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ABSTRACT 

 

The concept of autonomous pedestrian navigation is often adopted for indoor 

pedestrian navigation. For outdoors, a Global Positioning System (GPS) is often 

used for navigation by utilizing GPS signals for position computation but indoors, 

its signals are often unavailable. Therefore, autonomous pedestrian navigation for 

indoors can be realized with the use of independent sensors, such as low-cost 

inertial sensors, and these sensors are often known as Inertial Measurement Unit 

(IMU) where they do not rely on the reception of external information such as GPS 

signals. Using these sensors, a relative positioning concept from initialized position 

and attitude is used for navigation. The sensors sense the change in velocity and 

after integration,  it is added to the previous position to obtain the current position.  

 Such low-cost systems, however, are prone to errors that can result in a large 

position drift. This problem can be minimized by mounting the sensors on the 

pedestrian’s foot. During walking, the foot is briefly stationary while it is on the 

ground, sometimes called the zero-velocity period. If a non-zero velocity is then 

measured by the inertial sensors during this period, it is considered as an error and 

thus can be corrected. These repeated corrections to the inertial sensor’s velocity 

measurements can, therefore, be used to control the error growth and minimize the 

position drift. Nonetheless, it is still inadequate, mainly due to the remaining errors 

on the inertial sensor’s heading when the velocity corrections are used alone. Apart 

from the initialization issue, therefore, the heading drift problem still remains in 

such low-cost systems. 

 In this research, two novel methods are developed and investigated to mitigate 

the heading drift problem when used with the velocity updates. The first method is 

termed Cardinal Heading Aided Inertial Navigation (CHAIN), where an algorithm 

is developed to use building ‘heading’ to aid the heading measurement in the 
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Kalman Filter. The second method is termed the Rotated IMU (RIMU), where the 

foot-mounted inertial sensor is rotated about a single axis to increase the 

observability of the sensor’s heading. 

 For the CHAIN, the method proposed has been investigated with real field 

trials using the low-cost Microstrain 3DM-GX3-25 inertial sensor. It shows a clear 

improvement in mitigating the heading drift error. It offers significant improvement 

in navigation accuracy for a long period, allowing autonomous pedestrian 

navigation for as long as 40 minutes with below 5 meters position error between 

start and end position. It does not require any extra heading sensors, such as a 

magnetometer or visual sensors such as a camera nor an extensive position or map 

database, and thus offers a cost-effective solution. Furthermore, its simplicity 

makes it feasible for it to be implemented in real-time, as very little computing 

capability is needed. For the RIMU, the method was tested with Nottingham 

Geospatial Institute (NGI) inertial data simulation software. Field trials were also 

undertaken using the same low-cost inertial sensor, mounted on a rotated platform 

prototype. This method improves the observability of the inertial sensor’s errors, 

resulting also in a decrease in the heading drift error at the expense of requiring 

extra components.  
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Chapter 1 

Introduction 
 

This chapter begins with a short background on pedestrian navigation systems. A 

general review of the limitations of such a system in an indoor environment is given, 

followed by a section on the research aims and objectives of the study. Finally, the 

thesis structure is outlined briefly, along with the chapter summary.  
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1.1 Background 

People spend about 70% of their time indoors. The National Human Activity 

Pattern Survey (NHAPS) showed that people in the United States of America and 

Canada spent an average of 87% of their time in enclosed buildings (Klepeis et al., 

2001), whilst Ezzati et al. (2000) and Bruce et al. (2004) found that the average 

proportion of time spent indoors for women in Kenya and Mexico is 70% and 75% 

respectively. In the far East, Korean people were also found to spent more than 87% 

(21 hours) of their times indoors (Choi et al., 2010). Recently, Diffey (2011) 

analyzed that on average, people spend only about 2 of 24 hours outdoors, which 

means more than 22 hours are spent indoors daily. These, therefore, indicate that 

most of the daily activities are indoors and highlight the significance of indoor 

navigation systems for pedestrians. 

 Pedestrian navigation can be defined as “the process of determining and 

maintaining positional information for a person travelling on foot” (Stirling et al., 

2005). Whilst the growth of interest in pedestrian navigation may be associated 

with the amount of time spent indoors, it might also be partly due to the 

technological advances in mobile computing. This is represented by the growing use 

of smart phones and computer tablets, which makes them possible to become more 

than just a phone; for example it becomes a navigation device. Some of the 

pedestrian navigation applications that may benefit from this include systems to 

guide people with visual difficulties, virtual gaming, walking routes for tourism and 

so forth. 

In recent years, the Global Positioning System (GPS) has become one of the 

primary methods for outdoor pedestrian navigation and has many benefits for 

civilian daily use. For example, it was reported that 1.05 million Japanese people 

use GPS-based pedestrian navigation applications (Arikawa et al., 2007). In ideal 

conditions, often in an outdoor environment in which there is a clear line of sight 

to at least four GPS satellites, GPS provides accuracy ranging from tens of metres 

to tens of centimetres, depending on the GPS receiver grade and methodology. 
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Typically, for civilian applications such as pedestrian navigation, sub-metre level 

accuracy can be achievable in a good outdoor environment. 

The use of GPS technology to navigate in an indoor environment, however, 

proves to be a complicated navigation problem, and therefore remains a challenge 

(Karimi et al., 2011). Indeed there are many improvements made to date to ease 

such complications. This includes the use of assistance to GPS (A-GPS) data via a 

cellular network (Zandbergen and Barbeau, 2011), additional signal transmission 

channels (GPS modernization) (Fernández-Prades et al., 2011, Alkan et al., 2005), 

and augmentation with cellular network positioning (Lin et al., 2011, Sun et al., 

2005). Nevertheless, GPS still operates at a relatively low power, even with the 

modernized GPS signals. For example, the minimum received signal strength for 

GPS Block III L1 C/A signal is only -158.5 dBW, or merely 1:4£ 10¡16 W (GPS, 

2010). This fundamental issue with the GPS signals means that they are vulnerable 

to the surrounding environment. As a result, GPS signals will always become 

attenuated due to signal reflection and refraction. Indoors, the amount of signal 

attenuation can be much higher, such that the signal can no longer be used reliably 

anymore for position computation. This is because of the additional effect that the 

indoor infrastructure has on signal attenuation. This infrastructure, comprising 

different types of materials; such as concrete walls, furniture, and electrical 

appliances, will significantly weaken the received GPS signals (Kjærgaard et al., 

2010).  

 Alternatively, High Sensitivity (HS) GPS receivers can be used to operate even 

with the weakened GPS signals. In many cases, however, they are more likely to 

struggle to produce continuous positioning with good accuracy indoors, and often 

the signals are not reliable enough to produce good position solutions (Lachapelle 

et al., 2006). This is partly due to the difficulty of separating errors, such as 

multipath error, from good GPS signals. Multipath error occurs when duplicated 

GPS signals are received by the GPS antenna; one comes along a direct path from 

the GPS satellite and the other one arrives at a slight delay due to reflection from 

nearby objects or surfaces. This results in a long-period deformation in the range 
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measurements that degrade the position solutions (Kijewski-Correa and Kochly, 

2007). Even if this problem can be overcome, in many situations, there are simply 

too few GPS satellites in view to be used. A logical approach then would be to 

increase satellite availability. This was investigated for example with the use of a 

combined GPS/GLONASS high sensitivity receiver (O’Driscoll et al., 2011) and 

(simulated) GPS/GLONASS/Galileo high sensitivity receiver (Ji et al., 2010), in an 

urban canyon. Unfortunately, it was found that although the number of detectable 

satellites increased, the multipath error remains a major problem in an indoor 

environment.  

This leads to a different approach to indoor positioning and navigation in the 

form of non-GPS systems (Fischer and Gellersen, 2010). Using infrastructure, 

either dedicated or non-dedicated for positioning, a form of non-GPS positioning 

systems are implemented. Dedicated infrastructure means that the infrastructure is 

purposely installed to aid navigation. Conversely, a non-dedicated infrastructure 

means the use of existing infrastructure that is not meant for navigation, but can 

be used to aid navigation. Radio Frequency IDentification (RFID), Wireless Local 

Area Network (WLAN/WIFI) and Ultra Wide Band (UWB) are examples of 

systems that do not use GPS signals, but can be used to compute position. RFID 

can use absolute position information embedded in it to aid navigation (Fu and 

Retscher, 2009; Ting et al., 2011). WLAN or WIFI provides absolute position 

information either by ‘fingerprinting’ or by using Received Signal Strength (RSS) 

(Kealy et al., 2010a; Biswas and Veloso, 2010). UWB also uses a similar approach 

to GPS positioning by making use of signal signatures such as Time of Arrival 

(ToA) and Angle of Arrival (AoA) to compute position (Tan and Law, 2007; Pittet 

et al., 2008; Chiu, 2009). A further explanation of these systems will be described 

in Chapter 3. 

All of these, however, do require some form of infrastructure, either dedicated 

or non-dedicated, which relate directly to an increase in cost. For example in a 

typical building, there are often lots of small rooms. Therefore, it is very costly to 

add some form of dedicated infrastructure in each room to aid navigation. 

Although one could argue that the cost, after installation, will be one off, 
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maintaining this infrastructure is another potentially expensive task. In some cases, 

for example in emergency situations, both dedicated and non-dedicated 

infrastructure might not be available at all to aid navigation. Therefore, in order to 

have a low-cost navigation system, a reasonable option is to resort to another 

technology that does not rely on external infrastructure.  

A common approach would be to use inertial sensors, commonly configured as 

an Inertial Measurement Unit (IMU), which has the advantage of not relying on 

external infrastructure. The sensors (normally three accelerometers and three 

gyroscopes) are small, of low power, and inexpensive due to advances in Micro-

Electro-Mechanical Sensors (MEMS) technology. They provide the change in 

position information, and, once initialized, the system is totally autonomous. 

Unfortunately, the performance of low-cost MEMS inertial sensors is still relatively 

low. For example, within 1 minute of operation, a 1-sigma horizontal position error 

for typical high grade IMU is only 3 m but the typical low-cost grade IMU has a 

remarkable error of 102 m (Moore et al., 2008). As a result, their use for 

positioning applications is relatively limited, unless frequent measurement updates 

from external sensors or technologies are available to correct the low-cost IMU 

error. 

One recent idea that has advanced the use of MEMS IMUs for pedestrian 

navigation is the notion of attaching the IMU to the pedestrian’s foot/shoe 

(Stirling et al., 2003, Foxlin, 2005, Beauregard, 2007, Godha and Lachapelle, 2008, 

M. Jadaliha et al., 2008, Rajagopal, 2008, Hide et al., 2009, Feliz et al., 2009, 

Robertson et al., 2009). This results in the substantial advantage that the foot has 

to be briefly stationary while it is on the ground. During this period, Zero Velocity 

Updates (ZVU or ZUPT), for example shown in (Grejner-Brzezinska et al., 2001), 

can be used to correct the user’s velocity. Furthermore, if the ZUPT measurements 

are used in the Kalman Filter (KF), they can be used not only to correct the user’s 

velocity, but also help to restrict the growth of the position and attitude errors and 

estimate the sensor bias errors (Foxlin, 2005, Godha and Lachapelle, 2008). The 

frequent use of ZUPT measurements consistently overcomes many of the errors and, 
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as a result, even relatively low-cost sensors can provide useful navigation 

performance. 

There remain, however, two significant problems with the low-cost MEMS IMU 

pedestrian navigation. Firstly, the initial position, velocity and attitude have to be 

obtained. For a stationary IMU, the velocity, roll and pitch can be set, where roll 

and pitch are obtained by comparing the accelerometer output to the local gravity 

vector. An initial estimate of the gyro biases can be initialised if the IMU is non-

rotating. The main problem, though, is that position and heading need to be 

obtained from external sensors. Typically, position is initialised using GPS, 

although the ability to do this will depend on whether the user is located in an area 

in which GPS is available, and if so, whether it can provide an accurate location. 

Heading also needs to be initialised since low-cost gyros are unable to measure the 

rotation of the Earth, which is used to initialise heading for higher grade sensors 

(Section 2.3.3.1). For example, Earth rotation rate is approximately 15 0/hr, or 1
240

 

0/s, whilst typical low-cost gyro has a bigger bias specification of 1
6
 0/s (see Table 

2.1 in Chapter 2). This means that the low-cost gyro would not be able to provide 

accurate initial heading because its bias is bigger than the value to be measured, 

which is the Earth rotation rate. Therefore, heading must be obtained from an 

external sensor, such as a magnetometer, which is, however, undesirable since 

magnetic disturbances can cause significant errors (analyzed in Chapter 6). 

The second significant problem that remains is the heading drift in the 

measured period of navigation, which ultimately will cause position drift error. 

Heading drift still remains, despite the use of ZUPT measurements in the KF, 

because the heading error is unobservable. Observability is the ability to determine 

a state from a given sequence of measurements and, with the use of ZUPTs to aid 

a low-cost IMU, it is not possible to estimate the heading error using these 

measurements alone. This causes a significant issue since there then becomes a 

requirement to use heading measurements from external sensors. Typically, 

magnetometers are used; however, their measurements are often unreliable when 

navigating in environments such as indoors, where there are significant magnetic 

disturbances. Instead, it is desirable to use innovative methods and algorithms, and 
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measurements from other systems in order to control heading drift. This second 

significant problem has, therefore, become the basis of this research. 

 

1.2 Research Aims and Objectives 

The aim of the research presented in this thesis is to propose a low-cost inertial 

pedestrian navigation system, capable of navigating autonomously in an indoor 

environment. The term ‘low-cost’ is used to represent an MEMS grade IMU sensor 

that incorporates only accelerometers and gyros. The system will subsequently be 

considered as a low-cost Pedestrian Navigation System (low-cost PNS), where 

applicable, in this thesis.  

The originality of this research, therefore, lies in investigating innovative 

methods of using only a low-cost IMU for positioning. This leads to the main 

research problem – the heading drift error – which is addressed specifically in this 

thesis. A novel approach to low-cost PNS is proposed by developing a new, 

effective, yet simple algorithm, using only a low-cost IMU. Previously, in order to 

investigate the problem, a low-cost IMU would have either been integrated with 

other sensors such as a camera, electronic tag and/or magnetometer (Hide et al., 

2009, Storms et al., 2010, Seco et al., 2010), or with an extensive map database 

(Woodman and Harle, 2008, Robertson et al., 2009).  

 

The broad aims of the research are therefore summarized as follows: 

1. Undertake research into improving the system performance of a low-

cost, autonomous inertial pedestrian navigation system.  

2. Investigate the performance of the methods proposed within the 

research. 

 

More specifically, the objectives of this research are: 

1. To investigate the performance of a conventional approach 

(magnetometer) to address the research problem in a low-cost PNS.  
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2. To propose a ‘mechanically rotating IMU mounted on a shoe’ as an 

alternative to the magnetometer to investigate the research problem. 

3. To undertake simulation and practical field trials for the proposed 

approach in (2).  

4. To develop a new algorithm to combat the drift problem without the 

existence of mechanical moving parts as in (2) and (3). 

5. To undertake practical field trials with the low-cost PNS using the 

developed algorithms.  

 

The research undertaken, which is presented in this thesis, demonstrates two 

significant findings: 

• A single axis rotation of the IMU for indoor pedestrian navigation can be 

used to address the poor observability of the heading, at the expense of 

needing mechanically moving parts. This results in two important outcomes. 

First, the approach improves the heading observability during walking, 

which results in a significant reduction in position drift error without the 

need for extra sensors and aids. Second, it also improves the observability 

of most of the IMU errors and the cancellation of the constant IMU errors. 

This improvement is quite pronounced during stationary alignment, which 

is potentially very useful during the period of alignment and initialization of 

the IMU.  

• A new proposed building-heading aided algorithm can also be used to 

address the poor observability of the heading for an inertial pedestrian 

navigation system, which subsequently reduces position drift error. With 

this approach, measurements from GPS, a compass or other sensors are not 

needed, once the system has been initialized. The approach, therefore, 

eliminates the dependence of the inertial pedestrian navigation system on 

extra sensors, which should directly result in a reduction in cost. It also 
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facilitates a significant reduction in position drift error for a long period of 

low-cost IMU-only navigation, which was previously very difficult to 

achieve.  

 

1.3 Thesis Outline 

This thesis is arranged into nine chapters which are now outlined.  

Following this chapter, Chapter 2 describes the theoretical knowledge used 

throughout the thesis. The fundamental principles for Strapdown Inertial 

Navigation System (SINS) will be explained. This includes the mechanization 

process, which forms the basis of inertial navigation. Then, a brief overview of the 

fundamentals of the Kalman Filter will be given. 

 In Chapter 3, a literature search of pedestrian navigation systems will be 

reviewed. This chapter will explain some of the current system approaches to the 

matter of indoor pedestrian navigation. The use of GPS as the state-of-the-art 

navigation technology will be explained first, followed by a consideration of the 

alternative technologies available, including Inertial Navigation System (INS). This 

chapter finishes with a review of the possibility for a low-cost PNS, using a ‘foot-

mounted INS’ approach. 

 This leads to Chapter 4, which will discuss the problems of indoor navigation 

using a foot-mounted INS. A specific emphasis will be given to a discussion of the 

primary errors of such a system, particularly the heading drift error. The 

performance and limitations of different approaches to aid a low-cost PNS will be 

explained. The chapter finishes by detailing the need for an additional research in 

this field. 

 In Chapter 5, the tools used in this research will be described. The processing 

software and the data simulation software will be covered in terms of their 

architecture and algorithms, linking directly with Chapter 2. The selection of 

hardware used in the field trials will also be explained.  

 Chapter 6 details how a magnetometer may be used as one means of solving 

the research problem. The chapter will describe magnetometer performance using a 
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filtering method. This chapter will show that the occasional reliable heading 

measurements, which can sometimes be obtained after filtering a high magnetic 

disturbance environment, such as found when indoors, are still not sufficient to 

reduce the heading drift error.  

 Following on from the findings of the previous chapter, Chapter 7 describes a 

new approach. This was proposed to make the INS heading measurement 

observable, to effectively reduce the heading drift. This will initially be done by 

proposing the rotation of the IMU mechanically on a single axis, on a platform 

mounted on a pedestrian’s shoe. The simulation results and real field trial results 

will be discussed. The chapter will show how the approach can improve the 

observability of the modelled IMU errors, subsequently reducing the heading drift 

error. Conversely, the existence of mechanical moving parts using this approach 

motivates Chapters 8 to find a much simpler and inexpensive way of tackling the 

heading drift problem.  

 Chapter 8 describes a new approach to mitigate the heading drift problem, 

termed Cardinal Heading Aided Inertial Navigation (CHAIN). A new algorithm 

will be developed and explained in detail, followed by results from several field 

trials. A comprehensive discussion follows, presenting possible limitations and 

weaknesses of the new algorithm. The CHAIN algorithm is extended by adding a 

number of sub-algorithms to address properly its operation in different scenarios. 

The sub-algorithms include Multiple Polygon Areas (MPA) approach, Zero 

Integrated Heading Rate (ZIHR) and Heuristic Height (HH). The performance of 

the full CHAIN algorithm will be tested and evaluated by presenting the results 

from a series of field trials.  

 Finally, Chapter 9 concludes the thesis by summarizing the major findings. 

Based on the results achieved during the research, conclusions will be drawn. The 

summary of contributions will be detailed again, and the continuity of the research 

will be suggested by recommending further research.  
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1.4 Thesis Structure 

To improve the understanding of the structure and layout of the thesis, each 

chapter in the thesis is structured to have three distinct features; the preface, the 

content and the summary. The preface, which appears at the first page of each 

chapter, briefly summarizes the content that the chapter intends to deliver, and 

optionally the significance made by the chapter. The summary, which appears at 

the last page of each chapter, summarizes the content that the chapter has 

delivered to the reader. To visualize the whole thesis flow, a thesis flowchart is 

drawn in Fig. 1.1: 
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1.5 Summary 

The opening chapter of this thesis has provided the relevant background to support 

the research into low-cost inertial Pedestrian Navigation Systems (low-cost PNSs). 

It has been pointed out that the current systems suffer limitations that might be 

overcome by suitable assistance. A set of research aims and objectives were then 

presented to address the issues. A brief overview of the thesis is provided, 

describing each chapter in turn and, finally, the contributions to knowledge made 

by the research are summarized.  
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Chapter 2 

Inertial Navigation System 

and Kalman Filter 
 

The main technology that was researched is inertial navigation technology. 

Therefore, before going into the literature of the research in the next chapter, this 

chapter is presented first to familiarize the reader with the technical background. It 

begins with an overview of the background theory behind the Strapdown Inertial 

Navigation System (SINS) technology. Following this, a section explaining the 

fundamentals of the Kalman Filter (KF) is introduced, followed finally by a 

chapter summary.  
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2.1 Introduction 

The low-cost inertial Pedestrian Navigation System (low-cost PNS) presented in 

the thesis uses an inertial navigation technology. Therefore, this chapter will 

attempt to describe briefly the inertial sensors and how they can be used to 

navigate, using a technology known as an inertial navigation. First, Section 2.2 will 

introduce the inertial navigation, before focussing next on the low-cost MEMS 

inertial sensor technology in Section 2.3. This is followed by Section 2.4, where it 

will describe the strapdown inertial navigation technology that was used in the 

research. This involves describing the inertial sensor mechanization process to 

produce position solutions from inertial sensor data. Finally, Section 2.5 briefly 

explains the fundamentals of the Kalman Filter (KF) as an estimation filter, as it 

was used in the research to estimate the low-cost inertial sensors’ errors.  

 

2.2 Inertial Navigation  

Inertial navigation can be said as an autonomous navigation technique that uses 

the concept of ‘dead-reckoning’. This implies that it navigates on its own, based on 

the information produced by its sensors, without requiring external information. In 

reality, however, it does require a priori information, which consists of an initial 

position, velocity and attitude of the system. In order to navigate, current 

displacement and attitude are computed through a set of mathematical navigation 

equations and added to the previous position and attitude information. 

The combination of Inertial Measurement Unit (IMU) and a navigation 

processor to do the computation can be collectively known as Inertial Navigation 

System (INS). An IMU typically contains three orthogonal accelerometers and 

three orthogonal gyroscopes (gyros). The accelerometers measure specific force, 

which is the acceleration due to all forces, whilst gyros measure angular rate. The 

term navigation processor refers to the computer used to ‘mechanize’, or process 

these measurements using mathematically formulated navigation equations. 
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Through mechanization, the IMU measurements are processed, or computed, to get 

the current position, velocity and attitude information. The mechanization process 

will be explained in detail in Section 2.4. 

INS can be generally divided into two categories; one is known as a stable 

platform INS or Gimballed INS (GINS), and another one is known as a Strapdown 

INS (SINS). In the stable platform INS (Woodman, 2007), the IMU is mounted on 

a stable platform and aligned with the global frame of reference. In order to keep 

the platform stable and free from any external rotation, gimbals are used. If there 

is a rotation, the amount of rotation or attitude rate will be picked up by the gyros 

on the platform. Thus, any platform rotation will be neutralized by subtracting it 

with the attitude rate obtained from gyros. A stabled-platform permits the 

accelerometers to be used correctly because forces due to gravity can be deducted 

directly from the accelerometer measurements. The position is then acquired by 

‘integrating’ the accelerometers measurements twice. The second configuration, 

SINS, is used in the research because of its convenience for pedestrian navigation. 

As the name implies, strapdown inertial navigation is defined when an IMU is 

‘strapped’ to the body of a system or onto a device where the IMU is installed. 

SINS will be covered in detail, including its mechanization, in Section 2.4. 

 

2.2.1 IMU Grades 

There are generally four categories of IMU, often defined to describe the four 

different grades of inertial sensors used. The lowest grade is commonly known as 

the consumer grade and the second lowest grade is known as the low-cost grade. 

The medium grade is known as the tactical grade, whilst the highest grade is 

known as the navigation grade. The categorization of different grades is mainly 

based on the IMU price and specifications. This means that usually the lowest 

grade is the cheapest and has the lowest specifications (for example in terms of 

error specifications). Because of this, it is commonly found in consumer devices 

such as smart phones, laptops and motion-enabled games controller. Table 2.1 

shows a typical performance comparison for different grades of IMU. The difference 
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between error terms which appeared in the table (bias, scale factor and noise) will 

be explained in Section 2.3.1.  

The research presented in this thesis uses low-cost grade IMU with strapdown 

INS technology. Although it is tempting to use current consumer grade inertial 

sensors as they are the ‘lowest-cost’, it is considered to be not convenient for the 

research. This is because typically they have extremely high and varying error 

specifications, which means they must be estimated and modelled correctly within 

a very short period of time. If not, when the inertial navigation technology is used, 

the errors that are not properly estimated (for example because of the inaccurate 

dynamic model used – dynamic model will be described in Section 2.5.2) will grow 

rapidly within this short period. This will finally corrupt the computed position 

solution. In the case of pedestrian navigation, this poses a daunting task in the 

estimation process because then it needs a very high rate of measurement updates 

to help the estimation process and possibly a very precise dynamic model, which 

often are not available. In contrast, these consumer grade inertial sensors are 

commonly used in consumer devices because they can be used for non-positioning 

tasks. For example, they can detect sudden/abrupt change of acceleration and 

orientation to activate certain simple task (O'Reilly and Weinberg, 2010) such as 

changing screen orientation from landscape to portrait for smart phones.  

The next Section 2.3 will focus on Micro-Electro-Mechanical System (MEMS) IMU 

(the type of inertial sensor used in this research), which falls under the low-cost 

grade IMU. For further descriptions of navigation and tactical grades IMU, readers 

are directed to texts such as (Groves, 2008).  
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Table 2.1: IMU grades: performance and cost data (MicroStrain, 2011a; Blake, 2008; 

Lukianto et al., 2010; Invense, 2010; STMicroElectronics, 2010; Farnell, 2010; 

SparkFun, 2010) 

 

IMU Grade Navigation Tactical Low-cost Consumer 

Example Honeywell 

CIMU 

Honeywell 

HG1700 

Microstrain 

3DM-GX3-25 

Invensense ITG-

3200 (gyros)  

STMicroelectronics 

LIS3LV02DL (acc) 

Dim.(mm) 204x204x168 94 dia, 74 ht 44x25x11 Gyro (4x4x0.9) 

Acc(4.4x7.5x1.0) 

Cost ~£60,000 ~£14,000 ~£1700 Gyro (~£17/unit, 

~£38/board),  

Acc (~£14/unit, 

~£31/board) 

Gyro Ring Laser Fibre Optic MEMS MEMS 

Bias(0/hr) 0.0035 1-10 0.2 0/s 4 0/s 

Scale Factor 

Error 

5 ppm 150 ppm < 2000 ppm - 

Noise (0=
p
hr) 0.0025 0.125 - 0.5 3.5 22.8 

Accelerometer Silicon Silicon Silicon Silicon 

Bias (mg) 0.05 1-2 < 10 <100  

Scale Factor 

Error 

100 ppm 300 ppm < 2000 ppm   - 

Noise (mg/
p
Hz) - - - - 

 

 

 

2.3 MEMS Inertial Sensor Technology 

The low-cost IMU used in this research features an off-the-shelf Micro Electro 

Mechanical System (MEMS) type IMU. Because of its attractive specification such 

as low-power consumption, no-moving parts, cheapness, compact size, enhanced 

durability and mass production capability, these sensors are becoming more 

popular in consumer-grade navigation systems. In 2007, the MEMS-based systems 

was reported to have generated $47 billion in revenue, and estimated to grow to a 

massive $103 billion by the end of year 2012 (Boucher and Lensch, 2010). 
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MEMS uses micro-fabrication technology to mini-fabricate quartz and silicon 

sensors in a large volume, on a common single wafer (Kourepenis et al., 1998). The 

use of quartz and silicon, as proven in semiconductor electronics industry for 

inertial sensing elements, is therefore very significant for cost reduction especially 

when they are mass produced. An IMU typically consists of three orthogonal 

accelerometers and gyros. A simple construction of a MEMS accelerometer is 

shown in Fig. 2.1, where it contains proof mass, usually held by a flexural support 

(ibid.). It works by measuring the displacement of the proof mass, due to 

acceleration, using a pickup sensor. Alternatively, the force required to maintain its 

position can also be measured.  

Another typical MEMS gyro contains a vibrating proof mass held by a flexural 

support, operating on a slightly different principle. It uses Coriolis acceleration 

effect on the vibrating proof mass to detect inertial angular rate (Leondes and 

Apostolyuk, 2006). Fig. 2.2 shows the basic principle of Coriolis acceleration 

(Titterton and Weston, 2004) and Fig. 2.3 shows its principle in MEMS gyros 

(Chang et al., 2006). In Fig. 2.3, the proof mass is made to vibrate with certain 

velocity by a drive motor. This velocity vector axis (x-axis) is perpendicular with 

the angular rate input axis (z-axis, out of the plane). When angular rate is applied 

on its input axis (gyro rotates), a Coriolis force is produced, which induces an 

oscillation of the proof mass in y-axis. Angular rate can then be estimated by 

measuring the amplitude of the oscillation in y-axis (Coriolis acceleration), which is 

proportional to the applied input rate.   
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2.3.1 Error Characteristics 

According to Groves (2008), each MEMS IMU error has some or all of these 

components: a fixed contribution, a temperature-dependent variation, a run-to-run 

variation, and an in-run variation. A fixed contribution error and a temperature 

dependent variation error can be corrected using a suitable factory calibration 

(Aggarwal et al., 2008, Skog and Handel, 2006). A run-to-run variation error, 

although different each time the sensor is used, remains constant within any run. It 

can be addressed during system alignment (which will be explained in Section 

2.3.3.1), although typically not for all errors because of an observability problem 

(observability will be explained in Section 4.4). The fourth component, which is an 

in-run variation error that slowly changes during its operation, cannot be corrected 

during system alignment. Nonetheless, although there are still some residual errors 

from the first three components, it is this fourth component that can affect the 

performance of MEMS IMU the most.  

In the case of MEMS gyro, for example, the measurement equation for the 

most common significant errors can be written as (Mezentsev, 2005): 

 Gw = ! + b! + S:! + " (!) (2.1) 

where G w  is the gyro measurement, !  is the true angular velocity, b! is the gyro 

bias, S is the gyro scale factor error, and " (!) is the gyro noise. Theoretically, all 

errors in this equation can be estimated, provided good quality measurements with 

sufficient dynamics are available to observe each errors. Otherwise, MEMS gyro 

errors cannot be observed separately and often, they are modelled simply as gyro 

bias with noises that includes all of the above errors. A similar situation is also 

often assumed for MEMS accelerometer type errors (ibid.), where all the 

accelerometer errors are modelled simply as accelerometer bias error.  

The next Section 2.3.1.1, 2.3.1.2 & 2.3.1.3 will discuss the MEMS IMU dominant 

error sources that appeared in Table 2.1 (bias, scale factor error and random noise), 

which may fall under the fourth error component that affect both accelerometers 
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and gyros performance. For a detailed explanation on other IMU error sources such 

as cross-axis sensitivity, temperature dependence and axis misalignment errors, 

please refer to texts such as Groves (2008). 

 

2.3.1.1  Bias 

Bias can be defined as the offset of the output signal from the true value. It can be 

split into two terms, static bias and dynamic bias (ibid.). It is usually specified in 

milli-g, (mg), for accelerometers (ba) and degrees per hour, ( 0/h), for gyros (bg). 

 ba = bas+ bad;bg = bgs+ bgd; (2.2) 

Static bias (bas; bgs) is a constant bias throughout the IMU operation, but 

differs from every IMU run. For example, it is possible to estimate gyro bias by 

taking an average measurement for a certain time when the IMU is stationary. 

Dynamic bias (bad; bgd) which is sometimes called bias instability, is a varying bias 

that may change over a specified period of time. For example, if the gyro bias 

instability is quoted as 10 0/h for 60 s and the known bias at time t  is ba(t), it 

means that the bias at (t + 60) is a random variable with an expected value of ba(t) 

and a standard deviation of 10 0=h. 

 An uncompensated bias can introduce error in the computed velocity and 

position. Eq. (2.3) shows that an uncompensated accelerometer bias introduces 

error proportional to time (t)  in velocity and proportional to (t2) in position 

(Aggarwal et al., 2010): 

 v =

Z

bf dt = bf t, p =

Z

v dt =

Z

bf t dt =
1

2
bf t

2 (2.3) 

where bf is accelerometer bias, p  is the position and v  is the velocity.  

 Likewise, an uncompensated gyro bias introduces an angle error, ±µ 

proportional to time, t  as: 

 ±µ =

Z

bw dt = bw t (2.4) 
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where bw is the gyroscope bias.  

 The small tilt angle error will cause a misalignment of the INS, and therefore 

project the acceleration vector in the wrong direction. This results in a proportional 

acceleration to ±µ (a = g sin(±µ) ¼ g ±µ = g bw t ) in one of the horizontal axes. 

Position and velocity errors, as a result of this angle, are given by: 

 v =

Z

a dt =

Z

gbwt dt =
1

2
gbw t

2 (2.5) 

 p =

Z

v dt =

Z

1

2
gbw t

2 dt =
1

3
gbw t

3: (2.6) 

For example, suppose accelerometer bias is 1ms¡2  and gyro bias is 1 0=s 

(approximately 0.02 rad=s ). If these biases are not compensated in the 

measurements, accelerometer bias will generate a 50m error in position after only 

10 s, and 5 km error after 100 s. In contrast, gyro bias will generate a 27:8 m error 

in position after 10 s, but then grow to 27:8 km after 100 s. This shows that over 

time, the effect of gyro bias on position error is more pronounced than 

accelerometer bias as it introduces cubic error growth in position error. 

 

2.3.1.2  Scale Factor Error 

Scale factor is the ratio of the sensor input and sensor output. A scale factor error 

is the error in this ratio after unit conversion, which means a zero scale factor error 

produces a unity ratio. It can be caused by, for example, the imperfection in the 

pick-off sensor inside IMU assembly (Weinberg and Kourepenis, 2006). It is often 

expressed in units of parts-per-million (ppm). For MEMS IMU, as tabulated in 

Table 2.1, the scale factor error can be as high as 2000 ppm (0.2 ×10-2) or 0.2 

percent from the true output. 

 

2.3.1.3  Noise 

The MEMS IMU outputs are perturbed by various sources of noise, such as 

thermal noise and electrical noise (Woodman, 2007). Gyro noise is integrated to 
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produce Angular Random Walk (ARW), and accelerometer noise is integrated to 

produce Random Walk (RW) on its velocity solution. Usually manufacturers 

specify noise in terms of ARW with units in degrees per hour (0=
p
hr ). Some 

specify it as Power Spectral Density (0=hr)2=Hz) or FFT ( 0=hr=
p
Hz ) noise 

density, in which case the conversion between them can be made using formula 

described in Stockwell, (n.d). For example in Table 2.1, the Honeywell HG1700 has 

gyro noise specification of 0:50=
p
hr , which means after 1 hour the standard 

deviation of attitude error will be 0.50; after 2 hours about 0:50:
p
2 = 0.710,  and 

after 3 hours about 0:50:
p
3 = 0.870. 

 

2.4 Strapdown Inertial Navigation System 

This research used a low-cost MEMS IMU with a Strapdown Inertial Navigation 

System (SINS) configuration. The discussion afterwards will use the term IMU to 

represent the low-cost MEMS IMU.  

The heart of SINS is the navigation processor, which uses the IMU 

measurements using a process called mechanization. Fig. 2.4 shows the 

mechanization process in general. The IMU measurements are measured in its own 

body frame with respect to an inertial frame (frame definition will be covered in 

Section 2.4.1). The process starts by integrating the rate gyroscope measurements 

to get the orientation (or attitude) of the system. This orientation is then used to 

transform accelerometer measurements from the body frame to the resolving frame. 

This research uses navigation frame as the resolving frame (Section 2.4.1.3), where 

resolving frame is defined as a set of axes in which the motion is represented 

(Groves, 2008). Next, after subtracting gravity, the transformed accelerometer 

measurements are integrated to yield velocity, and the velocity is integrated again 

to yield displacement. The displacement is then added to the previous position 

solution to produce the current position solution.  
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2.4.1 Coordinate Frames 

There are four types of coordinate frame typically used in inertial navigation (Shin, 

2005): the inertial frame, the earth frame, the navigation frame and the body frame. 

These coordinate frames are used because the INS mechanised outputs, which 

comprise position, velocity and attitude, need to be transferred to meaningful 

navigation information to user.  

 

2.4.1.1  The Inertial Frame 

The inertial frame (i-frame) is an ideal reference frame where it does not rotate nor 

accelerate. In practice, however, a more practical approach is adopted as it is 

difficult to define the true i-frame. Distant fixed stars are, therefore, used as a 

point of reference for a generic i-frame, where the coordinate frame does not 

accelerate and does not rotate with respect to this point. In other words, the 

coordinate frame does not rotate along with the earth. It is commonly known as 

Earth-Centred Inertial (ECI) frame, where earth-centred simply means that the 

frame’s origin is at the Earth’s centre of mass. The x-axis and y-axis lie along the 

equatorial plane such that x-axis always points toward the mean vernal equinox 

and y-axis always lies 900 ahead of x-axis in the direction of Earth’s rotation. The 

z-axis always points along the mean rotation axis of the Earth. 

Rate-gyroscope 

signal 
Orientation 

Accelerometer  

signal Position 

Initial 

Velocity 

Initial 

Position 

Velocity 
Global  

Accel 
∫ 

Project 

accelerations 

onto global  

axes 

 ∫ 

 

Correct for 

gravity ∫ 
Fig. 2.4: Strapdown inertial navigation algorithm (Woodman, 2007) 
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2.4.1.2  The Earth Frame 

The earth frame (e-frame) more commonly known as Earth-Centred Earth-Fixed 

(ECEF) frame is also an earth-centred coordinate frame. As opposed to ECI, 

however, where the axes do not move together with the Earth, ECEF axes moves 

together with the Earth (remains fixed with respect to the Earth). The x-axis 

points from the Earth’s centre of mass towards the equator, which intersects with 

00 longitude and 00 latitude (Greenwich Meridian). The y-axis completes the right-

handed orthogonal system, whilst the z-axis points from the centre towards the 

North Pole (true, not magnetic). 

The e-frame rotates about the z-axis at a rate known as Earth rate. This 

rotation rate vector with respect to i-frame resolved to the e-frame is given as 

(Farrell and Barth, 2008): 

 !e
ie ¼

0

@0 0 !e

1

A

T

 (2.7) 

where !e  is the magnitude of Earth rate (7:292115£ 10¡5 rad=s). This value, 

however, can be considered an approximation because it depends on the 

approximation of earth’s geoid to an ellipsoid. Apart from Cartesian coordinates, 

the position vector, re can also be expressed in geodetic latitude (' ), longitude (¸), 

height (h) in e-frame relative to an ellipsoid (most commonly the WGS-84 ellipsoid) 

as follows (ibid.):  

 re =

0

B

B

B
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@
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 (2.8) 

where e is the eccentricity of the reference ellipsoid and RN is the meridian radius 

of curvature. Eccentricity describes how elliptical the ellipsoid, where e = 0 means 

the ellipsoid is perfectly sphere.  
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2.4.1.3  The Navigation Frame 

The navigation frame (n-frame) is a local geodetic coordinate frame that has its x-

axis points towards geodetic North. The y-axis completes the right-handed 

orthogonal system, thus pointing towards geodetic East. The z-axis is normal 

(makes 900 angle) to the surface of reference ellipsoid, pointing roughly towards the 

centre of the Earth. Thus, the n-frame is also commonly known as North-East-

Down (NED) system. The frame’s origin overlaps with body frame’s origin (this 

will be explained in Section 2.4.1.4). The n-frame is often used (as in this research) 

because users want to know their attitude relative to North, East and Down 

direction. The n-frame is subjected to a rotation with respect to the e-frame 

referred to as a transport rate (!n
en). The navigation frame’s rotation to keep North 

axis aligned is done on a rotating earth, causes Coriolis acceleration, which, 

therefore, needs to be accounted for during IMU mechanization.  

 

2.4.1.4  The Body Frame 

The body frame (b-frame) is a coordinate frame that remains fixed with respect to 

the IMU. Its origin coincides with the n-frame’s origin. The x-axis points forward, 

which represents the typical direction of travel. The y-axis completes the right-

handed orthogonal system, whilst z-axis points downwards, which is the typical 

direction of gravity. For angular motion, x-axis, y-axis and z-axis are often known 

as roll-, pitch- and yaw-axis respectively. All measurements in inertial sensors are, 

therefore, described in b-frame, with respect to i-frame. 

 

2.4.2 Rotation of Coordinate Frames 

In a case of INS, its output, measured in b-frame, needs to be represented in more 

meaningful information for user interpretation. This can be done by transforming, 

for example, the INS b-frame output to n-frame representation as used in this 

research. To do this, coordinate frames rotation is done by rotating each coordinate 

axis in successive rotations. The rotation can be represented in inertial navigation 
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using Euler angles or quaternions (ibid.). The next section describes the coordinate 

transformation matrix using Euler angle from b-frame to n-frame.  

 

2.4.2.1  Earth to Navigation Frame 

In order to transform measurements in e-frame, such as from Global Positioning 

System (GPS) data, to the n-frame, the rotation is performed in two steps. Firstly, 

the coordinate axes are rotated about the ECEF z-axis such that the rotated y-axis 

is aligned with the East axis of n-frame. Secondly, the axes are rotated about the 

new y-axis to align the new z-axis with the Down axis of n-frame. This results in 

the rotation matrix (Shin, 2005, Hide, 2003): 

 Cn
e =

0

B

B

B

B

B

B

B

B

@

¡sin'cos¸ ¡sin'sin¸ cos'

¡sin¸ cos¸ 0

¡cos'cos¸ ¡cos'sin¸ ¡sin'

1

C

C

C

C

C

C

C

C
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 (2.9) 

Similarly, transformation from the n-frame to the e-frame can be obtained via its 

transpose matrix because Eq. (2.9) is orthogonal. The transpose is denoted by the 

superscript T, Ce
n = (C

n
e )

T . 

 

2.4.2.2  Body to Navigation Frame 

In order to make IMU measurements constructive to the user, it is resolved into n-

frame such that the user is able to recognize their position in relation with North, 

East and Down directions on Earth. To do this, a series of Euler Angles rotations: 

roll (Á), pitch (µ ) and yaw (Ã) angles, are rotated in order. Each corresponding 

rotation matrix is multiplied in its corresponding order to produce the coordinate 

transformation matrix. The rotation order is therefore critical because of the non-

commutative behaviour of matrix multiplication. This means that if the rotations 

are performed in different order, the orientation of the axes after transformation 

will be different. The coordinate transformation matrix, commonly called Direction 
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Cosine Matrix (DCM), from n-frame to b-frame can be written as (Farrell and 

Barth, 2008; Groves, 2008), 
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 (2.10) 

Therefore, because of its orthogonality, the DCM from the b-frame to n-frame can 

be found via its transpose matrix,  

   Cn
b = (Cb

n)
T = CT

1 C
T
2 C

T
3  
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 (2.11) 

where sin and cos are denoted as s and c respectively. 

 The Euler angles can then be extracted from the DCM using the following 

equations: 

 Á = tan¡1(
C32

C33
) (2.12) 

 µ = sin¡1(C31) (2.13) 

 Ã = tan¡1(
C21

C11
) (2.14) 

where Cmn refers to row (m) and column (n) of elements in Eq. (2.11).  

The coordinate frame transformation can also use a quaternion. The quaternion, q, 

is a vector that has four components: 
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 q =

0

@q0 q1 q2 q3

1

A

T

 (2.15) 

where q0 represents the magnitude of the rotation, and the other three components 

represent the three axes where the rotation takes place. It is often used for 

coordinate transformations because of its efficient computation such as lack of 

trigonometric functions and the fact that only four parameters are involved (ibid.). 

If Euler Angles are used, the transformation from bframe to n-frame can be 

computed as (Shin, 2005): 
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 (2.16) 

 

2.4.3 Navigation Frame Mechanization 

In inertial navigation, the mechanization can be defined as the process of producing 

navigation solutions from a set of raw measurements obtained from inertial sensors. 

The mechanization approach is comprehensively described in main texts such as 

Groves (2008), Farrell and Barth (2008), Titterton and Weston (2004), Hide (2003) 

and Shin (2005), so is briefly described in this section. Only the navigation frame 

mechanization will be covered although different coordinate frames can also be 

used. It starts with the initialization and alignment of the system, followed by the 

use of differential equations to produce navigation solutions.  

 

2.4.3.1  Initialization and Alignment 

The INS mechanization process starts with initialization and alignment of the 

system. Initialization is often defined as the process of obtaining the initial position 
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and velocity of the system, whilst alignment is usually referring to the process of 

obtaining the initial attitude parameters of the system (Hide, 2003).  

Because of its inertial behaviour, an INS must be initialized from external 

measurements. In a case of an integrated INS/GPS system, for example, INS is 

normally initialized with the position and velocity information obtained from GPS. 

This obviously depends on how well and reliable the GPS measurements are. 

Alternatively, manual initialization can also be performed, for example by using a 

pre-surveyed coordinates and known velocity (zero velocity in a case of stationary 

INS).  

For IMU alignment, the process is often divided into two. First is the 

horizontal alignment, sometimes known as levelling, which is used to obtain initial 

roll and pitch estimates. Second is the heading alignment, sometimes known as 

gyrocompassing; which is used to obtain the initial yaw estimates.  

In horizontal alignment, accelerometer measurements are often used for 

stationary IMU. This is because while the IMU is stationary, the only specific force 

sensed by the accelerometers is the reaction to gravity, which is in the negative 

direction of the navigation frame Down axis. Therefore, the raw measurements in 

body frame, fb can be compared with the known (or modelled) gravity vector, 
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which can then be solved for initial roll, Á , and pitch, µ , as follows, 
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For heading alignment, the underlying principle is that while stationary, the 

only rotation sensed by the gyros is the Earth rotation, which rotates about the z-

direction of the ECEF frame in Eq. (2.7). Since the East component of Earth 

rotation is zero, the initial yaw measurement can be found by rotating the IMU 

about its z-axis such that the East gyro component will be zero. Through this 

process, the x-axis of IMU will be aligned to North, thus providing the initial 

heading for the system. The process of horizontal and heading alignment is 

sometimes known together as coarse alignment process.  

After position, velocity and attitude of the INS have been initialised and 

coarsely aligned, a fine alignment is often made using an estimation algorithm such 

as the Kalman Filter (Kalman, 1960, Maybeck, 1979). This is because after a few 

seconds of coarse alignment, there are still residual attitude errors between the 

estimated and the true attitude that could be resulting from the systematic errors 

in the IMU outputs. Using stationary IMU, the observations can be defined as 

 ±fn = fn¡ f̂n (2.19) 

 ±!n = !n ¡ !̂n (2.20) 

where fn and ! n  are the known gravity vectors and Earth rotation, and f̂n and !̂n 

are the current measurements from the IMU.  

Both processes for heading alignment (coarse and fine alignment) require the 

gyro to be sensitive enough to measure Earth rotation rate. This therefore 

highlights the significance of heading alignment for the low-cost MEMS IMU  

because currently this is not possible. Other methods using external sensors such as 

GPS or magnetometer can be used for this purpose. GPS-based method, however, 

requires the system to be moving, which means a static heading alignment cannot 

be made. Furthermore, GPS measurements are likely to be perturbed by noise and 

multipath in harsh environments such as indoors and urban canyon, which means 

the GPS heading information may be noisy as well. Magnetometer can also be used 

for heading alignment using the horizontal component of the Earth’s magnetic field 
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vector. Nevertheless, the accuracy depends on the quality of the measurements, 

which can be severely affected by magnetic disturbances that are likely indoors.  

 

2.4.3.2  Navigation Frame Equation & Mechanization 

Fig. 2.5, extended from Fig. 2.4, shows the mechanization process for SINS in the 

navigation frame. Several navigation equations are involved throughout the process. 

Attitude is referred to as the body-to-navigation-frame coordinate transformation 

matrix, Cn
b  whilst position is referred to as latitude ('), longitude (¸ ) and height 

(h ). Notation for angular rate, for example !n
ib, is written as two subscripted letters 

and one superscript letter. Of the two subscripted letters, the first represents the 

frame which the rotation is in respect to, while the second represents the frame 

which the rotation is being measured. The superscript letter represents the frame 

whose rotation is being represented. Literally, !n
ib  denotes the angular rate 

measured in body frame with respect to inertial frame, represented in navigation 

frame.  

 The next paragraph summarizes the forward mechanization process based on 

Fig. 2. It is largely influenced by the reference texts such as (Hide, 2003; Farrell 

and Barth, 2008; Titterton and Weston, 2004). 
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The iterative mechanization process is summarized as follows: 

1. Sample the raw measurements from accelerometers and gyros in discrete 

time intervals. Accelerometers measure the specific force, denoted by fb, 

and gyros measure the sensor rotation, denoted by !b
ib, with respect to 

inertial frame. An initial correction to the sensor measurements can be 

applied if the knowledge of the sensor errors is known, for example from 

laboratory tests, manufacturer specifications or an online calibration.  

2. Compensate gyro measurements for the Earth's rotation, !n
ie, and the 

navigation frame transport rate, !n
en. This gives the turn rate of the 

body frame with respect to the navigation frame referenced in the body 

frame, !b
nb, given by: 

 !b
nb = !b

ib ¡Cb
n

0

@!n
ie + !n

en

1

A (2.21) 

Fig. 2.5: INS mechanization process in navigation frame, adapted from Hide, 

(2003) 
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 where, using Eq. (2.7) and Eq. (2.9),  

 !n
ie = Cn

e !
e
ie =

0

@!ecos' 0 ¡!esin'

1

A

T

 (2.22) 

and the transport rate, expressed in terms of the rate of change of 

latitude and longitude, 

 !n
en =

0

@ _̧ cos' ¡ _' ¡ _̧ sin'

1

A

T

 (2.23) 

Substituting _' = ÀN =(RN + h)  and _̧ = ÀE =(RE + h) cos '  into Eq. 

(2.23) yields: 

 !n
en =

0

@

ÀE

RE+h
¡ ÀN

RN+h
ÀE tan¸
RE+h

1

A

T

 (2.24) 

where v  is the velocity in navigation frame, RN  is the meridian radius of 

curvature, and RE is the transverse radius of curvature of the Earth.  

3. Calculate the updated attitude from the rotation matrix, Cn
b  .The 

attitude can be updated by propagating Cn
b  in accordance with the 

equation:  

 _Cn
b = Cn

b Ð
b
nb (2.25) 

 where  

 Ðb
nb =

0
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!z 0 ¡!x

¡!y !x 0
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C

A

= !b
nb£ (2.26) 

Thus, Eq. (2.25) can be rewritten, using Eq. (2.21), as: 
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 _Cn
b = Cn

b (!
b
ib£)¡ (!n

in£)Cn
b  (2.27) 

where !n
in=!n

ie+!
n
en . 

4. Resolve the specific force measurements from body to navigation frame 

using the updated attitude. Then, compensate the measurement for the 

local gravity vector (g n ) and Coriolis acceleration using: 

 _vn =Cn
b fb+g

n¡(2!n
ie+!

n
en)£vn (2.28) 

Integrate Eq. (2.28) to get velocity (in terms of latitude rate and 

longitude rate), and integrate again to get position in the navigation 

frame (where height is given by _h = ¡vD).  

5. Repeat process 1-4, where the current computed measurements are used 

in the next iteration.  

 

2.4.3.3  INS Error Model 

Shin (2005) explained in detail the difference between several types of inertial 

sensor error models: phi-angle model, psi-angle model, modified error model and 

large heading uncertainty model. The first two models perturb the navigation 

parameters with respect to different resolving frames: navigation frame and 

computer frame respectively. The third model modifies the first two models, whilst 

the last one addresses a case where the initial heading uncertainty may be large.  

 The phi-angle error model was used in this research to propagate error states 

that were being estimated. It perturbs the navigation parameters appeared in Eq. 

(2.27) & (2.28) with respect to the navigation frame, and can be written as (Hide, 

2003; Titterton and Weston, 2004): 

 ± _rn = Frr±r
n + Fvr±v

n (2.29) 

± _vn = Cn
b ±f

b + Cn
b f

b £ ² + ±gn ¡ (2!n
ie + !n

en)£ ±vn ¡ (2±!n
ie + ±!n

en) £ vn (2.30) 

 _² = ¡!n
in £ ² + ±!n

in ¡ Cn
b ±!

b
ib (2.31) 
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where ±r , ±v  and ²  are the vectors of position, velocity and attitude errors 

respectively, ££  is the cross product operator, Cn
b 	 is the rotation matrix that 

transform from body frame to local navigation frame, !n
en is the navigation frame 

transport rate, !n
ie is the Earth’s rotation, ±gn is the gravity vector error and ±(¢)

	represents the error of specific vectors. Frr and Frv is the partial derivatives with 

respect to position and velocity (full expression of the matrices in Chapter 5). The 

middle terms in brackets in Eq. (2.30) that contain Earth rotation and gravity 

error can be ignored since low cost IMUs are not capable of measuring Earth 

rotation and also navigation is done with a small velocity in a small area (thus 

assumed insignificant gravity error). These error equations represent the system 

dynamic model, which are used to form the dynamic matrix, F  in the Kalman 

Filter (this will be explained in Chapter 5). 

 An error model is used to describe the temporal behaviour of inertial sensor 

errors because of the uncertainties in the sensors and the gravity field. These 

uncertainties cause the navigation parameters computed from INS mechanization 

to have errors. Thus, using the knowledge from the error model, an estimation 

filter can be used to estimate the inertial sensor errors over time, and subsequently 

can be used to correct the navigation parameters. In this research, along with the 

error model, an error-state Kalman Filter was used as the estimation filter, which 

will be explained in Chapter 5. The next Section 2.5 therefore explains on the 

fundamentals of the Kalman Filter. 

 

2.5 The Kalman Filter 

One of the most common methods in estimation theory applications is the use of 

the Kalman Filter (KF). The KF is not actually a physical filter with electronics, 

but rather a series of mathematical equations. For an exhaustive explanation and 

derivation of KF and its sub-algorithms, including its limitations, readers are 

directed to more prominent texts such as Grewal and Andrews (2008). 
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 This research used a traditional error-state KF to estimate INS errors, and, 

together with all the states that were modelled, will be covered in detail in Section 

5.3. The KF was used because: (1) optimal estimation at the current epoch by the 

KF contains all previous statistical history of the system, (2) only estimations at 

the current epoch are required to predict the future states, and primarily (3) 

propagation of INS errors over time can be acquired, monitored and evaluated. 

Point (1) and (2) can be important for future development, where a real-time 

system might be possible because of the low computational load, whilst point (3) is 

significant for this research as the knowledge of the behavior of INS errors over 

time can be evaluated and solutions can be proposed.  

 The error-state KF that was used falls under an Extended KF (EKF), which is 

a linearized-type of KF that has an INS error control loop (feedback) control 

system (Shin, 2005), where it linearizes the system dynamic model and the 

measurement model. This means that the low-cost IMU errors are assumed to be 

propagated linearly, and the use of EKF with this assumption is deemed reliable 

for this research. This is because, in the case of an approach investigated in this 

research (which will be covered in the subsequent chapters), the time between 

measurement updates is typically very short (about ~1s). Within this short period, 

therefore, the assumption of linearization should be adequate to model the low-cost 

IMU errors. It might be possible, for example, if consumer grade IMU is used, this 

assumption might not be valid anymore. This results from its high error variations 

within a short period of time.  

The next subsequent sections explain the fundamentals of KF, and are largely 

based on the references mentioned above.  

 

2.5.1 Principle of the Kalman Filter 

The Kalman Filter (KF) is a linear estimation technique that comprises a set of 

algorithms in a recursive configuration. The algorithms are made from a set of 

mathematical equations that describe the states of the system, and how these 



Chapter 2. Inertial Navigation System and Kalman Filter  39 

 

 

states evolve over time using the system dynamics model. States are the quantities 

that are to be estimated and can be defined as a set of parameters that can 

sufficiently model the movement of a system, whilst a system dynamic model is 

defined as the change in the parameters of the state vectors with respect to time 

(Hide, 2003).  

Using the algorithm and the statistical properties of the system measurement 

errors, the KF is able to estimate the current states and predict the future states of 

the system. This is done by updating the states with weighted measurements 

recursively, based on their statistical information. The system measurement error is 

defined as the error between the measured value and its predicted value from the 

KF (ibid.). KF is occasionally called a discrete KF because it is discreet in the time 

domain, where it is updated at some measureable time interval. 

Often in navigation applications, many measurements are available from 

different sensors. For example in GPS/INS integrated applications, there are two 

position solutions from GPS and INS. The KF has the capability to weigh these 

two measurements statistically, in order to give the best estimate of position state. 

Apart from this, the KF is therefore a very useful tool because it uses every 

measurement available, based on its statistical information, to estimate the states 

of the system.  

 

2.5.2 The Kalman Filter Models 

In order to estimate the states, x , of the system, the KF uses two models known as 

dynamic model and measurement model. The dynamic model is represented in 

continuous time as 

 _x = Fx + Gu (2.32) 

Similarly, in discreet form, it is represented as 

 xk+1 = ©xk + wk (2.33) 
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where x  is the system state vectors, F  is the system dynamic matrix, G relates the 

disturbing forces to the state vectors, u  is the disturbing force vectors, © is the 

state transition matrix that relates the state vector from epoch (k ) to epoch (k + 1) 

and wk is the process noise vector. 

A discrete measurement model is represented as, 

 zk = Hkxk + vk (2.34) 

where zk is the measurement vectors at time epoch k , Hk  is the measurement 

model matrix (or design matrix), which linearly relates states to the measurements 

and vk is the measurement noise vector. 

 Both noise vectors (wk ; vk) are assumed to be uncorrelated with each other. 

They are also assumed to be zero mean Gaussian white, normally distributed and 

mutually independent, with their covariance written as, 

 Pw =E[waw
T
b ] =

8

<

:

Q a= b

0 a 6= b
 (2.35) 

 

 Pv =E[vav
T
b ] =

8

<

:

R a= b

0 a 6= b
 (2.36) 

More details about how the processing software, which was used in the research, 

approximates these parameters for INS error estimation are given in Section 5.3. 

  

2.5.3 The Kalman Filter Algorithm 

The KF algorithm involves three stages: initialization, prediction and measurement 

update. The last two stages make the KF a recursive filter because it is done 

recursively. This means that after initialization, the KF predicts the states at epoch 

(k ) using the previous epoch (k ¡ 1), corrects it using new measurements, and then 

predicts again using the corrected states at the next epoch (k + 1), using epoch (k).  
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The minus (-) and plus (+) are used to describe before and after in the KF 

algorithm. For example, suppose xk represents the state with epoch (k). This means 

that there exists a before and after error estimate, ek at epoch (k), denoted by (-) 

and (+), 

 e
(¡)
k = xk ¡ x

(¡)
k
 (2.37) 

 e
(+)
k = xk ¡ x

(+)
k  (2.38) 

which produce a  before and after error covariance estimates, 

 P
(¡)
k = E

h

e
(¡)
k . e

(¡)
k

T
i

 (2.39) 

 P
(+)
k = E

h

e
(+)
k . e

(+)
k

T
i

 (2.40) 

 

2.5.3.1  Initialization 

The initialization stage starts by estimating the initial state vectors, x̂
(+)
0 , and its 

corresponding error covariance matrix, P̂ (+)
0 . The covariance matrix represents the 

uncertainty in the state vectors and in Kalman filter context, these two values are 

often known as a priori.  

 

2.5.3.2  Prediction 

There are two steps involved in prediction stage: 

1. First, to estimate the state at epoch (k), x̂
(¡)
k , the previous best estimate at 

epoch (k ¡ 1), x̂
(+)
k¡1 is used, 

 x̂
(¡)
k = ©x̂

(+)
k¡1 (2.41) 

where © is the state transition matrix. 

2. Then, similar to step (1), the corresponding covariance at epoch (k), given 

by Eq.(2.39), is estimated using the previous best estimate at epoch (k ¡ 1), 

P
(+)
k¡1,  

 P
(¡)
k = ©P

(+)
k¡1©

T +Qk¡1 (2.42) 
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where Q is the covariance of process noise vector from Eq.(2.35).  

For the first iteration, these two values in Eq. (2.41) and Eq. (2.42) are obtained 

from the initialization stage (Section 2.5.3.1). 

 

2.5.3.3  Measurement Update 

There are essentially four steps involved in measurement update stage: 

1. First, the innovation vector, v
(¡)
k , is computed. It is the difference between 

the measurement, zk , and the predicted estimate of the state (predicted 

measurement). It represents how far off the estimate was from the 

measurement and is computed using, 

 v
(¡)
k = zk ¡Hkx̂

(¡)
k  (2.43) 

2. Next, the filter gain (Kalman gain), Kk, is computed. The Kalman gain is 

the weight between the predicted states and the innovation and is given as, 

 Kk = P
(¡)
k HT

k [HP
(¡)
k HT

k +Rk]
¡1 (2.44) 

3. Then, the filtered estimate of the states, x̂
(+)
k , is finally updated using the 

innovation in Eq.(2.43), weighted by the Kalman gain in Eq.(2.44), 

 x̂
(+)
k = x̂

(¡)
k +Kk[zk ¡Hkx̂

(¡)
k ] (2.45) 

4. Similarly, corresponding measurement update covariance matrix, P
(+)
k , is 

computed using, 

 P
(+)
k = (I ¡KkHk)P

(¡)
k  (2.46) 

 It is common to use Joseph form for Eq.(2.46) because it improves numerical 

 stability and has natural symmetry (Grewal and Andrews, 2008), 

 P
(+)
k = (I ¡KkHk)P

(¡)
k (I ¡KkHk)

T +KkRkK
T
k  (2.47) 
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2.6 Summary 

Several subjects relevant to the low-cost inertial pedestrian navigation system 

presented in this thesis have been reviewed. First, the basic principles of inertial 

navigation, in particular the Strapdown Inertial Navigation System with its low-

cost MEMS IMU technology, was covered. It was then followed by an introduction 

to the Kalman Filter. These subjects now form the basis of the theoretical 

knowledge used in the research. Moving on to the next chapter, it will discuss the 

background literatures of the research application. 
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Chapter 3 

Pedestrian Navigation System 
 

This chapter begins by briefly reviewing the Global Positioning System (GPS)-

based pedestrian navigation systems. Following this, aided pedestrian navigation 

systems are introduced for indoor navigation. They comprise different kinds of 

sensors and technology used to aid pedestrian navigation systems indoors. There 

then follows a section explaining the concept of an autonomous indoor pedestrian 

navigation system using foot-mounted-low-cost-IMU approach. This is then 

followed by a brief chapter summary at the end.  
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3.1 Introduction 

An ideal Pedestrian Navigation System (PNS) should be able to navigate 

everywhere. Often the term ubiquitous is used in the research community to 

describe this capability. In general, pedestrian navigation can be divided into two 

categories: outdoor and indoor navigation. Outdoor navigation can be defined when 

navigation is done outside a building, whilst indoor navigation can be defined when 

navigation is performed inside a building. 

 Outdoor PNSs often utilize the Global Positioning System (GPS) as a means 

to help navigation. Extensive literature can be found on GPS technology and how 

it can be used to navigate (GPS, 2010; Groves, 2008; Titterton and Weston, 2004; 

Ahmed, 2006; Farrell and Barth, 1998). GPS is very useful as it provides 

continuous positioning and timing information anywhere in the world in any 

weather. Furthermore, GPS is available freely for civilian uses such as vehicle 

navigation, which typically requires only a few meters of position accuracy. As it is 

a passive-ranging (one way) system, it can serve an unlimited number of users, 

which is thus very convenient from a user’s point of view. Some of the many 

commercial consumer navigation applications available today which use GPS are 

from widely known manufacturers such as, for example, TomTom, Navman, 

Garmin, Trimble, and Apple (Grejner-Brzezinska et al., 2008). 

 In the case of indoor PNSs, however, using GPS alone can be very problematic 

(Januszewski, 2010). This is because GPS performs best in an environment where 

there is a clear view of satellite signals and good satellite availability. This is not 

the case for indoor pedestrian navigation, as it is performed inside buildings, 

considered by many as a GPS-challenging environment (Lachapelle, 2004). To 

make thing worse, signal disturbance, such as because of jamming and spoofing, are 

always possible (Pozzobon, 2011). Furthermore, the GPS signals are transmitted 

such that the minimum received power for GPS signals is relatively low and thus 

very fragile to the transmission medium (will be discussed in Section 3.2.1). As a 

result, GPS signals will always get attenuated resulting from, for example 
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multipath. This is much worse inside buildings, where the level of attenuation is 

significantly higher because of variations in indoor infrastructures. For example, 

Lachapelle et al. (2004) recorded a maximum GPS signal attenuation of up to 30 

dB when inside a building. Therefore, an aided system is often adopted for indoor 

PNSs (Fuchs, 2010, Fischer and Gellersen, 2010, Skog and Handel, 2009, Liu et al., 

2007, Legat and Lechner, 2000). This is realized by using available infrastructure, 

sensors or information, to aid positioning for indoor pedestrian navigation.  

Section 3.2 will describe various technologies that have been used to augment 

indoor PNSs. Following this, Section 3.3 will describe the low-cost autonomous 

PNS, which has been used throughout the research. 

 

3.2 Aided PNS for Indoors 

As explained in Section 3.1, an absolute positioning system, such as GPS, is quite 

useful and reliable in outdoor environments with a clear view of GPS signals, but 

using this technology indoors remains a complicated task. Therefore, an aided 

system (or an integrated system) is often adopted. Nevertheless, aided PNSs also 

face some challenges, as previously reported by for example Mather et al. (2006), 

Godha et al. (2006), Hide et al. (2009), Chen et al. (2009), Retscher (2007) and 

Grejner-Brzezinska et al. (2009). These challenges (or limitations) of some of the 

existing positioning systems for indoor pedestrian navigation are compared and 

tabulated in Table 3.1. Liu et al. (2007) and Fuchs (2010) have completed a survey 

on these indoor positioning systems, including their limitations. Thus, the next 

section will review the systems tabulated in Table 1 concisely. After considering the 

limitations of each system based on this review, an autonomous positioning system 

is proposed and explained in Section 3.3, which then becomes the basis of the 

research presented in this thesis.  
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Table 3.1: Comparison of indoor positioning system, adapted from Renaudin et al., 

(2007) 

TECHNOLOGY PROCESS ACCURACY ADVANTAGES LIMITS 

Network Based/Infrastructured-Systems 
GPS-based Massive 

correlations, 

network-assisted 

ranging 

5-50m Improve signal 

tracking sensitivity 

and time-to-first fix 

Multipath, not working 

in deep indoors 

WiFi Angle Of Arrival 

(AOA) 

Up to 100m 2 Transmitter (Tx) 

provide a position 

Multipath, range to 

Base Station (BS), 

antenna quality 

 Time Of Arrival 

(TOA) 

1-50m High accuracy Multipath, clock offset 

between Tx and 

Receiver (Rx) 

 Time Difference 

Of Arrival 

(TDOA) 

1-50m High accuracy Multipath 

 Received Signal 

Strength (RSS) 

Propagation 

models ~10m, 

fingerprinting 1-

5m 

High accuracy, 

compatible with 

existing hardware 

Creation of RSS 

database/propagation 

models 

RFID Cell identity Relative to cell 

size 

Simple & compatible 

with existing handset 

Number & size of the 

cells, multipath 

UWB AOA Few decimetres 2 Tx provide a 

position 

Range to Tx, antenna 

quality 

 TDOA Few decimetres High accuracy Low emission power, 

high Tx density 

Visual sensor Image matching,  ~10-15 m Compatible with 

existing handset 

Blurry image, low-

light, processing power, 

database 

Map-matching Advance 

filtering, 

fingerprinting 

~1-2 m High accuracy Processing power, 

database quality, 

building geometry, 

map accuracy 

Independent Positioning/Infrastructureless-System 
Inertial sensor Dead reckoning, 

INS 

~5% distance 

travelled 

Autonomous system, 

position always 

available 

Drifts affect the 

accuracy 

 

3.2.1 GPS-Based 

There are two types of GPS-based systems that can be possibly used for indoor 

pedestrian navigation. One is the High Sensitivity (HS)-GPS system and the other 

is the Aided (A)-GPS system, which will be explained next.  

 

3.2.1.1  High Sensitivity GPS 

As the name implies, High Sensitivity (HS) GPS is a system that is capable (or 

sensitive enough) to track weak GPS signals that are often found indoors (Watson 
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et al., 2006; Schon and Bielenberg, 2008; Schwieger, 2007; Zhang et al., 2010; van 

Diggelen and Abraham, 2001a). Typically, the direct received GPS L1 C/A-code 

signal power is specified to be at least -160 dBW (GPS, 2010). For example, 

Lachapelle et al. (2004) showed that in an indoor environment such as a residential 

garage and a concrete (or steel) building, the received signal power varied between 

-175 dBW to -190 dBW. Mezentsev et al. (2003) also demonstrated that a 

commercial HSGPS receiver (SiRF XTrac LP) was capable of tracking weak signals, 

as low as -185 dBW. This, therefore, implies that the HSGPS receiver can be used 

indoors because it has a high tracking sensitivity.  

 Traditionally, to acquire the GPS signal, a GPS receiver must search 

sequentially through the total ‘search space’ (or ‘bins’), defined by the possible 

frequency offsets bins multiplied by the possible code-delay. The total search time 

is therefore the time taken to search the entire space, which means a sequential 

search is performed over possible code delays at each different frequency bins. 

Therefore, the high tracking sensitivity of the HSGPS receiver is made possible by 

enabling a longer search time (or dwell time) in each frequency bins. This increases 

the signal-to-ratio gain to up to 10 dB gain if a 10 ms increase in the dwell time 

can be afforded (Dedes and Dempster, 2005; van Diggelen and Abraham, 2001b) 

using the equation (van Diggelen and Abraham, 2001a): 

 20log10(
p
N ) (3.1) 

where N is the search time (in ms). This means that instead of searching 

sequentially over the possible code delays, a parallel search is performed by far 

more correlations in the receiver. With enough correlators, all possible code delays 

can be calculated at the same time. Therefore, because the total search time over 

the entire search space is still the same, the parallel correlation increases the search 

time in each frequency bin. This ultimately increases the sensitivity gain of the 

receiver.  

 The real problem, however, lies in the reliability of the received GPS signals 

indoors (Lachapelle, 2007). This is partly because of the inability to separate signal 
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interference errors, such as multipath, from good GPS signals. Multipath error 

occurs when duplicate GPS signals are received by the GPS antenna; one comes 

along a direct path from the GPS satellite and the other one arrives at a slight 

delay resulting from the reflection from nearby objects or surfaces. Thus, multipath 

is considered to be the largest error for HSGPS because it is extremely difficult to 

estimate and truly unpredictable (Mezentsev, 2005). For example, using a low-cost 

handheld HSGPS unit (Trimble Juno ST), it was demonstrated by Zandbergen and 

Barbeau (2011) that in a 2-hour static indoor test, although the solutions 

availability is close to 100%, the maximum horizontal error was still high at 18.94 

m.  

 Even if the problem of multipath can be overcome, in many situations, there 

are simply too few GPS satellites in view to be used that have detectable reliable 

GPS signals and good geometry. In a worst case scenario, GPS satellites might not 

be in view at all such as in deep indoors (or underground). A logical approach 

would be to increase the availability of the satellites by combining different 

constellation as well. For example, O’Driscoll et al. (2011) investigated this using a 

combined GPS–GLONASS HSGPS receiver in an urban canyon. GLONASS is a 

GPS-like navigation satellite system owned and operated by Russia. Nonetheless, 

although the percentage of position solutions’ availability and redundancy 

increased, their performance was found to be still limited by the effect of multipath. 

Until now, multipath investigation therefore attracts a major interest in GNSS 

research community (Soloviev and Dickman, 2011; Yi et al., 2011; Seung-Hyun, 

2011; Dragunas and Borre, 2011). 

 

3.2.1.2  Assisted GPS 

The second GPS-based system that might possibly be used for indoor pedestrian 

navigation is Assisted (A)-GPS. It can be defined as a system that relays satellite 

data to GPS-receivers or HSGPS-receivers more quickly than it could be gathered 

autonomously from the satellite signals, using a telecommunication network-based 

approach (Brown and Olson, 2006; Dovis et al., 2008; Zandbergen and Barbeau, 
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2011). A-GPS normally involves a GPS receiver (for example a mobile phone) that 

is capable of receiving assistance data from a telecommunication network that has 

an assistance server. The assistance server can access information about GPS 

satellites from its reference network and can relay the information to the GPS 

receiver. 

 One of the benefits of A-GPS for indoor navigation is the improved acquisition 

sensitivity. The network can provide the GPS receiver with information from the 

server that reduces necessary search space. This increases the search time in the 

narrowed frequency offset bins, which then increases the sensitivity gain as in Eq. 

(3.1). For example, this can be done by providing the current ephemeris of the 

expected satellites in view to the GPS receiver. The GPS receiver can then use this 

information to estimate the satellite Doppler ahead of time, thus reducing the 

required frequency offset bins that must be searched during the acquisition period.  

The same problem of multipath and satellite availability indoors faced by the 

HSGPS (discussed in the previous section) is also faced by the A-GPS. 

Additionally, A-GPS still require the GPS receiver always to have a link with the 

network (a good wireless link), and in some indoor areas might still pose a problem. 

Furthermore, time synchronization is an issue when relaying the information from 

the assistance server to the GPS receivers. First, the time of the assistance server 

must be in GPS time to ensure good synchronization when receiving the data from 

its reference stations. Second, it must be in a good synchronization with the GPS 

receivers indoors. This is so that the partial navigation message from the server can 

be accurately combined and decoded by the GPS receivers.  

 

3.2.2 WiFi  

WiFi, which stands for Wireless Fidelity, refers to any systems that use 802.11 

IEEE standard. It is a system that allows computers that are equipped with a 

network card to connect to the internet wirelessly using a wireless router. 

According to the 802.11 standard, WiFi signals coverage typically range from 0 to 

100 m in indoors. Thanks to its convenience to provide internet connection 
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wirelessly to multiple users, it has become the dominant local wireless networking 

standard and is very popular in houses, hotels, offices and public areas.  

 Although WiFi is not intended to be used for positioning, the pervasiveness of 

existing WiFi infrastructures has resulted in several commercial WiFi indoor 

positioning systems such as Ekahau (Ekahau, 2011) and SkyHook (SkyHook, 2011). 

Ekahau is a commercial positioning system intended primarily for positioning in 

public places such as hospitals. Signal strength information from tags (worn by 

users) are sent over the WiFi network, and processed by a central controller for 

accurate location determination and visualisation. Ekahau claims position accuracy 

is between 1 and 3 m. Similar with Ekahau, SkyHook uses the correlation between 

WiFi signal strength information with locations to calculate accurate locations. 

Whilst Ekahau is intended for certain defined and controllable areas such as 

hospitals (hence higher accuracy), SkyHook operates over larger areas. The 

coverage is claimed to cover most metro areas in North America, Europe, Asia and 

Australia, with position accuracy of between 10 and 20 m accuracy.  

 Generally, WiFi positioning technology can be divided into three (Vossiek et 

al., 2003): lateration (measurement of distance), angulation (measurement of angle) 

and fingerprinting (pattern matching). Fig. 3.1 and 3.2 show the lateration and 

angulation principles to determine one position. The black dots represent the 

transmitters and the red dots represent the position of the computed position.  

 In the lateration-based method, the time it takes for a signal to travel from a 

transmitter to a receiver is recorded (thus known as Time of Arrival, TOA). Based 

on the speed of signal propagation, the distance between the transmitter and the 

receiver can then be computed. For a proper localization in the lateration method, 

the distances to at least three reference points (transmitters) with known positions 

are required. Similarly, a variant of this method is using the round trip time of the 

signals. The transmitter sends the signal and waits for the signal to be reflected 

back. The distance between the transmitter and the receiver is computed as half 

the distance travelled by the signal. This can be quite costly and inconvenient 

because transceivers must be used at both ends. The major issue, though, with the 
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time based approach such as TOA (in fact with any other systems that depends on 

accurate timing) is the time synchronization concern. The time must be 

synchronized for all the transmitters and the receivers to ensure good accuracy. 

This means, if a 3 m accuracy is required, the time must be accurate to within 0.1 

ns. This therefore leads either to a very expensive system, or to a less accurate 

system. 

 In the angulation-based method, the location of an object is determined from 

the measured angles to fixed reference points (with known locations). The direction 

(or angle) of the received signals from at least two references (transmitters) is 

captured (thus known as Angle of Arrival, AOA). However, the angulation using 

radio signals for example requires directive antenna and strongly affected by 

interferences and multipath propagation arriving from misleading directions within 

buildings (ibid.).  

 In the fingerprinting-based approach, the Received Signal Strength Indicator 

(RSSI) is used. It can be based either on the propagation-loss equation, or 

surveying the signal strength information and its correlated positions beforehand. A 

simple equation of propagation-loss says that the free-space signal transmission loss 

is proportional to the square of the distance between a transmitter and a receiver. 

Therefore, the distance can be calculated by knowing the difference between the 

transmitted and received power. More advance and complex signal propagation 

model may be required, however, to account for unpredictable transmission losses 

such as those resulting from multipath. In reality, this can still introduce errors 

because of the uncertainty of the propagation model. If the ‘fingerprinted’ method 

is used, where a survey of positions is made in advance, reliable and accurate 

matching must still be performed. This is not trivial because two readers (mobile 

users) separated by a few metres can possibly have the same signal strength 

readings. Incorrect matching of the captured signal strength with the database is 

more likely to happen, which in turn will cause errors in position computation.  
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3.2.3 RFID 

Radio Frequency Identification (RFID) system is a system used to identify and 

track an object using radio signals (Seco et al., 2010; Ting et al., 2011). It usually 

consists of three main components: RFID tags, RFID readers and data processing 

system. The RFID tags can send out messages (for example the tag ID) actively 

and consistently (active mode) or when triggered (passive mode). The RFID 

readers can then read the data from the tags using a defined protocol for 

transmitting and receiving data. Finally the data processing subsystem can use the 

data from the readers to execute its positioning algorithm and can send out the 

positioning results to other users (or applications). RFID tags can be further 

divided into two: passive and active. Passive RFID tags have a limited read range 

of approximately 1 m from the reader. Active RFID tags powered by a battery 

(which can sometimes last for more than 7 years) can have a read range of up to 

300 m (less if there is no line of sight)(ibid.).  

 RFID-based positioning technology can be divided into four categories: tag-

based, reader-based, transceiver-free and hybrid. Only the first two will be 

explained as they are the most commonly used. Please refer to Ni et al. (2011) for 

further explanation on the remaining two categories.  

 To explain the tag-based approach, consider this example. Assume an object in 

a room has an RFID tracking tag and needs to be tracked. Many RFID reference 

5 m 

5 m 

2 m 

µ1µ1 µ2µ2 

Fig. 3.1: Time based trilateration method Fig. 3.2: Angulation method 
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tags were also already deployed in that room in several known locations. To track 

this object, a reader at a fixed location will receive a Received Signal Strength 

Indicator (RSSI) from both the object RFID tracking tag and the RFID reference 

tags. Because of the correlation of the radio propagation, the generated RSSI from 

the object will be similar to the nearby reference tag. Therefore, the location of the 

object can be estimated from the correlation of the RSSI with distance and location 

of the reference tags. The accuracy nonetheless depends on the distribution of the 

reference tags, where a denser distribution attributes to a higher positioning 

accuracy. On the other hand, in the reader-based approach, the roles of tags and 

readers are swapped. Therefore, a reader is no longer at a fixed location, but is 

carried by a mobile user, and the RFID tracking tag is place at a fixed known 

location (much like the RFID reference tag). The location of the mobile-reader can 

then be estimated from the tag IDs (and possibly the RSSI values) detected by the 

portable reader.  

 Although the cost and the accuracy for this technology are of concern, the 

major limitation of the technology actually comes primarily from the limitation 

when using the RF signals. This is because a single passive RFID tag is quite cheap 

at a cost less than £1. Assuming a reader-based approach in a fixed navigation 

area, the total cost would only be proportional to the number of tags used to 

ensure adequate accuracy for the target application (assuming the reader cost is 

absorbed by the user). If only a lower accuracy is required (for example a few 

metres), fewer tags can be deployed at a lower cost.  

 Therefore, cost aside, the first limitation when using RF signals is the 

multipath, which is common for a positioning system that uses radio frequency 

signals. Theoretically, signal strength is a function of a distance, which means the 

signal strength reduces as the distance increases. Indoors, however, where 

multipath is commonly observed, the relationship between signal strength and 

distance cannot be used reliably anymore. Thus, for an RFID system that uses the 

signal strength, accuracy might be severely affected. Secondly, a problem might 

arise when multiple objects (or users) that are very close to each other need to be 
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tracked. This is because the RF signals (which gives the RSSI) from multiple tags 

(users) might interfere with each other, which then might cause problems in the 

positioning (localization) algorithm. Thirdly, the limitation due to the assumption 

that there are no variations in the signals emitted from the RFID tags. Generally, 

all tags are assumed to be transmitting with approximately the same signal 

strength, which is not always true. If this is not true, error in the position 

estimation will occur.   

 

3.2.4 UWB 

Ultra Wide Band (UWB) technology was developed in 1960 for radar application 

(Renaudin et al., 2007), but has been explored to be used for positioning indoors 

(Kietlinski-Zaleski et al., 2010; Pittet et al., 2008). The process involves 

transmitting a series of signals as narrow pulses, where the pulse duration is very 

short, varying between nanoseconds and picoseconds. This ensures a very high 

positioning accuracy of less than 1 m. Because short pulses are used, UWB occupy 

a very wide bandwidth (> 500 MHz) and thus very low power density. The Federal 

Communication Commission (FCC), in 2002, authorized unlicensed use of UWB in 

3.1 – 10.6 GHz frequency spectrum.  

 As with the WiFi positioning method, UWB also uses either TOA, AOA or 

RSSI. Generally there are two types of UWB signal structures: the impulse UWB 

and the multicarrier UWB (Chiu, 2009). Impulse UWB does not use a modulated 

carrier to transmit information; instead information is sent through a series of 

narrow pulses. On the other hand, multicarrier UWB uses a set of subcarriers. It is 

able to minimize interference with other signals because the subcarriers can be 

chosen to avoid interfering with bands used by other systems that share the 

spectrum. 

 One of the advantages of UWB is a very precise distance measurement because 

of the fine time resolution used. Its low power density also gives minimal 

interference to the other systems in the same frequency spectrum. There are also 

minimal multipath cancellation effects. Multipath cancellation occurs when an 
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indirect signal reaches the receiver partially or totally out of phase with the direct 

signal, which reduces the amplitude response of the direct signal. With short 

duration pulses used in UWB technology, the signals may come and go before the 

indirect signals arrive; therefore minimal multipath cancellation is noticed. 

Nonetheless, UWB also suffers the drawbacks when using RF signals, similar to 

when using WiFi and RFID technology.  

 

3.2.5 Visual Sensors 

So far, it has been discussed that using different ways to navigate indoors requires 

the navigation system to either rely on the RF signals or the (non-dedicated) 

infrastructures. When radio signals are used as part of the positioning technology, 

the issue of signals interference and its reliability will always be a concern. 

Additionally, if infrastructures-based systems are used, there will always be the 

issue of cost (for example in terms of prices of equipment, installations and 

maintenances). In some cases, for example during earthquake and emergency 

situations, infrastructures might not be available at all to aid navigation systems 

and most likely, there will be no electricity to power up the infrastructures. This 

means that resorting to another technology that does not rely on external 

infrastructures is a reasonable option to decrease the cost and eliminate 

environment disturbances.  

 Therefore, using visual-based approach for indoor pedestrian navigation can be 

one of the viable ways, as adopted by robotic navigations and unmanned aerial 

vehicles (Lobo and Dias, 2007). As humans perceive their surrounding 

environments using their eyes, the same principle can be applied in this approach. 

The advantage of this approach is because more and more affordable visual sensors 

are available on the market that can be used to acquire visual information 

(Ruotsalainen et al., 2011), such as the recent advancement in mobile phones that 

incorporates cameras and video recorders. Users can therefore use their mobile 

phones to gather visual information easily at no extra (or significant) cost. Whilst 

this helps the visual aspect of the visual-based approach for navigation, the main 
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issue is really about how reliable the visual information in relation to the 

positioning information is. Many different methods are therefore being researched 

on how to effectively integrate the visual information with accurate (or at least 

usable) positioning information (Hide et al., 2009; Jones and Soatto, 2011). 

 One of the methods is to use a ‘fingerprinting’ method (Walther-Franks and 

Malaka, 2008). In this method, images captured from the visual sensors are 

compared with the database. This database can be made available beforehand from 

a survey of the navigation area by capturing thousands of images of the area and 

embedding the images with known position information. During navigation, the 

images are continuously captured and compared with the database. If any of the 

images can be matched (or closely matched) with the images in the database, then 

position information can be relayed to the user.  

 Nonetheless, there are some disadvantages when using the visual-based 

approach for indoor pedestrian navigation. First, a massive database needs to be 

prepared before navigation can be done. This procedure is considered laborious and 

is sometimes restricted to a pre-defined area. The surveyed position also needs to 

be as accurate as possible. Furthermore, this needs to be monitored as often as 

possible because of the ‘always changing’ indoor environment that can create an 

outdated database. With an outdated database, users cannot use reliably the 

information contained in the database for navigation. Second, processing the 

captured images and comparing them with thousand of images in the database 

requires huge computing power. Moreover, if a real-time navigation is sought, data 

latency and processing time might be an issue. Third, visual defects on the 

captured images can possibly cause the loss of discriminative power when 

processing and matching the images with the database. For example, in a low light 

environment such as during smoky condition or simply in a dark night, the images 

can be sometimes blurry, shadowy or not visible at all. The movement of the 

camera sensor in practice, for example when holding a mobile phone to capture an 

image, can also cause the blurry effect of the images. This will burden the image 

processing and matching algorithm, to the possible extent where no matching can 
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be performed. Finally, the problem with the status of the images (captured or 

surveyed) which can be sometimes related to privacy-sensitive information and 

thus not available for visual-based approach navigation (Lane et al., 2010). 

 

3.2.6 Map Matching 

Conventionally, maps are used for navigation by determining one direction using 

magnetic compass and relying on information available (landmark) on maps such 

as streets, signage, river and so forth. Based on the classical approach of navigating 

using maps, people therefore can navigate from one place to another.  

 A ‘generic map’ (or a database) can be constructed using any available 

information that can be embedded with the position information such as the 

‘fingerprinting’ approach (discussed in the previous section). This approach can be 

adopted for indoor pedestrian navigation and can be also categorized within a map 

matching approach as discussed in this section. Examples include using magnetic 

maps (Storms and Raquet, 2009), magnetic anomaly maps (Kemppi et al., 2010) 

and WiFi signal strength maps (Biswas and Veloso, 2010). 

 On the other hand, a different approach of not using the generic maps can also 

be adopted for indoor pedestrian navigation. This means, instead of generating 

maps based on the available information and using the maps to navigate as 

described before, ‘true’ indoor maps that are often available are instead used, such 

as the building blueprints or floor plans (Nam, 2011; Aggarwal et al., 2011). To do 

this, one of the technologies described in the previous sections may still be used to 

give positional information. Together with the indoor maps, the location of the user 

can be estimated and/or corrected relative to the maps. This can be performed 

using probabilistic filtering approach such as Particle Filter (PF) (Ascher et al., 

2010; Krach and Robertson, 2008; Robertson et al., 2009; Woodman and Harle; 

2008; Widyawan and Beauregard, 2008). To define the best estimated position, a 

group of particles (or probable positions) are generated based on its uncertainty 

distribution. Then the particles are propagated based on the next positional 

information, but are constrained to only exist in a constrained layout (the indoor 
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maps). It makes a logical assumption that the particles cannot penetrate the floor 

plan layout such as building walls or room walls. To further enhance the accuracy, 

more information from the indoor maps such as furniture and desks can also be 

used (if available) to constrain the particles. Another approach includes the use of 

Simultaneous Localization And Mapping (SLAM) (Robertson et al., 2010), where 

navigating and environment mapping are done simultaneously.  

 However, there are also some disadvantages at relying on map matching 

method for indoor pedestrian navigation (from literatures). Firstly, the method still 

needs to use other positioning technologies (described in the previous sections) to 

give the positional information to be used with the maps. Secondly, for example for 

SLAM and PF, intensive computations need to be performed that may require 

huge processing power. Each particle, which represents a probable position of the 

user, needs to be checked individually for the initial localisation by a probabilistic 

computation. The computation cost is further increased if the area of navigation is 

huge because then more particles need to be checked. Thirdly, huge resources are 

still required to store massive information about the indoor maps. For example, 

accurate coordinates such as wall coordinates still need to be embedded in the map 

to constrain the particles’ position. Fourthly, the accuracy and the scalability of 

the indoor maps need to be taken into account. High accuracy maps may be needed 

to constrain the particles accurately. Furthermore, the particles need to be scaled 

to match the scale of the maps used and this increases computing cost when scaling 

is performed for each particles. If an inaccurate map is generated when using the 

SLAM method, position accuracy will be degraded. Finally, indoor maps may also 

require legislative action specifying building information to be submitted to 

authorities before they can be used by the public (or users).  

  



Chapter 3. Pedestrian Navigation System  60 

 

 

3.2.7 Inertial Sensors 

In Chapter 2, the inertial navigation technology and inertial sensors’ principles 

were introduced. This section thus introduces the use of inertial sensors for 

pedestrian navigation system. From the discussion presented so far on the existing 

indoor PNSs and their limitations, a potential alternative is to resort to different 

types of navigation technology that do not use RF signals, which are independent 

of infrastructures and are a lower cost (price, computation, parts). Inertial sensors 

satisfy the first two of these criteria because they do not receive or transmit any 

RF signals and operate autonomously without infrastructures. For the third 

criterion, the advent of low-cost MEMS inertial sensors (Section 2.3) suits the 

requirement for a low-cost pedestrian navigation system. Two configurations are 

often used for the system using the low-cost inertial sensors: ‘dead-reckoning’ and 

Inertial Navigation System (INS) (Groves et al., 2007).  

 

3.2.7.1  Dead Reckoning 

In the Dead Reckoning (DR) configuration, accelerometers are often used as an 

odometer (Torres-Solis and Chau, 2010). Typically they are used to detect steps, 

and then, using a fixed-pre-determined step length, a relative position can be 

computed by adding the step length from the previous position. The absolute 

heading of the system is often determined by the use of a compass. Apart from the 

problems of compass measurements relating to magnetic disturbances, the position 

can be inaccurate because of the assumption of a fixed step length. Furthermore, 

walking backwards or side-stepping will cause a problem because DR assumes the 

user to be moving forward. 

 

3.2.7.2  Inertial Navigation System  

The principle of Inertial Navigation System (INS) has been explained in Chapter 2. 

In the INS, attitude parameters from the integrated gyro measurements are used to 

transform the acceleration measurements from the accelerometers into a desired 
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frame such as the navigation frame. From these, one can calculate the position of 

the system regardless of the walking directions (can be in any direction) and the 

way the pedestrian walks (such as backwards walking and running). This is the 

reason that INS was chosen for this research. However, if the low-cost inertial 

sensors were to be used, they are prone to errors because of their low-cost nature, 

such as a low precision in manufacturing, which eventually causes large position 

errors (Pang and Liu, 2001; Godha et al., 2006; Park and Gao, 2006). 

 

3.3 Foot Mounted IMU System 

An approach of using low-cost-foot-mounted inertial sensor with INS technology 

resolved to n-frame is adopted in this research, and is called low-cost Pedestrian 

Navigation System (low-cost PNS). The reason is that although the low-cost 

inertial sensors are known to have huge errors, an idea from for example Jiménez et 

al. (2010), Skog et al. (2010b), Glanzer and Walder (2010), Callmer et al. (2010) 

and Foxlin (2005) can be adopted to reduce the errors. Using this idea, the IMU is 

mounted (or strapped) on a user’s foot or shoe, enabling Zero Velocity Updates 

(ZUPT) to be performed (this will be discussed in the next section). The IMU 

location on a shoe is not as critical as it may first seem as demonstrated by Wan 

and Foxlin (2010), where various locations were tested for ZUPT detection 

reliability. Different IMU locations, such as embedded in the sole, taped to a heel 

and taped to a toe, had resulted in insignificant performance difference.  

 

3.3.1 Zero Velocity Update (ZUPT) 

The name Zero Velocity Update (ZUPT or ZVU) is often used because the known 

zero-velocity measurements are used to update the velocity estimation of a specific 

system, such as the low-cost PNS. Thanks to the strap-down configuration in the 

low-cost PNS (using foot-mounted approach), it has the advantage of measuring 

the foot’s velocity directly. It is therefore valid to assume that during the stance 

phase (zero velocity) of a walking gait, the IMU should produce zero velocity 
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measurements for the foot’s velocity. In practice, however, this is not entirely true 

because of the inherent errors of the inertial sensors. Therefore, the non-zero 

velocity measurement from the strapped-down IMU during this period is considered 

as an error, and can be subsequently corrected. For example, this can be performed 

by feeding back this error to a control system (Jadaliha, 2007).  

 Furthermore, if this measurement update (zero-velocity measurement) is used 

in an estimation filter such as the Kalman Filter (KF) (as adopted in this research), 

they can be used not only to correct the user’s walking velocity, but also to help to 

restrict the position and attitude errors, and estimate the sensor bias errors (see 

Section 4.3.3). For example, Grejner-Brzezinska et al. (2001) have demonstrated 

the significance of using velocity measurements (using ZUPT) for a standalone 

tactical grade INS. In a 140 s of navigation, the horizontal position error was 

shown to decrease from 0.30 m to 0.07 m when ZUPT was performed for 20s in the 

middle of the navigation. This is because the KF uses an inertial error model that 

can build up information on the correlation between the states modelled such as 

position, velocity, attitude and sensor biases (this will be explained more in 

Chapter 5).  

 For the low-cost PNS, ZUPT is applied during each detected stance phase of a 

walking pedestrian, which normally occurs repetitively. By applying ZUPT 

frequently, INS errors are therefore allowed to grow only in between these ZUPTs 

(assuming that all ZUPTs are detected correctly). To apply ZUPT correctly in the 

KF, reliable stance phase detection is thus needed, and is explained next. 

 

3.3.1.1  Stance Phase Detection 

In order to apply ZUPT measurements in the KF, it is paramount to recognize the 

periods during which the user’s foot is stationary (stance phase). Correct stance 

phase detection is essential in a self-contained inertial navigation system that uses 

ZUPTs, such as the low-cost PNS, because it enables ZUPTs to be used correctly 

in the KF for error estimation.  



Chapter 3. Pedestrian Navigation System  63 

 

 

 Four detection methods to correctly detect stance phase have been 

investigated extensively by Skog et al. (2010b). They are acceleration Moving 

Variance (MV), acceleration MAGnitude (MAG), Angular Rate Energy (ARE) and 

Stance Hypothesis Optimal Estimation (SHOE). In essence, all four use the prior 

knowledge of the IMU signals, and are tested using a binary hypothesis problem 

(Skog et al., 2010b). This means if certain conditions are met, the stance phase can 

be declared (stationary) or else, no declarations are made (moving).   

 In the research presented in this thesis, the detection based on angular rates 

was used, similar to the ARE approach. The angular rates detection was used 

mainly because it was shown in Amendolare et al. (2008), Feliz et al. (2009) and 

Skog et al. (2010a) during which the ARE provided the highest position accuracies 

and was the most robust to the change in walking speed. As a result, this method 

gives a satisfactory result with regards to step misdetection and works fairly 

reliably, at least for the trials presented in this thesis. Fig. 3.3 shows an example of 

the detected ZUPT events for one of the trials presented in Chapter 6. It shows 

that 2 misdetections occurred within a period of 7 s when using accelerometer-

based detection (MAG), but works well when gyro-based detection (angular rate) 

was used (ARE).  
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 For the stance phase (or step) detection method used in this research, first, a 

simple moving average filter was used (with a sliding window = 7) to smooth out 

some of the short term angular rate measurement fluctuations. Then an empirically 

determined threshold is applied to the magnitude of angular rates to detect a 

stance phase condition (zero velocity condition). The measurements are then 

decimated from 100 Hz (the INS measurement rate) to 20 Hz (chosen empirically) 

to reduce the KF computational load before being used in the filter. Another 

integrity check is then applied to ensure ZUPT is detected correctly. This is done 

by ensuring that only two consecutive filtered measurements fall below the set 

threshold, before ZUPT can be declared and used during the stance phases.  

 

3.3.1.2  ZUPT in the Kalman Filter 

The fundamental of the Kalman Filter (KF) has been explained in Chapter 2. Its 

use as an optimal state estimation is widely recognized and extensively reported in 

literatures such as in Grewal and Andrews (2008) and Hide et al. (2007a). 

Configuration of the KF used in the research will be further described in Chapter 5. 

For discussion purpose, however, the KF error states used in the research are 

introduced in this chapter as: 

 ±x =

0

@±rn ±vn ²n bg ba

1

A

T

 (5.1) 

where ± rn is the vector of latitude, longitude and height errors, ±vn	is the vector of 

navigation frame velocity errors, ²n  is the vector of attitude errors, bg is the vector 

of gyro bias errors and ba is the vector of accelerometer bias errors. 

 In this research, the knowledge of the errors during ZUPT is used as a 

measurement update to the KF to better estimate IMU errors (the IMU dynamic 

error equations are reserved for discussion in later chapters). During ZUPT epoch, 

differences between inertial measurements and ZUPT condition are entered into the 

KF for errors estimation. Effectively all type of observations or measurements that 

are known during stance phases can potentially be used in the measurement update 
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equation, depending on how a system is designed and what kind of state space is 

being used. The design matrix used, which uses velocity update (ZUPT) to update 

the KF is shown below: 

 H =

0

@03£3 I3£3 03£3 03£3 03£3

1

A (5.2) 

with observation zk = ±vn  and covariance matrix Pk = E[nkn
T
k ] from Eq. (2.35), 

where ±vn is the difference between the INS velocity and zero, nk is a constant 

measurement noise and k  is the current epoch. When a ZUPT is applied, it is 

usually the case that the user’s foot is not perfectly stationary. This uncertainty is 

modelled in the measurement covariance matrix, which was empirically determined 

(0.005 m/s) to give good performance. 

 

3.4 Summary 

A review of the current state-of-the-art in aided pedestrian navigation systems for 

indoor navigation has been presented. The inertial sensor based approach with INS 

technology was then chosen to be used in this research; mainly because it does not 

require infrastructures, as opposed to the other approaches. Following this, a low-

cost autonomous inertial Pedestrian Navigation System using foot-mounted 

approach (low-cost PNS) has been proposed and presented, and now will be the 

focussed subject in the subsequent chapters. 
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Chapter 4 

Heading Drift of a Low-Cost 

PNS 
 

This chapter begins with an introduction of the drift problem faced by the low-cost 

PNS. This sets the scene for a focussed review of the current state-of-the-art 

research concerning the drift problem. This includes an integration of low-cost PNS 

with other aiding sensors such as a magnetometer. There then follows a section 

discussing the knowledge gap in research highlighting the drift problem that 

motivated this research, followed by a brief chapter summary. 
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4.1 Introduction 

This chapter looks in detail at the current practices in providing heading drift 

correction for a low-cost indoor inertial system. There then follows a strong focus 

on the heading drift for the low-cost PNS and the review of the current methods 

used within the research community. The problems with the current heading drift 

correction methods, highlighted in this chapter, are exactly those which the 

research presented in this thesis has substantially mitigated.  

 Mitigating heading drift has a direct correlation with the improvement in the 

position accuracy for the low-cost PNS. As a result, improving position accuracy 

for such a low-cost system can benefit many potential applications. For example, 

the military or rescue sectors usually have a mobile workforce such as armies, fire 

fighters and police. In this sector, apart from navigating, it is important to, for 

example, track fallen personnel in a certain mission. For example, the tragic loss of 

343 _re _ghters from the Fire Department of New York City (FDNY) and 23 

officers from the New York City Police Department (NYPD) in the collapse of the 

World Trade Center on 9/11 because they could not be tracked (Reissman and 

Howard, 2008) indicates the importance of such capability.  

 Although finding and rescuing applications in hazardous environments are the 

major motivation, there are many other possible applications as well. For example, 

in a survey community, coarse and rapid indoor mapping can be made possible 

without the need for expensive survey equipment. This can be further extended to 

account for many users in a collaborative way, where an infinite number of users 

can contribute to create an indoor open map database, such as those initiated by 

the OpenStreetMap community for open street map database (OSM, 2012).  

 There are also other potential applications for social use such as in tourism 

industry, health care and social responsibility sectors. For example, in a hospital 

environment, the mobility of patients can be tracked to ensure their safety (Molina 

et al., 2011). Guiding blind or visually impaired persons can also be a potentially 

useful application, where they can have guidance from the system for a better 
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navigation experience. Indeed there are many more possible applications that can 

be thought of, as a result of reducing the heading drift error for such a low-cost 

pedestrian navigation system.  

In this chapter, Section 4.2 will explain the terms used to describe the drift 

problem for the foot-mounted low-cost PNS (low-cost PNS). Then, Section 4.3 will 

demonstrate the drift problem and several field trials are presented to support the 

discussion. Section 4.4 will then discuss specifically the primary cause for the drift 

problem and finally, Section 4.5 will describe the current method used to overcome 

the drift problem and their limitations. 

  

4.2 Terms Used In the Thesis 

It is possible that there will be confusion when different drift terms are used for the 

same context, for example between heading drift, position drift and yaw drift. 

Therefore, a clear distinction between each term should be made. In this thesis, 

heading drift (used interchangeably with yaw drift) refers to the drift on the IMU 

gyro z-axis measurement (b-frame) that is caused by the accumulation of small 

errors perturbing the axis. On the other hand, position drift term is used to 

indicate an event where the position trajectory no longer agrees with the true 

trajectory.  

 

4.3 Position Drift Error 

For the low-cost PNS (using only foot-mounted IMU), the position drift error can 

be caused by two factors. First is the unavailability of ZUPTs (ZUPT-unaided) and 

second is, if ZUPTs are available (ZUPT-aided), the unobservability of rotational 

errors primarily on INS Down axis (when levelled). When ZUPTs are unavailable, 

no other measurements are updated to the estimation filter. This results in a huge 

position drift error because of the huge errors of the low-cost IMU used (was 
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discussed in Section 3.3). On the other hand, the position error can be reduced 

when ZUPTs are available (was discussed in Section 3.3.1). Nonetheless, there 

remains the unobservable heading error that causes the remaining position drift 

(will be discussed in Section 4.4). To illustrate the impact of these two factors, 

practical trials were performed first when the low-cost PNS was aided and unaided 

with ZUPTs, and the results are presented next.  

 

4.3.1 Evaluation  

Walking trials were performed using the low-cost PNS to demonstrate the 

significance of the two factors mentioned before on the drift in position for the low-

cost PNS. Details about the low-cost PNS hardware is reserved for explanation 

later in Section 5.4 but essentially, the system contains a foot-mounted IMU that 

connected to a data logger, which is housed in a user backpack. During the trials, 

the data was logged by the data logger and was post-processed for evaluation using 

in-house processing software (reserved for explanation in Section 5.3). Note that in 

a practical deployment, the low-cost PNS system could be replaced by a much 

cheaper/smaller data logger and a micro-processor that could possibly be embedded 

into the IMU package on the user’s foot. For the trials, the low-cost PNS initial 

position and attitudes (roll and pitch) were initialized during an alignment period 

as explained in Section 2.4.3.1. The initial heading however was manually set by 

processing the trial data multiple times with different heading values. The value 

that gave the best estimated trajectory was then selected. Initial accelerometer 

biases were set to zero, whilst the gyro biases were set by taking their average 

obtained during the alignment period. 

 Because of a lack of a more accurate ground truth in which the low-cost PNS 

solution can be evaluated with, it was not possible to determine the absolute 

heading drift error in each individual step event for all the trials. Even if a high 

grade inertial sensor can be used as the ground truth, it still needs frequent ZUPTs 

measurements because of the drift. However, it is not practical to mount the high 

grade inertial sensor on foot to perform ZUPTs because of its size and weight.  
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Therefore, a simple evaluation method to assess the heading drift is performed by 

using the knowledge that walking in a square trajectory should result in four 

distinctive heading values, offset by 900 between each other. If the heading drift is 

apparent, it will be reflected on the drift in these values. For the position drift 

error, another simple evaluation method is performed by processing the trials data 

and visualizing it using Google Earth imagery. Therefore, an approximation of the 

trajectory can be seen clearly by overlapping the knowledge of the true trajectory 

performed during the trial with the image in Google Earth (where the trial was 

actually performed). Although these evaluations are only coarse estimations of the 

errors, they are considered adequate when visualizing the heading drift and the 

growth in position error for the low-cost PNS because the errors can be seen clearly.  

  

4.3.2 ZUPT Unavailable Trials  

This section presents the result when the low-cost PNS was not aided by 

measurements from ZUPTs. When the low-cost PNS is said to be unaided, it 

literally means no forms of measurement are available to correct the error in the 

estimation filter (Section 3.2). For an autonomous system like the low-cost PNS, 

this means the velocity measurements generated from a zero velocity condition 

when taking a step are not applied to the low-cost PNS.  

 The result obtained from a 2-round walking around a football pitch is plotted 

in Fig. 4.1. In Fig. 4.1(a), the approximation of the trial’s trajectory is drawn 

manually on the image represented by the blue line, and in Fig. 4.1(b), the unaided 

low-cost PNS solution is plotted, represented by the red line. As expected from 

Section 2.2.1, Fig. 4.1(b) shows that the position estimated from unaided low-cost 

PNS diverged rapidly from the true user’s position, relative to Fig. 4.1(a) that is 

overlaid on top of its trajectory. After a period of just under 18 minutes, walking a 

distance of approximately 1.3 km, the estimated position has drifted more than 50 

km (approximated using line distance measurement tool in Google Earth).  
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4.3.3 ZUPT Available Trials 

To see the impact of ZUPTs in reducing position drift error, the same trial data 

was reprocessed, but this time zero velocity measurements were updated to the 

Kalman Filter (KF). More about the KF and the processing software are explained 

in Chapter 5. Fig. 4.2(a) is the estimated trajectory, manually drawn and overlaid 

on the image of the trial area, whilst the result of aiding the low-cost PNS with 

ZUPTs measurement is plotted in Fig 4.2(b). From Fig. 4.2(b), it clearly shows 

when ZUPT was available, the low-cost PNS shows far better performance than 

when ZUPT was unavailable (not applied) as in the previous section. It is observed 

that the position drift error has reduced significantly, although still inaccurate, 

when compared with previous Fig. 4.1(b). Four more walking trials were further 

undertaken and plotted in Fig. 4.3. Similar results of improved position solutions 

are observed, although the positions are still drifting over time. 

 To further quantify the significance of using ZUPTs for low-cost PNS in 

reducing position drift error, Fig. 4.4 is plotted. The figure shows a comparison of 

the Horizontal Position Error (HPE) growth when the low-cost PNS was aided and 

unaided with ZUPT, taken from the outdoor trial data presented in Chapter 6. In 

this trial, the user walked around the same football pitch for about 10 minutes. 

Instead of only visualizing the estimated trajectory on an image as in the previous 

section, a reference system was used. The ground reference system was taken from 

Fig. 4.1: (a) Estimated true trajectory, (b) a section of unaided low-cost PNS trajectory 

FFFiiiggguuurrreee   (((aaa)))      

(a) (b) 

SSStttaaarrrttt///eeennnddd   
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a Network Real Time Kinematic (NRTK) GPS solution, which has a typical 

accuracy of a few cm. Full details of the trial will be reserved for Chapter 6.  

 

 

 

 

 

  

 

 

 

 

 

 

 

  
Fig. 4.2: (a) Estimated true trajectory, (b) ZUPT-aided low-cost PNS trajectory  

(a) 

(b) 
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(b) (a) 

Fig. 4.3: (a) Estimated true trajectory, (b) Heading drift for ZUPT-aided low-cost 

PNS trajectory  
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It is observed from Fig. 4.4 that applying ZUPT measurements to the 

estimation filter such as the KF reduces the position error growth significantly (as 

expected and discussed in Section 3.3). Within 1 minute, unaided low-cost PNS has 

drifted by more than 500 m, but ZUPT-aided low-cost PNS has a considerably 

lower position error (less than 100 m). In the case of the low-cost PNS, ZUPTs 

have, therefore, become an important method to reduce the position drift error 

(Petovello et al., 2003; Stirling and Edmonton, 2003; Foxlin, 2005; Cho and Park, 

2005; Groves et al., 2007; Godha and Lachapelle, 2008; Feliz et al., 2009; Bebek et 

al., 2010; Bird and Arden, 2011).  

 However, when Fig. 4.4 is extended in time from approximately 80 s to 600 s 

and is plotted as Fig. 4.5, it can be clearly seen that the Horizontal Position Error 

(HPE) still grows. This happened even when frequent ZUPTs are available, 

although the error is still significantly reduced compared to when ZUPTs were not 

applied (Section 4.3.2). In this figure, after about 10 minutes, HPE has reached a 

significant 60 m.  

 Section 2.3.1.1 has discussed that the position drift can be caused by small 

errors perturbing the gyroscope signals, which can cause ‘tilt’ errors (attitude errors 

in the horizontal axes) in the INS orientation. A small tilt error causes a 
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Fig. 4.4: Horizontal position error comparison when low-cost PNS is aided with ZUPT 

and when is not aided with ZUPT.  
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component of acceleration due to gravity to be projected onto the horizontal axes. 

It will then be double integrated during position computation, which ultimately 

causes an error in the position that grows cubically in time.  

 In the case of the low-cost PNS, however, the ‘tilt’ error can be observed 

through the availability of ZUPTs. The remaining error that is not observable 

through ZUPTs therefore can be identified as the heading error, which grows over 

time (drift) (this will be explained next in Section 4.4). This therefore subsequently 

resulted in huge position error, as shown for example in the previous Fig. 4.4. To 

illustrate this, the INS heading from the same trial that was used to plot Fig. 4.5 is 

plotted in Fig. 4.6. The blue lines represent the true headings, which are offset by 

900 from each other resulting from walking in a rectangular trajectory. It can be 

observed clearly that over time, the INS heading is drifting, from about 1800 at t = 

0 s to about 1400 at t = 500s.  

 The heading drift error is mainly caused by the inertial sensor gyro errors such 

as bias, scale factor error and gyro noise that perturbs subsequently the attitude 

measurements about the INS Down-axis. As discussed in Section 2.3.1, they are 

often modelled simply as the gyro bias with noises during the estimation process. It 

needs to be estimated because the bias changes over time. If it is not properly 

estimated, over time, this error will cause a significant position drift error. 
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Fig. 4.5: Horizontal position error when low-cost PNS is aided with ZUPT only 
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Unfortunately, these errors are not well observed (cannot be estimated) when using 

zero velocity updates alone in the low-cost PNS, as demonstrated in this section. 

This problem is known as the observability problem (which becomes the basis of 

this research) and is explained next.  

 

4.4 Heading Observability 

As mentioned in the previous section, the position drift error for the low-cost PNS 

is primarily the result of the poor observability of errors about the INS Down-axis, 

when ZUPTs are the only measurements available to update the Kalman Filter 

(KF). Hide (2003) described the INS error observability using velocity error 

dynamic equations (the dynamic model used in this research is explained more in 

Section 5.3.3). The equations can therefore be written as:  

 ± _vN = ¡fD²E + fE²D (4.1) 

 ± _vE = fD²N ¡ fN ²D (4.2) 

 ± _vD = ¡fE²N + fN ²E (4.3) 
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Fig. 4.6: INS heading when low-cost PNS was aided with ZUPTs only  
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Eq. (4.1), (4.2) and (4.3) model the velocity errors relationship with the forces 

terms and attitude errors terms in the navigation frame. These equations show that 

when the external attitude updates are not available, the INS attitude errors (²)(²) are 

observable through the velocity error measurements (± _v) . These equations show 

that the attitude errors about the North and East axes (²N ; ²E ) result in the 

velocity errors through the North, East and Down force terms (fN ; fE ; fD ) . 

Likewise, in Eq. (4.1) and (4.2), the North and East attitude errors (²N; ²E) are 

always observable through velocity updates because the force in the Down direction 

is always large as a result of the gravity force. For the low-cost PNS, these 

horizontal attitude errors are observable because velocity updates can be performed 

through ZUPTs during momentary stationary condition when the user takes a step.   

On the other hand, Eq. (4.1) and (4.2) show that the attitude error about the 

Down axis (²D )  is only observable through the horizontal acceleration terms 

(fN ; fE). This means that in order to observe ²D, the horizontal acceleration must 

not be zero, which is not the case for the low-cost PNS during stationary condition 

when ZUPTs are performed (Section 3.3). Therefore, the attitude error about the 

Down axis for the low-cost PNS is not observable because there is no horizontal 

acceleration observed during ZUPTs. This error thus becomes the crucial factor 

contributing to the position drift error for the low-cost PNS.  

 Eq. (4.4), (4.5) and (4.6) further shows the relationship between roll, pitch and 

heading errors with the attitude errors in North, East and Down axes (ibid.):  

 ±'= ²E
sinÃ

cosµ
+ ²N

cosÃ

cosµ
 (4.4) 

 ±µ = ²E cos Ã ¡ ²N sin Ã (4.5) 

 ±Ã = ²E sin Ã tan µ + ²N cosÃ tan µ + ²D (4.6) 

It shows that the roll and pitch errors (±'; ±µ) are correlated with the attitude 

error about North and East axes, and the heading error (±Ã) when levelled is 

correlated mainly with the attitude error about the Down axis (²D).  
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Whilst the discussion so far relates directly to the low-cost PNS measurements 

update using ZUPTs when stationary (stance phase), it does not discuss the 

observability of errors during a swing phase. The swing phase is the phase when 

the foot is swung when taking a step. Because the IMU is likely to undergo very 

high accelerations during the swing phase, the velocity error dynamic equations 

presented above may not model these dynamics accurately (for example the values 

in the force terms may be wrong). If this is not accurately modelled, the attitude 

errors may be wrongly estimated by the filter as well, which subsequently will 

affect the estimation of other error states because of their correlation. One 

theoretical possibility is to use the true values of the dynamic terms from other 

reference systems (if available). By using these values, the true heading error can 

be observed. This theoretical result can then be compared with the values 

estimated from the chosen dynamic model. Using this comparison, a more accurate 

dynamic model can possibly be modelled. As a result, the heading drift can possibly 

be mitigated significantly because the heading error can now be estimated correctly 

during the swing phase. In other words, the heading error can be made observable 

during this phase, thanks to the availability of the correct horizontal acceleration 

terms in Eq. (4.1) and (4.2).  

When the velocity update is applied using ZUPTs during stationary (stance 

phase), the velocity error information during the swing phase just before the IMU 

comes to stationary is very significant. This is because the velocity error 

information contains all the information about the accumulated errors. If the 

dynamic model used accurately models the propagation of these errors, this velocity 

error information truly represents all the accumulated errors. As a result, more 

accurate estimation of the modelled states can be performed through ZUPTs by the 

estimation filter. Furthermore, the update rate of ZUPT measurements might not 

have significant impact to the overall estimation process when an accurate dynamic 

model is available (and used). This is because during velocity updates through 

ZUPTs, the error growth is modelled perfectly and there will be no difference 

theoretically if either a higher rate or a lower rate is used. Nonetheless, in reality, 
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the dynamic model used may not correctly model the system and thus resulting in 

inaccurate velocity error estimations. This in turns affects the estimation of other 

correlated states as well and may result in suboptimal solutions.  

 

4.5 Heading Drift Mitigation and Limitation 

This section reviews some of the current methods used to address the heading drift 

problem for a low-cost indoor inertial pedestrian navigation system. Section 3.2 has 

presented several technologies to aid GPS-based pedestrian navigation systems. For 

clarity, this section therefore differs slightly from Section 3.2, as it focuses directly 

on the limitations of such methods in mitigating heading drift.  

 

4.5.1 High Grade IMU 

A high grade IMU can be used to mitigate the heading drift problem because of its 

high performance. For example, Collin et al. (2003) and Mezentsev et al. (2005) 

used a tactical grade IMU for their indoor positioning system to provide a very 

high accuracy heading sensor. The IMU used was a HG1700 from Honeywell, a 

typical ring-laser gyro type that has a small bias of only 10/h.  

There are, however, two obvious drawbacks of using this approach. First is the 

cost of the high grade IMU (shown in Table 2.1), in terms of weight, size and price, 

which limits its application to the wider community. For example, it is not 

practical for a typical pedestrian to carry a high grade inertial sensor with a weight 

of more than a few kilograms. Moreover, if a foot-mounted IMU approach is used 

as in this research, it is practically impossible. Secondly is that inertial navigation 

is a relative position technique where ultimately position will drift because of the 

accumulation of IMU errors. Therefore, even high grade inertial sensors still need 

velocity updates such as ZUPTs to control some of its errors. If not, these errors 

might still accumulate over time and corrupt the position solutions. Unfortunately, 

as discussed in the previous section, even with ZUPTs, the heading error is still not 

observable. Therefore, heading drift error is still the main cause for the drift in 
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positions, although the drift rate will now be much slower than the low-cost inertial 

sensors because of its high performance.  

 

4.5.2 Magnetometer 

In a standalone low-cost inertial pedestrian navigation system (or a low-cost PNS), 

a magnetometer is identified to be the most practically used sensor for heading 

error mitigation. This is because low-cost IMUs, such as from XsensTM (Xsens, 

2011), MicrostrainTM (MicroStrain, 2011b) and IntersenseTM (Intersense, 2011), are 

often manufactured and cased together with a 3-axis MEMS magnetometer. This, 

therefore, makes the use of magnetometer quite appealing as additional sensors are 

no longer needed. 

 There are generally two methods that magnetometers are often used to address 

the heading drift problem for a low-cost PNS. One is by getting the heading 

measurement directly from the magnetometer (Sabatini, 2008; Bird and Arden; 

2011; Stirling et al., 2005) and two is by integrating the magnetometer heading 

measurements with the gyro yaw measurements due to its complementary effect 

(Mather et al., 2006; Faulkner et al., 2010). In the first approach, locally levelled 

horizontal magnetometer measurement vectors are used to work out the magnetic 

heading, and this heading is used directly in the navigation system. In the second 

approach, an absolute heading measurement from the magnetometer is used to 

compensate the relative gyro yaw measurement that contains substantial error. The 

magnetometer measurement can be used, for example in the Kalman Filter, to 

estimate yaw attitude errors, resulting in the best estimate of heading. A different 

method is by ‘fingerprinting’ magnetometer measurements with surveyed positions, 

which will be reserved for discussion in Section 4.5.4. 

 Nonetheless in both methods, the magnetometer is still used to provide 

heading measurements, which is quite useful only in an environment clear from 

magnetic disturbances. In a magnetically-disturbed environment such as in 

buildings, the magnetometer measurements are easily corrupted. This problem 

motivates current research relating to low-cost PNS, by looking in a way to solve 
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the uncertainties in the magnetic measurements, for example in Wei et al. (2010), 

Bird and Arden (2011), Faulkner et al. (2010) and Renaudin et al. (2010). This can 

be done by identifying measurements that are free from disturbance using a filter. 

For instance, Bird and Arden (2011) filtered these measurements using a single 3-

axis magnetometer, whilst Afzal et al. (2010) used a multiple magnetometers. 

Further explanation on these follows in Chapter 6, as Chapter 6 is dedicated to 

assess the performance of a 3-axis magnetometer using a similar method to provide 

heading measurements to the low-cost PNS.  

 

4.5.3 Drift reduced MEMS IMU 

It is also possible to use an improved MEMS IMU in a low-cost PNS to reduce 

heading drift error. The improvement in design was made, in particular, to the 

gyro, stating performance values that approach the specification of tactical grade 

IMU specified in Table 2.1. For example, Wan and Foxlin (2010) have introduced 

the newest drift-reduced MEMS IMU engineering sample (NavChipTM), 

manufactured by Intersense. The developer kit is now available for purchase from 

August 2011 (Intersense, 2011). Peshekhonov et al. (2011) and Peshekhonov (2011) 

also reported a prototype MEMS gyro that approached tactical grade specifications. 

However, while its benefit cannot be denied in standalone IMU navigation, using it 

without any aiding will still result in a gradual drift in position over time because, 

again, heading is not observable. Its advantage is, obviously, on the slow rate of 

the drift, similar to when using high grade IMUs (discussed in Section 4.3.1), and is 

appealing to the mass market as it is small, lightweight and has a low power 

consumption. 

 

4.5.4 Position Updates  

If a low-cost PNS can be updated with reliable position information frequently, 

most of the accumulated heading drift can be eliminated. This includes using a 

tagging approach such as RFID (Section 3.2.4); a matching approach such as image 
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matching (Section 3.2.5); a fingerprinting approach such as fingerprinted-

magnetometer measurements; or getting the position information directly such as 

with HSGPS (Section 3.2.1). In the magnetometer fingerprinting approach, it is 

used differently when the magnetometer was discussed in Section 4.2.1. It can be 

achieved by creating a database of magnetic field environment, embedded or 

‘fingerprinted’ with position information (Storms et al., 2010). There is also an 

effort (Kemppi et al., 2010) in creating the position database using magnetic 

anomaly.  

 As described in Chapter 2, the gyros attitude information can be used to 

transform the specific force measured by the accelerometers in a body frame to the 

desired navigation frame. Through INS mechanization, the position can then be 

calculated. Therefore, thanks to this correlation, the heading error can be made 

observable through a sequence of frequent position updates. This is because the 

difference between a sequence of position measurements and the computed INS 

position is largely resulting from the heading error (demonstrated in Section 4.3). 

The heading error can therefore be estimated in the KF because of the availability 

of these frequent sequences of position measurements. This indicates that if only 

few position measurements are available to update the estimation filter and they 

are not frequent, then the heading error will be weakly observable.  

 Nonetheless, in terms of position error, even if there are only a few position 

measurements available to update the filter, the position error can still be corrected 

with these updates. The only uncorrected position error remains is therefore the 

position drift that has been accumulated up to the update. Imagine a position 

trajectory that is drifting in one direction, but whenever there is a position 

measurement update; it jumps to the correct reference trajectory, before drifting 

again until the next position update is available to correct the position drift.  

 Therefore, although position updates can be useful to mitigate the heading 

drift error that affects the position drift error, frequent position measurements 

must always be available to update the estimation filter. For low-cost inertial 

sensors based systems such as the low-cost PNS, this should occur as frequent as 
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possible because the drift can happen very quickly because of its low performance. 

The possible systems discussed here that can provide position updates such as 

RFID and HSGPS have their own limitations, which were discussed previously in 

Chapter 3. Therefore unfortunately for indoors, providing frequent position updates 

from the available systems to mitigate heading drift are not always possible. 

 

4.6 Summary 

A review of the heading drift problem for the foot-mounted low-cost inertial 

Pedestrian Navigation System (low-cost PNS) has been highlighted. Current 

approaches to mitigate this error, together with its limitation, have also been 

reviewed. The work in the research is therefore based on this motivation, where the 

possibility of resolving the heading drift problem with the use of only low-cost 

inertial sensors (accelerometers and gyros) on its own is explored in the remaining 

chapters. 
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Chapter 5 

Data Simulator, Processing 

Software & the Low-Cost PNS 
 

This chapter presents the tools that were used in the research. This includes 

Inertial measurement Data Simulator (IDS) software for inertial data simulation 

and Position and Orientation Integration (POINT) software for data processing. 

For the low-cost PNS, a MicroStrain low-cost MEMS IMU was used as the only 

source of inertial sensor, and the Precise Time Data Logger (PTDL) was used as a 

data recorder. These software and hardware form the low-cost PNS used 

throughout the research.  
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5.1 Introduction 

This chapter is devoted to a brief description of the software and hardware that 

were used for the research. A brief overview of Inertial measurement Data 

Simulator (IDS) will be explained first in Section 5.2, where it was used to simulate 

inertial sensor data for the work presented in Chapter 7. Simulated data is first 

used because it provides an early opportunity to analyze the new method for the 

low-cost PNS presented in the chapter, where the method can be assessed with 

controlled error budgets. In Section 5.3, the processing software will be explained, 

where it was used to process the simulated data and real field trials data presented 

in Chapter 6, 7 and 8. The software is called Position and Orientation INTegration 

(POINT) software. Then finally in Section 5.4, a description on the low-cost PNS 

hardware will be given, where the system was used for all the real field trials 

presented in this thesis.  

 

5.2 Inertial Data Simulator (IDS) 

Inertial measurement Data Simulator (IDS) is a part of Navigation Sensor 

Simulator (NSS) software, used to simulate inertial sensor measurements. NSS is 

an in-house GPS–INS simulator, first developed in the Institute of Engineering 

Surveying and Space Geodesy (IESSG) (Smith et al., 2003), currently known as the 

Nottingham Geospatial Institute (NGI). The NSS comprises a GPS data simulator, 

which was extended later to include an Inertial measurement Data Simulator (IDS). 

It was used in many projects in the NGI, most notably the European Space Agency 

(ESA)-funded ‘Low-cost Navigator’ project and the development of the Adaptive 

Kalman Filter (Hide et al., 2003). The following sections give a brief description of 

the IDS only, as it was used to provide test data with full truth information for the 

development and investigation of the method presented in Chapter 7. 
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5.2.1 IDS Overview  

The Inertial Data Simulator (IDS) simulates measurements for a 3-axis Inertial 

Measurement Unit (IMU) that consists of three orthogonally mounted gyros and 

accelerometers. Using user-specified error models, the truth information about the 

errors on IMU measurements can be simulated. This is very important for the 

method proposed for the low-cost PNS presented in Chapter 7 because error 

observability can be analyzed accurately when the method is attempted. The next 

section will describe the IDS architecture in terms of the way the inertial sensor 

measurement is simulated for later processing.  

 

5.2.1.1  The Algorithm Flow 

The explanation herein is based on Fig. 5.1, which shows the algorithm flow for 

IDS.  

 

 

 

 

 

Fig. 5.1: The algorithm flow for inertial measurement simulation 

 

IDS starts by reading a user-defined control file, which contains all the information 

required for the simulation. Most importantly for the work in Chapter 7, the 

control file contains the following information: 

• Definition of trajectory. 

• Selection of the error models to be used and their associated parameters. 

• Selection of inertial sensors. 

• Simulation period. 

These four parameters describe: 1) what kind of trajectory is going to be simulated, 

2) with what kind of errors to be simulated, 3) for which inertial sensor (gyros or 

accelerometers or both), and 4) for how long (period of the simulated trajectory). 
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Please refer to Appendix A for the specific parameters with its corresponding 

values. 

 The specific simulated trajectory file is created externally before the simulation 

begins. The trajectory file (please refer to Appendix B) is based on the previous 

GPS-only simulator trajectory file used in the previous version of NSS, where it 

requires only position and velocity information. Therefore, in order to simulate 

inertial sensor measurements in IDS, the same trajectory file is extended to include 

the attitude information of the IMU (Hide et al., 2003). The simulator thus 

provides interpolation of inertial sensor measurements so that data can be 

simulated at higher data rates than those entered in the trajectory file. Then, the 

double differentiation of position and single differentiation of attitude are 

performed in the IDS based on the equations fitted in between points during the 

interpolation stage.   

 After reading the control file with specific parameters and doing the 

differentiation and interpolation, next, the interpolated angular rates and 

accelerations are transformed into the body frame coordinate system of the inertial 

sensor. The standard INS mechanisation process (described in Section 2.4) is 

reversed to produce body frame measurements. This is done using the direction 

cosine matrix from the interpolated attitude measurements. During this time, the 

rotation rate of the Earth is added to the body frame angular rate measurements, 

and the Coriolis and gravity accelerations are added to the body frame acceleration 

measurements. For more details on the reverse mechanisation process, readers are 

directed to Hide (2003). 

  Finally, after accelerations and angular rates had been resolved in the body 

frame, they were then simulated with typical accelerometer errors and gyro errors, 

specified in the input control file as explained before. The inertial sensor 

measurements are simulated using the following equation:  

 l̂ = l + e (5.1) 

where, 
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   l̂  is the inertial sensor measurement in body frame 

   l is the actual measurement vector 

   e is the simulated inertial sensor error vectors 

 

The output of the IDS is a file containing the measurement time and gyro and 

accelerometer measurements in the body frame. This file will then be used for 

analysis in the processing software (this will be described in Section 5.3). 

 

5.2.1.2  Construction of Trajectories 

The IDS requires trajectory data in the form of position, velocity, and attitude 

data. The epoch separation for the input trajectory can be in any value as long as 

it is constant. A low data rate was used in the input trajectory file, which was then 

further interpolated in the IDS to 200 Hz data to form the simulated inertial sensor 

measurements.  

 The IDS is used to investigate by simulation the method presented in Chapter 

7. Two trajectories; static and kinematic (walking), were constructed using a simple 

C-language program. For the latter case, the walk is constructed along a straight 

trajectory, as it will be then much easier to analyze and identify the heading drift 

problem. The static trajectory is also constructed to investigate the IMU errors 

observability when the KF is updated during ZUPT periods when the method is 

applied.  

The next section will discuss the processing software used to process the simulated 

data and the real field trials data.  

 

5.3 Processing Software 

All the datasets (simulated and real) in this research are processed using the  in 

house NGI’s POINT (Position and Orientation Integration) software. The software 

was designed specifically with the purpose of allowing easy integration with 
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measurements from external sensors, and has been successfully used for many 

projects at NGI. Author used this software to integrate measurements from the 

proposed methods presented in the thesis and processed them. The POINT 

software is essentially the Kalman Filter that models states, and accepts 

measurements to correct the states. For more details of POINT software, please 

refer to Hide et al. (2007a), Hide et al. (2007b) and Hide (2009). 

 

5.3.1 The Kalman Filter 

The Kalman Filter (KF) forms the basis of the algorithm in POINT. Section 2.5 

has described the fundamentals of the KF in detail. Essentially it is an iterative 

filter, which starts with initialisation (Section 2.5.3.1) where the states and their 

covariances in the filter are initialised. The states are the quantities that are to be 

estimated, and the covariance is the estimate of the errors of the states (more 

details are discussed in the next section).  

 The states can be initialized (x̂
(+)
0 ) from the prior knowledge of the system 

obtained either during the alignment period (Section 2.4.3.1), from the calibration 

data, or from the information obtained from external sensors (for example GPS). 

For example, the position can be initialized from a GPS position solution, or a 

known surveyed point, and roll and pitch can be initialized during alignment period 

(Section 2.4.3.1). Additionally, the initial estimation uncertainty standard 

deviations must be given first to initialize the system noise covariance matrix Qk 

(given by Eq. (2.35)). These noise statistics represent the uncertainty of the states, 

for example the attitude uncertainty is dependent on the accelerometer and 

gyroscope errors. They may be empirically determined based on the performance of 

the filter, sometimes known as the KF tuning (Groves, 2008). If factory calibration 

data is available for these errors, it may also be used to determine the suitable 

values for initializing the system noise. The choice of which depends on the system 

designer, where the stability and the accuracy of the filter needs to be taken into 

account. Normally, a trial and error process in determining the optimal value is 

adopted by for example comparing the filter estimated output with a good 
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reference system. According to Groves (2008), a good tuning philosophy may be 

made by fixing P̂ (+)
0  and Qk, and varying measurement noise, Rk that gives the best 

estimates. This approach was adopted in this research.  

 After the initialisation step (Section 2.5.3.1), the filter goes into the iterative 

part of the algorithm, where it comprises a prediction step (Section 2.5.3.2) and an 

update step (Section 2.5.3.3). In the prediction step, the states are predicted 

forward until the next KF update. A dynamic model (Section 2.5.2), which 

describes the way the states vary with time, is used by the KF to carry out the 

prediction. The covariance is also predicted forward using the dynamics model and 

the modelled process noise (an estimate of the error in the model).  

 After the prediction step, the KF is updated with the new measurement 

(observation). In order to perform the update step, the KF also requires 

information about the expected noise in the new measurement, which is called the 

measurement noise. The KF then estimates the new state by combining the 

predicted states with the new measurement. The weight between the predicted 

state and the new measurement is formed using the predicted covariance and the 

measurement noise. The prediction step and update step then occur recursively 

until the end. Fig 5.2 shows the process in the KF. The next section will further 

describe the KF in POINT in details, such as the states and observations, which 

are used for the research presented in the thesis. 

 

 

 

 

 

 

 

 

 

 

Predict 

Predict ahead the states and the 

error covariance  

Measurement Update  

Compute Kalman Gain 

Update states with measurements 

Update the error covariance 

Initialize  

Initialize the states and the error 
covariance 

Fig. 5.2: High level diagram of the KF operation 
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5.3.2 States 

There are 15 error states modelled in POINT for the research, although POINT is 

capable to model more states. They are: 

 

 ±x =

0

@±rn ±vn ²n bg ba

1

A

T

 (5.2) 

where 

  ±rn   is the vector of n-frame latitude, longitude and height errors 

  ±vn  is the vector of n-frame velocity errors 

  ²n   is the vector of n-frame attitude errors  

  bg   is the vector of b-frame gyro bias  

  ba   is the vector of b-frame accelerometer bias 

 

Other IMU errors such as accelerometer and gyro scale factor error, cross-coupling 

error and gravity dependent errors were not modelled in this research. Therefore, 

the effects these unmodelled errors have towards the KF states were coarsely 

approximated by increasing accelerometer and gyro noise empirically so that the 

measurement noise impact is much greater than the unmodelled errors. 

 As discussed in Section 2.5, an error state KF was used for this research. For 

the initialisation phase, all the error states were initialized to zero, except the gyro 

bias where its value was initialized by averaging the gyro measurements during 

stationary alignment. This gyro bias value is used to correct the IMU gyro raw 

measurements, before using these measurements in the INS mechanization process 

(step 1 in Section 2.4.3.2).  

 It is important to mention that the KF in POINT is an error-state KF used in 

feedback form, which means that the estimated errors from the KF are feedback at 

every iteration, or at regular intervals, to correct the low-cost PNS solutions. This 

is sometimes known as a closed-loop configuration of the KF (Groves, 2008). 

Because of this, the KF states are kept small and thus maintaining the small error 
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assumption of the states. This ensures that the linearized error model assumption 

in the filter remains valid.  

 In Section 2.5.3.2, the KF predicts the state x̂
(¡)
(k)  using the knowledge of how 

the previous state x̂
(+)
(k¡1) evolves over time based on its state transition matrix, 

where 

 x̂
(¡)
(k)
=©x̂

(+)
(k¡1) (5.3) 

In POINT, state transition matrix, ©  is formed using the approximation 

 

 © = exp(F ¢ tk ) ¼ I + F ¢ tk +
(F ¢ tk )

2

2!
 (5.4) 

where the dynamic matrix F  is formed using the error dynamics of the inertial 

system, explained in the next section, and ¢tk is the time separation. Eq. (5.3) is 

used under the assumption that either ¢tk = tk ¡ tk¡1 is very small or the dynamic 

matrix F  is approximately constant over time interval ¢tk. As Eq. (2.35) shows, 

the covariance matrix associated with process noise vector, wk is given by 

 

 E
£

wk wT
i

¤

=

(

Qk if i = k

0 if i 6= k
 (5.5) 

In POINT, the process noise matrix, Qk is approximated using the equation (Shin, 

2005, Hide, 2003) 

 

 Qk ¼
1

2

£

©GQsG
T + GQsG

T©T
¤

¢tk (5.6) 

where G is the noise mapping matrix (that relates the modelled states with their 

respected noises) and Qs is a diagonal matrix formed from the standard deviations 

of the process noise (for example the accelerometer and gyro measurements). 
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5.3.3 Dynamic Model Representation 

The derivation of the phi-angle error model equations in Eq. (2.29), (2.30) & (2.31) 

and its development into functions of position and velocity errors can be found in 

Shin (2001) and Farrell and Barth (2008), which can be rewritten as: 

 ± _rn = Frr±r
n + Frv±v

n (5.7a) 

 ± _vn = Fvr±r
n + Fvv±v

n + fn £ ²n + Cn
b ±f

b (5.7b) 

 _²n = Fer±r
n + Fev±v

n ¡ !n
in £ ²n ¡ Cn

b ±!
b
ib (5.7c) 

where (¢)£ refers to a skew symmetric matrix form of function (¢)  and F (¢) 

represents the partial derivatives with respect to the position and velocity terms 

(ibid.). The full form of these matrices can be found in Appendix C.  

 The last matrix terms in Eq. (5.7b) and (5.7c), specifically ±fb  and ±!b , 

represent the errors in IMU measurements. Theoretically, these errors terms can be 

refined by modelling all possible IMU error terms such as temperature dependent 

errors and misalignment errors (Petovello, 2003). However, as discussed in (ibid.) 

and Section 2.3.1, the observability of all the error states, even if it is theoretically 

possible, is almost impossible because of operational conditions such as requiring 

sufficient dynamics and long data collection. Similar with (ibid.), in this research, 

both sensor error terms are therefore considered to only consist bias terms (ba ; bg ) 

and noise (w a ; w g ), with some temporal variability given to the bias states (¿), and 

can be written as: 

 ±f b = ba + wa (5.8) 

 ±!b
ib = bg + wg (5.9) 

 From Section 2.5.2, the system dynamics for the phi-angle error model used in 

POINT can be written in matrix form as  

 _±x = F±x+Gu (5.10) 
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Using Eq. (5.8) & (5.9) in Eq. (5.7), the final system model in state space form 

used in the research can therefore be written as: 
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 (5.11) 

where a more detailed form of Eq. (5.11) is included in Appendix C.  

 

5.3.4 Observation Equations and Design Matrix 

A number of measurement types are pre-determined in POINT for processing the 

INS measurements for the research, defined as: 

• Position 

• Velocity 

• Attitude 

In POINT, the linearized measurement, zk in Eq. (2.34) is approximated using the 

following equation: 

 zk = h(k)±x(k) ¼ Hk±xk = zobservedk ¡ zpredictedk  (5.12) 
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where the observed value comes from an external sensor or measurement, whilst 

the predicted value comes from the KF’s prediction or computation. For example, 

velocity updates from ZUPT measurements will be differenced with the computed 

velocity, producing an estimate velocity error as the measurement to the KF to 

update velocity error state, ±vn. Eq. (2.43) is then used to compute the innovation 

vector, v(¡)
kv
(¡)
k

, re-written as: 

 v
(¡)
k = zk ¡ Hk±x

(¡)
k
 (5.13) 

The design matrix, H  (sometimes called measurement matrix) defines how the 

measurement vector varies with the error state vector, ±x.  

 Therefore, using linearized measurement zk = Hk±xk , the formulation of 

measurement equations for position error can be written as (Farrell and Barth, 

2008; Shin (2005): 

 zk = Hk±xk 
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 (5.14) 

For example, if the position from GPS is available as measurement, then the 

measurement in Eq. (5.14) is given as: 

 zk =

0

@rnINS ¡ rnGPS

1

A =

0

B

B

B

B

@

'INS ¡ 'GPS

¸INS ¡ ¸GPS

hINS ¡ hGPS

1

C

C

C

C

A

 (5.15) 

Likewise, the measurement equations for velocity error can be written as (ibid.): 
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 (5.16) 
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And, for heading error, the linearized heading measurement equations can be 

written as (Shin, 2005): 
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 (5.17) 

where the partial derivative is formed from the elements of the estimated direction 

cosine matrix, Ĉ n
b

. Assuming small angle misalignment, Ĉ n
b

 can be written as 

(ibid.):  

 Ĉn
b = [I ¡ ²£] Cn

bĈn
b = [I ¡ ²£] Cn

b  (5.18) 

Let cijcij represents the ijijth elements of Cn
bCn
b . By referring to Eq. (2.14), the computed 

heading can be written as follows: 

 Ã̂ = tan¡1(ĉ21=ĉ11) (5.19) 

where, 

 ^c11 = c11 + c21²D ¡ c31²E (5.20) 

 ^c21 = c21 + c31²N ¡ c11²D (5.21) 

Therefore, 

 
@Ã̂

@²N
=

@ ^c21

@²N
^c11 ¡ ^c21

@ ^c11

@²N
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^c11
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2
 (5.22) 
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@ ^c11
@²E
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 (5.23) 

 
@Ã̂

@²D
=

@ ^c21
@²D

^c11 ¡ ^c21
@ ^c11
@²D

^c11
2 + ^c21

2 ¼ ¡ ^c11 ^c11 ¡ ^c21 ^c21

^c11
2 + ^c21

2
 (5.24) 

The estimation process then continues as described in Section 2.5.3.2 and 2.5.3.3. 

All the relationships and assumptions in this section are derived in Farrell and 

Barth (2008) and Shin (2005).  
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5.4 Low-cost PNS 

Apart from the simulation and processing software used as described in the 

previous sections, the trials and investigations in this research were also performed 

using hardware. This is important because simulation may not be realistic and for 

more accurate analysis, undertaking real field trials using real equipment can 

provide the true outputs. The hardware used that makes up the low-cost PNS 

includes the inertial sensor and the data logger, and is explained next. 

 

5.4.1 Inertial Sensor 

A 3DM-GX3-25 IMU from MicroStrain® was the only sensor used for pedestrian 

navigation investigation in this research. When it was purchased two years ago, 

3DM-GX3-25 was the latest available IMU from MicroStrain®. It has a dimension 

of 44mm x 25 mm x 11mm, weighing only 11.5 grams, making it the smallest and 

the lightest Attitude and Heading Reference System (AHRS) on the market. It was 

already factory-calibrated, and therefore was used in the research without any 

further calibration. Fig. 5.3 shows the IMU and when it is mounted on a shoe. 

Apart from being known as an IMU, it is also known as AHRS because it 

incorporates 3-axis MEMS magnetometer on board as well, along with 3-axis 

MEMS accelerometers and 3-axis MEMS gyros. It is fully temperature 

compensated over the entire -400 to +750 C operational range and is available with 

either RS-232 or USB connection for data communication, which might be 

convenient for different user requirements. It has a user adjustable data rate from 1 

Hz to up to 1000 Hz and varieties of outputs such as Euler angles, rotation matrix, 

acceleration, angular rate and magnetic field. The full specification of the IMU can 

be further found in MicroStrain (2011a).   

 3DM-GX3-25 has a technical specification of a typical low-cost IMU grade. For 

this research, the IMU used has a limit of 16 g for acceleration and 1200 0/s for 

angular rotation, which is sufficient for walking trials. This is because an angular 

rate of a pedestrian foot is typically less than 600 0/s, and acceleration is typically 



Chapter 5 Data Simulator, Processing Software & The Low-cost PNS 98 

 

 

6 g (Huang et al., 2010). The accelerometer bias stability is quoted as ±0.01 m/s2 

for the 16 g model, and the gyro bias is specified as ±0.2 0/s for the 300 0/s model 

(higher gyro bias should be expected for the higher angular rate model used). More 

technical specification of the IMU can be found in Table 2.1 in Chapter 2. 

  MicroStrain® 3DM-GX3-25 has similar specifications to some of the low-cost 

IMUs currently on the market. Table 5.1 shows their comparison. In terms of 

performance, Kealy et al. (2010b) conducted comparative experiments involving all 

the low-cost MEMS IMU tabulated in Table 5.1 (except MicroStrain® 3DM-GX3-

25) with Applanix navigation grade IMU. It was concluded that the low-cost IMU 

still contains substantial error in its absolute measurements (acceleration, angular 

rate) when compared with the navigation grade IMU (ibid.). Note that the 3DM-

GX3-25 should also produce similar results because of the similar specifications. 

These significant errors had some interpretable values, however, where they are 

able to detect relative changes in the platform motion. For example, the change in 

the measurements can distinguish the operating environment, such as changing 

from stationary to moving motion. It is therefore sufficient to say that using a low-

cost IMU-only for a good positioning system provides a huge challenge. As 

demonstrated in Section 4.3.2, if the low-cost IMU is used without any aiding 

measurements, it is practically impossible to get a good positioning solution.  

  

Fig. 5.3: The 3DM-GX3-25 IMU from MicroStrain (left) and mounted on a shoe (right).  
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Table 5.1: Comparison of different low-cost IMUs and navigation grade IMU, 

adapted from Kealy et al. (2010b) 

 
Sensor Measurem-

ent 

Bias 

Stabili-

ty 

Range Sampli-

ng rate 

(Hz) 

Size 

(cm) 

Weig-

ht (g) 

Cost 

(£) 

Low-

Cost 

grade 

MEMS 

IMU 

Crista IMU, 

Cloudcap 

Technology 

3-axis acc. 0.5 ms-2 +10g 
100 

5.2x3.9 

x2.5 
36.8 <1300 

3-axis gyros 0.6 0/s +300 0/s 

MTI Xsens 
3-axis acc. 0.02 ms-2 +5g 

100 
5.8x5.8 

x2.2 
50 <1300 

3-axis gyros 1.0 0/s +300 0/s 

Inertia Link 

MicroStrain 

3-axis acc. 0.1 ms-2 +5g 
200 

4.1x6.3 

x2.4 
39 <1000 

3-axis gyros 0.2 0/s +300 0/s 

IMU 400CC 

Crossbow 

3-axis acc. 0.01 ms-2 +2g 
40 

7.6x9.5 

x8.1 
64 <8000 

3-axis gyros 0.2 0/s +300 0/s 

3DM-GX3-

25 

MicroStrain 

3-axis acc. 0.01 ms-2 +16g 
100 

4.4x2.5 

x1.1 
11.5 <1700 

3-axis gyros 0.2 0/s +300 0/s 

Navigati

on grade 

IMU 

Honeywell 

CIMU 

Applanix 

3-axis acc. 
50 ££  10-6 

ms-2 
n/a 

100 
20.4x20.4 

x16.8 
4.5 kg <60 000 

3-axis gyros 
0.0035 
0/s 

n/a 

 

5.4.2 PTDL 

The Geospatial Research Centre (GRC) New Zealand Precise Time Data Logger in 

Fig. 5.4 was used to record the IMU data. It incorporates a precise time GPS 

receiver, which has a time stamp accuracy of 0.1 us, and a high speed flash memory 

data logger. The data inputs, available through the back panel connectors, can be 

logged to the SD memory card with time tags aligned to GPS time. The GPS time 

stamp is only recorded for the purpose of synchronising the IMU with GPS so that 

a performance comparison can be made between the INS and GPS solutions. If 

there is no GPS satellite in view to provide accurate timing inside buildings, an 

internal IMU clock is used instead. This means that if autonomous navigation is 

sought only indoors, (assuming known initial position) the GPS time stamp might 

not be needed and the IMU internal clock can be used instead. 

 This however introduces an issue with the accuracy of the IMU clock. It is 

possible over a long period of usage that the clock accuracy might be degraded. 

This means that if the clock is not accurate, the IMU data will be recorded with 

errors in the time stamp. For example, if an inaccurate IMU clock is used 

(assuming delayed by 1 s) when recording the IMU data, a typical pedestrian step 
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that lasts for 1 s will appear to last for 2 s. This in turns will cause error in the 

estimation of position, where the position error will appear to be larger than it 

should be.  

 For this research, the accuracy of the IMU clock is assumed to be satisfactory 

for the data collection based on its specification sheet, where the IMU clock is 

specified to have an accuracy of +/- 0.01% (accumulate error of approximately 100 

µs for every 1 s). For the longest trial recorded in this research (2400 s), the clock 

is thus accurate to within 0.24 s, which means the accumulated position error 

resulting from clock inaccuracy will be approximately less than the half-step 

distance of a typical pedestrian. This therefore is considered adequate for the 

research when analyzing the IMU performance. Note that to properly quantify the 

accuracy of the IMU clock for all the trials and the effect it has on the results is 

beyond the scope of this thesis. Therefore, all recorded data and the estimated 

solutions are assumed to be corrupted with this error, and are part of the final 

estimated solutions. 

 

 
 

 

Fig. 5.4: The PTDL used to record data 
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5.5 Summary 

Information about the software and hardware used for the research has been 

presented, including the modelled states, the observation matrix and the dynamic 

model used. The IDS software will be used in Chapter 7 for simulation purposes, 

and the POINT software will be used for integrating measurements and data 

processing in Chapters 6, 7 and 8. For the hardware, the low-cost MicroStrain 

MEMS IMU has been selected for use in the research as a representative of the 

low-cost MEMS IMU. In the next chapter, the performance of the low-cost 

magnetometer to deal with the problem described in Chapter 4 will be analyzed.  
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Chapter 6 

Magnetometer Aided 
 

This chapter discusses how a low-cost magnetometer may be used to aid a 

pedestrian navigation system. A background study of the low-cost magnetometer is 

first explained, describing specifically how the magnetometer may be used. The 

chapter leads on to describe a filter to extract good measurements from the 

magnetometer. Analysis from real field trial results will show that magnetometer 

measurements are insufficient to aid INS heading, unless it is reliable on every 

epoch. A discussion and a chapter summary follow at the end.  
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6.1 Introduction 

As discussed in Section 4.5.2, a magnetometer may be useful to aid the drift in the 

low-cost IMU heading. This is because magnetometer heading measurements do not 

drift over time, as often happened with the low-cost IMUs. Furthermore, it is 

practically possible and easier to use the magnetometer for the low-cost PNS, as 

often it is already encapsulated together with the low-cost IMU used. Therefore 

additional sensors for the purpose of mitigating the heading drift may not be 

required. Mainly because of these two reasons, the magnetometer can be the most 

practical method to aid the low-cost PNS heading. Therefore it was chosen in this 

research to be an exemplary method to mitigate heading drift for the low-cost PNS. 

Additionally, in the case of the pedestrian navigation system, the magnetometer is 

often integrated to give the heading measurement (Haverinen and Kemppainen, 

2009; Huang et al., 2010; Glanzer and Walder, 2010; Storms et al., 2010; Bird and 

Arden, 2011; Faulkner et al., 2010; Shin et al., 2010). In this chapter, the 

performance of the magnetometer to provide heading measurements is thus 

investigated. Unlike Section 4.5.2, this chapter will offer more detail in describing 

magnetometers as the aiding source of heading measurements for the low-cost PNS. 

The investigation starts in Section 6.2 by familiarization with the current ideas in 

the literatures on integrating magnetometer heading measurements in the low-cost 

PNS. This is followed by introducing its principle of operation in Section 6.3. This 

includes how magnetometer readings can be used to compute the heading 

measurements, what kind of errors affect the measurements and how calibration 

can be made to reduce these errors. Next, Section 6.4 will use one of the ideas from 

Section 6.2 to aid the IMU heading in the low-cost PNS. To assess its performance 

in mitigating IMU heading drift, trials (outdoor and indoor) were performed and 

the results are presented in Section 6.5. Chapter summary follows.  
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6.2 Heading Measurements from Magnetometer 

A 3-axis magnetometer senses magnetic field components in each of its axes that 

represent an electromagnetic environment of the earth. Using these measurements, 

the magnetic heading can be calculated (Caruso, 2000). These magnetic field 

components, however, change with respect to its environment. Steel is one of the 

materials known to affect the magnetic field. Thus the magnetic field sensed by 

magnetometers will be biased, ultimately giving a false magnetic heading 

measurement to the system. Bachmann et al. (2007) have done extensive tests on 

the effect that indoor environments have on magnetometer measurements. This 

includes steel cabinets, desktop computers and cable conduits inside bricks walls. 

These were shown to disturb significantly the magnetic field components sensed by 

the magnetometer, and subsequently corrupt the magnetometer heading 

measurements. This therefore provides a huge challenge in using the magnetometer 

for the low-cost PNS in indoors.  

 Nonetheless, there are two known approaches often attempted in the 

literatures to try overcoming this challenge: magnetometer-fingerprinting and 

magnetometer-filtering.  

 In the magnetometer-fingerprinting method (Chung et al., 2011, Storms et al., 

2010, Haverinen and Kemppainen, 2009), magnetic field measurements for the area 

intended to perform navigation are pre-surveyed, tagged with position and stored 

in a database (similar to the methods described in Section 3.2.6 & 3.2.7). The user 

equipped with a magnetometer can then use the database to localize his position 

based on the magnetic field measurements. For example a probabilistic method 

(Storms and Raquet, 2009) can be used to estimate the user’s position from the 

database using the matched magnetic measurements. The magnetometer-

fingerprinting method does not use the computed magnetic heading measurements 

explicitly, but rather it uses the measured magnetic field components instead. 

There are some limitations of using the fingerprinting method and similar 

discussion from Section 3.2.6 & 3.2.7 are referred. The accuracy of the estimated 
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position can therefore be dependent on the quality of the magnetic map database, 

the quality of the measurements from the magnetometer, and how well these two 

can be reliably matched.  

 In the magnetometer-filtering method (Bird and Arden, 2011, Faulkner et al., 

2010), a magnetometer filter is used to reject bad magnetometer measurements (or 

magnetometer outliers), characterized by a certain predetermined condition (this 

point will be explained later in Section 6.4). The accepted measurements (good 

measurements) are then integrated with the IMU heading measurements to give 

the best estimate of heading (thanks to their complementary effect). The 

integration can be done for example using the Kalman Filter (KF).  

 A similar filtering approach was also used by Renaudin et al. (2010) and Afzal 

et al. (2011) to provide good magnetometer heading measurements; but instead of 

only one magnetometer, six magnetometers were used. It was based on observation 

by Afzal et al. (2010), which concluded that if 3-axis magnetometers are placed 

close to each other but with different orientation, there exists information about 

the presence and absence of magnetic disturbances in the magnetic field vectors. 

Using a magnetometer filter and the magnetic field model (such as the 

International Geomagnetic Reference Field (IGRF) magnetic model (Finlay et al., 

2010)), disturbed measurements can be detected. When magnetic disturbances are 

detected, the cleanest Earth’s magnetic field components from the multi-

magnetometer can be identified using the multi-magnetometer measurements. This 

can then be used to compute the magnetometer heading measurements. Examples 

from these two approaches (single magnetometer and multi-magnetometer) show 

that the magnetometer-filtering method can improve the position accuracy of the 

pedestrian navigation system. Therefore, the magnetometer-filtering method was 

considered useful in indoor environments that have significant magnetic 

disturbances.  

 Because of the challenges with the magnetometer-fingerprinting approach, the 

magnetometer-filtering approach is instead adopted for the investigation work 

presented in this chapter. Additionally, only single magnetometer approach is 
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attempted because only single 3-axis magnetometer is available with the low cost 

IMU used. The investigation carried out therefore seeks to address the following 

issues (which were not addressed properly in the literatures) with respect to the 

magnetometer-filtering method: 

• What happens if only a few reliable filtered heading measurements are 

available (worst case scenario for indoors)? 

• What effect does this have over a longer period of time on the low-cost PNS 

position solution? 

 

6.3 Background on Magnetometer 

Before presenting the investigation on the performance of the magnetometer, firstly 

the fundamentals of magnetic field and magnetometer are briefly reviewed in this 

section.  

 

6.3.1 Earth Magnetic Field 

Imagine an Earth magnetic field as a large dipole magnet, where two opposing 

poles are labelled geographically as North and South poles. This field is created by 

the “outer core region of the earth”, which comprises “a hot and dense liquid of 

highly conductive nickel iron” and “the earth’s spin and shape” (Campbell, 2001). 

The direction of the field is from the Earth’s magnetic South pole towards the 

Earth’s magnetic North pole (Fig. 6.1). The magnetic field strength, which varies 

with location, ranges between 50 µT to 60 µT (500 mG to 600 mG) and has 

components parallel to the Earth surface (Caruso, 1998).  
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Fig. 6.1: Earth magnetic field (Groves, 2008) 

 

 The Earth’s magnetic field varies with location and time. These changes can 

be characterized into two categories known as variation and perturbation. 

Variation is a slow change to the Earth’s magnetic field, often in a large scale over 

a few kilometres, because of the nature of Earth’s geology. Perturbation is a change 

in the Earth’s magnetic field locally (such as indoors) and often varies significantly 

in terms of strength and durations, mostly because of man-made materials. 

Perturbation corrupts the magnetometer measurements and therefore is the main 

problem faced when using magnetometers indoors. 

 

6.3.2 Magnetic Field Model 

Earth’s magnetic field can be mapped and modelled. Global magnetic models such 

as the International Geomagnetic Reference Field (IGRF) (Finlay et al., 2010) or 

the U.S./U.K. World Magnetic Model (WMM) (National Geophysical Data Centre. 

2011), can be used to identify elements related to the Earth’s magnetic field such 

as the total magnetic field intensity according to a specific location on Earth. This 

model is derived from observations all over the world by magnetic observatory 

groups, and often used for research such as space weather investigations and 

magnetic field anomaly investigations. Fig. 6.2 shows a screenshot of IGRF model 

parameters (BGS, 2011). 
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6.3.3 Magnetometer Heading 

A magnetometer measures the strength of the earth magnetic field. A 3-axis MEMS 

magnetometer is often cased together with accelerometers and gyros in an Inertial 

Measurement Unit (IMU) because of its smaller size and weight. In an ideal 

disturbance-free environment, a 3-axis magnetometer should measure the 

components of Earth magnetic field in its body-frame, me =
£

mb
x mb

y mb
z

¤T
. 

Magnetic heading in a Local-Levelled frame (' = 0; µ = 0) , ÃLL
m  can then be 

computed as (Kaniewski and Kazubek, 2009): 

 ÃLL
m = ¡atan2

0

@mLL
y ; mLL

x

1

A (6.1) 

 

6.3.4 Primary Source of Magnetometer Errors 

There are several errors that can disturb magnetometer measurements. They can 

be categorized into two (Liu et al., 1989): instrumentation errors and compass 

deviation error. Instrumentation errors include sensor offset, scale factor mismatch, 

Fig. 6.2: IGRF2010 model parameter screenshot 
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non-orthogonality and sensor tilts. On the other hand, compass deviation error is 

caused by the perturbation, and generally is divided into two (Chen et al., 2010): 

hard iron and soft iron (which will be described in the next section).  

 Instrumentation errors can often be calibrated (or compensated), either at the 

user level (user-calibrated) or at the manufacturer level (factory-calibrated). Tilt 

error, for example, will cause an error in heading computation in Eq. (6.1) because 

the horizontal magnetic field is corrupted by components of the vertical magnetic 

field. For a low-cost PNS, this error can be calibrated at the user level using 

accelerometers and levelling approach (Section 2.4.3.1). However, compass 

deviation error is more significant for accurate magnetometer measurements. This 

is because the error, especially soft iron perturbation, is dependent on the 

magnetometer surrounding environment that cannot be controlled. Because of this, 

the perturbation appears to be varying spatially and temporally, and thus it is very 

difficult (and complicated) to model its effect on magnetometer measurements.   

  

6.3.4.1  Hard Iron and Soft Iron.  

Hard iron and soft iron (Guo et al., 2008) affect the magnetometer measurement in 

magnitude and/or direction. Hard iron distortions are caused by permanent 

magnets and magnetized iron or steel in a fixed location on the compass platform. 

These distortions are equivalent to a constant magnetic field vector observed by 

the 3-axis magnetometers in all direction. It will add a constant magnetic field 

component to the true magnetic field measurement in each axis of the 

magnetometer. Similarly, the soft iron comes from materials surrounding the 

magnetometer and also distorts the Earth’s magnetic field lines. Unlike the hard 

iron, the difference is that the amount of distortion from the soft iron depends on 

the magnetometer orientation, which then appears to be varying in different 

direction. 

 Hard iron can be compensated during static calibration (more details are 

provided in the next section). On the other hand, compensation for soft iron is 

considered difficult as the soft iron varies in different directions. Therefore, soft 
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iron calibration is not attempted in this chapter and is beyond the scope of this 

thesis, and its disturbance effect on magnetometer measurements are reduced using 

a filtering approach (Section 6.4).  

 

6.3.5 Magnetometer Calibration 

As discussed in the previous section, calibration is important to compensate for the 

errors disturbing magnetometer measurements. It is very difficult, however, to 

compensate properly for the soft iron error continuously (sometimes known as 

online calibration). This is because a good calibration method requires a proper 

sampling method in all possible orientations to gather as much as possible magnetic 

perturbations information. Therefore, only static calibration is thought to be 

feasible for the low-cost PNS and is explained next. 

 

6.3.5.1  Static Calibration 

For a low-cost PNS indoors, ideally calibration should be performed continuously. 

However, when the user is walking, getting enough measurement samples for soft 

iron error calibration is not practical. This is because to gather as much 

perturbation information as possible, the magnetometer needs to rotate in all 

possible orientations throughout the walk. This is so inconvenient for the low-cost 

PNS. Even if this is possible, getting enough samples means the system will be 

time delayed, which is often not preferable for a real-time solution. Therefore, for 

the work presented in this chapter, only static calibration is adopted for the sole 

purpose of initializing the low-cost PNS heading for the trials. Stirling et al. (2003) 

tabulated possible methods for magnetometer calibration and are summarized in 

Table 6.1 
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Table 6.1: Comparison of magnetometer calibration techniques 

 

Method Description Advantage Disadvantage 
1. Spot turn User spins 3600 Convenient Few calibration points 

2. Full circle User walks around a 

circle of approximately 

4m diameter 

Calibration in pedestrian 

mode. Many calibration 

points. 

Requires open level 

calibration area, more 

time consuming. 

3. GPS calibration Compass calibrated by 

GPS heading 

Convenient, continuous Requires GPS, user must 

be moving. Not the true 

heading as it is the 

direction of travel.  

4. Gyroscope correction Measures relative 

heading change 

Removes effect of short 

term field disturbances 

Added sensor expense, 

low-cost gyros have 

substantial drift. 

 

 A simpler method than Table 6.1 from Caruso (1998) was performed offline for 

the static calibration. A MicroStrain™ “3DM-GX3 Firmware Soft & Hard Iron 

Calibration” proprietary software was used (MicroStrain, 2011a). The IMU 

(Section 5.4.1), which contains a 3-axis MEMS magnetometer, was rotated 

manually about its axes in all possible orientations to collect magnetic field data. 

This lasted for about 1 minute, with 1000 points collected (maximum allowed in 

the software). 

 Assuming a 2-D case, when rotating a magnetic sensor 3600 on a level 

horizontal plane without any magnetic error, the horizontal magnetic readings 

should form a circle centred at the origin (0, 0). In the presence of perturbation 

however, the hard iron will shift the centre of the circle, and the soft iron effect will 

distort the circle to an ellipse (Skvortzov et al., 2007). This is because hard iron 

causes constant bias on the magnetic measurements and therefore all the 

measurements appear to be biased (offset from the measurements’ origin). Soft iron, 

on the other hand, causes the distortion because it varies the measurements.  

 To compensate for the hard iron, one simple way is to use offsets based on the 

maximum and minimum of the horizontal magnetometer readings, mLL
xy;off  (ibid.):  

 mLL
x;of f =

mLL
x;max + mLL

x;min

2
; mLL

y;off =
mLL

y;max + mLL
y;min

2
 (6.1) 



Chapter 6. Magnetometer Aided  112 

 

 

The values from Eq. (6.1) are then used to subtract all the horizontal 

magnetometer measurements to produce hard iron-compensated measurements, 

mLL
X;Y : 

 mLL
X;i = mLL

x;i ¡mLL
x;off jni=1; m

LL
Y;i = mLL

y;i ¡mLL
y;off jni=1 (6.2) 

The effect of this method is illustrated in Fig. 6.3 for a 3-D case (similar methods 

as above applied for the third axis). Fig. 6.3 (a) shows the output of the 

magnetometer measurements in a 3-D before calibrated. Red dots are the 

magnitude of magnetic field vectors measured in all axes without calibration from 

Eq. (6.1) & (6.2) (in unit Gauss, G) and the green sphere shows what the 

calibrated data should look like (disturbance-free). The ‘purple star’ in the middle 

of the ‘globe’ represents the centre of the collected measurements (shifted 

measurements) and the ‘green solid circle’ in the middle of the ‘globe’ represents 

the centre of the compensated measurements. In Fig. 6.3 (a), hard iron 

disturbances, which cause constant bias in the magnetometer measurements (red 

dots), are compensated by shifting the red dots-sphere to its origin. This is done in 

the software by ‘superimposing’ the red dots sphere onto the green sphere 

(essentially applying Eq. (6.1) & (6.2) to the measurements).  

 With the hard iron subtracted out, the remaining soft iron can be represented 

by a tilted and elongated circle (or sphere for 3D cases), normally called ellipsoid. 

The tilted circle can be characterized by the angle of the major axis of the 

elongated circle from the origin. This can be compensated by rotating all the 

measurements by this angle. The elongated circle can be characterized by the ratio 

of the major axis and the minor axis of the elongated circle. The major axis can 

then be scaled and multiplied to the magnetometer measurements to transform the 

elongated circle back to a circle. The scale factor can be determined by: 

 xsf =

8

<

:

b; b =
mLL

y;max¡m
LL
y;min

mLL
x;max¡m

LL
x;min

1; if b > 1
 (6.3) 
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 ysf =

8

<

:

b; b =
mLL

x;max¡mLL
x;min

mLL
y;max¡mLL

y;min

1; if b > 1
 (6.4) 

Measurements from Eq. (6.2) are then multiplied with Eq. (6.3) & (6.4) to produce 

compensated hard iron and soft iron measurements during static calibration. Note 

that the methods discussed assumes a 2D-case, but the same method can be 

applied for the third axis in a 3D-case. Using the software, static soft iron 

perturbations are compensated by selecting ‘sphere fit’ in the software (essentially 

applying Eq. (6.3) & (6.4) to Eq. (6.2)).  

 After calibrating and saving the offset parameters for all three axes into the 

IMU firmware, the IMU was once again rotated in all possible orientations. The 

output is now shown in Fig. 6.3 (b), where the green-dots represent magnetometer 

readings taken after the static calibration. Now it fits the green sphere well, and 

the ‘purple star’ overlaps the ‘green solid circle’ in the middle.  

 Note that when the user starts to walk in the indoors environment, it is likely 

that the soft iron perturbations will come into effect again and corrupt the 

magnetometer measurements. As discussed before, online calibration (for soft iron) 

is no longer deemed an advantage and is not attempted. Therefore, the next section 

will address the magnetometer-filtering method used to filter out unreliable 

measurements during real walking trials, based on approach by Faulkner et al. 

(2010). 

 

 

 
Fig. 6.3: Magnetometer output (a) before calibration, (b) after calibration 

(a) (b) 
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6.4 Magnetometer Filtering 

Because of the limitation of the magnetometer-fingerprinting approach as discussed 

in Section 6.2, the magnetometer-filtering method was chosen to address the 

perturbation issue on the magnetometer measurements. To do this, a filter 

proposed by for example Faulkner et al. (2010) and Bird and Arden (2011) can be 

used. The method from the former was selected for the investigation presented in 

this chapter because during the investigation, the latter was not available to the 

author. As the author was completing the thesis, the author became aware of the 

second reference. Nonetheless, the objective of this section is not to assess the 

performance differences between each of these filters, but rather to show only how 

filtering the magnetometer measurements can be performed to get reliable heading 

measurements. Table 6.2 summarizes the two methods. Using an empirically 

determined threshold, °° , Faulkner’s filter accepts magnetometer heading 

measurements if they pass steps 1 and 2 (or 3). Bird’s filter on the other hand 

accepts the measurements if they pass all steps. These filtered measurements are 

then used to update the Kalman Filter (KF). 

  

Table 6.2: Comparison between two magnetometer-filtering approaches 

 
Steps Faulkner Bird 

1 RSS of the measurement magnetic strength 

vectors – predicted (from model)  < °1°1 and, 

Same, and 

2 Change in magnetometer heading – change in 

KF estimated heading (tcurrent ¡ tprevious)(tcurrent ¡ tprevious) 

< °2°2  or,  

Magnetometer heading – KF 

estimated heading <°4<°4, and 

3 Step 2 but with different time epoch, 

(tcurrent ¡ tnext) < °3(tcurrent ¡ tnext) < °3 

Same with Faulkner step 2, and 

4 n/a Change in magnetometer-derived 

rotation rate – change in gyro 

measured rotation <°5<°5 

 

6.4.1 Magnetometer Filter 

After describing the background of the magnetometer in the previous sections, the 

investigation now starts by describing the magnetometer filter proposed by 

Faulkner et al. (2010) below: 



Chapter 6. Magnetometer Aided  115 

 

 

• The first test compares the difference between the measured value of the total 

Magnetic Field Intensity (MFI) and the predicted value of the total MFI. The 

measured value of total MFI is the Root Sum Squared (RSS) of the 

measurements from the 3-axis magnetometer. The predicted value of the total 

MFI makes use of Earth’s total MFI measurement, taken from the 

International Geomagnetic Reference Model 2010 (BGS, 2011), based on the 

approximate position of the low-cost PNS. The measured total MFI is then 

compared against the IGRF model. The measurement is accepted for the next 

test if it does not exceed the empirically determined thresholds. Otherwise, the 

test aborts and restarts at the next measurement epoch.  

This assumes that the Earth’s magnetic field changes only slowly with position 

because the rate of the Earth’s magnetic field change spans a few kilometres 

(Campbell, 2001). In the case of indoor pedestrian navigation, this is considered 

valid because of the small area of navigation. Therefore, if there are any rapid 

changes to the magnetic field, it can be considered as a result of the perturbations.  

• The second test compares the difference in the change of heading between 

the estimated navigation heading from the Kalman Filter (KF) and the 

measured magnetic heading from the magnetometer. The estimated 

navigation heading from the KF is compared between the current epoch 

and the previous epoch to produce the change in the estimated navigation 

heading. The estimated navigation heading is an optimal estimate from all 

previous sensed rotations (via the strapdown INS) and the KF updates. 

Similarly, the measured magnetic heading is compared between the current 

epoch and the previous epoch to produce the change in the measured 

magnetic heading. These two changes in heading are then compared against 

each other and the result is tested against an empirically predetermined 

threshold.  
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• Test 3 is similar to test 2, but with a different definition of calculation 

epoch. Instead of using the current epoch and the previous epoch, the 

change in heading is computed between the current epoch and the future 

epoch (user-defined). The difference in the change in heading is again tested 

against an empirically predetermined threshold. This however requires the 

filter to be time delayed, which for real time purposes might not be suitable.  

Tests 2 and 3 based on the assumption that magnetic perturbations tend to 

vary quickly over distance. On the other hand, the Kalman-Filtered INS 

heading errors are expected to change slowly with time, at a rate determined 

by the filter-estimated gyro bias.  

For the low-cost PNS used during the research, an epoch is defined as when ZUPT 

is detected and the user has walked a step (reserved for discussion in Section 

8.2.3.1). In other words, the current epoch and previous epoch refer to the current 

detected step and previously detected step. Magnetometer heading measurements 

are chosen if they pass test 1, and either test 2 or test 3. Otherwise no heading 

update to the KF is performed. 

 

6.4.2 Trials  

Two trials were performed: outdoor and indoor. The outdoor trial was performed to 

assess the performance of the magnetometer outdoors. Likewise, the indoor trial 

was also performed to assess its performance indoors, and also to investigate the 

issues with the magnetometer highlighted in Section 6.2. Each trial and its results 

will be described in the next two sections: outdoor trial (Section 6.4.2.1) and indoor 

trial (Section 6.4.2.2). Fig. 6.4 shows the setup used for the trials. The IMU is 

shown to be mounted on a shoe (strapped with a masking tape) while the backpack 

contains the PTDL, and a 12 V battery to power up the data logger and the shoe-

mounted IMU. The data is then post-processed using POINT software (see Chapter 

5).  
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6.4.2.1  Outdoor trial 

An outdoor walking trial was performed on a football pitch for approximately 40 

minutes. The user walked for 10 rounds approximately on the pitch line throughout 

the trial. A similar system setup as Fig. 6.4 is used but with an additional Network 

Real Time Kinematic (NRTK) GPS system deployed as a reference system. The 

NRTK GPS system has a typical horizontal position accuracy of approximately 2 

cm (Aponte et al., 2009). The NRTK antenna was carried on the backpack and its 

receiver held by the user’s hand. The initialization of the low-cost PNS was done as 

described in Section 4.3.1, but now the heading was initialized using the static-

calibrated magnetometer heading measurement. The magnetometer measurements 

(with a rate of 20 Hz) were processed using the magnetometer-filtering method 

(Section 6.5.1) on every detected footstep. The accepted measurements were then 

used to update the heading estimation in the KF.  

 

6.4.2.1.1 Disjunction Error 

During the trial, varying lever arm errors between the NRTK reference position 

and the IMU estimated position were created, which was called a disjunction error 

(Bancroft, 2010). This is because the NRTK antenna and the IMU were not co-

located. The term was used in (ibid.) to describe an error between the system and 

its reference, caused by a varying lever arm during walking. During the trial, the 

reference was constructed from the NRTK solution, which has the antenna 

Fig. 6.4: Example of 

the system setup  
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mounted on top of the backpack carried by the user. In contrast, the IMU was 

mounted on the foot. This makes an exact comparison of the IMU solution with 

the NRTK solution impossible, because the reference solution is not the position 

estimated by the KF-filtered IMU solution.  

 In a standing stationary position, the lever arm can be fixed for direct 

comparison of the position solution with NRTK. The lever arm is the vector from 

the foot (where the IMU was mounted) to the antenna in the backpack. As the 

user walks, however, the lever arm varies because of the periodic change caused by 

the mechanics of walking. Although this error can be approximated, it is however 

considered negligible compared to the large errors of the low-cost IMU tested 

within this research. Analysis of the results, therefore, will include this error as part 

of the position errors. 

 

6.4.2.1.2 Results  

For simplicity, the results are presented only for the first two rounds of the walking 

trial (the result for the full trial is reserved for Section 6.4.2.2). First, the Total 

Magnetic Field Intensity (total MFI) is plotted in Fig. 6.5. It clearly shows a fairly 

stable measurement (blue line) with respect to the IGRF model measurement used 

(red line), indicating very low magnetic perturbations. The maximum value of the 

total MFI was recorded as 0.5367 G, a difference of only 0.0470 G from the 

reference model. The acceptance threshold for the magnetometer filter (step 1) is 

empirically determined (0.1 G). As a result, all magnetometer measurements passed 

step 1 of the magnetometer filter and were used for the next step in the filter.  

 Next, Fig. 6.6 shows the absolute differences between the estimated change of 

navigation heading from the KF (current epoch and previous epoch) and the 

change of measured magnetic heading from the magnetometer (current epoch and 

previous epoch). It shows only small variations between the headings, indicating 

also very low magnetic perturbations. Using empirically determined threshold of 10, 

most of the magnetometer heading measurements passed step 2 and were accepted 

to update the heading estimation in the KF. The result from step 3 of the 
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magnetometer filter is not presented because the filter algorithm (described in 

Section 6.4.1) chooses between step 2 and step 3. Because most of the 

measurements have passed step 2, step 3 is not needed.  

 

Fig. 6.5: The Total MFI measured by the magnetometer on every step for the outdoor trial.  

 

Fig. 6.6: The difference between the change of heading (current epoch and previous epoch) 

for magnetometer and KF estimated heading.  
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 Fig. 6.7 shows the difference between the magnetometer-aided INS heading 

and the NRTK-aided INS heading (the reference). It can be observed that the error 

in the INS headings when aided with magnetometer heading measurements is 

relatively small (< 50). This indicates that most of the magnetometer-aided 

heading measurements for the outdoor trial are reliable to update the KF. Most of 

the magnetometer measurements were indeed accepted and this resulted in 

frequent updates to the KF.  

 To visualize the frequency of the updates, Fig. 6.8 is plotted. It shows the 

events when magnetometer heading measurements are accepted (green dots). It can 

be observed that because of the low magnetic perturbations (from Fig. 6.5 & 6.6), 

most of the measurements are accepted by the magnetometer filter. The interval of 

these accepted measurements can be identified at about 1s (shown in Fig. 6.9), 

which means that the accepted magnetometer heading measurements are updated 

to the KF at almost every step during the trial. 

  

 

Fig. 6.7: INS heading error when aided with filtered-magnetometer heading measurements 
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Fig. 6.9: The filtered-magnetometer heading measurements (frequently accepted in 

the filter) 

 

 

Fig. 6.8: Magnetometer-aided INS heading and the filtered measurements 
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 As a result of using frequent filtered magnetometer heading measurements, the 

position error for the magnetometer-aided-low-cost PNS was reduced. Figure 6.10 

shows a comparison of the Horizontal Position Error (HPE) for when the 

magnetometer was and was not used, for the low cost PNS. They are compared 

against the NRTK position. When the magnetometer was not used, the low-cost 

PNS were updated only by ZUPTs measurements. It is observed that when the 

magnetometer was not used, the maximum HPE was relatively large at 50 m after 

about 9 minutes of navigation. Conversely, when the magnetometer was used, the 

maximum HPE was reduced significantly to only about 14 m. This shows the 

importance of using the magnetometer because when reliable and frequent 

magnetometer heading measurements are available, they significantly reduce the 

position error for the low-cost PNS. Note that for the blue plot in the figure, the 

dips plotted at 200 s < t < 300 s and 500 s < t < 600 s are a result of returning to 

the same starting position. 
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Fig. 6.10: Comparison of horizontal position error for the low-cost PNS when aided 

(blue) and unaided (red) with magnetometer. 
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6.4.2.2  Indoor Trial and Results 

Next, an indoor walking trial was performed inside an office building in the 

Nottingham Geospatial Institute (NGI), shown in Fig. 6.11. The pedestrian walked 

approximately around the office twice. Notice that there are several elements that 

could perturb the magnetometer measurements such as steel cabinets (on the left), 

computers (on the right) and concrete pillars (on the left).  

The total MFI was first plotted in Fig. 6.12. It can be observed that there are 

big variations in the total MFI readings, characterized by the magnetic 

perturbations caused by the elements described before. The highest total MFI was 

recorded as 1.034 G, a difference of 0.5441 G from the IGRF2010 reference model. 

Note that this is significantly higher than what was observed in Fig. 6.5 for 

outdoors, where more stable measurements were recorded.  

 For the purpose of investigation for this chapter (in particular in this section), 

two issues were addressed in Section 6.2 if magnetometer-filtering method were to 

be used: the effect of a long interval between heading updates and its impact on 

the low-cost PNS when longer trial duration is required. To investigate these 

correctly, therefore the same trial data (from the outdoor trial) should be re-

analyzed so that a consistent observation can be made when emulating indoor 

environment. Furthermore, using the outdoor trial data enables a proper 

quantification of errors because there was a reference system available. 

 For the first issue, the result from the previous section has identified that 

frequent updates from reliable magnetometer headings were useful to reduce the 

low-cost PNS position error. In reality however, this can only be realized in an 

environment with very minimal magnetic perturbations. Therefore when indoors, it 

is very unlikely to have such minimal perturbations (as shown in Fig. 6.11 & 6.12). 

In order to investigate this issue, infrequent heading updates must therefore be 

shown. This is considered difficult using true measurements from the indoor trial 

because magnetic disturbances are uncontrollable in real indoor environments (for 

example reliable magnetometer headings may not be visible at all). 
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Fig. 6.11: The office environment with several man made material that could perturb 

magnetometer measurements.  

 

Fig. 6.12: The total MFI in the office of NGI building 
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  Therefore, because of the reasons discussed in the previous paragraph, it was 

decided that the same data from the outdoor trial would be manipulated. This 

could be done by increasing the threshold used in the magnetometer filter so that 

stricter tests could be used to filter the magnetometer measurements. As a result, 

only few measurements would be accepted, thus would emulate the indoor 

environment where significant magnetic perturbations would cause significant 

errors in the magnetometer measurements (thus would not pass the magnetometer 

filter).  

To achieve this, the threshold for step 2 in the magnetometer filter (in Section 

6.4.1) was reduced from 10 to 0.10. The interval of the magnetometer heading is 

plotted again in Fig. 6.13, where the accepted magnetometer heading 

measurements are shown by the green dots. It is observed from the figure that the 

interval between accepted measurements is now increased to approximately 20 s 

from 1 s in Fig. 6.9. This therefore causes infrequent heading measurements to be 

updated to the KF. 

Fig. 6.14 shows the Horizontal Position Error (HPE) of the low-cost PNS when 

frequent (blue) and infrequent (red) heading updates were performed. The plot is 

taken from the difference between the NRTK GPS position and the estimated 

magnetometer-aided-INS position. As a result of infrequent heading updates, the 

position error increases for the low-cost PNS. When there are many accepted 

magnetometer headings, the maximum HPE is about 14 m. In contrast, when there 

are only a few accepted magnetometer headings, the maximum HPE increases to 35 

m.  

Although the position error increased when the heading updates are not 

frequently available, it does highlight again the usefulness when using a 

magnetometer to reduce position error. When comparing Fig. 6.14 and Fig. 6.10 

(where magnetometer was not used at all), an improvement of about 15 m in 

maximum HPE is noticed.  
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Fig. 6.13: The filtered-magnetometer heading measurements (infrequently accepted in the 

filter) 

 

Fig. 6.14: Comparison of Horizontal Position Error (HPE) for the low-cost PNS when 

frequent updates (blue) and infrequent updates (red) 
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Next, the impact of longer trial duration (with infrequent heading updates) to 

the low-cost PNS solution is addressed by plotting the Horizontal Position Error 

(HPE) for the whole duration of the outdoor trial. Note that the actual outdoor 

trial was performed for 40 minutes and results so far are only presented for the 

shorter duration of 10 minutes. Therefore, the impact of this second issue can be 

seen by analyzing longer trial duration. Fig. 6.15 is plotted to show the HPE for 

three cases: (a) no magnetometer is used, thus heading updates are not available 

(green), (b) magnetometer-filtering is used with frequent magnetometer heading 

updates (blue) and (c) magnetometer-filtering is used with infrequent 

magnetometer heading updates (red). The maximum HPE for when there were no 

updates (green), infrequent updates (red) and frequent updates (blue) are found to 

be 114 m, 53 m and 14 m respectively. These once again show that using a 

magnetometer can indeed help in reducing position error for the low-cost PNS.  

Furthermore, the interval between heading updates are also important in 

determining the accuracy of the solution. In a worst case scenario indoors where 

magnetic perturbations can be significantly high, frequent heading updates are very 

unlikely. This will result in significant position errors because the position error will 

still grow when there are no heading measurements available (in between heading 

updates). This is because of the correlation between heading error and position 

error. Moreover, when there are no heading measurements available, the position 

errors already accumulated are unrecoverable unless a good position update is also 

available during this period. Even if good heading measurements are available 

afterwards, the position errors already accumulated still cannot be corrected. This 

is because the heading measurement update only corrects the INS heading and does 

not correct the accumulated position error. Therefore, in the case of the low-cost 

PNS when longer indoor navigation is required, frequent heading updates are 

needed if a magnetometer were to be used as the only source of heading 

measurements.  
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Fig. 6.15: Comparison of Horizontal Position Error (HPE) between three cases; no 

magnetometer used (green), magnetometer used but infrequent updates (red) and 

magnetometer used with frequent updates (blue).  

 

6.5 Discussion 

1. In an indoor environment, severe magnetic perturbations are often found. In 

order to identify and reject the corrupted heading measurements, different 

filtering methodologies on the magnetometer measurements can be adopted, 

such as the magnetometer filter presented in this chapter and the innovation 

filter in the KF. The innovation filter in the KF for example, can filter 

magnetic outliers in the magnetic measurements. However, although filtering 

magnetometer measurements can be achieved, it might not significantly reduce 

heading drift sufficiently to also reduce position errors. This is because of the 

unavailability of good magnetometer measurements which result from 

magnetic perturbations. 
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method is used, most of the measurements will be rejected. Only a few 

measurements are thus used to update the KF sparsely. Therefore a long 

interval between these updates was found to cause significant position errors. 

However, if the interval is short (frequent updates given to the KF), a 

magnetometer can be useful to aid the INS heading for the low-cost PNS. For 

a low-cost IMU, the heading update needs to be as often as possible 

(preferably in the space of a few seconds) to be able to control the heading 

drift error. Unfortunately, frequent heading updates from filtered 

magnetometer measurements are rarely available in typical indoor buildings, 

thus compromising its advantage in providing absolute heading measurements. 

3. In the case of a longer navigation period, the impact of a long interval between 

heading updates is significant more in the low-cost PNS solution. This is 

because the accumulated error in position between heading updates is 

unrecoverable unless there are good position measurements available. This 

means that having occasional good heading updates from the magnetometer 

afterwards still cannot correct the position error. It worsens in a long run, 

where the position error will be so significant because of the accumulated 

position error.  

 

6.6 Summary 

This chapter has analyzed the significance of magnetometer measurements to aid 

heading in a low-cost PNS. Filtering the magnetometer measurements can be 

performed to give a reliable heading measurement to mitigate heading drift. It was, 

however, identified that frequent reliable heading measurements from a 

magnetometer were needed, which are often not available indoors. Because of this, 

a new strategy, which does not use the magnetometer as the additional heading 

sensor, is drawn in the next chapter to mitigate heading drift for the low-cost PNS.  

 



Chapter 7. Rotating the IMU Mechanically  130 

 

 

 

 

 

 

 

 

Chapter 7 

Rotating the IMU 

Mechanically 
 

Following the findings in Chapter 6, this chapter moves on to propose mounting an 

IMU on a rotating platform and attaching it to a pedestrian’s shoe. The analysis 

begins by simulating the Rotating IMU (RIMU), followed by performing a real 

walking trial using a RIMU prototype. The significance of the RIMU is analyzed 

and discussed using simulation and real field trial results. The RIMU will be shown 

to mitigate the heading drift error and improve the IMU error observability when 

used with ZUPTs. These therefore reduce the position drift error of the low-cost 

PNS. A chapter summary is then followed at the end. Part of the results and the 

discussions in this chapter have been published in (see List of Publications, pp. x). 
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7.1 Introduction 

Chapter 6 has highlighted the fact that even when the low-cost Pedestrian 

Navigation System (low-cost PNS) was aided by a magnetometer, position drift 

was still inherent in an environment with high magnetic disturbances such as 

indoors. This is because it was shown that occasional heading updates from filtered 

magnetometer measurements to mitigate heading drift were still not enough. 

Although integrated gyro measurements can be used between these occasional 

heading updates in the Kalman Filter (KF), it is often only valid for several epochs 

because of high drifts in low-cost gyros over a short period of time.  

 In this chapter, an innovative approach to mitigate heading drift is proposed 

for the low-cost PNS by mounting a Rotating IMU (RIMU) on the shoe (or foot). 

The concept is depicted in Fig. 7.1. The low-cost IMU was mounted on a platform 

that rotated on a single axis, and the platform was attached to a pedestrian’s shoe. 

The concept is that if it were possible to physically ‘flip’ the IMU at regular 

intervals about a certain axis (suppose y-axis) such that the other axes (suppose x-

axis and z-axis) are ‘flipped’, errors on the x- and z-axis would cancel, as these 

errors would have a positive and negative effect along the path every time when 

the IMU is flipped. It is envisaged that as a result of RIMU, the heading 

observability will also be improved.  
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Fig. 7.1: The concept of the RIMU for a low-cost PNS 
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 The concept of rotating IMU to reduce IMU errors was introduced by (Geller, 

1968), where he described and computed the mathematical equations relating to 

rotating gyros about its azimuth axis. Two terminologies were proposed by (Curey 

et al., 2004) for this concept; carouselling and indexing. The former was defined as 

rotating the IMU with continuous rotation in multiple orientations, while the latter 

was defined as rotating the IMU with discrete known rotation. There are also many 

researchers exploring the same ideas (Zha et al., 2010, Ben et al., 2010, An et al., 

2010, Zhao et al., 2009, Zhang et al., 2009, Lai et al., 2010, Feng et al., 2009, 

Waldmann, 2007, Syed et al., 2007, Ishibashi et al., 2007, Yang and Miao, 2004, 

Uliana et al., 1997, Qi et al., 2009). For clarity, however, the differences of all these 

approaches with the author’s work are summarized below. This chapter therefore 

emphasizes: 

• Pedestrian navigation application with a low-cost MEMS IMU, 

• Performed in both simulation and real field environment with true 

walking trajectory, 

• Rotating the IMU on a single axis (y-axis) continuously throughout the 

trajectory, and 

• Neither carouselling – because of the single rotation axis – nor indexing 

because of the ambiguity of the rotation rate to the user.  

  The idea is, therefore, adopted for the low-cost PNS. Whilst this is 

undesirable in terms of increasing the size, power and weight requirements of the 

IMU, it is not unrealistic to do so considering the exceptionally small mass of 

MEMS sensors. Furthermore the reliability and precision requirements for the 

mechanical rotations are relatively low when considering a simple one-axis rotation, 

and there is no requirement for a constant or measurable rotation as position, not 

rotation, is the only output of concern.  

The next Section 7.2 will give the mathematical equations describing the INS 

output after undergoing rotations because of the RIMU. The performance of the 
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RIMU is investigated first using simulation in Section 7.3, before presenting the 

real field trials results in Section 7.4. 

 

7.2 The Effect of RIMU 

This section describes the effect of the RIMU to the estimated INS solutions 

through errors modulation, which subsequently increase the observability for the 

error states. The INS output resulting from the RIMU will be concisely analyzed by 

presenting a series of INS error equations (Section 7.2.1 equations are derived 

mainly from Qi et al. (2009)). 

  

7.2.1 INS Error Modulation 

As described in Chapter 2, velocity error states and attitude error states can be 

propagated using a standard strapdown error navigation equation using the phi-

angle error model (refer to Eq. (2.30) & (2.31)). In these two equations, ±!b and 

±fb are errors caused by the gyroscope and accelerometer sensor errors. When the 

IMU is rotated about its y-axis, C n
b
 is made to change continuously. Therefore, 

multiplication of ±!b , ±fb  and C n
b

 in the equations affects the INS navigation 

accuracy. The idea of a RIMU therefore lies in the periodical change of the 

elements in C n
bC
n
b
 such that the average of Cn

b ±!
b
 and Cn

b ±f
b approximate to zero.  

 When the RIMU is rotated about its y-axis, angular rate error and specific 

force error can be represented as: 
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where !r is the RIMU rotation rate, 
¡

"x "y "z
¢T

 are the errors of gyros on the x-, 

y- and z axes, and 
¡

¢x ¢y ¢z

¢T
 are the errors of accelerometers on the x-, y- 

and z- axes.  

 From Eq. (7.1) and (7.2), it was shown that the IMU error terms for the x-axis 

and z-axis vary periodically due to cosine and sine functions. This however is not 

the case for the y-axis because it is the rotation axis, which does not have the 

cosine and sine functions. If the x- and z-axis errors are constantly positive or 

negative over the whole rotation, the errors will then reduce to zero after the whole 

rotation period of (3600=!r). The RIMU is therefore very effective in eliminating 

the constant error terms on IMU axes that are perpendicular with the rotation axis. 

 

7.2.2 INS Error Observability 

The principle of the RIMU in improving the error states observability of the INS 

can be explained by assuming a simple case of a stationary and level IMU. The 

velocity error model from Eq. (4.1), (4.2) and (4.3) can be rewritten by including 

the errors in the accelerometer sensor force terms as (Godha and Lachapelle, 2008): 

 ± _vn = Cn
b f

b £ ² + Cn
b ±f

b (7.3) 

where it is similar with Eq. (2.30) (when ignoring the other terms in that equation 

as discussed in Section 2.4.3.3). It can be written in a matrix form as:  
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When the IMU is stationary and level, Eq. (7.4) becomes: 
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where C n
b
 is an identity matrix because of the small angle error approximation 

when stationary and level. When the IMU rotates 1800 about its y-axis (still in a 

stationary and level mode), the C n
b
 changes sign. Eq. (7.5) then becomes: 
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 (7.6) 

Eq. (7.5) and (7.6) can be written as simultaneous equations (7.7) and (7.8):  

 _±vN = (+g)²E + ±fx (7.7a) 

 _±vE = (¡g)²N + ±fy (7.7b) 

 _±vD = ±fz (7.7c) 

 _±vN = (+g)²E ¡ ±fx (7.8a) 

 _±vE = (¡g)²N + ±fy (7.8b) 

 _±vD = ¡ ±fz (7.8c) 

Eq. (7.7) shows when the RIMU is in a stationary and level condition; whilst Eq. 

(7.8) shows when the RIMU has rotated 1800 about its y-axis (upside down). Eq. 

(7.7a) & (7.8a) and (7.7c) & (7.8c) can then be solved simultaneously to observe 

accelerometer errors in the x- and z-axis through velocity error updates. The 

accelerometer error in the y-axis cannot, however, be made observable because of 

the same Eq. (7.7b) & (7.8b) because it is the rotation axis for the RIMU.  

 For the attitude errors, the North and East attitude errors are observable 

through the velocity error updates because there is a large force in the Down axis 

resulting from the gravity heading when stationary (for example see Eq. (7.5)). The 

RIMU effect is therefore more appealing in making the attitude error in the Down 

axis more observable, where the error is not observable for the normal IMU when 

stationary (as discussed in Section 4.4). As in the previous discussion, the attitude 

error model from Eq. (2.31) for the low-cost IMU can be rewritten as: 
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 _² = ¡(Cn
b )±!

b
ib (7.9) 

Note that the other terms in Eq. (2.31) can be ignored to come at Eq. (7.9) because 

of the low-cost IMU used (see Section 2.4.3.3). Again when stationary and level, Eq. 

(7.9) becomes: 
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When the IMU rotates 900 about its y-axis, the C n
b
 changes and Eq. (7.10) becomes: 

 

0

B

B

B

B

@

_²N
_²E
_²D

1

C

C

C

C

A

= ¡

0

B

B

B

B

@

0 0 ¡1
0 1 0
1 0 0

1

C

C

C

C

A

0

B

B

B

B

@

±!x

±!y

±!z

1

C

C

C

C

A

 (7.11) 

Eq. (7.11) shows that the gyro sensor error on the z-axis is now made observable 

through the North attitude error. Because the North attitude errors are already 

observable from Eq. (7.5), the correlated gyro sensor error on z-axis (i.e z-axis gyro 

bias) can therefore be observed as well.  

 Note that the discussion assumes a simple case of the IMU when it is 

stationary and level. Nevertheless, it does explain the principle of rotating the IMU 

in improving the observability of the error states. In reality, however, many terms 

during the modelling and estimation process in the KF may contain errors. For 

example, C n
b
 and (f n£) may contain errors and the state transition matrix, ©  may 

not correctly model the propagation of error. Nevertheless by also improving the 

observability of the error states, more information is updated to the KF. This will 

help during the estimation process as these errors may correlate with the other 

error states. Therefore, over time the KF can propagate more information about 

the uncertainty of all the error states for better estimation of the errors of the 

system.  
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7.3 RIMU Trials Using Simulation 

This section presents the RIMU trials simulated for static and walking scenarios. 

These were performed to identify the impact of the RIMU to mitigate heading drift 

error for the low-cost PNS, based on the discussion from the previous section. The 

observability of the IMU errors will be also analyzed, where particular attention 

will be given to weakly observable states such as heading and z-axis gyro bias.  

 The simulated data for RIMU were generated using the in house Inertial Data 

Simulator (IDS) software. The IDS process flow was described in Section 5.2. The 

trajectory was first defined in a separate file containing the INS positions. Using a 

control file (see Appendix A and description in Section 5.2.1.1), the software 

simulated IMU gyro bias errors and noises and used them to perturb the simulated 

measurements. Noise was assumed to represent other unmodelled IMU errors such 

as scale factor errors, the quantization errors and the temperature dependent errors 

(see discussion in Section 2.3.1). The simulated data was aided with simulated 

ZUPT measurements and then processed and analyzed using the POINT software 

(described in Section 5.3). The initialization and alignment were performed as 

described in Section 2.4.3.1. The heading was initialized manually using the 

reference heading, and the accelerometer bias and gyro bias were initialized to zero.  

 It is worth mentioning that this section analyzes the performance comparison 

of the low-cost PNS with and without the RIMU used. Among the parameters that 

will be analyzed are the accelerometer biases, gyro biases, heading and position 

solution. The analysis thus ignored the sensitivity of ‘a priori’ process noise 

covariance and measurement noise covariance towards the Kalman Filter (KF) 

convergence (Hide et al., 2003). This was done by giving the same initial 

uncertainties values for both the low-cost PNS (with and without the RIMU), so 

that their performance can be compared equally on both, and the advantage of 

adopting RIMU for the low-cost PNS could be clearly seen.  
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7.3.1 Simulation of Static RIMU Trial 

The POINT software was used to process the simulated inertial sensor output, 

which was aided by a simulated ZUPT data. The impact of an RIMU to mitigate 

heading drift was first examined during a stationary scenario for 1000 s. As 

discussed in Chapter 4, the heading error for the low-cost PNS, which was mainly 

caused by the error on the IMU Down-axis, was not observable when stationary. 

This is because only ZUPTs measurements were available during the stationary 

period to update the KF, and this was not enough for all errors to be estimated. 

Because of this, in order to make the error more observable, the RIMU impact was 

investigated using stationary scenario.  

 Fig. 7.2 shows the proposed y-axis rotation scheme for the RIMU when 6 0/s 

RIMU rotation rate was used. The scheme was simulated such that the y-axis was 

rotated from 00 to 3600 back and forth continually. Fig. 7.3 shows that the x-axis 

and z-axis were not rotated, represented by almost flat blue and red lines 

respectively in the figure. The y-axis was rotated at a rate of 6 0/s, represented by 

the green plot in the figure (has a mean of 6 0/s). The y-axis rotation scheme, thus, 

caused acceleration in x and z-axis to be modulated as shown in Fig. 7.2. 
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Fig. 7.2: RIMU accelerations in its b-frame 
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7.3.1.1  RIMU Rotation Rate 

In order to simulate the RIMU in IDS, the attitude needed to be rotated at a 

certain rate in the trajectory data input file. Therefore, a test was first established 

to check the outcome of having different rates for platform rotation, where the 

IMU was to be mounted. This is shown in Fig. 7.4, in terms of the Time-To-

Converge (TTC), for the z-axis gyro bias during stationary condition. Further 

analysis for the z-axis gyro bias estimation will be reserved for Section 7.5.3.  

 Fig. 7.4 shows the different rotation rates used, which were 0.6 0/s, 1 0/s and 6 

0/s, when the RIMU was rotated continually. It is observed from the figure that a 

faster rotation rate resulted in a quicker convergence to the true simulated bias. 

Using the rotation rate of 6 0/s resulted in the z-axis gyro bias being resolved to 

within 0.1 0/s after approximately 100 s. Conversely, using slower rotation rates of 

1 0/s and 0.6 0/s resulted in the z-axis gyro bias being resolved to within 0.1 0/s 

only after approximately 250 s and 750s respectively, approximately slower by 150s 

and 650 s from the former case. The faster rotation rate of more than 6 0/s, 

however, could not be simulated because of the unresolved problem with IDS at the 

moment, thus 6 0/s was chosen as the optimal rotation rate for RIMU. It is, 
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Fig. 7.3: RIMU angular rates in its b-frame 
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however, not considered a big issue here since the main goal of the approach was to 

show how the RIMU can be an advantage to mitigate heading drift error, and not 

to compare how quick the convergence rate for the estimation of errors can be. 

 

7.3.1.2  Different Rotation Scheme 

After the rotation rate had been chosen, the different types of RIMU schemes 

needed to be identified. The RIMU scheme is defined as to how the rotation is 

performed for the RIMU. This was done to see if there was any benefit in utilizing 

different schemes, and if it was, whether it was feasible practically.  

 Therefore, five different schemes of rotation about the y-axis have been tested 

with the chosen platform rotation rate of 60/s from Section 7.3.1.2. The schemes 

were named as schemes 1, 2, 3, 4, and 5; where scheme 1 = continuous IMU 

rotation; scheme 2 = 3600 rotation back and forth; scheme 3 = 1800 rotation back 

and forth; scheme 4 = 900 rotation back and forth and scheme 5 = 450 rotation 

back and forth. The result of using different schemes during the stationary 

condition is depicted in Fig. 7.5 in terms of Time-To-Converge (TTC) for the z-

axis gyro bias estimates. As with Section 7.3.1.2, further analysis will be analyzed 

in detail in a later section. 

 From Fig. 7.5, it is observed that all schemes converged to the reference. 

Nevertheless, when the flipping effect of the IMU changed from scheme 1 

(continuous rotation) to scheme 5 (450 rotation back and forth), the TTC increased 

from approximately 100 s to 1000 s. Scheme 1, 2 and 3 have a similar convergence 

rate, resolving to within 0.010/s after approximately 100 s, while schemes 4 and 5 

converged slower at approximately 300 s and 1000 s respectively.  

 Although schemes 1, 2 and 3 showed similarity, scheme 2 was chosen for the 

RIMU because it was more practical when the RIMU platform was mounted on a 

shoe for the field trial. This was in order not to tangle the IMU data cables so 

much. If scheme 1 is selected, the data cable from the IMU to the data logger 

might become tangled. Nevertheless, it might be possible to use schemes 1 and 3 

for future work if the IMU has the capability to operate wirelessly. Furthermore, 
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although smaller rotation (schemes 4 & 5) may be practically easier to perform 

without tangling the cables, it was not chosen because of the slow convergence rate. 

Again, further analysis on the error state will be analyzed in a later section. 

Fig. 7.4 Comparison of z-axis gyro bias when different rotation rates are used  
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Fig. 7.5: Comparison of z-axis gyro bias when different rotation schemes were used 
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7.3.1.3  Error Observability 

Fig. 7.6 shows two sets of errors that were estimated in the KF when the RIMU 

was used when stationary (updated also with ZUPTs). They are accelerometer 

biases (x, y and z-axis) on the left (from top to bottom) and gyro biases (x, y and z-

axis) on the right (from top to bottom). The blue line represents the estimated bias 

when the RIMU was in operation, the green line represents the estimated bias 

using normal IMU approach (without the RIMU) and the red line represents the 

simulated truth bias. It is identified that out of 6 biases for gyros and 

accelerometers to be estimated, 5 have been observed. Only the y-axis gyro bias 

was not observed as it was the axis of rotation for the RIMU. In contrast, when the 

RIMU was not used, out of the 6 biases to be estimated, only 2 are observed. Table 

7.1 summarizes the observability of these errors based on observation from Fig. 7.6, 

and its discussion follows in the next paragraph.  

 The observability result in the table is consistent with the effect of RIMU to 

the error observability discussed in Section 7.2.2. For the no-RIMU case (as 

discussed in Section 4.4), the attitude error in the Down axis (which directly 

correlated with the z-axis gyro bias) was not observable through velocity updates 

because of the absence of the horizontal acceleration. All the accelerometer biases 

for the no-RIMU case were also not observable. This is because when stationary (as 

discussed in Section 7.2.2), the accelerometer error terms appeared in Eq. (7.7) and 

(7.8) cannot be separated from the attitude errors and therefore cannot be observed 

(because the equations contain the same terms). That is why manoeuvring is 

usually required during GPS/INS alignment to separate these two errors.  

 

Table 7.1: IMU errors observability while stationary 
 

Error States 
Observability 

RIMU No-RIMU 

x-axis gyro bias Yes Yes 

y-axis gyro bias Yes Yes 

z-axis gyro bias Yes No 

x-axis accelerometer bias Yes No 

y-axis accelerometer bias No No 

z-axis accelerometer bias Yes No 
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Fig. 7.6: Accelerometer bias for (a) x-axis, (b) y-axis and (c) z-axis, and gyro bias for (d) 

x-axis, (e) y-axis and (f) z-axis. 
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 It is also observed that there is a slight delay (approximately 100 s) when 

estimating all the error terms. This is because of the slower rotation rate used, 

which influenced the convergence rate. It was identified in Section 7.3.1.2 that the 

faster rotation rate should result in a much quicker convergence rate. This is 

because less time is required for the RIMU axes to observe forces resulting from 

gravity in different orientations to separate the true acceleration from the gravity 

acceleration.   

 

7.3.2 Simulation of Walking RIMU Trial  

This section analyzes a simulated walking trial to see the improvement made by 

the RIMU in mitigating heading drift error.  

 

7.3.2.1  Construction of Walking Trajectory 

As mentioned in Chapter 5, the data simulator requires the trajectory data to be in 

the form of position, velocity and attitude. A straight walking trajectory was 

chosen simply because it would be easier to analyze the heading drift error and was 

constructed for 1000 s. Fig. 7.7 shows the created reference trajectory. A simple 

calculation of total distance divided by time shows that the simulated velocity is 

approximately 1.4 m/s, which is a typical pedestrian velocity (Fig. 7.8). 
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Fig. 7.7: A walking trajectory as a reference. 

 

7.3.2.2  Simulated Walking Velocity 

Fig. 7.8 (left) shows a sample of a pedestrian’s true walking velocity. The sample 

was taken from the Chapter 6 trial and was used to recreate a simulated walking 

velocity for IDS simulation. Fig. 7.8 (right) shows the simulated walking velocity 

(which started at about 60 s), created using standard Fourier series equation. 

Although the simulated output does not match exactly the actual sample of 

walking velocity for a pedestrian, it does give a similar plot to represent a typical 

walking velocity for a pedestrian.  

  

Fig. 7.8: Sample velocity for walking pedestrian (left) true, and (right) simulated. 
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7.3.2.3  Inertial Sensor Simulated Output 

Fig. 7.9 (left) and (right) show the simulated acceleration and the angular rate 

outputs for the RIMU, generated from IDS using scheme 2, as chosen in the 

previous section. The scheme was simulated such that the pitch was rotated from 

00 to 3600 back and forth. This is visible in Fig. 7.9 (left), where the acceleration on 

the x- and z-axes resembles a sinusoidal plot. The spikes modulated onto the 

sinusoidal plot are the simulated walking velocity from Fig. 7.8 (right).  

 The sinusoidal plot, for example z-axis acceleration, increased sinusoidally from 

about -1 g (pointing down) during levelled platform, to about 1 g in the middle of 

the 1800 rotation (pointing up), and back to about -1 g at the end of the first 

rotation (pointing down again) at 60 s ( 60/s ££ 60 s = 3600 ). The scheme then 

rotated back from about -1 g to 1 g and finished at about -1 g at the end of the 

second rotation at 120 s. Acceleration on the y-axis did not undergo a ‘flipping’ 

motion as the y-axis was the RIMU rotation axis, therefore it did not measure any 

‘g’s before the walking trial began at 60 s. Fig. 7.9 (right) shows the RIMU rate 

used, rotating about the y-axis, with a mean of 6 0/s. Note that because the 

angular rate for the other two axes are close to zero, the simulated walking trial is 

not as realistic as it should have been for a walking pedestrian, as it only simulates 

the horizontal acceleration. It is thought nevertheless to be sufficient to understand 

the effect of the RIMU when used for the low-cost PNS.  
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Fig. 7.9: Simulated inertial sensor output in b-frame for (left) acceleration, and (right) 

angular rate 
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7.3.2.4  Analysis of Heading Estimation 

Fig. 7.10 shows the estimated heading for the RIMU (blue dots) and non-RIMU 

(green dots) with two reference headings of 450 (reference 1) and 1800 apart 

(reference 2). Fig. 7.11 magnified Fig. 7.10 for clearer view. The reference heading 

of 450 (solid red line) was the true heading, while the second reference heading 

(dashed red line) was the heading when the z-axis was flipped 1800 because of the 

RIMU. Note that the accelerometer biases and gyro biases were not shown in this 

section because similar results (with Section 7.3.1.4) were produced.  

 It now appears, apart from the sudden change of heading quadrant for the 

RIMU resulting from the flipping of z-axis, the RIMU heading is now bounded and 

follows closely the reference heading. In contrast, the heading for non-RIMU 

appears to be growing. The growth appears to be linear and it was actually 

resulting from the simulated constant bias in IDS. In reality, the heading drift may 

be non-linear because of variations in bias (for example, see the result in Section 

8.3.4). Therefore, the simulated heading output of non-RIMU is considered valid 

because it was meant to show that it was drifting, which is a typical output of a 

low-cost IMU. 
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7.3.2.5  Heading Initialization Issue 

If the IMU was not rotating, the heading would be drifting (discussed previously). 

However, when rotating the IMU, the initial heading before the z-axis gyro bias is 

observable is also drifting. This is plotted in Fig. 7.12. For example, at the 

beginning of the plot (at 0 s < t < 15 s), the heading was still drifting (increasing). 

For this trial, the z-axis gyro bias was successfully resolved at about t = 100 s 

(similar to the result from the stationary trial before). Therefore, the drift in 

heading for the RIMU now appears to be reduced only after this time, shown for 

example in Fig. 7.13 as between 240 s < t < 260 s and 290 s < t < 310 s, and for 

the rest of the simulation trajectory.  

Therefore, an issue to consider is the initialization of the heading for a ‘lowest-

cost’ IMU (or uncalibrated IMU) when using the RIMU approach. Standard coarse 

alignment for a strapdown IMU would be to set the IMU initial heading during 

coarse alignment, based on information from for example the GPS heading or 

magnetometer. The same approach cannot be applied to the RIMU because of the 

reason described next.  

Suppose the IMU horizontal alignment is performed for 1 s (heading is 

initialized manually), and the walk is performed after 20 s. Suppose also the true  
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Fig. 7.13: The RIMU heading after resolving the error in Down axis 
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initial heading is 450 and the low-cost RIMU drifts at a rate of 10 0/s. If the RIMU 

heading is manually set during heading alignment to 450, the actual initial heading 

at the start of the walk (at 20 s) for the RIMU would be different. This is because 

the RIMU heading will still drift because the z-axis gyro bias will take some time 

to be observed by the RIMU. After 20 s, the IMU heading would have been 2000 

off from the true heading. This will cause the actual initial heading (used for the 

IMU mechanization) to have been 2450, which is wrong. This subsequently affects 

the position computation (although the heading drift after this period would be 

reduced because of the RIMU effect).  

Nevertheless, this case assumed that the z-axis gyro bias was zeroed during 

initialization for simulation purpose. Usually in practice, gyro biases were 

initialized with its average values taken during stationary alignment. This therefore 

gives some information to the KF when estimating the biases and the heading 

errors. The only probable dilemma is if the initialized gyro bias value (using its 

average values during alignment) may not represent the correct estimation of the 

true values (the uncertainty is too large). For example, the biases might change so 

much and very rapidly, subsequently affecting the estimation of the heading error 

even when initialized properly. If this is the case, then the heading initialization 

issue must be addressed appropriately. 

 

7.3.2.6  Comparison of Position Solution 

Fig. 7.14 shows the computed relative position solution for the RIMU (blue), 

without RIMU (green) and the simulated reference (red). It is clearly shown that 

without RIMU, the position solution drifted quite significantly. When the RIMU 

was used, the position solution did not drift as much as without RIMU because the 

heading error was now observable. Nonetheless, as discussed in the previous section, 

it appears that because the z-axis gyro bias was not resolved until after 100 s, the 

RIMU position has drifted slightly during the first 100 s. This, however, was not as 

bad as it might have been, because of the low drift rate used for the simulation of 

heading (approximately 0.35 0/s, based on the z-axis gyro bias reference). 
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Consider this. Heading was initialized manually as 450 during coarse alignment 

for this simulation. It appears that because the drift rate was at about 0.35 0/s, the 

heading after 100 s into simulation would have been about 350 off from the 

reference (because the z-axis gyro bias was not resolved until after 100 s). However, 

note that after 15 s or 900 rotation (see Fig. 11), the flipping of the z-axis has 

caused the heading to change its value. Heading is now decreasing after this period 

(heading is drifting in the opposite direction because of the flipping of the axis). 

After another flipping at 45 s, the heading was increasing again because heading is 

drifting again in the opposite direction (note that the heading is still drifting at 0 s 

< t < 100 s because the z-axis gyro bias has not yet resolved). The drift 

nevertheless after 15 s and before 100 s was considered to average out thanks to 

this increasing and decreasing in the heading. Therefore what remains is the drift 

that had happened for the first 15 s of the simulation as shown in Fig. 7.15, which 

shows the drift in the initial RIMU heading. This is because the unresolved z-axis 

gyro bias and the flipping of the axis had not yet happened. As shown in Fig. 7.15, 

the initial heading has drifted about 50 from the reference, which agrees 

theoretically (i.e 0.35 0/s  ££ 15 s = 5.250). This therefore signifies the issue of 

heading initialization as discussed in Section 7.3.2.5. 

This does, though, highlight the advantage of the RIMU over a non-RIMU, 

where the RIMU significantly mitigated heading drift error. When the RIMU was 

not used, the position trajectory drifted quite significantly against the reference. In 

contrast, when the RIMU was used, the position trajectory improved and the 

heading drift was no longer visible, apart from the initial drift in heading resulting 

from the issue discussed in the previous paragraph.  
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Fig. 7.14: The comparison of the RIMU position with the reference and without-RIMU 

Fig. 7.15: The drifting in the initial RIMU heading  
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7.4 RIMU Field Trial 

To verify the RIMU simulated performance, a field trial was performed using the 

RIMU prototype, shown in Fig. 7.16, developed by the Geospatial Research Centre 

New Zealand (GRCNZ). Marker ‘A’ in Fig. 7.16 (left) shows the platform that was 

designed to rotate, onto which an IMU was mounted. The IMU was ‘strapped’ on 

the platform using a tape as rigid as possible, so that the IMU represented the 

actual motion of the platform. The IMU used was the same as in Chapter 6, which 

was powered by a 12V battery carried in a back pack along with the data logger to 

log the raw IMU data. The black box marked as ‘B’ in Fig. 7.16 (right) is the 

RIMU controller and houses two 9V batteries. The platform rotation speed can be 

increased or decreased from a switch at the side of the controller, although the 

exact rotation rate is unknown. There is also an ON/OFF switch on the controller 

to switch on or off the RIMU mode.  

 

 

Fig. 7.16: RIMU prototype with (left) IMU mounted on a rotating platform, and (right) the 

RIMU controller 

 

7.4.1 Trial Description 

The rotating of the IMU platform was started from the beginning (when powering 

the device). A user equipped with the RIMU stood on the starting position so that 

the IMU horizontal alignment could be made for approximately 1 s at the 

beginning of the walk. He then performed two walks (back to back) around the 

Nottingham Geospatial Building (NGB) office area. This created a rectangular 

A 
B 
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trajectory around the office, where the start and the end trajectory is the same, 

marked by a tape (shown in Fig. 7.17).  

 The first walk with the RIMU was for 10 rounds. At the end of the 10th round, 

the RIMU mode was turned off by stopping the platform rotation using the switch, 

whilst keeping the IMU switched on. The user walked again immediately for the 

second walk with another 10 rounds on approximately the same trajectory (by 

following straight features on the floor carpet). The two trials lasted for about 650 

s each. The reference for comparison of error estimation (discussed more in Section 

7.4.2) was created based on the second walk, in which a method developed in 

Chapter 8 was applied, and for visualisation is plotted manually on top of the NGB 

floor plan as a green line in Fig. 7.17. The raw acceleration data from the IMU is 

plotted in Fig. 7.18 to show the RIMU in operation. Both the RIMU and non-

RIMU walks started at about 17 s. Fig. 7.19 shows an example of the detected 

ZUPT events for the trial. The POINT software (Chapter 5) was then used to 

post-process the data, and the outputs are analyzed.  

 

Fig. 7.17: The visualization of the RIMU trajectory  

 

Start/End 
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Fig. 7.18: The actual raw IMU acceleration data 

 

Fig. 7.19: An example of ZUPT detection for the trial. 
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7.4.2 Analysis Assumptions 

Before the IMU error comparison between the two walks could be made, it is 

worthwhile to highlight that the impact of, for example, temperature dependent 

bias and turn on bias of the IMU is considered less destructive. This is because the 

two trials were performed back to back without switching the IMU off. The 

sensitivity of ‘a priori’ process noise initial covariance and measurement noise 

towards filter convergence (Hide et al., 2003) was also not discussed. Both were, 

therefore, given the same information to reduce the dependence of process 

convergence on the initial covariance. 

 It is impossible to quantify the true IMU errors to be used as a reference for 

the trials because they are unknown. Therefore for comparison purpose, 

implementing a method from Chapter 8 should give sufficient information about 

the best estimate of the IMU errors because the method gives a more accurate 

position solution. This however is slightly overoptimistic because in reality, there 

will be always errors resulting from the inaccuracy when modelling the INS error 

propagation. The error in measured forces by the IMU will affect the estimation of 

the IMU attitude errors. This subsequently will affect the estimation of the IMU 

accelerometer errors because of the correlation between error states. Therefore, it is 

assumed that the estimation of the accelerometer biases and gyro biases from 

Chapter 8 are adequately estimated. Although only a coarse comparison of IMU 

errors can be performed, it should give a general idea of the overall improvement 

made by the RIMU towards errors observability. 

 The method from Chapter 8 was used as a reference to compare the bias 

estimation of the RIMU. Note that the IMU used in the reference was not rotated. 

This is in order that the actual improvement made by the RIMU to mitigate 

heading drift can be seen when the biases are made to be more observable. Two 

separate trials with the same trajectory were therefore performed: the actual trial 

with the RIMU and the reference trial without the RIMU (but aided with the 

method from Chapter 8). Nevertheless, a difference reference trial was used when 

comparing the RIMU position solution. The reference trial was constructed from 
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the same trial performed with the RIMU, but this time aided with the method 

from Chapter 8. Table 7.2 summarizes the trials and reference used. 

 

Table 7.2: Trials and the reference trials used for two different analyses.  

 

Compare Position Solutions  Compare IMU Biases 

Trials Reference Trials  Trials Reference Trials 

RIMU RIMU + Chapter 8  
RIMU IMU + Chapter 8 

IMU IMU + Chapter 8  

  

Furthermore, a precise statistical analysis for the estimation of IMU biases (for 

RIMU and reference trial (IMU + Chapter 8)) are deemed impossible because of 

the two following factors:  

• The two trials were not performed in exactly the same time, and  

• The reference trial was performed in a separate trial. 

Unless all the trials are completed in exactly the same period, the two factors will 

cause possible discrepancies when comparing the estimate of errors (for the RIMU 

and non-RIMU) with the reference. The effect, however, is assumed to be negligible 

for analysis purposes. Note also that the results for position solutions’ comparison 

in this chapter show only horizontal positioning accuracy, in relation with the 

research problem investigated for the low-cost PNS (heading drift problem) 

presented in Chapter 4. Thus, the vertical positioning accuracy for the low-cost 

PNS is not presented because it is directly correlated with the estimation of 

velocity errors on the INS Down axis, which is assumed to be well-estimated by the 

use of ZUPTs frequently. 
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7.4.3  Gyro Bias Estimates 

Fig. 7.20 shows the z-axis gyro bias estimates for RIMU and non-RIMU, plotted 

against the reference. Both datasets were initialised with its average bias values 

during alignment. It can be observed from the figure that the RIMU has a similar 

plot to the reference, as opposed to non-RIMU. After about 50 s, the RIMU has 

resolved and stabilized to within 0.05 0/s from the reference, whilst the non-RIMU 

has not yet resolved to the reference, even until the end of the trial. This indicates 

that z-axis gyro bias is made observable through the use of the RIMU (which 

agrees with Table 7.1 and is discussed in Section 7.2.2) as opposed to the non-

RIMU where the z-axis gyro bias converged to a wrong value. 

 Fig. 7.21 shows the x and y-axis gyro bias estimates for both RIMU and non-

RIMU, plotted against the reference. Both x and y-axis gyro biases have been 

estimated to be well within 0.1 0/s with the reference throughout the dataset. This 

indicates that the observability effect of RIMU is not as influential as it is for when 

estimating z-axis gyro bias previously. This is because both of these errors were 

observable even when the IMU was not rotated, as shown in Table 7.1. Velocity 

updates through ZUPTs, which was performed every footstep during walking, has 

the effect of estimating the correlated attitude errors on x- and y-axis as well 

through Eq. (7.5) (this was discussed in Section 7.2.2).  

 The heading initialization issue before IMU errors were fully resolved is not 

obvious here because the z-axis gyro bias was initialized with its average bias (as 

discussed in Section 7.3.2.5). As shown in Fig. 7.20, the estimated z-gyro bias for 

this trial did not deviate too much from its average bias (low uncertainty). This 

means that by initializing the z-gyro bias using the average bias during alignment, 

the heading drift is not as severe as it was during the walking simulation, where 

the bias was initialized from zero. In the simulation, the initial heading was still 

drifting because it took time for the filter to resolve to the correct bias value. It 

might be possible, however, that if the bias varies too much in practice (high 

uncertainty), the issue discussed in Section 7.3.2.5 will be significant to the overall 

accuracy of the RIMU position solutions.  
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 The heading of the low-cost PNS with the RIMU was not plotted here as 

similar heading plot was found as in Section 7.3.2.4. The RIMU benefit in 

mitigating heading drift to the overall low-cost PNS performance is, therefore, 

assessed using its position solution, presented in Section 7.4.5.  
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Fig. 7.20: A comparison of z-gyro bias estimation with different approaches 

Fig. 7.21: A comparison of (left) x-axis gyro bias, (right) y-axis gyro bias estimation with 

different approaches 
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7.4.4 Accelerometer Bias Estimates 

Before presenting the accelerometer bias estimation results here, it is reminded 

about the assumption of the analysis on this error in Section 7.4.2.  

 Accelerometer biases on x, y and z-axis for both the RIMU and non-RIMU are 

plotted against the reference in Fig. 7.22. It is observed from the figure that 

implementing the RIMU in the walking trial had no significant advantage over the 

non-RIMU when estimating accelerometer biases for all three axes.  

 With or without the RIMU, the accelerometer biases on x, y and z-axis still 

resolved to within 0.05 m/s2 with the reference. This indicates that there is no 

significant difference from the two cases (with or without RIMU) in the 

observability of all these errors. Nonetheless, Table 7.1 showed that for the RIMU, 

y-axis accelerometer bias should have not been observed, which was different from 

the result obtained. It also showed that accelerometer biases on all axes for the 

non-RIMU were not observable. The reason for this is that Table 7.1 was tabulated 

for a non-walking trial, where there was no horizontal acceleration induced by the 

system in between steps. When walking, accelerometer biases for both RIMU and 

non-RIMU are therefore well observed through velocity updates because there was 

a horizontal acceleration. For example, a forward acceleration can separate the 

pitch error and forward accelerometer bias (see Eq. (7.4)).  

 A closer look in Fig. 7.22 shows there was a spike at the beginning of the 

dataset for x and z-axis when the RIMU was implemented. Fig. 7.22 is further 

enlarged in Fig. 7.23 for further analysis. 
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Fig. 7.23: Magnified x-accelerometer bias (left) and z- accelerometer bias (right) 

Fig. 7.22: (counter clockwise 

from top left corner): x-, y- and 

z-accelerometer bias 
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 Fig. 7.24: Accelerometer biases for (left) x-axis, and (right) y-axis, with lower 

initial process noise value. 

 

 The blue plot in Fig. 7.23 for the RIMU experienced a spike at the beginning 

of the dataset. Its effect is observed for the x and z-axis accelerometer bias for the 

first 17 s of the dataset when the RIMU remains stationary, with a maximum of 

0.48 m/s2 and 0.18 m/s2 respectively. This was caused by the effect of having the 

RIMU rotate about its y-axis, which in turn caused the x and z-axis to be rotated. 

As a result, the x and z-axis observed a certain amount of gravity acceleration 

during this rotation period. The higher uncertainty resulting from the higher initial 

process noise therefore gives too much weight from the innovation sequence to the 

bias estimates. However, as the KF gets more information from the velocity 

updates, it is able to separate the attitude and acceleration error. By setting a 

lower initial process noise, it actually reduced the spike at the beginning of the 

dataset, as shown in Fig. 7.24, when a lower initial process noise value was used. 

The proper initialization and estimation of the stochastic properties of the filter is a 

challenging task. Please refer, for example, to Hide (2003) and Groves (2008) for 

more details. Its discussion is beyond the scope of this thesis because it concerns 

with the convergence rates of the estimated states. This thesis however focuses on 

the observability of the states (converging to the correct values). This research thus 

used a tuning approach for the KF as discussed in Section 5.3.1. 
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7.4.5 Comparison of Position Solution 

Statistical comparison for the position solution in this section is discussed using 

four criteria: Return Position Error (RPE) in meters, percentage of RPE from the 

total distance travelled, mean of Horizontal Position Error (HPE) and maximum 

Position Error (PE) (both in meters). 

 Fig. 7.25 shows two plots of relative position solutions comparing the non-

RIMU with its reference, and the RIMU with its reference. There were two 

references on which these solutions were based. For the non-RIMU case, the 

reference was constructed using its own raw data, but aided with a method 

developed in Chapter 8. This reference was the same with the one used for the 

error estimations in all previous analysis. For the RIMU case, the best 

approximation of its position accuracy would be to compare with its own reference, 

as its position trajectory is not exactly the same as the non-RIMU case. Therefore, 

the RIMU reference was constructed using its own raw data, aided using the 

method from Chapter 8.  

 From Fig. 7.25 (top), when the RIMU was used, the RPE was relatively better 

with less than 1 m after travelling for an estimated distance of 354.1m. This 

constitutes less than 0.3 % of RPE from the total distance travelled. On the other 

hand, from Fig. 7.25 (bottom), it is observed that without the RIMU the position 

has drifted quite considerably, mainly resulting from heading drift. After walking 

for about 11 minutes with an estimated distance travelled of 385.3 m, the RPE was 

computed to be more than 12 m. In percentage, this represents an RPE of more 

than 3% from the total distance travelled. These position errors however would be 

much more if the walk were to be performed in a straight line.  
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Fig. 7.25: Position solution plotted against reference when (top) with RIMU and 

(bottom) without RIMU. 
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 To observe the Position Error (PE) after 11 minutes of walking for the trial, 

Fig. 7.26 is plotted. From the figure, when the RIMU was not used, the maximum 

PE for North (left figure) and East (right figure) is 10.9 m and 12.4 m respectively. 

In contrast, implementing the RIMU has reduced the North PE by more than 

tenfold, where the maximum PE falls to 0.6 m. Likewise, for East PE, 

implementing RIMU reduces the East PE by about the same amount, with 

maximum East PE now only 0.7 m.  

 The mean HPE is computed by taking an average of the HPE, where HPE is 

represented by the square root of the sum of the squared of North and East PEs. 

For this trial, the mean HPE was computed to be only 0.4 m when RIMU was 

implemented, but increases to 4.2 m when RIMU was not implemented.  

 

Fig. 7.26: Position error for (left) North and (right) East 

 

7.4.6 Trial Repeatability 

Two more real walking trials were performed on a different trajectory to check 

whether the positioning accuracy result achieved previously can be repeated. Trials 

2 and 3 trajectories were constructed from walks inside the same NGB building and 

contain a few small loops. Table 7.3 summarizes the performance of using the 

RIMU results from the three indoor trials.  

 For the RIMU, the three trials lasted for an average duration of 13.4 minutes. 

The average distance travelled is 458.3 m. From these three RIMU trials, an 
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average maximum Position Error (PE) for North and East were computed to be 

only 1.6 m and 1.1 m respectively. The average RPE was also relatively better at 

only 0.74 m, or only below 0.2% from the total distance travelled.  

 For the non-RIMU, the three trials lasted for an average duration of 13.5 

minutes with an average distance of 469.8 m. In contrast with the RIMU case, an 

average maximum PE for North and East when the RIMU was not implemented 

are relatively higher at 9.5 m and 9.1 m respectively. Additionally, the average 

RPE also increases by tenfold to 7.5 m, or above 1% from the total distance 

travelled.   

 Furthermore, the maximum RIMU Horizontal Position Error (HPE) computed 

from North and East maximum PE, on average was found to be only 1.9 m whilst 

for the non-RIMU, the maximum HPE was relatively worst at 13.2 m. This, 

therefore, indicates a significant improvement in position by reducing more than 85% 

of maximum HPE when the method of rotating the IMU was implemented. 

 

 

 

Table 7.3: Position comparison between RIMU and no-RIMU 

 

Trial Method 
Duration 

(min) 

Total 

dist. (m) 

Max. PE (m) RPE 

(m) 

Mean HPE 

(m) North East 

1 No-RIMU  11.2 385.3 10.9 12.42 12.35 4.59 

  RIMU 10.7 354.0 0.6 0.7 0.80 0.42 

2 No-RIMU  14.3 475.4 10.7 7.0 3.36 2.68 

  RIMU 13.9 475.7 1.3 0.8 0.15 0.6 

3 No-RIMU  15.0 548.8 6.8 8.0 6.79 3.14 

  RIMU 15.5 545.2 2.9 1.8 1.27 1.93 

MEAN 
RIMU 13.4 458.3 1.6 1.1 0.74 1.0 

No-RIMU 13.5 469.8 9.5 9.1 7.5 3.5 
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7.5 Discussion 

1. An investigation was made on the observability of the IMU error states after 

introducing a single axis Rotation IMU approach (RIMU). An IMU was 

mounted on a platform that rotated about its y-axis and used for the low-cost 

PNS. Of particular interest was the z-axis gyro bias (which corrupted the INS 

heading) that was unobservable in a system that had no other external 

measurement update except ZUPTs. This error was thought to be the main 

error source contributing to position drift, hence the significance of having a 

good estimation of this error. The investigation began with a simulation of a 

static and walking trajectory, followed by real field trials. The results were 

analyzed in terms of IMU error observability and the low-cost PNS position 

accuracy.  

2. At the beginning of this chapter, it was hypothesized that the RIMU 

introduced an oscillation effect onto the output of the IMU on the flipping 

axes. This was supposed to average the measurements, thus cancelling out all 

the errors perturbing IMU axes. It was found, however, that apart from the 

averaging effect, the RIMU also improved the IMU error observability.   

 Using the RIMU approach, it was shown in a static trial simulation that 

IMU error observability increased, outperforming the non-RIMU approach. 

Apart from accelerometer errors on the rotating axis (y-axis), all other error 

terms converged to the correct reference values. This is quite significant – for 

example for even lower cost inertial sensors (mostly uncalibrated), where the 

huge errors and its variations are often very difficult to estimate properly 

without proper aiding sources. It is thought that because of its observability 

advantage, an RIMU would be able to ‘track’ the variations on these huge 

errors for such cases. 

 As a result of improved error observability resulting from the RIMU, the 

heading drift on both cases, walking simulation and real walking trial, was 

reduced. This was clearly shown in the comparison of position solution for the 
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real walking trial, where on an average of 13 minutes of walking, the average 

maximum HPE was below 2 m when the RIMU was implemented. In contrast, 

without implementing the RIMU, the maximum HPE was more than 9 m. 

3. Nonetheless, more trials are worth performing in order to assess the RIMU’s 

true capability, once a better RIMU prototype is available. This is because at 

the moment, the RIMU prototype is impractical for mass trials because of its 

weight and size. Once all the components such as the motor and the platform 

can be miniaturized, it will be more practical to put them on a foot or shoe. 

Trials such as a true fire-fighter trial (if possible) can be very useful because of 

its operating environment with extreme temperature variation. This is thought 

to be useful to assess the RIMU performance as the RIMU was supposed to 

estimate better the error terms, regardless of the IMU bias variations that 

could be caused by, for example, extreme temperature. This ultimately should 

further improve positioning accuracy for such a case.  

 

7.6 Summary 

A new approach of a Rotating the IMU (RIMU) on a y-axis for the low-cost PNS 

was presented. Its benefit to mitigate heading drift was assessed through simulation 

and real field trials. Its significance is that it is able to reduce position drift error 

without the need to have any other external measurements, such as from 

magnetometer, apart from available ZUPTs. Moreover, it outperformed the normal 

IMU/ZUPT in terms of error observability. The main limitation however is the 

need for a physical rotation. Therefore, in a quest to mitigate heading drift and 

reducing position drift error subsequently for the low-cost PNS without extra cost, 

another approach is devised in the next chapter. 
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Chapter 8 

Building-Heading Aided 
 

This chapter presents a low-cost IMU-only navigation that is capable of navigating 

in indoor building for significantly long period of up to 40 minutes, with only below 

5 m of horizontal position error. This was very difficult to achieve before, and 

therefore offers a significant improvement over existing indoor positioning systems, 

such as the magnetometer-aided system investigated before. This is done by 

proposing a new approach of aiding low-cost PNS heading measurement using 

‘building’ heading. In light of Chapter 7, the new approach totally eliminates the 

requirement to have moving mechanical parts. The proposed Cardinal Heading 

Aided Inertial Navigation (CHAIN) algorithm is a subject of patent application 

and, together with its sub-algorithms developed herein, has resulted in a few 

publications (see List of Publications, pp. x).  
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8.1 Introduction 

This chapter begins by describing a Cardinal Heading Aided Inertial Navigation 

(CHAIN) algorithm in Section 8.2. The underlined idea is explained in detail, 

verified afterwards by real field trials. CHAIN is further extended by incorporating 

a few sub-algorithms. These sub-algorithms are presented in the subsequent 

sections, and are abbreviated as ZIHR (Zero Integrated Heading Rate) in Section 

8.3, MPA (Multiple Polygon Area) in Section 8.4 and HH (Heuristic Height) in 

Section 8.5. Their benefits are discussed using results from real field trials and the 

chapter ends with a chapter summary. 

 

8.2 CHAIN Algorithm 

The following section introduces the algorithm. Its advantages, when used in 

realistic pedestrian navigation scenarios, will be revealed in the result section. 

 

8.2.1 Introduction 

An algorithm is developed that uses simple heading information to restrict the 

heading drift that occurs when using the low-cost PNS. The heading information in 

the algorithm can be derived quickly and potentially in an automated manner 

using free maps or aerial images, and a heading database can then be constructed 

to aid future navigation. Furthermore, there is no requirement to have high-fidelity 

maps and detail internal maps of the building to acquire the heading information. 

This heading information will then form heading measurements to update the 

Kalman Filter (KF) and the novel use of such measurement in the KF environment 

will be shown to significantly reduce the position drift of the low-cost PNS (IMU-

only pedestrian navigation). Once the system has been initialised, there is no 

requirement for other measurements, such as from GPS, compasses or visual 

sensors, to update the KF.  
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It will be demonstrated that the position accuracy indoors can be maintained 

below 5 meters for significantly long periods of up to 40 minutes (approximately 

below 7.5 meters per hour). Furthermore, results from multiple field trials provide 

a low-cost PNS with an average position accuracy of below 0.3% of the total 

distance travelled. This kind of accuracy, for standalone inertial navigation system, 

was previously only achievable using high accuracy inertial sensors (Mezentsev et 

al., 2005). Nonetheless, even these devices still need ZUPT or other sensor 

measurements to control position drift.  

The algorithm is simple to implement and can be easily scaled to large areas 

even if the map information is derived manually. Furthermore, it will be 

demonstrated that the algorithm is robust to short periods where the pedestrian 

walks in directions not consistent with the building. The proposed algorithm is 

called Cardinal Heading Aided for Inertial Navigation (CHAIN). 

 

8.2.2 The Idea 

The sections afterwards develop a novel and effective algorithm for generating 

heading measurements from a basic knowledge of the orientation of the building 

that the pedestrian is walking. The idea is based on the assertion that most 

buildings are constructed with a rectangular shape. Within this shape, most rooms 

and corridors are constructed of smaller rectangles, which constrain the direction a 

pedestrian can walk throughout the building to one of four headings. The term 

‘cardinal heading’ is used to describe these four possible headings that the user is 

likely to walk in most of the time. It is helpful to highlight that building 

orientation will be consistent with the Course-Over-Ground (COG) direction that 

the user walks as opposed to heading or yaw which is the true orientation of the 

IMU x-axis with respect to North. 

Although by no means all buildings are constructed in this way, many 

buildings are. For example, it was surveyed by Ling et al. (2007) that 83.2% of 

building orientation in Kuala Lumpur, capital city of Malaysia, for high rise 

building is in a rectangular and square shape. Another good example is Manhattan, 
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New York where a large number of buildings are aligned in a single direction as in 

Fig. 8.1, and most of the buildings in this area will have rooms and corridors 

aligned with a heading of either 29.40, 119.40, 209.40 or 299.40. These four headings 

can be represented by a single angle since the others are simply offset by 900. A 

simple method for deriving this heading is to use the distance and angle 

measurement tool in the Google Earth application (Butler, 2006). On a smaller 

scale, Fig. 8.2 shows part of The University of Nottingham campus where most of 

the buildings are aligned in one of two orientations. Furthermore, when considering 

buildings on an individual scale, the majority of buildings conform to this concept. 

 

 

8.2.3 The Algorithm 

The developed algorithm is based mainly on standard inertial navigation equations 

(Chapter 2), with errors controlled through the use of measurements applied using 

the KF (Chapter 2 and Chapter 5).  

The algorithm makes two important assumptions. Firstly, it is assumed that 

the pedestrian will typically (but not always) walk in a direction that is consistent 

with the orientation of the outer walls of the building. Secondly, it is assumed that 

the difference between the Course-Over-Ground (Section 8.2.3.2) and the outer 

orientation of the building is the result of heading drift plus some uncertainty 

resulting from the pedestrian not walking in a straight line. This second 

Fig. 8.1: Buildings in Manhattan, New 

York. 

Fig. 8.2: Buildings in the University 

of Nottingham, UK. 
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assumption is only valid because there is a large acceleration caused by the foot 

moving through a step. Due to this large acceleration, the heading error is 

observable through the position difference, as heading is used to determine the 

orientation of the accelerometer axes. For other applications such as vehicle 

navigation, it is not possible to use this assumption since the vehicle may be 

travelling at a constant velocity and therefore heading has no effect on position. 

The subsequent sections will detail the new CHAIN algorithm, which will be 

entirely based on a simple diagram drawn in Fig. 8.3. 

In essence, the algorithm comprises three stages in sequence: 

1. Identification of a step 

2. Determination of a Course-Over-Ground (COG) 

3. Kalman filter heading measurement update 

 

 

 

 

 

 

 

 

 

8.2.3.1  Identification of a Step 

The algorithm starts by running a check on the system to determine whether a 

step has been taken or not. This is to identify that indeed a walk has been 

performed, and is run on every ZUPT epoch. It is performed by computing the step 

length (or stride length) between the current ZUPT epoch and the previous epoch, 

assuming that the ZUPT has been detected correctly when the foot is on the 

d True ‘building’ 

orientation 

(k) 

(k+1) 

COG 

Fig. 8.3: Illustration of heading measurement at each ZUPT epoch 
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ground. Step length, d, in Fig. 8.3, is computed based on the changes in horizontal 

position (North and East), dN  and dE , where 

 d =
p

(dN2 + dE2) (8.1) 

and if it falls below a certain threshold, the algorithm continues to the second stage, 

since the walk has been identified. Otherwise, the algorithm will wait for another 

ZUPT epoch to start again the identification process. The empirical threshold is 

chosen using a typical step length of a normal being, by multiple processing of 

many samples data, knowing that it is possible a step has been taken if the 

measured step length is more than 0.1 m, and is almost impossible for a normal 

person to take a step more than 10 m in length (other reasonable values can also be 

used).  

 

8.2.3.2  Course-Over-Ground (COG) 

The algorithm continues by determining the Course-Over-Ground (COG) of the 

pedestrian, as shown in Fig. 8.3. This stage comprises two steps: 

1. Computation of a step heading, Ã̂s 

2. Declaration of Ã̂s as the COG 

 The first step is the computation of a step heading. The step heading is 

defined as the angle between two successive steps that signals the walking direction 

and this is calculated at every ZUPT epoch. In other words, it is defined as the 

change in heading measurement at current ZUPT epoch (t), from previous ZUPT 

epoch (t-1). It is conveniently chosen with the assumption that within this epoch, 

the IMU error remains small. The following equation, 

 Ã̂s = atan2

0

@dE; dN

1

A (8.2) 

is used to calculate step heading by utilizing atan2 function, where it is just a 

variation of atan (tan-1) function. It is used here because it can resolve the angle in 
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the right quadrant. Ã̂s  is the measured step heading and dE  and dN  are the 

changes in East and North position over one step. This heading measurement is 

based only on the change in position caused by a single step. Therefore, Ã̂s not only 

consists of the true heading plus drift, it also consists of other small unmodelled 

errors from inertial navigation. 

 CHAIN will use Ã̂s for the next stage of the algorithm (Section 8.2.3.3) only if 

Ã̂s can be declared as COG. From Fig. 8.3, COG is defined as the angle between 

steps, which is consistent with the cardinal headings of the building. Therefore, an 

empirically derived threshold is used to exclude steps that are not consistent with 

the current building heading, Ã̂B such as when walking around corners or not 

walking straight along a corridor:  

 COG =
n

Ã̂s if jÃ̂s ¡ Ã̂B j · µth (8.3) 

The threshold, µth has to be large enough to accommodate the heading drift of the 

IMU as well as small variations in COG that are caused by the pedestrian not 

walking exactly in straight lines. If passes this test, a measurement is added to the 

KF (Section 8.2.3.3); otherwise no measurement update is applied to the KF.  

 

8.2.3.3  KF Measurement Update 

The measurement used for the KF is the difference between COG, calculated from 

the change in position between steps, and the orientation of the building. A 

measurement update is applied by forming the observation equation,  

 ±Ã = Ã̂B ¡COG (8.4) 

where ±Ã is the INS heading error and Ã̂B is the current ‘building’ orientation. 

Based on Eq. (2.34), Eq. (8.4) is then used with Eq. (5.17) to update the KF,  

 ±Ã =

0

@

@Ã
@²N

@Ã
@²E

@Ã
@²D

1

A ²+ nk (8.5) 

where nk is the measurement noise with covariance  
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 Rk = E(nkn
T
k ) (8.6) 

The measurement noise, nk represents uncertainties when pedestrians do not walk 

in straight lines with respect to building orientation. Therefore, nk must be large 

enough to account for steps that do not follow exactly the building orientation 

(which is closely related to the threshold value used to determine COG in Section 

8.2.3.2). In addition, it is worthy to highlight that the heading error measurement, 

±Ã does not relate directly to the physical attachment of the IMU. This means that 

the IMU can be mounted in any orientation on the user’s shoe. This is significant 

for realistic application of pedestrian navigation as then, it does not matter if the 

user is walking sideways, or even backwards, for the algorithm to work.  

 

8.2.4 Trials and Results 

Four field trials were undertaken to test the proposed approach. The first trial 

involves normal walking around a typical football pitch with a Network Real Time 

Kinematic (NRTK) system to act as a position reference to evaluate the accuracy 

of the foot mounted IMU. The second trial involved walking along a straight line 

(next to a straight road). For the third and fourth trials, normal walking and 

irregular walking were undertaken respectively in a typical indoor environment at 

the Queens Medical Centre (QMC) hospital, Nottingham within a built up area of 

about 65 000 m2. There was no ground reference used in the QMC trial because of 

the difficulty in having such a reference system inside buildings, hence the result is 

discussed using Google Earth aerial imagery as a coarse approximation. The total 

walking distance for all the trials is computed using raw IMU position output.  

 

8.2.4.1   Trials Description 

The following sections describe trials that have been conducted to test the new 

algorithm. The equipment used was described in Section 5.4. The initial position 

for the IMU was estimated from the GPS position (which in practice would assume 

that navigation would start in a well received GPS signal area). As discussed in 
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Section 2.4.3.1, the initial roll and pitch of the IMU was calculated during a short 

stationary period (1 s) by differencing the accelerometer measurements with the 

local gravity vector. The heading was initialised manually, but it is expected that a 

one-off magnetometer reading could be sufficient to initialise the algorithm (as 

performed in Chapter 6), provided that magnetic disturbances can be filtered out 

reliably. Normal strapdown navigation equations were used to resolve and update 

the position and attitude of the IMU (Section 2.4.3.2). Once it has been initialised, 

the system computes its position relative to the initial position. The developed 

algorithm generated heading measurements for the KF and the measurements were 

then post-processed using the Nottingham Geospatial Institute’s POINT (Position 

and Orientation Integration) software (Section 5.3), although the algorithm could 

still be used in real-time. The developed algorithm (Section 8.2.3) is now part of 

the POINT software. 

 

8.2.4.2   Football Pitch Trial with NRTK Reference 

In order to quantify the accuracy for any positioning or navigating system, a 

comparison of position solution between low accuracy systems such as integrated 

standalone GPS–INS and more accurate reference systems such as Network Real 

Time Kinematic (NRTK) (Aponte et al., 2008), is typically performed. This can 

however only be reliably performed outdoors where NRTK is always available.  

 In the case of the present low-cost PNS trial, it was not possible to have 

NRTK reference in an indoor environment for comparison purpose. Therefore the 

trial was replicated in an outdoor environment, with a clear line of sight to GPS 

and good network coverage for NRTK corrections, so that a comparison analysis 

could be performed with a reliable NRTK solution. The NRTK system (using Leica 

GS10 Geodetic grade receiver) was, therefore, used as a ground reference as it 

provides a very precise position solution, with a standard deviation of 

approximately 2 cm (figure was given by the Leica receiver) throughout the whole 

trial.  
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 The outdoor test was conducted with a 40-minute normal walk on a football 

pitch at the University of Nottingham (Fig. 8.4). The football pitch is 

approximately 95 m x 55 m in dimension with a typical white boundary line. The 

user walked ten circuits around the boundary line of the pitch so that the walk was 

approximately in straight lines, apart from at the corners, emulating a walk around 

corridors in a building.  

 

 

Fig. 8.4: Football pitch used for trial environment 

 

Fig. 8.5 shows the comparison of the two trajectories when CHAIN was 

implemented. The blue trajectory represents the low-cost PNS with CHAIN 

algorithm while the red trajectory is the reference trajectory from the NRTK 

solution. It clearly demonstrates the superiority of CHAIN solution, where after 

significantly long period of time, the position solution is still consistent with the 

reference solution. In particular is the trajectory heading, where the heading drift is 

no longer visible. In contrast, Fig. 8.6 shows the trajectory when CHAIN was not 

implemented (in green), where only ZUPTs were available for measurement update 

in the KF. It is obvious from the figure that the position has drifted quite 

significantly with respect to the reference.   
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Fig. 8.5: Trajectory of walking on football pitch boundary line when 

CHAIN was implemented 

Fig. 8.6: Trajectory of walking on football pitch boundary line when 

CHAIN was not implemented. 
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Fig. 8.7 and Fig. 8.8 show the position difference of CHAIN and No-CHAIN 

solutions respectively, when compared with the NRTK solution. The difference also 

includes the disjunction error (Section 6.4.2.1.1), where it is the non-constant lever-

arm offset of the IMU moving on the user’s foot relative to the GPS antenna on 

the user’s back, which is shown by the smaller high frequency oscillations. Similar 

with Section 7.5.5, comparison will be made in terms of the maximum Position 

Error (PE) in meters, the Return Position Error (RPE) and the mean of Horizontal 

Position Error (HPE) (both in meters), and the percentage of RPE from the total 

distance travelled.  

From Fig.8.7, it is observed that the maximum PE for North and East is less 

than 5 m. For the North and East position errors, the occurrence of big oscillations 

are the result of a full round of walking (there are 10 peaks which are equivalent to 

10 rounds of walking). This appears to be a result of the IMU solution resulting in 

slightly shorter distance measurements than the NRTK truth. The height error, 

however, is still prominent with maximum height error of about 25 m after 40 

minutes of walking. This will be further addressed in Section 8.5. 

After an IMU-only navigation aided with CHAIN for approximately 40 minutes 

in duration and 3000 m in distance, the absolute RPE was only 4.59 m, or about 

0.15% of the total distance travelled. Additionally the maximum HPE was 

computed to be only 6.50 m, whilst the mean of HPE was 3.68 m. In contrast, 

when CHAIN was not implemented (Fig. 8.8), the RPE was increased to 29.32 m, 

the maximum HPE to 106.80 m, and the mean of HPE to 44.16 m. Therefore, in 

terms of maximum HPE, implementing CHAIN has reduced the error in percentage 

to about 94%. This represents a significant improvement in the field of low-cost 

IMU positioning. In fact, such performance is difficult to achieve even with high 

quality inertial sensors, unless they can be foot-mounted. For example, even 

navigation grade inertial sensors have a typical drift of approximately 1.5 km/h 

(Moore et al., 2008), so unless regular measurement updates such as ZUPT can be 

applied, the performance is deemed to be not comparable to the low-cost IMU 

solution with CHAIN algorithm. 
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Fig. 8.7: Position difference of CHAIN solution against NRTK solution 

Fig. 8.8: Position difference of no-CHAIN solution against NRTK solution 
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 To demonstrate the application of the heading updates, Fig. 8.9 shows the KF 

innovation for the heading measurements. The heading innovation is the difference 

between the INS derived COG and the building heading. The difference comprises 

the INS heading error, other small INS drift, and also the variation of the user’s 

step in relation to the heading of the building. The standard deviation of heading 

error is shown to be only 2.10 whilst the maximum heading error is 9.70 (which 

correspond to the 100 acceptance threshold). The maximum values probably occur 

as the user walked around corners and the walking in straight line assumption was 

not correct. 

 

8.2.4.3   Walking Along a Straight Road 

Next, the algorithm was tested by walking along a straight line (next to a straight 

road). Similar with Fig. 8.9, Fig. 8.10 shows the values for ±Ã that were used in the 

KF. The standard deviation of the heading difference is only 1.540 whilst the 
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Fig. 8.9: Heading innovation of CHAIN solution 
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maximum heading difference is 7.580 (which again correspond to the 100 threshold 

used).  

 Fig. 8.11 shows the position error after approximately 3 minutes of walking in 

a straight line. The blue line represents the position error using the CHAIN 

algorithm while the black line represents position error without using the algorithm. 

Using the CHAIN update, the final North position error is only 1.25 m, whereas in 

contrast the error is 49.77 m if the algorithm was not used. Further results in more 

realistic situations are described next. 
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Fig. 8.10: Heading error for walking in a straight walk 

Fig. 8.11: Relative position with and without heading update 
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8.2.4.4  QMC Hospital Trial with Normal Walking.  

 

A third trial using the low-cost PNS was undertaken at Queens Medical Centre 

Hospital, Nottingham as shown in Fig. 8.12. This building was selected because it 

represented a typical building with many straight features. The normal walking 

trial was done for about 40 minutes with an approximate distance of 2400 m. The 

trial started and ended at approximately the same location as shown by the 

junction at the right of Fig. 8.12 (No-Entry sign). The user started walking from 

outside of the hospital, and walking into the hospital through the main entrance 

(see Fig. 8.13). After walking was done inside the hospital, the user walked out 

again through the same entrance, back to the starting position. The reason behind 

starting and ending at approximately the same position is to ensure that the 

quantification of the Return Position Error (RPE) (or the start-end position error) 

can be performed. This is because ideally, starting and ending at exactly the same 

location should give an RPE value of 0 m. The u-Blox High Sensitivity (HS) GPS 

receiver was only used for comparison purposes to indicate the performance of a 

Fig. 8.12: Hospital entrance with sign as 

the start and end location 

Fig. 8.13: QMC street map view from 

OpenStreetMap. 

Main entrance 
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high sensitivity receiver in this building. Fig. 8.14 shows the trajectory taken 

during the trial. The green line shows the output of the low-cost PNS 

implementing CHAIN algorithm and the red dot marker shows the HSGPS output. 

Although the HSGPS receiver can track more than 4 satellites in some parts of the 

building (shown by the red markers where position solutions are available), there 

are no useful comparisons to be made between the HSGPS solution with the 

proposed CHAIN solution. This is because of the corrupted position measurements 

and jumps in position solutions (white lines in the figure), which may be caused by 

the multipath error and the unavailability of the GPS signal in indoor (Section 

3.2.1). Coarse analysis using aerial imagery from Google Earth (as shown in the 

figure), is thus sufficient to indicate that the CHAIN position solution is usually 

better than 5 m, and typically < 2 m most of the time with respect to the image. 

Furthermore, as expected, the heading is always consistent with the building.  

As mentioned before, there was no ground reference except the freely available 

aerial imagery of the QMC building; hence only rough approximation of the 

trajectory analysis can be made using Google Earth. For Fig. 8.15, nonetheless, it 

provides a useful insight into the effectiveness of a low-cost PNS with CHAIN 

against a low-cost PNS with ZUPT-only. It is obvious that CHAIN solution (green) 

overcomes a standard INS–ZUPT solution (red) based on the difference between 

the two trajectories in the figure. It is clear that the majority of the position drift 

occurs as a result of heading drift, as highlighted in Chapter 4. The RPE for 

CHAIN system is about 2.30 m, approximately only 0.1% position error from the 

total walking distance of 2400 m, which again is a significant improvement in 

performance. In contrast, for the INS/ZUPT only approach, the RPE is about 220 

m, approximately 9% of the total distance and with a significantly corrupted 

heading solution. 
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Fig. 8.15: Comparison of CHAIN solution and INS/ZUPT solution. 

Fig. 8.14: Comparison of CHAIN solution (green) and HSGPS solution (red) 

Start/End 

Start/End 
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8.2.4.5  QMC Hospital Trial with Irregular Walking.  

A fourth trial for a period of 15 minutes was undertaken to address the irregular 

walking behaviour for pedestrian, starting and ending at the same location. This is 

to examine the performance of the algorithm when the ‘walking in straight line 

assumption’ within the building does not necessarily hold true. Four different types 

of walking pattern were analysed and alphabetically depicted in Fig. 8.16 as A, B, 

C and D, and their descriptions are shown in Fig. 8.17 next. 

 

 

 

 

 

  

Fig. 8.16: Areas of irregular walking in QMC hospital. 

Main entrance 

       
A 

B 

C 

D 
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Fig. 8.17: Description of each stages [A], [B], [C], and [D] as depicted in Fig. 8.16. 

  

[A] Entering QMC through the main 

entrance (from top middle) to a 

convenience shop (bottom middle), 

walking into two aisles before coming 

out from the shop. Walking into 

another shop (middle), did one round 

before coming out and proceeding to 

stage [B]. 

 

[B] After coming out from the shop (from 

upper right corner), walked straight 

and cornered to the left. Then, walked 

in a ‘zig-zag’ pattern to stage [C]. 

 

[C] In this stage, the user walked 

backwards from the start of the corridor 

(right of the picture) until the end of 

the corridor (the left of the picture) 

 

[D] Walked (from top) to the spiral stairs, 

down to the lower floor until the end 

(bottom) and made a small loop around 

a pillar (bottom). Then walked up to 

another staircase for three levels (right) 

and then walked down again towards 

the spiral stairs. Continued walking up 

the spiral stairs to the start of walk. 
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 Again there was no ground truth to be used as a reference; instead aerial 

imagery from Google Earth is used only for visualisation purpose. Fig. 8.18 shows 

the entire trajectory when CHAIN is used. It was shown that even with irregular 

walking, CHAIN algorithm still manages to maintain sufficient accuracy to return 

to the starting position (top of Fig. 8.18).  

 Likewise, Fig. 8.19 shows the times at which CHAIN heading measurement 

updates were automatically applied to the system, depicted by the red dots. It was 

observed that the low-cost PNS using CHAIN showed robustness for short periods 

when heading measurement is not being updated (period where there is no red dot). 

This is true for example in the top right corner in Fig. 8.19 when zig-zag walking 

was performed. With these irregular walking patterns, the RPE was still about 1.25 

m, again approximately only 0.1 % of the total walking distance of about 1250 m.  

 

 

 

 

 

Fig. 8.18: Irregular walking trajectory using CHAIN algorithm. 

Start/End 
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Fig. 8.19: From left top corner (clockwise) - Trajectory [A],[B],[C] and [D].  

 

 

8.2.5 Discussion 

In this section, the advantage of CHAIN algorithm will be discussed, including 

possible areas where the algorithm will possibly not work. This is purely based on a 

theoretical view along with experience of the algorithm already accumulated from 

multiple field trials.  

1. Because of the heading observability issue discussed in Section 4.4 and its 

relation with the importance of having a dynamic model that precisely 

describes the propagation of IMU errors, CHAIN method is thought to be 
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more superior from the previous methods presented so far. This is because, 

first the method takes into account possibly all the drifts accumulated during 

swing phases when providing the heading error measurements. These 

measurements therefore contain all the errors that affect subsequently the 

error in position solutions. Second is because of the existence of a large 

acceleration when the foot is moving through a step. As a result, the impact of 

the attitude error about the Down axis (see Eq. (4.1) & (4.2)) can be seen on 

the horizontal position errors. The horizontal position errors can thus be 

mitigated using the knowledge of the attitude error about the INS Down axis 

when updating the KF.  

2. Continuous walking in circles or non-straight lines (curves) for a long period of 

time is likely to cause a problem for the algorithm. This is because a straight 

walk check (Section 8.2.3.2) will always return false in the algorithm and as a 

result, there are no heading measurements available to update the KF. 

Therefore during this period, the heading will drift. If the drift is so large that 

the building heading does not remain within the threshold check when the user 

does start to walk in straight lines again, the algorithm will fail. However, 

experiences with the algorithm when walking in a circle (in Jubilee Campus 

library with circular corridor) indicated that there are times when a few 

heading updates from CHAIN can be expected, even when walking in a circle. 

This is because, if the circle is big enough, there are times where the circle 

appears to be in a straight line, and CHAIN can be applied to update the 

estimation process. This should be enough to keep the heading from drifting 

much further. Furthermore, as shown in Section 8.2.4.5, the algorithm should 

be robust to short periods of irregular walking (where there are no heading 

updates), before the heading drift becomes significant. 

3. It is clear that not all buildings conform to the simple geometry of constraining 

most walking to one of four cardinal directions. In the extreme case, some 

buildings are built with circular corridors and the algorithm is unlikely to 
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improve the INS-only solution when prolonged walking in this building is 

performed. A similar situation will occur when a pedestrian is walking inside a 

large room where the motion is not constrained to the four cardinal directions. 

Other less common situations are where a building is constructed with rooms 

and corridors using more than one possible heading. In this situation, it may 

be possible to extend the algorithm to include additional headings, although 

this is likely to reduce the robustness of the algorithm. Another situation is 

that the internal rooms and corridors may not be aligned with the outside of 

the building. This would cause a problem since the building heading is 

extracted using the measurement tool in Google Earth via aerial imagery. If 

this angle is not the usual angle that people walk inside the building, the 

algorithm will not work satisfactorily. Nevertheless, it is by far the most 

common situation that buildings are designed with a simple construction (such 

as demonstrated in the trials), where the algorithm will work well. 

4. The third issue that should be discussed is as the user walks between buildings, 

the algorithm will need to change the heading that is used. At the moment, 

the information is extracted from a Google Earth kml file that contains 

polygons which have been manually defined. It is necessary that the position 

remains accurate when the pedestrian walks between buildings, otherwise the 

wrong heading may be used, and this will result in an unpredictable heading 

and position error. This will be highlighted in Section 8.4. Furthermore, by 

using measurements from other systems such as GPS when it is available, for 

example in an open area in between buildings, it is expected that position drift 

can be restricted sufficiently in most situations. 

5. Another issue is the pedestrian is assumed to be walking continuously without 

stopping for any long periods. If the user stops, heading measurements will not 

be available because the algorithm can only compute heading drift when a user 

takes a step. During this time the heading drift will be unconstrained, and 

when the user moves again, the heading may have drifted so much that the 
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algorithm will not work. In this situation, it is expected that a heading drift 

restriction algorithm could be applied where the gyro output is threshold-

checked, and if the output is within the threshold, a measurement will be used 

to maintain the heading to the last known heading. This will be addressed 

properly in Section 8.3 next. 

6. Apart from the points discussed earlier, note that using the Kalman Filter (KF) 

provides an advantage of using other reliable measurements (if they are 

available) to further improve the navigation solution. This could be from 

occasional reliable GPS positions, sparse WiFi/RFID ‘fingerprinted’ positions, 

or simply a point in a map. This flexibility should provide more integrity and 

better accuracy to the estimation of the system solution, if the measurements 

can be used reliably to update the KF. In all the trials presented so far, 

however, there were no other measurement updates used, except from ZUPTs 

and CHAIN algorithm. Note also that there is an advantage in using Inertial 

Navigation System (INS) against the basic Pedestrian Dead Reckoning (PDR) 

algorithm. The basic PDR (Section 3.2.8.1) assumes that all steps detected are 

forward walking with fixed stride length (distance), thus side-stepping and 

backward walking lead to false measurements, whereas INS, conversely, is 

capable to handle this and measuring stride length simultaneously.  

7. Another point to be highlighted is the fact that the IMU and the GPS antenna 

are not collocated. The IMU was mounted on foot while the antenna was 

mounted above the head for a better viewing angle. This resulted in an effect 

called disjunction error (discussed in Section 6.4.2.1.1). This means that the 

position error in Fig. 8.7 incorporated this position error of about 0.5 m, when 

the foot swayed back and forth with respect to the antenna.  

8. Although not explained explicitly, Appendix D (that relates directly with the 

CHAIN algorithm) shows that a building heading can be generated 

automatically (and most importantly it is free) by extracting it from a map. 
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Likewise, the heading of a building can also be assumed to be known. This is a 

valid assumption because it is possible for this information to be made known, 

especially in public buildings. This is not impractical because normally every 

permanent building can have its own heading surveyed once and stored in a 

database. This is very convenient from the user’s point of view since only one 

update from this information is needed to navigate in that building. Once the 

system has worked out its heading, there is no need for a repeated request, 

unless the user has moved out from the current building to a different building 

with different building heading. This is very important especially for a future 

low-cost system, for example one that looks for a real-time solution with low-

cost capability (computing power, cost). 

9. Although at first instances the approach might be interpreted as a particular 

case of map-matching, they are actually different (discussion in Section 3.2.6 

can be referred). The obvious disadvantage of map-matching is the map itself 

must be accurate otherwise the accuracy of the computed position solutions 

will be degraded. The map-matching method therefore relies heavily on the 

integrity of the map. Furthermore, the map must also be embedded with the 

position information (coordinates) before it can be used for positioning, which 

relates with the heavy computational processing required. In contrast, the 

method presented in this chapter does not set the requirement to use the map. 

If the information about the building heading is known beforehand, for 

example from a database, it still can be used with the method (note that only 

single information about the building heading is sufficient). The method may 

however make use of the map (if available) to extract the building heading 

information, but the map does not necessarily need to be accurate, as long as 

the orientation is correct.  

10. Finally, it is worth to mention that a similar idea was apparently developed 

independently by Borenstein and Ojeda (2010). However, they implemented 

PDR approach, which does not have the advantage of the INS and the KF 
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(point 5). Secondly, the true building heading was not used explicitly, which 

means PDR heading is initialized with 00 when aligned with the direction of 

travel. Walking in any of the dominant direction in a building thus results in 

the use of the dominant angles (00, 900, 1800, 2700) by the PDR. Recently, 

Jiménez et al. (2011) implemented the same approach by the author and 

compared the approach with Borenstein’s work. Interestingly, it was shown to 

improve the position solution over the approach by Borenstein, especially in 

difficult trajectories such as when walking around corners as presented in 

Section 8.2.4.5.  

 

8.3 CHAIN with Zero Integrated Heading Rate 

The following section describes further improvement made to the CHAIN algorithm. 

The new CHAIN algorithm was shown previously to be able to control heading 

drift when the user is walking, but the heading error will still accumulate when the 

user is stationary. Therefore another measurement, known as Zero Integrated 

Heading Rate (ZIHR) (Shin, 2005) is used to address this issue.  

 

8.3.1 ZIHR Introduction 

Zero Integrated Heading Rate (ZIHR) was first used in a vehicle navigation system 

by Shin (2005) to stop heading drift when the vehicle stops. To the author’s 

knowledge, ZIHR has never been used before in pedestrian navigation to constrain 

heading drift during prolonged stop. Most of the results in the literature 

demonstrate walking without stopping in an extended period of time, which is 

slightly unusual for pedestrians. 

 In a stationary situation, roll and pitch errors can be constrained for low-cost 

PNS by applying ZUPTs, but not the heading error due to its poor observability 

(Section 4.4). Thus, the heading error will still accumulate during this situation. 

Applying the CHAIN algorithm unfortunately requires the user to walk, which is 
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not the case in hand. Therefore, in order to restrict this error accumulation, 

another measurement is used in the Kalman Filter during prolonged stationary 

situation (‘stop’ situation). It uses the knowledge of previous and current heading 

to constrain the system from accumulating the heading drift error. A simpler 

approach of using a predetermined threshold to limit the heading drift whenever a 

‘stop’ situation is detected can also be applied. ZIHR, however, has the advantage 

of modelling the covariance information correctly in the filter (discussed in Section 

8.3.5).  

 

8.3.2 ZIHR Algorithm 

Based on Eq. (2.34), the ZIHR measurement model is written as follows (Shin, 

2005): 

 
Ãk ¡ Ãk¡1

¢tk
¼

0

@0 ; secµsin' ; secµcos'

1

A bg + nk (8.7) 

where Ãk is the INS heading; roll (') and pitch (µ) are considered as constants over 

the time interval ¢tk; bg is the vector of body frame gyro biases; nk is the remaining 

noise term; and k  is the epoch. Due to the term sec µ, ZIHR cannot be applied 

when pitch is close to §900. The algorithm essentially describes that the change of 

heading over a certain time interval during stop situation is mainly caused by the 

gyro bias and noise on the z-axis of the IMU.   

 

8.3.3 ZIHR in Low-cost PNS 

Before the ZIHR measurement model can be used in the Kalman Filter (KF), the 

low-cost PNS needs to satisfy two conditions: 

1. ZUPT check 

2. Rotating foot check 
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 First, the ZUPT event is checked to ensure that the system is in a stationary 

situation (pedestrian stops walking). If this event returns true, a second check is 

done by checking whether the foot is rotating. This is important to highlight a case 

when a pedestrian stops walking and rotates his foot (effectively the heading) at 

the same time. If the second check was not introduced in the system, the 

pedestrian heading will still be maintained due to Eq. (8.7), where it describes that 

during the stationary situation, the heading should have not been changed (which 

is wrong). In contrast, because of foot was rotating during the stationary situation, 

the heading should have been showing a different heading value (which is right) 

and ZIHR should have not been applied. Therefore, ZIHR is declared to be used to 

update the KF only when these two conditions are satisfied (return true).  

 These two conditions test the magnitude of the velocity and the gyros and 

compare it with an empirically determined threshold, where velocity is the three 

dimensional velocity of the IMU velocity and gyros is the three dimensional 

rotations determined by the gyros. The threshold must be set to be larger than the 

expected total gyro bias and yet small enough to ensure the IMU is not physically 

rotating. If these conditions are satisfied, then the ZIHR measurement model is 

used to update the gyro bias estimation in the KF, otherwise, no update is sent to 

the KF.  

 

8.3.4 Stationary Trial 

The stationary trial is conducted by putting the IMU that was initialized with a 

known heading on a stationary table for 16 minutes. Comparison is then made 

between using INS–ZUPT only (normal approach) and using INS–ZUPT with 

ZIHR. Only a stationary trial is conducted because the ZIHR will only be applied 

during stationary events of the low-cost PNS, which occurs during ZUPT epochs 

(effectively when stance phase is detected). For full trials implementing ZIHR, the 

result will be presented in Section 8.7. 

 Fig. 8.20 shows the heading error when ZIHR was and was not used. The red 

line in the figure represents INS–ZUPT heading error (ZIHR was not used). It 
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clearly shows that the heading drifted quite considerably when ZIHR was not used 

(only INS–ZUPT), but maintained sufficient accuracy when INS–ZUPT with ZIHR 

was used. When ZIHR was not used, after 200 s, a heading error of 300 is observed, 

which then grows to about 1000 after 900 s. When ZIHR was used (blue line), it 

maintained precise heading with a heading error standard deviation of 0.030 (shown 

in Fig. 8.21). 
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Fig. 8.20: Heading errors using ZUPT only and ZUPT with ZIHR. 

Fig. 8.21: Heading errors of INS/ZUPT with ZIHR. 



Chapter 8. Building-Heading Aided   199 

 

 

8.3.5 Discussion 

1. An alternative to using ZIHR is to fix the heading whenever conditions in 

Section 8.3.3 are satisfied (return true). However this will not make a full use 

of the measurement as achieved using ZIHR, where full correlation between 

states is exploited. If the heading measurement is used directly, it will result in 

an over optimistic estimate of the uncertainty of the attitude states. Consider 

an example where initial heading uncertainty and heading measurement noise 

are set to 10 degree and 1 degree respectively. Fig. 8.22 shows the standard 

deviation of the attitude error state about the Down axis, ²D. The standard 

deviation for fixing-yaw measurement case drops to a small value, which is 

unrealistic as the measurement is not a true measurement (such as from an 

external sensor). Instead, it is desirable only to stop the heading error from 

increasing and at the same time preserving the covariance information in the 

KF. This means that ZIHR is able to make full use of the measurement while 

preserving the covariance in the KF.  

 

2. Another issue is how realistic is the condition of the non-rotating assumption 

in Section 8.3.3, before ZIHR can be used. Note that the first condition to be 
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Fig. 8.22: Comparison of attitude error standard deviation on the Down axis for 

the ZIHR case and ‘fixing yaw’ case. 
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satisfied before using ZIHR is the ZUPT check. This condition is important as 

it reduces the possibility to have a rotating movement during stationary 

situation (when ZUPT check holds true). In other words, it is practically hard 

to rotate the foot whilst simultaneously in a stationary situation. Moreover, in 

a stationary situation, rotating the foot slowly is quite difficult and can easily 

violate the small predetermined threshold (note the discussion in Section 8.3.3 

where the threshold is determined to be higher than the gyro bias, and yet 

small enough to ensure the foot is not physically rotating).  

 

8.4 CHAIN with Multiple Polygon Areas 

The following section describes a scenario when pedestrian traverses between 

buildings, and how CHAIN can be further developed to address this using Multiple 

Polygon Area (MPA) approach.  

 

8.4.1 MPA Introduction 

For a case when traversing between buildings with different building heading 

information, the CHAIN algorithm is extended further to include a construction of 

Multiple Polygon Areas (MPA). As explained previously, CHAIN algorithm uses 

heading information of a building in the KF to estimate the INS heading error, 

thus reducing the effect of heading drift for a low-cost PNS in indoor building. In 

this section, the heading information is extended to include multiple headings 

information from multiple buildings that make up the Multiple Polygon Areas 

(MPA).  

 

8.4.2 MPA Creation 

The new multiple headings information is generated using a predefined ‘polygon 

area’ that was created to contain heading information, and as the user walks, the 

system is updated with the new heading information. A simple and well known 
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algorithm in computer graphics is adopted where a point is tested to be located 

inside or outside a certain 2D polygon area (written as ‘polygon’ afterwards). A 

polygon is generally defined as a set of a finite sequence of straight lines or straight 

edges that make up a closed path, whilst the points where two edges or lines meet 

are called polygon’s vertices. The test algorithm is widely known as point in 

polygon test (Taylor, 1994) and is summarized in Appendix E. 

 After the algorithm has been set up, a set of geodetic points are constructed so 

that it makes up a polygon area of the trial buildings. Multiple polygon areas are 

created where each polygon area covers specific trial building and contains heading 

information for that building. Using a freely available tool in Google Earth, the 

polygon area is manually constructed for the trial area and it contains four polygon 

areas that have four different headings. These building headings were derived using 

a method from Appendix D and stored within the polygon area. 

 The algorithm works by testing the test points against the constructed polygon 

area. The test points are represented by each estimated coordinates (latitude and 

longitude), calculated from the INS mechanization. As the user walks, the current 

estimated coordinate will be compared to the polygon area coordinates. If the 

estimated coordinate lies in any of the polygon areas, then that polygon area is 

chosen. This selected polygon area, which contains specific building heading 

information for that area, will then be used as the current building heading for INS, 

and a similar step as in the previous sections will be performed to update the KF. 

 Fig. 8.23 shows four polygon areas constructed for the trial and are marked as 

areas A, B, C and D. Area A is represented by a cyan line, B by a blue line, C by a 

green line and D by a white line. It covers a total area of approximately 2.5 km2, 

with multiple buildings that have a common heading (for example polygon C) are 

put together into one polygon area. 
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8.4.3 Trials and Results 

The first trial involves walking in the same public hospital (QMC Hospital), as in 

Section 8.2, which represents a typical public building. The walk started and ended 

at approximately the same position, lasted for about 30 minutes for a total distance 

of about 2000 m. As there was no ground truth that can be used as a reference, the 

start and end positions are used as a reference to check the position error. Similar 

to a previous section, an ideal system would result in a Return Position Error 

(RPE) value of 0 m. Fig. 8.24 shows the trajectory solution of the low-cost PNS 

without MPA (only with CHAIN and ZIHR) and is depicted by a green line. The 

blue line represents the INS–ZUPT only solution, while the red dots represent the 

High Sensitivity GPS (HSGPS) solution. 

The RPE was measured by calculating the difference between the start and end 

positions. For INS–ZUPT only approach (blue line), without using any MPA 

method the RPE was 299.71 m, which is about 15% from the total distance 

travelled. Conversely, the RPE for the low-cost PNS (green line) was found to be 

Fig. 8.23: Four constructed polygon areas for the trial. 

A 

B 

C 

D 
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4.63 m, which is about only 0.23% from the total distance travelled. This 

contributes more than fiftyfold in position improvement. Although there are some 

parts where the GPS signal can be detected, the reliability of HSGPS solution (red 

dots) is questionable because of jumps in the solution. Further work should 

investigate the possibility of using this occasional GPS position update in the KF 

(but only if it can be shown to be accurate and reliable). Since this trial did not 

use the MPA approach, the solution at the bridge area (zoomed figure) gives 

suboptimal result because of the different orientation of the bridge from the main 

building. Therefore, a second trial is conducted next to highlight the advantage of 

having an MPA approach. 

 

 

Fig. 8.24: The position solutions of HSGPS (red), low-cost PNS + ZUPT (blue), low-cost 

PNS + ZUPT + CHAIN (green) 

Start/End 
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 The second trial involves walking in multiple polygon areas created as in Fig. 

8.23. The trial lasted for about 43 minutes with a distance of about 3300 m. The 

area covered is estimated to be about 2.5 km2. As before, a pedestrian equipped 

with only the low-cost PNS, started the walk in area C. The walk then moved to 

area A, after which he walked towards area B, followed by area D and then came 

back to the start position in area C.  

 Fig. 8.25 shows the trajectory solution of the low-cost PNS aided by only 

ZUPTs without MPA and is depicted by a red line, while Fig. 8.26 shows the 

trajectory with MPA depicted by a green line. Remarkably, the low-cost PNS 

trajectory in Fig. 8.26 is able to follow the trial path (the trial path was obtained 

from the knowledge of the trajectory during the trial) right until the end of the 

trial, as opposed to normal INS–ZUPT approach in Fig. 8.25 (the accuracy 

throughout the trial is not known as only occasional GPS solutions were available). 

For this trial, the RPE for the proposed system shown in Fig. 8.26 was 4.28 m, 

about 0.13% from the total distance travelled. This outperforms the INS–ZUPT-

only solution by more than one hundred fold, where the INS–ZUPT solution has a 

large RPE of 561.35 m. 

 

 

Start/End 

Fig. 8.25: Low-cost PNS/ZUPT solution without MPA trajectory solution 
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8.4.4 Discussion 

1. This section highlights the case where a user might need to traverse between 

buildings that have different orientation. The previous CHAIN algorithm has 

been extended to address such case. An approach of using the Multiple 

Polygon Area (MPA) was explored and two trials were undertaken to 

demonstrate its advantage. It resulted in a significant improvement in position 

accuracy for the low-cost PNS. It has been shown that using only forward KF, 

the estimated accuracy in position is 4.28 m in 43-minutes walk, about 0.13% 

of the total distance travelled (total distance travelled was computed from the 

IMU data). Note that this figure represents the RPE (difference between start 

and end position), and not the accuracy of the system throughout the trial. 

However, it did follow the correct trajectory throughout the whole trial.  

2. The MPA were created to show the possibility of gathering the heading data 

for a huge navigation area with different building orientations. This can be 

very useful for a pedestrian who wants to traverse between these buildings. 

While the basic CHAIN algorithm requires that each building heading is to be 

Start/End 

Fig. 8.26: Low-cost PNS/ZUPT with MPA trajectory solution 
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derived, this section introduced a way to reduce the complexity of having 

multiple heading data for each building. This is done by working out the same 

heading area using a polygon that consists of several buildings with the same 

heading. This does not mean that buildings need to be exactly identical to 

each other, but more towards having the same orientation to have the same 

heading value.  

3. Although the motivation was to have a self-contained low-cost PNS, it is 

important to highlight the advantage of having extra measurements to the 

overall solution accuracy. Due to the assumption of a straight walk for most of 

the time, there will be a time where this assumption might not valid; for 

example during long cornering (although the algorithm was shown to work 

fairly well in a short cornering in Section 8.2.4.5). The uncompensated heading 

error will build up because of the increase in uncertainty in the KF and will 

cause a position drift error during this period. Therefore, an occasional 

absolute position update might be useful for the system to correct its position 

drift (note that using the KF provides the capability to combine every 

available measurement). 

 This could be done if, for example, one could figure out a reliable position 

from the degraded GPS signal, or simply by walking into an open space in 

between buildings, where the GPS can provide a reliable and accurate position 

solution. Another possible example would be to have a little more information 

from the map (again not a detailed map) such as having true positions 

(coordinates) of entrances and exits of a building. This could correct some of 

the position drifts if a user can be identified to have indeed walked through 

these entrances or exits.  

4. Further work should highlight a point where more accurate boundary 

detection should be done for polygon area creation when buildings with 

different heading are not well separated from each other. The results presented 

herein are only the output of coarse creation of the polygon area. If a more 
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accurate position solution is sought in an environment where buildings are 

closely separated, then a better detection and polygon creation should be 

applied to have the correct heading update.  

 For example, let’s consider an extreme scenario as depicted in Fig. 8.27. 

Suppose a low-cost PNS has a system accuracy of 5 m, and two buildings with 

different headings are separated with less than 5 m from each other. Due to 

the inaccuracy in the low-cost PNS, the position has drifted into the green 

building (a black arrow). This creates problem because when CHAIN and 

MPA are applied, wrong position solution will be computed (red arrow).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

< 5 m 

The actual PNS 

trajectory 

Inaccurate PNS 
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Fig. 8.27: Extreme scenario when MPA causes problem to the overall PNS solution 
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8.5 CHAIN with Heuristic Height  

The following section describes the constraint used heuristically to reduce huge 

height error for the low-cost PNS. 

  

8.5.1 Heuristic Height Introduction 

According to, for example Tanigawa et al. (2008) and as demonstrated in Section 

8.2, there is still an inherent vertical drift error for the low-cost PNS solution. This 

can be due to the remaining small error perturbing the IMU Down-axis, which 

causes biased measurements on the axis. This translated to an error in the velocity 

measurement, and subsequently causes an error in the height computation. 

Furthermore, an inaccurate gravity compensation model used in INS mechanization 

algorithm can exaggerate the effect, although the effect of gravity variation can be 

neglected because of the low-cost IMU used and a relatively small area of indoor 

navigation.  

 Due to this, the IMU height error is often aided with barometer (pressure 

sensor), such as in Lammel et al. (2009), Weimann and Hofmann-Wellenhof (2007) 

and Tanigawa et al. (2008). The change in pressure, which varies according to 

height, can then be matched with a floor level database to indicate the correct level 

the user is in. When barometer is supplied with an indication of altitude, it is 

known as altimeter, such as the one used in for example aircraft. However, 

barometer measures pressure, which sometimes varies due to other factors as well 

such as wind, temperature and weather. For instance, Lachapelle et al. (2003) 

showed there was a different in pressure measurement measured in staircases area, 

with the one measured in other area at the same level (for his trial area). This 

translated to a different height for the two areas on the same level, which is wrong.  

 In the low-cost PNS, therefore, a different approach is taken so as not to use 

an additional sensor, such as barometer, to give height measurements. An 

assumption is therefore made that the height change in indoor buildings is only 

caused by the use of staircases. Therefore a Heuristic Height (HH) method is used 
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to stop this error from building up to give a good pseudo-height solution when the 

pedestrian is inside the building. The term pseudo-height is used to differentiate it 

from the true geodetic height, where pseudo term often means something that is 

having the appearance of the truth.  

 

8.5.2 Heuristic Height Measurement 

A height measurement is therefore introduced for the low-cost PNS to restrict the 

IMU height drift indoors. Without the availability of height measurements from 

sensors such as barometer and GPS, the height of the INS solution will drift as a 

result from the accumulation of errors in the IMU that are not fully removed 

through ZUPT measurements. Therefore, the knowledge that the floor is level in 

most indoor buildings is used. It is assumed that the changes in height in indoors 

would be caused only by walking up or down the staircases.  

 Since it is reasonable to assume that a pedestrian’s foot lies on the floor during 

every stance phase, a predetermined height threshold that represents step height is 

created to limit the height error growth (which is updated in every stance phase). 

The change in height over one step is calculated and if it is below the threshold, 

the height from a previous epoch calculation is maintained and projected to the 

next epoch. The changes in height, ¢h, between ZUPT epoch is computed as: 

 ¢h = jhk ¡ hk¡1 j (8.8) 

where epochs k and k ¡ 1  correspond to different steps at successive ZUPT epochs. 

For the trial presented in this section, an empirical threshold of 0.05 m was used to 

decide whether height change has happened. This was based on the height of the 

steps. If ¢h 	falls below the threshold, then height at the last epoch is preserved to 

update the position state vector in the KF, otherwise no update is applied.  

Using the measurement in this way unfortunately results in an over optimistic 

covariance of the height resulting from the issues discussed in regard to heading 

measurements in Section 8.3. Although not strictly rigorous, the benefits of 

applying the height correction indoors are thought to outweigh any issues caused 
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by an overoptimistic height covariance estimate. A measurement update is applied 

by forming the observation using Eq. (5.14), based on Eq. (2.34): 

 ±h =

0

@0 0 ¡1

1

A ±rn + nk (8.9) 

where ±rn is the IMU position error state vector with measurement noise nk that is 

closely related to the threshold value used to determine height change. 

 

8.5.3 Trial and Results 

 A trial for the Heuristic Height (HH) is carried out by walking down and up a 

staircase. A pedestrian walked from the top to the bottom of the stairs, then 

walked up again and stopped at the same starting position. The staircase consists 

of 42 steps with 16.5 ± 0.5 cm each in height (measured using steel tape and 

assumed to be the truth), totalling 6.93 m in height. Fig. 8.28 shows the low-cost 

PNS height, with (blue) and without height constraint (red) and Fig. 8.29 shows 

the period when the height constraint was performed (green dots). 

 From Fig. 8.28, when the HH is used, the end position error for this trial is 6.6 

cm, and it correctly identified 42 steps. In contrast, without the HH, the end 

position error has drifted to 45 cm. The start of the data in Fig. 8.28 is further 

magnified and shown in Fig. 8.29. It clearly shows that when the height constraint 

is performed (green dots), the height error does not grow as opposed to when 

height constraint is not used (red plot). It is important to highlight that for height 

constraint to hold true, changes in height in indoor buildings are assumed to be 

caused by staircases only. Therefore, the height constraint will not work as 

expected if other situations are considered, where the height change between 

epochs might not be big such as when walking on a ramp on the floor.  
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Fig. 8.28: IMU height output with and without Heuristic Height 

Fig. 8.29: Height constraint is being updated 
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8.6 Position Comparison between CHAIN and 

Magnetometer-Aided PNS 

To show the significant improvement made by the full CHAIN algorithm over an 

example of the magnetometer-aided PNS (using the best case with frequent 

heading updates), the same trial result from Section 6.4.2.1 is compared with when 

full CHAIN algorithm was implemented. Figure 8.30 shows comparison of the 

Horizontal Position Error (HPE) between the two cases. It is identified that the 

maximum HPE for magnetometer-aided is about 14.0 m, whilst reduced 

significantly for CHAIN-aided to about 5.0 m.  
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Fig. 8.30: Comparison of position error for CHAIN-aided and magnetometer-aided for the 

low-cost PNS 



Chapter 8. Building-Heading Aided   213 

 

 

8.7 Full Trials Repeatability 

Using the full CHAIN algorithm described before (Section 8.2 till Section 8.5), 8 

more field trials have been conducted in Nottingham, UK for repeatability purpose. 

Table 8.1 summarises the output of the walks. Trial 1 until 8 represents: straight 

road, car park, football pitch, hospital #1, hospital #2, hospital #3, hospital #4, 

and the Jubilee Campus. The Return Height Error (RHE) represents the difference 

in height between the start and end positions, while Return Position Error (RPE) 

represents the difference in position, after returning to the same location. The RPE 

is tabulated in m and percentage of the total distance, where lower values of these 

represent a better solution than the one with higher values. The ‘CHAIN’ column 

consists of the results when CHAIN and all the sub-algorithms were used, while the 

‘normal’ column represents the results when only ZUPT was used to update the 

KF.  

 The results are summarized in Table 8.1. All the trials lasted for a period of at 

least 10 minutes, with a minimum and maximum distance of about 500 m and 3000 

m respectively. From these 8 field trials, it was identified that for an average 

duration of 23.8 minutes and an average total distance travelled of 1552 m, the 

average RHE is 0.4 m and the average RPE is 4.7 m. In contrast, the trials that 

did not implement the CHAIN algorithm have higher average error in the RHE 

and the RPE of 40.4 m and 153.6 m respectively.  

 In terms of the RPE and the RHE, using CHAIN has therefore improved the 

figures on average by over 95% against the normal solutions. Fig. 8.31 shows the 

visualisation of the three example outputs from the trials tabulated in Table 8.1, 

where heading drift errors have been reduced significantly. In the figure, the green 

line shows the position output when CHAIN was used and the red line marks the 

position output when CHAIN was not used.  
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Trial 
Dur. 

(min) 

Total 

dist. 

(m) 

RHE (m) 
 RPE (m)  RPE of Total 

Distance (%) 

CHAIN Normal CHAIN Normal  CHAIN Normal 

1 15.7 496.8 ~0.00 5.6  6.3 270.4  1.3 54.4 

2 12.7 902.8 ~0.00 0.3  4.0 28.6  0.4 3.2 

3 40.0 2963.8 ~0.00 25.3  4.6 34.5  0.2 1.2 

4 30.4 1973.7 1.0 16.2  4.2 109.6  0.2 5.6 

5 21.9 1443.9 0.2 0.8  7.6 518.2  0.5 35.9 

6 38.8 2665.3 ~0.00 26.3  3.1 204.2  0.1 7.7 

7 16.0 918.8 0.2 85.1  6.2 38.7  0.7 4.2 

8 14.8 1058.4 0.2 117.4  1.2 24.5  0.1 2.3 

MEAN 23.8 1552.9 0.4 40.4  4.7 153.6  0.3 9.9 

 

 

 

 

  

Fig. 8.31: (clockwise from bottom 

left): Example of position output 

from trial 8, trial 4 and trial 2 

tabulated in Table 1. 

Table 8.1: Comparison of errors for proposed system with and without constraints applied 

Start/End 

Start/End 

Start/End 
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8.7 Summary 

A new algorithm termed the CHAIN algorithm has been proposed for the low-cost 

PNS. The algorithm was investigated using real field trials and has shown its 

capability in mitigating heading drift error significantly. This resulted in a more 

accurate trajectory for the low-cost PNS. CHAIN has been further developed by 

including the Zero Integrated Heading Rate (ZIHR) algorithm, which is important 

to stop the heading drift error when a pedestrian stops walking. Next, the Multiple 

Polygon Area (MPA) and the Heuristic Height (HH) approaches were also 

integrated to accommodate navigation in a larger area and to reduce vertical 

positioning error respectively.  

 The results have shown notable improvement for indoor pedestrian navigation. 

For example, previously, a positioning system integrating WiFi, Bluetooth, High-

Sensitivity GPS, accelerometer, digital compass and camera by Kuusniemi et al. 

(2011) achieved maximum Horizontal Position Error (HPE) of about 15 m within 4 

minutes of operation. With the developed algorithm presented in this chapter, only 

a low-cost IMU is needed for a pedestrian to navigate for as long as 40 minutes, 

with the average position errors being consistently kept below 5 m. The Return 

Position Error (RPE) was also found to be better than 5 m for most of the trials, 

with the best recorded to be below 2 m. Pseudo-height error was also kept below 1 

m for all of the trials.  

 

.  
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Chapter 9 

Summary and Conclusions 
 

This chapter summarizes the research presented in the thesis and provides 

conclusions about the results that have been obtained, and what could be done in 

the future. This leads to a recommendation for a future research in the area of non-

GPS integrated indoor pedestrian navigation systems, along with a summary of the 

contributions to the knowledge achieved from the research. 
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9.1 Summary 

The main aim of the research presented in the thesis was to mitigate the heading 

drift problem for an autonomous Pedestrian Navigation System (PNS) that uses 

only a low-cost IMU, aided with only ZUPTs. Heading drift for such a low-cost 

system has long been regarded as one of the major stumbling blocks for the system 

to be generally adopted. Improving the heading drift thus creates an opportunity 

for far more applications for the low-cost IMUs than there are today. 

 In order to understand this properly, an early investigation must first be 

conducted. This was presented in Chapter 4 by examining the performance of a 

low-cost PNS entirely on its own without any heading aiding, which confirmed the 

severity of the growth of heading error. A literature survey on the other approaches 

to mitigate the heading drift problem was also briefly reviewed.  

 The first objective of the research was to assess the performance of the 

commonly used method in a low-cost PNS to mitigate heading drift error. This was 

presented in Chapter 6 using an exemplary method of filtering out bad 

magnetometer heading measurements. A magnetometer was used because its 

heading measurements do not drift over time, as opposed to the low-cost IMU. 

Accepted heading measurements were then used to provide reliable absolute 

heading measurements to the low-cost PNS. It was found that frequent reliable 

magnetometer heading updates were still required, which is not always the case 

indoors because of high magnetic disturbances. 

The second objective of the research was to propose rotating the IMU 

mechanically as an alternative to the magnetometer to mitigate the heading drift 

error. Therefore, the proposal of rotating the low-cost IMU around its y-axis was 

presented in Chapter 7, and was termed as the Rotating IMU (RIMU) in the thesis. 

This was initially intended to eliminate the dependence of the low-cost PNS on the 

additional sensors, such as a magnetometer, to mitigate the heading drift error. 

The RIMU approach was later become more significant as the research progressed. 

This is because relying on additional sensors such as the magnetometer to be the 
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additional heading sensor to mitigate heading drift may not be advantageous. For 

example, frequent and reliable magnetometer heading measurements may not 

always possible indoors because of magnetic disturbances.  

The third objective of the research was to test the RIMU approach through 

simulation and real field trials. This was presented in Chapter 7 in the trial 

sections. Two pedestrian scenarios; in a stationary condition and a walking 

condition, were simulated using an in-house simulator. The simulated data was 

then processed using the in-house processing software. The performance was 

evaluated in terms of the observability of IMU errors and how by improving the 

IMU error observability can help to mitigate the heading drift of the low-cost PNS. 

Three field trials were also presented to verify the improvement made by the 

RIMU proposal. The RIMU was shown to mitigate the heading drift by improving 

the observability of IMU errors. The RIMU, however, is still largely limited by the 

need to have a physical rotation of the IMU.  

Following this, the fourth and the fifth objectives were set in the research. The 

fourth objective was to develop a new approach which did not use mechanical 

moving parts. Subsequently, the fifth objective was to assess the approach using 

field trials. Therefore, a new method that is much simpler and inexpensive was 

presented next in Chapter 8. This is so to eliminate the dependence on the extra 

components required when implementing the RIMU. The method, for the first time, 

successfully mitigates the heading drift after a long period of autonomous inertial 

navigation, whilst simultaneously keeping the cost down. This is a result of the 

simplistic nature of the algorithm used by the method, which means the method 

may be affordable for real-time purposes and for integration with other similar 

system. The algorithm was devised to use true building heading information in the 

Kalman Filter (KF) framework, and was termed as Cardinal Heading AIded 

Navigation (CHAIN). Several sub-algorithms were also added to account for 

different possible pedestrian scenarios, which were not given much weight by other 

related works. To present CHAIN applicability to indoor pedestrian navigation, the 

full algorithm was tested in several field trials, including inside real buildings. The 
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performance of the low-cost PNS deployed with the algorithm was presented in 

terms of the accuracy of heading for the entire trajectory and also the accuracy of 

the position solution. Chapter 9 then summed up the research presented in the 

thesis.   

 The following Section 9.2 contains conclusions drawn from the testing results 

and is followed by contributions made from the research in Section 9.3. 

Recommendations for further research are discussed in Section 9.4 and the chapter 

ends with a summary in Section 9.5. 

 

9.2 Conclusions 

This section summarises the results and conclusions from the research presented in 

the thesis. It will be divided into two sections, which represent the results achieved 

using data simulation and the results achieved using practical trials.  

 

9.2.1 Data Simulation Results 

The RIMU trial using simulated data from NGI’s Inertial Data Simulator (IDS) 

was conducted as part of the research presented in this thesis. It acted as the 

‘acceptance trial’ before the RIMU prototype was built by the GRCNZ for 

practical trials. The conclusion drawn from the simulated RIMU trials are 

summarised below. 

1. IMU errors are made to be more observable when the RIMU is deployed 

during stationary condition. In this situation, the coordinate transformation 

matrix changes due to the RIMU. With the availability of the ZUPT 

measurements, the RIMU method helped to estimate all accelerometer biases 

and most of the gyro biases (Section 7.2.2). In the stationary test (Section 

7.3.1.4), it was demonstrated that a stationary RIMU aided with ZUPT 

improved the IMU errors observability. Out of 6 biases for gyros and 
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accelerometers to be estimated, 5 have been estimated, except the gyro bias on 

the rotating axis (IMU y-axis) because of the observability problem (Section 

7.2.2). In contrast, when the RIMU was not used, the stationary system aided 

by ZUPT managed to estimate only 2 gyro biases on the x- and y-axis, whilst 

the remaining 4 biases (z-axis gyro bias and three accelerometer biases) were 

not observable.  

2. In the simulated walking trial, the heading drift for the low-cost PNS appeared 

to be mitigated (Section 7.3.2.4) due to the RIMU. Because the IMU error 

observability is improved, the correlated heading drift is also mitigated and 

resulted in a more accurate position solution (Section 7.3.2.6). 

3. The convergence rate to observe the IMU errors can be affected by the 

rotation rate used for the RIMU. A quicker rotation rate (Section 7.3.1.2) was 

shown to increase the convergence rate of the error estimation. This is because 

a quicker rotation rate resulted in a quicker flipping of the rotating axes. This 

means the KF should have enough information from the ZUPT measurements 

and the RIMU in a short period of time to estimate the IMU error. 

Unfortunately, a rotation rate of more than 6 0/s could not be simulated in 

IDS due to an unknown bug (Section 7.3.1.2). It is, however, not an important 

issue as the objective of the simulation trial was to gain knowledge on the 

advantage of the RIMU to mitigate heading drift, and not to quantify the 

convergence rate for error estimation. 

4. The convergence rate can also be affected by the way the rotation is performed. 

In Section 7.3.1.3, five different ways of doing the rotation with the same 

rotation rate were examined. All five of them converged to the reference value 

but with different rate of convergence. It was observed that as long as the 

rotation caused the axis to be flipping (for example Eq. (7.1) resulted in +ve 

and –ve values in gyro errors), the convergence rate would be similar. 
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Otherwise it will take a longer time to converge, as demonstrated by the 900 

and 450 rotations, where the axes were not fully flipped. 

 

9.2.2 Practical Trials Results 

Practical trials were presented in this thesis for three principal reasons. Firstly, in 

the case of the magnetometer aided trial presented in Chapter 6, it was performed 

to analyze the magnetometer performance in very high magnetic disturbances such 

as indoors. Secondly, the RIMU trials in Chapter 7 were presented to verify the 

performance of its simulation, in particular for more realistic walking scenarios. 

Finally, the trials in Chapter 8 were presented to validate the CHAIN algorithm 

formulated in the chapter to mitigate the heading drift. 

 

9.2.2.1  Magnetometer Aided Trials 

1. Reliable magnetometer heading measurements could be beneficial to aid 

heading error estimation for a low-cost PNS. In an outdoor trial (Section 

6.4.2.1.), it was identified that fewer magnetic disturbances could be expected. 

As a result, frequent reliable magnetometer heading measurements were easily 

extracted, and were shown to reduce the heading drift of the low-cost PNS.  

2. However, infrequent but reliable magnetometer heading measurements offer 

little help to mitigate heading drift of a low-cost PNS. Indoors, high magnetic 

disturbances could be expected (Section 6.4.2.2) that could corrupt 

magnetometer headings. An indoor trial (manipulated from the outdoor trial 

data) was presented in Section 6.4.2.2 and resulted in only a few reliable 

magnetometer heading measurements. The interval between magnetometer 

heading updates for the KF were thus increased from about 1-2 s to about 20 s. 

This increased the heading uncertainty between these updates, which caused 

an increase in the position error. Subsequently, this resulted in an 



Chapter 9 Summary and Conclusion  222 

 

 

unrecoverable position drift, even when aided with reliable magnetometer 

heading measurements afterwards.  

 

9.2.2.2  Rotating IMU Trials 

1. The RIMU has made all gyro biases for a low-cost PNS to be more observable 

when used with ZUPTs, which agreed with its simulated trial (Section 7.4.3). 

Of particular interest was z-axis gyro bias, which converged to its reference 

value due to the RIMU, against the non-RIMU (normal IMU) where the z-axis 

gyro bias did not converge even until the end of the walking trial.  

2. The RIMU was not instrumental in estimating accelerometer biases for the 

low-cost PNS (Section 7.4.4). Without implementing the RIMU, the 

accelerometer biases still converged to its reference values. The availability of 

velocity updates through ZUPTs during detected stance phases and forces due 

to the acceleration when taking a step, were sufficient to update the error 

estimation in the KF. 

3. When implementing the RIMU, the heading drift of the low-cost PNS was 

mitigated significantly. In terms of the final position accuracy, the RIMU has 

outperformed the non-RIMU, as presented in Section 7.4.5 and 7.4.6. For the 

three trials presented, on average the RPE for the RIMU was better than the 

non-RIMU (below 1 m) whilst for the non-RIMU, the RPE was more than 7 m. 

Furthermore, the maximum RIMU Horizontal Position Error (HPE), on 

average, was found to be only 1.9 m whilst for the non-RIMU, the maximum 

HPE was 13.2 m. This reduces the maximum HPE significantly, in fact by 

more than 85%. Likewise, in the RIMU trial 1 for example, when the RIMU 

was implemented the mean for HPE was only 0.42 m, whilst without the 

RIMU, the mean for HPE increased to 4.6 m.  
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9.2.2.3  Building-Heading Aided Trials 

1. The Cardinal Heading AIded Navigation (CHAIN) algorithm also mitigates 

significantly heading drift. Using this algorithm, only a low-cost IMU is needed, 

and there is no requirement to integrate with external sensors. It also does not 

require the physical rotation of the low-cost IMU as demonstrated by the 

RIMU approach. A longer period of accurate autonomous navigation using 

low-cost inertial sensor is therefore possible indoors, with below 7.5 m/hr 

position drift rate. Its effectiveness was presented in Section 8.2.4 and 8.6 

using a series of field trials. For example, in the second trial (Section 8.2.4.2), 

the Return Position Error (RPE) was only 4.6 m and the mean of Horizontal 

Position Error (HPE) was only 3.68 m for a period of 40 minutes. In contrast, 

when the CHAIN was not implemented, the RPE was increased to 29.32 m 

and the mean of HPE to 44.16 m. The maximum HPE was 106.8 m when the 

CHAIN was not implemented, but reduced drastically to only 6.497 m when 

the CHAIN was used. This therefore represents a significant improvement by 

reducing more than 94% of the maximum HPE value (better than the RIMU 

at 85%).  

2. The Zero Integrated Heading Rate (ZIHR) algorithm is deemed to be 

important and thus, recommended to be used with the CHAIN algorithm. The 

ZIHR trial was presented in Section 8.3.4 to demonstrate its usefulness when 

stationary. When the ZIHR was implemented, it maintained precise heading 

with a standard deviation of below 0.050. Conversely, when the ZIHR was not 

implemented, after 200 s, a heading error of 300 was observed, which then grew 

to about 1000 after 900 s.  

3. Traversing between buildings with different building headings was made 

possible with the Multi Polygon Area (MPA) method. Its trial was presented 

in Section 8.4.3. For this trial, the RPE was 4.28 m, only about 0.13% from 

the total distance travelled after 43 minutes of navigation. This betters the 
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INS/ZUPT-only solution by more than 500 fold, where the INS/ZUPT 

solution had a large RPE of 561.35 m. 

4. In situations where a 3-dimensional pedestrian navigation is required for a 

longer period of navigation, Heuristic Height (HH) method (Section 8.5) is 

capable of reducing the height error. A trial was presented in Section 8.5.3, 

where it showed that when HH was used, the end position error was only 6.6 

cm after about 2 minutes, and it correctly identified 42 steps. In contrast, 

without HH, the end position error has drifted to 45 cm. Although it seems 

that the error is small and thus tolerable, the effect was quite pronounced 

when a longer period of navigation was performed (Section 8.2.4.2). 

 

9.3 Thesis Contributions 

The different topics investigated in the research are detailed throughout the thesis. 

Some of these points have been published in journals and conference proceedings, 

and have resulted in a patent application. The published papers are mentioned 

specifically in the respective chapters where necessary – see the List of Publications 

(page ix) for details. The summary of contributions below is sorted according to its 

significance, such that the main contribution appears first, followed by the 

consecutive contributions.  

1. Cardinal Heading Aided Inertial Navigation (CHAIN) algorithm. 

The new algorithm has been successfully designed and implemented for a 

low-cost PNS. This has made autonomous inertial pedestrian navigation in 

indoor environment possible for an extended period of time. Field trial 

results have shown that it is possible to navigate within buildings for as 

long as 40 minutes with below 5.0 m of start-end position error. On average, 

this is more than an 85% improvement in position error if one were to use 

standard INS/ZUPT indoor positioning. This has become the subject of a 

patent application. 
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2. Zero Integrated Heading Rate (ZIHR). Following 1, the CHAIN 

algorithm has been extended to include the ZIHR algorithm. This is a very 

important approach for an extended period of non-walking (remaining 

stationary) for pedestrians. To the author’s knowledge, it has never been 

applied in a pedestrian navigation system before. It correctly modelled the 

covariance information of heading error in the Kalman Filter whilst 

simultaneously halting the heading error growth. This introduces more 

stability to the low-cost PNS solutions, resulting in a more reliable system. 

Its significance is based upon several field trial results, leading to a 

recommendation for all pedestrian navigation systems to incorporate the 

ZIHR algorithm.  

3. Multiple Polygon Areas (MPA). Following 1 and 2, the CHAIN 

algorithm has been further extended by proposing the integration of an 

MPA approach, for the purpose of navigating in a larger navigation area. 

Only a single value of heading information is needed for each area that is 

identified by a polygon. Thus a cluster of polygons, with heading 

information embedded in them, make up the MPA. As such, very little 

information and computing power are needed, which could be useful for 

real-time systems. This effort has therefore made it possible for a pedestrian 

to navigate in a larger area that would involve walking across multiple 

buildings and areas.  

4. Heuristic Height (HH) constraint. Inside buildings, a heuristic 

assumption was made to enable the height constraint to be integrated with 

the CHAIN algorithm to reduce the height error. The height change was 

heuristically assumed to be caused only by the use of staircases. Therefore, 

in situations where 3-dimensional pedestrian navigation is required, then 

the constraint is capable of reducing the height error growth without the 

use of external sensors such as a barometer.  



Chapter 9 Summary and Conclusion  226 

 

 

5. A single axis Rotated-IMU (RIMU). An approach to pedestrian 

navigation, whereby the IMU is rotated mechanically on a single axis 

(around its y-axis), has been proposed and investigated. The investigation 

was made through a simulation trial and real field trials. The IMU heading 

error was made observable through the RIMU and, by also improving the 

observability of other errors of the IMU, was shown to be capable of 

reducing position drift for a low-cost PNS. The method is also envisaged to 

have a significant impact in an extreme scenario, for example during 

rescuing operation carried out by fire fighters, where the extreme 

temperature would have caused large variations in IMU errors. This is 

because RIMU should then be able to ‘track’ these errors efficiently. 

6. Magnetometer analysis. The performance of magnetometer 

measurements used to aid INS heading by providing reliable absolute 

heading measurements was investigated. Most current literature highlights 

the advantage of filtering out outliers in magnetometer measurements to 

get good heading measurements. It does not, however, properly address the 

impact of long intervals between heading updates, which often happens 

indoors. Because of this, it was found that in a magnetically-disturbed 

environment, such as indoors, infrequent magnetometer heading 

measurements in an estimation filter were not adequate to reduce the 

heading drift error for low-cost PNS.  

 

 

9.4 Future Recommendation 

The research presented in the thesis has proven the ability of a low-cost IMU to be 

used alone, for an extended period of up to 40 minutes of unaided pedestrian 

navigation in an indoor environment with sufficient accuracy, which had previously 
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been very difficult to achieve before. The following recommendations are made here 

to continue the research and perhaps make further advancements in the field. 

 

Rotating IMU 

1. The results presented in the thesis, examining the RIMU approach for the low-

cost PNS, are promising. Further investigations are however required to 

identify and quantify the impact of different unmodelled system errors such as 

axis-misalignment and scale factor. Although it is unlikely to improve the 

position accuracy (as presented in the thesis where even without modelling the 

errors, position was significantly reduced), it is thought to be useful in 

understanding the overall benefits of the RIMU. 

2. More trials are worth performing to assess the RIMU’s true capability, once a 

better prototype can be made available. For now, the RIMU prototype is 

impractical for mass trial because of its weight and size. Once all the 

components such as the motor and the platform can be miniaturized, it will 

then be more practical to mount them on foot/shoe. For example, deploying 

several fire-fighters in a real life fire-fighting exercise might be useful to assess 

the RIMU performance in an extreme temperature condition that might alter 

the IMU errors unpredictably. This is thought to be useful because the RIMU 

is supposed to be able to estimate better the error terms as it was shown to 

increase IMU errors observability. 

3. The RIMU approach, and its associated trials presented in Chapter 7, assumed 

a known initial position and attitude. In reality, however, accurate 

initialization of heading is difficult. As discussed in Section 7.3.2.5, if the IMU 

is rotated continuously from the beginning, a correct initialization of heading 

must be acquired before the user starts to walk. Likewise, the initialization of 

heading is still required even if the IMU is not rotated from the beginning. 
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Therefore, further research may be explored to address the heading 

initialization problem appropriately.  

 

Building Heading Aided  

1. Further testing of the CHAIN algorithm in a more challenging environment 

might need to be performed. Although the results presented in Chapter 8 are 

very promising, there are still some possible issues which were discussed in 

Section 8.2.5, 8.3.5 and 8.4.4. These issues thus need to be addressed properly, 

in terms of having real practical trials to properly quantify the position errors 

expected when CHAIN operates in such environments. While this research 

shows that the low-cost PNS with CHAIN is able to navigate in an extended 

period of navigation of up to 40 minutes inside a building with such an 

environment, it is necessary to know for how long the low-cost PNS can still 

produce a useful position solution.  

2. For integrity purpose, it might be possible to integrate a magnetometer, which 

is already built in most of the low-cost IMUs in the market, with CHAIN 

algorithm. Provided that the issue of magnetic disturbances can be addressed 

properly, having magnetometer heading may increase the robustness of CHAIN 

algorithm. For example, currently, the decision making in the algorithm to 

change its cardinal heading depends entirely on the IMU data. If the 

magnetometer is integrated together, potentially, its heading may be used to 

confirm the decision making process. Furthermore, magnetometer 

measurement can also be used to initialize IMU heading because currently, 

IMU heading is initialized manually.  

3. A MEMS barometer may be also coupled together (again for integrity purpose) 

with the low-cost IMU to provide height measurement. This could increase the 

confidence level for the Heuristic Height (HH) algorithm in CHAIN. It might 
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not necessarily be using the actual height measurement from a barometer, but 

rather using it to verify the HH algorithm during processing.  

4. The algorithm might be further extended using heading information extracted 

from environmental information or features. These features may comprise 

elements such as roads, external walls, pedestrian pathways and fences. This is 

because it is likely that a pedestrian will navigate along these features. This 

information may be extracted easily and automatically, for example using an 

existing digital map that incorporates all these elements, as shown in 

Appendix D. 

5. As with the RIMU in the previous section (point 3), the CHAIN algorithm in 

Chapter 8 and its associated trials assume a known initial position and 

attitude information. Further research may therefore be explored to investigate 

the effect of having proper initialization from other available sensors, such as 

GPS, to the overall position accuracy. For example, recently Pinchin (2011) 

has initiated the work by comparing the use of HSGPS and NRTK GPS for 

system initialization.  

6. Finally, the research presented throughout the thesis has used only a low-cost 

IMU from MicroStrain. It is, therefore, interesting to see the comparison of 

navigation performance when different low-cost IMUs from different 

manufacturers are used. Furthermore, the system noise statistics for the IMU 

were chosen empirically during the research. Although some tools can be used 

to approximate these statistics such as Allan Variance, it may not work well 

for low-cost sensors and may vary according to temperature change (Shin, 

2005). Apart from requiring a large amount of data (for Allan Variance) which 

might not be so convenient, it may not also provide the overall system noise 

statistics because the noise statistics can vary according to the dynamics of the 

systems (Wis and Colomina, 2010). Although some studies have been 
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conducted on the adaptation of the system noise statistics by using an 

adaptive filtering approach, it is still considered as an open research area.   

 

9.5 Summary 

A summary of the work conducted for the research has been presented. Conclusions 

were then drawn from the results achieved. Based on these, continuation of the 

research for improvement was suggested and listed as a recommendation for future 

work. A summary of contribution to knowledge was also restated. It is hoped that 

the research presented in this thesis may motivate further research in the field, and 

can be successfully commercialized in the future. 
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Appendix A 
 

NSS Control File 

 

FILES 

  DATSTYLE C:/Simulator/GPS/***.not  
 

  STATION (Location for kinematic/trajectory file) 
   NAME movb118  KINEMATIC 

      C:/Simulator/NSS/DataSim/maketraj/straightTrajectoryNSS.out 

END 

 

  EPH 

     SP3 sp3/igs12234.sp3 

END 

 

  COMMONERR 

     SATCLK    sunb/satclkfile.out 

     SAERR     sunb/saerrfile.out 

END 

 

   REPSTYLE 

     RECCLK  sunb/***.rclk 

     POSREC  sunb/***.rpos 

     SATCLK  sunb/***.sclk 

     SAERR   sunb/***.SA 

     IONO    sunb/***.ION 

     TROP    sunb/***.trop 

     MULTI   sunb/***.mult 

     NOISE   sunb/***.noise 

     SLIP    sunb/***.slip 

   END 

 

END 

PROCOPT 

   MODEL 

      IONO             1 
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      TROPO            1 

      SA               0 

      MULTIPATH        0 

      DOPPLER          1 

      SPLINE           1 

   END 

 

   PARAMETERS 

     STARTTIME   GPS 1223 355000.0 

     STOPTIME    GPS 1223 355980.0 !364800 

     INTERVAL    1 

     SATCLKRANDOMERR  1.0d-12 

     RECCLKRANDOMERR  4.0d-07 

     DOPPLERERROR     0.001d0 

     SIMSATCLK        EPH 

     SIMRECCLK        YES 

     SASIM           NO 

     L1PSEUDO    0.75d0 

     L2PSEUDO    0.75d0 

     L1CARR      0.001d0 

     L2CARR      0.001d0 

     ELEVMIN     5.0d0 

     OUTPUT     PART !FULL  

     SLIP       NO 

     NOTT2      1 

   END 

END 

 

INERTIAL (Inertial errors to be simulated) 
   MODEL 

     LEVERARM 0.0d0 0.0d0 0.0d0 

     GPSOFFSET 0.0d0 0.0d0 0.0d0 

     NGYRO    3 

     NACCEL   3 

     INSDAT   C:/Simulator/INS/insfileStraight.dat  (IMU output filename) 

     INTERVAL 0.005d0 (IMU sampling rate) 
     AERONAV  0 

     EARTHROT YES 

     GRAVITY  1  !0: 9.81  1: Titterton  2: Farrell (Gravity model) 
     SYNCH 0.00 !333333333333333 

     TTR 1d-7 !timetag random error 

     TEMP 1 0.0d0 

   END 

 

   GYROS 

     AXI1 1.0 0.0 0.0 (Definition of IMU axes) 
     AXI2 0.0 1.0 0.0 

     AXI3 0.0 0.0 1.0 

     BIAS 0.35d0       (deg/s) 

     BIASINST 1e-5 100 

     MAXINRUN 0.0 

     RUNST 0.0              (deg/s/s) 

     NOISE 0.100000028d0       (deg/s) 
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     SF1   0.1 1.0       (%) 

     TEMP1 0.02        (deg/s/degC) 

     TEMP2 0.0 

     SATURATION 400  (deg/s) 

     QUANTI 0.011    (deg/s) 

     MISALIGMENT  0.0172 (deg) 

   END 

 

   ACCELEROMETERS 

     AXI1 1.0 0.0 0.0 

     AXI2 0.0 1.0 0.0 

     AXI3 0.0 0.0 1.0 

     BIAS  0.294          (m/s/s) 

     BIASINST 1e-5 60 

     NOISE 0.1       (m/s/s) 

     SF1 0.1            (%) 

     TEMP1 0.02   (m/s/s/degC) 

     TEMP2 0.0  0.0 

     SATURATION 176.5179         (m/s/s) 

     QUANTI  0.003d    (m/s/s) 

     MISALIGMENT 0.0172d0 (deg) 

     CROSS 0.0             (%) 

   END 

 

END 
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Appendix B 
 

Example of Kinematic Data File 

(Week number and seconds of epoch) 
1223 354993.0000  

 

Position at epoch (x,y,z) ECEF Units - metres 
3851531.965529 -78696.606346 5066401.686044  

 

Velocity at epoch (x,y,z) ECEF Units -metres/second 
0.000000 0.000000 0.000000  

 

Attitude at epoch (heading, pitch, roll) Units - degrees 
45.000000 0.000000 0.000000  

 

1223 354994.0000 

3851531.965529 -78696.606346 5066401.686044  

0.000000 0.000000 0.000000  

45.000000 1.000000 0.000000  

 

(until the end) 
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Appendix C 
 

Dynamic Matrix for INS Error 

States 

The state-space form of the INS error equations is shown in Chapter 5 (Eq. (5.11)). 

The full system dynamic matrix, FF with its partial derivates can therefore be 

reproduced here as: 
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where 

F13 =¡ vN

RN
, F21 = vE tanL

REcosL
,F23 = ¡ vE

R2

EcosL
, F41 =¡vE(2ÐcosL+ vE

REcos2L
), 

F43 =
v2

E
tanL¡vNvE

R2

E
, F51 = 2Ð(vNcosL¡ vDsinL) + vNvE

Rcos2L
, 

F53 =
vE

R2

E

(vN tanL+ vD), F61 = 2ÐvEsinL, F63 = 1
R2 (v2

N + v2
E), F44 = vD

R
, 

F45 = ¡2(ÐsinL + vE

R
tanL), F46 = vN

RN
, F54 = 2ÐsinL+ vE

RE
tanL, 

F55 = vN tanL+vD

RN
, F56 =2ÐcosL+ vE

RE
, F64 = ¡2vN

RN
, F65 =¡2(ÐcosL + vE

RE
), 

F71 = ÐsinL, F73 = ¡ vE

R2

E

, F83 = vN

R2

N

, F91 =¡ÐcosL¡ vE

REcos2L, F93 = vE tanL
R2

E

, 

F78 = ¡ÐsinL¡ vEtanL
RE

, F79 = vN

RN
, F87 = ÐsinL + vE

RE
tanL, 

F89 = ÐcosL+ vE

RE
, F97 =¡ vN

RN
, F98 =¡ÐcosL¡ vE

RE
, R =

p

(RNRE) 

° = 3600 is the reciprocal of the process correlation time for modelling the 

bias states as the first order Gauss Markov process. 
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Appendix D 
 

Building Heading Generation 

As discussed in Chapter 8, heading of a building can be possibly derived 

automatically using a free map available. This section will show an example of how 

this was done.  

 

Street Level Map 

Street level map, among other types of maps such as world map, topographic map 

and geological map, is very useful for street level navigation. This is because it 

provides useful street level information to users that include features such as 

buildings outline and roads, and uses either line map (2D representation) or aerial 

imagery (3D-like representation). An extra piece of information commonly found 

from this type of map is that the map is orientated such that North is always 

pointing straight up, East to the right, West to the left and South is pointing to 

the bottom of the map. For example, (Schöning et al., 2009) revealed that from his 

collection of 93 maps in 21 cities (in 8 countries in central Europe and North 

America), 81% had the correct Northing. This important map information is 

therefore used, together with classical edge detection algorithm to show the concept 

of deriving building heading from minimal map information. 
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 There are many methods for edge detection but Canny method is chosen as it 

is the simplest method and commonly used in digital image processing. It works by 

looking for the minimum and maximum value in the first derivative of an image 

pixel values. Points that sit within this threshold will be detected as edge points. 

For further details, please refer to (Canny, 1987).  

After that, Hough Transform (Illingworth and Kittler, 1988) is used to detect 

straight line features from the building image. This is done primarily because edge 

detection shows where edges are, but not what they are geometrically such as line 

or arcs. The idea of Hough Transform is that if certain points satisfy the line 

equation, then it will be considered as a straight line. The longest detected straight 

line is then selected for reliability purpose as quite often short straight feature does 

not present the true building orientation. The start and end point of this line are 

then stored in terms of pixel values and then the equation below is used: 

 Ã = atan2 (±y; ±x)  

Where Ã is a derived building heading, ±y is the difference between start and end 

y-pixel value, ±x is the difference between start and end x-pixel value and atan2 

function is just a variation of atan function, and it is used here because it can 

resolve the angle in the right quadrant. 

The flowchart in Fig. 1 summarizes the heading derivation process which was 

done automatically in Matlab environment.  
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          Fig.1: Heading derivation process 

 

Next, Fig. 2 shows the derived heading in degree for one of the trial presented 

in Chapter 8. The red line is the longest straight line feature detected in the image 

with a calculated heading to be -49.80. After the building heading is acquired, a 

simple offset of +900 is added to the remaining three headings to make up the four 

derived building headings of 40.20, 130.20, 220.20 and 310.20. These 4 headings 

information can then be used for CHAIN algorithm. 

 

 

    Fig. 2: Test building image with calculated heading 

 

Calculated Heading (in degrees)  = -49.787

Read digital aerial image 

Use Canny method 

Apply Hough Transform 

Extract straight line  

Derive building heading 
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Appendix E 
 

Point in Polygon  

Consider a polygon that contains K vertices (xn,yn) where n ranges from 1 to K. 

Now the problem is how to test whether a point (xp,yp) is indeed inside this 

polygon. Imagine a line is extended horizontally from (xp,yp). The test begins by 

checking: if the number of times this line intersects the polygon edges is even, then 

the point is outside the polygon and if the number of intersections is odd, then the 

point (xp,yp) is inside the polygon. Fig. 3 below shows the extended line for some 

sample points A, B and C (denoted by dots). It describes more clearly on how the 

check is run to determine whether a point lies inside or outside the polygon. For 

point A and B, the extended lines intersect with the edges for odd times (1x and 

3x), hence they are considered to be located inside the polygon. On the other hand, 

point C line intersects with the edges for even time (2x), hence it is considered to 

be outside the polygon area. 
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     Fig. 3: The point in polygon test 

 

To avoid the problem when an edge of the polygon lies on the same line from 

(xp,yp), the polygon area is constructed such that it is always bigger than the 

building. By doing this, the position solution from INS will never go beyond 

polygon boundary; therefore there will be no occasion where the extended line from 

the test point overlaps horizontally with the edges. 
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