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Abstract

The aim of semantic image understanding is to reveal the semantic meaning

behind the image pixel. We categorize semantic image understanding into two

broad categories: pixel-level and image-level semantic image understanding.

While pixel-level image understanding aims to obtain the semantic meaning of

each pixel, image-level understanding aims to obtain the semantic meaning of

the whole image, and both levels involve feature extraction and combination. In

this thesis, we study semantic image understanding and have made following

novel contributions:

We investigated the utility of Multiple Kernel Learning (MKL) for feature com-

bination. We introduced the concept of kernel histogram. We observed that the

kernel histograms of different features are usually very different, and argued that

traditional MKL’s linear kernel combination strategy is not particularly mean-

ingful. Then we proposed the concept of Relative Kernel Distribution Invari-

ance (RKDI) for kernel combination, and have developed a very simple his-

togram matching technique to achieve RKDI by transforming different kernel

histograms to a canonical histogram. We have also developed two kinds of mea-

sure for automatically choosing the canonical histogram. Extensive experiments

on various computer vision and machine learning datasets have shown that cal-

ibrating the kernels to a canonical histogram before they are linearly combined

can always achieve a performance gain over state of the art MKL methods.

For the problem of understanding image at the pixel level, we advocate the

segment-then-recognize strategy. We have developed a new framework which

tries to integrate semantic segmentation with low-level segmentation by intro-

ducing a semantic feature feedback mechanism. Experiments on two well-

known datasets have confirmed that our new segmentation method can indeed

produce regions that are more object-consistent. Besides this, we have also

developed a novel idea trying to integrate semantic segmentation with interac-

tive segmentation. We treat the semantic segmentation module as an unreliable

teacher which automatically generates tokens to guide the interactive segmenta-

tion module. Some qualitative results have shown the promise of this approach.
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We follow the segment-then-recognize strategy, and found this philosophy work-

s very well on medical image data. We have developed a novel algorithm termed

as GlandVision for detecting glandular structures contained in a microscopic im-

age of human tissue. We first transform the image from Cartesian space to polar

space and introduce a novel random field model with an efficient inference strat-

egy that uses two simple chain graphs to approximate a circular graph to infer

possible boundary of a gland. We then develop a visual feature based support

vector regressor (SVR) to verify if the inferred contour corresponds to a true

gland. And finally, we combine the outputs of the random field and the regres-

sor to form the GlandVision algorithm for the detection of glandular structures.

In the experiments, we treat the task of detecting glandular structures as object

(gland) proposal, detection and segmentation problems respectively and show

that our new technique outperforms state of the art computer vision algorithms

in all these tasks.

For the problem of semantic image understanding at the image level, we aim

to utilize the large repository of image data present on the web together with

their associated tags. We have developed a novel random forest model for im-

age annotation and image retrieval. On one hand, the tree structure inherited

in the random forest serves as an efficient data structure for storing and fast re-

trieving image data; on the other hand, we utilize the tag information to guide

the generation of the random forest. Thus the human knowledge (in the for-

m of tags) is implicitly embedded in our random forest, helping us to tackle

the semantic gap problem lying in the core part of image-level semantic image

understanding. Different from conventional random forest model, which fuse

the information contained at each leaf node individually, our method treats the

random forest as a whole, and introduces the new concepts of semantic nearest

neighbors (SNN) and semantic similarity measure (SSM). Based on which we

performed the image retrieval task and casted the task of image annotation as

a learning to rank problem. Our new technique is intrinsically scalable and we

will present experimental results to demonstrate that it is competitive to the state

of the art methods.
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Chapter 1

Introduction

This thesis deals with the problem of semantic image understanding, the goal

of which is to reveal the semantic meaning lying behind the pixels of an im-

age. This task is always the holy grail in computer vision, and (partly) solving

it will be of great significance with many potential applications, such as au-

tonomous driving, Content Based Image Retrieval (CBIR), Intelligent Robots,

Human Computer Interaction, etc.

In the following of this chapter, we will firstly highlight the motivations behind

this thesis in section 1.1. In section 1.2 we analyze the challenges which make

the semantic image understanding problem a difficult task, and we present our

contributions to the resolution of these challenges in section 1.3.

1.1 Motivations

Digital images are ubiquitous in our daily life: almost every mobile phone has

a camera embedded in it; CCTV camera is placed across the whole UK; Face-

book, Flickr or Youtube are consistently encouraging people to upload their own

pictures or videos; the 3D movie is gradually dominating the cinemas over the

1
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traditional 2D movie... It is no doubt that digital image technology has brought

many joys and more safety to our daily life. What accompanies these emerging

images and videos is an urgent need for intelligent techniques to store, retrieve,

or even ‘understand’ the images.

To endow the computer the ability to understand the image will bring us more

joys and convenience. For example, you do not bother to search folder by folder

when you want to find a specific image from your enlarging image collections.

If the computer can understand the semantic content of an image captured from

a camera mounted on a car, then it can drive the car automatically. If the CCTV

camera can understand the semantic meaning of its captured video, then it can

immediately report to the police in case of danger or criminal.

1.2 Technical Challenges

Owing to the fast growing computational power and more advanced machine

learning techniques, recent years have witnessed a fast development in semantic

image understanding. A huge gap, however, still exists between human and

computer: We can easily recognize about 30,000 different categories [2] with

high precision; but the computer is still struggling to recognize 256 categories

[3].

Researchers try to tackle the semantic image understanding problem from dif-

ferent angles: Image Classification or annotation deals with the problem of

whether an image contains a specific object; Object Detection tries to answer

where the object is, if present; Semantic Segmentation aims to assign a se-

mantic label to every single pixel contained in the image, but not necessarily

count the number of objects. These seemingly different tasks are in fact close-

ly related to each other, and they share at least one common module: feature

extraction/combination.
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One of the most difficult problems in image understanding is perhaps the high

intra-class variation V.S. low inter-class variation, and a good feature extrac-

tion module should be designed to directly tackle this problem. A good feature

should be both invariant and discriminative [4]. Here, ‘invariant’ means the fea-

ture should not change among the different entities in the same semantic class,

i.e. it can reduce the intra-class variation. It also should be ‘discriminative’,

which means it is helpful for distinguishing one semantic class from another,

and therefore can enlarge the inter-class variation. As features are so important,

there are numerous methods in the literature designed for extracting meaningful

features [5–8].

As different features represent different aspects of an image, it is often helpful

and sometimes necessary to combine various features together in order to gain a

comprehensive understanding of an image. Therefore, a natural question arises:

how to effectively and efficiently combine these different kinds of features?

To understand the image at the pixel level, we can adopt two possible strate-

gies: the first one is to consider each pixel or superpixel (a small group of pixels

which share similar low-level properties) as the processing primitive, and direct-

ly assign a semantic label to it. Most of the state of the art methods [9–15] adopt

this strategy. Another method is to adopt a segment-then-recognize strategy, i.e.

first segmenting an image into different regions, in the hope that each region

will correspond to one object, then recognizing each object one by one.

One of the main drawbacks of the first strategy is that it loses the information of

an object, as each ‘object’ is just a group of pixels or superpixels with the same

semantic labels. On the contrary, by adopting the second strategy, as long as

the segmentation module can produce object-consistent regions, the output will

naturally be an object consistent result. However, the biggest challenge behind

the second strategy is how to design an object-consistent segmentation method?
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Although the idea of understanding the semantic meaning of each pixel in an

image seems appealing, it is still too difficult at the current level of technolo-

gy. If we take a step back, and only consider understanding the image at the

image level, this task perhaps becomes easier, while it is still of great practical

significance, especially in multimedia.

Different from understanding an image at the pixel level, which usually needs

lots of manually labeled ground truth data to train the algorithm, there already

exists a huge amount of images on the internet with human labeled tags. These

tags reflect human’s understanding of an image. We believe this large reposi-

tory of image data and their associated tags contain valuable knowledge worth

exploring. Efficiently utilizing these information and knowledge could help us

overcome the semantic gap problem lying in the core of the image-level seman-

tic image understanding problem. How to design a scalable algorithm that can

handle large-scale image data and efficiently utilizing their (noisy) tags is also

a challenging task.

1.3 Contributions

In this thesis, we have made the following contributions:

• In the feature combination scenario, we noticed that kernel based feature

combination techniques, such as Multiple Kernel Learning (MKL), have

drawn increasing interest recently. In Chapter 3, we transfer the concept

of the histogram, which is commonly used in image processing area, to

the kernel matrix, and proposed the concept of kernel histogram. We make

an important observation that the kernel histograms of different features

are usually very different, thus making MKL’s linear kernel combination

strategy not particularly meaningful. To remedy this, we have developed
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a very simple histogram matching based technique to transform the his-

tograms of different kernels to be the same before they are linearly com-

bined. Extensive experiments on various computer vision and machine

learning datasets have shown that our method can always boost the per-

formance of MKL. Furthermore, our technique is also beneficial for unsu-

pervised cases, where there is a need to sum different kernels (similarity

measures) together.

• For the problem of pixel-level semantic image understanding, we advo-

cate the usage of the segment-then-recognize strategy. Previous methods

tend to abandon this approach partly because of the difficulty in generat-

ing object consistent regions. In Chapter 4, we treat the output of typical

semantic segmentation module as semantic features, and have develope-

d a framework that fuses these semantic features with low-level features.

With the help of these semantic features, our segmentation algorithm is

more likely to produce object-consistent regions. Experiments on two

well known datasets have confirmed the effectiveness of our approach.

We further showed that these semantic features can not only be fused with

low-level features in a soft way; on their own, they can be utilized to

generate hard tokens, which are then used to guide the interactive seg-

mentation module. Some qualitative results have shown the promise of

this approach.

• We follow this segment-then-recognize strategy, and find this philosophy

works well for medical applications. In Chapter 5, we have developed a

novel polar space random field model for detecting glandular structures

in medical images. We treat the task of detecting glandular structures as

object (gland) proposal, detection and segmentation problems respectively

and show that our new technique outperforms state of the art computer

vision algorithms in all these tasks.
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• For the problem of image-level semantic image understanding, we have

developed a novel usage of random forest to explore knowledge from the

huge amount of tags widely present in the web currently. We treat the ran-

dom forest as a whole, and introduce two new concepts: semantic nearest

neighbors (SNN) and the semantic similarity measure (SSM). Based on

which we performed the task of image retrieval and casted the task of

image annotation as a learning to rank problem. Our new technique is

intrinsically scalable and we will present experimental results in Chapter

6 to demonstrate that it is competitive to the state of the art methods.



Chapter 2

Literature and Methods

In this chapter, we give an overview of the related methods and the literature

in the tasks related to semantic image understanding. We categorize these tasks

into two categories: pixel-level semantic image understanding methods (includ-

ing object detection and semantic segmentation) and image-level semantic im-

age understanding methods (including image classification, image retrieval and

image annotation). No matter if it is pixel-level or image-level semantic image

understanding, they share at least two common modules: a feature extraction/-

combination module and a classification module.

This chapter is structured as follows: we will first review related methods in

feature extraction/combination and classification in section 2.1 and 2.2 respec-

tively. In section 2.3, we review literature in object detection and semantic seg-

mentation which we categorized as pixel-level semantic image understanding

problems, and then we review literature in section 2.4 on image-level semantic

understanding. Section 2.5 will give a short summary of this chapter.

7
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2.1 Feature Extraction and Feature Combination

Feature is perhaps the most important concept in computer vision. The concept

of feature is used to ‘denote a piece of information which is relevant for solving

the computational task related to a certain application.’1 This definition implies

that feature is a higher level concept than pixel which is specifically designed

and represents our knowledge about a specific problem. With the help of feature,

we no longer need to deal with the pixel, and a classifier could be applied directly

to those features.

2.1.1 Feature Extraction

Numerous methods in the literature have been designed for extracting meaning-

ful features. Based on their processing primitives, we categorize them into three

groups: pixel-level features, regional features and image-level features.

On its own, a pixel should only have a color feature (R,G,B) and a geometric

feature (x, y) which corresponds to its position in an image. However, a pixel

can also be put into a larger spatial context. This is especially necessary for

semantic segmentation, where a semantic label is required for every single pixel.

For example, we can extract features from a patch which centers on this pixel,

and consider these features as belonging to this pixel. In the prominent work

of [9], the authors propose to extract the pixel features from an even larger area

which also centers on this pixel. They randomly crop rectangles from this larger

area and extract features from it. This feature together with the location of the

rectangle are assembled as a two-tuple and considered to be the feature of the

pixel. In this way, there could even be an infinite number of features for a pixel.

1http://en.wikipedia.org/wiki/Feature (computer vision)
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For a region, features can be extracted corresponding to its color (color name

[16], color SIFT [8], etc), texture (texton histogram [7]), shape (Histogram of

Gradient (HoG) [6]), geometry information [17] or its appearance (Scale Invari-

ant Feature Transform (SIFT) [5]). In [18], the authors proposed a kernel view

of different regional features, and their proposed kernel descriptor can directly

turn pixel attributes into compact regional features.

Although an image is composed of different regions, image feature extraction

is not merely assembling regional features together. Concatenation is the least

desirable method we would adopt in assembling regional features, as it will pro-

duce features of higher dimensions and worsen ‘the curse of dimensionality’.

Instead, the most popular method in the literature is the bag-of-words represen-

tation, which assigns each regional feature an index in a pre-trained codebook.

These indexes, also called words, are then assembled together, and its histogram

is considered as the image feature. Besides the bag-of-words representation

[19, 20], there also exists other methods, such as the covariance matrix [21, 22]

representation, fisher vector representation [23], graph representation [24], etc.

All the features described above are bottom-up features. Some recent works ad-

vocate using the outputs from classifiers as new and higher-level features. [25]

considers the outputs of various object detectors as new features and success-

fully used them in the task of image classification; [26] extend this idea and use

the outputs of many individual action detectors as new features which are then

used for action recognition. In one of our works [27], we consider the outputs of

typical semantic segmentation algorithm as high level features, and successfully

integrated them with low-level features in hopes of generating object-consistent

regions.

In summary, there is a crowd literature on image feature extraction, and many

new kinds of features are still emerging. Just as we mentioned at the begin-

ning of this section, a good feature should be problem dependant and the whole
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purpose of feature extraction is to facilitate solving the specific problem. If an

idealized feature could be extracted, then this specific problem is almost solved.

For example, if our task is to classify apple from pear, then the shape feature will

give us a good result. As most apples are round, while pears are not. However,

many problems can’t be easily solved by a single type of feature, and we had to

combine different types of features together.

2.1.2 Feature Combination

The importance of feature combination has long been recognized by the com-

puter vision community. Different feature types, such as local, global, color,

texture, etc, capture different characteristics of an image. It is often helpful and

sometimes necessary to combine various features together in order to gain a

comprehensive understanding of an image.

For a typical semantic image understanding system, what follows a feature ex-

traction step is a classification step. If we consider a classifier as a one-input-

one-output black box, then the feature combination can happen both on the in-

put and the output level. On the input level, we can simply concatenate different

features together. In [28], the authors found that they can obtain state of the

art semantic segmentation results by simply concatenating local regional fea-

tures with global bag-of-words features; on the output level, we can fuse the

outputs of different classifiers together. There exists research [29] showing that

summing the classifiers’ probabilistic outputs is always a robust way of com-

bining classifiers. Previous works have always shown a performance gain when

combination is used.

Besides combination on the input and the output level, we can utilize a kernel to

represent the relations between samples in different feature channels, and then
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perform the combination at the kernel level, which can be considered as a middle

level fusion stage.

Let {xi}Ni=1 beN instances, and {fm}Fm=1 represent a set of F feature extractors.

Km is a kernel function which will be performed on the m-th feature channel.

Then the similarity between two instances based on their m-th feature fm is de-

fined as Km(fm(xi), fm(xj)). Kernel based feature combination is about com-

bining different Km into a single kernel K∗. Possible methods include linear

combining them:

K∗(xi,xj) =
F∑

m=1

βmKm(fm(xi), fm(xj)) (2.1)

where βm are the linear combination coefficients, which can either be fixed or

to be learned by the subsequent classification algorithm.

2.2 Classification Methods

A classifier, which is a concept borrowed from machine learning community, is

another basic module shared by different semantic image understanding tasks.

The problem of semantic image understanding is in fact a pattern recognition

problem, which is defined as the task of assigning a label to a given input val-

ue2. Most of the methods adopted in the literature transformed the recognition

problem to a classification problem, although these two concepts are not exactly

the same.

For example, if we see an object that we have never seen before, we would in-

stantly know that we don’t know this object. This is an ideal case of recognition.

But a classification based system will compare this object with all previously

2http://en.wikipedia.org/wiki/Pattern recognition
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learned classes. Only when all of these classes output negative values, can the

system get to the conclusion that it doesn’t know about this object.

The drawback of the classification paradigm is obvious: it has to undergo a

laborious one-to-one comparison step, and can only recognize the classes that

have been previously met. Although there is some research [30] trying not to

classify the data, they are seldom used in the literature partly because of their

relatively low performance.

In the following, we will review several classification techniques that are com-

monly used in the literature.

2.2.1 From SVM to MKL

Support Vector Machine (SVM) is perhaps the most widely used machine learn-

ing tool in computer vision research. Its popularity is mostly because of its many

attractive properties, like its sound theoretical justification, a simple geometric

interpretation, a sparse solution, less prone to overfitting, etc.

Linear SVM aims to learn a hyperplane that can separate the training data {xi}Ni=1

based on their corresponding labels {yi}Ni=1, while simultaneously trying to max-

imize the margin between different classes. By adopting the kernel trick, SVM

can handle non-linear data. A kernel K(x1,x2) is formally defined as the inner

product of φ(x1) and φ(x2):

K(x1,x2) = 〈φ(x1), φ(x2)〉 (2.2)

where φ(•) is a mapping function that projects the original data x into a higher,

or even infinite dimensional space φ(x). For the multi-class problem, we can

project x together with its label information y into a joint high dimensional
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space φ(x, y). A simple way of defining φ(x, y) could be [31]:

φ(x, y) = [0, · · ·,0, φ(x)︸︷︷︸
y

,0, · · ·,0] (2.3)

For example, if we have three classes, then y ∈ {1, 2, 3}. Equation (2.3) means

φ(x, y = 1) = [φ(x),0,0], φ(x, y = 2) = [0, φ(x),0] and φ(x, y = 3) =

[0,0, φ(x)].

Therefore, a standard multi-class kernel SVM can be defined as:

min
w,b,ξ

1

2
‖w‖2 +

N∑
i=1

ξi

s.t. (w · φ(xi, yi) + byi)− (w · φ(xi, y) + by) ≥ 1− ξi, ∀i, y 6= yi (2.4)

where b is a vector composed of {by, y ∈ Y}.

The predicted class y for a new test sample x is:

y = arg max
y∈Y

w · φ(x, y) + by = arg max
y∈Y

N∑
i=1

αiyK(xi,x) + by (2.5)

where αiy is the Lagrange multiplier.

The original SVM only utilizes one kernel matrix, which is sometimes deemed

to be inadequate. On one hand, there are many different kinds of kernel function-

s, and each kernel function has parameters which are usually difficult to tune.

On the other hand, there are scenarios where there is a need to utilize different

kernels, such as the feature combination scenario introduced above. Therefore,

instead of utilizing only one kernel, Multiple Kernel Learning (MKL) tries to

utilize a series of kernels and learn an optimal linear combination of them.

Suppose we have F kernels {K1, K2, ..., KF}, which are obtained either by

varying the parameters of the kernel function or performed on different feature
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channels, then we replace the single kernel K of SVM appeared in (2.5) with a

linear combined kernel K ′ =
∑F

m=1 βmKm. Thus (2.5) can be re-written as:

y = arg max
y∈Y

F∑
m=1

βmwm·φm(x, y)+by = arg max
y∈Y

N∑
i=1

αiy

F∑
m=1

βmKm(xi,x)+by

(2.6)

Thus the multi-class MKL can be formulated as:

min
w,b,β,ξ

1

2

F∑
m=1

βm‖wm‖2 +
n∑
i=1

ξi

s.t. ∀i, y 6= yi,(
F∑

m=1

βmwm · φm(xi, yi) + byi

)
−

(
F∑

m=1

βmwm · φm(xi, y) + by

)
≥ 1− ξi

(2.7)

The seminal work of MKL dates back to [32]. After MKL was proposed, many

variants of it have been proposed [31, 33, 34], and have been quickly adopted to

deal with various computer vision problems [4, 35]. [36] provided a good sur-

vey on various kinds of MKL learning algorithms. They empirically compared

different MKL algorithms and found no large differences between them in terms

of accuracy.

Despite its huge success, the formulation of MKL is still being questioned by

researchers. In essence, MKL is simply a linear combination of different ker-

nels. It implies that the contribution of each kernel is fixed for all the training

samples [37]. This seems to be an unnecessary, too strong constraint. In [37],

the authors propose to learn augmented coefficients for each sample in each fea-

ture channel. They achieve this by augmenting the kernel matrixes. However, as

the augmented kernel they used is still a block diagonal matrix, the coefficients

they learned are equivalent to learning different kernels separately and adding an

appropriate bias term for all the kernel classifiers. In [38], the authors proposed
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several interesting heuristics and schemes for combining kernels in a nonlinear

and data dependent way, including exponential weighting scheme (‘ExpWS’),

‘MaxMin’ method, etc.

Although SVM (including MKL) has achieved tremendous success in the last

decade, it still has some limitations. For the linear SVM, it’s mostly limited by

its linear nature, which makes it unable to deal with non-linear data. Therefore,

kernel SVM is more preferred in common practice, and it is generally believed

that kernel SVM can obtain a higher accuracy than linear SVM. However, kernel

based methods (including kernel SVM, MKL, etc) can not easily scale to large-

scale settings, as we had to store the kernel matrix whose size is as large as N2,

whereN is the number of training samples. Therefore, we had to resort to linear

SVM in large-scale scenarios.

2.2.2 Peril and Promise for Nearest Neighbor method

SVM is in fact a parametric model [39] which is characterized by its parameters.

In contrast, there also exist non-parametric models which are parameter-free.

Among them, Nearest Neighbor method is perhaps the most prominent one.

In a typical K-Nearest Neighbor (KNN) method, one only needs to store all

the training samples together with their labels. When a test sample comes, its

distance from all the stored training samples are calculated, and the label that

appears most in its K nearest neighbors will be assigned to the test sample,

where K could be any integer.

In the past, NN is always considered as a baseline method, and it is generally be-

lieved that its performance cannot compete with discriminative classifiers, such

as SVM [40]. This belief is however, challenged by the work of [39], where the

authors showed that NN based methods can beat the performance of SVM in im-

age classification tasks. This idea is then further explored in [41–43]. Besides
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classification, NN based methods have also shown their effectiveness in other

computer vision tasks, including scene completion [44], image parsing [17, 45],

image annotation [1, 46], etc.

Compared to SVM, NN clearly enjoys some advantages. For example, NN does

not need a complicated and usually time-consuming training procedure which

is required by SVM. This is especially important when more training samples

become available: SVM needs to be re-trained based on the enlarged training

set, whilst NN only needs to store those new coming samples. Besides, NN can

easily deal with large number of classes, which however poses a big challenge

for SVM. In fact, we believe that the style of NN classification resembles more

to human recognition, as we do not necessarily need to transform the recognition

problem into many classification problems.

From the machine learning point of view, we are always interested in the gener-

alization power of an algorithm. For SVM, it utilizes a set of training samples,

i.e. support vectors, in hopes that all these training samples can together gener-

alize well; while for NN, it only utilizes the K nearest neighbors. Although the

idea of utilizing a set of samples to achieve a good generalization power seems

more appealing than only using a few nearest neighbors, there exists recent work

[47] showing that even based on one sample, the algorithm can also generalize

well.

On the other hand, the drawback of NN is also obvious. One of the biggest

concerns is the time complexity when making predictions. Suppose there are n

training samples in Rm, then it requires O(nm) time to predict one test sample.

This is in contrast withO(m) for linear SVM orO(cm) for kernel SVM, where c

is the number of support vectors which is usually much smaller than n. Although

there exist efficient data structures which can accelerate the searching speed,

like kd-trees, it is only useful for low-dimensional data [48]. There also exist

scenarios where there is no need to return the actual NN, and a ‘good guess’ is
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enough. In those cases, we can adopt Approximate Nearest Neighbor (ANN)

methods, like Locality-Sensitive Hashing (LSH), randomized kd-trees [49], etc.

Besides the high prediction complexity, another problem facing NN in image

understanding area is the semantic gap problem, which states that the nearest

neighbors retrieved by visual similarity doesn’t necessarily guarantee semantic

similarity. After all, NN is still an unsupervised method.

2.2.3 How can Random forest help?

Random Forest, also known as decision forest or decision trees, is becoming

more and more popular in recent years. A random forest if formally consisted

of a set of random trees, where each tree is trained on a random subset of the

training data, thus each tree can be considered as independent from each other.

The outputs from each tree are then combined together as the final output of the

random forest.

Consider a typical classification scenario, where we try to build a decision tree

for the classification purpose. Suppose we have a set of training samples {xi}Ni=1

and their corresponding class labels {yi}Ni=1, we first extract features {Fi}Ni=1

from these samples, and then define a split function in order to split the samples

into two subsets, which we named as left child and right child. Possible split

functions include a linear classifier [50, 51]:

wTF + b ≥ 0 go to left child

otherwise, go to right child
(2.8)

or the feature difference between two feature dimensions [52]:Fi − Fj ≥ thresh go to left child

otherwise, go to right child
(2.9)
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Based on the split function defined above, we can split samples to the left child

node or right child node accordingly. We can generate multiple splits by choos-

ing different feature dimensions or different thresholds. Then we can use the

widely used information gain criteria [10, 50] to pick the best split:

Score(split) = 4E = − |Il|
|In|

E(Il)−
|Ir|
|In|

E(Ir) (2.10)

where E(I) is the Shannon entropy of the class distribution in the set of samples

I . |I| means the number of samples contained in I . In is the set of training

sample in node n, while Il and Ir represent the training images contained in

node n’s left and right child node respectively.

This kind of split recursively performs on the training samples until the stopping

criterion is satisfied. The stopping criteria could be set as the maximum depth

of the tree or the least number of samples contained in a node. At each leaf

node, we store the posterior probability p(y|x) as the output of this tree, and the

outputs from different decision trees are combined together as the final output

of the random forest.

When a test sample comes, it drops from the root node and keeps falling ac-

cording to the split functions stored at each node until it reaches a leaf node.

Then the posterior probability stored at that leaf node will be used to classify

this sample.

Past research on random forest usually focuses on its discriminative power, and

it has been successfully used in many different computer vision tasks, including

image classification [50], object detection [53], human pose estimation [54], etc.

In this thesis, we would like to emphasize its tree structure. We believe that the

tree structure inherited in the random forest can not only facilitate the decision

making process of the random forest, but also serve as an ANN (Approximate

Nearest Neighbor) search method. If we consider random forest as an ANN
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method, then it can perfectly overcome the two inherited problems described

above in NN based methods: firstly, the tree structure inherited in the random

forest can ease the computational burden of NN in making predictions; secondly,

random forest can easily incorporate supervised information in generating the

random trees, which can tackle the semantic gap problem.

2.2.4 Integrating Classifiers in a Random Field Model

Sometimes, we not only need to tackle the single-input single-output classifica-

tion problem, but also a single-input structure-output problem. This is generally

known as a structure learning [55, 56] problem. For example, when we need to

assign each pixel of an image a semantic label, we not only need to perform the

classification on each single pixel, but also need to combine the classification

results together to obtain a globally consistent result.

Conditional Random Field model (CRF) [57] is an elegant method to deal with

this problem. A CRF formally consists of a random variable X over the observed

data and a set of random variables Y = {Y1, Y2, ..., Yn} over the labels to be

inferred. All components Yi of Y are usually assumed to range over a finite

label alphabet Y . When conditioned on X, if Y obeys the Markov property:

p(Yv | X, Yw, w 6= v) = p(Yv | X, Yw, w ∼ v), where w ∼ v means there exists

a link between w and v, then (X,Y) is a CRF.

A clique C in a CRF is defined as a fully connected subset of the vertices Yi.

Then the conditional probability of label Y given X is defined as:

p(Y | X) ∝ exp(−E) = exp(−(
∑
C

ψC(YC | X))) (2.11)

where E is the energy function of a CRF, and ψC is the so-called potential func-

tion which reflects the cost of the current label configuration YC . When the

clique C contains only a single Yi, then ψC is named as the unary potential;



Chapter 2. Literature and Methods 20

when it contains a pair (Yi, Yj), then ψC corresponds to the pairwise potential.

C could also contains more than two variables, and those ψC are named as high

order potentials [14].

The inference procedure of a CRF corresponds to finding an optimal Y which

can achieve the lowest E or the highest p(Y | X):

arg max
Y∈Y

p(Y | X) = arg min
Y∈Y

E = arg min
Y∈Y

∑
C

ψC(YC | X) (2.12)

whilst the training procedure of a CRF is to find appropriate parameters in ψC

in order that the optimal Y for the training data corresponds to the ground truth.

CRF is an elegant and principled framework for combining different classifiers,

in which we can define suitable forms of ψC to tackle the problem at hand.

For example, the unary potential can be defined as the output of a classifier,

either SVM or random forest, which is specifically trained to predict the label of

Xi; the pairwise potential can be defined to reflect the co-occurrence statistics

obtained from the training set. For example, ‘water’ and ‘boat’ are more likely to

co-occur than ‘water’ and ‘bus’. Thus we can assign a higher cost for assigning

neighboring nodes as ‘water’ and ‘bus’. We don’t need to specify these rules

manually, as these rules can be learned by the CRF automatically in its training

phase.

After reviewing the methods in feature extraction/combination and classification

domain, we now introduce the literature in the tasks related to semantic image

understanding. We will first review related methods on pixel-level semantic

image understanding and then on the image-level.
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2.3 Semantic Image Understanding at the Pixel

Level

The most related two tasks in the field of pixel-level semantic image understand-

ing are object detection and semantic segmentation. We now review related

literature in these two tasks.

2.3.1 Object Detection

Generally speaking, objects can be divided into two kinds [58]: rigid objects

with specific shapes (such as pedestrians, cars, etc) and objects of amorphous

spatial extent (e.g. trees, road, sky). However, most existing methods are de-

signed to detect rigid objects, as it is still very difficult to detect non-rigid ones.

We methodologically categorize existing object detection techniques into three

categories: treating object as a whole, treating objects as a constellation of

parts, and context based methods.

Treating Object as a Whole

The most straightforward approach in treating object as a whole is the sliding

window method. For a test image, a predefined sub-window slides over the

image, trying to cover all possible locations and scales. The features in this

sub-window are extracted and fed to a classifier which is trained to decide if the

sub-window contains the specific object or not. Although this idea is simple,

it’s still the dominating approach in the literature. Recent modifications to this

approach are methods which try to increase the detection speed using branch

and bound [59], or combine the holistic window with some inner parts of the

window which represent the parts of the object [60, 61].

Treating Object as a Constellation of Parts
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The major problem of treating objects as a whole is that it can hardly deal with

the problem of occlusion. However, in our visual world, objects are often oc-

cluded by other objects.

Part-based methods are inherently more robust than holistic methods in dealing

with occlusion. Existing successful methods include the constellation model

[62, 63] and Hough voting based methods [64]. The constellation model treats

the object as a constellation of local parts, and infers their ‘optimal’ combination

in a Bayesian framework. Here the ‘optimal’ means lower intra class distance

and the higher inter-class distance. Hough voting is an old idea in detecting lines

or some regular shapes. This idea was then generalized and successfully used in

object detection scenario by the Implicit Shape Model (ISM) [64]. In ISM, each

part votes for the most probable places of the object center. The evidence from

different parts are accumulated and the peak of the accumulation map is chosen

as the object center.

Although the strategy of treating object as a constellation of parts is more toler-

ant to occlusion, its drawback is a lack of discriminative power. As the features

extracted from parts (usually in the form of a patch or a small region) do not

necessarily contain enough discriminative information. In these cases, we have

to extract features from a larger context than the part itself.

Context-based Object Detection

It is generally believed that context plays a very important role in human object

recognition. Taking the image in Fig.2.1 as an example, we can easily judge that

there exists a car in the left image and a person in the right image. However, it

turns out that the blob on the right is identical to the one on the left after a 90

degree rotation!

Many works exist on utilizing context to detect objects. To name a few, [65]

uses the image categorization result as a prior to guide the object detection. [66]
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FIGURE 2.1: A ‘car’ on the left and a ‘pedestrian’ on the right. In courtesy
from http://web.mit.edu/torralba/www/carsAndFacesInContext.html

uses the entropy criterion to select the ‘unknown’ objects. For those ‘unknown’

classes, the author concatenates the features of this unknown object with the fea-

tures extracted in neighboring known classes, and uses the concatenated features

to re-detect the unknowns.

In summary, there are numerous methods exist for object detection, but still it is

an unresolved problem. Although the detection performance is progressing year

by year by benefiting from the increase of computational power and the care-

fully designed machine learning techniques, the best state of the art pedestrian

detector in real-world scenario is still far below our requirements [67]. Besides,

object detection can only be used to detect a specific class of objects in an image,

it cannot obtain the semantic meaning of every single pixel, and this is exactly

what the semantic segmentation tries to do.

2.3.2 Semantic Segmentation

Semantic segmentation aims to assign a semantic label to every single pixel in an

image. A common aspect shared by most of the existing algorithms is that they

usually choose pixel or superpixel [9, 12, 68] as their processing primitives. For

each pixel or superpixel, some features as described in section 2.1.1 are extracted

first. Then a classifier is performed on these extracted features to predict the

semantic class that this pixel might belong to. To ensure that we will obtain
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a globally consistent result, the classifier outputs of different pixels are then

assembled together in a CRF framework.

One notable exception beyond this theme is the work in [69], where the authors

directly chose the region as their processing primitives, and they achieved the

best segmentation accuracy on the recent PASCAL challenge [70]. Compared

with choosing pixel or superpixel as processing primitives, choosing regions en-

joys some benefits: the information contained in a region is more comprehensive

than that contained in a superpixel, and the shape of the region is beneficial for

recognizing some shape dominate objects. However, one obstacle in adopting

this strategy is that it is very difficult for the segmentation algorithm to produce

semantic consistent regions. [69] circumvents this problem by generating multi-

ple figure-ground hypotheses. However, the segmentation module they adopted

is still low-level cue based. Although they performed a supervised ranking after

the hypothesis generation, the errors that occurred in the low-level segmentation

module will not be remedied.

In fact, the segmentation problem is an ill-posed problem. It is generally be-

lieved that we need to utilize top-down information to guide the bottom-up seg-

mentation. In other words, if we want to achieve a semantic consistent segmen-

tation, we need to incorporate information beyond the image itself. While the

authors in [71] used a shape prior to guide the segmentation, classcut [72] or

co-segmentation [73] utilize information from other images. Another interest-

ing work in [74] retrieves similar images from the internet, and these retrieved

images are treated as additional information to guide the segmentation.



Chapter 2. Literature and Methods 25

2.4 Semantic Image Understanding at the Image

Level

Although the idea of understanding the semantic meaning of each pixel seems

appealing, it is perhaps too difficult at the current level of technology. For ex-

ample, the most state of the art results on a challenging dataset can only obtain

an accuracy of around 43% [75]. Therefore, if we take a step back, and consider

the image-level semantic image understanding, this task perhaps becomes eas-

ier, while it is still of practical significance. On one hand, there exist scenarios

where we only need image-level semantic meanings, such as the content based

image retrieval (CBIR) system; on the other hand, an accurate image-level se-

mantic understanding can serve as the context information, which can in turn

boost the performance of pixel-level understanding [65].

There are at least three tasks that are related to image-level semantic image

understanding: image classification, image retrieval and image annotation.

Image classification aims to classify an image whether it contains a specific ob-

ject or not. Among all the image classification methods, Bag-of-Words (BoW)

model is the most well-known. It dates back to the seminal paper of [20], al-

though similar ideas can be found even earlier [19]. Ever since BoW was pro-

posed, a lot of variants and improvements have been made upon the original

one [76–78]. We refer the reader to the recent PASCAL VOC challenge3 for the

state of the art methods in image classification.

Given a query, either a keyword or an image, the task of image retrieval is to

return a ranked list of images from a large image repository that are mostly

related to the query. For a good survey, please refer to [79].

3http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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Different from image classification or image retrieval, the task of image annota-

tion is to automatically assign metadata, in the form of caption or keywords, to

a digital image. Large quantity of literature exists in the image annotation area,

and methods range from generative models [80–82] to discriminative models

[83]. While generative models need a large quantity of training data to learn the

joint probability of semantic concepts and image visual features, discriminative

models treat each tag as a semantic class, and try to learn a different classifier

for each tag. Therefore, it is not easy to model the correlations between tags

and this discriminative model will inevitably encounter difficulties when deal-

ing with large number of tags. Recently, nearest neighbor based methods [1, 46]

have attracted much attention. Among them, Tagprop [46] is perhaps the most

successful method which shows superior performance on several benchmark im-

age annotation datasets. It uses a weighted nearest neighbor model to predict the

possible tags. Its superior performance relies on its sophisticated training proce-

dure, and its optimization function is composed of items corresponding to every

tag in every image, which will inevitably hinder its applicability to large scale

datasets.

In fact, these three tasks are closely related. If the image annotation algorith-

m can automatically assign an image with keywords, then the image retrieval

system can retrieve images directly based on these keywords. The problem of

image annotation itself can be decomposed into a set of image classification

tasks, where each classification task aims to predict the existence of a particular

tag.

2.5 Summary

In this chapter, we have reviewed related methods and the literature in tasks

related to semantic image understanding. Semantic Image Understanding is in
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fact a very broad area, and it’s impossible to review all related methods here.

We will also review the most related methods to ours in the later chapters where

necessary.



Chapter 3

Feature Combination beyond Basic

Arithmetics

Just as we mentioned in the previous chapter, feature plays a fundamental role

in semantic image understanding, and how to efficiently combine different fea-

tures is a non-trivial task. In this chapter, we introduce our new method which

can consistently boost the performance of Multiple Kernel Learning, which is

deemed to be the most prominent method in kernel-based feature combination.

Furthermore, we will also show that our proposed method also works in unsu-

pervised scenarios, where there is a need to sum different similarities together.

This chapter is organized as follows: in section 3.1, we review some basics for

kernel based feature combination and introduce the rationale behind our new

method. Then we introduce the concept of kernel histogram in section 3.2, and

present our histogram matching based kernel combination technique in section

3.3. As the histogram matched kernels may be no longer positive semi-definite,

they need to be transformed to positive semi-definite in section 3.4. We also

propose to use two kinds of measures adapted from traditional MKL solvers for

automatically choosing the canonical kernel histogram in section 3.5. Extensive

28
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experiments on various computer vision and machine learning datasets are done

in section 3.6 and some concluding remarks are given in section 3.7.

3.1 Introduction

Let (xi, yi), i = 1, 2, ..., N be N instances consisting of samples xi ∈ X and

class labels yi ∈ {1, 2, ..., C}; fm ∈ Rdm ,m = 1, 2, ..., F , represent a given set

of features, where dm denotes the dimensionality of the m-th feature. Feature

combination is to use all these F features together to learn a classifier to classify

X into Y . Kernel methods make use of kernel functions to define a measure of

similarity between pairs of instances. Let K be a kernel function, the similarity

between two instances based on their m-th feature, fm, is defined as:

Km(xi, xj) = K(fm(xi), fm(xj)) (3.1)

Kernel based feature combination is about combining different Km into a single

kernel K∗ and can be done with various arithmetical operations [84] including

baseline average (3.2) and MKL (3.3).

The baseline average kernel:

K∗(xi, xj) =
1

F

F∑
m=1

Km(xi, xj) (3.2)

In the case of MKL, the combined kernel K∗ is a linear combination of different

kernels weighted by a set of adaptive parameters {βm} to be learned by the MKL

algorithms.

K∗(xi, xj) =
F∑

m=1

βmKm(xi, xj) (3.3)
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In essence, almost all previous works on Multiple Kernel Learning (MKL) tried

to learn a linear combination of different kernels, and each individual kernel

are considered as is. In this chapter, we make an important observation of the

distribution of different kernels that are routinely used in the literature. We dis-

covered that the histograms of the kernel values of different features are usually

quite different from each other. Some histograms may be narrow and occu-

py only a short range, while others may span a wide range; some histograms

may look like a gaussian distribution, while others may look like an exponen-

tial distribution. As these histograms differ so much, it means that their units

of measure are not the same. In other words, for the same similarity/difference

value, it may represent a ‘huge’ difference in one feature channel, but only a

‘tiny’ difference in the other channel. Therefore, it is necessary to standardize

each feature channel before they are combined together.

3.2 Kernel Histogram and Histogram Matching

Before delving into our method on standardizing the kernel, we first introduce

the concept of Kernel Histogram and Histogram Matching.

Given a kernel matrix K ∈ Rn×n, suppose all its elements lie in the range of

(Kmin, Kmax), then we equally divide this value range into M discrete bins.

Here M is an integer, and the width of each bin is (Kmax − Kmin)/M . The

histogram H = {hv, v ∈ (1, 2, ...,M)} of this kernel matrix is a vector storing

the number of kernel elements that lie in each bin. It is formally defined as:

hv =
n∑
i=1

n∑
j=1

δ

(
ki,j > Kmin + (v − 1) ∗ (Kmax −Kmin)

M

)
∗ δ
(
ki,j < Kmin + v ∗ (Kmax −Kmin)

M

) (3.4)
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δ(•) = 1 if the condition in the bracket holds and 0 otherwise. ki,j is the kernel

element which appears in the ith row and jth column of the kernel matrix K.

This histogram can then be transformed to have probabilistic meaning by divid-

ing a normalizing constant which is n×n in this case. In essence, the histogram

is a general property of a kernel matrix that depicts its value distribution, and

each kernel has its own unique histogram.

The concept of histogram is also commonly used in image processing. An image

can be considered as a two dimensional matrix, and it also has its own histogram.

Histogram matching is a well known technique used in image processing. It

can adjust the histogram of an image to any shape while still maintaining the

order. Here the order means if pixel A is brighter than pixel B before the adjust-

ment, then it is still brighter after the adjustment. This technique can be adapted

to perform on the kernel histogram as well. We will develop a piecewise linear

histogram matching algorithm in Algorithm.1 to achieve this. It differs from

typical histogram matching methods1 in that the order of kernel elements that

fall onto the same bin are also preserved after the histogram matching.

3.3 Standardizing Kernel Values through Histogram

Matching

An inspection of the histograms of Km(x, x′) for different features (see Fig.3.4)

shows that they are very different for different features. Linear combination of

the kernels as in (3.2) and (3.3) can be seen as combining ‘things’ measured with

different units directly without converting them to the same standard. We argue

that before they are linearly combined, the kernel values should be calibrated to

exhibit the same distribution.
1For a brief introduction on histogram matching, please refer to

http://paulbourke.net/texture colour/equalisation/
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Intuitively, the similarity distributions amongst the data points for a given dataset

should not change with their representation features. As kernels measure the

similarities between samples, we call this intuition the relative kernel distribu-

tion invariance (RKDI) property. In the following, we will try to make this

intuition concrete.

Defining the inverse cumulative density function (ICDF) of kernel m as:

ICDFm(u) = inf
v∈<

(∫ v

−∞
pm (Km(x, x′) = w) dw ≥ u

)
(3.5)

where pm (Km(x, x′)) is the probability density function of the m-th feature

channel, then RKDI can be defined as:

∫ ICDFm(u)

−∞
pm (Km(x, x′) = w) dw

=

∫ ICDFn(u)

−∞
pn (Kn(x, x′) = w) dw ∀m,n, u (3.6)

where pn(Kn(x, x′)) and ICDFn(u) represent the probability density function

and the inverse cumulative density function respectively.

Clearly, (3.6) states that the percentiles of the relative similarities of the given

data should be the same in any feature space and should be calibrated to be the

same. Although there is no formal proof known to us at this stage, we believe it

is a reasonable assumption and will show experimentally that maintaining such

invariance can help improve performance.

The problem of (3.6) is the well-known histogram matching problem and our

new feature combination framework is illustrated in Fig.3.1. LetHM (Km(x, x′))

represent the Histogram Matching operator being performed on the m-th kernel,

then average and MKL are represented as follows.
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FIGURE 3.1: Typical feature combination methods always represent features
into their kernel forms. These kernels are then combined. Traditionally, the
kernels are combined directly through one of the methods in (3.2) or (3.3). In
this chapter, we proposed to add a histogram matching module before these

kernels are combined by one of the methods in (3.2) or (3.3).

The new average K∗ kernel is formed as:

K∗(x, x′) =
1

F

F∑
m=1

HM(Km(x, x′)) (3.7)

In the case of MKL, the combined kernel K∗ is formed as:

K∗(x, x′) =
F∑

m=1

βmHM(Km(x, x′)) (3.8)

Our histogram matching algorithm is summarized in Algorithm 1. It differs

from typical histogram matching methods in that the elements in the kernel ma-

trixes are continuous instead of discrete values. Therefore, we need to quantize

the kernel values into discrete bins. To reduce the quantization error and main-

tain the original order, the values are piecewise linear interpolated for each bin.

Note that in all our experiments, we use 1500 bins.
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Algorithm 1 Piecewise Linear Histogram Matching
Input: template (canonical kernel), orig kernel, num of bins;
Output: HMed kernel (Histogram Matched kernel)
Normalize template and orig kernel to (0,1);
sorted template = sort( template );
for i=1 to num of bins do

cut point index = size( find( template < i/num of bins ) );
cut point value = sorted template[cut point index];

end for
for i in orig kernel do

lower bound = max( orig kernel[i] > cut point value(:) );
upper bound = min( orig kernel[i] < cut point value(:) );
HMed kernel[i] = Linear interpolate( low-
er bound,orig kernel[i],upper bound );

end for
Normalize HMed kernel back to the original range

3.4 Transforming Kernels to Positive Semi-Definite

Note here we should ensure the histogram matched kernels be positive semi-

definite. Although there are some previous works [85] showing that even if

the kernel matrix is not positive definite, it is still appropriate for SVM based

classification. In fact, there exists some research on SVM classifier with non-

positive definite matrixes [86, 87], but the research is still very limited [38].

Therefore, we propose a method to transform the indefinite kernel to a positive

definite kernel to make it universally applicable for conventional MKL solvers.

In [38], two methods for transforming indefinite matrices to positive semi-definite

matrices are proposed, one is to use the second power of the kernel matrix to re-

place the original matrix, and the other is to use the spectral decomposition and

ignore the spectra with negative eigenvalues. The same method is also adopted

in [88], where the negative eigenvalues are treated as noise, and are replaced

with zero. In our case, if we adopt the first method, we will see that the his-

togram of the kernel matrix after the multiplication will also change. Therefore,

it is not applicable in our scenario. Hence we prefer to use the second method.
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Consider the spectral decomposition of the kernel on the training set:

Ktrain = V DV T (3.9)

whereD is a diagonal matrix contains all the eigenvalues and V is an orthogonal

matrix, whose column contains the corresponding eigenvectors. Suppose D has

some negative values, then we replace these negative values with 0 and obtain a

new D which we named as D∗. Denote V ∗ as the eigenvectors corresponding to

the non-negative eigenvalues. Then we can obtain a new positive semi-definite

matrix K∗train which is computed as:

K∗train = V D∗V T = V ∗D∗V ∗T (3.10)

It will replace the original indefinite kernel Ktrain. In essence, the above proce-

dure performs exactly the same as Principal Component Analysis (PCA), as we

only retain the positive eigenvalues. Notice here that as the kernel on the train-

ing set has changed, we also need to change the corresponding kernel on the test

set. If the training kernel is full rank, then its eigenvectors will be a complete

basis, which means the equation V V T = I holds, where I is the identity matrix.

Hence we will have:

Ktest = KtestV V
T (3.11)

However, as the original Ktrain is not positive definite, the eigenvector V will

not form a complete basis. As we have already projected the original Ktrain to

the space spanned by the non-negative eigenvectors, we also need to do this pro-

jection forKtest. Recall that V ∗ represents the eigenvectors corresponding to the

non-negative eigenvalues, then the projected test kernel K∗test can be computed

as:

K∗test = KtestV
∗V ∗T (3.12)
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3.5 Automatically Choosing the Canonical Kernel

Histogram

An important question in this method is finding the canonical kernel histogram

which is likely to be dataset dependant. Using a cross validation technique is not

a principled method. In this section, we propose two measures that are suitable

for selecting the canonical kernel histogram in a systematic and principled man-

ner. The first one is to use the kernel alignment score proposed in [89]. Consider

a two-class labeled dataset S = (xi, yi)
l
i=1 with yi ∈ {+1,−1}, then the kernel

alignment score between a kernel Kp and the kernel Kq over the sample S is

defined as:

Â(S,Kp, Kq) =
〈Kp, Kq〉F√

〈Kp, Kp〉F 〈Kq, Kq〉F
(3.13)

where 〈Kp, Kq〉F =
∑l

i,j=1Kp(xi, xj)Kq(xi, xj). This alignment score can be

considered as the cosine of the angle between two bi-dimensional vectors Kp

and Kq. If we consider an ideal kernel Kq = yyT , where y = [y1, ... , yl]
T , then

we can use the alignment score between this ideal kernel and any kernel K to

judge the quality of K.

Previous works have only considered the two class case for the ideal kernel. In

fact, this kind of definition of ideal kernel can be easily extended to multi-classes

through following definition [90]:

Kij =

 1 if yi = yj

− 1/(C − 1) otherwise
(3.14)

where C is the number of classes.

Another criterion that we considered is to use the norm of the classification hy-

perplane. Consider a standard multi-class MKL setting as shown in (2.7), the

term
∑F

m=1 βm‖wm‖2 is usually considered as a regularization term. Besides,
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it also reflects the margin between the classification hyperplane and the data

points. From the decision function (2.6), we could see that the MKL classifi-

er is a linear classifier in the high dimensional kernel space. Recall that for a

typical linear classification problem2 y = wx + b, if the data points are linearly

separable, then there exist two hyperplanes: wx + b = 1 and wx + b = −1,

between which there doesn’t exist points. By using geometry, the distance be-

tween these two hyperplanes is 2
‖w‖ . Therefore, by minimizing ‖w‖, SVM is

in fact maximizing the margin between the two hyperplanes. This conclusion

holds for linear SVM, it also holds for MKL, as MKL still adopts a linear classi-

fier. The only difference is that MKL classifier is performed in the kernel space

instead of the original feature space. Based on the above analysis, we propose

the second criteria for selecting the canonical kernel histogram, which is to use

the norm
∑F

m=1 βm‖wm‖2.

More specifically, the procedure to utilize the above two measures for choosing

the canonical kernel histogram is as follows: for any kind of kernel histogram,

it is firstly chosen as the canonical kernel histogram. All the kernels are trans-

formed according to this chosen kernel’s histogram. Then we can adopt any

typical MKL algorithms to learn the optimal combination. After that we could

obtain the norm score and the Kernel Alignment (KA) score. Based on these

scores, we can choose the optimal canonical kernel histogram which produces

the smallest norm score or the largest KA score.

In summary, our new systematic baseline feature combination method can be

summarized as follows:

Step 1: Normalize the training kernel and the corresponding testing kernel;

Step 2: Based on the Kernel Alignment score or the norm score, pick a target

kernel’s distribution;
2http://en.wikipedia.org/wiki/Support vector machine
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Step 3: Transform all other kernels to this target kernel distribution by the

histogram matching algorithm shown in Algorithm 1;

Step 4: Transform the indefinite kernel to a positive semi-definite kernel;

Step 5: Combine the kernel by using any MKL algorithms.

In step 1, when normalizing the kernel, each Ktrain is normalized to (0,1) by

Ktrain = (Ktrain − Kmin)/(Kmax − Kmin), where Kmax and Kmin are the

overall minimum and maximum of the matrix Ktrain. Note that as Ktrain is

normalized, we also need to normalize Ktest by still using the same Kmax and

Kmin value: Ktest = (Ktest −Kmin)/(Kmax −Kmin).

3.6 Experimental Results

3.6.1 Adaptive Kernel Combination

3.6.1.1 Experiment Setup

To systematically test the performance of our proposed method, we have tried

to address the following questions:

• Firstly and most importantly, can the proposed method boost the perfor-

mance of the original MKL?

• Can the proposed measures for automatically selecting the canonical ker-

nel histogram perform as well as the cross validation technique?

• Do we have to select one of the existing kernels as the canonical kernel

histogram? Is there any other possible forms of the canonical kernel his-

togram?
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To answer the first question, we will do experiments across several datasets to

prove the efficiency of our method. To answer the second question, we will list

the final combined kernel accuracy as well as the measure score of each possible

kernel, in order to see whether the proposed measure is highly correlated with

the final accuracy. To answer the third question, we have considered settings

when we choose a pre-specified uniform distribution or a gaussian distribution as

the canonical kernel histogram. As these distributions are data independent, we

have also considered another data dependent form which is detailed as follows:

For every kernel, we divide it into two parts, the intra class kernel Kintra =

{Kij,∀i, j : yi = yj} and inter class kernel Kinter = {Kij,∀i, j : yi 6= yj}.

Then we calculate their histograms separately. In practice, as there are always

limited number of training samples for each class, which will make the size of

the intra kernel much smaller than the inter kernel, and it will make the esti-

mation of the intra-kernel histogram not robust. Therefore, we prefer to use

regression method to get a smoother version of the histogram. We have consid-

ered using parametric regression method, and we have tried gamma distribution

and weibull distribution, but they didn’t exhibit satisfactory results. After that,

we decided to choose the nonparametric regression method: Gaussian Process

Regression [91] to regress the data. A typical example is shown in Fig.3.2. Then

we combine the smoothed inter- and intra- histogram as a potential candidate for

the canonical kernel histogram: Hi = max(Interi, Intrai).

3.6.1.2 Oxford Flowers Dataset

The Oxford flowers dataset [92] contains 17 different kinds of flowers. Each

class contains 80 samples, 40 for training, 20 for validation, and the remain-

ing 20 for testing. The authors of [92] have also made the distance matrixes
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FIGURE 3.2: The blue points correspond to the histogram of intra kernel,
while the red points correspond to the inter kernel. The regression results are
shown as the blue line and the red line, and the shaded area corresponds to
the area in one standard deviation. To accelerate the regression speed, the
histogram bin index, which ranges from 1 to 1500, are linear mapped to (-1,1).
Ideally, the intra kernel value should be larger than inter kernel value; therefore

the combined histogram should be double peaked.

they used publicly available3. Following [93], these distance matrixes are trans-

formed to kernels using k = exp(−γ−1 · d), where γ is the mean of the distance

matrix, and d is the distance between samples. The kernel histogram of these 7

features are shown in Fig.3.3. For the MKL solver, we had chosen a state-of-art

solver named OBSCURE [93].

Table.3.1 list the results when we choose different feature histograms as the

canonical kernel histogram. As the original OBSCURE only gets an accuracy of

84.9±1.4, we can see that in 4 out of 7 features, we can get a better performance.

This partially answers the first question in section 3.6.1.1. From Table.3.1, we

can also see that the 2 smallest norm scores correspond to those best performed

two kernels, and their corresponding KA score are ranked 3 and 1 respectively.

This means the two criteria we proposed are indeed useful for selecting the

canonical kernel histogram, and the norm score criterion works slightly better

3http://www.robots.ox.ac.uk/ vgg/data/flowers/17/index.html
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than KA score on this dataset. This answers the second question. In answer-

ing the third question, the low performance of histogram equalization and the

predefined gaussian distribution indicates that there is little chance of finding a

universal canonical kernel histogram, and the canonical kernel histogram should

be data dependant. What is also listed in Table.3.1 is the performance when we

choose the intra-inter histogram as the canonical kernel histogram. It exhibits

similar performance when we directly choose the original histogram.

TABLE 3.1: Experimental results on Oxfordflower. OBSCURE[93] is one of
the state-of-art MKL solvers. HE is short for Histogram Equalization, and
Gaussian represents a predefined N (0, 1) normal distribution. From the table,
we could see that the best performed two kernels: K color and K hsv, have the
2 smallest norm score and their KA score are ranked as 3 and 1 respectively.

OBSCURE HE Gaussian

Accuracy 84.9±1.4 57.9±3.3 60.9±0.3
Norm score 425.8 364.9 489.0
KA score 0.19 0.12 0.07

K color K hog K hsv K shape K siftbdy K siftint K texture

Accuracy 87.5±0.9 84.7±1.3 86.9±1.1 86.9±0.9 83.8±1.0 86.4±1.3 79.0±2.3
Norm score 389.6 466.9 379.9 431.6 446.7 432.9 430.7
KA score 0.24 0.10 0.26 0.15 0.25 0.19 0.11

Intra-inter Accuracy 86.9±0.6 84.3±2.1 85.5±1.1 86.6±1.3 84.9±1.5 87.4±1.8 77.0±3.0
Norm score 384.8 451.0 369.2 423.8 385.7 405.7 423.5
KA score 0.22 0.10 0.23 0.15 0.30 0.20 0.11

3.6.1.3 MSRC21 Dataset

Next, we consider another example in semantic segmentation area. MSRC21 is

a well-known dataset which contains 591 images. Each image has pixel level

ground truth labels from 21 semantic classes. Following [9], these 591 images

are split into 276 for training, 59 for validation, and the remaining 256 for test-

ing.
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Here, our objective is to evaluate feature combination rather than aiming to

achieve state of the art semantic labeling performance. Therefore, we simplify

the original semantic segmentation problem into a region labeling problem, i.e.

we assume the image has already been segmented into regions, and our task is

to assign each region a semantic label. To avoid bias, we directly use the ground

truth segmentation. We adapted the code from [66], where they used three fea-

tures to represent each region. These three features are texton histograms, color

histograms and pyramids of HOG. Their respective kernel histograms are shown

in Fig.3.3. To avoid the bias of different MKL solvers, we still adopt OBSCURE

as our MKL solver. Results are shown in Table 3.2, where we have presented

results based on four different evaluation criteria. For a detailed explanation of

these four evaluation criteria, please refer to [9, 12].

TABLE 3.2: Experimental Results on MSRC21. Accuracy1 = Per-class
region-wise accuracy. Accuracy2 = Overall region-wise accuracy. Accuracy3
= Per-class pixel-wise accuracy. Accuracy4 = Overall pixel-wise accuracy.
From the table, we could see that K texton performs best, and it also has the

lowest norm score and the highest KA score among the three kernels.

Baseline Feature Histogram Intra-inter Histogram

OBSCURE HE Gaussian K texton K color K hog K texton K color K hog

Accuracy1 77.2 49.8 80.6 82.6 78.0 80.6 79.1 64.0 77.2
Accuracy2 84.3 63.0 85.5 87.3 83.8 85.5 84.8 76.1 82.7

Accuracy3 81.5 46.4 82.5 84.4 80.3 82.5 82.5 68.2 80.6
Accuracy4 90.8 61.6 91.0 92.4 89.6 91.0 90.9 81.8 89.0

Norm score 1379.8 1971.8 1992.1 1004.0 2022.6 1992.1 1886.9 3612.1 3349.8
KA score 0.14 0.15 0.13 0.14 0.14 0.13 0.12 0.12 0.12

From Table.3.2, we could see that the performance of OBSCURE is boosted

by introducing the histogram matching module. The kernel corresponds to the

texton histogram exhibits the highest performance which can be predicted from

either the norm score or the KA score. Histogram equalization didn’t perform

well while the predefined gaussian distribution performs comparably. The intra-

inter histogram didn’t perform as well as the original histogram.
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FIGURE 3.3: Kernel histograms of three features used in MSRC21 ((a) to (c))
and seven features ((d) to (j)) used in Oxfordflowers. The histogram in the red

box is chosen as the standard histogram.

3.6.1.4 UCI Machine Learning Repository

We have also done experiments on the UCI repository datasets. On the Sonar

and Breast dataset, we did experiments exactly following [94]. Three kernels are

used: a quadratic kernel, an RBF kernel and a linear kernel. We report mean test

accuracy across ten random replications of three-fold cross validation. For the

MKL solver, we still chose to use OBSCURE. The results are shown in Table

3.3.

From Table.3.3, we could see that we get the highest accuracy when the RBF

kernel is chosen as the canonical kernel histogram, and it outperforms the origi-

nal OBSCURE. Both the norm score and the Kernel Alignment (KA) score have

correctly predicted this. Besides, both the histogram equalization and gaussian

distribution didn’t perform well on the sonar, although they exhibited a remark-

able performance on the breast. However, their corresponding norm score and

KA score are not in accordance with their respective performance. Regarding

to the intra-inter histogram, it didn’t perform well on the sonar dataset, but per-

forms slightly better on the breast.
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TABLE 3.3: Experimental Results on UCI datasets. The above table shows
the results on Sonar dataset while the bottom is for breast. K rbf performs best
across the two datasets, and it also has the lowest norm score and the highest

KA score among the three kernels.

Baseline Prefixed histogram Feature Histogram

Sonar Obscure HE Gaussian K quadratic K rbf K linear

Accuracy 88.0±4.3 72.6±4.4 74.2±4.2 86.2±4.2 88.2±4.0 80.0±3.6
Norm score 50.08 34.8 52.1 60.20 50.06 60.49
KA score 0.1172 0.0538 0.0429 0.0700 0.1174 0.0519

Breast Obscure HE Gaussian K quadratic K rbf K linear

Accuracy 96.7±5.0 97.6±1.0 97.3±0.9 96.6±1.0 97.6±0.9 97.2±0.9
Norm score 27.8 26.6 44.1 54.6 28.7 42.8
KA score 0.34 0.33 0.19 0.31 0.34 0.31

3.6.1.5 Results Summary

Our results demonstrate that statistical kernel transforms can always boost the

performance of the original state of the art MKL solver. Transforming the pos-

sibly non-positive definite matrix into positive semi-definite, which will make

the method theoretically justified, will not deteriorate performance in practice.

Both the norm score and the KA score are predictive in selecting the canoni-

cal kernel histogram, and we have also found that norm score performs slightly

better than the KA score on the Oxfordflower and MSRC21 datasets. It seems

very difficult, if not impossible, to find an universal canonical kernel histogram,

and the canonical feature histogram should be data dependant. The relatively

low performance of the intra-inter histogram suggests that we should better di-

rectly use the original kernel histogram. Although the idea of pursuing a double

peaked histogram seems appealing(this is exactly what the intra-inter histogram

pursues), as it makes it easier for the kernel classifier to do its classification job,

our results so far have not shown this is helpful.
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3.6.2 Non-adaptive Kernel Combination

Although MKL algorithm shows superior performance in some datasets, some

researchers found it not well suited for some particular datasets [95]. In some

cases, the complicated nature of the problem itself or the relatively small avail-

able training data makes even non-adaptive kernel combination outperforms its

adaptive counterpart. Examples include the work presented in [1, 84]. In these

circumstances, the non-adaptive kernel combination method is usually adopted.

In the following experiments, we show that in these circumstances, our method

can also boost the performance than traditional non-adaptive kernel combination

method, such as ‘average’.

3.6.2.1 Corel5K Dataset

In [1], the authors studied the problem of image annotation. They showed that

by simply adding the distances of different features, they can achieve superior

performance on the corel5K benchmark image annotation dataset. They used

features representing color and texture, and the distances of each feature chan-

nel are equally weighted. They called their algorithm Joint Equal Contribution

(JEC). In [46], the authors proposed to use another 15 kinds of features includ-

ing global and local features. They reported similar results to JEC. They have

also released their features4 used in the experiments. We did experiments di-

rectly based on these features. Different metric measures [46] are adopted to

calculate the distances in each feature channel. The histograms corresponding

to the distances of those 15 kinds of features are shown in Fig.3.4. From there

we can see an obvious difference between different feature channels.
4http://lear.inrialpes.fr/people/guillaumin/data.php
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FIGURE 3.4: Kernel histograms of the features used in [46]. The histogram
in the red box is chosen as the standard histogram, which corresponds to the

feature of hue descriptors extracted at Harris-Laplacian interest points

As there is no theoretical guidance on how to choose a standard histogram, we

use cross validation to choose one from these 15 features as the canonical fea-

ture. The histograms after histogram matching are shown in Fig.3.5.

Those distances after histogram matching are added together. Based on this

added distance, the K nearest neighbors for each test sample are retrieved from

the training set. The tags of each test sample are solely determined by these

K nearest neighbors. In predicting the tags from these K neighbors, we also

adopted the label transfer strategy used in [1]. Precision and recall are used to

evaluate the performance and the results are shown in Table 3.4. From there

we can see a performance boost by introducing the histogram matching module.

It is important to point out that the purpose here is not to compete with the

state of the art image tagging performances but rather to demonstrate that by

calibrating the kernels using simple histogram matching before combining them

can improve performance.
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FIGURE 3.5: Histograms in Fig.3.4 after histogram matching.

TABLE 3.4: Image Annotation Performances on Corel5K Dataset. HM is short
for Histogram Matching. Rate+ is the number of tags whose recall is above

zero.

models Prec Recall Rate+

HPM [96] 0.25 0.28 136/260
JEC [1] 0.27 0.32 139/260
JEC-15 [46] 0.28 0.33 140/260
JEC-15 + HM 0.30 0.36 150/260

3.6.2.2 Caltech101 in 39 Kernels [84]

In [84], the authors thoroughly studied the problem of feature combination. One

of their important findings is that a simple average kernel may outperform so-

phisticated MKL algorithms. They have also released their code and the gram

matrixes5 used in their experiments. The best result they got was based on a

combination of 39 kernels. These different kernels are mainly based on 5 dif-

ferent kinds of features: LBP, PHOG, SIFT, Region covariance and Gabor filter

banks. Those features are assembled in different layouts, resulting in a total of

39 kernels. In their work, they have already compared their results with typical

MKL algorithms, including SILP [97] and SimpleMKL [98]. In some cases,

simple average kernel may outperform these complicated MKL methods.

5http://people.ee.ethz.ch/ pgehler/projects/iccv09/caltech/
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We did experiments directly on these publicly available gram matrixes. Some

of the representative histograms are shown in Fig.3.6. Experimental results are

shown in Fig.3.7. Again, we can see a performance boost by introducing the his-

togram matching module before combining the kernels. Once again it is worth

mentioning that our goal here is not to compete with state of the art object cat-

egorization techniques but to demonstrate the effectiveness of introducing his-

togram matching for feature combination.

FIGURE 3.6: Some representative kernel histograms among the 39 kernels
used in [84], the one in the red box is the best performing canonical kernel

histogram.

3.6.2.3 Results Summary

These experiments clearly showed that our method is not only applicable for

supervised MKL cases, it also fits for unsupervised scenarios, where there is a

need to sum different similarity measures together. In common practice, one

only need to make the mean (1st order moment) or the variance (2nd order mo-

ment) of different similarities to be the same [99]. Our method, which tries to

make the histograms to be the same, is actually standardizing the higher order

moments. Therefore it could be considered as a new baseline.
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FIGURE 3.7: The classification results on Caltech101. From the figure, we
can see the average of histogram matched kernels can always perform better
than averaging original kernels. Note that the author of [84] report results on
five random splits of the dataset. However, they have only released their gram
matrixes of one split. We did experiments only on this split. This results in
the slight difference between our implementation on average and the average

accuracy reported in [84].

3.7 Concluding Remarks

In this chapter, we have proposed a new feature combination method which cal-

ibrates the kernels to have the same histogram before linearly combining them.

Experiments on various datasets have shown the effectiveness of this simple

strategy. This method can be used in the unsupervised scenario where it con-

sistently performs better than the average baseline. In supervised cases, it can

be seamlessly combined with state of the art multiple kernel learning algorithms

and we have shown it again can boost performance.

Besides the experiments shown in this chapter, actually we have also done ex-

periments based on the work of [4, 100] on caltech101 and scene15 datasets.

We can get subtle improvements over their works: on scene15 dataset, we can

boost the accuracy from 89.15% [100] to 89.57% under 100 training image for

each category; on caltech101, the performance gain is from 78.5% [4] to 78.6%.
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As we further analyze the reason why we didn’t get significant improvements

is probably because the features used in [100] is very comprehensive6, and the

authors use a finely tuned weight for each feature channel: four times of each

feature channel’s individual performance. Thus the baseline method has already

achieved a very high performance. In [4], the histograms of the 10 kernels7 used

in the experiments are already very similar, thus our method can not get signif-

icant improvements. But still, we believe that histogram matching should be an

important module in future feature combination systems. Even if in the worst

case, it will not deteriorate the performance.

614 kinds of features in combination with different kinds of kernels, resulting in total 59
different kernels

7http://www.robots.ox.ac.uk/ vgg/software/MKL/



Chapter 4

Integrating Low-level and Semantic

Features for Object Consistent

Segmentation

In this chapter, we studied the problem of pixel-level semantic image under-

standing. Different from most of the previous methods that chose pixel or super-

pixel as the processing primitive, we advocate to choose regions as processing

primitives. We first experimentally showed that using ground truth segments as

processing primitives can boost semantic segmentation accuracy, and then pro-

posed a novel method to produce regions that resemble the ground truth regions,

which we termed as object-like regions. We achieve this by integrating state of

the art low-level segmentation algorithms with typical semantic segmentation

algorithms through a novel semantic feature feedback mechanism. We present

experimental results on the publicly available image understanding dataset M-

SRC21 and the stanford background dataset, showing that the new method can

achieve relatively good semantic segmentation results with far fewer processing

51
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primitives. Furthermore, we have also proposed to integrate semantic segmenta-

tion with an interactive segmentation module, and some qualitative results have

shown the promise of our approach.

In this chapter, we first introduce some background on pixel level semantic im-

age understanding in section 4.1. Then in section 4.2 we describe our algorithm

on integrating semantic segmentation with low-level segmentation. We present

our experimental results on two well known datasets in section 4.3. Section 4.4

describes our approach for combining semantic segmentation with interactive

segmentation, and some concluding remarks will be given in section 4.5.

4.1 Introduction

Just as we discussed in Chapter 2, to understand the semantic meaning of an

image at the pixel level, there are possibly two strategies: the first one is to adopt

the segment-then-recognize strategy, i.e. first segmenting an image into regions,

then recognizing each region one by one. The other strategy is to choose every

single pixel as the processing primitive, and directly assign a semantic label to

it.

By comparing these two strategies, it is not difficult to see that the second strat-

egy will produce object non-consistent results (as shown in Fig.4.1), and each

object is just a group of pixels or superpixels with the same semantic labels. In

contrast, the first strategy will remedy this drawback as long as we can design

an appropriate segmentation algorithm that can produce more object-consistent

regions.

Therefore, the biggest challenge in adopting the first strategy is how to make

the segmentation algorithm capable of producing regions that are more object-

consistent. Taking the image in Fig.4.1 as an example, the head of the sheep
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FIGURE 4.1: Top row: (left to right) original image, ground truth segmenta-
tion, pixel based semantic labeling [9] without CRF [57] post processing, two
groups of superpixel based methods [101] by varying the parameters of mean
shift; Middle row: a state of the art spectral segmentation method named Full
Pairwise Affinity (FPA) [102] which considers only color features to produce
K (K=3,4,...7) clustering; Bottom row: our full model by combining color fea-
tures and semantic features to produce K clustering. It is seen that in all cases

our method consider the head and the body of the sheep to be one object.

(black color) and the body of the sheep (white color) are totally different from

each other, but still they belong to one object. Therefore, we could not expect

that our segmentation module which is purely based on low-level features can

produce object-consistent regions.

How can the segmentation algorithm consider the head of the sheep and the

body of the sheep to be one object? The only way is to incorporate supervised

information into the segmentation module. Suppose we have a set of training

images together with their ground truth segmentations, probably there exist, a-

mong these training images, a sheep with black head and white body. Thus it is

possible to utilize these training images to guide our segmentation algorithm.
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4.2 Combining Low-level and Semantic Segmenta-

tion for Object Proposal

4.2.1 The Advantage of Choosing Regions as Processing Prim-

itives

Before we introduce our newly proposed framework, we would like to first em-

phasize the importance and advantage of choosing regions as processing primi-

tives. We choose MSRC21 as our test bed. MSRC21 contains 591 images from

21 semantic classes. Following [9], the dataset is divided into 276 images for

training, 59 images for validation, and the remaining 256 images for testing.

For the object regions, we directly use the clean ground truth segmentations1 on

this dataset. These ground truth segmentations are directly fed into our region

labeling module to be described in section 4.2.6. We obtain an overall glob-

al pixel accuracy of 90.8%, outperforming any state-of-art methods [68, 101]

on this dataset. This experiment clearly shows the advantage of choosing the

regions as our processing primitives. However, the challenge is how to automat-

ically generate such object regions. We present such a method in the following

subsections: section 4.2.2 will present a general picture of the whole frame-

work, then several of its important modules will be introduced in the subsequent

subsections.

4.2.2 The Proposed Framework

Given an input image, several kinds of low-level features can be extracted, and

these features are fed into a low-level spectral segmentation module. These low-

level segmentation algorithms can produce low-level consistent regions, which

1http://www.cs.cmu.edu/ tmalisie/projects/bmvc07/
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we call superpixels here. A typical semantic segmentation algorithm can either

choose these superpixels or directly choose the image pixels as the processing

primitives, and their outputs can be considered as semantic features. Those se-

mantic features are then combined with the low-level features and fed back to

the low-level segmentation algorithm again. This time, as the features contain

semantic feature, we call the segmentation module mid-level segmentation. Ide-

ally, they will segment images into regions that are both low-level and semantic-

level consistent, i.e. they are object-like regions. Based on those object-like

regions, typical classification algorithms can be used to achieve the goal of im-

age understanding. The flow chart of this procedure is shown in Fig.4.2.

FIGURE 4.2: The flow chart of the proposed framework

In essence, the semantic segmentation algorithm is still based on low-level cues;

our algorithm can therefore be considered as having introduced a feedback from

the classifier output to the input level. We believe this idea is an important

contribution of our work. As we have also noticed similar ideas being adopted

in some other scenarios, we believe it is an important philosophy and could be

generally adopted in many scenarios.

In [25], the outputs of various object detectors are treated as new mid-level fea-

tures; in [103], the authors learned a bank of weak classifiers from the web-

retrieved images, and the output of these weak learners are also treated as mid-

level features. In this theme, the output of semantic segmentation algorithm

used in our low-level segmentation module can also be considered as mid-level

features. In [104], the authors first learned a classifier on the local patch, and
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then the output of the classifier is considered as the context information of the

target patch. By concatenating them together, the author retrained the system.

A similar strategy is also adopted in [105], where the authors use the geomet-

ric context detector to detect the layout of similar images, then the average of

those outputs are considered as a prior, based on which the author retrained the

system. From those previous works, we came to a conclusion that the output of

classifier contains useful information. They can enhance the performance of the

original system through a carefully design. This also justifies the applicability

of the framework we proposed here.

4.2.3 Spectral Methods for Low-level Segmentation

For the low-level spectral segmentation module, we adopt the multi-layer graph

method proposed in [102], as it produces the state of the art results on the BSDS

dataset [106]. A multi-layer graph is represented by G∗ = (V ∗, E∗), where

the nodes V ∗ are a set of pixels and superpixels, and edges E∗ exist between

neighboring pixels, neighboring superpixels, and also between the superpixel

and all the pixels it includes. The edge weights are defined as:

wij =


exp(−θg ‖ gi − gj ‖) if i, j ∈ pixels

exp(−θg ‖ gi − ḡj ‖) if i, j ∈ superpixels

const otherwise

(4.1)

where gi is the color value (in Lab space) of pixel i, and gi represents the mean

color of all the inner pixels contained in a superpixel i. θg and θg are constants

that control the strengths of the weight. They can be specified either manually

or using cross-validation techniques. For details of this algorithm, please refer

to [102].
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4.2.4 Pixel or Superpixel based Semantic Segmentation

For the semantic segmentation module, we adopt the typical two order Condi-

tional Random Field (CRF) [57] based methods. Just as shown in (2.11), a CRF

defines a posterior distribution over hidden random variables Y (labels), given

observed image features X, in a factored form:

p(Y|X) =
1

Z
exp(−

∑
c∈C

ψc(Yc,X)) (4.2)

where Z is a normalizing constant, and C is the set of all cliques.

Given a set of images and its corresponding ground truth labels, the training pro-

cedure of a CRF aims to make the energy of the ground truth label assignment

corresponds to the minimum of the energy function. After the model is trained,

for a new test image, its most probable labeling Y∗ is defined as

Y∗ = arg max
Y∈Y

p(Y|X) (4.3)

where Y corresponds to any kinds of possible labeling.

Besides the most probable labeling Y∗, we can also get the marginal posterior

distribution p(Yi) of any node i. We choose to use this marginal distribution as

our semantic feature. Compared with directly choosing the MAP assignment

as the semantic feature, it clearly enjoys some benefits. For example, for two

neighboring nodes, we can not only judge if they are most likely to belong to

one specific semantic class, but also we could say whether they are all dissimilar

with another semantic class.

In our experiments, for the pixel based semantic segmentation, we adopted the

Textonboost method [9] and used their publicly available code2; for superpixel

2http://jamie.shotton.org/work/code.html
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based semantic segmentation, we adapted the code from the STAIR Vision Li-

brary3, which uses piecewise training method [107] to train the CRF and uses

max-product propagation [108] for inference.

4.2.5 Mid-level Segmentation with Semantic Feature Feed-

back

We propose to introduce the semantic features generated by CRF into the above

mentioned low-level spectral segmentation module, enabling the spectral seg-

mentation algorithm to produce both low-level and semantically consistent re-

gions.

One intuitive way of achieving this goal is to redefine the edge weight function

of equation (4.1). Note that in equation (4.1), the weight between neighboring

nodes only depends on their low-level features. By introducing our semantic

segmentation module, we can also obtain the semantic feature of each node.

Thus, we redefine the weight between neighboring nodes as a combination of

their low-level feature similarity and their semantic feature similarity:

wij =



α exp(−θg ‖ gi − gj ‖) + (1− α) exp(−θs ‖ si − sj ‖)

if i, j ∈ pixels

α exp(−θ̄g ‖ ḡi − ḡj ‖) + (1− α) exp(−θ̄s ‖ s̄i − s̄j ‖)

if i, j ∈ superpixels

const otherwise

(4.4)

3http://robotics.stanford.edu/ sgould/svl/
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where si corresponds to the semantic feature of node i, here it is equivalent to the

marginal probability p(yi) of node i in our CRF paradigm. α ∈ (0, 1) is a trade-

off parameter between low-level feature and semantic feature. When it equals

to 1, (4.4) degrades to (4.1); when it equals to 0, (4.4) will generate exactly the

same regions as the semantic output, and our algorithm can be considered as a

verification step after the CRF. We empirically set α = 0.5 in all our experiments

to make the semantic features and low-level features contribute equally to the

segmentation module. ‖ ‖ represents the norm of the vector. We experimentally

compared different kinds of norms and choose the L1 norm which performs best

in our experiments. As has been shown by others, the L1 norm tends to produce

better results for its robustness against outliers [96].

4.2.6 Object-like Primitives Labeling

Having produced object-like regions using the spectral segmentation algorith-

m with semantic feature feedback, we now extract features of those object-like

regions and build a classifier to label them. As the object-like regions are usu-

ally large and contain many pixels, we believe that their histogram features are

more robust and discriminative. Similar to [66], several kinds of histogram fea-

tures, including Texton Histogram, Color Histogram and pHOG Histogram are

extracted from each ground truth region among all the training images. All

these histograms are obtained by vector-quantizing and pooling the correspond-

ing features. We use χ2 kernel to measure the similarities among those his-

tograms. These kernels can then be added together, and a plain SVM can be

adopted as the classifier based on this combined kernel.

To enhance the performance of the classifier, we have adopted two additional

techniques: the first one is to use the Multiple Kernel Learning (MKL) approach

to replace the plain SVM.
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The second technique we adopted is to augment the training set. We select the

regions as processing primitives, and the number of the ground truth regions

contained in the training set is always very limited. For example, there are only

about 10 regions for some semantic classes in the MSRC21 dataset. Therefore

it is very easy for the classifier to get overfitted. This is in contrast to selecting

superpixel or pixel as processing primitives, where we can obtain tens of thou-

sands of training samples from the training set. Therefore, it is necessary and

beneficial if we can augment the training set. We achieved this through the fol-

lowing procedure: we make the low-level segmentation module to perform on

the training images. If they generate some pure regions according to the ground

truth semantic labeling, then these regions are also considered as positive train-

ing samples and augmented the training set.

This strategy is in the similar spirit with the ‘mining hard negatives’ technique

widely used in the object detection literature [61]. Both methods advocate

reevaluating the algorithm on the training set to obtain more training samples.

Note that in our scenario, we are not limited to any specific kinds of segmen-

tation algorithm. Instead, we can use any kind of low-level segmentation algo-

rithm, and we can even utilize our full model to perform on the training set. As

long as these segmentation algorithms generate some pure regions according to

the ground truth semantic labeling, we can augment these regions to the training

set.

We will show in the experiment section that both of these two techniques will

help to boost performance.
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4.3 Experiments

4.3.1 Segmentation Quality

To assess the quality of the regions generated by our model, we adopted the

segmentation covering [109] as the accuracy measure. The covering of a seg-

mentation S by a segmentation S ′ is defined as

C(S, S ′) =
1

N

∑
R∈S

|R| ∗ max
R′∈S′

O(R,R′) (4.5)

where N denotes the total number of pixels in the image, |R| represents the

number of pixels in the region R, and O is the overlap.

We still chose MSRC21 dataset as our testbed. For each test image, we firstly

segmented it into a fixed number (3 to 12) of regions using different segmen-

tation algorithms. Then we compared these segments with the ground truth

segmentation to compute the segmentation covering score. Here we compared

Normalized Cut [110] and Full Pairwise Affinity Model in [102] with our full

model. The results are shown in Fig.4.3. From there we can see our full model

consistently performs better than the other two algorithms. We also noticed that

the highest segmentation covering score is achieved when an image is divided

into four regions. This is consistent with the fact that the testing images in this

dataset has an average of four ground truth regions approximately.

Furthermore, as we don’t know how many regions we should partition an image

into, we consider all these generated segments as a segmentation pool, and re-

compute the segmentation covering score. The results are shown in Table.4.1.

Again, we can see an obvious advantage of our full model over its counterparts.

Besides, the results we achieved is very close to a state of the art method [109].

However, in [109], it generates a hierarchy of segments of each image. Usually
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FIGURE 4.3: Segmentation covering score of different methods. X axis rep-
resents dividing an image into # regions, while Y axis corresponds to the ac-
curacy. NCut means regions generated by normalized cut, FPA means Full

Pairwise Affinity model in [102]

it generates hundreds of segments, whilst our results are obtained based only on

a total of 75 (which is the sum of 3+4+...+12) regions.

TABLE 4.1: Segmentation covering score of the segmentation pool

method NCut FPA Ours gPb-owt-ucm [109]

Coving 0.60 0.73 0.77 0.78

Fig.4.1 shows a typical result of our model. It can be seen there that whilst

previous methods have failed to recognize the head and the body of the sheep

as belonging to one object, our model has succeeded. Some more qualitative

examples are shown in Fig.4.4. We can see there that our algorithm can generate

more object-consistent regions than the other segmentation algorithms.

4.3.2 Comparison of Pixel Labeling Accuracy on MSRC21

Based on the regions generated by our full model, we directly use them as our

processing primitives and performed region recognition as detailed in section

4.2.6. Statistics of experimental results are shown in Fig.4.5 and Table.4.2. We
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FIGURE 4.4: Some examples of the results of three segmentation methods.
Each image is segmented into a predefined 7 regions. From left column to right
column: original image; results generated by NCuts, Full Pairwise Affinity
(FPA) [102], and our full model. The results of a typical semantic segmentation

algorithm [101] is also shown in the last column.

can see that no matter we use the plain SVM classifier or the MKL classifier, our

full model consistently produced better results than other two methods. Besides,

we could see an improvement on MKL classifier over plain SVM for all the three

segmentation methods. This suggests that the usage of an advanced classifier

can help to improve the performance.

Compared with most state of the art results ([68]: 77%, [101]: 76.4%) on this

dataset, we are getting very close. Although the hierarchical CRF model of [12]

demonstrates superior performance: 86%, it should be noted that their pixel-

wise classifier can obtain an overall accuracy of 81%, which suggests their use of

much more discriminative features [112]. However, the main difference between
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FIGURE 4.5: Global pixel accuracy on MSRC21

TABLE 4.2: Semantic labeling accuracy on MSRC21 when each test image is
partitioned into a fixed 8 regions. While ‘Global’ means the overall pixelwise
labeling accuracy, ‘Average’ means the average of classwise accuracy. The

results are shown in terms of percentages.
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[9] 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7 72 58
[111] 77 93 70 58 64 92 57 70 61 69 67 74 70 47 80 53 73 53 56 47 40 75 65
NCut 55 86 87 56 27 90 30 62 46 53 60 62 57 24 41 36 72 0 21 48 9 67 49
FPA 61 88 87 63 39 93 36 71 42 43 58 68 49 32 48 45 79 21 32 44 12 70 53
Ours 77 89 85 75 52 80 29 76 70 65 75 65 53 33 71 53 81 44 33 62 10 75 61

our algorithm and theirs lies in that their algorithms are superpixel based whilst

ours is object-like region based. For a typical image in MSRC21, it is usually

segmented into hundreds of superpixels [68, 101]. However, in our case, we only

divide the image into a few (3˜12) regions and we achieved similar accuracy.

Fig.4.6 shows an illustrative example. It can be seen that whilst superpixel based

methods divide the image into many small patches, our model divides it into

only a few object like regions. Besides, the results generated by these superpixel

based semantic segmentation algorithms are always not object-consistent, just as

shown in the last column of Fig.4.4. On the contrary, our algorithm inherently
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FIGURE 4.6: From left to right: original image; object-like regions generat-
ed by our full model; superpixels commonly used in conventional semantic

segmentation methods

enjoys the advantage of producing object-consistent outputs as clearly illustrated

in Fig.4.1.

4.3.3 Experiments on Stanford Background Dataset

To further verify the effectiveness of our approach, we also did experiments

on the Stanford background dataset [101]. This dataset consists of 715 images

belonging to eight semantic classes including sky, tree, road, grass, water, build-

ing mountain and foreground object. The images in this dataset are collected

from several well-known datasets including PASCAL, LabelMe, and Geometric

Context. Each image in this dataset contains about 11 distinct object regions

on average, while MSRC21 only contains about 3 object regions. Therefore,

this dataset is much more challenging than MSRC21. Following previous work

[17, 101] on this dataset, the overall 715 images are divided into 572 images for

training and 143 images for testing.

Firstly, we also use the ground truth segmentation to see how much accuracy we

could achieve, which can be considered as the upper bound for the subsequent

experiments. This time, we achieve a global pixel accuracy of 85.64%, which

is again better than any state of the art methods. For example, [101] reported

an accuracy of 76.4%, while [17] achieved 77.5%. [113] reported 79.4% which

is the highest score on this dataset until the submission of this thesis. All these
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FIGURE 4.7: Semantic class accuracy on Stanford background dataset.
’Ours+Augment’ represents results obtained by augmenting the training set.

three methods chose superpixel as the processing primitive and falls into the

conventional CRF paradigm. This once again shows the advantage of choosing

regions as processing primitives.

The following experiments follow exactly the same procedure as in MSRC21.

The results we have achieved are shown in Fig.4.7. In that figure, we have also

shown the effect of augmenting the training set strategy which was described in

section 4.2.6. Here we have only augmented about 10000 regions for the whole

dataset due to the space limitation caused by the kernel SVM, that is about 20

regions per training image. This is still much lower than conventional pixel or

superpixel based methods, where the training set is usually as large as hundreds

of thousands. From Fig.4.7, we can see that the strategy of augmentation do

help improve the performance, and we can expect a further performance boost

when augmenting more training samples.
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4.3.4 Computational Complexity Analysis

From the above experiments, we could see that our algorithm exhibits a better

performance than its counterparts: NCut and FPA. However, this improvement

relies on its increased computational burden. For the segmentation algorithm

itself, it shares the same complexity with FPA, as we have only redefined the

weight function as shown in Equ.4.4. Therefore, the increased computational

complexity arises from the computation of semantic features. Although most of

the current semantic segmentation algorithm are time consuming, such as the

method [9] that we adopted in this work, there do exist some methods that can

perform the semantic segmentation in real-time [10]. How to design a faster se-

mantic segmentation algorithm is beyond the scope of this work. It is important

to point out that the work we presented in this chapter is a general framework

for combining semantic segmentation and low-level segmentation, thus it can be

seamlessly combined with any kind of semantic segmentation algorithm.

4.4 Hard Integration

Besides the framework introduced above for fusing semantic segmentation with

low-level segmentation, we have also tried another method to achieve this. That

is to treat the semantic segmentation module as an unreliable ‘teacher’, which

generates some tokens to guide the low-level segmentation module. Thus the

whole system performs in an interactive segmentation fashion. We called this

kind of integration hard integration, in comparison with the above framework

which can be called soft integration.

The rationale behind the hard integration is that if the semantic segmentation

module consistently considers a relatively large region to belong to one semantic

class with high probability, then it has a high chance to be correct. Therefore,
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FIGURE 4.8: The procedure for generating the tokens. Based on the outputs
from the semantic segmentation algorithm and their predicted semantic class-
es, the highly probable large regions went through a series of morphological

operations including gaussian filtering, threshold, thinning and dilation.

we can treat these large regions as highly reliable regions and generate tokens

from it. The procedure of generating the tokens is shown in Fig.4.8. The low-

level segmentation module then treats these tokens as ‘human’ input, and tries to

segment images satisfying these token constraints. Here, we adopt the method

introduced in [114] to perform the low-level interactive segmentation. Some

visual examples are shown in Fig.4.9.

Although the idea of hard integration seems appealing, it cannot perform on it-

s own in practice. This is simply because not all images can generate reliable

tokens. Besides this, the interactive segmentation algorithm is still not mature.

However, no matter it is hard integration or soft integration, we believe that there

still exists a large room for improvement. Future works will try to design new
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FIGURE 4.9: From left to right: original image; outputs from the semantic
segmentation algorithm; the predicted semantic class; automatically generated

tokens; segmentation results generated by [114] based on the tokens.

frameworks to make the semantic segmentation module and low-level segmen-

tation module really ‘interact’ with each other.

4.5 Concluding Remarks

In this chapter, we first experimentally highlighted the importance of choosing

regions as processing primitives in pixel-level semantic image understanding.

To produce the object-consistent regions, we then propose to unify the state of

the art low-level segmentation algorithms with typical semantic segmentation
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algorithms by introducing the semantic feature feedback. Experiments on M-

SRC21 and the stanford background dataset have confirmed the effectiveness of

our new method.

There exist some limitations in our model. For example, we are implicitly re-

quiring the semantic features should have a relatively high accuracy, otherwise

it will deteriorate the performance of the whole system. Another problem is

how to automatically decide the number of objects contained in an image. In

the illustrative example of Fig.4.1, the appropriate number of regions should be

4. The Dirichlet Process Mixture Model4 may be a promising tool to tackle this

problem.

We also noticed that there are some recent works [115, 116] that are quite similar

to ours. In [115], the authors try to obtain semantic contours (which will result

in semantic consistent regions) by utilizing the results from object detectors.

[116] performed the low-level over-segmentation first, and then extract multiple

kinds of semantic features from each region. These semantic features together

with the low-level regional features are then fed to a one-vs-all SVM classifier

to perform the final semantic segmentation. By looking at these works together

with our own work, we believe that it is the recent trend that researchers tend

to combine different tasks together and try to solve them simultaneously. For

example, in [117], the authors integrated the task of surface estimation, depth

estimation, occlusion boundary estimation and object detection into one frame-

work. Each module is iteratively updated using the output of other modules. A

similar idea is also adopted by Heitz [118] who proposed the Cascaded Classi-

fication Model (CCM) which integrates the problem of object detection, region

labeling and geometric reasoning. Another notable work is recently proposed in

[119], where object detection and semantic segmentation are novelly integrated

in a CRF framework.

4http://people.csail.mit.edu/jacobe/software/dpmm.tar.gz



Chapter 5

GlandVision: A Novel Polar Space

Random Field Model for Glandular

Biological Structure Detection

Just as shown in the previous chapter, we believe that the segment-then-recognize

strategy is a more suitable choice in pixel-level semantic image understanding,

as long as we can design an appropriate segmentation algorithm which can pro-

duce regions that are more object-consistent. In this chapter, we studied a prob-

lem in medical imaging named gland recognition. We follow the segment-then-

recognize strategy, and found that this strategy works very well in this scenario,

as long as we can devise a suitable algorithm which can produce regions resem-

bling the glands. More specifically, we first transform the image from Cartesian

space to polar space and introduce a novel random field model with an efficient

inference strategy that uses two simple chain graphs to approximate a circular

graph to infer possible gland boundaries. We then develop a visual feature based

support vector regressor (SVR) to verify if the inferred contour corresponds to

a gland. We then combine the outputs of the random field and the regressor to

form the GlandVision algorithm for the detection of glandular structures. In the

71
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experiments, we treat the task as object (gland) proposal, detection and segmen-

tation problems respectively and show that our new technique outperforms state

of the art computer vision algorithms developed for these tasks.

This chapter is structured as follows: in section 5.1 we introduce some back-

ground for gland detection and we briefly review related literature in section

5.2. We present our new polar space random field model and a novel efficient

inference solution in section 5.3. In section 5.4 we introduce a support vector

regression model to verify the potential glandular structures. In section 5.5 we

present our overall glandular structure detection method and section 5.6 presents

extensive experimental results and comparison with state of the art.

5.1 Introduction

Tissue diagnosis is an important part of modern day medicine. Where disease

is suspected, tissue samples can be taken from the patient and viewed under the

microscope by a Pathologist. In many human tissues, cells are organized into

complex anatomical units called glands. In many disease states the glands are

disrupted, often in a characteristic fashion. If automated image analysis is to be

used to facilitate tissue diagnosis, then recognition of glands is essential.

In this study we sought to devise an algorithm for the automated detection of g-

landular structures in human tissues. A typical microscopic image of the human

colon and the glands contained in it are shown in Fig.5.1. It can be seen there

that a gland is composed of a group of cells who sit side-by-side and form the

boundaries. Depending on the way the tissue has been sectioned, the shape of

a gland can vary hugely and this poses significant challenge to computational

algorithms for automatic gland detection.
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FIGURE 5.1: A microscopic image of human colon tissue containing glands.
The glands are manually annotated in blue solid color as shown in the right

image.

5.2 Related Work

Since gland exhibits irregular shapes on tissue sections, most of the previous

works tackle the gland detection problem by focusing on lumen detection. Lu-

men is the region in the center of a gland. Previous methods assume that lumen

can be identified by their color [120, 121] or texture [122, 123]. Once the lu-

men area is detected, it is considered as the seed region, and some segmentation

methods, such as region growing [124], active contour [125], level-set [126],

etc, can be adopted to segment out the glands.

Because color can vary significantly in different microscopic images, these meth-

ods sometimes will require human intervention [125] to label the lumen regions

for model construction. In contrast, our method is totally color-free and pro-

cesses the grey-scale image. Besides this, we also believe that texture is not an

informative cue in this kind of image as can be seen in our experimental sec-

tion 5.6.3 where a state-of-art semantic segmentation algorithm which utilizes

texture features can only obtain a relatively low performance.
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5.3 A Novel Random Field Model for Gland Pro-

posal

FIGURE 5.2: For the polar image, its horizontal axes corresponds to the dis-
tance to the origin, while the vertical axes corresponds to the angle ranges from
1 to 360. A, B and C correspond to cases where the polar space’s origin is in-
side a gland while D corresponds to the case where the polar space’s origin is
not inside a gland. We can clearly see a continuous line structure in A, B and

C, while this kind of structure cannot be seen in D.

One of the most distinctive properties of a gland is that they usually exhibit

a closed shape structure. If we place our viewpoint inside the gland, we will

see a closed contour, which means if we place the co-ordinate’s origin inside

a gland and transform the gland to the polar space, we will see a continuous

line structure along vertical direction in the polar image. Some examples are

shown in Fig.5.2. It is seen that if the origin is inside a gland, we can see an

obvious line structure in their corresponding polar image (e.g., regions circled

as A, B, and C); if the origin is outside a gland there is no such line structure

in its polar image (e.g., the region circled as D). Based on this observation,

the problem of detecting glands can be formulated as the problem of detecting

those line structures in the polar image. In this section, we have developed a

novel Conditional Random Field (CRF) model to achieve this.
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5.3.1 A Novel Random Field in the Polar Space

At each point (x0, y0) in the Cartesian space, we crop a sub-image with (x0, y0)

at its center. A point (x, y) in the sub-image is transformed to the polar space

(r, θ) using: r =
√

(x− x0)2 + (y − y0)2

θ = arctan y−y0
x−x0

(5.1)

In this work, θ is discretized to 360 units corresponding to 360 degrees. For a

practical system, we only need to consider a limited range of r ∈ (1, rmax),

which means that we assume the diameter of the maximum size of the gland

is 2 ∗ rmax (to detect larger glands, we can down-scale the image and still use

the same rmax value). After this transformation, a circular region with radius of

rmax in the original image is transformed to a fixed size polar image of 360 rows

× rmax-columns.

To detect the gland contours in the polar image, we developed a Conditional

Random Field (CRF) model [57]. A CRF formally consists of a random variable

X over the observed data and a set of random variables Y = {Y1, Y2, ..., Yn}

over the labels to be inferred. All components Yi of Y are usually assumed

to range over a finite label alphabet Y . In our case, we assign each row of

the polar image a label Yi, which indicates the position of the gland contour

at each row. Accordingly, the label alphabet Y equals to {1, 2, ..., rmax}. The

graphical model of our CRF contains only 360 nodes in total and is illustrated

in Fig.5.3(a).

The energy function of our CRF consists of two terms: the unary potential ψi

and the pairwise potential ψij . It is formally defined as:

E =
∑
i

ψi(Yi | X) +
∑
i,j

ψij(Yi, Yj | X) (5.2)
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where X represents the polar image data. It can be represented as X = {X1, X2, ..., X360},

whereXi corresponds to the ith row in the polar image, as illustrated in Fig.5.3(b).

We then made two further assumptions about the unary potential and the pair-

wise potential. For the unary potential ψi(Yi | X), we assume it only depends on

Xi instead of the whole X, and we assume the pairwise potential ψij(Yi, Yj | X)

only depends on Xi and Xj . Thus our energy function can be re-written as:

E =
∑
i

ψi(Yi | Xi) +
∑
i,j

ψij(Yi, Yj | Xi, Xj) (5.3)

The factor graph of our CRF is shown in Fig.5.3(c). The definition of our unary

potential and the pairwise potential will be described in section 5.3.3 and section

5.3.4.

We also noticed that there exists previous works that also utilize the polar image

[127] or the polar property [128] and adopted a random field model for image

segmentation. However, the structure of their random field is quite different

from ours. In their work, they assign each pixel a random variable which can

take two labels corresponding to ‘inside’ and ‘outside’. For a polar image of

360 rows × rmax-columns, their definition will produce 2360∗rmax = (2rmax)360

possible states, whilst our definition will only produce (rmax)
360 states, which is

much smaller than theirs. Besides, our structure of the random field automatical-

ly satisfy the star-convexity property which is considered as an extra constraint

in [128].

5.3.2 Inference

The inference procedure of our CRF is to find the optimal Y that can achieve

the lowest energy E. From the graph shown in Fig.5.3(a), we could see that it

contains a loop structure, which means it is very time consuming, if not impos-

sible, to perform exact inference, and we had to resort to approximate inference
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FIGURE 5.3: (a) The graphical model of our CRF model; (b) Each row of the
polar image is assigned a random variable; (c) The factor graph of our CRF

model.

methods, such as loopy belief propagation [129] which is known to be compu-

tationally intensive. We noticed that the graph structure in our scenario is a loop

structure only if it contains one more edge which links Y1 and Y360, otherwise

it will be a chain, and there exists very efficient inference methods, such as dy-

namic programming, for chain structure. To avoid the influence of this extra

edge, we have developed a novel efficient solution that uses two chain structures

to approximate this circulate graph. More specifically, we generate two polar

images I(r, θ), one with a θ ranges from 0 to 2π, the other with a θ ranges from

π to 3π. This is shown in Fig.5.4(a). For these two graphs, we do not connect

their heads and tails; hence they are just two chain graphs. We use the well

known Viterbi algorithm for inference in this chain structure. The inference is

performed separately on each of these two graphs. Finally, we use Algorithm 2

to combine the two results together.

This ‘divide and merge’ approach works extremely well in practice, and it only

takes a few milliseconds on a 360 × 100 pixel polar image.

5.3.3 Unary Potential

Now we define the unary potential ψi(Yi | Xi) appeared in our energy function.

We noticed that the gland’s boundary usually corresponds to the darker area of

the image (see Fig.5.1 for example). Therefore, a natural strategy is to use the
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FIGURE 5.4: An Efficient Inference Strategy. (a) An image is transformed into
two polar images, one’s θ ranges from 0 to 2π, and the other’s ranges from π to
3π. The Viterbi inference algorithm is performed separately on these two polar
images, and the results are shown in (b) and (c). We can see that the resulted
contour is not a closed shape. This is because we use the chain structure to
approximate the circular graph. These two results are then combined using

Algorithm 2 to generate the final result shown in (d).

pixel intensity as the unary potential. Let I(r, θi) be the grey value at position

(r, θi) in the polar image, then a simple definition of the unary potential can be

written as:

ψi(Yi = r) = I(r, θi) (5.4)

As illustrated in Fig.5.5(c), such simplistic definition is flawed and produces

lots of noise. To make the unary potential more informative, we make another

stronger assumption that the boundary position prefers a smaller r value. In oth-

er words, we prefer the inner contour than the outer contour. This assumption

is reasonable because the inner part of a gland is usually in lighter colors. To

achieve this, the polar image is first filtered with a vertical edge filter [-1, 0, 1].

Then we calculate the cumulative sum of the edge image in the horizontal direc-

tion, and the values in each line of this cumulative edge map are normalized to
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Algorithm 2 Gland Detection
Input: gland image;
Output: gland Contour;
Transform the gland image to two polar images: θ ∈ (0, 2π) and θ ∈ (π, 3π);

Contour1 = perform inference on the polar image with θ ∈ (0, 2π);
if |Contour1(1)− Contour1(end)| < 5 then
Contour = Contour1;

else
Contour2 = perform inference on the polar image with θ ∈ (π, 3π);
if |Contour2(1)− Contour2(end)| < 5 then
Contour = Contour2;

else
Shift Contour2(1 : 180) = Contour2(181 : 360);
Shift Contour2(181 : 360) = Contour2(1 : 180);
Difference = |Contour1 − Shift Contour2|;
[dummy, index1] = min(Difference(5 : 180));
[dummy, index2] = min(Difference(181 : 355));
Contour = Shift Contour2;
Contour(index1 + 4 : index2 + 180) = Contour1(index1 + 4 :
index2 + 180);

end if
end if
Return Contour;

(0,1). Our new unary potential is defined as:

ψi(Yi = r) = 1− (1− I(r, θi)) ∗ (1− Icumedge(r, θi))α (5.5)

where α is the trade-off parameter between the two terms. Note that only when

I(r, θi) and Icumedge(r, θi) both approaches 0, ψi(Yi = r) approaches 0. If either

of these two terms approaches 1, ψi(Yi = r) will approach 1. We empirically

set α = 0.5 in all our experiments. The complete procedure of generating the

unary potential is shown in Fig.5.5.
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FIGURE 5.5: Illustration of Unary Potential. Given an image as shown in (a),
it is firstly transformed into the polar space (b). The histogram equalized polar
image is shown in (c) left, and the unary potential as defined in (5.4) is shown
in (c) right in pseudo color. This kind of unary potential definition is flawed
which will result in the bad detection result as shown in (d) and (e). Instead,
we first calculate the cumulative edge map (g) based on the edge map (f). Then
this cumulative edge map is combined with the original polar image according
to (5.5) to generate our new unary potential shown in (h). Based on this unary

potential, we obtain the correct results as shown in (i) and (j).

5.3.4 Pairwise Potential

As shown in Fig.5.3(a), edges only exist among neighbouring nodes. In the

simplest case, we can adopt the conventional Gaussian edge potential:

ψij(Yi = ri, Yj = rj) = 1− exp

(
−|ri − rj|

2

2σ2

)
(5.6)

where σ is the standard deviation. In practice, we found it is always difficult

to set up a suitable σ value. That’s one of the reasons why we need to adopt

a CRF model instead of a Markov Random Field (MRF) model1. On defining

the pairwise potential, we adopt similar idea from the contrast sensitive Potts

model [11]. We draw a line between (ri, θi) and (rj, θj), and we integrate all the

1Please refer to [130] for a more detailed description of the differences between MRF and
CRF.
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intensity values in this line:

Isum =

∫ (rj ,θj)

(ri,θi)

I(r, θ) d(r, θ), (r, θ) ∈ line(rj ,θj)(ri,θi)
(5.7)

Then we calculate the average intensity along this line Iavg = Isum/length. Our

new data dependent pairwise potential is defined as:

ψij(Yi = ri, Yj = rj) = 1− exp

(
−|ri − rj|

2

f(Iavg)

)
(5.8)

where f(Iavg) is a function over Iavg. It is formally defined as:

f(Iavg) = c ∗ (max(1− Iavg, thresh))β (5.9)

where c, thresh and β are all constants. From the above definition of f(Iavg),

we can see that when Iavg approaches 0, f(Iavg) approaches c, and when Iavg

approaches 1−thresh, f(Iavg) approaches c∗threshβ . Although we can utilize

the training data to learn these parameters, we didn’t find the learning procedure

very helpful. We empirically set c = 80, thresh = 0.5 and β = 4 in all our

experiments.

5.4 Verification by a Visual Feature based Regres-

sor

Based on the above gland proposal model, we adopt a sliding window style de-

tection strategy on a given whole image. As our random field model directly

searches the radius at each angle, and the radius ranges from 1 to rmax, it means

our algorithm can detect glands whose radius can vary from 1 to rmax. There-

fore, we do not need to slide the detecting windows at different scales. Instead,
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we only need to apply our detection model at each position once. In practice, we

sub-sample the pixel locations by 10 pixels, and only apply our model at these

positions. In this way, for an image whose size is 1000 pixel width and 1000

pixel height, we will get around 10000 potential gland contours.

The possible gland contours detected by the above random field model still con-

tain much noise, because a true glandular structure is not only defined by its

contour but also the structure inside the contour. Therefore, we will design a

visual feature based verification module to judge if the contours detected cor-

respond to true glands. We firstly use the energy output of the random field to

sort all the potential gland contours. Then a threshold T is set to remove those

obvious non-glands. We set T to be a relatively large value in order to main-

tain a high recall rate. We didn’t do much engineering work on the choice of

this T value, and T is set to be the same value for all the training and testing

images. On average, we will retain about 4000 contours among all the 10000

detected contours for each image. For each of these remaining contours, we ex-

tract the PHOG visual feature [131] from the smallest bounding box enclosing

it. We also compute a score to measures its quality. This score is defined as the

maximum overlap between the detected contour S and any ground truth glands

Si:

score = max
i

|S
⋂
Si|

|S
⋃
Si|

(5.10)

We train a regressor to regress this score using the PHOG features. Recent re-

search have shown that regression is sometimes more suitable than classification

for object recognition [132, 133]. We utilize the popular LIBSVM toolbox [134]

to learn a nonlinear ε − SV R. The pyramid match kernel defined in [131] is

used to generate the kernel matrix. In training the nonlinear kernel SVR, we al-

so adopt the ‘mining hard negative’ strategy [61, 133] to incrementally increase
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the training set. In each step, we only retain the support vectors and add those

samples with the largest regression errors.

5.5 GlandVision: Integrating Random Field with

Regressor

To perform the final gland detection, we fuse the outputs of the random field

and the regressor using a classifier level fusion paradigm [29]. The random

field energy output and the regressor output both have probabilistic meanings.

Previous work [29] has shown that adding classifier outputs is a more robust

way to fuse two probabilistic outputs. We directly sum the two outputs together.

Besides, we have also tried our approach proposed in Chapter 3 in combining

these two outputs. The flowchart of our complete gland detection algorithm is

depicted in Fig.5.6.

FIGURE 5.6: A Complete GlandVision Procedure

5.6 Experiments

We have collected a dataset consisting of 20 high resolution 1280 × 1024 pix-

el microscopic images of human colon tissues. The dataset contains 1072 g-

lands and all have been manually labelled with pixel accuracy. Fig.5.7 shows

all the 20 images in this dataset. The dataset and ground truth data has now
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been made publicly available at http://www.viplab.cs.nott.ac.uk/download/Nott-

Gland.html. In the experiments, we randomly chose half of these 20 images for

training and the rest for testing. As our dataset contains pixel-level ground truth,

we can perform different tasks on this dataset. In the following, we will consider

three scenarios: Gland Proposal, Gland Detection and Gland Segmentation.

FIGURE 5.7: Nott-Gland dataset.

5.6.1 Gland Proposal Accuracy

It is not until recently that the term of object proposal [69, 135, 136] have attract-

ed researcher’s attention which either advocates the segment-then-recognize s-

trategy [69] or can facilitate the sliding window object detector [135]. In this

theme, our random field model can also be considered as an object (gland) pro-

posal algorithm. In the first experiment, we consider the problem as a gland

proposal problem and evaluate the object proposal accuracy of our algorithm

against one of the state-of-art algorithms in object proposal [135]. Given an

image, the task of object proposal is to return a ranked list of bounding boxes
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that are most likely to contain an object. The performance is evaluated using the

Detection-Rate/Signal-To-Noise curve [135]. For the object proposal algorithm

in [135], we directly use their public code. The parameters in their method are

learned using our training images.

A proposal whose overlap score, as defined in (5.10), exceeds a predefined

threshold is considered as a true positive. A common setting is to set the thresh-

old to be 0.5, which is the standard PASCAL criterion [70]. Besides this, we

have also considered to set it to 0.8. A higher threshold means that the pro-

posed object and the ground truth must have a higher degree of overlap hence

indicating a higher standard to be considered as true positive.

The results we have achieved together with the objectness method [135] are

shown in Fig.5.8. From there we can see that our method outperforms objectness

by a large margin. This comparison is perhaps not fair, as objectness is designed

to detect generic objects, while our random field model is specifically designed

for gland proposal. We show the result of objectness here to illustrate that gland

proposal is a very distinct problem from generic object proposal, and a method

that works well for generic object proposal does not necessarily work well in

our scenario. Besides this, we could also tell from the figure that our method

can achieve a high detection rate (recall rate), even the overlap threshold is set

to 0.8, which means our random field model can accurately propose the glands.

5.6.2 Gland Detection Accuracy

We now consider the problem as a gland detection problem. For the baseline

method, we have implemented the part-based object detection model [61] using

their public code. This method is considered to be the state of the art method in

object detection literature.
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FIGURE 5.8: (a) The DR/STN curve of [135] and our Random Field (RF)
model at threshold 0.5 (RF 0.5) and 0.8 (RF 0.8). (b) The original microscopic
image. (c) The ground truth image of glands. (d) The results obtained by [135].

(e) The results obtained by our full model.

For the evaluation criterion, we adopt the Mean Average Precision (MAP) which

is the standard PASCAL criterion. Fig.5.9(a) shows the detection results achieved

by our methods together with results of part-based object detection model. On

their own, our Random Field and phog SVR methods achieve a MAP of 0.50

and 0.54 respectively, which is lower than the results obtained by part-based

model. However, when we combine these two methods by simply summing

their outputs together, our result exceeds part-based model. Besides this, if we

adopt our technique proposed in Chapter 3 to combine these two outputs, our

result is further improved. As can be seen from Fig.5.9(b) and (c), the value

distribution of ‘RF’ output and ‘phog SVR’ output differs a lot, and it will make

more sense if we transform their distribution to be the same before summing

them together. We directly use our histogram matching code which is publicly

available2.

Although our method obtains a higher MAP than the part-based model, the ad-

vantage is not obvious. A significant advantage of our model is that it can not

only detect the glands, but can also accurately localize them. Therefore, instead

2http://www.viplab.cs.nott.ac.uk/demo&code/FeatureCombination/Feature%20combination.html
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FIGURE 5.9: (a) Precision-Recall curve of different methods. (b)-(d) The his-
togram of original phog SVR values, the Random Field (RF) outputs and their
summed results. (e)-(g) The histogram of the phog SVR values, RF outputs
and summed value after Histogram Matching (HM) (please refer to Chapter
3). We could see that the histogram of phog SVR and RF becomes the same

and the HM operator.

of setting the overlap threshold to be 0.5, we set it to higher values. Note that a

higher threshold means higher degree of overlapping between the detected ob-

jects and ground truth hence requiring more accurate localization. We can see

from Fig.5.10 that for the part-based detection model, as the threshold increases,

MAP drops significantly, whilst for our methods, the drop is not that obvious.

When the threshold is set to 0.8, the MAP of part-based detection model drops

to 0.02, which means it can hardly detect any glands. But still, our methods can

achieve a relatively much higher MAP. Some qualitative examples comparing

part-based detection model and our method are shown in Fig.5.11.

5.6.3 Gland Segmentation Accuracy

Just as shown in the previous experiments, our model can accurately localize the

glands, which means it can be considered as a segmentation algorithm. In this

section, we treat the problem as a semantic segmentation problem, and adopt

the PASCAL VOC score = TP
TP+FP+FN

as the evaluation criterion. There are in

total two semantic classes: ‘gland’ and ‘background’. For the baseline method,
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FIGURE 5.10: MAP value at different thresholds.

FIGURE 5.11: (a) The original microscopic image. (f) The ground truth image
of glands. (b)-(e) The detection results obtained by [61] with threshold varies
from 0.5 to 0.8 (g)-(j) The results obtained by by our model. As the thresh-
old increases, the bounding boxes have to be more accurate. As the accuracy
requirements increases (higher threshold), the detection result of [61] dropped

significantly.

we implemented the hierarchical CRF model [12] using their public code. This

method build a hierarchical graph among pixels and superpixels, and has ob-

tained the best result on some famous semantic segmentation datasets including

MSRC21 [9].

For our segmentation methods, we simply assign all the pixels contained in a

gland proposal to be ‘gland’ class. Here we need to set a hard threshold to judge

if a gland proposal is true positive. For the phog SVR method, we can simply
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select 0.5, as this model is trained to have an output ranges from 0 to 1, but

for other models, it is difficult to select an appropriate threshold. Therefore, we

count the number of gland proposals whose phog SVR score is above 0.5, and

chose a threshold that retain the same number of proposals for other methods.

TABLE 5.1: Segmentation Accuracy

RF phog SVR RF+phog SVR RF+phog SVR+HM [12]

gland 0.521 0.588 0.601 0.615 0.119
background 0.845 0.828 0.805 0.850 0.785

average 0.663 0.708 0.723 0.732 0.452

Table.5.1 shows the results obtained by our methods and the method proposed

in [12]. We can see that [12] can only obtain an accuracy of 0.119 for the

‘gland’ class, which means it is very difficult to distinguish the ‘gland’ class

from the ‘background’ class only based on the features extracted from the pixel

or superpixel level. In fact, the inner region contained in a gland is exactly the

same as the regions between glands. It is the circular structure that our model

tries to capture that separates the ‘gland’ class from the ‘background’ class. An

example output of [12] and our method is shown in Fig.5.12.

FIGURE 5.12: Segmentation results.

5.7 Concluding Remarks

In summary, we have presented a novel method for detecting glandular struc-

tures in microscopic images of human colon tissues in this chapter. We consider
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the problem at hand from three different angles, i.e. object proposal, object

detection and semantic segmentation, and compare our algorithm with several

state of the art methods in the respective fields. Different evaluation criteria have

confirmed the effectiveness of our method.

Our method has some limitations. Firstly, due to the utility of the polar im-

age and the structure of the random field model, our method can only detect

star-convexity shapes [128]. Future works will try to overcome this limitation.

Secondly, the regressor is trained only based on the PHOG feature, it is antici-

pated that adding more features could boost the performance of the regressor as

well as our final model. Thirdly, the glands contained in a microscopic image

will never overlap, but we haven’t utilized this property in this work. Future

works will try to utilize this property and obtain a global consistent result.



Chapter 6

Random Forest for Image

Annotation and Retrieval

In the previous two chapters, we have studied problems related to pixel-level

semantic image understanding. However, just as mentioned in Chapter 2, the

most state of the art pixel level image understanding algorithm can only obtain

an accuracy of around 43% on a challenging dataset, which is far from satisfac-

tion. In contrast, there already exists several commercial image search engines,

such as google image. The task of image-level semantic image understanding

seems to be easier than pixel-level understanding, while it is still of significant

piratical meanings. Furthermore, just as some previous works [65, 137] showing

that, the results of image-level understanding could be used as a prior and boost

the performance of pixel-level understanding.

In this chapter, we have developed a novel usage of random forest for large-scale

image-level semantic image understanding. The nature of the random forest

structure serves as an efficient data structure for storing and fast browsing the

image data. Besides, in generating the random forest, we can effectively utilize

the tag information associated with images to tackle the semantic gap problem.

91
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Our random forest differs from traditional usage, which consider each random

tree as independent from each other, in that we treat the random forest as a

whole, and have developed two new concepts named Semantic Nearest Neigh-

bor (SNN) and Semantic Similarity Measure (SSM). These two new concepts

enable us to develop novel solutions for the task of image retrieval and image

annotation.

In this chapter, we will first introduce some motivations for the usage of random

forest in section 6.1. Then we introduce our construction of the random forest

and propose the two new concepts of SNN and SSM in section 6.2. In section

6.3 and 6.4, we describe our usage of these two concepts in dealing with the task

of image retrieval and image annotation respectively. Experimental results on

four datasets will be shown in section 6.5 and some concluding remarks will be

given in section 6.6.

6.1 Introduction

We have mentioned in Chapter 2 that Nearest Neighbor (NN) based methods, al-

though simple, have shown its usefulness in many computer vision applications.

In fact, as long as you have a sufficiently large repository of images together

with human labeled ground truth, then the simple NN method might be able to

solve the image understanding problem. The rationale behind this is that we

can always find very similar images to the target image when the database is

sufficiently large. This idea is illustrated in Fig.6.1. We can see that the near-

est neighbors retrieved from a relatively small dataset (contains 2000 images) is

not quite similar to the query image. However, when the dataset becomes large

(contains 2,000,000 images), the images retrieved look much more similar to

the query image. Some researchers [44] named this method brute-force image

understanding.
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FIGURE 6.1: Illustrative example on the effect for the size of the dataset. This
example is adapted from [44].

However, if we want to extend NN methods to deal with large-scale datasets,

there are at least two technical issues: the first one is how to design efficient

data structures to store and retrieve the nearest neighbors. The second is the

semantic gap problem where the nearest neighbors retrieved based on visual

feature similarity do not necessarily share the same semantic concepts. Just as

we pointed out in Chapter 2, NN is in essence an unsupervised method.

In this chapter, we propose to use random forest to tackle these two problems

encountered by NN simultaneously. On the one hand, using the tree structure of

the random forest enables the efficient retrieval of nearest neighbors; on the other

hand, we can utilize the tag information associated with images as supervising

information to guide the generation of the random trees, thus making the images

located at the same leaf node share similar semantic concepts.

We now describe our usage of random forest, and show how to use it to tackle

image retrieval and image annotation problems.
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6.2 The Construction of the Random Forest

It has been common practice [1, 138, 139] to use multiple kinds of features to

represent one image. How to efficiently combine different features is a non-

trivial task. Existing methods include using an equal weight for different fea-

tures [1], a distance specific weight for each feature [46], or learn an annotator

for each feature and then fuse the outputs of different annotators [139].

In our random tree scenario, the method of fusing different features is correlated

with the choice of the split function of the random tree. To narrow down the

search space for the split function, we prefer to use a simple split function while

simultaneously trying to maintain its discriminative power. To achieve this, we

propose to use dimension reduction methods [140] to get a more compact rep-

resentation for each feature channel. More specifically, we choose to use kernel

PCA [141] for each feature channel. Although directly computing kernel PCA

is time consuming and hard to extend to large scale, there exist fast approxi-

mate methods [142] which make it scalable to large scale datasets. In all our

experiments, we use kernel PCA to reduce each feature dimension to a fixed

low dimension, thus making each kind of feature have an equal probability to

be chosen as the dimension on which the split function will operate. Denote the

kernel PCA reduced feature as F′, the split function is defined as:

F
′
i ≥ thresh go to left child

otherwise, go to right child
(6.1)

Based on the split function defined above, we can split samples to the left child

node or right child node accordingly. We can generate multiple splits by choos-

ing different feature dimensions or different thresholds. We plan to use the tag

information to guide the generation of the tree. The idea is straightforward: at

each node, after splitting the samples to the left node or the right node, we can
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compute their corresponding tag histograms. A good split means the tag his-

togram of the left node should be quite different from the tag histogram of the

right node. From the probabilistic point of view, the tag histograms in the left

or right child node can be considered as the probabilities that the left child n-

ode or the right child node contains the specific tag. Thus we can use the widely

adopted information gain criteria [10, 50], which is defined in (2.10) as the score

function.

The whole procedure of growing the tree is summarized in Algorithm 3.

Algorithm 3 The growing procedure of a random tree
Input: Feature(N*M); N: feature dimension, M: Number of samples
Output: Left node index, Right node index
Dims = randomly select n dims from (0,N)
returned dim,returned thresh,best score=0
for dim in Dims do

min value = min(Feature(dim,:))
max value = max(Feature(dim,:))
diff = max value-min value;
for thresh = randomly generate m thresholds from
(min value+diff/4,max value−diff/4) do

compute split score according to score function (2.10)
if score > best score then

best score = score, returned thresh = thresh, returned dim = dim;
end if

end for
end for
Left node index = Feature(returned dim,:) ≥ returned thresh
Right node index = Feature(returned dim,:) < returned thresh

For a test image, we pass it through every random tree. It falls from the root

node and keeps falling according to the split function until it reaches the leaf

node. It is obvious that every node in its falling trajectory contains important

information, but for now we only consider the samples stored in the leaf node

and call these samples the semantic neighbors of the test sample. The semantic

neighbors obtained from different trees together make up the semantic neighbor

set. Based on this semantic neighbor set, we can draw the important rationale
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FIGURE 6.2: An example showing the concepts of semantic neighbor set and
semantic neighbors. A query image passes through all random trees. The
training images stored at the leaf nodes on which the query image falls into
form the semantic neighbor set. Based on this, the semantic similarity measure
(SSM) between the query and a particular training image is calculated as the
number of times that the particular training image appears in the semantic

neighbor set. A larger SSM indicates higher similarity.

behind this work: the more often that two images fall into the same leaf node, the

more likely they share similar tags. Therefore, the semantic similarity between

two images should be monotonically increasing with the number of trees in

which they fall into the same leaf node. Thus we can count the number of

trees that two images fall into the same leaf node and use this count value as the

semantic similarity measure (SSM) of the two images (we will use count value

and SSM interchangeably in the rest of this chapter). Based on the SSM, we

can sort all the images contained in the semantic neighbor set to retrieve its K

semantic nearest neighbors. The concepts of semantic neighbor set and semantic

neighbors are also illustrated in Fig.6.2.
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6.3 Image Retrieval based on Random Forest

In the realm of image retrieval, there are different ways for a user to query the

system, such as uploading an image, using keywords or hand-draw a portrait. In

this work, we considered the first two scenarios.

6.3.1 Example-based Retrieval

If the user chose to upload an image, then the image retrieval system should

be able to return a ranked list of images that share similar semantic and visual

contents. For our random forest, we only need to pass this test image to the

forest to obtain its semantic neighbors. Then these semantic neighbors will be

ranked according to their SSM values, and those with larger SSM values will be

returned to the user. (An example of a ranked list of images according to SSM

values is shown on the right of Fig.6.2.)

6.3.2 Keyword-based Retrieval

For the keyword based image retrieval, the user enters a textual word, and the

image retrieval system will output images from a large repository which are

most likely to contain this word. To perform keyword-based image retrieval, we

consider the following settings: suppose a large repository contains two image

sets, training and testing: images in the training set are tagged and those in the

testing set are not tagged, furthermore, tags in the training set contain all possible

keywords that could be asked by the user. Then, given a keyword query, our

task is to return a ranked list of images from the testing set that are most likely

to contain that specific keyword.

The same as before, we first build a random forest from the training images, and

then we pass each image in the testing set to the random forest and obtain its



Chapter 6. Random Forest for Image Annotation and Retrieval 98

semantic neighbors. We define the probability that a testing image I contains

tag j as:

qj =

∑K
i=1 tij ∗ ci∑K

i=1 ci
(6.2)

where K is the size of the semantic neighbor set of I, tij is an indicator func-

tion which is equal to 1 if tag j exists for the ith semantic neighbor, ci is the

semantic similarity measure (SSM) between the ith semantic neighbor and the

testing image I. Based on this equation, we can rank images for a specific tag j

according to their qj values.

6.4 Image Annotation based on Random Forest

6.4.1 Tag Prediction based on Semantic Neighbors

Based on the semantic neighbor set, our semantic nearest neighbor (SNN)-based

image annotation method is performed as follows: For a test image, we use

the method described above to retrieve its K semantic nearest neighbors. The

prediction of the tags for this image totally depends on theseK semantic nearest

neighbors. At this stage, we can use previously developed methods, like the

label transfer method in [1] or the label filter method in [143]. In our case, we

can get additional help from the SSM value obtained from our random forest,

and therefore we adopt a conventional tf-idf scheme [20].

Denote I the query image and Q the probabilities of assigning tags to annotate

the image. Let Ii represents I’s ith semantic neighbor returned by our random

forest with its SSM value denoted as ci, and Ti represents the ground truth tags

of Ii. Suppose there are M tags in total, thus Q and Ti can be represented as a

M -tuple vector: Q = (q1, q2, ..., qM)T and Ti = (ti1, ti2, ..., tiM)T . Here tij is
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an indicator function which is equal to 1 if tag j exists for the ith image. The

prediction of Q totally depends on the Ti and ci value:

qj = log

(
R

rj

)
∗

K∑
i=1

(
tij
Z
∗ f(ci)

)
, j ∈ {1, 2, ...,M} (6.3)

where the term log R
rj

is the inverse document frequency [20] obtained from all

the training images. R is the number of training images, and rj is the number

of training images which contain the jth tag. Z is a normalizing constant which

is equal to
∑K

i=1

∑M
j=1 tij . The term f(ci) represents a function which should

be monotonically increasing with ci. This term reflects our intention that the

neighbor with a larger SSM value should contribute more to the predication of

the tags. Based on the computedM -tuple vector (q1, q2, ..., qM)T , we can predict

l tags for the test image which correspond to the l largest qj values.

Possible forms of f(ci) include f(ci) = ci, f(ci) = ci
2, etc. However, ad

hoc choices of f(ci) lack predictability. In the next section, we introduce a

systematic method to learn f(ci) from training data.

6.4.2 Image Annotation as Learning to Rank Semantic Neigh-

bors

In conventional random forest literature [52], each tree is considered to be inde-

pendent and they contribute equally to predict the posterior probability, which is

equivalent to setting f(ci) = ci in our scenario. However, we will show in our

experimental section that sometimes if we choose f(ci) = ci
2, we can obtain a

better performance. It is not difficult to understand this. As shown in Fig.6.3,

the distribution of the SSM value exhibits a heavy-tailed distribution. That’s

one of the reasons why the method of JEC [1] is successful by using only the

first few nearest neighbors (which correspond to the larger SSM values in our
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scenario). It also stimulates our first intuition to use f(ci) = ci
2 to exaggerate

the contribution of those large SSM values. However, choosing f(ci) in an ad

hoc manner is not desirable and we need a more systematic approach.

FIGURE 6.3: Distribution of the SSM (i.e. count) value across different
datasets. Randomly sampled images from each dataset are fed into the ran-
dom forest. The top K semantic nearest neighbors retrieved with their SSM

values are gathered to plot this graph.

Recall that the SSM value ci can only take discrete values. Therefore we can

define f(ci) = wci , where wci means this variable only depends on ci value and

we can consider it as a look-up table. Suppose we have trained NT trees in total,

then the inequality ci ≤ NT always holds, and wci can have at mostNT different

values. We use W = (w1, w2, ..., wNT
)T to denote the vector form of w.

Denote aj = log R
rj
∗ 1

Z
, which is a tag specific constant, then (6.3) can be

rewritten as:

qj = aj ∗
K∑
i=1

(tij ∗ wci), j ∈ {1, 2, ...,M} (6.4)
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Here, we introduce another indicator variable D ∈ {0, 1}K×NT . Each of its row

contains all zero but only one 1 which corresponds to the position of wci in W.

Thus (6.4) can be written as:

qj = aj ∗ [t1j t2j ... tKj] ∗D ∗W (6.5)

Its matrix form is:

Q = A . ∗ ([T1 T2 ... TK] ∗D ∗W)

= ([A A ... A]︸ ︷︷ ︸
NT

. ∗ ([T1 T2 ... TK] ∗D)) ∗W
(6.6)

where A = [a1, a2, ...aM ]T , ‘.∗’ represents element-by-element multiplication.

Here, we can see that the prediction of tags can be cast as a linear prediction

model. In the training procedure, we need to find the largest value in Q, and

make it equal to the ground truth annotation. We can cast it as a learning to rank

problem [144].

Denote {(TP , TN )} as the set of all possible tag pairs in the training set, where

TP represents the ground truth tags and TN represents the rest of the tags. Let

Ψj = aj ∗ [t1j t2j ... tKj] ∗D (6.7)

then (6.5) can be simplified as qj = Ψj ∗W = 〈Ψj,W〉.

Then this learning to rank problem can be formulated as:

min
W,ξij≥0

1

2
WTW + C

∑
(i,j)∈{(TP ,TN )}

ξij

s.t. ∀(i, j) ∈ {(TP , TN )} : 〈Ψi,W〉 ≥ 〈Ψj,W〉+ 1− ξij

∀i : wi ≤ wi+1, W ≥ 0, (6.8)
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This problem differs from the conventional SVM problem [144] in that it has

the additional constraints W ≥ 0 and wi ≤ wi+1, but still it is a convex prob-

lem, and we can solve it using off-the-shelf convex problem solvers1. These

additional constraints represent our belief that the contribution of the retrieved

nearest neighbors should be monotonically increasing with the SSM value.

However, the problem defined in (6.8) is still different from our needs. The

aim of the learning to rank problem, as defined in (6.8), is to make the rank of

positive samples as high as possible, but in our scenario, we only need to predict

the top l tags. This means there is no difference between ranking one positive

tag as rank l + 1 or rank l + 100. Therefore, we introduce a slack variable ξi

for each positive tag instead of ξij for each positive-negative pair. This slack

variable motivates the algorithm to make the rank of positive tags outperform

all the negative tags. Our new learning to rank problem is defined as:

min
W,ξi≥0

1

2
WTW + C

∑
i∈TP

ξi

s.t. ∀(i, j) ∈ {(TP , TN )} : 〈Ψi,W〉 ≥ 〈Ψj,W〉+ 1− ξi

∀i : wi ≤ wi+1, W ≥ 0, (6.9)

One obstacle to directly solving (6.9) is that it will generate huge number of

constraints. For example, if a dataset contains 5000 images for training, each

image is annotated with 4 tags on average and the size of the tag set is 260, then

one image will generate 4*256≈1000 constraints, and the whole dataset will

generate about 5 million constraints! However, with the help of the additional

constraints W ≥ 0 and wi < wi+1, we will show that most of the constraints are

redundant and we can reduce the size of the constraints by almost two orders of

magnitude.

1http://cvxr.com/cvx/
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Definition Tag m is superior over tag n if qm = 〈Ψm,W〉 ≥ qn = 〈Ψn,W〉

for every W ∈ {W ≥ 0, wi ≤ wi+1}.

From the above definition, we can see that if tag m is superior to tag n, then we

will always prefer tag m over tag n in predicting the tags. If tag m is the ground

truth annotation, then we will always be right. On the contrary, there will be no

hope to remedy the mistake. Therefore, such constraints can be considered as

redundant and there is no need to add them to our optimization problem. Using

the following proposition, we can quickly judge if tag m is superior over tag n.

Proposition 6.1. Denote Ψj which is defined in (6.7) as [ψj1 ψj2 ... ψjNT
]. Tag

m is superior over tag n if and only if
∑NT

i=N ψmi ≥
∑NT

i=N ψni for every N ∈

{1, 2, ..., NT}.

Proof

Necessary condition: If tag m is superior over tag n, then

∀N ∈ {1, 2, ..., NT},
NT∑
i=N

ψmi ≥
NT∑
i=N

ψni

According to the definition, tag m is superior over tag n means for any W that

satisfies the constraints {W ≥ 0, wi ≤ wi+1}, the inequation

tqm = 〈Ψm,W〉 =

NT∑
i=1

ψmiwi ≥ tqn = 〈Ψn,W〉 =

NT∑
i=1

ψniwi (6.10)

always holds.

For every N ∈ {1, 2, ..., NT}, we set W = [0 0 ... 0︸ ︷︷ ︸
N

1 1 ... 1︸ ︷︷ ︸
NT−N

]T . It is clear to

see that this W satisfy the constraints {W ≥ 0, wi ≤ wi+1}, thus the inequation
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(6.10) holds which is equivalent to:

NT∑
i=1

ψmiwi =

NT∑
i=NT−N

ψmi ≥
NT∑
i=1

ψniwi =

NT∑
i=NT−N

ψni (6.11)

Thus the proof for the necessary condition is done.

Sufficient condition: If for any N ∈ {1, 2, ..., NT}, the inequation

NT∑
i=N

ψmi ≥
NT∑
i=N

ψni

holds, then tag m is superior over tag n.

Here, we have the following set of inequations:

∑NT

i=N(ψmi − ψni) ≥ 0 ∀N ∈ {1, 2, ..., NT}

W ≥ 0

wi+1 ≥ wi ∀i ∈ {1, 2, ..., NT − 1}

(6.12)

and our task is to prove:

NT∑
i=1

ψmiwi = 〈Ψm,W〉 ≥ 〈Ψn,W〉 =

NT∑
i=1

ψniwi

Based on the above inequations, we can prove the following steps:
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NT∑
i=N

(ψmi − ψni)wi = wN(

NT∑
i=N

(ψmi − ψni)−
NT∑

i=N+1

(ψmi − ψni)) +

NT∑
i=N+1

(ψmi − ψni)wi

≥ −wN
NT∑

i=N+1

(ψmi − ψni) +

NT∑
i=N+1

(ψmi − ψni)wi

= −wN
NT∑

i=N+1

(ψmi − ψni) + wN+1(

NT∑
i=N+1

(ψmi − ψni)

−
NT∑

i=N+2

(ψmi − ψni)) +

NT∑
i=N+2

(ψmi − ψni)wi

= (wN+1 − wN)

NT∑
i=N+1

(ψmi − ψni)− wN+1

NT∑
i=N+2

(ψmi − ψni)

+

NT∑
i=N+2

(ψmi − ψni)wi

≥ −wN+1

NT∑
i=N+2

(ψmi − ψni) +

NT∑
i=N+2

(ψmi − ψni)wi

...

≥ −wNT−2

NT∑
i=NT−1

(ψmi − ψni) +

NT∑
i=NT−1

(ψmi − ψni)wi

= (wNT−1 − wNT−2)

NT∑
i=NT−1

(ψmi − ψni)− wNT−1

NT∑
i=NT

(ψmi − ψni)

+

NT∑
i=NT

(ψmi − ψni)wi

≥ (wNT
− wNT−1)(ψmNT

− ψnNT
) ≥ 0

In proving the above steps, we utilize wN
∑NT

i=N(ψmi − ψni) ≥ 0 to prove the

first inequality, and (wN+1 −wN)
∑NT

i=N+1(ψmi − ψni) ≥ 0 to prove the second

inequality. It is obvious to see that these inequations hold according to (6.12).

Based on this proposition, we can use the following procedure to find the redun-

dant pairs and remove them from the constraint set:

1). Let Ψ = [Ψ1; Ψ2; ...; ΨM]. Rearrange the rows of Ψ into the Right-Ordered

form ΨRO;
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FIGURE 6.4: From left to right: the matrix Ψ = [Ψ1;Ψ2; ...;ΨM], where Ψj

is defined in (6.7); ΨRO obtained by rearranging Ψ in its Right-Ordered form;
the cumulative sum of each row of ΨRO in the reverse order.

2). Calculate the cumulative sum of each row vector in the reverse order Ψcum;

3). We can judge that tag m is not superior to tag n if either of the following

two conditions hold: the position of Ψn in ΨRO is higher than Ψm or any items

of Ψn in Ψcum is bigger than Ψm. This procedure is also illustrated in Fig.6.4.

6.5 Experiments

6.5.1 Example-based Image Retrieval

Firstly we will do experiments to mimic the image-based image retrieval sce-

nario. We use Corel5K dataset [81] as our testbed, which contains 5000 images

and 373 different tags in total. It is usually split into 4500 images for training

and the remaining 500 for testing, resulting in 260 tags in both the training set

and the testing set. For the features, we directly use the features in [46] which

are publicly available. There are 15 different kinds of features in total, including

two kinds of global features: Gist features and color histograms. Local features

include SIFT and hue descriptor which are extracted either densely or at the

Harris-Laplacian interest points.

For each image in the testing set, we consider it as a querying image and use our

random forest to retrieve its SNS, calculate their SSMs and find its K-Nearest
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Neighbors based on the K largest SSMs. To quantify the performances, we

define the K-Nearest Semantic Measure (KNSM) as

KNSM =
N∑
n=1

∑
j∈Qn

K∑
k=1

snjk (6.13)

where N is the total number of testing images, K is the number of nearest neigh-

bors under consideration, Qn is the set of (ground truth) tags existed in the test-

ing image n. snjk = 1 if querying image n’s tag j exists in its kth semantic

neighbor, and snjk = 0 otherwise. A larger KNSM value indicates that the K

nearest neighbors share more tags with or are semantically more similar to the

querying image.

For the baseline method, we considered the Joint Equal Contribution (JEC)

method proposed in [1], where the authors used an equally weighted distances

of various features to retrieve nearest neighbor images, and showed that these

retrieved images perform very well for image annotation task. Fig.6.5 shows the

results of our method and those of JEC. We can see that our method can indeed

retrieve images with higher semantic similarity.

Some qualitative results are shown in Fig.6.6. It is clearly seen that, whilst the

visual appearances of the nearest neighbor images returned by JEC do resem-

ble those of the querying images, their semantics differ significantly. On the

other hand, the images returned by our method not only visually resemble the

querying images but also share common semantics with them. These examples

demonstrate that our new concept of semantic nearest neighbors and semantic

similarity measure can indeed be successfully used in image-based image re-

trieval system and can reduce the semantic gap.



Chapter 6. Random Forest for Image Annotation and Retrieval 108

FIGURE 6.5: A comparison of K-Nearest Semantic Measure (KNSM) be-
tween our method and JEC [1].

FIGURE 6.6: Some examples of the semantic nearest neighbor images re-
trieved by our random forest method and by JEC method. The tags associated
with each image are also shown beneath each image. The tags which are in
accordance with the test image are colored in blue and underlined, while the
false tags are colored in red. The numbers underneath the SNN images are the

values of SSM.
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6.5.2 Keyword-based Image Retrieval

To test keyword based retrieval, we use NUS-WIDE dataset [138] which con-

tains 269,648 images in total, and is usually divided into 161,789 images for

training and the rest 107,859 images for testing. Images in the dataset have been

manually labeled with 81 different concepts. On average, each image is anno-

tated with 2 concepts. As the concept is relatively sparse on this dataset (about

60000 images contain no concept), previous works [138, 145, 146] have used

this dataset for keyword based image retrieval and used the Mean Average Pre-

cision (MAP) as the evaluation criterion. Our experiments used the six kinds of

visual features released by the creator of the dataset2.

To construct our random forest, we use kernel PCA to reduce the dimension

of each kind of feature to 50 dimensions, resulting in a total of 300 dims. χ2

distance is used for the bag-of-words feature, and L2 distance is used for other

five kinds of features. These distances are then transformed to kernels using

k = exp(−γ−1 · d), where γ is the mean of the distance. As the dataset is quite

large, we use an approximation method introduced in [142] to perform kernel

PCA. 400 random trees are generated based on these compressed features.

We use (6.2) to predict the probability whether a testing image contains the

specific concept/keyword. Based on this probability, all the testing images are

ranked for each concept. The MAP accuracy we have achieved with comparison

to previous methods are shown in Fig.6.7.

From Fig.6.7, we can see that our method performs much better than its tradi-

tional K-NN counterpart, and outperforms most of the previous methods. Al-

though there are some previous works [146, 147] reported higher MAP on this

dataset, they all utilize the additional tag information associated with each im-

age. As our method only relies on the visual features, hence these methods are

2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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FIGURE 6.7: The MAP achieved by our Random Forest (RF) method with
comparison with previously reported results.

not directly comparable. Our aim here is to show the scalability of our algorithm

and the advantage of semantic nearest neighbors retrieved by our algorithm over

the visual feature nearest neighbors by traditional K-NN method.

6.5.3 Image Annotation Performances

Besides Corel5K dataset, IAPR-TC12 [148] and a subset of ESP-game [46]

are another two image annotation datasets which contain approximately 20000

images. More specifically, IAPR-TC12 is usually divided into a fixed number of

17665 images for training and the rest 1962 images for testing, while 291 tags

exist both in the training set and testing set; ESP-game contains 18689 images

for training and 2081 images for testing. The training set and testing set contain

268 different tags in common.

Much work has been done on these three datasets. In terms of accuracy, Tag-

prop [46] is the best technique in the literature. The authors of Tagprop have

also released the features3 they used on these three datasets. We directly did

experiments based on these features.

3http://lear.inrialpes.fr/people/guillaumin/data.php
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For all of these three datasets, we generate NT random trees. Based on the SSM

value, we retain K nearest neighbors for each test sample, then the tags are

predicted using (6.3) based on these K nearest neighbors. As in other works,

five tags are predicted for each image. Average precision, average recall and

the number of tags whose recall is above zero (N+) are used to evaluate the

performance.

FIGURE 6.8: The relation between the system performance F value
(F value = 2 ∗Precision ∗Recall/(Precision+Recall)), and the param-
eters of NT (number of trees) and K (number of Nearest Neighbors used for
prediction). From left to right: the results on Corel5K, results on IAPR-TC12

and results on ESP game.

The relation between the performance, and the number of treesNT and the num-

ber of nearest neighbors K are shown in Fig.6.8. From there, we can see that

about 200 trees will saturate the performance and we only need to retain about

100 nearest neighbors, and the three dataset exhibit a similar trend. This proves

that our algorithm is robust to these parameters.

Before reporting the annotation accuracy, we would also like to qualitatively

compare the semantic nearest neighbors retrieved by our method with the visu-

ally nearest neighbors retrieved by previous methods, like JEC [1] or Tagprop

[46]. Some examples on IAPR-TC12 and ESP game are shown in Fig.6.6.By

looking at those visual examples, we noticed that both IAPR-TC12 and ESP

game dataset contain some duplicate images which both exist in the training set

and testing set. Both our method and JEC can find out these duplicate images.

This kind of dataset noise facilitates JEC to obtain a remarkable performance
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FIGURE 6.9: Some more examples of the nearest neighbor images retrieved
by our random forest method and by JEC method. The Semantic Similarity
Measure or the rank indexes are shown beneath each retrieved image. The
images in the top three rows are from the ESP game, while the bottom three
rows are from IAPR-TC12. From this figure, we can see that our method
outperforms JEC, and both these two datasets contain some duplicate images

that both exist in the training set and testing set.

because it places much emphasis on the first retrieved nearest neighbor in pre-

dicting the tags. On the contrary, our method utilizes about 100 nearest neigh-

bors in the prediction; therefore our method is likely to be more robust. For

more visual examples, please refer to Appendix A.

These examples demonstrate that our new concept of semantic nearest neighbors

and semantic similarity measure can indeed be successfully used to perform n-

earest neighbor search and reduce the semantic gap of traditional nearest neigh-

bor search. It is this capability to retrieve semantically similar nearest neighbors

that has enabled our method to achieve good performances in image annotation.
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Table.6.1 shows the average precision and recall performances of our new ran-

dom forest based image annotation technique and comparisons with state of the

art techniques. From Table.6.1, we can see that our methods outperform all pre-

vious methods only except Tagprop [46]. However, as mentioned before, the

success of Tagprop relies on its sophisticated training procedure and per image

per tag optimization, which hinders its extension to large scale datasets. On the

contrary, our method can be easily extended to large scale datasets. Besides

this, our method is as straightforward as a nearest neighbor method. In this

sense, JEC [1] is the most comparable to our method. However, our method

shows a clear performance gain over JEC because JEC only relies on the near-

est neighbors of visual features, whilst our method finds semantically similar

nearest neighbors (also see Fig. 6.6).

TABLE 6.1: Image Annotation Performances on Corel5K, IAPR-TC12 and
ESP game. RF represents our Random Forest method. RF count denote
f(ci) = ci, RF count2 denote f(ci) = ci

2 and RF optimize denote f(ci)
is learned based on our optimization framework

Corel5K IAPR-TC12 ESP game
method Prec Recall N+ Prec Recall N+ Prec Recall N+

MBRM [149] 0.24 0.25 122/260 0.24 0.23 223/291 0.18 0.19 209/268
JEC [1] 0.27 0.32 139/260 0.28 0.29 250/291 0.22 0.25 224/268

MSC [150] 0.25 0.32 136/260 - - - - - -
HPM [96] 0.25 0.28 136/260 - - - - - -

M-E Graph [151] 0.25 0.31 - - - - - - -
Tagprop [46] 0.33 0.42 160/260 0.46 0.35 266/291 0.39 0.27 239/268

GS [152] 0.30 0.33 146/260 0.32 0.29 252/291 - - -

RF count 0.26 0.36 143/260 0.47 0.22 220/291 0.45 0.24 233/268
RF count2 0.29 0.41 165/260 0.45 0.31 253/291 0.34 0.27 239/268

RF optimize 0.29 0.40 157/260 0.44 0.31 253/291 0.41 0.26 235/268
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6.5.4 Learning to Rank vs. Ad Hoc Annotation Functions

Comparing the results obtained from RF count, RF count2 and RF optimize

in Table.6.1, we could see that RF count2 performs best on Corel5K and IAPR-

TC12 but performs worst on ESP-game, while RF count performs slightly bet-

ter than RF count2 on ESP-game but worst on the other two datasets. This

shows that these ad hoc annotation functions although sometimes can work well

but as can be expected, lack consistency. In comparison, the systematic method

RF optimize performs consistently well across all the three datasets. The un-

predictable performances of the ad hoc annotation functions across different

datasets and the highly consistent good performances of the novel systematic

learning to rank algorithm clearly highlighted the value and usefulness of our

learning algorithm.

As can be seen the optimization objective of our learning to rank algorithm (6.9)

treats each tag equally important. Another useful measurement of performances

is to count the total number of correctly predicted tags. Table.6.2 lists the total

number of correctly predicted tags for the two ad hoc annotation functions and

the systematic learning to rank method. It is seen that the systematic method

consistently predicted more correct tags.

TABLE 6.2: The number of correctly predicted tags on each dataset. R-
F optimize consistently outperforms the ad-hoc functions.

Corel5K IAPR-TC12 ESP game

RF count 993/1756 3957/11053 3778/9774
RF count2 1004/1756 4242/11053 3724/9774

RF optimize 1010/1756 4254/11053 3797/9774
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6.6 Concluding Remarks

In this chapter, we have developed a novel random forest based framework for

automatic image annotation and image retrieval. Our new contributions include

the use of tag information to guide the generation of the random trees, the intro-

duction of the concept of semantic neighbors and a novel learning to rank frame-

work for systematically learning image annotation models from the semantic

neighbor sets. We have presented experimental results which have demonstrat-

ed our new method is competitive to the state of the art. We are now planing to

test our algorithm on larger datasets which contain millions of images.



Chapter 7

Concluding Remarks

In this thesis, we have studied problems related to semantic image understand-

ing. In this chapter, we will summarize our major contributions, point out their

limitations and give some suggestions on how to improve them. We will also

discuss some possible directions for future work.

7.1 Main Contributions

Our first contribution in Chapter 3 is to propose the usage of histogram match-

ing in Multiple Kernel Learning. We treat the two-dimensional kernel matrix as

an image and transfer the histogram matching algorithm in image processing to

kernel matrix. We believe that our proposed method could be generally adopt-

ed in Multiple Kernel Learning scenarios and will be a new baseline besides

‘average’ or ‘product’.

Our second contribution is to advocate the segment-then-recognize strategy in

pixel-level semantic image understanding. To successfully adopt this strategy,

the key is to design a good segmentation algorithm. We can roughly categorize

existing segmentation algorithms into three categories: low-level segmentation,

116
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interactive segmentation and semantic segmentation. While low-level segmen-

tation is a purely unsupervised method, interactive segmentation tries to require

least human interventions, and semantic segmentation requires full human la-

beled training data. Each of these three categories has their advantages and

disadvantages. Therefore, we have developed in Chapter 4 a hard integration

method and a soft integration method. While the hard integration tries to com-

bine semantic segmentation with interactive segmentation, the soft integration

method tries to combine semantic segmentation with low-level segmentation.

Experiments on two famous datasets have shown that by integrating different

segmentation methods, we can indeed obtain a better segmentation algorithm.

We have also successfully applied the segment-then-recognize strategy into med-

ical image analysis in Chapter 5, where we designed a novel polar space random

field model for proposing gland-like regions. Experiments have also shown that

our method outperforms state of the art methods in the object detection literature

and semantic segmentation algorithms which chose pixel or superpixel as their

processing primitive.

In the realm of image-level semantic image understanding, our contribution is

a novel way to utilize the random forest in Chapter 6. Most of the previous

works utilizing random forest store the posterior probabilities at each leaf node,

and each random tree in the random forest is considered to be independent from

each other. In contrast, we store the training samples instead of the posteri-

or probabilities at each leaf node. We consider the random forest as a whole

and propose the concept of semantic nearest neighbor and semantic similari-

ty measure. Based on these two concepts, we devise novel methods for image

annotation and image retrieval tasks.
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7.2 Limitations and Suggestions for Improvement

We believe that the works presented in this thesis are just a start in their respec-

tive fields, and they have either raised new questions or left some room for future

improvement.

In Chapter 3, the reason why histogram matching works for MKL is still un-

clear. We have only empirically confirmed its effectiveness, and there are still

no theoretical grounds at this stage. We found that our method works with sev-

eral existing MKL solvers, and we are directly using these MKL solvers as is.

Therefore, these solvers serve as a black box to us. In order to reveal the myth

behind our model, we believe that we had to investigate into the MKL solver. A

promising way of doing this is to treat the canonical kernel histogram as vari-

ables, and directly integrate them into the MKL optimization function.

In our object-consistent segmentation method, an important question is how to

automatically decide the number of objects contained in an image. The Dirichlet

Process Mixture Model might be a promising tool to tackle this problem. There

is also an implicit requirement of our model: the semantic features should have

a relatively high accuracy, otherwise it will deteriorate the performance of the

whole system. Thus our model is not applicable for scenarios where the seman-

tic segmentation module can only obtain very poor results, such as the PASCAL

VOC challenge [70]. Besides, our model is still a two-stage model. No matter it

is hard integration or soft integration, the semantic segmentation module will be

performed on the image first. Its results are then utilized to help the low-level

segmentation module. In this way, these two modules are not really ‘interact’

with each other. How to design a new framework which can make these two

modules really interact is still an open question.

For our GlandVision algorithm in Chapter 5, one of the biggest limitations in

our model is that it can only detect star-convexity shapes [128], which is due to
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the utility of the polar image and the structure of our random field. Instead of

considering this as a limitation, we would rather think it as a characteristic of

our model. We would say that our model is specifically designed for detecting

star-convexity shapes instead of saying that our model could not detect non star-

convexity shapes. If a new algorithm is specifically designed to detect those

non star-convexity shapes, then we could combine this new algorithm with our

GlandVision. Currently, we are investigating issues to make our model suitable

for clinical use. Another possible extension to our model is to combine it with

a saliency model [22]. As saliency models can quickly identify regions that are

more likely to contain interested objects, our GlandVision algorithm can then be

performed only on these salient regions.

We have shown in Chapter 6 that our random forest can efficiently dealt with

the problem of image retrieval and image annotation. We are now investigating

its applicability in image classification scenario. Besides random forest, semi-

supervised hashing [153] and supervised hashing technique [154] is becoming

more and more popular recently. A comparison between our random forest and

these hashing techniques is necessary if we want to prove the superiority of our

random forest method.

7.3 Summary

In summary, we have investigated problems related to semantic image under-

standing in this thesis. We first developed a novel method in Chapter 3 which

can boost the performance of MKL - a state-of-art classifier. This classifier

serves as a basis for semantic image understanding problem. We have shown

in Chapter 3 that this method can obtain a better performance on the MSRC21

dataset which is our main test bed in Chapter 4. Experiments in Chapter 5 have

also confirmed its effectiveness. However, due to the nature of MKL, it is not
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applicable for large scale settings, as it is very memory consuming to store the

kernel matrixes. Therefore, to tackle with the large scale settings in image-level

semantic image understanding, we have developed novel methods in Chapter 6

by using random forest. Our contribution in pixel-level semantic image under-

standing is to (re)emphasize the importance of segment-then-recognize strategy.

Although there are few previous works [133, 155] also adopting this strategy,

they usually treat the segmentation algorithm as is. In contrast, we are design-

ing algorithms which can produce more semantic consistent regions in Chapter

4. Chapter 5 is a vivid example which illustrates the superiority of this strategy.

Pixel-level semantic image understanding and image-level semantic image un-

derstanding are in fact correlated problems. The results of image-level under-

standing will serve as a prior to pixel-level understanding, and the results from

pixel-level understanding will in turn verify the image-level results. We have

made improvements in each individual field in this thesis. Just as some recent

works [137] suggest, future work will try to integrate these tasks together and

try to solve them simultaneously.
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FIGURE A.1: Some examples of the nearest neighbor images retrieved by our
random forest method and by JEC method [1], together with their semantic

similarity measure (SSM) or the rank index shown under each image.
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FIGURE A.2: Examples from EPS-game
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FIGURE A.3: Examples from IAPR-TC12
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