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For thought; 

T. S. Elliot. Murder in the Cathedral. 

However certain our expectation the moment forseen may be unexpected when it 

arrives. 

A. A. Milne. House at Pooh Corner. 

" Supposing a tree fell down, Pooh, when we were underneath it ?" 

" Supposing it didn't ", said Pooh after careful thought. 
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ABSTRACT 

This research describes an investigation into the application of a statistical method for the 

prediction of methane concentration in longwall coal districts. An important and 
necessary part of the research was the acquiring of representative mine environmental and 
coal production data and a number of shortcomings were identified in this area. The 

monitored data was used to build univariate time series models of general air body 

methane concentration, air velocity, barometric pressure, coal production and methane 
drainage variables of varying timescales according to the Box-Jenkins method of time 
series analysis. The univariate models were used to identify causal relationships between 

methane concentration and its explanatory variables. Coal production was found to be the 
dominant variable in the determination of the quantity of methane emitted and where 
appropriate, multivariate time series models were built in which expressions for methane 
concentration in terms of coal production were obtained. Forecasts of methane 
concentration values were generated from both univariate and multivariate models and a 
comparison was made of their forecasting capabilities. Finally, suggestions were made 
as to the potential use of time series models for application to mining process control. 



CHAPTER ONE 

INTRODUCTION 

Currently the UK coal mining industry is undergoing a period of rapid change due to 
economic pressures. British Coal is striving to produce coal at a competitive price and 
quality to attract the recently privatised electricity generating companies and remain 
competitive in comparison to world coal prices. The realities of this situation are the 
possibility of more mine closures and the need for all mines to increase production and to 
lower costs. One way of increasing production would be to maximize production over a 
set period of time. To determine how this could be achieved involves the consideration 
of a number of factors which not only concern the ventilation engineer, but also need to 
encompass many other branches of mining engineering. 

As coal faces produce larger amounts of coal the ventilation system is having to deal with 
an increased load of pollutants. These include dust, heat and methane. The importance 

of methane as a dangerous underground pollutant cannot be overstated. The recent tragic 
mining disaster at Incirharmani in Turkey in which over 250 people were killed is a 
reminder of the catastrophic potential of excessive methane concentrations 111. It is 

explosive, asphyxiating and can halt coal production. There are essentially two methods 
of dealing with methane emission and these are generally used in conjunction with each 
other. The first is to dilute the gas that appears in the ventilating airstream to acceptable 
levels. The second and that which is now practised widely in the UK is methane 
drainage. The rate of methane emission is determined by the production cycle that 
results in a cyclical pattern of methane emission which to some extent is also influenced 
by changes in barometric pressure. 

To combat the danger from excessive methane emission the underground environment is 

monitored. Underground environmental monitoring has developed steadily over the past 
25 years and all collieries now have sophisticated environmental monitoring systems. 
The primary aim of such systems is ensure that underground conditions are safe and this 
is achieved by the reliable monitoring of environmental parameters at strategic points 
underground. The monitored information is relayed to the colliery control room where it 
is displayed usually as a spot value or as a simple graph showing the recent behaviour of 
a parameter. Beyond these limited applications the monitored environmental data is not 
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utilized. 

Two key points have been mentioned so far. The first is an increased amount of methane 

emission due to higher levels of production and the second is an under-utilization of 

monitored information. This research attempts to link these two factors in order to 

provide a solution to the problem of increased methane emission and its production 
limiting potential by making use of existing environmental data. In short, the 

environmental data is used to predict future levels of methane emission. In this thesis 

research is described which attempts to predict methane emission statistically and whether 
such predictions could be of use in a coal production/methane emission control system to 

maximize coal production. 

The benefits of such research are numerous. Safety cannot fail to be enhanced by an 
accurate knowledge of future methane levels. Any increase in the use of already 
monitored information will prove to management that such systems are indispensable, 

especially if it is shown that the information can be put to good use without the need for 
further expenditure. The mine managements concern is minimum cost coal which 

equates to optimized production. Thus, for a method of methane prediction to be 

effective it should be able to fulfil these criteria, i. e. require small expenditure and be an 

aid to optimize production. 

Past methods of methane prediction have all needed some degree of physical knowledge 

of the prevailing mining conditions, such as the determination of strata gas contents and 
strata stress/permeability relationships. These factors are fundamental to many prediction 
techniques and are expensive and often difficult to determine. In this research a purely 
statistical method for methane prediction is proposed and investigated that differs from 

previous attempts in that it only requires information that is already in existence. 

By analysing the monitored data it is hoped that the research will provide a clearer insight 

into the pattern of methane emission in longwall coal mining and indicate which are the 

most important parameters to consider. The statistical analysis takes the form of time 

series analysis and a time series technique is used to build models for methane emission 
with predictive capability. Previous work into methane prediction has been centred on 
the development of long-term prediction methods which provide the ventilation engineer 
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with an expected rate of methane emission. Such predictions are quite invaluable in 
deciding the ventilation quantities necessary to dilute methane to acceptable levels but 
have limited value from an immediate control viewpoint. The time series models have the 
ability to be used in a control strategy, whereby they can provide a simple warning of 
high levels of methane being encountered or, predict future levels according to changes in 

the rate of production. Thus, it is seen that a statistical technique may be of use in a fully 

automatic computer controlled coal face where the aim is to sustain coal production and 
keep methane concentration to acceptable levels. 

Chapter 2 presents a concise account of the origin and occurrence of methane in mining 
while chapter 3 reviews previous research into methane prediction. The chapter 
highlights the reliance of present methods of methane prediction on a knowledge of 
physical parameters. Chapter 4 provides an introduction to the method of time series 
analysis and outlines the steps that are followed in order to build an appropriate time 
series model. A key feature of the time series approach is the ability to develop a model, 
a priori, which means that no initial knowledge of the data is required for a model to be 
built. Representative time series models can only be built from accurate data, the 
acquisition of which is of paramount importance. This is the subject of chapter 5 which 
details the efforts made to obtain data from Thoresby colliery and the difficulties incurred 

while doing so. 

Chapter 6 describes the development of univariate time series models for methane 
concentration, indicator variables and methane drainage range variables. Models are built 
for different data time intervals and those for methane concentration are used for 
forecasting purposes. The univariate models are then analysed in chapter 7 to investigate 
the effects of the indicator variables on methane concentration, and where appropriate, 
multivariate models for methane concentration are built. Forecasts are also obtained from 
the multivariate models for methane concentration and these are compared to the 
univariate forecasts in chapter 8. Chapter 8 includes a discussion on the relative merits of 
the forecasting models and their suitability to mining process control. 

The primary aim of the research is to investigate if representative time series models can 
be built from underground mine environmental and production data and if such models 
are capable of producing accurate predictions. In chapter 9, the main findings are 
summarized and recommendations are made to direct future research into this topic. 
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CHAPTER TWO 

METHANE: ITS ORIGIN AND OCCURRENCE IN MINE WORKINGS 

2.1 Introduction 

The emission of methane from coal seams and surrounding strata into mine workings has 

long been of concern to the mining engineer. In modern times innovative mining 
techniques have been developed to enable greater quantities of coal to be mined from ever 
increasing depths and these have resulted in higher levels of methane emission. Methane 
is a dangerous gas that contributes a serious threat to safety and the maintaining of high 
levels of production. The development and application of a reliable and accurate method 

of prediction to ensure that these two criteria are met relies on a knowledge of the 

mechanisms of methane generation, storage and release and this chapter is intended as a 
general review of methane: its origin and occurrence in mine workings. 

2.2 The Properties of Methane 

Methane is a colourless, odourless and tasteless gas, with a relative density of 0.554 

relative to air. At 0 °C and 750 mm Hg pressure, methane has a density of 0.716 kg/m3 
[21. As a result of its low density it accumulates in the high places of mine workings 
where there is little or no air movement. Chemically, methane is fairly inert but the 
principal danger of methane in mining is its explosible character. It is explosive at 
concentrations between 5% and 15% in air, and at a concentration in the middle of this 
range (9.6%) the air/methane mixture reaches its maximum explosibility. 

Methane will ignite or burn depending on the composition of air with which it is mixed. 
A low oxygen content or a high inert concentration will make ignition more difficult or 
even impossible. Investigations have shown that methane ceases to ignite at oxygen 
concentrations below 12% at standard temperatures and pressure [3]. Changes in 

atmospheric pressure can also influence the conditions required for flame propagation. 
The limits of flammability of mixtures of methane and air are illustrated by Figure 2.1 
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2.3 The Origin of Methane 

Methane is a by-product of the diagenesis of carbonaceous material, originating mainly 
from vegetation, which eventually results in the formation of coal or oil. The process of 

conversion of vegetation into coal is termed 'coalification'. This process also produces 

water and carbon dioxide. The quantities of migratory products formed due to 

coalification are large. Typically, they can be in the order of 0.75 tonne of water, 600 m3 

of carbon dioxide and 600 m3 methane, per tonne of matured coal at normal temperatures 

and pressures [41. Most of these products, especially water which can contain gases in 

solution, are lost to the surrounding strata. The coalification process is a continuum 

starting from peat, passing through the lignite and brown coal stage into the high, 

medium then low-volatile bituminous region and culminating with anthracite. 

Impossible mixture in air 

ý 
ý 
u 04 
ý O 

20 

15 

10 

5 

......... ...................... ........... «......................... 

Potentially explosive 

... ..... . ..... ............. 

Methane, % 

Figure 2.1 Explosibility Curve for Methane, (after Coward and Jones [31). 

Maturation of the coal-like material continues because of pressure from cover loads and 
geothermal heat. Any fluids within the coal seam are held at a pressure which is very 
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close to the hydrostatic pressure. Although carbon dioxide and methane are generated in 

similar proportions it is unusual to find a coal seam which contains comparable amounts 

of carbon dioxide to methane. Coal has a stronger affinity for carbon dioxide than 

methane but as coal matures, carbon dioxide is converted to methane. 

Coal seam gas is refered to as `firedamp' within the UK coal mining industry. Firedamp 

is a traditional name and is mostly composed of >90% methane with lesser amounts of 
higher hydrocarbons, carbon dioxide, nitrogen, oxygen, hydrogen and helium. Coal 

seams which contain a high percentage of higher hydrocarbons are thought to have 

acquired them from extraneous sources. These gases are associated with petroleum 
derivatives and were probably retained by coal while migrating. 

1000 q 
ý- 50 

2000 
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IM Biochemical methane 
Thermochemical methane 
Higher hydrocarbons 

gases and oil 

Generation of hydrocarbons III 

'- 100 

ý- 150 

Figure 2.2 Relation Between Methane Generation, Depth of Burial and Temperature, 

(after Hedburg [7]). 
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Methane is first generated at shallow depths by biogenic processes. Such processes can 

only occur in reducing environments which are oxygen free and able to support the 

actions of anaerobic bacteria on carbonaceous material. It is estimated that biogenic 

methane accounts for 20% of the worlds gas reserves and lie at depths up to and possibly 
beyond 1000 m [5]. As burial and compaction progresses, a greater proportion of 

methane is generated by non-biogenic thermochemical degradation. At depths in excess 

of 1000 m biogenic processes cease to produce methane and thermogenic degradation 

becomes the principal methane generating mechanism [6l. A diagrammatic representation 

of the relationship between methane generation, depth of burial and temperature is shöwn 

in Figure 2.2. 

2.4 Sources of Methane Emission 

Methane can be found in carbonaceous rocks or rocks which are acting as host to 

migratory methane. Migration of methane between source and reservoir occurs as a result 

of pressure gradients driving fluids through bedding planes, joint networks, intergranular 

pores and fracture planes [8]. 

Methane is most commonly found in sedimentary rocks. Original sources could be 

organic clays, shales, carbonate muds and coal seams. Host rocks can be any rock type 
but they must possess some degree of permeability and porosity which allows gas flow 

and storage. The term `coal measure strata' can be used when referring to typical types of 

strata (including coal seams) associated with coal deposits. 

Methane entering mine workings originates from the working seam or adjacent seams and 

strata. Methane from the seam being worked is called `coal front gas' and can flow 

through the seam to the coal face or can migrate through adjacent strata to the relaxed zone 
behind the moving face. Methane originating from other coal measure strata above and 
below mine workings migrates into the roadways and is termed `strata gas' [9,10], 

Methane which is desorbed from the coal before it reaches the face may be released when 

the coal is cut. Any remaining gas will gradually desorb during transportation but may 

not have completely desorbed by the time the coal leaves the mine [11,12], 
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The main contribution to methane emission is from the surrounding strata and studies 

have indicated that this can exceed 80% of the total gas emission [13]. For a 

comprehensive simulation and prediction of methane emission into mine workings, the 

contributions of coal front gas, strata gas and that from conveyed coal all need to be 

included. 

2.5 The Retention of Methane in Coal 

Methane is present in coal as adsorbed gas on the internal surface of the pores and as free 

gas occupying spaces within the internal structure of coal. The process of methane 

retention is called sorption and when the gas becomes free it is said to be desorbed [12" 

14]. Sorption is sub-divided into two basic categories; 

1. Adsorption a reversible surface effect whereby one substance is 

physically held onto the surface of another, 

2. Absorption the uniform penetration of one substance into the molecular 

structure of another. 

Most of the gas within coal is adsorbed onto the surface of coal pores in a mono- 

molecular layer. Absorption of methane is not considered to represent a significant role in 

the flow of methane from coal [15,161. It has been estimated that at a strata gas pressure 

of 20 bar the quantity of adsorbed methane is ten times greater than methane as a free gas 
in some US coals [17]. The high methane adsorption capacity of coal is due mainly to its 

very large internal surface area which could be as high as -200 m2/g [151. A 

diagrammatic representation showing how methane is retained in coal can be seen in 

Figure 2.3 

A number of models have been proposed to describe the process of adsorption onto the 

surface of coal. Langmuir [181 relates the quantity of gas adsorbed per unit mass of solid 

to the partial vapour pressure of the gas and describes the mono-molecular layer 

adsorption of gases with the following equation: 
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_ 
Vmb'P 

V1+ 
b' P 

where 
V 
Vm 

b' 

P 

volume of gas adsorbed, 
maximum volume of gas adsorbable, 
desorption coefficient, 

gas pressure. 

[2.1] 

Langmuir's theory gives the fraction of the adsorbent surface that is covered by molecules 

of adsorbed gas. If the maximum sorption capacity of the surface is known, then the 

volume of gas that can be adsorbed may be determined. 
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Figure 2.3 Adsorbed and Free Methane Within Coal. 

Langmuir's theory only considers mono-molecular layer adsorption, and this was 
extended to consider multi-layer adsorption by Brunnauer, Emmett and Teller 1191. Keen 
[20], however, states that coal does not show a secondary layer of adsorption under 
normal gas pressures of less than 50 bar, and therefore, Langmuir's equation is 

considered to be sufficiently accurate to apply to the adsorption process. 
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As rank increases so does the adsorptive capacity and methane content of coal [21]. The 

US Bureau of Mines has found that for US coals the ratio of fixed carbon to volatile 
matter correlated well with the gas content of coal 1221. The critical parameter affecting the 

adsorption of methane by coal is the in-situ gas pressure. The greater the gas pressure the 

greater the adsorptive capacity of coal. This relationship is shown in Figure 2.4. 

Moisture content also has an effect on the adsorptive capacity of coal and is mainly related 

to the oxygen content of coal [231. Strong interaction between polar water molecules and 

the surfaces of oxygen complexes hold water in pore spaces in an adsorbed state. Lower 

rank coals contain oxygen which is lost as the coalification process continues either by 

migration or in the form of carbon dioxide or water, resulting in decreased water 

adsorptive capacity. 
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Figure 2.4 Variation of Methane Adsorption Isotherm with Coal Rank at 0 °C, (after 

Kim [22]). 

2.6 The Release and Flow of Methane into Mine Workings 

Methane present within coal and other source rocks will be at equilibrium with the local 

strata pressures. Underground mining activities cause disturbance to strata and upset this 
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equilibrium of adsorbed gas. These activities also cause relaxation of strata and the 

resultant fracturing provides flow paths for the gas to migrate into mine workings. 
Before strata is disturbed, methane is held in its source at high pressure. Mine workings, 
however, contains air at near atmospheric pressure and provide a `pressure sink' into 

which methane flows from the zone of gas emission surrounding the working [24,25]. 

The flow of methane is considered to be a two-step process [15,26]; 

1. diffusion : through the micropore structure of the coal, 

2. flow along interconnected fissures in the coal bed. 

After methane has desorbed it moves as a free gas by diffusion through solid coal until it 

intercepts a fracture in the coal. The diffusion process is governed by concentration 

gradients, and is governed by `Fick's Law' [12]. Methane flow along fissures within 

coal is caused by pressure differences between the in-situ gas pressure and atmospheric 

pressure of mine air. Darcy's Law is used to describe this flow which is considered to be 

laminar and viscous [151. During the gas emission process, both diffusion and laminar 

flow occur simultaneously, although the quantity of methane entering mine workings by 

flow is generally far greater than that by diffusion alone [271. 

The release of any strata gas from source beds and its subsequent migration towards the 
working areas is dependent upon a number of physical, geological and mining factors, 

some of which are [281; 

1. the gas content and the thickness of the coal seam, 
2. the pressure at which the gas is held, 

3. the permeability of the virgin coal seam and the surrounding strata, 
4. the modifications of coal seam and strata permeabilities by stress changes caused 

by mining activities, 
5. the subsidence of the overlying rock, 
6. the method of mining and roof control, 
7. the method of ventilation, 
8. depth of working, 
9. presence of other source beds in the vicinity of the seam worked, 
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10. barometric pressure, 
11. rate of production. 

Permeability is considered to* be of primary importance in the emission of methane into 

mine workings. The release of methane from coal and its subsequent flow through strata 

towards mine workings is controlled mainly by the permeability of the formations 

concerned. Stress disturbances created by mining activities affect the permeability of 

both the seam being worked and that of adjacent strata and therefore, determine the nature 

of methane emission 1291. 

2.7 Conclusion 

Methane is a by-product of the coalification process. It is found in coal and other rocks 

within which it is retained as both adsorbed and free gas, the predominat storage medium 
being through adsorption. Following mining operations, strata disturbances result in 

methane desorption and create breaks and fissures through which methane can flow into 

mine workings. 
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CHAPTER THREE 

A REVIEW OF METHODS FOR METHANE PREDICTION 

3.1 Introduction 

The objective of methane prediction is to forecast future levels of methane emission or 

concentration. The availibility of accurate forecasts to the ventilation engineer can enable 
him to make important decisions concerning the ventilation strategy of the mine. The 

planning of a mine determines its viability, and a mine's efficiency can depend upon a 

good ventilation plan. A primary objective for the ventilation engineer is to ensure that air 

quantities are sufficient to meet statutory requirements for the dilution of methane in air. 
Mining Law in the UK requires that the methane concentration in the general air body 

must be less than 2% for men to work and must not exceed 1.25% where electrical power 
is in use [30]. 

The development of previous methane prediction techniques has required an 

understanding of the occurrence of methane in coal measures strata and mechanisms 
influencing its release and flow into mine workings. However, the emission of methane 
into mine workings is a very complex combination of processes which make accurate 
prediction difficult. 

Methane can be emitted from a number of sources and the gas which appears in the 

ventilating air will normally be a mixture of strata gas, coal-front gas and gas from 

conveyed coal. According to the method of methane drainage employed, the gas captured 

will be a combination of strata gas, and seam gas. Of the total amount of gas released, 

strata gas can account for greater than 80%. while emission from the worked seam is 

normally never above 20% [13]. 

This chapter will discuss the various mathematical approaches that have been previously 
followed to develop a methane prediction technique and illustrate them with examples. It 

is not intended as an exhaustive review of the currently available techniques, but 

concentrates mainly on the approaches which have previously been used to develop them. 

13 



A methane prediction technique can be arrived at by following three main approaches, 

namely; 

1. empirical results in models based on simple mathematical representations 
of observable physical phenomenon, 

2. numerical using numerical solutions of either empirical or theoretical 

relationships to predict methane emission, 

3. statistical : predicts methane emission purely by statistical analysis of 
observed data. 

3.2 Empirical Approaches to Methane Prediction 

Many researchers have undertaken studies into the area of methane prediction using 

empirical methods [12]. Such methods have mainly been developed in Belgium, France, 

FRG, Poland, UK, USA and the USSR. Although the prediction techniques vary quite 

considerably between countries they all consider the same basic parameters in their 

particular prediction method. These are; 

1. the stratigraphy above and below the worked seam, 
2. the desorbable gas content (m3/t) of the worked coal seam and, if possible, of 

adjacent seams and strata, 
3. the zone of gas emission in both the roof and floor strata, 
4. the degree of gas emission from adjacent seams and strata. 

3.2.1 Stratigraphy Above and Below the Worked Seam 

Originally methane was formed by the coalification process together with the coal material 
and possibly contained within the coal seam. As geological time passed methane could 

migrate and be retained in neighbouring strata such as sandstones, shales, mudstones. 
To determine whether methane is present in rocks other than coal, core samples of all the 
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strata in the stratigraphic sequence need to be analysed. 

Rocks with very low permeability and porosity, situated either above or below the 

working coal seam, can influence methane flow to mine workings. For example, a 

competent and elastic sandstone may cause less stress to be transmitted to methane 

sources. This prevents fracturing of strata and hence can affect the release and flow of 

methane. Low permeability rocks may also form a physical barrier within the gas 

emission zone through which methane cannot flow. Conversely, strata that is strong but 

brittle may suddenly fail resulting in a sudden `outburst' of gas emission. 

3.2.2 Desorbable Gas Content (m3It) of Strata in the Mining Zone 

The desorbable gas content is the total quantity of methane present in a coal seam (or 

strata) before it is disturbed by the mining process. An accurate knowledge of the in-situ 

methane content of any potentially gas bearing rock is an important criterium for all of the 

present methods of methane prediction. The measurement of desorbable gas content can 

be achieved by `direct' and `indirect' methods. In the direct method, a coal sample is 

taken from underground and the gas content measured in the laboratory. The indirect 

methods determine the methane content from measurement of the in-situ gas pressure and 

a knowledge of the relevant adsorption isotherm of the coal. 

3.2.2.1 Direct Methods of Determing Desorbable Gas Content 

Direct methods of obtaining the desorbable gas content of coal usually consist of coring a 

sample, enclosing it as quickly as possible in a sealed vessel and then measuring the gas 

release over a period of time. Measurement of gas emission continues until the gas 

emitted from the sample is less than 0.05 cm3/g per day for 5 consecutive days in the US 

Bureau of Mine's method [31). At this point the sample will still contain some gas and 

this is found by crushing the sample at atmospheric pressure and measuring the gas 

release. A correction also has to be made for the gas lost prior to sealing the sample. In 

estimating the lost gas the time taken to transfer the sample from the drill case to the 

sealed container must be accurately known. The quantity of lost gas is then found by 

extrapolating the gas emission results for this time period. 
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The total gas content of the sample Q is obtained using the relationship: 

Q° Qi + Q2 + Q3 m3/t 

where 
Qi = 

Q2 = 
Q3 = 

[3.1] 

gas lost between drilling of the core and transfer of the core from the drill hole to 

the sealed container, 

gas liberated from the core after placing it in the sealed container, 

gas liberated when the coal sample is crushed. 

The MRDE method differs on two points. Firstly, the ash content of the coal is taken into 

account. Secondly, Dunmore (121 observed that large blocks of coal can completely degas 

and that greater attention should be placed on the quantity of gas left after crushing at 

atmospheric pressure. Therefore, after crushing, the coal sample is allowed to desorb 

until it reaches zero methane partial pressure. 

Table 3.1 shows the result of research undertaken by the USBM which compares gas 

content values determined by indirect and direct methods for a number of coal seams. 
The table shows how the value determined by either method can significantly differ and 
hence affect the results when used in a methane prediction technique. Neither method 
was found to produce gas content values which were consistently higher or lower. 

3.2.2.2 Indirect Methods of Determing Desorbable Gas Content 

Indirect methods allow the gas content to be determined from the relationship between 

strata gas pressure and gas content. There are several indirect methods for determining 

the gas content of strata. One of the simplest methods is that suggested by Kim [22]. 

Kim described the gas content of strata with the following relationship: 

Q=( 100 -% moisture -% ash (0.75) 32 100 ý] 
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x[k (0.096h)n - 0.14 ( 100 +1)] 

where 
Q= gas content m3/t, 
h= depth m, 
k, n= constants. 

The value of k varies between 5.7 and 20 and n varies between 0.31 and 0.12. Figure 

3.1 shows the relationship between k, n and the ratio of fixed carbon to the volatile matter 

of coal on an ash-free dry basis. Kim reports that the equation seems to produce adequate 

results for strata at deeper depths (higher pressures) but fails at shallower depths. Kim 

considers that the value of gas content determined from adsorption data is accurate to 

within ±30% of the direct method which is itself subject to possible errors of ±30%. 

Location Coalbed Indirect method 
m3/t (STP) 

Direct method 
m3/t (STP) 

Vesta No. 5 Pittsburgh 3.4 2.6 
Loveridge Pittsburgh 5.2 5.8,5.8 
Howe Hartshorne 10.5 11.1 
Beatrice Pocahontas No. 6 13.5 12.1 
Inland Illinois No. 6 2.7 1.7 
Inland Illinois No. 5 0.5 0.9 
Kepler Pocahontas No. 3 7.8 7.9 
Price Castlegate 6.2,5.0 4.2 

(subseam No. 3) 

Table 3.1 A Comparison of Direct and Indirect Methane Contents for Selected 
Coalbeds in the USA (after Kissel [311). 

Other indirect techniques consist of subjecting the coal sample to a constant pressure and 

measuring the gas uptake until equilibrium is reached. The gas content of the sample is 

considered to be equal to the amount of gas adsorbed. By varying the pressure and 

allowing equilibrium to be reached a complete gas adsorption curve can be obtained. The 

amount of gas adsorbed can be calculated from volumetric or gravimetric methods. 
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The strata pressure of methane has to be measured in-situ e. g. in order to make use of 

adsorption curves derived for a specific coal seam, the actual seam pressure must be 

known. The in-situ measurement of gas pressure presents a number of difficulties which 

are mainly related to the sealing of boreholes in order to obtain correct pressure build-up. 

Provided no leakage occurs, borehole gas pressure increases until an equilibrium pressure 
is reachead which will reflect the actual seam gas pressure. With present day borehole 

technology this is no longer a major problem [321. 

Additionally, the laboratory measurements require the coal sample to have the same 

moisture content and temperature as the seam, which is difficult to obtain [311. 
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Figure 3.1 Value of Adsorption Constants k and n Versus the Ratio of Fixed Carbon to 
Volatile Matter, (after Kim [221). 

3.2.3 Zone of Gas Emission 

Mining operations cause a modification of the stress patterns around a longwall area. 
Within this area, there is a zone in which the mechanical structure of strata is changed. 
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The extent of this affected area is called the `zone of gas emission' and is usually 

considered to be smaller than the area in which the original stresses have changed [33]. 

The gas emission zone is further divided into the roof and floor zone of gas emission. 
The floor zone of gas emission is often much smaller than the roof zone, therefore, the 

contribution to total methane emission is usually higher from the roof zone. Within the 

gas emission zone, the formation of fissures leads to changes in strata permeability which 
increases gas flow to mine workings. Without changes in strata permeability by means of 

stress re-distribution, there would be very little gas emission into mine workings. 

3.2.3.1 Stress-Permeability Profiles 

McPherson [34] combined the theories of rock mechanics with the results of Mordecai's 

work [351 to produce a permeability profile for a longwall coal face (Figure 3.2). He 

suggested that the permeability of a coal seam would decrease in the stressed zone ahead 

of the face despite the fact that microfracturing would occur in this zone. Microfracturing 

would have the effect of causing partial sealing of the interconnected pores within the 

coal. This would cause a further decrease in the already low permeability. A localized 

increase in permeability occurs behind the face where the rock is relaxed. This increase 

of permeability would be of a few orders of magnitude due to the opening of 

microfractures, relaxation of normal cleavage, and planes of weakness between the beds. 

This induced permeability provides paths along which gas can flow. As the cover load is 

re-established, the permeability decreases, but to a greater level than its original value. 

Research work by Durucan [36] produced a stress/permeability profile for a working 
longwall face, shown in Figure 3.3. Immediately in front of the face is the `front 

abutment zone' where both principal stresses are thought to be compressive and 
increasing towards the face. The principal stress csl is considered to reach its maximum 

value some 3 to 5 metres ahead of the face, whilst cs3 decreases to become highly tensile 

resulting in fracturing of the coal seam. Permeability is seen to increase sharply here and 

this zone is referred to as the `crushing zone'. Maximum permeability occurs in the 

`stress relief zone' which is behind the face and reaches into the waste. In this zone, the 

state of stresses are very complex. Permeability begins to decrease as the cover load is 

re-established in the recompaction zone. Here the principal stresses are thought to be 

triaxial in form. 
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Figure 3.4 Different Permeability Zones and Suggested Flow Paths of 
Methane Around a Working Longwall Face (after Durucan [36]). 
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Changes of permeability within the zone lead to areas where gas flow will be highest. 

Figure 3.4 shows the different permeability zones and suggested flow paths of methane 

around a working longwall face which is assumed to be an unmined area [36]. In front of 

the face high abutment pressures give rise to very low strata permeabilities. The outer 
boundaries of this low permeability zone are defined by the parabola on the right hand 

side of the figure. In the crushing zone which lies between the maximum permeability 
line and the inner parabola, permeability starts to increase. Lines of maximum 

permeability will lie at angles of 60 degrees (in the roof) and 45 degrees (in the floor) to 

the working horizon, behind the face. The highest quantities of gas flow would 

originate from areas behind these lines, where permeability is very high. Durucan 

suggests that gas sources at distances more than 100 m above and 50 m below the 

working horizon are little affected by stress disturbances. Therefore, the permeabilities of 

these areas remain at their original value and contribute little to gas flow towards the 

workings. 

3.2.4 Degree of Gas Emission 

The degree of gas emission for a gas source is the percentage of the gas contained within 

the source which can desorb under certain conditions. The determination of the degree of 

gas emission is the main difference between the various empirical methods of methane 

prediction. Table 3.2 shows the factors taken into account by each method when 
determining the degree of gas emission [371. 

3.2.5 MRDE Methane Prediction Method 

The MRDE method of methane prediction, developed in the UK at the Mines Research 

and Development Establishment by a number of researchers, is based on the work done 

by Airey [38] to model the gas flow through broken coal. 
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The prediction of gas emission is calculated from information concerning the following 

factors [37,391; 

1. the thickness of the gas source relative to the thickness of the extracted coal seam; 

this converts the calculated emission quantity into cubic metres of gas per tonne 

of extracted coal from the mined seam, 
2. the initial gas content of the source, 
3. the degree of gas emission, or the percentage of the original gas content which is 

expected to be emitted into the mine working from the source, 
4. the rate of coal production at the face. 

It is in the calculation of the degree of gas emission whichmakes the MRDE prediction 

method different from those devised by others. In the MRDE method the degree of gas 

emission is a time-dependent function. The gas emission function used by MRDE was 

developed from Airey's theory of gas emission from broken coal. Airey considered 

disturbed coal seams to be composed of fragments of various size. His research resulted 

in an empirical equation which was established by laboratory measurements. This 

equation can be used to determine the release of gas with respect to time and partical size, 

represented by the following: 

V(t) = A[1-exp(-(ý)I`)] [3.3] 

where 
V(t) = gas emitted up to time t after the coal starts to degas, the pressure at the coal 

surface being reduced to atmospheric at t=0, 
A= initial gas content of the coal, 
to =a time constant of the coal sample for 63% of the gas to desorb, 

n=a factor describing the type of cracking within the lump (about 0.333 for 

bituminous coal). 
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This equation (3.3) is used in the MRDE method to determine the degree of gas emission. 
The emission function is evaluated for three main sources; 

1. gas sources in the adjacent strata, 
2. emission from the worked seam, 
3. emission from broken coal on the conveyor. 

No Factor Method 

Stuffken Schulz Flugge Winter Gunther Lidin Barbara MRDE 

NL GFR GFR GFR F USSR PL UK 

1 Gas content of adjacent 

seams 
2 Gas content of other strata 

3 Thickness of adjacent 

strata 
4 Distance of adjacent seams 
5 Face length 

(determines emission zone) 
6 Intensity of firedamp 

drainage 

7 Dip of worked seam * 

8 Worked seam thickness 
9 Caving or stowing 
10 Depth of working 
11 Age of district 

12 Advance rate of face 

13 Emission from conveyor 

coal 

* Factors used indirectly by Stuffken to calculate gas content values. 

Table 3.2 Factors Taken into Account by the Various Prediction Methods (after 

Dunmore [371). 
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For emission from sources in adjacent strata account is taken of the depth of working, the 

age of the district and the distance of the source relative to the working horizon. Sources 

at a height of 200 m and a depth of 100 in from the worked seam are believed not to 

contribute to the gas flow. The emission function is time dependent in that it varies 

according to the time which has passed since the face advanced. Emission from the 

worked seam is wholly dependent on the rate of advance and decreases with increasing 

face advance rate. Dunmore suggests that 50% of the gas content of the worked seam is 

emitted at a weekly advance rate of 17 m. His curve for the degree of gas emission from 

the worked seam is shown in Figure 3.5. 
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Figure 3.5 The MRDE Curve for the Degree of Gas Emission from the Worked Seam, 
(after Dunmore [40]). 

Coal in clearance also contributes to the total methane emission and the quantity emitted is 

related to a number of factors. The most important is the length of time spent in the intake 

air and to obtain the best prediction results the emission curve should be determined for 

the prevailing situation. The gas emission curve for a coal of typical size is shown in 

Figure 3.6. 
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Figure 3.6 An Example Curve for the Degassing from a Bituminous Coal During 
Conveyor Clearance, (after Dunmore [40]). 

To calculate the air required to dilute the emitted methane the program takes account of 

peak methane levels. MRDE have adopted the CERCHAR concept of a coefficient of 
irregularity 1411. This coefficient is obtained by fording the maximum and mean methane 

concentrations for a large number of observations. The coefficient of irregularity is then 
defined as the daily maximum value which is exceeded on 5% of the daily maximum 
values, divided by the mean of all the mean daily values over the observation period. 
Coefficient values are found to vary from site to site but typical values are 2.0 for the 

return end of the face airstream and 1.5 for the outbye end of a return [42]. The necessary 
airflow is found by multiplying the prediction amount by the appropriate coefficient value 
and deciding on the upper limit of methane concentration in the airstream. 

The MRDE prediction method has been steadily developed into a powerful computer 

program which is capable of calculating methane emission levels resulting from variable 
face advance rates. This represents the total volume of methane flowing into the working 
district from all identified sources, and is expressed in m3/t of mined coal at the face. 

Allowance can be made for gas captured by methane drainage where this is practised. 
The prediction results take the form of a set of tables and graphs. 
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Changes in the rate of face advance can be accommodated but the method assumes that 

the new rate will be sustained over a five day period. Today, the concept of a five day 

working week is historical since in many mines the economic climate has changed 

conventional working patterns. 

The MRDE methane prediction program can be viewed as an aid to planning the airflow 

required to deal with the predicted level of methane emission. It details the sources of 

methane and the level of methane emission that can be expected at a specific rate of 

advance. It is not, however, capable of predictions for rapid and continual changes in 

face advance rate. 

3.3 Numerical Approaches to Methane Prediction 

Numerical methods of methane prediction are based on the principles of gas flow in 

porous permeable media. This flow is described by Darcy's Law and prediction 

techniques have mainly arisen from the numerical solutions by computers of gas flow 

equations mainly derived from Darcy's law [43,44,45]. 

The first researchers to consider numerical prediction techniques were Owili-Eger and 
Ramani 1441 from the Pennsylvania State University. They developed a model which 
assumed steady-state methane flow with small variations in gas temperature. Further 

research by others found that this was only true for shallow depths and in deep mine 
situations larger temperature variations were found to occur which affects gas flow rates. 
Keen 1201 and O'Shaughnessy 1441 sought to apply numerical techniques to deep British 
longwall mining by developing transient solutions for methane flow. Their research 
made use of equlibrium sorption models which are based on the assumption that adsorbed 

gas is in a continuous state of equilibrium with the free gas pressure. Examples of 

equilibrium sorption based models are given in Figure 3.7. 

The latest research into numerical methods of methane prediction has centred on the 
development of non-equilibrium sorption models. Such models take account of the 
kinetics of the diffusion/desorption process which are believed to be of importance in 

fractured coal seams. A full discussion on various modelling techniques and their 
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assumptions can be found in King and Ertekin's comprehensive survey of mathematical 
models related to methane production from coal seams [451. It is important to note, 
however, that although a great deal of effort has been expendend, very few mathematical 
models have actually been sufficently developed to be able to predict methane emission 
into mine workings. 
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Figure 3.7 Relationships of Equilibrium Sorption Models (after King and Ertekin [45]). 

The required input to computer programmes in mathematical prediction include 

parameters to define the model size, the initial and time dependent boundary conditions, 

properties of the coal seams and strata such as directional permeabilities and porosities 
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and the properties of the flowing gas such as viscosity [46]. The programmes terminate 
when the flow equation has been solved and the output gives the predicted gas pressure 
distribution. 

Permeability is considered to be the most crucial factor in the solution of the gas flow 

equations. Therefore, recent studies have included elements of stress analysis and stress- 

permeability analysis in the simulation of methane flow using numerical techniques [47]. 

3.3.1 An Example of a Numerical Approach to Methane Prediction 

Research carried out in the Department of Mining Engineering at the University of 
Nottingham resulted in the development of a time-dependent gas flow equation for 

variable anisotropic permeability derived from Darcy's law. This equation makes the 
following assumptions and is shown as equation 3.4 [46]; 

1. Flow is laminar, 

2. Flow is single-phase, 
3. Slip effects may be ignored, 
4. Isothermal flow conditions exist, 
5. Methane obeys the perfect gas law (shows no abnormal compressibility), 
6. Darcy's law is valid, 
7. The effect of adsorption may be ignored. 

aP 1={a[ klý] + k2ý]+ k3ý ät 2µp aXl aXl aX2 aX2 aX3 aX3 

where 
µ 
P 
ki 

= viscosity of the flowing gas, 
= porosity of the medium, 
= directional permeability of the medium, 

p= gas pressure. 

[3.4] 
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Finite element techniques are used to obtain approximate solutions to this equation to give 
time-dependent gas pressures. Ediz 1471 gives a general time-dependent gas flow equation 
for anisotropic media with variable permeability derived from Darcy's Law and finds 

approximate solutions to the equation by using the finite element method. After obtaining 
the gas pressure distribution throughout the finite element mesh, he introduced a mass 
flow equation to calculate the methane flow rate into a roadway or waste area. The model 
also takes account of methane drainage and whether the boreholes are inclined or vertical. 
He achieved this by modifying and devising additions to a finite element program, 

originally written for the solution of heat flux calculations by PAFEC Ltd. An example of 
the predicted results are listed in Table 3.3. These were calculated for a typical gas 
boundary pressure of 10x105 N/rn2. The figures show how the application of methane 
drainage using inclined boreholes to a retreating face, changes the distribution of methane 

emission. The drainage boreholes were assumed to have been drilled from the return 
airway into the floor and roof strata. 

Mining Type Retreat Lon all Advance Lon all 
Methane Flow into Roadway 26.58 195.95 
from Roof Strata, 1/s 20.04* 137.62* 
Methane Flow into Roadway 19.22 119.56 
from Floor Strata, I/s 16.15* 83.65* 
Methane Flow into Goaf 324.38 

_ from Roof Strata, l/s 139.92* 
Methane Flow into Goaf 110.31 

- from Floor Strata, I/s 59.72* 
Total Return End Methane 480.49 315.51 
Flow, 1/s 235.83* 221.27* 
* with Drainage 

Table 3.3 Results of Methane Flow Prediction for Retreat and Advance Models 
(Boundary Gas Pressure was Taken as 10x105 N/m2), (after Ediz [471). 

Ediz suggests that his numerical gas flow simulation model is extremely versatile in the 

analysis of strata gas flow around a moving longwall coal face, although the model does 

not take account of methane emission from the worked seam. Ediz's program is able to 

allow for rapid variations in permeability and gas pressures with time. Ediz reports that 
the accuracy of the model depends upon the field data supplied, e. g. boundary gas 
pressures and strata permeabilities. Ediz concludes that there has been very little research 
carried out on the accurate determination of boundary gas pressures, strata permeabilities 
and on the post-failure stress permeabilities of strata measures. Further investigations by 
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Ediz included sensitivity tests to investigate the effects on methane flow rate of varying 
borehole length, pressure and spacing. 

Numerical techniques for methane prediction have developed substantially over the past 
fifteen years. However, the usefulness of such numerical predictions to a ventilation 

engineer are as yet slight, at their current state of development due to the availability and 
the accuracy of the necessary input data. It is thought that there is some link between the 

rate of advance and initial values of boundary gas pressures but further research is needed 
before numerical techniques can accurately predict methane emission for varying face 

advance rates [481. 

3.4 Statistical Approaches to Methane Prediction 

Statistical approaches to methane prediction involve the use of various statistical 

techniques. These range from simple descriptive statistics such as histograms of data to 

analytical statistics such as regression analysis and others. Descriptive statistics are used 
to help format data into a useful form and usually play an important role in the 
development of empirical models. To some extent then, an empirical approach is 

analogous with a statistical one. However, an empirical model is a simple mathematical 
description of observable physical phenomenon which can be solved analytically or 
numerically. The use of analytical statistics to achieve a prediction model can be regarded 
as a separate approach because the final model, while still essentially empirical, will be 

purely due to statistical relationships deduced from the observed data. Such techniques 
allow inferences to be made concerning the mechanisms which generated the data. 

Unlike empirical and numerical approaches, statistical ones make no direct attempt to 

model the physical processes influencing methane emission. This statement, however, is 

explained by noting a fundamental concept in the application of statistics to any task. 
Unless expert knowledge is available to explain and account for the results of statistical 

analysis, they cannot be interpreted and therefore, nothing is achieved. In other words, 
the observations obtained by statistical analysis are of limited value if there is no 

understanding, however limited, of the physical processes which generated the data. 
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Before analysis can be carried out great importance is placed on the acquisition of relevant 
data. If the data is not a true reflection of what has occurred there will be a danger of 

wrong interpretation. Fortunately, this has become easier over the past decade due to the 

extensive use of reliable and accurate electronic environmental monitoring instruments in 

use at collieries. 

A number of analytical statistical techniques are available for use. These range from 

regression analysis which can be used in increasing levels of complexity to various forms 

of time series analysis. This thesis will concentrate on the application of time series 

analysis to methane prediction. 

3.4.1 A Medium-Term Prediction Model 

Statistical analysis can be defined as a scientific approach towards an understanding of 
information presenting itself in numerical form. Kaffanke [491 followed this approach to 

predict medium-term levels of methane emission. He uses ̀medium-term' to describe a 
prediction period between one day to one month in length. 

Kaffanke's method of making medium-term predictions of the methane content in the 

return air can be characterized as a point forecast using discrete multiple regression. The 
influencing variables chosen to describe the behaviour of methane emission were; 

1. daily output in tonnes per day, 
2. accumulated output in tonnes, 
3. previous day's methane flow in m3/s, 
4. methane flow on previous Sunday, in m3/s, 
5. desorbable gas content in m3/t, 
6. number of preceding rest days in each case (only Saturdays, Sundays and 

Mondays). 

The coal face studied produced coal Monday to Friday and no production took place at the 

weekend. Because of this, Kaffanke's data on methane concentration in the return air 
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showed distinct cyclical behaviour. This behaviour is shown in Figure 3.8, .. The 

methane concentration is seen to increase throughout the working week and fall during 

the work-free weekend. 

II 
Sun Mon The Wed Thu Fri Sat Sun 

Figure 3.8 Typical Weekly Rhythm of the Methane Content in the Return Air Flow 

of a Working (hourly average values), (modified, after Kaffanke [491). 

The predictions were obtained by performing regression analysis in two steps, 

1. the base data available right up to the current margin were subjected to regression 
analysis, 

2. the structural equations thus obtained formed the basis for the next forecast. 

The seven structural equations (one for each day of the week) obtained by Kaffanke were 

used to forecast values for methane flow and concentration. He was able to use the same 
structural equations throughout the modelling and forecasting period i. e. the structural 

equation for a Monday was used to forecast emission for all Mondays. This was because 

the pattern of production was constant for each particular day over the observation and 
forecasting period. The structural equations determined are shown in Table 3.4. 
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Day Structural equation MCF 

Mon MMp = 1.324831 Msu + 0.049330 0.804 

Tue M=1.22.291 Msu + 0.000049E mmorru - 0.104899 0.918 

Wed Mwu 0.000029E mMonwE + 0.640939 Msu + 0.000057 mWE - 0.116830 0.828 

Thu MTH = 1.059347 MwE + 0.006453 0.844 

Fri MFR = 0.000034E mMoc + 0.808406 Msu + 0.000001 mp - 0.205325 0.744 

Sat MSA = 0.732386 MFR + 0.000007 msA + 0.025258 0.868 

Sun Msu = 0.318048 MFR + 0.249384 MSA + 0.026625 qsu - 0.222538 0.855 

M= Methane flow in m3/s 
q= Gas content in m3/t 

m= Output in t/d 
MCF = Multiple correlation factor 

E mMonwE = accumulated output in tonnes from Monday to Wednesday 

Table 3.4 Structural Equations for Methane Flow, (after Kaffanke [491). 

The subsequent forecasts for methane concentration over the observation period are 

shown in Figure 3.9 . The backcasts from week 1 to week 14 coincide quite well with 

the actual methane concentrations recorded over this time period. This means that the 

structural equations determined over the historical part of the data generate forecasts 

which validate the accuracy of the statistical model. Further proof of the model accuracy 
is illustrated by the forecasts from week 14 onwards. The data recorded during this 

period was not used to obtain the structural equations yet the forecasts for this period 

continue to demonstrate the models accuracy. 

By his research into the use of discrete linear multiple regression, Kaffanke has shown 
that methane emission could be predicted to acceptable accuracy. His research also 

revealed some interesting information. For example, his data demonstrated a cyclical 

pattern of methane emission and he showed how some influencing variables were more 
important than others. In his conclusion, he recommends further studies in the use of 

regression and other statistical techniques, such as time series analysis, linear filter theory 

and spectral analysis to methane prediction. 
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Figure 3.9 Graph of Methane Concentration Prediction, (modified, after Kaffanke 
[49]). 

3.5 Conclusion 

This chapter has reviewed the different approaches available to predict methane emission. 
By far, most effort has been channelled into the development of empirical techniques. 
Most empirical techniques, notably the MRDE method, have a mathematical basis but 

generally the techniques are of limited use outside of the specific geographical area which 
they were designed for. Although empirical methods are relatively simple they lack the 
theoretical base required for accurate prediction. Another major drawback of empirical 
techniques is the amount of information they use in order to obtain predictions, or rather 
their requirement of a good knowledge of the physical variables that are used in the 

predictive method. For example, all of the methods require strata gas content values and 
these are determined by drilling and laboratory analysis. 

Numerical prediction techniques are becoming increasingly sophisticated but none are yet 
capable of determining methane emission in terms of face advance rate. Although this 
will undoubtedly be overcome in the future, it will not be before extensive research has 
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been undertaken on how to accurately determine the input parameters necessary to solve 
Darcy's gas flow equation. At the present time the accuracy of the predictions is 

dependent upon these factors and not upon the complexity of the mathematical model. 

The application of analytical statistics to methane prediction is still in its infancy. 

Kaffanke's research demonstrated that methane forecasts could be made with sufficient 

accuracy. A statistical prediction method is of course empirical in nature and so only 

suited to adequately perform in the conditions for which it was built. A major benefit that 

a statistcal prediction method can offer is the ability to make accurate predictions without a 

thorough knowledge of physical conditions that limit the accuracy of numerical and 

empirical methods. For this reason this thesis carries out further investigations into the 

applicability of statistical methods, in the form of time series analysis, to predict methane 

emission. 

The next chapter, chapter 4, provides an introduction to univariate time series analysis 

and is the basis of a method capable of predicting methane emission purely from a 
knowledge of monitored data. 
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CHAPTER FOUR 

AN INTRODUCTION TO UNIVARIATE TIME SERIES ANALYSIS 

4.1 Introduction 

This chapter provides an introduction to the Box-Jenkins statistical method of time series 

analysis. In particular it is concerned with the principles that allow inference to be drawn 

from time series data and how, according to procedures advocated by Box and Jenkins, 

time series ARIMA models are built. The univariate ARIMA time series models can be 

used to obtain forecasts and also provide a basis for the building of multivariate models, 

which are topics of later chapters. 

The primary objective of time series analysis is to develop a model which can be used to 

forecast future values of a variable or variables. However, this can be viewed as a 

narrow objective, especially when a great deal of knowledge can be obtained by 

performing the analysis and correctly interpreting results. Forecasting is widely used 

today by business managers and economists and is increasingly being used by scientists 

and engineers in technical applications. There are a number of techniques which can be 

used to build a mathematical model of a time series and by far the most popular is the 

Box-Jenkins approach. Since its conception in the 1960's it has steadily been developed 

into a sophisticated method, capable of producing models to many different forms of time 

series. As a consequence of its popularity and ability to produce accurate forecasts the 
basis of the Box-Jenkins approach has been incorporated into many statistical computer 

packages which can be used to build a time series model. 

4.2 Definition of a Time Series 

A time series is a time-ordered sequence of observations of a variable. The time interval 

between each observation must always be constant though it does not need to be the same 
interval in which the observations were taken. This means that a time series can be 

transformed into a suitable form for analysis so long as an appropriate time interval 

between observations is chosen. Examples of time series are: daily maximum air 
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temperature as a function of time in days, catalyst concentration in a chemical process as a 
function of hours, petrol consumption as a function of distance driven, ice cream sales as 

a function of temperature. A list of possible time series would be boundless. 

Examples of some time series are shown in Figure 4.1. These series were chosen to 
demonstrate some important characteristics that time series can possess. These are 
discussed in the following sections. 

4.2.1 Continuous or Discrete Time Series 

A time series can be continuous or discrete in form, depending on how the observed data 

is presented. A continuous series (examples B and E) is a curve which is made up of an 

observed value of a variable, recorded at every moment in time. A discrete series (which 

are the most usual, examples A, C and D) consists of discrete observations of a variable 

at predetermined time points. The time intervals of discrete series may be yearly, 

monthly, weekly, etc. A time series that is considered to be continuous can also be a 
discrete series of points taken at certain time intervals. Whether a time series is 

continuous or discrete is of no real consequence, it is the length of the time interval which 
is important. 

The selection of the time interval will depend on the behaviour of the variable being 

monitored. For example, if the variable is fluctuating rapidly in its continuous series and 

the monitoring instrument is unable to respond to these fluctuations then the recorded 

series will be essentially discrete in nature. Another type of discrete series is an 

accumulated series which arises when the variable being studied cannot be measured at 

every moment in time. Instead, the value of the variable is accumulated over equal 
intervals of time, such as total daily rainfall levels, shown by series A in Figure 4.1. 

4.2.2 Stationary and Non-Stationary Time Series 

A time series is referred to as being stationary or non-stationary depending on whether it 

is in statistical equilibrium, that is, its statistical properties do not evolve with time. A 
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stationary series has a constant mean and constant variance and is said to possess 

properties which are independent of any time difference within the period of observation. 
Series E in Figure 4.1 is stationary in that it appears to fluctuate about a level mean with 

similar amplitude of irregularity and thus constant variance. Series D has a changing 

amplitude of irregularity but the fluctuations are occurring about a fixed mean. Such a 

series is said to be stationary in the mean but non-stationary in the variance. Series A, B 

and C exhibit trend varying amplitude of irregularity and are non-stationary. Usually, it 

is necessary to decide whether the series is stationary or not and if not steps are taken to 

achieve statistical equilibrium. 

4.2.3 Seasonal Time Series 

A time series is said to be seasonal if it is known that it contains a component due to a 

regular cycle with a fixed period. If a series is suspected of possessing seasonality it is 

important that the seasonal cycle is determined from factors which are external to the data 

rather than by inspection of the data itself. For example, series C of monthly sun tan oil 

sales shows two annual peaks. The largest corresponds to sales during the summer 

months when people are sunbathing and the smaller to winter sales when such products 

are used by skiers. Thus, the series has two seasonal components which have a yearly 

cycle. 

4.3 The Choice of the Box-Jenkins Approach to Time Series Analysis 

and Forecasting 

There are a number of methods which can be used to analyse time series and the final 

choice of which method to use build a model is dependent on its possible application. In 

this thesis it is intended to develop models which can predict methane emission and have 

the possibility of application to a control system. The Box-Jenkins method requires a 

working knowledge of the procedure involved in identifying the correct model to fit the 

time series data and subsequently refining the model until it fits the data satisfactorily. 
This knowledge, while not difficult, requires patience and perseverance to acquire and is 

perhaps the greatest disadvantage in using the Box-Jenkins time series methodology. 
However, compared to other methods of analysing time series this difficulty is more than 

offset by the expectation of accurate forecasts. As well as the ability to model single or 
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univariate time series, Box-Jenkins methodology can also model causal relationships 

whereby the behaviour of a dependent variable is related to a number of independent 

variables. This is of importance when it becomes necessary to consider what dynamic 

relationships exist between methane emission and its influencing variables. Econometric 

methods and multiple regression are also capable of modelling causal relationships but it 

is generally acknowledged that they are more difficult to understand than univariate or 

multivariate Box-Jenkins models. Box-Jenkins models also have the advantage of 

application to a control system in which it is desired to maintain a variable as close as 

possible to a target value and once such a model is in operation it is possible to monitor its 

performance and determine if adjustments are necessary. 

For a more detailed discussion on the main factors which govern the choice of a time 

series modelling and forecasting method refer to O'Donovan (501. His findings are 

summarized in Table 4.1. 

4.4 Models for Time Series Analysis and Forecasting 

The models which are used within the Box-Jenkins approach are decided upon by an 

examination of the behaviour of the time series. In building a model, a mathematical 

analysis is carried out to determine whether the values of the series are in some way 

connected and whether this connection can be described mathematically. 

As an example, consider the first 10 observations of a time series of methane 

concentration consisting of 430 observations and displayed in Figure 4.2. The ultimate 

aim is to have a time series model that adequately represents the historical data that it is 

based on and can be used to forecast future values of the series. To forecast the 11th 

value requires some inference to be drawn from the information contained in the first 10 

observations. It seems that by an inspection of the plotted series the 11th value is 

influenced by the previous ones and, most importantly, the series does not appear to be 

totally random. A guess at a value for the 11th observation might be 0.78. This seems 

reasonable and on the basis of the previous observations it is highly unlikely to be say 
0.70 or 0.90. In this case an intuitive guess gives a plausible answer which is close to 

the actual value of 0.79. 
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Figure 4.2 Plot of Methane Concentration Data 

So far, no mathematics have been used, but to achieve a better forecast it is beneficial to 

make use of some techniques which enable a model to be built that can mathematically 
describe the historical series. The evidence that is needed is an indication of the 

correlation or memory between the observations. In predicting a value for the 11th value 
by inspection more attention was paid to the behaviour of the last few observations. The 

reason for this is that more significance is attached to these observations than the first 

few. However, the remainder of the series is not forgotten as these observations can 
indicate important information such as trend or seasonal patterns. 

It is easy to express the 11th or nth observation as a function of the previous ones, the 
difficulty lies in finding the form of the function. Mathematically, the function is 

considered to consist of two components. The first component is thought of as being due 

to the process which generated the series and which is evident from the preceding 
observations. The second is a random element due to inexplicable causes in the process. 
The best model would be one that had a small random component. Thus, the 11th 

observation can be expressed mathematically as: 
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Z11 = f( Z1, Z2, ..., Z10 )+ Ell 

where 
zl l= 11th observation, or the forecast, 
f( z1, z2, ..., z10) =a function of the first ten observations, 

ell =a random variable. 

[4.1] 

The function, f and the random element, et are termed a stochastic model representing zt 

which in general terms is: 

Zf = f( zt-19 zt_2, ... ) + Et [4.2] 

The model expressed in equation 4.2 is the basis of a univariate stochastic model Zt of the 

observed time series zt. 

The values of the observed time series, z1, z2, ..., ZN are considered to be generated by 

some underlying process, which is currently unknown. If the nature of the time series 
does not allow a mathematical function to be used to exactly predict future values of the 

series then the underlying process is said to be stochastic. The word stochastic means 

random and indicates that the mechanism generating the values of the time series involves 

probability. In fact, the observed time series is considered to be a realization of a 

stochastic process. Since the generating mechanism involves probability, the observed 

time series z1, z2, ..., zN is regarded as a realization of the values of N random variables 
Z1, Z2, ..., ZN where z1 is only one of a possible number of values for the variable Z1 

but is the value which happened to be observed at that point in time. The future values of 

the stochastic process are regarded as random variables and identifying the underlying 

process involves identifying the probability distribution of these random variables. 

Each of the random variables Zt has its own probability distribution with its own 
probability density function f(z) depending on whether the variable being forecasted is 
discrete or continuous. 
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Each random variable Z1 has a mean, 

µt = E(Zi) [4.3] 

and a variance, 

ßý = ß2 (Zc) [4.4] 

However, if the stochastic process is stationary then µ and at are equal to the mean µ and 
variance aZ of the stochastic process respectively. 

4.4.1 The Sample Autocorrelation Function 

In studying two variables it is often suspected that there is an association between them. 
One indication of the association between the two variables A and B (or the extent to 
which they tend to vary together) is the correlation coefficient p(AB) defined as: 

p(AB) = 
E(AB) - E(A) E(B) 

a(A) a(B) 

where 
E(AB) = mean of the random variable AB, the product of A and B, 

E(A) and E(B) = mean of A and B, 

ß(A) and a(B) = standard deviation of A and B. 

[4.5] 

It can be shown that the correlation coefficient has a number of properties that lend 
themselves to the identification of an appropriate time series model. Firstly, it is 
dimensionless, that is, its value does not depend on the scales of measurement of A and 
B, also: 
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-1<_p(AB)<_1 

Recall that the observed time series values z1, z2, ..., ZN are regarded as realizations of 
the random variables Z1, Z2, ..., ZN. The distinctive feature of stochastic processes and 

what enables a time series model to be built, is that Z1, Z2, 
..., ZN are dependent rather 

than independent variables. The correlation coefficient is used to identify the form of this 
dependence. Consider the correlation coefficient p(AB) between the the variables ZL and 
Zt+k, which are separated by k intervals of time: 

P(ZU Zc+k) = 
E(ZtZt+k) - E(Zc) E(Zc+k) 

a(Zi) ß(Zt+k) 
[4.61 

In general, the correlation coefficient p(Zt, Zt+k) depends on time t as well as on the 

separation of k intervals of time. If, however, the correlation coefficient between values 

of the stochastic process at two time points depends on only the interval between the time 

points and not on the time itself, then the stochastic process is said to be stationary. The 

concept of a stationary model is most important as statistical equilibrium needs to be 

achieved before selection of a suitable model can take place. For a stationary process 

with constant mean and variance, the correlation coefficient between Zt and Zt+k is called 

the theoretical autocorrelation at lag k, given by: 

E(ZtZt+k) - µ2 
Pk - Q2 z 

[4.7] 

since E(Z) = E(Zt+k) =µ and a(2L) = a(Zt+k) = ßZ, and 

Po = 1 

since it can be shown that E(ZL) - µ2 = ßZ. 
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The lag k is the difference between a time t in the time series and a time t+k in the same or 
a different series. 

The theoretical autocorrelation has the same properties as the correlation coefficient. 
Thus, a time series in which the current value depends on past values is called an 
autocorrelated series. This dependence in the series between two points separated by k 

time units (the lag) can be described by the autocorrelation coefficient at lag k. It 

measures the extent to which a value of the series above or below the mean at time t tends 

to be followed by a value of the series above or below the mean k time units later. 

A plot of p against the lag k for k=1,2, ... is called the theoretical autocorrelation 
function of the time series. It describes how the correlation in the series dies out as the 
lag increases and can be used to decide if the series is stationary and, if so, to select an 

appropriate model from a class of stationary stochastic processes. 

In practice, it is only possible to obtain estimates of the autocorrelations. A number of 

estimates of the autocorrelation function has been suggested by statisticians 1511 and it 

has been concluded that the most satisfactory estimate of the kth lag theoretical 

autocorrelation rk is: 

rk 
Ck 
CO 

where 

N-k 

.d iZC - 70 (Zt+k - z), k=0,1,2,..., K Ck _1 
c=1 

is the estimate of the autocovariance yk, given by, 

Yk - Pk ßi 
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and 7 is the mean of the time series. Thus the sample autocorrelation function is given by: 

rk [4.9] 

N-k 
(Zt - Z) // lZt+k " Z) 

Lý! 

N 

1 (zt - z)2 

t=1 

This is known as the sample autocorrelation function, which when dealing with observed 
data can be referred to as simply the autocorrelation function or ACF. In practice, a 

minimum of 50 observations are needed to obtain a useful estimate of the autocorrelation 
function. 

4.4.2 The Sample Partial Autocorrelation Function 

The sample partial autocorrelation function is another tool used in the selection of an 

appropriate time series model. The autocorrelation function can reveal whether the 

original series is stationary and possesses characteristics of theoretical time series models 
but in itself is unable to identify these models. The theoretical partial autocorrelation 
function can be thought of as the autocorrelation between any two variables Zt and Zt+k, 

separated by a lag of k time units, with the effects of intervening variables Zt+1, Zt+2, """, 
Zt+k-1 eliminated. It may be shown that p11 = pl. The theoretical partial autocorrelation 
function is a listing or plot of pkk for lags k=1,2, ... K. 

The sample partial autocorrelation function rkk is an estimate of pkk calculated from 

observed time series values and are derived from the sample autocorrelations rk by means 

of the following equations: 

rii = ri 

2 r2-rl 
r22 1 -r2 1 
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with more complicated equations for r33, rte, ... r�n. 

The sample partial autocorrelation function is referred to as the partial autocorrelation 
function or PACF when dealing with observed data. 

As was the case for the sample autocorrelation, the sample partial autocorrelations are 

only estimates of the corresponding theoretical correlations. However, both the sample 

autocorrelation and partial autocorrelation functions tend to follow the same pattern as 

their theoretical counterparts, so they can be used to help identify an appropriate model 
for the underlying stochastic process. 

4.5 The General Linear Process 

A stochastic process can be represented as the output from a linear filter whose input is 

purely random [52]. Recall that the observed time series in which successive values are 
dependent, is regarded as a realization of a stochastic process, which is generated from a 

series of independent random shocks. These shocks are assumed to be normally and 
independently distributed with mean zero and variance ß2. 

yr (B) 

17-01-IFF white noise stochastic process 
1ii 

g Filter 

Figure 4.3 The Linear Filter. 

The linear filter causes the independent random shocks et to be transformed into the 

stochastic process Zt. Thus the stochastic process can be written as follows: 
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2t = Et + NlEt-1 + VF-t-2 + ... 

00 
et + 

I'VEc 
j 

j=1 

[4.10] 

where 
Zi = 7-t - µ, is the deviation of the process from some arbitrary origin, or from its 

mean, if the process is stationary and, 
yr =a weight coefficient. 

This is known as the general linear process and allows zt to be represented as a weighted 
sum of past and present values of a purely random process et. It is conventional to refer 

to the purely random process as white noise. 

4.6 The White-Noise Model 

The simplest possible model for a stationary time series is one in which the variables Z 

are independent. This means that the series is completely random and the variables are 
independently and normally distributed with mean µ and variance a2,, expressed as: 

Z, t =00+ F-t [4.11] 

where 
IN(O, aE) and 

Zt - IN(µ, Z 

Thus, the sequence consists of a series of random shocks Et with mean zero and constant 

variance and is known as a white-noise model. The parameter 6o is a constant term 

which is equal to the process mean µ when the variables Zt are independent and ßZ (the 

variance of the variables Z) equals a. 
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The main characteristic property of a white-noise model is that the variables are 
completely random and this is reflected in the behaviour of the theoretical autocorrelations 

and partial autocorrelations which are zero for all lags. It is, however, unusual for a 

stochastic realization of an observed time series to possess sample autocorrelations and 

partial autocorrelations which are completely zero. The importance of the white-noise 

model becomes apparent when it is realized that if an observed series displays these 

characteristics it will not be possible to accurately forecast future values because the 

relationships between the variables are seen to be random. In such cases where this 

occurs and it was believed that some connection would be apparent then it may be 

possible to transform the format (i. e. the time interval between observations) of the 

observed series to obtain a degree of dependence. 

The most important use of the white-noise model lies in its application to the remaining 

residual element after fitting an appropriate model to the observed time series. The 

principal objective in building a time series model is to fit a model to the series so that 

what is left unexplained by the model is a random series, or white-noise. If this is so, 

then the best possible forecasts will be achieved by the fitted model. 

To illustrate the limited use of an observed time series which is found to be a realization 

of a white- noise process, consider the forecast of the value Zt+i" Firstly, the white-noise 
model contains two unknown parameters 80 and ar2. Because of their relationship with 

the process mean and process variance of the variables it can be shown that: 

80 =9 

and 

aE _ 62 z 

Estimates of 60 and ßE are z and respectively, and are the mean and variance of the 

observed time series. 
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In a random series the forecast of the variable Zt+1 (written as zt(1)) is simply the ordinary 
expected values of Zt+l, which is the mean µ= E(Zt+i). Therefore: 

ZtO) = E(Zt+1) [4.12] 

The estimate, z of the process mean t, is used as a point forecast of all future values of 

the time series which means that useful forecasts cannot be obtained from an observed 

time series which is identified as being random. 

4.7 The Class of AutoRegressive Integrated Moving Average 
(ARIMA) Models 

The models applied in this thesis to mine environmental data can be classified under the 

general heading of AutoRegressive Integrated Moving Average models, commonly 

referred to as ARIMA models. Such models are capable of describing both stationary and 

non-stationary time series. ARIMA models can be broken down into three different 

components. These are the autoregressive component (AR), the moving average 

component (MA), and the integrated component (I) which is introduced to induce a 

stationary condition. The general form of a non-seasonal ARIMA model of order, p, d, 

q, is given by: 

(1 - O1B - 02B2 - ... - 
OpBp ) Vd Zt =(1-01B-0 L4.131 

where 
Op = 

B= 
Qd = 

Zt = 
6q = 

ýý _ 

autoregressive parameters, 
backward shift operator, i. e. Bi Zt = ZL + 
degree of differencing, d, to induce stationarity, 

observation at time t, 

moving average parameters, 
random element, - IN(O, aÄ). 

53 



If a time series is stationary then it is possible to approximate it by either an AR(p), 
MA(q) or ARMA(p, q) model. Where a time series is found to be non-stationary it is 

necessary to make it stationary and subsequent models are referred to as ARI, IMA or 
ARIMA. In addition, ARIMA models can describe seasonal time series and special 
provision is made for series which exhibit seasonal behaviour. The necessary changes to 
deal with seasonal series are explained later in the chapter. 

In this thesis the notation ARIMA (p, d, q) is used for models that contain only a non- 
seasonal component. The notation ARIMA ([a, b, c], d, [x, y, z]) is used when AR and MA 

parameters are fitfed to specific lags. For example, the ARIMA ([1,3], 1,2) consists of 
AR parameters fitted to lags 1 and 3, one degree of differencing and MA parameters fitted 

to lags 1 and 2 as normal. 

4.8 The Autoregressive Model 

An autoregressive model is one where the current value Zt of the series is related to the 

variable Zt_ , where p=1,2,3, ..., p, written in backshift operator form as: 

7, t = 1-OiB-02B2-... -OpBP [4.14] 

In an autoregressive process each value in a series is a linear function of the preceding 
value or values. The parameter 4 is used to ascribe a weight to the importance of the ZL_p 

variable and is an indication of how strongly each value depends on the preceding value. 
The process defined by this equation is called an autoregressive process of order p, or 
AR(p). 

If p=1, then the model takes the form of an AR(1) or ARIMA(1,0,0). The AR(1) model 
is the simplest progression from the white noise model (ARIMA { 0,0,0 }) where the 
variable Zt is regarded as a linear function of the preceding variable Zt_1 and a random 
element et, given in difference form by: 
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Zt = 00 + o1Zt-1 + Et [4.15] 

where 

-1<ý>1 

This means that if the autoregressive model is to represent a stationary autoregressive time 
l. series then the p roots of _p must all be greater than 11 

The characteristic pattern of an autoregressive process depends upon the roots and order p 

of the autoregressive term and the magnitude of the parameters $p. For example, in an 
AR(1) process the theoretical autocorrelations and partial autocorrelations are given by: 

Pk = ýpZt-p (k ? 1) 

and 

Pii = 71 

Pkk =0 (k> 1) 

If 41 is positive the autocorrelations decline smoothly towards zero while if 01 is negative 

the autocorrelations decline towards zero in an oscillatory manner, i. e. pk will be positive 
for even lags and negative for odd lags. The partial autocorrelations for an AR(l) process 

cut off after the first lag and in general, are zero for all lags greater than p. Examples of 

theoretical autocorrelation and partial autocorrelation functions for autoregressive 

processes up to order p=2 are shown in Figure 4.4. 
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Figure 4.4 Theoretical Correlation Functions of Non-Seasonal Autoregressive 
Processes. 
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4.9 The Moving-Average Model 

The moving average model is a method of representing a time series by a weighted 
average of its terms. A moving average process is one which is considered to be a 
moving average of successive terms of a white noise process, given in general form by: 

Zt - 00 + elEt-1 + egEt-q + Et t4.171 

The parameter Bq is known as the moving average coefficient of order q. In a moving 

average process, each value is determined by the average of the current disturbance and 

one or more disturbances up to order q. The simplest case of a moving average model is 

one where q=1 

7. t = 00 + el£al + £t [4.181 

In this model the variable Zt is a constant plus a moving average of the current random 
element Ct and the previous random element Et-l. This is called a moving average model 

of the first order or MA(1). 

From equation 4.18 it follows that. t = E(Z)) = 60 which means that the parameter e0 is 

the mean of the process. Also: 

Q2 z _(1+ 9i ) ßk [4.19] 

From this equation it can be deduced that the moving average coefficient does not need to 

satisfy any conditions for stationarity and all moving average processes are stationary. 
However, it is necessary for the parameters in a moving average model to satisfy what is 

known as the invertibility condition if it is to produce efficient forecasts. The condition 
for invertibility is: 
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-1<0<1 

and means that it is necessary for the q roots of an MA model to lie outside the unit circle 
[53]. 

As with AR models, the characteristic pattern of an MA process depends on the roots and 
order of the MA term and the magnitude of the parameters 9q. For example in an MA(1) 

process the theoretical autocorrelations are given by: 

Al = -el [4.20] 
ri 1+ 02 

This means that the autocorrelation function cuts off after the first lag. In general the 

autocorrelation function of a MA(q) model cuts off after lag q. 

The partial autocorrelation function of an MA process gradually die down to zero, either 
in an oscillatory manner or as wholly positive or negative lags. Examples of theoretical 

autocorrelation and partial autocorrelation functions for moving average processes up to 

order q=2 are shown in Figure 4.5. 

4.10 Mixed Processes 

Commonly, when fitting a model to time series data it is found that the series is best 

represented by a combination of AR and MA terms. In such cases, the characteristics of 
the autocorrelation and partial autocorrelation functions exhibit lag structures which are 

common to both AR and MA processes but are more difficult to identify. 
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Figure 4.5 Theoretical Correlation Functions of Non-Seasonal Moving Average 
Processes. 
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4.11 Differencing a Time Series to Induce Stationarity 

The concept of a time series exhibiting stationarity is very important. A time series needs 
to be stationary if it is to be modelled by the general class of ARMA models. 
Differencing is necessary because a time series often reflects the cumulative effect of 
some process. The stochastic process is not responsible for the observed level of the 
series but does cause the changes in the level. Thus, the observed time series may have 

to be differenced before a model can be fitted to it. 

4.12 Box-Jenkins Univariate Methodology 

There are many reasons for wanting to build a model of a real-life system. One of them 

might be to gain an understanding of what mechanisms are influencing the outputs of the 

system. However, an important objective is usually to use the time series model to 
forecast future values of a variable, either for general information or use in a control 
system. 

The objectives will lead to the formulation of certain hypotheses about the time series data 

and to the need to collect data that can be used to verify them. For example, it is believed 

that changes in barometric pressure temporarily affects the rate of methane emission, but 
is this relationship evident from a time series model of the two variables, barometric 

pressure and methane emission? Thought must be given on what type of data is required 
and in what form it should be collected. To build a model from the data requires a model 
building methodology that is flexible. This allows the model to adapt to account for a 
hypothesis which does not explain the data and so be replaced by ones which do. The 

time series model is examined at every stage of its development to determine whether it 
fulfils the mathematics of the analysis. When a suitable model has been found, it is 
further tested to see how well it fulfils the original objectives and whether it gives accurate 
forecasts or requires further modification. All of the processes involved during the 
building of a time series model are designed to follow a logical path to produce the best 

possible model of the time series and these are illustrated by a flowchart in Figure 4.6. 
Some guide-lines for the building of models for forecasting, planning and control are [54, 
55], 
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1. Understand the problem and the purpose of building the model. 
2. Understand the decision-taking system which the model will serve. 
3. Work out from the start how the model is to be implemented. 

4. Structure the quantitative model by building a conceptual model of the 

appropriate environmental system, displaying the mechanisms involved. 

5. Select the data carefully, understand its limitations and plot it in a variety of 
ways. 

6. Aim for simple models, involving few variables first and then elaborate later, if 

necessary. 
7. Proceed iteratively via, 

- Identification (Specification), 

- Estimation (Fitting), 

- Checking (Criticism). 

8. Aim for parsimony in parameterization - avoid over parameterization. 
9. Understand what the model has to say about the data. 

10. Conduct experiments with the model (simulations) to understand its limitations. 

11. Present the results of the model in simple terms to those that have to use it. 

There are three stages in the building of a univariate time series model as advocated by 

Box and Jenkins, namely, identification, estimation and diagnostic checking and these are 
discussed in the following sections. The approach to building a Box-Jenkins time series 
model has been developed into a systematic and logical strategy. 

4.13 Identification 

At the identification stage the objective is to select an appropriate model which is thought 

to be representative of the observed time series. At this stage it is possible to identify a 

number of potential time series models which appear to explain the movements of the time 

series data and they can all be taken on to the estimation stage of model development. 

The actual identification of a potential model involves the use of the sample correlations 
(both auto and partial) of the observed time series. After these are generated they are 
compared to the theoretical correlations of various models and a model is selected on the 
basis of resemblance between a model's theoretical correlations and the time series sample 
correlations. Recall from 4.4 that the observed time series is assumed to be a realization 
of some underlying stochastic process and from 4.4.1 and 4.4.2 that only the sample 
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correlations of the observed time series can be calculated. This means that the sample 
auto and partial correlations will not behave exactly as their theoretical counterparts and 
allowances have to be made for this when identifying a possible model from the 
correlations. It is important to emphasize here that there is often difficulty in identifying a 
correct model and only the general behaviour of the correlations can be considered rather 
than a close scrutiny of detail. Fortunately, if a model is incorrectly chosen at this stage it 

will quickly become evident in later stages and can be discarded. 

Time Series Data 

4 Stage 1 

IDENTIFICATION 

(of a model structure) 

Stage 2 

ESTIMATION 

(of model parameters) 

Stage 3 
DIAGNOSTIC 
CHECKING 

(is model satisfactory? ) 

Yes 

acceptable model 
for forecasting 

Figure 4.6 The Box-Jenkins Model Building Methodology. 
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If it is undecided whether the data is stationary an inspection of the correlations of the 

original time series data will usually indicate if this condition is true. A series that is non- 
stationary displays sample autocorrelations that do not die out quickly but continue for 

very high lags and fade away slowly. Differences of the data are taken until the sample 
autocorrelations display stationary characteristics. The characteristic properties of six 
stationary ARIMA models are shown in Table 4.2 

Model Theoretical ACF Theoretical PACF 
White Noise all autocorrelations zero all partial autocorrelations zero 
AR(1) tails off to zero cuts off after lag 1 
AR(2) tails off to zero cuts off after lag 2 
MA(1) cuts off after lag 1 tails off to zero 
MA(2) cuts off after lag 2 tails off to zero 
ARMA(1,1) tails off to zero tails off to zero 

Table 4.2 Characteristic Properties of Six ARIMA Models. 

As an example consider the sample autocorrelations and partial autocorrelations of the 

methane concentration data, the first ten data points of which are illustrated by Figure 4.2. 

They are shown in Figure 4.7 and are those for a series of 430 data points with one 
degree of differencing. The plot of the autocorrelations for the raw series (not shown) 
indicated that the series was non-stationary and needed differencing. After differencing, 

and from an inspection of the plot of autocorrelations and partial autocorrelations the 

series is evidently stationary and appears to be neither a pure autoregressive or moving 
average process. A tentative identification might be that the series is best represented by 

an ARIMA (1,1,1) model. Indeed, for this example it is not easy to identify what the 

correct model to represent the series may be and in cases such as this it is best to consider 
all of the six common ARIMA models and eliminate inappropriate ones later. 

In order to decide whether the correlations are significant in the identification of an 
appropriate model probability theory is used. A suitable guide-line for deciding on 
correlation significance is whether the value is greater than two standard deviations. This 
is known as the Quernouille (561 statistic and means that one standard deviation can be 

approximated by the reciprocal of the square root of the total number of observations and 
is equal to 1/IN. Thus, any auto or partial correlation that is greater than 2/'N is 

regarded as significant and should be taken into account when identifying a suitable 
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Autocorrelations: C4-Methane Concentration Data 
Transformations: difference (1) 

Auto- Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1 . 209 . 048 
2 . 106 . 048 
3 -. 072 . 048 
4 -. 102 . 048 
5 . 078 . 048 

,i* t* 
i , ºt . *i . 

.i*: 

18.970 . 000 
23.818 . 000 
26.075 . 000 
30.623 . 000 
33.297 . 000 
33.542 . 000 
37.469 . 000 
37.470 . 000 
38.023 

. 000 
43.113 

. 000 
49.020 . 000 
49.342 

. 000 
49.533 

. 000 
49.878 

. 000 
50.014 . 000 
51.292 . 000 
51.302 

. 000 
51.853 . 000 
52.515 . 000 
52.529 

. 000 

6 . 024 . 048 *. 
7 . 095 . 048 . 1** 
8 -. 001 . 048 *. 
9 -. 035 . 048 

10 -. 107 . 048 
11 -. 115 . 047 
12 -. 027 . 047 

. *i . *t i. 
t* i. 
. *i . 13 . 021 . 047 

14 . 028 . 047 . 1*. 
15 -. 017 . 047 *. 
16 -. 053 . 047 . *I .' 
17 -. 005 . 047 *. 
18 . 035 . 047 . 1*. 
19 -. 038 . 047 . *I . 
20 -. 006 . 047 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 431 Computable first lags after differencing: 429 

Partial Autocorrelations: C4-Methane Concentration Data 
Transformations: difference (1) 

Pr-Aut- Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

1 . 209 . 048 
2 . 065 . 048 
3 -. 112 . 048 
4 -. 078 . 048 
5 . 140 . 048 
6 -. 008 . 048 
7 . 054 . 048 
8 -. 026 . 048 
9 -. 025 . 048 

10 -. 097 . 048 
11 -. 062 . 048 
12 . 008 . 048 
13 . 028 . 048 
14 -. 015 . 048 
15 -. 025 . 048 
16 -. 025 . 048 
17 . 04L . 048 
18 . 044 . 048 
19 -. 084 . 048 

. i* ** 
i*: **i 

. ** i 
. * . I*: 

: *i . * .. ** i . 
. *i . * .. 
. i*. 

* .. 
. *i . * 
. 1*. 
. 1*. 
**I 

. 20 -. 009 . 048 +. 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 431 Computable first lags after differencing: 429 

Figure 4.7 Autocorrelations and Partial autocorrelations of Differenced Methane 
Concentration Data. 
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model. However, this statistic is only a guide-line and although a correlation value below 

this is said to be small, there is a possibility that it could be significant. 

The identification of an appropriate ARIMA process depends on the interpretation of the 
patterns shown by the sample autocorrelations and partial autocorrelations. AR(p) 

processes are identified mainly from the behaviour of the partial autocorrelations. These 

usually remain significant for the first p lags after which there is a cut-off point and the 
rest of the partial autocorrelations are below the 2/'IN significance level. The 

autocorrelations of AR(q) processes do not lend themselves to model identification and 
display a pattern of a geometric decay curve. MA(q) processes are characterized by 

autocorrelations of a stationary series that are greater than two standard deviations up to 

and including lag q, after which there should be a cut-off point when the remaining 
sample autocorrelations should be small. The partial autocorrelations in an MA(q) 

process tend to decay beyond q with increasing k. Mixed processes, however, are 
considerably more difficult to identify. The sample autocorrelations generally have large 

values, with no definite pattern up to and including lag q after which they die out, similar 
to the autocorrelations of an AR(p). The sample partial autocorrelations tend to die out as 
the lag increases. Thus, mixed processes are characterized by auto and partial 
correlations that eventually die-out, instead of displaying an abrupt cut-off point. 

4.14 Estimation 

Once a tentative model has been identified, the next step in the Box-Jenkins model 
building process is the estimation of the model parameters. This procedure is fully 

automatic and is carried out by computer. To estimate the value of the coefficients for an 
AR(p) process, ordinary least squares regression methods are employed. For models that 
possess MA(q) terms, ordinary least squares estimation is inadequate and non-linear least 

squares is required. For example, consider an ARMA(1,1) process written as: 

(1- a1B) Zt = (1 + b1B) Et [4.21] 

The coefficients al and b1 are the sample estimates of the autoregressive term 01 and the 
moving average term 01 respectively. Non-linear least squares performs iterative 
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calculations to determine the maximum-likelihood values of the model coefficients, or 
more specifically, aims to minimize the sum of the squares of the residuals fit, estimated 
by Eej, the sum of the squares of the observed residuals. Some computer programmes 
require starting values for al and bl to be supplied before iterative calculations can begin. 
In such cases it is necessary to check that these preliminary estimates satisfy the 
stationarity and invertibility conditions required by the identified model. The 

minimization procedure continues over a range of values for al and bl until no significant 
reduction in Eei occurs. Initial values for the model coefficients are found by 

considering the autocorrelations of the observed time series. For example, for an AR(1) 

model it can be shown that: 

Pi = 4i 

and thus an initial estimate of the parameter 4 is simply the sample autocorrelation rl. 

4.15 Diagnostic Checking 

Diagnosing the suitability of the estimated model parameters is the final and most lengthy 

step in the Box-Jenkins ARIMA model building procedure. Ideally, one of the models 
tentatively identified in the first step will prove to be the right choice and so will be a 
satisfactory representation of the observed data. Others that are subsequently shown to 
be unsatisfactory are usually discarded but the nature of their inadequacies may suggest 
how and if they can be improved by respecification. 

The whole model building philosophy aims to produce a parsimonious model. A 

parsimonious model is one that represents the data adequately with the minimum number 
of specified parameters. Thus, if it is found that more than one model fits the data 

sufficiently well the model with the fewest parameters is the one that should be chosen for 

use. Often, models that do not adhere to this rule possess badly estimated parameters and 
do not give rise to useful forecasts. 
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There are a number of checks that can be used to determine whether there is any evidence 
of inadequacy in a specified model. The first check normally performed is to see if the 
parameter estimates satisfy stationarity and invertibility requirements. If these have not 
been met, the tentative model is unacceptable and may mean that the observed time series 
has not been correctly differenced. Many checks are peculiar to the particular statistical 
computer package that is used to analyse the data. In this thesis the computer package 
SPSS-X Trends TM was used to perform the ARIMA analysis and provides for a 
comprehensive selection of diagnostic checks. After parameter estimation it reports 
several statistics describing how well the model fits the data [571. Among the quality-of- 
fit statistics are two termed `AIC' and 'SBC', known as the Aikaike Information Criterion 

and the Schwartz Bayesian Criterion, respectively. Of the models choosen to represent 
the series, these statistics can be used to choose between them and generally the model 
containing parameters with the lowest AIC or SBC is the best. Another important test on 
the significance of the model parameters is the t-test. If the t-statistic is greater than two, 
the parameter can be regarded as being significantly different from zero and should be 
included in the model. Parameters with a t-statistic of less than one are not thought of as 
significant and are removed from the model. When the t-statistic has a value between one 
and two it is difficult to decide if the parameter should be dropped or not but it is usually 
wise to experiment on the effect of removing the parameter. If a model is respecified on 
the basis of a parameters t-statistic it is necessary to repeat the estimation and diagnosis 

steps for the new specification. The t-test also provides a good indication of whether a 
model has been over-specified. 

The checks described so far are essential preliminary tests on the estimated model 
parameters. Since the primary objective of time series analysis is to fit the observed data 

with a stochastic representation and result in a residual series that is random, i. e. with 
zero mean and constant variance, the main checks on model adequacy are applied to the 
residuals. By examining a plot of the residual series it is often seen that their behaviour 

appears to be random but further checks have to be made for proof. The autocorrelations 
and partial autocorrelations of the residuals should demonstrate white noise behavioural 

characteristics i. e. they should have correlations that are zero or nearly zero. If any of the 
correlation values exceed the 2/4N significance limits it is probable that the model has 
been under-specified and needs additional parameters. To help assess the significance of 
the correlations use is made of the Box-Ljung statistic [581. The Box-Ljung statistic is 
also known as the modified Box-Pierce statistic, given by: 
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k 
r2 Q=N (N + 2) --ý- 

k_1N 

where 
Q= Box-Ljung statistic 
N= number of residuals 
r= sample autocorrelation at lag k. 

[4.22) 

SPSS-X TrendsTM computes the Box-Ljung statistic and its significance at each lag. If Q 
is large it is because the sample autocorrelations are large and indicates that the model is 
inadequate. The statistic shows that if the correct ARIMA (p, d, q) model has been 
identified and estimated, Q has a chi-square distribution with k-p-q degrees of freedom. 
If the value of Q exceeds a critical value determined from chi-squared tables, the residuals 
are not white noise and the model needs to be respecified. The significance of Q can also 
be assessed by its associated probability value. 

Another test of model adequacy is to overfit the initial identification. It is possible that by 

adding further parameters the fit of the original model can be improved, even though 
diagnostic checks did not detect anything untoward. Overfitting must be done with care 
otherwise redundant over-parameterization can easily result. Additional autoregressive 
and moving average parameters are introduced individually to determine their effect and 
are not added simultaneously. After each new parameter has been introduced, checks are 
made to assess whether the augmented model fits the data better than the original one. 

A further test of model adequacy involves splitting the observed time series into two parts 
before the model building procedure begins. The greater portion of the series is used as 
normal to identify an appropriate model. Once an adequate model is available it is used to 
generate forecasts for the remaining `out-of sample' portion of the series. The forecasts 

are compared with the actual values of the remaining series and the mean square 
forecasting errors are calculated. This form of diagnostic testing is known as out-of 
sample testing, and is a means of testing the forecasting performance of the estimated 
model. The model with the lowest mean square forecasting error is the best one. As a 
final check, the model parameters are again estimated by fitting them to the complete 
series and performing the various in-sample checks. If all is well, the final model will be 
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the best that can be achieved and it is this updated model which is used for forecasting 

purposes. 

4.16 Seasonal Models 

The methods described so far have dealt with the building of time series models that do 

not have any seasonal component within them. A time series contains a seasonal 
component if it exhibits a regular pattern that repeats itself, after a certain number of basic 

time intervals. The time between each interval is known as the period, s. In the example 
of possible time series at the beginning of the chapter a seasonal example was the sales of 
sun-tan lotion on a monthly basis. This series contained a seasonal component of period 
12 in which the sales in a particular month are related to the sales in that month from year 
to year. The presence of a seasonal component in time series from engineering is often 
much more difficult to determine but the basic method of model building is similar to that 

used for non-seasonal series. 

The general form of seasonal ARIMA models is closely linked to that given in section 4.7 
for non-seasonal ARIMA models. In the most general case the seasonal effect operates 
alongside the non-seasonal component and so the general model contains both non- 
seasonal and seasonal parameters. The most common type of seasonal model that is 

advocated by Box and Jenkins is the multiplicative seasonal ARIMA model given by: 

(1 - OpBp ) (1 - OpBp ) Vd VD Zt = (1 - egBq) (1 - OQBQ) Et [4.23] 

where 
(1 - 4pBP) = non-seasonal AR component of order p, 
(1 - OpB1) = seasonal AR component of order P, 

(1 - OgBq) = non-seasonal MA component of order q, 
(1 - OQBQ) = seasonal MA component of order Q, 
Vd = degree of non-seasonal differencing, d, to induce stationarity, 
VD = degree of seasonal differencing, d, to induce stationarity, 
Zc = 

Et 
observation at time t, 
random element, - IN(O, al). 
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In this thesis the notation ARIMA (p, d, q)(P, D, Q)s is used for models that contain a 
seasonal component. 

The identification of a multiplicative model is essentially the same as that used for non- 
seasonal models. The identication of the seasonal P, D, Q parameter orders can either be 
done before or after the correct order of non-seasonal p, d, q parameters are determined. 
Assuming that the non-seasonal component of the series has been found, the auto and 
partial autocorrelations of the residual series will show evidence of seasonal behaviour if 
it is present. Table 4.3 shows the characteristic properties of four stationary seasonal 
model components of period 12. 

Once both the seasonal and non-seasonal parameters have been found it is necessary to 
re-estimate them simultaneously so that their correct values can be found. In some 
instances both non-seasonal and seasonal parameters can be found to be redundant once 
this is done. Model diagnostic checking is identical to the methods described in section 
4.15 

Model Theoretical ACF Theoretical PACF 
SAR(I) autocorrelations at lags 12,24, partial autocorrelations at lags 

36 tail off towards zero 12,24,36 cut off after lag 12 
SAR(2) autocorrelations at lags 12,24, partial autocorrelations at lags 

36 tail off towards zero 12,24,36 cut off after lag 24 
SMA(l) autocorrelations at lags 12,24, partial autocorrelations at lags 

36 cut off after lag 12 12,24,36 tail off towards zero SMA(2) autocorrelations at lags 12,24, partial autocorrelations at lags 
36 cut off after lag 24 12,24,36 tail off towards zero 

Table 4.3 Characteristic Properties of Four Seasonal ARIMA Model Components. 

4.17 Conclusion 

This chapter has examined the principles behind the Box-Jenkins approach to time series 
analysis and has discussed the three stages involved in building a univariate seasonal or 
non-seasonal time series model. The basic methodology allows models to be constructed 
without any knowledge of the series itself and such a model is built from a consideration 
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of past values of itself only. This is beneficial in that a lack of practical knowledge does 

not prevent a time series from being modelled and any knowledge of the physical system 
from which the time series data originated can subsequently be used to improve the 
model. 

Practically, the application of any theoretical method is usually much more difficult than 
the ideal presented in theory and the application of this method to mining environmental 
and production data proves this to be true. However, before any analysis can be 

presented the relevant data needs to be acquired and this is the subject of the next chapter. 
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CHAPTER FIVE 

UNDERGROUND ENVIRONMENTAL MONITORING 

5.1 Introduction 

The success of time series analysis depends on the acquisition of accurate and 

representative data. This chapter details the environmental parameters that were 
monitored to enable time series models to be built and the instruments that were used to 

monitor them. All of the data was collected from Thoresby Colliery and the development 

of a data acquisition procedure at this colliery is also described. 

5.2 Thoresby Colliery 

Thoresby Colliery was first developed in 1925 by the Bolsover Colliery Company. 

Production began in the Top Hard seam in 1928 and was the only mined seam for more 
than 40 years. In 1972 production started in the High Hazles seam and in 1977 from the 
Parkgate seam from which all of Thoresby's coal is now obtained. Thoresby is 

Nottinghamshire's and British Coal's most profitable colliery and set a new record for 

coal production with an output of 2,459,557 tonnes in the financial year 1989/90. 

Thoresby is regarded as a long-life pit with estimated reserves to enable production to 

continue into the 21st Century. The mine aims to have three coal faces capable of 

producing coal. Two of these are usually retreat whilst the third is either advance or of 
the Z-type. 

'Moresby does not suffer from any adverse environmental conditions other than the need 
to limit methane emission to ensure optimum production and also the Parkgate seam is 

considered to be a spontaneous combustion risk. Ventilation is provided by one of two 
identical 3.6 m diameter single stage axial flow fans with auto-variable pitch blades driven 

at 990 rpm by 2.5 MW motors. These were installed in 1986/87 to increase the airflow to 
the Parkgate seam. 

72 



4d% 14 
109 111 115 117 

119 

-4 

v Tý 4 

i (M) -7f 

112 114 116 118 

0 Environmental Monitoring Station 

Figure 5.1 119's District Layout. 

73 

120 

ý- Return air 
a--- Intake air 

i A 



5.3 119's Retreating Face 

119's district was a retreating face with a design face run of 1600 m. It commenced coal 
production in October 1990 and halted in September 1991 after completing its full design 

run. The length of the face was 255 m and the extraction height was 1.96 m. 119's was 
conceived as a heavy duty face and production was consistently in the region of 40,000 

tonnes per week. Figure 5.1 shows its layout. The district layout is conventional U-type 

retreat with a split intake and a split return. The ventilation was antitropal in nature 

whereby the coal was conveyed in the intake gate road. Ventilation quantities were 
between 20 - 24 m3/s. As a means of methane control an arrangement called the 
'Sherwood Curtain' was used at the return end of the face. 119's did not suffer from 

excessive temperatures and was considered to be a medium spontaneous and frictional 
ignition risk. 

5.3.1 The Sherwood Curtain 

The Sherwood Curtain was developed in the Nottinghamshire Area of British Coal and is 

used by many Nottinghamshire collieries. It can be used on both advance and retreat 
faces. On an advancing face the ventilating air tends to keep the waste methane away 
from the men and machinery on the face side and so electrical equipment is kept free of 
gas. On a retreat face this does not happen and the methane fringe moves forward out of 
the waste at the return end of the face towards the supply gate machinery. This can cause 
problems if the methane concentration exceeds 1.25%. The Sherwood Curtain was 
developed (at Sherwood Colliery) to overcome this problem and is an arrangement where 
the gas fringe is held into the waste by directing the airflow at the face end (591. The ideal 

arrangement of the Sherwood Curtain is illustrated by Figure 5.2. 
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Sherwood Curtain 

Figure 5.2 The Sherwood Curtain. 

4 Direction of airflow 

The ideal arrangement is where the pressure lock provided by the two sets of doors is 

intact and the air/methane mixture is forced to travel around the back of the Sherwood 

Curtain and so keep the gas fringe well into the waste. At the limit of the Sherwood 

Curtain where it is well behind the line of the goaf the author has recorded methane levels 

in excess of 5% (the limit of a portable methanometer) and using a high concentration 
device the methane concentration was found to be around 15%. In contrast, the supply 

gate methane readings were less than 0.5%, a sure sign of the usefulness and worth of 

the Sherwood Curtain. The arrangement and condition of the curtain is quite critical if it 

is to remain effective. The curtain does not interfere with the methane concentration or air 

velocity readings which are taken at the end of the supply gate. At the end of the face life 

when it was some 30 m away from the monitors, it was still thought to have no effect on 
these parameters as this distance was deemed to be sufficient for adequate mixing of the 

air/methane mixture. 
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5.4 119's Methane Drainage 

Methane drainage was practised on 119's to lower the general body methane 
concentration. Drainage holes were drilled by Edeco Minor-Hydrate Triple Ram drilling 

rigs which were powered by the face hydraulic system. Holes were drilled into the roof 
and floor from the return airway to intersect the Deep Soft seam some 130 ft above the 
Parkgate and the Low Main, 45 ft below the Parkgate. Standpiping amounted to 70ft of 
the total borehole length which was usually between 150 - 170 ft long. The holes were 
drilled at 900 to the face line and between 50 and 70° to the horizontal. In total, 143 holes 

were drilled over the life of the face and the distance between them was between 10 -15 
m. Every one hole in five was a floor hole. The nearest borehole to the face was usually 
5m behind the face line. Trials were undertaken with boreholes in front of the face but 

these did not produce any significant quantities of gas and so the practice was 
discontinued. The life of the boreholes was very variable with some holes only lasting 
days. Rapid loss of flow was attributed to standpipe shearing. Methane drainage 

quantities averaged approximately 200 Vs of pure methane and ranged from 130 - 240 Vs. 

5.5 Underground Environmental Monitoring at Thoresby Colliery 

Thoresby Colliery has a comprehensive environmental monitoring system that was 
installed in the 1970's as part of British Coal's expanding environmental policy. The 

quality and state of the underground air must be tested for contaminants according to 
mining legislation which states that the quantities of noxious, asphyxiant or inflammable 

gases must be less than a specified level. Environmental monitoring is now a routine for 

all mines and is carried out not only to satisfy the legal requirement but to increase the 
safety of the mine in general. 

Three forms of environmental monitoring are in use. The simplest and that which gives 
only a limited indication of environmental conditions is the use of portable detection 
instruments. These range from the flame safety lamp which can be used to provide an 
indication of the presence of methane or lack of oxygen to portable hand held detectors 
for a range of gases. The latest electronic instruments feature integrated capabilities that 
replace the flame safety lamp, spot-reading methanometers, aspirated chemical tubes, 
portable oxygen meters and the canary (for carbon monoxide testing) by a single unit. 
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The second form of environmental monitoring is that provided by the tube-bundle 

system. In this system mine air is drawn through small diameter plastic tubes and 

analysed at the surface. A tube is taken to a particular sampling point and although each 

sample stays discrete a number of tubes are clustered as a bundle for easier sample 
transportation. The major drawback of this system is the delay associated with the 

travelling and sampling time of the gas. This can be up to 2 hours long and so the system 

cannot be regarded as providing real-time knowledge of the mine atmosphere. A typical 

arrangement of a tube-bundle system is shown in Figure 5.3. 

The most important environmental information is that provided by a real-time system. 
These rely on the use of electronic instruments that provide information covering the 

whole spectrum of gaseous pollutants. By using transducers and electronic signal 
transmission the colliery control room knows instantly the condition of the mine 

atmosphere and there can be no doubt that such systems are invaluable to the safe and 

productive operation of any mine. A typical arrangement of a real-time monitoring 

system is shown in Figure 5.4. 

5.6 Requirements and Components of a Real-Time Monitoring System 

Some essential requirements of a real-time environmental monitoring system are, 

1. reliable electronic transducers, 
2. fast response time to changing environmental parameters, 
3. instantaneous data transmission. 

This list is not exhaustive and the final system should do all that is necessary to achieve 
information that is a true reflection of the underground conditions at an instant in time. 

The basic components of a real-time environmental monitoring system are, 

1. a detector or sensing head, 
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2. a data transmission system, 
3. a computer system for data display, analyses, recording and storage. 

Detector heads are used to test for a particular parameter e. g. methane concentration and 
provide an electric output that is in a known proportion to the quantity of contaminant in 

the sample. This signal is then sent by a data transmission system to the surface where it 
is received by a computer and stored for further use. 

5.6.1 Data Transmission System 

The signal or voltage produced by an environmental monitor as a response to the presence 

of a contaminant is transmitted to the surface by a medium known as multiplexing. 
Multiplexing is a method whereby a number of signals are combined and transmitted 

together along a single line. The analogue voltage from the monitor is converted into a 
digital signal. Two forms of multiplexing can be used and these are, 

1. time division multiplexing (TDM), 
2. frequency division multiplexing (FDM). 

In time division multiplexing the signal from each monitor is transmitted digitally as a 

series of pulses along with an identity pulse. The number of signals that can be 

transmitted depends on the frequency of the pulses. Only information from one 
transducer is transmitted at any one time. Frequency division multiplexing is similar but 

varies the frequency of the transmitted signal. Each transducer signal has its own encoder 

with an associated frequency. Many signals can be transmitted at the same time in FDM. 

The FDM system is more expensive than TDM but is less susceptible to electrical 
interference. At Thoresby Colliery the TDM system is used. 
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5.7 Monitored Environmental Parameters 

It was seen in chapter 2 that the release of strata gas from source beds and its subsequent 
migration towards the working areas is dependent upon a number of physical, geological 
and mining factors. A decision had to be made as to which of these factors should or 
could be monitored to contribute to the analysis and development of a methane prediction 
model. Some of the factors are very difficult to quantify and lie outside the scope of this 
investigation. The criteria used to select which parameters should be monitored was 

whether it was thought that they had any influence on methane emission (both to the 

general air body and methane drainage range) and could easily be monitored. On this 
basis, only two parameters could be used and these are barometric pressure and rate of 
production but they were not electronically monitored. Air velocity (hence air quantity) 
was also monitored as was known to have a definite effect on the methane concentration. 
It is possible that methane emission is constant while variations in airflow can cause 
appreciable changes in methane concentration, if only in the short-term. For 

completeness, it was decided to take account of the methane present in the drainage range 
and so drainage methane concentration, static pressure and differential pressure were also 
monitored. All of the monitors described were made by Seiger Limited and Status 
Scientific Controls Limited. 

5.7.1 Instrument Calibration 

Accurate calibration of the monitors beyond their normal level of maintenance was not 
considered to be appropriate. The monitors were checked to see that they were 
functioning correctly but were not removed beforehand for calibration. It was thought 
that the most representative data would be from instruments that were maintained as usual 
and not specially prepared or maintained. In fact, it was found that the monitors and their 
sensing heads were maintained extremely well as part of Colliery and British Coal policy. 
A routine of changing the sensing head of the Status methane monitor (general air body 

methane concentration) every two weeks was followed, with the head being checked at 
the mine and then sent to British Coal's Headquarters Technical Department at Bretby for 
further calibration checks. The sensing heads of the other instruments were changed and 
checked less frequently as past experience showed that they remained in calibration 
longer. Periodically the vortex-shedding head of the air velocity monitor was cleaned 
with a small brush to remove dust and dirt. 
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5.7.2 Methane Concentration 

General air body methane concentration was monitored by a Status type CH4/03 methane 
system. The CH4/03 system is comprised of a regulator/display unit and a methane 
sensor head which can be placed up to 3m distant from the regulator/display section. 
The regulator/display unit contains the circuitry to perform power supply regulation, and 
transmit its signal to an outstation. The CH4/03 monitors continuously and a relay circuit 
within it has the ability to shut-down electrical power in a district when methane levels 

reach a pre-set alarm point. The instrument range is 0 to 3% methane at an accuracy of 
±0.1% methane by volume, or ±8% of the true value, whichever is the larger. The 
CH4/03 monitor utilizes the standard British Coal 0.4 -2V analogue output (to BS5754) 
for data transmission purposes. It also features an LCD display which can indicate the 

methane concentration, `power', `fault' and `over-range' conditions. The CH4/03 can be 

powered by a number of external power sources. These features are common to the 

range environmental monitors described in this thesis. The arrangement of the whole 
system and its positioning in an underground roadway can be seen in Plate 5.1. 

The sensing head of the CH4/03 contains a pair of pellistors housed behind a pair of 

sintered metal filters between which is sandwiched an active carbon cloth filter. A filter is 

used as protection against substances which may poison the pellistors. Gas is allowed to 

reach the pellistor by natural diffusion. Electrical current flows through the catalytic 

elements (pellistors) which are arranged into a Wheatstone bridge. The methane present 
in the sensing chamber is oxidised and the heat from this reaction increases the 
temperature of the catalytic elements resulting in a change of their electrical resistance. 
One of the pellistors is an active catalytic detector whilst the other is non-active and 
provides temperature compensation. The methane concentration is proportional to the 

change in resistance and in the case of the CH4/03 is linear over the 0- 3% measurement 
range. This type of sensing head is only suitable for methane concentrations of less than 
5% in air. At concentrations in excess of 5% oxygen content can be decreased which 
may result in an incorrect reading. If the oxygen content is below 12%, perhaps due to 

very high levels of methane or another gas such as carbon dioxide, a false low reading 
will be obtained. Response time of the sensor head is approximately 10 seconds to reach 
90% of a final reading. A dummy head is available to check the regulator unit output 
voltages, the calibrated offset zero and a zero to greater than full-range variable signal- 
voltage. Problems were experienced with early versions of methane sensing heads where 
it was found that sensor reliability deteriorated if they were subjected to methane 
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Plate 5.1 

Photograph of Environmental Monitors 

Left: Air Velocity 

Centre: Carbon Monoxide 

Right: Methane Concentration 





concentrations >0.8% and high relative humidities for long periods of time (621. This 

situation was resolved by the introduction of more robust pellistors. 

Methane concentration values are very often characterized by rapid fluctuations in level. 

This can be a problem due to the inertia of the sensing head which can have a profound 

effect on the accuracy of readings if the time interval between observations is small and 

the methane level is fluctuating rapidly. Research work [631 has identified factors that 
influence a sensing heads response time. These can be classified as external influences 

such as the ventilation ram effect whereby the response time is reduced due to ventilation 

pressure and correct siting of the sensing head, and internal influences such as the 

construction of the sensing head. Careful consideration to a number of factors can reduce 

the response time markedly but for the purpose of obtaining methane concentration data 

no other instrument other than the CH4/03 was readily available. However, deliberately 

choosing an instrument that was not typical of those in general use was inappropriate. 

Thus, the response time of the Status CH4/03 was ignored and the values of methane 

concentration were regarded as correct at the time the observation took place. Ideally, a 

sensing head with negligible response time would be the best to use. 

5.7.3 Air Velocity 

The air velocity was measured by a Status type AV/02/030 velocity monitor. Similar to 

the CH4/03 it is comprised of a regulator/display unit and a detatchable sensing head. 

The monitor can measure velocity in a number of ranges from 0.5 to 30 m/s at an 

accuracy of ±10%. The sensing head operates on the vortex shedding principle and 

requires no moving parts. The vortex shedding principle is where air flowing past an 
obstruction results in the creation of vortices in a region downstream of the obstruction. 
The vortex frequency is proportional to air speed and by measuring this frequency it is 

possible to produce an electrical output signal that is proportional to air velocity. It is 

advantageous to use this type of sensing head rather than an anemometer type sensing 
head where damage to the vanes by dust or tampering can alter the velocity value. The 

sensor has been specially designed to cope with out of alignment variations and yaw 
angles of up to ±15° from normal do not adversely affect the velocity measurement. The 

control unit has a switched powered output for an externally intrinsically safe flameproof 

relay so that power can be cut-off if the measured air velocity falls below a pre-set level. 
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The sensing head of the monitor was placed in the middle to top right-hand corner of the 

roadway, as illustrated by Plate 5.1. The value of velocity measured in this part of the 

roadway is only a point value and would not be the truest possible. In fact the sensor is 

in the worst position for accurate measurement of velocity. In the area close to the rib or 

roof large changes in the true airflow may not be apparent in the values measured by the 

sensing head placed in a low-flow boundary layer. Ideally it should be placed close to the 

middle of the roadway but usually this is not possible. A method to overcome this 
difficulty is to assume that a constant relationship exists between the velocity measured by 

fixed sensing head and the average velocity at that airway cross-section [641. If this is 

assumed then the velocity measured by the sensing head can be related to the true average 

velocity at the specific cross-section by a constant. This constant changes with velocity 
level. Fortunately, because time series analysis seeks only to relate the rate of change 

within a single parameter or between parameters matters can be simplified. It is not 

necessary to convert the velocity values to flowrates or apply constants. However, this 

only holds true if the values recorded by the velocity monitor represent the true changes in 

the average velocity of the airway. For 119's it was thought that placing the sensing head 

1.15 m away from the ribside and 0.5 m from the roof was sufficient to safeguard this 

assumption. 

5.7.4 Drainage Methane Concentration 

The drainage methane concentration was measured by a Seiger BM2H high concentration 

reading methane unit. For drainage range differential pressures that are greater than 250 

Pa a gas flow regulator needs to be used but at Thoresby 119's the drainage differential 

pressure was below 250 Pa and no regulation was needed. The BM2H reads from 0- 

100% methane to an accuracy of ±3% of the full range reading. 

The catalytic method used to determine the methane concentration by the BM3 cannot be 

used by the BM2H. Such a method can only measure to approximately 5% methane and 
beyond this a non-catalytic method needs to be used. The BM2H uses a method based on 
the principle of thermal conductivity. Two thermal conductivity sensors are incorporated 
into the sensing head and arranged as a Wheatstone bridge. One is kept as a reference 
and is sealed in air while the other, the active sensor, is exposed to the air/methane 
mixture. Current is passed through both sensors and if methane is present the active 
sensor cools down. The cooling effect depends on the concentration of methane and 
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causes the current flowing through the active sensor to drop resulting in an imbalance in 

the bridge from which the methane concentration can be determined. 

5.7.5 Drainage Static and Differential Pressure 

The methane drainage range static and differential pressures were monitored by a Seiger 

BP1 pressure monitoring system. The BP1 is designed to monitor the differential 

pressure across ventilation doors, booster fans, stoppings and across an orifice plate 

placed in a pipe. It is also capable of monitoring static pressure if an appropriate static 

pressure transducer is used. By using different transducers a wide range of pressures can 
be monitored. Differential pressure can be monitored from 0 to 10 kPa and static 

pressure from 0 to 100 kPa. The accuracy of the pressure transducers are ±3% of the full 

range reading. The pressure transducers are of the diaphragm capacitance type and 

pressure connections are made by using rubber hoses and clips. 

The drainage static pressure provides an indication of the suction available at the 
borehole. Exhausters are used to maintain a suction of 0.5 to 0.98 kPa to overcome the 

resistance of the pipeline to gas flow and improve production. The suction pressure 

created by these exhausters is not thought to be carried to the end of borehole because of 

pressure losses. Therefore, at the end of the borehole the borehole pressure is assumed 
to be slightly smaller than atmospheric [47]. The drainage differential pressure which is 

also known as the velocity pressure was measured by either side of an orifice plate and by 

using a simple formula the total flow of mixture from each borehole can be found. A 

typical arranagement of the methane drainage range monitors can be seen in Plate 5.2 

5.7.6 Barometric Pressure 

Unfortunately an electronic instrument for measuring absolute barometric pressure was 
not available. Instead, an ordinary, but well maintained barograph, was used. This 
instrument was sited in the colliery control room. The barometric pressure charts show a 
continuous weekly record from midday Monday to the following midday Monday with a 
small period of overlap. The barograph is scaled to measure barometric pressure from 
950 to 1050 mb. The pressure values were entered into the computer by hand after 
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Plate 5.2 

Photograph of Methane Drainage Range Monitors 
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carefully reading the value from the chart. A prerequisite of time series analysis is that if 

parameters are to be cross-correlated they must all have the same time interval between 

observations. Since the chosen time interval for the electronically monitored parameters 
was 2 minutes this meant that 720 values per day had to be read from the chart. At times 

this proved difficult and resulted in a stepped appearance when the pressure was changing 

rapidly. 

Barometric pressure was monitored with the intention of determining whether it could be 

used to account for changes in methane emission. To this effect it was necessary to only 
measure it on the surface. If a barograph had been installed underground the pressure 
variations due to ventilation system changes (static, velocity and NVP) would be 

superimposed onto the barograph chart. 

5.7.7 Rate of Production 

Coal production is perhaps the most important parameter that affects methane emission. 
If there was no production there would be no changes in strata stress and permeability, 
hence no gas flow would be possible. Information as to the quantity of coal production 

was taken from the colliery control room sheets. These are known as the control centre 

record sheet. The control centre record contains information on all of the mines 

producing coal faces, development progress, belt and skip delays and other items. They 

are completed for each shift by control room operators. An example of a control centre 

record sheet is given in Appendix 1. 

The start and finish time for each face cut or strip is entered onto the sheet by the control 

room operator when he has been informed by a member of the face team. There was no 
method of knowing in the control room if the coal shearer was cutting unless instruction 

had been received from a member of the face team. Consequently, an investigation had to 
be carried out to determine the accuracy of the strip stop and start time. 

The strip cutting behaviour of a complete afternoon shift was studied to find out what 
normally occurred. Production data is characterized by definite periods of coal cutting 
(during each shift) and periods when coal is not cut (rest time, maintenance and swap- 
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over time between shifts). Occasionally the cutting operation stopped and the control 
room was notified by telephone and the stop time noted on the control sheet. When the 

machine was ready to cut again this time was also telephoned to the control room and 
noted. For a complete and uninterrupted strip it was possible to calculate the cutting rate 
in metres per minute. It was found that this was not constant for each strip because the 

machine operator could control the speed of the machine to a small degree and stop the 

machine for a brief period of time for any reason. Generally, the machine operator 

slowed the machine as it approached the end of the strip. A typical complete strip took 

approximately 40 minutes. During a shift there were short periods between each strip 

when an operation termed the `shuffle' was performed. The shuffle lasted an average of 
20 minutes and its purpose was to remove coal that was left in the roof and floor at the 
face end. The decision to inform the control room of a machine halt was at the discretion 

of the machine operator and if it was felt that the stoppage was only for a matter of 

seconds or at most a few minutes the control room was often not informed. If the 

stoppage lasted longer than 5 minutes, however, the control room was informed of the 

reason and the correct stop time noted. For the purpose of analyses the investigation 

showed that the production start and stop times both for a complete or interrupted strip 

were accurate to within 5 minutes. 

Production data was taken from the control room sheets and entered into a spreadsheet by 

hand. The base data format was whether the machine was cutting or not and if so at what 

average speed was maintained over the cutting period at intervals of one data point every 
2 minutes. 

5.8 Factors Influencing the Siting of Monitors 

It is to be expected that the positioning of the sensing heads of monitors is an important 

criteria in achieving representative data. At Thoresby, the environmental siting policy is 

that they should be sited at the closest convenient point towards the end of the face return 
airway before it is split or joins another return for both advance and retreat faces. On 
119's district, the instrument sensing heads (for the BM3 and BA4) were only placed a 
few metres from the environmental monitoring station. 

Recommendations by the US Bureau of Mines advise that the methane sensing head be 
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placed at least 30cm from the roof and well away from the ribside [651. This is because 

methane is lighter than air and the highest concentrations are likely to be found near the 

roof. When measuring air velocity the best place is the geometric centre of the airway 

cross-section. The sensing head should also be placed in an area free of obstructions 
both upstream and downstream. 

5.9 Errors Due to Data Transmission 

Errors in data transmission can be caused by interference from electromagnetic noise. 
This can be a problem in mining but can be minimized by careful cable shielding and the 

use of a system whereby once MINOS receives a signal it asks the transmitting device to 

verify the signal. Most British Coal data transmission systems subject incoming signals 

to a number of tests to decide whether it is valid data. However, it was found that most 

errors were caused not by the data transmission system but by the colliery information 

system computer. It may have been that actual values for a monitored parameter were 

erroneous, i. e. if methane concentration of 1.01% was observed but the CIS reported it 

as 1.11% and this sort of error cannot be detected without signal verification. This type 

of error occurs because the data contains transmission noise that can be miss-read as a 
different value on de-multiplexing. Tests carried out by MRDE at Bedlay Colliery to 

investigate data inaccuracies of the mines environmental management system identified 

two main sources of error [62]. The first was due to the fluctuating behaviour of some 

monitored parameters such as methane concentration and air velocity where additional 

signal noise could be enough to produce erroneous values. The second was caused by 

electrical noise and this was identified as the most significant problem. This problem was 

resolved by better earthing and cable shielding. Ultimately, for the purpose of data 

analysis, errors associated with data security during transmission are ignored unless it is 

obvious that a reading is vastly different to its preceding and succeeding values. 

At 'Moresby, the monitors send their information or signal to an outstation which waits 
for instructions from the control room computer to send data. The actual data 

transmission is by time division multiplexing. The outstation receives a signal from a 
monitor continuously but does not send a mean value, for the time interval that has passed 
since the last transmission. This means that the transmitted data are actually spot values. 
This is no real problem so long as the level of the monitored parameter has been fairly 

constant over the time interval between the data transmission. If a parameter is known to 
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be fluctuating then it would be better to use instruments that transmitted a mean value to 

smooth the fluctuations. Of the parameters monitored, it was found that methane 

concentration and air velocity often showed marked fluctuations in value between the 

monitored time interval of 2 minutes and there was'no way of knowing how much 

variation in value occurred during the monitoring time interval. This was not ideal and 

could not be easily resolved and any problems that this may have caused were ignored. 

5.10 Data Storage - Minos to CIS 

The control room monitoring system includes facilities for comprehensive displays of 

environmental data (66]. Graphical displays of data showing trends and alarms are all 

possible, however, the scope to utilize the data beyond what is provided for in the control 

room system software is very limited. 

The colliery information system or CIS (and also known as the mine information system - 
MIS) in use at Thoresby dates back to 1975. The environmental data is stored by the CIS 

on hard disks. 

5.11 Data Transfer - CIS to PC 

After the conception of the project, data was initially obtained for methane concentration 

only. This data was not in a digital format and was in the form of a printout. Thoresby 

Colliery generally prints the values for methane concentration daily with a sampling 
interval of 5 minutes. This data was kept for information purposes. It was necessary to 

gain approval to increase the sampling time to a frequency of every two minutes and the 

printout data was a carbon copy of the one kept for colliery information. This 
information was' entered into a spreadsheet database by hand which soon proved to be a 
lengthy and unsatisfactory arrangement. Each day generated 720 data points. A method 
of more efficient data collection became a necessity and a number of methods were 
subsequently investigated to achieve this. 
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5.11.1 The Megalog MGL-21 

The first idea was to consider using portable data logging equipment that was available 
within the Mining Department. The Megalog MGL-21 (manufactured by Technolog Ltd. ) 
is an intrinsically safe device purposefully designed for underground use in coal mines. 
It is a solid state data recorder capable of receiving information from 15 analogue inputs 

and down-loading this data to an IBM compatible computer. As it records the unit has a 
facility to view a real-time graphical display of a selected channel. This facility is 

especially useful in determining, after the unit has been programmed for use, if it is 
functioning correctly. 

The Megalog has a number of time-base options to select from. The fastest sampling rate 
possible is 2000 samples/sec, or a time-base of 0.5 msec, but only one channel can be 

monitored at this rate. For the expected purpose of the data logger this time-base was far 

too small and a time-base of one observation every two minutes was decided upon. At 
this recording rate the data logger was able to monitor 15 channels, which comfortably 
exceeded the number of channels to be monitored. 

A disadvantage of the data logger is the need to specify an initial real start time so that the 
observation is actually recorded at the correct moment in time. For example, if the 
recording is to start at the arbitrary start time of 14: 00: 00 hours, the unit is required to be 

programmed with this start time and started when this time is reached. The difficulty lies 

with knowing the right point in time to start the data logger. However, this was not 
thought to be a major problem since a start timing accuracy of one or two seconds was 
not deemed critical and could be easily achieved by using an accurately set clockwork 
watch, or by using an underground telephone to consult the speaking clock if one was 
within reach. Connection to the environmental monitors was by an 18-way connector 
from a common supply, i. e. a junction box. A typical arrangement for underground use 
is shown in Figure 5.5. 

The main problem anticipated by the use of the data logger was its ability to monitor the 
parameters continuously. This was absolutely necessary if time series modelling 
techniques were to be employed. There was no doubt as to the data logger's reliability 
and ruggedness for operating underground, rather its suitability was questioned according 
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to its battery and memory capacity. The recorder is powered by a maximum of two PP3 

alkaline batteries. For continuous recording over a long period of time power 

consumption could be lowered by switching off the display. Recording data from 5 

channels at a sampling rate of 1 observation every 2 minutes resulted in an estimated 
battery life of 26 days. The MGL-21 is supplied with approximately 64kB of memory. 

and at the same sampling rate the memory capacity of the data logger would have been 

consumed after approximately 14 days. For these reasons the data logger was rejected as 
being unsuitable. 

5.11.2 Transfer from CIS to PC 

The next idea was to consider how to make the maximum use of the existing colliery 

computer system facilities as possible. This was deemed to be a sensible approach since 

the data was already in existence and only a way to utilize it was to be found. Although 

simple in concept, actually getting the data into a usable form required much thought and 

perseverance. A computer communication package called `Procomm Plus' was obtained 

to facilitate data transfer from the CIS to a PC [671. This programme, after some early 

teething difficulties soon proved easy to use. By accessing the relevant data channel, data 

was streamed across to a PC. In fact, the communications programme allowed the PC to 

operate exactly as a CIS terminal. On running the programme it is necessary to select a 
CIS option which displays the transducer data in a report format (see Figure 5.6) on 

screen. After selecting the required channel the whole display is transferred and saved to 

the hard disk of the PC under a suitable filename. At first the data was not transferred 

continually and a small computer programme needed to be written to ensure continuous 
data streaming. The CIS data was displayed and transferred page by page with the user 

pressing the return key to transfer each page. This was time consuming and quickly 
became a very tedious task. It was possible to programme Procomm Plus to cause 

automatic scrolling of the data for transfer. The programme searches the incoming data 

for a key phrase, such as `next page', and inserts a carriage return character into the 

output stream every time this phrase was found. 

A problem was experienced with the storage of the data files. The selected 2 minute 
logging interval resulted in the generation of 5040 data points per week per channel. For 

the five monitored channels this meant a total of 25200 data points per week. The data 

transfer format was the same as the display format i. e. headers and footers at the top and 
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bottom of each page with the subsequent date/time/channel/analogue value/alarm and fail 

status in between which resulted in the transfer of many more characters than was 
necessary. This meant that a colossal amount of data needed to be stored onto numerous 
IBM formatted high density 3.5" disks, each capable of holding 1.4 Megabytes of data. 
It was soon apparent that such large amounts of data would take up too much disk space 
and this was the next problem to be overcome. 

MON 19-AUG-91 TIME UNTIL VALUE 
20'S/119'S 119'S MET 

16: 48 
16: 50 
16: 40 16: 51 
16: 51 
16: 52 
16: 54 
16: 55 
16: 56 
16: 56 
16: 58 
17: 00 
17: 02 
16: 55 17: 03 

17: 03 
17: 04 

* 

1.29% 
1.19 % 

1.31 % 
1.22% 
1.19 % 
1.23% 
1.25% 
1.27% 
1.27% 
1.24% 
1.29% 
1.22% 

1.30% 
1.18 % 
1.19 % 

ALARM 
ALARM 

ALARM 

ALARM 
ALARM 
ALARM 
ALARM 
ALARM 
ALARM 

ALARM 

PAGE= 33 

Figure 5.6 Transducer Report Format - for Methane Concentration Data. 

Since the transferred data was in the format used by the CIS for report purposes and 
could not be altered either on the CIS itself or during transferring, it was necessary to 
reduce the size of the data files after transfer. Unfortunately, it was not possible to 
instruct the CIS to transfer only the selected channel time and value (the only two items of 
interest) and discard the headers and footers from each screen display page. After 
transference the data files were not in a suitable format for time series analysis and it 
proved necessary to write a short computer programme to remove the unwanted 
information. The data files were firstly copied from the floppy discs to a hard disk and 
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checked for missing or corrupted data. If data was discovered to be missing an attempt 
was made to see whether it could be recovered and at times such attempts did prove 
successful. 

5.12 Missing Data 

Missing data was usually found to be caused by faults within the computer system and 

not because of instrument failure. The instruments themselves proved to be extremely 

reliable and during the course of the study did not appear'to malfunction at all. Missing 

data was noticed once the data had been transferred to PC and brought back to the 
University. Each file was checked to see if any data was missing, rather than data that 
had been lost due to instrument or transmission failure. It quickly became evident that if 

data was missing from one channel e. g. methane concentration it was also missing from 

the other channels as well. It was not possible to check that the transfer of data from the 

colliery CIS to an IBM PC was completely successful or that there was a complete record 
of data to transfer initially. The computer disks were collected regularly from the colliery 

and checked immediately for missing data in the hope that it could be possible to retrieve 
it. At times this was possible once the control room computer engineer knew the dates 

and times of missing data and if it was possible to access the archive disks for the 
information. It was Colliery practice to hold up to four weeks of back-up data on a 
recording archive disk [68]. When an archive disk was approaching capacity the 

procedure was to copy the back-up data to a new disk before the new disk was installed. 

The new disk was then prepared ready for use when the other disk became full. It was 
important to ensure that the archive disk was changed before it became completely full as 
data that was saved at the limit of disk capacity was often found to be corrupted. 

5.13 Data Conversion 

After the data had been reduced to four columns i. e. time, value, alarm and fail status it 

was transferred to a Macintosh SE 30 computer. The conversion from IBM MS-DOS to 
Macintosh format enabled a further reduction in data file size and after transfer, data files 
(containing two days worth of information) that were originally 60 kB in size were 
reduced to around 5 kB. Subsequent use of file compression software then reduced file 
size even further, resolving all file storage problems completely. A procedure was 
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developed to process the files as easily as possible since they had to be formatted by hand 

to enable it to be used for time series analysis. Each data file contained information 

recorded over a period of two days. Ideally, each file should have contained 1440 lines 

of data (after all page headers and footers had been removed) which was easily checked 
by instructing the computer to count the number of lines in the text document. Generally, 

it was rare for a file to contain the exact number of lines because of missing data and 
peculiarities caused by alarm and fail warnings. It was also found that the behaviour of 
alarm levels was different in each monitored parameter. For example, in the case of 

methane concentration data if an alarm level was reached the time at which this occurred 

was displayed. The alarm indication continued to be flagged until the methane 

concentration dropped below the alarm level at which time the start and end time of the 

alarm period was displayed. Any file that contained more than 1440 lines of data had to 
be manually checked and stripped of unnecessary information. 

5.14 Data Transfer from IBM to VME Mainframe 

After the data files had been manipulated into the correct time series format, it was then 

necessary to covert them back to MS-DOS files so that they could be transferred to the 
University's mainframe computer. Use was made of the extensive communications 

software available at the University to do this. Once the time series files had been stored 
on the VME system the next task was to subject them to time series analysis. 

5.15 Conclusion 

This chapter has described the variables that were monitored at Thoresby 119's and will 
subsequently be used to build univariate models. This chapter has also brought to 
attention the difficulty a researcher has in acquiring data that is being monitored at a 
colliery for research purposes. It is assumed that since the data had been monitored and 
stored it would be easily available for any other use, whereas in the course of the research 
this was not found to be true. Aspects of data monitoring with respect to the acquisition 
of accurate and representative data were also detailed. Finally the steps necessary to 
transform the data into a useable computer format were also described. 
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CHAPTER SIX 

UNIVARIATE MODELS OF MINE ENVIRONMENTAL 

AND PRODUCTION DATA 

6.1 Introduction 

In this chapter the Box-Jenkins model building methodology outlined in chapter 4 is 

utilized to build univariate ARIMA models for environmental and production data. Four 

different models are built for each variable from data recorded over the month of April 

1991. In addition to the original recorded time interval of one observation every 2- 

minutes the data was transformed to provide an average value over 10-minutes and an 
hourly average value. Lastly, models are presented that are built from only one day of 

monitoring at the original time interval. The main reasons for building the univariate 

models are to generate univariate forecasts of methane concentration and to use the 

univariate models for all of the variables to explore the possibility of building multivariate 

models for methane concentration that can also be used to forecast methane concentration. 

The Box-Jenkins model building procedure is only part of a framework that is used to 
build a model in a systematic manner. Although this chapter is concerned with the 
building of univariate models, it is best to first consider them within an appropriate 

conceptual frame that presents a conceptual priori model of how methane concentration is 

thought to be explained by other variables. At this stage the objective is to determine if it 

is possible to build time series models of environmental and production data from 

differing time intervals. A complete example of the three stages of model building is 

given for only the first example for methane concentration. For the other models built, 

only items of interest or peculiarity are noted. 

6.2 A Conceptual Model 

It is intended to investigate whether it is possible to forecast methane emission from a 
consideration of possible explanatory variables, such as production and barometric 

pressure. Before this can be done univariate models for all of the variables need to be 
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built. A univariate model is built from the past history of a single variable and so 
forecasts from it are based on knowledge of its past history only. In a real-life situation 

such a model may be suspect where its forecasting ability is concerned. In some 

circumstances it may only be possible to generate forecasts from the past history of a 

single variable, either because no other variables relating to it can be found or the physical 

system that generated the series may be too complicated to model adequately. 

Factors that can be monitored 

r----------- Methane Concentration 

possible 
influence 

Air Quantity 

1 

Production Methane Emission 

mining method 

Strata 
permeability 

subsidence 

ventilation 
method 

Factors whose influence 
is difficult to determine 

º 

.4 10 

Figure 6.1 A Conceptual Model for Methane Emission. 

4 Barometric Pressure 

coal and strata 
gas contents 

strata gas 
pressure 

Factors that can be 
measured to an extent 
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Figure 6.1 presents a simple conceptual model for methane emission. In this model 

methane concentration is presented as the dependent variable and the others as 
independent variables. This means that there is a one-way causal relationship between 

methane concentration and the other variables. For example, barometric pressure may 
influence methane emission (hence concentration) but methane concentration can in no 

way cause changes in barometric pressure. A possible exception to the assumption of a 

one-way causal relationship between methane concentration and its explanatory variables 

occurs when methane concentration exceeds 1.25%, the statutory value at which electrical 

power must be switched off. At this event in time it would be expected that production is 

stopped but at Thoresby 119's this was not usually necessary. The methane 

concentration was monitored at the return end and although it often exceeded 1.25% the 

protection afforded by the Sherwood curtain ensured that the face end methane 

concentration was lower than 1.25% and production could continue. Other factors, 

mentioned in chapter 2 that can influence methane emission, although contained in the 

conceptual model are inappropriate for time series analysis. For example, strata gas 

contents can be determined but cannot be represented by a time series whilst strata gas 

pressures and permeabilities are extremely difficult to determine. 

6.3 Models For Methane Concentration 

6.3.1 Original Series of Methane Concentration 

The first model to be built was that for methane concentration recorded in the return gate 

of Thoresby 119's during April 1991. At a sampling interval of one observation every 

two minutes this generated a total series length of 21,600 observations. Each day 

consisted of 720 observations and the data was stored in daily intervals before being 

assimilated and transferred to the mainframe. It was necessary to examine each days data 

to see whether any spurious values were present and check for missing data. No data 

was thought to be incorrect and missing data was a rare event. Data that was missing was 

replaced by most likely values by using an appropriate SPSS-X TrendsTM subroutine [571. 

It proved impossible to produce a plot of the whole series both for computing and 

practical reasons but plotting a random selection of any manageable portion demonstrated 

the continually changing level of methane concentration. An inspection of Figure 6.2 

reveals two types of trend. The first is a very definite long-term (over a few hours), 

upwards and downwards behaviour and the second is a seemingly rapid fluctuation 
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between observations over a short period of time i. e. over a few minutes. It is very 
difficult to explain definitively the reasons for such behaviour but the long-term trend may 
be accounted for by changes in the rate of production. The short-term changes may result 
from variations in airflow, perhaps themselves caused by the opening and closing of an 

air-door(s) somewhere in the ventilation circuit. 

360 720 1080 1440 

Observation Number 

Figure 6.2 Plot of Methane Concentration Data. 

From an inspection of this sample data it may be anticipated that many other portions of 

the data will exhibit similar trend behaviour. Such displays of trend mean that the series 

is non-stationary and the first step in the identification process of a model that fits the 

series is to make it stationary. For the model building process the series was split into a 

historical portion over which the parameter values were estimated. This portion was 
16,000 observations in length. The rest of the series was kept as a validation portion so 

that the parameter fit of the most suitable model could be tested. The plot of the 

autocorrelations of the raw series, shown in Figure 6.3, die out very slowly and 

alongwith the value for the autocorrelation at lag 1 of 0.993 being very close to unity it is 

evident that the series is non-stationary. Taking a first difference was sufficient to obtain 

a stationary series and the correlations of the differenced series are shown in Figure 6.4. 
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Autocorrelations: METHAPRIL 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 
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. 000 
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. 000 
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. 000 

89946.195 
. 000 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 16000 Computable first lags: 15999 

Partial Autocorrelations: METHAPRIL 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

1 . 993 . 008 ******************** 
2 -. 226 . 008 *****. 
3 -. 036 . 008 
4 . 033 . 008 
5 . 010 . 008 * 
6 -. 012 . 008 * 
7 -. 012 . 008 * 
8 -. 026 . 008 
9 . 011 . 008 * 

10 . 032 . 008 
11 . 023 . 008 * 
12 . 033 . 008 
13 . 032 . 008 * 
14 . 034 . 008 
15 . 037 . 008 
16 . 041 . 008 .* 
17 . 052 . 008 .* 18 . 036 . 008 
19 . 047 . 008 
20 . 042 . 008 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 16000 Computable first lags: 15999 

Figure 6.3 Correlations of Raw Methane Concentration Series. 
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Autocorrelations: METHAPRIL 
Transformations: difference (1) 

Lag Corr. 

1 . 224 
2 . 079 
3 -. 012 
4 -. 024 
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7 . 023 
8 -. 006 
9 -. 038 

10 -. 045 
11 -. 057 
12 -. 057 
13 -. 057 
14 -. 059 
15 -. 064 
16 -. 078 
17 -. 066 
18 -. 071 
19 -. 065 
20 -. 056 

Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

. 008 . **** 800.944 . 000 

. 008 . ** 901.636 . 000 

. 008 * 904.069 . 000 

. 008 * 913.121 . 000 

. 008 * 913.559 . 000 

. 008 * 914.102 . 000 

. 008 * 922.853 . 000 

. 008 * 923.434 . 000 

. 008 * 946.006 . 000 

. 008 978.556 . 000 

. 008 1030.542 . 000 

. 008 1083.188 . 000 

. 008 *. 1135.838 . 000 

. 008 1191.765 . 000 

. 008 1257.208 . 000 

. 008 **" 1355.073 . 000 

. 008 1425: 603 . 000 

. 008 1506.867 . 000 

. 008 *" 1574.468 . 000 

. 008 *. 1624.607 . 000 

Plot Symbols: Autocorrelations * Two Standard Error Limits . 
Total cases: 16000 Computable first lags after differencing: 15998 

Partial Autocorrelations: METHAPRIL 
Transformations: difference (1) 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

1 . 224 . 008 
2 . 031 . 008 
3 -. 038 . 008 
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Total cases: 16000 Computable first lags after differencing: 15998 

Figure 6.4 Correlations of Differenced Methane Concentration Series. 
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Although the series is now stationary or rather in statistical equilibrium, it will still be 

autocorrelated and additional features now need to be introduced to remove the 

autocorrelation and eventually result in a series of random residuals. This is the next step 
in the model building process and the objective is to examine the correlations and identify 

the number of p and q (autoregressive and moving average) parameters to estimate a 
tentative model as described in chapter 3. The autocorrelation values all appear to be 

significant, that is they are all in excess of the 2sd (2 standard deviations) mark. This is 

unique and is a function of the large number of observations from which the correlations 

were estimated. This complicates the identification of the appropriate number of model 

parameters since the correlation values are significant and likely to remain so at large lags. 

However, because this is caused by the large number of observations, significant 

correlations at large lags can be ignored and model identification proceeds as normal. 

There are two large spikes at lags 1 and 2 in the autocorrelations and one large spike at lag 

1 in the partial autocorrelation. It is most likely that the series is best fitted by a 
combination of autoregressive and moving average parameters and so is a mixed process. 
For this case, however, it is convenient to forgo the identification of the model form and 
proceed in a logical manner by specifying different numbers of parameters and seeing 

which models fits best. The first model to try is therefore an AR(1) or ARIMA(1,1,0). 

Since this is the first tentative model identification the next stage is to estimate a starting 

value for the AR(l) parameter. 

SPSS-X TrendsTM does not require to be supplied with initial parameter estimates. 
Instead it uses the value of the autocorrelation at lag 1 which is equal to 0.224. The 

estimation process proceeds iteratively until the optimum parameter value is reached and 
SPSS-X TrendsTM offers a variety of estimation criteria. Although initial parameter values 

can be supplied it is better to use the value suggested by SPSS-X Trends TM, otherwise the 

number of iterations may be large and exceed the default estimation criteria. 

At this stage the series was split to provide a historical portion over which the parameter 

values were estimated and a validation period over which the fit of the parameter was 
tested. After estimation the final value of the AR(1) parameter was 0.2237 with a t- 

statistic of 29.03 which is highly significant. Examination of the autocorrelation 

residuals, shown in Figure 6.5, reveals that only the value at lag 1 is insignificant or is 

white noise, confirmed by its low Box-Ljung value and its associated high probability. 
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Autocorrelations: EBR ]. Error for METHAPRIL from ARIMA (1,1,0) 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

1 -. 007 . 008 
2 . 038 . 008 
3 -. 027 . 008 
4 -. 022 . 008 
5 -. 002 . 008 
6 . 002 . 008 
7 . 026 . 008 
8 -. 003 . 008 
9 -. 029 . 008 

10 -. 028 . 008 
il -. 039 . 008 
12 -. 036 . 008 
13 -. 036 . 008 
14 -. 037 . 008 
15 -. 038 . 008 
16 -. 056 . 008 
17 -. 038 . 008 
18 -. 048 . 008 
19 -. 042 . 008 
20 -. 037 . 008 

Plot Symbols: 

* 

* 
*ý * 

* 
* 

* 
* 

*, 
* 
* 
*ý 
*ý 
*ý 
*, 
*, 
* 
*ý 
*, 
* 

Box-Ljung Prob. 

. 757 . 685 
23.742 . 000 
35.159 . 000 
43.013 . 000 
43.052 . 000 
43.127 . 000 
53.859 . 000 
54.036 . 000 
67.937 . 000 
80.115 . 000 

104.298 . 000 
125.583 . 000 
146.292 . 000 
167.938 . 000 
191.473 . 000 
241.207 . 000 
264.541 . 000 
301.150 . 000 
329.217 . 000 
350.654 . 000 

Autocorrelations * Two Standard Error Limits . 

Total cases: 16000 Computable first lags: 15998 

Figure 6.5 Residual Autocorrelations from ARIMA (1,1,0). 

All of the others are significant and this indicates that extra parameters needed to be added 

to the model. These were added one-by-one and by doing this it was found that this 

series could be represented acceptedly by a number of models. 

Instead of fitting an AR(1) parameter to the series it was re-estimated with an MA(1) 

parameter. After estimation it was found that the Box-Ljung statistics and the residual 

error was larger than for the AR(1) fit but at this stage either model could be appropriate. 
Fitting extra parameters in turn reveals the difficulty in achieving random correlation of 

the residuals. After each new estimation it is found that the Box-Ljung values of the 

residuals are still significant at relatively low lags. Table 6.1 details model parameter and 

residual statistics. Some of the t-values indicate parameter redundancy and the best model 

could be one of seven (highlighted by bold text). 

Lowering the Box-Ljung values would improve the fit of the models but this cannot be 

done by continually adding extra parameters. Too many parameters, even though they 
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may be significant, make the model unwieldy and difficult to interpret. In most 

circumstances the majority of time series can be adequately represented by low-order 

ARIMA models, that is models that are ARIMA's (3,2,3) or less. The exception occurs 

when very long series are modelled, as in this example. For very long series it is 

impossible to greatly reduce the correlation values beyond the lag that is equal to the 
largest sensible parameter order of the model. However, it will be demonstrated in 

chapter 8 that the forecasting performance of a model is not too critical of the number of 

parameters in the model. 

Since seven models appear to contain parameters whose t-values are significant it is 

necessary to decide which is the best one. Table 6.1 shows the values of residual 
variance for all of the models and their standard error. It is seen that decreases in both the 

residual variance and standard error occur until model (2,1,2) is reached. Models (2,1,1) 

and (1,1,2) have higher residual variance and standard errors, so they are rejected. 
Models (2,1,3) and (3,1,2) have lower residual values than (2,1,2) but only by a very 

small amount. Model (2,1,3) is rejected because the t-value of the MA(3) parameter is 

insignificant. The most suitable models for this series is therefore the ARIMA (2,1,2). 

Although the best fit model proved to be the ARIMA (2,1,2) it was decided to also 

choose the very simple ARIMA (1,1,0) as another model that could be used to represent 

the time series. The reduction in residual standard error after fitting extra parameters to 

acheive the more complex model was only 0.13% which is very small. Thus, from this 

simple diagnostic check there would appear to be little difference between them and in the 

interests of model parsimony the more complex model should be rejected. However, at 

this stage it is beneficial to consider both of the models as suitable and compare their 
forecasting performance so that a more informed decision can be made as to which is the 

most suitable one. This will be done in chapter 8. Further tests were carried out to 
decide if one of these two models was substantially better. The residual autocorrelations 
for the (2,1,2) model are very small up to lag 6, with correspondingly insignificant Box- 

Ljung values. The residual autocorrelations for the (1,1,0) model are larger, again 
favouring the acceptance of the (2,1,2) as the best. A final test is to examine the residual 

autocorrelations once the parameter values have been applied to the whole of the series. 
The parameters were estimated over the historical period and it is desirable to see how 

well they fit the complete series, i. e., the combination of the historical and validation 
portions. 

104 



Model Parameter B SEB T-value 
- - 

Probability Res. Var Res. SE 
AR 1) 2237 0 0077 0 2703 16 0.00000 0.00014882 0121990T 0 

,, . . . 
1) MA(1) 2000 -0 0077 0 -25.8186 0.00000 0.0001496T 0.01223262 

,, . . 
, 1,1) AR(1) 0.3225 0.0330 9.7585 0.00000 0.00014872 0.01219517 

MA(1) 0.1037 0.0347 2.7987 0.00282 
2,1, ) AR(1) 0.2168 0.0079 27.4361 0.00000 0.00014868 0.01219360 

AR(2) 0.0308 0.0079 3.8985 0.00010 
-(7-91,2) MA(1) -0.2178 0.0078 -27.6606 0.00000 0.00014850 0.01218602 

MA(2) -0.0896 0.0078 -11.3792 0.00000 
(2,1,2) AR(1) 0.5617 0.1485 3.7831 0.00016 0.00014842 0.01218269 

AR(2) -0.2627 0.0537 -4.8877 0.00000 
MA(1) 0.3448 0.1482 2.3261 0.02002 
MA(2) -0.2283 0.0339 -6.7273 0.00000 

(2,1,1) AR(1) -0.1940 0.1658 -1.1704 0.24183 0.00014860 0.01219029 
AR(2) 0.1276 0.0351 3.6343 0.00030 
MA(1) -0.4103 0.1665 -2.4641 0.01375 

(1,1,2) AR(1) -0.1708 0.0882 -0.1936 0.84648 0.00014851 0.01218639 
MA(1) -0.2347 0.0878 -2.6729 0.00725 
MA(2) -0.0929 0.0190 -4.8810 0.00000 

(2,1,3) AR(1) 0.5536 0.1687 3.2822 0.00103 0.00014841 0.01218257 
AR(2) -0.3545 0.0752 -4.7148 0.00000 
MA(1) 0.3366 0.1689 1.9927 0.04630 
MA(2) -0.3195 0.0821 -3.8921 0.00100 
MA(3) -0.0255 0.0259 -0.9858 0.32423 

3,1,2 AR(1) 0.7528 0.1029 7.3114 0.00000 0.00014840 0.01218188 
AR(2) -0.6296 0.1117 -5.6366 0.00000 
AR(3) 0.0765 0.0273 2.8030 0.00506 
MA(1) 0.5350 0.1021 5.2371 0.00000 
MA(2) -0.5468 0.1006 -5.4341 0.00000 

Table 6.1 Model Statistics for Methane Concentration Data. 

After fitting the parameter values estimated for each of the two models to the complete 

series it was found that the residual autocorrelation values were lower for the (2,1,2) 

model. This means that its parameters fit the whole series better than the (1,1,0) model 

does. However, the Box-Ljung values of the whole series for the (2,1,2) model do not 

compare favourably to the residual series of the augmented series, over which the 

parameter values were originally estimated. Although they are larger, they confirm that 

the model (2,1,2) is still suitable but will need checks to ensure the parameter values are 

optimum in an on-going monitoring and forecasting situation. Such situations are 
discussed in chapter 8. 

Various diagnostic checks have shown that the ARIMA (2,1,2) fits better than the 
ARIMA (1,1,0). However, because their diagnostic statistics are very similar they can 
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both be retained and a final choice could be made on the basis of their forecasting 

performance. The two models are therefore: 

ARIMA (2,1,2): (1 - 0.56B + 0.26B2)O1 Mt = (1 - 0.35B - 0.23B2) Ct [6.1] 

(3.9) (-5.0) (2.4) (6.8) 

ARIMA (1,1,0): (1 - 0.22B)V1 Mt = Et [6.2] 

(7.6) 

6.3.2 Hourly Average Series of Methane Concentration 

The models presented in this section were fitted to a series of hourly average values of 

methane concentration for April 1991. That is, from the original series the thirty 

observations recorded each hour were averaged. This resulted in a total series length of 
720 observations. The complete plot of the series is shown in Figure 6.6. The plot 

suggests cyclical behaviour with two periods. The most obvious is a weekly period and 

the possibility of a daily period as well. Although these are evident from an inspection of 

the plot only the behaviour of the correlations will indicate if there are true seasonal 

components within the series. As always the first step in the model building process is 

to plot the correlations of the series, and as expected the series is not stationary. Taking 

non-seasonal first differences is sufficient to render the series non-seasonally stationary 

and the autocorrelations are shown in Figure 6.7. Lags 1,2 and 3 have correlation values 

that are less than the 2sd mark and significant spikes are seen at lags 4 and 5. Very large 

spikes occur at lags 24 and 48. This confirms that there is a seasonal component in the 

series, with period 24. That is to say, there is some degree of similarity between the 

value at time t and t+24. Since there is a seasonal component in the series it is necessary 

to find the correct order of seasonal parameters before the non-seasonal parameters are 
fitted. 

A tentative seasonal model might be an SMA(1) or possibly an SAR(I). In either case it 

is necessary to take a seasonal difference of period equal to 24 before the parameter 

values are estimated. The purpose here is to remove the seasonal effect and if this is done 

no spikes at lags 24 and 48 will be evident in the residual correlations. The SMA(1) has a 
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value of 0.83 and a t-value of 30.876 while the SAR(l) parameter has a value of -0.18 
and a t-value of -4.49. The SMA(1) model seems to be the best one and this is confirmed 
by its removal of the seasonal spikes from the correlations, whilst the SAR(I) parameter 
does not. So far the model is an ARIMA (0,0,0)(0,1,1)24, i. e. it is a multiplicative 
seasonal model whose non-seasonal parameters have not yet been estimated and whose 
seasonal component is described by an SMA(1) parameter equal to 0.83. This value will 
alter once non-seasonal parameters are added to the model. 

24 6 8 10 12 14 16 18 20 22 24 26 28 30 

Day Number 

Figure 6.6 Plot of Hourly Average Methane Concentration Data. 

The next step is to fit the non-seasonal parameters and model identification now proceeds 
as normal. After one degree of non-seasonal differencing the only significant correlations 
are at lags 5 and 6. A model could be estimated with parameters fitted to lags 5 and 6 

only but it is most likely that lower-order parameters should be included as well. Since 
the seasonal component of the series is best represented by an SMA(l) model the first 
non-seasonal parameter to fit is an MA(1) and then re-estimate the model with an MA(5), 
fitted to lag 5 only. The autocorrelations of the MA(l) models residuals are all low apart 
from high values at lag 4,5 and 6. Introducing the MA(5) parameter improves the fit of 
the model noticeably with none of the autocorrelations being significant. To test the fit of 
the model an AR(1) parameter was introduced. This had the effect of further reducing the 
Box-Ljung values but its t-value was 0.47. Furthermore, the t-values for the MA 
parameters were lower than for the purely MA model. This model was rejected because 
of the effect of the AR(1) parameter but the exercise was interesting as it seemed that 
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Autocorrelations: 14ETHAPRIL HOURLY AVERAGE 
Transformations: difference (1) 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 
----------------------------------------- 

1 -. 025 . 039 . *I . 419 . 811 
2 -. 068 . 039 . *I " 3.411 . 332 
3 -. 012 . 039 .*. 3.502 . 478 
4 -. 039 . 039 . *I . 4.674 . 001 
5 -. 208 . 039 48.190 . 000 
6 . 065 . 039 . 1*" 50.978 . 000 
7 . 022 . 039 .* 51.285 . 000 
8 . 028 . 039 . i*" 51.817 . 000 
9 . 034 . 039 . i*" 52.597 . 000 

10 . 013 . 039 *. 52.706 . 000 
11 -. 034 . 039 . *i . 

53.472 . 000 
12 . 001 . 039 .*. 53.472 . 000 
13 -. 033 . 039 . *i " 54.203 . 000 
14 . 029 . 039 . 1*. 54.747 . 000 
15 . 011 . 039 .* 54.821 . 000 
16 . 090 . 039 . i** 60.255 . 000 
17 . 001 . 039 .* 60.255 . 000 
18 -. 012 . 039 *. 60.360 . 000 
19 -. 147 . 039 *. *i . 74.898 . 000 
20 -. 129 . 039 *. *) " 86.100 . 000 
21 -. 062 . 039 . *I " 88.686 . 000 
22 -.. 003 . 039 .*. 88.694 . 000 
23 . 079 . 038 . I** 92.900 . 000 
24 . 294 . 038 . I*. **** 151.162 . 000 
25 . 088 . 038 . I** 156.412 . 000 
26 . 008 . 038 .*" 156.453 . 000 
27 -. 053 . 038 "*I " 158.333 . 000 
28 -. 092 . 038 **I " 164.068 . 000 
29 -. 172 . 038 *. *I . 184.195 . 000 
30 . 028 . 038 . 1*. 184.736 . 000 
31 . 002 . 038 .*. 184.738 . 000 
32 . 027 . 038 . 1*. 185.240 . 000 
33 -. 020 . 038 .*. 185.505 . 000 
34 . 016 . 038 .* 185.671 . 000 
35 . 037 . 038 . I*" 186.632 . 000 
36 -. 025 . 038 . *i . 187.078 . 000 
37 -. 055 . 038 . *I . 189.133 . 000 
38 . 052 . 038 . I*" 191.024 . 000 
39 -. 046 . 038 . *I 192.480 . 000 
40 . 042 . 038 . 1*. 193.713 . 000 
41 . 063 . 038 . 1*. 196.447 . 000 
42 . 021 . 038 *. 196.749 . 000 
43 -. 137 . 038 *. *I . 209.877 . 000 
44 -. 110 . 038 **I . 218.281 . 000 
45 -. 056 . 038 . *I . 220.470 . 000 
46 . 040 . 038 . 1*" 221.608 . 000 
47 . 035 . 038 . I*" 222.450 . 000 
48 . 237 . 038 . I*"*** 261.853 . 000 
49 . 065 . 038 . I*" 264.801 . 000 
50 -. 069 . 038 . *I . 268.129 . 000 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 650 Conutable first lags after differencing: 648 

Figure 6.7 Autocorrelation of Hourly Average Methane Concentration with 1 Degree 

of Non-Seasonal Differencing. 
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Autocorrelations: ERR_1 Error for DAT from ARIMA, MOD L. 2 NOCON 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1 . 003 . 040 
2 -. 059 . 040 . *i . 
3 -. 005 . 040 .*. 
4 -. 072 . 040 . *I . 
5 -. 002 . 040 .*. 
6 . 064 . 040 . 1*" 
7 . 007 . 040 .*. 
8 . 004 . 040 . 
9 . 030 . 040 . I*. 

10 -. 036 . 040 . *i 
11 -. 032 . 040 . *I 
12 . 000 . 040 . 
13 -. 040 . 040 . *I 
14 -. 015 . 039 .* 
15 . 016 . 039 . 
16 . 070 . 039 . 1*. 
17 -. 028 . 039 . *I 
18 -. 047 . 039 . *I . 
19 -. 018 . 039 
20 -. 029 . 039 . *I . 
21 -. 038 . 039 . *I 
22 . 016 . 039 "* 
23 . 014 . 039 .* 
24 . 014 . 039 " 
Total cases: 650 computable first lags: 624 

. 006 . 997 
2.189 . 534 
2.207 . 698 
5.436 -. 365 
5.439 . 489 
8.051 . 328 
8.084 . 425 
8.095 . 525 
8.677 . 563 
9.518 . 574 

10.163 . 602 
10.163 . 681 
11.177 . 672 
11.320 . 730 
11.494 . 778 
14.628 . 622 
15.123 . 654 
16.553 . 620 
16.760 . 668 
17.289 . 693 
18.230 . 692 
18.392 . 736 
18.519 . 777 
18.648 . 814 

Partial Autocorrelations: ERR-1 Error for DAT from ARIMA, MOD 2 NOCON 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

1 . 014 . 038 
2 -. 053 . 038 
3 -. 008 . 038 
4 -. 076 . 038 
5 -. 002 . 038 
6 . 058 . 038 
7 . 002 . 038 
8 . 000 . 038 
9 . 027 . 038 

10 -. 029 . 038 
11 -. 027 . 038 
12 . 003 . 038 
13 -. 046 . 038 
14 -. 021 . 037 
15 . 015 . 037 
16 . 068 . 037 
17 -. 016 . 037 
18 -. 037 . 037 
19 -. 025 . 037 
20 -. 035 . 037 
21 -. 034 . 037 

* . 
. *I . 
. *. 
**I . * 
. 1*. 

* . *. . 
. 1*. 
. *I . 
. *I . * .. 
. *1 . * 

. I* * 

*1. 
*1. 
*1. 
*1. 

22 . 016 . 037 . *. 
23 . 022 . 037 
24 . 021 . 037 . *. 
Total cases: 650 Computable first lags: 624 

--+ 

Figure 6.8 Residual Correlations of the ARIMA (0,1, [1,5])(0,1,1)24 Model. 
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Model Parameter B SEB T-value Probabili Res. Var Res. SE 
S(1,1,0) SAR(1) -0.1822 0.0405 -4.4972 0.00000 0.01440681 0.12002838 
S(0,1,1) SMA(1) 0.8295 0.0268 30.8673 0.00000 0.01232511 0.11101852 
(0,1,1) MA(1) 0.1450 0.0380 3.8106 0.00015 0.00136551 0.0369528 
(0,1,0) 

1 5 
MA(1) 
MA 5 

0.1450 
0969 0 

0.0380 
0380 0 

3.8106 
5518 2 

0.00015 
01095 0 

0.00136551 0.0369528 
q= , ( ) . . . . SMA(1) 0.9447 0.0373 25.287 0.00000 

, 1, ) AR(1) 0.1065 0.2238 0.4758 0.63437 0.00136739 0.03697828 
q=1,5 MA(1) 0.2540 0.2168 1.1713 0.24191 

MA(5) 0.0882 0.0375 2.3490 0.01913 
SMA(1) 0.9447 0.0374 25.2616 0.00000 

, 1, ) AR(1) -0.1373 0.0380 -3.6084 0.00033 0.00136656 0.03696701 
p=1,5 AR(5) -0.1047 0.0380 -2.7555 0.00603 

SMA(1) 0.9436 0.0369 25.5801 0.00000 
(0,1,0) MA(1) 0.1373 0.0383 3.5840 0.00036 0.00136297 0.03691840 
q=(1,2,5) MA(2) 0.0672 0.0383 1.7568 0.07945 

MA(5) 0.0955 0.0378 2.5221 0.01191 
SMA(1) 0.9438 0.0371 25.4654 0.00000 

Table 6.2 Model Statistics for Methane Concentration Data (Hourly Average Series). 

introducing AR parameters into the model could lower the Box-Ljung values but result in 

dubious parameter statistics. To test this theory the model was re-estimated with only AR 

parameters at lags 1 and 5. 

The residual Box-Ljung values for the AR(1,5) model were lower than for the MA(1,5) 

model at higher lags but its residual statistics were higher indicating that the MA(1,5) 

model was still the best fit so far. All that remained to be done was to add extra 

parameters until no improvement in the residual statistics occurred. The MA(1,5) model 

was fitted with an MA(2) parameter making it an MA(1,2,5) model. The addition of the 

MA parameter at lag 2 further reduced the residual Box-Ljung values and lowered the 

residual statistics slightly. However, its t-value was low and in the interest of model 

parsimony it was rejected. No further investigation was attempted and the final model for 

the series was the SARIMA(0,1, [l, 5])(0, l, 1)24 given by: 

01p24Mt = (1 - 0.15B + O. 10B5)(1 - 0.94B24) £t 

(3.8) (-2.6) (25.5) 
[6.3) 
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Fitting this model to the whole of the series the residual autocorrelations compare 
favourably with those from the historical estimation period, shown in Figure 6.8, 

confirming that the model is suitable. 

6.3.3 10-Minute Average Series of Methane Concentration 

The original methane concentration data was averaged into 10-minute values to produce 
this third series. It had a total series length of 4320 values. The series was split into a 
historical portion of 3500 observations. The complete series was too long to plot onto 
one graph and Figure 6.9 shows the plot of the first 10 days worth of data. An 
inspection of this plot reveals that the series is most likely non-stationary and this proves 
to be the case once the correlations are calculated. After one degree of non-seasonal 
differencing the series is rendered stationary and the differenced correlations are shown in 

Figure 6.10. The pattern of the differenced auto and partial correlations leads to the 

tentative identification of a 2nd order autoregressive process but it is by no means clear 

what the generating process could be. 

0 144 288 432 576 720 864 

Observation Number 

1008 1152 1296 1440 

Figure 6.9 Plot of 10-Minute Averages of Methane Concentration. 
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Autocorrelations: DAT 
Transformations: difference (1) 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1 . 304 . 017 
2 -. 183 . 017 
3 -. 329 . 017 
4 -. 258 . 017 
5 -. 064 . 017 
6 . 121 . 017 
7 . 184 . 017 
8 . 082 . 017 
9 -. 058 . 017 

10 -. 120 . 017 
11 -. 071 . 017 
12 -. 014 . 017 
13 . 015 . 017 
14 . 049 . 017 
15 . 046 . 017 
16 . 013 . 017 
17 -. 016 . 017 
18 -. 018 . 017 
19 -. 029 . 017 
20 . 003 . 017 

"I. 
*#*** 

***"I" 

******"I" 

****"I" 

*I. 
"I"* 
"I"**# 
. i. *1. 

* 

t. I . 

* 
*I. 

*1. 
* 
* 

. 1* 
i# 

.* . * 

* 

323.322 . 000 
440.863 . 000 
821.214 . 000 

1053.865 . 000 
1068.064 . 000 
1119.446 . 000 
1238.081 . 000 
1261.399 . 000 
1273.060 . 000 
1323.208 . 000 
1340.878 . 000 
1341.568 . 000 
1342.361 . 000 
1350.923 . 000 
1358.309 . 000 
1358.943 . 000 
1359.854 . 000 
1360.948 . 000 
1363.911 . 000 
1363.943 . 000 

Plot Symbols: Autocorrelations * Two Standard Error Limits . 

Total cases: 3500 Computable first lags after differencing: 3498 

Partial Autocorrelations: DAT 
Transformations: difference (1) 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

1 . 304 . 017 
2 -. 304 . 017 
3 -. 200 . 017 
4 -. 161 . 017 
5 -. 064 . 017 
6 . 013 . 017 
7 . 037 . 017 
8 -. 018 . 017 
9 -. 033 . 017 

10 -. 029 . 017 
11 . 000 . 017 
12 -. 033 . 017 
13 -. 041 . 017 
14 . 004 . 017 
15 . 004 . 017 
16 . 005 . 017 
17 . 002 . 017 
18 . 010 . 017 
19 -. 020 . 017 
20 . 023 . 017 

. I. ***** 
*****. I. 

***, I. 
**. I, 

*I. 
* 

. I* * 
*I. 
*I. 

* 
*I. 
*I. 

* . *. 
. *. * 
.* 
. *. 

Plot symbols: Autocorrelations * Two Standard Error Limits . 
Total cases: 3500 Computable first lags after differencing: 3498 

Figure 6.10 Correlations of 10-Minute Average Methane Concentration for 1 Degree of 
Differencing. 
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Model Parameter B SEB T-value Probabili Res. Var Res. SE 
, 1, ) AR(1) 0.037 0.0161 18.8581 0.00000 0.00068410 0.02615525 

(0,1,1) MA(1) -0.3994 0.0155 -25.7643 0.00000 0.00065417 0.02557678 
(1,1,1) AR(1) -0.0427 0.0425 -1.0037 0.31559- '0.00065 411 0.02557565 

MA(1) -0.4328 0.0384 -11.2827 0.00000 
(2,1,0) AR(1) 0.3960 0.0161 24.5760 0.00000 0.00062125 0.02492486 

AR(2) -0.3033 0.0161 -18.8292 0.00000 
( , 1,2 MA(1) -0.3669 0.0169 -21.7270 0.00000 0.00065362 0.02556608 

MA(2) -0.0526 0.0169 3.1168 0.00184 
(2,1,2) AR(1) 0.9844 0.0286 34.3965 0.00000 0.00058139 0.02411197 

AR(2) -0.5797 0.0286 -20.2812 0.00000 
MA(1) 0.6953 0.0348 19.9809 0.00000 
MA(2) -0.1359 0.0348 -3.9086 0.00009 

2,1, AR(1) 0.9246 0.0266 34.6898 0.00000 0.00058283 0.02414182 
AR(2) -0.4762 0.0149 -32.0170 0.00000 
MA(1) 0.6160 0.0285 21.6385 0.00000 

1,1,2 AR(1) 0.6644 0.0291 22.7952 0.00000 0.00061163 0.02473106 
MA(1) 0.3976 0.0284 13.9994 0.00000 
MA(2) 0.4169 0.0154 27.0844 0.00000 

(2,1,3) AR(1) 1.0787 0.0431 24.9875 0.00000 0.00058016 0.02408646 
AR(2) -0.6601 0.0333 -19.7941 0.00000 
MA(1) 0.7813 0.0469 16.6765 0.00000 
MA(2) -0.1701 0.0339 -5.0241 0.00000 
MA(3) -0.0769 0.0278 -2.7657 0.00571 

(3,1,2) AR(1) -0.0131 0.0252 -0.5216 0.60198 0.00058445 0.02417538 
AR(2) 0.5116 0.0241 21.2631 0.00000 
AR(3) -0.4736 0.0152 -31.1136 0.00000 
MA(1) -0.3154 0.0256 -12.3054 0.00000 
MA(2) 0.6841 0.0253 27.0554 0.00000 

Table 6.3 Model Statistics for 10-Minute Average Model. 

Estimating an ARIMA (2,1,0) results in the AR1 parameter having a value of 0.39 (t- 

value = 24.57) and the AR2 parameter having a value of -0.30 (t-value = -18.83). Both 

of these parameters are significant but an examination of the residual autocorrelations 
reveals that they are still highly correlated. Therefore, the original identification is 
inadequate and it is necessary to fit additional parameters. This could be done on a trial 
and error basis but it was more efficient to fit a range of models to the series 
automatically, as done for the modelling of the original series. Such a procedure, where 
it is evident that a relatively simple model is sufficient to model a series, allows model 
parameters to be rejected if their t-values are too low. The residuals of the resulting 
models are then compared to see which is the best fit. Table 6.3 details the various model 
statistics, including the residual standard error and variance. 
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Autocorrelations: ERR-17 Error for DAT from ARIMA, MOD 35 NOCON 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1 -. 003 . 017 
2 -. 009 . 017 
3 . 018 . 017 
4 -. 011 . 017 
5 -. 031 . 017 
6 -. 020 . 017 
7 . 012 . 017 
8 -. 023 . 017 
9 -. 047 . 017 

10 -. 052 . 017 
11 . 002 . 017 
12 . 007 . 017 
13 -. 021 . 017 
14 . 011 . 017 
15 . 016 . 017 
16 . 008 . 017 
17 -. 005 . 017 
18 . 018 . 017 
19 -. 024 . 017 
20 . 023 . 017 

* 

*1. 
* 

*I" 

* 

* 

* 

* 

. 
*. 

. 023 . 989 

. 295 . 961 
1.442 . 837 
1.848 . 870 
5.149 . 525 
6.538 . 478 
7.061 . 530 
8.990 . 438 

16.800 . 079 
26.161 . 006 
26.173 . 010 
26.355 . 015 
27.972 . 014 
28.396 . 019 
29.273 . 022 
29.503 . 030 
29.595 . 042 
30.731 . 043 
32.807 . 035 
34.745 . 030 

Plot Symbols: Autocorrelations * Two Standard Error Limits 

Total cases: 3500 Computable first lags: 3498 

Partial Autocorrelations: ERR_17 Error for DAT from ARIMA, MOD 35 NOCON 

LaQ Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

1 . 003 . 015 
2 . 005 . 015 
3 . 010 . 015 
4 -. 011 . 015 
5 -. 023 . 015 
6 -. 010 . 015 
7 . 012 . 015 
8 -. 021 . 015 
9 -. 049 . 015 

10 -. 057 . 015 
11 -. 009 . 015 
12 . 000 . 015 
13 -. 013 . 015 
14 . 020 . 015 
15 . 010 . 015 
16 . 000 . 015 
17 -. 006 . 015 
18 . 013 . 015 
19 -. 019 . 015 
20 . 018 . 015 

* . *. . *. . 
*" . *" . *" 
* . *" 

*I. 
*I. 

* . *. 
* 
* 

. *. * . *. . *. 

. *. 

Plot Symbols: Autocorrelations * Two Standard Error Limits . 

Total cases: 3500 Computable first lags: 3498 

Figure 6.11 Correlations of the ARIMA (2,1,3) Fit. 
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Autocorrelations: EBR 18 Error for DAT from ARIMA, MOD 36 NOCON 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1 -. 002 . 015 
2 -. 010 . 015 
3 . 013 . 015 
4 -. 008 . 015 
5 -. 030 . 015 
6 -. 024 . 015 
7 . 002 . 015 
8 -. 022 . 015 
9 -. 043 . 015 

10 -. 048 . 015 
11 -. 002 . 015 
12 . 002 . 015 
13 -. 017 . 015 
14 . 016 . 015 
15 . 009 . 015 
16 . 001 . 015 
17 -. 003 . 015 
18 . 015 . 015 
19 -. 018 . 015 
20 . 018 . 015 

* 

. *. 
* . 
*. 

*I. 
* . *. . *. 

*I. 
*I. 

* . *. 
. *. * . *. . *. . *. . *. . *. 
. *. 

. 021 
. 989 

. 422 . 936 
1.181 . 881 
1.478 . 916 
5.471 . 485 
7.905 . 341 
7.917 . 442 

10.097 
. 343 

18.093 
. 053 

28.011 
. 003 

28.025 
. 005 

28.037 
. 009 

29.259 
. 010 

30.373 
. 011 

30.687 
. 015 

30.695 
. 022 

30.737 
. 031 

31.709 
. 034 

33.140 
. 033 

34.496 
. 032 

Plot Symbols: Autocorrelations * Two Standard Error Limits . 
Total cases: 4320 Computable first lags: 4318 

Partial Autocorrelations: ERR 18 Error for DAT from ARIMA, MOD 36 NOCON 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

1 -. 002 . 015 
2 -. 010 . 015 
3 . 013 . 015 
4 -. 008 . 015 
5 -. 030 . 015 
6 -. 024 . 015 
7 . 001 . 015 
8 -. 022 . 015 
9 -. 043 . 015 

10 -. 050 . 015 
11 -. 004 . 015 
12 . 001 . 015 
13 -. 018 . 015 
14 . 011 . 015 
15 . 003 . 015 
16 -. 001 . 015 
17 -. 006 . 015 
18 . 010 . 015 
19 -. 022 . 015 
20 . 016 . 015 

* 
* . *" . *" 

*I. 
* . *. . *. 

*I. 
*I. 

* 
. *. 
. *. . *. .* 
. *. . *. "*- 

. *. 

Plot Symbols: Autocorrelations * Two Standard Error Limits 

Total cases: 4320 Computable first lags: 4318 

Figure 6.11A Correlations of the Complete ARIMA (2,1,3) Fit. 
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From Table 6.3 it is seen that 9 models contain parameters that constitute a suitable 
model. Of these models the ARIMA (2,1,3) has the best fit as seen by a comparison of 
its residual statistics shown in Table 6.3. The next best model is the ARIMA (2,1,2) and 
the ARIMA (2,1,3) is the result of an acceptable overfitting of this model. Adding an 
AR3 parameter to the ARIMA (2,1,2) produces an AR1 parameter with a very low t-value 

and a worsening of the residual statistics. Thus the ARIMA (3,1,2) is rejected. A slight 
improvement of the residual statistics is achieved by fitting an MA3 parameter. This 

parameter is small and indicates that there will be nothing to be gained by the addition of 

any further parameters. 

The residual autocorrelations of the ARIMA(2,1,3) are shown in Figure 6.11. The 

correlation values are low up to lag 6 after which they are somewhat larger. However, 

this is of no concern and is due to the large number of observations used to estimate the 

model. The final test of the model competence is to fit the parameters to the complete 

series, i. e. the historical and validation portions. The autocorrelations for the complete 

series show that the parameters fit well and are shown in Figure 6.11A. 

The best model to represent this series is: 

ARIMA (2,1,3): (1 - 1.08B + 0.66B 2)O1 Mt = (1 - 0.78B + 0.17B2 + 0.08B3)8t [6.4] 

(25.09) (-19.8) (16.7) (-5.0) (-2.8) 

6.3.4 One Day Series of Methane Concentration 

The last model of this section was built from one whole days data of methane 
concentration taken from 10th April 1991. The series is 720 observations in length and is 

seen in Figure 6.12. During the model building stages the series was split into a 
historical portion of 650 observations and a validation portion of 70 observations. The 

plot shows several rise and fall cycles over the day but there is no evidence of any real 
periodic behaviour. 

Taking first differences of the raw series was sufficient to render it stationary. Both the 
autocorrelation and partial autocorrelation plots have significant values at lag 1 while there 
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is also a significant value at lag 11 in the autocorrelations. This could be ignored since 
the 95% confidence limits generated for the correlations expect that 1 in 20 values will 
exceed the 2sd mark by chance alone. Thus, the identification of a tentative model is 

relatively easy as the correlations indicate a possible ARIMA(1,1,1) process. However, 

the estimation of this model indicates overfitting as the MA parameter has an insignificant 

t-value of 0.25. Also, the Box-Ljung values increased markedly from lag 11 onwards as 
seen in the residual autocorrelations, shown in Figure 6.13. Re-estimating with just an 
AR(1) parameter produced residuals with low Box-Ljung values up to lag 10, after which 
they also increased markedly. This was unusual as the original and differenced 

correlations did not indicate any possible reasons to explain this behaviour. 

1.2 

1.1-1 

1.0-7 

0.9-I 

0.8 

v 
I 

i 

0 180 360 540 720 

Observation Number 

Figure 6.12 Plot of One Days Methane Concentration. 

It was possible that the series could contain a seasonal component with a period of 10 but 
from an a priori consideration of the raw series there was no reason to justify this. This 
hypothesis was investigated by assigning a seasonal period of 10 to the data but the 

corresponding changes in the autocorrelation behaviour confirmed that no seasonality was 
present. Another attempt was made to lower the Box-Ljung values from lag 11 onwards 
by fitting an AR parameter at lag 11. This parameter proved to be significant with a value 
of -0.12 (t-value = -3.28) and an examination of the residual correlations revealed that its 

addition was appropriate. The autocorrelations of the residual series shown in Figure 
6.14 are an improvement on those from the ARIMA (1,1,0) but the autocorrelation Box- 
Ljung values still increase markedly from lag 10 onwards. This indicates that many more 
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Autocorrelations: ERR-1 Error for DAT from ARIMA, MOD 1 NOCON 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 BOX-Ljung Prob. 

1 . 000 . 039 .*. . 000 1.000 
2 . 008 . 039 .*. . 039 . 998 
3 -. 005 . 039 "*. . 057 1.000 
4 -. 057 . 039 "*I . 2.173 . 825 
5 -. 004 . 039 "*. 2.182 . 902 
6 . 007 . 039 .*. 2.216 . 947 
7 . 020 . 039 "*. 2.484 . 962 
8 -. 031 . 039 . *I . 3.116 . 959 
9 . 033 . 039 . I*. 3.841 . 954 

10 -. 042 . 039 . *I . 8.249 . 691 
11 -. 117 . 039 **I " 17.306 . 138 
12 -. 053 . 039 . *I . 19.186 . 117 
13 . 014 . 039 .* 19.323 . 153 
14 . 029 . 039 . I*. 19.901 . 176 
15 . 021 . 039 *. 20.188 . 212 
16 -. 069 . 039 . *I . 23.406 . 136 
17 -. 070 . 039 "*i . 26.637 . 086 
18 -. 058 . 039 . *1 . 28.866 . 068 
19 -. 060 . 039 . *I . 31.278 . 052 
20 -. 026 . 039 . *I . 31.727 . 062 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 650 Computable first lags: 648 

Figure 6.13 Residual Autocorrelations of the ARIMA (1,1,1) Model. 

Autocorrelations: ERP, 
-3 

Error for EAT from ARIMA, MOD-5 NOCON 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 
----------------------------------------- 

1 -. 005 . 039 .*. . 018 
. 991 

2 . 024 . 039 .* . 383 
. 944 

3 -. 003 . 039 *. . 387 
. 984 

4 -. 056 . 039 . *I . 2.476 
. 780 

5 -. 015 . 039 .*"2.615 . 855 
6 -. 005 . 039 .*. 2.631 

. 917 
7 . 004 . 039 .*. 2.640 

. 955 
8 -. 044 . 039 . *i . 3.943 

. 915 
9 . 027 . 039 . I*" 4.428 

. 926 
10 -. 041 . 039 . *I . 10.387 . 496 
11 . 006 . 039 .*. 10.409 . 580 
12 -. 021 . 039 .*" 10.694 . 636 
13 . 030 . 039 . 1*. 11.291 . 663 
14 . 031 . 039 . 1*" 11.915 . 685 
15 . 010 . 039 .*. 11.988 . 745 
16 -. 071 . 039 . *I " 15.345 . 571 
17 -. 081 . 039 **I 19.783 . 345 
18 -. 065 . 039 . *I . 22.627 . 254 
19 -. 066 . 039 . *I . 25.558 . 181 
20 -. 033 . 039 . *I . 26.306 . 195 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 650 Computable first lags: 648 

Figure 6.14 Residual Autocorrelations of the ARIMA ([1,11], 1,0) Model. 
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additional parameters could be fitted to the model to reduce the residual autocorrelations at 
higher lags. The residual variance for the model with the additional AR11 parameter is 
lowered by 1.5% as compared to the ARIMA (1,1,0). This improvement is small and 
demonstrates that little is gained by increasing the number of model parameters, especially 
at higher lags. Thus, the most suitable model for this series is a very simple ARIMA 
(1,1,0) given by: 

ARIMA (1,1,0): (1 - 0.26B)D1 Mt = Et [6.5] 
(114.7) 

A final test to the models suitability is how well the AR parameter fits the complete series. 
In this case the residuals after the model has been fitted tq the complete series do not 
increase greatly nor is their any appreciable change in the Box-Ljung values. This 

confirms that the model is suitable to represent the original series. 

Model Parameter B SEB T-value Probability Res. Var Res. SE 
1,1,1 AR(1) 

MA(1) 
0.2979 
0.0366 

0.1420 
0.1487 

2.0977 
0.2459 

0.03632 
0.80582 

0.00016431 0.01281835 

1,1, MA(1) 0.2 338 0.0379 6.9633 0.00000 0.00016408 0.01280918 
( , 1, ) 
p=1,11 

MA(1) 
MA(11) 

0.2503 
-0.1230 

0.0378 
0.03811 

6.6169 
-3.2281, 

0.00000 
0.00131. 

0.00016168 

1 
0.01271543 

Table 6.4 Parameter Statistics for One Days Methane Concentration Data. 

6.4.1 Original Series of Air Velocity 

As mentioned earlier, only brief descriptions of the model building process are now 
presented for all of the univariate models in this chapter. Air velocity was chosen as it is 

a variable that effects methane concentration in the short-term. That is, even if methane 
emission is constant, the air velocity is usually continuously varying and hence so is 

methane concentration. It was not thought necessary to transform the original air velocity 
series into air quantity values since this involves a constant scalar that is redundant. As 

usual the series was split into a historical portion of 16,000 observations and a validation 
portion of 5500 observations. The plot of a portion of the series is shown in Figure 
6.15. 
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Figure 6.15 Plot of Air Velocity. 

1440 

The air velocity values fluctuate over an average range of 0.2 m/s, with occasional large 

variations that could be due to a number of reasons. A large number of observations 

were lost due to transmission failure and these were replaced by instructing SPSS-X 

TrendsT"" to assign likely values. The vortex head of the velocity meter is sited adjacent to 

the sensing head of the methane monitor (see Plate 5.1, chapter 5). Thus, it is likely that 

the variation in the methane concentration (not methane emission) value is determined by 

the air velocity (hence quantity). 

The series was rendered stationary by one degree of differencing and proceeding through 

the structured modelling process, the best standard model was an ARIMA (1,1,2). The t- 

value of the MA1 parameter was insignificant (-1.35) and re-estimating as an ARIMA 
(1,1, [2]) resulted in an improved fit. The residual Box-Ljung values were low until lag 
13 after which they increased dramatically. An MA parameter was added to the model at 
lag 13 and this reduced the residual variance by 2.3%. This was small and the inclusion 

of the AR parameter at lag 13 was not thought worthwhile. Thus the model for the 

original air velocity series was: 

ARIMA (1,1, [2]): (1 + 0.75B)D1 At = (1 - 0.58B2)Et 

(-114.7) (73.1) 

-im 1"""1 

I 

[6.5] 
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6.4.2 Hourly Average Series of Air Velocity 

The plot of air velocity hourly averages for the complete month of April 1991 is shown in 

Figure 6.16. There are three items of interest on this plot. The first two are periods over 

which no actual data was available and are represented by the two very steady portions of 

the plot. The third is a very large drop in air velocity over the period 19 to 20th April, 

after which the velocity recovers to its usual level. On investigation, no circumstances 

were apparent to explain this behaviour. Both of these factors are detrimental to the 

building of a representative model but their effects are attenuated due to the large number 

of observations used. 
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Figure 6.16 Plot of Air Velocity Hourly Averages. 

The differenced correlations demonstrated weak seasonality with a period of 24, identical 

to the seasonality of the hourly average methane concentration series. This was 

surprising since there was no reason to explain this behaviour. To test whether this 

assumption was correct, models were estimated with and without seasonal components 

and revealed that models with a seasonal SMA(1) component fitted best. The best, 

simple model was an ARIMA (1,1,1)(0,1,1)24 and this was improved by fitting an extra 
AR parameter to lag 7 in an attempt to lower the residual Box-Ljung values. However, 

the addition of the AR7 parameter only improved the residual statistics by a small amount. 
Thus, the best model to represent the series was the ARIMA (1,1,1)(0,1,1)24 given by: 
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I 

(1 - 0.46B)V1p24At = (1 - 0.47B)(1 - 0.80B24) et [6/71 

(6.5) (15.4) (29.5) 

Fitting the model to the complete series actually resulted in a lowering of the residual 

autocorrelations Box-Ljung values, indicating a good model fit. 

6.4.3 10-Minute Average Series of Air Velocity 

The 10-minute average series of air velocity did not show any seasonal behaviour and it 

was relatively straightforward to build a time series model for it. The plot of the first ten 
days worth of data is shown in Figure 6.17. The plot displays no notable characteristics 

apart from indicating that the series is non-stationary both in mean and variance. One 

degree of non-seasonal differencing was sufficient to render it stationary. 
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Figure 6.17 10-Minute Averages of Air Velocity. 

The best model to fit the series was an ARIMA (2,1,2) given by: 

ARIMA (2,1,2): (1 + 0.41B - 0.56B2)01 At = (1 + 0.10B + 0.87B2) Et [6.8] 

(-9.6) (17.2) (-2.5) (-25.2) 
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Although the value of the MA1 parameter was small its t-value of -2.5 warranted its 

retention. The model fitted the series well with none of the residual autocorrelations 
having significant Box-Ljung values up to lag 20. The final test was to apply the model 
to the complete series and it was found that the residual autocorrelation Box-Ljung values 
only altered slightly, indicating the suitability of the model parameters. 

6.4.4 One Day Series of Air Velocity 

The plot of the series for one days worth of air velocity recorded on the 10th April 1991 

can be seen in Figure 6.18. It was found that a very simple ARIMA (0,1,1) model fitted 

the series very well, but on testing it by gross overfitting it was found that an ARIMA 

(2,1,3) was also suitable. Both of the models are: ' 

ARIMA (0,1,1): O1 At = (1 - 0.86B) Et 

(42.5) 

ARIMA (2,1,3): 

[6.9] 

(1 + 1.91B + 0.94B2)O1 At = (1 + 1.06B - 0.70B2 - 0.82B3)Et [6.10] 
(-52.2) (-27.3) (-24.8) (17.4) (22.3) 
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Figure 6.18 Plot of One Days Air Velocity. 
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The ARIMA (2,1,3) has lower Box-Ljung values for the residual autocorrelations but the 
fitting of the extra parameters to the ARIMA (0,1,1) model only achieves a 0.7% 

reduction in residual variance. This gain is very small and in the interests of model 

parsimony the ARIMA (2,1,3) is rejected and the simple ARIMA (0,1,1) retained. 

6.5.1 Original Series of Barometric Pressure 

It was not possible to build a time series model for the raw series of barometric pressure. 
Figure 6.19 shows a plot of two days worth of data. The series was characterized by 

periods of rising and falling barometric pressure with periods where the pressure was 

constant. The correlations of the series indicated that one degree of non-seasonal 
differencing was necessary and the differenced autocorrelations are shown in Figure 

6.20. The first three values are zero and mean that the series is most likely random. 
Large spikes are then seen at lags 5,8,10,12,15,16 which is very suggestive of some 
form of seasonal behaviour. A priori, this is completely unexpected since the weather 

cycle over the month of April should not result in the barometric pressure series 

containing a seasonal component. In fact, from a priori considerations it is not 

unreasonable to expect that the series be completely random. It may be possible to assign 

some degree of cyclical behaviour to atmospheric pressure when considered on a monthly 
basis from year to year but not during any particular month on its own. Thus the 

seemingly seasonal behaviour of the series was attributed to the method of pressure 

monitoring. No electronic instrument was available to monitor barometric pressure and 

the series was created by entering points from the barograph charts into the computer. 
Over periods when the pressure was constant this was satisfactory but difficulties arose 

when the pressure was changing. The reading could be read from the chart to a 

resolution of 0.5 mb but over periods of steady changes only the beginning and end 

values and times were read. The intervening data points were then calculated and entered 
into the computer in increments of 0.25 mb. Typically, the pressure gradients resulted in 

each 0.25 increment lasting for 5,8,10 or 12 values. These `periods' coincide with the 

seasonal behaviour apparent in the auto and partial autocorrelations. Ideally, no stepping 

of the values should be present in which case it is likely that the complex seasonal 

components would be missing making the modelling of the series possible and this would 

entail using an electronic monitoring device. 
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Figure 6.19 Plot of Selected Raw Barometric Pressure Series. 

If only one seasonal cycle had been evident a model could have been built but SPSS-X 

TrendsTM does not allow ARIMA modelling of series with multi-seasonality. In any case 

such a model, although representative of the time series, would not be representative of 
the underlying process that generated it. 

6.5.2 Hourly Average Series of Barometric Pressure 

The effect of producing hourly averages of the raw series removed all traces of seasonal 
behaviour. The plot of the complete series can be seen in Figure 6.21. The correlations 

of the series indicated that it was not random but it was impossible to attribute how much 

of the correlation was due to the original series and it was decided to go ahead and model 
the time series. The model building procedure was straightforward and the best fit to the 

series was an ARIMA ([1,7,8], 2,2) given by: 

(1 + 0.85B + 0.16B7 + 0.13B8)02 Bt = (1 + 1.02B + 0.21B2) Et [6.11] 

(-5.0) (-3.4) (-2.1) (-6.0) (-5.4) 
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Autocorrelations: DAT 
Transformations: difference (1) 

Lag Corr. Err. 

1 . 000 . 007 
2 . 000 . 007 
3 . 000 . 007 
4 . 043 . 007 
5 . 148 . 007 
6 . 053 . 007 
7 . 032 . 007 
8 . 162 . 007 
9 . 105 . 007 

10 . 183 . 007 
11 . 027 . 007 
12 . 259 . 007 
13 . 015 . 007 
14 . 042 . 007 
15 . 157 . 007 
16 . 149 . 007 
17 . 036 . 007 
18 . 129 . 007 
19 . 019 . 007 
20 . 253 . 007 
21 . 034 . 007 
22 . 051 . 007 
23 . 013 . 007 
24 . 348 . 007 
25 . 168 . 007 
26 . 036 . 007 
27 . 086 . 007 
28 . 061 . 007 
29 . 022 . 007 
30 . 252 . 007 
31 . 018 . 007 
32 . 134 . 007 
33 . 044 . 007 
34 . 051 . 007 
35 . 163 . 007 
36 . 293 . 007 
37 . 024 . 007 
38 . 012 . 007 
39 . 023 . 007 
40 . 290 . 007 
41 . 045 . 007 
42 . 082 . 007 
43 . 029 . 007 
44 . 091 . 007 
45 . 201 . 007 
46 . 018 . 007 
47 . 029 . 007 
48 . 286 . 007 
49 . 081 . 007 
50 . 162 . 007 

-1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 
+----+----+----+----+ 

t . 000 
. 000 

* . 000 
40.195 . *** 513.679 "* 574.229 

596.840 "*** 
1162.277 

. *+ 1400.066 

. **** 
2126.410 
2142.691 

. ***** 3590.506 
* 3595.178 

3633.585 
*** 4165.444 ý*** 4645.470 

4673.911 
*** 5035.956 

* 5043.455 

. ***** 6426.724 
6452.178 

* 6508.368 
* 6511.879 

******* 9131.322 

. *** 9739.116 
9767.569 

** 9928.542 
10008.448 

* 10018.508 
***** 11391.716 

* 11398.450 

. *** 11788.702 
11830.805 
11887.029 

*** 12460.067 ý****** 14319.310 
* 14331.287 
* 14334.281 
* 14345.281 

****** 16167.746 
16211.758 
16358.535 "* 16377.255 

. ** 16557.187 
**** 17431.528 

* 17438.268 
* 17456.992 ý****** 19231.197 ý** 19374.548 

. *** 19941.103 

Plot Symbols: Autocorrelations * Two Standard Error Limits . 
Total cases: 21600 Computable first lags after differencing: 21598 

Figure 6.20 Autocorrelations of Differenced Original Barometric Pressure Series. 
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Figure 6.21 Hourly Average Plot of Barometric Pressure. 

6.5.3 10-Minute Average Series of Barometric Pressure 

The series for 10-minute averages of barometric pressure contained a seasonal component 

with a period of 12. Again this was most likely because of the format of the original 

series but two degrees of non-seasonal differencing were necessary to make it stationary 

and no seasonal differences were needed. The best fit to the series was the ARIMA 

([1,5], 2,2)(2,0,0)12 given by: 

(1 + 0.41B - 0.14B5)(1 - 0.26B12 - 0.23B24) V2 Bt = (1 - 0.48B - 0.47B2), et [6.12] 

(-6.1) (8.8) (15.8) (13.6) (6.8) (3.1) 

6.5.4 One Day Series of Barometric Pressure 

The plot of one days worth of barometric pressure is shown in Figure 6.22. For almost 
half of the day the pressure is constant until it falls steadily by 5mb after which it is 

constant again. Seasonality was present in the original autocorrelations and the best fit 

model was an unusual ARIMA (0,1, [8,20])(2,0,0) 12 given by: 
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(1 - 0.72B12 - 0.19B24) VI Bt = (1 - 0.24B8 + 0.23B20) st [6.13] 

(18.7) (5.0) (6.5) (-6.3) 

The addition of the moving average parameters at lags 8 and 20 resulted in low value 
residual autocorrelations with low Box-Ljung values and high probabilities, indicating 

that the model fitted the series very well. However, this example demonstrates that even 
though an ARIMA model can be built to represent the time series, its usefulness must 

always be questioned inlight of knowledge that is available concerning the original time 

series which in this case is for one days worth of data. Allowing for the fact that the 

seasonal component is due to the method of data collection, the moving average 

parameters at lags 8 and 20 cannot be explained. Again, however, the model was built 
for use in determining the effect of barometric pressure on methane emission (in chapter 
7) and the question of its representativeness is ignored at this point. 
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Figure 6.22 Plot of One Day Series of Barometric Pressure. 

6.6 Coal Production 

The univariate models for coal production were built from data relating to the average 
cutting speed of the coal shearer for one complete strip or partial strip. Figure 6.23, a 
plot of the production from two typical weekdays where each bar represents one strip or 

720 
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part of a strip, its height relating to the average speed of the cut. A typical shift cut 4 to 5 

strips and during the week 3 shifts per day were worked. Some production took place 
over the weekends but this period was usually kept free for maintenance. 
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Figure 6.23 Plot of Typical Original Production Series. 

Estimating the actual coal production is not an easy task due to the number of factors that 

contribute to the true amount mined. Although the density of coal was probably fairly 

constant the volume of coal per strip was not. Also, the level of strata disturbance is 

related to the total volume of material removed which is not the same as the volume of 

coal mined. Perhaps the most likely indicator of potential methane emission is face 

advance rate, as used by other methods for methane prediction but this is not suitable for 

use over a short time period. Thus, because of the need to obtain an initial production 

series of one observation every 2 minutes, the machine speed was selected as the potential 
production indicator of methane emission. 

6.6.1 Original Series of Production 

The plot of the auto and partial autocorrelations of the original production series were 
complex and much trial and error was necessary before a suitable fit could be found. 
There appeared to be evidence of multi-seasonality with a dominant seasonal component 
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of 10 and smaller periods of 5 and perhaps 20. A final estimation of the model with an 
SAR(2) component of period 10 was sufficient to remove the dominant seasonal 
component and reduce the values of the correlations at the minor periodic lags. Fitting 
AR parameters to lags 2,3 and 5 also served to lower the Box-Ljung values of the 

residuals at low lags but they remained high at higher ones and no amount of searching 
and overfitting produced a model that performed better in terms of diagnostic checks. 
The values of the AR parameters were also small but their t-values were large confirming 
their validity. The final form of the model was an ARIMA ([2,3,5], 1,0)(2,0,0)10 given 
by: 

(1 + 0.04B2 + 0.04B3 + 0.06B5)(1 + 0.14B10 - 0.15B20) O1 Pt = Et [6.14] 

(5.5) (-6.5) ("9.2) (-20.4) (22.2) 

6.6.2 Hourly Average Series of Production 

The hourly average series was identified as containing a seasonal component of period 
24. This was consistant with the knowledge that production periods followed a daily 

pattern, or rather there were definite time periods when the machine would not be cutting 
(shift change overs) and times when it would. This did not apply so much to the 

production over the weekend and it was thought that a second weekly cycle could also be 

present in the series, i. e., the production at a cetain hour on a Monday would be linked to 
the production at the same hour on all Mondays. This implies a seasonal component of 
period 144 and although the correlations were plotted they did not reveal its presence. A 
further attempt to see if a weekly cycle was present amounted to fitting seasonal 
parameters with a period of 144 but unfortunately, this was beyond the capabilities of 
SPSS-X TrendsTM due to problems of mainframe computer memory availability. The plot 
of the complete series is shown in Figure 6.24 and illustrates the possible weekly cycle. 
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Figure 6.24 Hourly Average of Production Series. 

The best fit to the series was obtained from the ARIMA (4,1,4)(2,0,0)24 given by: 

(1 - 0.96B + 0.93B2 - 0.57B3 + 0.35B4)(1- 0.29B12 - 0.12B24) Vl Pt = 
(5.5) (-5.4) (3.4) (-5.5) (7.2) (2.9) 

(1 - 1.44B + 1.24B2 - 0.94B3 + 0.29B4) Et 
(8.1) (-4.7) (3.9) (-2.1) 

[6.15] 

6.6.3 10-Minute Average Series of Production 

No seasonal components were observed in the correlations of the 10-minute average 
series and the building of a representative model was quite straightforward. The best fit 

model was an ARIMA (4,1, [1,2,4]) given by: 

(1 - 0.75B + 0.75B2 - 0.12B3 + 0.23B4)D1 Pt = (1 - 0.72B + 0.36B2 - 0.17B4)Et [6.16] 

(12.8) (-13.4) . (4.4) (-8.2) (12.3) (-6.7) (6.2) 
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The AR and MA parameters fitted at lag 1 have similar values indicating that they might 
be superfluous but re-estimation with their removal resulted in a worse fit so they were 

retained. This model is similar to the one fitted to the hourly average series of methane 

concentration but without the seasonal component. 

6.6.4 One Day Series of Production 

The autocorrelations of the one days production series were small until lag 20. This was 
due to the length of time taken to cut one strip which on average was 40 minutes long or 
20 observations. It was found that the series could be fitted by an ARIMA ([20], 1,0), 

that is an AR parameter fitted to lag 20 only and subsequent fitting of the residual series 
indicated that this was appropriate. Alternatively, the series could be represented by an 
SARIMA (0,1,0)(1,0,0)20 which is infact the same as the former model. In terms of 
simplicity the best model is the ARIMA ([20], 1,0) given by: 

(1 + 0.21B20) D1 Pi = Ei [6.17] 

(-5.6) 

6.7 Modelling of the Methane Drainage Range Variables 

The methane drainage range variables monitored were drainage methane concentration, 

static pressure and differential pressure. The drainage static pressure provides an 
indication of the suction available at the borehole which determines the quantity of gas 
that is drawn into the drainage range from the borehole. The volume of total gas flow in 

the drainage range is determined by the differential pressure. At this stage the objective 

was only to build time series models, leaving the finding of a possible relationship 
between the drainage range parämmeters and production to the next chapter. 
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Figure 6.25 Plot of Drainage Methane Concentration and Static Pressure. 

6.7.1 Original Series of Methane Drainage Range Variables 

Plots of a typical portion of the original three series are shown in Figures 6.25 and 6.26. 

In Figure 6.25, drainage methane concentration is plotted against static pressure whilst in 

Figure 6.26 drainage methane concentration is plotted against differential pressure. It is 

seen that the behaviour of the static and differential pressure is identical since if the pumps 

are not working the pressure drops and there is a corresponding rise in drainage methane 

concentration. The pumps were usually stopped for a very short period of time for the 

purpose of topping up their sumps. The increase in methane purity is not immediate once 

the pumps have stopped and occurs after a short time lag of a few minutes. Once the 

pumps are restarted the purity trace falls at a slower rate than it increased. Since the three 

parameters behave similarly it was anticipated that their ARIMA models would have a 

very similar structure and this proved to be true in some cases. 
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Figure 6.26 Plot of Drainage Methane Concentration and Differential Pressure. 
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For the original three series the best models consisted purely of autoregressive terms that 
contained a high number of parameters. The best models for each of the series were; 

Drainage Methane Concentration: ARIMA ([2,3,4], 1,0) 

(1 + 0.14B2 + 0.09B3 + 0.06B4 )O1 Qt = Et 

(-20.5) (-13.7) (-9.6) 

Static Pressure: ARIMA (7,1,0) 

[6.18] 

(1 - 0.43B + 0.17B2 - 0.03B3 + 0.12B4 + 0.07B5 + 0.11B6 + 0.03B7)V1St = Et [6.19] 

(63.3) (-22.5) (3.4) (-15.6) (-9.6) (-15.5) (-4.8) 

Differential Pressure: ARIMA ([1,2,4,5,6,7], 1,0) 

(1 - 0.23B + 0.08B2 + 0.08B4 + 0.12B5 + 0.14B6 + 0.05B7)pl Dc = ec 
(33.2) (-11.8) (-11.8) (-16.8) (-20.4) (-7.7) 

[6.20] 

d 
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It is seen that most of the values of the AR parameters from lags three onwards are small 
but their inclusion is warranted because of their significant t-values and their ability to 
lower the Box-Ljung values of the residuals. All of the models proved to be good fits of 
their respective series. It is interesting to note that the model for methane purity did not 

need an AR parameter at lag 1 which is probably due to the delay caused by changes in 

the drainage pressure. 

6.7.2 Hourly Average Series of Methane Drainage Range Variables 

The models built from hourly averages of the original series did not require any seasonal 
components. Some seasonal effect in all three series had been anticipated by an a priori 

consideration of the frequent stoppage of the methane exhausters but their stoppage 

occurred at irregular intervals and so had no noticeable periodic affect. Since there was 

an absence of a seasonal affect due to the methane exhausters it was feasible that the 

methane purity series contained a seasonal component due to the production cycle. This 

was also not present and suggests that a univariate model for drainage methane 

concentration would be unaffected by the cyclical nature of coal production. It was also 
found that the three models had similar forms in that they were best represented by only 
AR parameters. No problems occurred in the building of the three time series average 

models and they are; 

Average Drainage Methane Concentration: ARIMA ([1,2,11], 1,0) 

(1 - 0.14B + 0.13B2 + 0.20B11)01 Qt = Et 

(3.7) (-3.3) (-5.3) 

Average Static Pressure: ARIMA (4,1,0) 

(1 + 0.42B + 0.27B2 + 0.19B3 + 0.15B4 
-t 

(-10.8) (-6.5) (-4.7) (-3.9) 

[6.21] 

[6.22) 
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Average Differential Pressure: ARIMA (4,1,0) 

(1 - 0.49B - 0.34B2 + 0.23B3 + 0.16B4)01 Dt = Et [6.23] 

(-12.6) (-8.1) (-5.3) (-4.0) 

The models for average static and differential pressure have the same form and very 
similar parameters values which is not surprising since they are functions of each other. 

6.7.3 10-Minute Average Series of Methane Drainage Range Variables 

The transformation of the three original series into 10-minute average values brought 

about a change in their model forms. Again, the two models for the static and differential 

pressure were very similar but curiously the model for methane purity retained the same 
form as the methane purity models for the original and hourly average series in that it 

consisted purely of AR parameters. Restimating the pressure models with purely AR 

parameters produced models with a similar residual variance to the final ones but the Box- 

Ljung values of the residuals were higher indicating their unsuitability. The final models 

were: 

10-Minute Average Drainage Methane Concentration: ARIMA ([1,2,61,1,0) 

(1-0.33B+0.21B2+0.13B6)V1Qt = Et 

(20.0) (-12.8) (-8.4) 

10-Minute Average Static Pressure: ARIMA (1,1,2) 

(1 - 0.16B)V1 St= (1 - 0.50B - 0.34B2) Et 

(4.2) (12.8) (12.7) 

[6.24] 

[6.25] 
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10-Minute Average Differential Pressure: ARIMA ([2], 1,2) 

(1 - 0.10B2)D1 Dt = (1 - 0.37B - 0.50B2) Et [6.26] 

(4.8) (25.6) (28.0) 

6.7.4 One Day Series of Methane Drainage Range Variables 

The final models built for the drainage range parameters were those from one complete 
day of monitoring. Each series was 720 observations in length and it was to be expected 
that the models would be similar to those fitted to the original series. This turned out to 
be true and very good fits were obtained by only using AR parameters. The models 

were: 

One Days Drainage Methane Concentration: ARIMA ([2,3], 1,0) 

(1 + O. 20B2 + 0.09B3)pl Qt = £t 

(-5.2) (-2.5) 

One Days Static Pressure: ARIMA ([1,2,5], 1,0) 

(1 - 0.39B + 0.12B2 + 0.29B5)V1 St = Et 

(10.4) (-3.1) (-8.5) 

One Days Differential Pressure: ARIMA ([1,5,6], 1,0) 

(1 - 0.10B + 0.14B5 + 0.23B6)O1 Dt = Et 

(2.71) (-3.8) (-5.9) 

[6.27] 

[6.28) 

[6.29] 
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6.8 Conclusion 

This chapter has followed the Box-Jenkins time series methodology outlined in chapter 4 
to build univariate statistical time series models for various mine environmental and 
production variables. The purpose of this is two-fold. The first is to test them in the next 
chapter to investigate whether the supposed influence of certain variables on methane 
emission can be confirmed by time series analysis and the second is to compare forecasts 
from representative multivariate models for methane concentration to those obtained from 

univariate ones. 

With the exception of the original series of barometric pressure it was possible to build 
time series models for all of the monitored and transformed data. The majority of the 
models were straightforward to build but a difficulty arose in the inability to reduce the 
Box-Ljung values of the residual autocorrelations at high lags for models built from very 
long time series. However, this was not a serious problem and was unlikely to influence 

the forecasting performance or useability of the models. Some of the series contained 
missing data that was replaced by likely values but these did not cause any problems 
during model building and this is one of the advantages of using long time series for this 
purpose. 

It was seen that although a model could be built with no prior knowledge of the variable 
concerned it was in fact necessary to examine the form of the final model to see whether 
from a priori considerations it was suitable. The most obvious example of this important 

point is the original series for barometric pressure. A model could not be built from this 
data because the series displayed multi-seasonality caused by the method of data 

recording and transference. Models were built from the transformed series but their 

validity is questionable. It remains to be seen whether they could be of use in multivariate 
analysis. 

Only the models built from methane concentration data are of use for univariate forecasts 

since this is the dependent variable. No importance is attached to the forecasting ability of 
the other models built for the independent variables and no forecasts from these will be 

obtained. They are not of a forecasting interest in their own right and their main purpose 
is to provide an indication of their effect on methane concentration. 
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CHAPTER SEVEN 

MULTIVARIATE MODELS FOR METHANE PREDICTION 

7.1 Introduction 

This chapter describes investigative work to determine the correlation between methane 

concentration and its chosen explanatory variables, air velocity (quantity), coal production 

and barometric pressure. The univariate models built in the previous chapter according to 

the Box-Jenkins univariate model building methodology are used to attempt to derive 

models relating two or more variables in a multivariate analysis which follows an 

extension of the Box-Jenkins univariate methodology. 

The purpose of this chapter is to develop a multivariate model for methane concentration 

that can be used for forecasting. The forecasts will then be compared to the univariate 

ones for methane concentration in the next chapter. 

An analysis of the correlation between the methane drainage variables and production is 

also included in this chapter. 

7.2 Multivariate Modelling 

Multivariate analysis of time series is very much related to univariate analysis in that the 

univariate models are used to relate the behaviour of two or more time series. True 

multivariate analysis or modelling allows for complete causal relationships where, if it is 

appropriate, both series are allowed to cause changes in each other. Such modelling is 

very difficult to perform and fortunately for the time series modelled in this thesis the 

assumption that methane concentration is the only dependent variable simplifies the 

analysis. The relationship that is used to describe the behaviour of the dependent variable 
in terms of independent ones is known as the transfer function, which in this case is 

restricted to a single output model. In relating a dependent variable to a number of 
independent ones it is rarely possible to completely account for its behaviour in terms of 
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the independent ones. This difference or unaccountability is referred to as noise and is 

present because there are usually factors which contribute to the behaviour of the 
dependent variable that for some reason cannot be incorporated in the modelling process. 
Depending on the importance of the explanatory variables this difference may be very 
small whilst at other times it may be large and autocorrelated. The transfer function plus 
noise model is therefore a series of transfer functions accounting for the relationship 
between the dependent and independent variables and a univariate ARIMA model that 
describes the accountable error or noise. For the time series presented in this thesis the 
transfer function plus noise relationship is illustrated in Figure 7.1. 

Univariate model 
for air velocity 
(independent) 

Univariate model 
for production 
(independent) 

A 
Transfer function 
for air velocity 

I 

P. I 

Transfer function 
for production 

Methane Concentration 
(dependent) 

º Mt 

Univariate model 
for barometric 

pressure 
(independent) 

Noise model 
(independent) 

Bt _'OI 

1V1 Ywuu%, uvu 

Transfer function 
for barometric 

pressure 

Noise 
Nt 10 or unaccounted 

behaviour 

Figure 7.1 Transfer Function Plus Noise Relationship -A Conceptual Model. 

As well as building the transfer function model for a forecasting purpose it is often the 
case that the analysis will verify or dismiss factors that were included in the original 
conceptual model. The conceptual model for methane emission was presented in chapter 
6 and appears in a more relevant form in Figure 7.1. Ignoring the drainage range 
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variables, the selected independent variables deemed to influence methane concentration 
are air velocity, production and barometric pressure. Without prior knowledge a 
statistician may well decide that each variable affects methane emission in equal 

proportions and this, of course, would be incorrect. It has been explained earlier in 

chapter 5 and is worth repeating here, that air velocity (hence quantity) affects methane 

concentration immediately. Production contains two affecting components, the first is 

gas emission from the face that causes a rise in concentration in the short-term and the 

second is strata gas emission which occurs after an unknown time lag. The affect of 
barometric pressure is more difficult to quantify except but that it is well known that in 

exhaust ventilation systems a fall in barometric pressure causes additional methane to be 

released. Thus, each of the three explanatory variables possess different degrees of 
influence on methane emission and serve to demonstrate that an adequate knowledge of 
the physical system is necessary if the statistical analysis is to be carried out intelligently 

and effectively. Some degree of expert knowledge is therefore required to decide when 
the independent variables are introduced into the model. The first variable to be 

introduced should be the one that is believed to have the most effect which in this case 

would be air velocity. Other variables are then introduced one by one as appropriate. 

The experience gained when building the univariate models in the previous chapter and 

obtaining forecasts from them proved to be invaluable during the course of the 

multivariate analysis presented in this chapter. In particular it was discovered that the 

univariate forecasts, which are to be shown and discussed in the next chapter, were not 
highly dependent on the complexity of the univariate model. Without this knowledge it 

would have been difficult to carry out the multivariate analysis according to the 

relationship between methane concentration and its explanatory variables presented in the 

conceptual model. It was in fact necessary to use this knowledge so that less complex 

models for the series could be obtained and enable the multivariate models to be built. 

The multivariate methodology follows the three stages of model identification, estimation 
and diagnostic checking that was used to build the univariate models. The identification 

stage makes use of a procedure to estimate the cross-correlation between the residual 
series after univariate modelling has been performed. The form of the cross-correlations 
are then used to infer a possible relationship between the two residual series. After a 
relationship has been identified estimation of the model parameters is performed by using 
a non-linear regression procedure within SPSS-XTM. These first two parts of the 

modelling process make use of procedures that are different from those used for 
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univariate ARIMA modelling and will be explained fully in section 7.2. Once a suitable 

model has been found its appropriateness is checked by examining its residual series and 

the significance of its parameters. 

In order to infer a relationship between two or more variables use can be made of the 

original series without first building univariate models for them. This is quite similar to 

regression analysis where the influence of independent variables on a dependent variable 

can be found. Unfortunately it is often the case that time series contain time trends and 

when they are correlated it is possible that a high degree of correlation will exist between 

them for no reason what-so-ever. Such instances are the bane of any statistical analysis 

and unless scrupulous consideration of a priori knowledge is undertaken this will lead to 

incorrect relationships and conclusions. Spurious correlations are therefore a problem but 

one that can be minimized by transforming the variables using a technique known as ̀ pre- 

whitening'. As an example consider the two time series Xt and Yt. A bivariate approach 
is detailed here but a complete discussion of the mathematics for complete multivariate 

analysis can be found in Newbold and Granger [531. Two, separate univariate models are 
built for Xt and Yt and assuming they have been correctly identified their residuals should 

exhibit white-noise proprieties and therefore contain no trends. This is useful because the 

residual series can be used as a substitute for the relevant time series and by using them to 

cross-correlate, the likelihood of spurious correlation is reduced. Thus pre-whitening is 

simply using the residual series of the univariate models for cross-correlation. Building 

the two univariate models for series Xt and Yt results in models of the form: 

0x (B) Xt = ex (B) Ext [7.1] 

and 

Oy (B) Yt = 9y (B) £yc [7.21 

These can be re-arranged to give expressions for the residual series ext and Eyt, hence: 

(B) 
Xt Ezt 

ez (B) 
[7.3] 
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and 

Oy ( Bý 
£yc = Yc 

6y (B) 
[7.4] 

The two residual series are cross-correlated and values are determined for both positive 

and negative lags. Where there are significant correlation values at negative lags this 

means that feedback is present or the independent series is affected by the dependent 

series. Clearly, this can be a problem but where the possibility of feedback is not 

considered possible any significant correlation values at negative lags can be conveniently 

ignored. Any correlation larger than the 2sd mark is considered to be significant and it is 

possible that a number of correlations may be so. For example, if the cross-correlation 
between e,, t and eyt_j were significant this would imply that eyt has a causal effect on ext 

with a lag of j time intervals. More importantly, such an occurrence would imply that Yt 

has a causal effect on Xt with the same time interval. Thus, the correct use of the cross- 

correlations are paramount to identifying the relationship between Xt and Yt. 

After identifying which correlations are significant for positive lags a general 

unidirectional causality model between the two pre-whitened residual series can be 

identified. Such a model has the form: 

Eat = 
(02 (B) 

Eyt + 
w3 (B) 

4zt 

wl(B) w1(B) 
[7.5] 

where 

,t= white noise error term, 47 

(ol (B) =a finite polynomial, 

W2 (B) and C03 (B) = polynomials of order defined by appropriate cross-correlations. 

This equation represents a transfer function for the residual series and can be translated 
into a model in terms of Xt and Yt. This is done by substituting for EXt and £yt in 

equation 7.5 using equations 7.3 and 7.4 and obtaining the transfer function plus noise 

model: 

142 



(ýx (B) Xt = 
W2 (B) ey (B) 

YL + 
C03 (B) 

ex (B) co, (B) ey (B) co l (B) txt L7.6] 

This is further re-arranged by multiplying both sides of the equation by 4x(B)/Ox(B) to 

give a transfer function plus noise model for the dependent variable Xt in terms of Yt and 

the error term ext, given by: 

Xt = 
9x (B) w2 (B) Oy (B) 

Yt + 
6x (B) w3 (B) 

4xt [7.7] 
Ox (B) col (B) ey (B) Ox (B) col (B) 

This equation looks rather complicated and consists of seven polynomials but in practice 

most of these will not be needed as they are dependent on the complexity of the original 

univariate models and the identified residual relationship. 

After identifying the form of the transfer function plus noise model its parameters are 

estimated by the use of a non-linear regression package. Once the parameters have been 

estimated the model is scrutinized for inadequacies in a similar way to the univariate 

models. The two most important diagnostic checks are the t-values of the parameters and 

the examination of the residual or error series. 

The theory outlined in this section will now be applied to the modelling of the 

environmental and production time series. Only one complete example of the transfer 

function building process will be described and this will be for the hourly average series 

to model the relationship between hourly average methane concentration, air velocity, 

production and barometric pressure. As in chapter 6, for the other models only items of 
interest are noted, in addition to the report of the final form of their models. 

7.3 A Multivariate Analysis for Methane Concentration 

Following the same outline as the previous chapter, the univariate models built for 

methane concentration, air velocity, production and barometric pressure were analysed. 
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The first series to be modelled were the hourly average ones. The main reason for this 

choice was that they were amongst the shortest in length and thus model building would 
take less time, at least from a computational point of view. Also, at this stage it was 
suspected that any models that could be produced by such a multivariate analysis of 
hourly average values would be the most useful, both in terms of forecasting ability and 
potential production control. The model building procedure is essentially the same 
regardless of the series time interval so only a detailed account of the procedure is given 
for the hourly average data. For the other series points of interest are noted but the model 
building procedure is only outlined. 

7.3.1 A Multivariate Analysis for Hourly Average Methane 

Concentration 

The hypotheses presented in chapter 5, section 5.7 of the effect of air velocity on methane 

concentration was scrutinized here. If a methane concentration trace is studied it can often 
be fluctuating rapidly and it is quite possible that the rate of methane emission could be 

relatively constant and the fluctuations in the methane concentration could be purely due 

to changes in airflow. For series that contain spot values such as those where data was 

recorded with an original time interval of 2 minutes, it is possible to convert a methane 

concentration value to an emission rate if the air velocity (hence quantity) was also known 

at that instant. However, when air velocity data is averaged it no longer becomes 

appropriate to use it to convert the methane concentration value to an emission rate 
because neither of the variables are spot values. For this reason it was decided not to use 

the air velocity variable in this model. 

Now that air velocity had been rejected as being unsuitable the next variable to consider 

was production. A priori expectations are that production contains two components that 

cause methane emission. The first is an immediate one, whose effect should occur at lag 

0 while the second should appear after an unknown number of time lags, as the strata gas 

release is observed. Thus, a cross-correlation between the methane concentration and 

production variables should contain a significant value at lag 0 and significant values at 

unknown higher lags. The first task is to obtain the residual series from the two models 
for methane concentration and production and then cross-correlate them. The identified 

models for hourly average methane concentration and production were: 
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pip24Mt = (1 - 0.15B + O. 10B5)(1 - 0.94B24) M8t [7.81 

and 

(1 - 0.96B + 0.93B2 - 0.57B3 + 0.35B4)(1 - 0.29B12 - 0.12B24) O1 pt _ 
(5.5) (-5.4) (3.4) (-5S) (7.2) (2.9) 

(1 - 1.44B + 1.24B2 - 0.94B3 + 0.29B4) pet [7.9] 
(8.1) (-4.7) (3.9) (-2.1) 

where 
Met = error term for the methane concentration model, 
Pet = error term for the air velocity model. 

By re-arranging equations 7.8 and 7.9, expressions for the residual series were obtained, 
given by: 

Mgt = 
v1p24Mt 

[7.10] 

and 

(1 - 0.15B + 0.10B5)(1 - 0.94B24) 

£= 
(1 - 0.96B + 0.93B2 - 0.57B3 + 0.35B4)(1 - 0.29B12 - 0.12B24) 

c0P (1 - 1.44B + 1.24B2 - 0.94B3 + 0.29B4) 
1` 

[7.11] 

These two residual series Met and Pet are then cross-correlated, the results of which are 
shown in Figure 7.2. 
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Cross Correlations: RESIDUALPAV Error for PAV from ARIMA, MOD_2 NOCON 
RESIDUALMAV Error for MAV from ARIMA, MOD 

-l 
NOCON 

Cross Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

0 . 571 . 038 . I*. ********* 
1 . 267 . 038 . 
2 . 251 . 038 . (*. *** 
3 . 213 . 038 . I*. ** 
4 . 137 . 038 . I*. * 
5 . 104 . 038 . (** 
6 . 173 . 038 . I*. * 
7 . 222 . 038 . I*. ** 
8 . 208 . 038 . I*. ** 
9 . 164 . 038 

10 . 191 . 038 
11 . 224 . 038 
12 . 155 . 038 . I*. * 
13 . 150 . 038 . I*. * 
14 . 162 . 038 . (*"* 
15 . 127 . 038 . I*. * 
16 . 201 . 038 . I*. ** 
17 . 182 . 038 . i*. ** 
18 . 178 . 038 . I*. ** 
19 . 207 . 038 . I*. ** 
20 . 149 . 038 . I*. * 
21 . 129 . 039 . 
22 . 163 . 039 . I*. * 
23 . 165 . 039 . I*. * 
24 . 165 . 039 . I*. * 
25 . 162 . 039 . I*. * 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 720 Computable 0-order correlations: 695 

Figure 7.2 Cross-correlations of Methane Concentration and Production Residuals. 

The cross-correlations show a very large value at lag 0 that confirms the hypothesis that 

there is an immediate effect of production on methane concentration. The value is 

positive and means that an increase in production causes an increase in methane 

concentration and a decrease in production causes a decrease in methane concentration. 
Lags 1 to 28 also have significant values and this can be interpreted as a gradual release of 

strata gas over this long period of time. To obtain a relationship between the two error 

terms it was necessary to group together the effect of the largest lag groups so that equal 

weights were placed on each of the production variables lagged 1 to 8 hours and 24 to 26 

hours. The first attempt at estimation took the following form: 

MCt = al P£t + a2 (0.125 PFt-i, t-8) + a3 (0.333 P£t-24, t-26) + et [7.12] 
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where 
P£t-l. t-8 = PEt-1 + PEt-2 + PEt-3 + PF-t-4 + PEt. s + PEt-6 + PEt-7 + PEt-8 

P£t-243-26 = PF-t-24 + PF-t-25 + PF-t-26 

The estimation resulted in coefficient values that had significant t-values and the 

relationship was given by: 

Met = 0.015 Pet + 0.004 (0.125 Pet-l. c-s) + 0.007 (0.333 PFt_24, c-26) + et [7.13] 

(14.5) (2.1) (4.1) 

The next stage was then to obtain the relationship between the actual series for methane 

concentration and this was obtained in the following manner. The model for the hourly 

average production series was given by: 

(1 - 0.96B + 0.93B2 - 0.57B3 + 0.35B4)(1 - 0.29B12 - 0.12B24) O1 pi = 
(5.5) (-5.4) (3.4) (-5S) (7.2) (2.9) 

(1 - 1.44B + 1.24B2 - 0.94B3 + 0.29B4) Pýt 
(8.1) (-4.7) (3.9) (-2.1) 

[7.14] 

The model for hourly average methane concentration was given in equation 7.8 and is 

repeated here: 

ViV24Mt = (1 - 0.15B + 0.10B5)(1 - 0.94B24) Met [7.151 

By substituting equation 7.13 for the error relationship into equation 7.15 for methane 
concentration and replacing the coefficient values as a variables, the resulting equation is: 

p1p24Mt = (1- a1B - a2B5)(1 - a3B24) 

x 
[al 

Pet + a2 (0.125 PEi. l, c_s) + a3 (0.333 P£t-243-26) + et] [7.16] 
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The next step is to substitute equation 7.11, the expression for Pct in terms of Pt and 

replacing its coefficient values as a variables, into 7.16 to obtain an equation for methane 

concentration in terms of only the actual series for production, Pt, given by: 

Mt = X. Y a4Pt + X. Y a5 (0.125Pt-1, t-s) + X. Y a6 (0.333Pt-24, t-26) +X et 

where 

X= (1 - a1B - a2B5)(1 - a3B24) 

Y_ 
(1 - a7B - a8B2 - agB3 - aioB4)(1 - a11B12 - (X12B24) 

(1 - a13B - a14B2 - (X15B3 - a16B4) 

[7.17] 

Unfortunately this complex regression equation proved impossible for the mainframe 

computer to estimate. This was because of three reasons. The first is due to the large 

number of coefficients to be estimated (16 in total) and the second is the complex lag 

structure which is itself due to the complex form of the two univariate models for methane 

concentration and production. Theoretically these reasons should have posed no real 

problem for the non-linear estimation procedure but practically it was unable to perform 

the necessary regression and this was the third and main reason why the equation could 

not be regressed. In order to overcome this problem it was necessary to refer back to the 

univariate model building process and obtain simpler ARIMA models for methane 

concentration and production. A possible difficulty that might be envisaged at this point 

would be the question of whether it would be appropriate to use simpler univariate 

models for the multivariate analysis since forecasting accuracy might suffer. Chapter 8 

shows that in practical terms using a simpler model does not result in a significant loss of 
forecasting accuracy and may even result in better parameter estimation within the 

multivariate analysis. The most important point to consider is the form of the cross- 

correlations between the two residual series. The effect of the independent variable on the 
dependent variable is determined in this way and if the cross-correlations of the residual 

series from the simpler univariate models revealed similar results as those from the best fit 

models then the simpler models can be used as satisfactory proxies of the best fit ones for 

the purpose of multivariate analysis. Also the production model is of no interest for 

univariate forecasts and so some accuracy of fit can be lost without causing a problem. 
The forecasts of methane concentration from a multivariate model in terms of production 

are calculated by feeding the relevant equation the known values of production which are 
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assumed to be at the model builders discretion. 

Cross Correlations: 

Cross Stand. 

RESIDUALPAV Error for PAV from ARIMA, MOD 4 NOCON 
RESIDUALMAV Error for MAV from ARSMA, mop 

_3 
NOCON 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 

0 . 489 . 038 
1 . 075 . 038 
2 -. 002 . 038 
3 -. 032 . 038 
4 -. 082 . 038 
5 -. 073 . 038 
6 -. 016 . 038 
7 . 066 . 038 
8 . 071 . 038 
9 . 013 . 038 

10 . 013 . 038 
il . 065 . 038 
12 -. 027 . 038 
13 -. 025 . 038 
14 . 024 . 038 
15 . 003 . 038 
16 . 105 . 038 
17 . 063 . 038 
18 . 017 . 038 
19 . 009 . 038 
20 -. 063 . 038 
21 -. 052 . 039 
22 . 009 . 039 
23 . 033 . 039 
24 . 127 . 039 
25 . 023 . 039 

--------------- 

1*. 

* 

. 1*. 

. 1*. * 
*. 

. I*. 

. *i . * 
*. * .. 

. 1** 

. 1*. 
* 
* ý*I 

" 
. *I . f 

1* 
1*. * 
* 

. 75 1 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 720 computable 0-order correlations: 695 

Figure 7.3 Cross-correlations of Modified Methane Concentration and Production 

Residuals. 

After referring back to the model building attempts that were used for the production 

series a suitable proxy was found to be the ARIMA (0,1,2)(1,0,0)24. The residual 

standard error for this model was 1.224 as compared to the originals 1.154 and amounts 

to an increase of 5.37% which is not very great. The residuals from this model had larger 

Box-Ljung values but were not too different to those from the original model. A suitable 

proxy for the original methane concentration model was found to be the ARIMA 
([1,5], 1,0)(0,1,1)24. The difference in residual standard error between this model and 

the original one was less than 0.1% and the residual autocorrelations were very similar to 
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those obtained from the original models fit. Forecasts were also obtained from this proxy 

model so that they could be compared in the next chapter to the univariate forecasts from 

the original hourly average methane concentration model. 

Cross-correlating the residuals from the two proxy univariate models for methane 

concentration and production it was found that they did indeed have a similar form to 

those from the earlier production model. The new cross-correlations are shown in Figure 

7.3. It is seen that there is a large positive spike at lag 0 while at other lags the values are 

very much smaller than previously. However, although most of the lags have values that 

do not appear to be significant according to the 2sd significance criteria they can still be 

used as a proxy and any inadequacies will become evident when the error relationship is 

regressed. The form of the cross-correlations led to the identification of a new 

relationship between the two error series where equal weights were assignend to lags 1 to 

13 and lags 14 to 26 and the regression equation took the same form as the earlier one. 

After regression the equation was: 

Met = 0.014 Pet + 0.009 (0.077 P£t-l, t-13) + 0.023 (0.077 Pet-14, t-26) + et [7.18] 

(11.5) (2.1) (5.1) 

This is very similar to the expression for the previous relationship between the error 

series for methane concentration and production (equation 7.13) and confirms the 

suitability of the two proxy univariate models for methane concentration and production. 
An important requirement before model building can proceed is whether the error series 
from the regression of 7.18 demonstrates white-noise properties. If they do not then 

another expression between Meg and Pet needs to be sought. They are shown in Figure 

7.4 and indicate that the white-noise condition has been satisfied, confirming 7.18 as 

correct. The simpler univariate models for these were: 

(1 + 0.14B + 0.10B5)ptp24Mt = (1 - 0.94B24) MEt 

(-3.6) (-2.8) (25.6) 

and 

[7.19] 
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(1 - 0.39B24)piPt = (1 - 0.48B - 0.32B2) PEt [7.20] 

(11.0) (9.1) (13.6) 

By substituting equation 7.18 for the error relationship into equation 7.19 for methane 
concentration and replacing the coefficient values as a variables, the resulting equation is: 

(1 - a1B - a2B5)Vi024Mc = (1 - a3B24) 

x 
[al 

Pet + a2 (0.077 PFt-l, t_13) + a3 (0.077 P£t-14, t-26) + et] [7.21] 

Equation 7.20 is re-arranged to express Pet in terns of Pt to give, 

1- a6B24) pet = (1 
( 

a4B - aSB2) 
OIPc [7.22] 

The final step is to substitute equation 7.22 into 7.21 to obtain an equation for methane 

concentration in terms of the actual series for production, Pt, given by: 

Mt = X. Y a7 Pt + X. Y a8 (0.077 Pt. l, c_13) + X. Y a9 (0.077Pt_14, t-26) 

+Xet 

where 

x= (1 - a3B24) 
(1 - a1B - a2B5) 

(1 - a6B24) 
(1 - a4B - a5B2) 

[7.23] 
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This represents the final regression equation that was used to estimate the a coefficients. 
Again, problems were experienced in estimating the coefficients and the regression had to 
be performed in stages. This was primarily due to the limit set on mainframe computer 
time where the regression exceeded the maximum permissible time allowed for a single 
batch job. After a programme run had used all of its allowed time the final coefficient 
values were used as starting values for the next stage of estimation until the reduction 
between successive residual sums of squares was less than 1x10-8. The final estimation 
resulted in the achievement of very satisfactory coefficient values and the final equation 

was: 

Mt = Y. 3.126 Pt - Y. 1.021 (0.077 Pt. 1, a13) - Y. 1.11 (0.077Pt. 14, c-26)+ X et 
[7.24] 

where 

X_ (1 + 0.03B24) 
_ (1 - 0.09B - 0.11B5) 

(1 _ n_n2R24)(1 + 0.03B24) 
AT \- .. - ---- 
I= 

(1 - 0.09B - 0.11B5)(1 - 0.12B - 0.09B2) 

The t-values of the coefficients were; al = 259.7, a2 = 465.1, a3 = -15.8, a4 = 10.3, 

a5 = 9.8, a6 = 3.8, a7 = 17.2, a8 = -6.3, a9 = -4.1 and these are all satisfactory. The 

final test of the models suitability is to see whether the residuals autocorrelations 
demonstrate white noise properties and they are shown in Figure 7.5. Both their 

autocorrelation and Box-Ljung values are all below significance and indicate that the 

white noise condition has been satisfied. 

So far, a model has been built that is theoretically capable of predicting methane 

concentration values purely from a knowledge of production. It is seen that the model is 

comprised of four components. The first is due to the effect of coal cutting that releases 
methane into the air at lag 0 which with a data time interval of 1 hour primarily accounts 
for methane released from the actual seam being worked. However, it is possible that 

strata gas could also be appearing in the airstream within this hour. The second and third 

components have been identified as due to methane which is gradually released over a 
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Autocorrelations: RESIDUAL FOR R1 
Auto- Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1. . 005 . 036 
2 -. 009 . 036 
3 . 010 . 036 
4 . 011 . 036 
5 . 002 . 036 
6 -. 004 . 036 
7 . 001 . 036 
8 . 011 . 036 
9 . 010 . 036 

.I * 1.346 . 895 
1.548 . 813 
3.554 . 638 
4.251 . 543 
5.879 . 510 
6.274 . 486 
7.109 . 411 
7.977 . 379 
8.557 . 327 

10.552 . 476 
12.671 . 501 
13.824 . 451 
14.759 . 407 
16.544 . 354 
18.631 . 297 
19.490 . 258 
20.301 . 237 
21.127 . 219 
21.452 . 247 
21.894 . 211 

* 

" i*. 
. 1*" 

* 
.*. 

". 

.*. 

. 1*. 

. i*. 
10 . 005 . 035 .*. 
11 -. 012 . 035 .*. 
12 . 013 . 035 .*. 
13 . 005 . 035 .*. 
14 . 013 . 035 .*. 
15 -. 007 . 035 .*. 
16 . 013 . 035 

. i. 
17 . 011 . 035 
18 . 021 . 035 . 1*. 
19 . 010 . 035 *. 
20 . 012 . 035 *. 

Figure 7.4 Residual Autocorrelations for Regression Error. 

Autocorrelations: RESIDUAL FOR R2 
Auto- Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1 . 006 . 040 
2 -. 010 . 040 
3 . 016 . 040 
4 -. 013 . 040 
5 . 001 . 040 
6 . 007 . 040 
7 . 001 . 040 
8 . 022 . 040 
9 -. 019 . 040 

10 -. 035 . 040 
11 -. 015 . 040 
12 -. 022 . 040 
13 . 025 . 040 
14 . 013 . 040 
15 . 007 . 040 
16 . 033 . 040 
17 -. 010 . 039 
18 -. 053 . 039 
19 . 020 . 039 
20 . 011 . 039 

2.947 . 567 . i* . 4.008 . 418 
. i*" 7.818 . 529 
. *i . 11.522 . 042 
.*. 11.523 . 073 
.*. 11.556 . 116 
.*. 11.557 . 172 

*. 11.857 . 221 
. *) . 16.919 . 076 
. *) " 17.676 . 089 
.*. 17.826 . 121 
.*. 18.128 . 153 
.*. 18.519 . 184 
.*. 18.626 . 231 
.*" 18.659 . 287 
. i*" 19.359 . 308 
.*. 19.420 . 366 

. *i . 
21.256 . 323 
21.508 . 368 
21.583 . 424 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 720. Computable first lags: 621 

Figure 7.5 Final Model Residuals for Hourly Average Methane Concentration and 
Production. 
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long period of time from strata above and below the working horizon. The fourth 

component is an error term which at this stage represents unknown factors and this has 

been accounted for by its own univariate term so that the residuals of the whole model 

exhibit white-noise properties. 

Cross Correlations: RESIDUALBAV Error for BAV from ARIMA, MOD 
. -2 

NOCON 
RESIDUALBAV Error for MAV from ARIMA, MOD 

-l 
NOCON 

Transformations: difference (1) 
Cross stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

0 . 048 . 038 
1 -. 112 . 038 
2 . 079 . 038 
3 -. 049 . 038 
4 . 023 . 038 
5 -. 028 . 038 
6 -. 052 . 038 
7 . 087 . 038 
8 -. 049 . 038 
9 . 019 . 038 

10 -. 048 . 038 
11 . 117 . 038 
12 -. 124 . 038 
13 . 055 . 038 
14 -. 030 . 038 
15 . 027 . 038 
16 . 031 . 038 
17 -. 051 . 038 
18 . 031 . 038 
19 . 035 . 038 
20 -. 046 . 039 
21 . 082 . 039 
22 -. 026 . 039 
23 . 015 . 039 
24 . 008 . 039 
25 . 006 . 039 

: i*. 
*i 
i** 

. *i . * 
*I . 

. *I . 
i** .. . *i . * 

. i#* 

. 1*. 

. *i . 

. i*. 

. i*. 

. *i . 

. i*. 
i*. : *i . 

. i** 

. ýi . i 

* 
* 

Plot Symbols: Autocorrelations * Two Standard Error Limits . 
Totalcases: 720 Computable 0-order correlations afterdifferencing: 694 

Figure 7.6 Cross-correlations of Modified Methane Concentration and Barometric 
Pressure Residuals. 

The next variable to be introduced to the model was barometric pressure. The procedure 
for introducing additional variables is identical to that used to obtain a model for methane 

concentration in terms of production in that the first thing to do is cross-correlate the error 

series of the univariate models for methane concentration and the additional variable, 

which in this case is barometric pressure. The results of these cross-correlations are 
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shown in Figure 7.6. It has already been decided that production would be by far the 

most significant indicator of methane emission and once a model for methane 

concentration in terms of a lesser variable has been built the two are combined and all of 
the models coefficients re-estimated. The form of the error term of the transfer function 

model is kept as that which was used to account for the noise left unexplained by the most 
important variable. 

The residual cross-correlations of methane concentration and barometric pressure did 

have significant values for a large number of lags. This was considered to be suspect 

since the data for barometric pressure was flawed and the significant cross-correlations 

were most probably incorrect. However, this in itself would not have prevented a model 
for methane concentration in terms of barometric pressure from being built. Practically 

though, there would be small gain in doing this and more importantly it was thought that 

any model for methane concentration in terms of production and barometric pressure 

would have proved impossible for the computer to estimate. Furthermore, the noise term 
in the bivariate model for methane concentration (with production) was quite small and 
this indicated that there would have been little gain in having a model in terms of both 

production and barometric pressure. 

It has been demonstrated that although the procedure for multivariate modelling is 

relatively straightforward, in practice a number of very real constraints are placed upon 

the model builder. The most significant are the limitations imposed by computer time and 

software which are due mainly to the number of data points to be analysed. Another 

difficulty is the suitability of the original data which is very important if a correct model is 

to be built. Thus from the conceptual model for methane concentration where three 

variables were intended to be used to account fully for the behaviour of methane 

concentration it has only been possible to use production as the indicator variable. 

7.3.2 A Multivariate Analysis for 10-Minute Average Methane 

Concentration 

The hourly average multivariate model for methane concentration contained parameters to 

explain the contribution of both coal front (including gas from conveyed coal) and strata 
gas. As the time interval between observations decreases so does the ability of the model 
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to represent gas that appears after a long period of time, i. e. strata gas. The 10-minute 

average series was chosen because it had the potential to produce useful forecasts which 
was due to its potential ability to represent coal front gas and possibly strata gas. The 10- 

minute averages of methane concentration were not spot values and therefore, it was not 
appropriate to use air velocity as an indicator variable. Neither was it appropriate to use 
barometric pressure because of the suspect nature of the barometric pressure model. 

The 10-minute average series each contained 4320 data points and the first difficulty that 

presented itself was the likelihood that any regression equation that contained a large 

number of parameters would be almost impossible to estimate because of this large 

amount of data. The problem was overcome by selecting less complex univariate models 
for methane concentration and production. Two satisfactory models were the ARIMA 
(2,1,0) as opposed to (2,1,3) for methane concentration and the ARIMA (2,1,1) as 
opposed to (4,1, [1,2,4]) for production. In each case the increase in residual standard 
error was small and amounted to increases of 1% and 3.5% respectively. Forecasts were 
also obtained from the less complex model for methane concentration so they could be 

compared to those from the original model in the next chapter. 

The residual error cross-correlations showed large significant values at lag 0 and lag 1 

with smaller although still significant values at higher lags. This behaviour was thought 

to be mainly due to coal front gas. As the methane was released from the coal during 

cutting it began to appear on the methane monitor at lag 0, or rather during the first 10 

minutes after release. Methane recorded at lag 1 represents that which was recorded 
between 10 to 20 minutes after it was emitted and was attributed to both coal front gas 
and gas that was released from the coal while it was on the AFC and belt conveyors. At 
higher lags, the effect of coal front gas lessens as seen by the smaller values that these 
lags take and the methane is most likely to be mainly that which is released from 

conveyed coal. At lags higher than 6, which represents a time span of over 60 minutes, 
strata gas appears (as confirmed by the residual cross-correlation of the hourly average 

series) and the contribution of emission sources becomes less clear. 

Remembering that the simpler yet suitable univariate models were chosen so that the final 

regression model would not be beyond the capabilities of the computer, the relationship 
between Met and Pet was also simplified. Accordingly, a separate term was used to 
describe the behaviour at lag 0 whilst the effect of lags 1 to 7 were added together but 
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with greater weighting attached to the production variable at lag 1. After estimation the 

relationship between the error series for methane concentration and lagged variables of the 

error series for production was: 

Met = 0.0045 Pet + 0.0042 PEOagged) + et [7.25] 

where 
PE(lagged) = 0.5PEt. 1 + 0.5(0.167PEt-2, t-7) 

This relationship proved to be highly appropriate with each of the coefficients having 

significant t-values and the residuals left after estimation displaying no signs of 

autocorrelation. 

After obtaining the new equations for the simpler univariate models for methane 

concentration and production these were rearranged to provide a regression equation for 

methane concentration in terms of lagged variables of actual production given by: 

Mt = X. Y a6 Pt + X. Y a7 P(lagged) +Y et 

where 
P(lagged) = 0.3Pt-1 + 0.167Pt-2, t-7 

X= 
(1 - a3B - (X4B2) 

(1 - a5B) 

Y_1 
(1-a1B-a2B2). 

[7.26] 

The regression of this equation proved to be time consuming and the best fit model was 

given by: 
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Mt = X. Y 0.57 Pt + X. Y 0.31 P(lagged) +Y et 

where 
(1 - 0.21B + 0.05B2) 

(1 - 0.12B) 

Y=" 
(1 + 0.09B - 0.02B2) 

[7.27] 

The t-values of the coefficients were; al = -223.6, a2 = 49.2, a3 = 11.1, a4 = -9.2, as 
= 29.8, a6 = 6.2, a7 = 5.8 and these are all satisfactory. The residual autocorrelations 

are shown in Figure 7.7 and they demonstrate excellent white-noise characteristics, 
indicating that the estimated model and its parameters are appropriate. 

A satisfactory model for 10-minute average methane concentration in terms of production 
has been built, albeit with some degree of difficulty. The large number of data points 

meant that the coefficient regression had to be carried out a number of times. Although 

the final coefficient values had significant t-values and the model residuals were white- 

noise a series of sensitivity tests were carried out to ensure that the results were correct 

and could be reproduced. These tests consisted of using different starting values for each 
of the regression stages. It was found that the same results were obtained regardless of 
the coefficient starting values and only the number of regression stages to obtain the final 

coefficient values varied. 

The bivariate model for 10-minute average methane concentration consists of 2 

components. The first is a term to account for the methane released within 10 minutes of 
the cut and contains methane released from the coal face and that released during 

transportation. The second component accounts for methane released between 10 and 70 

minutes after cutting. This term consisted of lagged variables to account for both coal 
face and conveyor methane and possibly the appearance of strata gas. A greater 
weighting was applied to methane appearing on the monitor at a time between 10 and 20 

minutes. 

1 
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Autocorrelations: RESIDUALMPAV10 
Auto- Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1 . 001 . 015 
2 . 001 . 015 
3 . 000 . 015 
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5 -. 001 . 015 
6 . 004 . 015 
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11 . 000 . 015 
12 -. 002 . 015 
13 . 001 . 015 
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15 . 000 . 015 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 4320 Computable first lags: 4314 

Figure 7.7 Final Model Residual Autocorrelations for MAV 10 Model. 

7.3.3 A Multivariate Analysis for Original Methane Concentration 

A multivariate analysis of the data recorded over the original timescale was found to be 
impractical and could not be carried out. This was due to restrictions imposed by the 

computational procedures that were used to perform the regression analysis and the 

availability of mainframe computer memory. Each original series consisted of 21,000 

observations and this was too large for the computer. However, when the univariate 
models for methane concentration that were built from the complete original series are 
compared to those built from only one days data it is found that they are similar. For 

example, the best model to represent methane concentration was the ARIMA (2,1,3) but 

the simpler model ARIMA (1,1,0) was also found to be satisfactory. The best model for 

methane concentration built from only one days data was also an ARIMA (1,1,0). This is 

no great surprise and in effect confirms that methane concentration models built from data 

recorded over the original timescale and from only one days worth of data results in a 
satisfactory and representative model. 
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This is not the case though for models built for production and barometric pressure which 
necessarily rely on the need for a longer series so that the patterns within them are 
discernible. Thus the models for production from the original series and one days data 

are completely different and are given by the ARIMA ([2,3,5], 1,0)(2,0,0)10 and the 
ARIMA ([20], 1,0) respectively. This therefore, immediately limits the potential 

usefulness of such models. On one hand it is inconvenient to record data over a long 

period of time but on the other, recording over a shorter period of time results in models 

which are not true representations of the underlying processes. The univariate models for 

barometric pressure and production were not built for the purpose of prediction. They are 

only of use in a multivariate analysis where the objective is to identify whether they cause 

changes in methane concentration. 

The inclusion of a term for air velocity was given thought during the analysis of one days 

data. Originally, it was intended to correct the methane concentration value for air 

quantity so that actual methane emission could be found and the univariate models for air 

velocity in chapter 6 were built for this purpose. With the exception of the model for 

hourly average air velocity none of these models contained a seasonal component and 

although the behaviour was far from being random it would be impossible to obtain 
forecasts that coincided with the actual air velocity at a time t. This means that unlike 

production which is or could be a known variable the air velocity is not and any model 

that included a term for air velocity would be worthless. To put matters into perspective, 

consider the following example. The cross-sectional area of the roadway at the 

measuring station at Thoresby 119's was 7.4 m2 and with typical values of air velocity of 
2.8 m/s and a constant methane emission rate of 9000 1/s the general body methane 

concentration would be 0.72%. If the air velocity had been 3.0 m/s at that instant the 

general body concentration would have been 0.67%. This is a difference of 7.5% and it 

will be seen in chapter 8 that the forecasting accuracy is within this level of magnitude. 
Thus, since a forecast of a value for air velocity can only be an approximation of the real 

value and it is unlikely that the two will coincide there is no gain in obtaining a 

relationship for methane emission. The best that can be done is to forecast methane 

concentration to a high degree of accuracy so that an indication of the most likely value is 

obtained. 

Even so, the whole idea of the analysis was to verify if such assumptions would be 

correct and a subsequent cross-correlation of the residuals from the models for ones days 

methane concentration and air velocity produced surprising results. It was found that 
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there were no significant cross-correlations at all and this in fact means that the 
information contained within the methane concentration value contains a component due 

to the effect of air velocity and so no further gain is achieved by the consideration of air 
velocity. The same result was obtained from the residual cross-correlations from the 

models of the complete original series for methane concentration and air velocity. Both 

cross-correlation plots are given in Figures A2.1 and A2.2, Appendix 2. 

Cross Correlations: RESIDUALPD Error for PD from ARIMA, MOD 2 NOCON 
RESIDUAL) Error for MD from ARIMA, MOD 1 NOCON 

Cross Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 

0 -. 038 . 037 *1" 
1 . 012 . 037 *. 
2 . 029 . 037 . I* 
3 . 044 . 037 . I* 
4 . 059 . 037 "1* 
5 . 098 . 037 . I"* 
6 . 031 . 037 . 1* 
7 . 037 . 037 . I* 
8 . 136 . 038 . I*"* 
9 . 037 . 038 . 1*. 

10 . 022 . 038 . *" 
11 . 014 . 038 . *" 
12 -. 007 . 038 . *" 
13 -. 004 . 038 *" 
14 -. 025 . 038 . *I " 
15 -. 041 . 038 . *I " 
16 -. 009 . 038 *" 
17 -. 044 . 038 . *I " 
18 . 012 . 038 "*" 
19 . 001 . 038 "*" 
20 -. 067 . 038 . *I " 
21 -. 022 . 038 "* 
22 . 057 . 038 . 1*. 
23 -. 065 . 038 "*I " 
24 -. 016 . 038 *" 
25 -. 043 . 038 "*) " 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 720 computable 0-order correlations: 719 

Figure 7.8 Cross-correlations of One Day Methane Concentration and Production 
Residuals. 

The effect of barometric pressure was also investigated. The residual cross-correlations 
of one days methane concentration and barometric pressure did not result in any 
significant values. Even allowing for the fact that the model for barometric pressure was 

161 



not probably correct it is unlikely that any change in barometric pressure could effect 

methane emission over such a short time interval. The residual cross-correlation plot is 

shown in Figure A2.3, Appendix 2. Occasionally, however, very rapid falls in 

barometric pressure of around 30mb in 1 hour occur and these are known to cause 
increases in underground methane emission. In fact, collieries are normally given 

warnings of such pressure drops by weather centres. If such large pressure drops were 

to occur it is unlikely that a multivariate model with a data time interval of 2 minutes 

would be able to account for the drop in pressure, mainly because the lag between 

pressure drop and methane emission would still be large. It is possible though that when 

either 10-minute or hourly average values are used, a significant fall in barometric 

pressure and its effect on methane emission could be determined and compensated for if 

an appropriate model was available. 

The last indicating parameter to investigate was coal production. The residual cross- 

correlations of methane concentration and production are shown in Figure 7.8. Only the 

values at lags 5 and 8 are larger than the 2sd mark while lags 3 and 4 are larger than lsd 

and the values at lags 0,1 and 2 are smaller still. The explanation for this behaviour is 

that once the face coal has been cut and gas begins to be released it takes between 6 and 

16 minutes before it is monitored by the methane monitor. The gas that appears after a 

short time (between 6 and 10 minutes) can be attributed to that which is released by the 

cutting operation. Gas appearing later is from coal on the AFC and belt conveyor. No 

significant values are seen at lags greater than 8 and thus it will be expected that any 

model will only be able to account for methane concentration in terms of coal front gas 

only. The contribution of strata gas over a short time of 16 or so minutes is negligible 

and because of the error that is attributed to cross-correlation values at high lags it is very 

difficult to discern the strata gas contribution at such high lags. This explanation of the 

residual cross-correlation led to the identification of the following residual relationship 

given by: 

MEt = 0.001 PEt. 3 + 0.002 Pet-5 + 0.002 Pet-8 + et 

(2.1) (2.8) (3.7) 

The one day univariate models for methane concentration and production were: 

[7.28} 
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(1 - a4B)O1Mt = Met 

and 

(1 - a5B20)O1Pt = PEi 

[7.29] 

[7.30] 

and after rearranging and substitution the transfer function equation for methane 
concentration in terms of production was: 

Mt = al 
(1 a4B20) pc-3 + a2(1 - a4B20) Pt-5 
(1 - a5B) (1 - a5B) 

(1 - a4 B20) 1 
+ a3 (1 - a5B) 

Pý-s + 
(1 - a5B) 

et 

[7.31] 

The above equation, although containing six coefficients that needed to be estimated, was 
very much simpler than the other regression equations encountered so far. This was 
mainly due to the simple nature of the univariate models. Unfortunately, even though a 
number of varied attempts were made at trying to estimate the coefficient equation 7.31, 

none were successful. No solution could be found where the coefficients had sensible or 
significant values. This was unusual as the residual cross-correlations of 7.29 and 7.30, 

shown in Figure 7.8 produced results that were conversant with practical knowledge of 
coal face gas emission. 

The inability to obtain correct coefficient values was most probably due to two reasons. 
The first and most significant was the production series itself. It was thought that only 
one days production data was insufficient to allow the regression procedure to estimate 
sensible values. This is evident from a comparison of the univariate models for the one 
day series and complete original series of production. They are very much different and 
basically the one day model does not contain enough information about the true nature or 
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pattern of production. Also, it would be inappropriate to use the original more complex 
model to represent the one day series of production since the regression would be looking 
for relationships that were not evident in the one day production series itself. The second 
reason was attributed to the non-linear regression procedure. Normally, the procedure 
was not sensitive to coefficient starting values but at times the estimation resulted in either 
no solution or a false solution. Occasionally poor starting values caused the procedure to 
look for a local rather than a global solution to the coefficient estimates. This problem is 

exacerbated if the regression parameter i. e. the production series contains insufficient 
information to allow the procedure to find the right estimate. Thus, it was not possible to 
obtain a relationship between one days methane concentration and production. 

On reflection, however, a transfer function model on the original timescale between 

methane and production would be of very limited use because production had been 
identified as only having a short-term effect on methane concentration, at the chosen time 
interval of one observation every 2-minutes. Furthermore, any increase in forecasting 

accuracy that could be achieved by such a model could easily be lost because of the 
transient nature of the air velocity. 

7.4 A Multivariate Analysis of the Methane Drainage Variables 

It was seen in chapter 6, section 6.6 that the univariate models for the methane drainage 

parameters all had very similar forms. With the exception of the models for 10-minute 

average static and differential pressures, that included MA parameters, the univariate 
models were best represented by AR parameters only. This similarity provides a hint as 
to the possible behaviour of cross-correlating the model residuals. All of the residual 
cross-correlation plots can be found in Appendix 2. 

The residual cross-correlations between the original series of drainage concentration and 
static pressure showed significant values at lags 0,2,3,7,8 and 9 only (Figure A2.4). 
This means that a change in static pressure affects the methane concentration over a time 
period of up to 18 minutes. The residual cross-correlations of the one day series of 
drainage concentration and static pressure showed significant values at lags 0,1,2,3,6, 
7,8,9 (Figure A2.5). A comparison between the two reveals that the signs of the lags 
are the same and indicate that the relationship between concentration and static pressure is 
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evident from consideration of only one days worth of data. A significant negative value 
at lag 0 means that a decrease in static pressure causes an increase in methane 
concentration for the first 2 minutes. Lag 2 has a positive value which can be interpreted 

as a slight increase in static pressure that momentarily decreases methane concentration. 
This could be caused by the effect of acoustic mass in the drainage system. The other 

significant lags are all negative and confirm that as the static pressure drop affects the 

whole drainage system, methane concentration continues to increase until it levels out 

after 18 minutes. 

The residual cross-correlations between methane concentration and differential pressure 
for the original series (Figure A2.6) do not show significant values at any lags while the 

ones for the one day series showed significant lags at 0,1,2,5,6,7,8 (Figure A2.7). 
No reason could be thought of to account for this difference. However, it is appropriate 
that the cross-correlations of static and differential pressure with methane concentration 

should be similar since they are components of the total pressure generated by the 

methane pumps. 

It was found that over the data collection period which ran from February to September 

1991, the methane drainage pumps were in continual operation and only stopped for 

either short periods for maintenance or very rarely because of a breakdown. During a 

maintenance period the pumps were only stopped for a few minutes so the methane 

concentration was only affected for a short period of time. This consistency of operation 

means that there is no real need for a model for methane concentration in terms of static 

and differential pressure since if they are only varying moderately and known stoppages 

are only for a very short period of time the best forecasts of concentration will be from the 

concentration model itself. However, if a situation exists where the performance of the 
drainage pumps is not constant it may be necessary to account for rapid and significant 
frequent changes in system pressure. 

The residual cross-correlation plots from the 10-minute average models validate the 

explanations given for the behaviour of those for the series recorded over the original time 
interval. They can be seen in Figures A2.8 and A2.9. The cross-correlations of drainage 

methane concentration against static pressure and drainage methane concentration against 
differential pressure both show significant values at lags 0,1 and 2. This means that 

changes in the drainage pressure cause changes in the concentration for up to 30 minutes 
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since each lag represents a time interval of 10-minutes. This time is longer than that 
indicated by the original residual cross-correlations and is most probably due to the 10- 

minute averaging of the values. 

The residual cross-correlations from the hourly average models, seen in Figures A2.10 

and A2.11, of drainage methane concentration with static and differential pressures show 

significant values at lags 0 and 1. This is interpreted as a period of influence of up to 2 

hours and again this is probably due to the hourly meaning of the values. Thus, the effect 

of meaning is to incorrectly attach importance to values in the original series at high lags 

which is synonymous with the original series residual cross-correlation values occurring 

at high lags. From practical considerations there is no reason why these values should 

mean anything, although when the series is hourly averaged they do. This would result 
in an incorrect relationship being surmized if the real meaning of the residual cross- 

correlations were not realized. 

The drainage methane concentration is thus influenced by the drainage pressure and for 

the same reasons given as to why air velocity (hence quantity) would be inappropriate for 
inclusion in a multivariate model for the prediction of general body methane concentration 

so the inclusion of either static and differential pressure would also be inappropriate. 

The main point of interest and that which would be most important for inclusion in a 

possible multivariate model for drainage methane concentration prediction was the effect 

of production. As a matter of course residual cross-correlations between drainage 

concentration and production were calculated for the 4 different model time intervals. 

These are shown in Figures A2.12, A2.13, A2.14 and A2.15. Even before the residual 

cross-correlation plots are examined the results can be anticipated. It is highly improbable 

that production could influence the quantity of methane appearing in the drainage range 

over the original monitoring time interval of 2-minutes and this is confirmed by the 

residual cross-correlations shown in Figure A2.9. This confirmation is reassuring in that 
it indicates that the two univariate models for drainage concentration and production are 

correct. Conversely, the residual cross-correlations between the univariate models for 

one days data, shown in Figure A2.10, reveal significant values at lags 2 and 3. These 

values are spurious and indicate that both or either of the one days data models for 

methane concentration and production are incorrect and indeed from the previous section 
it was noted that the model for production was unsuitable. 
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The residual cross-correlation plots from the 10-minute average models for drainage 

methane concentration and production, shown by Figure A2.14, do not have any values 
that are larger than the 2sd significance mark. Thus, it would appear that if there is to be 

any link between production and methane concentration it most likely occurs only after a 
large time lag. This assumption is verified by the hourly average residual cross- 

correlations obtained from the original hourly average model for drainage methane 
concentration and the simpler model for production, obtained in section 7.2.1 and shown 
by Figure A2.15. Only one value is significant at the 2sd mark and this occurs at lag 12. 

Many lags have values that are larger than lsd but less than 2sd. This suggests that the 

effect of production on drainage methane concentration is very subtle and acts over a long 

period of time. This slight relationship between the residuals causes a difficulty in 

estimating an expression for the drainage methane concentration error in terms of the 

production error as a number of lags have to be considered as a group. This technique of 

assigning importance to a group of lags was used earlier but in this case the lags only 
have very small values. Lags 1,2 and 3 all have values greater than lsd so they were 

considered as a group. The selection of other lags to group was more difficult and only 
lag 12 was selected as it was the only lag to have a value larger than 2sd. Thus the 

relationship between the error series was: 

Met = al PEc-l, c-3 + a2 PEc-12 + et 

where 
PEt-l, t-3 = Pet-1 + PF-t-2 + PEa3 

[7.32] 

After estimation it was found that this relationship was satisfactory with both the a 

coefficients having significant t-values and the residuals, shown in Figure 7.9, 
demonstrating white-noise properties. 

The hourly average univariate models for drainage methane concentration and production 

were: 

(1 - 0.14B + 0.13B2 + 0.20B11)D1 Qt 

(3.7) (-3.3) (-5.3) 

[7.331 
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and 

(1 - 0.39B24)p1Pt = (1 - 0.48B - 0.32B2) pet [7.34] 

(11.0) (9.1) (13.6) 

After rearranging and substitution the regression equation for drainage methane 
concentration in terms of production was: 

2- 11 (1 - a4B24) (1 - a1B - a2B a3B ) Qt = a7(1 
- agB - a6B2) 

P`-i, c-3 

+ ag 
(1 - a4B 24) 

pt 12 + et 
(1 - aSB - a6B2) 

[7.35] 

The regression of this equation produced coefficient values that were all significant, the 
final model being: 

(1 - 0.17B - 0.14B2 - 0.02B11) Qt 0.84 
(1 + 0.002B24) 

Pc 
(1-0.01B-0.19B2) l, c-3 + 

(1 + 0.002B24) 
0.65(1-0.01B-0.19B2)Pt'12 +e` 

[7.36] 

The t-values of the coefficients were; al = 8.4, a2 = 8.9, a3 = 22.3, a4 = -3.2, a5 = 
2.4, a6 = 11.6, a7 = 3.5, a8 = 3.1 and these are all satisfactory. The residual 
autocorrelations are shown in Figure 7.10 and they demonstrate satisfactory white-noise 
characteristics, indicating that the estimated model and its parameters are appropriate. 
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Autocorrelations: RESID 
Auto- Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 1 Box-Ljung Prob. 

1 -. 014 . 038 
2 -. 024 . 038 
3 . 024 . 037 
4 -. 031 . 037 
5 -. 034 . 037 
6 . 005 . 037 
7 . 008 . 037 
8 -. 003 . 037 
9 -. 010 . 037 

10 -. 068 . 037 
11 -. 026 . 037 
12 -. 051 . 037 
13 -. 068 . 037 
14 . 017 . 037 
15 -. 002 . 037 
16 . 129 . 037 
17 . 015 . 037 
18 -. 068 . 037 
19 -. 058 . 037 
20 . 014 . 037 

* 

.*. * 

*I. 
* 
* 
* . 
*. 

*I. 
*I 
*I. 

* 
* 

. I, ** 
* 

*I. 
*I 

t 

. 147 . 929 

. 558 . 906 

. 984 . 912 
1.648 . 895 
2.453 . 874 
2.472 . 929 
2.520 . 961 
2.526 . 980 
2.604 . 989 
5.907 . 880 
6.386 . 895 
8.238 . 828 

11.600 . 638 
11.799 . 694 
11.801 . 758 
23.805 . 125 
23.961 . 156 
27.370 . 096 
29.811 . 073 
29.959 . 093 
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Figure 7.9 Residual Autocorrelations for Drainage Methane Concentration and 
Production Error Relationship. 
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Figure 7.10 Final Model Residual Autocorrelations for Drainage Methane Concentration 
and Production Regression Error. 
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For completeness, residual cross-correlation plots between drainage methane 
concentration and barometric pressure were obtained. The residual series from the one 
days model of barometric pressure was not used since it is unlikely that even a very 
abrupt change in barometric pressure could cause either an increase or a decrease in the 
drainage methane concentration. The residual cross-correlation plots for drainage 

methane concentration with 10-minute average and hourly average barometric pressure 
are illustrated by Figures A2.16 and A2.17 respectively. Both show no significant 
correlation values at any lag. Even allowing for the fact that the two univariate barometric 

models are not ideal this result is not unexpected. A possible effect of a change in 

barometric pressure of 40mb over a period of hours is completely lost due to the transient 

nature of the drainage system. 

A model for hourly average drainage methane concentration in terms of production has 
been successfully built and consists of two components. The residual cross-correlations 
revealed that no effect of production was evident until lag 1, or after one hour of 
production had elapsed. Also, the effect of production was subtle and even though the 
model is appropriate in terms of the diagnostic checks employed it remains to be seen 
whether it will be capable of forecasting to any degree of accuracy. 

7.5 Conclusion 

This chapter has presented the results of a multivariate analysis to determine the 

correlation between methane concentration and its chosen explanatory variables. From 

the simple conceptual model to account for methane concentration in terms of a number of 
explanatory variables it was found that only production could be used to build a model 
expressing methane concentration in terms of production. Barometric pressure and air 
velocity were found not to be suitable. In the case of barometric pressure, the univariate 
models were not representative of actual barometric pressure because of the inaccuracy of 
the method of monitoring. Air velocity was not included because as a spot value there 

was no correlation between itself and methane concentration while as an average value it 

would have been appropriate to convert the average value for methane concentration into a 
methane flowrate. 
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The theory for multivariate analysis allows true causal (two-way) relationships to be 
determined but the models were built on the assumption that the dependent variable 
(methane concentration) did not influence the independent variable of production and this 

was found to be satisfactory. The actual model building process was limited by 

computational difficulties but in most cases these only served to lengthen the time taken to 

arrive at a suitable model. Where models were not built this was because of other factors 

such as incorrect residual cross-correlations caused by inappropriate univariate models. 
The regression was found to be very dependent on the length of the time series. 

Three models were built in this chapter. A model for hourly average methane 

concentration and production was built first, followed by a model for 10-minute average 

methane concentration and production. The methane drainage range parameters were also 

analysed and a third model was built for hourly average drainage methane concentration 

and production. It was not possible to build a model for either one days or the complete 

original series of methane concentration and production because of their length and the 
inadequacy of the model to represent one days production. However, it was suggested 
that even if such models could have been built their forecasting usefulness would not 
have been very great. Also, a decision not to use air velocity was taken because it cannot 
be exactly predicted and so a model for actual methane emission would be inappropriate. 

It was also seen that proxy univariate models could be substituted for the original ones to 

enable the multivariate models to be built. 

Each multivariate model identified production at various lags as components within the 

model. The model for hourly average methane concentration contained parameters to 

account for both coal front and strata gas emission. This means that the model should be 

capable of producing accurate long-term i. e. up to 48 hours, forecasts. The 10-minute 

average model contained parameters to account mainly for coal front gas emission and so 

would likely be best for short-term in-shift forecasts. The model for hourly average 
drainage methane concentration identified a subtle relationship between itself and 

production and because of its time scale is better suited to long-term forecasts. 

In the next chapter the forecasts obtained from both the multivariate and univariate 
(original and proxy) models for methane concentration and drainage methane 

concentration are compared and the suitability of the models to mining process control is 

also examined. 
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CHAPTER EIGHT 

AN ANALYSIS OF THE UNIVARIATE AND MULTIVARIATE 
FORECASTS 

8.1 Introduction 

In the previous two chapters it was demonstrated that it was possible to build time series 
models for mine environmental and production data. In this chapter the usefulness of 
these models is discussed with particular reference to their forecasting abilities and their 
application to mining process control. . 

Although it was seen in chapters 6 and 7 that with the exception of models for barometric 

pressure, appropriate time series models could be built for the monitored data, their 

ultimate usefulness is determined by their forecasting ability. According to the diagnostic 

checks performed during the model building process the models proved to be good fits to 

the particular time series data. However, the statistical complexity of any model is of no 

real benefit if the model produces forecasts that are either inaccurate or useless. The 

simplest measure of forecasting accuracy is to compute the forecasts for the out-of-sample 

periods and then compare them with actual data. Other measures of forecasting accuracy 
involve the comparison of the mean square forecasting errors between models but this is 

not applicable where there is only a single forecasting model. All of the forecasts were 

generated within the SPSS-X TrendsT"' package. 

8.2 Forecasting Criteria 

It is not sufficient just to build models and obtain forecasts from them, some criteria needs 
to be set down so that the forecasts can be correctly understood. An important point to 
note is that accuracy of the forecasts depends on how well the original univariate model 
fitted the time series. This is especially important when such models are used to build a 
multivariate model. The forecasts lend themselves to planning and control and these three 
items can be defined as: 
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1. a forecast is simply a series of future values, 

2. a plan allows action to be taken whereby the forecasts can be changed, 

3. control involves using the forecasts or the forecasting errors to take corrective 
action according to certain control criteria. 

The aim of this thesis is to develop models that can be used to satisfy all three of these 
items. The models must be capable of producing accurate forecasts so that confidence in 

their ability to produce them can be gained. The forecasts themselves represent the 

possible outcome according to changes in the models influencing variables. For 

application in mining this means the determination of methane concentration levels due to 

coal production. If the forecasts reveal that at a certain time a problem will occur then a 

plan can be made and further forecasts made to see whether the actions contained within 
the plan were sufficient to solve the problem. If a different number of scenarios are 

analysed then the forecasts and hence the plan can be developed into a control method that 

could be completely automated. 

8.3 Forecasts of the Original Series for Methane Concentration 

In chapter 6 two univariate models were built to represent the original series for methane 
concentration. They were built from 16,000 data points with a time interval between each 
observation of 2 minutes. The main reason for building two models was to demonstrate 

that the choice of the final form of a model does not greatly influence its forecasting 

performance so long as a minimum degree of diagnostic checks have been satisfied. 
Essentially this means that the fitting of a small number of parameters to a time series will 
reduce the residual standard error to a value that is only further reduced slightly by the 
addition of extra model parameters. In the case of the first model which was an ARIMA 
(2,1,2) and proved to be the best fit, its residual standard error was 0.0121831. The 

second model chosen was the very simple ARIMA (1,1,0) whose residual standard error 
was 0.0121997. Thus the addition of the extra parameters to produce the best fit model 
resulted in a 0.14% decrease in residual standard error. However, the more complicated 
model was deemed to be the best fit because its residuals demonstrated good white-noise 
properties whereas the simple model did not. From a statistical point of view the best 

model should be the best fit one but from a practical point of view it is interesting to 
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compare the actual forecasts of these models to determine how important the fit of the 
model is in obtaining accurate forecasts. 

There are two components to the forecasts obtained from the models. The first are in- 

series forecasts where values within the historical period are forecasted. If the model has 
been correctly specified then the predicted values will tend to follow the original ones 
closely. The second and the most interesting forecasts are those that are made into the 
validation period A hint as to how well the model will forecast into the validation period 
is given by examining the residual autocorrelations after the model has been applied to the 

complete series, i. e. both the historical and validation parts. If there is only a small 
change in the residual autocorrelation values it is likely that the model will produce better 
forecasts. 
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Figure 8.1 Methane Concentration Forecasts for ARIMA (2,1,2) Model. 
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The forecasts of both of the univariate models for the original methane concentration 
series are illustrated by Figures 8.1 and 8.2 respectively. Referring to Figure 8.1, the 
first 30 forecasts are in-series forecasts and the forecast values follow the actual methane 
concentrations closely indicating that the original univariate model (an ARIMA (2,1,2)) 
fitted the series well. The forecasts from value 31 to 71 are forecasts into the validation 
period. It is seen that only the forecast values 31 and 32 coincide with the actual value for 

methane concentration and all subsequent forecasts stay at the forecast value equal to 
1.15% at data point 32. This behaviour is typical of univariate forecasts where no 
seasonal or periodic effects are evident and the forecasts simply converge to a horizontal 

unchanging level. Meanwhile the actual values for methane concentration slowly decrease 

before stabilizing at around 1.03%. Where no seasonal effects are evident in the series 

over which the model was estimated it is not possible to obtain useful forecasts and so 
such models are extremely limited in their forecasting ability. 

1.4 

1.3-I 

1.2 -1 

1.1 t 

. 1.0- 

0.9 
0 10 20 30 40 50 60 70 

Case Number 

Actual 

-+- ARIMA (1,1,0) forecasts 

-º- Forecast confidence limits 

Figure 8.2 Methane Concentration Forecasts for ARIMA (1,1,0) Model. 
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The validation forecasts presented in Figure 8.1 are unconditional in that they are n-step 
ahead forecasts. This means that the model uses forecasted values to compute subsequent 
forecasts. The in-series forecasts are conditional in that they are all 1-step ahead 
forecasts, i. e. the forecast of n+1 takes account of the actual value at n and any other 
values necessary for the model to consider. It is possible to compute conditional 
validation forecasts but these would give a false impression of the models forecasting 

ability. Within mining it is unconditional forecasts that are of interest primarily because 

the objective is to forecast likely methane concentration values some time into the future. 
It is also seen that as the forecast period lengthens so do the forecast 95% confidence 
limits and although the model quickly reached a stagnant forecast of 1.15% most of the 

actual methane concentration values were within the confidence limits and the forecasting 

accuracy was around 15%. 
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Figure 8.3 One Day Methane Concentration Forecasts for ARIMA (1,1,0) Model. 
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Figure 8.2 shows the forecasts obtained for the simpler univariate model for methane 
concentration, the ARIMA (1,1,0). To 2 decimal places all of the forecasts (both in-series 

and validation) are the same as for the more complex univariate model. Therefore, for 

this example at least, it appears that a simpler univariate model is quite suitable for 

obtaining representative forecasts as compared to a more complicated model. A further 

test of model suitability on the grounds of forecasting ability is to compare the Mean 
Square Forecasting Errors or MSFE's. The MSFE for the more complex model was 
0.0493 while for the simpler model the MSFE was 0.0491. Although the difference 
between them is small it appears that are far as the MSFE is concerned the best forecasting 

model is the simple ARIMA (1,1,0). On the grounds of parsimony the more complicated 

model should be rejected primarily because if the univariate model was used to obtain a 
multivariate relationship models with the fewest number of parameters tend to perform 
best. 

The actual values of methane concentration are gradually declining and in reality the 

values occurred over a period from 03: 40 to 06: 00 hours on Monday 22nd April 1991. 
No production took place during this time and the last full strip was cut at 03: 50 hours on 
Saturday 20th April. The forecasts were not able to follow the actual methane 

concentration values when they were declining. If the forecasts are to be of any real use 
then they must be capable of providing an indication of when a turning point will occur. 
In general, unconditional forecasts from a univariate model that contains no seasonal 

parameters are unsuited to providing this sort of information which for application in 

mining is of paramount importance. Had the forecasts been obtained for a period of 
normal weekday production they would have not been able to predict when either an 
increase or a decrease in methane concentration would occur. 

8.4 Forecasts of the One Day Series for Methane Concentration 

The univariate model for the one day series of methane concentration with a time interval 

between observations of 2 minutes was a simple ARIMA (1,1,0). The in-series and 
validation forecasts can be seen in Figure 8.3. The in-series forecasts follow the actual 
series well which is itself fairly steady. The forecasts are from case 30 to 70 and are 
similar to the forecasts in the previous section in that they have a constant value. The 
forecasts are for the period 20: 00 to 22: 20 hours on Wednesday 10th April 1991. No 

production took place during this period and the last strip was cut at 17: 15. The actual 
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methane concentration was steadily declining and production did not recommence until 
00: 10 the next day. Thus, in such cases the forecasts appear to be adequate and are very 
close to the actual values. 
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Figure 8.4 One Day Extended Methane Concentration Forecasts for ARIMA (1,1,0) 
Model. 

To demonstrate how important it is for the model to be capable of providing forecasts that 

show when methane levels either decrease or increase the one days series was lengthened 

so that forecasts could be made in a period when the machine was cutting. The ARIMA 
(1,1,0) was fitted to the longer series and the residual standard error decreased by 4.5% 
indicating that the autoregressive parameter fitted well. The forecasting period was 
chosen as 12: 00 to 13: 20 the next day. Case 1 in Figure 8.4 corresponds to 12: 00 and the 
in-series forecasts are for the period 12: 00 to 12: 40. During this time production 
commenced at 12: 10 with the cutting of a complete strip which finished at 12: 55. The 
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shuffle was carried out quickly and production recommenced at 13: 05. Previous to the 
cutting of the first complete strip of the shift the machine had cut a 5m shuffle at 11: 50. 
The actual methane concentration values are fairly steady from case 1 to 10 before starting 
to increase noticeably. This increase is most likely due to coal front gas appearing a few 

minutes after the start of the cutting at 12: 10. Case 28 corresponds to 12: 55 when the 
machine completed the first strip but the methane level continued to increase until 13: 04 

after which it begins to decrease. The forecasts are from case 21 onwards and 
immediately converge to a value of 1.04% that does not change throughout the forecasting 

period. Thus, the univariate forecasts are unable to follow the change in methane 

concentration due to the short-term effects of production released coal front gas. 

Although it was not possible to build a multivariate model for one day methane 
concentration in terms of production it is envisaged that such a model would be able to 
predict more relevant values for methane concentration. Short-term forecasts from a 
multivariate model rely on a representative univariate model for production which over a 
short time period is difficult to acquire. It was seen that a simple univariate model could 
be used to describe the behaviour of methane concentration both over a long period of 
time (i. e. the complete month of original data) and over only one days data. Where 

production is concerned it would be inappropriate to use the complicated univariate model 
fitted to the complete series as a representation of the one days production since the 
seasonal components would not be evident. 

8.5 Forecasts of the Hourly Average Series for Methane Concentration 

8.5.1 Univariate Forecasts 

Forecasts were obtained for both of the univariate models for hourly average methane 
concentration and for the multivariate model for methane concentration in terms of 
production. Figures 8.5,8.6,8.7,8.8,8.9 and 8.10 these respectively. 

Figure 8.5 illustrates the in-series and validation forecasts of the ARIMA 
(0,1, [1,5])(0,1,1)24 for hourly average methane concentration. This was the model 
identified as the best fit but one that could not be used to obtain a relationship between 
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Figure 8.5 Hourly Average Methane Concentration Forecasts for ARIMA 
(0,1, [1,51)(0,1,1)24 Model. 

methane concentration and production. The first 100 cases (the in-series forecasts) 
demonstrate how well the model fits the series. Case 1 corresponds to an hourly average 
value at time 22: 00 on the Tuesday 23rd April 1991, while case 100 occurs at time 02: 00 

on Sunday 28th April. Over this period of 4 days the actual methane concentration peaks 
a number of times and these peaks occur for each working shift. Overall the general trend 
is decreasing and the in-series forecasts follow the actual values closely, From case 85 
(Saturday, 10: 00) onwards the actual methane concentration values begin to decrease. 
Coal production had stopped early on in the morning and it is seen that the actual methane 
concentration responds to the halt of production quickly. This behaviour was due to one 
main reason and was explained by examining the lag structure of the univariate model. 
Aside from the 24 hour seasonal component the non-seasonal component consisted of 
MA parameters at lags 1 and 5. This means that after a period of 5 hours of no 
production the value for methane concentration rapidly falls, and it is likely that the effect 
of producing hourly averages exacerbated this. However, the main concern is whether 
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the univariate model can produce accurate forecasts, but it is still important to be able to 

account for actual behaviour by examining the structure of the univariate model. 
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Figure 8.6 Validation Forecasts for ARIMA (0,1, (1,5))(0,1,1)24 Model. 

The validation forecasts (from case 100 onwards) are better illustrated by Figure 8.6. 

This figure shows the forecasts and their 95% confidence limits for a period of 48 hours. 

It is seen that they follow the actual trace quite well but are generally above the actual 

values for the first 30 forecast cases and are then below the actual value. In fact they 

appear to move slightly upwards and downwards about a steady level. The forecasts 

beyond 48 hours (case 150 onwards) are seen in Figure 8.5 and they do not follow the 

actual trace well. From case 130 onwards which corresponds to 08: 00 on Monday 29th 

April the actual methane concentration increases due to the resuming of production. The 

forecasts however, do not respond and will continue to oscillate until they stabilize at a 

steady value, regardless of the true amount of methane emission. Thus, although the 
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initial forecasts appear to agree well with the actual values of methane concentration they 
cannot be used to give accurate predictions for longer than 24 hours. Even so, the overall 
accuracy of the univariate forecasts is approximately 10% and this is acceptable 
considering that factors such as air quantity and barometric pressure where large 
deviations from normal may well have caused the methane concentration to change 
unduly. A further inadequacy of the univariate model is its inability to account for the 
long-term contribution of strata gas emission. The univariate model does not respond to 
the contribution of strata gas which tends to be overshadowed by the effect of coal front 
gas. 
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Figure 8.7 Validation Forecasts for ARIMA ([1,5], 1,0)(0,1; 1)24 Model. 

The validation forecasts obtained from the ARIMA ([1,5], 1,0)(0,1,1)24 are shown in 
Figure 8.7 and they are almost identical to those from the original model for hourly 

average methane concentration, as illustrated by Figure 8.6. The simpler model was 
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chosen so that a model for methane concentration in terms of production could be built 
and both the in-series and validation forecasts confirm its suitability. An examination of 
the two models MSFE's reveals values of 0.0050 and 0.0052 for the original and simpler 
models respectively. This increase in MSFE is small and indicates that the simpler model 
for hourly average methane concentration was suitable for use in the multivariate analysis 
that was performed in the previous chapter. A comparison of the validation forecasts 
from the two models can be seen in Figure 8.8. 
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Figure 8.8 Comparison of Validation Forecasts for ARIMA ([1,5], 1,0)(0,1,1)24 and 
ARIMA (0,1, [ 1,5])(0,1,1)24 Models. 
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8.5.2 Multivariate Forecasts 

The multivariate model for hourly average methane concentration was only able to take 
account of one influencing variable and that was coal production. The building of the 
model was carried out with adherence to strict diagnostic criteria and the model should, in 

theory, be capable of better forecasts. It was seen that the multivariate model contained 
components to account for both coal front gas (including conveyor gas) and strata gas. 
The forecasts from the model are shown by Figure 8.9 and it can be immediately seen that 

they are an improvement on the univariate ones. The in-series forecasts are similar to the 

ones obtained by the univariate model and this is expected. The validation forecasts can 
be more clearly seen in Figure 8.10. To obtain forecasts it was necessary to supply the 

model with values for production and so the model was supplied with the actual 

production that took place so that the forecasts could be compared with the actual values 
for methane concentration. 
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Figure 8.9 Multivariate Forecasts for Hourly Average Methane Concentration. 
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Initially the production values were zero since the validation forecasting period was from 
Sunday morning to Tuesday evening. Referring to Figure 8.10 which shows forecasts 

over a period of 48 hours from Sunday morning to Monday evening, the forecasts follow 

the actual methane concentration values well during the production free Sunday. During 

this period the multivariate model only considers lagged values'of production to account 
for emissions of strata gas. Production resumed at 08: 00 on the Monday morning and 
this corresponds to case 32 on the graph. The first peak at case 36 was predicted by the 

model and so was the subsequent fall in concentration explained by the production free 

period before the next shift commenced cutting. The second peak was also predicted but 

it is noticeable that the forecasts are lower than the actual methane concentration values. 
This is corroborated by Figure 8.9 where the forecasts beyond case 130 are usually lower 

than the actual values. Never-the-less, what is of importance is that the turning points or 
times when the methane concentration level changes are predicted accurately. Another 

important point to note here is that even though the multivariate model accounts for strata 

gas emission it is apparent that coal front gas emission is the most significant contributor 

to hourly average methane concentration values. 
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Figure 8.10 Multivariate Validation Forecasts for Hourly Average Methane 
Concentration. 
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Whereas the univariate forecasts appear to converge to a slightly oscillating level the 

multivariate ones are capable of accounting for coal production. The univariate models 
are limited in that they can only forecast future values with no regard to what might 
happen in this period. The forecasts illustrated in Figure 8.9 show two important 

features. The first is that when there is a period of no production the multivariate model 
begins to take less account of coal front gas and more of strata gas and this results in a 

realistic decay of methane concentration. The second is that the model is able to respond 
to a change in the production rate and in periods of variable production the model is more 
dependent on recent production and hence coal front gas. These two factors mean that the 

model could be used to plan production so that the forecasted values will be different and 

also to control both production and methane concentration according to a control policy. 

8.6 Forecasts of the 10-Minute Average Series for Methane 

Concentration 

8.6.1 Univariate Forecasts 

The univariate forecasts for 10-minute average methane concentration can be seen in 

Figures 8.11 and 8.12. Figure 8.11 illustrates the forecasts for the original model for 10- 

minute average methane concentration, the ARIMA (2,1,3). The in-series forecasts from 

case 1 to case 70 follow the actual methane concentration values well but the validation 
forecasts are disappointing. However, they are no great surprise since the ARIMA model 
does not contain any seasonal component and the forecasts quickly reach a steady value. 

The 10-minute univariate model is only capable of responding to coal front gas emission 

which over a short timescale is the most significant contributor to the methane 

concentration value. Case 1 corresponds to 19: 40 on Wednesday 24th April 1991 and 

case 70 to 07: 20 the next day. The afternoon shift had completed its last cut at 18: 40 with 

a 150m strip and this accounts for the decline in methane concentration evident on the 

graph. The night shift commenced production at 2340 (case 25) with a partial strip of 
100m that included a stoppage from 23: 45 to 00: 10. The methane concentration trace 

shows 2 smaller peaks instead of 1 whole one and this accounts both for the reduced 

amount of coal cut and the stoppage. The first full strip was cut at 00: 55 and the peaks 
(from case 35 onwards) correspond to each cut. The night shift stopped cutting at 4: 10 
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and the methane concentration begins to decline. The forecasts are from case 70 onwards 
and are not able to predict the rise in methane concentration due to the start of the day 

shift. 

1.25 

ý 
c' 
O 

1.15 
I 

- ý- ýä C) 
ý 

IM '1 

0.95 

u .A -101.4 

aA 0 

410.1 

0 10 20 30 40 50 60 70 80 90 100 

Case Number 

UA In-series forecasts Actual 

OB Validation forecasts ARIMA (2,1,3) forecasts 

Figure 8.11 10-Minute Average Methane Concentration Forecasts for ARIMA 
(2,1,3) Model. 

Figure 8.12 is a comparison of the validation forecasts for the original ARIMA (2,1,3) 

and simpler ARIMA (2,1,0) models. It shows that the validation forecasts for the models 

are almost identical. The MSFE for the ARIMA (2,1,3) was 0.0222 while for the 
ARIMA (2,1,0) it was 0.0218. Therefore, the simpler univariate model was appropriate 

to be used to obtain a multivariate relationship for 10-minute average methane 

concentration. 
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Figure 8.12 Comparison of Validation Forecasts for ARIMA (2,1,3) and ARIMA 

(2,1,0) Models. 

8.6.2 Multivariate Forecasts 

The multivariate model for 10-minute average methane concentration was identified as 

consisting of two components. The first was a term to account for the methane released 

within 10 minutes of the cut and contains methane released from the coal face and that 

released during transportation. The second component accounts for methane released 
between 10 and 70 minutes after cutting. This term consisted of lagged variables to 

account for both coal face and conveyor methane and possibly the appearance of strata 

gas. During the development of the model it was necessary to aggregate the contribution 

of methane released between 10 and 70 minutes after cutting and a greater weighting was 
applied to methane appearing on the monitor at a time between 10 and 20 minutes. 
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Figure 8.13 Multivariate Forecasts for 10-Minute Average Methane Concentration. 

The multivariate forecasts are shown by Figure 8.13. The in-series forecasts follow the 

actual methane concentration values well. The validation forecasts are an improvement on 

the univariate ones in that they are able to predict methane concentration according to the 

rate of coal production. Figure 8.14 is a more detailed plot of the forecasts. Case 1 on 

this plot corresponds to 07: 20 and production did not start until 08: 15. The multivariate 
forecasts predict the rise in methane concentration due to the start of the day shift cutting 

and then predicts a decrease in methane due to discontinued production. If a univariate 

model had been identified that contained a seasonal component it would have predicted 

methane peaks for nonexistent strips. The production series that was used to obtain the 

forecasts was real and after the first strip of the day no more were cut. In fact the 

machine did start another cut but after 30 m the AFC suffered a break-down which took 

until 14: 45 to repair. Thus, the model was able to predict representative values of 

methane concentration when no further production took place. 
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Figure 8.14 Multivariate Validation Forecasts for 10-Minute Average Methane 

Concentration. 

8.7 Forecasts of the Methane Drainage Range Concentration 

8.7.1 Univariate Forecasts 

The univariate models for drainage methane concentration were all similar in that they 

consisted only of AR parameters. Such models are very limited in their forecasting ability 

and in general are only suitable for short-term forecasts of a few time intervals or steps 

ahead. From a planning point of view these limitations cause a number of difficulties. 

The drainage methane concentration was not subject to as much fluctuation as the general 

air body methane concentration and in fact, was relatively constant over substantial 

periods of time when the pumps were running. Thus, for a level value, univariate 
forecasts can be quite useful, but of course they are not able to respond to changes in 

level unless they contain some seasonal component. The inability to predict such changes 

30 
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means that the forecasts have little worth. 

Methane drainage is practised in most UK coal mines to some degree and many use the 

gas to heat water for bathing and heating. Some mines are planning to generate electricity 
for their own and community use and others sell the gas to industry. The quantity of gas 

exhausted is not under any direct control by the colliery and at times situations occur 

when a knowledge of a decrease in the amount of drained gas would be useful. For 

example, Parkside Colliery sells methane to a nearby chemical plant and they are obliged 

to give notice of a decrease in methane flowrate and quality so that the plant has time to 

switch to gas supplied by British Gas. 
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Figure 8.15 Drainage Methane Concentration Forecasts for ARIMA ([2,3,41,1,0) 

Model. 
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Thus the most useful forecasts are those to enable the colliery to plan a course of action 
rather than attempt to control the quantity of drained methane. The univariate forecasts 
for the original drainage methane concentration are shown in Figure 8.15. As expected 
the in-series forecasts are good while the validation forecasts although constant are 
satisfactory until a rise in concentration occurs due to a stoppage of the pumps. The 

univariate forecasts quickly reach a steady value which over a short time interval are 
adequate, even when the pumps are stopped for a short period of time. In practice, 
however, there is little gain from either having such forecasts or a model for the drainage 

methane concentration for short time intervals since the colliery would not be concerned 

with short-term variations in the quantity of drained gas. 
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Figure 8.16 One Day Drainage Methane Concentration Validation Forecasts for 

ARIMA ([2,31,1,0) Model. 

The validation forecasts from the one day series of drainage methane concentration are 
illustrated by Figure 8.16. The forecasts reach a steady level after 4 time periods (8 
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minutes) and do not correspond to the actual values that decrease before becoming 

constant. 

The forecasts from the 10-minute average series behave in much the same way and are 

shown by Figure 8.17. It is more noticeable that as the time interval increases so does the 

potential for a change in level and also the potential for practical usage. Figure 8.18 

shows the forecasts for hourly average drainage methane concentration. No seasonal 

components were evident in the univariate model but the model contained an AR 

parameter at lag 11. This means that for some reason the value 11 hours previously had 

significance but it is not easy to ascribe an appropriate reason for this. The validation 
forecasts quickly reach a steady level while the actual values fall and rise. 
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Figure 8.17 10-Minute Average Drainage Methane Concentration Forecasts for 
ARIMA ([1,2,6], 1,0) Model. 
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The univariate models have all demonstrated that their forecasts are of limited use. The 

reason for this is not because of the inadequacy of the univariate models but rather 
because of the nature of long-term univariate forecasts which very quickly reach a steady 
level. For use in planning therefore, they have limited application. For a model to be of 
practical use it must be capable of accurately forecasting a number of hours into the future 

and only a model for hourly average drainage methane concentration has this potential. 
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Figure 8.18 Hourly Average Drainage Methane Concentration Forecasts for ARIMA 

([1,2,11], 1,0) Model. 

8.7.2 Multivariate Forecasts 

In the previous chapter no correlation between drainage methane concentration and coal 

production was identified for models other than the hourly average ones. This was not 

unusual since drainage methane concentration values monitored at a frequency of 2- 
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minutes can in no way be affected by recent coal production. It is conceivable that there 

could be a link but this is easily obscured by the large amount of data that would be 

needed to identify such a relationship. The multivariate analysis identified a weak 

residual relationship between drainage methane concentration and production that 

signified a subtle relationship between them. The subsequent model estimation resulted 
in an appropriate model that identified a link between production and drainage methane 

concentration at 1 to 3 hours and 12 hours previously. This is consistant with the 

univariate model that consisted of parameters at lags 1,2 and 11. It would seem 

therefore, that production has a rapid and lagged effect on the quantity of drained gas. 
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Figure 8.19 Multivariate Forecasts for Hourly Average Drainage Methane 
Concentration. 

In building the hourly average model for general air body methane concentration in terms 

of production it was found that strata gas took up to 26 hours to appear in the airstream. 
This helps to explain the correlation between drainage methane concentration and 
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production since the methane drainage boreholes are targeted into high gas content strata 
and so gas being drawn towards them would take less time to appear. 

The forecasts from the model are illustrated by Figure 8.19. The forecasts are for the 

same time period as those for the hourly average general body methane concentration. 
The in-series forecasts are good while the validation forecasts manage to predict the actual 

values well, albeit with some fluctuation. A drop in concentration occurs around case 50 

which corresponds to early on the Friday morning and is due to production having 

stopped at 04: 20. Production recommenced at 08: 15 and an increase in concentration is 

seen because of this. Concentration is then seen to fluctuate and each peak corresponds 

to each shift of coaling. Production stopped for the weekend break early on the Saturday 

morning (case 75 onwards) and after a time delay of a few hours the concentration is seen 
to decrease noticeably, before rising again due to the restarting of production on the 
Monday morning (case 130 onwards). The good correlation between the behaviour of 

the actual concentration values and production verifies the suitability of the multivariate 

model for drainage methane concentration. This model identified that production caused a 

change in concentration after 1 hour and that production up to 12 hours previously, 

contributed to the gas present in the drainage system. 
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Figure 8.20 Multivariate Validation Forecasts for Hourly Average Drainage Methane 
Concentration. 

The validation forecasts can be more clearly seen in Figure 8.20. These forecasts are for 
48 steps ahead i. e. 48 hours and they manage to follow the actual values quite well. The 
forecasts are accurate to within 10% of the actual value. 

During the course of the research only the methane drainage variables of 119's were 
monitored and in practice a colliery would be more concerned with the total amount of gas 
present in the whole drainage system. It would still be necessary, however, to monitor 
each district individually so that a true indication of the likely concentration due to 
production could be found. The forecasts from each district could then be aggregated to 
arrive at a total amount for the whole mine. 
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8.8 Application of the Models to Process Control 

Now that the models have been used to obtain forecasts and the forecasts have been 
examihed according to their ability to predict changes in the level of methane 
concentration it is necessary to discuss how they might be used when applied to process 
control. Process control is a means whereby the forecasts are used to provide either a 
computer or human operator with information on which they may or may not act. A good 
example of this are the forecasts for methane concentration. If a model were working 
within a method for production control and the forecasts indicated that at a desired rate of 
production a methane concentration in excess of the statutory 1.25% would be exceeded 
at a certain time two courses of action are possible. The first, and least attractive would 
be to do nothing, while the second involves taking action to lower the impending high 

methane concentration levels. Lowering of the methane concentration could be 
accomplished by either revising the planned production schedule or introducing additional 
airflow at the required time. Depending on how far the statutory methane limit was to be 
exceeded it may be appropriate to use a combination of these two factors. 

For a model to be used in such instances it must be capable of predicting changes in the 
methane concentration and this immediately excludes the use of all the univariate models 
for methane concentration except the one for the hourly average series. However, it was 
seen that although this model contained a seasonal component its forecasts are based 

entirely on the assumption that future production will be of a similar pattern to that that 
took place during the historical portion that was used to estimate the model. Such a 
model would not produce accurate forecasts for widely differing production schedules. 

Only the multivariate models for methane concentration were capable of predicting 
accurate values for methane concentration according to changes in coal production. The 
two models were for hourly average and 10-minute average methane concentration and 
both demonstrate particular forecasting abilities. These are defined by the time interval 
between observations and the effect of production on methane emission during a 
particular models timescale. 
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8.8.1 Forecasting Ability According to Time Interval Between 
Observations 

It was observed in sections 8.3 and 8.4, which dealt with univariate forecasts of methane 
concentration from both the complete original series and one day series of methane 
concentration, that the forecasts reached a steady level after a short number of forecasted 

time periods. It was not possible to build a multivariate model for methane concentration 

on the original timescale but if one had been available it would only have been capable of 
forecasting methane concentration which would have mainly been due to coal front gas 

emission. To use the forecasts for control would be difficult as it is unrealistic to vary 

coal production over such a short timescale and impractical to vary the air flowrate as a 

means to lower the methane concentration. 

The forecasts of the 10-minute average univariate models are similar to those of original 

timescale in that they to quickly reached a steady level. The multivariate forecasts are able 
to predict the changes in methane concentration due to production and the forecasts are 

accurate for about 25 time intervals or around 4 hours. The value for methane 

concentration is composed mainly of coal front and conveyer gas and the multivariate 

model contains components to account for gas released after 10 minutes of cutting and a 

term encompassing gas released between 10 and 70 minutes after cutting. Thus the 

model is better suited to providing an indication of how a change in production in the 

short-term would effect methane concentration. 

The hourly average multivariate model for methane concentration was able to predict 

accurately for 48 time intervals or 48 hours and thus provides a good indication of likely 

values of methane concentration according to the level of production. This model 

contains terms for coal front and strata gas and would provide an ideal indication of 

methane concentratioh due to both of these factors. The hourly average model for 

drainage methane concentration also produced accurate forecasts for 48 time intervals and 

contained terms to account for recent and lagged production. 
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8.8.2 Forecasting Ability for Control Purposes 

For the purpose of providing a control mechanism for methane concentration it is 

proposed that a combination of the two multivariate models for methane concentration 
could be used. The 10-minute model is capable of accurate forecasts of methane 
concentration due almost entirely to coal face and conveyer gas and if forecasts indicated 

that the statutory methane level was to be exceeded action could be taken to prevent this. 
These `short-term' forecasts are possibly suited to short-term ventilation solutions 

whereby coal production remains unaltered and extra airflow is created to reduce the 

general body methane concentration. Such a solution might be appropriate where the 

methane concentration lies close to the 1.25% limit and the peaks from each shift are 
sufficient to raise the concentration above this level. Ideally the whole coal cutting 

operation would have to be in complete computer control for this scenario to work. 

The hourly average model is capable of a much longer forecasting period and could be 

used to plan production so that maximum use of the working time was realized. For 

example, from an arbitrary start time it is intended to cut coal without reaching the 1.25% 

limit for a non-stop period of 24 hours after which there is a scheduled maintenance 

period of 4 hours. The effects of various production rates on methane concentration 

could be determined and a number of production options could be available. One of these 

may be to produce coal at such a rate that the statutory methane limit is exceeded at a time 

as close to the start of the maintenance period as possible in the supposed knowledge that 
the 4 hour stoppage would be sufficient to allow methane levels to decrease so that 

production could be restarted at the scheduled time. The forecasts from the 10-minute 

average model could be used in conjunction with the hourly average model in this 

particular example as they might provide an early warning of the possibility of greater or 
lower methane levels than expected. If this model forecasts lower concentrations 

production could be stepped up. If higher concentrations are predicted extra airflow 

could be provided as a short-term solution leaving production unaltered. 

The model for hourly average drainage methane concentration could be very useful to a 
colliery that is dependent on its drained gas for power generation or commercial revenue. 
The model is capable of predicting likely values of drainage methane concentration that 

can be converted to a flowrate using an average value for the flowrate of gas in the range. 
A colliery would be able to predict short-term variations in quantity due to the models 
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term accounting for production 1 to 3 hours previously and longer-term forecasts due a 
lagged production effect of 11 hours. It is doubtful that the forecasts would be used for 

control purposes because a colliery is more concerned with producing coal rather than 
gas. Instead they would provide a warning of whether the availability of gas would cause 
a problem and if so appropriate action could be taken. 

8.8.3 Model and Forecast Monitoring 

The forecasting models can either be used by themselves whereby the predictions they 

produce are acted upon by a control room operator or by a computer within an expert 
system. How much control such a person would have is dependent upon the type of 
control desired. In a simple situation the control room operator may only be able to 
inform the face team or manager of likely problems caused by over production, leaving 

further decision to those with greater ability or superiority. A second and much more 

complex application of the models would be their inclusion within a dedicated computer 

control package capable of complete coal face environmental and production control. 
However the models are used it will prove necessary to monitor them so that they 

continue to produce accurate forecasts and the nature of monitoring and diagnostic 

checking will depend on the complexity of model use. 

The univariate models that are used to produce a multivariate model are based upon the 

statistical behaviour of past values and in producing univariate forecasts assumes that the 
future will behave in much the same way. The multivariate models also rely on this 

assumption even though they are capable of predicting methane concentration in terms of 
coal production. There may come a time when some future events are untypical of past 
behaviour and if these continue it is likely that the multivariate model will cease to 

produce accurate forecasts. It then becomes vitally important to be able to correct for 

such instances. 

The on-going suitability of a model can become inadequate for two basic reasons. 
Firstly, the dependent variable which in this case is methane concentration can be 
disturbed in the short-term, i. e. by very large fluctuations in air velocity but the 
underlying behaviour may be largely unaffected. Secondly, the underlying behaviour of 
the dependent variable may change in which case the model may need substantial 
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revision. Such an occasion could occur if the coal face moves into an area of altered 
geology. This could be sufficient to completely change the time for strata gas to appear 
due to changes in permeability and stress fields that are themselves caused by production. 

A number of monitoring tests are available to detect changes that may involve the altering 
of a model and these can also be used to improve upon the original model specification. 
The tests are basically the same regardless of how the models are utilized. The 

monitoring tests can only be applied to models that are an adequate representation of the 
data and so care must be taken during the model building process to ensure that this is so. 
The tests are then applied to new data, forecasts and model residuals. 

There are three main tests used in monitoring a multivariate model [54]. These are: 

1. single anomalous residuals, 
2. changes in the model parameters, 
3. change in the model structure. 

The first of these can occur if the model encounters a dramatic change in the behaviour of 
the dependent methane concentration variable that is not typical of its previous historical 
behaviour. Applying the model to the new augmented series it is possible that this 
behaviour will result in a few abnormally large residuals. A change in variable behaviour 

could be for two reasons. Firstly, although the airflow was not included in the 
multivariate models, the methane concentration values are highly dependent on the airflow 
variable. The air velocity was found to fluctuate by approximately 10% over the data 

monitoring period but if in the future it fluctuated at 20% then the relationship between 

methane concentration and production would be altered. Secondly, a major change in the 

production variable would also result in model inadequacy. At present production at 
Thoresby seldom took place over the weekend, but if production was under complete 

computer control and the shift pattern was changed substantially the model may need to 
be respecified to account for this change in production pattern. 

It is possible for the model parameters to change over time without there being a change 
in the model structure. As new data becomes available the univariate models used to 
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obtain the multivariate relationship should be re-fitted to the augmented series without a 
change in the model structure. If there has been little change in the behaviour of the 
variables this will generally result in a confirmation of the models suitability or even an 
improvement in the appropriateness of the models parameters. However, if this is not 
true then the whole univariate model building process will need to be carried out so that 
new univariate models are available. For whatever reason causes the change in the model 
parameters the multivariate analysis would also need to be performed again. 

A change in the model structure is identified by examining the model residuals. If the 
model is correct the residuals should demonstrate white-noise characteristics. If the 
residuals show autocorrelation then this may be evidence of whether structural 
inadequacy or incorrect parameter values. Usually, if the models parameters are 
noticeably changed after re-fitting then it is necessary to re-specify the model structure. 

8.9 Conclusion 

This analysis presented in this chapter has been concerned with a critical assessment of 
the forecasting performances of the univariate and multivariate models for general air 
body and drainage methane concentration. The forecasting ability of each of the models 
was also examined from the point of view of their ability to forecast correct levels of 
methane concentration. A discussion on how the models could be incorporated into a 
control policy was also entered into and lastly aspects of model performance monitoring 
were detailed. 

The univariate validation forecasts of methane concentration all highlighted the type of 
forecasts that such models are capable of producing. For univariate models that contained 

no seasonal component the forecasts were seen to very quickly reach a steady or constant 

value. The only exception was the hourly average model for methane concentration. The 

forecasts from this model predicted higher concentrations than actual during the 

production free weekend and were unable to forecast the increase of methane 

concentration due to the recommencing of production at the beginning of the week. In 

general, univariate models are only capable of producing representative forecasts when 
the future behaviour of a variable is similar to its past behaviour and in the prediction of 

methane concentration this is not usually true. 
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Forecasts were also obtained from the proxy univariate models for the original series of 
methane concentration, hourly average methane concentration and 10-minute average 
methane concentration. These models were used in chapter 7 to obtain a multivariate 
model between methane concentration and coal production. According to appropriate 
diagnostic checks these models appeared to be adequate and their suitability was further 

confirmed by the forecasts obtained from them. In all cases the forecasts were almost 
identical to those from the correct models and this means that so long as a minimum 
degree of diagnostic checks have been performed, the model forecasts are not too 
dependent on the structure of the model. 

The univariate models were seen to be incapable of forecasting methane emission 

according to changing levels of production and this contrasts noticeably with the 

performance of the multivariate models. The multivariate models for hourly average and 
10-minute average general body methane concentration and hourly average drainage 

methane concentration were all able to predict accurate values for methane concentration 
due to changing levels of production. The two models for general body methane 

concentration were able to predict values that consisted of both coal front and strata gas 

components. The forecasts for drainage methane concentration identified how recent an d 

lagged production influenced the concentration of methane in the range. 

The time interval between observations was seen to be a decisive factor in determining 

how useful the forecasts would be for planning and control. Models built from series 

with a short time interval between observations are only capable of a few useful step 

ahead forecasts at best. This is true for both univariate and multivariate models. 
Although a multivariate model for methane concentration data with a time interval of 2- 

minutes was not built, it is doubtful whether the forecasts could be of use. The forecasts 

would only show short-term variations in methane concentration and in practice it would 
be difficult to provide responsive action if an excessive level of methane concentration 

was anticipated. The two multivariate models for general body methane concentration 

demonstrated different forecasting abilities according to their time scales. The model for 

10-minute average methane concentration was able to forecasts short-term methane values 
due mainly to the release of coal front gas for each strip. The hourly average model was 

able to forecast accurately for 48 hours into the future and included terms to account for 

coal front and strata gas emission. 
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The good forecasting ability of the models for general body methane concentration 
enables them to be used within a planning and control strategy. Two brief scenarios were 
discussed and each model would be capable of providing answers in the form of 
representative predictions to these and other scenarios. The hourly average model is 

appropriate for providing long-term forecasts while the 10-minute average model is more 
suited to providing short-term indications of methane concentration. If the models were 
used for planning and control it is believed that they should be used in conjunction with 

each other. Planning and control are general terms that will depend on how the models 

are to be used. The models are quite capable of inclusion within a sophisticated control 

system that could be used for compete coal face environmental and production control. 

Where the models are being used for control purposes it is very important to monitor their 

performance. In an on-going control situation it is almost certain that the model parameter 

values will alter and the model structure may also need revision. Checks for model 
inadequacies will have to be carried out either by a qualified person or ideally by a control 

mechanism itself thereby ensuring that the models are performing at their best. 
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CHAPTER NINE 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

9.1 Summary of the Research 

This thesis describes an investigation into the application of a statistical method for the 

prediction of methane concentration in longwall coal districts. This method of methane 

prediction was achieved by using the Box-Jenkins time series analysis method to obtain 

univariate and multivariate models for methane concentration and other variables. The 

aim of the research was to demonstrate that such models could be used to accurately 

predict methane concentration from a consideration of already existing data. 

In chapter 2a concise account was given of the origin of methane and the mechanisms 
which cause its release and flow into mine workings. Chapter 3 was a review of 
previous methods of methane prediction. In this chapter a statistical method of methane 
prediction was presented as being distinct from other empirical or numerical ones. The 

reason for this treatment was whereas truly empirical methods of methane prediction rely 
on a knowledge of quantitative data of many physical parameters, a purely statistical 
method such as time series analysis does not. 

Chapter 4 provided an introduction to the basic philosophy of time series analysis and 

explains the three stages involved in building a univariate model. Time series analysis 

allows a model to be built purely on a statistical basis and then seeks to use expert 
knowledge concerning the variables to explain the structure of the univariate model. In 

this way the best possible model can be built to describe the behaviour of the time series. 
The structure of the univariate model was shown to be dependent on the frequency and 

quantity of the time series data used in the model building process. For example, in the 

analysis of the hourly average series for methane concentration a visual inspection of the 
data revealed the possibility of two seasonal components, a daily cycle and a weekly 
cycle. The analysis, however, was only able to discern a daily cycle of 24 observations 

and not the weekly cycle of 144 observations. In general, the smaller the time interval 
between observations the more difficult it is to discern cycles with long periods because 

too much data tends to obscure the patterns within it. 
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Aspects of underground environmental monitoring were examined in chapter 5. Detailed 
descriptions were given of the environmental monitors used at Thoresby Colliery to 
monitor the data. Reference was made to ensuring that the monitors were in their normal 
state of calibration and maintenance so that typical data was recorded. All of the variables 
used to build the time series models were already monitored or recorded by the colliery 
and the data analysis required no extra environmental variables to be monitored. Severe 

problems were initially encountered due to the difficulty of extracting the data from the 

colliery information system computer. These were solved by the acquisition of a 
communication package that was used to transfer data from the colliery computer to a PC. 

After transfer considerable effort was required to transform the raw data into a format 

suitable for time series analysis. 

Univariate models of methane concentration and other variables for data with four 

different timescales were built in chapter 6. It was proposed that methane concentration 

was the only dependent variable and that it could be caused or influenced by coal 

production, barometric pressure and air velocity. The univariate models were built for 

two main reasons. Firstly, the intention of chapter 7 was to investigate the possibility of 

a multivariate relationship between methane concentration and its explanatory variables 
but before this could be done it was necessary to build univariate models for each 

variable. Secondly, the univariate models for methane concentration were to be used to 

generate forecasts to compare with multivariate ones. Models were built for all of the 

variables except barometric pressure. These models were flawed because of the 
inadequacy of the method of barometric pressure monitoring and transfer of data to the 

computer. A further problem was the inability to reduce the Box-Ljung values of the 

residual autocorrelations at high lags for models built from very long time series. It was 
shown, however, that a simpler model could be obtained with only a small increase in 

residual standard error as penalty. An important conclusion of this chapter was that once 
a suitable model had been arrived at, reference was made to a priori knowledge in an 
attempt to explain its structure and hence verify its suitability. 

Chapter 7 was concerned with a multivariate analysis of the variables. A conceptual 

model was presented in which methane concentration was linked to causal variables. An 

outline of the procedure for multivariate analysis was also provided. The analysis was 
based on the correlation between methane concentration and other variables such as 

production and barometric pressure. For averaged models it was inappropriate to use air 

velocity so that a model for actual methane emission could be built, while for spot values 
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there were no correlations between methane concentration and air velocity. Production 

was identified as the only variable capable of being used to build a multivariate model for 
both general body and drainage range methane concentration. Multivariate models were 
built for hourly average general body and drainage range methane concentration and 10- 
minute average general body methane concentration but for some of the models it was 
necessary to use simpler univariate proxies to enable them to be built. A number of 
computational difficulties were experienced that proved to be a limiting factor on the type 
of model that could be built. Essentially, models containing a large number of model 
coefficients and series that were long in length, were beyond the capabilities of the 
software used to perform the analysis. It was seen that the structure of the multivariate 
models were conversant with practical knowledge of the likely effect of production on 
methane concentration. 

In chapter 8 univariate and multivariate forecasts for methane concentration were 
illustrated and compared. Forecasts of univariate models were characterized by their 
rapid convergence to a steady value and their inability to predict turning points in methane 
concentration. The multivariate models were shown to be capable of predicting when 
methane concentration levels would fall and rise and are thus able to forecast methane 
concentration according to the rate of production. The forecasting ability of the 

multivariate models were found to be dependent on the timescale of the models. Hourly 

average models were able to account for both coal front and strata gas emission while the 
10-minute average model was better at predicting coal front gas emission. For the most 
beneficial use of the forecasting models it is envisaged that they should be used in 

conjunction with each other. There is no doubt that the models lend themselves to use for 

planning and control and if used for such purposes it will be necessary to monitor their 

performance. 

9.2 Main Conclusions 

The most important conclusion of the research is that the statistical method of time series 

analysis is capable of producing statistical models for the prediction of methane 

concentration. Univariate models do not produce useful forecasts but they are necessary 
to infer a multivariate relationship between methane concentration and explanatory 
variables. It was found that coal production was the most important variable to consider 

and subsequent multivariate models for methane concentration in terms of production 
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produced forecasts that were capable of predicting changes in the level of methane 
emission. 

The analysis was carried out by making use of environmental data that was already in 
existence. This is an important point because the prediction method does not entail any 
additional effort and expense to acquire physical data such as strata gas contents, and 
alleviates the. need for an accurate understanding of strata stress/permeability 
relationships. Unlike analytical models that usually have to be modified for application to 
slightly different circumstances statistical ones have the benefit of being appropriate for 

each individual situation. This means that they are capable of producing an optimum 
model for each new situation. 

The analysis has resulted in models that clarify the relationship between methane 
concentration and its explanatory variables. If a model is built for an average series it is 
inappropriate to correct for air velocity and obtain actual methane emission. This is only 
appropriate where spot values are concerned but such models are not particularly suited to 
planning and control due to the short-term nature of their forecasts. Barometric pressure 
is only likely to cause evident changes in methane emission if the rate of pressure change 
is large and if the timescale of the model is lengthy. Otherwise any observed effect will 
not be evident in the time series analysis. Production was identified as the most important 

variable and its effect on methane concentration was cons i stant with practical knowledge 

and theory of production related methane emission. It was also seen that the models were 
capable of predicting directional changes in methane concentration according to changes 
in the rate of coal production. 

The multivariate models are suitable for use in planning and control. The forecasts of 
methane concentration according to changes in production can be used to plan production 
so that the statutory methane limit is not exceeded. If forecasts indicate possible problems 
the models can consider different production rates so that a number of solutions could be 
found. It is also possible that the models could be contained within a dedicated computer 
programme for complete environmental and production control of a completely automated 
coal face. For application within a control system the models could be used for both 
short and long term predictions, i. e., by combining the predictions from models with 
various timescales to produce a control strategy. It may also be possible to combine 
production control with short-term ventilation control, i. e. by increasing ventilation 
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quantity to the district if a model predicts that the statutory methane limit will be exceeded 
for a short period of time. 

9.3 Recommendations for Further Research 

Three major difficulties were experienced during the course of the research. They were 
related to data transference and analysis and these were identified as areas necessary for 
further research. Current versions of the software used in colliery MINOS systems do 

not allow easy transfer of data from one computer to another. This poses a serious 
problem to the availability of data that can be used for research purposes and future 

environmental control. After data was transferred considerable effort was needed to 
transform the data into a format suitable for time series analysis and this needs to be 
improved for serious use of environmental data. For the purpose of time series analysis it 
is desirable to have data that is in a digital format, i. e. that has been monitored by an 
electronic device, therefore, barometric pressure should be so monitored and a method for 

electronically monitoring production devised. The software used to perform the analysis 

was adequate for the building of univariate models but had difficulty in coping with 
lengthy time series and large numbers of model coefficients for multivariate analysis. 
Investigations should be made to obtain software more dedicated to the determination of 

multivariate transfer function models. 

The time series data was from one colliery and although in theory the statistical technique 

can be applied to any circumstance it is necessary to obtain data from other collieries to 

confirm that time series techniques are suitable for general application. This will help 

potential users of environmental and production control to gain confidence in the ability of 
time series analysis to produce accurate predictions. 

This thesis has considered the popular Box-Jenkins approach to time series analysis but 
in recent years statistical science has developed newer techniques that are beginning to be 

applied to practical problems. These new methods such as full information maximum 
likelihood model estimation and Neural Networks should be examined for their ease of 
use and suitability to planning and control. The details of how time series models could 
be implemented is left to future researchers. 
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APPENDIX 1 

EXAMPLE OF A CONTROL CENTRE RECORD SHEET 
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APPENDIX 2 

RESIDUAL CROSS-CORRELATIONS OF ENVIRONMENTAL 
AND PRODUCTION DATA 
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Figure A2.1 Residual Cross-correlation of Methane Concentration and Air 
Velocity (One Day Series). 
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Figure A2.2 Residual Cross-correlation of Methane Concentration and Air 
Velocity (Original Series). 
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Figure A2.3 Residual Cross-correlation of , 
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Barometric Pressure (One Day Series). 
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Figure A2.4 Residual Cross-con-elation of Drainage Methane Concentration and Static 
Pressure (Original Series). 
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8 -. 349 . 038 *****"*I 
9 . 109 . 038 . I** 

10 -. 015 . 038 . 
11 . 067 . 038 . I*. 
12 . 046 . 038 . 1*" 
13 . 068 . 038 . 1*. 
14 . 025 . 038 "* 
15 . 040 . 038 . 1*. 
16 . 003 . 038 "*- 
17 . 008 . 038 " 
18 . 025 . 038 . 1*" 
19 -. 004 . 038 .*. 
20 -. 006 . 038 .*. 
21 . 027 . 038 . 1*. 
22 -. 009 . 038 . 
23 . 023 . 038 .*. 
24 . 013 . 038 .*. 
25 . 002 . 038 .*. 

Plot Symbols: Autocorrelations * Two standard Error Limits 
Total cases: 720 Computable 0-order correlations: 719 

Figure A2.5 Residual Cross-correlation of Drainage Methane Concentration and Static 
Pressure (One Day Series). 



Cross Correlations: RESIDUALD Error for DIPPAPRIL from ARIMA, mop 
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19 -. 001 . 007 
20 . 000 . 007 
21 . 001 . 007 
22 . 002 . 007 
23 . 001 . 007 
24 . 001 . 007 
25 . 000 . 007 * 

Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 21600 Computable 0-order correlations: 21553 

Figure A2.6 Residual Cross-correlation of Drainage Methane Concentration and 
Differential Pressure (Original Series). 



Cross Correlations: RESIDUALDD Error for DIFFD from ARIMA, MOD 1 NOCON 
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Croce Stand. 
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12 . 058 . 038 
13 . 058 . 038 
14 . 039 . 038 
15 . 024 . 038 
16 . 006 . 038 
17 . 016 . 038 
18 . 003 . 038 
19 -. 001 . 038 
20 . 013 . 038 
21 . 008 . 038 
22 . 011 . 038 
23 . 016 . 038 
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plot symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 720 Computable 0-order correlations: 719 

Figure A2.7 Residual Cross-correlation of Drainage Methane Concentration and 
Differential Pressure (One Day Series). 



Cross Correlations: RESIDUALS10AV Error for STAT10AV from ARIMA, MoD. -1 NOCON 
RESIDUALQ10AV Error for BM2H1OAV from ARIMA, Mop 

__l 
NOCON 

Cross Stadt. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 
----------------------------------------- 

0 -. 139 . 015 **. I. 
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3 . 098 . 015 . I. * 
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6 . 032 . 015 . I* 
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8 -. 019 . 015 
9 . 024 . 015 
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10 . 023 . 015 "*" 
11 . 026 . 015 "1* 
12 . 019 . 015 "`" 
13 . 012 . 015 "*" 
14 . 002 . 015 "*" 
15 . 022 . 015 "*" 
16 . 008 . 015 "*" 
17 . 026 . 015 . 1* 
18 . 007 . 015 "*" 
19 . 000 . 015 "*" 
20 -. 003 . 015 "*" 
21 . 010 . 015 . *" 
22 . 018 . 015 "*" 
23 -. 015 . 015 . *" 
24 . 034 . 015 "1* 
25 . 026 . 015 . 1* 

Plot symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 4320 ComVutable 0-order correlations: 4319 

Figure A2.8 Residual Cross-correlation of Drainage Methane Concentration and Static 
Pressure (10-Minute Average Series). 



Cross correlations: RSSIDUALD10AV Error for DIFF10AV from ARIMA, mop 
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Plot symbols: rutocorrelations * Two Standard Error Limits 
Total cases: 4320 Computable 0-order correlations: 4317 
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Figure A2.9 Residual Cross-correlation of Drainage Methane Concentration and 
Differential Pressure (10-Minute Average Series). 



Cross Correlations: RESIDUALSAV Error for STATAV from ARIMA, MOD 1 NOCON 
RESIDUALQAV Error for BM2HAV from ARna, MOD 1 NOCON 

Cross Stand. 

Lag Corr. Err. -1 -. 75 -. 5 -. 25 0 . 25 .5 . 75 
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23 -. 027 . 038 . *I 
24 -. 027 . 038 . *I 
25 -. 021 . 038 . 

Plot Symbols: hutocorrelations * Two Standard Error Limits 
Total cases: 720 Cotvutable 0-order correlations: 719 

Figure A2.10 Residual Cross-correlation of Drainage Methane Concentration and Static 
Pressure (Hourly Average Series). 



Cross Correlations: RESIDUALDAV Error for DIFFAV from ARIMA, MOD_i NOCON 
RESIDUALQAV Error for BM2HAV from ARIMA, MoD 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 720 Computable 0-order correlations: 719 

Figure A2.11 Residual Cross-correlation of Drainage Methane Concentration and 
Differential Pressure (Hourly Average Series). 



Cross Correlations: RESIDUALP Error for PRODAPRIL from ARiNA, MOP 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 21600 Computable 0-order correlations after 

differencing: 21598 

Figure A2.12 Residual Cross-correlation of Drainage Methane Concentration and 
Production (Original Series). 



Cross Correlations: RESIDUALPD Error for PRODD from ARIMA, MOD 2 NOCON 
RESIDUALQD Error for BM2iD from ARIMA, mop 
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cross Stand. 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 720 Cou¢7utable 0-order correlations: 719 

Figure A2.13 Residual Cross-correlation of Drainage Methane Concentration and 
Production (One Day Series). 



Cross Correlations: PXSIDUALP10AV Error for PROD10AV from ARIMA, MOD 2 NOCON 
RESIDUALQ10AV Error for BM2H1OAV from ARIMA, MOD 1 NOCON 

Cross stand. 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 4320 Commutable 0-order correlations: 4319 

Figure A2.14 Residual Cross-con-elation of Drainage Methane Concentration and 

. 
Production (10-Minute Average Series). 



Cross Correlations: RESIDUALPAV Error for PRODAV from ARIMA, MOD L_2 NOCON 
RESIDUALQAV Error for EM2HAV from ARIMA, MOD 1 NOCON 

Cross Stand. 

Lag Corr. 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 720 Computable 0-order correlations: 719 

Figure A2.15 Residual Cross-correlation of Drainage Methane Concentration and 
Production (Hourly Average Series). 



Cross Correlations: RESIDUALB10AV Error for BAR10AV from ARIMA, mop 
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RESIDUALQ10AV Error for BM2H1OAV from ARIMA, MOD L1 NOCON 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 
Total cases: 4320 Coiutable 0-order correlations: 4319 

Figure A2.16 Residual Cross-correlation of Drainage Methane Concentration and 
Barometric Pressure (10-Minute Average Series). 



Cross Correlations: RESIDUALEAV Error for BARAV from ARIMA, mop 
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NOCON 
RESIDUALQAV Error for BM2HAV from ARIMA, MOD_1 NOCON 

Cruse stand. 
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Plot Symbols: Autocorrelations * Two Standard Error Limits 

Total cases: 720 Computable 0-order correlations: 718 

Figure A2.17 Residual Cross-correlation of Drainage Methane Concentration and 
Barometric Pressure (Hourly Average Series). 


