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Abstract

This thesis presents a novel set of guidelines to convert between simulation modelling
approaches, namely, Ordinary Differential Equations (ODEs), System Dynamics (SD)
and Agent-based Modelling and Simulation (ABMS). In our literature review we identify
a gap in establishing translation techniques between these approaches. We therefore
focus our research in developing these techniques and assessing the impact of these
conversions in the simulation outcomes. In particular, our interest lies in investigating
our techniques applied to simulation problems for the immune system, as we wish to aid

immunologists with the choice of the most appropriate approach for a certain problem.

The aims of this thesis are therefore defined as: (1) with no explicit guidelines available
from the literature, we want to develop, test and validate our own set of guidelines for
converting between approaches: from ODE models to SD, from SD to ABMS and from
ABMS to SD; and (2) we seek to discuss the merits of SD and ABMS for immunology

to assist researchers with the choice between both approaches.

The assessment of the effectiveness of the conversion guidelines is achieved by using a
case study approach involving six cases of established mathematical models describing
immunological phenomena. These case studies are chosen by considering aspects such as
the behaviour of the entities of the model (whether they are static or interact with other
entities and whether they have spatial representation or not), the type of hypothesis to
be tested, the empirical embeddedness of real data, population sizes, number of elements

involved and the modelling effort.
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In order to conduct our conversion for the case studies, we first convert their original
ODE model into an SD model, and then perform the translation from SD to ABMS. For
the last three case studies, we also test the conversion guidelines from ABMS to SD. Ev-
idence from the experiments reveal that for all cases it was possible to obtain equivalent
approaches by using the conversion guidelines developed. However, outcome differences
occur given the intrinsic characteristics of each simulation modelling paradigm. By ob-
serving these differences we could conclude that (1) SD is incapable of reflecting exactly
the same variability as that obtained from the agent-based simulation, as it is a determin-
istic approach; (2) SD variables change continuously in time and therefore population
numbers over time might be different from those obtained by the agent-based simula-
tion; (3) as the number of different agents and behaviours increase, the corresponding
SD becomes very intricate and difficult to develop and understand; (4) there are cases
where it is preferable not to convert from ABMS to SD, as the agent-based model is
easier to conceptualise and implement; (5) For other circumstances, ABMS outcomes
are the same as those produced by the ODEs and SD, with the disadvantage to be more
resource consuming in terms of computational memory and processing capacity; and
(6) For some cases SD is less informative than ABMS, as it does not produce multiple

scenarios or variations over the course of more than one run within the same parameters.
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Chapter 1

Introduction

Although there are examples of successful applications of modelling and systems simu-
lation approaches to immunology, these are not commonly used to assist immunological
research. Instead, ordinary differential equation (ODE) models are widely employed
to support advances in theoretical immunology. The development of an ODE model,
however, requires that the immune model developers have an in depth understanding
of mathematics, which is not the immunologists main area of expertise. Furthermore,
these models have limitations for solving complex problems which involve individual
localisation, memory and emerging properties. Systems simulation is therefore a set
of methodologies that has emerged to complement mathematical models and overcome
some of their limitations. Possible systems modelling and simulation approaches for
immunology include system dynamics (SD) and agent-based modelling and simulation

(ABMS).

SD encompasses the ODEs’ mathematical formulations with the advantage of modelling
the system as a stock and flow diagram, which seemed more intelligible by the immu-
nologists that we worked with during the development of our models. Furthermore,
there is no need for an indepth understanding of mathematics to formulate a model.
The differential equations are implicit in the system’s structure and the relationships

between the elements modelled can be established with experimental data.
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ABMS modelling approaches, compared to ODEs and SD models, are acknowledged as
more suitable for simulations in which there is the need to represent individual cells,

their interactions and emergent behaviour.

There are several reasons why systems modelling and simulation are not as common as
ODEs for immunology: (1) System simulation tools are not known in the immunology
research field; (2) although system simulation is acknowledged as being a useful tool
by immunologists, there is no knowledge of how to use it; and (3) there is not enough
trust in the results produced by simulation. One way of overcoming the unpopularity
of systems simulation in immunology would be re-conceptualizing or converting existing

established ODE models of immune processes into a systems simulation perspective.

In this thesis, therefore, we seek to define guidelines for the conversion between
ODEs, SD and ABMS for immune system problems that can benefit from
either approach. To our knowledge, there is little research concerned with the trans-
lation between these approaches for immunology. We decided to apply our conversion
guidelines to case studies in immunology for two main reasons. First, for the simulation
of immune problems, apart from ODEs which have been widely explored, both SD and
ABMS approaches have the potential to be very useful and can overcome some the ODE
modelling limitations. Moreover, we had the opportunity to work closely with immu-
nologists from Nottingham City Hospital and observe their acceptance of our SD and

ABMS models contrasted to the ODE models.

Another possible advantage of the conversion guidelines would be in circumstances where
a model developer is well acquainted with one simulation approach and would like to use
his current models to learn another technique. In cases where there is, for example, a
established ODE model, conversion techniques to translate the current model to ABMS
would be a good starting point to learn this simulation approach and possibly expand

the model.

Furthermore, immunology is a field that constantly gathers new information. Simula-

tions therefore have to be updated frequently to suit new findings. For some cases, in
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order to meet new demands, the replacement of the current simulation approach for new
developments needs to be considered. There are two options, namely, to start the new
simulation from scratch or to adapt previous implementations for the new approach.
However, with regard to the second option, there is also little knowledge in literature

on the implications of these conversions.

In addition, in a range of immune problems that are solvable by the three approaches,
apart from their well-known intrinsic characteristics, it is necessary to identify aspects
such as (1) the available data, (2) the time given to build the model, (3) the research
questions to be addressed, (4) the possible knowledge to be acquired regarding the real-
world system, (5) the modelling effort and (6) the computational resources available.
It might be the case where the available approach that better matches the resources
constraint is not well known by the simulation developer. However, establishing a par-
allel between what could be done in the preferable approach and the available technique
should facilitate the model building. Furthermore, with regard to multi-paradigm simu-
lation, in order to make model simplifications or decrease the demand for computational
resources, there is the need to establish whether one simulation approach can be replaced
by another without any detriment to the model validity. We also want to investi-
gate, therefore, what are the outcome impacts of converting approaches and

those circumstances where such effort should be considered.

1.1 Research Aim, Objectives and Contributions

Taking into account the research gap presented int the previous section, we outline our

research aims as follows:

e With no explicit guidelines available from the literature, we aim to develop, test
and validate our own set of guidelines for converting between ODE, SD and ABMS
approaches. We believe these practices will assist with the improvement and ex-

pansion of existing immune models to suit new demands.
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e We seek to asses the impacts of these conversions and determine those circum-
stances where one approach could be replaced by another. We also want to de-
termine, after performing the translation, when one approach would be preferable

than the other.

In order to achieve our aims, the main objectives of our work are:

1. To define and test guidelines to convert between (1) ODE models to SD models,
(2) ODE models to ABMS models (3) SD models to ABMS models, (4) ABMS

models to SD models and to assess the impact of these conversions.

2. To compare ODE, SD and ABMS outcomes, considering aspects such as the be-
haviour of the entities of the model (whether or not they are static or interact with
other entities, and whether they have spatial representation or not), the type of

hypothesis to be tested and the modelling effort.

3. To define guidance to choose between SD and ABMS depending on the character-

istics of the problem to be addressed.

In order to achieve these aims, several case studies of established mathematical models
that describe immune mechanisms are investigated. These case studies are chosen by
considering aspects such as the behaviour of the entities of the model (whether they
are static or interact with other entities and whether or not they have spatial represen-
tation), the type of hypothesis to be tested, the empirical embeddedness of real data
and the modelling effort. Furthermore, we consider characteristics such as population
size, model complexity, observation of the ODEs outcome results (when there is no data
available) and the number of different populations modelled. The mathematical models
chosen vary largely within these aspects and therefore we can perform a more robust
analysis on the effectiveness of our guidelines. In addition, we select models relating to
topics that currently are being investigated by the immunologists from Nottingham City

Hospital, including those involved with acquired immunodeficiency syndrome (AIDS),
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cancer and immune system ageing. We define SD and ABMS models based on the sce-

narios described by these mathematical models, and convert and compare the simulation

results.
Table 1.1: Case studies

[ Case Study [ Entities [ Movement [ Data available [ Pop. sizes [ Num. of pop. [ Complexity ]
1) Naive T cell static no yes 103 1 medium
output
2) Tumour growth static no no 10 to 1077 1 low
3) HIV spread interact no no 107 3 medium
4) Tumour/Effector | interact yes no 6 to 600 2 low
5) Tumour/Efector/ | interact yes no 10% 3 medium
1L-2
6) Tumour/Effector/ | interact yes no 107 4 high
IL-2/TGF-3

The first case study — which is a complex model in terms of population sizes and elements
considered — is based on an ODE model involving interactions that influence naive
T cell populations with age (Section E32). For the second case study — which is the
simplest one with only one population — we investigate mathematical models of general
tumour growth (Section B=3). Our third case study — which also complex in terms of
different populations — comprises an ODE model of cell-free viral spread of the human
immunodeficiency virus (HIV) in the bloodstream (Section B4). The fourth case study is
based on an ODE model involving interactions between tumour cells and generic effector
cells (Section B2). The fifth case study adds to the previous model the influence of IL-
2 cytokine molecules in the immune responses of effector cells towards tumour cells
(Section B3). The final case study comprises an ODE model of interactions between
effector cells, tumour cells, and IL-2 and TGF-8 molecules (Section 5E4). For the last
three case studies we considered spatial movement. We believe these new requirements
will provide means to further test our conversion guidelines. We also hypothesise that
spatial interactions are more suitable for the ABMS models and their conversion to an

equivalent SD might result in a rather complex stock and flow diagram.
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1.1.1 Thesis Contributions

As contributions to knowledge, we define and test our conversion guidelines, compare
simulation results of case studies, and identify their characteristics that allow for the
production of similar results for both modelling efforts. In addition, when the simulation
results differ, we investigate why these differences occur and if they are systematic.
Moreover, we discuss the merits of each simulation approach considering the modelling
effort, simulation performance -in terms of accuracy and computational resources used-

and experimental data available.

1.2 Simulation Experiments and Research Findings

In our first set of experiments, we convert between approaches and compare a SD model
and an ABMS model for an immune system ageing problem. The problem involves a
non-spatial model with static agents. By static, we mean that there is no movement
or interaction between the agents. We obtain the same simulation results for both ap-
proaches. If we consider aspects such as modelling effort, necessary level of abstraction
and the experimental data available, however, our results indicate that for these types
of individual entities, SD modelling is preferable. Moreover, when contrasting the sim-
ulation results for both modelling efforts in our first case study, the SD simulation is
less complex and takes up fewer computational resources, producing the same results as
those obtained by the ABMS. In addition, SD simulation is more robust when the num-
ber of individual entities increases considerably. There were cases in which there were
insufficient computational resources to run the ABMS in the machine our experiments

were rumn.

As a second set of experiments, we investigate mathematical models of tumour growth
and obtain close, but not exactly the same results, in both approaches to simulation.
As agents are integer values, the growth curve for the ABMS is more accentuated than

that from SD. Moreover, similar to the previous experiments, SD is more suitable in
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terms of scalability of the number of tumour cells.

Another case study investigates the spread of the human immunodeficiency virus (HIV)
and its interactions with immune cells. Although it is possible to convert between
approaches, the stochastic character of the ABMS produces a range of results with the
same trend as those from the SD, but with growth and decrease of populations starting

at different points in time for each run.

The last three case studies are concerned with general interactions between immune
effector populations and tumour cells. Some scenario results indicate that the size of
the populations also influence the similarity of results, as a small number of agents can
produce significant variability in the outcomes. Furthermore, another result suggests
that extra efforts, such as parameter calibration, are necessary to obtain equivalent
results for both approaches after applying the conversion techniques. In addition, there
is a final case study in which the outcomes for the ABMS mostly follows the same
pattern as that produced by the SD; however there are some alternative outcomes other
than that produced by the deterministic models. This indicates that for this case study,
the ABMS results show other possible population dynamics that should be validated by

immunologists.

Based on our experiments, it was not possible to define a general framework that would
definitively determine the most suitable approach depending on the problem investi-
gated. We could only establish some rules that indicate when one approach is preferable
than the other by observing characteristics such as population sizes, whether the sim-
ulation regards continuous or discrete values, the entities spatial movement and the
representation of different populations in the problem. However these rules are specific
for our set of case studies and further investigation would be necessary to determine

whether they can be generalized.
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1.3 Thesis Outline

This thesis is structured in the following manner. Chapter B presents the relevant back-
ground information and is divided into seven sections: the first introduces the main
concepts of modelling and simulation; secondly, the main system simulation approaches
used in this work are described; the third and fourth sections review the literature re-
garding the use and comparison of ABMS with SD; the fifth section reviews the main
concepts of immunology necessary to understand the case studies; section six investi-
gates the opportunities for applying simulation to immunology, followed by the sum-
mary of the chapter, which outlines the research gaps found in literature. Chapter B
presents the methodology used to conduct our case studies experimentation and intro-
duces the conversion guidelines that we have defined. Chapter B comprises three case
studies regarding non-spatial entities within the system, with the objective of testing our
guidelines. Chapter B reports on further tests on our guidelines by investigating their
effectiveness when applied to spatial models. The thesis concludes with a discussion of
findings, an assessment of how far aims have been satisfied and future directions for this

research (Chapter B).




Chapter 2

Literature Review

2.1 Introduction

The research described in this thesis is concerned with the translation between the
modelling and simulation paradigms ODEs, SD and ABMS. It investigates the means to
convert from one approach to another and assess the consequences of the conversions in
terms of model performance, complexity and output accuracy. The research is conducted
with particular attention to case studies in immunology, as this is an area in which the

potential contributions of simulation have not been largely explored.

This chapter starts by introducing the main concepts of the theory of modelling and
simulation, and presents established definitions for systems and their dominant features.
Furthermore, definitions of a model as well as the major classes and dimensions of
system models are provided. Subsequently, the principal concepts of model simulation

are introduced in Section 7.

Section P33 describes each simulation approach used in this thesis. It focuses on their
methodology, modelling technique, architecture and applicability. We review SD and
ABMS. Furthermore, each methodology is compared against each other to outline the
main differences between them with respect to their building blocks, level of abstraction,

time handling, outcomes, perspectives, etc.
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As the focus of this research is to establish a framework to convert between SD and
ABMS, studies concerned with the comparison and conversion of these methodologies
are reviewed in Section 4. Furthermore, the limitations of the current efforts to convert

between methods and their potential for improvement are discussed.

Section 8 reviews the key concepts of immunology, focusing on the main processes, cells
and tissues of the immune system. These concepts will be further used in the remainder
of this chapter and for our case studies in subsequent chapters. Section P20 investigates
the opportunities of applying simulation in immunological research and justifies the
choice of immunology case studies adopted in this thesis. Finally, Section EE8 provides

a summary of the chapter.

2.2 The Theory of Simulation Modelling

In this section we review the main concepts concerned with the theory of systems mod-
elling and simulation. First, we present a definition of a system and its principal char-
acteristics. Subsequently, we explain concepts related to system modelling and model

simulation.

2.2.1 System Modelling

A system can be defined as a “collection of parts organized for some purpose” [[@]. There

are four main classes of systems [[2]:
1. Natural systems: systems whose origins lie in the origins of the universe. For
example, atoms, molecules and galactic systems.

2. Designed physical systems: physical systems designed by humans. For example,

cars, mobile phone networks and computers.

3. Designed abstract systems: abstract systems designed by humans. For example,

mathematical models and literature.

10
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4. Human activity systems: systems of human activity that are consciously or uncon-

sciously ordered. For example, family, schools, cities and criminal justice systems.

All these systems can be modelled and simulated [[[]. In this thesis we consider only
natural systems and designed abstract systems. Furthermore, in some cases, we use
designed abstract systems to describe natural systems. Our final systems, therefore, lie

at the interface between natural and designed abstract systems.

In order to study a system, experimentation can be done either over the actual system
or a system model. The construction of a system model starts with understanding
the real world. This allows for the characterisation of the system problems within
the context of real-world observations. After the system is properly described, it is
possible to conceptualize the model by defining its scope, objectives, inputs, outputs

and simplifications [[].

There are different definitions of a system model. Fishman [29] defines model as “a
formal representation of theory or a formal account of empirical observation”. Accord-
ing to Banks [@], “a model is a representation of an actual system. The model should
be complex enough to answer the questions raised, but not too complex”. For Zeigler
[, a model is “a set of instructions, rules, equations or constraint for generating in-
put/output behaviour”. Kelton [BI| characterizes a model as “a set of approrimations
and assumptions, both structural and quantitative about the way the system does or will

work’ .

Although the authors offer different definitions for a model, they agree that modelling is
“creating an abstraction of the real world system using modelling tools with the objective

of solving a problem”.

Once the real world problem is well understood, there is the need for the definition of
the best modelling approach. There is a wide spectrum of modelling methodologies,

which range from analytical modelling to simulation modelling.

11
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Analytical models, also known as static models, consist of a set of mathematical equa-
tions that describe relationships among variables. The objective of using these equations
is to approximate or predict the system behaviour [B]. These models rely on mathemati-
cal formulations to define the system’s inputs and determine the outputs. Further, they
focus on the determination of the system outcome given a certain input. Analytical
models are not suitable to solve complex system problems as the solution might not
exist or is very hard to find [B]. In addition, they do not give insights into the dynamics

of the system as the analysis can only be done with a snapshot in time [[9].

Simulation models emerged as a complement of analytical and numerical methods in
order to model complex systems [B1]]. They are more appropriate for modelling dynamic
and transient effects [B3] and are well established [[@]. Moreover, simulation models were
reported as the second most important quantitative modelling technique, with statistics

being the first [B3].

Simulation models can be classified into four different dimensions [A, Bd]. The first
dimension is their representation concerned with time — they can either be static or
dynamic [BO|. Static simulation models represent a system at a particular point in time.
Monte Carlo simulation models, for instance, are static [Ed]. Dynamic simulation models
represent a system that evolves over time [B], such as simulation models for molecular

interactions [[Z2, B0].

The second dimension classifies simulation models into deterministic or stochastic mod-
els. Deterministic simulation does not contain any probabilistic components, such as
the numerical simulation of a system of ordinary differential equations. Stochastic sim-
ulation, on the other hand, considers random components [B]. A simulation model of
viral spread in a city, for example, is stochastic. It relies on the interactions between

the individuals in the city, which are aleatory.

The third dimension establishes patterns in which system variables change over time.
The variables can therefore change continuously or discretely. For example the age of

an individual changes continuously in time, whereas the number of immune cells that

12
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die with age is a discrete value [E4].

The fourth dimension classifies the simulation models according to their demand for
computational resources. Hence, simulation models can either be local (using one com-

puter) or distributed (using more than one computer connected through a network) [B].

In the next section (Section PEZZ3) we present a review on the simulation basic concepts.

2.2.2 Simulation

A computational simulation of a dynamic system can be defined as an “imitation (on a

computer) of a system as it progresses through time” [0

The purpose of simulation, according to Pidd [B4], is to understand, change, manage
and control reality. Moreover, simulation can be used to obtain a better understanding
of the system and/or to identify improvements to a system [[]. Another feature of
simulation models is that they are focused on the main aspects of the real system.
The models, therefore, are a simplified version that excludes unnecessary details of the

original system [EI].

A simulation predicts the performance of a system given a specific set of inputs. It is
not the purpose of a simulation model to provide optimum or sub-optimum answers.
According to Robinson [[], simulation is an experimental approach to modelling a
“what-if’ analysis tool. The model user determines the scenarios and the simulation
predicts the outcomes. Simulation can, therefore, also be seen as a decision support

tool.

There are three characteristics of system model (variability, interconnection and com-
plexity) which allow for simulations capable of predicting a system performance, and of

comparing different scenarios, designs and their impact on the outcomes produced [E4].

Variations in the system can be predictable or unpredictable. For instance, if the death
rate of an specific population of cells is known, as well as its initial value, it is possible

to predict the variation of the number of these cells over time [EH]. There are other

13
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kinds of variations that cannot be predicted, for instance, if the same population of cells
grows and decreases depending on the number of infections in the organism at a certain

moment.

If a system is interconnected, their components do not work in isolation and affect
each other. It is often difficult to predict the effects of interconnection, especially when
there is variability. For instance, if the size of a population of immune cells influences
the production of molecules that neutralizes toxins, when the immune cell population
decreases, the molecule population will not grow and the toxins will therefore harm the

organism [B4, Bd]; this often occurs with the ageing of the immune system [B3, BJ].

Another characteristic of many systems is complexity. There are two kinds of complexity
to be considered: combinatorial and dynamic. Combinatorial complexity is related to
the number of components in a system or the number of possible combinations of its
components. Dynamic complexity, on the other hand, arises from the interactions of

components in a system overtime and it is therefore not necessarily related to time [[0].

Compared to real-world experimentation, simulation is generally more cost-effective and
less time consuming. Furthermore, under a controlled simulation environment, changes
and different scenarios are analysed without interfering in the real-world system opera-
tions [[[@]. Furthermore, as time can be accelerated in simulations, the impact of changes

and the outcomes produced is many times faster than in the real world.

Another benefit of simulation is the possibility of testing systems that do not exist [E].
Such systems might not exist because they would be expensive or because direct ex-
perimentation is impossible. An abstract system, therefore, can be implemented and

evaluated in a simulation environment.

One important issue during the development of a simulation model is the choice of the
appropriate simulation method [B, B8, Ed]. Current major system simulation modelling
methods consist of system dynamics (SD) and agent-based modelling and simulation

(ABMS) [B]. These methods will be explained in the next section.
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2.3 System Modelling and Simulation Methods

In this section we introduce the systems simulation modelling techniques used: SD [BT]
and ABMS [B3, B4]. In order to understand the differences and applicability of each ap-
proach, we review their main concepts, architecture, methodology and modelling tech-
nique. We also present a comparison between these methods. Furthermore, we discuss
simulation abstraction levels, which indicate the level of detail that can be implemented

by each approach.

2.3.1 System Dynamics

System Dynamics (SD) is a modelling methodology conceived by Jay Forrester in the
mid 1950s [B0]. It is an aspect of systems theory that was initially applied in order to
understand complex aggregate behaviours in industry. It was, therefore, defined as “the
study of information feedback characteristic of industrial activity to show how organi-
zational structure, amplification (in policies) and time delay (in decision and action)
interact to influence the success of enterprise’ [B]. It is currently applied to any com-
plex system characterized by interdependency, mutual interaction, information feedback

and circular causality.

The basis of the SD methodology is the recognition that the structure of a system is
just as important in determining its behaviour as the individual components themselves.
It is therefore necessary to adopt a “systemic way of thinking” [Ed]. Systems thinking
theories state that the shift from event orientation to focusing on the internal system
structure increases the possibility of improving the system’s performance. This means
that the problem should be depicted as a set of patterns, interrelated processes and

generic structures [G3].

The main elements necessary to use SD methods are [B2, B3:

e Understanding the real-world dynamics over time

15



2. Literature Review

e Identifying the behaviour of the system entities at an aggregate level

e Regarding all the concepts from the real system as continuous values intercon-
nected by loops of information feedback and circular causality (feedback loops)).
Richardson and Pugh [B8] define a feedback loop as “a closed sequence of cause

and effects, that is, a closed path of action and information”

e Identifying the values that accumulate with time (stocks) in the system as well as

their inflows and outflows
e Determining the causal/feedback structure of the system

e Defining the mathematical equations ruling the causal relationships between the

stocks

In order to illustrate how these main elements are used, let us consider the problem of
filling a glass of water from a tap [E]. We have a goal to seek, i.e. the desired level
of water in the glass. To fill the glass with water, it is necessary to adjust the faucet
position from the tap to control the water flow. This flow can be increased or decreased
to achieve the desired level and its up to the user of the tap to decide this. The structure

of the system can therefore be defined, as shown in Figure I

. e
Desired - n
Faucet position
water level N /

Perceived gap |.\

5 |
\- ‘ | water flow

/ ( | ‘
oy
; |(‘4\

- Current
water
level — %—

Figure 2.1: Filling a glass of water problem [AT]

After understanding the structure of the problem, it is necessary to translate it into a

causal loop diagram, which is a graphical representation used in SD. Causal loop dia-
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grams aid visualization of how interrelated variables affect one another. These diagram
consists of a set of nodes representing the variables connected together [EG]. The desired
water level, the faucet position, the water flow, the current water level and the gap as
variables are all depicted. The gap variable is the difference between the desired level

and the current level.

The relationships between these variables, represented by arrows, can be labelled as
positive or negative. An arrow (causal link) from one element A to another element B
is positive either if A adds to B or if a change in A produces a change in B in the same
direction (i.e. if A increases, B increases; if A decreases, B decreases.) [E]. For example,
in our case, if the water flow increases, the current water level will increase. The causal
link between A and B, on the other hand, is negative either if A subtracts from B or a
change in A produces a change in B in the opposite direction (if the current water level

increases, the gap between the current level and desired level will decrease) [E].

The causal loop diagram for our example is shown in Figure E2. In the centre of the
diagram there is a sign that identifies if the loop is positive or negative. A loop is
positive when the number of negative links is even. Otherwise, the loop is negative, as

in our example:

Desired 5 Bt

i Position
Level
+
Water
\ Flow
Water ‘/

Level

Figure 2.2: Filling a glass of water problem: Causal loop diagram [E]

A problem can further be represented by stock and flow diagrams [EG]. These also show

the relationships among the variables which have the potential to change over time.
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The difference between these two types of graphical representations is that, unlike the
causal loop diagram, the stock and flow diagram distinguishes between different types

of variables, i.e. stocks, flows, information, auxiliaries and parameters.

Stocks (also known as levels, accumulations or state variables) accumulate some value
over time. In our example, a stock would be the water level. Stocks are represented in the
diagram as boxes. Their values change over time by accumulating or integrating flows
(also known as rates, activities or movements) that represent the movement of something
from or to a stock. Flows are represented by hourglasses and arrows that indicate if they
are inflows or outflows from stocks. Information (curved arrows) between stocks and
flows indicates that an information about a stock influences a flow. Auxiliary variables
are represented by a circle and are used when one or more intermediate calculations are

needed. Furthermore, they can be used as parameters in the system.

In our example, the current water level would be a stock, the water flow would be an
inflow, the gap and faucet position would be auxiliaries and the desired water level would
be a parameter. The stock and flow diagram is shown in Figure EZ3. In the figure, the

stock is represented by the box C], the flow variable is represented by the hourglass X ,

— .

flow , auxiliary variables D, parameters ) and information

FaucetPosition

DesiredWaterLevel o O—

{3 ""\-\.\_\..
s o
r -

gap Z WaterFlow

C] WaterLevel

Figure 2.3: Filling a glass of water problem: Stock and flow diagram

System Dynamics Simulation (SDS) is a continuous simulation for an SD model. It
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consists of a set of ordinary differential equations that are solved for a certain time
interval [B2]. If we consider, therefore, the stock and flow diagram of Figure E23 and the
differential equation shown in Equation BT, we would have a simulation output (for 20

time units) as shown in Figure 2.

dCurrentW ater Level

i = WaterFlow (2.1)

where:

DesiredW ater Level = 10,

e gap = DesiredW ater Level — W ater Level,

FaucetPosition = %32,

o WaterFlow = FaucetPosition.

Desired water Level 10

|:| T . :
0 5 10 15 20
= YWater Level — Faucet Position

Figure 2.4: Filling a glass of water problem: SDS

2.3.2 Agent-based Modelling and Simulation

In this section, we introduce the basic concepts concerned with agent-based modelling
and simulation. We start by presenting one of the first approaches to implementing

agent-based models, i.e. cellular automata (CA).
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Cellular Automata (CA)

CA is a discrete model consisting of two main components. The first component is an
infinite regular grid of cells, which constitutes the universe or space of the CA [B0]. In
computer simulations, however, due to space limitations, the CA space is predetermined
and finite. The second component is a finite automaton (or cell). Each cell from the
grid contains a finite number of states and a predefined set of cells called neighbourhood.
Figure 23 shows examples of classical neighbourhoods defined by Von Neumann and
Moore. The communication of a cell with other cells within its neighbourhood is local,

deterministic, uniform and synchronous [E3].

(a) Von Neumann (b) Moore

Figure 2.5: Examples of classical neighbourhoods in a two-dimensional grid CA

Each cell is initialized with an initial state at time t = 0. As time advances, the cells are
updated according to a fixed rule, which is, in general, a mathematical function. This
rule defines the next state of each cell according to its current state and its neighbour-

hood states.

It is possible to simulate real or abstract systems with spatial extent using CAs. They are
a very useful modelling platform, as cells can represent elements of dynamic phenomena,
such as individuals, attitudes or actions. CA models any world in which space can be

represented as a uniform grid, elements interact with their neighbourhood, time advances
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by steps, and the “laws” of that world are represented by a uniform set of rules.

Although CAs are also considered agent-based simulation by some researchers, the indi-
viduals in CA do not have memory and their interactions are limited to the individuals
within their neighbourhood. In ABMS, on the other hand, agents have memory and
have the capacity to interact with any other agent in the system, according to the rules

established [[].

ABMS is a modelling and simulation tool, the design of which is based on artificial
intelligence using concepts of robotics, multi-agent systems and complex adaptive sys-
tems [B3]. It therefore employs a set of autonomous agents that interact with each
other in a certain environment [E3]. As it is derived from complex systems, its base-
line is the notion that systems are built in a bottom-up perspective. In other words,
an understanding of the system dynamics arises from individual interactions and their

environment [B4].

The agents’ behaviours are described by rules that determine how they learn, interact
with each other and adapt. The overall system behaviour is given by the agents’ in-
dividual behaviours as well as by their interactions. ABMS is therefore well suited to
modelling and simulating systems with heterogenous, autonomous and pro-active actors,

such as human-centred systems, biological systems, businesses and organizations [[Z9].

Another important feature of ABMS is its natural representation of a system [[9]. It is
possible, therefore, to mimic the real-world system by modelling entities and behaviours
intuitively. The information-gathering concerned with the problem description should
provide the agent-based modeller with the capacity of determine the agents’ elements

(attributes, associated rules, reactive and proactive behaviours).

Agent

Although there is no consensus about a definition of an agent among the ABMS com-

munity [[A], Macal [B2-B4] defines some characteristics (Figure E8). An agent is:
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1. A self-contained, modular, and uniquely identifiable individual. An agent has a
set of attributes, the values of which will define it as an unique individual in the

system.

2. Situated in an environment where the interactions with other agents occur. An
agent has the capability to respond to the environment and has protocols to com-
municate with other agents. Its responses to environmental stimulus and inter-
actions is defined by rules that determine the agents reactive and proactive be-
haviours. Apart from behavioural rules, agents communicate with each other

through message exchange.
3. Autonomous and self-directed.

4. Flexible, with the ability to learn and adapt its behaviours according to the envi-

ronment and past experiences (it also has memory).
5. Goal-directed, having objectives to achieve determined by its behaviour.
6. A construct with states that varies over time.

7. Social, having dynamic interactions with other agents that impact on its behaviour.

i l Environment !

Agent

*Attributes

*Behavioural rules

*Memory

*Resources

*Decision making sophistication
*Rules to modify behavioural rules

Figure 2.6: An agent (obtained from [B3])
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Agent-based Modelling Technique

Agent-based modelling (ABM) can be done using state chart diagrams from the unified
modelling language (UML). With state charts it is possible to define and visualize the
agents’ states, transitions between the states, events that trigger transitions, timing and

agent actions [B|.

In order to understand how the state chart diagram represents an agent, let us consider
an example of dendritic cell dynamics [B3]. Dendritic cells are immune cells that search
for signs of danger (possible antigen) in the organism [BG]. They are initially in an
immature state until they come in contact with a possible antigen, where they become
activated. After activation, the dendritic cell investigates if it is a real danger or not.
If it is a real pathogen, the dendritic cell becomes mature; otherwise, it goes to a semi-
mature state. The mature state indicates that an immune response should be triggered
and information about the antigen should be kept as history. The semi-mature state
indicates that the foreign material should be tolerated by the immune system. Dendritic
cells in an active state have a lifespan of days, while immature cells exist for longer. For
our example, we consider ten days for active cells and thirty days for immature cells.
After the life time elapses, cells go to a final state, i.e. death. The state chart modelling

this system is shown in Figure E77.

2.4 Comparing Simulation Approaches

As we mentioned before, the SD is implemented by using ODEs. Their differences are
therefore in the way the system is modelled, although the results in general should be

the same.

The differences between SD and ABMS start with the problem representation. SD uses
stock, flows and feedback loops for modelling. Moreover, SD is a continuous approach
while ABMS can be either continuous or discrete. Furthermore, SD, represents entities

at an aggregate level and in continuous quantities [B]. ABMS, on the other hand,
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Figure 2.7: Dendritic cell state chart. The round squares represent the states and the
arrows represent the transitions between the states. Arrows inside states indicate the
agent actions (or behaviours).

represent individual entities that can be tracked through the system, however, only
ABMS entities are capable of keeping a record of past activities (memory). SD is a

top-down approaches while ABMS is a bottom-up approach.

Schieritz and Milling [[7@] study the differences between SD and ABMS and contrast the

primary conceptual predispositions underlying each approach (Table E71).

SD is widely applicable at a high level of abstraction (further explanation about levels
of abstraction is given in Section E4). ABMS, on the other hand, is a paradigm that
can be used at any level of abstraction, including those levels covered by SD. As there
is an intersection, a range of simulation problems can be solved either by SD or ABMS.
Thorne et al. [BO] state that ABMS is ideal for tissue patterning events because it

explicitly represents individual cells in space and time. Moreover, ABMS indicates how
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Table 2.1: Main differences between SD and ABMS (obtained from [G])

Feature SD ABMS
Perspective top-down bottom-up
Building block feedback loop agent

Unit of analysis system structure agent’s rules
Level of modelling aggregate individual
System structure fixed not fixed
Time handling continuous discrete

the tissue behaviour emerges from the interactions of individual cells. On the other
hand, ABMS requires computational power and may produce large sets of data, which
could be difficult to analyse [BG]. In addition, ABMS requires all properties of a system
to be modelled discretely. SD, however, deals with continuum approximations. For the
simulation of biological systems, both approaches are therefore useful and should be
selected carefully according to the research question to be addressed. We will further

discuss the comparison and suitability of these two approaches in section E=3.

Simulation Modelling Abstraction Levels

Borschev and Filipov define abstraction level as the amount of detail to be included
when modelling a system [B]. They categorize models in three levels of abstraction:

high, medium and low.

A high level of abstraction encompasses models with less representation of details, the
focus of which is the structure of the system. The model actors (elements) behave
collectively as aggregates. SD and ABMS, therefore, are suitable for modelling systems
at a high level of abstraction. A range of simulation problems, therefore, can be solved
either by SD or ABMS. In this thesis, investigations were conducted considering the
range of problems inside the intersection between SD and ABMS, as it will be further

explained in the following sections.

A medium abstraction level, i.e. a tactical level, involves models with complex oper-

ational patterns, activity and decision-making. ABMS is a possible approach for this
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modelling abstraction level.

A low abstraction level (operational level) involves more details, individual interactions
and heterogeneous behaviours [B3]. ABMS is used at this level, although ABMS models

a wider range of problems at a low abstraction level.

2.5 Related Work

In this section, we describe the literature concerned with the comparison between SD and
ABMS for different simulation domains. We start our review by showing general work
that has been carried out to assess the differences of both approaches. Subsequently,
we focus on research concerned with the comparison of the strategies for immunological
problems. We found that there is a scarcity of literature comparing the two approaches
for immune simulation. We also review the work related to the conversion of simulation
paradigms, as the establishment of a framework for the translation between SD and

ABMS is one of the main goal of this thesis.

2.5.1 Contrasting SD and ABMS

Scholl [3] gives an overview of SD and ABMS, describes their areas of applicability
and discusses the strengths and weaknesses of each approach. The author also tries to
identify areas that could benefit from the use of both methodologies in multi-paradigm
simulations and concludes that there is little literature concerned with the comparison

of both methodologies and their cross studies.

Pourdehnad et al. [B3] compare the approaches conceptually by discussing the potential
synergy between them to solve problems of teaching decision-making processes. The
authors explore the conceptual frameworks for SD and ABMS to model group learning.
In addition, they show the differences between the approaches in order to propose their
use in a complementary way. Furthermore, they mention the lack of knowledge in multi-

paradigm simulation involving SD and ABMS.
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Stemate et al. [B2] also compare these modelling approaches and identify a list of likely
opportunities for cross-fertilization. The authors argue that this list should be a starting

point for other researchers to take such synergistic views even further.

Schieritz [[@3] and Scheritz et al. @] present a cross-study of SD and ABMS. They
define their features and characteristics and contrast the two methods. In addition,
they suggest ideas of how to integrate both approaches. Continuing their studies, [[3]
they then describe an approach to integrate SD and ABMS for supply chain management
problems. Results show that the integration of SD and ABMS does not produce the
same outcomes as SD simulation alone. To understand why these differences occur, the

authors propose new tests as future work.

Demirel [[] compares SD and ABMS as models of a supply chain system. The author
shows that although there are factors and effects captured by SD, it misses the dynamics
at a more detailed level. These details result from the emerging heterogeneity among
individual agent behaviours. Moreover, there were cases in which SD did not capture the
dynamics produced by the ABMS even at an aggregate level. This happened because
the SD approach does not differentiate among individuals. Any emergent behaviour

that arises from individual interactions, will therefore not be captured by SD.

Ramandad et al. [E3] compare the dynamics of a stochastic ABMS with those of the
analogous deterministic compartment differential equation model for contagious disease
spread. The authors convert the ABMS into a differential equation model and examine
the impact of individual heterogeneity and different network topologies. The determin-
istic model yields a single trajectory for each parameter set, while stochastic models
yield a distribution of outcomes. Moreover, the differential equation model and ABMS
dynamics differ in several metrics relevant to public health. The response of the models
to policies can also differ when the base case behaviour is similar. Under some condi-
tions, however, the differences in means are small, compared to variability caused by

stochastic events, parameter uncertainty and model boundary.

Schieritz [[A] analyses two arguments given in literature to explain the superiority of
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ABMS compared with SD: (1) “the inability of SD models to explain emergent phenom-
ena” and (2) “their flaw of not considering individual diversity’. In analysing these
arguments, the author considers different concepts involving simulation research in so-
ciology. Moreover, the study identifies the theories of emergentism that underlie the
SD and ABMS approaches. The author points out that “the agent-based approach mod-
els social phenomena by modelling individuals and interactions on a lower level, which
makes it implicitly taking up an individualist position of emergence [[3]; SD, on the other
hand, without explicitly referring to the concept of emergence, has a collectivist viewpoint

of emergentism, as it tends to model social phenomena on an aggregate system level’.

As a second part of the study, the author compares SD and ABMS for modelling species
competing for resources to analyse the effects of evolution on population dynamics. The
conclusion is that when individual diversity is considered, it limits the applicability of
the SD model. However, it is shown that “a highly aggregate more SD-like model of an

evolutionary process displays similar results to the ABMS”.

Similarly, Lorenz [E9] proposes that three aspects be compared and that this helps with
the choice between SD and ABMS: structure, behaviour and emergence. Structure is
related to how the model is built. The structure of a model in SD is static, whereas
in ABMS it is dynamic. In SD, all the elements, individuals and interactions of the
simulation are developed in advance. In ABMS, on the other hand, agents are created
or destroyed and interactions are defined through the course of the simulation run.
The second aspect (behaviour) focuses on the central generators of behaviours in the
model. For SD the behaviour generators are feedback and accumulations, while for
ABMS they are micro-macro-micro feedback and interaction of the systems elements.
Both methodologies incorporate feedback. ABMS, however, has feedback in more than
one level of modelling. The third aspect lies in their capacity to capture emergence,
which differs between the two methodologies. The author states that ABMS is capable
of capturing emergence, while the one-level structure of SD is insufficient in that respect.

This statement by the authors about emergence differs from those previously presented
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by [[A].

Wayne et al.[B9] applies SD and ABMS to simulate non-equilibrium cellular ligand-
receptor dynamics over a broad range of concentrations. They concluded that both
approaches are powerful tools and are also complementary. In their case study, they
did not indicate a preferred paradigm, although they state that, intuitively, SD is an
obvious choice when studying systems at a high level of aggregation and abstraction.
SD, however, is not suitable for modelling receptors and molecules and their individual

interactions.

2.5.2 Converting between Approaches

Borshchev and Filipov [B] create a practical reference to convert from SD to ABMS
and present a discussion concerned with the merits of each approach. The authors use
two classic SD models (bass diffusion and predator prey) and show how to convert the
stock and flow diagram into state charts. In addition, they present guidance on how to
convert constant and proportional rates, multiple stocks and compositionality from the
stock and flow diagram to the correspondent delays in the state-charts of asyncronous
agents (Figures E8 and EZ4). In Figure B8, the authors present two cases involving
the conversion of simple stock and flow diagrams to the correspondent state charts,

considering constant (case A) and proportional (case B) rates for the flows.

In case A there is a stock and flow diagram is constituted by a stock A and a constant
outflow R. According to the authors guidelines, the stock A should be converted into the
state A in the corresponding state chart. Depending on the characteristics of the problem
addressed, the agent can be either deterministic or probabilistic. In the deterministic
agent, the transition delay is equivalent to the total number of agents in the state A
divided by the constant R, in order to achieve similar decrease as shown in the middle
graph. In the probabilistic agent the delay is given by the uniform probability density

distribution (PDF) bounded by the values 0 and %.

For case B, as the rate R is proportional to the value of the stock A, the corresponding

29



2. Literature Review

delay of the state chart transition is given by an exponential probability density function
of the variable C, as shown in the middle graph. In cases where the rates change at
a discrete point in time, the delays need to be recalculated for the new rate value, as

shown in the bottom of Figure E=3.

Figure B9 depicts another two cases and shows the conversion from SD to ABMS. In
case C on top there is an inflow R to the stock B equals to C' * B. In the corresponding
state chart, a state B was created with a transition coming from and to B to represent
the increase in the agents number. Similarly to case B of Figure B3, the delay is an
exponential probability function of the value C. In addition, after the delay occurs, the
action associated with the transition is the creation of a new agent. On the second part
of case C, the A stock content flows to the B stock in a rate R = C'* B. In the conversion
to the state chart, therefore, there will be two states A and B with a transition from
A to B with an exponential delay based on C. Once the transition occurs, the action

associated is that one agent in the current state A should transit to the state B.

Case D addresses external and internal stocks influencing the flow values. The stock and
flow diagram of external influence considers a stock G which value affects the outflow R.
In the corresponding ABMS there is the need of two different state charts, one represent-
ing G and another equivalent the A flow. Similarly to case C (forced conversion), there
is a loop transition (with delay equal to exponential(C)) in the state G that determines
the change of state of the agents in A. Regarding the internal influence, the stock A
will influence itself and, according to the Borshchev and Filipov [B] guidelines, agents

at any state become B.

Finally, at the bottom of Figure 9 the authors show how to implement compositionality,
where each constant or function will have a corresponding transition in the stock and

flow diagram.

Macal [B2] shows how to translate a SD into an equivalent time-stepped, stochastic
ABMS. Probabilistic elements in the SD model were identified and translated into prob-

abilities that were used explicitly in the ABMS model. The author uses as an example
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the SIR model proposed by Kermack and McKendrick [E0]. This model was built to
understand and predict the spread of epidemics. In the model, the population is divided
in three groups of individuals: susceptible (S), infected (I) and recovered (R). To convert
the model from SD to ABMS, the author considers two agent-based formulations. Model
1 is defined as a “naive ABMS model, because it provides no additional information or
implementation advantages over the SD model”. There is a set of agents containing a
state (S, I or R), which is the only information dynamically updated. The author claims
that Model 1 produces exactly the same results for the numbers of S, I and R over time
as does the SD model for a fixed-time step, At of length one. Model 2, on the other
hand, is a fully individual-based agent model and provides additional information over
the SD model. For example, as in some of the ABMS simulation runs of Model 2, an
epidemic does not occur. In a significant number of cases, the number of contacts and
the number of infected individuals (I) is not large enough to spread the infection. These
cases occur because of the agent’s probabilistic rules. Hence, Model 2 presents similar
results from SD, but these are not exactly the same because of the runs where there
was not an epidemic. The author therefore concludes that the ABMS model is able to
provide additional information over that provided by the SD model, given its stochastic

nature.
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2.6 The Immune System

Life is based on a fragile balance of millions of simultaneous biochemical reactions and
events, such as the interactions of a living being with his biome. A common accident,
like a small splinter that penetrates the skin of an individual, creates instability in
the body’s homeostasis. In this case, there are two possibilities: either the aggression is
recognized together with the best way to fight against it, or the individual succumbs. The
immune system is the organism’s apparatus of recognition, action and control towards

biochemical harms [B7].

If a piece of live tissue that has been extracted from a certain organism is inserted in
another individual from another species, in a few days this tissue will be destroyed and
eliminated by the receptor’s immune system [B4]. This process, known as the immune
response, is characterized by the organism’s ability to identify and eliminate foreign

material, without implying physiological or pathological consequences of this reaction.

The immune system has the means to adapt in order to protect itself from pathogens
that penetrate the organism during the life of an individual. When pathogens enter the
organism, cells and molecules are produced to fight them. There are also innate defense
mechanisms, which have evolved within a species and which provide a broad but not

discriminated front of defense [[3].

The union of the immune system’s cells, molecules and tissues constitutes the mam-
mal’s global defence mechanism against antigens. This mechanism has an architecture
with multiple layers and defence elements spread all over its domain [Ed]. An antigen
is any molecule that can specifically bind to an antibody [Bd]. To be considered anti-
genic, molecules must be rigid and chemically complex. Hence, macromolecules such
as proteins are examples of antigens. Among the antigen molecule surface, there are
many binding sites which are named antigenic regions. The substances that make up
part of the antigenic regions must be non-tolerated by the individual’s immune system.

Furthermore, a substance is antigenic when it is not recognised by the immune system
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as self.

The first immune layer of defence against antigens — that is, the physical barriers — is
composed of organs and systems which are supposed to have the first contact with the
source of harm, i.e. the antigen. The main function of the physical barriers is to prevent
the antigen from penetrating the interior of the organism. It constitutes the skin, which
works as a shelter against any invasion, the respiratory system, which apprehends any
particle through the hair, nasal mucous and activation of mechanisms such as cough and

sneeze, and the mucous membranes of the digestive system.

Furthermore, it is possible to identify the biochemical barriers such as saliva, gastric acid,
tears, pH and body temperature. These barriers help to eliminate the establishment of

antigens in the host by providing an unfavourable environment.

The next two layers are represented by parts of the innate and adaptive immune system
working together forming different types of immune responses, which can be humoral-
mediated or cellular-mediated. These types of responses together with the elements
involved on them are further discussed in the next sections. Section EZG1 addresses
the characteristics of the humoral immune responses. Section B2 introduces cellular
immune responses, presenting the main cells involved in the immune reactions. Fi-
nally, Section B3 introduces a new research area in immunology which addresses the
phenomena of immune system aging, also known as immunosenescence. One of the as-
pects of immunosenescence will be further studied in one of the simulation case studies,

presented in the next chapter.

2.6.1 Humoral Immune Response

Humoral immunity is mediated by molecules found in the humours, namely antibodies.
The antibodies are produced by a type of lymphocyte, known as B cell. Their production
is stimulated by the presence of an antigen. The antibodies react chemically against the
antigens and neutralize their harm in the organism. Antibodies are antigen specific,

which means that for a certain antigen there is a set of antibodies specially produced
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for its neutralization [B7].

The immune response process can be understood with an example of the production of
antidotes for snake poisoning. The antidote is obtained from antibodies on horses which
have been infected with small quantities of poison. As their immune system starts to
react against the toxic substance, the specific antibodies are extracted from the blood

and used as antidotes for another animal.

There are no changes in the horse’s blood serum for several days after the first exposure
to poison. After this lag period, there is a high concentration of antibodies, which
reaches a maximum and then decays quickly. This characterizes the primary immune
response. If a new poison dose is injected sometime after the first reaction, the secondary
response will occur faster (Figure E10). The difference between primary and secondary
responses indicates that the immune system has some kind of memory [Bd]. Memory
provides the immune system with the ability to protect itself faster when re-exposed
to antigens. In certain cases, the immune memory may have its dimension reduced by

time. However, it continues providing faster secondary immune responses.

A

Primary immune response

Antibodies in the blood serum

Antigen first dose Antigen second dose

Figure 2.10: Primary and secondary immune responses (obtained from [E7]).
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2.6.2 Cellular Immune Responses

When a foreign tissue is inserted in an individual, in approximately ten days the organism
will have completely removed this tissue. If another similar tissue happens to be inserted
in the individual, the removal process will take less than two days. While this is similar
to the process that occur in humoral responses (Section EZ61), in this case, there are also
secondary and primary immune responses. For this type of immune response, however,

the main actors are immune cells.

Another context in which cellular responses can be found is in the defence against
intracellular parasites, such as viruses. Viruses are microorganisms composed of nucleic
acid surrounded by a protein case. Because they do not have a reproductive system,
they invade cells and make them work as a virus replicating system. The viral infection,
therefore, affects the cell’s metabolism, even causing cellular death. While inside the
cell, a virus is protected from antibodies by the cellular plasmatic membrane. In order to
fight these types of infections, there are immunocompetent cells specialized in searching

and destroying any kind of anomalous cell in the organism.

These immunocompetent cells are the white blood cells, or leukocytes. They defend
the body against both infectious disease and foreign materials. Leukocytes are found
throughout the body, including the blood and lymphatic system. There are several types

of white blood cells, which include different types of lymphocytes and phagocytes [B3].

A lymphocyte is a type of white blood cell. There are two broad categories of lym-
phocytes: the large granular lymphocytes and the small lymphocytes. In general, large
granular lymphocytes are natural killer cells (NK cells), while T cells and B cells are

small lymphocytes.

Natural Killer Cells

NK cells are a part of the innate immune system and play a major role in defending

the host from both tumours and virally infected cells. NK cells distinguish infected
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cells and tumours from normal cells by recognizing alterations in a cellular surface
molecule, named MHC (major histocompatibility complex) class I. NK cells are activated
in response to molecules, known as cytokines. Activated NK cells release cytotoxic (cell-

killing) granules which destroy the anomalous cells [E7].

B Cells

Each B cell has small sites on its surface, namely paratopes, which specifically detect
molecules. Paratopes are responsible for antigen recognition via antigenic determinant
identification, i.e. epitopes, which are sites against which immune response tends to
react. Furthermore, these are areas where the bindings of antibodies take place. A
B cell becomes activated if it binds and recognizes an antigen. During the activation
process, a B cell increases in size and reproduces, and the offspring differentiate into
antibody secreting cells (plasmocytes) and memory cells. While replicating, B cells
suffer a process called affinity maturation. This process allows for mutations in the
B cell’s paratopes, known as somatic hypermutations, in order to improve the affinity

between antibodies and antigens [&1].

Antibodies are protein molecules that binds and neutralizes an antigen (Figure EZT).
This binding occurs between the paratope of the antibody and the antigen’s correspond-

ing epitope [B4].

T Cells

T cells represent most of the blood lymphocytes and are part of the adaptive immunity:.
As well as B cells, T cells have their origin in the bone marrow. Their maturation,
however, occurs in the thymus. In the maturation stage, lymphocytes have their function
and antigenic specificity defined. The most important types of T cells are T regulatory

cells and cytotoxic T cells [B3].

There are two subtypes of T regulatory cells: T helper cells and regulatory T cells

(TRegs)- T helper cells are responsible for the secretion of lymphokines, which are
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Antigen binding site

Figure 2.11: The antibody (obtained from [&1]).

soluble factors similar to hormones that affect other cells. They start the activation and
transformation of B cells in plasmocytes and they are also partially responsible for the

activation of cytotoxic T cells and inflammatory white blood cells [I3].

TReg cells inhibit immune responses and even directly suppress a certain B cell function.
They are also capable of suppressing the activation of a T helper cell, being in certain

cases, antigen-specific.

T cytotoxic cells play a main role in the cellular immune responses. They act by de-

stroying the anomalous cells and those cells which are pathogen-infected.

The division of T cells into two subclasses was made possible after the discovery of
a relation between the role played by a certain T cell and some membrane-expressed
proteins. Most T helper cells express a CD4 (cluster differentiation 4) surface protein.
The expressed protein in cytotoxic T cells is CD8. Following these patterns, it was
possible to identify many types of B and T cells. The cluster differentiation (CD) is a
protocol used for the identification and investigation of cell surface molecules present
on leukocytes. CD molecules can act in numerous ways, which often are receptors or

ligands (the molecule that activates a receptor) that are important to the cell [I3].

A third group of cells was identified as not having membrane markers with specific

characteristics that would identify them as B or T cells. In this group we can find the
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natural killer cells.

Phagocytes

Phagocytes are cells found in the blood, bone marrow and other tissues of vertebrates.
Phagocytes ingest antigenic and infectious agents in the body. They originate in the
bone marrow and are the basis of defence in the innate immune system; these cells ingest
pathogens in a process called phagocytosis and often take part in antigen presentation.
The types of phagocytes include macrophages, neutrophils and dendritic cells [B4] (Fig-

ure 27172).

Macrophage Neutrophil Dendritic cell

Figure 2.12: Phagocytes (obtained from [B3]).

Macrophages are widely distributed in the blood and tissues. In their immature form,
they are known as monocytes. When a monocyte enters damaged tissue through the
endothelium of a blood vessel, it undergoes a series of changes to become a macrophage.
Monocytes are attracted to a damaged site by chemical substances through chemotaxis,
triggered by a range of stimuli including damaged cells, pathogens and cytokines released

by macrophages already at the site [B].

Macrophages survive in the body up to a maximum of several months. Among the
important roles of the macrophage are the removal of necrotic cells and the presentation
of antigens. After digesting a pathogen, a macrophage will present the antigen of the

pathogen to the corresponding helper T cell.

Granulocytes increase during immune responses and migrate from blood to infection or

inflammation sites. Neutrophil granulocytes, generally referred to as neutrophils, are
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the most abundant type of white blood cells in humans and form an essential part of
the immune system. Being highly motile, neutrophils quickly congregate at a focus of

infection, attracted by cytokines.

The function of dendritic cells is to catch and present the antigen to the lymphocytes,
so that the pathogen can be eliminated. They have surface receptors capable of recog-
nizing the common structures of a wide range of pathogens. As these receptors find a
pathogenic molecule, the dendritic cell is stimulated to englobe the pathogen and de-
grade it into peptides. Thereafter, the dendritic cell becomes activated and migrates to
the nearest lymph node to present these peptides to the specific lymphocyte, which will

determine how the immune system must respond to the antigen [B4)].

2.6.3 Immunosenescence

Ageing is a complex process that negatively impacts on the development of the immune
system and its ability to function [[]. Progressive changes of the components of immune
systems have a major impact on the capacity of an individual to produce effective

immune responses|G)].

The decrease of immunocompetence in the elderly can be envisaged as the result of the
continuous challenge of the unavoidable exposure to a variety of potential antigens, e.g.
viruses [B2], bacteria, food and self-antigens [B3]. Antigens are the cause of persistent
life-long antigenic stress, responsible for the filling of the immunological space by an

accumulation of effector cells and immunological memory [B3].

With age, there is also a significant reduction in the number of naive T cells caused
by the involution of the thymus [20]. Naive T cells are responsible for responding
to new faced antigens. The reduction of these cells eventually leaves the body more
susceptible to infectious and non-infectious diseases [Bd]. There is also evidence that
clones of immune cells deteriorate [, 4], while innate immunity is conserved or even

up-regulated [B3, &4)].

In addition, the ageing of the immune system is responsible for the pathogenesis of
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chronic age-related diseases such as arthritis, atherosclerosis, osteoporosis and dia-
betes [[, E4]. With age, there is the up-regulation of the inflammatory responses,
due to the chronic antigenic stress that impinges throughout life upon immunity [62],
and has potential implications for the onset of inflammatory diseases. The chronic ex-
posure to stress factors also leads to a progressively reduced capacity to recover from

stress-induced modifications and decrease in vaccine responsiveness.

2.7 The Need for Simulation of the Immune System

An important issue raised by Ulgen et al. [B3] concerned with simulation for industry is
to determine whether simulation is actually needed or whether mathematical models are
sufficient. We believe that this issue should also be considered for immune system mod-
elling. In addition, for immunology (and biology in general), there is another competing
approach, which is based on methodological reductionism [[]. This approach investi-
gates biological phenomena by looking at its molecular and cellular levels, disregarding

emergence [@].

In many studies, models such as spreadsheet analysis, mathematical programming and
optimization approaches (such as linear programming and branch and bound technique)
or statistical modelling techniques (such as regression modelling) are more appropriate
to use than simulation [BR]. For example, Murray et. ol [E9| introduce a regression
model of immune cells output from thymus that fits the original data better than the
agent-based the simulation approach [EB]. Furthermore, Ulgen et al. [B8] argue that
the appropriateness of a mathematical model instead of simulation may become evident
along the development of the simulation model. As we mentioned before, some impor-
tant advances in immunology were facilitated by the joint work of immunologists and
mathematicians. Many of the major concepts existing in theoretical immunology are

the result of these models.

Most existing models in immunology are based on sets of differential equations [ET,
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B, @1]. This approach for immunology, however, limits the modelling effort to simple
dynamics involving few immune elements such as cells or molecules and it only allows
analysis at an aggregate level. Moreover, it is not trivial to model problems involving
individual localisation, memory and emerging properties mathematically [B, BI]. Hence,

simulation serves as a complement of mathematics to solve high complexity problems.

The goal of simulation is to mimic the dynamic behaviour of a real system. The ma-
jor benefits of simulation to immunology, compared to mathematical models, are the
capacity to model dynamic complex systems and emergence. In addition, with simula-
tion it is possible to observe how the system evolves over time, which provides insights
about the dynamics of the system, instead of just predicting the system output given
a certain set of inputs [[[d]. Moreover, the simulation modelling methods are closer to
the natural description of the system, without the need of an in depth understanding of

mathematics [@].

A work presented by Sauro et al. [[] debates the usefulness of simulation in contrast to
reductionism in biology. According to streng [E2] in reductionism “the dynamics of any
complex system can be understood from studying the properties of its parts. Complex
systems are therefore broken down into their components and each piece is studied indi-
vidually by way of disciplinary and sub-disciplinary approaches. The challenge is to find
the entry points from where to address the particulars of the system. Once one knows
the parts, the dynamics of the whole can be derived”. On the other hand, the opposite
of reductionism, i.e. holism (in its methodological version) is “the relationship between
the parts and the whole is belicved to be more symmetric than in reductionism. The
assumption underpinning this approach is that the properties of the parts contribute to
our understanding of the whole, but the properties can only be fully understood through
the dynamics of the whole. The research focus in holism is on the relationships between
the components, i.e. on their interconnectedness, interdependencies and interactions.
In holism, the whole is more than or different from the sum of its parts”. Simulation is,

therefore, based on holism.

43



2. Literature Review

For biology, Sauro et al. [ state that “reductionism has proven to be a highly successful
strategy and has enabled us to uncover the molecular details of biological systems in
unprecedented detail. In particular, light microscopy of single cell dynamics is a reality
and enables a researcher to track the concentration of a small number of proteins in
real-time. Using light microscopy and cell counting techniques, large amounts of high

resolution data on a small number of observations can be collected” [[[T].

The success of reductionist methods raised some scepticism as to the need for alter-
native approaches, such as systems biology. The challenge for simulation is, thereby,
to generate novel insights that can not be uncovered just by looking at a phenomena
using reductionism. Examples of successful simulation approaches that helped advance
immunological research were introduced in [Z3, BA]. The models reviewed simulate inter-
actions of immune cells and chemical substances, humoral responses, and drug testing.
With the simulations it was possible to observe emergent behaviour in the systems,

which is not contemplated by reductionism.

The major benefits of simulation to immunology, compared with real-world experimenta-
tion, include time and cost effectiveness due to the labourious and resource-intensiveness
of the biological environment. Most experiments are expensive and have to be in agree-
ment with ethical specifications. Moreover, the accuracy of the results of laboratorial
experiments relies on environmental conditions, the quality of the material collected
and the appropriate conduct of experimental tests. For instance, blood samples can be
compromised by inappropriate storage or cells can die of excess exposure to a certain
chemical agent. Furthermore, in a simulation environment, it is possible to systemati-

cally generate different scenarios and conduct experiments.

Case studies from immunology research will be used along this thesis in order to evaluate
our framework of conversion between approaches. In addition, we want to show the

potential contribution of SD and ABMS to advance immunological studies.
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2.8 Summary

Simulation techniques are powerful decision-support tools, which allow us to mimic the
real-world in order to investigate how system elements progress over time. Furthermore,
these techniques offer the means to understand and control a system model, test different
scenarios and provide further insights about processes. The main system modelling and
simulation approaches used in this thesis are system dynamics (SD) and agent-based

modelling and simulation (ABMS).

SD is a continuous top-down modelling and simulation approach, based on systems
theory. It uses stocks, flows and feedback loops as concepts to study the behaviour of
complex systems. SD models are graphically represented by causal loop or stock and
flow diagrams. In addition, SD simulation consists of a set of difference equations that
are solved for a certain time interval. Hence, these models are capable of encompassing

most of the mathematical simulations models.

ABMS is a bottom-up technique that employs autonomous agents that interact with
each other. The agents’ behaviour is described by rules that determine how they learn,
interact with each other and adapt. The overall system behaviour arises from the agents’

individual dynamics and their interactions.

An important point when choosing a modelling method is the required level of abstrac-
tion. It specifies the level of detail to be included in the modelling system [B]. SD is
widely applicable at a high level of abstraction. Agent-based modelling, on the other
hand, is a paradigm used at any level of abstraction. A range of simulation problems,

therefore, can be solved either by both approaches.

ABMS explicitly represents individuals in space and time. Moreover, this approach
indicates how the system behaviour emerges from the interactions of individual elements.
ABMS, however, requires more computational power than SD simulations and may
produce large sets of data, which could be difficult to analyse. In addition, ABMS

requires all system’s properties to be modelled discretely. SD, however, deals with
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continuum approximations.

Sauro et al. [ states that although ABMS is very useful for simulations in areas
such as systems biology, there are circumstances where they cannot be applied. For
instance, when the reaction network process is not well understood, or experiments are
known not to be able to reproduce the real-world reactions (given the environmental
differences such as temperature, for example). Furthermore, the authors argue that
“top-down modelling strategies are closer to the spirit of systems biology exactly because
they make use of systems-level data”, and thereby they conclude that there is no best

approach as it is preferable to view them as complementary.

With the advent of multi-scale and multi-paradigm simulation, an indepth understand-
ing of the outcome differences of distinct paradigms and how to translate from one
approach to another is imperative. However, there is little research investigating the

translation between SD and ABMS.

Most existing models in immunology are based on sets of ordinary differential equa-
tions [0, BA, E]. This approach for immunology, however, limits the modelling effort to
simple dynamics involving few immune elements such as cells or molecules and it only
allows analysis at an aggregate level. Moreover, it is not trivial to model problems in-
volving individual localisation, memory and emerging properties mathematically [B, B1.
Hence, systems simulation emerged as a complement of mathematics, to deal with larger

amounts of available data and high problems complexity.

These methods, however, are still not widely adopted in immunology research. In addi-
tion, to our knowledge, the processes for the development of simulation models for the
immune system have not yet been formally structured. Hence, there is the need to show
the importance of simulation to help immunological research and to draw the attention

of simulation developers to this research field.

SD potential contribution to immunology needs to be investigated, as problem con-
ceptualization using causal-loop/stock and flow diagrams seems to be more intuitive

than the mathematical formulation. Furthermore, SD diagrams facilitate the visualiza-
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tion/understanding of variables and causal effects in a problem. Immunologists might
therefore find it easier to use SD as a tool for their in silico experimentation. For spe-
cialists familiar with numerical simulation, the transition from mathematical methods

to SD is quite natural.

In the remainder of this thesis, we define a framework to convert between ODEs equa-
tions, SD and ABMS. As it is acknowledged that most simulation efforts in immunology
are mathematical, we seek to develop an algorithm for the translation of mathematical
models to a SD environment, as immune simulation developers would very much benefit
from this tool. We also believe the conversion of SD to ABMS would be a first step
towards adding emergence and individual tracking in a system model. Moreover, with
the advent of research on combining both techniques, some models could benefit from a

multi-paradigm (SD combined with ABMS) simulation.

The guidelines provided in Figure B9 are a starting point for the conversion from SD
to ABMS. However, there is the need of additional investigation in order to assure their
completeness. Furthermore, the application of these guidelines to theoretical case studies
and real-world problems is necessary in order to explore the conversion efficiency. It is
intended, therefore, to observe the outcomes of each converted approach and verify if
there are any differences, and to understand why they occur. If outcomes differ, we aim
to systematically test how and when these differences occur. In addition, we intend to
provide insights of what should be expected when using one approach or another. As
our interest lies in immune system problems, we use classical case studies of immunology

found in literature.

In the next chapters, we will define our methodology (Chapter 3) and case studies
(Chapters 4 and 5) considering aspects such as the behaviour of the entities of the
model (whether they are static or interact with other entities and if they have spatial
representation or not), the type of hypothesis to be tested, the empirical embeddedness

of real data and the modelling effort.
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Methodology

3.1 Introduction

This chapter presents the research methodology used for the development of our simu-

lation models and for the experimentation performed in the following chapters.

In Section B2 we briefly reiterate the research problem, which is addressed by the

research aims and objectives devised and presented in Section B33.

In Section B3 we develop our strategy to achieve our thesis objectives. Furthermore, we
introduce the steps used in the process of building immune simulations, some of which

will be employed in our experiments.

As there are no explicit guidelines in literature, we have developed our own set for
the conversion between approaches. These guidelines are presented in Section BA. In
Section BZ2 we explain our steps to convert from ODE models to SD and, subsequently,
we describe how to convert from SD to ABMS (Section B532). In Section B53 we show
how to convert from ODEs to ABMS. Section B24 introduces the conversion guidelines

from ABMS to SD.

Finally, in Section B0 we present the summary of this chapter.
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3.2 Research Problem

Although there are examples of successful applications of modelling and simulation ap-
proaches to immunology, these are not commonly used by immunologists. Instead,
ODE models are widely employed to support advances in major concepts in immunol-
ogy. However, these models have limitations for solving complex problems which involve
individual localisation, memory and emerging properties. Systems simulation is there-
fore a set of methodologies that has emerged to complement mathematical models and
overcome some of their limitations (Section EZ4). Possible modelling and simulation ap-
proaches for immunology include system dynamics (SD)(Section EZ31) and agent-based
modelling and simulation (ABMS) (Section 2232).

Few studies apply SD to immune problems (examples can be found in [E2] and [BO)).
ODE models are more commonly used instead. SD, however, encompasses the mathe-
matical formulations with the advantage of retaining information of how the elements
modelled in the system change over time. Furthermore, there is no need for an indepth
understanding of mathematics to formulate a model. The ODEs are implicit in the sys-
tem’s structure and the relationships between the elements modelled can be established

with experimental data (Section EZ3I).

ABMS is more suitable for simulations in which there is the need to represent individual

cells, their interactions and emergent behaviour (Sections 2332 and P4).

The selection of a modelling and simulation technique for a problem is driven by the
resources available, such as experimental data, an understanding of the mechanisms
involved, the hypothesis to be tested and the level of abstraction needed to test the
hypothesis. Once the system description and the simulation domain model is defined, a
simulation method needs to be chosen. There is little research comparing and assessing
the merits of SD and ABMS for immunology. We therefore believe that it would be

useful to investigate both approaches applied to immune system problems.

As immunology is a field that constantly gathers new information, simulations have to be
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updated frequently to suit new findings. For some cases, in order to meet new demands,
the replacement of the current simulation approach for new developments needs to be
considered. There are two options, namely, to start the new simulation from scratch or
to adapt previous implementations for the new approach. However, with regard to the
second option, there is little knowledge in literature on how to convert implementations

between approaches and the implications of these conversions.

Another possible advantage of the conversions guidelines would be in circumstances
where a model developer is well acquainted with one simulation approach and would
like to use his current models to learn another technique. In cases where there is, for
example, a established ODE model, conversion techniques to translate the current model
to ABMS would be a good starting point to learn this simulation approach and possibly

expand the model.

3.3 Research Aim, Objectives and Deliverables
Taking this research gap into account, we outline our research aims as:

e With no explicit guidelines available from the literature, we aim to develop, test
and validate our own set of guidelines for converting between ODE, SD and ABMS
approaches. We believe these practices will assist with the improvement and ex-

pansion of existing immune models to suit new demands.

e We seek to asses the impacts of these conversions and determine those circum-
stances where one approach could be replaced by another. We also want to de-
termine, after performing the translation, when one approach would be preferable

than the other.
In order to achieve our aims, the main objectives of our work are:

1. To define and test guidelines to convert between (1) ODE models to SD models,
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(2) ODE models to ABMS models (3) SD models to ABMS models, (4) ABMS

models to SD models and to assess the impact of these conversions.

2. To compare ODE, SD and ABMS outcomes, considering aspects such as the be-
haviour of the entities of the model (whether or not they are static or interact with
other entities, and whether they have spatial representation or not), the type of

hypothesis to be tested and the modelling effort.

3. To define guidance to choose between SD and ABMS depending on the character-

istics of the problem to be addressed.

3.4 Development of a Research Strategy

In order to achieve the aims and objectives outlined above, it is necessary to define a
strategic research programme to direct the activities of this research in several stages.
This strategy is developed in this section following research design principles. In the next
section we introduce our research strategy where the activities and methods required to

realise our objectives are identified.

3.4.1 Principles of Research Design

The objectives defined in Section B33 suggest the type of research and hence the method-

ology to be used, based on the research taxonomy defined by Robinson [69] and Yin [E3].

The first objective (compare SD and ABMS outcomes) suggests a deductive approach,
since we are testing the hypothesis that it is possible to obtain similar outcomes for both
approaches. Furthermore, it is descriptive as it determines what is actually happening,

and quantitative as it needs to be able to measure absolute values.

The second objective (guidance to help immunologists to choose between SD and ABMS)
also suggests a deductive approach, as we wish to test the hypothesis that it is possible

to obtain similar simulation outcomes for the different simulation approaches studied.
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Furthermore, the research approach will be descriptive as it provides information about
the most suitable approach based on the results investigated. In addition, it is quan-
titative as it needs to be able to measure absolute values, such as number of cells at a

certain point in time.

The third objective (define and test guidelines to convert between simulation paradigms)
suggests that the approach to be used in this study should be (1) deductive, testing the
hypothesis that it is possible to obtain equivalent models by following the guidelines
defined; (2) exploratory, as we wish to find out if we can apply the guidelines to convert
between approaches; and (3) quantitative, as we want to compare the results of the

equivalent approaches by applying statistical tests.

To achieve the above objectives, we adopted a case study methodology, which is suitable
and robust, given the issues faced during this research, namely time and resources
constraints and problems of arranging access to experimental data and co-operation.

This methodology is presented in more detail in the next section (Section BZ).

3.4.2 Research Strategy

In this section we outline the activities and methods necessary to realise our objectives.
We examine several case studies of established mathematical models that describe some
immune mechanisms. These case studies were chosen by considering aspects such as
the behaviour of the entities of the model, the type of hypothesis to be tested, the
empirical embeddedness of real data and the modelling effort. With regard to the
entities’ behaviour, we first contrast SD and ABMS simulations when these entities
are static (without any movement). Subsequently, we investigate interacting entities
with and without spatial representation. Furthermore, the results are analysed and an
investigation is carried out to identify which output seems more realistic in terms of real-
world experimentation (for those cases where we had access to experimental data). For
each aspect analysed, we use a multiple-case approach comprising of three case studies.

This methodology was chosen as we believe it can provide major insights during our
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experimentation stage. In addition, it allows for systematically replicating design logic

and testing.

As there is no established guidance to develop simulations for the immune system, we
studied those developed by [[] for simulation in operational research problems and
adapted them for simulations of the immune system. The adaptation was performed by
studying several simulations developed for the immune system [23, P4, B3, B3, O3]. We
observed the similarities and differences with operational research and outlined general
steps for building immune simulations. Furthermore, we discuss the pitfalls that might

be encountered during the process, as shown below.

1. Define the Objectives. Overall, the objectives of simulations for the immune
system are (1) to investigate a theory and/or (2) to create an environment contain-
ing “what-if” scenarios without the ethics restrictions. The scenarios can either be
based on experimental data or defined as an intuition of what might happen in real-
ity. Furthermore, there are also cases where actual models do not match real-world
experimentation and they need to be further investigated (in a simulation model).
In addition, new hypothesis and research questions may be defined together with
immunologists as simulation goals. The objectives come from real-world observa-
tion. We assume, however, that real-world observation and experimentation has

been previously performed by immunologists.

2. Describe the system. In this step, it is necessary to use documents (immunology
books and articles, transcripts of interviews with experts, etc.) describing how the
immune elements to be simulated work and interact. The description of the system
is based on knowledge acquired by theoretical work, real-world observation and
laboratory experimentation. Due to the complexity of the elements and processes
in the immune system, however, this knowledge is scarce. The immune system is
far from being fully fathomable, and the descriptions found in literature are only

partial representations and assumptions of what occurs in reality.
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3. Investigate existing theories and established models. The definition of
mathematical models which describe a phenomenon observed is prevalent among
immunologists. These models are generally verified using experimental data. In
order to build a new simulation model, it is common to look at the existing models
and investigate their hypothesis, objectives, validation process and limitations. By
reviewing the existing models it is possible to build a new model as an improvement
of what has already been established in order to investigate a certain immune

process.

4. Use experimental data. Currently, most simulation models are built based on
real-world experimentation. There are some models, however, where there is no
data available (for example, when Jerne’s network theory was conceptualized [BS]).
These models are based purely on theoretical assumptions with the purpose of pro-
viding more insights about what happens in the real world. Furthermore, in the
field of immunology the non-existence of data can be due to the lack of under-
standing of a process, or a difficulty or even impossibility in collecting information

with current technology.

In other cases, a hypothesis is first formulated requiring experimental data to
confirm it. There is therefore the need to collect this data. For instance, Foan
et al. [B0) implemented a SD simulation of T cell subsets throughout a person’s
lifetime based on an established mathematical model developed by Balcheva (3.
The authors conclude that further validation of this model is necessary and so a
novel data set should be collected as there are arguably more specific markers that

could help to gain further insights from the model.

5. Build conceptual model. The conceptual model of a problem is an abstraction
intended to contain the principal aspects observed in the real world, considering
the necessary level of details [E3]. In this step we formally define the model scope,
the objectives previously outlined, the inputs and outputs and the simplifications.

The process of creating a conceptual model evolves with decisions regarding the
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model scope and level of detail [[]. The acceptance of the conceptual model
should be agreed with immunologists. According to Ulgen et al. [E8], “rigorous
validation procedure for the conceptual model is as important as the verification and
validation of the model because it saves time and redirects the simulation developers

in the right direction before time is wasted in the study”.

Due to the limitations of immune simulation, it is important to abstract the rel-
evant real-world features and build a simple model. According to Kotiadis and
Robinson [E3], the importance of model abstraction “relies on the fact that there
is no need to model all that is known about the real problem. Simpler models are
developed and run faster, they are flexible, require less data and results are easier
to be interpreted’. The nature of immune problems thus implies that the model
should be developed in order to address a few objectives, within a limited scope.
The description of the system (and definition of the conceptual model) should
therefore focus on the parts of the immune system (scope, elements, information

available, assumptions, hypotheses) relevant to achieve the simulation goals.

Daigle discusses the challenges of modelling immunology [[H]. As it is a field in
which information is still being gathered, simulations have to be updated fre-
quently to suit new findings. Moreover, current computational resources and
modelling techniques are in development. It is still thereby impossible to repre-
sent computationally an entire pool of cells of a typical immune response (around
10'? cells). In addition, immunological systems are mostly hierarchical, involving

several layers and complex interactions between the elements of these layers.

. Identify elements, parameters, aggregates, etc. already established in
theory and real-world data. The study of the abstract model provides a means
to understand the problem and the best way to represent the elements of the
system, together with the more suitable simulation approach. For example, if the
in the conceptual model it is established the interactions of the simulation will

occur at a cellular population level rather than an individual cell level, this might
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indicate that a top-down simulation approach would be more suitable to build the

model.

. Decide on the most appropriate modelling and simulation approach.
This decision is made based on the characteristics of the problems, the research
questions to be addressed, the scope, the level of aggregation and the experimental
data available. The most common approaches used in immunology are ABMS,

cellular automata and SD.

Cellular automata is used for problems involving autonomous individual interac-
tions within a neighbourhood and emergent behaviour. For example, individual
interactions between cells and molecules, which do not involve spatial localization

Or memory.

ABMS is suitable for problems involving autonomous individual behaviour, ele-
ments spacial localization, memory and emergence. For example, individual inter-
actions between cells and molecules which demand either spatial localization or

memory.

SD defines a system at a high level of aggregation. Hence this approach should
be used when the research question involves patterns of behaviours and feed-back
interactions between the aggregates. This approach is very useful to simulate
dynamics of populations and interactions between different populations overtime.
For example, interactions between tumours and effector cells, viruses and T cells,

etc.

. Represent elements, parameters, etc. using the appropriate modelling
and simulation approach. Once the modelling approach is chosen, the elements
defined in the conceptual model need to be translated into their correspondents
used by each approach, for instance, stocks, flows, parameters and information for
SD or agents and rules for ABMS. This step is part of the construction of the

simulation model, defined in the next step.
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10.

11.

12.

13.

. Build the simulation model. This stage includes the development of the com-

putational implementation of the model in a simulation tool. The implementation
is a software representation of the requisites defined in the conceptual model. The

computational model is the final product to be used by the immunologists.

Verify the model. The model verification is the process of ensuring that the
model design has been transformed into a computer model with sufficient accu-

racy [[0].

Validate the model with existing theories and, if available, real-world
data. Validation ensures that the model is sufficiently accurate for the purpose
at hand. For immunology it is acknowledged that models are not intended to be
completely accurate for a number of reasons: (1) there is no real world data to
compare against, (2) there is little data, (3) real-world data is inaccurate, (4) even
if the data is accurate, the real world data is only a sample, which in itself creates
inaccuracy. Verification and Validation are continuous and iterative processes

performed throughout the life cycle of a simulation study [[].

Experimental design. The experimental design improves the efficiency of the
experimentation process. In this stage, the experimental factors that are most
likely to lead to significant improvements are identified. This process is developed
using data analysis, expert knowledge, preliminary experimentation and sensitivity

analysis.

Experimentation. Experimentation is conducted following the experimental de-
sign guidelines. It can make use of multiple simulation replications; single long run
(equivalent to taking one large sample in statistics); interactive experimentation
(observing the simulation and making changes to the model to see the effects);
batch experimentation (setting experimental factors and leaving the models to
run for a pre-defined run length); comparing alternatives (where there is a limited
number of scenarios to be compared) and search experimentation (when there is

no predefined number of scenarios).
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14. Result Analysis. Plots and statistics are collected during the simulation. The
result analysis is the process that interprets results and the best way to present

them.

15. Report Findings. After results are interpreted, there is the need to report the
findings from the simulations.For immunology it can be new insights, verification

of a theory, etc.

16. Validate and add more requisites with immunologists. Building an immune
simulation is an iterative process. Generally the model is built together with
immunologists, and, in every step of the framework, the model elements should be

verified with them.

The process of simulation is iterative, as shown in Figure Bdl. During the model de-
velopment, additional data might become available, which changes the system descrip-
tion/objectives and impacts on every step of the process. Moreover, as validation occurs
throughout the whole process, if any of the stages is not validated (data available, real
world understanding and description, conceptual model, computer model, experimental
design, etc), there is the need to go back and rethink the invalid state, which impacts

on the subsequent steps.

For our case studies, however, we will not be concerned with many of the steps outlined,
as we are developing simulations from existing mathematical models. Instead, our focus
will be on (1) the development of conceptual models for the SD and ABMS approaches;
(2) on the representation of elements, parameters, etc. for both SD and ABMS; (3) on
the building of the models; and (4) on the validation of the models and a comparison of

outcomes.

A detailed explanation of how we developed our conceptual models, conducted our our

experiments and validated our models will be introduced in the sections that follow.
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3.4.3 Developing our Conceptual Models

Figure 3.1: Process of simulation study: steps and their iterations.

Based on our case studies, SD and ABMS conceptual models are developed, representing
the scope and level of the systems under investigation. The concept for the SD models

is described in a stock and flow diagram, where we consider the causal-loop diagrams,
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constant values and parameters for each simulation.

In addition, an individual-centric approach is used to represent our agents and their
interactions. This approach is developed by using state charts and tables containing
each agent description. The state charts show the possible different states of an entity
and define the events that cause a transition from one state to another. As ABMS is an
object-oriented approach and agents are object instantiations, each table includes the

attributes, reactive and proactive behaviours of the objects.

3.4.4 Experimentation and Validation

As our case studies derive from mathematical models, we validated our SD models by
comparing their outputs to those outputs produced by the mathematical models. We
then validated our ABMS models by comparing their outputs to those outputs produced
by the SD models (i.e. our base model for the comparison). We ran the simulations on

an Intel CoreI™ Duo CPU 2GHz and 2GB RAM.

As ABMS is a stochastic simulation method, we conducted several replications. We ran

fifty replications for each case study and calculated the mean values for the outputs.

The samples obtained by SD and ABMS were statistically compared using the Wilcoxon
rank-sum test to formally establish whether they are statistically different from each
other. This test is applied, as it is robust when the populations are not normally
distributed, which is the case of the samples obtained by the SD and ABMS. Other
approaches for assessing whether the two samples are statistically different, such as the
t-test, could provide inaccurate results as they perform poorly when the samples are
non-normal. In addition to the statistical test, for some cases we also reported time and

computational resources demanded in the simulations for each approach.

Our work also made use of case studies in order to validate the conversion guidelines
introduced in the next section (Section BH). The experiments and case studies presented
in this thesis were implemented using AnyLogic’™ 6.5 University version (XJTechnolo-

gies 2010) [EH] and our conversion methodology was therefore tested using this tool.
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3.5 Conversion between Approaches

As defined in Section B33, one objective of this thesis is to create and test translation
guidance between approaches. Once an immune simulation is developed under a certain
paradigm (following the steps defined in Section BZ) we want to investigate if it is
possible to obtain an equivalent model in another paradigm. In this section we introduce
our own set of guidelines for this conversion, which will be further tested in the next

chapters.

We start by showing the conversion from ODEs to SD (Section B&l). Subsequently,
we suggest guidance to convert from SD to ABMS (Section B53), from ODEs to
ABMS(Section B33) and from ABMS to SD (Section B24). These guidelines were
defined based on experiments we performed in [PZG-P8]. For all the conversions, we also
exemplify the conversion techniques applied to classical simulation problems found in

the literature.

3.5.1 From Ordinary Differential Equations to System Dynamics

For our conversions to SD, we consider stock and flow diagrams instead of causal-loop
diagrams, due to the fact that stock and flow diagrams provide information about dif-
ferent types of variables and their functions. We propose the following steps to perform

this conversion, based on our case studies:

1. Identify the stocks. The stocks in the ODEs are the values that change/acumulate

with time and which there is interest to keep information throughout the simulation.

. - dX
For instance, any X in 5.

2. Identify stock’s inflows. The inflows will be any calculation in the ODEs that

increases the value of %.

3. Identify the stock’s outflows. The outflows will be any calculation in the ODEs

that decreases the value of %. For instance, if the ODE is % =a — b, a is an inflow

whereas b is an outflow.
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4. Determine the information. The information about the stocks is given by the
use of these stock values in the flows calculations. The mathematics defining inflows
and outflows are directly obtained from the ODEs, referred to in the previous step. For
example, let us consider the ODE % =aX —bY (X and Y are stocks, aX is the inflow,
bY is the outflow, a and b are constant values defined in the mathematical equations
for the flows). The equation demonstrates that there are causal relationships between
the stock X and itself and between flows X and Y. This means that the value of X and
Y with time will affect X. In the stock and flow diagram there should therefore be an
information arrow from flow X to the inflow aX and another information arrow from

flow Y to the outflow bY, as shown in Figure B2

Figure 3.2: Example of information definition

When using a tool such as AnyLogic [Ed], once the inflows and outflows are expressed
mathematically in the SD model, the information will appear automatically in the model
stock and flow diagram.

5. Identify the parameters. The parameters will be any given value (constant or

those that vary for each experiment). For example, in the equation % = cX, where

¢ = 2.3, then c is a parameter in the SD.

Determine the flow calculations based on informations and parameters. In
most cases, the value of a flow is based on the value of a stock and/or the value of
one or more parameters. Hence, these variables have to be added in the flow formula.
By looking at the mathematical equations and the information defined, it is possible to
determine how the stocks and parameters should be placed in the formula. For other
examples, however, a flow is determined just by mathematical expressions. Hence the
correspondent expression from the mathematical model should be transferred to the flow

calculation.
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Example

In order to illustrate the conversion from a system of ODEs to SD, let us consider a
classical example from ecology [B3] that models the dynamics of two populations, one

predator species y and one prey species x, described by the following equations:

i (1—y— o)z (3.1)
W e a1y (3.2)

In order to obtain an equivalent SD model, the guidelines defined above will be followed:

1. Identify the stocks: The stocks in the predator-prey example are x and y, as the

. . . . . d
ODEs describe their dynamics with time (‘fl—f and 7).
2. Identify stock’s inflows:

e There is only one inflow for the stock x, which is 1 x x, as it adds to the stock

variable.

e Similarly, there is one inflow to the stock y, i.e. azxy.
3. Identify the stock’s outflows:

e The outflows for the x stock are zy and Az?

e For the stock y, the outflows are ay and apuy?

4. Determine the information:

e All inflows and outflows use the value of the stock x in their calculations,
therefore, there is information from this stock to all flows. Furthermore, the

outflow xy uses information from the stocks x y, as illustrated in Figure BZ3.

e Similarly to the stock x, there is information coming from Y to all its stocks,

as shown in Figure B4.
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Figure 3.4: The stock y and its flows and information.

5. Identify the parameters: The parameters in the model are the constant values «,

A and p.

6. Determine the flow calculations based on informations and parameters. By looking

at Equations Bl and B3, it is possible to define the flow calculations, as depicted

in Table BA. The final SD model is determined after the flow calculations are

defined. The final stock and flow is shown in Figure B33.

Table 3.1: Flow calculations for the predator-prey example

’ Stock ‘ Flow Expression | Flow formula
nflow x T
X out flow_xy xy xy
out flow_lambda X X | \x? lambdaz?
mnflowY axy alphaxy
y out flow_alphaY ay alphay
out flow_alpha_muyy | ouy? alpha.mu.y?
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Figure 3.5: The final SD model for the predator-prey example

3.5.2 From System Dynamics to Agent-based Modelling and Simula-

tion

In order to convert the SD into an ABMS model, we propose the following steps [E4]:

1. Identify the possible agents. For this purpose, we use some characteristics defined
in [B3]. An agent is: (1) self-contained, modular, and a uniquely identifiable individual;
(2) autonomous and self-directed; (3) a construct with states that varies over time; and
(4) social, having dynamic interactions with other agents that impact its behaviour. By
looking at the SD stock and flow diagram, therefore, the stocks (their disaggregation)
will either be corresponding to agents or states of one agent [20]. The decision whether
the stock is an agent or an agent state varies depending on the problem investigated.

Based on our case studies presented on the next chapters, however, we suggest that:

e stocks preferably become states when they represent accumulations of elements

from the same population.

e stocks become agents when they represent accumulations from different popula-

tions.
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2. Identify the behaviour and rules of each agent. As we are building ABMS
models from SD models, the agent’s behaviours will be determined by mathematical
equations converted into rules. Each agent has two different types of behaviours: reactive
and proactive behaviours. The reactive behaviour occurs when the agents perceive the
context in which they operate and react to it appropriately. The proactive behaviour
describes the situations when the agent has the initiative to identify and solve an issue

in the system.

3. Implement the agents. Based on the conceptual model derived from step 2 we
develop state charts, one for each agent type. The state charts model states and state
transitions. Moreover, at this stage, the behaviours of each agent are implemented using

the simulation tool.

4. Build the simulation. After agents are defined, their environment and behaviour
previously established should be incorporated in the simulation implementation. More-
over in this step we include parameters and events that control the agents or the overall

simulation.

Example

In order to show a practical application of our guidelines, let us consider a classical SD
model, namely, the bass diffusion model [E3]. This is a model of a product diffusion,
where there are two stocks representing potential adopters and adopters of the product.
Potential adopters become adopters at a certain adoption rate. This rate depends on
advertisement and word of mouth promotion. The ODEs for each stock are defined as

below:

dPotential Adopt
oren Z?lt oPEETS —AdoptionRate (3.3)
dAdopt
% = AdoptionRate (3.4)
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where:

e AdoptionRate = AdoptionFromAdvertising + AdoptionFromW ordO f M outh

e AdoptionFromAdvertising = AdvertisingE f fectiveness x Potential Adopters

e AdoptionFromW ordO f M outh =

Potential Adoptersx Adopters
Potential Adopters—+ Adopters

ContactRate x AdoptionFraction %

The stock and flow diagram for the bass diffusion model is therefore shown in Figure B®.
In the model, we split the AdoptionRate in two inflows, AdoptionFromAdvertising and
Adoption FromW ordO f M outh:

AdoptionFromAdvertisement
_—p Z {3 AdEffectiveness

o

PotentialAdopters E]— — > E] Adopters

- i

AdoptionFromWordSfMouth

] @]

AdoptionFraction ContactRate

Figure 3.6: The SD model for bass diffusion

In order to obtain an equivalent ABMS model, we will use the guidelines defined in this

section:

1. Identify the possible agents: by looking at the SD stock and flow diagram, as the
stocks represent accumulations of elements from the same population, there will

be only one agent, which can assume the Adopters or PotentialAdopters state.

2. Identify the behaviour and rules of each agent: as for this example there is only
one agent that changes state at a point in time, the behaviour is to become an

adopter according to a certain rate, if the current state is Potential Adopter.
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3. Implement the agents: the flows were then converted to the appropriate transition.
In order to build the equivalent element in the state chart given the flow informa-
tion, the correspondence diagram shown in Figures 8 and 9 on Section 52 of
the previous chapter was used. The ABMS correspondents are therefore shown in
Table B2A. In the table, the first column contains the SD stock and flow diagrams
for each flow AdoptionFromAdvertisement and AdoptionFromWordOfMouth. The
second column presents the corresponding transitions from the PotentialAdopter
state to the Adopter state. The Advertisement transition was obtained by using
case B of Figure I8 (page B1); the transition WordO f Mouth was obtained using

case C of Figure E9 (page B2).

Table 3.2: SD flows converted into ABMS

System Dynamics ‘ Agent-based ‘
l Potentialddopker
AdoptionFromAdvertisement \,_
PotentialAdopters [_] — e X () Adopters Advertisement

Adopter
(* AdEffectiveness

-

[’ Potentialadopter |
AdoptionFromWordCOfMouth -

PotentialAdopters [ e i X sl (] Adopters WordOfMouth

6 @ [ Adopter ]
AdoptionFraction ContactRate

The final stock and flow diagram for the adopting agent is shown in Figure B3.

4. Build the simulation: the final simulation model will contain a set of agents as
described above that will turn from potential adopters to adopters, according to

the rates pre-defined by the system user.
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Figure 3.7: The bass diffusion agent

3.5.3 From Ordinary Differential Equations to Agent-based Modelling

and Simulation

The process of conversion from ODEs to ABMS is quite similar to that showed for the
conversion from SD to ABMS (Section B53), as shown in the next steps:

1. Identify the possible agents. By looking at the ODE equations, the variables
differentiated in time (for example, X in %) will either be corresponding to agents or
states of one agent. The decision whether the variable is an agent or an agent state

varies depending on the problem investigated. Based on our case studies presented on

the next chapters, however, we suggest that:

e the variables differentiated in time preferably become states when they represent

elements from the same population.

e variables differentiated in time become agents when they represent different pop-

ulations.

2. Identify the behaviour and rules of each agent. As we are building ABMS
models from ODE models, the agent’s behaviours will be determined by mathematical

equations converted into rules.
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3. Implement the agents. Based on the conceptual model derived from step 2 we
develop state charts, one for each agent type. The state charts model states and state
transitions. Moreover, at this stage, the behaviours of each agent are implemented using

the simulation tool.

4. Build the simulation. After agents are defined, their environment and behaviour
previously established should be incorporated in the simulation implementation. More-
over in this step we include parameters and events that control the agents or the overall

simulation. The value for these parameters is also obtained from the ODEs.

Example

Let us consider once again the ODE-based bass diffusion model [E3]:

dPotential Adopt
oren Zjlt oprers —AdoptionRate (3.5)
dAdopt
725 s AdoptionRate (3.6)

where:

e AdoptionRate = AdoptionFromAdvertising + AdoptionFromW ordO f M outh
e AdoptionFromAdvertising = AdvertisingFE f fectiveness x Potential Adopters

e AdoptionFromW ordO f Mouth =

Potential Adoptersx Adopters
Potential Adopters+ Adopters

ContactRate x AdoptionFraction

In order to obtain an equivalent ABMS model, we will use the guidelines defined in this

section:

1. Identify the possible agents: by looking at the ODEs, there will be only one agent,

which can assume the Adopters or PotentialAdopters state.
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2. Identify the behaviour and rules of each agent: the identified behaviour is to
become an adopter according to a certain rate, if the current state is Potential-

Adopter.

3. Implement the agents: The process to implement the agents is similar to that
shown in the previous section. The main difference is that instead of considering
the flows, the mathematical equations should be used. The final stock and flow

diagram for the adopting agent is shown in Figure B3R.

[ PotentialAdopter ]

Advertisement WordOFfMouth

i i

[ Adopter ]

-y

Figure 3.8: The bass diffusion agent

4. Build the simulation: the final simulation model will contain a set of agents as
described above that will turn from potential adopters to adopters, according to

the rates pre-defined in the ODE model.

Although we showed the steps to convert from ODEs to ABMS, these guidelines will
not be further explored in our work, as our main focus of interest lies in the systems

simulation methods SD and ABMS.

3.5.4 From Agent-based Modelling and Simulation to System Dynam-

ics

For converting the ABMS model into an SD model, we propose the following steps [E1]:
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1. Identify the system structure. First we have to recognize the system structure
and assume a high level of aggregation for the objects being modelled. It is necessary to
generalise from the specific events and consider patterns of behaviour that characterise
the situation. The system autonomous elements will therefore no longer respond indi-
vidually. The simulation outcome will be given by the collection of individuals and its

dynamics as a group.

2. Identify the stocks in the system. Stocks are physical entities which can accu-

mulate over time.

3. Define the stocks and their flows. Having the stocks (step 2) and the information
about the structure of the model (step 1) we can depict how each stock is changed over

time by the flows and the information about how a stock would influence a flow.

4. Define the final stock and flow diagram. After defining the diagrams for each
stock, it is necessary to go back to the system structure and define how the stocks will

interact or influence each other.

5. Define the mathematical model. For SD, a set of mathematical equations is
necessary to describe how the stocks will change over time. In our case studies, the
information provided by the ABMS is not enough to build an SD model because we do
not have the equations and rates defining the dynamics of each population. Therefore,
to continue building the model we need extra information. For example, a data set or a
well-established model that describes mathematically how the system changes over time
would be necessary. In addition, there are also cases where further parameter calibration

is necessary.

6. Define the parameters of the mathematical model. In our case studies, the

parameters were obtained from the state charts transition rates.

7. Define the flow calculations. In our case studies, a flow expression is defined by
looking at the transition rate calculation and the information defined in the stock and

flow diagram.
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8. Define the final SD model. The final SD model is supposed to contain the
complete stock and flow diagram together with the flow calculations and parameters

used in the calculations.

Example

In order to show the conversion from ABMS to SD, let us consider a classical viral spread
model, namely SIR, where a person can assume three states: susceptible, infectious or
recovered. When in the infectious state, a person can infect another person, as shown

in the state chart of Figure B:

skakechart

Susceptible

Infection

Recovery

Recovered

Figure 3.9: The SIR agent

The simulation consists of a set of agents and, initially, only one agent is in the state
infectious whereas the remaining agents are in the state susceptible. The transition
infection is triggered by a message from another agent in the state infectious, and the

message will be sent according to a rate in which the transition contact is triggered.

ContactRate

ectionProbability’ where the values

In the model, this rate is defined by the formula - 7

of ContactRate and InfectionProbability are constant. A person’s recovery is deter-

1

—ssDurations Where the value AveragelllnessDuration is

mined by the rate Averagelll

also constant. This rate triggers the transition recovery in the state chart.
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In order to obtain an equivalent SD model, we will follow the steps proposed:

1. Identify the system structure: for the SD, as we look at aggregates instead of
individuals, there are three populations to be considered, i.e. the individuals
susceptible to the infection, the population of infected people and those individuals

who recovered from the infection.

2. Identify the stocks, flows, and information in the system: the stocks will be the
susceptible, the infectious and the recovered populations. There is an outflow from
the stock susceptible to the stock infectious and another outflow from the stock

infectious to the stock recovered, as shown in Figure BTT0.

Susceptible InfectionR ate Infectious RecoveryRate Recovered

O X O X O

Figure 3.10: The SD model stocks and flows for the SIR model

The susceptible population decreases according to to the infections occurred. So
there is the need of information about both susceptible and infectious stocks in
the flow InfectionRate. As only the infectious population has influence in the
population recovery, there is information from the stock infectious to the flow
RecoveryRate, as shown in Figure BTI. As this is a simple model, this figure

illustrates the final stock and flow diagram.

Susceptible InfectionR ate Infectious RecoveryRate  Recovered

e o e

0= X o] X O

Figure 3.11: The SD model stocks and flows and information for the SIR model

3. Define the mathematical model: the final model is described by the following

equations:
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dSusceptible ContactRate

=5 tiblex I ti
dt usceptiblexIn fectiousx (Total Population) = In fection Probability
(3.7)

ContactRate

ection Probability WS obtained from the transition Contact in the

where the term - 7
state chart, observing the conversion guides of Figures 8 and E. As this transi-
tion occurs for each agent in the Infectious state, when converting to SD, there is
the need to multiply the value in the flow by the population of infectious, which is
the Infectious stock. As now all population is considered, the probability infection
needs to be distributed throughout the sum of the three populations. Hence, the
variable Total Population is included in the calculation. It is not trivial to spot
the need of the variable T'otal Population. However, a final model calibration to

obtain similar results as those from the ABMS would produce this value.

dl ti
w = InfectionRate — RecoveryRate (3.8)
dRecovered Infectious (3.9)
dt ~ AveragelllnessDuration )

1 . o .
where the rate TveragellinessDuration VoS obtained from the Recovery transition

rate calculation.

. Define the parameters of the mathematical model: the parameters extracted
from the mathematical equations are ContactRate, InfectionProbability and
AveragelllnessDuration, which values are the same as those from the ABMS
model and should be used in the flow calculations. The final SD model, with the

stock and flow diagram and parameters is shown in Figure BI2:
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Susceptible InfectionRate Infectious RecoveryRate  Recovered

T — B

(e X st & X 0
o /’ [

ContactRate @

Infeckivity éj @ AveragellnessDuration

TotalPopulation

Figure 3.12: The final SD for the SIR model

3.6 Summary

This chapter describes the research methodology defined in order to achieve the research
objectives of this thesis. In choosing the case study methodology to conduct investi-
gations, the baseline of our models consists of established ODE models that describe
some immune mechanisms. We consider aspects such as the behaviour of the entities
of the model, the type of hypothesis to be tested, the empirical embeddedness of real
data and the modelling effort for the comparison of the approaches. For each aspect,
we use a multiple-case approach comprising three case studies, which will be further
introduced in subsequent chapters. Furthermore, in this chapter we introduce our own
set of guidelines for the conversion from ODEs to SD, SD to ABMS, ODEs to ABMS
and ABMS to SD. These guidelines will be used and tested on our case studies, which

are presented in the following chapters.
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Chapter 4

Static Non-spatial models

4.1 Introduction

In this chapter simulations in immunology are developed as part of the fulfilment of the

objectives introduced in Section BZ3. In particular, the goals targeted are:

1. To test the guidelines defined to convert from ODE to SD and to convert from SD
and ABMS models and assess the impact of this conversion on models involving

static non-spatial entities.

2. To compare SD and ABMS outcomes considering static non-spatial entities in the
model, the type of hypothesis to be tested, the empirical embeddedness of real

data and the modelling effort.

3. To define guidance to choose between SD and ABMS depending on the character-

istics of the problem to be addressed.

Simulations are built taking into account three different case studies based on mathe-
matical modelling, in which we test the conversion guidelines, compare SD and ABMS
outcomes and assess the impact of the conversions. These case studies were chosen based
on characteristics such as population size, modelling effort, model complexity, observa-

tion of the ODEs outcome results and the number of different populations modelled.
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The mathematical models chosen vary largely within these aspects and therefore we can

perform a more robust analysis on the effectiveness of our guidelines.

The first case study — which is the most complex model in terms of population sizes and
elements considered — is based on an ODE model involving interactions that influence
naive T cell populations with age (Section B2). For the second case study, which is the
simplest one with only one population, we investigate mathematical models of general
tumour growth (Section B3). Our third case study — which also complex in terms of
different populations — comprises an ODE model of cell-free viral spread of the human
immunodeficiency virus (HIV) in the bloodstream (Section E4). In Section B, we

discuss the results obtained and draw the conclusions for our first set of experiments.

4.2 Case 1: Naive T Cells Output

In this section we investigate our first case study, which compares SD and ABMS for
an immune system ageing model that involves interactions which influence the naive T
cell populations over time. The model is based on the mathematical equations defined
in [B9]. In their work, Murray et al. [B9] propose a model with a set of equations to
fit observed data and estimate the output of a certain type of immune cells with age.
These cells are the naive T cells and play an important role in the immune system
by responding to new infections. With age, these responses become less frequent and
ineffective. This age-associated problem occurs because the organism lacks naive cells
derived from the thymus, as a result of thymic shrinkage over time. As a consequence, the
naive repertoire changes from the thymic source to the peripheral proliferation source.
Thus, there is no new phenotypical naive cell entering the system. Further details on
thymus output shrinkage and its impact on naive T cells population will be given in

sections 21 and 22

The remainder of this section is organised as follows. In Section =23 the mathematical

model regarding the naive T cells population dynamics is introduced. Section B2
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shows how to obtain an equivalent SD model from the ODEs. In Section =273, we apply
our conversion guidelines to obtain an ABMS model from the SD. The experimental
design is defined in Section 2@ and the results are presented in Section E2270. Finally,

a summary of the case study and findings is given in Section E=Z3.

4.2.1 Lack of naive T cells

Before an individual reaches the age of 20, the set of naive T cells is sustained primarily
from thymic output [B9]. In middle age, however, there is a change in the source of naive
T cells: as the thymus involutes, there is a considerable shrinkage in its T cell output,
which means that new T cells are mainly produced by peripheral expansion. There is
also a belief that some memory cells have their phenotype reverted back to the naive

cells type [B9].

These two new methods of naive T cell repertoire maintenance, however, are ineffec-
tive [B9] as they do not produce new phenotypic changes in the T cells. Rather, evidence
shows that they continue to fill the naive T cell space with copies of existing cells [B3].
The loss of clones of some antigen-specific T cells therefore becomes irreversible. These

age-related phenomena lead to a decay of immune performance in fighting aggressors.

4.2.2 Naive T cell output

Thymic contributions in an individual are quantified by the level of a biological marker
known as ‘T cell receptors excision circle’ (TREC). TREC is circular DNA originated
during the formation of the T-cell receptor. The percentage of T cells possessing TRECs
decays with shrinkage of thymic output and activation and reproduction of naive T
cells [B9]. This means that naive T cells originating from the thymus have a greater

percentage of TREC than those originating through other proliferation.

The first case study is based on data and equations obtained in [B9|, which are concerned
with establishing an understanding of naive T cell repertoire dynamics. The objective

of the model is to determine the likely contribution of each of the naive T cell’s sources
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by comparing estimates of the presence of TREC in the cells (see Figure B below).
The dynamics of the sustaining sources, i.e. naive proliferation, TREC and reversal of

memory to naive T cells, are modelled mathematically.

Thymus

e
/

Naive Proliferation O 2 E Active Cells

Maive — 3 Death

“2} —— Death
Death \ /
Memory
Cells

Death

Figure 4.1: Dynamics of Naive T cells

4.2.3 The Mathematical Model

The mathematical model proposed in [B9] is described by equations B0 to B, in which
N is the total number of naive cells of direct thymic origin, IV, is the number of naive
cells that have undergone proliferation, A is the number of activated cells, M is the
number of memory cells and ¢ is time (in years). At the beginning of life the main
source of naive T cells is the thymus and therefore most naive T cells in the body belong
to the population N. With time naive T cells from thymus proliferate, which contributes
for the increase of the N, population. When the immune system faces a new threat,
naive T cells are recruited and become active (A). A fraction of active cells turns into

memory cells (M).

The first differential equation describing the naive T cell population from thymus is:
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— = Sp€ S(Np) - [)\n + Nng(NP)]N (4'1)
where:

e 5p is the thymic output value

e )\; is the thymic decay rate

e { represents time in years

e spe Ms(N,) represents the number of cells that arise from the thymus

e s(N,) is the rate of export of the thymus defined by:

s(Np) = (4.2)
° Np and § are equilibrium and scaling values respectively. These values were defined
in the experiments in [Bd].

e )\, N represents the naive cells that become part of the naive proliferating popu-

lation
e )\, is the naive proliferation rate
® (i, is the thymic naive cells death rate
e /ing(Np)N represents the naive cell death rate

e g(NNp) is the death rate between naive TREC-positive and naive TREC-negative

cells, defined as:
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The second differential equation describing the naive T cells from proliferation is:

dN,

where:

¢ is the proliferation rate
e ch(N, Np)N, represents the naive proliferation

e h(N,N,) is the dilution of thymic-naive through proliferation defined by:

1

N+N,

h(Nva) =
1+ N,

tndNp is the death rate of proliferation-originated naive cells

® )\, is the reversion rate from memory into IV,

The final differential equation for the memory cell population dynamics is:

dM

S NA — g, M — M\ M 4.6
pn 1 (4.6)

where:

e )\, is the reversion rate into memory

® /i, is the death rate of memory cells

The parameter values for the model can be seen in Table B

For the mathematical model and subsequent simulations, s0 = 56615. The values for
active cells over time are determined by referring to data collected by [[@] (Figure £—2

below). This table contains the number of activated CD4+ cells per mm? for early years
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Table 4.1: Rate values for the mathematical model (obtained from [Bd])
rate ‘ value(s) ‘

N | 2 (year™)

An | 0.22, 2.1, 0.003

Lhn 4.4

c 0 (no proliferation) or g, (1 + %)
)\mn O

tm | 0.05

Aa 1

and is used as a stock for the active cells. From the active cell stock the values of the

memory cell stock are updated according to the parameter \,.

Equations B to B3 are incorporated in the SD and ABS models in order to investi-
gate if it is possible to reproduce and validate the results obtained in [E9]. Moreover,
variations of the ratio variables are explored to understand the importance of each in-
dividual integrand in the system. For example, it is important to establish how much
the proliferation rate impacts on the depletion of naive T cells over age, and to identify

the point in time at which the system can be defined as losing functionality.

4.2.4 The System Dynamics Model

From Ordinary Differential Equations to System Dynamics

The system dynamics model objective is to simulate the processes involved in the main-
tenance of naive T cells. The model is built taking into consideration all the interactions
described by the mathematical equations defined in the previous section. Hence, we use

the conversion from ODEs to SD guidelines introduced in Section BZ:

—

. Identify the stocks

2. Identify stock’s inflows and outflows

3. Determine the information

W

. Identify the parameters
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Data provided for the active T cells
250 \ ‘

200} 1

150 & 1

active T Cells

100 b

I
%

50 : ¥

0 20 40 60 80 100
Years

Figure 4.2: The data set used as a look-up table for the active cells. The data set contains
the number of activated C'D4 cells per mm? for early years taken from Comans-Bitter
et al. [4).

5. Determine the flow calculations based on information and parameters

Model Stocks

The naive T cells, naive T cells from proliferation and memory cells are stock variables,

as the aim is to keep information of how they accumulate over time.

Model Flows

The stock variable that represents the number of naive T cells is subject to inflowing
thymic output (ThymusOutput), and proliferation (NaiveCellsInProliferation) and
death (NaiveDeath) outflows. The flows between naive cells and active cells are not
defined in the mathematical model. It is assumed, therefore, that these flows only

interfere on the stock of active cells, which are not considered in the SD model. The
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number of active cells, which is a stock, is given in a look-up table containing real values
of active cells in the human organism. The graphical representation (stock and flow
diagram) of the stock of naive T cells and its flows, corresponding to Equation B0 on
the mathematical model, can be seen in Figure B=3:

MaiveDeath

X

ThymusOutput

Z E] Maive

X MaiveCellsInProliferation

Figure 4.3: The naive T cell stock variable and its flows: thymic output, proliferation
and death

The stock of naive cells from proliferation’s inflows are proliferation and reversion from
memory, and the outflow is death, according to Equation EZA. The stock and flow

diagram is shown in Figure E4.

Z MaiveCellsInProliferation

Death

X O

MaivePraliferation

Praliferation MemoryToMaiveProliferation

Figure 4.4: The naive T cells from proliferation stock variable and its flows: death,
activation, proliferation and memory reverted to naive

The memory stock’s inflow is reversion from active to memory cells (in Figure B3,
ReversionToMemory). The outflows are reversion to a naive phenotype (in the figure,

MemoryToNaiveProliferation and death, as defined by Equation E3).
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MemaoryToMaiveProliferation

X U X

Memaory
RewversionToMemory ' MemoryDeath

Figure 4.5: The memory T cells stock variable and its flows: reversion to a naive
phenotype, reversion from active and death

Model Information

The next step for the conversion is to identify the information between the stocks. As we
mentioned in Section, the SD’s stock and flow diagram is constituted by stocks, flows,
information, auxiliaries and parameters. Information (curved arrows in the stock and
flow diagram) between stocks and flows indicates that there is an information about a

stock that influences a flow (for further information refer to page [2).

By looking at Equation BT, it is possible to determine that there is information between
the stock Naive (N in Equation B) and the flow NaiveDeath and between the stock
Naive and the stock NaiveProliferation (Np). For our implementation, functions
are designed for s and g, which use the stock variable NaiveProliferation in their
calculations. Hence, the information about NaiveProliferation is implicit in these
functions. For the stock and flow diagram, therefore, there is information, which is from

stock Naive to the flow NaiveDeath, as show in Figure B3 below.

For the NaiveProliferation stock there is information from it to Proliferation and

Death flows, as shown in Figure E72.

In the Memory stock there is information from it to the flows MemoryToNaiveProlif-

eration and MemoryDeath, as shown in Figure 3.
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MaiveDeath

X

4

ThymusOukput \

Z C] MNaive
Z MaiveCellsInProliferation

Figure 4.6: The naive T cell stock variable with its flows and information
Z MaiveCellsInProliferation

Death
Z - E] MaiveProliferation

/

i

Proliferation Memory ToMaiveProliferation

Figure 4.7: The naive T cells from proliferation stock variable with its flows and infor-
mation

i Memory ToMaiveProliferation

X Q== X

M -
ReversionToMemory i MemaryDeath

Figure 4.8: The memory T cells stock variable with its flows and information

Model Parameters

The model parameters are the same as those in the mathematical model. The mathe-

matical parameters and their correspondents in the SD model are shown in Table E2:
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Table 4.2: Parameters from the mathematical model and their correspondents from the

SD model

Flows Calculations

’ rate ‘ correspondent

S0 s0

At lambda_t

c c

Wp bar _Np

5 bar_s

b n

An ProliferationRate
Ln NaiveDeathRate
Amn | MemoryToN PRate
pn, | NPDeathRate

Wm | MemoryDeathRate
Aa ReversionT oM emoryRate

Table B3 demonstrates the flows for each stock, their correspondent in the mathemat-

ical model and the flow formula. In the table, the functions s0(), s(), g() and h() are

implemented according to corresponding mathematical functions. The function time()

returns the current simulation time, which, for this case, is given in years. Further-

more, the ThymusOuput is an example of flow which does not have any information or

parameter. Hence, it is defined according to the mathematical expression stated.

The Final System Dynamics Model

All the stocks put together with flows, parameters and functions defined in the mathe-

matical model form the SD model shown in Figure E9.
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Table 4.3: Flow calculations for the naive T cell output model

l Stock ‘ Flow ‘ Expression ‘ Flow formula
ThymusOutput soe MEs(N,) | s0()e~retimelg()
Naive NaiveCellsInProliferation | AN ProliferationRate.Naive
NaiveDeath tng(Np)N (NaiveDeathRate.
g()Naive)
Proliferation ch(N, N,) (e x h().
NaiveProliferation NaiveProliferation)
Death i Np (NpDeathRate.
NaiveProliferation)
MemoryToNaiveProlife— AmnM (MemoryToN P Rate.
ration Memory)
Memory ReversionT oM emory AdA (ReversionToMemoryRate.
Real Actives(time()))
MemoryDeath pom M (MemoryDeathRate.
Memory)
Functions Parameters o MaiveDeath
o
0 h 6 s0 ) Z
MaiveDeathRate d
e q @ lambda_t |
0 5 6 c ThymusOutput 1
C_’j b Z C] Naive
G bar_s
@ bar_Mp oO——
- o
PraliferationRate Z NaiveCellsInProliferation
Death MaivePraliferati
e o ———— aiveProliferation
o Z [:] () MemoryToNPRate
MaiveProliferationDeathRate 7 \
g v
P Z Proliferation d Memory ToMaiveProliferation

() NaiveProliferationR ate |

) —
ReversionToMemary MemaoryDeath
) Z D Memory Z ’
@Real.ﬂ.ctives
@ ReversionToMemoryRate (3 MemaoryDeathRate

Figure 4.9: The system dynamics model’s functions and parameters for case 1. The
table function RealActives returns the values for active CD4+ cells at a certain time.
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4.2.5 From System Dynamics to Agent-based Modelling and Simula-

tion
In order to convert from SD to ABMS, the guidelines introduced in Section B2 are
used:
1. Identify possible agents
2. Identify the behaviour of each agent
3. Implement the agents

4. Build the simulation

Model Agent

For the definition of the agents, by looking at the SD stock and flow diagram (Fig-

ure I-Z4) there are two possible agent implementations:

1. Consider each stock variable (Naive, NaiveProliferation, Memory) as an agent

or

2. Consider each stock variable as a different state of the same agent T cell

For the implementation, the second option was selected, i.e. T cells are the agents of
the model. The reason each stock has not been implemented as a different agent is
that it would be the same object duplicated. The main characteristics of the stocks are
the same and their flows represent the same patterns of change in the accumulations
(proliferation, death and source). A T cell agent, therefore, can assume three different
states: Naive, NaiveFromProliferation and Memory, as shown in the state chart
depicted in Figure EI0. The lozenge in the state chart represents a branch for the

decision of the T cell current state:
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aiveProliferation

Figure 4.10: T cell agent states
Agent Behaviours

Each agent behaviour is driven by its current state and occurs according to a certain
parameter rate. The agent’s parameters and behaviours corresponding to each state are
shown in Table B4 below. In this example, all behaviours are derived from the flows in

the SD stock and flow diagram.

Table 4.4: Agents’ parameters and behaviours for the naive T cell output model

| State [ Parameters [ Reactive behaviour [ Proactive behaviour ‘
NaiveDeathRate Dies
. Is produced
N
arve by thymus
ProliferationRate Reproduces
NaiveProliferationDeathRate | Dies
ProliferationRate Is produced by
Naive proliferation
NaiveProliferation | MemoryToN P Rate Is produced from
Memory
NaiveProliferationRate Reproduces
MemoryDeathRate Dies
ReversionT oM emoryRate Is produced from
Memory .
active cells
MemoryToN P Rate Turns into Naive

Although the thymic output determines the rate in which naive T cells are produced,
this rate changes over time, and is therefore not considered as a parameter in our

implementation. Instead, it is a dynamic variable.
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Agent Implementation

The agent final state chart is depicted in Figure 10 below. T cells are the agents and
the state chart represents all the states in which these agents can exist, i.e. naive, naive
from proliferation or memory cells. There is also the final state when cells die and are
eliminated from the system. The agents’ state changes and their death rates are given
by the ratios defined in the mathematical model. For instance, NaiveDeathRate is
equal to u, x g() (Equation BT). Initially, all the agents are in the naive state. As the
simulation proceeds, they can assume other stages according to the transition pathways

defined in the state chart.

T_Cell

(7_‘5 ReversionToMemoryRake

w1 aiveProliferation |
{"7_‘5 ProliferationR.ate @ Memory ToMPRate

Memory

@ NaiveProliferationRate

@ NaiveDeathRate (® NaiveProliferationDeathR ate (™ MemoryDeathRate

Figure 4.11: The T cell agent

When agents reproduce, the newborn agents, which are also T cells, should assume
the same state as their original agent. Apart from proliferation, new agents are also
produced from thymic output and reversion from active to memory cells. The algorithm
that determines the agent state is given according to the flow chart in Figure ET2. Its

definition is based on the stock and flow diagram inflows for each stock.

The agents die according to specific rates determined by the mathematical model. The
agents in this simulation respond to changes in time and do not interact with each other

directly.

92



4. Static Non-spatial models

New T Cell

Originate
from

| l ! |

Naive from Thymus Naive Peripheral Memory to Reversion
Thymus . . . . . ;
Proliferation Proliferation Naive from Active

State=

State = Naive State = NaiveProliferation
Memory

Figure 4.12: New agent (T cell) state decision flow chart

Simulation

For the simulation development, apart from the agents, there is also a function that
determines the thymic output and the number of active cells (from the look-up table)
that become memory cells. Both are implemented using events that determine when
each of these T cells should enter the system. The thymic output calculation function
and the active cells look-up table are the same as those from the SD model. Furthermore,
as the ABMS model is built from the SD model, the functions s, g and h are also taken

from the original SD.

4.2.6 Experiments

Five simulation scenarios were studied, defined by [Ed] with different values for the pa-
rameters. A summary of parameters changed for each scenario is illustrated in Table B3

below.

The first scenario investigated the need for naive peripheral proliferation throughout life.
The naive peripheral proliferation rate for this experiment was therefore set to zero. It

also considered reversion from memory to a naive phenotype.
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Table 4.5: Simulation parameters for different scenarios. The parameter ¢ is only used
in the first scenario, where there is no proliferation. In the other scenarios, proliferation

is defined by the equation (1 + %) * 4#4 (B3]
P

Scenario | Description Parameters
An Amn Np 3 b BN, c

1 No peripheral proliferation 0.22 0.05 | 387 | 0.48 3.4 013 | 0
No homeostatic reduction in thymic export, 2.1 0 713 0 0 4.4 -
no homeostatic alteration of naive death rate

3 Homeostatic alteration of naive death rate 0.003 0 392 0 4.2 44 | -
but not thymic export

4 Homeostatic alteration of thymic export but 0.005 0 378 2.4 0 4.4 -
no naive death rate

5 No restrictions 0.005 0 378 2.2 0.13 4.4 -

The second scenario assumed peripheral proliferation with a higher rate of naive cells
becoming naive proliferating cells (A, = 2.1). There was no reversion from memory to
a naive phenotype and no homeostatic reduction in thymic export. The functions s, g
and h from the mathematical model were responsible for controlling the thymic export,
naive death rate and naive peripheral proliferation respectively. In order to alter the
thymic export, the parameters 5 and N, were changed. The parameter b was set to zero
so that the function g would remain constant during the entire simulation, as would the

death rate of naive cells.

The third scenario altered the function g over time by setting the parameter b greater
than zero (b = 4.2). This meant that the death rate of naive T cells from thymus in-
creased along the years as the number of naive from peripheral proliferations rose. There
was no change to the thymic export, no reversion from memory to a naive phenotype
and the conversion rate of naive from thymus to naive proliferation was low (equal to

0.003).

Scenario 4 produced the opposite results from those of scenario 3. In this case there was
no change in the death rate of naive T cells from thymus. Rather, there was change on

the thymic export with time.

Finally, the fifth scenario presented no restrictions, which meant that there were changes
in thymic export and death of naive cells over time. Moreover, there was peripheral

proliferation and no memory turning back to a naive phenotype.
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The data used for validation of the simulations is displayed in Tables B8 and EZ0. The
data set contains information about the TREC marker in individuals grouped in age
ranges. The first column of Table B3 shows the age range of the individuals; the second
column has the mean %PBM C (peripheral blood mononuclear cell) and the
third column contains the number of individuals in each age range. The total number

of individuals in the experiment was 506.

The graphic containing the TREC data (naive from thymus) and total naive cell data
provided by [B9] [[E] and [BO] is shown in Figure BI3. In the figure, data provided
in Table @ is represented by the symbol () ; the [J symbol indicates the data from
Table B20. In addition, in Figure I3 the total percentage of naive T cells in the body,

obtained in [BE9], is also displayed (symbol ¢).

For the ABMS, the simulation was run fifty times and the mean result of these runs was

collected.

Table 4.6: The data set used for validation obtained in [E9] and [[F]

’ Age ‘ % number of individuals
0 5.03 48
1-4 4.93 53
9-9 4.86 19
10-14 | 4.86 19
15-19 | 4.56 33
20-24 | 3.88 26
25-29 | 3.75 47
30-34 | 3.61 65
35-39 | 3.54 73
40-44 | 3.52 52
45-49 | 3.37 99
50-54 | 3.17 16

Fach simulation was run for a period of one hundred years taking into account the
impact of thymic shrinkage per mm? of peripheral blood and 3673 initial naive cells
from thymus for the SD model: 10,000 data points were collected during each run (one

every 0.01 year).
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Table 4.7: The data set collected in Lorenzi et al. [B0]

’ Age ‘ % number of individuals ‘
0 4.85 2
1-4 5.29 30
5-9 5.05 33
10-14 | 4.99 15
15-19 | 4.56 )
20-24 | 4.55 12
25-29 | 4.55 9
30-34 | 4.44 20
35-39 | 4.23 15
40-44 | 4.16 9
45-49 | 3.82 16
50-54 | 4.21 21

Data sets collected for validation

100’“ D T T T T T
N —<— Naive % CD4+ data (Murray)
90 |-\ — © — Log10 percentage T cells from thymus (Murray) [
i & -+ Logl0 percentage T cells from thymus (Lorenzi)
80 - 1
S\
LA i
o \
60 - \ b
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2 sof o, i
S : .
401 A E
a . (b
30t A -
A
20f 0'o o , T
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Figure 4.13: Data sets used for validation of the naive T cell output simulation models
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4.2.7 Results

The simulation results contrasting one SD run with one ABMS run are illustrated in
Figures 4.14 , 4.15 and 4.16 below. Figures 4.14(a), 4.15(a) and 4.16(a) show the ODE
results used as a baseline for our results validation. In the first scenario, the results for
both simulation techniques show a very similar trend curve, although the ABMS results
exhibit a more noisy behaviour in time. Results did not fit the original data (Tables BTG
and B74). The resulting naive cells from thymus curve demonstrated a substantial decay
in thymic export on the beginning of life because of the high death rate. In comparing
SD and ABMS outputs, the results were similar. As expected, the ABMS simulation
produced some variation on the simulation curves while SD’s curve was steady. In

addition, SD simulation took less computational resources.

After the twenties, an exponential decay of thymic export was observed and the dynamics
followed the thymic decay rate rule defined in the mathematical model. The naive
proliferation curve increased with the decrease of naive from thymus, but as there was
no proliferation of peripheral cells, they died with no replacement. Thus they followed
the same pattern as that of their only source, i.e. thymic naive cells. The results indicate

that peripheral proliferation is important for maintenance of naive T cells.

Results from scenario 2 matched the original data more closely. This case considered
peripheral proliferation, as well as a high rate of naive cells from the thymus turning
into peripheral naive cells. The naive from thymus curve shows a substantial decay in
the beginning of life because of the death and proliferation rates. On the other hand,
the naive from proliferation curve increased with the decrease of the naive from thymus

curve. This pattern was controlled by the g function.

The main difference between these results and the results from the previous scenario
is that the number of naive cells from proliferation reached a stable value after the
age of twenty with no further decay. The results indicate the importance of peripheral
expansion, but also the need for a smaller rate of naive to peripheral naive conversion.

Moreover, reversion from memory to a naive phenotype is not important.
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Figure 4.14: Results for naive T cells from thymus

98



4. Static Non-spatial models

Results for the ODE model — naive T cells from peripheral proliferation
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Figure 4.15: Results for naive T cells from peripheral proliferation

99



4. Static Non-spatial models

Naive %

Results for the ODE model - total T cells
1007 T T T T T T
L Scenario 1
90 ‘\ — — — Scenario 2
\ Scenario 3
80 W — - — - Scenario 4
\ Scenario 5

Naive %

. . . . . . . . .
00 10 20 30 40 50 60 70 80 90 100
Years
(a) ODE
Results for the SD model - total T cells
100¢ T T T T T T T
O Naive % CD4+ data
Scenario 1
— — — Scenario 2
Scenario 3
Scenario 4
Scenario 5
S
g
3
0 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Years
(b) SD
Results for the ABS model - total T cells
100¢- T T T T T T T
$  Naive % CD4+ data
Scenario 1
— — — Scenario 2
Scenario 3
— - — - Scenario 4
Scenario 5

o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 8 90 100
Years
(c) ABMS

Figure 4.16: Results for total T cells
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Scenario 3 took into account the results produced in the previous scenarios and adjusted
the parameters in a way that a more accurate output was obtained. The naive from
thymus curve presented a decay at the beginning of life followed by an interval of sta-
bility. By the age of twenty the thymic export decreased in an exponential trend. With
the decay of naive from thymus, the naive repertoire changed from the thymic source to
peripheral proliferation source. By performing these simulations it is therefore possible
to have an idea of how the decay of naive cells occurs over time. The results now closely

matched the original data.

Scenarios 4 and 5 produced similar results to scenario 3. This indicates that alterations in
thymic export and in naive death do not interfere significantly with the overall dynamics

of the naive T cells.

In the five scenarios studied, the simulations produced similar results for both SD and
ABMS. This can also be observed in the results of Wilcoxon rank sum tests applied to
both ABMS and SD results for the simulations (Table E8). The table reports p-values
associated with Wilcoxon rank sum tests for the five scenarios. Our hypothesis is that
the outcomes produced are not significantly different. The p-values for each test all
exceed the 0.05 (5%) significance level, indicating that the distributions of the outcomes
of the various simulation approaches are not statistically different and therefore, the

tests failed to reject the hypothesis.

Table 4.8: Wilcoxon test with 5% significance level comparing the results from SD and
ABMS for the data sets used for validation on the number of naive T cells from thymus

Scenario p

1 0.8650
2 0.8750
3 0.7987
4 0.8408
5 0.9719
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4.2.8 Summary of Case 1

The main factors influencing the process of immunosenescence include the number and
phenotypical variety of naive T cells in an individual, which change with age in quantity
and diversity. At the beginning of life, the thymus is the principal source of naive T
cells. With age, there is a decay in thymus output and a shift between the main source
of naive T cells. It is believed that the sustenance of naive T cells in the organism is
provided by peripheral expansion, reversion from a memory phenotype, and long-lived

T cells.

The simulation models that were built and studied were based on mathematical equa-
tions converted into SD and from SD to ABMS. Five simulation scenarios were studied.
The simulation outputs were broadly similar for both SD and ABMS. Our research
question was to determine which of these two paradigms would be more suitable for the

simulation of the static agents involved in this case study.

In the ABMS model, cells were subject to individual rates that occurred during the time
slot in which they were created. This made the output for each run noisier than the SD
results. It also seems to be a simulation process closer to reality, because in real immune

systems, cells have individual behaviours and responses to the environment.

SD, on the other hand, gave a systemic view of the conceptual model and attempted to
forecast how the system as a whole would evolve in time in an aggregate manner. This
suggests that each change ratio would be applied to the entire set of cells. SD is simpler
to implement and demands significantly less computational resources such as memory,

processing time and complexity.

Results fit the observed data, and the likely contribution of each of the naive T cell
repertoire maintenance method can therefore be estimated. With the decay of naive
cells derived from the thymus, the naive repertoire changes from the thymic source to
the peripheral proliferation source. The numbers of naive cells tend to be stable over

time, but there is no new phenotypical naive cell entering the system.
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The SD based simulation is closer to the underlying mathematics, but has the disad-
vantage of being high-level, with complete homogeneity of simulated entities. On the
other hand, ABMS allows a representation of each entity and heterogeneity, although it

increases the demand for computational resources.
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4.3 Case 2: Tumour Growth

In the previous section, SD and ABMS were compared for a naive T cell output model,
and it was concluded that for that case study SD is more suitable. There were a set of five
scenarios in which the agents had no interactions and, for all scenarios, SD and ABMS
produced similar outputs. SD is considered preferable, as it takes up less computational

resources.

In order to continue our investigation, which considers the conversion between ODEs,
SD and ABMS simulation approaches for non-interacting agents, mathematical models
of general tumour growth have been explored. The choice for tumour growth models
was due to the importance of immune research on the interactions between tumour cells
and the immune system. Further in this thesis, case studies regarding these interactions

are therefore considered (Chapter B).

The main differences between this case study model and that from case 1 with regard to
the experimentation phase are: (1) case 2 is a one-equation model, (2) the mathematical
outcomes assume a “goal seeker” behaviour, where tumour cells increase or decrease
according to parameter values, and (3) experiments with very small and very large

population sizes are conducted.

4.3.1 Mathematical Models

This section presents the mathematical models used as a basis for the simulations.
Tumour models involve only one equation, which defines mathematical rules for their
growth. There are three classical models of tumour growth considered in this study: the

logistics model, the von Bertalanffy model and the Gompertz model [ET].

According to [E], the most general equation describing the dynamics of tumour growth

can be written as:

dT
dt
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where:

e T is the tumour cell population at time ¢,
e 7T(0) >0,

e f(T) specifies the density dependence in proliferation and death of the tumour

cells. The density dependence factor can be written as:

where:

e p(T') defines tumour cells proliferation

e d(T) define tumour cells death

The expressions for p(T') and d(T") are generally defined by power laws:

p(T) =aT® (4.9)

d(T) = bT" (4.10)

For our experiments, we defined the values for o and § using the three well-established

models:

Logistics Model: o =0 and f =1 (a,b > 0 and b < a for growth) [
von Bertalanffy Model: o = =! and =0 (a,b > 0 and b < a for growth) [ZI]

Gompertz Model: p(T) = a and d(x) = bIn(T) (a,b > 0 and €’ > a for growth) [EI]
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4.3.2 The System Dynamics Model
From Equations to System Dynamics

In order to obtain an equivalent SD model from the tumour growth equations, the

guidelines defined in Section B2 have also been followed.

Model Stocks

For this model there is only one stock, which is the number of tumour cells.

Model Flows

The stock of tumour cells increases with the proliferation inflow and decreases with the

death outflow, as shown in Figure E—Ta:

Proliferation TumaourCells Death

X O X

Figure 4.17: The tumour cells stock variable and its flows: proliferation and death

There is another way to implement the flows, which is considering

f(T') = Proliferation — Death

as an inflow that is positive for tumour growth or negative for tumour cells decrease

(Figure EIX):

ProliferationMinusDeath

(] TumourcCells

Figure 4.18: The tumour cells stock variable and its flow: ProliferationMinusDeath
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We will use this second diagram in the remainder of this case study.

Model Information

Both proliferation and death occur according to the number of tumour cells, as defined
in Equations B9 and BET0. There is therefore information from the stock tumour cells

to the ProliferationMinusDeath flow, as shown in Figure ET9:

ProliferationMinusDeath
4

E] TumourCells

Figure 4.19: The tumour cells stock variable with its flow and information

Model Parameters

The model parameters are a, b, alpha and beta (Equations B9 and B-10).

Flows Calculations

Table B9 shows how the equations from the mathematical models are defined for the

flow values per each tumour growth model.

The Final System Dynamics Model

The final stock and flow diagram with information and parameters used for modelling

the mathematical equations is shown in Figure E=210.
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Table 4.9: Flow values calculations

Model ProliferationMinusDeath Flow

Logistic a x TumourCells — b x TumourCells?

von Bertanlaffy | a x TumourCellss — b x TumourCells

Gompertz a X TumourCells — b x In(TumourCells) x TumourCells

5 ProliferationMinusDeath alpha
b 4 beta

a ]

C] TurnaurCells
Figure 4.20: System dynamics model for the one-equation mathematical model

4.3.3 From System Dynamics to Agent-based Modelling and Simula-

tion

In order to convert from SD to ABMS the guidelines introduced in Section B2 are

once again used.

Model Agent

For the tumour growth case study, there is only one agent, the tumour cell (correspond-

ing to the stock variable TumourCells from the SD model stock and flow diagram).
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Agent Behaviours

The tumour cell agent behaviours are “proliferate” or “die”, according to the rate defined
by the mathematical model. If the rate is positive, there is proliferation, otherwise, death
occurs (Table B10). For the Gompertz model implementation, the parameters alpha

and beta are not considered.

Table 4.10: Agents’ parameters and behaviours for the tumour growth model

’ Parameters ‘ Reactive behaviour ‘ Proactive behaviour ‘
’ a, alpha, b and beta \ Dies if rate < 0 ‘ Proliferates if rate > 0 ‘

Agent Implementation

The tumour cell assumes two states, alive and dead, as shown in Figure 221 below. In
the alive state, these cells can replicate and die. If the growth rate is positive, the cell
replicates according to the rate value; otherwise, it dies. There is, therefore a branch
connecting the two transitions proli ferate and death to the alive state. Once cells move

to the final state dead, they are eliminated from the system and from the simulation.

Turmaur_Cell

Figure 4.21: Tumour Cell agent

The transition connecting the state alive to the branch is triggered by the growth rate.

The correspondent ABMS model rates to the flow values in the SD model are shown
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in Table BT, which illustrates that the variable TumourCells Alive corresponds to the

number of tumour cell agents in the state alive at a certain time in the simulation.

Table 4.11: Transition rate calculations from the SD flow equation for the tumour growth
model

l Model ‘ SD Flow equation ‘ Transition rate
Logistic a.TumourCells — b.TumourCells® a — (b.TumourCellsAlive)
von Bertanlaffy a.TumourCells’ — b.TumourCells a.TumourCellsAlive3 — b
Gompertz aTumourCells — bln(TumourCells)TumourCells | a — b.In(TumourCellsAlive)
Simulation

In the main simulation, apart from the tumour cell agents, the value for the parameters

is defined according to the model studied and outcome values are saved.

4.3.4 Experiments

Two experiments were carried out to compare the SD and ABMS simulation outputs.
For the first experiment, a variable ¢ was established, representing the ratio between a
and b. The purpose of ¢ was to observe the impact of @ and b on the tumour growth
curve: ¢ was therefore set as 5, 2.5, 1.7 and 1.25, so that a fair range of growth could

be observed.

In the second experiment, we defined a = 1.636 and b € {0.002,0.005}. These values
were determined in [E3] and they were used for the next simulation set of experiments

using a two-equation model (Chapter B).

As the outcomes for ABMS were stochastic, each simulation was run for fifty times and
the mean simulation output was presented. For both simulations, the initial values for

tumour cells were defined equal to one.
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4.3.5 Results

These experiments first validated our SD model by comparing its outputs with the
outputs produced by the mathematical model derived from [E0]. Both produced very
similar results. Our ABMS model was then tested by comparing its outputs to the

outputs produced by the SD model (i.e. our base model for the comparison).

The first experiment, as shown in Figures 4.22 (for the Logistics model), 4.23 (for the
Von Bertanlaffy model) and 4.24 (for the Gompertz model) revealed that the outputs
for both simulation approaches were similar for all models. In the logistic model the
variance of the ABMS outcomes is higher because the number of cells in the simulation
is small. In addition, the overall growth of cells in the ABMS results is more accentuated
than the SD results. The Wilcoxon test shows therefore that the distributions of values
for both outcomes differ at a 5% significance level for most scenarios (Table EI3) (in the
table we defined zero for the p-values which results were smaller than 107%). The test
indicates similar results only for scenario 4 in the Logistic model and scenario 2 in the
Von Bertalanffy model. This is explained by the discrete growth of agents in the ABMS
model contrasted with the continuous growth of stocks in the SD model. Furthermore,
the SD is deterministic, while the ABMS is stochastic. In this regard, the outcomes of

the ABMS has erratic behaviour, as is shown in Figure 4.22 (b).

Table 4.12: Wilcoxon test with 5% significance level comparing the results from SD and
ABMS for the Tumour Growth model. The hypothesis of similarity for most cases was
rejected (p ~ 0)

Scenario | p-value (Logistic) | p-value (Von Bertanlaffy) | p-value (Gompertz)
1 0 0 0
2 0 0.4859 0
3 0 0 0
4 0.3221 0 0

Figure 4.25 shows the results for the second experiment, which are also similar, although
Wilcoxon test results reject the similarity hypothesis. The literature suggests that the
logistics model is one of the most used for average tumours, whereas the von Bertalanffy

and Gompertz models are used for more aggressive tumours. As the difference between a
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Figure 4.22: Results for the tumour growth model varying the ¢ parameter: Logistic

model
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Tumour growth using the von Bertalanffy model for the ODE
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Figure 4.23: Results for the tumour growth model varying the ¢ parameter: Von Berta-
lanffy model
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Figure 4.24: Results for the tumour growth model varying the ¢ parameter
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and b is increased, the growth in the Gompertz and von Bertalanffy models demonstrates
a considerable increase on the proliferation of tumour cells, as illustrated in Figure 4.26

below.

Consequently, experiment two using ABMS for the Gompertz and von Bertalanffy mod-
els could not be conducted. From the SD results, it can be observed that the number of
tumour cells reaches over 10% in the Gompertz model, depicted in Figure 4.26(a). To
run the same experiment with ABMS more computational resources are required, and
it would take up more processing time. In this case it is therefore preferable to run the
simulation using SD, even though such a high number of tumour cells also seems to be

unrealistic in tumour biology.

4.3.6 Summary of Case 2

In the second case study simulations from mathematical models of tumour growth were
built. The models used were reviewed in [EI] and represented three different tumour
growth patterns, namely, the logistics growth model, the von Bertalanffy model and
the Gompertz model. These models were used to test our conversion guidelines and to
compare SD and ABMS outputs. The mathematical models were converted into SD
and the ABMS model was developed from the SD model. The intention was to check
if the results would be similar and if SD and ABMS could be used interchangeably for

the second case study.

Two experiments were conducted to compare the outputs for the models. In the first
experiment, the outputs for both simulation approaches were similar. However, the
initial growth of the ABMS results is more accentuated given the fact that agents are
discrete values. For the second experiment, considering a larger number of tumour cells,

the results were very similar.

It was also observed that the SD simulation was more suitable when the number of
tumour cells increased considerably, especially those models of aggressive tumours (von

Bertanlaffy and Gompertz).
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4.4 Case 3: Viral Spread of Human Immunodeficiency

Virus

The third case study tests the conversion guidelines and compares SD and ABMS results
for an ODE model of cell-free viral spread of human immunodeficiency virus (HIV) in
the bloodstream [[4]. The model consists of three populations: healthy CD4+ T Cells,
infected CD4+ T cells and the concentration of free HIV at a certain time. The model

objective is to observe the dynamics of these populations over time.

Healthy CD4+ cells are susceptible to HIV infection at any time during the progress
of the disease. Any cell that expresses CD4 receptors in its surface can be infected. In
particular, CD44 T cells are widely attacked. CD4+ T cells, also known as T helper
cells, are responsible for coordinating most of the adaptive immune responses. AIDS
(acquired immune deficiency syndrome) is the disease of the human immune system
caused by the loss of T cell populations, which are compromised by the HIV. This
condition progressively reduces the immune system effectiveness and leaves the organism

susceptible to opportunistic infections and tumours.

A T cell invaded by a HIV assumes two states. The first is infected, in which the
HIV penetrates the cell. Once the HIV infects the cell, it starts replicating itself inside
the cell. Subsequently, an infected cell becomes actively infected. When reaching this
state, the lytic death of the T cell occurs, which releases the free HIV replications into
the organism, increasing the infection rate. Further details regarding the interactions

between T cells and HIVs are introduced in the next section.

4.4.1 Mathematical Model

The mathematical model proposed in [[7] is described by equations BT to E13. In
these equations, T is the concentration of healthy CD4+ T cells, I is the concentration
of infected CD4+ T cells, V is the concentration of free HIV and ¢ is time (in days).

Healthy CD4+ T cells can be infected by HIV according to a certain rate. Once the
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infection occurs, the HIV is no longer part of the free HIV concentration.

Equation BT describes the dynamics of healthy T CD4+ cells over time. These cells are
(1) produced by precursor cells, (2) die with age, (3) grow by proliferation and according
to the number of infected CD4+ cells and (4) get infected according to the number
of healthy CD4+ cells and the amount of free viruses in the organism. Equation E-T2
describes the dynamics of actively infected cells, as they are obtained by infection of free
HIV within a healthy CD4+ T cell and die according to a certain rate. The concentration
of free HIV dynamics is described by equation B3, in which they are produced whenever
an infected cell dies and releases more free viruses; these free viruses infects new cells

and die according to a certain rate.

There is a percentage of infected cells that becomes actively infected; however, in the
model, only actively infected cells are considered. The three mathematical equations

are depicted as follows:

ar T+1

dI

s VT — prI (4.12)
av

E = n,ubI - k’l‘/T - /WV (4.13)

where:

e T'(t) represents the concentration of healthy CD4+ T cells at time ¢
e I(t) represents the concentration of infected CD4+ T cells at time ¢

e V(t) represents the concentration of free HIV at time ¢

s is the source of CD4+ T cells from precursors

pr is the natural death rate of CD4+ T cells

r is the growth rate of CD4+ T cells
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Trraz is CD4+ T cells carrying capacity

k1 represents the rate of infection of T-cells with free virus

K} is the rate at which infected cells become actively infected

wr is the death rate of infected cells

e n represents the source for free virus

1y is the lytic death rate for infected cells

wy is the loss rate of virus

4.4.2 The System Dynamics Model
From Ordinary Differential Equations to System Dynamics

In this section, the ODE model introduced in Section B2 is converted into an SD

model.

Model Stocks

Following the guidelines from Section B2, there are three stock variables: the healthy
CD4+ T cells (HealthyCD4), the infected CD4+ T cells (InfectedCD4) and the free

HIV concentration (FreeHIV Concentration).

Model Flows

The HealthyC D4 stock inflows are source newborn cells (Source) and cellular growth
(Growth). The outflows are cellular death (HealthyC D4Death) and infection (In fection),

as shown in Figure B=24.

The InfectedC D4 stock is changed by source (infected cells that become actively in-
fected) and death (Figure B2R).
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X

Growth
Source
Z D HealthyCD4
Z HealthyCD4Death
Z Infection

Figure 4.27: The healthy CD4 cells stock and its flows: source (Source), cellular growth
Growth), death (HealthyC D4Death) and infection (Infection)

InfectedCD4 deathInfected

U X

Z Sourcelnfected

Figure 4.28: The infected CD4 cells stock and its flows: source (Sourcelnfected) and
death (deathInfected)

The FreeHIV Concentration stock changes with source, infection of CD4+ cells and

death of viruses (Figure £29).

SourceFreeHIV

X

Infection deathHIV

X O X

FreeHIVConcentration

Figure 4.29: The free HIV stock and its flows: source (SourceFreeHIV'), infection of
CD+ cells (Infection) and viral death (deathHIV)
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Model Information

By looking at Equation EZI, it is possible to identify information between the stock
HealthyCD4 and the flows Growth, Infection and HealthyC D4Death, as shown in
Figure B230. In Equation BT, for the growth calculation, there is the need for informa-
tion coming from infected cells, illustrated in the complete SD stock and flow diagram

(Figure £233).

*Gruwth
|
|
Source

X 0

) HealthyCD4

o
rd |

Py [

¥
. Infection

X"

HealthyCD4Death

Figure 4.30: The HealthyC D4 stock with its flows and information

Equation T2 shows information from InfectedC' D4 to deathInfected. As previously

stated, there is also information from infected cells to the flow Growth (Figure EZ3T).

InfectedCD4 deathInfected

W —4

Z Sourcelnfected

Figure 4.31: The InfectedC D4 stock with its flows and information

There is information from the FreeHIV Concentration stock to the flows Infection

and deathHIV (Equation EI3), as shown in Figure E=332.
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SourceFresHIV

X

Infection —— deathHIV

) —T 0 B X

FreeHIVConcentration

Figure 4.32: The FreeHIV Concentration stock with its flows and information
Model Parameters

The model parameters are the same as those from the mathematical model. Table
below depicts the mathematical parameters, their equivalents in the SD model and their
values for the simulation. These values were defined in [[7].

Table 4.13: Parameters from the mathematical model, their correspondents and values
for the case 3 SD model

Rate \ Correspondent Value

S SourceCD4 10

wr deathRateH ealthyC D4 0.02

r growthRate 0.03

Tz | CarryingCapacity 1500

k1 infectionRate 0.000024
4 becomeActivelylIn fected 0.00002

75 deathRateln fectedC D4 0.26

n viral Particles Released 500

b lyticDeathRateln fectedCells | 0.24

3% deathRate HIV 24

Flows Calculations

Table B4 shows the flows for each stock, their correspondent in the mathematical model

and the flow formula.
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Table 4.14: Flow calculations for the viral

spread model

l Stock ‘ Flow ‘ Expression ‘ Flow formula
Source S SourceC D4
Growth rT (1 — TTA;'I> growthRate.HealthyC DA4.
(1 o HeazthyCD_4+1nfecz_edCD4)
HealthyC’D4 CarryingCapacity
Infection kVT (infectionRate.HealthyC D4
FreeHIV Concentration)
HealthyCDADeath | urT (deathRateHealthyC DA4.
HealthyCD4)
Sourcelnfected kKVT (become ActivelyIn fected.
FreeHIV Concentration.
InfectedCD HealthyCD4)
DeathInfected wrl deathRateln fectedC DA4.
InfectedC D4
SourceFreeHIV nppl (viral ParticlesReleased.
lyticDeathRateln fectedCells.
FreeHIVConcentration InfectedCDA4)
DeathFreeHIV uwv'V (deathRateHIV.
FreeHIV Concentration)

The Final System Dynamics Model

All the stocks combined with the flows and parameters defined in the mathematical

model form the SD model and can be seen in Figure B=33.

4.4.3 From System Dynamics to Agent-based Modelling and Simula-

tion

Model Agents

In order to define the agents the first guideline defined in Section B2 is reviewed:

e stocks preferably become states when they represent accumulations of elements

from the same population

e stocks become agents when they represent accumulations from different popula-
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InfectedCh4 deathInfected

deathRatelnfectedCDé
* growthRate -C]':’cc::_: e X @ deathRatelnfecte

SourceFreeHIV

CarryingCapacity LIGrowth —— Z @ viraParticlesReleased

SourceCD4  Source | Sourcelnfected
@ Z D Z 6 lyticDeathR atelnfectedCells
1 HealthyCD4 s
.»"// I'| \h‘\\
_, I| €] \\
Z - ¥ becomedctivelyInfected “~,‘ deathHIV
HealthyCD4Death ——
X g e X
(¥ deathRateHealthyCD4 © Infection FreeHIVConcentration
infectionR ate deathR ateHIV

Figure 4.33: The system dynamics model’s functions and parameters for case 3

tions

In case 3, the CD4+ T cell population is initially healthy and then becomes infected and
actively infected, according to predefined rates (Table B13). As the stocks HealthyC D4
and InfectedC D4 represent accumulations of the same population, they are therefore
included in the state chart diagram for the ABMS model as states of the T cell CD4
population of agents. For the T cell agent, therefore, we have the states Healthy and

ActivelylInfected.

The other agent in the system is the free HIV virus. This agent has only one intermediate
state, when it is alive and free in the system. It can also die or infect a cell (final states).

Both final states reduce the free HIV agents population.

Agents’ Behaviours

The agents’ parameters and behaviours corresponding to each state are shown in Ta-

ble T3 below.
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Table 4.15: Agents’ parameters and behaviours for the viral spread model

Agent | State Parameters Reactive Proactive
behaviour behaviour
deathRateHealthyC D4 Dies -
becomeActivelyln fected Become infected —
Healthy growthRate and Grows
T Cell CarringCapacity

deathRateln fectedC D4 and Dies —
ActivelyInfected | viral ParticlesReleased
lyticDeath RateIn fectedCells | HIV Concentration -
in fectionRate Infects Healthy CD4 | —
deathRate HIV Dies -

HIV Ale

Agents’ Implementation

Figure B2 depicts the state chart diagram for the CD44 T cell agents, in which CD4+
T cells agents are created in the initial state HealthC D4, where they also grow (repro-
duce). These agents change state (either death or Activelylnfected) according to the
rates defined in the mathematical model. When in the state ActivelyInfected, T cell

agents release a number of free HIVs in the system.

CD4Cell

Healthy

becomeInfected

L
ActivelyInfected

IncreaseHIVConcentration

deathactivelyInfected

Figure 4.34: The CD4+ T cell agent state chart

The other agent in the system is the free HIV virus. For the SD, the concentration of
virus is considered. In the ABMS, however, due to the fact that the number of agents is
a discrete number, each virus is considered as an agent. As shown in Figure E233 below,

the free HIV agent dies and infects cells according to the respective rates. When the
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infection transition is triggered, the HIV agent sends a message to the CD4 Cell agent so

that it becomes infected. Furthermore, during the infection, the HIV agent is removed

from the free HIV population.

infection

Figure 4.35: The free HIV agent state chart

The ABMS model rates corresponding to the flow values in the SD model are shown

in Table B8, in which the variable Total HIV corresponds to the number of free

HIV agents in the system at a certain time in the simulation. Similarly, the variable

TotalHealthy is the total number of healthy T cells and Totallnfected is the total

number of actively infected cells.

Table 4.16: Transition rates calculations from SD flows equations for the viral spread

model
[ State Transition [ SD Flow equation [ Transition rate
becomeActively- | (becomeActivelyIn fected.
Infected FreeHIV Concentration. triggered by message
HealthyCD4)
death (deathRate HealthyC D4.
healthy (CD4) HealthyCD4) deathRateH ealthyC D4
growth growthRate.HealthyC DA4. growthRate. Total Healthy.
(1 _ HealthyCD4+1InfectedC D4 ) <1 _ (TotalHealthy+Totallnfected) )
CarryingCapacity CarryingCapacity
Actively Infected | deathActively- (deathRatelIn fectedC D4.
(CD4) Infected InfectedCD4) deathRatelIn fectedC D4
infection (infectionRate.
FreeHIV Concentration.
Alive (HIV) HealthyCD4) in fection Rate.Total Healthy
death (deathRateHIV.

FreeHIV Concentration)

deathRate HIV
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Simulation

For the simulation development, apart from the agents, there are also have three events,
which are implemented methods in the Any Logic environment that occur according to a
certain rate. The event Source determines the input of new T cells (which corresponds to
the flow Source in the SD stock and flow diagram of Figure B33). This event recurrently

occurs at a rate equal to 10 and adds a new healthy T cell in the system.

4.4.4 Experiments

For case 3, experiments were conducted initially using the parameter values defined in
Table ET3. Results were validated using those obtained in the mathematical model
from [[A]. As the outcomes for ABMS are stochastic, each simulation was run for fifty

times and the mean simulation output was presented.

4.4.5 Results

The SD and ABMS simulation outcomes represented the dynamics of healthy CD4+ T
cells, actively infected T cells and free HIVs. Experiments were carried out using exactly
the same parameters and initial values for both simulations, but the results were very
different. It was acknowledged that the initial value for free HIVs in the SD model was
less than one, which could not be adopted in the ABMS as the number of agents was
always an integer value; the initial HIV number was therefore increased to one in the
SD. The SD results remained very similar as those of the mathematical model. The
same value adopted in the ABMS, however, produced very different results. The HIV
population disappears over the simulation and the infection is not established. There
was the need, therefore to add a constraint in the free HIV agent, which determines that
the number of agents should never be smaller than one, as shown in Figure B=3@. The
branch in the state chart only allows viral death if the size of the population is greater

than one.
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Figure 4.36: The free HIV agent state chart with constraint

The simulation outcomes with the new HIV state chart are shown in Figure 4.37 (for
healthy CD4+ T cells), Figure 4.38 (for infected CD4+ T cells) and Figure 4.39 for free
HIVs. For the ABMS results, we show the outcomes of ten different runs. For each run,
healthy CD4 starts decreasing at a different point in time. The decay of these cells is
given by the HIV infection, which is defined by the rate in fection Rate x Total Healthy.
The healthy decrease start time will correspond to any point in time delimited by the

in fectionRatex Total Health : :
infectionRatexTotalHealthy) - hich establishes the ran-

probability density function f = el
domness of the system and consequently explains the differences occurred between the

ten runs in the graph.

The results with the closest ABMS run to the SD results are shown in Figures 4.40, 4.41
and 4.42. Although in this case the outcomes are more similar, there are still differences

given by random character of the ABMS.

Furthermore, the numbers if actively infected cells and HIV in the ABMS are higher on
the global local maximus. This occurs because of the continuous values considered in

the SD model contrasted with the discrete number of agents from the ABMS.
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Figure 4.37: ODE, SD and ABMS results for the healthy CD4+ T cells
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Figure 4.38: ODE, SD and ABMS results for the actively infected CD4+ T cells
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Figure 4.39: ODE, SD and ABMS results for the HIVs
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4.4.6 Summary of Case 3

In the third case study our conversion guidelines were tested and SD and ABMS results
for a HIV spread mathematical model were compared. The mathematical equations
describe the dynamics of populations of healthy CD4 T cells, infected CD4 T cells and
free HIV viruses. With the conversion guidelines we developed, it was possible to build
the SD and ABMS simulations. The SD results matched exactly the mathematical
model outcomes (see SD results from Figures 4.37, 4.38 and 4.39), but the results for

the ABMS were different.

The differences between the SD and ABMS results were due to the fact that stocks
in the SD assumed real numbers while agents were integer values. Furthermore, the
stochasticity inherent in the ABMS model produced several different runs with distinct
times in which the HIV infection started. In all the runs, however, the pattern of
behaviour, that is the decrease of healthy cells followed by an increase of actively infected
and free HIV virus, occurs in all the runs. And in this sense, the ABMS results seem
more realistic, as an infection of an organism can occur or develop at any point whithin

a time interval.

4.5 Summary

This chapter presented three case studies with different characteristics in order to ex-
plore the effectiveness of our conversion guidelines and asses the different approaches
results after the conversions. Furthermore, we wanted to investigate the most suitable

simulation approach for examples involving static non-spatial entities.

The first case study was concerned with the use of ODEs to model interactions between
different populations of T cell. The objective was to investigate the relevance of different
sources of naive T cells to the organism. Case one was the most complex in terms
of elements involved, populations size, modelling effort and time demanded for the

simulations. The conversion steps allowed for the construction of the SD and the ABMS
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without any extra effort. Regarding the outcomes, the Wilcoxon rank sum statistical
test failed to reject the hypothesis that the outcomes for the SD and ABMS have equally
large values. The main difference observed for both approaches concerned processing
time and computational resources demanded: ABMS was far more time consuming and
demanded more computational memory to run the experiments. For this case, it can be
therefore concluded that, although the approaches can be used interchangeably, SD is

more suitable.

The second case study referred to the investigation of tumour growth, and it was the
most simple of the three cases presented. It was similar to the first example in that the
conversion guidelines were effective in assisting the construction of both SD and ABMS
simulations. It was observed that the ABMS presented limitations in simulating cases of
aggressive tumours. As tumour cells increased significantly and very quickly, the ABMS
runs were very slow and, in most of the cases, they exceed the available memory limit.
As a result, only SD was effective in producing outcomes for these cases. Furthermore,
it was observed that the overall growth for the ABMS outcomes is more accentuated

than those from the SD, given the fact that tumour cells agents are discrete numbers.

In case three, although the conversion guidelines also made it possible to build both
simulations, the results initially were very different. The original mathematical model
investigated the dynamics of T Cells and HIVs in infected organisms. The first chal-
lenge encountered during the ABMS experimentation phase was that the HIV agents
disappeared from the population and did not come back. There was the need, therefore,
to introduce a constraint in the model to assure that at least one HIV agent was present
throughout the simulation time. In addition, the main differences after adding the con-
straint were caused by the continuous real values for stocks against discrete number of

agents.

By observing the case studies outcomes, it is not possible to establish a generalization
as to when each approach is preferable. As a “rule of thumb” from our case studies,

however, it seems that:
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e When the population sizes increase to the order of 102, the outcomes from ABMS

become very similar to those from the SD.

e In population sizes of this magnitude, therefore SD is preferable, as it is less

resource consuming and simpler to implement.

e SD is also preferable for these cases because it is simpler to verify and validate

against the ODE outcomes.

e ABMS is incapable to fully reflect the ODE outcomes when the mathematical
model considers values smaller than one. Further validation with real data, there-

fore is necessary to evaluate which model better matches reality.

In the following chapter another set of case studies is presented which involves interacting
agents. The effectiveness of our conversion guidelines is also assessed, and comparison

of results is produced.
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Chapter 5

Dynamic Spatial and Non-Spatial
Models

5.1 Introduction

In this chapter a further three case studies involving simulations in immunology are
developed in order to fulfil some of the objectives introduced in Section B33. In particular,
we consider interacting non-spatial and spatial entities in the models. We believe that
spatial movement will provide means to further test our conversion guidelines. We
also hypothesise that spatial interactions between the elements of the models are more
suitable for the ABMS models and their conversion to an equivalent SD might result in

a rather complex stock and flow diagram. The goals of this chapter, therefore are:
1. To test the guidelines defined to convert from ODE to SD and to convert between
SD and ABMS models and assess the impact of this conversion.

2. To compare SD and ABMS outcomes, the type of hypothesis to be tested and the

modelling effort.

3. To define guidance to choose between SD and ABMS depending on the character-

istics of the problem to be addressed.
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As discussed in the previous chapter, simulations are built taking into account three
different case studies based on mathematical modelling, in which we test the conversion
guidelines, compare SD and ABMS outcomes and assess the impact of the conversions.
The case studies are based on different non-spatial ODE models of interactions between
the immune system and cancer. For the three case studies, the SD model is firstly
obtained and converted into an ABMS model. Subsequently, an ABMS model with
spatial interactions is derived from the non-spatial model. We investigate then if the

spatial ABMS can be converted into into an SD model.

The fourth case study is based on an ODE model involving interactions between tumour
cells and generic effector cells (Section B2). The fifth case study adds to the previous
model the influence of IL-2 cytokine molecules in the immune responses of effector cells
towards tumour cells (Section B33). The final case study comprises an ODE model of
interactions between effector cells, tumour cells, and IL-2 and TGF-/ molecules (Sec-
tion B4). In Section B, we discuss the results obtained and draw conclusions on the
most suitable approach for each case, based on the outcomes obtained with the experi-

ments.

5.2 Case 4: Interactions between Tumour Cells and Generic

Effector Cells

In the previous chapter (Chapter @), for the second case study, different types of math-
ematical models of tumour growth were converted into SD and ABMS simulation. For
case 4 in this chapter, a mathematical model of tumour cells growth and their interac-
tions with general immune effector cells defined in [E3] is considered for the conversions

into SD and ABMS.

Effector cells are responsible for killing the tumour cells inside the organism. Their
proliferation rate is proportional to the number of tumour cells in the organism. As the

quantities of effector cells increase, the capacity of eliminating tumour cells is boosted.
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Furthermore, these immune cells proliferate and die per apoptosis, which is a pro-
grammed cellular death. Moreover, in the model, cancer treatment is also considered.
The treatment consists of injections of new effector cells into the organism. The details

of the mathematical model are given in the following section.

5.2.1 The Mathematical Model

The interactions between tumour cells and immune effector cells can be defined by the

following equations:

% =Tf(T) — dr(T, E) (5.1)
2 — pe(T, B) — di(T, B) — ap(E) + B(T) (5.2)

where

T is the number of tumour cells,

FE is the number of effector cells,

e f(T) is the growth of tumour cells,

e dp(T, E) is the number of tumour cells killed by effector cells,

e pp(T, E) is the proliferation of effector cells,

e dp(T, E) is the death of effector cells when fighting tumour cells,
e ap(F) is the death (apoptosis) of effector cells,

e O(T) is the treatment or influx of effector cells.

Kuznetsov [E3] defines the functions f(T'), dp(T,E), pp(E,T), dg(E,T), ap(F) and

®(t) as shown below:
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where:

fast the growth occur,

F(T) = a(1 - bT)

dr(T,E) = nTE

pT'E
ET)= ——
pe(E,T) ST

dg(E,T) = mTE

ap(E) =dE

n is the rate in which effector cells kill tumour cells,

based on the number of existing tumour cells,

m is the rate of death of effector cells after fighting tumour cells,

d is the rate of effector cells apoptosis,

s is the rate of influx of effector cells as treatment

(5.5)

a and b are parameters for the Logistic growth of tumour cells and determine how

The parameters p and g control the amount of proliferation for the effector cells
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The Logistic model is adopted for tumour growth, as it seems to be the most commonly

used among the mathematical models involving cancer and the immune system.

5.2.2 The System Dynamics Model

From Ordinary Differential Equations to System Dynamics

As in the previous chapter, the guidelines of Section B to obtain the SD model are

applied.

Model Stocks

The stocks for case 4 are the tumour cells and the effector cells.

Model Flows

The tumour cells stock is modified by proliferation and death of these cells, which in
Figure B below are combined in only one flow ProliferationMinusDeath, which is
an inflow to represent the tumour growth. The stock is also modified by the number of

tumour cells that are killed by the effector cells:

ProliferationMinusDeath TumourCells

KilledByEffectarCells

Figure 5.1: The tumour cells stock variable and its flows: proliferationMinusdeath
and tumour cells killedbyE f fectorCells

The effector cells stock is modified by the inflows proliferation and treatment; and by

the outflows death and apoptosis, as shown in Figure B2
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Death
Proliferation EffectorCells  Treatment
Z Apoptosis

Figure 5.2: The effector cells stock variable and its flows: proliferation, death, apoptosis
and treatment

Model Information

There is information from the TumourCells stock to ProliferationMinusDeath and
KilledByImmuneCells flows, as shown in Figure B3. In addition, the number of tu-
mour cells influences the death of effector cells and also stimulates the proliferation of

these immune cells. This information is included in the complete SD model shown in

Figure B3.
ProliferationMinusDeath TumourCells
e —
|
II
¥

KilledByEffectarCells

Figure 5.3: The tumour cells stock variable with its flows and information

There is information from the Ff fectorCells stock to the flows Death, Proliferation
and Apoptosis, as shown in Figure BE4. In addition, the number of effector cells influences

the number of tumour cells killed (Figure B3).
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Death
A
I
[
1
Profiferation '\ | Effectorcells Treatment
) C— X
lI
[
II
¥
Z Apoptosis

Figure 5.4: The effector cells stock variable with its flows and information
Model Parameters

The model parameters are the same as those from the mathematical model: a, b, d, g, m,
n, p and s. The values for these parameters vary according to the scenario investigated

(Section B2A).

Flows Calculations

Table B0 shows how the equations from the mathematical models are defined for the

flow values:

The Final System Dynamics Model

The complete SD is shown in Figure B3.

5.2.3 From System Dynamics to Agent-based Modelling and Simula-

tion

Model Agents

Two classes of agents are defined: the tumour cell and the effector cell.
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Table 5.1: Flow calculations for case 4

l Stock ‘ Flow ‘ Expression ‘ Flow formula

ProliferationMinusDeath | a(1 —bT)T | TumourCellsx

TumourCells (a x (1 = b x TumourCells))
KilledByE f fectorCells nTE n X TumourCells x Ef fectorCells
Protiferation R
Death mTE m X TumourCells x Ef fectorCells

EffectorCells
Apoptosis dE d x Ef fectorCells
Treatment s s

Agents’ Behaviours

The agents’ parameters and behaviours corresponding to each state are shown in Ta-
ble B2 below. In this example, all behaviours are derived from the flows in the SD stock
and flow diagram, so no extra modelling effort is necessary apart from those indicated

in our guidelines:

Table 5.2: Agents’ parameters and behaviours for case 4

Agent ‘ Parameters ‘ Reactive behaviour Proactive behaviour
a and b Dies (with age)
a and b Proliferates

Tumour Cell m Damages effector cells
n Dies killed by effector cells
m Dies (with age)
d Dies per apoptosis

Effector Cell p and g Proliferates
S Is injected as treatment
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Figure 5.5: SD model for case 4

Agent Implementation

The state chart for the tumour cells is shown in Figure B8(a), in which an agent pro-
liferates, dies with age or is killed by effector cells. In addition, at a certain rate, the
tumour cells contribute to damage to effector cells. The rates defined in the transitions
are the same as those from the mathematical model. Figure B8(b) presents the effector
cell agent state chart, in which either the cell is alive and able to kill tumour cells and

proliferate or is dead by age or apoptosis.

Turnour_Cell

I Effector_Cell

causesEffectorDamage
Reproduce
lall Turmaur
proliferation

diekilledByEFfector

death
diePerApoptosis e
IEHEr,
dead
(a) Tumour cell agent (b) Effector cell agent

Figure 5.6: ABMS state charts for case 4

The ABMS model rates corresponding to the flow values in the SD model are shown
in Table B33. In the transition rate calculations, the variable TotalTumourCells corre-

sponds to the total number of tumour cell agents; and the variable Total E f fectorCells
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is the total number of effector cell agents:

Table 5.3: Transition rates calculations from SD flows equations for case 4

[ Agent | Transition | SD Flow equation | Transition rate ]
proliferation a.TumourCells.(1 — TumourCells.b) | a — (TotalTumour.b)
death a.TumourCells.(1 — TumourCells.b) | a— (TotalTumour.b)

Tumour Cell
dieKilledByEffectorCells | n.T'umourCells.Ef fectorCells n.Total Ef fectorCells
causeEffectorDamage m.TumourCells.E f fectorCells m
Profiferation DT s Culle fectrcell pros T
Effector Cell
DieWithAge Ef fectorCells.d d
DiePerApoptosis m.TumourCells.E f fectorCells message from tumour

Simulation

For the simulation building, apart from the agents, there is also an event — namely,

treatment — which includes new effector cells with a rate defined by the parameter s.

5.2.4 Experiments

Four experiments for case 4 were carried out and their parameter variation is shown
in Table B4. These values were obtained from [EI]. In the four scenarios, differences
in the death rate of tumour cells (defined by parameter b), effector cells apoptosis rate
(defined by parameter d) and treatment (parameter s) were considered. In the first three
scenarios, cancer treatment was considered, while the fourth case did not consider any
treatment. Similar to the experiments reported in the previous chapter, the simulation

for the ABMS was run fifty times and the mean values are displayed as results.
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’ Scenario \ b \ d \ S ‘
1 0.002 | 0.1908 | 0.318
2 0.004 2 0.318
3 0.002 | 0.3743 | 0.1181
4 0.002 | 0.3743 0

Table 5.4: Simulation parameters for different scenarios. For the other parameters,
the values are the same in all experiments, i.e. a = 1.636, g = 20.19, m = 0.00311,
n =1 and p = 1.131, as defined in [E3]. The four scenarios investigate variations in the
aggressiveness of the tumour (parameters a and b), apoptosis of effector cells (parameter
d) and amount of cells injected as treatment (s). p and g define the proliferation of
effector cells and n determines the rate in which effector cells kill tumour cells.

5.2.5 Results

In the first scenario results shown in Figure B2 below, the behaviour of the tumour
cells appears similar for ODE, SD and ABMS. However, the Wilcoxon test rejected the
similarity hypothesis for tumour outcomes, as shown in Table BEH. The reason for this
test pointing out that the outcomes differ is that tumour cells for the ODE and SD
models decreased asymptotically towards to zero, while the ABMS behaviour is discrete
and therefore reached zero. Furthermore, the variances observed in the ABMS curve,
given its stochastic characteristic, also influenced the Wilcoxon test results. The number
of effector cells for both simulations follow the same pattern, although the numbers are
not the same due to the agents variability. This variability is very evident with regards
to the effector cells population for two main reasons: (1) for this case study the size of
the populations involved is relatively small, which increases the impacts of stochasticity
in the outcomes; and (2) the ODE and SD systems change the amount of cells overtime
in a continuous fashion, which means that, in this simulation, fractions of cells are
considered. ABMS does not consider fraction of cells - a cell either is alive or dead.
This is implemented as a boolean indicator and corresponds to the real world, where
fractions of cells could obviously not exist. Considering the above explanations we
conclude that for this scenario the ABMS outcomes seem more realistic, as in biological

experiments cells are also atomic entities and stochastic variability occurs.
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The results for the second scenario seem similar for effector cells, as shown in Figure B,
which was confirmed by the Wilcoxon test (Table BH). The results for the tumour
cells are visibly not the same. Regarding the ODE and SD simulations, in the first
ten days the tumour cells population first decreases and then grows up to a value of
240 cells, in which the growth reaches a steady-state. The initial decrease of tumour
cells is also observed in the ABMS outcomes. After ten days, however, there is a smaller
cellular increase and a steady-state is not observed. Similar to the previous scenario, the
simulation curve presents an erratic behaviour throughout the simulation days. There
is, however an unexpected decay of tumour cells over time. This is explained by the
individual characteristics of the agents and their growth/death rates attributed to their
instantiation. As the death rates of tumour cells agents are defined according to the
mathematical model, when the tumour cell population grows, the newborn tumour cells
have higher death probabilities, which leads to a considerable number of cells dying out.
This indicates that the individual behaviour of cells can lead to a more chaotic behaviour

when compared to the aggregate view observed in the ODE and SD simulations.

Table 5.5: Wilcoxon test comparing case 4 simulation results

Implementation | Cells Scenario (p-value)
1 2 3 4
ABS Tumour 0 0 0.8591 0
Effector | 0.3789 | 0.6475 0 0
ABS - Fix 1 Tumour 0 0 0 0.0011
Effector 0 0.3023 0 0
ABS - Fix 2 Tumour 0 0 0 0
Effector 0 0 0 0

For scenarios 3 and 4, shown in Figures B9 and B0 respectively, the results for both
approaches differ completely. Moreover, with regard to the tumour cells curve, the
differences are even more evident. The ODEs and SD outcomes for scenario 3 reveal
that tumour cells decreased as effector cells increased, following a predator-prey trend
curve. For the ABMS, however, the number of effector cells decreased until a value close
to zero was reached, while the tumour cells numbers varied differently from the ODEs

results. As we discussed for the previous scenarios, the predator prey-pattern observed
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in the ODE and SD simulations was only possible due to its continuous character. In the
ODE and SD simulation outcome curves for the effector cells it is possible to observe,
for instance, that after sixty days the number of effector cells ranges between one and
two. These values could not be reflected in the ABMS simulation and therefore the

differences occur.

In scenario 4, although effector cells appear to decay in a similar trend for both ap-
proaches, the results for tumour cells vary widely. In the SD simulation, the numbers of
tumour cells reached a value close to zero after twenty days and then increased again.
For the ABMS simulation, however, tumour cells reached zero and never increased again.
Similar to scenarios 2 and 3, the continuous ODE simulation outcomes contrasted with
discrete agents caused the different outcomes. Furthermore, as occurred in scenario 2,
the individual behaviour and rates attributed to the cells seemed to have an impact in

the growth of tumours.

Overall, regarding the processing time taken and computational resources used to run
the simulations, both approaches were equivalent. As there were only a few agents in

the system, the ABMS simulations ran nearly as fast as those using SD.
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Figure 5.7: Results for scenario 1
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Figure 5.9: Results for scenario 3
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Scenario 4 using ODE

Figure 5.10: Results for scenario 4
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5.2.6 Summary of Case 4 — Converting from System Dynamics to

Agent-Based Modelling and Simulation

A mathematical model of tumour cells growth and their interactions with general im-
mune effector cells was considered for conversion into SD and ABMS. Four experiments
were conducted and, for only one of them, the results were similar to the mathematical
model. The differences in the output were due to the fact that effector cells numbers

changed continuously in the SD, while for the ABMS they changed in a discrete pattern.

The results in these experiments demonstrated that there were simulation cases where
SD and ABMS derived from the same mathematical model do not have the same output.
Without experimental data for validation, it is therefore impossible to conclude which

approach would be more suitable for these cases.

One alternative would be the development of an ABMS solution, which is not based on
the rates defined in the mathematical model. However, it would appear that, for each
output (or parameter change on the mathematical model), there should be a different
ABMS implementation. The constraint was therefore added that tumour cells should
always be greater than zero in the ABMS for the second and fourth scenarios. The
outputs became closer to those from the SD, as shown in Figure 5.11. This restriction,
however, also changed the first scenario results which had previously seemed satisfactory.
In scenario 4, although the outcome with this fix did not look similar at the start of the

simulation, the steady state presented closer values.

In order to achieve closer results for scenario 3, the constraint was implemented that
the number of effector cells should be greater than zero. The results are shown in line
four of Figure 5.11. However, the fix did not work perfectly as only the steady state
of the simulation presented similar results. Table B (page [a0) shows the Wilcoxon

statistical test results for fix 1 and fix 2.
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5.2.7 From Agent-based Modelling and Simulation to System Dynam-

ics

In this section we test our guidelines, as defined in Section B, to convert the case
4 ABMS model into an SD model. We decided to use the same case study to convert
from ABMS to SD in order to proceed the validation of the outcomes based on those
from the mathematical model. Furthermore, this decision was based on the fact that we
did not have access to other established ABMS models or experimental data to build

an ABMS from scratch and then convert it to SD.
We performed our conversion from ABMS to SD as follows:

1. Identify the system structure. First there is the need to recognize the system
structure and assume a high level of aggregation for the objects being modelled. It is
necessary to generalise from the specific events and consider patterns of behaviour in the
system. The cells, therefore, no longer respond individually. The simulation out- come
is given by the collection of cells and its dynamics as a group. In our case, there are
two cell populations (aggregations). The ABMS diagram (Figure B132) illustrates that
the tumour cell population changes with time by proliferation, natural death and death
caused by effector cells. The second population comprises the effector cells, which die
with age or apoptosis/damage and reproduce. The effector cell population negatively
impacts on the amount of tumour cells because effector cells kill tumour cells over time.
The repro- duction of effector cells increases as the number of tumour cells increase. In
addition, as effector cells kill tumour cells they become damaged. The tumour cell pop-
ulation therefore impacts on the effector cells population in both positive and negative

ways.

2. Identify the stocks in the system. Stocks are physical entities which can accu-
mulate over time. In our example, we defined as stocks the effector cells and tumour

cells.

3. Define the stocks, their flows and information. Having the stocks (step
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Figure 5.12: ABMS state charts for conversion to SD

2) and the knowledge about the structure of the model (step 1) we can depict how
each stock is changed over time by the flows and the information about how a stock
would influence a flow. The effector cells stock is subtracted by death and apoptosis.
Moreover, it is increased by proliferation and treatment. Both death and proliferation
require information about the stock of effector cells. The stock and flow diagram for
effector cells is shown in Figure B3 below. The same occurs with the tumour cell stock,

which is changed by proliferation and death.

4. Define the final stock and flow diagram. After defining the diagrams for each
stock, it is necessary to return to the system structure and define how the stocks will
interact or influence each other. As stated previously (step 1), tumour cells impact on
the proliferation and death of effector cells, and effector cells influence the growth of

tumour cells, as shown in Figure BT3.

5. Define the mathematical model. For SD, a set of mathematical equations is
necessary to describe how the stocks will change over time. The diagram depicted in
Figure B3 indicates that the interactions between tumour cells and immune effector

cells can be defined by the equations:

% = pr(T) — d1p(T) — d2¢ (T, E) (5.9)
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Figure 5.13: SD stock and flow diagram

‘% = pp(T,E) — dg(T,E) — ap(E) (5.10)

where T represents the number of tumour cells, F is the number of effector cells, pr(T") —
d1p(T) is the growth of tumour cells (proliferation—death), d27 (T, E) is the number of
tumour cells killed by effector cells, pg (T, E) is the proliferation of effector cells, which is
influenced by the number of tumour cells, and ag(E) is the death (apoptosis) of effector

cells.

6. Define the parameters of the mathematical model. The parameters are

obtained from the transition rates (Table BM):

where a = 1.636, g = 20.19, m = 0.00311, n = 1 and p = 1.131. The parameters b, d

and s vary according to the scenario studied.

7. Define the flow calculations A flow expression is defined by looking at the
transition rate calculation and the information defined in the stock and flow diagram,
as illustrated in Table B2 below. The index 4 in the formulas indicates that the variable

is obtained by referring to the information in the stock and flow diagram of Figure BT3.

8. Define the final SD model. The final SD model, containing the stocks, flows,
information and parameters is shown in Figure BETd. The resulting stock and flow

diagram is the same as that from Figure B3, which verifies the effectiveness of our
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Table 5.6: Transition rates from ABMS model for case 4

’ Agent ‘ Transition ‘ Transition rate ‘ Parameter(s) ‘

Proliferation a — (TotalTumourCells.b) | a and b

Tumour Cell | DieWithAge a — (TotalTumour.b) a and b
DieKilledByEffectorCells | message from effector n
Proliferation L +TT0§;ZZTTZTROOZT%£ZSS pand g
Die d d

Effector Cell
DieWithAge m.TotalTumourCells m
KillTumour n n

Table 5.7: Flow calculations for case 4 from ABMS to SD

l Stock ‘ Flow ‘ Flow formula ‘

ProliferationMinusDeath | TumourCells;(a(1 — b.TumourCells))
TumourCells

KilledByE f fectorCells n.TumourCells; E f fectorCells

. . .TumourCells.E f fectorCells

Proliferation p !I+Tumowce”’;

Death m. TumourCells.E f fectorCells;
EffectorCells

Apoptosis d.Ef fectorCells;

Treatment s
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guidelines for this case.
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Figure 5.14: SD model

5.2.8 From Agent-based Modelling and Simulation to System Dynam-

ics Considering Agents’ Movement

In the previous section the model considered is non-spatial and therefore the effector
cells do not move to reach a tumour cell. The non-spatial character of the model impacts
on the results of the simulations because tumour cells die at a rate that is calculated
based on the entire population of effector cells. In order to construct a simulation of a
system closer to reality, a certain effector cell E,, has to move towards a tumour cell T¢,
and kill it. The remaining effector cells in the population will therefore have no impact
on the death of T,,. There is now a new simulation, in which cellular spatial location
is considered. The objectives with this new scenario are: (1) to observe the differences
in the model’s behaviour over time, compared with the previous static model; and (2)
to investigate how the movement of effector cells would impact on the guidelines for the

SD model construction.
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The Agent-based Model

The agents’ state charts of the dynamic model are similar to those considered in the

static model, as shown in Figure BT3:

T Tumaur_Cell

Effector_Cell
[ alive ] I

Reproduce
praliferation
diekiledByEffectar
death
diePerApoptosis
dizPerage
dead
(a) Tumour cell agent (b) Effector cell agent

Figure 5.15: ABMS state charts for case 4 considering agent’s movement

Concerning the agents’ behaviours, those from the static model (Table BE3) remain.
In addition, the random movement behaviour is considered for both effector cell and
tumour cell agents. The movement of the agents is controlled by events that occur at a
certain rate (in our simulations, 0.01 was the rate for effector cell movement and 0.0001
for tumour cell movement). At each step of the simulation, an effector cell agent will
look for a tumour cell and move towards it in order to kill it. In order to do the killing,
an effector cell will send a message to the corresponding tumour cell agent, which will

then die. The remaining transitions are triggered by the corresponding rates.

System Dynamics Model for the Dynamic cells of the Agent-based Model

At each time step in the simulation, the maximum number of tumour cells killed is equal
to the number of effector cells, given the movement constraint added. Equation B9 is

therefore replaced by Equation BT:
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O — pr() — d1(T) — d20(B) (5.11)

where d27(F) = nE

The final SD model for the dynamic agent-based model will differ from that for the
static agent-based model with regard to the KilledByE f fectorCells flow, which will

no longer have the information from the tumour cells stock, as shown in Figure b13:

Death
X @n
@ a _— Qe |I
Prolifer ationMinusDeath Tumnul'E;IIs Praliferation I'-_l EffectarcCells  Treatment
X r——1] T X e X
@a s |
@b T | @s
= |
- Apoptosi
6 n Z KilledByEffectarCells Z POpRosis
@d

Figure 5.16: SD model corresponding to the dynamic agent-based model

5.2.9 Experiments

Three scenarios were considered in our experiments, as depicted in Table B8 below.
These were similar scenarios to those for the previous experiments (Section E224); how-

ever, treatment was not considered.

’ Scenario ‘ b ‘ d
1 0.002 | 0.1908
2 0.004 2
3 0.002 | 0.3743

Table 5.8: Simulation parameters for different scenarios in the dynamic models. For the
other parameters, the values are the same in all experiments, i.e. a = 1.636, g = 20.19,
m = 0.00311, n =1 and p = 1.131.
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The simulations were run for a period equivalent to one hundred days, using both
approaches. Fifty replications for the ABMS were run and the mean values for the

outputs were collected.

5.2.10 Results for the Static Model

The results obtained for the static model are the same as those from Figure B2, as
the SD obtained from the ABMS is the same as that obtained from the mathematical

model.

5.2.11 Results for the Dynamic Model

The simulation results are shown in Figures 5.17, 5.18 and 5.19. For all scenarios, the
results for tumour cells are very similar in both approaches. In the third scenario,
differences occur in the initial growth of effector cells, which makes the maximum num-
ber of this population greater than the SD. The steady-state is very similar for both

approaches.

5.2.12 Summary of Case 4 — Converting from Agent-Based Modelling

and Simulation to System Dynamics

In the previous sections we tested our guidelines in order to convert from ABMS models
to SD models. Case 4 ABMS model obtained from the SD was reverted back to SD. We
decided to use the same case study to convert from ABMS to SD in order to proceed the
validation of the outcomes based on those from the mathematical model. Furthermore,
we did not have access to other established ABMS models or experimental data to build

an ABMS from scratch and then convert it to SD.

In addition to the original non-spatial model, we defined a hypothetical system that
considered the spatial movement of agents. Results indicated that it is possible to

obtain a SD model based on the information inherited in an ABMS model for our case
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study, however, the outcomes are not always similar.

For the non-spatial scenario, results differed because stock numbers changed continu-
ously in the SD, while for the ABMS agents’ quantities changed in a discrete pattern.
Furthermore, the variability produced by in the outcomes from the ABMS was not
replicable in the obtained SD model. These results are important as they exemplify cir-
cumstances in which differences in the outcomes should be expected and why they occur.
In addition, it is necessary to evaluate together with experts in immunology whether
these differences are acceptable when compared to their real-world experimentation.
This outcome information should also be considered when there is the necessity of re-
conceptualizing a model in a multi-paradigm approach, given the impact of translating

between paradigms.

In the spatial scenario, tumour cell outcomes were very similar for both approaches;
however, the effector cell results for one scenario were slightly different as the numbers in
the ABMS were greater than the SD values. Such differences are due to the randomness
and discrete values for agents in the ABMS. This experiment showed that there are
examples where it is possible to represent movement with SD, which is useful for multi-

paradigm modelling.
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5.3 Case 5: Interactions Between Tumour Cells, Effector

Cells and Cytokines IL-2

The second case study investigated in this chapter is concerned with a mathematical
model for the interactions between tumour cells, effector cells and the cytokine IL-2.
This is an extension of the previous study since it considers IL-2 as molecules that will
mediate the immune response towards tumour cells. They will affect the proliferation
of effector cells according to the number of tumour cells in the system. Treatment is
now applied in two different ways, by injecting effector cells or injecting cytokines. The

details of the mathematical model are introduced in the following section.

5.3.1 The Mathematical Model

The mathematical model we use in case 5 is obtained from [E2]. The model’s equations
illustrate the non-spatial dynamics between effector cells (E), tumour cells (T) and the

cytokine IL-2 (I1), described by the following differential equations:

dE P1 EIL

— =dl'— B+ — +5sl 5.12
o e (5.12)
Equation B2 describes the rate of change for the effector cell population E [B2]. Ef-

piEIL

fector cells grow based on recruitment (cT') and proliferation (f27E

). The parameter ¢
represents the antigenicity of the tumour cells (T) [0, E2]. w9 is the death rate of the
effector cells. p; and g1 are parameters used to calibrate the recruitment of effector cells

and sl is the treatment that will boost the number of effector cells.

dT ag BT
Y s - —
i~ )= +T

(5.13)

Equation B3 describes the changes that occur in the tumour cell population T over

time. The term a(1 — bT") represents the logistic growth of T (a and b are parameters

ao BT

T is the number of tumour cells

that define how the tumour cells will grow) and
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killed by effector cells. a, and go are parameters to adjust the model.

dl, _ ppBT
dt — g3+T

— pslp + s2 (5.14)

p2 BT
g3+T

The IL-2 population dynamics is described by Equation BTA. determines IL-2

production, which is regulated by the parameters py and g3 [E3]. usg is the IL-2 loss. s2

also represents treatment, which is given by the injection of IL-2 in the system.

5.3.2 The System Dynamics Model
From Ordinary Differential Equations to System Dynamics
Model Stocks

The SD model contains three stock variables: tumour cells, effector cells and IL-2.

Model Flows and Information

The stock of effector cells, described by Equation B3, is changed by the recruitment
of new effector cells, according to the number of tumour cells, death, proliferation and
treatment (insertion of new effector cells). There is information from the effector cells

stock to proliferation and death flows, as shown in Figure B21:

Treatment

X

Recruitment EffectorCells

Z D'*-- - Z Death

F
X Proliferation

Figure 5.20: The effector cell stock variable with its flows and information
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Equal to the tumour cell stock of case 4, this is changed by its natural proliferation and

death as well as by the number of cells killed by effector cells (Figure B3).

IL-2 stock changes with the production of new IL-2 molecules from effector cells (the
production also depends on the number of tumour cells), loss and treatment (insertion
of IL-2). The production of IL-2 depends on the number of tumour cells, and the loss

of IL.-2 is proportional to its quantity in the system, as shown in Figure BT

TumourCells

O

v IL_2Produckion  IL_2

X () ==t X 1L_2Loss

Z IL_2 Treatment

Figure 5.21: The IL-2 stock variable with its flows and information

Model Parameters

The model parameters are the same as those from the mathematical model, i.e. ¢, uo,

b1, 91, 817 a, b7 GQq, g2, P2, 93, U3 and 52.

Flows Calculations

Table B9 below shows how the equations from the mathematical models are defined for

the flow values.

The Final System Dynamics Model

The final SD stock and flow diagram is depicted in Figure B2 below.
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Table 5.9: Flow calculations for case 5

l Stock ‘ Flow ‘ Expression ‘ Flow formula
Proliferation Zif% Pl'IL’if_ﬁzfgorceus
Death o E mu2 X Ef fectorCells
EffectorCells
Recruitment cT ¢ X TumourCells
Treatment 81 sl

ProliferationMinusDeath | a(1 —bT)T | TumourCellsx
(a(l = b.TumourCells))

TumourCells
- ag BT aa. TumourCells.E f fectorCells
KilledByFE f fectorCells T V3T TumenrCells
. ET 2.FE f fectorCells. TumourCells
I1L_2Production Py E 93+ TumourCells
IL2
IL_2Loss wslr, mu3 X 1L_2
IL 2T reatment S9 s2
—— Treatment
aa
— ~_ Z @ 51
6 Z KilledByEFffectorCells “‘
& o h". c Recruitment: \\\ EffectorCells paauy
I| @ Z e "[:]-..____ L Z @ muz
‘ - \ _
| / : @ gl
y / pl v

.-"I TumourCells
/ / @ Z Proliferation

O~ _

¥IL_2Production | IL_2
a I IL Zloss
& | X O == X 1
b ¥
@z @ @ muz
X

{35 Z ProliferationMinusDeath
IL_2Treatment  s2

Figure 5.22: SD model for case 5
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5.3.3 From System Dynamics to Agent-based Modelling and Simula-

tion

Model Agents

Our agents correspond to the stocks in the SD model. The populations of agents are

therefore the effector cells, tumour cells and IL-2.

Agents’ Behaviours

The behaviour of each agent is shown in Table BI1.

Table 5.10: Agents’ parameters and behaviours for case 5

’ Agent ‘ Parameters | Reactive behaviour Proactive behaviour

mu?2 Dies
pl and g1 Reproduces
c Is recruited

Effector Cell sl Is injected as treatment
p2 and g3 Produces 11.-2
aa and g2 Kills tumour cells
a and b Dies

Tumour Cell -2 and b Proliferates
aa and g2 | Dies killed by effector cells
c Induces effector recruitment

p2 and g3 Is produced

IL-2 mud Is lost

52 Is injected

Agent Implementation

Based on the agents, parameters and behaviours derived from the previous step, state

charts for each agent type were developed, as shown in Figure B223.

The ABMS model rates corresponding to the flow values in the SD model are given

in Table B below. In the transition rate calculations, the variable TotalTumour
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EffectorCell

Tumour_Cell

producell?
kil Tumeur

diekilledByEffectar

Figure 5.23: ABS state charts for the agents of case 5

corresponds to the total number of tumour cell agents, the variable TotalE f fector is

the total number of effector cell agents and TotallL_2 is the total number of IL-2 agents.

Table 5.11: Transition rates calculations from SD flows equations for case 5

| Agent | Transition | SD Flow equation | Transition rate
p1.IL_2.EffectorCells p1.TotallIL_2.TotalE f fector
Reproduce ! gl +TL2 ! gl+TotallL2
Die Ef fectorCells.mu2 mu2
Effector Cell
: aa.TotalE f fector.TotalTumour TotalTumour
killTumour g2+TotalTumour aa g92+TotalTumour
p2.Ef fectorCells.TumourCells p2.TotalTumour
ProducelL.2 g3+TumourCells g3+TotalTumour
umour Cell | Reproduce a.TumourCells(1 — TumourCells.b) | a — (TotalTumour.b)
T Die a.TumourCells(1 — TumourCells.b) | a — (TotalTumour.b)
DieKilledByEffector ““T“";‘;Tgfiiﬁ Jg:lizwcells message from effector
1L-2 Loss ‘ IL_2.mu3 mu3
Simulation

For the simulation building, apart from the agents, there are also two events:

1. TreatmentS1, which adds effector cell agents according to the parameter sl
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2. TreatmentS2, which adds IL-2 agents according to the parameter s2

5.3.4 Experiment

The experiment was conducted assuming the parameters of Table BT2:

Table 5.12: Parameter values for case 5
Parameter \ Value

a 0.18

b 0.000000001
c 0.05

aa 1

g2 100000
sl 0

s2 0

mu?2 0.03

pl 0.1245

gl 20000000
p2 )

g3 1000
mud 10

5.3.5 Results

The results obtained are shown in Figures B2, E2H and for effector cells, tumour
cells and IL-2 respectively. The SD and ABMS were validated by comparing its outputs
with those produced by the ODEs. As the figures reveal, the results for all populations
are very similar; the growth and decrease of all populations occur at similar times for
both approaches. Furthermore because of the large population sizes (around 10*), ABMS
model curves have minor erratic behaviour, which corroborates to the similar patterns
observed in the outcomes. These similarities are also confirmed by the Wilcoxon test
results presented in Table BI3. The table shows the p-values obtained with a 5%
significance level. For the effector and tumour cells, the p-value was higher than 0.5,
which indicates that the test failed to reject the null hypothesis that the outcomes were

similar. As the overall results are very close, in this case the use of SD is preferable.
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a5k 10 Effector cells from ODE
: . ‘ ‘

0 . . . . .
0 100 200 300 400 500 600

Days
(a) ODE

x 10" Effector cells from SD
4.5 T T T

. . . . .
0 100 200 300 400 500 600
Days

(b) SD

45X 10 Effector cells from ABMS
. . ‘ ‘

35 q

251 q

0.5 q

0 L L L L L
0 100 200 300 400 500 600

Days

(c) ABMS

Figure 5.24: SD and ABMS results for effector cells
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x10* Tumour cells from ODE
6 T T T
5 |
a4l |
3k |
2L |
1k i
0 . . . .
0 100 200 300 400 500 600
Days
(a) ODE
x10* Tumour cells from SD
6 T T T
5 |
4+ |
3l |
2L |
1k i
0 . . . .
0 100 200 300 400 500 600
Days
(b) SD
x 10* Tumour cells from ABMS
6 T T T
5 |
a4l |
3l |
2l |
1k |
0 . . . .
0 100 200 300 400 500 600
Days
(c) ABMS

Figure 5.25: SD and ABMS results for tumour cells
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) x 10° IL-2 from ODE
T

18r

161

12r
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(a) ODE

) x10* IL-2 from SD
T

18r

14F

1.2r
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Figure 5.26: SD and ABMS results for 1.2
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Table 5.13: Wilcoxon test with 5% significance level comparing the results from SD and
ABMS for case 5

Population )

Effector 0.7231
Tumour 0.5710
IL2 0.4711

5.3.6 From Agent-based Modelling and Simulation to System Dynam-

ics

In this section we test our guidelines, as defined in Section B34, to convert an ABMS
model into an SD model. As this has been achieved in the previous case study, an
ABMS including cellular and molecular movement is considered. The results obtained
from experimentation considering the conversion from ABMS to SD for static model are
the same as those from the previous section, as the SD obtained from the ABMS is the
same as that obtained from the mathematical model. In this section, therefore, we focus

on the dynamic model.

In order to construct a simulation of a system closer to reality, a certain effector cell
E., has to move towards a tumour cell 7;,, and kill it. The remaining effector cells in
the population therefore will not have any impact on the death of T¢,. Furthermore,
an effector cell E,; only proliferates when it gets in touch with an IL-2 molecule, which

moves towards it.

The Agent-based Model

The agents’ state charts of the dynamic model are the same as those considered in the
static model (Figure B22Z3 of Section B233). Regarding the agents’ behaviours, those
from the static model (Table B10) remain. In addition, the random movement be-
haviour is considered for effector cell, tumour cell and IL-2 agents. The movement of
the agents is controlled by events that occur at a certain rate (in our simulations, 0.01
was the rate for effector cell and IL-2 movement and 0.0001 for tumour cell movement).

At each step of the simulation, an effector cell agent will seek for a tumour cell and
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move towards it in order to kill it. In addition, an IL-2 will move towards an effector
cell to allow for its replication. In order to do the killing, an effector cell will send a
message to the corresponding tumour cell agent, which will then die. The transition
dieKilledByFE f fectorCells will now therefore be triggered by this message. In addi-
tion, the proliferation rate of the effector cells will be greater than zero only when this
cell meets the IL-2 (distance between them equal to zero). The remainder transitions
are still triggered by the corresponding rates, defined in the static agent-based model.
As new requirements were added to the model, there is no data or mathematical model
to validate it. Our goal therefore is to verify if we still can obtain an equivalent SD

model and test our guidelines.

System Dynamics Model

At each time step in the simulation, the maximum number of tumour cells killed is equal
to the number of effector cells, given the movement constraint added. The tumour cell

dynamics is therefore described by Equation B1a:

% = pp(T) — d1p(T) — d27(E) (5.15)

where: d27(F) = aaE

Effector cells only proliferate if they meet an 1L-2 molecule. In this case, therefore,
there will be two types of effector cells: those in proliferation and those that do not

proliferate. Hence, the effector cells equation should be:

dE

E — Enp + Ep - MQE (516)

where:

piEy I
g1+ 11

En,=cI'+s1+ (5.17)
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E, = I5En, (5.18)

The final SD model for the dynamic agent-based model is shown in Figure B20. As I1.-2
molecules disappear from the system once they encounter an effector cell, the outflow
AbsorbedByEffector is added to the IL-2 stock. We split the effector cell population in
two stocks: the one that considers cells that are stimulated by IL-2 to reproduce Effec-
torCellsInProliferation and the stock which regards effector cells without proliferation
EffectorCellsNoProliferation. The number of tumour cells is influenced by both popula-
tions of effector cells and the flow TumourCellsKilledByEffectorCells calculation which

best suits our experiments is equal to the minimal element of

[TumourCells, (Ef fectorCellsInProliferation + E f fectorCellsNoProli feration)].

Cells from the stock EffectorCellsNoProliferation migrate to the stock EffectorCellsin-

Proliferation via flow Meetl Ly according to the minimal element of

[Ef fectorCellsNoProliferation, I L — 2.

The division of the effector cells stock was not considered in our guidelines although
it would appear to be a suitable approach for this case. It suggests that in situations
where the agents change their behaviours, there should be a corresponding stock for

each behaviour.

Experiment

The parameter values considered were the same as those from the static model. The
simulations were run for a period equivalent to one hundred days using both approaches.
Fifty replications for the ABMS were run and the mean values for the outputs were

collected.
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Figure 5.27: SD model corresponding to the dynamic agent-based model for case 5

Results

The simulation results are given in Figures (for effector cells), (for tumour

cells) and b330 (for IL-2).

Regarding the effector cells outcomes, the results of both approaches are very close,

confirmed by the p-value equal to 0.9493 obtained with the Wilcoxon test. For tumour

cells and IL-2, however, the results differ due to the erratic behaviour of the ABMS

outcome curves, which is explained by its stochasticity.
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Summary of Case 5

Section BZ3@ considered a scenario involving interactions between tumour cells, effector
cells and cytokines IL-2. Furthermore the movement of these cells and molecules was
implemented for the simulations. The objective was to build an ABMS simulation
implementing the agents’ movement and subsequently converting this model into an SD
model. In addition, the effectiveness of the guidelines to convert between ABMS and

SD was evaluated.

Regarding the conversion guidelines, a new scenario emerged that had not previously
been considered: some of the agents’ behaviours changed during the course of the sim-
ulation. Specifically for our case study, effector cells had an initial reproduction rate
equal to zero. After they encountered an IL-2 molecule, their reproduction rate was set
to a value greater than zero. Although these behaviours could have been implemented
as different states of the same agent, only one state was deliberately defined and the
corresponding rate after the cell molecule encounter occurred. If there were one state
for effector cells reproducing and another state for effector cells not reproducing, the
guidelines as defined would be enough for the conversion. By defining only one state,
however, there was the need to review the guidelines to suit this new ABMS implemen-
tation. For this case, therefore, when agents change behaviour, it is necessary to define
a stock variable for each new behaviour that occurs during the course of the simulation.
The results of both approaches with the conversion are very similar, which indicates that
the guidelines for this case study are effective. It is certainly necessary to acknowledge

the variances that occur in the ABMS which are not replicated in the SD.
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5.4 Case 6: Interactions Between Tumour Cells, Effector

Cells, IL-2 and TGF-4

The third case study is based on the mathematical model of Arciero et al. [0, which
consists of a system of ordinary differential equations describing interactions between
tumour cells and immune effector cells, as well as the immune-stimulatory and sup-
pressive cytokines IL-2 and TGF-3. According to Arciero et al. [M] TGF-§ stimulates
tumour growth and suppresses the immune system by inhibiting the activation of effec-
tor cells and reducing tumour antigen expression. The mathematical model, together

with further details on the interactions studied is introduced in the following section.

5.4.1 The Mathematical Model

The mathematical model we use in case 6 is obtained from [@2]. The model’s equations
illustrate the non-spatial dynamics between effector cells (E), tumour cells (T), IL-2 (1)

and TGF-$ (S) cytokines. The model is described by the following differential equations:

dE cT mEI @S )
— = —umE+ — 5.19
it 1+,5 M <g1+1) (pl a@2+S 519

Equation B9 describes the rate of change for the effector cell population E. According

to [O], effector cells are assumed to be recruited to a tumour site as a direct result of

cT
1+~S

the presence of tumour cells. The parameter ¢ in represents the antigenicity of
the tumour, which measures the ability of the immune system to recognize tumour
cells. The presence of TGF-3 (S) reduces antigen expression, thereby limiting the

level of recruitment, measured by inhibitory parameter . The term piFE represents

; ; p1EI _ @S
loss of effector cells due to cell death, and the proliferation term <91 T I) <p1 o +S>
asserts that effector cell proliferation depends on the presence of the cytokine IL-2 and
is decreased when the cytokine TGF-5 is present. p; is the maximum rate of effector

cell proliferation in the absence of TGF-f, g1 and ¢y are half-saturation constants, and
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q1 is the maximum rate of anti-proliferative effect of TGF-£.

T T JET T
d <1 - ) — P25 (5.20)

K) ¢gp+T ¢+8

Equation describes the dynamics of the tumour cell population. The term a1’ (1 — %)

represents logistic growth dynamics with intrinsic growth rate a and carrying capacity

K in the absence of effector cells and TGF-3. The term Z;f% is the number of tumour

cells killed by effector cells. The parameter a, measures the strength of the immune

response to tumour cells. The third term gjig accounts for the increased growth of tu-
mour cells in the presence of TGF-3. ps is the maximum rate of increased proliferation
and g3 is the half-saturation constant, which indicates a limited response of tumour cells

to this growth-stimulatory cytokine [I].

ar psET
dt (g2 +T)(1+ aS)

pial (5.21)

The kinetics of IL-2 are described in equation BZ2Z1. The first term % represents
IL-2 production which reaches a maximal rate of p3 in the presence of effector cells
stimulated by their interaction with the tumour cells. In the absence of TGF-3, this
is a self-limiting process with half-saturation constant g4 [@]. The presence of TGF-3

inhibits IL-2 production, where the parameter « is a measure of inhibition. Finally, uol

represents the loss of IL-2.

as paT?

PR e (522

Equation B222 describes the rate of change of the suppressor cytokine, TGF-3. Accord-
ing to [M], experimental evidence suggests that TGF-{ is produced in very small amounts
when tumours are small enough to receive ample nutrient from the surrounding tissue.
However, as the tumour population grows sufficiently large, tumour cells suffer from a

lack of oxygen and begin to produce TGF-B in order to stimulate angiogenesis and to
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evade the immune response once tumour growth resumes. This switch in TGF-8 pro-

duction is modelled by term %, where p4 is the maximum rate of TGF-8 production
and 7 is the critical tumour cell population in which the switch occurs. The decay rate

of TGF-J is represented by the term u3S.

5.4.2 The System Dynamics Model
Model Stocks, Flows and Information

The SD model contains four stock variables, tumour cells, effector cells, IL-2 and TGF-3,
as shown in Figure B33

TumaurProliferationMinusDeath

F |
|\ v TumourCells
, TurmourCellsKilledByEffectarCells
DS ——— O
| R ——
| \ . ) —
| \\“f.;;;._____ Recruitment —— EffectorCells EffectorDeath
| N . T—
| \\ .y __“'Z — D ___'Z
| NN % ~
\\ h S, "'-, e ’ \
| N\ ~ \ / X 1L 2loss l
1 H"‘-«,_ | / L |
| X TGF_Beta_Production-._ :
| ¥ / ¥ ] .
| Y / EffectorProliferation
| X 0,5 X
| / / IL_2Production "
| ! e 7
| Vs -
| / //// _,—-/
| - - L
¢ GrowthStimulation P
:-—:":-'-.:- = -
X« _ D TGF_Beta

F
X TGF_Beta_Loss

Figure 5.31: Stocks, flows and information for case 6

The stock of effector cells is changed by the recruitment of new effector cells (according to
the number of tumour cells and TGF-$3), death and proliferation. There is information
from the effector cells stock to proliferation and death flows, as shown in Figure B30
above. The tumour cell stock is changed by natural proliferation and death, by the

number of tumour cells killed by effector cells and by growth stimulation by TGF-S.
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IL-2 stock changes with the production of new IL-2 molecules from effector cells (the
production also depends on the number of tumour cells and TGF-3) and loss, which is
proportional to IL-2 quantities in the system. TGF-f stock changes with production,

which depends on the number of tumour cells, and loss.

Model Parameters

The model parameters are the same as those from the mathematical model, i.e. ¢,

gamma, mul, pl, g1, ql, q2, a, g2, p2, g3, mu2, alpha, g4, p3, p4, theta and mu3.

Flows Calculations

Table BT shows how the equations from the mathematical models are defined for the

flow values:

Table 5.14: Flow calculations for case 6

[ Stock Flow [ Expression [ Flow formula
p1E1> p1.IL_2.EffectorCells
a+1)" gl+IL 2 :
Ef fector Proliferation ! a8 | _ 4LTGF_Beta
P11~ 3+5 Pl — 43TTGF Beta
EffectorCells | Effector Death wE mul.Ef fectorCells
3 cT c.TumourCells
Recruitment 14+~S 14+gamma. TGF _Beta
Tumour Proliferation— | aT (1 — %) TumourCells.a. (1 — %W)
MinusDeath
. ET T Cells.E ectorClell:
TumourCells | TumourCellsKilled— ’;2+T aa “72021j:qumzqug:li;M eus
ByEf fectorCells
. . p2 ST p2. TGF_Beta. TumourCells
GrowthStimulation o 31 TGF _Beta
. p3ET p3.Ef fectorCells. TumourCells
IL_2Production (91t T)(1Fas) g4+1Tumou7-Cells )
IL2 (1+alpha. TGF_Beta)
IL 2Loss pol mu2.1L_2
. p4T2 p4.TumourCell.s2
TGF Bet TGF _Beta_Production 624712 theta?+TumourCells?
"Beta
TGF _Beta-Loss usS mu3 X TGF_Beta
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The Final System Dynamics Model

The final SD stock and flow diagram is depicted in Figure B=32:

N TumourProliferationMinusDeath
@ el
A G a=
1 TumourCells
4 TumourCellsKilledByEFffectorCells
C_];\-\-‘-______ 7 Z -~
[ ~ S T—
| ,\\‘x—_;::_____ 6 Recruitment — EffectorCells EffectorDeath
| e T
| N ¢ — )t X
[ ™, H'-._H\ _ ,.r""--. 1
\\\ ~ ‘\.. @ gamma " (@ muz \
S | @ mul
| . X 1L _Zloss
pd '~‘ "a.,‘“ \ G alpha r"/ X |
| @ X TGF_Beta_Productioi_ / | |
| ™ ¥ / r ' .
| “h, / EffectarProliferation
| (™ theta X C]—ILT: x
| : / IL_2Production _;" G q2
' / ~ 3 e 1
II // ///’(3 a4 G p / @ a
| S A
r GrowthStimulation A _— @ at
f—:'“'; — ——
(3p2 Xe — D TGF_Beta
@ g3 mud Ty

&) X TGF_Beta_Loss

Figure 5.32: SD model for case 6

5.4.3 From System Dynamics to Agent-based Modelling and Simula-

tion
Model Agents

Our agents correspond to the stocks in the SD model, the populations of agents therefore

being the effector cells, tumour cells, IL-2 and TGF-£.

Agents Behaviours

The behaviour of each agent is shown in Table B3 below:
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Table 5.15: Agents’ parameters and behaviours for case 6

l Agent

|

Parameters

‘ Reactive behaviour

Proactive behaviour

Effector Cell

mul

Dies

pl, g1, g1 and q2

Reproduces

C

Is recruited

aa and g2 Kills tumour cells
a Dies
a Proliferates
aa and g2 Dies killed by effector cells
Tumour Cell g3 and p2 Has growth stimulated

p4 and tetha

Produces TGF-3

C

Induces effector recruitment

alpha, p3 and g4 | Is produced

1L-2 mu2 Is lost
p4 and tetha Is produced
TGF-5 mu3 Is lost
p2 and g3 Stimulates tumour growth

Agent Implementation

Based on the agents, parameters and behaviours derived from the previous step, state

charts for each agent type were developed, as illustrated in Figure BE233.

The ABMS model rates corresponding to the flow values in the SD model are given in
Table BT4. In the transition rate calculations, the variable TotalTumour corresponds to
the total number of tumour cell agents; the variable Total E f fector is the total number
of effector cell agents, TotallL_2 is the total number of IL-2 agents and TotalT'GF Beta

is the total TGF-3 agents.

5.4.4 Experiment

The experiment was conducted assuming the parameters of Table B1Q.

5.4.5 Results

Results for case 6 SD and ABMS simulations are provided in Figures B34, B33, B34
and BZX4. For all experiments, ABMS demanded far more computational resources than

the SD simulation runs. Results demonstrate that the behaviour of the curves for effector

193



5. Dynamic Spatial and Non-Spatial Models

Q 9SO JO sjuade 9} 10] SIIRYD 91R)S SV (€E°G 2In3I

pesp

Hhesp
lojpagy3hgpe|ep

5807 =801 ualje.ajijoad
LJIME.I5.INOLLIN | S218|NLLIS ’

INown || ZT1=anpoad

491 =anpouad
. aanpoiday '

l=2233=2143

UBWINE 10338443

Qe anje

S LT H il H

|[F2 nown g

194



5. Dynamic Spatial and Non-Spatial Models

Table 5.16: Parameter values for case 6
Parameter ‘ Value

a 0.18

aa 1

alpha 0.001

¢ 0.035

gl 20000000
g2 100000
g3 20000000
g4 1000
gamma 10

mul 0.03
mu?2 10

mud 10

pl 0.1245
p2 0.27

p3 5

p4 2.84

ql 10

q2 0.1121
theta 1000000

cells, tumour cells and IL-2 in both paradigms is similar, although the starting time for
the growth of populations for the ABMS varies for each run. In the figures corresponding
to the ABMS results, therefore, ten distinct runs were plotted to illustrate the variations.
For most ABMS runs the pattern of behaviour of the agents is the same as that obtained
by the SD. However for a few runs the populations decreased to zero, indicating that it
is not always possible to obtain similar results with both approaches. Furthermore, the
unexpected pattern obtained with ABMS should be further investigated by specialists to
determine if it is realistic. In addition, the SD results for TGF-8 reveal numbers smaller
than one, which is not possible to achieve with the ABMS. That is the reason why there
is no ABMS outcomes in Figure BE230. The results for the simulations regarding these

molecules are therefore completely different and the ABMS results are always zero.

Figures B33, B39, BZ0 and BZD contrast the SD results with the closest results

obtained from ABMS.
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Figure 5.34: ODE, SD and ten runs of ABMS results for effector cells
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Figure 5.35: ODE, SD and ten runs of ABMS results for tumour cells
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Figure 5.36: ODE, SD and ten runs of ABMS results for IL-2
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Figure 5.37: ODE, SD and ten runs of ABMS results for TGF-4
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5.4.6 Summary of Case 6 — Converting from System Dynamics to

Agent-based Modelling and Simulation

In the previous sections we tested our conversion guidelines in a static four equation ODE
model describing the interactions between tumour cells, effector cells, IL-2 and TGF-§
molecules. The SD results matched those obtained in the ODE model, and in most
cases the ABMS results resembled those from SD. For each different ABMS simulation
run where results resembled, however, the growth and decay of tumour cells and effector
cells had a slightly different starting point, due to ABMS randomness. Furthermore,
there were some cases where ABMS produced another pattern of how the populations
evolved over time: effector cells grew and eliminated all tumour cells before a period of
two hundred days. In addition, ABMS was incapable to represent the TGF-8 molecules

dynamics, as their numbers in the SD and ODE models were smaller than zero.

By observing the results obtained, the conclusion is that for this case study it is not
always possible to use both methodologies interchangeably. Moreover, in order to de-
termine which simulation approach would be more suitable, further investigation using

experimental data is necessary.
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5.4.7 From Agent-based Modelling and Simulation to System Dynam-

ics

In the ABMS scenario considered in this section, an effector cell E., has to move towards
a tumour cell T¢, and kill it. The remaining effector cells in the population therefore
will not have any impact on the death of T¢,. Furthermore, an effector cell E.; only
proliferates when it gets in touch with an IL-2 molecule, which moves towards it. In
addition, when an effector cell E., binds to a TGF- molecule, it stops killing tumour
cells and enters a sleeping state. The sleeping state remains until the effector cell binds

another IL-2 molecule.

The Agent-based Model

The agents’ state charts of the dynamic model are the same as those considered in the
static model (Figure BE233 of Section B43). The agents’ behaviours defined in the static
model (Table BTH) remain. In addition, the random movement behaviour is considered
for effector cell, tumour cell and IL-2 agents. The movement of the agents is controlled
by events that occur in a certain rate (in our simulations, 0.01 was the rate for effector
cell, IL-2 and TGFf movement and 0.0001 for tumour cell movement). At each step
of the simulation, an effector cell agent will look for a tumour cell and move towards
it in order to kill it. In addition, an IL-2 will move towards an effector cell to allow
for its replication, or takes it out of the sleep state, depending on the current state of
the effector cell. In order to do the killing, an effector cell will send a message to the
corresponding tumour cell agent, which will then die. A TGF S molecule moves towards
an effector cell and puts it to sleep. The transition dieKilledByFE f fector will now
therefore be triggered by this message. In addition, the proliferation rate of the effector
cells will be greater than zero only when this cell meets the IL-2 (distance between them

equal to zero).

206



5. Dynamic Spatial and Non-Spatial Models

System Dynamics Model

The corresponding SD model is shown in Figure B2 below. Similar to the dynamic
SD model for case 6, the effector cell population is split in three different populations
(stocks): one that considers cells that are stimulated by IL-2 to reproduce or are in the
sleeping state (Ef fectorCellsInProliferation), the stock which regards effector cells
without proliferation (Ef fectorCellsNoProliferation) and a stock of effector cells in
the sleeping state (E f fectorSleeping). Elements from the stock EffectorCellsNoProlif-
eration migrate to the stock E f fectorCellsInProliferation via flow Meetl Lo accord-
ing to the the minimal element of [Ef fectorCellsNoProliferation, IL — 2]. Similarly,
the flow calculation from Ef fectorSleeping to Ef fectorCellsInProliferation is the

minimal element of the minimal element of [E f fectorCellsNoProliferation, IL — 2]).

Experiment

The parameter values considered were the same as those from the static model. The
simulations were run for a period equivalent to four hundred days using both approaches.
Fifty replications for the ABMS were run and the mean values for the outputs were

collected.

Results

Experimental results are shown in Figures B23 to B2 below. For tumour and effector
cells outcomes, the overall shape of the simulation curves for both approaches is very
similar. For the ABMS results, however, the growth of these two populations is more
accentuated. The trend curve for IL-2 is not the same, as the growth and trend lines for
both curves are very distinct from each other. TGF-8 decays in both simulations with

different velocity.
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Summary of Case 6 — Converting from Agent-based Modelling and Simula-

tion to System Dynamics

In Section B2 a scenario involving interactions between tumour cells, effector cells,
cytokines IL-2 and TGF-8 was considered. In addition, the movement of these cells
and molecules was implemented in the simulations. As in the previous case study, the
objective was to build an ABMS simulation implementing the agents movement and
subsequently converting this model into an SD model. The guidelines to convert from
ABMS were used, and the outcomes from the obtained SD simulation revealed that, for
effector cells, tumour cells and TGF-§ it was possible to obtain similar patterns of the
populations dynamics; however, the quantities of individuals for both approaches were
different, which suggests that further calibration of the SD model might be necessary. In
addition, SD was not able to mimic the erratic behaviour observed in the IL-2 population

and therefore the outcomes were very distinct.

5.5 Summary

In this chapter three more case studies were presented in order to evaluate the conver-
sion between approaches and compare the results obtained. The case studies considered
established non-spatial mathematical models from literature describing interactions be-
tween the immune system cells and molecules, and tumour cells. Each mathematical
model was first converted into an SD model and, subsequently, into an ABMS model.
The results of this were then evaluated. Furthermore, this chapter experimentation
differ from that from the previous chapter as it also tests the conversion from ABMS
to SD. In addition, the ABMS models were modified to consider spatial movement of
individual entities in the immune and tumour populations with the objective to verify

the possibility to obtain an equivalent SD model.

The fourth case study was concerned with the use of ODEs to model interactions with

general immune effector cells and tumour cells. The objective of this model is to observe
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these two population evolution overtime and evaluate the impacts of cancer treatment
in their dynamics. Four different scenarios regarding distinct sets of parameters were
investigated and in the first three treatment was included. The conversion from ODEs
to SD guidelines allowed for the construction of an equivalent SD model with the same
outcomes as those obtained by the mathematical model. The equivalent ABMS result-
ing from the conversion, however, obtained very distinct results for most scenarios. The
outcomes from SD and ABMS only resembled for scenario one, although ABMS curves
reflected its random characteristic. In order to achieve closer results in the remaining
three scenarios, constraints that the population sizes should be greater than zero were
therefore added, which improved the similarity of both approaches results for only two
scenarios. It appears that two major characteristics of this model influenced the unsuc-
cessful conversion: (1) The small quantities of individuals considered in the simulations
— specially regarding the effector population size, which was always smaller than ten
— that significantly increase the variability of the ABMS; and (2) The original mathe-
matical model considers population sizes smaller than one, which was not possible to
be achieved by the implemented ABMS. In addition to this particular model’s charac-
teristics, for any mathematical/SD model considering intervals of growth or decay of
populations observed in our studies, the corresponding curves in the ABMS outcomes
are more accentuated, given the fact that SD changes the stocks quantities continuously
whereas ABMS varies discretely. These results confirm the findings obtained in the
previous chapter, where the outcome differences were also due to the characteristics of

each modelling approach.

Regarding the conversion from ABMS to SD for case four, the resulting SD model for the
static ABMS produced the same results as those from the mathematical model, which
indicates that the variability observed in the ABMS is not reflected in the SD. In order
to further explore the effectiveness of our guidelines, we modified the static model to
consider simple movements of the cells and molecules involved in the simulation model.
Pertaining the dynamic model, differences were noticed regarding to the population

sizes over time. This suggests that extra efforts such as parameters calibration would
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be necessary to obtain SD results closer to the outcomes produced by the ABMS.

The fifth case study referred to the investigation of the interactions between effector cells,
cytokines IL-2 and tumour cells, and only one scenario was considered. For this case, the
conversion guidelines were effective in assisting the construction of both SD and ABMS
simulations, which produced very similar results as those from the original mathematical
model. As populations’ sizes had a magnitude of 10* individuals, the ABMS variance in
the outcomes was not evident, which contributed to the outcomes similarity. Regarding
the conversion from ABMS to SD, there was the need to complement the guidelines
to convert from ABMS to SD, as they originally did not consider cases where agents’
behaviours changed with time. By modifying the conversion framework it was possible
to obtain an SD model. Similarly to the previous case study, the SD results did not

reflect the variance observed in the ABMS outcomes.

Case six added complexity to the previous case study by establishing a mathematical
model including the influence of the cytokine TGF-£ in the interactions between effector
cells, cytokines IL-2 and tumour cells. The SD obtained with the conversion guidelines
produced the same outcomes as those from the ODE model. The simulation outcomes for
the ABMS were mostly following the same pattern as that produced by the SD; however
there were some alternative outcomes where the patterns of behaviour demonstrated a
total extermination of tumour cells by the first two hundred days. This indicates that
for this case study the ABMS results are more informative, as they illustrate another set
of possible dynamics that should be validated through further immune experimentation.
Regarding the conversion from ABMS to SD, it was observed that due to the increase
of elements and behaviours in the ABMS, the equivalent SD becomes very complex and
less intelligible. In addition, there is also an increase in the model building effort. The
obtained SD results do not resemble those from the ABMS, as they vary in quantities

and do not regard the variability observed in the ABMS outcomes.

By observing our case studies and their outcomes, it was not possible to define a general

framework that would definitively determine which approach was the most appropri-
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ate for a certain problem. In our last case studies, however, we could observe some

characteristics to be considered when choosing the approach:

e SD is incapable of reflecting exactly the same variability as that obtained from the

agent-based simulation, as it is a deterministic approach.

e SD variables change continuously in time and therefore population growth and

decay might be different from those obtained by the agent-based simulation.

e As the numbers of different agents and behaviours increase, the corresponding SD

becomes very intricate and difficult to develop and understand.

e The previous item suggests that there are cases where it is preferable not to con-
vert between approaches as the agent-based model is easier to conceptualise and

implement.

e The verification and validation processes of a very complex SD model might not

be trivial.

e SD is less informative than ABMS, as it does not produce multiple scenarios or

variations over the course of more than one run within the same parameters.
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Chapter 6

Conclusions

6.1 Introduction

The research presented in this thesis investigated methods of translating and obtaining
similar simulation outcomes regarding a number of different simulation modelling ap-
proaches. The main motivations for this work is provided by the emerging research in
multi-paradigm and multi-modelling simulations, as well as the importance of investi-
gating the application of such methodologies and compare outcomes to aid advancing
immunology research. Immunological phenomena belong to the area of complex sys-
tems, involving many interacting elements that can also adapt to further scenarios such
as new infections. System simulation is therefore suitable for investigating immune pro-
cesses, as most of its methods are closer to the natural description of the system in
terms of representation of entities and their interactions. Further, immune simulation
experimentation (1) avoids the extra costs involved in laboratory trials, (2) takes less
time than real-world experimentation and (3) does not need to follow ethical protocols

(Section 7).

Some immune problems can be implemented by more than one approach; when and
whether these approaches provide equivalent outcomes is not fully understood. In addi-

tion, translating between approaches for immunology is important because research on
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processes in the immune system constantly gathers new information. This requires the
corresponding simulations to be updated frequently to suit the latest requirements. In
some cases, the replacement of the current simulation approach for new developments
also needs to be considered in order to meet these demands. Another possible advan-
tage of the conversions guidelines would be in circumstances where a model developer is
well acquainted with one simulation approach and would like to use his current models
to learn another technique. In cases where there is a established model in a certain
simulation approach, conversion techniques to translate the current model to another
approach would be a good starting point to learn this last approach and possibly expand

the model.

Mathematical models — in particular ODEs — are largely used in immune modelling;
however, this paradigm presents limitations regarding emergent behaviour, individual
interactions and an increase in problem complexity. SD is an alternative approach to
model problems undertaken in numerical simulation within a system’s thinking perspec-
tive. ABMS, as distinct from ODEs and SD, complements mathematics as (1) it provides
a means to implement individuals from the system in a natural way, (2) it is used to

explore emergence and (3) it represents individual memory and spatial localization.

In order to support the implementation of multi-paradigm simulations, as well as per-
forming the replacement of a simulation approach, guidelines for the conversion between
ODE models, SD models and ABMS models of the immune system were therefore de-
veloped as a research contribution in this thesis. These guidelines were tested, improved

and their effectiveness assessed using case studies.

While answering the research question we also produced a framework based on that
conceived by [[] for conducting simulation studies in immunology, and outlined the
pitfalls that might be encountered during the development of a simulation model. This
guidance was derived from a review of the immunology literature related to simulation.
It defined general steps to be followed when developing an immune simulation and

which encompass common aspects to be considered during the simulation development,
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independent of the simulation approach adopted.

6.2 Evaluation of Aims

The central aim of this thesis was to develop, test and validate our own set of guidelines
for converting between approaches: from ODE models to SD, from SD to ABMS, from
ODE to ABMS and from ABMS to SD.

A secondary aim was to discuss the merits of SD and ABMS for immunology to assist
researchers with their choice between both approaches, to determine if the simulation
problems associated with the use of these modelling techniques are interchangeable and

to establish those circumstances in which one approach would be preferable to the other.

To achieve these aims, the following objectives were defined:

1. To define and test guidelines to convert between (1) ODE models to SD models,

(2) SD models to ABMS, (3) ODE models to ABMS and (4) ABMS to SD models

and assess the impact of these conversions.

2. To compare outcomes considering aspects such as the behaviour of the entities
of the model (whether they are static or interact with other entities and whether
they have spatial representation or not); the type of hypothesis to be tested and

the modelling effort.

3. To define guidances to assist immune simulation developers in choosing between

approaches, depending on the characteristics of the problem to be undertaken.

Six case studies derived from ODE models of immune problems — involving immune
system ageing, the spread of the HIV virus and interactions between the immune system

and tumour cells — were selected to test our guidelines and achieve our objectives.

To meet the first objective, we introduced our guidelines in Section BZ5 to convert from
ODEs to SD. These guidelines were tested against all six case studies (Chapter @ and
Chapter B).
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Objective two was fulfilled by defining the guidelines to convert from SD to ABMS in
Section BB23. In addition, by comparing the results, it was partly possible to attain the
last goal, which was to provide guidance on the choice between approaches for the case
studies. We also defined guidelines to convert from ODEs to ABMS (Section B23),
which were very similar to the conversion from SD to ABMS. Our focus in this work,

therefore, was on testing the conversion from SD to ABMS.

The third objective was achieved in Section BB, in which we introduced our conversion

guidelines to translate from ABMS to SD.

As it was not possible to define a general framework that would definitively determine
which approach was suitable, the last objective was only partially realised. There is,
therefore, the need for further research regarding this topic, as we will explain in sec-

tions B4 and B63.

Experimentation

The experiments used to achieve our objectives were split in two sets: the first set
comprised three case studies, which involved static models. The second batch included
another three case studies with simple interacting agents and movement. For each case
study, the mathematical models were converted into SD models and then into ABMS by
following our guidelines. Additionally, in the second set of case studies, the guidelines

to convert from ABMS to SD models were also tested.

The simulation outcomes were validated against the results produced originally by the
mathematical models. In order to further compare the results produced by SD simula-
tions and ABMS, the statistical Wilcoxon (Mann-Whitney) test was also selected. The
comparison of results for both approaches was conducted in order to evaluate (1) if the
approaches were equivalent (model verification), (2) if the results were similar, (3) if
the approaches could be used interchangeably for a particular case study and (4) if one

approach would be preferable than the other for the case study.

The outcome comparison was presented in Chapter Bl and Chapter B, for all case stud-
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ies. As the case studies comprised different scenarios with regard to modelling effort,
interacting and non-interacting elements, and spatial and non-spatial localisation, it was

possible to achieve the fourth objective.

6.3 Research Findings

For all case studies, the guidelines to convert from ODE to SD were effective and pro-
duced the same results as those from the mathematical model. Furthermore, it was
also possible to obtain the respective ABMS, although differences on the outcomes oc-
curred due to particularities of each approach. Some differences observed were not
statistically relevant, however, there were cases where dissimilarities were noticeable.
The key outcome differences are summarised in Table BE. When applicable, we suggest
the preferable approach to be considered (on the fifth column of the table), which also
contains information about the population size, as it appears that these influence the

outcomes.

With regard to the conversion from ABMS to SD, based on our experimentation and
findings (Table B3), we suggest some important considerations to be made before at-

tempting to perform the translation:

e SD is incapable of reflecting exactly the same variability as that obtained from the

agent-based simulation, as it is a deterministic approach.

e SD variables change continuously in time and therefore population growth and

decay might be different from those obtained by the agent-based simulation.

e As the numbers of different agents and behaviours increase, the corresponding SD

becomes very intricate and difficult to develop and understand.

e The previous item suggests that there are cases where it is preferable not to con-
vert between approaches as the agent-based model is easier to conceptualise and

implement.
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e The verification and validation processes of a very complex SD model might not

be trivial.

e SD is less informative than ABMS, as it does not produce multiple scenarios or

variations over the course of more than one run within the same parameters.

6.4 Limitations of the Study

Based on our experimentation outcomes, it is possible to conclude that the guidelines
are effective in producing equivalent models for our case studies. In addition, by further
analysing the comparison of the results, it has been found that there are predictable
differences due to the characteristics of each simulation model. Our contribution, how-
ever, presents limitations with regard to the nature of the case studies chosen and the
simulations validation processes; for some case studies, we could not determine the best

approach to be used.

All case studies investigated in this thesis were derived from ODE models established
in the literature. Established SD models or ABMS models were not included in our
investigation because they are rare or unavailable. Compared with ODEs, there are few
ABMS models (which are not cellular automata) and SD models with data provided
in which we could perform our testing. Further experimentation is therefore needed to

address case studies that have either SD or ABMS as their original model.

We also tried to develop our own SD simulations from scratch, based on data provided by
immunologists from the Biomedical Sciences department of the University of Nottingham
and the Nottingham City Hospital. However, the data provided was not suitable for the
simulation model development because there was no information about how the elements
in the system would evolve with time. It was concluded that it would be necessary to

collect another set of specific data in the laboratory.

As discussed in Chapter B, the process of validation ensures that the model is sufficiently

accurate for the purpose at hand. For immunology, it is acknowledged that models are
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not intended to be accurate for a number of reasons: (1) for some case studies there is
no real-world data to use in comparison, (2) for other case studies there is insufficient
data, (3) real-world data is inaccurate and (4) even if the data is accurate, the real-world

data is only a sample, which in itself creates inaccuracy.

In most of our case studies (1) there was no data available to validate the models, and
(2) as previously stated, the data provided by immunologists was unsuitable for building
a simulation from scratch. This led us to consider the outcomes of the original ODE
models as our main source of validation. By possessing the laboratory experimentation
data related to the immune experiments, we should be able to gain further insights into

the most effective approach to be used.

Another limitation is that most models involve few agents with simple interactions. It
appears that, for immunology, simple models are satisfactory in developing an under-
standing of a certain process. However, to test and improve our guidelines further,
models which contain more populations of agents are needed. In addition, only agents
with random movement and synchronous actualisation of their parameters and states
were considered. There is therefore a requirement to verify if asynchronous agents in a

model would be suitable for the SD conversion.

6.5 Future Work

While the guidelines performed well in converting between approaches in our case stud-
ies, there is the need to perform further tests in established system dynamics or agent-
based models for immunology, in order to fully assess their effectiveness. Furthermore,
we intend to develop our own models from scratch and to test the translation tech-
niques. These models will be based on new immune data regarding T cells aging that
will be collected by immunologists from Nottingham City Hospital. The decision about
the information to be collected in the laboratory was taken by us, together with im-

munologists, in order to ensure that the final data set collected would be suitable for
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our experimentation and validation processes. We hope that, by further investigating
the simulation outcomes with real data, we will also be able to acquire more knowledge

regarding the appropriateness of each paradigm for the problem undertaken.

Working more closely with immunologists, there are also other research enquiries we seek
to investigate related to their acceptance of simulation as a research tool. Although there
are examples showing the success of simulation in aiding advances in immunology, this
set of methodologies is still not popular. There are three major reasons for this: (1)
such tools are not fathomable in the immunology research field; (2) although simulation
is acknowledged, there is no existing knowledge of how to use them; and (3) there is
insufficient trust in the results produced by simulation. Hence, our next objective is
to outline the potential contribution of simulation methods to support immunological
studies and to invite experts, including simulation developers and computer scientists,
to develop solutions in this field. In order to do so, we plan to develop and validate our
new simulations, together with immunologists from Nottingham City Hospital and to

assess their understanding and reliance on the results obtained.

Furthermore, we intend to show immunologists the possibility of improving the current
immune mathematical models by presenting our translation methods. In addition, it is
intended to assess the guidelines’ effectiveness when used by non-simulation experts. As
another future research project, we wish to investigate and develop a decision framework
that assists with the choice of a simulation approach according to the problem presented,
as a consequence of the new study. There is also the need to find out which simulation
modelling paradigm is better accepted by immunologists and if it is necessary to develop
specific simulation tools using immunological terminology to aid immune simulation

research.

In addition, by further analysing the comparison of results, it was found that there are
differences to be expected due to the characteristics of each simulation model. Many of
these differences are already known within the simulation community; however, it is not

always possible to predict when some of these differences will occur. We intend to further
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investigate why and how these differences happen by modelling new case studies and
by systematically determining when phenomena such as variability and extra scenarios

arise.

There are cases where the same simulation scenario implemented in agent-based simu-
lation produces more than one solution due to specific constellations within the random
number stream. It is necessary, therefore, to gain additional insights into why and how
frequently these extreme cases occur. For example, we could count the appearance of
these unusual cases (as a measure of system stability or robustness of the solution) when
running the experiments 10,000 times. This could assist immunologists in defining vac-
cination strategies and the appropriateness of cancer treatments by making them aware

of the possible outcome scenarios and how frequently they take place.
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