understanding of drug transport mechanisms across healthy and diseased (inflamed) mucosal tissue. It should be noted that inflammation reactions in lung and intestine mucosal tissues are mainly induced through structural and functional modification of the mucosal barrier (tight junctions and mucus layer), which are regulated by proinflammatory cytokines. Potential progress associated with this project might lead to an improved understanding of drug transport across epithelium in inflammatory respiratory and intestinal disorders. The epithelial cell layer in diseased conditions is found to be more permeable, relative to normal tissue. This could lead to increased transport across diseased tissue of biological or nanotechnology products, issues which are important for the pharmaceutical industry (drug delivery) and nanotoxicology research. To this end, the current project will assess the effects of proinflammatory cytokines of the permeability of epithelial cell lines in vitro.
Introduction

1.5 Project Aims

As mentioned in the introduction, the upregulation of pro-inflammatory cytokines is believed to be involved in the remodelling of mucosal tissue, and its barrier properties, during respiratory and intestinal inflammatory diseases. The aim of this project is to study the effects of selected pro-inflammatory cytokines on the barrier characteristics of *in vitro* models of intestinal and airway epithelium. For this purpose, Calu-3 and Caco-2 polarised monolayers will be employed to serve as *in vitro* models of airway and intestinal epithelium, respectively. The initial part of the project will focus on barrier characteristics of Calu-3 and Caco-2 cells with short-term cytokine treatments. After that, the work will examine the effects of longterm treatment (exposure) of cytokines on these cell lines in order to compare them with short-term conditions. Thereafter, the work will explore the gene expression data available from published studies and make comparisons with experimental data obtained in the project.

1.6 References

[1] M. Jyotsana, B. Sagar, and D. Mahesh, "Mucosal drug delivery system," *International Journal of Research in Ayurveda and Pharmacy*, vol. 1, no. 44, pp. 63–70, 2010.

[2] S. Sangeetha, D. N. Venkatesh, P. N. Krishan, and R. Saraswathi, "Mucosa as a route for systemic drug delivery," *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, vol. 1, no. 3, pp. 178–187, 2010.

[3] T. S. & M. ter B. Keith Mostov, "Polarized epithelial membrane traffic: conservation and plasticity," *Nature Cell Biology*, vol. 5, pp. 287–293, 2003.

[4] W. J. Egan and G. Lauri, "Prediction of intestinal permeability.," *Advanced Drug Delivery Reviews*, vol. 54, no. 3, pp. 273–289, Mar. 2002.

[5] K. M. Masahiko Itoh, Mikio Furuse, M. S. Koji Kubota, and and S. Tsukita, "Direct Binding of Three Tight Junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH Termini of Claudins," *The Journal of Cell Biology*, vol. 147, no. 6, pp. 1351–1363, 1999.

[6] P. Artursson, K. Palm, and K. Luthman, "Caco-2 monolayers in experimental and theoretical predictions of drug transport.," *Advanced Drug Delivery Reviews*, vol. 46, no. 1–3, pp. 27–43, Mar. 2001.

[7] S. Patton, "Mechanism of macromolecule absorption by the lungs," *Advanced Drug Delivery Reviews*, vol. 19, no. 95, pp. 3–36, 1996.

[8] D. Siccardi, J. R. Turner, and R. J. Mrsny, "Regulation of intestinal epithelial function: a link between opportunities for macromolecular drug delivery and inflammatory bowel disease.," *Advanced Drug Delivery Reviews*, vol. 57, no. 2, pp. 219–235, Jan. 2005.

[9] L. a Lapierre, "The molecular structure of the tight junction.," Advanced Drug Delivery Reviews, vol. 41, no. 3, pp. 255–264, Jun. 2000.

[10] N. Sawada, M. Murata, K. Kikuchi, M. Osanai, H. Tobioka, T. Kojima, and H. Chiba, "Tight junctions and human diseases.," *Medical Electron Microscopy : Official Journal of the Clinical Electron Microscopy Society of Japan*, vol. 36, no. 3, pp. 147–156, Sep. 2003.

[11] E. E. Schneeberger and R. D. Lynch, "The tight junction: a multifunctional complex.," *American Journal of Physiology. Cell Physiology*, vol. 286, no. 6, pp. 1213–1228, Jun. 2004.

[12] N. N. Salama, N. D. Eddington, and A. Fasano, "Tight junction modulation and its relationship to drug delivery.," *Advanced Drug Delivery Reviews*, vol. 58, no. 1, pp. 15–28, Apr. 2006.

[13] M. Y. Johanna Linnankoski, Johanna Mäkelä, Joni Palmgren, Timo Mauriala, Charlotta Vedin, Anna-Lena Ungell, Lucia Lazorova, Per Artursson, Arto Urtti, "Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models," *Journal of Pharmaceutical Sciences*, vol. 99, no. 4, pp. 2166–2175, 2010.

[14] H. Wang, J.-X. Zhao, N. Hu, J. Ren, M. Du, and M.-J. Zhu, "Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins.," *World Journal of Gastroenterology*, vol. 18, no. 18, pp. 2180–2187, May 2012.

[15] C. B. Coyne, M. K. Vanhook, T. M. Gambling, L. Johnny, R. C. Boucher, L. G. Johnson, C. Hill, and N. Carolina, "Regulation of Airway Tight Junctions by Proinflammatory Cytokines," *Molecular Biology of the Cell*, vol. 13, pp. 3218–3234, 2002.

[16] S. T. Holgate, "Epithelium dysfunction in asthma.," *The Journal of Allergy and Clinical Immunology*, vol. 120, no. 6, pp. 1233–1244, Dec. 2007.

[17] J. Hochmanb, "Development of intestinal cell culture models for drug transport metabolism studies," *Advanced Drug Delivery Reviews*, vol. 22, no. 96, pp. 3–52, 1996.

[18] E. J. Swindle, J. E. Collins, and D. E. Davies, "Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches.," *The Journal of Allergy and Clinical Immunology*, vol. 124, no. 1, pp. 23–34, Jul. 2009.

[19] P. Arturssona, K. Palm, and K. Luthmanb, "Caco-2 monolayers in experimental and theoretical drug transport predictions of drug transport," *Advanced Drug Delivery Reviews*, vol. 22, pp. 67–84, 1996.

[20] J. Hastewell, I. Williamson, and M. Mackay, "Cell biology and active transport processes in the colon," *Advanced Drug Delivery Reviews*, vol. 7, no. 1, pp. 119–147, Jul. 1991.

[21] K. Khanvilkar, M. D. Donovan, and D. R. Flanagan, "Drug transfer through mucus.," *Advanced Drug Delivery Reviews*, vol. 48, no. 2–3, pp. 173–193, Jun. 2001.

[22] J. Renauld, "Leaders New insights into the role of cytokines in asthma," *Journal of Clinical Pathology*, vol. 54, no. 8, pp. 577–589, 2001.

[23] D. a Kuperman, X. Huang, L. L. Koth, G. H. Chang, G. M. Dolganov, Z. Zhu, J. a Elias, D. Sheppard, and D. J. Erle, "Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma.," *Nature Medicine*, vol. 8, no. 8, pp. 885–889, Aug. 2002.

[24] A. B. Lansley, "Mucociliary clearance and drug delivery via the respiratory tract," *Advanced Drug Delivery Reviews*, vol. 11, pp. 299–327, 1993.

[25] Lylme A. Jesaitis and Daniel A. Goodenough, "Molecular Characterization and Tissue Distribution of ZO-2, A Tight Junction Protein Homologous to ZO-1 and the Drosophila Discs-Large Tumor Suppressor Protein," *The Journal of Cell Biolog*, vol. 124, no. 6, pp. 949–961, 1994.

[26] M. Adachi, A. Inoko, M. Hata, K. Furuse, K. Umeda, M. Itoh, and S. Tsukita, "Normal establishment of epithelial tight junctions in mice and cultured cells lacking expression of ZO-3, a tight-junction MAGUK protein.," *Molecular and Cellular Biology*, vol. 26, no. 23, pp. 9003–9015, Dec. 2006.

[27] B. R. Stevenson, "Understanding tight junction clinical physiology at the molecular level.," *The Journal of Clinical Investigation*, vol. 104, no. 1, pp. 3–4, Jul. 1999.

[28] J. Rohrer, A. Schweizer, D. Russell, and S. Kornfeld, "The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane.," *The Journal of Cell Biology*, vol. 132, no. 4, pp. 565–576, Feb. 1996.

[29] J. Vukmirica, P. Monzo, Y. Le Marchand-Brustel, and M. Cormont, "The Rab4A effector protein Rabip4 is involved in migration of NIH 3T3 fibroblasts.," *The Journal of Biological Chemistry*, vol. 281, no. 47, pp. 36360–36368, Nov. 2006.

[30] C. Bucci, A. Wandinger-Ness, A. Lütcke, M. Chiariello, C. B. Bruni, and M. Zerial, "Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells.," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 91, no. 11, pp. 5061–5065, May 1994.

[31] a S. Fanning, B. J. Jameson, L. a Jesaitis, and J. M. Anderson, "The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton.," *The Journal of Biological Chemistry*, vol. 273, no. 45, pp. 29745–29753, Nov. 1998.

[32] T. Walsh, S. B. Pierce, D. R. Lenz, Z. Brownstein, O. Dagan-Rosenfeld, H. Shahin, W. Roeb, S. McCarthy, A. S. Nord, C. R. Gordon, Z. Ben-Neriah, J. Sebat, M. Kanaan, M. K. Lee, M. Frydman, M.-C. King, and K. B. Avraham, "Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51.," *American Journal of Human Genetics*, vol. 87, no. 1, pp. 101–109, Jul. 2010.

[33] D. R. Clayburgh, L. Shen, and J. R. Turner, "A porous defense: the leaky epithelial barrier in intestinal disease.," *Laboratory Investigation; a Journal of Technical Methods and Pathology*, vol. 84, no. 3, pp. 282–291, Mar. 2004.

[34] and P. V. D. S. B Nagelkerken, E Van Anken, M Van Raak, L Gerez, K Mohrmann, N Van Uden, J Holthuizen, L Pelkmans, "Rabaptin4, a novel effector of the small GTPase rab4a, is recruited to perinuclear recycling vesicles," The *Biochemical Journal*., vol. 346, no. 15, pp. 593–601, 2000.

[35] L. Lin, P. Ayala, J. Larson, M. Mulks, M. Fukuda, S. R. Carlsson, C. Enns, and M. So, "The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells.," *Molecular Microbiology*, vol. 24, no. 5, pp. 1083–1094, Jun. 1997.

[36] C. Dahlgren, S. R. Carlsson, A. Karlsson, H. Lundqvist, and C. Sjölin, "The lysosomal membrane glycoproteins Lamp-1 and Lamp-2 are present in mobilizable organelles, but are absent from the azurophil granules of human neutrophils.," *The Biochemical Journal*, vol. 311, no. 2, pp. 667–674, Oct. 1995.

[37] E. Galperin and A. Sorkin, "Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosis.," *Journal of Cell Science*, vol. 116, no. Pt 23, pp. 4799–4810, Dec. 2003.

[38] S. Hoffenberg, X. Liu, L. Nikolova, H. S. Hall, W. Dai, R. E. Baughn, B. F. Dickey, M. a Barbieri, A. Aballay, P. D. Stahl, and B. J. Knoll, "A novel membrane-anchored Rab5 interacting protein required for homotypic endosome fusion.," *The Journal of Biological Chemistry*, vol. 275, no. 32, pp. 24661–24669, Aug. 2000.

[39] G. Zhu, J. Liu, S. Terzyan, P. Zhai, G. Li, and X. C. Zhang, "High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop.," *The Journal of Biological Chemistry*, vol. 278, no. 4, pp. 2452–2460, Jan. 2003.

[40] C. a. Dinarello, "Proinflammatory Cytokines," *Chest*, vol. 118, no. 2, pp. 503–508, Aug. 2000.

[41] J. Thipphawong, "Inhaled cytokines and cytokine antagonists," *Advanced Drug Delivery Reviews*, vol. 58, no. 9–10, pp. 1089–1105, Oct. 2006.

[42] P. N. Boyaka and J. R. McGhee, "Cytokines as adjuvants for the induction of mucosal immunity.," *Advanced Drug Delivery Reviews*, vol. 51, no. 1–3, pp. 71–79, Sep. 2001.

[43] M. Göke and D. K. Podolsky, "Regulation of the mucosal epithelial barrier.," *Baillière's Clinical Gastroenterology*, vol. 10, no. 3, pp. 393–405, Sep. 1996.

[44] E. Barrett, "Cytokines: sources, receptors and signalling," *Baillière's Clinical Gastroenterology*, vol. 10, no. 1, pp. 1–15, 1996.

[45] C. T. Capaldo and A. Nusrat, "Cytokine regulation of tight junctions," *Biochimica et Biophysica Acta*, vol. 1788, no. 4, pp. 864–871, Apr. 2009.

[46] G. J. Feldman, J. M. Mullin, and M. P. Ryan, "Occludin: structure, function and regulation.," *Advanced Drug Delivery Reviews*, vol. 57, no. 6, pp. 883–917, Apr. 2005.

[47] R. K. Kumar, "Understanding airway wall remodeling in asthma: a basis for improvements in therapy?," *Pharmacology & Therapeutics*, vol. 91, no. 2, pp. 93–104, Aug. 2001.

[48] D. M. McKay and a W. Baird, "Cytokine regulation of epithelial permeability and ion transport.," *Gut*, vol. 44, no. 2, pp. 283–289, Feb. 1999.

[49] W. Luttmann, T. Matthiesen, H. Matthys, and J. C. Virchow, "Synergistic effects of interleukin-4 or interleukin-13 and tumor necrosis factor-alpha on eosinophil activation in vitro.," *American Journal of Respiratory Cell and Molecular Biology*, vol. 20, no. 3, pp. 474–480, Mar. 1999.

[50] S. T. Holgate, "Pathophysiology of asthma: what has our current understanding taught us about new therapeutic approaches?," *The Journal of Allergy and Clinical Immunology*, vol. 128, no. 3, pp. 495–505, Sep. 2011.

[51] a Richter, S. M. Puddicombe, J. L. Lordan, F. Bucchieri, S. J. Wilson, R. Djukanovic, G. Dent, S. T. Holgate, and D. E. Davies, "The contribution of interleukin (IL)-4 and IL-13 to the epithelial-mesenchymal trophic unit in asthma.," *American Journal of Respiratory Cell and Molecular Biology*, vol. 25, no. 3, pp. 385–391, Sep. 2001.

[52] A. Nusrat, J. R. Turner, and J. L. Madara, "Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells," *American Journal of Physiology: Gastrointestinal and Liver Physiology*, vol. 279, pp. 851–857, 2000.

[53] H. Nakajima and K. Takatsu, "Role of Cytokines in Allergic Airway Inflammation," *International Archives of Allergy and Immunology*, vol. 142, no. 4, pp. 265–273, 2007.

[54] S. V. Walsh, a M. Hopkins, and A. Nusrat, "Modulation of tight junction structure and function by cytokines.," *Advanced Drug Delivery Reviews*, vol. 41, no. 3, pp. 303–313, Jun. 2000.

[55] A. Dagenais, R. Fréchette, Y. Yamagata, T. Yamagata, J.-F. Carmel, M.-E. Clermont, E. Brochiero, C. Massé, and Y. Berthiaume, "Downregulation of ENaC activity and expression by TNF-alpha in alveolar epithelial cells.," *American Journal of Physiology. Lung Cellular and Molecular Physiology*, vol. 286, no. 2, pp. 301–311, Feb. 2004.

[56] T. M. Rana Al-Sadi, Michel Boivin, "Mechanism of cytokine modulation of epithelial tight junction barrier," *Frontiers in Bioscience*, vol. 14, pp. 2765–2778, 2009.

[57] K. F. Chung and P. J. Barnes, "Cytokines in asthma," *Thorax*, vol. 54, no. 9, pp. 825–857, Sep. 1999.

[58] C. G. Mathew and C. M. Lewis, "Genetics of inflammatory bowel disease: progress and prospects.," *Human Molecular Genetics*, vol. 13, no. 1, pp. 161–168, Apr. 2004.

[59] T. Y. Ma, M. a Boivin, D. Ye, A. Pedram, and H. M. Said, "Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin lightchain kinase protein expression.," *American Journal of Physiology. Gastrointestinal and Liver Physiology*, vol. 288, no. 3, pp. 422–430, Mar. 2005.

[60] M. Roussel, K. City, A. J. Polito, and D. Proud, "Updates on cells and cytokines Epithelial cells as regulators of airway," *Journal of Allergy and Clinical Immunology*, vol. 102, no. 5, pp. 714–718, 1998.

[61] D. A. Knight and S. T. Holgate, "The airway epithelium: Structural and functional properties in health and disease," *Respirology*, vol. 8, no. 4, pp. 432–446, 2003.

[62] M. Ahdieh, T. Vandenbos, A. Youakim, J. C. Sci, L. M. Crosby, C. M. Waters, A. J. Physiol, L. Cell, M. Physiol, S. R. White, L. D. Martin, M. K. Abe, B. A. Marroquin, R. Stern, and T. I. M. Vandenbos, "Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN- γ Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN- γ ," *American Journal of Physiology. Cell Physiology*, vol. 281, no. 6, pp. 2029–2038, 2001.

[63] M. L. K. Tang, J. W. Wilson, A. G. Stewart, and S. G. Royce, "Airway remodelling in asthma: current understanding and implications for future therapies.," *Pharmacology & Therapeutics*, vol. 112, no. 2, pp. 474–488, Nov. 2006.

[64] P. C. Barnes PJ, Chung KF, "Inflammatory mediators of asthma: an update," *Pharmacology Review*, vol. 50, pp. 515–596, 1998.

[65] P. J. Barnes, "Th2 cytokines and asthma: an introduction," *Respiratory Research*, vol. 2, pp. 64–65, 2001.

[66] C. K. W. G. On, F. W. S. Ko, C. H. S. C. H. An, A. S. S. Ho, and D. S. C. H. Ui, "Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN- γ , IL-4, IL-10 and IL-13) in patients with allergic asthma," *Clinical Experimental Immunology*, vol. 125, no. 2, pp. 177–183, 2001.

[67] S. Al-Muhsen, J. R. Johnson, and Q. Hamid, "Remodeling in asthma.," *The Journal of Allergy and Clinical Immunology*, vol. 128, no. 3, pp. 451–462, Sep. 2011.

[68] a J. Relova, C. Kampf, and G. M. Roomans, "Effects of Th-2 type cytokines on human airway epithelial cells: interleukins-4, -5, and -13.," *Cell biology International*, vol. 25, no. 6, pp. 563–566, Jan. 2001.

[69] J. C. Kips, "Cytokines in asthma," *European Respiratory Journal*, vol. 18, no. 34, pp. 24–33, 2001.

[70] D. B. C. Gabriele Grünig, Martha Warnock, Adil E. Wakil, Rajeev Venkayya, Frank Brombacher, Donna M. Rennick, Dean Sheppard, Markus Mohrs, Debra D. Donaldson, Richard M. Locksley, "Requirement for IL-13 Independently of IL-4 in Experimental Asthma," *Science*, vol. 282, no. 5397, pp. 2261–2263, 1998.

[71] S. L. Peter J Barnes,, "Inhibitory cytokines in asthma," *Molecular Medicine Today*, vol. 4, no. 10, pp. 452–458, 1998.

[72] B. Forbes and C. Ehrhardt, "Human respiratory epithelial cell culture for drug delivery applications.," *European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V*, vol. 60, no. 2, pp. 193–205, Jul. 2005.

[73] P. and R. T. B. Arturssona, "Intestinal Drug Absorption and Metabolism in Cell Cultures: Caco-2 and Beyound," *Pharmaceutical Research*, vol. 14, no. 12, pp. 1655–1658, 1997.

[74] C. a. Bailey, P. Bryla, and A. W. Malick, "The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development," *Advanced Drug Delivery Reviews*, vol. 22, pp. 85–103, Nov. 1996.

[75] H. Wan, H. L. Winton, C. Soeller, G. a Stewart, P. J. Thompson, D. C. Gruenert, M. B. Cannell, D. R. Garrod, and C. Robinson, "Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-.," *The European Respiratory Journal : Official Journal of the European Society for Clinical Respiratory Physiology*, vol. 15, no. 6, pp. 1058–1068, Jun. 2000.

[76] D. Vllasaliu, R. Fowler, M. Garnett, M. Eaton, and S. Stolnik, "Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: a comparison.," *Biochemical and Biophysical Research Communications*, vol. 415, no. 4, pp. 579–585, Dec. 2011.

[77] D. R. Spriggs, K. Imamura, C. Rodriguez, E. Sariban, and D. W. Kufe, "Tumor necrosis factor expression in human epithelial tumor cell lines.," *The Journal of Clinical Investigation*, vol. 81, no. 2, pp. 455–460, Feb. 1988.

[78] O. a. Itani, F. S. Lamb, J. E. Melvin, and M. J. Welsh, "Basolateral chloride current in human airway epithelia," *American Journal of Physiology: Lung Cellular and Molecular Physiology*, vol. 293, no. 4, pp. 991–999, Jul. 2007.

[79] Y. Zhu, A. Chidekel, and T. H. Shaffer, "Cultured human airway epithelial cells (calu-3): a model of human respiratory function, structure, and inflammatory responses.," *Critical Care Research and Practice*, vol. 2010, p. 8, Jan. 2010.

[80] B. I. Florea, M. L. Cassara, H. E. Junginger, and G. Borchard, "Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3," *Journal of Controlled Release*, vol. 87, pp. 131–138, Feb. 2003.

[81] A. Swiatecka-Urban, 1, B. Coutermarsh, and Fukuda, "The short apical membrane halflife of rescued Δ F508 CFTR results from accelerated endocytosis of Δ F508 CFTR in polarised human airway epithelial cell," *Journal of Biological Chemistry*, pp. 1–29, 2005.

[82] S. Azarmi, W. H. Roa, and R. Löbenberg, "Targeted delivery of nanoparticles for the treatment of lung diseases.," *Advanced Drug Delivery Reviews*, vol. 60, no. 8, pp. 863–875, May 2008.

[83] C. I. Grainger, L. L. Greenwell, D. J. Lockley, G. P. Martin, and B. Forbes, "Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier.," *Pharmaceutical Research*, vol. 23, no. 7, pp. 1482–1490, Jul. 2006.

[84] B. Q. Shen, W. E. Finkbeiner, J. J. Wine, R. J. Mrsny, and J. H. Widdicombe, "Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl- secretion.," *The American Journal of Physiology*, vol. 266, no. 5, pp. 493–501, May 1994.

[85] K. a Foster, M. L. Avery, M. Yazdanian, and K. L. Audus, "Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery.," *International Journal of Pharmaceutics*, vol. 208, pp. 1–11, Nov. 2000.

[86] J. L. Harcourt, H. Caidi, L. J. Anderson, and L. M. Haynes, "Evaluation of the Calu-3 cell line as a model of in vitro respiratory syncytial virus infection.," *Journal of Virological Methods*, vol. 174, pp. 144–149, Jun. 2011.

[87] V. H. L. Leeab and N. R. Mathias, "Respiratory epithelial cell culture models for evaluation of ion and drug transport," *Advanced Drug Delivery Reviews*, vol. 22, no. 96, pp. 215–249, 1996.

[88] R. L. S. and D. A. W. Neil R. Mathias, Julita Timoszyk, Paul I. Stetsko, John R. Megill, "Permeability Characteristics of Calu-3 Human Bronchial Epithelial Cells: In Vitro - In Vivo Correlation to Predict Lung Absorption in Rats," *Journal of Drug Targeting*, vol. 10, no. 1, pp. 31–40, 2002.

[89] A. M. Calcagno, J. a Ludwig, J. M. Fostel, M. M. Gottesman, and S. V. Ambudkar, "Comparison of drug transporter levels in normal colon, colon cancer, and Caco-2 cells: impact on drug disposition and discovery.," *Molecular Pharmaceutics*, vol. 3, no. 1, pp. 87–93, 2005.

[90] F. Delie, "Evaluation of nano- and microparticle uptake by the gastrointestinal tract.," *Advanced Drug Delivery Reviews*, vol. 34, pp. 221–233, Dec. 1998.

[91] T. Bansal, M. Singh, G. Mishra, S. Talegaonkar, R. K. Khar, M. Jaggi, and R. Mukherjee, "Concurrent determination of topotecan and model permeability markers (atenolol, antipyrine, propranolol and furosemide) by reversed phase liquid chromatography: Utility in Caco-2 intestinal absorption studies," *Journal of Chromatography*, vol. 859, no. 2, pp. 261–266, Nov. 2007.

[92] I. J. Hidalgo and J. Li, "Carrier-mediated transport and efflux mechanisms in Caco-2 cells," *Advanced Drug Delivery Reviews*, vol. 22, no. 1–2, pp. 53–66, Nov. 1996.

Chapter 2

Materials and General Methods

2.1 Materials

2.1.1 Cells and Cell Culture Consumables

Calu-3 cells were purchased from the American Type Culture Collection (ATCC number; <u>HTB-55</u>) and used between passages 27-38. Calu-3 cells were routinely cultured in Eagle's Minimum Essential Medium (EMEM). Caco-2 cells were purchased from the European Collection of Cell Cultures (ECACC number; <u>86010202</u>) and used between passages 46-78. Caco-2 cells were cultured using Dulbecco's Modified Eagles Medium (DMEM). Both EMEM and DMEM were purchased from Sigma-Aldrich (UK) and were supplemented with antibiotic/antimycotic solution (100 U/ml penicillin, 0.1 mg/ml streptomycin, 0.25 µg/ml amphotericin B), L-glutamine (200 mM), non-essential amino acids (100%), and foetal bovine serum (FBS, 10%). All media supplements were purchased from Sigma-Aldrich (UK).

Hank's Balanced Salt Solution (HBSS) supplemented with 4-(2-hydroxyethyl)-1piperazineethanesulfonic acid (HEPES) to maintain a pH of 7.4 was used as a drug transport medium; both of these materials were purchased from Sigma-Aldrich (UK), as was trypsin/EDTA solution (used to detach adherent cells in the process of cell 'splitting' or 'passaging'). Phosphate buffered saline (PBS) tablets were obtained from Oxoid (UK). Polystyrene permeable inserts (Transwell[®]) for cell culture were supplied by Corning Life Sciences (USA). The Transwell[®] inserts were of 12 mm diameter and 0.4 µm pore size. Cell culture flasks (75 cm², canted neck with vented caps), black 96-well plates, and sterile pipettes were all purchased from Corning Life Sciences (USA). Sterile centrifuge tubes were supplied by Grainer (USA). Cells were routinely counted (e.g. prior to seeding on multiwell plates) using an improved Neubauer haemocytometer, which was purchased from Scientific Laboratory Supplies (SLS, UK).

2.1.2 Biological Agents

Recombinant human cytokines, interleukin-4 (IL-4), interleukin-13 (IL-13) and tumour necrosis factor-alpha (TNF- α) (catalogue numbers 204-IL, 213-IL, and 210-TA, respectively) were purchased from R&D systems (UK). Mouse anti-human *Zonula Occludens*-1 (ZO-1; tight junction protein) antibody was obtained from Zymed (part of Invitrogen). FITC-labelled goat anti-mouse IgG was purchased from Sigma-Aldrich (UK).

2.1.3 Model Macromolecular Drug

Fluorescein isothiocyanate (FITC)-labelled dextran of approximately 10 kDa in molecular weight (FD10) was purchased from Sigma-Aldrich (UK).

2.1.4 PCR

OneStep cDNA synthesis kit was purchased from Miltenyi Biotec (UK). JumpStart Taq DNA polymerase, 2% agarose gel, Tris-Borate-EDTA (TBE) buffer, ethidium bromide, and desalted primers were all purchased from Sigma-Aldrich (UK). SynGene Genius equipment and GeneSNAP software were used in this work for expression bands imaging.

2.2 Methods

2.2.1 Cell Maintenance

2.2.1.1 Maintenance of Cells in Culture Flasks

Calu-3 and Caco-2 cells were cultured in 75 cm² flasks in standard cell culture conditions (37°C, 5% CO₂ and 95% humidity) until confluence (point at which cells covered about 80-95% of the surface of the flask). Cell growth was monitored regularly using an optical inverted microscope. Culture medium was changed every 2-3 days by aspirating the old medium and replacing with approximately 13 ml of fresh warm (37°C) medium. When confluent, cells were detached and a proportion of these transferred to a new flask. This process of cell 'splitting' or 'passaging' was conducted by removing the culture medium, washing adherent cells with approximately 5 ml of warmed (37°C) PBS to remove any residual medium and dead cells, followed by the addition of approximately 3 ml of 2.5% trypsin/EDTA solution. Cells were incubated with trypsin/EDTA solution for ~15 min (Caco-2 cells) and ~20 min (Calu-3 cells) until cells were separated from the flask surface. It was noted that Calu-3 cells are more adherent than Caco-2, therefore requiring longer incubation time with trypsin/EDTA solution. Thereafter, approximately 8 ml of culture medium was

added to the suspension of cells in trypsin/EDTA; this was done to inhibit the action of trypsin (which could be damaging to the cells if in contact with the cells for prolonged periods). The cell suspension was then transferred to a sterile 15 ml centrifuge tube and the cells were pelleted by centrifugation at 15,000 rpm for 5 min. The supernatant was discarded and fresh culture medium added to the pelleted cells to produce a cell suspension. Approximately 1/6-1/3 of the resulting cell suspension (i.e. resulting in cell splitting ratios of 1:6 - 1:3) was transferred to a new flask, which contained 12-13 ml of fresh culture medium (warmed to 37° C).

2.2.1.2 Cell Seeding on Transwells[®]

2.2.1.2.1 Calu-3 Cells

Calu-3 cells were initially cultured in 75 cm² flasks until confluence. Cells were then detached from the flask surface according to the method described in section 2.2.1.1 Cells (in the suspension) were counted using a haemocytometer, followed by 'seeding' on Transwell[®] filters. Cell seeding was conducted by transferring a volume of cell suspension containing 100.000 cells into each Transwell[®] insert (1.1 cm² filter area). The wells were filled with culture medium (EMEM), with the overall apical compartment volume of 0.5 ml and basolateral compartment volume of 1.5 ml. Following a 2-day culture period post-seeding in conditions where cells were covered by the culture medium on both apical and basolateral sides (i.e. liquid-covered culture, 'LCC'), cells were thereafter exposed to the culture medium (0.5 ml) only on their basolateral side. This condition where the cell layers are in contact with the culture medium on their basal side and not on the apical side is termed 'air-interfaced culture' (AIC). These conditions were employed in this work for Calu-3 culture as it has been shown that the resulting cell cultures more closely resemble the airways *in vivo* compared to

liquid-covered culture (LCC). The culture medium (EMEM) was replaced regularly every 2-3 days. Calu-3 cells were typically cultured on transwells for 3 weeks. Cell confluence and the integrity of the cell layer were confirmed by measurement of transpithelial electrical resistance (TEER), which will be described in section 2.2.2.

2.2.1.2.2 Caco-2 Cells

Caco-2 cells were cultured in 75 cm² flasks until confluence. Cells were then detached from the flask surface (by addition of trypsin) according to the method described in section 2.2.1.1 Cells were counted using a haemocytometer, followed by seeding on Transwell[®] filters at 100.000 cells/well (1.1 cm² filter area). 0.5 ml of the culture medium (DMEM) was added to the apical compartment and 1.5 ml to the basolateral compartment. Caco-2 cells were cultured using liquid-covered culture conditions, with the culture media present on both apical and basolateral sides of the cells. The culture medium was replaced regularly, every 2-3 days. Caco-2 cells were typically cultured on transwells for 3 weeks. Cell confluence and the integrity of the cell monolayer were confirmed by measurement of TEER (next section).

2.2.2 Measurement of Transepithelial Electrical Resistance (TEER)

Measurement of transepithelial electrical resistance (TEER) is a technique typically employed in cell culture laboratories as an indication of epithelial cell growth, confluence and the intactness of the cell monolayer. TEER is also a measure of tight junction formation in epithelial cells. Figure 2.1 depicts the system that is typically used in the laboratory to measure TEER.

TEER was measured in the work using an EVOM (World Precision Instruments, USA) voltohmmeter, equipped with a pair of 'chopstick' electrodes (Figure 2.1) measurements to detect monolayer confluence and cell integrity. The electrodes were initially sterilised (in ethanol), followed by washing in PBS. To obtain a reading, the chopstick electrodes were immersed in the culture medium bathing the cells, with the longer electrode immersed in the medium present on the basolateral chamber and the shorter electrode in the medium on the apical side.

Figure 2.1 Schematic representation of the Voltohmmeter (EVOM, World Precision Instruments) system used to measure transepithelial electrical resistance.

With Calu-3 cells cultured under AIC, culture medium from the basal side was replaced by fresh culture medium, added to both apical and basolateral sides (0.5 ml and 1.5 ml, respectively). Cells were then incubated with the culture medium for approximately 30 min (in normal cell culture conditions), at which point TEER was measured following the procedure described above. The TEER values in this thesis are expressed as (Ω .cm²) and background resistance due to the filter (~100 Ω .cm²) was subtracted from the reported values.

2.2.3 Effect of Cytokines on Tight Junctions: Measurement of TEER

Only intact polarised cell layers were included in these experiments. The 'intactness' was determined by measurement of TEER. Only cells expressing a TEER of > 300 and 1000 Ω .cm² for Calu-3 and Caco-2 cell layers, respectively, were included in these experiments.

Cytokines (IL-4; 5ng/ml), (IL-13; 5ng/ml) and (TNF- α ; 25ng/ml) were added on the apical side of confluent cell layers of Calu-3 and Caco-2, with fresh culture medium applied on the basal side of the cells. Cells were incubated with the cytokines for 3-4 days, with TEER measurements conducted every day.

In another experimental set-up, the cells were treated with the cytokines for a longer duration. Here, cytokines (IL-4; 5ng/ml), (IL-13; 5ng/ml) and (TNF- α ; 25ng/ml) were applied after 2 days of culturing the cells in Transwell[®] Filters and cells were feeding by fresh medium containing the cytokines every 2 days during 21 days of study. TEER modifications are reported as a percentage of the baseline value (i.e. TEER value before cytokines addition, when time is zero). All experiments were conducted with n = 3-4.

2.2.4 Effect of Cytokines on Tight Junctions: Measurement of Permeability

Permeability studies were conducted on polarised cell layers, previously incubated with cytokines (IL-4; 5ng/ml), (IL-13; 5ng/ml) and (TNF-α; 25ng/ml) for 4 days. Cell layer integrity was confirmed by TEER measurements (detailed in the previous section). TEER was also measured after the permeability experiment to ensure that the cell layer integrity was preserved during the experiment. Fluorescein isothiocyanate (FITC)-labelled dextran of ~10-kDa (FD10) was used as a model hydrophilic macromolecule and HEPES-buffered HBSS solution (pH 7.4) as a transport medium.

FD10 sample was prepared by dissolving the FD10 powder in pre-warmed HBSS/HEPES solution (37°C) at 1 mg/ml. Cell culture medium was replaced with the transport medium (0.5 ml apically and 1.5 ml on the basolateral side) and cells incubated with the transport medium (HBSS/HEPES) at 37°C for ~30 min. TEER was measured again to ensure that the cell layers maintained their integrity in the transport medium. HBSS/HEPES was then removed from the apical side of the cell layers and replaced with FD10 (500µg/ml in HBSS/HEPES). The Transwell[®] plate was covered with aluminium foil to protect it from light and the placed in the incubator (37°C). Basolateral solution was sampled periodically by removing 100 µl every 30 min and transferring the solution into a black 96well plate and replaced. The sampled basolateral solution was replaced with the same volume of the transport medium. Permeability studies were conducted for a period of 3 hours. FD10 was quantified by fluorescence with an MFX microtiter plate fluorometer (Dynex Technologies, USA) using FITC fluorescence parameters (485 nm excitation, 535 nm emission). The resulting fluorescence readings were converted into concentrations and finally amounts using calibration curves, which involved fluorescence measurements of known concentrations of serially diluted FD10.

To determine whether any changes in FD10 permeability following cytokine application result from a tight junction effect, permeability experiments were also conducted at 4°C. In this case, cell layers were treated with the cytokines (IL-4; 5ng/ml), (IL-13; 5ng/ml) and (TNF- α ; 25ng/ml) for 4 days. Cells were then incubated with cold HBSS (at 4°C) and following FD10 application cells were transferred to a cold room at 4°C.

FD10 permeability is expressed as apparent permeability coefficient (P_{app}), calculated using the following equation:

$$P_{app} = \left(\frac{\Delta Q}{\Delta t}\right) x \left(\frac{1}{AxC_0}\right)$$

Where:

P_{app}: Apparent permeability coefficient (cm/s)

 $\Delta Q/\Delta t$: Permeability rate (µg/s)

A: Diffusion area of the cell layer (cm^2)

Co: Initial concentration of FD10 (µg/ml)

2.2.5 Confocal Microscopy Imaging of Tight Junction Protein, Zonula Occludens (ZO-1)

Initially, Calu-3 cell line was incubated with cytokines (IL-4; 5ng/ml), (IL-13; 5ng/ml) and (TNF- α ; 25ng/ml) for 4 days. Confluent Calu-3 cells were then fixed with 3% w/v

paraformaldehyde by incubating for approximately 10 min at room temperature. Cells were then washed with PBS and permeabilised by incubating with Triton X-100 (0.1% v/v in PBS) for 10 min. PBS was used again to wash the cells and 1% w/v BSA (in PBS) applied for 1 hour. This solution was then removed and mouse, anti-human ZO-1 (primary) antibody diluted in BSA/PBS at 10µg/ml applied to the cells for one hour. The primary antibody was aspirated and cells washed extensively with PBS. Rabbit, anti-mouse (secondary) antibody diluted according to the manufacturer's instructions in 1% BSA/PBS was then applied to the cells for 1 hour. The secondary antibody was then removed and cells washed several times with PBS. The Transwell[®] membrane was then cut and placed on glass slides for confocal imaging. Cells nuclei were labelled with Hoechst 33342, whilst 1% 1,4-diazobicyclo-[2,2,2]-octane (DABCO) in 90% glycerol/10% PBS was used as a mounting medium. Confocal imaging was conducted using a Leica TCS SP2 system mounted on a Leica DMIRE2 inverted microscope.

2.2.6 Collection of Gene Microarray Data from GEO

The microarray data of selected genes were collected from Gene Expression Omnibus (GEO) database (<u>http://www.ncbi.nlm.nih.gov/geo</u>). GEO database contains a platform which is the type of array used in the experiment. In total four studies were analysed and the difference in gene expression between healthy samples and asthmatic patients determined. More detailed information regarding the methodology employed for microarray data analysis is included in appendices 8.2 and 8.3. The series numbers of four studies used are listed in Table 2.1:

Study	Series	Platform	Sample number
1	GSE470	GPL8300	12 (6 healthy, 6 asthmatic)
2	GSE18965	GPL96	16 (8 healthy, 8 asthmatic)
3	GSE4302	GPL570	26 (13 healthy, 13 asthmatic)
4	GSE3212	GPL80	30 (15 healthy, 15 asthmatic)

Table 2.1Summary of four studies examined from GEO database.

2.2.7 Statistical Analysis

Student's t-test was employed to the statistical significance of the data, with p values < 0.05 considered as significant.

Chapter 3

Effect of Cytokines on Barrier Characteristics of Human Airway Epithelial Cell Layers (Calu-3)

3.1 Introduction

The airway mucosa is a biophysical barrier between the external environment (lumen) and submucosal tissues, playing an important role in protecting the lung and other tissues from harmful elements of the external environment by providing selective permeability [1][2][3]. Disruption of the functionality of this epithelial barrier may therefore lead to undesirable effects on the lung [4][5]. To study the influence of airway epithelial barrier disruption on pulmonary disease, or the influence of disease on the airway barrier, researchers have attempted to establish *in vitro* systems that mimic *in vivo* conditions in disease, with limited success [6].

In terms of employing *in vitro* models to study the mucosal barrier of the airways, the use of primary cells would be an ideal choice due to a closer representation of the tissue of interest [7]. However, due to associate disadvantages, as discussed in the Introduction chapter, laboratories currently mainly rely on the use of cancerous cell lines [8].

Chapter 3

One of the principal cell lines for *in vitro* investigation of the airway mucosal barrier is the Calu-3 cell line [9][10]. This cell line is derived originally from the human bronchial submucosal glands [1][10]. The Calu-3 cell line is widely used as an *in vitro* model of the upper airways, including the bronchial [10] and nasal [11][12] mucosa, in studies related to investigation of the metabolic and permeability properties of the human airways. The key benefits of using the Calu-3 cell line as an *in vitro* model of the airways lies in the ability of these cells to grow as polarised layers with tight junctions when cultured appropriately [10]. In contrast, several other airway-originated cell lines fail to generate significant transepithelial electrical resistance (TEER, an indication of tight junction formation and 'tightness' of the tight junctions) *in vitro* [10]. Furthermore, Calu-3 cells are capable of producing mucus (when using specific culture conditions), which offers the possibility of studying the effect of mucus on drug permeability [1][13].

Studies determining the usefulness of the Calu-3 cell model for *in vitro* pulmonary drug absorption studies have generally shown that this model is associated with good *in vitro-in vivo* correlation [14]. In using the Calu-3 cell line as a model of the airway mucosa, the cells are typically cultured on permeable supports (e.g. Transwell® inserts). Although the use of permeable supports for Calu-3 culture is almost universal in studies employing these cells as a model of the airway barrier, other culture conditions used by different labs vary considerably. Calu-3 cells can be grown *in vitro* under liquid-covered culture (LCC), where cells are bathed by the culture medium on both apical (or luminal) and basolateral (or basal) sides. Calu-3 cells may also be cultured on permeable supports using air-interfaced conditions (AIC), where polarised cells are exposed to the culture medium on the basal side only [14]. Presently there is no consensus on the 'correct' culture conditions that produce *in*

vitro models that best resemble the *in vivo* tissue. Consequently, examples of Calu-3 culture using both LCC and AIC conditions can be found extensively in the literature. However, there is some evidence that Calu-3 culture using AIC achieves superior representation of the *in vivo* conditions, as compared to LCC [1][14][10]. A study comparing the two systems observed presence of mucus and an apically ciliated surface in the epithelial cell layer resulting from AIC, whilst there was less apparent mucus secretion and cilia presence in cells obtained from LCC conditions [14].

In improving our understanding of the inflammatory diseases of the lung, such as asthma, recent efforts have focused on studying the biology and physiology of the epithelium [2]. Remodelling of the respiratory epithelium is one of the crucial characteristic features of asthma [17]. The alteration in the structure of the epithelium in such inflammatory processes may, in turn, cause increased mucus secretion by relevant components of the mucosa (goblet cells), dysfunction of epithelial tight junctions and fibrosis [17].

As indicated in the Introduction chapter, this chapter seeks to determine the effect of TNF- α , IL-4 and IL-13 proinflammatory cytokines on human airway epithelium in terms of mucosal barrier characteristics and permeability properties.

3.2 Methods

3.2.1 Effect of Site-Specific Cytokine Addition on Epithelial Barrier

3.2.1.1 Effect on TEER

Calu-3 cells were used between passages 27-36. Cells were initially cultured on 75 cm² flasks until confluent. Thereafter, cells were detached ('trypsinised') from the flasks, seeded on Transwell[®] filters and cultured using AIC condition (following the protocols described in sections 2.2.1.1 and 2.2.1.2.1). TEER measurements were conducted every 2 days during a 3week culture period. A detailed description of the TEER measurement method is included in sections 2.2.2 and 2.2.3.

3.2.1.2 Effect on FD10 Permeability

3.2.1.2.1 FD10 Permeability at 37°C

Calu-3 cells were cultured on Transwell[®] filters using AIC conditions. Only the cell layers displaying TEER values >300 Ω .cm² were included in this study. Recombinant human IL-4 and IL-13 were applied to the cells at 5 ng/ml, whereas TNF- α at 25 ng/ml in the culture medium. Each cytokine was added to the cell layers on the apical side only, on the basolateral side only, or on both apical and basolateral sides (i.e. bilaterally). A control experiment was conducted where the culture medium (without cytokines) was applied to the cells at the same time. TEER measurements were taken regularly for 3-4 days post sample application. Permeability experiments were conducted on 21 days. For this culture medium was replaced with transport medium (HBSS/HEPES, 37°C). Cells were incubated for ~45 min to adapt to the new medium, and then TEER was measured again to confirm the adaptation. Half the volume of HBSS/HEPES was removed from the apical side and replaced by the same volume

of FD10 dissolved in warm HBSS/HEPES with (500 μ g/ml) concentration. The rest of the experiment was described in more detail is section 2.2.4.

3.2.1.2.2 FD10 Permeability at 4°C

Calu-3 cells were cultured as AIC condition and incubated with (HBSS/HEPES) solution at 4°C for approximately 45 min. The solution was then replaced with FD10 with concentration (500µg/ml). Cells were placed at 4°C between sampling intervals.

3.2.2 Effect of Cytokines on Zonula Occludens-1 Protein

Calu-3 cells were grown on filters using AIC condition and imaged by confocal microscope after they formed polarised monolayers. Zonula Occludens-1 (ZO-1) staining was completed as using protocol described in more detail previously in section 2.2.5.

3.3 Results

3.3.1 Effect of Site-Specific Cytokine Application on Calu-3 Barrier for 3 days3.3.1.1 Effect on TEER

Changes in TEER of Calu-3 cell layers following site-specific addition of TNF- α , IL-4 and IL-13 are presented in Figure 3.1. Application of TNF- α at 25 ng/ml (Figure 3.1a) at the apical side of Calu-3 layers displayed no notable effect, as the changes in TEER were similar to those of control cell layers (where cytokine addition was omitted). In fact, an increase in TEER following apical addition of TNF- α was apparent. The reasons behind this elevation in TEER are not apparent, but control cell layers exhibited a similar trend.

Basolateral application of TNF- α produced an interesting pattern in TEER. A measurement taken 24 hours following its application revealed an increase in TEER at this time point by approximately 50%, as compared to the baseline value. However, TEER recordings at later time points showed that TEER dropped, with values at 48 hours and 72 hours amounting to approximately 65% and approximately 57% of the baseline value, respectively.

Figure 3.1b shows the TEER pattern – measured over a three-day period – of polarised Calu-3 layers, following their treatment with IL-4 (applied as 5ng/ml). The changes in TEER followed a similar pattern to control cell layers, with an initial decrease to approximately 65% of the baseline value, measured 4 hours after application, followed by a gradual increase. This trend was observed with both apical and basolateral addition of IL-4 and was also apparent with the control cell layers. TEER values at the final measurement point (72 hours) were approximately 87% and 82% of the baseline value with apical and basolateral IL-4, respectively, but these values were not statistically different to control cell layers.

Site-specific treatment of polarised Calu-3 cell layers with the third selected cytokine tested in this work, namely IL-13 (5 ng/ml), produced the effects shown in Figure 3.1c. Both apical and basolateral IL-13 additions resulted in TEER patterns closely resembling the control up to the 48 hours measurement interval. Although at the final measurement point TEER of cell layers treated with IL-13 on the basolateral side was approximately 94% of the baseline TEER, compared to both apical additions of IL-13 and control cell layers (approximately 137% of baseline TEER), the t-test confirmed that TEER values of apical and basolateral sides applications are not statistically significantly different, compared to control (p= 0.1278and 0.8658, respectively). a)

b)

Figure 3.1 TEER measurements of Calu-3 cells cultured on filters using AIC conditions and treated by a) TNF- α (25ng/ml), b) IL-4 (5ng/ml), c) IL-13 (5ng/ml) for 72 hours.

TEER is expressed as % change compared to accumulative value (baseline value). Background TEER due to the filter was subtracted from the reported TEER values. Data presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: ns > 0.05).* indicates statistical difference.

3.3.1.2 Effect on FD10 Permeability

3.3.1.2.1 Permeability at 37°C

In addition to TEER, changes in the permeability barrier of Calu-3 cell layers following four days exposure to cytokines were also evaluated by measuring the permeability of a macromolecular model compound. Figure 3.2 depicts FD10 permeability across polarised Calu-3 cell layers, after treatment with the cytokines on either the apical or basolateral side. FD10 permeability is expressed as apparent permeability coefficient (P_{app}), which was

calculated according to the equation described in section 2.2.4, following regular sampling of the basolateral solution (over 3 hours) and FD10 quantitation by fluorescence. FD10 permeability across the cell layers was measured following treatment of confluent and polarised cell layers (apically or basolaterally) with the cytokines for 4 days.

Figure 3.2a shows that FD10 permeability across the cell layers treated with TNF- α on the apical side was in fact lower, compared to permeability across control cell layers without TNF- α treatment. Regarding FD10 permeability across polarised Calu-3 layers following their exposure to TNF- α on the basolateral side, the P_{app} value reached 2.3 x 10⁻⁸ cm/s, and with the control permeability of 1.2 x 10⁻⁸ cm/s, making this increase just outside the statistical significance (p= 1.992 and 2.306, respectively).

The impact of cell treatment with IL-4, either apically or basolaterally, on their barrier (as measured in terms of FD10 permeability) is highlighted in Figure 3.2b. Prior treatment of cells layers with IL-4 on the apical side did not have an effect on permeability. Cells layers that were previously basolaterally treated with IL-4 displayed permeability of $P_{app} 2.75 \times 10^{-7}$ cm/s), relative to control ($P_{app}1.53 \times 10^{-7}$ cm/s), but this difference in permeability did not reach a statistical significance (p= 1.864).

FD10 permeability across polarised Calu-3 cell layers previously treated with IL-13 followed a similar pattern to those subjected to IL-4. Figure 3.2c reveals that both apical and basal cell treatment with IL-13 produced cell layers displaying permeability towards FD10 that was not statistically significantly different to control cell layers.

b)

c)

Figure 3.2 Effect of 96 hours cytokine treatment on FD10 permeability across Calu-3 layers at 37°C. *Exposure to a) TNF-α (25ng/ml), b) IL-4 (5 ng/ml) and c) IL-13 (5 ng/ml).*

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which is described in section 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: ns > 0.05).

3.3.1.2.2 Permeability at 4°C

To confirm that the change in permeability following cell treatment with the cytokines is due to an effect of cytokines on the tight junctions (and hence the paracellular barrier), FD10 permeability experiments were conducted at 4°C in addition to normal cell culture conditions (37°C). In this experimental set-up, the energy-requiring processes, including active transport, would be inhibited and any increase in permeability is likely to result from changes in the passive transport (i.e. the paracellular corridor).

The data in Figure 3.3 shows FD10 permeability across Calu-3 cell layers at 4°C. In Figure 3.3a the cells were previously treated with TNF- α (at 25 ng/ml) for 4 days and equilibrated at 4°C before the experiment. The data generally mirror the trends observed at 37°C, with the cell layers treated with TNF- α displaying a larger permeability compared to control. In this instance, the cell layers exposed to TNF- α on the basal side exhibited a larger FD10 permeability (statistically significant) of 0.78 x 10⁻⁸ cm/s compared to control 0.33 x 10⁻⁸ cm/s. In contrast, apical presence of TNF- α did not induce a sufficient increase in cell layer permeability (0.43 x 10⁻⁸ cm/s), versus control (0.33 x 10⁻⁸ cm/s), to reach statistical significance.

Figure 3.3b shows FD10 permeability of IL-4-treated Calu-3 cell layers, as measured at 4°C. The data shows no significant increase in permeability, regardless of the site of IL-4 application (P_{app} , apical= 2.34 x 10⁻⁷ cm/s, basolateral= 3.86 x 10⁻⁷ cm/s, control= 2.97 x 10⁻⁷ cm/s). A similar outcome was observed with IL-13 (Figure 3.3c), with no increases in cell layer permeability at 4°C following IL-13 treatment either on the apical or basal side of the cell layers (P_{app} , apical= 4.12 x 10⁻⁷ cm/s, basolateral= 3.43 x 10⁻⁷ cm/s, control= 4.42 x 10⁻⁷ cm/s).

a)

b)

Figure 3.3 Effect of 96 hours cytokine treatment on FD10 permeability across Calu-3 layers at 4°C. Exposure to a) TNF- α (25ng/ml), b) IL-4 (5 ng/ml) and c) IL-13 (5 ng/ml).

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in section 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: * < 0.05, ns > 0.05).

3.3.2 Effect of Basolateral Cytokine Application on Cell Layer Barrier: a Comparison between Different Cytokines

3.3.2.1 Comparison of Effect on TEER

Previous experiments served to establish the experimental conditions that lead to more prominent effects of cytokines on Calu-3 layer barrier. Following the observation that basal application of the cytokines leads to a greater effect on the cell layer barrier (despite this effect not reaching statistical significance), in further experiments, described in the forthcoming sections, cytokines were always applied on the basolateral side of polarised cell layers.
The influence of cytokine application (on the basolateral side of the cells) on TEER is depicted in Figure 3.4. The data compares the effect of the three cytokines by showing TEER values before (baseline) and after cell incubation for four days. The present study highlights that out of the three tested cytokines, only the cell layers treated with TNF- α were found to display a significantly lower TEER, compared to the baseline value before the treatment. When applied on basolateral side, TNF- α showed a decrease in the TEER value from (~131% to ~78%) 96 hours post treatment. Following IL-4 treatment the TEER value changed from (~115% to ~97%) as % of control value. Also, IL-13 provided no effect as TEER values changed from (~106% to ~117%).

Figure 3.4 TEER measurements of Calu-3 cells cultured on filters using AIC conditions and treated for 96 hours with cytokines (IL-4 and IL-13 at (5 ng/ml) and TNF- α at (25 ng/ml).

TEER is expressed as % of Control (Calu-3 without cytokines). Background TEER due to the filter was subtracted from the reported TEER values. Data presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: * < 0.05, ns > 0.05).

3.3.2.2 Comparison of Effect on FD10 Permeability

3.3.2.2.1 Permeability at 37°C

FD10 permeability across polarised Calu-3 layers treated basolaterally with TNF- α , IL-4 or IL-13 is shown in Figure 3.5. On this occasion, cells subjected to TNF- α or IL-4 incubation exhibited a significantly larger permeability, compared to control (p < 0.001 and < 0.05, respectively). The largest effect on permeability was seen in TNF- α -treated cells. Here the cell layers displayed a 3.6-fold larger FD10 permeability compared to control. Dextran permeability across IL-4-treated cell layers was 2.5-fold larger compared to control.

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in Chapter 2. Results presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: * < 0.05, ** < 0.001, ns > 0.05).

3.3.2.2.2 Permeability at 4°C

A comparison between different cytokines in terms of their effect on cell layer permeability at 4°C is presented in Figure 3.6. This shows FD10 transport at 4°C across Calu-3 layers AIC grown and pre-treated with several cytokines for 4 days. The figure below shows that the permeability in cold condition is much lower than in normal condition. At 4°C cell layers treated with TNF- α were found to display a notably higher permeability to FD10, approximately (P_{app}= 1 x 10⁻⁸ cm/s), amounting to 2-fold, compared to control with P_{app}= 0.45 x 10⁻⁸ cm/s, (p <0.0001). IL-4 and IL-13 treated cells did not exhibit a significantly different permeability relative to control by showing P_{app}= 0.36 and 0.33 x 10⁻⁸ cm/s, respectively.

Figure 3.6 Effect of tested cytokines on FD10 permeability across Calu-3 layers at 4°*C. Cytokines treatment for 96 hours.*

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in Chapter 2. Results presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: **** < 0.00001, ns > 0.05).

3.3.2.3 Effect of Cytokine Application on ZO-1

In establishing the effect of cytokine treatment on Calu-3 layer barrier, changes in cell layer TEER and permeability to a model hydrophilic macromolecule were determined, as described above. In addition to these, immunostaining of a key tight junction protein, called *zonula occludens-1* (ZO-1), was employed as a tool to test the possibility of structural changes in the tight junctions resulting from cytokine treatment. In this instance, only TNF- α -treated cell layers were imaged based on the indications from the above experiments that this cytokine induces greater effects on the epithelial cell barrier. Figure 3.7 shows confocal micrographs of Calu-3 cells, immunostained for ZO-1 following their culture as polarised layers and treatment with TNF- α for four days (3.7a) and control cell layers without cytokine treatment (3.7b). In both subfigures, ZO-1 staining (green) appears in a typical manner of 'belts' surrounding adjacent cells (blue cell nuclei). While the general staining pattern is similar in both conditions, there appears to be a loss of staining intensity in cells treated with TNF- α . Furthermore, under the latter conditions, the ZO-1 'belts' appear somewhat discontinued (arrows), compared to control cells where a more continuous 'chicken-wire'-like network is apparent.

a)

b)

Blue: cell nuclei, Green: tight junction protein (ZO-1) distribution. Protocol described in section 2.2.5. Full image combines blue for cell nuclei and green for ZO-1 staining.

3.3.3 Effect of Combined Cytokine Application on Calu-3 Layer

3.3.3.1 Effect on TEER

In the data presented so far, polarised Calu-3 cell layers were treated with one of the three tested cytokines and the effects on the cell layer barrier measured. To establish whether TNF-

 α , IL-4 or IL-13 potentially display a synergistic effect on the epithelial barrier, the cytokines were applied to the cell layers in combination and the parameters indicative of the barrier function measured.

Figure 3.8 shows TEER changes after cell layers were incubated with the cytokines, added in combination, for four days. The following combinations of cytokines were added to the cells: TNF- α + IL-4, TNF- α + IL-13, IL-4 + IL-13 and TNF- α + IL-4 + IL-13. The data shows that with the exception of IL-4 + IL-13, all other tested conditions produced a marked reduction of TEER. The reduction in TEER amounted to 28%, 32% and 33% of control cell layers with the combinations of TNF- α + IL-4, IL-4 + IL-13 and TNF- α + IL-4 + IL-13, respectively (p < 0.0001 in all instances). It should be noted that a significant decrease in TEER values was associated with presenting of TNF- α in any combination. The combination of IL-4 and IL-13, not including TNF- α , did not show a significant effect on Calu-3 layer TEER.

Figure 3.8 TEER measurements of Calu-3 cells cultured on filters using AIC conditions and treated by cytokines combinations (IL-4 and IL-13 at (5ng/ml) and TNF- α at (25ng/ml)) for 4 days.

TEER is expressed as % of Control (Calu-3 without cytokines). Background TEER due to the filter was subtracted from the reported TEER values. Data presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: * < 0.05, ** < 0.001, *** < 0.0001, ns > 0.05).

3.3.3.2 Effect on FD10 Permeability

3.3.3.2.1 Permeability at 37°C

Figure 3.9 shows the permeability of FD10 across polarised Calu-3 layers previously treated with the combination of cytokines, as detailed in the previous section. The data shows that the combination of TNF- α with IL-4 exerted the most prominent effect on the cell layer

barrier. The increase in FD10 permeability (expressed as P_{app}) amounted to 2.6-fold, from 55 x 10⁻⁸ cm/s to 143 x 10⁻⁸ cm/s, which was a statistically significant difference compared to the control cell layers (p < 0.05). Other combinations of cytokines did not produce significant increases in FD10 permeability.

Figure 3.9 Effect of combined cytokines treatment for four days on FD10 permeability across Calu-3 layers at 37°C.

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in section 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: * < 0.05, ns > 0.05).

3.3.3.2.2 Permeability at 4°C

Conducting the permeability experiment at 4°C following cell treatment with different combinations of cytokines, is shown in Figure 3.10. Under the tested conditions, FD10 permeability was significantly higher (compared to control) across the cell layers subjected to the following combinations of cytokines: IL-4 + TNF- α , IL-13 + TNF- α and IL-4 + IL-13 + TNF- α . The combination of IL-4 and IL-13 displayed no significant effect on permeability.

Figure 3.10 Effect of combined cytokines treatment for four days on FD10 permeability across Calu-3 layers at 4°C.

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in section 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: * < 0.05, ** < 0.001, *** < 0.0001, ns > 0.05).

3.3.3.3 Effect of Treatment of Cells with Cytokine Combinations on ZO-1

ZO-1 tight junction protein expression pattern was also determined following incubation of polarised Calu-3 cells with combinations of cytokines. The combinations of cytokines that produced most prominent effects on the cell layer barrier were investigated in the current experiment. These included the combination of TNF- α with IL-4 (Figure 3.11a) and TNF- α with IL-13 (Figure 3.11b). The images reveal a somewhat lower staining intensity, which was also more discontinuous in cells treated with both combinations of cytokines, as compared to control cell layers (no cytokines treatment) (Figure 3.11c, also shown in Figure 3.7b).

a)

b)

c)

Note that 'not treated' images were also shown in Figure 3.7b. Green is ZO-1 staining and blue is nuclear staining. Protocol described in section 2.2.5.

3.4 Discussion

Evidence from recent studies has emerged that cytokines may play a key role in the progression of asthma [1][15] by remodelling the functionality and structure of airway epithelial barrier in asthmatics [16][17]. However, this research area is still at its beginning and there is insufficient knowledge on the mechanisms of how cytokines induce changes in the epithelium and the extent to which the epithelium is compromised. The present study was designed to determine the effect of three proinflammatory cytokines on the airway epithelial barrier. Work employed the Calu-3 cells, based on advantages offered by this cell line when employed as an *in vitro* model of the airways [18][19][20].

Recent work investigating changes in the epithelium in asthma has suggested that the epithelium function as permeability barrier is compromised [21][22] and that this results from changes in the tight junctions. More specifically, down-regulation of tight junction proteins, including ZO-1, has recently been implicated in the epithelial dysfunction in asthma [23]. This disruption in epithelial barrier is thought to be mediated by the action of proinflammatory cytokines [23].

Epithelial tight junctions are complex structures. They are composed of various proteins, such as occludin, claudin, JAM and ZO-1 [24] and have a critical role in maintaining the permeability barrier function of the epithelium [25]. Tight junctions are located at the apical side of epithelial cells and act as a gate, controlling the paracellular permeability [24]. The function of some tight junction components is still poorly understood [25].

Recent studies have shown that pro-inflammatory cytokines induce changes in the composition and structure of epithelial tight junctions and increase paracellular permeability

[26]. In this study to evaluate the effects of proinflammatory cytokines, TNF- α , IL-4 and IL-13, on the airway barrier, formed polarised Calu-3 layers were treated with these cytokines for four days and the barrier properties tested by measuring TEER, macromolecular permeability and structural changes in the tight junctions. Initial experiments tested the conditions under which cell treatment with the cytokines produced most prominent changes in the epithelial barrier. For this the cytokines were applied on the apical, basolateral or both sides of the cell layers. The changes in TEER values and FD10 permeability induced in these conditions in this preliminary set of experiments were not significant, it was noted that basolateral application of the cytokines produced more notable effects compared to their apical addition. This observation can be explained by the presence of TNF- α receptors on the basolateral side of the airway epithelium [27]. It was therefore decided that in the subsequent set of experiments the cytokines were always applied on the basal side of the cell layers.

The concentrations of cytokines employed in this study were initially optimised, with preliminary studies establishing the minimum doses of cytokines that cause maximum response on the epithelial barrier. The use of IL-4 and IL-13 at the concentration employed here (5 ng/ml) to induce inflammation was reported before [2], while TNF- α has been used in such experiments at concentrations ranging from 5 ng/ml up to 100 ng/ml [27][28]. In the present work, TNF- α was used at 25 ng/ml, after initial experiments using TNF- α at 10, 25 and 50 ng/ml established that the epithelial barrier response was similar with 25 and 50 ng/ml (see appendix 8.1).

Observation that TNF- α may exert undesirable effects on mucosal barrier has been reported previously [29] and this work appears to be in agreement It showed that cell layer treatment

with TNF- α (applied basolaterally) led to a decrease in TEER and this effect of TNF- α on cell layer TEER was reflected in the FD10 permeability study, where cell layers treated with this cytokine were more permeable to FD10, compared to control. To determine that the compromised barrier of the Calu-3 layers following TNF- α treatment results from an effect on the tight junctions, two further experiments were conducted: measurement of FD10 permeability at 4°C and imaging the cells for structural changes in a key tight junction protein.

Hydrophilic macromolecules pass across the epithelium by a combination of paracellular route and transcellular active transport processes, such as pinocytosis [30]. To establish that the increase in overall FD10 permeability following cytokine treatment results solely from changes in the paracellular barrier, additional FD10 permeability experiments were conducted at 4°C. Under these conditions, the active transport route will be inhibited and FD10 will traverse the cell layers paracellularly. Therefore, any increased FD10 permeability following cytokine treatment could be a result of changes in the paracellular barrier. Conducting these experiments was important considering that some groups have reported that transcellular transport of material across the epithelium is upregulated in inflammatory conditions affecting the epithelium (e.g. in Crohn's disease) [31].

The data revealed that at 4°C FD10 permeability across Calu-3 cell layers treated with TNF- α was significantly higher compared to control. In fact the extent of permeability increase following cytokine treatment at 4°C is similar to that at 37°C. This indicates that the TNF- α induced increase in epithelial permeability occurs through an effect on the paracellular pathway (i.e. the tight junctions). Furthermore, TNF- α -treated cells displayed changes in the

appearance of ZO-1 tight junction protein. Together, the data may suggest that the increased permeability of Calu-3 cell layers by TNF- α application results from structural changes in the epithelial tight junctions. The data is in agreement with previous reports that TNF- α plays a key role in remodelling the airway epithelium [32] by changing the expression of tight junction proteins such as ZO-1[25].

The effect of IL-4 on the epithelial barrier is less clear. The present data suggest that, apart from a single instance where an increase in FD10 permeability was apparent, other experiments found that the change in permeability was not statistically significantly different, compared to control. IL-4 has been previously shown to affect the airway barrier by decreasing the expression of tight junction components, such as occludin and ZO-1 [2]. Finally, treatment of Calu-3 cell layers with IL-13 produced no significant effect on their properties, as indicated by non-significant changes in TEER and FD10 permeability.

To examine whether the tested cytokines produce synergetic effects on the Calu-3 barrier, the cytokines were added to the cells in combinations. It was noted that all the combinations of cytokines containing TNF- α (TNF- α + IL-4, TNF- α + IL-13 and TNF- α + IL-4 + IL-13) produced significant effects on the Calu-3 barrier, as indicated by notable changes in TEER and FD10 permeability. The combination of cytokines which included TNF- α led to larger effect on the cell layer barrier compared to individual application of the cytokines. The data therefore points to a synergistic effect of the cytokines on the mucosal barrier – a phenomenon that has been reported previously in a study showing that the effects of TNF- α are most prominent when combined with other cytokines [33].

3.5 Conclusions

The work in this chapter demonstrates that some proinflammatory cytokines produce epithelial barrier disruptive effects on airway Calu-3 cell layers and suggests that the mechanism of this disruption is related to actions on the tight junctions, including changes in ZO-1 distribution. The work contributes to our understanding of the role of cytokines on lung inflammatory disease.

3.6 References:

[1] Y. Zhu, A. Chidekel, and T. H. Shaffer, "Cultured human airway epithelial cells (calu-3): a model of human respiratory function, structure, and inflammatory responses.," *Critical Care Research and Practice*, vol. 2010, p. 8, Jan. 2010.

[2] M. Ahdieh, T. Vandenbos, A. Youakim, J. C. Sci, L. M. Crosby, C. M. Waters, A. J. Physiol, L. Cell, M. Physiol, S. R. White, L. D. Martin, M. K. Abe, B. A. Marroquin, R. Stern, and T. I. M. Vandenbos, "Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN- γ Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN- γ ," *American Journal Physiology. Cell Physiology*, vol. 281, no. 6, pp. 2029–2038, 2001.

[3] M. Mackay, I. Williamson, and J. Hastewell, "Cell biology of epithelia," *Advanced Drug Delivery Reviews*, vol. 7, no. 3, pp. 313–338, Nov. 1991.

[4] S. T. Holgate, "Epithelium dysfunction in asthma.," *The Journal of Allergy and Clinical Immunology*, vol. 120, no. 6, pp. 1233–1244, Dec. 2007.

[5] D. a Knight, S. M. Stick, and T.-L. Hackett, "Defective function at the epithelial junction: a novel therapeutic frontier in asthma?," *The Journal of Allergy and Clinical Immunology*, vol. 128, no. 3, pp. 557–558, Sep. 2011.

[6] D. A. Knight and S. T. Holgate, "The airway epithelium: Structural and functional properties in health and disease," *Respirology*, vol. 8, no. 4, pp. 432–446, 2003.

[7] and J. H. W. D. C. Gruenert, W. E. Finkbeiner, "Culture and transformation of human airway epithelial cells," *American Journal of Physiology*, vol. 268, no. 3, pp. 347–360, 1995.

[8] R. M. Berger JT, Voynow JA, Peters KW, "Respiratory carcinoma cell lines. MUC genes and glycoconjugates," *American Journal of Respiratory Cell and Molecular Biology*, vol. 20, no. 3, pp. 500–510, 1999.

[9] B. Q. Shen, W. E. Finkbeiner, J. J. Wine, R. J. Mrsny, and J. H. Widdicombe, "Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl- secretion.," *The American Journal of Physiology*, vol. 266, no. 5, pp. 493–501, May 1994.

[10] K. a Foster, M. L. Avery, M. Yazdanian, and K. L. Audus, "Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery.," *International Journal of Pharmaceutics*, vol. 208, pp. 1–11, Nov. 2000.

[11] C. W. and R. J. Mrsny, "In Vitro Evaluation of Microparticles and Polymer Gels for Use as Nasal Platforms for Protein Delivery," *Pharmaceutical Research*, vol. 16, no. 3, pp. 382–390, 1999.

[12] K. M. Toshinobu Sekia, , , Hiroshi Kanbayashia, Sumio Chonoa, Yasuhiko Tabatab, "Effects of a sperminated gelatin on the nasal absorption of insulin," *International Journal of Pharmaceutics*, vol. 338, no. 1–2, pp. 213–218, 2007.

[13] D. Vllasaliu, R. Fowler, M. Garnett, M. Eaton, and S. Stolnik, "Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: a comparison.," *Biochemical and Biophysical Research Communications*, vol. 415, no. 4, pp. 579–585, Dec. 2011.

[14] C. I. Grainger, L. L. Greenwell, D. J. Lockley, G. P. Martin, and B. Forbes, "Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier.," *Pharmaceutical Research*, vol. 23, no. 7, pp. 1482–1490, Jul. 2006.

[15] B. J. M. Drazen, J. P. Arm, and K. F. Austen, "Commentary Sorting Out the Cytokines of Asthma," *The Journal of Experimental Medicine*, vol. 183, pp. 1–5, 1996.

[16] E. E. Schneeberger and R. D. Lynch, "The tight junction: a multifunctional complex.," *American Journal of Physiology. Cell Physiology*, vol. 286, no. 6, pp. 1213–1228, Jun. 2004.

[17] S. T. Holgate, "The airway epithelium is central to the pathogenesis of asthma.," *Allergology International : Official Journal of the Japanese Society of Allergology*, vol. 57, no. 1, pp. 1–10, Mar. 2008.

[18] B. I. Florea, M. L. Cassara, H. E. Junginger, and G. Borchard, "Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3," *Journal of Controlled Release*, vol. 87, pp. 131–138, Feb. 2003.

[19] and J. J. W. C. Haws, W. E. Finkbeiner, J. H. Widdicombe, "CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance," *American Journal of Physiology*, vol. 266, no. 5, pp. L502–L512, 1994.

[20] R. L. S. Lianli Li, Neil R. Mathias, Christopher L. Heran, Paul Moench, Doris A. Wall, "Carbopol-mediated paracellular transport enhancement in Calu-3 cell layers," *Journal of Pharmaceutical Sciences*, vol. 95, no. 2, pp. 326–335, 2006.

[21] P. Barnes, "Asthma as an axon reflex," *The Lancet*, vol. 327, no. 8475, pp. 242–245, 1986.

[22] H. T. Laitinen LA, Heino M, Laitinen A, Kava T, "Damage of the airway epithelium and bronchial reactivity in patients with asthma," *The American Review of Respiratory Disease*, vol. 131, no. 4, pp. 599–606, 1985.

[23] E. J. Swindle, J. E. Collins, and D. E. Davies, "Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches.," *The Journal of Allergy and Clinical Immunology*, vol. 124, no. 1, pp. 23–34, Jul. 2009.

[24] M. Bruewer, A. Luegering, T. Kucharzik, C. A. Parkos, J. L. Madara, A. M. Hopkins, and A. Nusrat, "Proinflammatory Cytokines Disrupt Epithelial Barrier Function by Apoptosis-Independent Mechanisms," *The Journal of Immunology*, vol. 171, pp. 6164–6172, 2003.

[25] C. B. Coyne, M. K. Vanhook, T. M. Gambling, L. Johnny, R. C. Boucher, L. G. Johnson, C. Hill, and N. Carolina, "Regulation of Airway Tight Junctions by Proinflammatory Cytokines," *Molecular Biology of the Cell*, vol. 13, pp. 3218–3234, 2002.

[26] C. T. Capaldo and A. Nusrat, "Cytokine regulation of tight junctions," *Biochimica et Biophysica Acta*, vol. 1788, no. 4, pp. 864–871, Apr. 2009.

[27] H. Schmitz, M. Fromm, C. J. Bentzel, P. Scholz, K. Detjen, J. Mankertz, H. Bode, H. Epple, E. Riecken, J. Schulzke, D. Gastroenterology, C. Physiology, U. B. Franklin, F. U. Berlin, and N. Carolina, "Tumor necrosis factor-alpha ($TNF\alpha$) regulates the epithelial barrier in the human intestinal cell line HT-29 / B6," *Journal of Cell Science*, vol. 146, pp. 137–146, 1999.

[28] A. Dagenais, R. Fréchette, Y. Yamagata, T. Yamagata, J.-F. Carmel, M.-E. Clermont, E. Brochiero, C. Massé, and Y. Berthiaume, "Downregulation of ENaC activity and expression by TNF-alpha in alveolar epithelial cells.," *American Journal of Physiology. Lung Cellular and Molecular Physiology*, vol. 286, no. 2, pp. 301–311, Feb. 2004.

[29] S. V. Walsh, a M. Hopkins, and A. Nusrat, "Modulation of tight junction structure and function by cytokines.," *Advanced Drug Delivery Reviews*, vol. 41, no. 3, pp. 303–313, Jun. 2000.

[30] S. D. Conner and S. L. Schmid, "Regulated portals of entry into the cell.," *Nature*, vol. 422, no. 6927, pp. 37–44, Mar. 2003.

[31] N. S. and K.-P. Z. G. Schürmann, M. Brüwer, A. Klotz, K. W. Schmid, "Transepithelial transport processes at the intestinal mucosa in inflammatory bowel disease," *International Journal of Colorectal Disease*, vol. 14, no. 1, pp. 41–46, 1999.

[32] P. S. Thomas, "Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asthma.," *Immunology and Cell Biology*, vol. 79, no. 2, pp. 132–140, Apr. 2001.

[33] K. F. Chung and P. J. Barnes, "Cytokines in asthma," *Thorax*, vol. 54, no. 9, pp. 825–857, Sep. 1999.

[34] W. Luttmann, T. Matthiesen, H. Matthys, and J. C. Virchow, "Synergistic effects of interleukin-4 or interleukin-13 and tumor necrosis factor-alpha on eosinophil activation in vitro.," *American Journal of Respiratory Cell and Molecular Biology*, vol. 20, no. 3, pp. 474–480, Mar. 1999.

Effect of Cytokines on Barrier Characteristics of Human Intestinal Epithelial Cell Layers (Caco-2)

4.1 Introduction

The intestinal epithelium is a biophysical wall that controls the absorption of nutrients and has a protective role by selectively limiting the passage of noxious elements from the external environment into the body [1][2][3][4]. In inflammatory bowel conditions such as Crohn's disease and Ulcerative Colitis, the intestinal barrier has been reported to be defective and associated with paracellular leakiness [5][6]. A number of studies have demonstrated disruption of the tight junction complexes in Crohn's disease [6][7]. This defective barrier capacity of the intestinal epithelium in inflammatory conditions therefore compromises the physiological function of the epithelium in preventing the passage of potentially harmful substances found in the intestinal lumen into the body [8]. In addition to an increased epithelial membrane permeability [2], abnormally high mucus secretion is another feature of the inflamed intestinal epithelium [9].

Proinflammatory cytokines have been shown to play a key role in remodelling of the intestinal mucosal barrier in inflammatory bowel conditions. In this respect, downregulation of tight junction protein ZO-1, leading to increased paracellular permeability of the intestinal epithelium has been reported [1][10][11]. Proinflammatory cytokines such as TNF- α and interleukins are therefore heavily involved in the progression of inflammatory bowel

disorders such as Crohn's disease and Ulcerative Colitis [1][13]. Clinical investigations have documented that intestinal inflammatory diseases can be characterised by elevated levels of proinflammatory cytokines [10], which mediate remodelling leading to dysfunctional epithelial barrier [13]. Some proinflammatory cytokines were described in detail in sections 1.1 and 3.1.

The Caco-2 cell line used as a model of the intestinal epithelium is used widely in pharmaceutical research to study or predict the absorption of pharmaceutical agents and study intestinal disease [14][15][16][17]. The Caco-2 cell line expresses functional and morphological characteristics of human intestine [12] and it is used extensively due to the good *in vitro-in vivo* correlation provided by this model [17][18]. When cultured *in vitro*, the Caco-2 cell line has the ability to form tight junctions and express relevant components (found *in vivo*) such as transport and efflux proteins and brush border digestive enzymes [19][4].

This chapter assesses the effect of select cytokines on the epithelial barrier of the Caco-2 monolayers, which were used as a model of the intestinal epithelium. Specifically, the influence of $TNF-\alpha$, IL-4 and IL-13 on cell monolayer transepithelial electrical resistance and macromolecular permeability were investigated.

4.2 Methods

4.2.1 Effect of Site-Specific Cytokine Addition on Epithelial Barrier

4.2.1.1 Effect on TEER

Caco-2 cells were used in this work between passages 46-76. Cells were routinely cultured on flasks (75 cm², canted neck with vented caps) until confluence (cell coverage of flask surface by approximately 80-90%). Next, cells were detached from the flasks (by incubation with trypsin), seeded and subsequently cultured on Transwell[®] filters using liquid-covered culture conditions (following the protocols described in sections 2.2.1.1 and 2.2.1.2.1).

TNF- α , IL-4 or IL-13 were applied to confluent Caco-2 monolayers at day 21 of culture on Transwell[®] supports. The cytokines were only applied to the cell monolayers expressing a TEER >1000 Ω .cm², which was confirmed by measurement using an epithelial voltohmmeter (a detailed description of TEER measurement method is included in sections 2.2.2 and 2.2.4). TNF- α (25 ng/mL), IL-4 (5 ng/mL) or IL-13 (5 ng/mL) were applied either on the apical side or the basolateral side of the cell monolayers. TEER was subsequently measured periodically during the period that the cell monolayers were treated with the cytokines, which was 3-4 days.

4.2.1.2 Effect on FD10 Permeability

4.2.1.2.1 FD10 Permeability at 37°C

Caco-2 cells were cultured on Transwell[®] filters, as described previously. Only cell monolayers displaying TEER values >1000 Ω .cm² were used in this study. Recombinant human IL-4 and IL-13 were applied to the cells at 5 ng/ml, whereas TNF- α at 25 ng/ml in the

culture medium. The cytokines were added to the cells apically only, or on the basolateral side. A control experiment was conducted where the culture medium without the cytokines was applied to the cells at the same time. Permeability experiments were conducted following a 4-day cell treatment with cytokines and 21 day culture on Transwell[®] supports. FD10 permeability experiments were conducted using HBSS/HEPES as the transport medium. Cells were initially equilibrated in HBSS/HEPES (for approximately 45 min) at 37°C, followed by the addition of FD10 (in HBSS/HEPES at 500 µg/ml). Cells were placed in an incubator at 37°C in between sampling periods. The general protocol for permeability experiment was described in section 2.2.4.

4.2.1.2.2 FD10 permeability at 4°C

FD10 permeability at 4°C was conducted in a similar way as at 37°C. However, polarised Caco-2 monolayers (displaying TEER > 1000 Ω .cm²) were initially equilibrated with HBSS/HEPES at 4°C for 45 min. FD10 was then applied in HBSS/HEPES at 4°C (500 µg/ml) and the cells were kept at 4°C between sampling intervals.

4.3 Results

4.3.1 Effect of Site-Specific Cytokine Application on Caco-2 Barrier

4.3.1.1 Effect on TEER

Figure 4.1 shows the TEER of Caco-2 monolayers following the application of TNF- α , IL-4 or IL-13 at either the apical or basolateral side of the cells. The addition of TNF- α on the apical side of the cell monolayers did not influence the TEER, as suggested by TEER values similar to the control condition (Figure 4.1a). However, following application on the

basolateral side of the cells, TNF- α produced a notable decrease in TEER; this equated to approximately 61% of the baseline value after 96 hours of cell treatment. In the control experiment, TEER measurement at 96 hours amounted to approximately 102% of the baseline value. The difference in TEER values between basal TNF- α treatment and control at the final measurement point (96 hours) was statistically significant (p=0.018).

Changes in Caco-2 monolayer TEER after treatment with IL-4 (applied at 5 ng/ml apically or basolaterally) is shown in Figure 4.1b. TEER of cell monolayers treated with IL-4 apically increased by approximately 45% (compared to the baseline value). Basolateral treatment provided a decrease in TEER to approximately 77% of the baseline figure 72 hours after treatment; however, TEER subsequently reversed to approximately 96% (of the baseline value), 96 hours post-IL-4 application. In control cell monolayers (i.e. those not treated with IL-4), TEER after 96 hours amounted to approximately 118% of the baseline value.

Figure 4.1c depicts Caco-2 monolayer TEER over time after cell treatment with IL-13 (5 ng/ml) for 4 days. Both apical or basolateral application of this cytokine showed no decrease in TEER. In fact, cell monolayer TEER increased notably during Caco-2 incubation with IL-13 on the apical or basal side of the cells. A similar pattern was also observed with control cell monolayers.

a)

c)

Figure 4.1 TEER measurements of Caco-2 cells cultured on filters and treated by a) TNF- α (25ng/ml), b) IL-4 (5ng/ml), c) IL-13 (5ng/ml) for 96 hours.

TEER is expressed as % change compared to initial value (baseline value). Background TEER due to the filter was subtracted from the reported TEER values. Data presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: * < 0.05, ns > 0.05).

4.3.1.2 Effect on FD10 Permeability

4.3.1.2.1 Permeability at 37°C

FD10 was measured after Caco-2 monolayers were treated with the cytokines for four days (i.e. under the same conditions as in the TEER study). The permeability of FD10 across the cell monolayers is expressed as apparent permeability coefficient (P_{app}), calculated using the equation described in section 2.2.4.

Figure 4.2a shows FD10 permeability across cell monolayers previously treated with TNF- α . FD10 permeability across the cells treated with TNF- α on the apical side amounted to P_{app} of approximately 1.5 X 10⁻⁸ cm/s, compared to that across control cell monolayers, which amounted to 1.01 X 10⁻⁸ cm/s; this difference was not statistically significant (p > 0.05). Conversely, Caco-2 monolayers treated with TNF- α on the basolateral side showed a significantly higher FD10 permeability (P_{app} ~1.8 X 10⁻⁸ cm/s) compared to control (p = 0.0076).

Figure 4.2b shows FD10 permeability across the cell monolayers after their exposure to IL-4 (5 ng/ml) for 4 days. IL-4 treated cell did not show an increase in FD10 permeability compared to control, as suggested by apparent permeability values of approximately 0.80 X 10^{-8} cm/s and 0.98 X 10^{-8} cm/s, for apical and basolateral treatment, respectively, which were not statistically significant (p=0.21 and 0.39, respectively) compared to control.

Likewise, cell monolayer treatment with IL-13 (5 ng/ml for 4 days) did not show notable effects on cell permeability to FD10, regardless of the site of application. The data, shown in Figure 4.2c, show that FD10 permeability in cell monolayers treated with IL-13 apically or basolaterally amounted to approximately 2.8 X 10^{-8} cm/s and 3.2 X 10^{-8} cm/s, respectively. In both scenarios, the difference in permeability to control (P_{app} 2.3 X 10^{-8} cm/s) is insignificant (p = 0.5 and 0.9 for apical and basolateral IL-13 treatment compared to control, respectively).

a)

b)

c)

Figure 4.2 Effect of a) TNF-α (25ng/ml), b) IL-4 (5ng/ml), c) IL-13 (5ng/ml) on FD10 permeability across Caco-2 layers at 37 °*C*.

FD10 permeability expressed as Papp, calculated using the equation of apparent permeability coefficient which described in 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: ** < 0.001, ns > 0.05).

4.3.1.2.2 Permeability at 4°C

To determine whether the alteration in permeability after cell treatment with the proinflammatory cytokines is due to an influence of cytokines on the tight junctions, additional FD10 permeability experiments were conducted at 4°C, where any permeability largely occurs through the paracellular corridor (active transport processes are inhibited). Figure 4.3 shows FD10 permeability across Caco-2 cell monolayers at 4°C, following prior cytokine treatment at normal cell culture conditions (37°C; treatment of cell monolayers for 4 days). Figure 4.3a depicts FD10 permeability at 4°C across the cell monolayers pre-treated

with TNF- α (25 ng/ml). Basolateral treatment of the cell monolayers with TNF- α did not significantly alter the paracellular route, as indicated by non-significant difference between FD10 permeability in these conditions (0.91 x 10⁻⁸ cm/s) and control (0.35 x 10⁻⁸ cm/s; p = 0.55). Caco-2 monolayers treated with TNF- α on their apical pole displayed a lower FD10 permeability (0.101 x 10⁻⁸ cm/s) compared to control (p=0.0302).

Figure 4.3b shows FD10 permeability in cold conditions (4°C), measured across Caco-2 monolayers pre-treated with IL-4 (5 ng/ml). Polarised cells subjected to IL-4 basolaterally exhibited a significantly higher permeability (2.02 x 10^{-8} cm/s), as compared to control (0.35 x 10^{-8} cm/s; p= 0.0005). On the other hand, apical treatment did not significantly affect the permeability under these conditions (P_{app} amounted to 0.48 x 10^{-8} cm/s; p= 0.1313, comparison with control). FD10 permeability at 4°C across Caco-2 monolayers pre-treated with IL-13 (5 ng/ml) is shown in Figure 4.3c. Apically-treated cell monolayers displayed FD10 permeability of 0.42 x 10^{-8} cm/s, whilst basolaterally-treated cells showed the permeability of approximately 1 x 10^{-8} cm/s. However, both these values are not statistically significantly different compared to control (p = 0.07 and 0.65, compared to control for apical and basolateral cytokine treatment, respectively).

b)

Figure 4.3 Effect of a) TNF-a (25ng/ml), b) IL-4 (5ng/ml), c) IL-13 (5ng/ml) on FD10 permeability across Caco-2 layers at 4°C.

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: * < 0.05, *** < 0.0001, ns > 0.05).

4.3.2 Effect of Basolateral Cytokine Application on Cell Layer Barrier: a Comparison between Different Cytokines

4.3.2.1 Effects on TEER

Based on the observation that the tested cytokines produce a larger effect on the epithelial barrier when applied on the basolateral side of polarised cells, in the further experiments (described in the subsequent sections of this chapter) cytokines were exclusively applied on the basolateral side of Caco-2 monolayers.

Figure 4.4 compares the effects of different cytokines (when applied to confluent Caco-2 monolayers basally for 4 days) on TEER. The cytokines were used at the same concentrations as in the previous section, namely 25 ng/ml (TNF- α) and 5 ng/ml (IL-4 and IL-13). The data show TEER values before (baseline) and after basolateral cell incubation with the cytokines for four days. In this experiment, all cytokines were found to cause a significant decrease in Caco-2 monolayer TEER. Electrical resistance across the monolayers decreased by approximately 48%, 38% and 37% (compared to baseline values) after cell treatment with TNF- α , IL-4 and IL-13, respectively.

Figure 4.4 TEER measurements of Caco-2 cells cultured on filters and treated by individual cytokines {IL-4 and IL-13 at (5ng/ml) and TNF- α at (25ng/ml)} for 4days.

TEER is expressed as % of Control (Caco-2 without cytokines). Background TEER due to the filter was subtracted from the reported TEER values. Data presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: * < 0.05, ns > 0.05).

4.3.2.2 Effects on FD10 Permeability

4.3.2.2.1 Permeability at 37°C

Figure 4.5 shows FD10 permeability across Caco-2 cells, previously treated with different cytokines basolaterally. Treatment with the cytokines did not produce a notable effect on cell monolayer permeability in this experiment: FD10 permeability was similar in all cases, equating to approximately 2.27, 3.78, and 3.78 X10⁻⁸ cm/s for TNF- α , IL-4 and IL-13-treated cells, respectively). The difference relative to control samples (whereby P_{app} amounted to 2.65 X 10⁻⁸ cm/s) was not statistically significant in all cases (p > 0.05).

Figure 4.5 Effect of individual cytokines on FD10 permeability across Caco-2 layers at 37°C.

FD10 permeability is expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: ns > 0.05).

4.3.2.2.2 Permeability at 4°C

Figure 4.6 compares FD10 permeability in cold conditions (4°C) after cell treatment with the tested cytokines for 4 days. In the current experiment, cell monolayers treated with TNF- α , IL-4 or IL-13 gave rise to FD10 permeability of 3.71, 2.12, and 1.11 x 10⁻⁸ cm/s, respectively. FD10 permeability in control conditions (where cytokines addition was omitted) was 5.37 x 10⁻⁸ cm/s. The data analysis shows that difference to cytokine treatment was not statistically significant in all cases.

Figure 4.6 Effect of individual cytokines on FD10 permeability across Caco-2 layers at 4°C.

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: ns > 0.05).

4.3.3 Effect of Combined Cytokine Application on Caco-2 Barrier

4.3.3.1 Effect on TEER

Experiments presented in this section aimed to establish whether TNF- α , IL-4 or IL-13 exert a synergistic effect on the epithelial barrier of Caco-2 monolayers. The tested cytokines were therefore added to the cells in combination in the current experiments and TEER and FD10 permeability measured. Specifically, the following combinations of cytokines were used: IL-4 + TNF- α , IL-13 + TNF- α , and IL-4 + IL-13 + TNF- α .

Effect of cell treatment with the combinations of cytokines on cell monolayer TEER is shown in Figure 4.7. TEER values were measured twice, once at day 0 before cytokines addition and the second measurement was 4 days post cytokines treatment, and the results expressed as % of control value. The data demonstrate that when applied in any combination, the tested cytokines significantly decreased the cell monolayer TEER. The decrease in TEER with IL-4 + IL-13 combination amounted to approximately 60% (p <0.05). Presenting TNF- α in any combination resulted in a marked decrease of TEER. This decrease was approximately 77%, 89% and 104% in cell monolayers exposed to IL-4 + TNF- α , IL-13 + TNF- α , and IL-4 + IL-13 + TNF- α , respectively (p < 0.001 in all instances).

Figure 4.7 TEER measurements of Caco-2 cells cultured on filters and treated by combined cytokines [IL-4 and IL-13 at (5ng/ml) and TNF- α at (25ng/ml)] for 4 days.

TEER is expressed as % of Control (Caco-2 without cytokines). Background TEER due to the filter was subtracted from the reported TEER values. Data presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: * < 0.05, ** < 0.001, *** < 0.0001, ns > 0.05).

4.3.3.2 Effect on FD10 Permeability

4.3.3.2.1 Permeability at 37°C

Caco-2 monolayer permeability (to a macromolecular model, FD10) following treatment with a combination of three cytokines is shown in Figure 4.8. The data shows that the only combination that induced a significant effect on cell monolayer permeability was IL-4 with IL-13. In this instance, FD10 permeability amounted to approximately 3.4×10^{-8} cm/s, compared to untreated (control) cell monolayers, which displayed FD10 permeability of approximately 0.8×10^{-8} cm/s. The other tested combinations of cytokines failed to

Chapter 4

significantly influence Caco-2 monolayer permeability, with observed FD10 permeability ranging from 0.9 - 1.2×10^{-8} cm/s with other tested combinations.

Figure 4.8 Effect of combined cytokines on FD10 permeability across Caco-2 layers at 37°C.

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: * < 0.05, ns > 0.05).

4.3.3.2.2 Permeability at 4°C

Figure 4.9 shows FD10 permeability across Caco-2 monolayers, as measured at 4°C following cell treatment with different combinations of cytokines (for 4 days). It is apparent from the figure that FD10 permeability was similar in all the tested conditions and there was no significant increase in permeability following cell treatment with the cytokines.

Figure 4.9 Effect of combined cytokines on FD10 permeability across Caco-2 layers at 4°C.

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient which described in 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis was calculated by t-test (P value: ns > 0.05).

4.4 Discussion

Inflammatory bowel disease has been linked to an upregulation of proinflammatory cytokines, which play a significant function in mediation of inflammation [20][9]. Furthermore, it has been demonstrated that the intestinal barrier in certain inflammatory conditions is disrupted, whereby the permeability of harmful substances from the intestinal lumen across the gut wall [21][22]. The extent to which the intestinal barrier is compromised in inflammation is not known and was the focus of this chapter. Proinflammatory cytokines, IL-4, IL-13, and TNF- α were used as 'inducers' of inflammation in intestinal Caco-2 monolayers and the effect on their barrier determined.

Chapter 4

In normal non-pathological state, the intestinal epithelium provides a robust biophysical gate, enabled by structural features such as the tight junctions, preventing non selective absorption of material, including potentially toxic elements, across the gut wall [23][8]. However, one of the main features of some intestinal inflammatory diseases is modulation of tight junction structure and function, leading to increased passage of noxious substances across the epithelium [24]. The intestinal epithelium has been shown to be 'leaky' in inflammatory disease states such as Crohn's disease [23]. Recent research has suggested that the changes in epithelial barrier in such conditions arise from dysfunctional tight junctions, which in turn are affected by the action of proinflammatory cytokines, including TNF- α and interleukins [24] [21].

This work assessed the effects of three proinflammatory cytokines, namely TNF- α , IL-4 and IL-13, on the epithelial barrier of intestinal Caco-2 cells. The cells were cultured as polarised monolayers – a popular use of Caco-2 cells. Cell monolayers were treated with these cytokines and the epithelial barrier tested by measuring TEER and macromolecular permeability. Caco-2 monolayer treatment with TNF- α led to a significant decrease in TEER when applied on the basolateral side of the cells, whilst no significant effect was observed when TNF- α was presented on the apical side of polarised cell monolayers. The decrease in TEER after cell treatment with TNF- α is expected to be a result of barrier dysfunction (e.g. an effect on the tight junctions) rather than cell death, which would result in dramatically reduced TEER [21]. A similar influence of TNF- α on Caco-2 monolayer TEER has been shown previously [23][21][22].

Chapter 4

The pattern of TEER data was somewhat reflected in the permeability study, whereby FD10 permeability across Caco-2 monolayers following a 4-day treatment with TNF- α , applied *basolaterally*, increased (this increase was significant in one experiment and in another failed to reach statistical significance). The observed inverse relationship between TEER and permeability is expected [23], considering that both parameters measure the 'tightness' of the epithelial barrier. Apical treatment of the cell monolayers with TNF- α did not affect the permeability. The influence of cytokines on the epithelial barrier when added basolaterally and the lack of effect following apical exposure has also been reported previously [21]. This observation may be related to the basolateral presence of cytokine receptors in epithelial cells [21].

Several investigations have implicated TNF- α as a mediator of change in the barrier properties of intestinal epithelium, increasing the permeability of tight junctions in bowel disease [25]. The mechanism of influence of TNF- α on epithelial barrier has been suggested to be the down-regulation of occludin and up-regulation of claudin proteins [26]. For example, the down-regulation of occludin expression has been reported in numerous patients suffering from inflammatory bowel disease [26]. Moreover, a recent study has demonstrated elevated expression of claudin in patients with Crohn's disease [22]. Another change shown to occur in the inflamed epithelium, which is mediated by TNF- α , relates to the myosin light chain kinase (MLCK) protein, which is heavily involved in tight junction regulation [2]. Upregulation of TNF- α in inflammatory conditions could stimulate MLCK protein expression, opening the tight junctions [13]. TNF- α has the capacity to induce nuclear factor kappa B (NF- κ B), which may act to increase the expression of MLCK [22]. The stimulation of MLCK expression led to increased paracellular permeability in Caco-2 monolayers [23]. Furthermore, TNF- α inhibitors, such as cycloheximide, could decrease MLCK expression and lower the permeability across intestinal epithelium [13].

The two interleukin-based cytokines, IL-4 and IL-13 share the same receptors and studies have shown that they also share similar physiological roles [10]. Both IL-4 and IL-13 have capacity to bind IL-4Rα/IL-13Rα1 complex, which stimulates inflammation reaction in numerous diseases [27]. IL-4 was previously reported to produce an increase in intestinal permeability and produce changes in the tight junctions, including decreased ZO-1 and occludin expression and increased expression of claudin-2 [22]. In this work, IL-4 and IL-13 did not display a significant effect on cell monolayer TEER and FD10 permeability. It is presently unclear why the data in this thesis did not confirm the previous findings with regards to the effect of IL-4 and IL-13 on intestinal barrier, though this work employed a cancerous cell line, which may be more 'resistant' to the application of cytokines, as compared to primary cells or the tissue *in vivo*.

Conducting the permeability studies at 4°C was performed with the view of obtaining mechanistic information on the action of the cytokines on the intestinal Caco-2 monolayers. Inhibiting the active transport route in these conditions would leave the passive route via the paracellular space as the only means for FD10 to traverse the cell monolayers. Any increase in FD10 permeability following cell treatment with the cytokines therefore would indicate a tight junction effect rather than an upregulated active transport route. This is particularly important as active transport processes such as transcytosis have been shown to occur in inflammatory bowel disease [28]. Permeability studies at 4°C with individual cytokines were

somewhat inconclusive, showing a non-significant effect in FD10 permeability with TNF- α and IL-13, whilst IL-4 demonstrated a significant effect in one study.

The most significant effect on the Caco-2 epithelial barrier was provided by application of cytokines in combination. This method of cell treatment, where epithelial cells are exposed to a 'cocktail' of cytokines probably most closely reflects the *in vivo* conditions in inflammatory bowel disease. All the combination of cytokines produced a significant decrease in Caco-2 monolayer TEER. The level of this decrease was notably larger than that with individual application of the cytokines. This synergetic effect on the epithelium resulting from the combined application of has been shown with IL-4 and IL-13 when combined with TNF- α [29]. Regarding the permeability of FD10 across the cell monolayers exposed to the combination of cytokines, IL-4 with IL-13 was the only combination that significantly increased FD10 permeability. It is not clear why other combination did not produce a significant increase in FD10 permeability with all the combination of cytokines. This is especially the case considering the large effect on TEER. However, it may be that TEER is a more sensitive indicator of tight junction opening compared to permeability, especially considering the relatively large molecular weight of FD10 (approximately 10 kDa).

In addition to changes in tight junction permeability, inflammatory bowel disease is also associated with other tissue abnormalities such as defects in mucin expression [1] and the thickness of epithelium [1][30]. Recent research stated that proinflammatory cytokines also play a crucial function in the regulation mucin secretion and therefore the thickness of mucosal wall [1]. Clinical trials have shown that anti-TNF- α antibodies significantly decrease the progress of inflammatory intestinal disorders such as Crohn's disease and ulcerative colitis [31][32]. The FDA-approved anti-TNF- α , infliximab, has been shown to enhance the intestinal barrier healing and improve the status of intestinal epithelium in inflammatory disorders [33][34]. Whilst reversing the changes in the epithelium in inflammatory disease states is essential for disease treatment, exploiting the defective barrier function of the intestinal epithelium in inflammation could be useful in delivering macromolecular therapeutic agents such as proteins non-invasively.

4.5 Conclusion

Of the tested cytokines, TNF- α and IL-4 produced some effects on the Caco-2 monolayer barrier when applied on the basal side of the cells, whilst apical treatment had no influence. The largest effect on the cell monolayer barrier was seen when the cytokines were added to the cells in combination, showing synergy.

4.6 References

[1] D. Siccardi, J. R. Turner, and R. J. Mrsny, "Regulation of intestinal epithelial function: a link between opportunities for macromolecular drug delivery and inflammatory bowel disease.," *Advanced Drug Delivery Reviews*, vol. 57, no. 2, pp. 219–235, Jan. 2005.

[2] T. Y. Ma, M. a Boivin, D. Ye, A. Pedram, and H. M. Said, "Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin lightchain kinase protein expression.," *American Journal of Physiology. Gastrointestinal and Liver Physiology*, vol. 288, no. 3, pp. 422–430, Mar. 2005.

[3] D. R. Clayburgh, L. Shen, and J. R. Turner, "A porous defense: the leaky epithelial barrier in intestinal disease.," *Laboratory Investigation; a Journal of Technical Methods and Pathology*, vol. 84, no. 3, pp. 282–291, Mar. 2004.

[4] J. Hochmanb, "Development of intestinal cell culture models for drug transport metabolism studies," *Advanced Drug Delivery Reviews*, vol. 22, no. 96, pp. 3–52, 1996.

[5] Y. Vodovotz, Rubin, 211, and J. Gerlach, "Translational Systems Approaches to the Biology of Inflammation and Healing," *Immunopharmacology and Immunotoxicology*, vol. 32, no. 2, pp. 181–195, 2010.

[6] T. Y. Ma, "Intestinal Epithelial Barrier Dysfunction in," *Proceedings of the Society for Experimental Biology and Medicine*, vol. 214, pp. 318–327, 1997.

[7] F. Shanahan, "Crohn's disease," *Science & Medicine*, vol. 9, no. 1, p. 48, 2003.

[8] J. L. Madara, "Modulation of tight junctional permeability.," *Advanced Drug Delivery Reviews*, vol. 41, no. 3, pp. 251–253, Jun. 2000.

[9] M. Göke and D. K. Podolsky, "Regulation of the mucosal epithelial barrier.," *Baillière's Clinical Gastroenterology*, vol. 10, no. 3, pp. 393–405, Sep. 1996.

[10] D. M. McKay and a W. Baird, "Cytokine regulation of epithelial permeability and ion transport.," *Gut*, vol. 44, no. 2, pp. 283–289, Feb. 1999.

[11] S. M. Fish, R. Proujansky, and W. W. Reenstra, "Synergistic effects of interferon gamma and tumour necrosis factor alpha on T84 cell function.," *Gut*, vol. 45, no. 2, pp. 191–198, Aug. 1999.

[12] T. Y. Ma, M. a Boivin, D. Ye, A. Pedram, and H. M. Said, "Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin lightchain kinase protein expression.," *American Journal of Physiology. Gastrointestinal and Liver Physiology*, vol. 288, no. 3, pp. 422–430, Mar. 2005.

[13] P. A. Gonnella and W. A. Walker, "Macromolecular absorption in the gastrointestinal tract," *Advanced Drug Delivery Reviews*, vol. 1, no. 1987, pp. 235–248, 1988.

[14] A. M. Calcagno, J. a Ludwig, J. M. Fostel, M. M. Gottesman, and S. V. Ambudkar, "Comparison of drug transporter levels in normal colon, colon cancer, and Caco-2 cells: impact on drug disposition and discovery.," *Molecular Pharmaceutics*, vol. 3, no. 1, pp. 87–93, 2005.

[15] C. a. Bailey, P. Bryla, and A. W. Malick, "The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development," *Advanced Drug Delivery Reviews*, vol. 22, pp. 85–103, Nov. 1996.

[16] F. Delie, "Evaluation of nano- and microparticle uptake by the gastrointestinal tract.," *Advanced Drug Delivery Reviews*, vol. 34, pp. 221–233, Dec. 1998.

[17] P. Artursson, K. Palm, and K. Luthman, "Caco-2 monolayers in experimental and theoretical predictions of drug transport.," *Advanced Drug Delivery Reviews*, vol. 46, no. 1–3, pp. 27–43, Mar. 2001.

[18] D. Vllasaliu, R. Fowler, M. Garnett, M. Eaton, and S. Stolnik, "Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: a comparison.," *Biochemical and Biophysical Research Communications*, vol. 415, no. 4, pp. 579–585, Dec. 2011.

[19] P. Arturssona, K. Palm, and K. Luthmanb, "Caco-2 monolayers in experimental and theoretical drug transport predictions of drug transport," *Advanced Drug Delivery Reviews*, vol. 22, pp. 67–84, 1996.

[20] S. M. Fish, R. Proujansky, W. W. Reenstra, and I. Alfred, "Synergistic effects of interferon and tumour necrosis factor on T84 cell function," *Gut*, vol. 45, pp. 191–198, 1999.

[21] H. Schmitz, M. Fromm, C. J. Bentzel, P. Scholz, K. Detjen, J. Mankertz, H. Bode, H. Epple, E. Riecken, J. Schulzke, D. Gastroenterology, C. Physiology, U. B. Franklin, F. U. Berlin, and N. Carolina, "Tumor necrosis factor-alpha ($TNF\alpha$) regulates the epithelial barrier in the human intestinal cell line HT-29 / B6," *Journal of Cell Science*, vol. 146, pp. 137–146, 1999.

[22] C. T. Capaldo and A. Nusrat, "Cytokine regulation of tight junctions," *Biochimica et Biophysica Acta*, vol. 1788, no. 4, pp. 864–871, Apr. 2009.

[23] T. M. Rana Al-Sadi, Michel Boivin, "Mechanism of cytokine modulation of epithelial tight junction barrier," *Frontiers in Bioscience*, vol. 14, pp. 2765–2778, 2009.

[24] S. V. Walsh, a M. Hopkins, and A. Nusrat, "Modulation of tight junction structure and function by cytokines.," *Advanced Drug Delivery Reviews*, vol. 41, no. 3, pp. 303–313, Jun. 2000.

[25] M. Bruewer, A. Luegering, T. Kucharzik, C. A. Parkos, J. L. Madara, A. M. Hopkins, and A. Nusrat, "Proinflammatory Cytokines Disrupt Epithelial Barrier Function by Apoptosis-Independent Mechanisms," *The Journal of Immunology*, vol. 171, pp. 6164–6172, 2003.

[26] N. Sawada, M. Murata, K. Kikuchi, M. Osanai, H. Tobioka, T. Kojima, and H. Chiba, "Tight junctions and human diseases.," *Medical Electron Microscopy : Official Journal of the Clinical Electron Microscopy Society of Japan*, vol. 36, no. 3, pp. 147–156, Sep. 2003.

[27] S. T. Holgate, "Pathophysiology of asthma: what has our current understanding taught us about new therapeutic approaches?," *The Journal of Allergy and Clinical Immunology*, vol. 128, no. 3, pp. 495–505, Sep. 2011.

[28] J. Pravda, "Crohn's disease: evidence for involvement of unregulated transcytosis in disease etio-pathogenesis.," *World Journal of Gastroenterology* vol. 17, no. 11, pp. 1416–1426, Mar. 2011.

[29] W. Luttmann, T. Matthiesen, H. Matthys, and J. C. Virchow, "Synergistic effects of interleukin-4 or interleukin-13 and tumor necrosis factor-alpha on eosinophil activation in vitro.," *American Journal of Respiratory Cell and Molecular Biology*, vol. 20, no. 3, pp. 474–480, Mar. 1999.

[30] K. Khanvilkar, M. D. Donovan, and D. R. Flanagan, "Drug transfer through mucus.," *Advanced Drug Delivery Reviews*, vol. 48, no. 2–3, pp. 173–193, Jun. 2001.

[31] A. A. Noth R, Stüber E, Häsler R, Nikolaus S, Kühbacher T, Hampe J, Bewig B, Schreiber S, "Anti-TNF- α antibodies improve intestinal barrier function in Crohn's disease," *Journal of Crohn's and Colitis*, vol. 6, no. 4, p. 464, 2012.

[32] D. G., "Anti-TNF-alpha treatment strategies: results and clinical perspectives," *Gastroenterology and Clinical Biology*, vol. 33, p. 209, 2009.

[33] P. F. Magro F, "Management of inflammatory bowel disease with infliximab and other anti-tumor necrosis factor alpha therapies," *BioDrugs*, vol. 24, no. 1, pp. 3–14, 2010.

[34] P.-B. L., "Anti-TNF therapy in inflammatory bowel diseases: a huge review," *Minerva Gastroenterol Dietol*, vol. 56, no. 2, p. 233, 2010.

Chapter 5

Effect of Long-Term Cytokines Treatment on Barrier Characteristics of Human Airway and Intestinal Epithelial Cell Layers

5.1 Introduction

Inflammatory disorders, such as asthma and irritable bowel disease, are commonly characterised by the presence of chronic lesions in the epithelial tissue [1][2][3]. In conjunction with the present inflammation reaction, the 'leakiness' of epithelial mucosa has been reported as one of the symptoms [4][3][5]. The epithelial lesions are believed to mainly be a result of the effects of inflammatory mediators which induce remodelling of epithelial structure and its function [6][7]. It has been shown that endogenous inflammatory mediators play an important function in stimulating the inflammation responses in different tissues of the human body, including pulmonary and intestinal epithelium [8][9]. The presence, and intensity, of inflammatory reaction can cause permanent damage of epithelium [2][7][10][11]. The recent papers attribute a disruption in epithelial barrier properties (the 'leakiness') to be a consequence of damages to the tight junctions, as the essential component of paracellular transport pathway [12][13][14]. With regards to described inflamed cells behaviour *in vivo*, damaged tight junction complex was observed in several respiratory [15] and intestinal studies [16].

Pro-inflammatory cytokines have been found involved as key players in the mechanism of inflammation reaction [7][17][18]. Cytokines are proteins released by wide varieties of cells, and they contribute to the intracellular communication and immunological responses [19][20]. For this project it is important to note that pro-inflammatory cytokines such as interleukin-4 (IL-4) [17], interleukin-13 (IL-13) [21] and tumour necrosis factor-alpha (TNF- α) [22] were found to stimulate *in vivo* dysfunction of epithelium [12]. In several inflammatory disorders (e.g. asthma and Crohn's disease) cytokine exposure was reported to result in modification of epithelial properties [7][12][18].

In previous Chapters 3 and 4, formed Calu-3 and Caco-2 cell layers were treated for a shorttime period with cytokines (for 4 days), to potentially represent acute inflammation conditions. These were assessed in terms of epithelial permeability and tight junction structure. The transepithelial resistance (TEER) and permeability results demonstrated the influences of cytokines tested on epithelial mucosa, particularly tight junctions. The results shown in previous chapters were obtained following a 4 days treatment of formed cell layers with IL-4, IL-13, TNF- α or their combinations. However, these studies did not probe the effect that a prolonged exposure to cytokines has on epithelial cell layers *in vitro*. Therefore, effects of prolonged exposure time of the mucosal cells to the cytokines on epithelial layers properties would be investigated in this chapter. This is aimed to better represent chronic inflammation conditions.

Currently, a number of publications from research laboratories are attempting to design wellcharacterised *in vitro* model that closely represent inflamed epithelial tissue [2]. Due to the difficulties of using *in vivo* models to study the effect of cytokines on epithelium [2][23][24],

designing representative *in vitro* models would be a good approach. Since the remodelling of epithelial structure in lung [25] and intestinal diseases [7] is assumed to be due to chronic inflammation reaction, the effect of chronic / prolong presence of pro-inflammatory cytokines with the epithelial monolayers seem necessary to study. Prolonged treatment of Calu-3 and Caco-2 cells with cytokines could lead to a design of practical *in vitro* model for respiratory and intestinal inflammatory disorders.

Therefore, this chapter examines the effect of long-term pro-inflammatory cytokines treatment (21 days) on epithelial cell layer formation and properties with the aim to expand our understanding of a contribution of cytokines on inflammatory responses in epithelium and to investigate the chronic effect of cytokines on epithelium.

5.2 Methods

5.2.1 Effect of Cytokines on Calu-3 and Caco-2 TEER

Calu-3 and Caco-2 cell lines were plated in 75 cm² flasks with passage numbers 37 and 76, respectively. After confluence, cells were seeded on Transwell[®] (12 mm diameter, 0.4μ m pore size) at 100.000 cells/cm² seeding density. Calu-3 cells were typically used as air-interfaced culture (AIC), whereas Caco-2 cells were cultured normally as liquid-covered culture (LCC). EMEM medium was used for Calu-3 cells, while Caco-2 was cultured in DMEM medium, and the medium replaced every 2 days. Cell polarised layers integrity was identified by measuring the transepithelial electrical resistance (TEER). A detailed description of TEER measurement method is included in sections 2.2.2 and 2.2.4.

5.2.2 Effect of Cytokines on Calu-3 and Caco-2 Permeability

Recombinant human pro-inflammatory cytokines IL-4, IL-13 (5ng/ml), and TNF- α (25ng/ml) were applied on the basolateral side of Calu-3 and Caco-2 cells. Only the cell layers displaying TEER values >300 and >1000 Ω .cm² for Calu-3 and Caco-2 respectively, were included in this study. Cells were exposed to cytokines for 21 days (the time needed by cells to form polarised monolayers). In further experiments, cells were treated with TNF- α (the cytokine that provided the most effect on epithelial barrier as shown in earlier chapters) for short-term (4 days) to compare with long-term condition. Control cells were conducted without cytokine treatment. FD10 transport permeability studies were conducted on day 21 in culture after TEER confirmed that cells formed confluent membranes. Cells were firstly equilibrated in warm (HBSS/HEPES, 37°C) solution, then cells incubated for ~45min to adapt with transport medium and TEER was measured again to confirm cells situation. FD10 solution was replaced with the half-apical medium at concentration (500µg/ml). The rest of experiment was described properly and in more information in 2.2.4.

5.3 Results

5.3.1 Effect of Long-Term Cytokines Application on Calu-3 and Caco-2 Barrier Properties

5.3.1.1 Effect on TEER

The effect of long-term cytokines treatment on TEER of Calu-3 and Caco-2 cell layers following the basolateral side addition of TNF- α , IL-4 and IL-13 is presented in Figure 5.1. Figure 5.1a shows the effect of long-term cytokines treatment on TEER of Calu-3 cells grown at air-liquid interface. From the results for control cells, it should be noted that the

TEER during the culture gradually increased to approximately 288% of the initial/baseline value (average TEER value at day 0 before cytokines addition and taken as 100%). During 21 days of TNF- α exposure, TEER values gradually increased to approximately 354% of the baseline value as the cell layer was formed. For IL-4 and IL-13 addition, the values reached approximately 148% for IL-4 and 164% for IL-13 treatment. The statistical analysis, which was conducted by *t-test* for each condition comparing with the control, indicated that the changes in TEER values are not significant in all of pro-inflammatory cytokines treatment conditions (*P values* >0.05), comparing to the results of control cells.

Figure 5.1b shows the TEER measurements for Caco-2 cell culture during the 21 days exposure experiment. The results are expressed as percentage of baseline value (average TEER value at day 0 before cytokines addition and taken as 100%). Caco-2 control cells showed normal growth during the experiment (optical microscopy observation), and the TEER value rose gradually from 100% of the initial measurement to approximately 470% at the last day of experiment. In IL-4 and IL-13 conditions, TEER values were increased gradually from 100% to about 350% and 360%, respectively. T-test of significance confirmed that the changes in TEER values for both IL-4 and IL-13 interleukins are not significant in comparison to the control (*P values* >0.05). However, in TNF- α condition, it is clear that during the culture period TEER values are significantly lower than that of the control cells, increasing to only approximately 175% in the final measurement. Statistical analysis by t-test demonstrated that *P value* in this case is less than 0.00001, confirming statistically significant difference.

Figure 5.1 TEER profiles of a) Calu-3 and b) Caco-2 cells cultured on Transwell[®] *filters and treated for 21 days with IL-4, IL-13 (5ng/ml) and TNF-α (25ng/ml).*

TEER is expressed as % change compared to baseline value (TEER at day 0 before cytokines addition). Background TEER due to the filter was subtracted from the reported TEER values. Data presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: * < 0.05, ** < 0.001, *** < 0.0001, *** < 0.0001 ns > 0.05).

5.3.1.2 Effect on Cell Layers Permeability

In addition to TEER, changes in the permeability barrier of Calu-3 and Caco-2 cell layers following long-term cytokine exposure were evaluated by measuring the permeability of a macromolecular model compound, FD10. Figure 5.2 depicts FD10 permeability across polarised Calu-3 (grown at air-liquid interface) and Caco-2 cell layers, after a basolateral side treatment with the cytokines for 21 days. FD10 permeability is expressed as apparent permeability coefficient (P_{app}), which was calculated according to the equation described in section 2.2.4, following regular sampling of the basolateral solution (over 3 hours) and FD10 quantitation by fluorescence, as described in section 2.2.4.

Figure 5.2a shows the P_{app} values of Calu-3 cells treated with the cytokines. The apparent permeability of control cells was $P_{app} \sim 55 \pm 26 \times 10^{-8}$ cm/s, while treated cells showed $P_{app} \sim 33 \pm 8 \times 10^{-8}$ cm/s for IL-4, $P_{app} \sim 53 \pm 10 \times 10^{-8}$ cm/s for IL-13 treated and $P_{app} \sim 32 \pm 4 \times 10^{-8}$ cm/s for TNF- α exposure. All these values showed insignificant difference of long-term cytokines treatment on Calu-3 cells permeability (*P values* >0.05) compare to the control.

Figure 5.2b shows the effect of long-term cytokines treatment on the permeability of FD10 across Caco-2 monolayers. Control cells which were not treated with cytokines showed P_{app} of approximately $2 \pm 1 \ge 10^{-8}$ cm/s, with IL-4 and IL-13 treated cells showing P_{app} around 7 ± 6 and $3 \pm 1 \ge 10^{-8}$ cm/s, respectively. Statistical tests confirmed that both IL-4 and IL-13 interleukin's results were not significantly different from the control P_{app} (*p* values >0.05). In TNF- α situation, the P_{app} result demonstrated that FD10 permeability is approximately 17-times more than normal, untreated Caco-2 cells. P_{app} of FD10 was increased from around $2 \pm 1 \ge 10^{-8}$ in the control to around $38 \pm 10 \ge 10^{-8}$ cm/s with TNF- α treatment, and t-test confirmed statistical difference (*p* value <0.00001).

Figure 5.2 Effect of long-term cytokines treatment on FD10 permeability across a) Calu- 3 and b) Caco-2 monolayers

Cells were treated with IL-4, IL-13 (5ng/ml) and TNF- α (25ng/ml). FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient that described in section 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: **** < 0.00001, ns > 0.05).

5.3.1.3 Comparing Long-Term and Short-Term Treatment with TNF-α Effect on Permeability

To compare the difference between the effects of long and short-term application of cytokines on epithelial layers permeability, in a new experiment the FD10 transport across the cell layers in these experimental conditions was determined. Figure 5.3a shows a comparison between Papp of FD10 transport across Calu-3 layers (grown at air-liquid interface) in long-term (21 days) and short-term treatment (4 days). In 3 weeks of TNF-a treatment experiment, the result shows that this cytokine produced a significant effect on Calu-3 layer permeability with P_{app} around 62 ± 17 x 10⁻⁸ cm/s comparing to control of 0.8 ± 0.5 x 10⁻⁸ cm/s. However, short-term treatment did not provide a notable change in Calu-3 permeability showing P_{app} of ~ 1.1 ± 0.4 x 10⁻⁸ cm/s. Taken together, the permeability in long-term treatment was approximately 77.5-fold higher than the control cell layer, while short-term TNF- α exposure was only 1.25 times more than the control. Statistical analysis indicates that the result in long-term treatment are significantly different ($p \ value < 0.001$), and insignificantly increased in short-term treatment (P values >0.05), relative to the control. Figure 5.3b shows a comparison between P_{app} of FD10 transport across Caco-2 monolayers in long-term treatment (21 days) and short-term treatment (4 days). Again the long-term treatment provided significant effect by showing P_{app} of 14.5 ± 6.5 x 10⁻⁸ cm/s in long-term treatment, comparing to control P_{app} of $1.0 \pm 0.2 \times 10^{-8}$ cm/s. This means that the increase in permeability was nearly 14 fold. With regard to short-term treatment, apparent permeability coefficient P_{app} was approximately 2.5 \pm 1.2 x 10⁻⁸ cm/s, and by comparing this value with the P_{app} of control Caco-2 cells, the permeability is 2.5 times increased. T-test demonstrated that the P_{app} in long-term exposure is significantly increased (*p value* < 0.05), relative to the control, while P_{app} in short-term experiment showed no statistical difference to the control.

Figure 5.3 Comparison of the effect of long-term and short-term TNF-a (25ng/ml) treatment on FD10 permeability across a) Calu-3 and b) Caco-2 monolayers.

FD10 permeability expressed as P_{app} , calculated using the equation of apparent permeability coefficient that described in section 2.2.4. Results presented as the mean \pm SD (n=4). Statistical analysis calculated by t-test (P value: * < 0.05, ** < 0.001, *** < 0.0001, **** < 0.0001, ns > 0.05).

5.4 Discussion

The present work aimed to assess a possible difference between the effects of long-term and short-term proinflammatory cytokines treatments on epithelial monolayers properties. Chapters 3 and 4 discussed the short-term effects in more details, and this chapter will focus on the long-term effects. Epithelial cells were shown to have the ability to release cytokines in inflammatory conditions [26]. It has been reported that in intestinal inflammatory diseases, proinflammatory cytokines generate important alteration of epithelial barrier structure and functionality, leading to an increase in the permeability of substances via paracellular route to intestinal lumen [4]. From the present data, a long term treatment of Caco-2 cells with IL-4 and IL-13 did not significantly affect transepithelial resistance. However, TNF- α showed an opposite result; the significantly decreased TEER values of Caco-2 layers during 21 days of experiment. These results are reflected in the FD10 transport across treated epithelium. The long-term exposure to pro-inflammatory cytokines did not provide notable effect on the Papp values for IL-4 and IL-13, but showed a dramatic effect in the TNF-a treatment with approximately 14.5- and 77.5-fold increase for Caco-2 and Calu-3 layers. The general trend of increased permeability following TNF- α treatment was seen in two separate experiments, although the absolute values are substantially different and potential future work would need to study more biological replicates. The future work would also need to consider a long term application of IL-4+IL-13 combination in CaCo-2 cells, as this has shown a significant effect in the short term experiment.

With regard to Caco-2 cells, our results for IL-4 and IL-13 are in agreement with a study which reported that no significant effect was observed with recombinant IL-4 and IL-13 treatment *in vitro* [26]. The possible explanation might be that the interleukins play a role in

protecting the functionality and structure of the epithelium during long-term treatment. This observation also agrees with previous studies which demonstrated that IL-4 and IL-13 have anti-inflammatory properties in such cell lines, e.g. H-29 [26]. In contrast, another published work demonstrated that recombinant IL-4 and IL-13 contributed significantly to the damage of Caco-2 epithelial monolayers [27]. Potentially dual anti-inflammatory and pro-inflammatory action of IL-4 and IL-13 has been seen in several conditions [26], and this might be the most likely reason for different effect of IL-4 and IL-13 on epithelium in different cases. Taking this further, an intestinal study demonstrated that it could be a good strategy to use IL-4 and IL-13 to treat inflammatory intestinal conditions by inhibiting the effect of other pro-inflammatory cytokines [26]. Furthermore, both interleukins have the capacity to inhibit the production of pro-inflammatory cytokines in different inflammatory conditions [26].

With regard to intestinal cell line models, TNF- α was shown to produce a significant effect on epithelial barrier in HT29/B6 cell line, while in T₈₄ cell model TNF- α it did not produce notable effects [4]. Another recent study documented that TNF- α can stimulate the tight junction modification and produce chronic damage of *in vitro* epithelial layer models [28]. The effect of TNF- α on intestinal cells was not ascribed to apoptosis action [4], but the TNF- α capacity to produce significant alteration in Caco-2 epithelial barrier characteristics [29], which consequently increased the permeability. The dose of cytokines that were applied on epithelial cells may play a role in the intensity of its effect [26]. This has not been assessed in the present study, but the future potential work would need to consider such experiments. Moreover, the prolonged contact time with cytokine would increase the probability of producing significant effect, as shown in the present study in the experiment that compare the influences of short-term and long-term TNF- α .

A study demonstrated that epithelial monolayers could release cytokines in inflammatory condition [30]. In asthma, proinflammatory cytokines that are released by epithelium can produce potent effects on remodelling of tight junction structure [31]. Inflammation reaction such as asthma could cause irreversible destruction in epithelial tissue [30]. In case of AIC Calu-3 treatment, different results were obtained from treating the cells with IL-4, IL-13 and TNF-a for 21 days. Our TEER and FD10 permeability data demonstrated that short exposure of the formed airway epithelial layer to the pro-inflammatory cytokines used in this study did not cause significant influence. Long-term / chronic treatment with TNF-a however provided a significant effect on Calu-3 permeability in one of the experiments conducted, and no significant effect in the other. The effect seen could be resulting from a prolonged interaction time between the recombinant cytokine and airway epithelial monolayers, however the experiment would need to be repeated to confirm this. In chapter 3 and 4, we verified the effects of tested cytokines following short-term exposure (not more than 4 days), as reported in a few studies discussed. There is however no available data from literatures on the influence of chronic treatment on intestinal and respiratory cell line models.

In asthmatic tissue, IL-4 and IL-13 might produce significant structural modification in epithelium [30]. IL-4 and IL-13 play important function on impairment of Calu-3 epithelial cells and prolong residence time could induce changes in the expression of epithelial membrane proteins, such as occluding expression [27]. Concerning the effect of IL-13 on Calu-3, it was shown to downregulate some tight junction proteins and increase an influx of molecules across the epithelial layer [29]. Similar observation was noticed in asthma individuals [27]. Other possible mechanism for the influence of IL-4 and IL-13 on airway epithelium is a decrease of cell migration, which could delay wound healing process [27]. In our study however, TEER and FD10 permeability data show that long-term treatment with tested of IL-4 and IL-13 interleukins did not have negative effects but may potentially

generate protective effect on epithelium overtime. Our results are consistent with other observations about the protective properties of these cytokines [26]. Further investigations, particularly on epithelial membrane gene expression, would be important to prove this hypothesis (see Chapter 6).

Tumour necrosis factor has been shown to have a significant harmful effect on several cells [32]. A number of investigations concluded that TNF- α plays an essential function in asthma disorder [22]. TNF- α play a key role in induce the asthma inflammation [33]. Elevated in TNF- α expression was observed in analysis from asthmatic individual [17][20].

5.5 Conclusions

Using Caco-2 and Calu-3 cells the present study investigated the effect chronic exposure with different cytokines on epithelial cells properties. We demonstrated that long-term treatment with proinflammatory cytokine TNF- α has an important effect on the cell layers. TNF- α has exhibited significant effect on TEER and FD10 permeability. However, IL-4 and IL-13 did not produce significant effects on the same cell lines. In Calu-3, no significant effect was observed with these cytokines in TEER, as well as in transport of FD10. This observation might be due to suggested anti-inflammatory properties of IL-4 and IL-13.. It should be noted that no much work was published about the effect of these cytokines on Calu-3 and Caco-2 epithelial monolayers, particularly during prolonged incubation [26]. Furthermore, the data suggest that it may be useful to start further work on gene expression analysis to examine the regulation properties of proinflammatory cytokines on epithelial cells protein components expression [30].

5.6 References

- Y. Vodovotz, Rubin, 211, and J. Gerlach, "Translational Systems Approaches to the Biology of Inflammation and Healing," *Immunopharmacolgy and Immunotoxicology*, vol. 32, no. 2, pp. 181–195, 2010.
- [2] R. K. Kumar, "Understanding airway wall remodeling in asthma: a basis for improvements in therapy?," *Pharmacology & Therapeutics*, vol. 91, no. 2, pp. 93–104, Aug. 2001.
- [3] T. Y. Ma, "Intestinal Epithelial Barrier Dysfunction in," *Proceedings of the Society for Experimental Biology and Medicine*, vol. 214, pp. 318–327, 1997.
- [4] H. Schmitz, M. Fromm, C. J. Bentzel, P. Scholz, K. Detjen, J. Mankertz, H. Bode, H. Epple, E. Riecken, J. Schulzke, D. Gastroenterology, C. Physiology, U. B. Franklin, F. U. Berlin, and N. Carolina, "Tumor necrosis factor-alpha (TNFα) regulates the epithelial barrier in the human intestinal cell line HT-29 / B6," *Journal of Cell Science*, vol. 146, pp. 137–146, 1999.
- [5] T. Y. Ma, M. a Boivin, D. Ye, A. Pedram, and H. M. Said, "Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression.," *American Journal of Physiology. Gastrointestinal and Liver Physiology*, vol. 288, no. 3, pp. 422–430, Mar. 2005.
- [6] M. Adner, A. C. Rose, Y. Zhang, K. Swärd, M. Benson, R. Uddman, N. P. Shankley, and L.-O. Cardell, "An assay to evaluate the long-term effects of inflammatory mediators on murine airway smooth muscle: evidence that TNFalpha up-regulates 5-HT(2A)-mediated contraction.," *British Journal of Pharmacology*, vol. 137, no. 7, pp. 971–982, Dec. 2002.
- [7] D. Siccardi, J. R. Turner, and R. J. Mrsny, "Regulation of intestinal epithelial function: a link between opportunities for macromolecular drug delivery and inflammatory bowel disease.," *Advanced Drug Delivery Reviews*, vol. 57, no. 2, pp. 219–235, Jan. 2005.
- [8] D. M. McKay and a W. Baird, "Cytokine regulation of epithelial permeability and ion transport.," *Gut*, vol. 44, no. 2, pp. 283–289, Feb. 1999.
- [9] S. Al-Muhsen, J. R. Johnson, and Q. Hamid, "Remodeling in asthma.," *The Journal of Allergy and Clinical Immunology*, vol. 128, no. 3, pp. 451–462, Sep. 2011.

- [10] J. Renauld, "Leaders New insights into the role of cytokines in asthma," *Journal of Clinical Pathology*, vol. 54, no. 8, pp. 577–589, 2001.
- [11] M. Göke and D. K. Podolsky, "Regulation of the mucosal epithelial barrier.," *Baillière's Clinical Gastroenterology*, vol. 10, no. 3, pp. 393–405, Sep. 1996.
- [12] S. V. Walsh, a M. Hopkins, and A. Nusrat, "Modulation of tight junction structure and function by cytokines.," *Advanced Drug Delivery Reviews*, vol. 41, no. 3, pp. 303–313, Jun. 2000.
- [13] D. a Knight, S. M. Stick, and T.-L. Hackett, "Defective function at the epithelial junction: a novel therapeutic frontier in asthma?," *The Journal of Allergy and Clinical Immunology*, vol. 128, no. 3, pp. 557–558, Sep. 2011.
- [14] Y. Grumbach, N. V. T. Quynh, R. Chiron, and V. Urbach, "LXA4 stimulates ZO-1 expression and transpithelial electrical resistance in human airway epithelial (16HBE14o-) cells.," *American Journal of Physiology. Lung Cellular and Molecular Physiology*, vol. 296, no. 1, pp. L101–8, Jan. 2009.
- [15] S. T. Holgate, "Epithelium dysfunction in asthma.," *The Journal of Allergy and Clinical Immunology*, vol. 120, no. 6, pp. 1233–1244, Dec. 2007.
- [16] D. R. Clayburgh, L. Shen, and J. R. Turner, "A porous defense: the leaky epithelial barrier in intestinal disease.," *Laboratory Investigation*; a Journal of Technical Methods and Pathology, vol. 84, no. 3, pp. 282–291, Mar. 2004.
- [17] D. S. Robinson, S. R. Durham, and A. B. Kay, "Cytokines in asthma," *Thorax*, vol. 48, pp. 845–853, 1993.
- [18] H. Nakajima and K. Takatsu, "Role of Cytokines in Allergic Airway Inflammation," *International Archives of Allergy and Immunology*, vol. 142, no. 4, pp. 265–273, 2007.
- [19] C. a. Dinarello, "Proinflammatory Cytokines," *Chest*, vol. 118, no. 2, pp. 503–508, Aug. 2000.
- [20] K. F. Chung and P. J. Barnes, "Cytokines in asthma," *Thorax*, vol. 54, no. 9, pp. 825– 857, Sep. 1999.
- [21] M. Wills-karp, "Interleukin-13 in asthma pathogenesis," *Immunological Reviews*, vol. 202, pp. 175–190, 2004.
- [22] P. S. Thomas, "Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asthma.," *Immunology and cell biology*, vol. 79, no. 2, pp. 132–140, Apr. 2001.

- [23] Y. Zhu, A. Chidekel, and T. H. Shaffer, "Cultured human airway epithelial cells (calu-3): a model of human respiratory function, structure, and inflammatory responses.," *Critical Care Research and Practice*, vol. 2010, p. 8, Jan. 2010.
- [24] J. Hochmanb, "Development of intestinal cell culture models for drug transport metabolism studies," Advanced Drug Delivery Reviews, vol. 22, no. 96, pp. 3–52, 1996.
- [25] D. E. Davies and S. T. Holgate, "Asthma: the importance of epithelial mesenchymal communication in pathogenesis. Inflammation and the airway epithelium in asthma.," *The International Journal of Biochemistry & Cell Biology*, vol. 34, no. 12, pp. 1520– 1526, Dec. 2002.
- [26] H. Pauels and W. Domschke, "IL-4, IL-10 and IL-13 down-regulate monocytechemoattracting protein-1 (MCP-1) production in activated intestinal epithelial cells," *Clinical & Experimental Immunology*, vol. 111, pp. 152–157, 1998.
- [27] M. Ahdieh, T. Vandenbos, A. Youakim, J. C. Sci, L. M. Crosby, C. M. Waters, A. J. Physiol, L. Cell, M. Physiol, S. R. White, L. D. Martin, M. K. Abe, B. A. Marroquin, R. Stern, and T. I. M. Vandenbos, "Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN- γ Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN- γ, 2029–2038, *American Journal of Physiology Cell Physiology*, vol. 281, no. 6, pp. 2029–2038, 2001.
- [28] C. T. Capaldo and A. Nusrat, "Cytokine regulation of tight junctions," *Biochimica et Biophysica Acta*, vol. 1788, no. 4, pp. 864–871, Apr. 2009.
- [29] T. M. Rana Al-Sadi, Michel Boivin, "Mechanism of cytokine modulation of epithelial tight junction barrier," *Frontiers in Bioscience*, vol. 14, pp. 2765–2778, 2009.
- [30] D. A. Knight and S. T. Holgate, "The airway epithelium: Structural and functional properties in health and disease," *Respirology*, vol. 8, no. 4, pp. 432–446, 2003.
- [31] E. J. Swindle, J. E. Collins, and D. E. Davies, "Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches.," *The Journal of Allergy and Clinical Immunology*, vol. 124, no. 1, pp. 23–34, Jul. 2009.
- [32] D. R. Spriggs, K. Imamura, C. Rodriguez, E. Sariban, and D. W. Kufe, "Tumor necrosis factor expression in human epithelial tumor cell lines.," *The Journal of Clinical Investigation*, vol. 81, no. 2, pp. 455–460, Feb. 1988.
- [33] C. Brightling, M. Berry, and Y. Amrani, "Targeting TNF-α: A novel therapeutic approach for asthma," *Journal of Allergy and Clinical Immunology*, vol. 121, no. 1, pp. 5–10, Jan. 2008.

Chapter 6

Effect of Cytokines on the Expression of Human Intestinal and Airway Epithelial Barrier Genes

6.1 Introduction

Inflammation is an immunological reaction stimulated usually by endogenous and exogenous mediators via different mechanisms [1]. Several components of epithelium have been shown to be involved in the inflammation process mechanism in a wide range of inflammatory disorders [2]. Shaoyong *et al.* stated that a number of epithelial membrane proteins could be significant constituent of inflammation progression in human [3].

Epidemiological studies reported that modification in the expression of epithelial barrier genes is one of the important factors that might play a significant function in such intestinal inflammatory disorders [4][5][6]. In addition, in pulmonary inflammatory conditions, there is strong evidence that the development of asthma, for instance, is based mainly on changes in the expression of such airway barrier genes, which might drive medical research in future into new insight of therapy [7][8][9][10]. Most patients suffering from inflammatory diseases are dissatisfied with current anti-inflammatory treatment, while good understanding of the contribution of genes up- or down-regulation in the inflammation process could lead to discover a novel therapeutic strategy for clinical applications [6][11][12]. In addition, understanding of the expression features of epithelium in inflammation reaction will help

Effect of Cytokines on the Expression of Human Intestinal and Airway Epithelial Barrier Genes

inventors to create well-characterised *in vitro* models of inflamed cells, and this will support researchers to examine the efficacy of new anti-inflammatory agents.

Recently, numerous investigations have demonstrated that the remodelling of epithelial tight junction structure is considered a key feature of the pathophysiology of inflammatory disease, and the epithelial membrane proteins might play a central function in this alteration [13][14][15][16]. The literature reports different epithelial membrane genes as shown in Table 6.1 that may provide important functions in formation, regulation and transport processes across epithelial membranes. It can be hypothesised that these genes play vital roles in the modulation of tight junction complex structure and function in inflamed epithelial tissue.

Gene Symbol	Gene Name	Function	Reference
TJP1	tight junction protein 1 (zona occludens 1)	Tight junction formation and regulation	[17]
TJP2	tight junction protein 2 (zona occludens 2)	Tight junction formation and regulation	[18][19]
TJP3	tight junction protein 3 (zona occludens 3)	Tight junction formation and regulation	[20][21]
CDH1	cadherin 1, type 1, E- cadherin (epithelial)	Regulating cell-cell adhesions (adherence junctions protein)	[22]
CAV1	caveolin 1, caveolae protein	Transport via endocytosis pathway	[23]
LAMP1	lysosomal-associated membrane protein 1	Late endosome and lysosomes	[24][25]
CLTC	clathrin, heavy chain (Hc)	Regulation endocytosis pathway	[26]
CLDN1	claudin 1	Formation of tight junction	[27]
CLDN4	claudin 4	Formation of tight junction	[28]
CLDN5	claudin 5	Formation of tight junction	[29]
FCGRT	Fc fragment of IgG, receptor, transporter, alpha	Transfer of IgG from mother to fetus	[30]
CUBN	cubilin (intrinsic factor- cobalamin receptor)	Endocytic receptor	[31]
FOLR1	folate receptor 1 (adult)	Membrane-bound protein	[32]
EEA1	early endosome antigen 1	Endosome fusion	[33]
RAB4A	RAB4A, member RAS oncogene family	Cell adhesion and early endosome	[34][35]
RAB5A	RAB5A, member RAS oncogene family	Fusion of plasma membranes and early endosome	[36][37]
RAB7A	RAB7A, member RAS oncogene family	Late endocytic transport	[38]
RAB9A	RAB9A, member RAS oncogene family	Late endocytic transport	[39]

RAB11A	RAB11A, member RAS oncogene family	Regulates endocytic recycling	[40]
M6PR	mannose-6-phosphate receptor (cation dependent)	Late endocytic transport	[41]
FPR1	formyl peptide receptor 1	Activation of neutrophils	[42]
OCLN	occludin	Formation and regulation of the tight junction	[43]

Table 6.1Several genes whose expression features could play key roles in remodelling
of the epithelium in inflammatory conditions.

From the table above, the candidate genes would be analysed by using gene expression microarray data from the Gene Expression Omnibus (GEO) database to distinguish the difference of gene expression in normal and inflammatory condition and to select the genes of interest that are suitable to be investigated in this chapter.

Gene Expression Omnibus (GEO) is a public microarray databank created in 2000 by the National Centre for Biotechnology Information (NCBI) to archive experimental information of mRNA, protein molecules and genomic DNA, which are used routinely in biomedical and molecular biology research [44][45][46][47]. Nowadays, numerous researchers mine the GEO database to identify candidate genes, to confirm their results and to design further studies [48].

In 2006, GEO contained more than 20.000 studies, about 33 billion individual measurements and about half a million samples [49]. GEO database contains three types of data which are series, platform and sample [50]. Platform is the type of array used in the experiment and identified by (GPL) prefix [51]. Sample is the collection of a summary of the materials and general methodology used in the experiment and known by (GSM) prefix [52]. Finally, series is a collection of samples which composed part of a study and is known by (GSE) prefix [49]. Also, there is a further tool called Dataset which is known by (GDS) prefix, and contains complete summary of final values [53]. GEO database can be accessed freely on (GEO; http://www.ncbi.nlm.nih.gov/geo).

In an attempt to investigate the contribution of specific genes involved in epithelial transport under conditions of increased inflammatory mediators in epithelial tissue, Caco-2 and Calu-3 cell lines were used. Caco-2 monolayers are a well characterised cell line that represents an *in vitro* model of intestinal mucosa and is used widely among varieties of pharmaceutical research [55]. The Calu-3 cell line, originally derived from bronchial tissue, is used commonly as a model of the *in vivo* situation of airway epithelium in normal state [56][57].

The expression patterns of selected genes were examined in this chapter in three different conditions. First, epithelial cells treated with a proinflammatory cytokine (TNF- α) for 21 days, mimicking a chronic inflammatory condition. Second condition, 4 days of treatment was used in Caco-2 and Calu-3 monolayers, mimicking an acute inflammatory condition. Finally, cells were cultured without cytokine treatment. We hypothesized that the gene expression of intestinal and airway epithelium would be similar to that of Caco-2 and Calu-3, respectively. It should be noted that proinflammatory cytokines play a central role in stimulating the inflammation process as host defence mechanism [58][59], as mentioned in detail in previous chapters.

In general, it is still unclear how these genes contribute in the alteration of epithelial barrier structure and function in inflammatory disorders. Hence, this chapter seeks to define the

correlation between inflammatory state and gene expression using *in vitro* models of epithelial membrane treated with proinflammatory mediators. Good understanding of this correlation could help researchers in academia or the pharmaceutical industry to employ these systems as models of inflamed airway and intestinal epithelium.

6.2 Methods

6.2.1 Cell Culture and Cytokine Treatment

Caco-2 Cells were originated from human colorectal adenocarcinoma and purchased from the European Collection of Cell Cultures (ECACC number; <u>86010202</u>). Caco-2 cells were used in this work with passage number (69), and cultured using Dulbecco's Modified Eagles Medium (DMEM). Calu-3 cells were originated from human bronchial adenocarcinoma and obtained from the American Type Culture Collection (ATCC number; <u>HTB-55</u>). Calu-3 cells were used with passage number (36) and cultured using Eagle's Minimum Essential Medium (EMEM). Both DMEM and EMEM were purchased from Sigma-Aldrich (UK). Caco-2 and Calu-3 cells were seeded with 100.000 cells/well seeding density in 12 mm diameter and 0.4 μm pore size polystyrene permeable inserts (Transwell[®]) were supplied by Corning Life Sciences (USA). Cells were incubated at 37°C in a humidified incubator with 5% CO2.

Recombinant human proinflammatory cytokine TNF- α was purchased from R&D Systems (UK) and mixed with master medium with (25ng/ml) concentration. Three conditions were created for each cell line: cells with TNF- α for21 days, cells with TNF- α for 4 days and control (cells without TNF- α treatment). Following treatment with TNF- α , Caco-2 and Calu-3 cells were lysed for gene expression analysis. More information about this study was explained minutely in Chapter 2.2.6.

6.2.2 Primer Design for PCR

Primer design for the RT–PCR experiment by Primer-BLAST was made (www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers were designed across an intron to discriminate cDNA from genomic DNA contaminants, and taking into account the existence of known splice variants. The specificity was checked using Primer- BLAST. Primers (desalted) were purchased from Sigma-Aldrich and dissolved in water as 100 µM stock solutions. All primers were analysed for optimal annealing temperature using a gradient cycler. In these experiments, the human housekeeping gene Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as control. The primers used in this study are as follows:

Gene	Forward primer	Reverse primer	Product size
TJP2 v1	CAGGCATGGAAGAGCTGATA	CCGGGAGCACATCAGAAAT	150 bp
TJP2 v2	GGAGGATGTGCTTCATTCGT	CGCATGGTCTTGGTCCAG	352 bp
TJP3 v1	GGGACCTGCCTCCCTGTTGC	GGTCGCCTGTCTGTAGCCTGC	342 bp
TJP3 v2	GGGTGGGGGGCCGATTGACTG	GTCGCCTGTCTGTAGCCTGCC	264 bp
LAMP1	CACGCTGTGAACAAGACAGG	TGTTGGGGTTGATGTTGAGA	219 bp
RAB4A	TGATATCACCAGCCGAGAAA	GAGCAAATCTGGAGGCTTCT	158 bp
RAB5A	CTCGGCTTGCTGCGGTCTCA	TGCCAACAGCGGACTCTCCCA	211 bp

Table 6.2List of forward and reverse primers used to examine the expression features ofcandidate genes.

6.2.3 PCR Analysis

Total mRNA was isolated and reverse transcribed into cDNA using the OneStep cDNA synthesis kit (Miltenyi Biotec) following the manufacturer's protocol. Each PCR reaction contained (10µl) of Jump Start Taq DNA polymerase mix (Sigma-Aldrich), (2µl) of primers, (1µl) of cDNA (for specific condition) and (7µl) free DNA and RNA water. 20 µl of PCR samples were mixed in PCR tubes. A 96-Well PCR Thermal Cyclers (Thermocyclers) was used with 58°C annealing temperature and 35 cycles of heating and cooling. The 58°C was used as a suitable annealing temperature for all examined genes.

The amplified products were confirmed by their expected sizes using 2% agarose gel electrophoresis run in 0.5x Tris-Borate-EDTA (TBE) buffer stained with 5 μ g/ml ethidium bromide and imaged using SynGene Genius equipment and GeneSNAP imaging software.
6.3 Results

6.3.1 Expression Analysis of Candidate Genes

The list of candidate genes in Table 6.1 whose expression features could play a significant role in transport processes across the epithelial membrane were analysed by normalising the expression microarray data of each gene against appropriate housekeeping genes [54] in normal and inflammation state (asthma) and the results are shown in Table 6.3.

genes	Study 1 (sample NO. 12)	Study 2 (sample NO. 16)	Study 3 (sample NO.26)	Study 4 (sample ND.30)
FPR1	ns	ns	ns	^ *
CDH1	ns	ns	ns	ns
TJP3	ns	ns	↓*	\downarrow^*
TJP1	ns	ns	↓*	\downarrow^*
TJP2	ns	ns	↓ **	ns
CAV1	ns	^ **	↓*	ns
CLTC	ns	ns	↓*	ns
VCFS	ns	ተ*	ns	↓*
CLDN4	ns	ns	↓*	↓ **
FCGRT	ns	ψ^{**}	ns	^ **
CUBN	ns	^ *	ns	ns
FOLR1	ns	ns	↓ **	<u>ተ</u> **
EEA1	ns	ተ ***	↓*	<u>ተ</u> **
RAB4A	ns	^ *	ተ*	<u>ተ</u> ***
RAB5A	ns	ns	ns	* **
RAB9A	ns	ns	ns	ns
RAB11A	ns	ns	ተ**	ተ**
LAMP1	<u>^*</u>	\downarrow^*	* ***	^ **
M6PR	ns	ns	ns	^ **
OCLN	ns	ns	ns	↓ **
CLDN1	ns	^ *	ns	^ *
RAB7A	ns	ns	\mathbf{v}_{*}	↓ **

Table 6.3Summary of gene expression data analysis performed on the lung tissue of
asthmatic and non-asthmatic individuals for a list of candidate genes and examined by GEO
database (ns: not significant, \downarrow : downregulated, \uparrow : upregulated). Statistical analysis was
calculated by t-test, P value (ns > 0.05, *< 0.05, *< 0.001, *** < 0.0001).</th>

Table 6.3 shows the result summary of analysed expression data of the candidate gene microarray in four different studies with different sample numbers. From the table, five different genes were selected to be further investigated in this chapter. These genes are TJP2, TJP3, LAMP1, RAB4A, and RAB5A. These genes show interesting expression data from primary data analysis and it would therefore be useful to confirm their enrolment in the inflammation reaction in more depth. TJP2 and TJP3 are main components of paracellular pathway of transport in epithelial membrane, while the rest of the genes are involved mainly in the endocytosis pathway. Studies stated that TJP2 and TJP3 are corner-stones in the formation of tight junction complex in epithelium [18][20]. In addition, LAMP1 and RAB5A contribute in late and early endosome process, respectively [24][36]. Furthermore, RAB4A is reported to play a role in cell-cell adhesion in epithelial tissue and is also involved in endocytosis pathway [34][35]. The figures below reported that these genes show significant difference in expression level in inflammatory condition (asthma) compared with healthy control confirmed by t-test of significance.

Figure 6.1 Graph shows significant difference between the expression of normal control (healthy individuals) and diseased condition (asthmatic patients) in TJP2 gene. Statistical analysis made by t-test of significance. P value (ns > 0.05, * < 0.05, ** < 0.001, *** < 0.0001)

Figure 6.2 Graph shows significant difference between the expression of normal control (healthy individuals) and diseased condition (asthmatic patients) in TJP3 gene. Statistical analysis made by t-test of significance.

Figure 6.3 Graph shows significant difference between the expression of normal control (healthy individuals) and diseased condition (asthmatic patients) in LAMP1 gene. Statistical analysis made by t-test of

Figure 6.4 Graph shows significant difference between the expression of normal control (healthy individuals) and diseased condition (asthmatic patients) in RAB4A gene. Statistical analysis made by t-test of significance. P value (ns > 0.05, * < 0.05, ** < 0.001, *** < 0.0001)

Figure 6.5 Graph shows significant difference between the expression of normal control (healthy individuals) and diseased condition (asthmatic patients) in RAB5A gene. Statistical analysis made by t-test of significance. P value (ns > 0.05, * < 0.05, ** < 0.001, *** < 0.0001)

These results led us to investigate the expression levels of these genes in inflammation using an *in vitro* model of cells exposed for prolonged period of time to the inflammatory mediators.

6.3.2 Effect of TNF-α on the Expression of Caco-2 and Calu-3 Barrier Genes

Figure 6.6 shows the time dependent influence of recombinant human proinflammatory cytokine TNF- α (25ng/ml) on mRNA expression features of protein components of Caco-2 and Calu-3 epithelial cell layers. The isolated mRNA was reverse transcribed into cDNA and examined by PCR analysis technique.

In case of the first splice variant of TJP2 gene, Caco-2 cell line did not express this gene showing by comparison of Caco-2 expression with GAPDH control bands. However, TJP2

Chapter 6

v1 shows interesting expression results on Calu-3 cells. TNF- α was observed to cause down regulation of this gene. The expression bands show TJP2 v1 expressed constitutively in Calu-3 control, while Calu-3 cells treated with TNF- α show knockdown of TJP2 v1 and this effect would increase with exposure time. The time course of the TNF- α induced decrease in TJP2 v1 expression correlated with the time of treatment showing stronger down regulation effect on TJP2 v1 in 21 days than in 4 days of TNF- α treatment. With respect to the expression features of the second splice variant of TJP2, Caco-2 and Calu-3 cell lines did not show changes in gene expression with TNF- α treatment. By comparing GAPDH bands with TJP2 v2 bands, no significant effect was observed in mRNA expression. In addition, TNF- α did not influence the TJP2 v2 expression correlated with increased time of treatment.

In case of the first splice variant of TJP3 gene, no meaningful effect of TNF- α timedependent treatment was detected. This result confirmed that TNF- α does not provide significant effect on mRNA expression of variant 1 of TJP3 showing by comparing the expression bands on Caco-2 and Calu-3 conditions with GAPDH. With regards to the second splice variant of TJP3, prolonged TNF- α treatment appeared to cause up regulation in both Caco-2 and Calu-3 cell lines. By comparing the control bands in both cells with the bands of treated cells, increased expression of TJP3 v2 was observed with TNF- α treated cells. The duration of the TNF- α treatment did not appear to affect TJP3 v2 mRNA expression as suggested by the similar levels with both incubation times (4 and 21 days).

With regard to LAMP1, RAB4A and RAB5A genes expression, Caco-2 and Calu-3 cell lines constitutively expressed the mRNA for these genes in the presence or absence of the proinflammatory cytokine TNF- α . These results suggest that TNF- α does not have a

significant effect on the expression of these genes on epithelial barriers of intestinal and pulmonary tissues showing by comparing the obtained bands with the expression of control mRNA (GAPDH).

Chapter 6

Figure 6.6 Effect of time-dependent proinflammatory cytokine TNF- α (25ng/ml) treatment on mRNA expression of Caco-2 and Calu-3 epithelial membrane genes. The genes examined in this study were TJP2v1, TJP2v2, TJP3v1, TJP3v2, LAMP1, RAB4A, and RAB5A. Human GAPDH was used as a housekeeping gene (control).

6.4 Discussion

In the past, numerous laboratories have attempted to design well-characterised *in vitro* models of inflamed epithelium in order to understand the basic mechanisms of such inflammatory reactions, to study the effect of diseased tissue on drug delivery properties and to examine anti-inflammatory action of such new therapeutics. At present, there are no available methods accepted to be a good *in vitro* model for inflammation. Caco-2 and Calu-3 cell lines are used widely in research as an *in vitro* model of intestinal and airway epithelium, respectively. We hypothesised that treating these cell lines with proinflammatory cytokines under specific conditions would establish a good *in vitro* model of inflamed epithelium.

In vivo, such TNF- α may be released by local resident mast cells in close proximity of the epithelium, which may also be increased during chronic inflammation.

The results in previous chapters 3, 4, and 5, indicate that the treatment of Caco-2 and Calu-3 with proinflammatory cytokines could result (although experiments would need to be repeated) in significant effect on TEER profiles of cells and on tight junction formation, particularly with TNF- α .

In this chapter, the work aimed to investigate the expression features of such epithelial membrane genes (TJP2, TJP3, LAMP1, RAB4A, and RAB5A) which could play an essential function in regulation of mucosal barriers using PCR. Results will provide a primary overview of gene expression features and would allow drawing of an initial assumption about the capacity of these cells to be appropriate models of inflammation. These genes are expressed widely in cultured cells, and TJP2 and TJP3 are known to be components of tight junctions and are used as indicators of tight junction formation and epithelial membrane integrity, whilst the rest of the genes are usually involved in endocytosis pathway. In this work, samples were obtained for RT-PCR at day 21 and cells were examined at the same

time of culture and taken from the same batch of cells to decrease the variation in experiments.

Tight junction proteins TJP2 and TJP3 (a.k.a. ZO-2 and ZO-3) are important components in regulation and formation of tight junction and control the transport across epithelial barrier via paracellular pathway [60][61]. Under normal (i.e. non-inflammatory) conditions, TJP2 and TJP3 are expressed normally in both Caco-2 and Calu-3 cells [62][63] and help to prevent harmful substances from entering the tissues from the host lumen of intestine and lung, while in inflammatory conditions, tight junctions might be characterised by increased permeability via the paracellular route [64].

From our results, we found that TJP2 showed time-dependent down regulation in Calu-3 cells, where TNF- α stimulated the up regulation of TJP3 in both Caco-2 and Calu-3 cells. These results suggest that tight junction complex may be an attractive target for antiinflammatory mediators in the *in vivo* system. In addition, TJP2 might be involved in the regulation of epithelial barriers in the *in vitro* model of airway, while TJP3 could be involved in the intestinal model as well. The significance of the different splice variants of TJP2 and TJP3, and of their differential regulation by TNF- α , is currently unclear.

In inflammatory disorders, one important issue is the increased permeability of noxious elements across epithelial layer due to disruption of the tight junction barrier [55]. Numerous studies have reported that inflammatory diseases occur perhaps due to disruption of the epithelial membrane and changing the expression of tight junction proteins might play an important role in this defect [62]. We can suggest that tight junctions were involved importantly in inflammation reaction on epithelial membranes.

Time-course is indeed responsible for the TNF- α facilitated stimulation of TJP2 v1 expression in Calu-3 monolayers. We observed in chapter 5 that TNF- α increase permeability of epithelial membrane with increase in the time of treatment. Taken together, it could be established that TNF- α plays a role in dysfunction of tight junction, possibly by down regulation TJP2; this effect would be increased with prolonged exposure to TNF- α . However, the differences in expression of tight junction proteins variants remain unclear. In the literature, nothing is mentioned about the expression of different variants of tight junction proteins.

On the other hand, several studies demonstrated that LAMP1, RAB4A and RAB5A contribute in transport elements across epithelium via endocytosis pathway [25][34][36]. Study reported that LAMP1 plays multiple functions in transport across the cell membrane via endocytosis [65]. RAB4A and RAB5A are important members of the RAB family and they have a role in regulation of early and recycling endosomes process, respectively and also endocytosis pathway of transport in a wide range of cells [35][66][67][68]. LAMP1, RAB4A, and RAB5A did not show alteration in expression during treatment of the cells with proinflammatory cytokines. By combining the previous results of tight junction proteins with these results, it can be suggested that the increased permeability observed during inflammation could be mediated due to disruption of tight junction complex resulting in increased transport across epithelial membranes through paracellular pathway rather than through the endocytosis route. To the best of our knowledge, we have not been able to find any information regarding expression features of these genes in inflammatory conditions in the literature.

6.5 Conclusion

The data in this chapter show that treatment of the cells with cytokines did not produce a significant effect on the expression array of the protein components of endocytosis membrane. It would be concluded that tight junctions might be involved in the epithelial barriers modifications more than endocytosis pathway during inflammation reaction. *In vivo* or *ex vivo* (e.g. using biopsies from patients) studies should be established to confirm these results, to find out if pre-treated cell lines mimic the *in vivo* situation or not. Furthermore, additional investigations should be focused in the direction of critical problems addressing the fundamental character of inflammation, the functional importance of intestinal and airway remodelling, and the role of gene expression in disease states.

6.6 References

- A. De Maio, M. B. Torres, and R. H. Reeves, "Genetic Determinants Influencing the Response To Injury, Inflammation, and Sepsis," *Shock*, vol. 23, no. 1, pp. 11–17, Jan. 2005.
- [2] Y. Vodovotz, Rubin, 211, and J. Gerlach, "Translational Systems Approaches to the Biology of Inflammation and Healing," *Immunopharmacology and Immunotoxicology*, vol. 32, no. 2, pp. 181–195, 2010.
- [3] S. Su, Bremner, and V. Vaccarino, "Genetic and Environmental Influences on Systemic Markers of Inflammation in Middle-Aged Male Twins," *Atherosclerosis*, vol. 200, no. 1, pp. 213–220, 2008.
- [4] J. Satsangi, D. P. Jewell, W. M. Rosenberg, and J. I. Bell, "Genetics of inflammatory bowel disease.," *Gut*, vol. 35, no. 5, pp. 696–700, May 1994.
- [5] D. a Watts and J. Satsangi, "The genetic jigsaw of inflammatory bowel disease.," *Gut*, vol. 50, pp. 31–36, May 2002.
- [6] N. America and U. Kingdom, "The genetics of inflammatory bowel disease," *Gut*, vol. 40, pp. 572–574, 1997.
- [7] D. E. Davies and S. T. Holgate, "Asthma: the importance of epithelial mesenchymal communication in pathogenesis. Inflammation and the airway epithelium in asthma.," *The International Journal of Biochemistry & Cell Biology*, vol. 34, no. 12, pp. 1520– 1526, Dec. 2002.
- [8] M. L. K. Tang, J. W. Wilson, A. G. Stewart, and S. G. Royce, "Airway remodelling in asthma: current understanding and implications for future therapies.," *Pharmacology* & *Therapeutics*, vol. 112, no. 2, pp. 474–488, Nov. 2006.
- [9] S. T. Holgate, "Epithelium dysfunction in asthma.," *The Journal of Allergy and Clinical Immunology*, vol. 120, no. 6, pp. 1233–1244, Dec. 2007.
- [10] E. J. Swindle, J. E. Collins, and D. E. Davies, "Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches.," *The Journal of Allergy and Clinical Immunology*, vol. 124, no. 1, pp. 23–34, Jul. 2009.

- [11] C. G. Mathew and C. M. Lewis, "Genetics of inflammatory bowel disease: progress and prospects.," *Human Molecular Genetics*, vol. 13, no. 1, pp. 161–168, Apr. 2004.
- [12] a Morris-Yates, N. J. Talley, P. M. Boyce, S. Nandurkar, and G. Andrews, "Evidence of a genetic contribution to functional bowel disorder.," *The American Journal of Gastroenterology*, vol. 93, no. 8, pp. 1311–1317, Aug. 1998.
- [13] J. L. Madara, "Modulation of tight junctional permeability.," *Advanced Drug Delivery Reviews*, vol. 41, no. 3, pp. 251–253, Jun. 2000.
- [14] C. T. Capaldo and A. Nusrat, "Cytokine regulation of tight junctions," *Biochimica et Biophysica Acta*, vol. 1788, no. 4, pp. 864–871, Apr. 2009.
- [15] S. Al-Muhsen, J. R. Johnson, and Q. Hamid, "Remodeling in asthma.," *The Journal of Allergy and Clinical Immunology*, vol. 128, no. 3, pp. 451–462, Sep. 2011.
- [16] G. H. Koppelman and I. Sayers, "Evidence of a genetic contribution to lung function decline in asthma.," *The Journal of Allergy and Clinical Immunology*, vol. 128, no. 3, pp. 479–484, Sep. 2011.
- [17] B. R. Stevenson, J. D. Siliciano, M. S. Mooseker, and D. a Goodenough, "Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia.," *The Journal of Cell Biology*, vol. 103, no. 3, pp. 755–66, Sep. 1986.
- [18] S. Fanning, B. J. Jameson, L. a Jesaitis, and J. M. Anderson, "The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton.," *The Journal of Biological Chemistry*, vol. 273, no. 45, pp. 29745– 29753, Nov. 1998.
- [19] Lylme A. Jesaitis and Daniel A. Goodenough, "Molecular Characterization and Tissue Distribution of ZO-2, A Tight Junction Protein Homologous to ZO-1 and the Drosophila Discs-Large Tumor Suppressor Protein," *The Journal of Cell Biolog*, vol. 124, no. 6, pp. 949–961, 1994.
- [20] K. M. Masahiko Itoh, Mikio Furuse, M. S. Koji Kubota, and and S. Tsukita, "Direct Binding of Three Tight Junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH Termini of Claudins," *The Journal of Cell Biology*, vol. 147, no. 6, pp. 1351–1363, 1999.
- [21] M. Adachi, A. Inoko, M. Hata, K. Furuse, K. Umeda, M. Itoh, and S. Tsukita, "Normal establishment of epithelial tight junctions in mice and cultured cells lacking expression of ZO-3, a tight-junction MAGUK protein.," *Molecular and Cellular Biology*, vol. 26, no. 23, pp. 9003–9015, Dec. 2006.

- [22] G. de Boer, W.I.; Sharma, H.S.; Baelemans, S.M.I.; Hoogsteden, H.C.; Lambrecht, B.N.; Braunstahl, "Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation," *Canadian Journal of Physiology and Pharmacology*, vol. 86, no. 3, pp. 105–112, 2008.
- [23] M. G. Qaddoumi, H. J. Gukasyan, J. Davda, V. Labhasetwar, K.-J. Kim, and V. H. L. Lee, "Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.," *Molecular Vision*, vol. 9, pp. 559–568, Oct. 2003.
- [24] L. Lin, P. Ayala, J. Larson, M. Mulks, M. Fukuda, S. R. Carlsson, C. Enns, and M. So, "The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells.," *Molecular Microbiology*, vol. 24, no. 5, pp. 1083–1094, Jun. 1997.
- [25] J. Rohrer, A. Schweizer, D. Russell, and S. Kornfeld, "The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane.," *The Journal of Cell Biology*, vol. 132, no. 4, pp. 565–576, Feb. 1996.
- [26] L. Shen and J. R. Turner, "Role of Epithelial Cells in Initiation and Propagation of Intestinal Inflammation . Eliminating the static : tight junction dynamics exposed," *American Journal of Physiology Gastrointestinal and Liver Physiology*, vol. 290, no. 11, pp. 577–582, 2006.
- [27] C. M. V. I. and J. M. Anderson, "Claudins and epithelial paracellular transport," *Annual Review of Physiology*, vol. 68, pp. 403–429, 2006.
- [28] and P. J. M. Leticia B. A. Rangel, Rachana Agarwal, Theresa D'Souza, Ellen S. Pizer, Piero L. Alò, Wayne D. Lancaster, Lucie Gregoire, Donald R. Schwartz, Kathleen R. Cho, "Tight Junction Proteins Claudin-3 and Claudin-4 Are Frequently Overexpressed in Ovarian Cancer but Not in Ovarian Cystadenomas," *Clinical Cancer Research*, vol. 9, p. 2567, 2003.
- [29] H. Wen, D. D. Watry, M. C. G. Marcondes, and H. S. Fox, "Selective Decrease in Paracellular Conductance of Tight Junctions: Role of the First Extracellular Domain of Claudin-5 Selective Decrease in Paracellular Conductance of Tight Junctions: Role of the First Extracellular Domain of Claudin-5," *Molecular and Cellular Biology*, vol. 24, no. 19, pp. 8408–8417, 2004.
- [30] E. S. W. Petru Cianga, Corneliu Medesan, James A. Richardson, Victor Ghetie, "Identification and function of neonatal Fc receptor in mammary gland of lactating mice," *European Journal of Immunology*, vol. 29, no. 8, pp. 2515–2523, 1999.

- [31] R. Kozyraki, "Cubilin, a multifunctional epithelial receptor: an overview," *Journal of Molecular Medicine*, vol. 79, no. 4, pp. 161–167, 2001.
- [32] L. E. Kelemen, "The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander?," *International journal of cancer. Journal International du Cancer*, vol. 119, no. 2, pp. 243–50, Jul. 2006.
- [33] D. C. Lawe, V. Patki, R. Heller-harrison, D. Lambright, and S. Corvera, "The FYVE Domain of Early Endosome Antigen 1 Is Required for Both Phosphatidylinositol 3-Phosphate and Rab5 Binding," *The Journal of Biological Chemistry*, vol. 275, no. 5, pp. 3699–3705, 2000.
- [34] J. Vukmirica, P. Monzo, Y. Le Marchand-Brustel, and M. Cormont, "The Rab4A effector protein Rabip4 is involved in migration of NIH 3T3 fibroblasts.," *The Journal of Biological Chemistry*, vol. 281, no. 47, pp. 36360–36368, Nov. 2006.
- [35] and P. V. D. S. B Nagelkerken, E Van Anken, M Van Raak, L Gerez, K Mohrmann, N Van Uden, J Holthuizen, L Pelkmans, "Rabaptin4, a novel effector of the small GTPase rab4a, is recruited to perinuclear recycling vesicles," *Biochemical Journal*, vol. 346, no. 15, pp. 593–601, 2000.
- [36] C. Bucci, A. Wandinger-Ness, A. Lütcke, M. Chiariello, C. B. Bruni, and M. Zerial, "Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells.," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 91, no. 11, pp. 5061–5065, May 1994.
- [37] J. Y. Sung, J. Kim, S. R. Paik, J. H. Park, Y. S. Ahn, and K. C. Chung, "Induction of neuronal cell death by Rab5A-dependent endocytosis of alpha-synuclein.," *The Journal of Biological Chemistry*, vol. 276, no. 29, pp. 27441–27448, Jul. 2001.
- [38] D. te Vruchte, E. Lloyd-Evans, R. J. Veldman, D. C. a Neville, R. a Dwek, F. M. Platt, W. J. van Blitterswijk, and D. J. Sillence, "Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport.," *The Journal of Biological Chemistry*, vol. 279, no. 25, pp. 26167–75, Jun. 2004.
- [39] H. Stenmark and V. M. Olkkonen, "Protein family review The Rab GTPase family," *Genome Biology*, vol. 2, no. 5, pp. 1–7, 2001.
- [40] X. Wang, R. Kumar, J. Navarre, J. E. Casanova, and J. R. Goldenring, "Regulation of vesicle trafficking in madin-darby canine kidney cells by Rab11a and Rab25.," *The Journal of Biological Chemistry*, vol. 275, no. 37, pp. 29138–46, Sep. 2000.
- [41] H. M. Al-younes, T. Rudel, T. F. Meyer, and È. Infektionsbiologie, "Characterization and intracellular trafficking pattern of vacuoles containing Chlamydia pneumoniae in human epithelial cells," *Cellular Microbiology*, vol. 1, no. 3, pp. 237–247, 1999.

- [42] a Walther, K. Riehemann, and V. Gerke, "A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR.," *Molecular Cell*, vol. 5, no. 5, pp. 831–840, May 2000.
- [43] A. S. L. Yu, K. M. Mccarthy, S. A. Francis, J. M. Mccormack, J. Lai, R. A. Rogers, R. D. Lynch, E. E. Schneeberger, S. L. Alan, and M. Mccormack, "Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells," *American Journal of Physiology Cell Physiology*, vol. 288, no. 6, pp. 1231–1241, 2005.
- [44] D. L. Wheeler, T. Barrett, D. a Benson, S. H. Bryant, K. Canese, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, W. Helmberg, D. L. Kenton, O. Khovayko, D. J. Lipman, T. L. Madden, D. R. Maglott, J. Ostell, J. U. Pontius, K. D. Pruitt, G. D. Schuler, L. M. Schriml, E. Sequeira, S. T. Sherry, K. Sirotkin, G. Starchenko, T. O. Suzek, R. Tatusov, T. a Tatusova, L. Wagner, and E. Yaschenko, "Database resources of the National Center for Biotechnology Information.," *Nucleic Acids Research*, vol. 33, no. Database issue, pp. D39–45, Jan. 2005.
- [45] R. Edgar and T. Barrett, "NCBI GEO standards and services for microarray data," *Nature Biotechnology*, vol. 24, no. 12, pp. 1471–1472, 2006.
- [46] Y. Zhu, S. Davis, R. Stephens, P. S. Meltzer, and Y. Chen, "GEOmetadb: powerful alternative search engine for the Gene Expression Omnibus.," *Bioinformatics*, vol. 24, no. 23, pp. 2798–2800, Dec. 2008.
- [47] T. Barrett, T. O. Suzek, D. B. Troup, S. E. Wilhite, W.-C. Ngau, P. Ledoux, D. Rudnev, A. E. Lash, W. Fujibuchi, and R. Edgar, "NCBI GEO: mining millions of expression profiles--database and tools.," *Nucleic Acids Research*, vol. 33, no. Database issue, pp. 562–566, Jan. 2005.
- [48] T. Barrett and R. Edgar, "Gene expression omnibus: microarray data storage, submission, retrieval, and analysis.," *Methods in Enzymology*, vol. 411, no. 2005, pp. 352–369, Jan. 2006.
- [49] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. a Marshall, K. H. Phillippy, P. M. Sherman, R. N. Muertter, M. Holko, O. Ayanbule, A. Yefanov, and A. Soboleva, "NCBI GEO: archive for functional genomics data sets--10 years on.," *Nucleic Acids Research*, vol. 39, no. Database issue, pp. D1005–10, Jan. 2011.
- [50] R. Edgar, M. Domrachev, and A. E. Lash, "Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.," *Nucleic Acids Research*, vol. 30, no. 1, pp. 207–210, Jan. 2002.

- [51] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista, I. F. Kim, A. Soboleva, M. Tomashevsky, K. a Marshall, K. H. Phillippy, P. M. Sherman, R. N. Muertter, and R. Edgar, "NCBI GEO: archive for high-throughput functional genomic data.," *Nucleic Acids Research*, vol. 37, no. Database issue, pp. D885–90, Jan. 2009.
- [52] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista, I. F. Kim, A. Soboleva, M. Tomashevsky, and R. Edgar, "NCBI GEO: mining tens of millions of expression profiles--database and tools update.," *Nucleic Acids Research*, vol. 35, no. Database issue, pp. D760–5, Jan. 2007.
- [53] D. Sean and P. S. Meltzer, "GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor.," *Bioinformatics*, vol. 23, no. 14, pp. 1846–1847, Jul. 2007.
- [54] H. J. M. de Jonge, R. S. N. Fehrmann, E. S. J. M. de Bont, R. M. W. Hofstra, F. Gerbens, W. a Kamps, E. G. E. de Vries, A. G. J. van der Zee, G. J. te Meerman, and A. ter Elst, "Evidence based selection of housekeeping genes.," *PloS One*, vol. 2, no. 9, p. 898, Jan. 2007.
- [55] T. Y. Ma, M. a Boivin, D. Ye, A. Pedram, and H. M. Said, "Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression.," *American Journal of Physiology. Gastrointestinal and Liver Physiology*, vol. 288, no. 3, pp. 422–430, Mar. 2005.
- [56] V. H. L. Leeab and N. R. Mathias, "Respiratory epithelial cell culture models for evaluation of ion and drug transport," *Advanced Drug Delivery Reviews*, vol. 22, no. 96, pp. 215–249, 1996.
- [57] B. I. Florea, M. L. Cassara, H. E. Junginger, and G. Borchard, "Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3," *Journal of Controlled Release*, vol. 87, pp. 131–138, Feb. 2003.
- [58] C. a. Dinarello, "Proinflammatory Cytokines," *Chest*, vol. 118, no. 2, pp. 503–508, Aug. 2000.
- [59] P. N. Boyaka and J. R. McGhee, "Cytokines as adjuvants for the induction of mucosal immunity.," *Advanced Drug Delivery Reviews*, vol. 51, no. 1–3, pp. 71–79, Sep. 2001.
- [60] T. Walsh, S. B. Pierce, D. R. Lenz, Z. Brownstein, O. Dagan-Rosenfeld, H. Shahin, W. Roeb, S. McCarthy, A. S. Nord, C. R. Gordon, Z. Ben-Neriah, J. Sebat, M. Kanaan, M. K. Lee, M. Frydman, M.-C. King, and K. B. Avraham, "Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51.," *American Journal of Human Genetics*, vol. 87, no. 1, pp. 101–109, Jul. 2010.

- [61] B. R. Stevenson, "Understanding tight junction clinical physiology at the molecular level.," *The Journal of Clinical Investigation*, vol. 104, no. 1, pp. 3–4, Jul. 1999.
- [62] D. G. S. Alexandre Chlenski, , Kathleen V Ketels, Galina I Korovaitseva, Mark S Talamonti, Ryoichi Oyasu, "Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues," *Biochimica et Biophysica Acta (BBA) Gene Structure and Expression*, vol. 1493, no. 3, pp. 319–324, 2000.
- [63] H. Wang, J.-X. Zhao, N. Hu, J. Ren, M. Du, and M.-J. Zhu, "Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins.," *World Journal of Gastroenterology*, vol. 18, no. 18, pp. 2180–2187, May 2012.
- [64] D. R. Clayburgh, L. Shen, and J. R. Turner, "A porous defense: the leaky epithelial barrier in intestinal disease.," *Laboratory Investigation*; a Journal of Technical Methods and Pathology, vol. 84, no. 3, pp. 282–291, Mar. 2004.
- [65] C. Dahlgren, S. R. Carlsson, A. Karlsson, H. Lundqvist, and C. Sjölin, "The lysosomal membrane glycoproteins Lamp-1 and Lamp-2 are present in mobilizable organelles, but are absent from the azurophil granules of human neutrophils.," *The Biochemical Journal*, vol. 311, no. 2, pp. 667–674, Oct. 1995.
- [66] E. Galperin and A. Sorkin, "Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosis.," *Journal of Cell Science*, vol. 116, no. Pt 23, pp. 4799–4810, Dec. 2003.
- [67] S. Hoffenberg, X. Liu, L. Nikolova, H. S. Hall, W. Dai, R. E. Baughn, B. F. Dickey, M. a Barbieri, A. Aballay, P. D. Stahl, and B. J. Knoll, "A novel membrane-anchored Rab5 interacting protein required for homotypic endosome fusion.," *The Journal of Biological Chemistry*, vol. 275, no. 32, pp. 24661–24669, Aug. 2000.
- [68] G. Zhu, J. Liu, S. Terzyan, P. Zhai, G. Li, and X. C. Zhang, "High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop.," *The Journal of Biological Chemistry*, vol. 278, no. 4, pp. 2452–2460, Jan. 2003.

Chapter 7

Summary and Future Work

7.1 Overall Summary

Mucosal barriers have a protective role by acting as a permeability barrier limiting the movement of undesirable materials from the external environment into the systemic circulation. However, it has been realized the barrier properties of mucosal epithelium can be significantly altered in inflammation conditions, in terms of its function and structure. Alterations in the tight junction complex have been reported to occur in inflammatory disorders affecting the epithelium. As a result, the mucosal barriers in inflammatory conditions have increased the paracellular permeability. The changes in epithelium, including the tight junctions, have been attributed to up-regulation of proinflammatory cytokines.

To investigate the effect of pro-inflammatory cytokines on permeability function of mucosal membrane *in vitro*, we need a cell line model of the tissues of interest. The cell line models provide several benefits in comparing with primary cells and animal models as they are cost-effect, easier to maintain and show higher in reproducibility. In this work, Calu-3 and Caco-2 cell lines were used to represent the airway and intestinal epithelium, respectively. Both these cell lines are capable of producing polarised layers when cultured appropriately. Another benefit of using Calu-3 cells is their ability to produce mucus when cultured adequately. The

Caco-2 cell line has a capacity to mimic the *in vivo* situation of intestinal epithelium more closely than other cell lines. Chapter 1 in this thesis discussed these cell lines in more details.

The effect of proinflammatory cytokines on the epithelial barrier of the cell monolayers (Calu-3 and Caco-2) was investigated by treating the cells with cytokines and assessing the barrier function. IL-4, IL-13, and TNF- α were tested in this work and the barrier function was assessed by measuring TEER, permeability and structural changes in the tight junctions.

Chapter 3 assessed the effect of the tested cytokines on the barrier characteristic of Calu-3 cell layers. The data demonstrated that TNF- α is the most effective cytokine in altering the barrier function of Calu-3 cell layers, as shown by a significant decrease in TEER and increase in FD10 permeability. On the other hand, IL-4 and IL-13 failed to significantly influence the TEER and permeability. Applying these cytokines in combination produced a synergetic effect, when TNF- α was present in the combination. The tested cytokines seemed to influence the distribution of a tight junction protein, ZO-1, suggesting that alteration in epithelial barrier results from a tight junction effect.

The influence of cytokines on the intestinal epithelium, using Caco-2 cells as a model, was assessed in chapter 4. The data were less clear in this instance, with some evidence that TNF- α and IL-4 produce some effects on the barrier when applied alone. When applied in combination all the tested cytokines markedly decreased cell layer TEER, though they failed to significantly increase FD10 permeability, except with IL-4/IL-13 combination. The data from Chapters 3 and 4 suggested that proinflammatory cytokines could increase the membrane permeability of airway and intestinal epithelium via the remodelling action on mucosal barriers.

While both chapter 3 and 4 aimed to establish the effect of short-term exposure of the cells with proinflammatory cytokines on the epithelial barrier, in chapter 5 the work explored the influence of long-term treatment of the cells with the same cytokines. Long-term treatment lasted for the whole duration of cell growth on filter supports. TNF- α long-term treatment showed significant effect on Caco-2 cells, but no significant effect was observed with IL-4 or IL-13.

Data shown in Chapter 6 aimed to examine if the expression of epithelial cell 'markers' of interest if affected during inflammation reaction, mimicked by the TNF- α application. In this experiment, Calu-3 and Caco-2 cells were incubated with TNF- α for short and long time period (4 and 21 days, respectively). The PCR results demonstrated that down-regulation of TJP2 and up-regulation of TJP3 might play important role in paracellular tight junction remodelling in inflammatory disorders. Conversely, LAMP1, RAB4A, and RAB5A did not show difference in expression during the experiment, suggesting no involvement in epithelial modification.

In conclusion, this work confirmed the previous reports that proinflammatory cytokines, the expression of which is up-regulated in inflammatory conditions affecting the epithelium (e.g. asthma and Crohn's disease), alter the epithelial barrier. This alteration is likely to result from an effect on the tight junctions, as shown by changes in the appearance and the level of expression of these proteins following epithelial cell treatment with the cytokines. The defective mucosal barrier in inflammatory conditions such as asthma or Crohn's disease can potentially be exploited for mucosal delivery of biotherapeutics.

7.2 Future Work

Whilst this work showed the epithelial barrier-disruptive effects of three tested cytokines, it would be interesting to identify precisely the conditions of the epithelium in different inflammatory diseases. Specifically, the levels of other pro-inflammatory (as well as anti-inflammatory) cytokines are likely to be altered (upregulated or downregulated) under inflammatory conditions. Establishing the effect of these precise conditions on the barrier property of the epithelium would give a more accurate indication of how the epithelium is affected in inflammatory diseases of the epithelium.

This work has also implications in research related to establishing suitable models of inflamed epithelial tissue to study the disease itself, as well as drug delivery in these conditions. This is important as the use of standard models (e.g. cell line based models or excised tissue) to predict drug absorption in inflammatory epithelial conditions is not appropriate. Models based on culture of epithelial cell lines with proinflammatory cytokines may provide appropriate models, though these models need to be validated extensively in terms of their similarity (e.g. protein expression and permeability) to the inflamed mucosal tissue *in vivo*.

Applying proinflammatory cytokines to the current *in vitro* models of epithelium, either lung or intestinal, under specific conditions could potentially create an *in vitro* model of inflamed epithelial tissue which could find its application in academia or pharmaceutical industry.

Chapter 8

Appendices

8.1 The Effect of TNF-α on Calu-3 Cell Layers at Concentrations of (10, 25, and 50ng/ml)

Figure 8.1 Effect of 10, 25, and 50ng/ml of TNF-a on TEER of Calu-3 layer.

8.2 Affymetrix Array of Candidate Genes from (GeneCards)

Formyl peptide receptor 1 (FPR1)

Affymetrix	Array
probe-set	
36919_r_at	U95-A
205119_s_at	U133-A
205118_at	U133-A
205119_s_at2	U133Plus2
205118_at2	U133Plus2

Tight junction protein 1 (TJP1)

Affymetrix	Аггау
probe-set	
32532_at	U95-A
78685_at	U95-D
214168_s_at	U133-A
202011_at	U133-A
214168_s_at2	U133Plus2
202011_at2	U133Plus2

Tight junction protein 2 (TJP2)

Affymetrix	Array
probe-set	
36655_at	U95-A
54505_at	U95-B
50087_at	U95-B
202085_at	U133-A
232017_at	U133-B
202085_at2	U133Plus2
232017_at2	U133Plus2

Tight junction protein 3 (TJP3)

Affymetrix	A
probe-set	Апау
35148_at	U133-A
35148_at	U133-A
213412_at	U133-A
35148_at2	U133Plus2
213412_at2	U133Plus2

Caveolin 1 (CAV1)

Affymetrix probe-set	Аггау
36119_at	U95-A
212097_at	U133-A
203065_s_at	U133-A
212097_at2	U133Plus2
203065_s_at2	U133Plus2

Clathrin (CLTC)

Affymetrix	Аггау
91168_at	U95-E
84461_at	U95-E
41159_at	U95-A
200614_at	U133-A
200614_at2	U133Plus2

Claudin 5 (VCFS)

Affymetrix probe-set	Array
38995_at	U95-A
204482_at	U133-A
204482_at2	U133Plus2

Claudin 4 (CLDN4)

Affymetrix probe-set	Array
35276_at	U95-A
87864_i_at	U95-E
201428_at	U133-A
1569421_at2	U133Plus2
201428_at2	U133Plus2

Cubilin (CUBN)

Affymetrix probe-set	Аггау
35416_at	U95-A
35417_at	U95-A
206775_at	U133-A
206775_at2	U133Plus2

Early endosome antigen 1 (EEA1)

Affymetrix	Аггау
probe-set	
39627_at	U95-A
50373_at	U95-B
204840_s_at	U133-A
225885_at	U133-B
204841_s_at	U133-A
204840_s_at2	U133Plus2
225885_at2	U133Plus2
204841_s_at2	U133Plus2

Lysosomal-associated membrane protein 1 (LAMP1)

Affymetrix	Аггау
probe-set	
39758_f_at	U95-A
64344_at	U95-C
201551_s_at	U133-A
201553_s_at	U133-A
201552_at	U133-A
213728_at	U133-A
201551_s_at2	U133Plus2
201553_s_at2	U133Plus2
201552_at2	U133Plus2
213728_at2	U133Plus2

Cadherin 1 (CDH1)

Affymetrix	Аггау
probe-set	
2082_s_at	U95-A
977_s_at	U95-A
201130_s_at	U133-A
201131_s_at	U133-A
201130_s_at2	U133Plus2
201131_s_at2	U133Plus2

Tight junction protein occludin (OCLN)

Affymetrix	Array						
probe-set	Andy						
82255_at2	U95-E						
43530_at	U95-B						
209925_at	U133-A						
231022_at2	U133-B						
227492_at	U133-B						
209925_at2	U133Plus2						
231022_at2	U133Plus2						
227492_at2	U133Plus2						

Claudin1 (CLDN1)

Affymetrix	Array
probe-set	Allay
46260_at	U95-B
77660_at	U95-E
222549_at	U133-B
218182_s_at	U133-A
222549_at2	U133Plus2
218182_s_at2	U133Plus2

Fc fragment of IgG receptor transporter alpha1 (FCGRT)

Affymetrix	Array
probe-set	Array
52415_s_at	U95-B
31431_at	U95-A
54971_at	U95-C
31432_g_at	U95-A
218831_s_at	U133-A
218831_s_at2	U133Plus2

Folate receptor 1 (FOLR1)

Affymetrix	0.5500
probe-set	Anay
534_s_at	U95-A
821_s_at	U95-A
39311_at	U95-A
204437_s_at	U133-A
204437_s_at2	U133Plus2

Member RAS oncogene family (RAB4A)

Affymetrix	Аггау					
probe-set						
621_at	U95-A					
39244_at	U95-A					
203581_at	U133-A					
203582_s_at	U133-A					
206272_at	U133-A					
203581_at2	U133Plus2					
203582_s_at2	U133Plus2					
206272_at2	U133Plus2					

Member RAS oncogene family (RAB5A)

Affymetrix	Аггау
probe-set	
600_at	U95-A
36110_at	U95-A
206113_s_at	U133-A
209089_at	U133-A
240990_at	U133-B
206113_s_at2	U133Plus2
209089_at2	U133Plus2
240990_at2	U133Plus2

Member RAS oncogene family (RAB7A)

Affymetrix	Array					
probe-set	Allay					
45003_r_at	U95-B					
211960_s_at	U133-A					
211961_s_at	U133-A					
211960_s_at2	U133Plus2					
211961_s_at2	U133Plus2					
1570061_at2	U133Plus2					

Member RAS oncogene family (RAB9A)

Affymetrix	Аггау						
probe-set							
50332_r_at	U95-B						
39628_at	U95-A						
50329_s_at	U95-B						
221808_at	U133-A						
221808_at2	U133Plus2						

Member RAS oncogene family (RAB11A)

Affymetrix	Аггау						
probe-set							
36660_at	U95-A						
61624_at	U95-C						
200863_s_at	U133-A						
200864_s_at	U133-A						
234998_at	U133-B						
200863_s_at2	U133Plus2						
200864_s_at2	U133Plus2						
234998_at2	U133Plus2						

Mannose-6-phosphate receptor (M6PR)

Affymetrix probe-set	Аггау
32547_at	U95-A
200901_s_at	U133-A
200900_s_at	U133-A
200901_s_at2	U133Plus2
200900_s_at2	U133Plus2

8.3 Normalizing Gene expression Data from (GEO)

8.3.1 Study 1

Series: GSE470, Platform: GPL8300, Sample number: 12 (6 healthy, 6 asthmatic).

		F	RPL27	FPI	R1		CDH1		CDH1		TJP1			TJP2		CA	/1		
		3	9830_at	369)19_r_at		2082_s_	at	977_s_		at		32532_at	2532_at		at	361	19_at	
GSM3909	asthma		17201.5	62	.79898	62.79897	924.401	123	924.401	9894.	5615	9894.56	137.7786	137.7786	563.7	983 563.7	982 416	63.757	4163.757
GSM3910	asthma		27250.78	56	59931	35.72717	667.302	246	421.221	11800).146	7448.602	119.6376	75.5188	655.6	877 413.8	896 650)1.623	4104.018
GSM3911	asthma		9402.37	12	4.6697	228.0815	15 622.21405 11		138.332	7530.	3042	13776.58	114.5945	209.649	9 1019.	407 1864	4.99 486	64.226	8899.03
GSM3912	asthma		10717.07	71	.87707	115.3667	877.76	6355 14	408.859	9747.	9785	15646.05	71.50285	114.7661	1 752.3	993 1207.	643 61	9.465	9822.083
GSM3913	asthma		15995.54	13	3.34972	14.3562	974.080)261	1047.52	8070).875	8679.367	170.8493	183.7302	2 1333.	343 1433.	868 75)9.447	8075.611
GSM3914	asthma		16901.96	71	.04765	72.30677	855.324	951 8	70.4832	9200.	3545	9363.406	91.1652	92.78085	5 532.4	933 541.9	303 5	515.01	5612.748
																-			
GSM3916	normal		32125.71	23	5.7453	126.2282	314.828	3522 16	68.5728	6228	3.019	3334.752	252.1188	134.9953	3 997.0	525 533.8	651 4	520.05	2420.231
GSM3917	normal		25124.97	21	.63008	14.80877	660.907	654 4	52.4822	9655.	9365	6610.817	184.8999	126.5894	4 985.3	081 674.5	789 56	33.734	3857.066
GSM3918	normal		14018.19	55	5.07094	67.57668	662.337	708 8	12.7441	6794.	1763	8337.026	97.78664	119.9924	4 1701.	188 2087.	501 506	64.507	6214.577
GSM3919	normal		15505.32	13	37.2409	152.2542	1468.88	8501 16	629.571	8900.4	4053	9874.051	89.8802	99.7128	5 1112	.11 1233.	233.768 708		7857.812
GSM3915	normal		13638.43	10	5.3802	132.911	132.911 918.296		158.204	9416.9551		11877.16	97.58666	123.0814	4 796.7	094 1004.	852 80	54.281	10158.48
GSM3920	SM3920 normal		27269.54	10	3.5159	65.29738	550.481	201 (347.241 8469.48		4863	5342.513	42.513 26.05685		4 629.6	876 397.2	041 70)63.41	4455.567
CLTC		VCFS		CLDN4		FCG	RT		CUBN			FOLR	1	EEA	1		RAB4A		
41159_at		38995_at		35276_at		3143	1_at		35417	_at		534_s	_at	396	27_at		621_at		
215.5891	215.5891	85.09488	5 85.09484	10112.91	10112	2.91 138	1.802 13	381.802	2 70.18	3961	70.18	96 3794.	796 379	4.796 4.9	29906	4.929905	290.19	13 2	90.1913
225.0362	142.0496	132.8929	9 83.88597	8351.86	5271.	942 141	1.874 8	91.2168	6 71.11	766 4	4.891	58 4701.	909 296	7.985 9.4	16497	5.943973	301.30	16 19	90.1905
256.5053	469.2727	96.14056	6 175.8878	11482.31	21006	6.72 167	7.177 31	068.372	2 72.1	087 1	31.92	18 5084.	599 9	302.2 31.	29861	57.26035	359.77	87 6	58.2099
241.627	387.8249	107.5829	9 172.6765	8262.371	13261	1.57 172 ⁻	1.475 2	763.063	3 67.	.246 1	07.93	36 5709.	888 916	4.688 7.7	64824	12.46298	530.93	93 8	52.1871
947.8531	1019.315	128.768	9 138.4773	5770.931	6206.	022 945.	7314 10	017.033	3 94.63	3753 1	01.77	26 3641.	519 391	6.066 38.	40062	41.29578	667.41	17 7	17.7303
194.9348	198.3895	101.1834	4 102.9766	7328.156	7458.	027 151	5.708	1542.57	7 48.60)173 4	9.463	06 4936.	184 502	3.664 14.	40051	14.65572	476.59	24 4	85.0387
221.2935	118.4901	89.69572	48.02698	11107.81	5947.	604 110	00.69 5	89.3571	1 99.89	9535	53.48	83 5056.	399 270	7.415 11.	85997	6.350343	57.181	89 3	0.61767
194.5467	133.194	150.4706	6 103.0178	15483.86	10600).83 985.	0404 6	74.3957	7 62.69	9239 4	2.921	56 4803.	866 328	8.907 6.6	52773	4.554738	325.44	77 2	22.8137
447.7437	549.4193	102.6669	9 125.981	10165.44	12473	3.85 140	5.962 1	725.234	4 210.5	5631 2	258.37	86 6130.	956 752	3.199 2.	78129	3.412877	331.83	94 4	07.1949
334.3925	370.9728	117.5182	2 130.3739	10724.67	11897	7.87 168	9.137 1	873.917	7 50.04	1365	55.51	81 4945.	511 548	6.517 1	5.7957	17.52364	416.69	09 4	62.2742
339.209	427.8282	85.5839	9 107.9429	7074.633	8922.	899 164	44.71 20	074.395	5 119.	.748 1	51.03	24 3919	528 494	3.515 1.	77953	2.244437	454.99	57 5	73.8644
194.4593	122.6641	157.5889	99.40637	10996.95	6936.	824 1633	3.256 10	030.251	1 117.7	7116 7	4.251	93 4998	483 31	53.02 7.3	34524	4.626584	374.67	32 2	36.3422
RAB5A		RAB9A		RAB11A		LAMP1		M6PR		FCGRT		CUBN		FOLR1		FOLR1			
----------	----------	----------	----------	---------	-------------	----------	----------------------	----------	---------	------------	-------------	----------	----------	----------	----------	----------	----------------------------		
600_at		39628_at		36660_a	t	at		32547_at		31432_g	_at	35416_at		821_s_at		39311_4	at		
88.92399	88.92398	1549.282	1549.282	1410.55	7 1410.557	14099.79	14099.79	2254.636	2254.63	5 2046.74	44 2046.744	21.60967	21.60966	488.4326	488.4325	6 442.15	62 442.1561		
114.4115	72.21991	2038.204	1286.575	1089.3	687.6049	23439.54	14795.74	1720.208	1085.84	6 1910.84	49 1206.184	16.7766	10.58989	414.2038	261.4577	558.14	96 352.3206		
62.52706	114.3924	1610.721	2946.791	921.805	2 1686.429	8887.098	16258.82	2448.36	4479.23	9 2139.84	46 3914.818	26.76158	48.95992	613.9946	1123.294	670.58	55 1226.826		
109.5007	175.7548	1521.036	2441.347	1174.15	1884.578	10556.7	16944.1	2110.35	3387.2	3 2236.48	85 3589.684	25.78625	41.38837	571.7582	917.7038	3 707.22	38 1135.134		
388.6642	417.9669	2448.818	2633.444	2062.46	9 2217.966	11239.84	12087.26	2388.391	2568.4	6 1683.4	74 1810.397	24.05052	25.86378	352.7494	379.3445	6 409.12	76 439.9732		
102.4228	104.2379	1548.599	1576.043	911.146	5 927.2941	13681.3	13923.76	1926.218	1960.35	2075.3	19 2112.098	14.47199	14.72847	578.3781	588.6282	2 713.28	81 725.9292		
7.954841	4.259367	1051.085	562.7966	862.919	9 462.0448	17657.95	9454.83	2075.738	1111.4	4 1457.36	68 780.3379	10.98216	5.880322	884.2571	4/3.4696	813.0	19 435.3257		
109.0722	14.67492	1581.759	1082.932	4000.57	53 511.3327	20842.46	14269.53	1634.592	1119.10	13 14/9.20	31 1012./3/	28.53967	19.53933	442.69/1	303.08/1	560.31	46 383.6124		
127.1000	100.0441	1201.118	1000.071	1390.57	0 1700.304	9708.107	11912.74	2210.991	2720.43	4 1847.02	21 2207.187	20.18874	24.11328	013.0121	820.8985	052.87	00 801.1345		
208.0703	298.0000	1620.00/	2054 607	1/16/7	4 1421.020	10121.7	12092.74 10770 GA	1662 522	2000.13	1 1908.00	0/ 2100.204	12 62507	17 10020	011.2144	101.0000	003.10	00 009.1424		
41 47525	26 1624	1029.004	659 4106	741 447	6 467 7018	20082.50	12770.04	1204 571	759 837	0 2051 7	69 1294 246	45 0807	28 4367	425 7005	268.53	611.83	40 090.4204 31 385.9415		
1.11020	20.1024	1010.001	000.4100	11.11	0 101.1010	20002.00	10200.12	1204.011	100.001	0 2001.11	00 1204.240	10.0001	20.1001	420.1000	200.00	011.00	01 000.0410		
M6PR		FCG	RT		CUBN		FOLR1		F	OLR1		RAB4A		RAB5	A				
32547 at		3143	2 q at		35416 at		821 s a	at	39	311 at		39244 at		36110	at				
2254.636	2254.6	35 204	6.744 20)46.744	21.60967	21.60966	488.43	26 488.4	4325 4	42.1562	442.1561	232.7628	232.762	28 901.9	968 90	1.9967	GSM3909		
1720.208	1085.8	46 191	0.849 12	206.184	16.7766	10.58989	414.20	38 261.4	4577 5	58.1496	352.3206	358.6654	226.400	02 887.3	479 56	0.1203	GSM3910		
2448.36	6 4479.2	39 213	9.846 39)14.818	26.76158	48.95992	613.99	46 1123	3.294 6	70.5855	1226.826	282.066	516.03	56 901.3	221 16	48.956	GSM3911		
2110.38	3387.	23 223	6.485 35	589.684	25.78625	41.38837	571.75	82 917.	7038 7	07.2238	1135.134	413.8976	664.328	87 752.9	396 1	208.51	GSM3912		
2388.391	2568.	46 168	3.474 18	310.397	24.05052	25.86378	352.74	94 379.3	3445 4	09.1276	439.9732	463.7838	498.750	02 2379	056 25	58.421	GSM3913		
1926.218	3 1960.3	55 207	5.319 21	12.098	14.47199	14.72847	578.37	81 588.	6282 7	13.2881	725.9292	319.9934	325.664	44 740.9	291 75	4.0601	GSM3914		
2075.738	8 1111.	44 145	7.368 78	30.3379	10.98216	5.880322	884.25	71 473.	4696	813.019	435.3257	343.4234	183.883	38 858.3	215 45	9.5826	GSM3916		
1634.592	2 1119.1	03 147	9.231 10)12.737	28.53967	19.53933	442.69	71 303.	0871 5	60.3146	383.6124	282.7172	193.558	88 1126	.977 77	1.5708	GSM3917		
2216.991	2720.4	34 184	7.621 22	267.187	20.18874	24.77328	673.87	27 826.	8985 6	52.8766	801.1345	205.953	252.72	16 1112	522 13	65.158	GSM3918		
1442.402	1600.1	91 196	8.007 21	83.294	24.06997	26.70307	677.27	44 751.3	3638 6	03.1606	669.1424	302.6194	335.72	39 1513	317 16	78.864	GSM3919		
1663.523	2098.1	23 2	467.1 31	11.636	13.63587	17,19828	353.25	47 445	5434 7	10.7446	896.4284	411.799	519.38	26 1054	093 13	29.477	GSM3915		
1204.571	759.83	79 205	1.769 12	94.246	45.0807	28.4367	425.70	05 26	8.53 6	11.8331	385.9415	263.608	166.282	27 925.0	057 58	3.4894	GSM3920		

8.3.2 Study 2

Series: GSE18965, Platform: GPL96, Sample number: 16 (8 healthy, 8 asthmatic).

patient code		SDHA	FPR1		CDH1		TJP3		TJP1		TJP2		CAV1	
		201093_x_a	t 205119_	_at	201130_s_a	t	35148_at		214168_s_a	t	202085_at		212097_at	
GSM469508	healthy	5.89696	6.705	6.70533	2.36889	2.36889	5.3928	5.3928	2.57169	2.57169	6.51257	6.51257	2.48482	2.48482
GSM469513	healthy	5.83458	3.37	3.41563	2.41269	2.43849	6.31841	6.38596	2.61884	2.64684	5.59573	5.65556	2.52593	2.55294
GSM469519	healthy	6.02012	7.657	2 7.50125	2.94048	2.88032	5.07659	4.97273	2.59207	2.53904	5.79628	5.6777	2.477	2.42632
GSM469515	healthy	6.20903	5.523	.8 5.24558	2.47145	2.34724	5.54559	5.26686	2.48933	2.36422	6.34292	6.02412	2.51498	2.38858
GSM469516	healthy	6.10971	6.24	6.03217	2.78068	2.68385	6.38009	6.15792	2.50361	2.41643	6.81338	6.57613	2.4948	2.40793
GSM469517	healthy	5.88002	8.118	3 8.14211	2.66237	2.67004	4.13732	4.14924	3.14006	3.1491	6.16599	6.18375	2.47369	2.48081
GSM469521	healthy	6.1404	2.96	2.8486	3.99945	3.84089	6.56998	6.30951	2.5076	2.40819	6.89364	6.62034	2.50476	2.40546
GSM469522	asthma	5.66781	4.757	.8 4.94951	2.40913	2.50653	6.05057	6.29519	2.58173	2.6861	5.94694	6.18737	2.56461	2.6683
GSM469523	asthma	5.86247	3.278	3.29811	2.5599	2.57496	5.24072	5.27154	2.68688	2.70269	5.64128	5.67447	2.60587	2.6212
GSM469509	asthma	6.01892	8.343	5 8.17468	2.5566	2.50479	6.75199	6.61517	2.73226	2.67689	4.47593	4.38523	2.83845	2.78094
GSM469510	asthma	5.19006	6.861	7.79621	2.51315	2.85544	5.24481	5.95916	2.75483	3.13004	6.16497	7.00465	2.75075	3.1254
GSM469511	asthma	5.93214	3.330	3.31072	2.56864	2.55341	5.9688	5.9334	2.70397	2.68793	6.27327	6.23607	2.80301	2.78639
GSM469512	asthma	6.10134	4.45	4.30567	2.4581	2.37576	5.25785	5.08172	2.65914	2.57007	5.69809	5.50722	2.64434	2.55576
GSM469514	asthma	5.93001	3.945	3.9234	2.70129	2.68624	5.6948	5.66306	2.91084	2.89462	5.7342	5.70225	2.69149	2.67649
GSM469518	asthma	5.79182	4.726	4.81261	2.5412	2.58733	5.68144	5.78457	2.59098	2.63801	5.93589	6.04364	2.55457	2.60094
GSM469520	asthma	5.91422	3.080	3 3.07154	2.55907	2.5516	4.92255	4.90819	2.63806	2.63036	5.94527	5.92792	2.53523	2.52783

CLTC CUBN FOLR1 VCFS CLDN4 FCGRT EEA1 RAB4A RAB5A 200614 at 204482 at 201428 at 218831 s at 206775 at 204437 s at 203581 at 206113 s at 204840 s at 9.74963 9.74963 3.20166 3.20166 7.18012 7.18012 7.2821 7.2821 3.16137 3.16137 4.92861 4.92861 3.47774 3.47774 5.64911 5.64911 3.97409 3.97409 8.65781 8.75037 3.20099 3.23521 7.87628 7.96048 5.95633 6.02001 3.21784 3.25224 7.83238 7.91612 3.89535 3.93699 5.45421 5.51252 3.47246 3.50958 9.21218 9.02371 3.19803 3.1326 6.60727 6.47209 6.95805 6.81569 3.17639 3.11141 5.42066 5.30976 3.27805 3.21098 5.79115 5.67267 3.93748 3.85692 9.18705 8.7253 3.23195 3.06951 7.85454 7.45977 6.20731 5.89533 3.54948 3.37108 6.76664 6.42654 3.68084 3.49584 5.93251 5.63434 3.41259 3.24107 9.01735 8.70336 3.06136 2.95476 8.20133 7.91575 6.32748 6.10715 3.17012 3.05973 6.47271 6.24732 3.27777 3.16364 6.26367 6.04556 3.59009 3.46508 2.7044 2.71219 6.64914 9.02472 9.05072 6.66829 6.57328 6.59222 3.15062 3.15969 4.90625 4.92038 3.22334 3.23263 5.12667 5.14144 4.62169 4.635 9.45897 9.08397 3.20035 3.07347 7.76691 7.45899 6.53796 6.27876 3.18028 3.05419 8.35138 8.02029 3.34974 3.21693 5.60441 5.38222 3.5941 3.45161 8.8215 9.17815 3.20208 3.33154 7.32168 7.61769 5.7327 5.96447 3.22138 3.35162 5.3316 5.54715 4.36787 4.54446 5.51332 5.73622 3.33153 3.46623 8.76104 8.81257 3.35719 3.37694 8.3233 8.37226 5.53439 5.56695 3.37115 3.39098 5.46693 5.49909 4.17641 4.20097 5.88836 5.923 3.37014 3.38996 8.84117 8.66202 3.23263 3.16713 7.845 7.68604 5.8333 5.7151 3.36575 3.29755 4.86601 4.7674 5.60644 5.49284 6.10904 5.98525 3.64377 3.56994 3.1866 3.62063 6.31263 8.87811 10.0873 7.17242 4.5613 5.18255 3.26538 3.71013 3.22732 3.66689 5.36676 6.09772 5.18297 5.8889 3.72266 4.22969 9.31421 9.25897 3.3598 3.33988 7.13014 7.08785 5.7212 5.68726 3.295 3.27546 6.57077 6.5318 5.26187 5.23066 5.67892 5.64524 3.51467 3.49382 8.96344 8.66318 3.38809 3.2746 6.91561 6.68395 5.58009 5.39317 3.51691 3.3991 5.07043 4.90058 5.07614 4.9061 5.7599 5.56696 3.49578 3.37868 3.21126 3.19336 6.77531 6.73755 5.17509 5.14624 3.26492 3.24672 5.5901 5.55894 4.78073 4.75409 5.78097 5.74875 3.61313 3.59299 8.9568 8.90688 8.98232 3.06844 3.12414 6.97086 7.09739 5.90411 6.01128 3.17288 3.23047 6.82293 6.94678 3.83 3.89952 5.89233 5.99929 3.61849 3.68417 8.82218 9.28627 9.25917 3.20931 3.19994 7.58981 7.56766 6.3792 6.36058 3.24108 3.23162 7.18074 7.15979 3.86379 3.85252 6.32941 6.31094 3.7657 3.75471

RAB9A		RAB11A		LAMP1		M6PR		OCLN		CLDN1		RAB7A		patient co	ode
221808_at		200863_s_a	t	201551_s_a	t	200901_s_a	t	209925_at		218182_s_a	t	211960_s_a	t		
5.92251	5.92251	8.02636	8.02636	5.32208	5.32208	7.59472	7.59472	3.30745	3.30745	3.17452	3.17452	4.64551	4.64551	GSM4695	508
4.64244	4.69207	7.57732	7.65833	2.33681	2.36179	6.29179	6.35906	3.27555	3.31057	3.33247	3.3681	3.68107	3.72043	GSM4695	513
5.86171	5.74178	8.31236	8.1423	4.50955	4.41729	6.44213	6.31033	3.34573	3.27728	3.00944	2.94787	4.57299	4.47943	GSM4695	519
5.55081	5.27182	8.04234	7.63812	3.88728	3.69191	5.99686	5.69545	3.58656	3.4063	3.29251	3.12703	3.56637	3.38712	GSM4695	515
6.05805	5.8471	8.96736	8.6551	3.92374	3.78711	6.04054	5.8302	3.94545	3.80807	3.28791	3.17342	4.33376	4.18285	GSM4695	516
6.42284	6.44134	8.47598	8.50039	4.23865	4.25086	6.79788	6.81746	3.3973	3.40709	3.23926	3.24859	4.58709	4.6003	GSM4695	517
5.70235	5.47628	8.55929	8.21995	4.25757	4.08878	6.06519	5.82473	3.98044	3.82263	3.27095	3.14127	3.89988	3.74527	GSM4695	521
5.13959	5.34738	8.08705	8.41401	2.84815	2.9633	4.8067	5.00104	3.18354	3.31224	3.22631	3.35675	3.65303	3.80073	GSM4695	522
5.21901	5.24971	7.89994	7.94641	3.25661	3.27576	5.73187	5.76558	3.3309	3.35049	3.40528	3.42531	3.82808	3.85059	GSM4695	523
5.35017	5.24176	8.3389	8.16992	2.78685	2.73038	6.29631	6.16873	3.38597	3.31736	3.57532	3.50288	4.47314	4.3825	GSM4695	609
5.36627	6.09716	8.76978	9.96424	2.48759	2.82641	6.45681	7.33624	3.87037	4.39752	3.4583	3.92932	3.96416	4.50408	GSM4695	510
5.57263	5.53958	8.01292	7.96539	2.51063	2.49574	5.20223	5.17137	3.57937	3.55814	3.33164	3.31188	3.63303	3.61148	GSM4695	511
5.56432	5.37793	8.4965	8.21189	2.4718	2.38899	5.43621	5.25411	3.65465	3.53223	3.35909	3.24657	3.7032	3.57915	GSM4695	512
5.80033	5.768	8.72675	8.67812	2.33296	2.31996	4.81174	4.78492	3.66145	3.64104	3.66033	3.63993	3.66828	3.64783	GSM4695	514
5.51364	5.61373	8.23059	8.37999	3.10123	3.15753	5.63421	5.73649	3.59903	3.66436	3.20191	3.26003	3.93017	4.00151	GSM4695	518
5.87166	5.85453	8.55025	8.5253	4.50313	4.48999	6.06835	6.05064	3.67799	3.66725	3.34559	3.33583	3.62675	3.61616	GSM4695	520

8.3.3 Study 3

Series: GSE4302, Platform: GPL570, Sample number: 26 (13 healthy, 13 asthmatic).

			RPL27		FPR1		CDH1		TJP	3		TJP1		1	TJP2		CAV1	
			200025_	s_at	205119	_s_at	20113	0_s_at	351	48_at		2141	68_s_at		202085_a	t	212097_a	t (
								_		_				_				
GSM9821	0 asthm	8	12.4946	3	6.831	6.8316	5.298	821 5.29	882 11.	37572	11.3757	5.93	5904	5.9359	9.320962	9.32096	4.707092	4.70709
GSM9820	8 asthm	a	12.5779	7	6.2961	6.2544	5 5.203	255 5.16	878 11.	39271	11.3172	6.05	5079 6	.01496	9.847209	9.78196	5.180606	5.14628
GSM9814	1 asthm	а	12.5360	2	6.9402	15 6.917	3 5.063	536 5.04	682 11.	50874	11.4707	6.4	0681 6	.38566	9.669104	9.63718	5.157019	5.13999
GSM9814	4 asthm	а	12.5197	3	9.6797	26 9.6603	5.20	244 5.19	201 11.	49937	11.4763	6.25	6196 6	.24365	9.852286	9.83253	5.050436	5.04031
GSM9814	5 asthm	а	12.4643	3	6.529	6.5452	6 5.17	192 5.18	449 10.	62314	10.649	6.03	4719 6	.04939	9.667788	9.69129	4.770873	4.78247
GSM9814	. <mark>8</mark> asthm	а	12.629)	6.0282	5 5.9641	.1 5.43	104 5.35	283 11	3974	11.2761	6.17	537 6	.10967	10.033	9.92627	4.83395	4.78252
GSM9814	9 asthm	а	12.565	5	7.622	4 7.5796	5.325	576 5.29	592 10	.0615	10.0051	6.20	461 6	.16984	9.8708	9.81549	4.69843	4.6721
GSM9815	2 asthm	а	12.5454	1	6.4572	6.4310	9 5.167	724 5.14	631 11	.3362	11.2903	6.09	643 6	.07174	9.47106	9.4327	4.86022	4.84053
GSM9815	3 asthm	а	12.688	L	6.4247	8 6.3268	32 5.071	4.99	412 11	.1026	10.9333	6.52	653 6	.42701	10.0802	9.92646	5.49292	5.40917
GSM9815	5 asthm	а	12.6665	5	6.772	6.6803	2 5.197	752 5.	127 11	4995	11.3434	6.19	147 6	.10747	9.86385	9.73002	5.47135	5.39712
GSM9815	8 asthm	а	12.762	5	6.0620	8 5.9348	4.93	4.82	829 11	1276	10.894	5.98	709 5	.86142	9.62133	9.41938	5.89684	5.77306
GSM9815	g asthm	а	12.2819)	6.4937	4 6.606	5.43	183 5.5	259 10	.6584	10.8429	6.1	111 6	.21692	9.78072	9.95009	4.53122	4.60969
GSM9816	1 asthm	а	12.133	L	6.4377	6 6.6295	5.162	232 5.31	613 10	7587	11.0793	6.16	908 6	.35289	10.0904	10.391	4.46669	4.59978
CLTC		VCFS		CLDN4		FCGRT		CUBN		FOLR	1	E	EA1		RAB4A		RAB5A	
200614_at	t	204482_a	t	1569421_	at	218831_s_	at	206775_a	t	2044	37_s_at	2	04840_	s_at	203581	_at	206113_	s_at
11.31567	11.3157	5.852132	5.85213	6.316325	6.31633	8.919625	8.91963	5.394624	5.3946	2 8.994	4543 8.99	9454	7.26772	7.2677	73 10.793	04 10.79	3 5.776677	5.77668
11.47094	11.3949	5.672726	5.63514	6.438212	6.39555	8.639134	8.58189	5.486231	5.4498	3 9.596	6956 9.5 3	3336	7.283684	7.2354	10.573	97 10.503	9 5.890678	5.85164
11.49207	11.4541	5.575212	5.5568	6.352084	6.33111	9.094909	9.06488	5.427845	5.40992	9.242	2893 9.21	1238	7.1638	7.1401	10.755	92 10.720	4 5.982931	5.96318
11.62431	11.601	5.591952	5.58074	6.435859	6.42295	9.295758	9.27712	5.347101	5.3363	3 9.143	3316 9.12	2498	7.442128	7.427	10.593	87 10.572	6 5.939136	5.92723
11.64493	11.6732	5.5844	5.59797	6.292601	6.30789	9.087655	9.10974	5.501166	5.51454	4 8.625	5259 8.64	4622	6.64308	6.6592	10.983	34 11.0	1 5.758452	5.77245
11.4949	11.3726	5.801	5.73928	6.47739	6.40847	8.79668	8.70308	5.32687	5.2701	8.58	429 8.49	9295	6.80845	6.7360)1 10.91	10.799	9 5.85254	5.79027

 11.6931
 11.6276
 5.53675
 5.50572
 6.31187
 6.2765
 9.05784
 9.00709
 5.21078
 5.8158
 8.24094
 8.19476
 7.4134
 7.3719
 11.0716
 11.0125
 5.70158
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.70178
 5.7018
 5.7

RAB9A		RAB11A		LAMP1		M6PR		OCLN		CLDN1		RAB7A		FPR1		TJP1	
221808_a	t	200863_s	_at	201551_s	_at	200901_s	_at	209925_a	t	222549_a	t	211960_s	_at	205118_a	t	202011_a	t
8.221521	8.22152	11.29801	11.298	5.30107	5.30107	9.456651	9.45665	6.828783	6.82878	8.590227	8.59023	9.033182	9.03318	4.251014	4.25101	11.21476	11.2148
8.006817	7.95376	10.96207	10.8894	5.03393	5.00057	9.177988	9.11717	6.774981	6.73009	8.663756	8.60635	8.87395	8.81515	4.304376	4.27585	11.52851	11.4521
8.153467	8.12655	11.24135	11.2042	5.453409	5.4354	9.262841	9.23226	6.885933	6.8632	8.726713	8.6979	9.322381	9.2916	4.177473	4.16368	11.23765	11.2005
8.862685	8.84491	11.6332	11.6099	5.657883	5.64654	9.506516	9.48745	6.902005	6.88816	8.552468	8.53532	9.521378	9.50229	4.140408	4.13211	11.35753	11.3348
8.882879	8.90447	11.52944	11.5575	5.515419	5.52882	10.30256	10.3276	7.068307	7.08549	9.400009	9.42286	9.650456	9.67391	4.099663	4.10963	11.44196	11.4698
8.33158	8.24293	11.4949	11.3726	5.71063	5.64987	9.20576	9.1078	6.82661	6.75397	8.86868	8.77431	9.26556	9.16697	4.21088	4.16608	11.407	11.2857
8.96217	8.91195	11.226	11.1631	5.48449	5.45375	10.5194	10.4604	7.26758	7.22686	9.95185	9.89608	9.88938	9.83396	3.93218	3.91014	11.5312	11.4666
8.46066	8.42639	11.3258	11.28	5.17824	5.15727	9.32072	9.28297	6.97783	6.94957	7.79751	7.76593	9.1267	9.08974	4.22991	4.21278	11.0725	11.0277
9.04834	8.91038	11.7902	11.6104	5.46395	5.38064	9.32856	9.18633	7.08083	6.97287	8.98122	8.84428	9.601	9.45461	4.13749	4.0744	11.61	11.433
8.08874	7.97899	11.2904	11.1372	5.40132	5.32804	9.0997	8.97624	6.7739	6.68199	8.6148	8.49792	9.44072	9.31263	4.15084	4.09452	11.4483	11.293
8.29543	8.12131	11.5297	11.2877	5.28084	5.17	9.16977	8.9773	6.63012	6.49095	9.36942	9.17276	9.10763	8.91646	4.22405	4.13538	11.379	11.1401
8.55368	8.70181	10.3272	10.5061	5.42244	5.51634	10.1552	10.331	6.90215	7.02167	8.95752	9.11264	9.2104	9.36989	4.20306	4.27584	10.707	10.8924
9.04431	9.31379	10.7394	11.0594	5.64267	5.8108	10.4155	10.7258	7.44837	7.67029	9.3775	9.65691	9.50324	9.78639	4.11822	4.24092	11.3876	11.7269

CDH1		TJP2		TJP3		CAV1		OCLN		OCLN		CLDN1		CLDN4		EEA1	
201131_s	_at	232017_a	t	213412_a	t	203065_s	_at	227492_a	t	231022_a	t	218182_s	_at	201428_a	t	204841_s	_at
11.40549	11.4055	5.783413	5.78341	9.722132	9.72213	4.721342	4.72134	10.07896	10.079	7.299481	7.29948	5.572475	5.57248	9.632591	9.63259	5.858612	5.85861
11.16515	11.0912	6.372671	6.33044	9.358309	9.2963	5.037321	5.00394	10.07976	10.013	7.714076	7.66296	5.031597	4.99826	9.101593	9.04128	6.543416	6.50006
11.20325	11.1663	6.206776	6.18628	9.556376	9.52483	4.794368	4.77854	9.622515	9.59075	7.39575	7.37133	4.905668	4.88947	9.185964	9.15564	6.557732	6.53608
11.08645	11.0642	5.685996	5.67459	9.523834	9.50474	4.702407	4.69298	9.784801	9.76518	7.471625	7.45664	4.771923	4.76235	9.313926	9.29525	5.728466	5.71698
11.61766	11.6459	6.121152	6.13603	9.146491	9.16872	4.568968	4.58007	9.965638	9.98986	7.346991	7.36485	5.204279	5.21693	9.769262	9.79301	5.890222	5.90454
11.3717	11.2507	5.91077	5.84788	9.68533	9.58228	4.60397	4.55499	10.1048	9.99729	7.6994	7.61748	5.16329	5.10835	9.62639	9.52396	5.66829	5.60798
11.9311	11.8642	5.73408	5.70195	8.82657	8.77711	4.7793	4.75252	10.2378	10.1805	7.32419	7.28315	4.89407	4.86665	9.62369	9.56976	6.19909	6.16435
11.4646	11.4182	6.17071	6.14572	9.41245	9.37433	4.94093	4.92092	9.54169	9.50305	7.3284	7.29872	5.04464	5.0242	9.33461	9.2968	6.49864	6.47232
11.3556	11.1825	5.79453	5.70618	9.28954	9.1479	4.66002	4.58896	9.88918	9.7384	7.40215	7.28928	5.14315	5.06473	9.42446	9.28076	5.70361	5.61665
11.1137	10.963	6.2643	6.17931	9.60847	9.47811	5.04347	4.97504	9.79937	9.66642	7.4147	7.3141	5.20649	5.13585	9.2579	9.1323	6.25793	6.17302
11.3346	11.0967	6.3139	6.18137	9.28595	9.09104	5.31423	5.20269	9.55993	9.35927	7.27878	7.126	5.25984	5.14944	8.97878	8.79032	6.80085	6.6581
11.6139	11.8151	6.30895	6.4182	9.23814	9.39812	4.64549	4.72594	9.26616	9.42662	7.17533	7.29959	4.97447	5.06061	10.0267	10.2003	6.01686	6.12105
12.0289	12.3873	6.22765	6.41321	9.33905	9.61731	4.69901	4.83902	10.4235	10.7341	7.70591	7.93551	5.44186	5.60401	9.9759	10.2731	5.72271	5.89322

RAB4A		RAB4A		RAB5A		RAB5A		RAB7A		RAB7A		RAB11A		RAB11A		LAMP1	
206272_a	t	203582_s	_at	240990_a	it	209089_a	t	1570061_	at	211961_s	_at	234998_a	t	200864_s	at	201553_s	_at
9.446135	9.44613	6.005973	6.00597	5.850639	5.85064	10.61149	10.6115	5.201373	5.20137	10.99294	10.9929	9.097529	9.09753	9.425798	9.4258	12.74539	12.7454
9.747499	9.68291	5.430214	5.39423	5.872524	5.83361	10.68971	10.6189	5.309934	5.27475	11.09117	11.0177	8.824088	8.76562	8.455332	8.3993	12.99282	12.9067
9.737688	9.70554	5.29907	5.28158	5.706305	5.68747	10.78309	10.7475	5.316454	5.2989	11.41369	11.376	8.954215	8.92465	8.524943	8.4968	13.25339	13.2096
9.832425	9.81271	5.565311	5.55415	5.686988	5.67558	10.95415	10.9322	5.223205	5.21273	11.30981	11.2871	8.881155	8.86335	9.361292	9.34252	13.02044	12.9943
9.953277	9.97747	6.154006	6.16896	5.636612	5.65031	11.0559	11.0828	4.977266	4.98936	10.88789	10.9143	9.035235	9.0572	9.730219	9.75387	12.79368	12.8248
9.84331	9.73857	6.22502	6.15878	5.77283	5.71141	10.7787	10.664	5.12973	5.07515	11.3126	11.1923	9.33277	9.23347	9.26987	9.17124	13.0276	12.889
10.1729	10.1159	6.66024	6.62291	5.44475	5.41424	11.3468	11.2832	5.00987	4.9818	11.1377	11.0753	9.27561	9.22363	10.4025	10.3442	13.0292	12.9562
9.77447	9.73488	5.67087	5.6479	5.48428	5.46206	10.5532	10.5105	5.34874	5.32708	11.2368	11.1913	9.04706	9.01042	8.94736	8.91113	12.9172	12.8649
10.1349	9.98037	6.44412	6.34587	5.44128	5.35831	10.8898	10.7237	5.07433	4.99696	11.2354	11.0641	9.13177	8.99254	9.67906	9.53148	13.1696	12.9688
10.0682	9.93164	5.44819	5.37427	5.69663	5.61934	10.8937	10.7459	4.98133	4.91375	11.2616	11.1088	9.01535	8.89303	9.12252	8.99875	13.0876	12.91
9.93732	9.72874	5.53979	5.42351	5.68015	5.56092	10.7136	10.4887	5.09022	4.98338	11.1469	10.9129	9.26024	9.06587	9.12399	8.93248	12.9442	12.6725
9.56949	9.73521	5.7136	5.81254	5.29114	5.38277	10.7574	10.9437	5.48943	5.58449	10.8467	11.0345	8.28192	8.42533	7.25895	7.38465	12.9346	13.1586
9.83581	10.1289	6.23147	6.41714	5.77676	5.94888	11.0039	11.3318	5.28925	5.44685	10.8572	11.1807	8.80337	9.06567	9.45673	9.7385	12.8945	13.2787

5.7038 5.97925 6.28641

RAB7A			RAB11A		RAB11	A		LAM	P1			LAM	P1		LAMP1		N	16PR		
211961	s at		234998 at		200864	l s at		2015	53 s	at		2137	28 at		201552	at	2	00900 :	at	
			-										_			-		-	-	
10.9929	94 10.9	929	9.097529	9.09753	9.4257	98 9.	4258	12.7	4539	12.7	454	10.1	1692	10.1169	8.2801	72 8.280)17 7	7.168081	7.	16808
11.091	17 11.0)177	8.824088	8.76562	8.4553	32 8.	3993	12.9	9282	12.9	067	9.88	3682	9.81819	8,1317	13 8.077	783 6	6.969058	6.	92288
11 4136	39 11	376	8 954215	8 92465	8 5249	43 8	4968	13.2	5339	13.2	096	10.1	5597	10 1224	8 7590	05 8 7 3 (009 6	3 845203	6	5 8226
11 2009	21 11 3	971	8 881155	8 86335	0.0210	02 0 3	1252	13.0	2011	12.0	012	10.1	5251	10 1221	8 5321	28 8 51	508 7	7 071400	7	25684
10.0070	0 100	142	0.001100	0.00333	0.7002	02 9.3 10 07	42JZ	10.0	0060	12.9	0040	10.1	0754	10.1521	0.0021	00 0.01	100 7	7 117000	7.	12452
10.8878	59 10.5	9143	9.035235	9.0572	9.7302	19 9.7	338/	12.7	9308	12.8	0248	10.0	2704	10.0004	8.9700	0 0.95	919 1		1.	13452
11.312	6 11.1	1923	9.33277	9.2334/	9.2698	37 9.1	/124	13.0	J276	12.	.889	10.1	1393	10.0314	8.2998	89 8.21	158 (5.62416	6.	55368
11.137	7 11.0)753	9.27561	9.22363	10.40	25 10.	3442	13.0	0292	12.9	9562	10	.783	10.7226	9.5047	9 9.45	152	7.24119	7.	20061
11.236	8 11.1	1913	9.04706	9.01042	8.947	36 8.9	1113	12.9	9172	12.8	3649	10.1	1677	10.1266	8.3482	8.314	144 (5.97317	6.	94493
11.235	4 11.0)641	9.13177	8.99254	9.679	9.5	3148	13.1	1696	12.9	688	10.4	1978	10.3378	8.6128	86 8.48	154 (5.93638	6.	83062
11.261	.6 11.1	1088	9.01535	8.89303	9.122	52 8.9	9875	13.0	0876	1	2.91	10.2	2018	10.0634	8.3725	i 8.258	399 (6.98753	6.	89273
11.146	9 10.9	9129	9.26024	9.06587	9.123	99 8.9	3248	12.9	9442	12.6	5725	9.94	1776	9.73896	8.2113	87 8.039	902 (5.90314	6.	75825
10.846	7 11.0)345	8.28192	8.42533	7.258	95 7.3	8465	12.9	9346	13.1	586	10.6	5735	10.8583	8.5241	.6 8.67	177 (5.96117	7.	08172
10.857	2 11.1	1807	8.80337	9.06567	9.456	73 9.	7385	12.8	8945	13.2	787	10.5	5929	10.9085	8.8197	9 9.082	258	7.11857	7.	33067
SM98206	healthy		12.4515	i	6.56892	6.591	56 5.2	4119	5.259	34 1	11.330	06 11	.3699	6.15729	6.17861	10.2455	10.28	09 5.90	492	5.92537
SM98207	healthy		12.6081		6.51539	6.456	75 4.9	9497	4.950	01 1	11.448	33 11	.3452	6.20031	6.14451	9.5748	9.488	62 5.28	586	5.23828
SM98209	healthy		12.3013		6.26085	6.359	23 5.1	2216	5.202	265	11.60	04 11	.7863	6.68259	6.78761	10.0325	10.19	02 5.05	586	5.13532
SM98211	healthy		12.3149		6.96896	7.070	56 4.9	7306	5.045	63 1	11.431	11 1	1.598	5.82812	5.91318	9.91483	10.05	95 5.03	633	5.10982
SM98212	healthy		12.3945		6.67315	6.727)7 4.9	5337	4.993	39	11.68	39 11	.7834	6.31405	6.36507	9.67882	9.757	03 4.85	893	4.89819
SM98213	healthy		12.3317		6.81786	6.907	92 5.0	1327	5.07	95 1	11.709	91 11	8638	6.10844	6.18913	10.0266	10.15	91 5.83	555	5.91264
SM98217	healthy		12.2957		7.34211	7.460	37 5.4	0605	5.493	149 1	10.791	14 10).9659	6.34037	6.44293	9.89648	10.05	66 4.38	447	4.45539
SIV198218	healthy		12.1682		6.5028		24 4.9	1451	5.046	34 1	10.360	J6 10	0.6385	5.905/6	6.0641/	9./1635	9.9/6	99 5.3	9/8	5.54259
SIVI98219	healthy		12.0805		6.70016	6 7.034	54 5.0	0/09	5.241	.20 1	10.95t	JO 11	.3250	6.11026	0.2/983	9.0842	10.01	.59 4.70	557	4.800/3
SIN139221	healthy		12.5410		6 10116	6 20	05 5.1 19 5.0	4622	5,200	037 5 102 1	9.9087 10.261	74 IU 11 10	0.0924	6 27727	6 5 9 0 4 2	9.5408	9.400	00 4.92	105	4.98030 5.04400
SW08222	healthy		12 0081		6 21526	6 467)6 5.0	4032 5058	5 368	861 1	10.201	11 10	1.7507	6 41679	6 67675	9.75071	10.20	71 4.01	202	5 1280
ISM98225	, healthy		12.0001		6 56191	6 7 2 7	4 5.2	4383	5 376	51 1	11 151	13 11	4335	6 3214	6 48134	9 23147	9 465	05 4 70	874	4 82737
.011100220			12.1000		0.00101	01121		1000	0.070	.01 1				0.0211	0.10101	5120117	5.105			1.027.07
5.58141	5.60073	6.398	6.42016	8.64287	8.67279	5.4213	5.4400	7 9.4	44187	9.474	56 7.	.28368	7.30	89 10.7	73 10.810	3 5.84174	5.861	196 8.45	959	8.48888
5.3709	5.32256	6.434	6.37685	9.40705	9.32238	5.27835	5.2308	4 9.9	92589	9.836	55 6.	.60834	6.548	86 10.44	57 10.352	6 5.68862	5.637	741 7.87	932	7.8084
5.53172	5.61865	6.39	62 6.49671	8.61256	8.74791	5.32648	5.4101	89	.2796	9.425	43 7.	.60762	7.727	17 10.46	51 10.629	6 5.82815	5.919	973 8.51	557	8.64939
5.51167	5.5921	6.323	88 6.41616	9.50481	9.64352	5.38883	5.4674	7 9.2	26619	9.401	.41 6.	.98857	7.090	56 10.414	10.566	5 5.38352	5.462	208 8.18	732	8.3068
5.67694	5.72282	6.351	.19 6.40251	9.12814	9.20191	5.37977	5.4232	49	.4132	9.489	26 7.	.38999	7.449	71 10.4	1 10.555	6 5.81863	5.865	565 8.32	193	8.38917
5.489	5.56151	6.303	39 6.38666	8.95954	9.0779	5.36028	5.4310	9 9.:	17191	9.293	07	7.1361	7.230	36 10.64	58 10.786	4 5.92882	6.007	714 8.21	327	8.32683
5.86397	5.95882	6.41	.46 6.51835	8.9784	9.12362	5.3063	5.3921	3 9.3	36785	9.519	38 7.	.74474	7.870	01 10.63	22 10.804	1 5.75584	5.848	894 8.69	387	8.83958
5.47827	5.62522	6.202	37 6.36874	8.18718	8.4068	5.53247	5.6808	8 9.2	26059	9.5	09 7.	.04912	7.238	21 10.3	9 10.67	8 5.96782	6.127	791 8.36	316	8.59263
5.5357	5.72529	6.336	17 6.55318	8.63391	8.92962	5.43579	5.6219	6 9.2	22404	9.539	96 6.	.97468	7.213	56 10.53	38 10.899	7 5.94042	6.143	887 8.01	938	8.29404
5 91391	5 98726	6 4 1 4	79 6 49436	8 53446	8 64031	5 63004	5 6998	7 9	70571	9 826	09 7	03044	7 117	64 10 54	9 10 673	6 6 10567	6.18	814 8 44	197	8 54566

 5.76511
 5.99867
 6.56049
 6.82628
 8.54902
 8.89537
 5.61536
 5.84286
 10.779
 7.26694
 7.56135
 10.5816
 11.0103
 5.84242
 6.08101
 8.24861
 8.58279

 5.99057
 6.14214
 6.62845
 6.79616
 8.5064
 5.54586
 5.59496
 9.43263
 6.82236
 6.99498
 10.6314
 10.9004
 6.10743
 6.26196
 8.26542
 8.4745

 6.59
 8.14144
 8.53462
 5.37262
 5.63207
 9.78046
 10.2528
 6.91588
 7.24987
 10.8468
 11.3706
 5.76828
 6.04684
 8.05969
 8.44892

11.131 11.1696 5.32474 5.34317 9.39699 9.42953 6.99883 7.02306 9.4837 9.51654 9.3385 9.37083 4.11125 4.12548 11.6529 11.6932 11.3086 11.3478 10.9969 10.8979 5.38724 5.33875 9.15309 9.07071 6.76672 6.70581 8.22185 8.14785 8.91506 8.83482 4.38955 4.35004 11.3572 11.2549 11.2486 11.1473 11.0822 11.2564 5.45341 5.53911 9.09908 9.24207 6.94639 7.05555 8.92414 9.06438 8.93 9.07033 3.9849 4.04752 11.7187 11.9028 11.4007 11.5799 10.8171 10.975 5.32705 5.40479 9.46801 9.60617 6.75708 6.85569 8.74623 8.87387 9.18005 9.31402 4.14397 4.20445 11.3097 11.4747 11.0174 11.1781 10.9913 11.0801 5.2533 5.29575 9.34105 9.41653 6.3189 6.36996 8.74322 8.81387 8.86045 8.93205 4.18764 4.22148 11.2411 11.3319 11.1095 11.1993 11.0807 11.2271 5.54345 5.61668 9.35743 9.48105 6.8363 6.92661 8.69708 8.81197 9.12874 9.24934 4.26871 4.3251 11.4846 11.6364 11.0477 11.1936 10.533 6.50746 6.61272 9.09502 9.24213 9.30846 9.45903 3.99058 4.05513 10.9132 11.0898 10.5566 10.7273 5.73489 5.82765 10.3653 11.446 11.6312 10.4807 10.7619 5.37703 5.52126 9.9574 10.2245 6.72791 6.90838 9.33248 9.58282 9.18523 9.43162 4.21033 4.32327 11.3417 11.646 11.7863 12.1025 10.5711 10.9331 5.61172 5.80392 10.0584 10.4029 6.79486 7.02758 8.54353 8.83614 9.27841 9.59619 4.17547 4.31848 11.2411 11.6261 11.7444 12.1466 10.1697 10.2958 5.48758 5.55564 10.4744 10.6043 6.9428 7.02892 8.96975 9.08101 9.35513 9.47116 4.14865 4.2001 11.0818 11.2192 11.7397 11.8853 10.451 5.36618 5.62533 10.1713 10.6625 6.85186 7.18275 8.64684 9.06442 9.01712 9.45259 4.09399 4.2917 10.7709 11.2911 11.4887 12.0435 9.96953 9.62004 10.0098 5.29499 5.50951 10.3712 10.7914 7.03065 7.31549 8.6196 8.96881 8.81305 9.1701 4.2353 4.40689 10.8938 11.3352 11.784 12.2615 10.7204 10.9917 5.42208 5.55927 9.74177 9.98826 6.87724 7.05125 8.82106 9.04425 8.69018 8.91006 4.19245 4.29853 11.1289 11.4105 11.5233 11.8149

6.343496.365459.427819.460455.11825.135941.011010.1437.07877.35485.56665.58599.73749.71146.30796.37277.49597.49586.22016.164129.60959.52154.65374.61399.27829.73447.11377.049554.94884.00099.26779.18436.36696.30286.82636.82636.32036.42589.49199.64424.67594.74501.01131.05797.11377.04955.33035.14179.12835.13895.09285.09297.24147.35786.37179.50259.64124.61254.61254.61259.02147.01637.42167.42167.42167.42167.42167.42166.14186.10149.50149.50255.17345.17345.01257.62147.43167.42167.42167.42167.42166.14186.10149.50149.50241.01937.62147.43167.42167.42167.42167.42167.42167.42167.42167.42167.42167.42166.14186.10149.50241.01937.62147.62167.52414.52166.04218.42167.41

7.49559 7.52154 9.85236 9.88647 5.59614 5.61551 5.33691 5.35539 10.9284 10.9663 5.36721 5.3858 11.3938 11.4332 8.68755 8.71763 8.84228 8.87289 6.8865 6.82452 9.36212 9.27786 5.39843 5.34984 5.58604 5.53576 10.333 10.24 5.01117 4.96606 11.2901 11.1885 8.89955 8.81944 8.27216 8.19771 7.24414 7.35798 9.55631 9.70649 5.39571 5.4805 5.76766 5.8583 10.6361 10.8032 5.41676 5.50188 11.0307 11.2041 8.70809 8.84494 8.63595 8.77166 6.93406 7.03525 9.50142 9.64007 5.0984 5.1728 5.72072 5.8042 10.674 10.8297 5.16718 5.24259 11.3573 11.5231 8.32135 8.44278 8.0014 8.11816 6.89393 6.94963 9.73351 9.81216 5.35191 5.39515 5.60175 5.64701 10.4117 10.4958 5.26626 5.30881 10.9064 10.9946 8.40113 8.46901 8.49756 8.56623 7.11206 7.20601 9.43623 9.56088 5.32366 5.39399 5.44418 5.5161 10.6869 10.8281 5.31595 5.38617 11.1943 11.3422 8.60902 8.72275 8.85453 8.9715 7.6485 6.45461 6.55901 9.25859 9.40835 5.70285 5.7951 5.53081 5.62027 10.9467 11.1237 5.41666 5.50428 10.8518 11.0273 8.22075 8.35372 7.52675 6.91793 7.1035 9.32028 9.57029 5.48106 5.62809 5.90832 6.06681 10.9136 11.2063 5.37079 5.51486 10.6583 10.9442 8.62656 8.85797 8.90729 9.14622 6.9322 7.16962 9.42053 9.74318 5.76162 5.95895 5.88072 6.08213 10.8394 11.2106 5.20954 5.38796 10.7297 11.0972 8.46161 8.75142 9.11698 9.42923 6.84556 6.93047 9.6364 9.75592 5.88472 5.95771 5.7535 5.82486 10.7725 10.9061 5.19294 5.25734 10.8589 10.9936 8.7266 8.83484 9.15579 9.26935 6.06931 6.36242 9.33586 9.78672 5.40453 5.66553 5.67693 5.95109 10.565 11.0752 5.21673 5.46867 10.6441 11.1581 8.2522 8.65072 6.5199 6.83476 6.50824 6.77191 9.24173 9.61614 5.11795 5.32529 5.83787 6.07438 10.722 11.1564 5.08428 5.29026 10.5737 11.0021 7.62194 7.93073 6.81779 7.094 6.55625 6.72213 9.34453 9.58096 5.57272 5.71372 5.96584 6.11678 10.5709 10.8383 5.05479 5.18268 10.5246 10.7909 8.633 8.85143 8.37656 8.5885

8.2.4 Study 4

Series: GSE3212, Platform: GPL80, Sample number: 30 (15 healthy, 15 asthmatic).

		RPL27		FPR1		CDH1		TJP3		TJP1		TJP2		CAV1		CLTC		VCFS	
		200025	s_at	205119_s	_at	201130_s	at	35148_at		214168_s	at	202085_at		212097_at		200614_at		204482_at	
<u>GSM38345</u>	healthy	12.782	51	9.378199	9.378199	5.610025	5.61002	5 7.041684	7.041684	6.676078	6.676078	9.097273	9.097273	6.424399	6.424399	12.74997	12.74997	7.653015	7.653015
<u>GSM38346</u>	healthy	12.497	39	8.483521	8.676786	5.648162	5.776834	4 7.214026	7.37837	6.61541	6.766117	7.580822	7.753522	6.091476	6.230247	11.59015	11.85419	8.205788	8.392726
<u>GSM38348</u>	healthy	12.498	58	10.07849	9 10.30743	5.781577	5.912914	7.109904	7.271416	6.560618	6.709652	8.543819	8.737904	6.595662	6.745492	12.91155	13.20486	7.559673	7.731402
<u>GSM38350</u>	healthy	12.714	98	10.66593	3 10.72266	5.572904	5.60254	5 7.138341	7.176308	6.33013	6.363798	9.96578	10.01878	6.409109	6.443197	13.23783	13.30824	7.862492	7.90431
<u>GSM38351</u>	healthy	13.198	35	11.3432	2 10.98548	5.556336	5.38111	6.639508	6.430123	6.601297	6.393117	9.860026	9.549079	6.363476	6.162796	13.18623	12.77039	7.273111	7.043745
<u>GSM38353</u>	healthy	12.683)2	10.51055	5 10.59308	5.572904	5.616664	4 6.448312	6.498946	6.899433	6.953609	9.884599	9.962215	6.60888	6.660774	13.27306	13.37728	7.003573	7.058567
<u>GSM38355</u>	healthy	12.986	59	10.69035	5 10.52235	5.826692	5.73512	9 6.863834	6.755972	6.371367	6.271244	9.795573	9.641641	6.116507	6.020389	13.15755	12.95079	7.318052	7.203053
GSM38356	healthy	13.3	34	10.44755	5 10.01552	5.739667	5.50232	2 6.217188	5.960095	6.531796	6.261693	9.890332	9.481347	6.353837	6.091093	13.12199	12.57937	7.119983	6.825557
<u>GSM38358</u>	healthy	13.166	15	10.2244	9.926559	5.515717	5.35504	4 6.700699	6.505503	6.358831	6.173593	9.884772	9.596821	6.217224	6.036112	13.09719	12.71566	7.291073	7.078678
<u>GSM38362</u>	healthy	12.579	31	9.794183	3 9.952474	5.698968	5.79107	6.40463	6.50814	6.480881	6.585623	10.02598	10.18801	6.38358	6.48675	13.24449	13.45854	7.14286	7.258301
<u>GSM38368</u>	healthy	13.006	64	9.820031	9.650885	5.670314	5.57264	5 6.033783	5.929854	6.564659	6.451585	9.424811	9.262473	6.753332	6.637009	13.26995	13.04138	6.936605	6.817125
GSM38371	healthy	13.130	57	11.84986	5 11.53584	5.405365	5.26212	6.397538	6.228003	6.4122	6.242277	9.932028	9.668829	6.491389	6.319367	13.18795	12.83847	7.104494	6.916225
<u>GSM38373</u>	healthy	13.232	51	10.83468	3 10.46631	5.424746	5.24030	6.267079	6.054003	6.447378	6.228172	9.977044	9.637832	6.449537	6.230258	13.1674	12.71972	7.214061	6.968788
GSM38385	healthy	12.998	62	11.70689	9 11.51235	5.402371	5.31259	6.852204	6.738336	6.635947	6.525672	9.009857	8.860133	6.38358	6.277499	13.02665	12.81018	7.847029	7.716629
<u>GSM38377</u>	healthy	12.758	67	10.60498	8 10.62488	5.552685	5.56310	6.44675	6.458849	6.432381	6.444453	10.38888	10.40838	6.131496	6.143003	13.24028	13.26513	7.221083	7.234635
1																			
CLDN4		FCGRT		CUBN		FOLR1		EEA1		RAB4A		RAB5A		RAB9A		RAB11A		LAMP1	-
1569421_a	t	218831_s_	at	206775_at	2	.04437_s_a	t :	204840_s_a	t i	203581_at		206113_s_a	at 	221808_at		200863_s_	at 	201551_s_	at
8.072948	8.072948	9.877483	9.877483	6.218229	6.218229	8.539329	8.539329	5.376142	5.376142	8.879889	8.879889	6.419919	6.419919	9.038836	9.038836	11.41059	11.41059	5.557072	5.557072
8.150254	8.335927	10.39485	10.63166	6.103/89	6.242841	8.909182	9.112144	5.431244	5.554974	8.472962	8.665986	6.604353	6.754808	8.496964	8.690535	10.82463	11.0/122	5.582352	5.709525
8.121366	8.305855	9.905059	10.19204	6.019599	6.156343	8.336257	8.525627	5.01122	5.125057	8.792801	8.992542	6.202444	6.343342	9.207465	9.416626	11.41621	11.0/554	5.845117	5.977897
7.981229	8.023679	10.33216	10.38712	6.07785	6.110176	7.782395	7.823787	5.389569	5.418234	10.08274	10.13637	6.585639	6.620666	10.39244	10.44772	12.12994	12.19445	6.010466	6.042434
7.956502	7.705585	10.41029	10.08199	5.9192	5.732531	8.060051	7.805868	4.976892	4.81994	10.03317	9.716759	6.033996	5.843707	10.20942	9.887458	12.05021	11.67019	5.921417	5.734678
7.877945	7.939804	10.50076	10.58321	5.960812	6.007618	8.313713	8.378994	4.77114	4.808604	9.946224	10.02432	5.823937	5.869668	10.37683	10.45832	12.18927	12.28498	5.867963	5.91404
7.82566	7.702684	10.72747	10.55889	5.908196	5.815352	8.874209	8.734755	5.302538	5.219211	10.32556	10.1633	6.083845	5.988241	10.59882	10.43226	12.18273	11.99129	6.241256	6.143178
7.899073	7.57243	10.74978	10.30526	6.09231	5.840381	9.30348	8.918762	5.73834	5.501048	10.3492	9.921242	5.824337	5.583489	10.59395	10.15587	12.13044	11.62882	6.467728	6.200274
7.865999	7.636856	10.57937	10.27118	5.881838	5.710496	9.417435	9.143098	5.561284	5.39928	10.29557	9.995648	6.219651	6.038468	10.38586	10.08331	12.06811	11.71655	6.229311	6.047846
7.96772	8.096492	9.998629	10.16022	6.08439	6.182724	8.498808	8.636163	4.676172	4.751747	9.646867	9.802777	6.066349	6.164392	10.18778	10.35243	12.04726	12.24197	5.613524	5.704248
8.188688	8.047641	10.31707	10.13936	6.373064	6.263291	8.939905	8.785919	4.733038	4.651513	9.950182	9.778794	6.106249	6.001071	10.43946	10.25964	11.91486	11.70964	6.268232	6.160264
8.03665	7.823679	10.82933	10.54236	5.991672	5.832893	9.374641	9.126213	6.6036	6.428605	10.35481	10.0804	5.90001	5.74366	10.37424	10.09933	11.98686	11.66921	6.044626	5.884443
7.965343	7.694527	10.56152	10.20244	5.927201	5.725681	8.844468	8.543763	6.511578	6.290189	10.25332	9.904718	6.186848	5.9765	10.27149	9.922264	12.06773	11.65744	5.728156	5.533403
8.038043	7.904469	10.65726	10.48016	5.992975	5.893385	9.2098	9.056754	6.149505	6.047314	9.900431	9.735908	6.288216	6.18372	10.09868	9.930861	12.0261	11.82625	5.412979	5.323027
7.704526	7.718985	10.69698	10.71705	6.012321	6.023604	9.349057	9.366602	6.537799	6.550068	10.2011	10.22025	6.102745	6.114198	10.78791	10.80816	12.06415	12.08679	6.277876	6.289658
LAMP1		M6PR		OCIN	c	IDN1		RAB7A		PR1	ŀ	TIP1		CDH1	ŀ	TIP2		ТІРЗ	
201551 s a	at	200901 s	at	209925 at	2	22549 at		211960 s a	t i	205118 at		202011 at		201131 s a	it i	232017 at		213412 at	
5.557072	5.557072	10.8701	10.8701	5.937805	5.937805	6.48417	6.48417	10.54555	10.54555	5.760989	5.760989	7.417866	7.417866	6.629089	6.629089	8.049579	8.049579	6.035522	6.035522
5.582352	5.709525	10.55294	10.79335	6.190493	6.33152	6.318169	6.462104	9.441128	9.656208	5.429933	5.553633	5.988863	6.125296	6.076332	6.214758	7.823997	8.002237	6.278799	6.421838
5.845117	5.977897	11.1056	11.35788	5.850102	5.982996	6.44227	6.588616	10.389	10.625	5.934284	6.06909	7.18836	7.351654	6.502436	6.650148	8.201641	8.387953	6.146282	6.285904
6.010466	6.042434	11.80157	11.86434	5.246841	5.274747	6.39079	6.424781	10.78069	10.83803	5.770061	5.80075	7.742843	7.784025	6.25622	6.289495	7.900655	7.942676	5.836245	5.867286
5.921417	5.734678	11.81267	11.44014	5.245254	5.079839	6.476647	6.272398	10.80937	10.46848	5.690001	5.51056	8.858985	8.579607	5.822551	5.63893	7.958476	7.707496	5.824115	5.640445
5.867963	5.91404	11.53761	11.6282	5.216426	5.257387	6.272503	6.321756	10.83101	10.91606	5.827544	5.873303	8.184043	8.248306	6.503032	6.554095	8.015435	8.078374	5.721699	5.766627
6.241256	6.143178	11.67896	11.49543	5.454979	5.369257	6.24146	6.143379	10.68424	10.51635	5.794138	5.703086	8.452828	8.319996	6.831027	6.723681	7.910679	7.786367	5.905892	5.813084

6.241256	6.143178	11.67896	11.49543	5.454979	5.369257	6.24146	6.143379	10.68424	10.51635	5.794138	5.703086	8.452828	8.319996	6.831027	6.723681	7.910679	7.786367	5.905892	5.813084
6.467728	6.200274	11.73841	11.25301	5.292882	5.074011	6.685629	6.409165	10.53122	10.09573	5.855714	5.613568	8.151944	7.814844	5.577483	5.346843	8.058846	7.725596	5.656402	5.422498
6.229311	6.047846	11.63196	11.29311	5.429036	5.270884	6.371983	6.186362	10.73849	10.42567	5.813981	5.644615	6.936239	6.734181	5.486467	5.326642	8.012575	7.779163	5.855785	5.685202
5.613524	5.704248	11.57576	11.76284	5.419915	5.50751	6.584708	6.691128	10.78777	10.96211	5.801427	5.895188	8.589415	8.728235	7.464327	7.584963	8.271785	8.405471	5.779635	5.873044
6.268232	6.160264	11.49628	11.29827	5.176955	5.087784	6.563601	6.450546	10.6982	10.51393	5.851951	5.751154	7.624939	7.493603	5.954584	5.852019	7.914497	7.778173	5.902891	5.801216
6.044626	5.884443	12.03531	11.71637	5.567744	5.420199	6.514356	6.341726	10.55259	10.27295	5.866655	5.711189	7.680726	7.477187	5.705717	5.554516	8.304959	8.084878	5.928833	5.771719
5.728156	5.533403	11.75043	11.35092	5.460984	5.275315	6.484507	6.264039	10.71243	10.34822	5.794138	5.597142	7.891795	7.62348	6.721385	6.492863	8.297215	8.015116	5.692784	5.499234
5.412979	5.323027	11.71173	11.5171	5.617548	5.524197	6.468326	6.360837	10.05682	9.889702	5.795211	5.698908	6.87299	6.758776	6.129373	6.027517	8.26942	8.132001	6.151907	6.049676
6.277876	6.289658	12.21751	12.24044	5.180851	5.190574	6.275477	6.287254	10.72661	10.74674	5.851951	5.862933	6.950888	6.963933	5.763076	5.773891	8.136667	8.151937	5.555942	5.566369

Appendices

CAV1		OCLN		OCLN		CLDN1		CLDN4		EEA1		EEA1		RAB4A		RAB4A		RAB5A	
203065_s_	at	227492_at		231022_at		218182_s_	at	201428_at		204841_s	at	225885_at		206272_at		203582_s_	at	240990_at	
5.610818	5.610818	7.188352	7.188352	8.216925	8.216925	6.769073	6.769073	6.615737	6.615737	7.823425	7.823425	9.058967	9.058967	8.753049	8.753049	6.440199	6.440199	5.453875	5.453875
5.485024	5.609979	7.24919	7.414335	7.880851	8.060386	7.017154	7.177013	6.490742	6.638609	7.710746	7.886406	7.652956	7.8273	7.927895	8.108502	6.179584	6.320362	5.437439	5.56131
5.627357	5.755191	6.943383	7.101112	8.473409	8.665895	6.4246	6.570544	6.605428	6.75548	7.917902	8.097769	9.564628	9.781903	8.853292	9.054408	6.256562	6.398689	5.147275	5.264203
5.211299	5.239016	7.10947	7.147283	8.365231	8.409723	6.281452	6.314861	6.30262	6.336142	7.877893	7.919793	10.12812	10.18199	9.502118	9.552657	6.471339	6.505758	5.168576	5.196066
5.38468	5.214868	6.793959	6.579704	8.209109	7.950225	6.227622	6.031227	6.770392	6.55688	7.989487	7.737529	10.53109	10.19898	9.764411	9.456479	6.780681	6.566844	5.207175	5.042961
5.532383	5.575825	6.570384	6.621976	8.166723	8.23085	6.084001	6.131774	6.199568	6.248248	7.982132	8.04481	10.55012	10.63296	9.807821	9.884834	7.197775	7.254294	4.94671	4.985553
5.449288	5.363655	6.585825	6.482332	8.017335	7.891347	6.001061	5.906757	6.444632	6.343358	8.014721	7.888774	10.93711	10.76524	9.744469	9.59134	7.719977	7.598662	4.797208	4.721822
5.267848	5.050012	7.042465	6.751245	8.11074	7.775344	6.135321	5.881613	6.478018	6.210139	7.87536	7.549698	10.58045	10.14293	9.961701	9.549764	7.761142	7.440203	5.03557	4.827339
5.418529	5.260683	7.345485	7.131505	8.161044	7.923307	6.138372	5.959557	6.515764	6.325955	7.824527	7.596593	10.75038	10.43722	9.859982	9.572753	7.658465	7.435368	5.127608	4.978237
5.321352	5.407354	7.192916	7.309166	8.247535	8.380829	6.255594	6.356695	6.28525	6.38683	8.153982	8.285764	10.66591	10.83829	9.644523	9.800395	6.866654	6.977631	5.331816	5.417987
5.587968	5.491718	7.003719	6.883083	8.156933	8.016433	6.28585	6.177579	6.363138	6.253536	8.149909	8.00953	10.54977	10.36806	9.532646	9.36845	7.305832	7.179992	5.241124	5.150848
5.885356	5.729394	7.044345	6.85767	8.300976	8.081	6.159196	5.995977	6.218453	6.053664	8.225275	8.007305	10.78455	10.49876	9.826437	9.566036	7.541261	7.341418	5.461446	5.316718
5.399071	5.215507	6.560535	6.337482	8.085741	7.810832	6.2194	6.007945	6.276698	6.063295	8.285473	8.003773	10.80972	10.44219	9.693235	9.363672	7.466488	7.212633	5.838378	5.639878
5.380346	5.290937	7.745589	7.616875	8.072018	7.937879	6.284996	6.180553	6.369264	6.263421	7.869519	7.738745	10.00951	9.843177	9.417063	9.260572	6.653312	6.542749	5.683126	5.588685
5.474935	5.48521	6.79268	6.805428	7.965417	7.980366	6.040739	6.052076	6.404613	6.416632	8.096281	8.111475	11.0201	11.04078	9.856393	9.87489	7.744511	7.759045	5.243335	5.253175

RAB5A RAB7A RAB7A RAB11A RAB11A LAMP1 LAMP1 LAMP1 M6PR 209089 at 1570061 at 211961 s at 234998 at 200864 s at 201553 s at 213728 at 201552 at 200900 s at 12.76072 12.76072 6.31414 6.31414 11.77068 11.77068 8.865151 8.865151 7.456815 7.456815 14.19247 14.19247 9.455517 9.455517 13.08067 13.08067 8.680318 8.680318 12.2293 12.50789 6.612267 6.762902 10.76127 11.00643 8.679773 8.877509 6.448443 6.595346 13.61276 13.92287 8.461277 8.654035 11.27193 11.52871 7.713807 7.889537 12.83201 13.12351 6.183599 6.324069 11.62344 11.88749 8.659516 8.85623 7.276908 7.442214 14.22056 14.5436 9.522701 9.739023 13.37208 13.67584 8.464624 8.65691 12.78601 12.85402 6.068295 6.10057 11.97945 12.04317 8.875542 8.922748 8.673978 8.720112 14.32706 14.40326 9.775572 9.827565 13.60102 13.67336 9.012343 9.060277 12.78488 12.3817 6.475517 6.271304 12.11238 11.73041 9.255436 8.963555 9.205815 8.915499 14.26972 13.81971 9.662457 9.35774 13.45785 13.03344 9.462425 9.164017 12.8258 12.92651 6.235071 6.28403 12.097 12.19199 9.177525 9.249589 9.455201 9.529445 14.3029 14.41521 9.865639 9.943106 13.67607 13.78346 8.921936 8.991993 12.43845 12.24298 6.335708 6.236146 11.62928 11.44653 8.607926 8.472657 9.263151 9.117585 14.25785 14.0338 9.561152 9.410904 13.44016 13.22895 9.326374 9.179815 12.21175 11.70677 6.375299 6.111667 11.765 11.27849 8.962048 8.591449 9.342861 8.956515 14.18606 13.59943 9.720982 9.319 13.45323 12.89691 9.457574 9.066484 12.31752 11.9587 6.160798 5.981329 11.6245 11.28587 8.96511 8.70395 9.115605 8.85006 14.19078 13.77739 9.516893 9.239659 13.4136 13.02285 9.377632 9,104454 12.73063 12.93638 6.253891 6.354965 11.76112 11.9512 9.167757 9.315924 9.691073 9.847697 14.24828 14.47856 9.553127 9.707522 13.57581 13.79522 9.071711 9.218325 12.57176 12.35522 6.566857 6.453746 11.73062 11.52857 8.607224 8.458968 9.143509 8.986016 14.29582 14.04958 9.595887 9.430602 13.69811 13.46217 9.128656 8.971419 12.32868 12.00197 6.308447 6.141273 11.46509 11.16127 8.877244 8.641997 9.302549 9.056032 14.1812 13.8054 9.414442 9.164959 13.31243 12.95965 10.33383 10.05998 12.3262 11.90712 6.255634 6.042947 11.78857 11.38776 8.941715 8.637704 9.458502 9.13692 14.1511 13.66997 9.366695 9.048235 13.2546 12.80395 10.31779 9.966988 11.90289 11.70509 6.262841 6.158767 11.32407 11.13589 9.103302 8.952025 8.253337 8.116185 14.11002 13.87555 9.459312 9.302119 13.21064 12.99111 9.84865 9.684987 12.43555 12.45889 6.27167 6.28344 11.47576 11.49729 8.792455 8.808956 9.98844 10.00719 14.15402 14.18058 9.437588 9.455299 13.35732 13.38239 11.25184 11.27296

11.68443 11.32574 5.67152 5.497417 6.095212 5.908102 6.51443 6.314451 9.984156 9.677664 6.543948 6.343063 12.8835 12.488 6.671033 6.465247 GSM38361 asthma 13.18744 11.2285 10.85212 5.601693 5.413924 5.802233 5.607742 6.295469 6.084444 9.711687 9.38615 6.629468 6.407248 12.91703 12.48405 6.531688 6.312745 GSM38363 asthma 13.22595 10.8994 5.6516 5.441641 5.833015 5.616316 6.387546 6.150246 10.23576 9.855498 6.445102 6.205664 12.9062 12.42673 6.646098 6.399193 <u>GSM38364</u> asthma 13.27581 11.31994 11.57206 11.2772 5.629593 5.486151 5.708436 5.562985 6.532163 6.365723 10.31649 10.05362 6.528918 6.362561 12.96495 12.6346 6.525643 6.359369 GSM38365 asthma 13.11683 10.411 5.552178 5.377748 6.316582 6.118137 6.207287 6.012276 <u>GSM38370</u> asthma 13.19722 10.74868 9.77068 9.46372 6.439606 6.237296 13.09083 12.67957 7.039153 6.818008 GSM38372 asthma 12.91253 10.66189 10.55462 5.375207 5.321125 5.721898 5.664327 6.23466 6.17193 9.992372 9.891834 6.529769 6.46407 13.35121 13.21688 6.90812 6.838614 5.60113 5.47037 5.964201 5.824965 6.457944 6.307181 9.378121 9.159186 6.561203 6.40803 <u>GSM38375</u> asthma 13.08816 11.06204 10.8038 13.0613 12.75638 7.189665 7.02182 9.90958 9.604985 5.627849 5.454864 6.632412 6.428549 6.491691 6.292153 9.493072 9.20128 6.257121 6.064793 13.17452 12.76957 7.174635 6.954105 <u>GSM38378</u> asthma 13,18797 <u>GSM38379</u> asthma 12.97957 12.06983 11.88668 5.364747 5.28334 5.849849 5.761081 6.240996 6.146292 9.932911 9.782184 6.333107 6.237005 13.19525 12.99502 6.642059 6.541269 11.82017 11.99035 5.476408 5.555253 5.541929 5.621717 6.617554 6.712828 9.908073 10.05072 6.483141 GSM38381 asthma 12.60119 6.57648 13.37335 13.56588 6.843703 6.942233 GSM38383 asthma 13.1814 10.76656 10.44082 5.541086 5.373446 6.993846 6.782254 6.580094 6.381019 7.66657 7.434625 6.322765 6.131476 13.03434 12.64 8.037836 7.794659 11.01285 10.82164 5.503137 5.407589 6.862333 6.743186 6.445677 6.333764 10.00384 9.83015 6.38358 6.272745 13.07895 12.85187 7.352176 7.224524 GSM38386 asthma 13.00847 12.85724 11.10413 11.03968 5.64912 5.61633 7.255747 7.213631 6.533193 6.495271 9.032959 8.980527 6.129682 6.094102 12.91535 12.84038 7.638833 7.594493 <u>GSM38387</u> asthma 13.18611 10.99274 10.65635 5.58292 5.412079 6.749164 6.542636 6.337016 6.143099 10.2822 9.967554 6.138274 5.950439 13.02541 12.62683 7.231169 7.009891 GSM38388 asthma GSM38389 11.07377 10.79412 5.635564 5.493252 7.181627 7.000273 6.601898 6.435183 10.10014 9.845085 6.175926 6.019968 13.15608 12.82386 7.219013 7.036715 asthma 13.11377

8.022038 7.775779 11.34995 11.00153 6.231609 6.040312 10.06016 9.751338 5.671043 5.496954 10.41782 10.09801 5.881225 5.700684 10.59231 10.26715 12.13837 11.76575 6.997662 6.782849 7.955804 7.689125 11.42084 11.03801 6.243714 6.034424 9.51368 9.19478 6.286079 6.075369 10.62515 10.26899 5.854635 5.658387 10.41759 10.06839 11.88113 11.48288 7.365033 7.118156 7.949353 7.654032 11.15058 10.73633 6.230377 5.998916 9.911559 9.543341 6.164918 5.935889 10.33382 9.949914 5.890809 5.671963 10.20814 9.828908 11.99338 11.54782 6.997177 6.737229 8.00645 7.802446 11.31994 11.0315 6.154656 5.997835 9.93995 9.68668 5.892642 5.742497 10.29762 6.078046 5.923177 10.46893 10.20218 12.01605 11.70988 7.01829 6.839464 10.56687 7,761782 7,517934 10.70263 10.3664 5.840147 5.65667 9.208082 8.918797 6.237147 6.041198 10.27846 9.955543 5.956356 5.769228 10.74293 10.40543 12.08409 11.70445 6.392737 6.1919 7.92569 7.845946 10.5852 6.089736 6.028464 9.607684 9.511017 6.676338 6.609164 10.42911 10.32418 5.985347 5.925126 10.55041 10.44425 11.73453 11.61646 6.268009 6.204944 10.69279 7.915232 7.730449 11.9313 11.65276 5.876425 9.185183 8.970752 5.94318 5.804435 10.31009 10.0694 5.851457 5.714853 10.10247 9.86662 10.82366 10.57098 6.016891 6.281211 6.134574 7.810843 7.570758 11.288 10.94103 6.017596 5.832631 9.379455 9.091155 5.813062 5.634384 10.53203 10.2083 6.01512 5.830231 10.54013 10.21615 11.82856 11.46498 6.506843 6.30684 7.763226 7.645423 10.66477 10.50294 5.92078 5.830935 9.163236 9.024189 7.084071 6.976574 10.31776 10.1612 6.183475 6.089644 10.40743 10.24951 12.02862 11.84609 6.30214 6.206508 7.984183 8.099132 10.58322 10.73559 6.011418 6.097965 8.61473 8.738757 6.073584 6.161026 10.48208 10.63299 6.09468 6.182426 10.37469 10.52405 11.733 11.90192 6.736035 6.833015 7.915232 7.675764 10.35358 10.04034 5.936075 5.756485 9.642288 9.35057 6.227148 6.038751 10.22941 9.91993 6.113355 5.928401 10.32483 10.01246 11.95571 11.594 5.66966 5.49813 7.609395 7.477277 11.16831 10.9744 6.002887 5.898662 9.422368 9.258773 6.006883 5.902589 10.53263 10.34976 6.175233 6.068016 10.3658 10.18583 11.94025 11.73294 6.169329 6.062214 7.905491 7.859603 10.95275 10.88918 5.931305 5.896877 8.211665 8.164 6.198917 6.162935 10.05648 9.998102 6.398523 6.361383 10.35742 10.2973 12.18174 12.11103 5.874589 5.84049 11.07858 10.73957 5.884093 5.704036 9.446543 9.157473 7.009783 6.795279 10.47156 10.15112 6.104759 7.808354 7.569414 5.91795 10.34868 10.032 11.88297 11.51935 6.151946 5.963693 10.27616 10.01666 6.012877 5.861037 9.145533 8.914585 6.722022 6.552274 10.14708 9.890839 6.522236 6.357533 10.11652 9.861056 7.754172 7.558359 12.05592 11.75148 5.889688 5.740958

6.997662 6.782849 12.11311 11.74126 5.272329 5.11048 7.128667 6.909832 10.72624 10.39697 6.489736 6.290515 7.599174 7.365896 7.721138 7.484116 7.938678 7.694978 5.994269 5.810258 7.365033 7.118156 12.14345 11.7364 5.354592 5.175106 6.68383 6.459787 10.93859 10.57193 6.134841 5.929201 8.229569 7.953713 6.154251 5.535277 5.94796 8.094002 7.82269 5.349734 6.997177 6.737229 12.0282 11.58135 5.036511 4.849403 6.788869 6.53666 10.74674 10.3475 5.927064 5.706872 7.601264 7.318874 8.484196 8.169005 8.2963 7.98809 5.491072 5.287077 6.653515 6.483983 7.01829 6.839464 11.97931 11.67408 4.950327 4.824193 6.311887 7.977732 7.774459 5.213424 5.080586 10.76464 10.49035 6.476919 8.188111 7.979478 5.791511 5.643943 6.392737 6.1919 11.91675 11.54237 5.343056 5.175196 6.524303 6.319332 10.83933 10,4988 5.867954 5.683604 7.134507 6.910366 5,791971 5,610008 8,106605 7.851924 5.824115 5.641142 6.523248 6.457615 12.13655 12.01443 5.274754 5.221682 7.908918 7.829343 6.268009 6.204944 10.88241 10.77291 5 785294 5.727085 8.493095 8.407642 8.015435 7.934788 5,724001 5.666409 6.281211 6.134574 11.53409 11.26483 5.394143 5.268215 6.615631 6.461187 10.85844 10.60494 5.92818 5.789785 7.988456 7.801963 6.736796 6.579523 8.048728 7.860828 5.817774 5.681956 6.30684 12.12425 11.75158 5.397218 5.231322 6.591987 6.389366 10.66316 10.3354 5.43162 6.720945 6.514361 7.417466 7.189472 7.860204 7.618602 5.824115 5.645097 6.506843 5.603868 6.30214 6.206508 11.97399 11.79229 5.080046 5.002959 6.555602 6.456124 10.50045 10.34112 6.251347 6.156486 7.315401 7.204394 5.92332 5.833437 8.130259 8.006887 5,491085 5,407761 6.736035 6.833015 12.2878 12.46471 5.084076 5.157272 6.604002 6.699081 10.50407 10.6553 5.549867 5.629769 7.82646 7.939139 6.433306 6.525927 8.436415 8.557875 5,70685 5,789012 6.344769 6.152814 5.66966 5.49813 11.91859 11.558 5.66796 5.496481 9.902852 9.60325 5.643785 5.473038 6.052838 5.869715 5.914418 5.735483 7.689312 7.456679 5.886553 5,708461 6.169329 6.062214 11.77454 11.57011 5.14229 5.053007 7.058381 6.93583 10.63415 10.44952 5.772978 5.672745 7.451509 7.322132 7.003825 6.882221 7.96144 7.82321 6.051373 5.946306 5.874589 5.84049 11.9039 11.8348 5.373952 5.342759 6.585078 6.546855 10.40369 10.3433 5.873102 5.839012 6.746286 6.707127 7.170464 7.128843 7.919053 7.873087 6.030962 5.995955 6.151946 5.963693 11.85236 11.48967 5.224741 5.064861 6.466849 6.26896 10.63583 10.31036 5.960386 7.966705 7.722919 5.702139 5.52765 8.044974 7.798793 5.970677 5.777995 5,787971 5.889688 5.740958 11.6713 11.37657 5.450881 5.313232 6.844437 6.671598 10.20102 9.943421 5.802458 5.655931 7.690391 7.496189 9.792763 9.545471 7.905776 7.706135 5.766194 5.620583

7.365896 7.721138 7.484116 7.938678 7.694978 5.994269 5.810258 5.638256 5.465174 7.203114 6.981994 8.022822 7.776539 6.297747 7.599174 6.10442 6.806551 6.597604 8.229569 7.953713 6.154251 5.94796 8.094002 7.82269 5.535277 5.349734 5.561069 5.374661 7.404006 7.155823 7.907319 7.642265 5.77876 5.585055 6.721866 6.496548 7.318874 8.169005 7.266405 6.996456 8.085418 7.785042 6.562384 7.601264 8.484196 8.2963 7.98809 5.491072 5.287077 5.543736 5.337784 6.100786 5.87414 6.815585 7.977732 7.774459 5.213424 5.080586 8.188111 7.979478 5.791511 5.643943 5.71615 5.570502 6.713383 6.542326 8.024622 7.820154 6.079452 5.924547 6.788018 6.615059 7.134507 6.910366 5.791971 5.610008 8.106605 7.851924 5.824115 5.641142 5.439167 5.268288 6.991217 6.771578 8.030355 7.77807 6.166171 5.972452 6.247467 6.051194 7.908918 7.829343 8.493095 8.407642 8.015435 7.934788 5.724001 5.666409 5.538396 5.482672 7.02296 6.952299 8.163694 8.081555 6.245029 6.182195 6.307915 6.244448 7.801963 6.736796 6.579523 8.048728 7.860828 5.817774 5.681956 5.457591 5.330182 6.851271 6.691326 8.382694 8.186997 6.359335 6.210874 6.275335 6.128835 7.988456 6.514361 7.417466 7.189472 7.860204 7.618602 5.824115 5.645097 5.468739 5.300644 6.41933 6.222017 8.147564 7.897129 6.068276 5.881753 6.386179 6.189884 6,720945 7.315401 7.204394 5.92332 5.833437 8.006887 7.974297 7.853291 8.130259 5.491085 5.407761 5.757871 5.670498 7.476062 7.362617 5.958159 5.867747 6.165407 6.07185 7.939139 8.147564 7.82646 6.433306 6.525927 8.436415 8.557875 5.70685 5.789012 5.489962 5.569002 6.653165 6.748952 8.264866 5.991294 6.077551 6.445911 6.538714 6 052838 5.869715 5 914418 5.735483 7.689312 7.456679 5.886553 5.708461 5 352526 5.19059 7.338933 7.1169 7.967013 7.725978 6.19631 6.008846 6.548209 6.350099 7.451509 7.322132 7.003825 6.882221 7.96144 7.82321 6.051373 5.946306 5.423996 5.329822 6.66949 6.553691 7.678397 7.545081 6.279595 6.170566 6.864616 6.745429 6.938508 6.898233 7.128843 6.707127 7.170464 7.919053 7.873087 6.030962 5.995955 5.270326 5.239734 7.904961 7.859077 6.258149 6.221824 6.744635 6,705486 6.746286 7.966705 7.722919 5.702139 5.52765 8.044974 7.798793 5.970677 5.787971 5.340476 5.177054 6.988339 6.774492 7.75467 7.517372 6.150333 5.962129 6.754938 6.548233 9.545471 7.905776 7.706135 5.766194 5.620583 5.307031 5.173015 7.690391 7.496189 9.792763 7.78675 7.590115 8.174444 7.968018 6.113611 5.959227 6.632297 6.464815

7.203114	6.981994	8.022822	7.776539	6.297747	6.10442	6.806551	6.597604	7.614426	7.380679	10.14919	9.837629	9.548434	9.255318	8.385936	8.128506	5.060254	4.904915	11.83588	11.47254
7.404006	7.155823	7.907319	7.642265	5.77876	5.585055	6.721866	6.496548	8.195074	7.920374	10.68068	10.32266	9.875945	9.544902	8.918547	8.619596	5.18465	5.01086	12.21739	11.80787
7.266405	6.996456	8.085418	7.785042	6.100786	5.87414	6.815585	6.562384	8.000975	7.703736	10.38663	10.00077	9.58917	9.232929	8.341461	8.031573	5.268587	5.072857	11.99976	11.55396
6.713383	6.542326	8.024622	7.820154	6.079452	5.924547	6.788018	6.615059	7.686594	7.490739	10.45437	10.18799	9.702057	9.454848	8.413009	8.198645	5.229516	5.096268	12.01322	11.70712
6.991217	6.771578	8.030355	7.77807	6.166171	5.972452	6.247467	6.051194	8.023747	7.771669	10.80248	10.4631	10.15078	9.831874	7.866634	7.619492	5.241124	5.076466	12.49986	12.10716
7.02296	6.952299	8.163694	8.081555	6.245029	6.182195	6.307915	6.244448	8.175228	8.092973	10.87461	10.7652	10.13129	10.02936	8.098994	8.017506	5.170131	5.118112	12.62411	12.49709
6.851271	6.691326	8.382694	8.186997	6.359335	6.210874	6.275335	6.128835	8.127301	7.937567	10.20063	9.962496	9.722399	9.495427	8.210819	8.019135	5.2204	5.098528	12.18757	11.90305
6.41933	6.222017	8.147564	7.897129	6.068276	5.881753	6.386179	6.189884	7.850113	7.608821	10.38628	10.06703	9.830471	9.528308	7.848902	7.607647	5.030689	4.876059	12.18377	11.80928
7.476062	7.362617	7.974297	7.853291	5.958159	5.867747	6.165407	6.07185	7.986854	7.865658	10.77129	10.60784	9.963522	9.812331	8.049503	7.927356	5.206596	5.127589	12.23581	12.05014
6.653165	6.748952	8.147564	8.264866	5.991294	6.077551	6.445911	6.538714	8.454972	8.576699	10.78156	10.93678	9.914241	10.05698	7.802621	7.914956	5.380183	5.457642	12.46527	12.64474
7.338933	7.1169	7.967013	7.725978	6.19631	6.008846	6.548209	6.350099	7.730353	7.496478	9.821711	9.524564	9.287432	9.006449	7.164406	6.947654	5.241124	5.082559	12.10927	11.74292
6.66949	6.553691	7.678397	7.545081	6.279595	6.170566	6.864616	6.745429	7.699594	7.56591	10.55791	10.3746	9.859992	9.688798	7.894535	7.757466	5.25022	5.159063	12.24907	12.0364
6.938508	6.898233	7.904961	7.859077	6.258149	6.221824	6.744635	6.705486	7.840281	7.794772	10.3135	10.25363	9.191849	9.138495	6.844486	6.804757	5.230132	5.199774	12.28801	12.21668
6.988339	6.774492	7.75467	7.517372	6.150333	5.962129	6.754938	6.548233	7.473697	7.244997	10.52499	10.20292	9.749135	9.450806	8.048194	7.801914	4.823463	4.675862	12.08611	11.71627
7.78675	7.590115	8.174444	7.968018	6.113611	5.959227	6.632297	6.464815	7.636128	7.443296	10.51717	10.25159	9.859318	9.610345	7.208339	7.02631	5.238801	5.106508	12.38028	12.06764