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ABSTRACT

The estimation of the irradiance of sloping surfaces from standard
meteorological measurements requires knowledge of the geometrical dis-
tribution of scattered radiation from the sky. Measurements of the
radiance distribution of cloudless skies were made with a Linke-Feussner
actinometer. When measurements of sky radiance N were expressed
relative to the diffuse irradiance D of a horizontal surface, the
angular distributions of N/D were remarkably independent of atmos-
pheric turbidity. Standard distributions of N/D, drawn up for different

solar zenith angles, were used to estimate the diffuse irradiance of

slopes under cloudless skies.

A new actinometer was designed for the measurement of the radiance
of cloudy skies. A theoretical analysis of the energy budget of a
thermopile in relation to the actinometer design is presented. Nine

actinometers were used to measure meé.n distributions of radiance for

partly cloudy and overcast skies. Results for overcast conditions
indicated that the mean radiance near the horizon was larger than the

value predicted by the 'Standard Overcast Sky!' formula, but the
increase in estimated irradiance of vertical surfaces was only about 2%.

A computer model was formulated for estimating the global
irradiance of slopes using the new results for diffuse radiation. The
model was applled to climatological mean radiation data from the

Meteorological Office for Kew, Eskdalemuir, Aberporth and Lerwick.
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NOTATION

In all equations in the text, parentheses ( ) denote functional
relationships whereas curly or square brackets are used for grouping
of terms. When given on their own, the symbols for radiation values

B,D,G, R refer to the irradiance of a horizontal surface; 1
refers to the direct solar beam at normal incidence. The irradiance

of a slope is indicated by its functional dependence on angle, e.g.

B(C‘:W) ’ D(G) .
The principal symbols used in the text are :

A unit vector normal to slope
A2, A3 cross sectional areas of wires
B direct solar beam

b width of shade ring

D diffuse solar radiation

D# diffuse irradiance of horizontal surface intercepted
by shade ring

D D* based on assumption of isotropic sky

D? background diffuse radiation

Db blue sky part of diffuse radiation

Dc circumsolar diffuse radiation

Dg cloudy sky part of diffuse radiation

d thickness of thermopile

f horizontal view factor of shade ring

G global radiation

G irradiance of an extraterrestrial horizontal surface

g geometric shade ring .correction



anisotropy correction for shade ring

relative sunshine hours

direct solar beam at normal incidence

total shade ring correction

thermal conductivities

latitude

characteristic dimension for convection

air mass number

radiance of sky

Nusselt number

cloud amount

number of function pairs

frequency with which the sun is obscured by cloud
relative horizontal irradiance of region of sky obscured
by shade ring

reflected radiation

net radiation

shade ring radius; scale length of scattering elements

golar radiation

ratio of circumsolar radiation Dc to diffuse radiation D

in a cloudless sky

temperature

hour angle at sunset
voltage

zenith angle of sun
angle of tilt

radiance distribution parameter
absorptivity
temperature difference between the black and white painted

parts of a thermopile



5 solar declination

§T temperature difference

€ emissivity

G angle of refraction in water

1} angle between a point source and the normal to a surface
8 zenith angle

A wavelength

Wi refractive index

Vv ~ thermoelectric potential of thermocouples

g scattering angle

0 albedo, reflection coefficient

Py dimensionless particle size 2rr/)\

Py coefficient of backscattering in water

o coefficient of reflection for diffuse radiation
Pr Fresnel coefficient of reflection

ol Stefan-Boltzmann constant

T atmospheric turbidity

1] azimuth angle

Y azimuth of slope

dg? vector element of solid angle



I, INTRODUCTION

1.1 Introduction

"

The sun is the primary source of energy for natural processes on
the earth's surface and stored solar energy is still by far the largest
source of energy for mankind. Recently there has been a revival of
interest in the direct use of solar energy and in the design of solar
energy devices (see e.g. Brinkworth, 1972). The potential for using
solar energy however depends on a number of meteorological factors which
have been only partially studied: e.g. the spectral composition of the
radiation; the geometric distribution; the variability; and the de-
pendence of energy losses on temperature and wind speed. These factors
need to be related to the way in which solar energy is used. For
example, Kern and Harris (1975) point out that the tilt of solar energy
collectors "... can only be optimised with respect to a well defined
objective function". All these considerations point to the need for
a better understanding of the nature of solar radiation.

Solar radiation at the eartht's surface consiaté of the direct

beam from the sun and diffuse radiation scattered by the atmosphere and
clouds. In Britain, diffuse radiation accounts for 60% of the average
annual receipt on a horizontal surface (UKISES, 1é76), but there have
been few studies of its characteristics. Global and diffuse radiation
are measured routinely on horizontal surfaces in many parts of the
world but for many aspects of solar energy use the solar irradiance of

sloping surfaces is required. This study was to investigate the
geometrical distribution of the diffuse component of solar radiation

and to inveatigat'e the importance of the distribution to the radiation

balance of slopes.



1.2 Solar Radiation

Solar radiation at the top of the atmosphere has a spectrum
generally characteristic of a black body at GOOOOK; about 97% of the
energy is in the waveband 300 to 3000 nm. The extra-terrestrial
irradiance at normal incidence varies by 3% through the year due to

the changing earth - sun distance. The currently accepted mean value

of the 'solar constantt! is 1353 W m-2 but there are claims that the
teconstant'! varies by as much as 3% (Thekaekara, 1976).

On an annual basis in the atmosphere above Britain (Kew), 34%
of this energy is scattered to space, mostly by clouds and 30% 1is
absorbed by the atmosphere, mainly by water vapour and other gaseous
constituents. The rest reaches the earth's surface, either as direct
radiation (15%) or diffuse (21%), (Monteith, 1973). Most of the
absorption takes place in the infra-red whereas scattering, especially

scattering by the atmosphere, is more important at shorter wavelengths.
The spectrum of scattered radiation is consequently different from
that of direct radiation and the quality of radiation scattered by

clouds differs from that scattered by clear skies.

Radiation fluxes at the surface are very variable due to the
changeability of atmospheric conditions. Below clear skies when the
solar elevation exceeds about 300, diffuse irradiance may vary from 15
to 35% of global irradiance, depending on turbidity (Unsworth and
Monteith, 1972). Cloud however, is a more significant cause of
variation and global radiation can fluctuate rapidly, changing by a
factor of 4 or 5 within a few minutes, In the longer term, monthly
mean values of global radiation at stations in Britain vary greatly

from year to year with a standard deviation of 11% and up to 27% in



winter (UKISES, 1976). The variability of diffuse radiation is
appreciably less, showing that most of the variation is in the direct

component.

1.3 Scales of Radiation Measurement

Solar radiation may be measured fundamentally in radiometric
(energy) units., There has been much confusion however due to two
other systems: quantum measurement and photometric measurement.
These have distinct fields of applicability but they have frequently

been used where radiometric units would be more appropriate.

Quantum measurements describe the number of photons or quanta
measured, independent of their energy. Since the energy of a photon
is Inversely proportional to its wavelength, the quantum scale becomes
more sensitive, relative to the radiometric scale, at longer wavelengths

since it takes more photons to carry the same amount of energy. The
quantum scale is useful for computation of photochemical reactions

where the flux of photons over a certain energy threshold is required
and it is increasingly used in photosynthesis studies where McCree (1972)

has shown that it has some advantage over the radiometric systen.
A convenient quantum unit is the Einstein (E) which is equal to N
quanta, where N is Avogadro's number (6.02 x 1023).

The photometric scale of measurement is based on the spectral
sensitivity of the light-adapted human eye. The eye's response to
light is a bell-ghaped function of wavelength with peak sensitivity at
555 nm and the bandwidth at half the maximum value is 100 nm (Arnold,
1975). The eye thus sees only a narrow waveband of light and its

response is non-uniform within that band so that photometric measurements
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are not generally comparable with quantum or radiometric measurements.

The photometric analogue of radiant power (Watts) is luminous flux
(Lumen). Photometry finds its proper use in Illumination Engineering
and improper use in many other fields.

It would be useful to have a set of conversion factors between
the different measurement systems in common currency. This is in
principle possible only when the radiation has a known spectral dig-
tribution. In the case of photometric measurements the radiation
spectrum should also fall within the range of sensitivity of the human
eye. This does not occur with solar radiation measurements, but

empirical relationships may be valid if the solar radiation spectrum

does not vary. The spectrum of global radiation is relatively constant,
but the same is not true of the diffuse. Walsh (1961) reviewed the
data on solar radiation and recommended a mean ratio of 108 Lumen per
Watt for global radiation; the factor increased with solar altitude.
For direct radiation the ratio was about 5% lower. It would be
unwise to apply a mean conversion factor for diffuse radiation where
the spectrum may vary considerably.

For quantum measurements of photosynthetically active radiation,

McCree (1972) found that the ratio of quantum to energy flux in the

waveband 400 - 700 mm was 4.57 u E 3-1 w"1 for global radiation and

4.24 u E 3-1 w"‘" for sky radiation. McCartney (1975), making measure-
ments at Sutton Bonington found that the ratio in this waveband was

4.54 u E 3-1 W-1 for global radiation under both cloudless and overcast
skies. TFor direct radiation the ratio was a linear function of direct

irradiance.



1.4 Diffuse Radiation

There are essentially two types of diffuse radiation with different
spectral and geometric characteristics. The diffuse radiation from
clear blue skies is due to atmospheric scattering and is discussed in
some detail in Chapter II. Scattering of radiation by clouds is
spectrally less selective but may be geometrically more complex.

Below partially cloudy skies both types of scattered radiation are
present. Where spectral or geometric differences are important it

may be necessary to treat the two types of diffuse radiation separately.
In Britain, the diffuse radiation is predominantly of the cloudy type.
Since diffuse radiation is about 609 of the average global radiation
and blue sky radiation is 15 to 35% of the global on clear days, the

blue sky diffuse radiation can account for only about 15% of annual

receipts.
Where diffuse radiation is not measured on a routine basis it

b\ecomes necessary to estimate it from other parameters. Bener (1963)
attempted to define relationships between the diffuse irradiance of a
horizontal surface, D and solar height as a function of cloud type

during overcast conditions. Several methods have been proposed to
estimate D from the global irradiance G . Liu and Jordan (1960),
Page (1976) and Ruth and Chant (1976) suggested a relationship between
monthly mean values of D/G and G/Ge where G, 1s the extra-
terrestrial irradiance (on a horizontal surface). Page expressed the

relationship in the form

D G
G"°+dGe 1.1

where ¢ and d were regression coefficients with mean values of

1.00 and -1.13 respectively, based on data from & large number of
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stations. Anderson (1970) adopted an empirical relationship of the
form ~

where a and b were empirical constants. Kalma and Fleming (1972)
found better results by normalising the radiation terms in Eq. 1.2

with respect to Ge' They also suggested that D can be expressed

approximately as a constant fraction k of the attenuation of the

direct component of global radiation, B .
D = k{G, -~ B) 1.3

values of k vary with site.

Estimations by these methods may be regarded as reliable for
monthly means. Liu and Jordan claimed that their method could be
used to estimate daily diffuse radiation to an average accuracy of
+5%. Their measurements however show that individual values could be

in error by a much larger factor. For shorter periods than a month

therefore, independent measurements of D should be made.

1.5 Solar Irradiation of Slopes

Standard measurements of radiation are almost invariably made on
a horizontal surface. Whenever the irradiance of a tilted surface is
required it becomes necessary either to measure the irradiance directly
or to adapt measured horizontal values to the surface in question., It
is frequently impractical to perform the direct measurements and much
effort has been put into the problem of estimating slope irradiance
from the standard horizontal measurements. None of the methods
presently used is generally satisfactory.

The solar irradiance of slopes is a complex problem due to the
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different geometries of direct and diffuse radiation. Two approaches
have generally been adopted: In the component approach the solar
radiation is separated into direct radiation, diffuse radiation from
the sky and reflected radiation from the surrounding surfaces and each
component is treated separately; in the integral approach the total
slope irradiance is treated as one entity. The first stage in the
component process has in many places already been done because diffuse
and global irradiance are measured individually on a horizontal surface.
Both approaches usually separate sky conditions into clear, partly
cloudy and overcast. Partly cloudy conditions are the least well

studied due to measurement difficulties.

In the integral approach the slope irradiance is measured and
compared with horizontal irradiance. Relative values are defined for
different conditions of the sky and of surface to sun geometry.,
Kondratyev and Manalova (1960) and Kondratyev (1969) did this for clear
sky conditions and compared measured values with those deduced from the
component approach. Kondratyev and Fedorova (1976) extended this work
and some of their results are discussed in Chapter III. Temps and
Coulson (1977) used similar measurements to produce flux diagrams for
slopes of any angle, Fig. 1.1, and similar results are presented by
Valko (1976). Curves by these authors define the relative global
irradiance in terms of slope angle, azimuth and solar height. Similar
data is available from Heywood (1966).

Most other studles consider only a few surfaces. Liu and Jordan
(1961) tabulated monthly averages of irradiance of a S facing wall.
Threlkeld (1963) congidered vertical surfaces facing N, S, E and W on

clear days. Norris (1966) analysed results from a N facing,60 degree
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Fig, 1.1 Global solar irradiance (W m-z) of a tilted
pyranometer as a function of angle of tilt
(plotted radially) and azimuth relative to
the sun. The measurements were made with

clear skies and a solar elevation of 340.
(From Temps and Coulson, 1977).
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slope and Heﬁood (1970) extended part of his earlier work to general
sky conditions with a more limited set of surfaces. For clear skies,
the results of Valko (1975) are very comprehensive and are discussed
further in Chapter III. It should be noted that the results of
different authors are frequently not comparable due to different
reflection coefficients of the neighbouring ground and to poorly
specified sky conditions. Current experimental programmes include
routine observations by the Meteorological Office of N, 5, E and W
vertical irradiance at Bracknell (Collingbourne, 1975) and measurements
of irradiance of planes in 77 different orientations by Valko (1976).

In the component approach to the radiation balance the direct,
diffuse and reflected radiation on the surface are considered separately.
The direct irradiance B may be found from the perpendicular beam
iyradiance I by defining the trigonometrical relationship of the
slope to the sun, e.g. Garnier and Ohmura (1968). Patherbridge (1965)
described a graphical method. The calculations have in some cases been
applied to situations of real topography (Garnier and Ohmura, 1970).

Ohmura (19 70) and LeCarpentier (1974) also take account of shading of

slopes from the direct beam by surrounding topographic features, The
transmission of the direct beam through the atmosphere is a well known
function of the concentrations of absorbing and scattering gases in the
atmosphere and the effect of dust may be accounted for by means of a
coefficient of turbidity (Unsworth and Monteith, 1972).

The radiation R reflected from horizontal ground is a component
of the radiation budget which becomes more important with inereasing slope.
The reflected radiation is generally assumed to be isotropic in which case

on a slope of tilt it is
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R(a) = p G {1 = cos cc}/2 1.4

where p is the reflection coefficient of the ground. Kondratyev and

Manalova (1960) showed that the isotropic assumption is not always

accurate, even for uniform surfaces, but that the error is appreciable

only for steep slopes (¢>75° ), where it can amount to 30% when the

sun is low.

To estimate the diffuse irradiance of slopes from horizontal
measurements of D , the assumption is frequently made that the diffuse
radiation is isotropic across the sky. The diffuse irradiance of a

slope of tilt « 1is then given by
D(x) = D {1 + cos a}/2 1.5
and the global irradiance of the slope becomes
G(@) = IcosTM + D {1 + cos cx}/2 + pG{1—cosa}/2 1.6

where 1 1is the angle between the sun and the normal to the slope.

Norris (1966) concluded that the isotropic assumption was reasonable
for monthly averages of diffuse radiation. However it is certainly
not a good assumption for cloudless skies. The results of Kondratyev
and Manalova indicated that the diffuse irradiance of a slope may be

as much as twice the amount indicated by the isotropic assumption. The
isotropic assumption is also of doubtful value for overcast skies which
become darker towards the horizon, e.g. Dines and Dines (1927). Thus
the problem of estimating the diffuse irradiance of a slope has again
had two approaches. One is to measure D{(«) a:}d compare it with D ;
the other is to measure the distribution of radiance across the sky.

In the first category the clear sky irradiance of sloping surfaces

of all aspects was measured by Valko (1976) and Temps and Coulson (1977).
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Their data are however limited to a few individual occasions. Parmalee

(1954) and Valko (1969, 1970, 1975) analysed clear sky diffuse irradiance
of vertical surfaces as a function of turbidity, solar height and wall
solar azimuth. Some of these results are discussed in Chapter III.
Measurements of the diffuse radiance of skies were reported by
Dines and Dines (1927) for clear and overcast skies. Their measurements
were limited to the E facing plane however and are insufficient to
describe the complete radiance distribution. Kondratyev and Manalova
(1960) measured clear sky radiance distributions and integrated the

results to determine D(a) for a variety of slopes and solar

elevations. Kondratyev (1969) gave angular distribution diagrams
plotted from measurement data. Kondratyev and Manalova stated that
"... the isotropic assumption proves to be satisfactory for the con-
ditions of overcast sky (dense cloudiness)". They appear however to
have confused isotropy with azimuthal symmetry which is a necessary but

not a sufficient condition. Radiance distributions for cloudless skies
with values normalised with respect to the zenith were produced by

Tonne and Normann (1960). They derived a standard distribution by
averaging and smoothing the distributions measured on a large number of
occasions. Unfortunately some, and perhaps all of the measurements were
of luminance rather than radiance. The spectral composition of diffuse
radiation is knownto vary across the sky (Kondratyev, 1969) and in view
of the remarks in Section 1.3, luminance distributions cannot be applied
as radiance distributions.

For overcast skies the spectral composition of diffuse radiation
is not a function of angle and Kondratyev showed that the difference

between relative luminance and relative radiance is minimal. An



12.

empirical formula for the luminance distribution of the 'Standard

Overcast Sky! proposed by Moon and Spencer (1942) has sometimes been

applied for the radiance distribution, Monteith (1973). The radiance

N at a zenith angle of 6 in the sky is given by

N(B) = N(o){1 + 2cos 6} /3 1.7

There is some evidence to suggest that the overcast sky rarely in fact
conforms to a standard, but Egq. 1.7 may represent a mean (Grace, 1971).
The standard overcast sky formula allows for the lower radiance towards
the horizon and slope irradiance values are lower than those estimated

by the isotropic assumption, Fig. 1.2. Walsh (1961) suggested that

N(8) = N(o) {2 + 3 cos 8} /5 1.8

might be a more accurate representation of the mean overcast sky. 1In

conditions of light overcast the situation becomes more complicated as
the distribution is then influenced by the position of the sun.
Very few measurements have been made of diffuse radiation from

partially cloudy skies but various authors have developed models.
Kondratyev and Manalova (1960) suggested that the relative global
irradiance of a slope G(a)/G could be treated as a linear function
of cloud amount n between known values for cloudless skies (n = Q)
and overcast skies (n = 1). Tonne and Normamn (1960) interpreted the
geometric distribution of diffuse radiation between cloudless and
overcast conditions to define a standard distribution for 50% cloud
cover. There is no evidence to support either model and there 1is

an inherent disadvantage in using n as a parameter because cloudiness
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is difficult to measure objectively. Furthermore the models would
seem to assume that D :Lsha. linear function of n , whereas in reality
the relationship is more complex, Stagg (1947). As an alternative
model, Robinson (1966) suggested that the blue part of the sky could
be separated from the cloudy part and different geometric factors
applied to each. Some results using a similar model are discussed

in Chapter VI .

The best approach to the estimation of solar irradiation of
slopes depends on the information available. The integral approach
is appropriate vwhere only G is measured as standard practice, because
of the additional uncertainties in the breakdown of global radiation
into direct and diffuse, Basic data on the irradiance of vertical
surfaces under all weather conditions are quite widely available,
but information for other surfaces is more limited. VWhere D is
measured separately from G however, the component approach allows

a more accurate determination of irradiance from the geometry of the

surface and the radiation. This thesis presents improved information
on the geometry of diffuse radiation and attempts to synthesise this
into a model of solar irradiation of slopes: Chapters II and III are
concerned with clear skies; Chapter IV describes a radiation instrument
used in the study of partially cloudy and overcast skies; Chapter V

presents the resulis of measurements with this instrument; and

Chapter VI presents the results of a solar radiation model.
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II. CLOUDLESS SKIES : THE GEOMETRY OF DISTRIBUTION

2.1 Atmospheric Scatterigg Processes

The processes of radiation scattering in the atmosphere depend
very strongly on the scale length r of the scattering elements and
on the wavelength )\ of the radiation. When r << A the oscillating
electric field associated with the radiation striking the scatterers
can be approximately treated as homogeneous. If the scattering
material is dielectric then the scatterer acts as a dipole and the
resulting radiation field was described by Rayleigh (1871, 1899).

The scatterers in Rayleigh's theory were shown by Smolokhovsky and
separately by Einstein (Kond.ratyev, 1969) to be microscopic fluctu~-

ations in air density rather than the air molecules as Rayleigh

thought, but this does not affect the basic conclusions. The

Rayleigh scattering function, which determines the amount of energy
scattered in each direction, is the product of a scattering cross

section which is strongly dependent on )\ and an angular distribution

function which is independent of r and )\ . This implies that some
wavelengths are scattered more than others, but the proportion of energy

scattered in each direction is the same for all wavelengths. The

scattering cross section is in fact proportional to )\-4'05 (Robinson,
1966) so that shorter wavelengths are very much more susceptible to

scattering. Rayleigh used this to explain the blue colour of the sky.

¥ The bulk of this Chapter has been previously published under the

title 'Standard Distributionsof Clear Sky Radiance! (Steven, 1977).
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When r» 2 0.1 )\ the assumption of a homogeneous electric field
does not hold and multipole fields of higher order have to be taken into
account. The original theory due to Mie is described in some detail by
Robinson (1966) and Kondratyev (1969). Both the scattering cross section
and the angular scattering function depend on p_  where p = orr/\ .
Figures2.1 and 2.2(b) show that the wavelength dependence of the cross
section tends to decrease and the forward component of scattering

increases with increasing p . Figures 2,2(2) and (b) also show

that the angular distribution is much more strongly directional than
with Rayleigh scattering. The scatterers in this case are dust
particles and the behaviour of the overall atmospheric scattering
function depends both on the particle density and the size distribution
of aerosol in the atmosphere (McCartney, 1975). Since these are

variable quantities, both the total amount of scattered radiation and

its angular distribution depend on the atmospheric conditions.
The wavelength dependence of scattering by aerosol also depends

on the size distribution of the particles. Kondratyev (1969) suggested

that the scattering is propor'éional to 1_b wvhere b 1is a constant.
He gave values of b ranging from 0.2 to 2.6 for various artificial
aerosols. In the atmosphere, calculations by McCartney (1975) and
measurements in the solar aureole by Piaskowska-Fesenkova (Kondratyev,
1969) suggest that values between 1.0 and 2.0 are more appropriate.
Because Mie (aerosol) scattering has a weaker wavelength dependence,
Rayleigh scattering is always important at shorter wavelengths

(A <500 nm), (Bullrich, 1964). In Britain however the results of
Unsworth and Monteith (1972) show that there is always enough aerosol

in the atmosphere for Mie scattering to be significant in the overall

energy flux.
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The effect of atmospheric aerosol on solar radiation may be

described by the aerosol turbidity coefficient Tt . Following

Unsworth and Monteith (1972) + is defined by

I = Itexp (-7 m) 2.1

m_1 1n (It/I)

or T

where I is the measured irradiance of the perpendicular beam, I!
the calculated irradiance under a clean moist atmosphere and m is
the air mass number, I!' takes into account all the depletion of the
direct beam due to Rayleigh scattering and absorption by water vapour
and other gaseous constituents. 1 thus separates out the effect of
atmospheric dust from that of other causes of turbidity. Unsworth
and Monteith showed that values of 1 in Britain range from 0.05 for
the cleanest air to 0.55 for the most polluted, more typical values

being 0.1 to 0.4. Their calculations of the effect of T on diffuse
solar radiation D are shown in Fig. 2.3. The bottom curve with

T = 0.0 1is the result of pure Rayleigh scattering and the difference
between this curve and the curves corresponding to other values of

represents the contribution of Mie scattering.

The angular distribution of diffuse radiation therefore depends

on the relative importance of Rayleigh and Mie scattering and on the
size of the aerosol scatterers., For T < 0.1 the scattering regime
is predominantly Rayleigh whereas at higher turbidities Mie scattering
tends to dominate (Fig. 2.3). Bullrich (1964) showed theoretically
that the fractional contribution of Rayleigh scattering to the diffuse

radiation depends on the scattering angle as well as turbidity and
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wavelength., Rayleigh scattering is most effective at shorter wave-

lengths and at larger scattering angles, having its maximum effect at
1300. Higher turbidities reduce the fractional Rayleigh contribution,
particularly at longer wavelengths. A further complication of high
turbidity is the possibility of multiple scattering. Maltiple
scattering would tend to diffuse the directional character of the Mie

regime. However Piaskowska-Fesenkova (Kondratyev, 1969) found that
the effect of multiple scattering on measured scattering functions was
practically insignificant.

Two principal factors thus affect the angular distribution of
scattered radiation in a clear sky: the transition from a Rayleigh to
a Mie scattering regime with increasing turbidity; and the effect of
aerosol size distribution on Mie scattering. McCartney (1975)
deduced from measurements of turbidity and spectral irradiance that

the aerosol size distribution over central England in summer was fairly

constant, Angular distributions of clear sky radiance can therefore be

expected to be functions of turbidity and solar height.

2.2 Previous Measurements

Measurements of the photometric or luminance distribution of a
clear sky were reported by Kimball and Hand (1921, 1922), Peyre (1927),
Hopkinson (1954), Dogniaux (1954), Tonne and Normann (1960), Dormo
(Robinson, 1966) and Kondratyev (1969). Most of these published results
represent only one or two positions of the sun in the sky on a few
individual occasions but the distribution of diffuse radiation is
strongly dependent on the solar zenith distance and varies to some extent

with atmospheric turbidity. Furthermore, photometric units are based
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on the spectral sensitivity of the human eye and have no general
applicability (Chapter I, section 1.3). Kondratyev (1969) compared
the photometric and radiometric distribution of diffuse radiation in

a clear sky and polnted out that while they were qualitatively similar
they d4id not correspond quantitively. When described relative to the
zenith value the relative radiance at some points differed by a factor
of 3 from the relative luminance. F'or solar energy applications it
would be useful to define standard radiance distributions based on

many measurements made over a wide range of solar angles and atmospheric

turbidities,

2.5 Measurements of Clear Sky Radiance

Over a long series of cloudless days*between June 1975 and May
1976 the radiance distribution of clear skies was measured on 67
occasions, On each occasion a Linke~Feussner actinometer was used

to scan the sky, measuring the radiance N at 34 points in the
hemisphere, and to make auxiliary measurements of the direct solar

beam. Each complete scan took about 40 minutes and the order of
measurements was varied to reduce biasing due to trends over this
period. The instrument received radiation from a cone of half angle
506' and thus each point measurement is in fact an average over a

solid angle of 0.025 steradians. For convenience N was expressed

in watts per square metre per m steradians which makes it an
tequivalent flux density', (Unsworth and Monteith, 1975). This choice
of units implies that in an isotropic éky N would be numerically equal

to the horizontal diffuse irradiance D .

*
listed in eppendix G
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The radiance of a point in the sky depends both on its position
relative to the sun and on .its air mass number m , the former being
more important close to the sun and the latter near the horizon. For
this reason the measurements of radiance in each scan were of two
types. One consisted of measurements at the zenith and at zenith
angles of 300, 60° and 750 in planes angled :1:450, 1900, :1:1350 and
180° to the solar plane, allowance being made for the azimuthal
motion of the sun during the period of the scan. A further set of
circumsolar measurements to record the bright region about the sun was
taken, in the solar plane at intervals of 10° above and below the sun's
zenith angle 2z , and in planes of azimuth 20° to either side of the

solar plane at zenith angles 2 and 2 i‘lOO. In these measurements
both the azimuth and zenith angles were determined from the contemporary
position of the sun. This system was a compromise allowing an almost
instantaneous picture to be built up over the period of the scan and

enabling a more flexible pooling of data.
To confirm the accuracy of the radiance distribution, measurements

of the horizontal diffuse irradiance D wusing e Kipp solarimeter with a
shade ring, were compared with estimates of D derived by integrating

the radiance values according to the relation

27 /2
D =T-}/d¢ fdeN(e,d).aine.cose 2,2
O O

where 6 and P are zenith and azimuth angles respectively. The values
were 98% correlated and the integrated values were on average some 6%

larger than those measured directly, the best agreement generally being
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found at larger irradiance. The systematic differences can be accounted
for by the different calibrations of the instruments, error in the
empirical shade ring correction and the fact that the measurements could
not be absolutely simultaneous. Some uncertainty also exists in the
extrapolation of radiance, particularly in the circumsolaxr region. The
circumsolar radiation has been measured to within 10° of the sun which
leaves a zone about the sun containing a solid angle of about 0.1
steradians. Due to the increasing brightness towards the sun, N is
jll-defined by the surrounding points and a possible error of 25% in the

estimation of N could result in a 3% error in D .

When normalised with respect to the horizontal diffuse irradiance
D , the clear sky distribution of relative radiance for a particular solar
height was remarkably constant. The distribution of N/D was thus
independent of D over a large range of values. ©Possible reasons for
this phenomenon are discussed in section 2.6.

Due to the positioning of measurements relative to the sun it
proved possible to pool data from different scans over a range of values
of z ., Table 1 presents mean values denoted N/D made over 10 degree

2

ranges of 2 . Since N was givenin Wm .1 sr_1, the units of XN/D

~are (m steradians)-1 . A few individual measurements vwhich departed
greatly from the mean were re jected and the mean and standard deviation
recalculated. All points thus deleted were more than 3.4 new standard
deviations from the new mean, and the editing process eliminated no more
than 1% per cent of all the data. N/D values at points symmetric in
the solar plane were averaged together to balance the distridbution. The
coefficient of variation was calculated for each point and appears to be

roughly constant over the whole sky. The means of these coefficients are
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Table 2.1 Mean values N/D of normalised s radiance data

Range of z 30° to 39°  40° to 49° 50° to 59° 60° to 69°
Mean =z 359 45© 55° 65°
Number of data sets 11 12 12 13
Zenith Azimuth Zone Relative radiance (n- Bt)-1
angle
6 o°
z -« 10 0 C 3.12 3.54 4.04 4.93%
z + 10 0 C 3.25 3.93 4.72 6.44
2 +20 C 3.14 3.04 %25 3.65
z = 10 +20 C 2.5 2.55 2.58 2.87
z + 10 +20 C 2.53 2.84 317 3.87
z + 20 0 2.49 2.98 3,83
z + 30 0 1.98 2.52
z + 40 0 1.57
2 = 20 0 1.86 1.92 2.05 2,46
z = 30 0 1.21 1.26 1.36
z - 40 0 0,82 0.88
30 180 U,A 0.41 0.35 0.36 0. 31
60 180 A 0.40 0.44 0.48 0.49
75 180 L,A 0.54 0.58 0.66 0.71
20 +90 U,P 0.69 0.66 0.54 0.43
60 +90 P 0.60 0.67 0.63 0.58
75 +90 L,P 0.68 0.76 0,76 0.76
30 45 U 1.61 1.30 0.93 0.71
60 +45 1.20 1.37 1.44 1.33
75 +45 L 1.15 1.41 1.60 1.74
30 +135 U,A 0.45 0.43 0.38 0.32
60 +135 A 0.44 0.46 0.49 0.47
75 +135 L,A 0.54 0.58 0.64 0.64
0 U 0.84 0.69 0.55 0.41
Hesn cogltiolent 0.105 0.12 0.13 0.14
Mean -turbidity 1 0.38 0.32 0. 30 0.22

Note: The zone symbols in column 3 refer to groupings of the data for

statistical analysis in Section 2.4.
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given at the bottom of Table 2.1. Because of their constancy the 95%
confidence limits for N/D can be given as about 0.08 of the mean for
each point.

Table 2.1 can be used to draw diagrams of standard distributions
of N/D for solar zenith angles 35° to 65°. Pigure 2.4 shows distri-
butions drawn by hand from the means in Table 2.1. Distributions for
intermediate values of 2 can be drawn by interpolating between columns
of Table 1. In this case the position of the derived circumsolar values
should depend both in 6 and & on the location of the sun whereas for

the planar values only © should depend on the sun's position.

2.4 Statistical Analysis

2.4(a) Variation with =z

In an attempt to explain some of the residual variation in N/D

the values of N/D in each scan were averaged over zones in the sky to
remove some of the spatial variability. This reduced the coefficients
of variation from about 0.12 to 0.09. Five zones were examined. The
Circumsolar zone marked C in Table 2.1 is made up of point measurements
around the sun. The other zones examined were the Perpendicular zone,
marked P , consisting of points in the 900 plane, the Antisolar zone A
of points with azimuth greater than 900, the Upper zone U and the
Lower 2ome L . The P and A 2zones represent azimuthal regions,

i,e, they are averaged over all zenith angles, The U and 1 zones
are averaged over azimuth and represent the upper and lower portions of
the sky generally. The P and A 2zones consequently overlap with the
U and L zones to some extent. The zonal values for each scan, denoted

(N/D) were regressed against 2z to assess the validity of pooling data
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(b)

Standard distributions of normalised sky radiance
N/D (a) for 2z = 350; (b) for 2z = 550. The
contours are of the ratio of tequivalent flux
density! to horizontal diffuse irradiance. The
plot is on a 'Lambert! proJjection so that equal
solid angles are represented by equal area., The
radial scale is consequently proportional to

(1-cos 8 )%
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by 10 degree intervals of 2z . Figure 2.5 shows the regression for the
circumsolar zone which was statistically significant at the 0.1% level.
The regression value of (N/D) increases by a factor of 1.7 when 2z is
increased from 30° to 700. However, when only data within a 10 degree
range of 2z were considered, e.g. between 30° and 400 in Figure 2.5,
none of the regressions of (N/D) on 2z were significant even at the

10% level. In other words the trend over this range is not large
compared with the local variation in (N/D) due to other sources, Other
zones examined exhibited the same behaviour. Pooling the data over this

range of 2z 1is therefore satisfactory.

2.4(b) Variation with turbidity

To determine the effect of atmospheric turbidity on the distri-
butions, the values of (N/D) were taken in 10 degree ranges of z to
reduce the variation due to solar zenith angle, and regressed on T .

It was found that in the Perpendicular and Antisolar zones (N/ID) was

not significantly related to 7 in any range of 2z values. The other
zones all showed significant regressions though not always in all ranges
of z . The results are summarised in Table 2.2, all the regressions
being significant at better than 5%. Multiplying the slope of the
regression by the range of 1 values experienced, the change in (N/D)
due to turbidity can be caleulated. These show that up to about 15

per cent departure from the means given in Table 2.1 can be expected

due to variation in turbidity, but the departure due to a more typical
range of turbidities of 0.1 to 0.5 (Unsworth and Monteith, 1972) would
be about 5 to 10 per cent.

Figure 2.6 shows a typical example of the dependence of (N/D) on

T for the Upper zone. Some of the very large values of ¢ were
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Table 2.2 Regressions of zonal (N/D) on turbidity
Zone Range of 2z 1\7.:5 Range of v Regression slope
Pexrpendicular All ranges not significant
Antisolar All ranges not significant
Circumsolar 30° to 39°  2.86  0.10 to 0.72 ~0.75
40° to 49°  3.06  0.11 to 0.81 ~1.07
50° to 59°  3.34  0.14 to 0,71 -1.55
60° to 69°  4.01  0.14 to 0.38 ~3.56
Upper 30° to 39° 0.85  0.10 to 0.72 0.25
20° to 49° 0.74  0.11 to 0.81 0.24
50° to 59°  0.58  0.14 to 0.71 0. 35
60° to 69°  0.46  0.14 to 0.38 0.65
Lower 30° to 39° 0.76  0.10 to 0.72 -0.33
40° to 49° 0.87  0.11 to 0.81 -0.26
50° to 59°  0.95  0.14 to 0.71 -0, 31
60° to 69° not significant

probably due to a thin layer of cloud rather than dust but there is no

evidence that this extra factor distorts the trend. The effect of

larger turbidities generally is to reduce N/D in the circumsolar reglon
and to increase relatively the radiance of the upper part of the sky at
the expense of the lower part, while increasing the overall diffuse
radiation from all regions of the sky, as shown by Unsworth and Monteith
(1972).
nultiple scattering weakening the large forward scattering component of a

The first can be explained qualitatively as the effect of

single scattering regime, Also since the atienuation of radiation is

proportional to exp (- v m), an increase of turbidity will have a greater

effect at large air mass. The scattering probability depends on the air

mass traversed by the direct beam and hence is the same for all points

in the sky. The scattered radiation however is attenuated over an air
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mass dependent on its perceived direction, and hence the lower regions

of the sky appear depleted relative to the higher regions.

In conclusion, these results show that the effects of turbidity on
the distribution of diffuse radiation are significant but small. The
information in Table 2.1 should be regarded as referring to mean turbid-
ities T of about 0.2 to 0.4. It would be possible to include cor-
rections to the mean distributions in Table 2.1, using the data in
Table 2.2, and bearing in mind that since the radiance values are
normalised it is necessary to balance any positive adjustment in one
region with a negative one in another. It is doubtful however, whether
such a procedure would be Justified either statistically or in practice.
The distribution of N/D remains very constant over a wide range of D

and the deviation due to turbidity is very much a second order effect.

2.5 Analytic Approximations

The distribution of clear sky diffuse radiation was first explained
theoretically by Lord Rayleigh (1871). Since than a number of attempts

have been made to fit the theory to the observed distributions. Pokrowski

(1929), as cited by Walsh (1961) proposed the formula

1T - cos E

2
N (8,8) = a, {M’_ﬁ_ + as} {1 - exp (a2 sec B)& 245

where £ 1is the scattering angle, the angle which the radiation makes
with the sun, a, is a scaling factor, 2, is a scattering coefficient
and 3.3 an empirical constant to allow for multiple scattering.
Pokrowski proposed the values 0.32 and 5 for a, and a.3 respectively.
Hopkinson (1954) however found better agreement with measured luminance

distributions with the arbitrary constant omitted, with g = 0O and
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a, = 0.32. A similar formula was proposed by Dogniaux (1975) as

follows ¢

b, + b, exp(b,E) + b 0032 €l {1 - exp(b. sec 8)

1 2
N(e,g) = N(O){WWE ooy | 2

where N(o) is the radiance at the zenith and the values of b, were
given as 0.91, 10, =3, 0.45 and -0.32 for 1 =1 +to 5 respectively.

The formulae, Eqs. 2.3 and 2.4 were tested by substituting the
measured (normalised) values of N from Table 2.1 and using the FORTRAN
function fitting routine EO4GAF (NAG, 1975) to find the best values of
the parameters a, and b g The routine worked iteratively to
minimise the sum of squares at all the measured points of the function
F=(N-N'")/N vhere N' is the analytic approximation. This

formulation, using relative rather than absolute differences, prevents

excessive weight being placed on the circumsolar region.

Using the distribution data for  z = 35°, the values of a@qr 5

and a; at the best fit of Eq. 2.3 were 0.49, 0.92 and 11.7 respectively.
The f£it was not particularly good however and relatively insensitive to
changes of 10 or 20% in the values of the parameter a; . The residual
standard deviation of the relative differences was 0.24 which indicates
that the departure of the fitted function from the measured values was,
on average, about 24%. Some individual fitted values were in error by
over 40%. For comparison the standard deviations of the measured values
were only 11% of the means, (Table 2.1) and hence Pokrowski's formula
was not regarded as satisfactory.

When the Dogniaux formula (Eq. 2.4) was applied to measurement data
from all ranges of 2z , the residual standard deviation was 0.12 and the

largest individual errors of fitted values were 25%. 1In addition to



being too inaccurate for practical use, Eq. 2.4 was found to be
particularly unsatisfactory for function fitting. The parameters b 1
were not independent and the values of several of the parameters at the
best fit were not significantly different from zero.

The Dogniaux formula was also applied in each range of =z

separately, for which purpose it was modified to the form

N(8,E) = {01 + ¢, exp(c3 E) + Cy 0032 g} {1 - exp(c5 sec 9)} 2.5

With Eq. 2.5 the agreement between fitted and measured values was
considerably better, the residual standard deviation being reduced to

0.04. The maximum error in any individual value was about 10%. The

best values of the coefficients ¢, together with their standard error

i
are tabulated in Appendix A. Figure 2.7 shows relative radiance

values in a cross section through the solar plane, and the fitted

formulae of Pokrowski (eq. 2.3) and Dogniaux (Eq. 2.5) may be compared
with the measured values.

Slightly better results with the fitting routine were obtained
using & series of orthogonal functions of 6 and ¢ , based on
spherical harmonics, plus an exponential function of & to approximate
the circumsolar radiation. The form of this approximation is

N(esg) = }4(1) di fi (elg) + d-” exp ("‘ d12 sin g) 2.6
i=

where the functions fi and the values of the coefficients d. at the

i
best fit are given in Appendix A, The residual standard deviation was
again about 0.04 but the maximum error of any individual fitted value

was 8%, which is well within the uncertainties of the measured data.
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2.6 Conclusions

The measurements presented in this chapter define standard
distributions of clear sky radiance which are, to a first approximation,
independent of turbidity. Since higher turbidity must result in a Mie
scattering regime whereas at lower turbidities Rayleigh scattering is
gtill dominant, this result is somewhat surprising. These measurements
however, were made at relatively high turbidities where Mie scattering
is already dominant. Moreover the angular distributions of Mie and
Rayleigh scattering regimes may not in practice be very different.
Integration over p 5, and A reduces much of the disparity when actual
distributions of aerosol size are considered. The strongly directional
Mie scattering at higher turbidities may be partly compensated by
increased multiple scattering which tends to diffuse the distribution,
and the forward scattering due to very large particles (pa > 10) is

probably not measured as diffuse radiation anyway as most of the radiation

is scattered into the solar aureole and may for all practical purposes

be regarded as part of the direct bean.

The standard distributions of Table 2.1 therefore represent means
which can be used to a useful degree of accuracy over a wide range of
turbidities. Due to their relative independence of +  they should
remain valid regardless of geographical location or season except at
high altitude or in very dusty regions. The analytic formulae of
Pokrowski (Eq. 2.3) and Dogniaux (Eq. 2.4) do not fit the data well
enough to be useful, but the modified Dogniaux formula (Eq., 2.5) and
the spherical hammonic representation (Eg. 2.6) with their coefficients

given in Appendix A, are sufficiently accurate for most practical
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purposes. The spherical harmonic representation is used in Chapter III
to calculate the relative diffuse irradiance of plane surfaces., Tur-
bidity should have little effect on this procedure since the calculation

of surface irradiance involves integrating over a large area of sky, a

fact which should smooth out errors due to inaccuracies in the dis-

tribution.
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ITI. CLOUDLESS SKIES : THE GEOMETRY OF INTERCEPTION

3.1 Integration of Radiance Distributions

In Chapter II, measurements of the radiance of clear skies were

described. It was found that when the radiance N at a point in the

sky was normalised with respect to the horizontal diffuse irradiance D ,
the relative radiance values were largely independent of turbidity and
mean distributions of N/D were given as a function of solar zenith

angle, z in Table 2.1. These distributions may be used to estimate
the diffuse irradiance of sloping surfaces.

The diffuse irradiance D(a , §) of a slope of tilt o« and
azimuth ¢ may be calculated from N by integrating over the sky

with the appropriate weighting function. The integral is

1A1]/N(e,¢)1‘.dﬁ 3.1

where N 1is given as a function of zenith angle § and azimuth 3 .

I

I)(cx " ¢)

A is the unit vector normal to the slope and df) is the solid angle

of an element of the sky, the vector part denoting the direction of the
element. The angular relationships are shown in Fig. 3.1 The

vectors are given by

sin « cos | sin ¢ cos ¢
2 = |sin « sin and 4R = |sin @ sin @ | sin ¢ dp af
cCO08 « cos §

and A . dﬁ is their scalar product. Eq. 3.1 can therefore be

expanded to the form

D(a,§) = 1/m /N(B,ﬁ) {sin « sin @ cos (y = @) + cos a cos 9} sin § dg 4y

3.1(a)



Fig, 3.
Fig. 3.1 Angular relationships of slope to sky
The shaded area of sky is hidden from

the slope.

39.
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and the integration is performed over the region of sky that is exposed
to the slope, see Fig. 3.1. The limits are 0 8 /2 for

b -n/2 (P <y +n/2 and 0 €6 €8, for m/2+y <P <m/2+y .
The limit 0, I1s the zenith angle at the skyline and can be found by
golving the equation A.4dR =0,

The spherical harmonic approximations to the mean radiance
distributions (Eq. 2.6 and Appendix A), were substituted for N in
equation 3.1 and the integrations were performed numerically using the
FORTRAN routine DO1DAF (NAG, 1975). Integrations were also done on
horizontal planes as a check on the normalisation of N and the fitted
functions. The integrated D wvalues were 1.015, 1.044 0.996 and
0.926 for 2z values of 350, 450, 550 and 650 respectively and the
integrated irradiances of slopes were renormalised with respect to
these values. Tables 3.1 to 3.4 thus show integrated values of

Da , 11:) relative to unit horizontal diffuse irradiance, for every 300

of azimuth and 15° of tilt. The four tables correspond to the mean

radiance distribution at four solar zenith angles given in Chapter 1I.

The absolute accuracy of the integration procedure was given
as + 0.001 and this was checked by splitting the integral into two
parts and comparing results. In all cases tried the agreement weas
better than £ 0.0003. The major uncertainties in the integrated
values therefore depend on the uncertainties in the radiance measure-
ments and on the fitting procedures used tc:) obtain the analytic
approximations of N . As a check on the latter, integrations were

also performed using different approximations for N . The same series

of functions (Eq. 2.6) were used, but the coefficients were derived by a



Table 3.1 Relative diffuse irradiance of tilted planes
for 2z =
& 15 30 45 60 75 90
e —————— e —————
‘Ilo D(a ' 'Il)/D
0 1.12 1.19 1.19 1.12 0.98 0.79
30 1.10 1.15 1.4 1.06 0.92 0.75
60 1.05 1.05 1.00 0.90 O.75 0.58
90 0.98 0.92 0.83 0.70 0.56 0.42
120 0,92 0,80 0.66 0.55 0.41 0. 32
150 0.87 0,71 0.56 0.45 0.3%4 0.28
180 0,85 0,68 0.52 0.40 0.32 0.27
Table 3.2 Relative diffuse irradiance of tilted planes
for 2z = &50.
@ 15 30 45 60 75 90
4’0 D(a ’ ll')/D
0, 1.16 125 1.28 1.23 1.12 0.94
30 1.13 1.21 1.22 1.16 1.04 0.86
60 1.07 1.09 1.05 0.96 0.83 0.66
90 0.98 0.93 0.84 0.72 0.58 0.44
120 0.90 0.78 0.65 0.52 0.41 0.32
150 0.84 0.68 0.54 0.42 0.3%4 0.27
180 0.82 0.64 0.50 0.40 0.32 0.26
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Table 3.5 Relative diffuse irradiance of tilted planes
for =z = 550.
o 15 30 45 60 75 90
-
WG D(a ’ 4')/])
0 1,20 1,33 1.40 139 1,29 1,12
30 1.17 1.28 1. 352 1.29 1.19 1.02
60 1.09 1,13 1.11 1,04 0.92 0.76
90 0.98 0.93 0.85 0.74 0.61 0.48
120 0.68 0.76 0.63 0.52 0.42 0.34
150 0.81 0.65 0.52 0.43 0.36 0.29
180 0.79 0.61 0.49 0.41 0.353 0.28
Table 3.4 Relative diffuse irradiance of tilted planes
for 2z = 650.
e 15 30 45 60 75 90
- ——
‘l’o D(a ’ 'l')/D
0 1.26 1.46 1.58 1.60 1.54 1.38
30 1.22 1.39 1.48 1.48 1.40 1.24
60 1.12 1.19 1.21 1.17 1.06 0.90
90 0.99 0.95  0.88 0 78 0.66 0.53
120 0.86 0.74 0.63 0.53 0.45 0. 37
150 =~ 0.78 * 0,62 0.52 0.45 0.39 0.3%2
180 0.75 0.58 0.49 0.453 0,38 0,31
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fitting procedure which minimised the sum of squares of absolute rather
than relative differences. There were slight differences in the coce-
fficients and in the accuracy of fit to the radiance distribution at
different points in the sky. The integrated values were also slightly
different but these differences were typically 1% of D(« , §). The
maximum disparity, about 2%, occurred on planes facing away from the sun
and at the largest solar zenith angle, 65 . The values in Tables 3.1 to
3.4 are calculated from the approximations of N with the minimum
relative exrror.

There is also some uncertainty due to the departure of the
horizontal integrations from unity. If this departure is due to an
isotropic error function, i.e. one th?.t is proportionally the same in
all directions, then all the planar integrations are affected equally
and the renormalisation makes an exact correction. The accuracy of
the integrated values may then be estimated as + 2% from the comparison
of the two approximations of N . The error however need not be isctropic
and the renormalisation may introduce a systematic error. This error
will be a minimum on gradual slopes since D{(a , §y) must be 1 when
« =0 . If the renormalisation were not made the integrated values
would differ from those tabulated by up to 7.4% in the case where
2 = 650 and when added to the other estimates of error this gives an
overall estimate of 10% in the worst possible case. In the 350, 450

and 550 ranges of 2z the estimatesof worst possible error are only 4%,

T% and %% respectively. Any remaining uncertainty is due to

uncertainties in the angular distribution of radiance.
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3.2 Comparison with other studies

Several authors have published values for the irradiance of vertical
or sloping surfaces below cloudless skies. Dogniaux (1975) derived the
diffuse irradiance of .vertical surfaces D(90) by integrations of
Eq. 2.4. Parmalee '(1954) and Valko (1975) measured the diffuse irradi-
ance of vertical surfaces directly, but included a component of reflected
radiation from the ground. All three studies pr