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Abstract

During development, polarity is a common feature of many cell types. One example is the

polarisation of whole fields of epithelial cells within the plane of the epithelium, a phe-

nomenon called planar cell polarity (PCP). It is widespread in nature and plays important

roles in development and physiology. Prominent examples include the epithelial cells of

external structures of insects like the fruit fly Drosophila melanogaster, polarised tissue mor-

phogenesis in vertebrates and sensory hair cells in the vertebrate ear.

In this work we focus on the wing and the abdomen of Drosophila, where PCP becomes

obvious in the alignment of hairs and bristles. The underlying dynamics are not fully un-

derstood yet, but two distinct protein networks centred around the transmembrane pro-

teins Frizzled and Dachsous, respectively, have been shown to play essential roles. We will

present and analyse five models for different aspects of the process of planar cell polarisa-

tion. The first two models assess the nature of PCP in a generic setting, ensuring that the

results are valid for whole classes of PCP models. Models three and four are existing more

complex models that include detailed assumptions about the underlying protein interac-

tions of the Frizzled system in the Drosophila wing. Model five considers the Dachsous

system in the Drosophila abdomen.

We describe the features of the different types of mechanisms and determine the conditions

under which they can yield polarity. All five models can establish wild-type polarity for

a wide range of parameter values. We find, however, that for model one, three and four

an inhomogeneous pattern exists for the same parameter values as the polarised state.

Therefore, in these cases either specific initial conditions, which are unlikely in nature, or

a global bias are necessary to ensure correct polarisation. Furthermore, we present the ef-

fects of clonal clusters of cells on the polarity of the surrounding cells in our models and

relate them to the phenotypes observed in experiments. Model one and five show the

largest discrepance between the numerical and the experimental results. We discuss the

biological relevance of these findings and indicate outstanding questions.
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Chapter 1

Introduction

Cell polarity is an important feature of development and critical for many organ functions.

A cell is polarised if it is possible to distinguish different ends, e.g. by shape or by an asym-

metric protein distribution within the cell. The phenomenon of a whole field of cells that

is polarised within a plane is commonly referred to as planar cell polarity (PCP). PCP is

involved in a variety of mechanisms in invertebrates as well as vertebrates. It contributes

significantly to morphogenetic events in the developing embryo that shape e.g. tissues

and organs (reviewed in [58]). Examples in vertebrates are gastrulation, the fundamental

reconstruction of the morphology of the early embryo by cell migration, and neurulation,

the formation of the neural tube, which later on becomes the central nervous system. Phys-

iologically, PCP is important in adult tissues like the fallopian tubes, the trachea and the

cochlea, organising cilia formation and polarised ciliary beating. Skin development and

body hair orientation are further processes that require PCP signalling. Therefore, mis-

function of the PCP pathway can lead to a wide range of diseases like congenital deafness

syndromes, neural tube closure defects, respiratory diseases and polycystic kidneys (re-

viewed in [42]).

PCP falls at the interface between cellular and tissue level biology, giving a general frame-

work for how the behaviour of individual cells is modified to achieve large scale organi-

sation. It is fascinating how individual cells hundreds of cell diameters apart acquire the

same polarity within a plane or how whole groups of cells establish a uniform polarisation

during their intercalation.

In this chapter we present a history of the study of PCP, followed by a discussion about

the proteins involved and their assumed interactions. Finally, we present existing models

and an outline of this thesis.

1



Chapter 1. Introduction 2

1.1 History of research on planar cell polarity

The study of planar cell polarity started in the 1960s with work in insects like the milkweed

bug (e.g. [25]). In those days the process was referred to as tissue polarity. About 25 years

ago, the topic saw a rapid expansion because of genetic studies in the fruit fly Drosophila

melanogaster. All external adult structures of the fruit fly show PCP features and they are

especially obvious in the wings, the abdomen and the eyes as shown in Figure 1.1. In the

wings, each of the approximately 30 000 cells orients itself along the axis from the hinge

to the tip, elaborating a hair that points distally, i.e. towards the wing tip. The abdomen

shows alignment of bristles and hairs with respect to the anterior-posterior (head to tail)

axis, pointing towards the rear end. In the eye, PCP occurs as the regular arrangement

of over 700 cell clusters, so called ommatidia, with respect to the two perpendicular axes,

anterior-posterior and dorsal-ventral. The orientation of the hairs on the wings and the

abdomen only requires the organisation of single cells, whereas the bristle formation and

the ommatidia arrangement are based on the organisation of whole clusters of cells. There-

fore, although it is believed that the same set of genes regulates PCP, every outcome seems

to require a totally different response from the cells.
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Figure 1.1: PCP features of the fruit fly Drosophila melanogaster; (a) Hairs on the
wing, image from [48]; (b) bristles and hairs on the abdomen, image
from [27]; (c) organisation of the ommatidia in the eye, image from
http://cdbg.shef.ac.uk/research/strutt.

The study of PCP is now extended to many other organisms. Starting in Xenopus and

zebrafish, PCP-related processes have been found to play a role in morphogenesis in ver-

tebrates. The mammalian skin and inner ear are further examples of tissues with PCP

features. Work by Guo et al. [15] has revealed that hair pattern defects in mice mutant

for a key gene are very much reminiscent of hair pattern defects in flies mutant for the

corresponding gene. This is an exciting finding, since it suggests that similar mechanisms

are driving PCP in different organisms. In addition, it reinforces the use of Drosophila as

a model organism for PCP studies. This choice has mostly practical reasons: First, many
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PCP genes have several isoforms in vertebrates but only one in Drosophila. Hence, multiple

knockouts are not needed as often. Tissues that typically display PCP features in Drosophila

are external and therefore easy to access. In vertebrates, PCP mostly occurs during the de-

velopment of the embryo, which is more difficult to analyse. In flies, many PCP mutations

still produce viable animals, whereas corresponding mutations in mice are lethal. Finally,

fruit flies are a popular laboratory animal in general, since they have a short life cycle (10-

14 days) and it is easy and cheap to keep large numbers. Thus, most experimental data on

PCP is available for Drosophila, which is why our theoretical studies will also focus on the

fruit fly, in particular the wings and the abdomen. In the next section we give details of

what is currently known about the mechanisms driving PCP in Drosophila.

1.2 Biological background

It is widely considered that there is a three-tiered mechanism controlling the generation

of PCP in Drosophila. The first tier operates over the whole tissue and provides directional

cues. The second tier interprets the directional signal and propagates it via a feedback loop.

The third tier reads the information to shape the structure [48]. Little is known about the

first and the third tier, apart from the third tier being tissue specific since it produces totally

different outcomes in the different tissues. The second tier however is usually assumed to

be common to all tissues.

PCP is based on the interactions of several proteins. A protein is a linear chain of amino

acids that are arranged according to the sequence of the corresponding gene. For clarity,

protein names are capitalised while gene names are non-capitalised and in italics. There

are two systems of proteins that play key roles in the establishment of PCP. One protein

group is centred around the transmembrane protein Frizzled (Fz). The other one consists

of the transmembrane proteins Dachsous (Ds) and Fat (Ft) and the cytoplasmic protein

Four-Jointed (Fj). The interactions and the relationship of these two protein networks are

still unknown. There have been two proposals (reviewed in [4]). The first one is that the

Ds system provides the directional cues for the Fz system, i.e., the Ds system acts in the

first tier and the Fz system in the second tier [48]. A more recent approach claims that the

two systems work in parallel in the second tier, both amplifying a global cue to establish

PCP [7]. What provides the global cue however is still unknown. In this work we will

follow the second approach and present models for the Fz system as well as the Ds system

assuming they amplify an initial global cue.
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Fz system

The proteins included in the Fz system are Dishevelled (Dsh), Van Gogh (Vang; also known

as Strabismus), Prickle (Pk), Flamingo (Fmi; also known as Starry Night) and Diego (Dgo).

Some of these protein names are derived from the appearance of the respective loss-of-

function phenotypes, which display irregular hair orientations. Fz, Fmi and Vang are

transmembrane proteins whereas Dsh, Pk and Dgo are cytoplasmic proteins. Loss of any

of these leads to disruption of the polarisation. The properties presented here are mostly

based on experimental findings in the wing. However, these proteins operate in all tissues

in Drosophila in which PCP has been studied. Therefore, they are often referred to as core

proteins.

It is known that during the first 18 h after puparium formation (APF) the proteins Fmi, Fz

and Vang localise symmetrically in the membrane and that Dsh, Pk and Dgo are recruited

from the cell interior to the membrane. Between 18 h APF and 32 h APF they become dis-

tributed asymmetrically [44]. Dsh, Fz and Dgo end up at the distal edge of the cell, Vang

and Pk at the proximal edge and Fmi at both the proximal and the distal edge, but not an-

terior and posterior as shown in Figure 1.2. The localisation of these proteins is restricted

to a circumferential ring in the apical (top) region of a cell [44]. Therefore, Figure 1.2 shows

a two-dimensional view of the cells.

proximal

anterior

distal

posterior

wing hinge wing tip

Flamingo

Prickle

Van Gogh Dishevelled

Frizzled

Diego

Figure 1.2: Localisation of the PCP core proteins at the cell edges and illustration of the
hairs, which grow at the most distal tip of each cell.

The presented time course divides the second tier into two steps. For the first step (0− 18 h

APF) the presence of Fmi, Fz and Vang is necessary while Dsh, Pk and Dgo are irrelevant.

Those last three proteins become important for the second step (18− 32 h APF) [5]. The

precise molecular interactions between the six proteins are still mostly unknown. The

general idea is that polarisation is initiated by the directional cues from the first tier and

amplified and stabilised by intercellular signalling. We know that Fz, Vang and Fmi are
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necessary and sufficient for such intercellular communication [45]. Dsh, Pk and Dgo are

most likely to propagate polarity by establishing intracellular asymmetries of proteins.

In wing tissue lacking Pk there is no detectable asymmetry of Fz. Nonetheless, polarity

becomes established and the hairs grow at the right time and the right position. It seems

likely that protein asymmetry is not essential to PCP locally but increases the robustness

of the coordination of polarity over longer ranges [45].

Usui et al. [50] found out that Fmi only accumulates at the membrane of two neighbouring

cells if it is present in both. This suggests that Fmi forms homodimers bridging between

adjacent cell membranes. So far, it is unclear whether those bridges act actively to amplify

polarity or are more passive, e.g. supporting the binding of Fz and Vang (reviewed in

[56]). Chen et al. [9] and Lawrence et al. [26] support the first theory by concluding that

Fmi homodimers transfer information between the two cells they bridge. Wu and Mlodzik

[55] as well as Strutt and Strutt [47] however find that Vang and Fz can bind directly across

the membrane and suggest that the function of Fmi is to enhance this binding.

Pk, acting in complexes with Vang, ensures the asymmetric localisation of the core proteins

[5]. This might be due to Pk inhibiting the recruitment of Dsh to the membrane [49]. Dgo

counteracts this effect of Pk on Dsh, maybe by a direct competition of Dgo and Pk for Dsh

binding [17].

To study PCP experimentally, clonal clusters in which a certain gene is either knocked out

or overexpressed are induced in the tissue. The behaviour of the wild-type (not mutated)

tissue around a clone gives insight into the interplay of the genes involved in the process.

To verify a model it is therefore valuable to compare the results not only with the wild

type but also with the results for clones. Figure 1.3 shows the experimental results for

clones mutant for some PCP genes. Close to the clonal borders, f z− and vang− clones

influence the direction of the hairs in some cells outside the clone. This phenomenon is

called domineering non-autonomy. The direction of the hairs in wild-type cells distal to

a f z− clone is disrupted while a vang− clone changes the direction of the hairs in the

wild-type cells on its proximal side. The effects of a f mi− clone and a dsh− clone are

restricted to the regions within the clones and for the case of a pk− clone there is almost no

disruption detectable. These results support the assumption that Fz and Vang are involved

in mediating an intercellular signal while Dsh and Pk act cell-autonomously, stabilising

polarity within a cell. Considering overexpression of a certain gene in a clonal cluster, we

can divide the five genes into two groups. Overexpression of f z or dsh in a clone reorients

the hairs in the wild-type cells proximal to the clone. A clone overexpressing vang, f mi or

pk changes the hair direction on its distal side [29, 49, 50]. Thus, a clone overexpressing

f mi, dsh or pk shows domineering non-autonomy, while a clone lacking one of these genes
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does not effect the surrounding tissue.

juxtaposed to cells overexpressing fz. This raises the pos-

sibility that the domineering non-cell-autonomous effects

of fz mutant clones might be due to the juxtaposition of

cells of widely different fz activity and not to a failure to

receive a directional signal. To address this possibility, we

have examined a number of cases where cells that have

different Fz protein levels are juxtaposed. The results of

these experiments suggest that cells can assess the level

of Fz on neighboring cells and use this as a source of

polarity information.

Results
The domineering non-cell-autonomous property of fz is

‘attractive’

We examined fz mutant clones in adult wings and found

that the wild-type hairs distal to —and, in part, anterior

and posterior to—the clone displaying abnormal polarity

[6] had a strong bias to point towards rather than away

from the clone (Figure 1a). More than 95% of clones

showed this behavior. We also examined clones in differ-

entiating pupal wings and found the same behavior

(Figure 1c). We refer to this as an ‘attractive’ non-cell-

autonomous effect. Occasionally (< 10% of clones) the

attractive non-cell-autonomous effect was strong enough

that wild-type hairs distal to the clone pointed directly

towards the clone (see Figure 1c). We also noticed that the

polarity of fz mutant clone cells at the proximal edge of

the clone was usually rescued (Figure 1b); this may be

analogous to the rescue of mosaic ommatidia at the equa-

torial border of fz clones in the eye [21].

Inducing a gradient of gene expression in the pupal wing

In order to induce the localized expression of transgenes

containing heat shock gene (hs) promoters [23], we applied

a small drop of hot wax to the pupal cuticle. When the drop

covered the entire pupal wing it induced the expression of

an hs–lacZ gene [24] throughout the wing (data not shown).

The smallest drops we could apply were larger than the

pupal wing, but by appropriate placement of the drop, we

could induce expression of hs–lacZ in only distal or only

proximal wing cells (Figure 2). The intensity of induction

of !-galactosidase appeared roughly similar after distal,

Research Paper  Frizzled levels and tissue polarity Adler et al.    941

Figure 1

All panels are oriented so that proximal is to the left and distal to the
right. (a) The typical distal domineering non-cell-autonomous effect of
a clone of cells mutant for fz and multiple wing hair (mwh) in an adult
wing (the clone is outlined). Within the clone, cells produce multiple
hairs due to the mwh mutation, which is epistatic to fz [4], and the
hairs are of abnormal polarity. The wild-type hairs distal to the clone
also show abnormal polarity and point more towards, rather than away
from, the clone. Similar results have been obtained using a variety of fz
alleles and other cuticular markers such as starburst (strb) and
tricorner (trc). (b) A confocal image of the proximal side of a fz clone in
a pupal wing that is marked by the loss of the N-myc plasma
membrane epitope tag (fz cells of the clone do not show the red
outline staining). The pupal wing was stained with an anti-N-myc
antibody and rhodamine-conjugated anti-mouse secondary antibody.
The cells were also stained with fluorescein-conjugated phalloidin
(Molecular Probes), which stains the actin-filled prehair [4] green . In
examining the micrographs, remember that prehairs grow out over
neighboring cells [4]. Note the rescued polarity of the proximal cells
within the fz clone (arrowhead); note also that several wild-type cells
bordering the clone produce more than one hair (arrow). We saw a
similar one-cell proximal non-cell-autonomous effect in our analysis of
inturned (in) clones [41]. (c) Distal end of a fz clone in a pupal wing;
not the same clone as is depicted in (b), but with the staining
procedure as in (b). Note the wild-type (red) cells distal to the clone
showing abnormal polarity with many hairs pointing directly towards
the clone (arrowhead). Wild-type cells near the upper right side (arrow)
show normal distal polarity. The size bar is 10µm.

(a)

1054 Cell 129, June 15, 2007 ©2007 Elsevier Inc.

2001), whereas Frizzled, Dishevelled, and Diego localize 
specifically to the distal surface (Axelrod, 2001; Strutt, 
2001; Das et al., 2004) and Prickle and Strabismus local-
ize to the proximal surface (Tree et al., 2002; Bastock et 
al., 2003). Frizzled can interact directly with Dishevelled 
(Wong et al., 2003), and Strabismus can associate with 
Prickle (Bastock et al., 2003; Jenny et al., 2003), indi-
cating that proximal and distal cell domains consist of 
at least two protein complexes (Figure 2). The Flamingo 
cadherin, which is capable of mediating homophilic 
adhesion (Usui et al., 1999), recruits the other core PCP 
proteins to the region of the adherens junctions (Strutt, 
2002). Once at the surface, the activity of all six core 
PCP proteins is required for any of them to achieve a 
planar polarized distribution (Strutt, 2002), indicating 
that these proteins participate in a regulatory loop rather 
than a strict linear pathway. Asymmetric PCP protein 
localization is observed in several epithelial tissues in 
which core PCP proteins have been shown to function, 
including the R3/R4 boundary in the Drosophila eye, the 
dividing bristle precursor cell, and the mouse cochlear 
epithelium (reviewed in Jones and Chen [2007]; Seifert 
and Mlodzik [2007]; Wang and Nathans [2007]). These 
observations suggest that polarized protein distribution 
is a key property of PCP function in epithelia. However, 
some cells can retain planar polarity in the absence of 
detectable molecular asymmetries (Strutt and Strutt, 
2007).

In a link between cell and tissue organization, the 
asymmetric localization of PCP proteins is sensitive not 

only to the activity of PCP proteins in the same cell but 
also to PCP activity in adjacent cells. Frizzled activity in 
one cell is required for Prickle localization in its distal 
neighbor, whereas Prickle is required for the localization 
of Dishevelled in the adjacent proximal cell, suggesting 
that Frizzled and Prickle interact indirectly across cell 
boundaries (Tree et al., 2002). Within a cell, there is evi-
dence that Prickle can block the association between 
Frizzled and Dishevelled (Tree et al., 2002), although 
other studies find that Prickle overexpression does not 
disrupt Dishevelled membrane localization (Bastock et 
al., 2003). Conversely, the Diego protein can associ-
ate with Prickle and Strabismus (Das et al., 2004) and 
may counteract Prickle activity to allow Frizzled-Dishev-
elled complexes to form at the distal surface (Jenny et 
al., 2005). These interactions suggest a mechanism by 
which proximal Strabismus-Prickle complexes and distal 
Frizzled-Dishevelled complexes form in mutually exclu-
sive cellular domains. Several PCP proteins that interact 
in vitro are found in different parts of the cell (Tree et al., 
2002; Bastock et al., 2003; Das et al., 2004; Jenny et 
al., 2005), raising the question of whether these interac-
tions occur in vivo. These proteins could come into con-
tact when they are first recruited to the apical surface 
of wing cells during the establishment of polarity or in 
mesenchymal cells in which PCP protein localization is 
not obviously exclusive (see below). Alternatively, there 
may be a dynamic and ongoing antagonism between 
PCP proteins at opposing cell surfaces that serves to 
maintain polarized protein localization.

Figure 3. Local Cell Interactions Deter-
mine Wing Hair Direction
Proximal is to the left, distal is to the right. 
(A) The distal orientation of wild-type Drosophila 
wing hairs is unaffected by a nearby clone of 
prickle mutant cells. 
(B) Wild-type cells distal to a frizzled mutant 
clone reorient their hairs to point backward to-
ward the clone.
(C) Wild-type cells proximal to a strabismus mu-
tant clone reorient their hairs to point away from 
the clone. 
(D) Dsh:GFP is distributed in a characteristic zig-
zag pattern, running vertically in the figure.
(E) Mosaic GFP expression reveals that Dsh:GFP 
localizes to distal surfaces (blue arrows) and not 
to proximal surfaces (red arrows). Wild-type cells 
bordering a clone lacking Dsh:GFP are indicated 
by yellow dots. 
(F) Endogenous Prickle localizes to proximal and 
not distal surfaces in wild-type cells next to a 
prickle mutant clone. Wild-type cells bordering 
a clone lacking Prickle are indicated by yellow 
dots. 
(G–J) Two models to explain how directional in-
formation is propagated from cell to cell. These 

schematic diagrams do not indicate the true localization of the core PCP proteins, which are concentrated at the apical surface. In the feedback 
model (G and H), wild-type cells concentrate Frizzled (blue) at distal cell surfaces and Strabismus (red) at proximal surfaces (G). These distributions 
are maintained by cooperative interactions between Frizzled and Strabismus in neighboring cells and antagonistic interactions within each cell. In 
a frizzled mutant clone (two central cells in [H]), Strabismus (red) is uniformly distributed at the cell surface and recruits Frizzled (blue) to the surface 
of wild-type cells facing the clone. As a result, the Frizzled-Strabismus feedback loop is reversed in cells distal to the clone, and this altered polarity 
propagates to cells further from the clone border. In the averaging model (I and J), a high proximal!low distal gradient of Frizzled activity (blue) is 
maintained by a mechanism in which Frizzled activity in each cell is set as an average of its neighbors (I). In the presence of a clone of cells lacking 
frizzled (two central cells in [J]), the averaging process instructs wild-type cells to reduce their Frizzled activity, causing cells distal to the clone to 
reorient their hairs to point down the local Frizzled gradient. Images courtesy of Paul Adler (A–C) and Jeff Axelrod (D–F).

(b)

Cell
588

3B). At 30 hr APF, the polarized pattern became most

prominent; signals ran zigzag orthogonal to theP-D axis,

indicating that Fmi molecules were predominantly local-

ized at the P/D boundaries (arrowheads in Figure 3C;

see also Figure 6E) rather than at the anterior/posterior

boundaries (A/P boundaries; arrows in Figure 3C). In

every typical hexagonal cell aligned parallel to the P-D

axis, we could easily confirm the emergence of a prehair

at its distal cell vertex where two Fmi-rich distal bound-

aries met (Figure 3D). The zigzag pattern was seen

throughout the dorsal and ventral surfaces of the wing.

This biased localization of Fmi provided a striking con-

trast to the honeycomb distribution of an epithelial clas-

sic-type cadherin, DE-cadherin (Figure 3F; Oda et al.,
1994). Along the apicobasal cell axis at the cell–cell

junction, Fmi was present apically and its distribution

was at least partially overlapped with that of DE-cad-
herin concentrated at the adherens junction (Figures 3G

and 3H; Uemura et al., 1996; Hough et al., 1997).

Once prehairs had emerged and initiated outgrowth,

the distribution started to be depolarized, although a

temporal coordination between the extent of prehair

length and that of depolarization of Fmi was not strictly

fixed in this transition phase (30–36 hr APF). The staining

pattern became almost nonpolar by 36 hr APF, when

prehairs were shifting toward cell centers (Figure 3E).

Fmi Molecules Are Most Likely Distributed

on Both Sides of the P/D Boundary

Strong Fmi signals at P/D boundaries may be explained

by a concentration of Fmi at either the proximal or distal
Figure 2. fmi Mutations Alter Planar Polarity in the Wing edge of each cell (Figure 3I); alternatively, the protein
(A) Different regions of the adult wing are indicated, and arrows could be abundant at both edges (Figure 3J). To distin-
represent wing hair polarity in individual regions on the dorsal sur- guish between these possibilities, we generated mutant
face (Wong and Adler, 1993).

clones using an almost protein-null allele, fmiE59, and
(B and C) Region D of the wild-type (B) and the fmi null mutant

examined whether Fmi was localized at interfaces be-that escaped embryonic lethality by transgene expression ([C]; see
tween fmi� cells (fmiE59/� or �/�) and mutant cellsdetails in Experimental Procedures). In the fmi mutant wing, hairs

directed posteriorly. (fmiE59/fmiE59) along clone borders. Along the borders of
(D) The fmiE59 mutant clones, which were marked by a hair shape more than 50 clones observed, Fmi was missing at all
marker, pawn (pwn), are outlined with a dotted line. fmiE59 is essen- interfaces between fmi� and fmi� cells, no matter where
tially cell autonomous on hair polarity. A few wild-type cells along

the interface was positioned (Figure 3K). Assuming that
a clone border made twin hairs (arrow). Only 4 mutant clones out

Fmi molecules bind to each other in a homophilic fashionof 104 examined were in direct contact with 1–3 wild-type cells with
in vivo as in vitro, the most plausible interpretation oftwin hairs. Distal is to the right and anterior is at the top in all panels.

this mosaic analysis would be that both of the two ap-

posed cells need to produce Fmi to localize this receptor

at the interface and that retention of Fmi at P/D bound-range over ten cells when clones are large (Vinson and
aries is achieved through homophilic interaction be-Adler, 1987; Taylor et al., 1998; Wolff and Rubin, 1998).
tween its ectodomains. If our interpretation is correct,In contrast, the fmi null mutation behaved essentially in
it follows that Fmi is present at both proximal and distala cell-autonomous way (Figure 2D).
edges in normal epithelial cells, as drawn in Figure 3J.

Transient Polarization of Subcellular Localization

of Fmi along the P-D Axis Abnormal Distribution of Fmi in the Absence of Fz

As an attempt to pursue functional relationships be-Hairs in adult wings are derived from prehairs that

emerge 30–36 hr after puparium formation (hr APF) at tween fmi and previously discovered tissue polarity

genes, we studied whether Fmi distribution is altered in25�C. To gain an insight into where Fmi functions, we
stained wing epithelia for Fmi at various pupal stages those polarity mutants, particularly in fz complete loss-

of-function mutants (Figures 4A and 4B). In the totaland found dynamic transitions in the subcellular distri-

bution of Fmi. absence of Fz protein (fzD21/fzK21; Park et al., 1994a), Fmi
was not redistributed toward the P/D boundaries at 24In 18 hr APF wings, immunofluorescence signals of

Fmi were present almost entirely at cell-to-cell bound- or 30 hr APF. At the onset of prehair formation (30 hr

APF), bright staining at cell boundaries was greatly re-aries (Figure 3A). However, at 24 hr APF, Fmi became

redistributed; its localization looked biased toward the duced in length, and the fragmented signals were not

necessarily restricted to the P/D boundaries (compareP/D cell boundaries in many cells (arrowheads in Figure

(c)

(d) (e)

Figure 1.3: Results for knockout clones, proximal (wing hinge) is to the left, distal (wing
tip) to the right; (a) Only the cells distal to the f z− clone are affected, figure
from [1]; (b) the vang− clone reorients the cells on its proximal and lateral sides,
figure from [58]; (c) no disruption around the f mi− clone can be detected apart
from one cell with multiple hairs, indicated by the arrow, figure from [50]; (d)
for the dsh− clone disruptions are only detectable within the clone, figure from
[3]; (e) for the pk− clone we see almost no disruption, figure from [3].

Ds system

The adult abdomen of Drosophila is divided into several sections of which each comprises

an anterior (A) and a posterior (P) compartment. The Ds system which includes Ds, Ft and

Fj, has mostly been studied in the A compartment. Here, fj expression as well as Fj activity

form a gradient that decreases from anterior to posterior, while ds expression and Ds ac-

tivity occur as gradients that increase along the same axis. Ft activity is graded in the same

way as Fj activity, decreasing from anterior to posterior. It is suggested that Fj influences

the interactions of Ds and Ft through repression of Ds and promotion of Ft. Furthermore,

there is evidence that Ds and Ft form trans-heterodimers, bridging between cells, and that

Ds concentrates on edges adjacent to cells containing only Ft, while Ft concentrates on

edges adjacent to cells containing only Ds [30, 46].

Hairs in the wild-type cells anterior to a ds− clone point anterior, i.e. the wrong way. A

clone overexpressing ds disrupts polarity behind the clone. Clones with abnormal levels

of f j and f t give similar results but with opposite sign. Hence, f t−-clones and f j−-clones

disrupt polarity behind the clone and f t+-clones and f j+-clones in front of the clone. The
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amplitude of the repolarising signal from a clone seems to depend on the degree of dis-

crepancy between Ft and Ds levels in the clone and the surrounding cells. E.g., a large

difference in active Ft levels between the clone and the surrounding tissue would give a

long-range effect, as observed in a f t+ clone in a f j− background, in which Ft activity is

low, because there is not much Fj to activate Ft [7].

A further analysis of the gradients has revealed that in the Drosophila eye replacing either

the Fj or the Ds gradient by ubiquitous expression has only a small effect on polarity, i.e. on

average more than 92% of the ommatidia are correctly oriented. Replacement of both gra-

dients with ubiquitous expression results in the complete loss of organised PCP. Reversing

the direction of one of the two gradients reverses polarity [40].

1.3 Review of existing models

During the last few years several models studying aspects of the second tier of the PCP

pathway have been developed. As mentioned above, direct interactions between adjacent

cells are assumed to be an important feature of PCP. Therefore, we first review models

which focus on intercellular signalling regardless of the biological context in which it oc-

curs. Omitting the biological details keeps these approaches analytically tractable and

widely applicable. They are based on the assumption that the signalling activity of one

cell is responsive to signals received from neighbouring cells. It has been shown that these

models exhibit patterning instabilities.

Models for juxtacrine intercellular signalling

A key approach has been established by Collier et al. [10]. They assume a cell is a point

that is characterised by two parameters: the level of Notch activation, N, and the level of

Delta activation, D. For the purpose of this model, the details of the biochemistry are not

important. Hence, N and D can be interpreted in different ways, e.g. as the amount N of

activated Notch protein and the amount D of activated Delta protein; or N could represent

the quantity of Notch-Delta complexes, while D denotes the amount of the activated Delta

protein. The model is based on five postulates: Cells interact only with cells right beside

them; the production of N is activated by the level of D in the neighbouring cell; the pro-

duction of D is inhibited by the level of N in the same cell; the production of N and D is

balanced by decay; and the level of N determines the cell’s fate. These yield two differen-

tial equations for each cell. Stability analysis and numerical simulations are applied to one

and two-dimensional arrays of cells. The main result is that cells with a low level of Notch
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activation are surrounded by cells with a high level. Hence, two neighbouring cells with

low levels of Notch activation do not occur. This result matches the observations of similar

patterns in early animal development.

In contrary to this idea of lateral inhibition, Owen et al. [35] showed that the opposite phe-

nomenon, lateral induction, also leads to spatial patterns. They expressed their model in

terms of the numbers of ligand molecules, free receptors and receptor-ligand complexes.

Thus, one gets three differential equations including decay, association, dissociation and

internalisation of the molecules and complexes, as well as the activating effect of the com-

plexes on both ligand and receptor production. Again, the equations have been analysed

and simulated and as a result patterns of different wavelengths occurred.

In [53], Webb and Owen extended this model to include induction and inhibition of lig-

and and receptor production. However, one of the main results is that lateral inhibition in

ligand production can generate longer range patterns, whereas, the combination of lateral

induction in ligand production and inhibition of receptor synthesis does not give rise to

any patterning.

Until this point only homogeneous distributions of the involved proteins and receptors

had been considered. In the following paper [54], Webb and Owen included inhomo-

geneous distributions and found out that in this case, intra-membrane ligand-diffusion is

crucial for the generation of long wavelength patterns. Furthermore, they have studied the

influence of different combinations of biased ligand and receptor production. An impor-

tant discovery was that opposite bias for ligand and receptor can lead to regular polarity

across a lattice, which is analogous to PCP in the Drosophila wing.

Models for the Fz system

The models presented in this section describe possible mechanisms for the interactions of

the proteins of the Fz system.

One approach for polarity in the Drosophila wing was established by Amonlirdviman et al.

([3, 37]) based on an earlier idea in [49]; they assume there is a sustained global biasing

signal that leads to higher Fz activity on the distal side of each cell. This asymmetry is

amplified by a feedback loop specified by the four proteins Fz, Dsh, Pk and Vang and their

interactions via binding to form complexes. The chemical reaction equations of these inter-

actions yield ten reaction-diffusion equations for each cell which are subsequently solved

numerically for a field of hexagonal cells. This work does not include a stability analysis or

an investigation of the relative importance of the feedback loop and the permanent global

bias for the establishment of PCP. Therefore, in Chapter 4 we will conduct a detailed anal-
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ysis, focusing on these issues.

A different group of models considers a global initial gradient that is amplified. The one-

dimensional averaging model for the Drosophila abdomen by Lawrence et al. [26] assumes

a decreasing Fz activity gradient that is persistent during the whole process. Using Fmi,

each cell compares its Fz value with its two neighbours and polarises toward the neigh-

bour with the lowest Fz value. The Fz value of each cell is determined by two components,

the average Fz value of the present cell and its two neighbours plus a contribution from

the persistent gradient. Varying the ratio of these two components they analysed the be-

haviour for f z mutant and f z overexpression clones. If the influence of the averaging part

dominates slightly over the influence of the persistent gradient they get the same range of

domineering non-autonomy as seen in experiments.

An alternative idea has been presented by Le Garrec et al. [29], who developed a model for

the polarisation in the Drosophila wing, which they later applied to the Drosophila eye [28].

They assume a global initial ligand gradient that leads to a gradient of active Fz which

decreases from the proximal to distal end of the wing. The complexes forming in each cell

are called Prox, consisting of Fmi, Vang and Pk, and Dist, containing Fmi, Fz and Dsh.

Complexes facing each other in adjacent cells bind together through cell membranes by

interaction between the two Fmi molecules. Thereby, only the formation of Prox-Dist is

considered, because the authors assume it is more likely than Dist-Dist or Prox-Prox since

the respective binding factors react more readily when joining distinct complexes. Another

factor driving polarisation is Dist inhibiting the formation of Prox on its side of the cell. In

[29] they conducted stochastic simulations for a field of roughly hexagonal cells. We will

discuss this model in detail in Chapter 5.

Based on a similar idea Klein and Mlodzik proposed a model for the Drosophila wing [23].

They assume that an unspecified initial signal establishes a Fz activity gradient that de-

creases from the proximal to the distal side of the cell region. Then, two complexes form,

which are A, containing Fmi, Fz and Dgo, and B, containing Fmi, Vang and Pk. During po-

larisation A and B stabilise each other across the cell membrane. This is due to interactions

between the two Fmi proteins. Furthermore, complex A inhibits the formation of complex

A across the cell membrane and B the formation of B. Within a cell each complex recruits

itself but inhibits others. The authors present final distributions of the protein complexes

for different initial conditions, but it is not mentioned how they are obtained. Although,

at first glance, this model seems to be the same as the model by Le Garrec at al., the inter-

actions of the two protein complexes are slightly different.
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1.4 Thesis outline

As mentioned before, we do not know the full biological details of the interactions in Tier

two or the way in which Tier two depends on Tier one. The models described above test

only specific assumptions about the nature of the interactions of the Fz system. All these

models impose polarity on the system right from the start, either by including differences

in the behaviour of PCP complexes at adjacent cell sides or via a global initial gradient.

Focusing on the approaches by Amonlirdviman et al. [3] and Le Garrec et al. [29] we re-

alise that they are the same type of model. In both cases the total amount of each protein

in a cell is conserved. Polarity is established by a feedback loop coupled with a persistent

global polarisation bias. Although the number of proteins involved, the assumed specific

protein interactions forming the feedback loop and the type of global bias differ between

the two models, both can reproduce wild-type polarity and the behaviour around clones.

The relative importance of the different features of the models for ensuring these results

was not analysed in the papers. Therefore, our aim is to investigate this question. We are

interested in the generic features of such a conservative approach and whether other types

of models can also establish planar cell polarity. Considering the details of the models by

Amonlirdviman et al. and Le Garrec et al., the aim is to map out the differences between

the two feedback loops and to find out whether a global bias is necessary to yield PCP. In

addition, we are also interested in the Ds system and its potential to establish PCP without

the Fz system, an issue that has not been investigated mathematically so far.

In this thesis we address these questions in the following way. In Chapters 2 and 3 we

present two models that aim to assess the nature of PCP in a generic setting - omitting

details about the protein interactions and therefore encompassing a broad class of specific

models. From our understanding of the biology we draw the conclusion that the basics

of planar cell polarity are an initial global cue which is amplified by a feedback loop and

intracellular diffusion. Initially, we will assume that every cell has a small imbalance or

that the cell at the proximal end of the region is completely polarised. Unlike for an initial

gradient, assuming our initial conditions the system can either polarise or adopt a state

in which every cell is unpolarised. The first approach in Chapter 2 is the feedback and

diffusion model, in which a negative feedback loop couples adjacent cell sides of neigh-

bouring cells and the diffusion acts within a cell. The second approach in Chapter 3 is the

conservative model. In this case we assume that movement within a cell depends on its

neighbouring cells; this is also coupled with intracellular diffusion. The results of Chapter

2 and 3 are also included in [38].

As a next step we investigate whether the models developed by Amonlirdviman et al. and
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Le Garrec et al. can give polarity from a temporary initial imbalance in every cell. In both

cases we start by reducing the model to one spatial dimension and subsequently verifying

our results in two spatial dimensions applying the finite element method. As mentioned in

Section 1.2 the localisation of the PCP core proteins is restricted to a plane. Therefore, we

do not consider three spatial dimensions. The analysis of the model by Amonlirdviman et

al. is given in Chapter 4, while Chapter 5 contains the analysis of the model by Le Garrec

et al..

In Chapter 6 we cover the Ds system. We present a model for a possible mechanism based

on the ideas by Casal et al. [7] and compare the results to experimental observations.

We conclude in Chapter 7 with a discussion of the results of the different chapters and their

implications for the understanding of the biological system.



Chapter 2

Feedback and diffusion model

The model presented in this chapter is based on a positive feedback loop which couples

adjacent cell sides of neighbouring cells, and diffusion that acts within a cell. We think that

these two features are the essentials of the mechanism underlying the origin of planar cell

polarity. In contrast to the existing models which are conservative, for the feedback and

diffusion model we have chosen a non-conservative approach including regulated pro-

duction and degradation of proteins. This yields a new class of PCP mechanisms and the

aim is to find their generic features. To this end, and to make the mathematical analysis

practicable, we have neglected biological details. Our main targets are to investigate the

dependence of PCP emergence on the relative strength of the feedback and diffusion; anal-

yse the model’s potential to overcome anomalies in the initial conditions; and investigate

the effects of induced clones – groups of cells that have a different amount of protein or a

different strength of feedback than the rest of the cells. The focus is on modelling the be-

haviour of a field of cells, omitting the detailed intracellular processes; therefore, instead

of treating the inside of the cell as a continuum we have chosen a discrete approach.

2.1 Analysis in one spatial dimension

We consider first a one-dimensional line of cells each having two sides, with rj and lj rep-

resenting generic PCP activities on the right and left side of cell j, respectively. These

activities can be regarded as accumulations or active states of certain PCP proteins. How-

ever, our aim is a generic analysis and therefore we continue to use the unspecific term. We

assume that the activities on adjacent faces of neighbouring cells inhibit each other by jux-

tacrine intercellular signalling and that these interactions are described by the following

system of equations:

12
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dlj

dt
= −δlj + F(rj−1) +

D
∆x2 (rj − lj),

drj

dt
= −δrj + F(lj+1) +

D
∆x2 (lj − rj),

where F is a decreasing positive function representing inhibition, with F(0) finite and pos-

itive. The coefficient δ > 0 represents the decay rate, ∆x the spatial extension from left

to right of a cell and D measures the rate of intracellular diffusion of PCP activity. This is

summarised in Figure 2.1(a).

lj+1lj rjrj−1

Diffusion

FeedbackFeedback

(a)

0 2 4 6 8 100

0.5

1

1.5

cell number
ac

tiv
ity

(b)

Figure 2.1: Illustration of the feedback and diffusion model; (a) Mechanism of the feed-
back and diffusion model; (b) illustration of a homogeneous polarised steady
state, each trapezium represents one cell, the two top vertices denote the val-
ues on the right and the left side of the cell, respectively.

The rescaling τ = δt gives the dimensionless system

dlj

dτ
= −lj + f (rj−1) + d(rj − lj),

drj

dτ
= −rj + f (lj+1) + d(lj − rj),

(2.1)

with d = D
δ∆x2 , hence d ≥ 0. In the following, we investigate the existence and stability of

steady states in this model for a general positive decreasing function f . For the purpose

of illustrative numerical examples, we use specific inhibition functions f (x) = ce−x2 or

f (x) = α
1+qxk with positive c, α, q and k, as representatives of typical families of inhibition

functions.

Assuming that t corresponds to the time in experiments, its relationship to the time τ

in our analysis and simulations is given by the the rescaling τ = δt. According to [44]

the polarisation of core proteins in cells of the pupal wing in Drosophila takes about 32

hours: 18 hours to recruit all the core proteins to the membrane and another 14 hours for
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the proteins to polarise within the membrane. To achieve a time scale in our simulations

that is comparable to 32 hours, we have to assume a decay rate of δ = 1
15 min−1. This is

relatively slow but still in a reasonable range [6].

Equation (2.1) encodes a system in which the feedback loop gives the potential for steady

state patterns, such that at the interface between cells we have low activity on one cell side

next to high activity in the adjacent side of the neighbouring cell; diffusion couples li and

ri within each cell. Our objective is to investigate this interplay quantitatively.

We refer to the case when all cells are the same at steady state, i.e., lj = L and rj = R for

all j, as a homogeneous steady state of the system (2.1). If L = R we call it a homogeneous

unpolarised steady state and if L �= R a homogeneous polarised steady state. Figure 2.1(b)

shows an illustration of a homogeneous polarised steady state.

In the following we conduct an analysis that allows us to map out existence and stability

of unpolarised, polarised and spatially periodic steady state solutions of system (2.1). It is

the second of these that is of particular interest in the context of planar cell polarity. For

this analysis we assume that we have an infinite row of cells.

2.1.1 Existence of steady states

System (2.1) always has a unique homogeneous unpolarised steady state, U = lj = rj for

all j, because in this case the corresponding steady state equations reduce to U = f (U)
which has a unique solution since f is decreasing. Homogeneous polarised steady states

(L, R) of (2.1) are given by solutions of

L =
f (R) + dR

1 + d
, R =

f (L) + dL
1 + d

. (2.2)

Setting g(x) := f (x)+dx
1+d , such steady states correspond to solutions of

x = g(g(x)). (2.3)

We see that g(0) is finite and positive, g(U) = U and g�(U) = f �(U)+d
1+d < 1, since f is de-

creasing. Furthermore, g(g(0)) is finite and positive. Equation (2.3) has always at least one

solution, which is U. If g(g(U))� > 1 there exist an additional pair (L, R) of solutions of

(2.3). This condition can be reformulated as g(g(U))� = g�(g(U)) · g�(U) = g�(U) · g�(U) >

1, which is equivalent to g�(U) < −1, since g�(U) < 1. Furthermore, g(L) = R, g(g(L)) =
L and g(g(L))� < 1, which can be reformulated as g�(g(L)) · g�(L) = g�(R) · g�(L) < 1.

In summary, system (2.1) has a pair of homogeneous polarised steady states (L, R) if

g�(U) < −1, i.e., f �(U)+d
1+d < −1. This implies d < − f �(U)+1

2 . Since d ≥ 0, this leads to the

condition f �(U) < −1, which is necessary but not sufficient. Furthermore, g�(R)g�(L) =
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�
f �(R)+d

1+d

� �
f �(L)+d

1+d

�
< 1 holds, a condition we will need in the subsequent stability analy-

sis.

Examples of graphs of (2.2) for systems with homogeneous polarised steady states are

shown in Figure 2.2.
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Figure 2.2: Graphs of (2.2) for homogeneous steady states of (2.1) with f (x) = 1.5e−x2

and different choices of d; (a) d = 0; (b) d = 0.08. The solid lines are the
graphs for the equation for R and the dashed lines the graphs for the equation
for L, the homogeneous polarised steady states are indicated by stars, and the
homogeneous unpolarised steady state by a circle.

We next investigate the existence of an unpolarised period two pattern, i.e., lj = rj = V

for j even and lj = rj = W for j odd. Since lj = rj for all j, this pattern is independent of

intracellular diffusion and system (2.1) reduces to

dW
dτ

= −W + f (V),

dV
dτ

= −V + f (W),

which is essentially the same as the lateral inhibition system analysed in [10]. Similar to

above, the period two pattern exists if f �(U) < −1 at the homogeneous unpolarised steady

state U of (2.1) and f �(V) f �(W) < 1 whenever the period two pattern exists. We need the

latter condition for the stability analysis.

2.1.2 Stability analysis

In this section we analyse the stability of the steady states of system (2.1) identified above

to homogeneous and inhomogeneous perturbations. We start by linearising the system

about a homogeneous steady state (L, R). Thus, with lj = L +�lj and rj = R +�rj, neglecting
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terms higher than first order, we get

d�lj

dτ
= −�lj + f �(R)�rj−1 + d(�rj − �lj),

d�rj

dτ
= −�rj + f �(L)�lj+1 + d(�lj −�rj),

where j indicates the cell number. Suppose the solutions of the above system are of the

form �lj = L0eikj+λτ and �rj = R0eikj+λτ, respectively, with λ, k ∈ R and where λ is the

growth rate of perturbations with wave number k. Substituting into the linearised equa-

tions, dividing by eikj+λτ yields

λL0 = −L0 + f �(R)R0e−ik + d(R0 − L0),

λR0 = −R0 + f �(L)L0eik + d(L0 − R0).
(2.4)

Nontrivial solutions of system (2.4) for (L0, R0) require

0 = det

��
−1− d f �(R)e−ik + d

f �(L)eik + d −1− d

�
− λI

�
= det(A− λI). (2.5)

If Reλ < 0 for both solutions of (2.5), the homogeneous steady state is stable. Equivalently,

for stability tr(A) < 0 and det(A) > 0 have to hold. The first condition (tr(A) < 0) is al-

ways fulfilled. To investigate the second one, we consider the case where the homogeneous

steady state is both stable to homogeneous perturbations (i.e., for k = 0) and unstable to

inhomogeneous perturbations (i.e., for at least one k �= 0). For this type of analysis it is

important to ensure that the domain is large enough with respect to the admissible values

of k. Here, we consider an infinite row of cells, as mentioned above.

Homogeneous unpolarised steady state

First we consider a homogeneous unpolarised steady state, L = R = U. Furthermore,

assume k = 0, i.e., a homogeneous perturbation. Then, we get det(A) = 1 + 2d(1 −
f �(U)) − f �(U)2, which is greater than 0 if d > − f �(U)+1

2 since f �(U) < 0. Hence, the

homogeneous unpolarised steady state is stable to homogeneous perturbations if, relative

to the feedback, the diffusion is strong enough.

Now consider k �= 0. For the determinant we get det(A) = 1 + 2(1 − f �(U) cos k)d −
f �(U)2. If d = 0 the homogeneous steady state is unstable for all k �= 0 if f �(U) < −1. If

d > 0, it is unstable if

cos k < − f �(U)2 − 1− 2d
2d f �(U)

, for some k �= 0.
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Therefore, since cos k ≥ −1 for all k, the coefficient d has to satisfy

−1 < − f �(U)2 − 1− 2d
2d f �(U)

.

Since f �(U) < 0 and d > 0 we get

2d( f �(U) + 1) < f �(U)2 − 1 = ( f �(U) + 1)( f �(U)− 1).

Thus,

2d < f �(U)− 1, if f �(U) > −1 (2.6)

and

2d > f �(U)− 1, if f �(U) < −1. (2.7)

We see that equation (2.6) implies d < 0, which contradicts our assumptions, whereas

(2.7) holds for all d. Hence, for f �(U) < −1 the homogeneous unpolarised steady state is

unstable to inhomogeneous perturbations for any value of d.

Combining the results for k = 0 and k �= 0 we conclude that if f �(U) < −1 and d >

− f �(U)+1
2 hold, system (2.1) exhibits spatial instabilities. Since Reλ is maximal if det(A) is

minimal and det(A) is minimal at k = π, the fastest growing mode is k = π. Hence, we

expect to observe patterns of period two.
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Figure 2.3: Dispersion relation for the homogeneous unpolarised steady state of (2.1)
( f (x) = 1.5e−x2 , different values of d); d < 0.1336, the homogeneous unpo-
larised steady state is unstable to homogeneous perturbations, the polarised
steady state arises; d > 0.1336, the homogeneous unpolarised steady state is
stable to homogeneous perturbations and unstable to inhomogeneous pertur-
bations, we get period two patterns.

To clarify these results, Figure 2.3 shows the dispersion relation λ(k) of the largest eigen-

value λ of system (2.1) for the inhibition function f (x) = 1.5e−x2 and different values of d.
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In this case f �(U) = −1.2672 for the homogeneous unpolarised steady state U and there-

fore for all d > 0.1336 the system is stable to homogeneous perturbations and unstable to

inhomogeneous perturbations.

Homogeneous polarised steady state

As a next step we investigate the case L �= R. The corresponding matrix is

A =

�
−1− d f �(R)e−ik + d

f �(L)eik + d −1− d

�

and its determinant is given by

det(A) = 1 + 2d− f �(L) f �(R)− ( f �(L)eik + f �(R)e−ik)d.

Hence, for k = 0 a polarised steady state of system (2.1) is stable if d > f �(L) f �(R)−1
2−( f �(L)+ f �(R)) . This

is true for all d ≥ 0, because f is decreasing and f �(L) f �(R) < 1 at a polarised steady state

(see Section 2.1.1). The system is unstable for at least one k �= 0 if d < f �(L) f �(R)−1
2−( f �(L)eik+ f �(R)e−ik) <

0. This would be a contradiction since we chose d ≥ 0. Thus, if homogeneous polarised

steady states exist they are always stable to homogeneous and inhomogeneous perturba-

tions.

Period two patterns

We continue by analysing the stability of period two patterns. We take every two cells

together and label their sides with lj, mrj, mlj, and rj (derived from “left”, “middle right”,

“middle left” and “right” side, respectively). We linearise about a steady state (V, W)
using lj = V +�lj, mrj = V + �mrj, mlj = W + �mlj and rj = W +�rj. Omitting terms of higher

orders than one, this yields

d�lj

dτ
= −�lj + f �(W)�rj−1 + d(�mrj − �lj),

d�mrj

dτ
= −�mrj + f �(W)�mlj + d(�lj − �mrj),

d�mlj

dτ
= −�mlj + f �(V)�mrj + d(�rj − �mlj),

d�rj

dτ
= −�rj + f �(V)�lj+1 + d(�mlj −�rj).
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Now suppose (�lj, �mrj, �mlj,�rj) = (A0, B0, C0, D0)eikj+λτ, with A0, B0, C0, D0, λ, k ∈ R. There-

fore, we get

λA0 = −A0 + f �(W)D0e−ik + d(B0 − A0),

λB0 = −B0 + f �(W)C0 + d(A0 − B0),

λC0 = −C0 + f �(V)B0 + d(D0 − C0),

λD0 = −D0 + f �(V)A0eik + d(C0 − D0).

Hence, λ are eigenvalues of the matrix




−1− d d 0 f �(W)e−ik

d −1− d f �(W) 0

0 f �(V) −1− d d

f �(V)eik 0 d −1− d




.

Let k = 0, i.e., assume a period two perturbation. The eigenvalues in this case are

λ1 = −1 +
�

f �(V) f �(W),

λ2 = −1−
�

f �(V) f �(W),

λ3 = −2d− 1 +
�

f �(V) f �(W),

λ4 = −2d− 1−
�

f �(V) f �(W).

As mentioned in Section 2.1.1, whenever the period two pattern exists f �(W) f �(V) < 1

holds. Therefore Reλi < 0 for all i = 1, ..., 4. Hence, this state is always stable to perturba-

tions of period two or less.
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Figure 2.4: Dispersion relation for the growth rate of period two spatial perturbations
( f (x) = 1.5e−x2 , different values of d); the period two pattern is always stable.

Now consider k �= 0. The eigenvalues in this case are too complex to study analytically,

but numerical analysis suggests that this steady state is always stable to inhomogeneous

perturbations. This result is supported by Figure 2.4, which shows the dispersion relation

of the largest eigenvalue for a particular choice of f and different d. We see that the steady
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state is stable for every d > 0 we have chosen.

The results of our linear stability analysis are summarised in Figure 2.5. There are three

regions of interest. Region (a) is characterised by 0 > f �(U) > −1. For values in this

region, the homogeneous unpolarised steady state of system (2.1) is stable. Regions (b)

and (c) are separated by the line d = − f �(U)+1
2 (see Section 2.1.1). The period two pattern

is stable in both regions (b) and (c). The homogeneous polarised steady state is stable only

in region (c).

d

f’(U)

-1

(c) Period two patterns are stable; homogeneous polarised steady states are     

(b) Period two patterns are stable

(a) Homogeneous unpolarised steady state is stable: both cell sides are equal

(a)(b)

(c)

stable: polarisation

0

Figure 2.5: Summary of the dependence of the stability of steady states on f �(U) and d.
Rhombus, dot and star indicate the parameter values chosen for the simula-
tions in Figure 2.6 in Section 2.1.3.

2.1.3 Numerical simulations

System (2.1) was simulated for a row of 100 cells, using the Matlab ODE solver ode45.

At the boundaries we assumed r0 = r1 and l101 = l100. Periodic boundary conditions

gave similar results (results not shown). Both are compatible with the boundary condition

chosen for the analysis of the homogeneous perturbations. For period two patterns the

effects of the boundary conditions are restricted to the three cells closest to the boundaries

as we can see in Figure 2.6.

The plots in Figures 2.6–2.10 were generated using f (x) = ce−x2 with different values for

c, different values for d and different types of initial conditions. For clarity, not all the

cells are shown in each figure, but the patterns continue in the obvious way. We have

also considered f (x) = α
1+qxk with positive α, q and k, but the results were similar, as

expected from the analysis. For example, the simulations in Figure 2.6 can be qualitatively

reproduced, choosing f (x) = 0.5
x6+1 and f (x) = 1.2

x6+1 . In all figures in this section we have



Chapter 2. Feedback and diffusion model 21

presented the time to reach the polarised steady state, because this is the only one that has

been observed in the Drosophila wing.

Initial condition c = 0.5, d = 0.1 c = 1.5, d = 0.4 c = 1.5, d = 0.08
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Figure 2.6: Steady state patterns of PCP activity for system (2.1) for different initial con-
ditions, f (x) = ce−x2 with different c, and different choices of d. 100 cells were
simulated, but only the first 10 are shown, for clarity. Patterns in the rest of the
domain continue in the obvious way. For c = 0.5 and d = 0.1 we get the ho-
mogeneous unpolarised steady state irrespective of the initial condition. This
parameter set corresponds to the star in Figure 2.5. For c = 1.5 and d = 0.4
the uniform initial conditions yield the homogeneous unpolarised steady state,
whereas the two inhomogeneous initial conditions yield a period two pattern.
This set of parameter values is represented by the rhombus in Figure 2.5. For
c = 1.5 and d = 0.08 the final state for the first two initial conditions is the ho-
mogeneous polarised steady state, whereas for the last initial condition we get
the period two pattern. This parameter set is indicated by the dot in Figure 2.5.
Only the times to reach the homogeneous polarised steady state are presented,
because this is the only state that has been observed in the biological system.

Figure 2.6 shows initial conditions and corresponding final states of system (2.1) for differ-

ent values of c in f (x) = ce−x2 and different values of d. In column 2 we see that if c = 0.5

and d = 0.1, all cells evolve to the homogeneous unpolarised steady state irrespective of

the initial conditions. This remains the case if d is increased. The result is consistent with
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our analysis, because for this choice of parameter values f �(U) > −1 at the homogeneous

unpolarised steady state U and therefore we are in region (a) of Figure 2.5, indicated by

the star. Hence, by increasing d we do not cross any bifurcation lines.

The figures in column 3 of Figure 2.6 display the final states for c = 1.5, d = 0.4 and the dif-

ferent initial conditions shown in the first column of the figure. The parameter values for

these simulations are represented by the rhombus in region (b) of Figure 2.5. Hence, the

numerical results support the results from the analysis that the unpolarised steady state

is stable to homogeneous perturbations. For inhomogeneous perturbations, period two

patterns arise, spreading out as a wave. Similar waves have been investigated in [36]. As

expected, the same patterns result if d is increased.

The results in column 4 of Figure 2.6 show the final states for c = 1.5 and d = 0.08. They

do not change if d is decreased which will be further discussed below. Again this result

is consistent with Figure 2.5 since we are now in region (c) as indicated by the dot. This

column illustrates the fact that the homogeneous polarised steady state and the inhomo-

geneous period two pattern are both stable for the same parameter values. The final state

achieved depends on the initial condition. Because of this we had a closer look at the initial

conditions by moving gradually from the one in B1 of Figure 2.6 to the one in C1. Therefore

we decreased the initial value rj(0) for j ≥ 2 from 1.1 to 0.5 in 0.1 steps while lj(0) = 0.5

for j ≥ 2. The results are that down to rj(0) = 0.9 the cells become stably polarised. For

rj(0) = 0.8 to rj(0) = 0.6 the cells are polarised transiently, but subsequently a patterning

wave arises from the left end of the row for the boundary conditions r0 = r1 and l101 = l100

or from both ends for periodic boundary conditions. If rj(0) = 0.5 the patterning wave

starts immediately and no polarisation takes place. However, if we weaken the initial po-

larity in B1 of Figure 2.6 and increase c or decrease d we can still get the homogeneous

polarised steady state.

These results show that apart from a small d and small f �(U) we also need sufficiently uni-

form initial conditions to achieve polarity. Up to a certain degree, decreasing the diffusion

coefficient or increasing the strength of the feedback can compensate for initial inhomo-

geneities. Otherwise, period two patterns will emerge, which always spread as a wave.

Therefore, a small diffusion coefficient d is essential to overcome anomalies in initial con-

ditions. This dependence is shown in Figure 2.7. If d is small enough the model can correct

single cells that are initially polarised in the opposite direction to the surrounding cells

(see Figure 2.7(b)). However, these single cells have to be more weakly polarised than

their neighbours. If we increase d the cells pointing in the opposite direction give rise to

an inhomogeneous pattern (shown in Figure 2.7(c)).
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Figure 2.7: Initial condition with errors and the corresponding final states for system (2.1)
with f (x) = ce−x2 and different values of c and d; (a) Initial condition, (b)
result for c = 1.5 and d = 0.02; the time to reach this steady state is indicated;
(c) result for c = 1.5 and d = 0.08.

The results for this section demonstrate that for the proposed mechanism a sufficiently

small diffusion coefficient is necessary to get polarity, unless we have uniform initial con-

ditions, which is unlikely in biological systems. As mentioned at the beginning of this

chapter the diffusion coefficient D in experiments is related to the diffusion coefficient d

in our simulations by D = dδ∆x2, where ∆x is the spatial extension of a cell from left

to right. Assuming ∆x = 8 µm [19], a diffusion coefficient d = 0.08 would correspond

to D = 0.08 · 64
15 µm2/min = 0.006 µm2/s. This value is small compared to diffusion coeffi-

cients measured in mammalian cell membranes, which are of the order of 0.1− 0.01 µm2/s

[22]. Experiments in yeast have revealed that the membrane diffusion coefficients of some

proteins are also of the order of 0.001 µm2/s [14, 51].

Robustness of the model

In the previous section we have shown that system (2.1) can overcome irregularities in the

initial conditions. Here, we will present a quantitative analysis of the robustness of the

model. We choose initial conditions in which every cell has an initial polarity and add

noise. Thus, initially we have

lj =
1
2
− u + kU

�
−1

2
,

1
2

�
,

rj = 1− lj,

for all j, with a fixed u ∈ [0, 1
2 ], a fixed k ∈ [0, 1− 2u] and U(− 1

2 , 1
2 ) denoting a uniform

distribution on [− 1
2 , 1

2 ]. This leaves us with two main cases: if k < 2u, then all cells have a

right-pointing bias initially; if k > 2u, then we expect a fraction f = 1
2 −

u
k of cells to have

a left-pointing bias initially. We varied u between 0 and 1
2 in steps of 0.01 and k between 0

and 1− 2u in steps of 0.01, and for each pair (u, k) we conducted 100 simulations for a row

of 50 cells and calculated the mean ratio of cells in the final state pointing to the right. The
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results for f (x) = 1.5e−x2 and d = 0.02 are presented in Figure 2.8. For pairs (u, k) in the

area below the dashed line all the cells have a right-pointing bias initially and hence 100%

of the cells in the final state point to the right. Increasing k above the dashed line increases

the noise and in particular the number of cells initially pointing to the left. As shown, this

decreases the percentage of cells in the final state pointing to the right. The continuous

lines indicate the thresholds below which on average at least 95%, 75% and 50% of the

cells in the final state point to the right. The average percentages of cells initially pointing

to the right for parameter values on these lines are 93%, 75% and 58%. This shows that up

to a certain noise level we get roughly the same percentage of cells pointing to the right

in the final state as in the initial conditions. If half the cells initially point to the left, the

fraction of cells in the final state pointing to the left is higher than in the initial conditions.

Hence, up to a certain level of noise we get an improvement on the initial conditions. If

we increase the noise further, considering the fraction of cells pointing to the right the final

state is worse than the initial conditions.
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Figure 2.8: Results of the robustness analysis for system (2.1) for f (x) = 1.5e−x2 and d =
0.02. For every pair (u, k) with 0 ≤ u ≤ 0.5 and 0 ≤ k ≤ 1− 2u we conducted
100 simulations for a row of 50 cells and calculated the mean ratio of cells in
the row that point to the right in the final state (indicated by the shading in the
diagram). For values of (u, k) below the dashed line 100% of the cells in the
final state point to the right. In addition we have included the contour lines
for 95%, 75% and 50%. Increasing k increases the noise in the initial conditions
and decreases the percentage of cells in the final state pointing to the right.
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Analysis of clones

To study PCP experimentally, clonal clusters of cells in which a certain gene is either

knocked out or overexpressed, are induced in the tissue [57]. The behaviour of the wild-

type tissue around the clone gives insight into the interplay of the genes involved in the

process.

We consider two different ways of representing clones in our model. In the first, we change

the initial amount of activity in a group of cells in the row while having the same feedback

in all cells. In the second, we alter the strength of the feedback in a group of cells while

having the same initial amount of activity in every cell. The results of the first method

(inclusion of a few cells in the row that have less initial activity than the rest) are shown in

Figure 2.9.

We have considered clones comprising either an odd or an even number of cells, sur-

rounded by wild-type cells each with an identical initial imbalance. We consider two

different strengths of initial global cue. The initial difference between right and left in

the wild-type cells in A1 and C1 of Figure 2.9 is 0.005 and in B1 it is 0.1. Columns 2, 3 and

4 of Figure 2.9 correspond to different strengths of the feedback and different values for

the diffusion parameter. In all cases we observe a wave of period two pattern, which is

initiated at the interface between the clone and the surrounding cells and moves in both

directions. How far this wave spreads depends on the strength of the initial cue in the sur-

rounding cells, the diffusion and the strength of the feedback. B2 shows that for a strong

initial cue and small diffusion we get a short range of the effect of the clone. Increasing

the diffusion (B3) or decreasing the strength of the initial global cue (A2) in the wild-type

cells increases the range of the effect of the clone. Furthermore, increasing the diffusion

increases the time to reach steady state. Comparing the third and fourth column of Figure

2.9 reveals that increasing the strength of the feedback decreases the range of the effect of

the clone. In addition, it shortens the time to reach steady state. Similarly, decreasing c to

1.3 (corresponding to a weak feedback that still can give rise to the polarised steady state)

increases the range of the effect of the clone and the time it takes to reach steady state (re-

sults not shown).

For a clone containing an even number of cells we get similar results, apart from a peak

that occurs in the clone, because the number of cells in the clone is not compatible with the

period of the pattern. The results for a weak initial global cue in the cells surrounding the

clone are shown in row C of Figure 2.9. Results for a strong initial global cue are analogous

(not shown). We get similar results if the initial activity in the cells in the clone is higher

than in the rest of the cells (results not shown).
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Initial condition c = 1.5, d = 0.02 c = 1.5, d = 0.07 c = 2, d = 0.07
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Figure 2.9: Column 1: initial conditions for clones (in grey) containing a number of cells
that have less initial activity in each cell than the surrounding cells and differ-
ent strength of initial global cue in the wild-type cells. The clones in A1 and B1
have an odd number of cells; the clone in C1 has an even number of cells. The
difference between right and left side of each cell in A1 and C1 is 0.005 and in
B1 it is 0.1; second, third and fourth column: the corresponding final states for
system (2.1) for c = 1.5 and c = 2 and different diffusion parameters, there is a
different scale in column 4. Furthermore, the times it takes to reach the steady
states are shown.

Figure 2.10 shows the result for changing the strength of the feedback in a group of cells.

The clones in rows A and B of Figure 2.10 have an odd and even number of cells, respec-

tively. In the initial conditions in column 1 we chose a weak initial polarity in every cell

as the global cue, with a difference of 0.005 between right and left sides. The diffusion

parameter d is set to 0.02. Columns 2 and 3 of Figure 2.10 differ in the choice of feedback

strength in the clone. In column 2 we chose c = 1.4 and in column 3 it is c = 0.5. The

feedback in the surrounding cells is always set to c = 1.5. The two choices of feedback

strength for the clonal cells represent two different cases of steady state behaviour. For

c = 1.4 the homogeneous unpolarised steady state is unstable and period two patterns or

polarisation can arise; for c = 0.5 the homogeneous unpolarised steady state is stable.
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In row A of Figure 2.10 we see that the period two patterning wave which is initiated at

the edges of the clone spreads in both directions for c = 1.4 (A2), but does not pattern the

clone for c = 0.5 (A3). In this case the cells in the clone are unpolarised. Row B of Figure

2.10 shows that going from odd numbers of cells in the clone to even numbers only the

result for c = 1.4 changes significantly (B2). Here again we see the peak arising in the

clone. Increasing the feedback strength in the clone above c = 1.5 yields similar results to

those for c = 1.4. Varying the diffusion parameter and the strength of the initial global cue

gives a similar dependence (results not shown) to that shown in Figure 2.9 for a clone with

a different amount of initial activity.

Initial condition c = 1.4 in the clone c = 0.5 in the clone
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Figure 2.10: First column: initial conditions with clones (in grey) with different feedback
strength, surrounded by cells with feedback c = 1.5. The clone in the first row
has an odd number of cells, while the one in the second row contains an even
number of cells. All cells have a weak initial bias – the difference between
right and left is 0.005. Second and third columns: corresponding final states
for system (2.1) for c = 1.4 and c = 0.5 in the clone and d = 0.02. In addition,
the times to reach steady state are indicated.

In all cases a period two pattern is initiated at the clone boundaries and spreads into the

surrounding cells with the range depending on the parameter values. The affected cells

thus do not have an intracellular difference of activity, i.e., no polarity. This is different

to the experimentally observed phenomenon of domineering non-autonomy as described

in Section 1.2. Depending on which protein is lacking, i.e., which gene is knocked out

in the clone, polarity can be disrupted in such a way that the hairs in a few cells on one

side of the clone point in the opposite direction to the rest of the wild-type cells. Thus,
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we conclude that this model does not account for the effects of clones observed in pupal

wings in Drosophila.

2.2 Analysis in two spatial dimensions

We now consider a two dimensional array of square cells. The activity on the four sides of

cell (i, j) is represented by li,j, ri,j, ai,j and bi,j (see Figure 2.11).

li,j ri,j

ai,j

bi,j

(a)

i − 1, j

i, j i, j + 1i, j − 1

i + 1, j

(b)

Figure 2.11: (a) Labelling of the sides of a cell; (b) numbering of the cells in a two-
dimensional array.

Again, adjacent cell sides inhibit each other by juxtacrine intercellular signalling. Diffusion

takes place between the present side and its two abutting sides in the same cell. This gives

the following system of equations

dli,j
dt

= −δli,j + F(ri,j−1) +
D

∆x2 (ai,j + bi,j − 2li,j),

dri,j

dt
= −δri,j + F(li,j+1) +

D
∆x2 (ai,j + bi,j − 2ri,j),

dai,j

dt
= −δai,j + F(bi−1,j) +

D
∆x2 (li,j + ri,j − 2ai,j),

dbi,j

dt
= −δbi,j + F(ai+1,j) +

D
∆x2 (li,j + ri,j − 2bi,j),

where F is a decreasing positive function representing inhibition, with F(0) finite and pos-

itive. The coefficient δ represents the decay rate, ∆x the distance between two adjoining

sides of a cell and D is the diffusion coefficient. The rescaling τ = δt yields

dli,j
dτ

= −li,j + f (ri,j−1) + d(ai,j + bi,j − 2li,j),

dri,j

dτ
= −ri,j + f (li,j+1) + d(ai,j + bi,j − 2ri,j),

dai,j

dτ
= −ai,j + f (bi−1,j) + d(li,j + ri,j − 2ai,j),

dbi,j

dτ
= −bi,j + f (ai+1,j) + d(li,j + ri,j − 2bi,j),

(2.8)

with d = D
δ∆x2 , hence d ≥ 0. For the subsequent analysis we assume an infinite field of

cells.
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2.2.1 Existence of steady states and stability analysis

Let us assume we have a homogeneous steady state of system (2.8), i.e., li,j = L, ri,j =
R, ai,j = A and bi,j = B for all (i, j). Then there are seven different possibilities for the

distribution of activity in the cell as shown in Figure 2.12.

(a) (b) (c) (d) (e) (f) (g)

Figure 2.12: Illustration of possible distributions of activity in a four-sided cell; (a) L =
R = A = B; (b) L = A, R = B; (c) L �= R, A = B; (d) all cell sides are different;
(e) L = R, A = B; (f) L = A = B �= R; (g) L = B, R �= A.

We investigated the existence of the different steady states and analysed their stability to

homogeneous perturbations. Since we proceeded in the same manner as in Section 2.1,

where possible, we just mention the results.

Homogeneous steady states

The homogeneous unpolarised steady state U (U = L = R = A = B) as shown in Fig-

ure 2.12(a) always exists and is stable to homogeneous perturbations if d > − f �(U)+1
2 .

The diagonally polarised steady state L = A, R = B, L �= R in Figure 2.12(b) exists if
f �(U)+d

1+d < −1. We could only prove the stability analytically for d = 0. In this case it is

stable to homogeneous perturbations if f �(L) f �(R) < 1, which holds as shown in Section

2.1.1. For d > 0 we simulated the system using Matlab and XPPaut, a tool for analysing

dynamical systems [12]. This numerical analysis supports the notion that the steady state

is stable to homogeneous perturbations whenever it exists, as shown in Figure 2.13(a).

The existence of L �= R, A = B (Figure 2.12(c)) could only be shown analytically for d = 0

in which case it exists if f �(U) < −1. Simulations using Matlab and XPPaut for d ≥ 0

suggest that this steady state exists for d < − f �(U)+1
2 . Figure 2.13(b) shows that it is unsta-

ble for f (x) = 1.5e−x2 . Note that this bifurcation diagram shows only the stability of the

homogeneous unpolarised steady state and the state L �= R, A = B. Hence, although they

are both unstable for small d there exists at least one other steady state that is stable for

those parameter values as shown in Figure 2.13(a).

The stability of the steady state L �= R, A = B depends only on the derivative of f at

U, L and R. Therefore, our result does not depend on our choice of f ; we would expect

it to hold for any f with a similar derivative at those points as f (x) = 1.5e−x2 . We found
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that for d = 0 for it to be stable an inhibition function with f (U) = U, f �(U) > −1 and

f (L) = R, f (R) = L, f �(L) f �(R) < 1 is needed. Figure 2.14 shows an example of such a

function. However, in absence of evidence of such a complex inhibition function, we omit

further analysis of this case.
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Figure 2.13: Continuation of L versus d for the two homogeneous polarised steady states;
(a) Diagonal polarity (L = A, R = B, L �= R, Figure 2.12(b)); (b) polarity
along the axis from left to right (L �= R, A = B, Figure 2.12(c)). We chose
f (x) = 1.5e−x2 . In both cases the polarised steady state exist for sufficiently
small d, but it is only stable in the diagonally polarised case. Note that in
both bifurcation diagrams we have only considered two of the possible steady
states.

0 0.5 1 1.5 2
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0.5
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1.5
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f(
x
)

Figure 2.14: Example of a feedback function for which f (u) = u, f (v) = w, f (w) =
v, f (y) = z, f (z) = y and f �(u) > −1, f �(v) f �(w) < 1 for some u, v, w, y, z ∈
R+. The solid line indicates the function f (x) = 0.7e−x10 + 1

1+100x2 ; the
dashed line its inverse. The circle marks the unpolarised steady state and
the stars the steady state for which all four sides of the cell are different.

An additional possible distribution would be that all sides of the cell are different (Figure

2.12(d)). This again would need an inhibition function like the one in Figure 2.14. Hence,

we omit further analysis. There are three more possible allocations of the activity as shown

in Figures 2.12(e)-(g). Substitution of the conditions for the three steady states into (2.8)

combined with numerical analysis reveals that they are not steady states of system (2.8).
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Period two pattern – “checkerboard”

Let us assume li,j = ri,j = ai,j = bi,j = V for all (i, j) where i and j are either both odd

or both even (i mod 2 = j mod 2) and li,j = ri,j = ai,j = bi,j = W for all (i, j) where

either i or j is odd and the other one even (i mod 2 = (j + 1) mod 2). Substituting this

into (2.8) yields V = f (W) and W = f (V), as for the existence of period two patterns in

one spatial dimension. Hence, an unpolarised period two pattern exists if f �(U) < −1 at

the homogeneous unpolarised steady state U. The stability analysis for this case would

be very complex. However, the analysis in Section 2.1 and numerical simulations suggest

that the period two pattern is stable whenever it exists.

Figure 2.15 summarises the results of our analysis of the stability of the steady states to

homogeneous perturbations. We get the same three regions as in the one-dimensional case

(see Figure 2.5). In region (I), which is characterised by f �(U) > −1, only the homogeneous

unpolarised steady state is stable. In region (II) we have f �(U) < −1 and d > − f �(U)+1
2 .

Here, the homogeneous unpolarised steady state and the period two pattern are stable. In

region (III) the diagonally polarised homogeneous steady state as well as the period two

pattern are stable.

d

f’(U)

-1

(I)(II)

(III)

Homogeneous polarised steady state                                     is stable to 
homogeneous perturbations

Period two patterns are stable to homogeneous perturbations

Homogeneous unpolarised steady state is stable to homogeneous 
perturbations: all cell sides are equal

(II)+(III)

(III)

(I)+(II)

L = A, R = B, L != R

0

Figure 2.15: Summary of the results in this section for the dependence of the stability of
steady states on f �(U) and d; rhombus, dot and star indicate the parameter
values chosen for the simulations in Figure 2.16 in Section 2.2.2.

Considering stability to inhomogeneous perturbations we expect the same results as in the

one-dimensional case. The homogeneous unpolarised steady state is stable in region (I),

the period two pattern is stable in region (II) and (III), and the diagonally polarised steady
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state is stable in region (III).

2.2.2 Numerical simulations

We employed Matlab, in particular ode45, to simulate (2.8) and chose boundary conditions

similar to those in one dimension, i.e., on each boundary of the array of cells we add an-

other row or column of cells with the same activity values as the row or column of cells at

the boundary. Applying periodic boundary conditions yields similar results (not shown).

Both boundary conditions are compatible with our analysis for the homogeneous steady

states. For the period two pattern we get an effect on the cells right at the boundary. A

10× 10 array of cells is considered and our function f is of the form f (x) = ce−x2 with

a positive parameter c. As expected from the analysis, simulations for f (x) = α
1+qxk with

positive α, q and k gave similar results.

Three different initial conditions and the corresponding final states of system (2.8) for dif-

ferent values of c and d are shown in Figure 2.16. We have indicated the time to reach

the polarised steady state in A4, since this is the only state that has been observed in the

biological system.

As expected from the stability analysis, the results in Figure 2.16 are similar to the ones in

the one-dimensional case. Column 2 shows that for c = 0.5 and d = 0.1 we get the ho-

mogeneous unpolarised steady state irrespective of the initial conditions. Varying d does

not change the final state. This matches our analysis as we can see from Figure 2.15, where

this set of parameter values is indicated by the star. In Figure 2.16 column 3 we see that

for c = 1.5 and d = 0.4 we get the homogeneous unpolarised steady state for the initial

conditions A1 and B1 and the period two pattern for C1. The effect at the boundary in C3

is due to the boundary conditions we chose. For periodic boundary conditions the pattern

spreads over the whole region. The same behaviour is obtained if d is increased, as ex-

pected. The choice of parameter values for column 3 is indicated by the rhombus in region

(II) of Figure 2.15, where we found that the homogeneous unpolarised steady state is only

stable to homogeneous perturbations, while we expect the period two pattern to be stable

to both homogeneous and inhomogeneous perturbations. Decreasing the diffusion, we get

into region (III) of Figure 2.15, where the dot represents the parameter values for column 4

in Figure 2.16. As expected from the analysis we get polarity as shown in Figure 2.16 A4.

For the initial conditions in B1 and C1 we get inhomogeneous patterns (see B4 and C4).

The boundary effects are due to the boundary conditions we chose; the patterns occur in

the whole region for periodic boundary conditions. The distribution in C4 seems disor-

dered. Decreasing the diffusion coefficient elucidates the underlying pattern as shown in
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Figure 2.17. We see that the diagonally polarised steady state occurs along the diagonal

from top left of the region to bottom right. The rest of the field mostly shows a period two

pattern. As before, the effect at the boundaries is due to the boundary conditions. Hence,

the disordered pattern is a result of the competition between polarisation and the period

two pattern with extra freedom for propagation compared to the one-dimensional case.

initial conditions c = 0.5, d = 0.1 c = 1.5, d = 0.4 c = 1.5, d = 0.08
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Figure 2.16: Final states for system (2.8) for different initial conditions and different
choices of c and d, note the different scales in A1 and B1. We have indicated
the time to reach the polarised steady state. Column 2: The parameter values
are represented by the star in Figure 2.15. We get the unpolarised steady state
irrespective of the initial conditions and the value of d. Column 3: We get
either the unpolarised steady state or the period two pattern. This parame-
ter set is indicated by the rhombus in Figure 2.15. Column 4: The parameter
values correspond to the dot in Figure 2.15. Depending on the initial con-
ditions we get the homogeneous polarised steady state or inhomogeneous
steady states.

Like in the one-dimensional case in Section 2.1, uniform initial conditions yield polarity

if the feedback is sufficiently strong and the diffusion sufficiently weak. Increasing the

diffusion or weakening the feedback results in the homogeneous unpolarised steady state.

Inhomogeneities in the initial conditions give rise to inhomogeneous steady states.
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Figure 2.17: The underlying pattern of Figure 2.16 C4; (a) Initial condition as in Figure
2.16 C1; (b) final state for c = 1.5 and d = 0.01; on the diagonal from top left
to bottom right we get the diagonally polarised steady state, while the period
two pattern arises in the rest of the region.

Simulations for initial conditions that include anomalies further support our results. We

assume an initial condition like the one in Figure 2.16 A1 and add random noise such

that there is still a bias to the bottom right corner of each cell but any two sides do not

necessarily have the same amount of activity (see Figure 2.18(a)). For c = 1.5 and d = 0.08

we still get the polarised steady state (not shown). If we increase the diffusion to d = 1

we get the period two pattern (Figure 2.18(b)). This is different to the result in Figure 2.16

A3 for d = 0.4, which stays the same if d is increased as mentioned above. However, the

result in Figure 2.18(b) is still consistent with our stability analysis since we are now in

region (II) of Figure 2.15. There, the homogeneous unpolarised steady state is stable to

homogeneous perturbations and the period two pattern is stable to both homogeneous

and inhomogeneous perturbations.
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Figure 2.18: Inhomogeneous initial conditions give rise to period two pattern; (a) Initial
conditions with noise; (b) final state for c = 1.5 and d = 1.

As a next step, we included single cells that point the opposite way in the initial condition

in Figure 2.18(a). As long as these incorrect cells are weakly polarised and not right next

to each other they can be corrected if d is sufficiently small (not shown).



Chapter 2. Feedback and diffusion model 35

Analysis of clones

We now analyse the behaviour of system (2.8) for initial conditions with a clone in the

middle of the field of cells. The initial conditions with a clone lacking activity and corre-

sponding final states for different values of c and d are shown in Figure 2.19. In A1 the

initial imbalance in the wild-type cells around the clone is weaker than in B1 (note the

different scales). The results show that for the stronger initial imbalance in row B we get a

shorter range of effect of the clone. Furthermore, a small diffusion parameter (column 2)

or a strong feedback (column 4) also lead to a shorter range.

In our simulations the clones affect the cells all around them and we cannot detect a pat-

tern of orientation for the affected cells. Especially in A3 and B3 patches of period two

patterns occur, hence these cells do not have any orientation. We get similar results if the

activity in the clone is higher than in the wild-type cells. This differs from experimental

observations. There, the clones only affect cells on one side and the affected cells have a

common orientation (see Section 1.2).

initial condition c = 1.5, d = 0.02 c = 1.5, d = 0.08 c = 2, d = 0.08
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Figure 2.19: Simulations for a clone in the field of cells. In all figures the clone is cir-
cumscribed by a red rectangular. Row A: A1 shows an initial condition with
a clone without activity, the intracellular difference in the wild-type cells is
0.006, A2-A4 display the corresponding final states of system (2.8) for dif-
ferent values of d and c; row B: B1 shows an initial condition with a clone
without activity, the intracellular difference in the normal cells is 0.06, the
corresponding final states for different values for c and d are shown in B2-B4.
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2.3 Discussion

Based on the general consensus that the conserved second tier of PCP generation depends

on a feedback loop that amplifies an initial global cue, we have developed the feedback

and diffusion model that can generate polarity. To maximise the mathematical tractability

of this model, we have used a simple system of equations that represents a wide range

of more specific mechanistic models. We have employed a combination of linear stability

analysis and numerical simulations in one and two spatial dimensions to investigate the

patterns of cell polarity that this model can generate.

We found that both period two and polarised patterns can occur. To achieve polarisation,

the intercellular feedback has to be sufficiently strong and the intracellular diffusion suf-

ficiently weak. We have also shown that the model can overcome small anomalies in the

initial conditions. Analysis of clones of cells that have a different amount of activity than

the surrounding cells revealed that the range of the effect of these clones depends on both

the strength of the initial global cue in the surrounding wild-type cells and on the value

of the diffusion parameter. These results also hold for clones in which the strength of the

feedback is different to that in the surrounding cells. The cells affected by the clones show

either no polarity or a random distribution. This differs from experimental findings in

the Drosophila wing, in which the cells surrounding the clone have a common orientation

demonstrated by the direction of the hair growth (see Section 1.2).

Due to the bistability of the homogeneous polarised steady state and inhomogeneous pat-

terns, for certain parameter values it depends only on the initial conditions which state will

arise. Inhomogeneous initial conditions can give rise to inhomogeneous patterns, depend-

ing on the strength of the feedback and the rate of diffusion. Increasing the strength of the

feedback or decreasing the diffusion coefficient increases the robustness of the model. It

would be interesting to get an indication of these two parameters from experiments.

The feedback and diffusion model is not conservative — the PCP activity in a cell can be

time-varying. However, if the activity in this model is interpreted as representing non-

conserved protein complexes, the overall amounts of the proteins that combine to form

complexes could be conserved in each cell. Furthermore, this type of non-conservative

model can be derived by elimination of variables in a conservative model. As an example

of this, assume that a cell is divided into three parts: a left, a right and a central compart-

ment. Representing the activity in each compartment in cell j by lj, rj and cj, respectively,

a one-dimensional model corresponding to the system can be written as:
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l̇j = −lj + f (rj−1) + d(rj − lj),

ṙj = −rj + f (lj+1) + d(lj − rj),

ċj = lj + rj − f (rj−1)− f (lj+1),

(2.9)

for which ċj + l̇j + ṙj = 0. Thus, although system (2.9) as a whole is conservative, the total

activity on the left and right sides of a cell may not be conserved.

In the following chapter we will introduce an approach which is based on a feedback loop

and diffusion and is conservative. We will investigate whether it has different properties

than the feedback and diffusion model.



Chapter 3

Conservative model

The approach in this chapter is based on the idea that planar cell polarity is generated by a

feedback loop that amplifies an initial cue. We propose a conservative model that describes

the dynamic redistribution of conserved PCP activities within the membrane of each cell,

depending on its neighbouring cells. This is coupled with intracellular diffusion. We have

chosen a discrete approach since our main focus is on the intercellular interactions. By

omitting biological details we ensure that the mathematical analysis is practicable and our

results are valid for a whole class of models for PCP. Two specific models that belong to

the class represented by the conservative model were proposed by Amonlirdviman et al.

[3] and Le Garrec et al. [29]. We will discuss these approaches in Chapters 4 and 5. In the

present chapter we introduce our conservative model and investigate its properties. To this

end, we conduct linear stability analysis and numerical simulations to investigate which

patterns the model can generate and their dependence on the strength of the feedback and

the speed of diffusion. Furthermore, we analyse its robustness and the effects of clones.

We consider a row of two-sided cells with rj representing PCP activity on the right side

and lj on the left side of cell j. These values may represent amounts of certain proteins.

However, to ensure that our results are generally valid, we do not want to be more specific.

The total amount of activity in each cell is identical and conserved, thus lj + rj = Q for all j

with a positive constant Q. In contrast to the feedback and diffusion model in the previous

chapter, the amount of activity in a cell is not raised and lowered but redistributed within

the cell, depending on the amount of activity in the adjacent sides of the neighbouring cell.

The model is encoded by the following equations

dlj

dt
= G(lj+1)rj − G(rj−1)lj +

D
∆x2 (rj − lj),

drj

dt
= G(rj−1)lj − G(lj+1)rj +

D
∆x2 (lj − rj),

(3.1)

38
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where G is an increasing non-negative function, representing the influence of the adjacent

cells on the movement, D ≥ 0 represents diffusion and ∆x the spatial extension of a cell

from left to right. The mechanism is a kind of lateral inhibition; if we look at a cell side and

there is a large amount of activity in the adjacent side of the neighbouring cell then a large

proportion of the PCP activity on the present cell side gets moved away from it. Similarly,

if there is only a small amount of activity in the adjacent side of the neighbouring cell

only a small proportion of the amount on the current side gets moved. The amount of

activity at a cell side depends on the adjacent cell sides of both neighbours, because they

together determine the net movement toward this cell side. An illustration of the proposed

mechanism is presented in Figure 3.1.

lj+1lj rjrj−1
Diffusion

influence of 

adjacent cell
influence of 

adjacent cell

Figure 3.1: Schematic representation of the conservative polarisation model (3.1). A con-
served PCP activity within each cell is redistributed in response to juxtacrine
intercellular signalling and intracellular diffusion. The intracellular arrows in-
dicate movement in response to inputs from adjacent cells (intercellular ar-
rows). The thickness of the intercellular arrows represents the relative amount
of input which in turn leads to different amounts of movement, indicated by
the thicknesses of the intracellular arrows.

If T, Dbio and ∆xbio denote the time, the diffusion coefficient and the side length of a cell

in the biological system, these parameters are related to the parameters in our model by

t = κT, D = 1
κ Dbio and ∆x = p ∆xbio with positive constants κ and p.

Rescaling (3.1) yields

dlj

dτ
= G(lj+1)rj − G(rj−1)lj + d(rj − lj),

drj

dτ
= G(rj−1)lj − G(lj+1)rj + d(lj − rj),

(3.2)

where d = D
∆x2 = 1

κp2(∆xbio)2 Dbio and τ = dt. Hence, the time τ in our analysis and our

simulations is related to the time T in experiments by

T =
1

κd
τ =

p2(∆xbio)2

Dbio τ. (3.3)
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We assume ∆xbio = 8 µm [19], p = 1 and Dbio = 0.01 µm2/s [22]; then κ is determined by

equation (3.3).

To investigate the properties of the conservative model (3.2) we apply a steady state analy-

sis followed by numerical simulations. For the steady state analysis we assume an infinite

row of cells.

3.1 Existence of steady states

Substitution of rj = Q− lj into (3.2) and setting Lj = lj
Q yields

dLj

dτ
= g(Lj+1)(1− Lj)− g(1− Lj−1)Lj + d(1− 2Lj), (3.4)

with g(x) = G(Qx). Our rescaling implies 0 ≤ Lj ≤ 1. The homogeneous unpolarised

steady state is Lj = 1
2 for all j, which always exists. A homogeneous polarised steady state

Lj = L �= 1
2 for all j exists if and only if

d =
g(1− L)L− g(L)(1− L)

1− 2L
=: φ(L). (3.5)

The function φ is not defined at 1
2 . Furthermore, we get φ(0) = φ(1) = −g(0).

The completely polarised homogeneous steady states L = 1 or L = 0 exist if and only if

g(0) = 0 and d = 0, since g is a non-negative function and d has to be non-negative. In

our context the constraint g(0) = 0 is reasonable, since it states that if the activity on the

adjacent cell side is 0 there is no influence from it on the present cell side. However, d = 0

is unlikely in biological systems.

Equation (3.5) yields that a steady state L ∈ (0, 1
2 ) exists for some d > 0 if and only if

g(1− L)
g(L)

>
1− L

L
for some L ∈

�
0,

1
2

�
. (3.6)

In the following we will show that for any Hill function

g(L) =
bLn

αn + Ln , (3.7)

with n ∈ N, α > 0 and b > 0, inequality (3.6) holds for n ≥ 2 for at least one L ∈ (0, 1
2 ).

Assume g(L) = bL
α+L with 0 < L < 1

2 . Substituting into (3.6) yields

b(1− L)(α + L)
(α + 1− L)bL

>
1− L

L
.

A sequence of reformulations implies L > 1
2 , which contradicts our assumption. Hence,

(3.6) does not hold for n = 1.
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Let n ≥ 2. Substituting (3.7) into (3.6) yields

b(1− L)n(αn + Ln)
[αn + (1− L)n]bLn >

1− L
L

.

Rearranging implies

αn >
Ln−1(1− 2L)
1− ( L

1−L )n−1
. (3.8)

For every α and n ≥ 2 we can find an L ∈ (0, 1
2 ) that satisfies this condition, since the

right hand side of (3.8) tends to 0 as L tends to 0. Therefore, for every Hill function with

n ≥ 2, there exists a branch of polarised steady states connecting to L = 0. The existence

of a branch of polarised steady states connecting to L = 1 can be shown in an analogous

manner. This is due to the symmetry of (3.4).

We will now investigate the existence of polarised steady states near L = 1
2 . Equation (3.6)

can be restated as
g(1− L)

1− L
>

g(L)
L

for L ∈
�

0,
1
2

�
. (3.9)

Geometrically, this means that L and 1− L (with 0 < L < 1
2 ) are polarised steady states if

the straight line through (0, 0) and (1− L, g(1− L)) is steeper than the straight line through

(0, 0) and (L, g(L)) as illustrated in Figure 3.2.
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Figure 3.2: Illustration of the geometrical interpretation of condition (3.9) for the existence
of a polarised steady state; (a) If g(x) = L3

0.23+L3 then L = 0.07 is a polarised

steady state, since the dashed line g(0.07)
0.07 L is less steep than the line g(1−0.07)

1−0.07 L;
(b) if g(x) = L3

0.23+L3 then L = 0.15 is not a polarised steady state, since the

dashed line g(0.15)
0.15 L is steeper than the line g(1−0.15)

1−0.15 L; (c) if g(x) = 2x5

0.65+x5

then L = 0.48 is a polarised steady state, since the dashed line g(0.48)
0.48 L is less

steep than the line g(1−0.48)
1−0.48 L; to illustrate equation (3.10) we also included the

straight line g(0.5)
0.5 L.

Figure 3.2(c) shows that a branch of steady states connecting to L = 1
2 exists if

g(L)
L

<
g( 1

2 )
1
2

<
g(1− L)

1− L
for L ∈

�
1
2
− �,

1
2

�
, (3.10)
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with a sufficiently small � > 0. Inequality (3.10) can be restated as

d
dL

�
g(L)

L

� ���L= 1
2

> 0,

hence,
g�(L)L− g(L)

L2

���L= 1
2

> 0.

Reformulating we get

g�
�

1
2

�
> 2 g

�
1
2

�
. (3.11)

Substituting (3.7) with n ≥ 2 and rearranging yields that (3.11) is equivalent to

α >
1

2 n
√

n− 1
. (3.12)

This gives us restrictions on α and n. If α > 1
2 n√n−1

we get a branch of polarised steady

states connecting to L = 1
2 , if α < 1

2 n√n−1
there is no such branch. It is 1

2 n√n−1
≤ 1

2 for

general n ≥ 2 and minn≥2
1

2 n√n−1
= 0.38, which is the value at n = 5. Hence, for α > 1

2 we

get a branch of polarised steady states connecting to L = 1
2 for any n ≥ 2 and for α < 0.38

we do not get such a branch for any n ≥ 2.

In summary, for every Hill function with n ≥ 2 there exists a branch of polarised steady

states connecting L = 0 and a branch connecting L = 1. In some cases, depending on α and

n there exists also a branch connecting L = 1
2 . Note that all these results are independent

of the coefficient b in the numerator of the Hill function (3.7). Considering the biological

system we are especially interested in strongly polarised steady states, i.e. values of L close

to 0 or 1. Our analysis shows that for a Hill function, which is a reasonable choice for the

feedback function, these steady state exist always. We also expect our arguments to extend

to more general feedback functions.

Now we will present examples of the existence of polarised steady states. Figures 3.3 and

3.4 show plots for g(L), g(1−L)
g(L) , 1−L

L and φ(L) for g(L) = g1(L) = L3

0.23+L3 and g(L) =
g2(L) = 2L5

0.65+L5 , respectively. For g1 only values of L close to 0 and 1 are steady states as

shown in Figure 3.3(b)-(d), whereas Figures 3.4(b) and (c) show that for g2, every 0 < L < 1

with L �= 1
2 is a possible steady state. It depends on the diffusion coefficient d which one

will arise. For g1 with α = 0.2 and n = 3 the right hand side of (3.12) evaluates to 1
2 n√n−1

=
1

2 3√2
= 0.4 > 0.2 = α and for g2 with α = 0.6 and n = 5 to 1

2 n√n−1
= 1

2 5√4
= 0.4 < 0.6 = α.

This supports the finding that for g1 we do not get polarised steady states near 1
2 , whereas

for g2 a branch of steady states connecting to 1
2 does exist.
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Figure 3.3: Illustration of the existence of polarised steady states of (3.4) for g1(L) =
L3

0.23+L3 ; only values of L close to 0 and close to 1 are polarised steady states; (a)

Plot of g1; (b) plot of g1(1−L)
g1(L) and 1−L

L (larger scale); (c) plot of g1(1−L)
g1(L) and 1−L

L

(zoomed in); (d) plot of φ(L), showing that it is only positive for values of L
close to 0 and close to 1; the circle at L = 1

2 indicates that φ(L) is not defined at
this point.
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Figure 3.4: Illustration of the existence of polarised steady states of (3.4) for g2(L) =
2L5

0.65+L5 . All 0 < L < 1 with L �= 1
2 are polarised steady states; (a) Plot of g2(L);

(b) plot of g2(1−L)
g2(L) and 1−L

L ; the two curves intersect only at L = 1
2 , hence (3.6)

is satisfied and therefore the polarised steady state exists for appropriate val-
ues of d; (c) plot of φ(L), it is positive for all L which we consider; the circle at
L = 1

2 indicates that φ(L) is not defined at this point.

Unpolarised period two patterns cannot arise for (3.4) because the initial amount of activity

is the same in each cell and is conserved within a cell. In Section 3.2 we will show that there

is no instability to polarised period two perturbations.

3.2 Stability analysis

Linearising (3.4) about a homogeneous steady state L by substituting Lj = L + l̃j yields

dl̃j

dτ
= g(L + l̃j+1)(1− L− l̃j)− g(1− L− l̃j−1)(L + l̃j) + d(1− 2L− 2l̃j)

≈ −g(L)l̃j + g�(L)l̃j+1(1− L)− g(1− L)l̃j + g�(1− L)l̃j−1L− 2dl̃j.

Substituting l̃j = L0eikj+λτ with L0, k, λ ∈ R we get the dispersion relation

λ(k) = −g(L) + g�(L)eik(1− L)− g(1− L) + g�(1− L)e−ikL− 2d, (3.13)
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which gives us the growth rate of perturbations as a function of their wave number. Fig-

ure 3.5 shows λ(k) for the homogeneous unpolarised steady state with g(x) = 2x5

0.65+x5 and

different values of d. For d ≤ 1.47 the growth rate λ(k) > 0 for certain k and the fastest

growing mode is k = 0. Hence, the homogeneous unpolarised steady state of system (3.4)

is unstable to homogeneous perturbations; we get polarity. For d ≥ 1.47 we see λ(k) < 0

for all k, i.e. the homogeneous unpolarised steady state is stable to homogeneous and inho-

mogeneous perturbations; the cells remain unpolarised. Note, that d = 1.47 corresponds

to the maximum value of φ(L) as shown in Figure 3.4(c).
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Figure 3.5: Dispersion relation (3.13) of the homogeneous unpolarised steady state L = 1
2

of (3.4) for g = 2x5

0.65+x5 and different values of d. For d ≤ 1.47 the system is
unstable to perturbations for certain k and the system polarises. For d ≥ 1.47
the system is stable to homogeneous and inhomogeneous perturbations, all
cells remain unpolarised.

Because of (3.13) the homogeneous unpolarised steady state L = 1
2 is stable if −g( 1

2 ) +
1
2 g�( 1

2 ) cos k < d for all k, i.e., if

−g
�

1
2

�
+

1
2

g�
�

1
2

�
< d, (3.14)

since g�(x) > 0 for all x. Setting h(L) := g(L)(1− L)− g(1− L)L + d(1− 2L), the right

hand side of (3.4) at a homogeneous steady state, we can rewrite (3.14) as h�( 1
2 ) < 0.

The homogeneous polarised steady state L �= 1
2 is stable if

−g(L) + g�(L) cos k(1− L)− g(1− L) + g�(1− L)L cos k
2

< d for all k, (3.15)

since g is real. The left hand side of (3.15) is maximal for cos k = 1. Thus, if (3.15) holds for

k = 0 it holds for any k. Therefore, the stability condition (3.15) can be written as h�(L) < 0.

The system cannot be simultaneously stable to homogeneous perturbations and unstable

to inhomogeneous perturbations. Furthermore, the fastest growing mode is k = 0. There-

fore, the system is also stable to polarised period two perturbations.

In summary, we get h(0) ≥ 0, h(1) ≤ 0, h(0) = −h(1), h( 1
2 ) = 0 and h�(0) = h�(1). The
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graph of h is rotationally symmetric about ( 1
2 , 0). The above stability analysis reveals that a

homogeneous steady state L is stable if h�(L) < 0. Depending on the form of the function g

and the value of d the function h has different forms, as illustrated in Figure 3.6. In Figure

3.6(a) there is a stable pair of homogeneous polarised steady states and the homogeneous

unpolarised steady state is unstable. Figure 3.6(b) shows an example in which only the

homogeneous unpolarised steady state is stable. We call these two cases monostable. The

last two cases, in Figure 3.6(c) and (d), we refer to as a bistable cases because a pair of ho-

mogeneous polarised steady states as well as the homogeneous unpolarised steady state

are stable. Furthermore, there exists a second pair of homogeneous polarised steady states,

which are unstable. Although the graphs look essentially the same in these two figures we

present both cases because the bifurcation diagrams corresponding to the two functions g

are different as shown in Figure 3.7 (b) and (c).
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Figure 3.6: Graphs of h(L) for different forms of g and values of d, circles indicate unstable
steady states, dots stable steady states; (a) Monostable case, g(x) = 2x5

0.65+x5

and d = 0; (b) monostable case, g(x) = 2x5

0.65+x5 and d = 1.5; (c) bistable case,
g(x) = 2x6

0.46+x6 and d = 0.8; (d) bistable case, g(x) = x3

0.23+x3 and d = 0.02.
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Figure 3.7: Bifurcation diagrams for (a) g(x) = 2x5

0.65+x5 , (b) g(x) = 2x6

0.46+x6 and (c) g(x) =
x3

0.23+x3 ; increasing d above a threshold disrupts polarity.

Figure 3.7 shows the bifurcation diagrams for g(x) = 2x5

0.65+x5 , g(x) = 2x6

0.46+x6 and g(x) =
x3

0.23+x3 . In Figure 3.7(a) and (b) we see branches of polarised steady states connecting to

L = 1
2 as expected from our analysis in the previous section, since for the correspond-

ing functions g equation (3.12) holds. In Figure 3.7(a) the branches are of stable polarised
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steady states while in Figure 3.7(b) we have unstable branches. For g corresponding to

Figure 3.7(c) equation (3.12) is not fulfilled and the branches of polarised steady states are

not connected to L = 1
2 .

Combining the result in Figure 3.7(a) with the results in the previous section we see that

for g(x) = 2x5

0.65+x5 the polarised steady states are stable whenever they exist. Further-

more, 3.7(a) shows that as we increase d from zero the polarity gets weaker until the two

branches for the two homogeneous polarised steady states merge with the branch for the

homogeneous unpolarised steady state. However, for g(x) = 2x6

0.46+x6 (Figure 3.7(b)) and

g(x) = x3

0.23+x3 (Figure 3.7(c)) the branches for stable polarised steady states do not merge

but stable and unstable polarised steady states disappear if d is increased above about 0.9

or 0.04, respectively. Hence, in this model, increasing the diffusion parameter d above

a certain threshold, depending on g, disrupts polarity and results in only the homoge-

neous unpolarised steady state being stable. It would be interesting to test experimentally

whether increasing the intracellular movement of components of the PCP pathway would

lead to failure of polarisation. In experiments polarity is detected by the direction of the

hair growth. So far there has not been a measure for the strength of polarisation. There-

fore, it does not seem possible to distinguish the two different types of failure we have

presented in Figure 3.7 in experiments.

3.3 Travelling wave solutions

If h�( 1
2 ) > 0, system (3.4) has an unstable unpolarised steady state L = 1

2 and a stable

polarised steady state L∗ > 1
2 , since h(1) ≤ 0. Thus, we expect waves taking Lj = 1

2

to Lj = L∗ similar to the travelling wave solutions of Fisher’s equation [32], since the

solutions are bounded between steady states and we expect a lower bound on the wave

speed in some cases. Different to Fisher’s equation, we consider a discrete system, which

was previously done by a number of authors (see e.g. [11, 20, 34] and references therein).

Introduction of the travelling wave coordinate s = j− cτ with Lj(τ) = f (j− cτ) = f (s)
yields

−c
d f
ds

= g( f (s + 1))(1− f (s))− g(1− f (s− 1)) f (s) + d(1− 2 f (s))

with

0 ≤ f ≤ 1, lim
s→−∞

f (s) = L∗ and lim
s→+∞

=
1
2

.

Linearising about a steady state F with f (s) = F + f̃ (s), we get

−c
d f̃
ds

≈ −g(F) f̃ (s) + g�(F) f̃ (s + 1)(1− F)− g(1− F) f̃ (s) + g�(1− F) f̃ (s− 1)F− 2d f̃ (s).
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Assuming f̃ (s) = F0eλs and dividing by F0eλs yields

−cλ = −g(F)− g(1− F) + g�(F)eλ(1− F) + g�(1− F)e−λF− 2d. (3.16)

Provided that the initial amount Lj(0) ∈ [ 1
2 , L∗), the activity on the left side of the cell will

never decrease below 1
2 ; hence, there are no spatially oscillatory solutions. We will show

this by contradiction. Let Lj(0) ≥ 1
2 for all j and assume j = k is the first point at which

Lj crosses through 1
2 at time τ = τ∗. Hence, we would have Lk(τ∗) = 1

2 , Lk+1(τ∗) ≥ 1
2 ,

Lk−1(τ∗) ≥ 1
2 and dLk

dτ (τ∗) ≤ 0. However, substituting Lk = 1
2 into (3.4) yields

dLk
dτ

(τ∗) =
1
2
(g(Lk+1)− g(1− Lk−1)) ≥ 0,

with equality only if Lk+1 = Lk−1 = 1
2 , since g is increasing. Either dLk

dτ (τ∗) > 0 and

we have a contradiction or dLk
dτ (τ∗) = 0. Applying the same argument to Lk±1(τ∗) we

will eventually get the above contradiction or find that Lj(τ∗) = 1
2 for all j. Thus, there

are no spatially oscillatory solutions about L = 1
2 of system (3.4) given the above initial

conditions. The wave speed c is therefore determined by the condition that there have to

be real roots of equation (3.16). Substituting F = 1
2 , i.e., looking ahead of the wave, into

(3.16) yields

−cλ = −2
�

g
�

1
2

�
+ d

�
+ g�

�
1
2

�
cosh(λ), (3.17)

with the two cases

−2
�

g
�

1
2

�
+ d

�
+ g�

�
1
2

�
< 0 (L = 1

2 is stable): two real roots for all c,

−2
�

g
�

1
2

�
+ d

�
+ g�

�
1
2

�
> 0 (L = 1

2 is unstable): real roots only if c ≥ cmin,

since minλ∈R cosh(λ) = 1. Figure 3.8 shows the plots of the two sides of (3.17) for g(x) =
2x6

0.46+x6 and d = 0.6 as an example of the first case and for the same g and d = 0.3 as an

example of the second case (see also Figure 3.7(b), for d = 0.6 we have bistability and for

d = 0.3 monostability).

We can see that the right hand side of (3.17) is minimal at zero. In the first case, in Figure

3.8(a),the value at this minimum is less than zero, whereas in the second case it is greater

than zero (see Figure 3.8(b)). Since all graphs for the left hand side of (3.17) go through

the origin we get two real roots for all c in Figure 3.8(a) and only real roots for c above a

certain minimum value in Figure 3.8(b). For our choice of g and d this minimum value is

cmin = 1.198.
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Figure 3.8: Graphs of the two sides of equation (3.17) for g(x) = 2x6

0.46+x6 and different
d to determine the possible wave speeds c of the travelling wave solution of
system (3.4); (a) d = 0.6, there are two real roots for all c, i.e. any c is a wave
speed (solid straight line c = 3, dashed straight line c = 1); (b) d = 0.3, we
only get real roots if c ≥ cmin, i.e. a minimum wave speed cmin exists, in this
case cmin = 1.198 (solid straight line c = 1.3, dashed straight line c = 1.1).

Now we want to investigate whether the speed of the wave depends on its direction. To

this end, we assume that initially we have a single polarised cell (Lp, Rp) in the middle of

a row of unpolarised cells as illustrated in Figure 3.9. For suitable choices of g and d, a

polarising wave is initiated by cell p at τ = 0 and spreads out in both directions into the

unpolarised regions. We want to analyse the speed of this wave. Therefore, we assume

(Lp, Rp) either equals (L∗, 1− L∗) or (1− L∗, L∗) for L∗ > 1
2 . First, let Lp = L∗ in the initial

conditions.

Lp

Lp−1Rp−1 Lp+1 Rp+1

. . . . . .

0

1

2

L
∗

Rp

p p+1 p+2p-2 p-1

Figure 3.9: Initial conditions for system (3.4), which we use as an example to show that
the speed of a wave may depend on its direction.

By substituting in (3.4) we get

dLp+1

dτ

����
τ=0

=
1
2

�
g

�
1
2

�
− g(1− L∗)

�
≥ 0,

dLp−1

dτ

����
τ=0

=
1
2

�
g(L∗)− g

�
1
2

��
≥ 0,

since g is increasing. Therefore, if g( 1
2 )− g(1− L∗) < g(L∗)− g( 1

2 ), the initial perturbation

spreads faster to the left (decreasing indices). By symmetry, we conclude if Lp = 1− L∗

initially and g( 1
2 )− g(L∗) < g(1− L∗)− g( 1

2 ), the early perturbation spreads faster to the
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right (increasing indices). This analysis suggests that the speed of the wave may depend

on its direction.

3.4 Numerical simulations

We simulated the model (3.4) for a row of cells using the Matlab ODE solver ode45. The

boundary conditions were l0 = l1 and l101 = l100, which are compatible with the boundary

conditions we chose for the analysis of the homogeneous perturbations. Moreover, we see

in Figure 3.11 that the boundary conditions do not have a significant effect on the travelling

wave solution as soon as the wave front has moved away from the boundary.

We state the times to reach the polarised steady state as this is the state that has been

observed in the Drosophila wing. As mentioned before, according to [44], in experiments

the polarisation of the wing cells takes about 32 hours, 18 hours for the recruitment of the

core proteins to the membrane and 14 hours to establish their polarised distribution. We

see that the times to reach the steady state in our simulations are in a reasonable range.
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Figure 3.10: Final states for system (3.4), with g(x) = 2x5

0.65+x5 and different values for the
diffusion parameter d; (a) Initial condition, Lj = 0.49 for all j; (b) final state
for d = 0.1, strong polarity; (c) final state for d = 1, weaker polarity; (d) final
state for d = 1.9, unpolarised steady state.
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Figure 3.11: Wave propagation; (a) Initial condition; (b)-(d) the state of system (3.4) at
different points in time for g(x) = 2x5

0.65+x5 and d = 0.2.

Figures 3.10 and 3.11 show the final states for two different initial conditions. In Figure

3.10(a) there is an initial imbalance in each cell for the whole row. The simulations were



Chapter 3. Conservative model 50

performed using g(x) = 2x5

0.65+x5 , a function for which we analysed the properties of system

(3.4) in Section 3.2. Consistent with our analysis we get a strongly polarised steady state

for d = 0.1 (see Figure 3.10(b)), which gets weaker as we increase d (see Figure 3.10(c))

and disappears once d is greater than a certain threshold (see Figure 3.10(d)). These re-

sults match the corresponding bifurcation diagram in Figure 3.7(a). The direction of the

polarisation of the homogeneous polarised steady state depends only on the direction of

the initial conditions. For g(x) = 2x6

0.46+x6 and d = 0.5, a bistable case (see Figure 3.7(b)), we

need sufficiently strongly polarised initial conditions to get polarisation, otherwise solu-

tions evolve toward the homogeneous unpolarised steady state (result not shown). This is

not surprising as we know from the analysis that both states are stable for this choice of g

and d.

With the initial condition depicted in Figure 3.11(a) only the first cell of the row is polarised

while the rest remain unpolarised. For small values of d this results in the propagation of a

wave with a speed that depends on g. The wave for g(x) = 2x5

0.65+x5 and d = 0.2 is shown in

Figure 3.11. Weakening the polarity in the first cell of the initial condition does not change

the final state or the time to reach it (result not shown).

The analysis in Section 3.3 shows that, for g(x) = 2x5

0.65+x5 and d = 0.2, there exists a min-

imum wave speed which is 4.76. The wave speed calculated from the simulations is 4.69,

which matches the theoretical value reasonably well. A difference of the wave speed for

different directions could not be detected. We have conducted the same calculations and

simulations for other choices of g. The results are summarised in Table 3.1, which shows

the theoretical value for the minimum wave speed and the numerical values for both di-

rections of the wave.

Wavespeed

Function g, Theoretical Numerical value Numerical value
Diffusion d minimum value First cell init. (0,1) First cell init. (1,0)

g(x) = x3

0.63+x3 , d = 0.3 0.41 0.4 0.4

g(x) = 3x4

0.74+x4 , d = 0.1 4.63 4.6 4.6

g(x) = 2x6

0.46+x6 , d = 0.15 1.96 1.9 4.9

g(x) = 4x3

0.53+x3 , d = 0.5 3.51 3.4 4.3

Table 3.1: Theoretical and numerical results of wave speed calculations for (3.4) for differ-
ent choices of g and d and different initial conditions. In the first and the second
row the speed of the wave does not depend on its direction. In the third and
fourth row the wave moves faster if the first cell is initially polarised to the left.
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The theoretical value of the minimum wave speed and the minimum of the numerical

values of the wave speed agree well. In the first two cases the wave speed does not depend

on the direction, whereas in the third and fourth case we get a significant difference. For

these latter cases the wave is faster if the first cell in the initial conditions is polarised to

the left, i.e., (L1, R1) = (1, 0). For an initial condition as in Figure 3.9 this would mean that

the wave moves faster to the right (increasing indices), which matches our earlier analysis

since the inequality g(0.5)− g(0) > g(1)− g(0.5) holds for the two choices of g in the third

and fourth row of Table 3.1.
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Figure 3.12: Analysis of the travelling wave solution of system (3.4) for g(x) = 2x6

0.46+x6 ; (a)
Initial condition which can give waves in both directions; (b) initial condition
which only gives a wave to the right; (c) graphs of the theoretical value of the
minimum wave speed and the wave speed for initial condition (a) and (b).

We analysed the travelling wave solution for g(x) = 2x6

0.46+x6 in more detail, since it shows

a strong difference in wave speeds for the different directions. In the corresponding bi-

furcation diagram (see Figure 3.7(b)) we can see that there is an interval (d1, d2) for which

system (3.4) is bistable. Starting with the initial condition in which the first five cells are

initially polarised to the right and the rest of the row is unpolarised (Figure 3.12(a)) we

found that for d < d1 the wave front moves to the right into the unpolarised region and for

d > d1 it moves to the left into the polarised region. Hence, we expect propagation failure

at d1. This is supported by Figure 3.12(c), which shows the speed of simulated waves as a

function of the diffusion parameter d. The wave speed is positive up to a d close to 0.4 and

then becomes negative. Where applicable the simulated speed agrees well with the the-



Chapter 3. Conservative model 52

oretical values for the minimum wave speed. If we choose the initial condition in Figure

3.12(b), where the first five cells of the row are initially polarised to the left, we do not get

propagation failure (see dashed line in Figure 3.12(c)). To obtain the data for the graphs

in Figure 3.12(c) we repeat the calculation of the wave speed after fixed time steps for a

fixed d until the change in the speed between one time step and the next is below a certain

threshold. Due to this method and since the system is discrete, it is to be expected that the

graphs are not entirely smooth.
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Figure 3.13: Snapshots of the travelling wave solution of system (3.4) for g(x) = 2x6

0.46+x6 ;
(a) Initial conditions as in Figures 3.12(a) and (b); (b) the states of system (3.4)
at different points in time for d = 0.15 and the initial conditions in (a); (c)
the states of system (3.4) at different points in time for d = 0.6 and the initial
conditions in (a)

Figure 3.13 shows the travelling wave solution for the two initial conditions and different

values of d at different points in time. For d = 0.15, Figure 3.13 (b) shows the difference

in wave speed. For d = 0.6 the top row of Figure 3.13 (c) shows the wave reversal while

the wave in the bottom row is not reversed but slower than the wave in the bottom row
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for d = 0.15 in Figure 3.13 (b). We obtained similar results for other choices of g for which

system (3.4) is bistable for some d.

The behaviour of the travelling wave solutions is fascinating. The different wave speeds in

the different directions in some of the cases would suggest that the two steady states (0, 1)
and (1, 0) are fundamentally different. This conclusion however is contradicted by the

results for other travelling wave solutions which show the same speed in both directions.

Further analysis is needed to improve the understanding of this matter.

Behaviour for irregularities in the initial conditions

To analyse the behaviour of the model when the initial conditions contain irregularities we

distinguish between polarisation because of a global weak initial polarity as in Figure 3.10

and polarisation via a wave as in Figure 3.11. In the case of the global weak initial polarity

we introduced a number of cells that are weakly polarised in the wrong direction (see

Figure 3.14 (a)). We choose g(x) = 2x5

0.65+x5 , the function used to generate Figures 3.10 and

3.11. In Figure 3.14 we see that each cell in the row initiates a wave and the meeting of the

wave fronts determines whether an irregularity is corrected. For our choice of parameter

values and initial conditions, eventually we get correct polarity over the whole row.
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Figure 3.14: Irregularities in the global initial polarity can be corrected by system (3.4);
(a) Initial condition; (b)-(d) state of system (3.4) at different points in time for
g(x) = 2x5

0.65+x5 and d = 0.5.

To analyse the potential of a wave to overcome anomalies in the initial conditions we in-

cluded one cell that points in the wrong direction (see Figures 3.15(a) and 3.16(a)). In

Figure 3.15 we chose g(x) = 2x6

0.46+x6 and d = 0.1. We see that the wave to the right initiated

by cell 8 is faster than the one initiated by cell 1. Furthermore, the wave to the left initiated

by cell 8 overcomes the wave from cell 1 to the right. As a result we get polarity in the

wrong direction. For Figure 3.16 we chose g(x) = x8

0.88+x8 and d = 0.1, for which a wave to

the right initiated by cell 1 in Figure 3.16(a) is faster than a wave to the right initiated by

cell 8. We see in Figures 3.16(b)-(d) that the two waves meet and the one initiated by the

first cell in the row overcomes the one initiated by the irregular cell. Hence, this wave can
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correct single cells that initially point the wrong way.
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Figure 3.15: Example of a travelling wave solution of (3.4) that cannot correct a single
cell with incorrect polarity; (a) Initial condition, one cell is initially polarised
the wrong way; (b)-(d) state of system (3.4) at different points in time for
g(x) = 2x6

0.46+x6 and d = 0.1.
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Figure 3.16: Example of a travelling wave solutions of (3.4) that can correct single cells
with incorrect polarity; (a) Initial condition, one cell is initially polarised in
the wrong direction; (b)-(d) state of system (3.4) at different points in time for
g(x) = x8

0.88+x8 and d = 0.1.

Most of the dynamics in a row of cells can be explained by the interactions of only two

cells. These are summarised in the phase plane in Figure 3.17, for which we chose the

same function g(x) and diffusion coefficient d as in Figure 3.16. There are three steady

states, indicated by crosses, two polarised steady states are stable and the unpolarised

steady state is unstable. If we imagine the diagonal from (0, 1) to (1, 0), for every initial

condition above this diagonal the system will tend to the left-pointing polarised steady

state and from anywhere below the diagonal it will tend to the right-pointing polarised

steady state. For example, if we start at (0.39, 0.58), the values corresponding to cells 5 and

6 in Figure 3.16(b) the phase plane predicts these two cells will tend to the right-pointing

steady state. An example of this behaviour is shown in Figure 3.16(c).

The analysis reveals that whether or not a wrongly polarised cell can be corrected by a

polarising wave depends on the initial distance between this anomaly and the wave front

and the strength of the anomaly. In addition we have to take into account that the wave

might have a different speed depending on its direction. In Figure 3.16 we could get correct

polarity, because the wave to the right initiated by cell 1 is faster than the wave in the same
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direction initiated by cell 8. We present a quantitative analysis of the robustness of this

model in the next section.
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Figure 3.17: Phase plane for system (3.4) for two cells with g(x) = x8

0.88+x8 and d = 0.1.
There are three steady states,indicated by crosses, two of which are stable.
The diagonal from (0,1) to (1,0) is the separatrix; initial conditions above this
diagonal yield the left-pointing polarised steady state and initial conditions
below it give rise to the right-pointing polarised steady state.

Robustness of the model

To analyse the robustness of this model we use the same approach as for the feedback and

diffusion model, presented in Section 2.1.3. Thus, as initial conditions we assume

li =
1
2
− u + kU

�
−1

2
,

1
2

�
,

for all i, with a fixed u ∈ [0, 1
2 ], a fixed k ∈ [0, 1− 2u] and U(− 1

2 , 1
2 ) denoting a uniform

distribution on [− 1
2 , 1

2 ]. Hence, if k < 2u, then all cells have a right-pointing bias initially;

if k > 2u, then we expect a fraction f = 1
2 −

u
k of cells to have a left-pointing bias initially.

Again, we choose 0 ≤ u ≤ 1
2 and 0 ≤ k ≤ 1− 2u and vary the two parameters in steps of

0.01. For every parameter set (u, k) we conduct 100 simulations for a row of 50 cells and

calculate the mean ratio of cells in the final state pointing to the right. Figure 3.18 shows

the results for g(x) = 2x5

0.65+x5 and d = 0.2. For pairs (u, k) in the area below the dashed

line all the cells have a right-pointing bias initially and hence 100% of the cells in the final

state point to the right. Increasing k above the dashed line increases the number of cells

initially pointing to the left. As shown, this decreases the percentage of cells in the final

state pointing to the right. The continuous lines indicate the thresholds below which on

average at least 95% and 75% of the cells in the final state point to the right. The average
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percentages of cells initially pointing to the right for parameter values on these lines are

56% and 50%. This indicates that a significant fraction of cells initially pointing the wrong

way can be corrected. Even if almost half the cells have a wrong initial imbalance we can

nearly get normal final polarity.

k = 2u

contour lines

k =1-2u

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1  

u

 

k

0.5

0.6

0.7

0.8

0.9

1

0.95

0.75

Figure 3.18: Robustness analysis of system (3.4) for g(x) = 2x5

0.65+x5 and d = 0.2. The
average ratio of cells in the final state pointing to the right is shown (indicated
by the shading); it is calculated as the mean of the results of 100 simulations
for a row of 50 cells. The parameter k is varied between 0 and 1− 2u and u
between 0 and 1

2 . For values (u, k) below the dashed line all cells point to the
right in the initial conditions and hence also in the final state. Increasing k
increases the noise in the system and the average percentage of cells pointing
to the right in the final state is decreased. For parameter values below the
continuous lines, on average at least 95% and 75% of the cells point to the
right in the final state.

Analysis of clones

Similar to Section 2.1.3 we include clones in the row of cells and investigate their effects

on the surrounding cells. Figure 3.19 shows the results for a clone in which the cells have

less activity than the wild-type cells. Thus, the total amount of activity in each clonal cell

is set to q < 1. As feedback function we have chosen g1(x) = 2x6

0.46+x6 . The corresponding

bifurcation diagram for this choice of g in Figure 3.7(b) shows that system (3.4) exhibits

two bifurcations at d1 ≈ 0.4 and d2 ≈ 0.9. The initial conditions are shown in column

1 of Figure 3.19. The difference between the two initial conditions is the strength of the

initial global cue in the surrounding wild-type cells. Columns 2-4 display the resulting

final states for different values of d. At both boundaries of the clone a patterning wave is

initiated which propagates away from the clone.
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Domineering non-autonomy occurs in the direction of the initial global cue. As can be seen

in Figure 3.19 its range depends both on the strength of the global cue in the surrounding

cells and the diffusion parameter. Increasing the strength of the global cue decreases the

range of domineering non-autonomy. Increasing d up to d2 increases the range of the effect

of the clone (exemplified by Figure 3.19, column 3). If d > d2 the polarisation initiated at

the clone boundaries spreads only a few cells into the surrounding region (see Figure 3.19,

column 4). The rest of the wild-type cells are unpolarised. This is due to the fact that for

this choice of g(x) and d there exists no longer a polarised steady state of system (3.4).

In this case, the unpolarised state is the only stable steady state (see also Figure 3.7(b)).

Simulations using g2(x) = 2x5

0.65+x5 gave similar results. Considering the direction of the

effect of the clone, the results in Figure 3.19 column 2 and 3 resemble the experimental

results for clones lacking Fz as described in Section 1.2.
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Figure 3.19: Final states of system (3.4) for a clone with low activity (shown in grey) and
an initial polarisation in the surrounding cells. In the first row the difference
between right and left side is initially 0.07, in the second row 0.19. Simula-
tions were performed using g1(x) = 2x6

0.46+x6 and different values of d. Note
that for d = 1.3 the polarised steady state is no longer stable.

As a next step, we set the activity in the clone to be higher than in the surrounding cells.

For g1(x) = 2x6

0.46+x6 , the clone does not affect polarity in surrounding cells for small d as

shown in Figure 3.20(b). This is due to the difference in wave speed in different directions

for this function (see Table 3.1). Any possible disruptions get corrected by a fast wave com-

ing from the opposite side of the clone and moving through the clone. For d = 0.5 > d1,

the unpolarised steady state spreads as a wave from the clone in the direction opposite

to the direction of the initial global cue. This is due to the bistability of the unpolarised
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and the polarised steady state for this choice of d. If we decrease the strength of the initial

global cue in the wild-type cells the polarisation of the cells on the other side of the clone

fails as well. Increasing the diffusion coefficient to d = 1.3 > d2 we get propagation failure

on both sides of the clone.

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

cell number

ac
tiv

ity

      

(a)

d = 0.3 d = 0.5 d = 1.3

0 5 10 15 20 250

0.5

1

1.5

cell number

ac
tiv

ity

T = 14h

0 5 10 15 20 250

0.5

1

1.5

cell number

ac
tiv

ity

T = 27h

 

 

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

cell number
ac

tiv
ity

T = 7.6h

(b)

d = 0.1 d = 0.3 d = 2

0 5 10 15 20 250

0.5

1

1.5
T = 265h

cell number

ac
tiv

ity

0 5 10 15 20 250

0.5

1

1.5
T = 272h

cell number

ac
tiv

ity

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1
T = 9.8h

cell number

ac
tiv

ity

(c)

Figure 3.20: Final states of system (3.4) for a clone with high activity (shown in grey) and
an initial polarisation in the surrounding cells; (a) Initial condition, in which
the difference between right and left side in the wild-type cells is 0.19; (b)
final states for g1(x) = 2x6

0.46+x6 and different values of d; (c) final states for
g2(x) = 2x5

0.65+x5 and different values of d.

If we choose g2(x) = 2x5

0.65+x5 (see Figure 3.7(a) for corresponding bifurcation diagram), the

disrupting effect of the clone spreads in the direction opposite to the direction of the initial

global cue in the wild-type cells (see Figure 3.20(c)). As above, a weaker initial global cue

yields a greater range of domineering non-autonomy. Furthermore, increasing d up to the
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bifurcation point d3 ≈ 1.4 increases the range of the effect of the clone. For d > d3 the po-

larisation initiated by the clone spreads only a short distance into the surrounding region.

The rest of the wild-type cells are unpolarised. This is because the unpolarised state is the

only stable steady state of system (3.4) for this choice of parameter values.
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Figure 3.21: Effects of a clone of cells (shown in grey) with different strength of feedback
than that in the surrounding cells; (a) Row A: feedback in the wild-type cells
is represented by g1 = 2x6

0.46+x6 , feedback in the clone by g2 = 2x5

0.65+x5 ; row B:
g2 represents the feedback in the wild-type cells and g1 the feedback in the
clone; (b) effect of a large clone; g2 represents the feedback in the wild-type
cells and g1 the feedback in the clone; the polarising wave spreads from the
wild-type cells into the clone.

Assigning a different feedback function to cells in the clone, compared to that in the sur-

rounding cells, only yields an effect if for the chosen diffusion parameter d the stability of

system (3.4) is different for the two feedback functions. Let g1(x) = 2x6

0.46+x6 represent the

feedback function in the wild-type cells and g2(x) = 2x5

0.65+x5 the feedback in the clone. The
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clone only affects surrounding cells if 0.4 ≈ d1 < d < d3 ≈ 1.4, since for this choice of d the

polarised state is the only stable steady state of system (3.4) for g2 and for g1 system (3.4)

is bistable (see Figure 3.7) or only the unpolarised steady state is stable. If d = 0.5, system

(3.4) is bistable for g1. Figure 3.21(a) A2 shows that in this case polarisation spreads from

the clone to the left. Increasing the initial global cue sufficiently will yield polarisation of

the whole row. This is due to the bistability of system (3.4) for g1 as mentioned at the be-

ginning of Section 3.4.

If d = 1.1, for g1 only the unpolarised steady state of system (3.4) is stable; for g2 the po-

larised steady state is still stable. In Figure 3.21(a) A3 we see polarisation is initiated in

the clone, spreading only a couple of cells into the surrounding region. It spreads a little

further to the left. Reversing the initial polarity in Figure 3.21(a) A1, reverses the direction

of the effect of the clone in A2 and A3.

If we choose g1 as the feedback function in the clone and g2 for the feedback in the sur-

rounding cells we get the polarised steady state in the whole row for d = 0.5 (see Figure

3.21(a), B2). There is, however, a slight difference in the amount of activity between the

clone and the surrounding cells, in that the peaks in the clone are slightly higher. For

d = 1.1 a polarising wave spreads from both ends into the clone. Whether or not this wave

can polarise the clone completely depends on the size of the clone, as shown in Figure

3.21(b). In Figure 3.21(b) the wave from the right side spreads further into the clone than

from the left side because for our choice of g the wave is faster in that direction. Changing

the strength of the initial global cue does not alter how far the waves spread into the clone

(not shown).

3.5 Discussion

In this chapter we presented the conservative model, a mechanism that consists of ampli-

fication of an initial imbalance via a feedback loop. It is a generic approach representing a

whole class of models, which also includes the more complex models by Amonlirdviman

et al. [3] and Le Garrec et al. [29], that will be discussed in the following two chapters.

The conservative model can generate polarisation of a row of cells either as a result of a

global weak initial polarisation of every cell or via a travelling wave emanating from a

single cell or boundary. Both can be reasonable ways of spreading polarity over a whole

region of cells. However, there are no experimental observations of the time course of the

establishment of polarisation available, so far.

In addition to investigating the stability of steady states in this model, we also analysed
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the behaviour of the travelling wave. We found that in some cases the speed of the wave

depends on its direction of travel. For certain feedback functions the direction of the wave

is determined by the diffusion coefficient. These features of the travelling wave solution

might not be relevant for the understanding of the biological system. However, especially

the difference of wave speed for different directions is mathematically interesting since

this phenomenon is not common for travelling wave solutions. Exploring the factors de-

termining this behaviour in more detail would be intriguing.

Including irregularities in the initial conditions, we demonstrated that the conservative

model has the potential to overcome such anomalies and yield correct polarity for both a

global initial polarity cue and under conditions that result in a travelling wave. We also

analysed the effects of clones on the surrounding cells. For clones of cells having a differ-

ent amount of PCP activity than that in surrounding cells, the strength of the initial global

cue in the wild-type cells and the strength of the intracellular diffusion influence the range

of the effect of the clone. Especially, for the clones with different strength of feedback

compared to the surrounding cells, the effect of the clone was dependent on the stability

behaviour of the model for the chosen parameters.

An analysis of the effects of noise in the initial conditions of this model revealed that for

the parameter values considered it is more robust than the feedback and diffusion model

in Chapter 2. Since this is due to the bistability of the homogeneous polarised steady state

and the period two pattern in the feedback and diffusion model we expect similar results

for different parameter sets.

We have restricted our analysis of the conservative model to one spatial dimension. How-

ever, it can be extended to fields of square or hexagonal cells in a similar manner as for the

feedback and diffusion model in Section 2.2.

The main components determining polarity in the conservative model are the choice of

the feedback function and the value of the diffusion coefficient. We mainly considered two

types of feedback functions and found that in both cases, increasing the diffusion coeffi-

cient above a certain threshold disrupts polarity. The manner in which this occurred is

what distinguishes the two feedback types. In one case polarity gets weaker until it dis-

appears, whereas in the second case it disappears abruptly. It would be interesting to test

this experimentally. To this end, it would first be necessary to determine what “strength of

polarity” means in the context of the biological system. So far, polarity is determined by

the direction of the hair growth in the wing and the abdomen or the orientation of the om-

matidia in the eye. Therefore, only a direction but not a strength can be detected. Hence,

it depends on what we mean by “activity” whether it is reasonable to speak of strength of

polarity. Since the question of the interpretation of activity is similarly important for the
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feedback and diffusion model, we further discuss this issue in Chapter 7.



Chapter 4

Analysis of the model by
Amonlirdviman et al.

In the preceding chapters we developed two models that aim at describing the core of

the PCP mechanism, while making minimal assumptions about the biological details. In

this chapter, we consider a model that is centred around specific protein-protein inter-

actions. The model we will discuss was introduced by Amonlirdviman et al. in [3]. It

describes the amplification of an externally-imposed polarity in the pupal wings of the

fruit fly Drosophila melanogaster as a result of interactions of the four proteins Dishevelled

(Dsh), Frizzled (Fz), Van Gogh (Vang) and Prickle (Pk). The model aims at reproducing the

experimentally observed asymmetric distribution of these core proteins shown in Figure

1.2. The mechanism consists of two main parts: a feedback loop and a persistent global

bias. The readout is provided by the final distribution of total Dsh within each cell, i.e., the

sum of the amount of Dsh in free form and bound in molecular complexes. The authors

assume that the hair in each cell grows where the highest amount of total Dsh is accumu-

lated. This is based on their observation that in clones lacking Dsh the hairs consistently

emerge from the middle of the apical surface of each cell. The aim of this chapter is to

investigate the relative importance of the feedback loop and the persistent global bias on

the final distribution of total Dsh. To this end, we analyse the approach in one and two

spatial dimensions.

The details of the model are presented in Figure 4.1. Fz is assumed to be located in the cell

membrane. Fz recruits Dsh from the cytoplasm to its cell side and Vang to the membrane

of the adjacent cell. Vang for its part causes Pk to colocalise at the cell edge. Feedback

is included by Vang and Pk inhibiting the recruitment of Dsh. Furthermore, a persistent

global bias is introduced that ensures that more Fz and Dsh colocalise at the distal end of

63
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each cell than at the proximal end. There is no protein production or degradation.

Figure 4.1: Proposed feedback loop. The amounts of proteins in black are higher than the
amounts of proteins in grey. Arrows represent recruitment of proteins, T-signs
inhibition.

Assuming that the proteins colocalise by forming complexes, the model can be summarised

by the following reactions.

Dsh + Fz
R1−−−��−−−

ABλ1
DshFz (4.1)

Fz+ + Vang
R2−��−
λ2

FzVang (4.2)

Vang + Pk
R3−��−
λ3

VangPk (4.3)

DshFz+ + Vang
R4−��−
λ4

DshFzVang (4.4)

Dsh+ + FzVang
R5−−−−��−−−−

A+B+λ5
DshFzVang (4.5)

Fz+ + VangPk
R6−��−
λ6

FzVangPk (4.6)

FzVang + Pk
R7−��−
λ7

FzVangPk (4.7)

Dsh+ + FzVangPk
R8−−−−��−−−−

A+B+λ8
DshFzVangPk (4.8)

DshFz+ + VangPk
R9−��−
λ9

DshFzVangPk (4.9)

DshFzVang + Pk
R10−��−
λ10

DshFzVangPk. (4.10)

For each equation (4.i) there is a forward reaction rate Ri and a backward reaction rate

λi. The superscript + indicates that the two reactants are in different cells, binding over

the cell membrane to form a cell bridging complex. Similarly, A+ and B+ indicate that

these scaling factors depend on the protein values in the neighbouring cell. We assume
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that the cell bridging complexes belong to the same cell as their Vang part. The different

proteins and complexes have different regions in which they can move. Dsh and Pk occur

in the cytoplasm. Fz, Vang, DshFz and VangPk can move along the whole membrane of

a cell while the cell bridging complexes are restricted to the part of the membrane that is

common to the two cells they connect.

The persistent global bias is built into the equations by decreasing the rate of dissociation

of Dsh from Fz and Fz complexes at the distal side, so that the backward reaction rates of

equations (4.1), (4.5) and (4.8) are multiplied by A ≤ 1 with

A =

�
M1, distal region of the cell,

1, otherwise,

and M1 < 1.

The feedback loop that consists of Vang and its complexes inhibiting the recruitment of

Dsh is represented by an increase of the backward reaction rates of all the reactions in

which Dsh binds to Fz or Fz complexes, namely (4.1), (4.5) and (4.8). To this end, those

backward reaction rates are multiplied by a factor B ≥ 1 with

B = 1 + Kb(Kpk[Pk] + [VangPk] + [FzVangPk] + [DshFzVangPk]

+ Kva([Vang] + [FzVang] + [DshFzVang]))Kp

and constants Kb, Kpk, Kva and Kp. We see that B depends on the concentrations of Pk, Vang

and their complexes, indicated by the square brackets. In [3] Amonlirdviman et al. applied

the law of mass action to reactions (4.1)-(4.10) to obtain the corresponding system of PDEs,

which they discretised applying the finite volume method and integrated numerically us-

ing the semi-implicit Euler method. They assumed a field of hexagonal cells, each of which

is subdivided by a triangular mesh. The parameter values were determined by parame-

ter optimisation applying the Nelder-Mead method, such that the wild-type polarity was

achieved. Furthermore, experimental observations for the behaviour around clones could

be reproduced. What remains unclear is whether both the feedback loop and the persistent

global bias are necessary for the establishment of stable coherent patterns of cell polarity.

We are aiming at analysing their relative importance for the generation of PCP. The full

model in two spatial dimensions is rather complex and does not lend itself to analysis

very easily. Therefore, as a first step we reduce the model to one spatial dimension.

4.1 Analysis in one spatial dimension

We assume a row of two-sided cells, similar to Chapters 2 and 3. On each side of a cell

there are certain concentrations of the four proteins Dsh, Fz, Vang and Pk. Furthermore,
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we assume that intracellular diffusion takes place, i.e. exchange of proteins between the

two sides of a cell. Applying reaction kinetics, equations (4.1)-(4.10) yield a system of

ODEs for cell i, which describes the protein interactions taking place. Here we present two

sample equations. The complete system of equations can be found in Section B.1 of the

appendix.

d[Dsh]li
dt

= −R1 [Dsh]li [Fz]li + λ1Bl
i [DshFz]li − R5 [Dsh]li [FzVang]ri−1

+ λ5Bl
i [DshFzVang]ri−1 − R8 [Dsh]li [FzVangPk]ri−1

+ λ8Bl
i [DshFzVangPk]ri−1 + µ1

([Dsh]ri − [Dsh]li)
∆x2 ,

d[Dsh]ri
dt

= −R1 [Dsh]ri [Fz]ri + M1λ1Br
i [DshFz]ri − R5 [Dsh]ri [FzVang]li+1

+ M1λ5Br
i [DshFzVang]li+1 − R8 [Dsh]ri [FzVangPk]li+1

+ M1λ8Br
i [DshFzVangPk]li+1 + µ1

([Dsh]li − [Dsh]ri )
∆x2 ,

(4.11)

with

Bl
i = 1 + Kb(Kpk [Pk]li + [VangPk]li + [FzVangPk]li + [DshFzVangPk]li

+ Kva([Vang]li + [FzVang]li + [DshFzVang]li))
Kp ,

Br
i = 1 + Kb(Kpk [Pk]ri + [VangPk]ri + [FzVangPk]ri + [DshFzVangPk]ri

+ Kva([Vang]ri + [FzVang]ri + [DshFzVang]ri ))
Kp

and

M1 < 1.

The superscripts l and r refer to the cell sides, left and right, the subscripts to the number

of the cell. The square brackets indicate that we are dealing with concentrations. Bridging

complexes are always counted as if they belong to the cell in which their Vang-part is

located. The parameter µ1 represents diffusion and ∆x the spatial extension of a cell in our

model from left to right. Let T, µbio
1 and ∆xbio be the time, the diffusion coefficient and the

side length of a cell in the biological system. They relate to the parameters in our model

by t = kT, µ1 = 1
k µbio

1 and ∆x = p ∆xbio, with positive constants k and p.

Upon rescaling, (4.11) can be stated in the general form

d[Dsh]li
dτ

= F + µsim
1 ([Dsh]ri − [Dsh]li),

d[Dsh]ri
dτ

= F + µsim
1 ([Dsh]li − [Dsh]ri ),

(4.12)
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where F represents the reaction terms, τ = µsim
1 t and µsim

1 = 1
∆x2 µ1 = 1

kp2(∆xbio)2 µbio
1 . There-

fore, the relation between the time T in experiments and the time τ in our analysis and

simulations is given by

T =
1

kµsim
1

τ =
p2(∆xbio)2

µbio
1

τ. (4.13)

We assume p = 1, ∆xbio = 8 µm [19] and µbio
1 = 1 µm2/s [22], since Dsh is a cytoplasmic

protein. The parameter k can be determined from equation (4.13).

The system exemplified by (4.12) shows that the proposed mechanism relies on intracellu-

lar protein movement. Protein movement between the cells and production or degradation

of proteins are not considered. Hence, the model is conservative. There are four conser-

vation laws, one for each protein. But since using these laws to reformulate the equations

does not give us more insight into the model, we omit it. Although we have simplified

things considerably, this system of ODEs is still too complex to analyse by hand. Hence

we decided to simulate it in Matlab.

4.1.1 Numerical simulations

We simulated the system of equations exemplified by (4.12) for a row of ten cells using the

Matlab ODE solver ode45 and applying periodic boundary conditions. As results we will

present the final distributions of total Dsh and total Vang in each cell, which are the sum

of Dsh and all Dsh containing complexes and the sum of Vang and all Vang containing

complexes, respectively.

Kb 10

Kp 2.2

Kpk 0.5

Kva 0.5

µ (0.1, 0.1, 0.1, 0.1, 0.001, 0.1)
λ (0.1, 0.1, 0.1, 0.1, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1)
R (10, 5, 5, 5, 10, 5, 5, 10, 5, 5)

Table 4.1: Set of parameter values for which the system exemplified by (4.12) polarises
with and without the global bias. We used these parameter values for the sim-
ulations shown in Figures 4.2-4.5
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Effect of the persistent global bias

We start our analysis by investigating the effect of the persistent global bias on the final

distributions of total Dsh and total Vang as shown in Figure 4.2. The parameter values

in [3] vary in orders of magnitude between 10−5 and 105, which would considerably slow

down our simulations. Furthermore, these values are not based on experimental estimates.

Therefore, we chose different parameter values as show in Table 4.1. However, Amonlird-

viman et al. conducted a sensitivity analysis which gave them a range for each parameter

value in which it could vary such that the model still yields wild-type polarity. Except for

µ5 and λ5 all our parameter values lie within the respective ranges.
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Figure 4.2: Results for simulations of the system exemplified by (4.12) for different values
of M1; (a) Initial condition with a strong polarity in the direction opposite to
the direction of the final state observed in experiments, initially, Pk and Fz
are distributed homogeneously; (b) final state for M1 = 0.2; (c) final state for
M1 = 0.8; (d) final state for M1 = 0.2 and no feedback, i.e. Kb = 0.

For the initial conditions in Figure 4.2(a) we chose a strong global polarity for Dsh and

Vang opposite to the distribution presented in Figure 1.2. Pk and Fz are initially distributed

homogeneously in every cell and initially, there are no complexes. Figures 4.2(b) and (c)

show the final states for different values for M1. As we can see the polarity of the final

state is reversed compared to the polarity of the initial conditions and M1 = 0.2 yields

a stronger polarity than M1 = 0.8. To generate Figure 4.2(d) we chose the same initial

condition and the same value for M1 as in (b) (M1 = 0.2), but we set Kb = 0. Hence,
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there is no feedback loop and the final state of the simulation relies only on the persistent

global bias. In this case the polarity is a bit weaker than in Figure 4.2(b) but its direction is

still reversed compared to the direction of the initial condition in Figure 4.2(a). Thus, the

persistent global bias has a very strong impact.

Behaviour without a persistent global bias

As a next step we are interested in the behaviour of the system if there is no persistent

global bias. Hence, we set M1 = 1. Figure 4.3 shows the results for different strengths of

feedback. In the previous section we chose an initial condition with imbalances in Dsh and

Vang to emphasize the effect of the persistent global bias. In the following we assume an

initial imbalance in Fz, based on a general consensus that the global cue of the first tier of

the PCP mechanism affects Fz. Figure 4.3(a) presents the initial Fz distribution, which has

a small imbalance in every cell. Initially, the other proteins are distributed homogeneously.

A similar initial imbalance in any of the other three proteins gives the same results. The

total amount of each protein in a cell is 2. The results for the parameter values in Table

4.1 are displayed in Figure 4.3(b). They demonstrate that the persistent global bias is not

needed to get polarity. The small initial imbalance is necessary and the direction of the po-

larity of the final state depends on the direction of the imbalance in the initial conditions

(not shown). Increasing the strength of the feedback increases the polarity of the final state

and accelerates the process as shown in Figure 4.3(c). As mentioned in Section 1.2, in the

Drosophila pupal wing, polarisation of the cells takes about 32 h. Therefore, the time to

reach the steady state in Figure 4.3(c) is in a reasonable range.
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Figure 4.3: Final states for the system exemplified by (4.12) for M1 = 1, the parameter
values in Table 4.1 and different strengths of feedback; (a) Initial condition, an
imbalance in Fz with a difference of 0.1 between right and left side; initially,
the other proteins are distributed homogeneously; (b) final distribution of total
Dsh and total Vang for Kb = 10 and Kp = 2.2, (c) final distribution of total Dsh
and total Vang for Kb = 20 and Kp = 5.
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Propagation as a wave

As a next step we chose a different type of initial condition in which the cell at the left

end of the row has a strongly polarised Fz distribution. The other proteins are initially

distributed homogeneously in all cells. Again, the total amount of each protein in a cell is

2. For this simulation we had to apply different boundary conditions. On both ends of the

row we assumed another half a cell next to the boundary cell with its initial protein values

set according to the protein values in the boundary cell. We ensured that these end-cells

are only half by setting the diffusion in these cells to zero. Furthermore, we now consider

20 cells instead of 10 to minimise the boundary effects. Figure 4.4 shows that for the chosen

initial condition, the stronger feedback Kb = 20 and Kp = 5, M1 = 1 and the remaining

parameter values from Table 4.1, a polarising wave is initiated that spreads over the whole

row of cells. The same is true for the weaker feedback Kb = 10 and Kp = 2.2 (not shown).

In this case it takes longer to reach the final state and the resulting polarity is weaker, as

expected from Figure 4.3(b). The effect at both ends of the row in Figure 4.4(d) is due to

the boundary conditions.

0 5 10 15 200

0.5

1

1.5

2

Fz

cell number

(a)

0 5 10 15 200

1

2

to
ta

l D
sh

cell number

T = 3.6h

0 5 10 15 200

1

2

to
ta

l V
an

g

cell number

(b)

0 5 10 15 200

1

2

to
ta

l D
sh

cell number

T = 14.2h

0 5 10 15 200

1

2

to
ta

l V
an

g

cell number

(c)

0 5 10 15 200

1

2

to
ta

l D
sh

cell number

T = 35.6h

0 5 10 15 200

1

2

to
ta

l V
an

g

cell number

(d)

Figure 4.4: Propagation as a wave for the system exemplified by (4.12) for M1 = 1, Kb =
20, Kp = 5 and the rest of the parameter values from Table 4.1; (a) Initial condi-
tion for Fz, all other proteins are initially distributed homogeneously in every
cell; (b)-(d) results at different points in time; the weaker polarity in the bound-
ary cells is due to our choice of boundary conditions.

Like the conservative model in Chapter 3 this model can generate polarity from an initial

imbalance in every cell or via a wave. Furthermore, coherent patterns of cell polarity can be

generated in the absence of a persistent global bias, provided there is an initial imbalance
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that can be amplified. In the following we will show that this result is consistent with what

would be expected from linear stability analysis and that it does not depend strongly on

our choice of parameter values.

4.1.2 Comparison with linear stability analysis

The numerical results in Figures 4.3 and 4.4 show cases in which the mechanism presented

in this chapter does not need a persistent global bias to polarise a row of cells. To support

these numerical simulations we check whether the solution behaves as predicted by linear

stability analysis. We get the homogeneous unpolarised steady state by simulating the

system exemplified by (4.12) for the parameter values in Table 4.1, M1 = 1 and the initial

conditions [Dsh]li = [Dsh]ri = [Pk]li = [Pk]ri = [Fz]li = [Fz]ri = [Vang]li = [Vang]ri = 1 for

all i. Calculating the eigenvalues of the matrix of the corresponding eigenvalue problem

yields λ = 5.68 · 10−4 as the greatest real part of any of them. We expect that a small

perturbation of the homogeneous unpolarised steady state would grow with growth rate

λ. Therefore, we use 0.99 times the left sides of the homogeneous unpolarised steady state

and 1.01 times the right sides as initial left and right sides for a new simulation. This

results in a polarised steady state. Tracking the solutions for [DshFzVangPk]l for one cell

and plotting ln([DshFzVangPk]l − [DshFzVangPk]l∗), with ∗ indicating the value at the

homogeneous unpolarised steady state, we get the graph in Figure 4.5 with a slope of

approximately 0.0005 at its straight part, which is in good agreement with λ.
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Figure 4.5: Graph of ln([DshFzVangPk]l − [DshFzVangPk]l∗); it verifies that our simula-
tions are consistent with linear stability analysis as explained in the text.

The entries of the eigenvector corresponding to λ are given in Table 4.2. We applied the

conservation laws for the four proteins to calculate the eigenvalues and this eigenvector.

Therefore, we did not obtain entries of the eigenvector corresponding to [Dsh]l , [Pk]l , [Fz]l

and [Vang]l . Since the entries for left and right of every protein complex have opposite sign

and the same absolute value, the eigenvector confirms that we get a polarised distribution

of the protein complexes.
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Dsh Pk Fz Vang DshFz

left – – – – 0.12217

right 0.0038063 -6.276e-16 0.0037239 -0.00028455 -0.12217

VangPk FzVang DshFzVang FzVangPk DshFzVangPk

left 0.0018748 0.002217 -0.10261 0.026886 -0.68833

right -0.0018748 -0.002217 0.10261 -0.026886 0.68833

Table 4.2: Entries of the eigenvector corresponding to the eigenvalue λ for the homo-
geneous unpolarised steady state of the system exemplified by (4.12). The
parameter values we chose are given in Table 4.1. Because we applied the
conservation laws for the four proteins there are no entries corresponding to
[Dsh]l , [Pk]l , [Fz]l and [Vang]l . This eigenvector confirms that we get polarised
distributions of the protein complexes.

These results show that our simulations are consistent with linear stability analysis. Ap-

plying the same method for different values of the total amount of each protein in a cell

yield similar results (not shown). This analysis supports the findings in the last section

that the persistent global bias is not needed for our choice of parameter values.

4.1.3 Parameter search

So far we have shown that in one spatial dimension, for the parameter values in Table

4.1, the persistent global bias is not necessary to amplify polarity provided there is an

imbalance in the initial conditions. Now we want to show that this result is not unique

to our initial choice of parameter values, but rather that it holds for significant regions

of parameter space. Therefore, we search for alternative sets of parameter values that

give polarity. The idea is to calculate the homogeneous unpolarised steady state and the

corresponding eigenvalue with the largest real part for a given parameter set. Then, the

real part of the eigenvalue is increased applying a search step based on the Nelder-Mead

algorithm [24, 33]. If we reach a positive result, the corresponding set of parameter values

will yield polarity.

We have based our search algorithm on the Nelder-Mead method since it requires only

function values but no information about the derivative. The original version by Nelder

and Mead was developed to solve unconstrained problems. Our parameters however can

only take positive values. Therefore, we had to adapt the method to take into account this

constraint. The algorithm can be found in Chapter A in the appendix. The difference to the

version for unconstrained problems is that whenever a newly calculated point is outside
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the domain it gets projected to the domain boundary, namely in (S.2), (S.4) and (S.5)(b) of

Algorithm A.1. In our specific case, components of the new point with a negative value

are set to 10−6. During our calculations, this happened only for one or two parameters.

A start vector x0 and the corresponding parameter set xb with the best eigenvalue after

430 steps are shown in Table 4.3. During this calculation λ was increasing and therefore

always positive. Hence, the maximum number of steps of 430 was chosen arbitrarily and

stopping earlier would have provided a different parameter set that ensures polarisation

of the system exemplified by (4.12). Different starting vectors x0 gave similar results (not

shown). Hence, there exist many other parameter sets for which the persistent global bias

is not needed to polarise the cells. Therefore, our results do not depend on a specific choice

of parameter values.

x0 xb after 430 search steps

Kb 20 1.1050

Kp 5 23.7627

Kpk 0.5 1.0504

Kva 0.5 0.0857

µ (0.1, 0.1, 0.1, 0.1, 0.001, 0.1) (6.4009, 4.4087, 13.2970, 0.1723, 10−6, 7.5585)
λ (0.1, 0.1, 0.1, 0.1, 0.01, (1.3304, 3.4353, 0.1764, 0.0210, 2.6999,

0.1, 0.1, 0.1, 0.1, 0.1) 6.9145, 4.8676, 0.5371, 0.0879, 0.0300)
R (10, 5, 5, 5, 10, (11.8722, 0.1962, 0.2583, 11.5766, 11.6367,

5, 5, 10, 5, 5) 5.9838, 10−6, 5.4359, 3.6203, 8.9815)
λ 0.0078 4.56

Table 4.3: Starting vector x0 and corresponding parameter set xb with the best eigenvalue
after 430 search steps applying a method based on the Nelder-Mead algorithm.
The last row shows the largest real parts of the eigenvectors corresponding to
the two parameter sets.

A possible alternative approach to analysing the sensitivity of a system to variations of

the parameter values was applied by von Dassow et al. [52]. The idea is to take an initial

parameter set that yields the desired result, in our case the set in Table 4.1, and vary one

parameter while holding all others fixed. Amonlirdviman et al. used this method for their

sensitivity analysis in [3].

A next step would be to analyse the behaviour of the system exemplified by (4.12) for

anomalies in the initial conditions and clones in the row of cells. We defer this and first

extend our analysis to two spatial dimensions.
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4.2 Analysis in two spatial dimensions for compartmentalised

cells

In this section we analyse the model proposed by Amonlirdviman et al. [3] in two spatial

dimensions. We assume that we have a field of hexagonal cells and each cell is divided

into six compartments. Applying reaction kinetics to Equations (4.1)-(4.10) and omitting

the persistent global bias, we get a system of ODEs describing the change of a protein or

protein complex in compartment j of cell i. As an example, we present the equation for the

change of [Dsh] in compartment j (mod 6) of cell i represented by [Dsh]i,j. We have

d[Dsh]i,j
dt

= −R1 [Dsh]i,j [Fz]i,j + λ1Bi,j [DshFz]i,j − R5 [Dsh]i,j [FzVang]+i,j

+ λ5Bi,j [DshFzVang]+i,j − R8 [Dsh]i,j [FzVangPk]+i,j

+ λ8Bi,j [DshFzVangPk]+i,j + µ1
([Dsh]i,j+1 + [Dsh]i,j−1 − 2[Dsh]i,j)

∆x2

(4.14)

with

Bi,j = 1 + Kb(Kpk[Pk]i,j + [VangPk]i,j + [FzVangPk]i,j + [DshFzVangPk]i,j

+ Kva([Vang]i,j + [FzVang]i,j + [DshFzVang]i,j))Kp ,

where + indicates that the reactants are in adjacent compartments of neighbouring cells, µ1

represents diffusion and ∆x the distance between two neighbouring compartments within

a cell. The complete system can be found in Section B.2 of the appendix. If T, µbio
1 and

∆xbio denote the time, the diffusion coefficient and the length of a cell side in the biological

system, these parameters can be related to the parameters in our model by t = kT, µ1 =
1
k µbio

1 and ∆x = p ∆xbio with positive constants k and p.

Rescaling (4.14) yields

d[Dsh]i,j
dτ

= F + µsim
1 ([Dsh]i,j+1 + [Dsh]i,j−1 − 2[Dsh]i,j), (4.15)

where µsim
1 = 1

∆x2 µ1 = 1
kp2(∆xbio)2 µbio

1 denotes diffusion and F represents the reaction terms.

Furthermore, τ = µsim
1 t. Hence, the simulation time τ is related to the time T in experi-

ments by

T =
1

kµsim
1

τ =
p2(∆xbio)2

µbio
1

τ. (4.16)

For the parameter values we assume p = 1
4 , ∆xbio = 8 µm [19] and µbio

1 = 1 µm2/s [22].

Hence, ∆xbio and µbio
1 are the same as in the one-dimensional case, while p is smaller, since

it now determines the distance between two compartments of a cell instead of the size of

a whole cell as in the one-dimensional case. The parameter k is determined by (4.16). We
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are interested in the types of steady states this system can generate, in particular whether

the polarised steady state is one of them. To this end, we perform a numerical analysis in

the next section.

4.2.1 Numerical simulations

We simulated the system exemplified by (4.15) in Matlab for a hexagonal cell applying

periodic boundary conditions for the intercellular binding. Hence, our domain represents

an infinite field of hexagonal cells with the same initial conditions. The aim is to gain

insight into the different steady states the system can reach. We assume two different

kinds of initial conditions, a symmetric one and an asymmetric one, referring to symmetry

with respect to the horizontal line dividing the cell into three top compartments and three

bottom compartments.

Kb 20

Kp 5

Kpk 0.5

Kva 0.5

µ m · (0.1, 0.1, 0.1, 0.1, 0.001, 0.1)
λ (0.1, 0.1, 0.1, 0.1, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1)
R (10, 5, 5, 5, 10, 5, 5, 10, 5, 5)

Table 4.4: Set of parameter values which were used for the simulations in Section 4.2.1.
The diffusion depends on a parameter m that was varied to gain insight into the
effect of the speed of diffusion on the final state.

Figures 4.6 and 4.7 show the initial conditions for Fz and the corresponding final distribu-

tions of total Dsh. In Figure 4.6(a) we chose an initial distribution of Fz which is symmetric

with respect to the horizontal axis and has a slight imbalance to the right. Initially, the

other proteins are distributed homogeneously. The parameter values are given in Table

4.4 where the speed of the diffusion depends on a parameter m. Figures 4.6(b)-(d) show

the final distribution of total Dsh for different values of m. Note the different scales in

the different figures. For m = 16 we get a polarised steady state that is symmetric with

respect to the horizontal axis as shown in Figure 4.6(b). Note that, assuming a cell in the

one-dimensional simulations is 8 µm long and the distance between two compartments in

a cell in our simulations here is 2 µm, the set of parameter values corresponding to Figure

4.6(b) is, after scaling of the diffusion coefficient, the same as the one corresponding to

Figure 4.3(c). Increasing m, the polarity gets weaker and for m sufficiently large we get the
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unpolarised steady state (see Figures 4.6(c) and (d)). We have indicated the times it takes

to reach the polarised steady states. Considering that it takes about 32 h in the Drosophila

wing to polarise the cells, the time T is very small. If the diffusion in the biological system

was slower than our assumed 1 µm2/s we would obtain a greater T.
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Figure 4.6: Results for a single hexagonal cell with six compartments for the system ex-
emplified by (4.15), initial conditions that are symmetric with respect to the
horizontal axis, the parameter values in Table 4.4 and different values for m.
The results show the distribution of total Dsh which is assumed to determine
the direction of hair growth. For clarity the compartments are divided by black
lines. Note that the scales are different in the different figures. (a) Symmetric
initial condition with an imbalance for Fz, the difference between the right
and the left end of the cell is 0.1; initially, the other proteins are distributed
homogeneously; (b) final state for m = 16, polarised steady state; (c) final state
for m = 160, polarised steady state; (d) final state for m = 5000, unpolarised
steady state.

Figure 4.7(a) shows an initial condition with an asymmetric distribution of Fz. The bottom

three compartments have a slightly higher value of Fz than the top three. Initially, the re-

maining proteins are distributed homogeneously within the cell. The parameter values are

given in Table 4.4. Figures 4.7(b)-(d) show the final distribution of total Dsh for different

values of m. For m = 16 we get a distinct asymmetric state as displayed in Figure 4.7(b).

Increasing m to 160 in Figure 4.7(c) yields a state in which the cell is divided into halves

along its horizontal axis and in each half the middle compartment has a different value

than the two others (see illustration). Increasing m further, we get the unpolarised steady

state in Figure 4.7(d).

The analysis shows that the system can polarise without the persistent global bias. We

also discovered that the steady states in Figures 4.7(b) and (c), which are asymmetric with

respect to the horizontal axis, exist for the same parameter values as the polarised steady

states in Figures 4.6(b) and (c). Analysing the existence and stability of the steady states

for the system exemplified by (4.15) is very complex. Therefore, we conducted a numer-

ical investigation. We found that, in addition to the steady states shown in Figures 4.6

and 4.7, there exist at least five more steady states. Similar to the one in 4.7(c), which is
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polarised towards the bottom middle compartment, we can get steady states which are po-

larised toward any of the six compartments of the cell. To test the stability of the different

steady states we used perturbations of the steady states as initial conditions. We consid-

ered two types of perturbations; one that is symmetric with respect to the horizontal axis

and another one that is asymmetric with respect to the same axis. Our results indicate that

the polarised steady states that are symmetric with respect to the horizontal axis (Figures

4.6(b) and (c)) are only stable to perturbations which are symmetric with respect to the

horizontal axis. The states that are asymmetric with respect to the horizontal axis seem

stable to both kinds of perturbations. This suggests that only initial conditions which are

symmetric with respect to the horizontal axis can yield the desired polarised steady state.

Irregularities in the initial conditions will lead to disturbance of correct polarity. Fluctua-

tions or clones introduce such irregularities.
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Figure 4.7: Results for a single hexagonal cell with six compartments for the system ex-
emplified by (4.15), an initial condition that is asymmetric with respect to the
horizontal axis, the parameter values in Table 4.4 and different values for m.
The results show the distribution of total Dsh which is assumed to determine
the direction of hair growth. For clarity the compartments are divided by black
lines. Note that the axes are different in the different figures. (a) Initial condi-
tion for Fz that is asymmetric with respect to the horizontal axis, the difference
between the bottom and the top compartments is 0.02, other proteins are ini-
tially distributed homogeneously; (b) final state for m = 16; (c) final state for
m = 160, the bottom middle compartment has a higher value than the two next
to it and the top middle compartment has a lower value than the two next to
it, as shown in the illustration; (d) final state for m = 5000, unpolarised steady
state.

Figure 4.8 and 4.9 show the results for a field of hexagonal cells with and without a clone.

For the top and bottom boundary of the 10× 10 field of cells we applied periodic bound-

ary conditions while at the left and right boundary there was half a row of cells, with their

initial values corresponding to the initial values in the cells right next to the boundaries. In

Figure 4.8(a) we assume an initial imbalance in Fz in every cell while the other proteins are
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initially distributed homogeneously. The corresponding final state in Figure 4.8(b) shows

polarity over the whole region. The difference in strength of polarity between the different

rows of the field are due to the boundary conditions at the left and right boundary.
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Figure 4.8: Result for a 10× 10 field of cells for an initial Fz imbalance in every cell for
the system exemplified by (4.15), the parameter values in Table 4.4 and m =
160; note the different scales in the two figures; (a) Initial condition for Fz, the
other proteins are distributed homogeneously; (b) final state of total Dsh, the
weaker polarisation in the columns near the boundary are due to the boundary
conditions.
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Figure 4.9: Result for a 10× 10 field of cells including one cell with no Fz for the system
exemplified by (4.15), the parameter values in Table 4.4 and m = 160; (a) Initial
condition for Fz, the other proteins are distributed homogeneously; (b) final
state of total Dsh; the cells in the same row as the clonal cell (framed in red)
show an orientation toward the left.

In Figure 4.9(b) we present the final distribution of total Dsh in a field of cells for which
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initially every cell has a small imbalance in Fz pointing to the right except for one cell that

has no Fz as shown in Figure 4.9(a). The other proteins are initially distributed homoge-

neously in every cell. Figure 4.9(b) shows that the cells in the same row as the Fz-null cell

are polarised toward the left while the rest of the cells in the field show a disordered dis-

tribution of total Dsh. This result differs from the experimental finding shown in Figure

1.3(a) in which the hairs of the cells closest to the clone point toward the clone and the cells

further away show normal polarity.

4.3 Analysis of the full spatial model

In this section we investigate the behaviour of the full spatial version of the model on a

hexagonal domain. Instead of compartmentalising the cell like in the previous section we

now approximate the full system of partial differential equations for diffusion within the

cell and the membrane. Applying reaction kinetics to equations (4.1)-(4.10) omitting the

persistent global bias, we obtain the desired system of partial differential equations. Here,

we present the equation for [Dsh] as an example; the complete system can be found in the

Appendix B.3. To this end, we have

∂ [Dsh]
∂t

= −R1 [Dsh][Fz] + λ1B [DshFz]− R5 [Dsh][FzVang]+

+ λ5B [DshFzVang]+ − R8 [Dsh][FzVangPk]+

+ λ8B [DshFzVangPk]+ + µ1 ∇2[Dsh],

(4.17)

where

B = 1 + Kb(Kpk[Pk] + [VangPk] + [FzVangPk] + [DshFzVangPk]

+ Kva([Vang] + [FzVang] + [DshFzVang]))Kp .
(4.18)

The superscript + indicates that the reactants are in different cells and µ1 is the diffusion

coefficient. Different to the previous sections we now assume the protein concentrations

to be continuously varying.

Let ∆x denote the side length of the hexagonal domain. If the time, the diffusion coefficient

and the side length of a cell in the biological system are given by T, µbio
1 and ∆xbio, they

relate to the parameters in our model by t = kT, µ1 = 1
k µbio

1 and ∆x = p ∆xbio for positive

k and p.

Upon rescaling, equation (4.17) can be written in the generic form

∂[Dsh]
∂τ

= F + µsim
1 ∇2[Dsh], (4.19)
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where F represents the reaction terms. The diffusion coefficient µsim
1 = p2µ1 = 1

k p2µbio
1 . In

addition, τ = µsim
1 t. Therefore, the simulation time τ is related to the time T in experiments

by

T =
1

kµsim
1

τ =
1

p2µbio
1

τ. (4.20)

We assume p = 1
4 , ∆xbio = 8 µm [19] and µbio

1 = 1 µm2/s [22]. The parameter k is deter-

mined by equation (4.20). As initial conditions we assume certain distributions for Dsh,

Fz, Vang and Pk, which we will specify in Section 4.3.3. There are no protein complexes

initially.

In the following we will construct a numerical approximation of the system exemplified

by (4.19) based on the application of the finite element method.

4.3.1 Development of the finite element code

In this section we describe the development of the finite element code employed for the

numerical approximation of our underlying system of partial differential equations. To

this end, we first specify the generation of the mesh. This will be followed by details about

the theoretical background and the implementation. Finally, we present a convergence

analysis study in order to validate our code.

Mesh generation

The computational domain is hexagonal with side length two; to save computing time we

apply periodic boundary conditions for the intercellular interactions. The coarsest mesh

we use is a uniform triangulation of the domain of mesh size one as depicted in Figure

4.10. To refine the mesh we isotropically subdivide every triangle into four uniform new

subtriangles, which leads to a finer uniform triangulation with granularity half of that

in the previous refinement step. This process is iterated until the desired mesh size is

attained.
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Figure 4.10: Uniform triangulation with mesh size one
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Theoretical background

To address the theory underlying our finite element simulations we first have to examine

the model in more detail. It is based on the interactions of the four proteins Dsh, Pk, Fz

and Vang and their complexes DshFz, VangPk, FzVang, DshFzVang, FzVangPk and Dsh-

FzVangPk. These ten proteins and complexes can be divided into three groups depending

on where they occur in the biological cell. Dsh and Pk have been observed in the cyto-

plasm, i.e., in the whole hexagonal domain in our simulations; they are freely diffusible

in this regime. Therefore, we simulate the partial differential equations corresponding

to these proteins on the whole of the two dimensional hexagonal domain, based on ap-

plying Neumann boundary conditions for the intracellular interactions with membrane

located proteins. The components Fz, Vang, DshFz and VangPk are found in the cell mem-

brane, diffusing within these constraints. The corresponding partial differential equations

for these quantities are therefore simulated on a one-dimensional domain with periodic

boundary conditions. The cell bridging complexes FzVang, DshFzVang, FzVangPk and

DshFzVangPk occupy only the part of the membrane which is common to the two cells

they connect. They can diffuse in this part but cannot move past a vertex of the biolog-

ical cell. Therefore, the corresponding partial differential equations for these complexes

are simulated on six one-dimensional domains, one for every edge of the biological cell,

together with homogeneous Neumann boundary conditions.

In all cases the application of the finite element method includes three key steps. First,

the equivalent weak formulation to the given problem has to be determined. The weak

formulation is then discretised, which leads to a finite dimensional system of equations –

the finite element approximation – that has to be solved. In the following we describe the

details of these steps for the three different cases introduced above.

Diffusible in the whole domain - 2-D Problem with Neumann boundary conditions

This section describes the derivation of the finite element approximation for Dsh and Pk.

We give a general description of the theory, following the steps mentioned above, and then

relate it to our special case. Let Ω be the hexagonal domain and consider the problem: find

u(x, t) such that

∂u
∂t

= µ∆u in Ω,

µ
∂u
∂n

= g(u) on ∂Ω,

u( · , 0) = u0,

(4.21)
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where µ is a positive constant, representing the diffusion coefficient. The reaction terms of

the equations for Dsh and Pk describe the exchange of proteins between the two-dimensional

representation of the whole cell and the one-dimensional representation of the membrane.

It is unclear from [3] how Amonlirdviman et al. implemented this aspect. We include it as

Neumann boundary conditions. Therefore, the function g is given by the reaction terms of

the equations for Dsh and Pk, respectively.

Let H1(Ω) be the Sobolov space of order 1. The weak formulation of (4.21) is derived by

multiplying the problem with a test function v ∈ H1(Ω) and integrating by parts. Thereby,

we have the following variational formulation: find u( · , t) ∈ H1(Ω) such that
�

Ω

∂u
∂t

v dx + µ
�

Ω
∇u · ∇v dx−

�

∂Ω
g(u)v ds = 0 for all v ∈ H1(Ω),

�

Ω
u( · , 0)v dx =

�

Ω
u0v dx for all v ∈ H1(Ω).

Before formulating the finite element method, we first introduce some notation. To this

end, let Th = {K} be a conforming shape regular triangulation of Ω, which is obtained

by subdividing Ω into a set of non-overlapping triangles K, with Ω = ∪K∈Th K. Here we

consider arbitrary triangulations as e.g. in Figure 4.11(a). For our simulations we will use

a uniform mesh. We introduce the mesh parameter h = maxK∈Th diam(K). For a given

mesh of granularity h with nodes xi, let N be the number of nodes and {φ1, ..., φN} the set

of continuous piecewise linear basis functions defined on Th such that φi(xj) = δij, where

δij denotes the Kronecker delta, i.e., δij = 1 if i = j and δij = 0, otherwise. An example of

such a basis function is shown in Figure 4.11(b).
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Figure 4.11: Examples of a triangulation and a basis function; (a) Arbitrary finite element
triangulation of a hexagonal domain with triangles Kj and nodes xi, in our
simulations we will use a uniform mesh, (b) node xi with basis function φi.



Chapter 4. Analysis of the model by Amonlirdviman et al. 83

We choose the finite element space Vh ⊂ H1(Ω) to be Vh = span{φ1, ..., φN}. Hence, the

semidiscrete finite element approximation is given by: find uh( · , t) ∈ Vh such that
�

Ω

∂uh
∂t

vh dx + µ
�

Ω
∇uh · ∇vh dx−

�

∂Ω
g(uh)vh ds = 0 for all vh ∈ Vh,

�

Ω
uh( · , 0)vh dx =

�

Ω
u0vh dx for all vh ∈ Vh.

In order to discretise in time, we apply the Backward-Euler method for the diffusion terms,

and time lag g, i.e., the value of g at the previous time step is used as the boundary con-

dition. To this end, let 0 = t0 < t1 < . . . < tM = T be a uniform subdivision of the time

interval [0, T], with time step ∆t. Writing uh,n with 0 ≤ n ≤ M, to denote the finite element

approximation at time level tn, we have: find uh,n ∈ Vh such that
�

Ω

uh,n − uh,n−1

∆t
vh dx + µ

�

Ω
∇uh,n · ∇vh dx−

�

∂Ω
gn−1vh ds = 0

for all vh ∈ Vh, n = 1, . . . , M,
�

Ω
uh,0vh dx =

�

Ω
u0vh dx for all vh ∈ Vh,

(4.22)

where gn−1 = g(uh,n−1). Rearranging the first equation of (4.22) leads to
�

Ω
uh,nvh dx + ∆tµ

�

Ω
∇uh,n · ∇vh dx = ∆t

�

∂Ω
gn−1vh ds +

�

Ω
uh,n−1vh dx

for all vh ∈ Vh, n = 1, . . . , M.

Writing

uh,n(x) =
N

∑
j=1

Un,jφj(x)

with appropriate coefficients Un,j, system (4.22) is equivalent to

(Z + ∆tµY)Un = ∆tb + ZUn−1,

ZU0 = c,

with Y, Z ∈ RN×N and b, c ∈ RN such that

Yj,k =
�

Ω
∇φj · ∇φk dx,

Zj,k =
�

Ω
φjφk dx,

bj =
�

∂Ω
gn−1φj ds,

cj =
�

Ω
u0φj dx.

The matrices Y and Z are sparse since Yj,k �= 0 and Zj,k �= 0 if and only if nodes j and k

belong to the same triangle. Furthermore, Y and Z are symmetric and non-singular.
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Matrix Y is usually referred to as the stiffness matrix while Z is called the mass matrix and

b the load vector. This terminology derives from early applications of the finite element

method in structural mechanics.

To compute the stiffness and the mass matrices we calculate so called element stiffness

and mass matrices, respectively, for every triangle in the mesh. Subsequently, we assemble

them to obtain the global matrices. To this end, a connectivity array which stores the vertex

numbers of each element in the mesh is employed. Let Ki be the triangular element with

the vertices x1, x2, x3 with |Ki| denoting the area of Ki. For the element stiffness matrix we

follow the approach from [16], which yields

YKi =
1

4|Ki|





|x2 − x3|2 (x2 − x3) · (x3 − x1) (x2 − x3) · (x1 − x2)
|x3 − x1|2 (x3 − x1) · (x1 − x2)

symm. |x1 − x2|2



 . (4.23)

The formula to calculate the element mass matrix is given in [2], namely, we have

ZKi =
|Ki|
12





2 1 1

1 2 1

1 1 2



 . (4.24)

The load vector b is also calculated elementwise. The integral
�

∂Ω gn−1φj ds is approxi-

mated using the value of gn−1 in the centre (xm, ym) of the boundary element E with length

H by �

E
g(uh,n−1)φj ds ≈ H

2
g(uh,n−1(xm, ym)). (4.25)

Substituting the details of the model into Equations (4.23)-(4.25) leads to the finite ele-

ment approximations for the PDEs for Dsh and Pk. The properties of the triangulation are

provided by the mesh generation, the functions φj are defined in this section and, as men-

tioned above, the function g is given by the reaction terms of the equations for Dsh and

Pk. The vector u0 is given by the initial distributions of Dsh and Pk, which we specify in

Section 4.3.3. This leaves us with two linear systems, which need to be solved numerically

at each time step.

Diffusible in the domain border - 1-D Problem with periodic boundary conditions

In this section we derive the linear systems employed for the numerical approximation of

Fz, Vang, DshFz and VangPk. These proteins and complexes only occur on the membrane

of the biological cell. We will proceed in a similar fashion as in the last section. Consider
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the problem: find u(x, t) such that

∂u
∂t

= µ
∂2u
∂x2 + f (u) in [0, 1),

u(1, · ) = u(0, · ),

u( · , 0) = u0,

(4.26)

where µ > 0 is diffusion and f represents the reaction terms. Define H1
per(0, 1) := {v ∈

H1(0, 1) | v(0) = v(1)}. Multiplying problem (4.26) with a test function v ∈ H1
per(0, 1) and

integrating by parts yields its weak formulation: find u( · , t) ∈ H1
per(0, 1) such that

� 1

0

∂u
∂t

v dx + µ
� 1

0

∂u
∂x

∂v
∂x

dx =
� 1

0
f (u)v dx for all v ∈ H1

per(0, 1),
� 1

0
u( · , 0)v dx =

� 1

0
u0v dx for all v ∈ H1

per(0, 1).

We now introduce some additional notation before formulating the finite element approxi-

mation. Let Th = {x1, . . . , xN} with 0 = x1 < x2 < ... < xN = 1 be a partition of the interval

[0, 1] into subintervals of length hj = xj+1 − xj for j = 1, ..., N − 1. Let h := max1≤j≤N−1 hj

and define {φ1, ..., φN} as the set of continuous piecewise linear basis functions on Th such

that φi(xj) = δij (see Figure 4.12).

1

1
xxjxj−1 xj+1

φj(x)

Figure 4.12: A partition of the interval [0, 1] and the basis function φj.

Due to the periodic boundary conditions we get φ1 = φN . Therefore, as finite element

space Vh ⊂ H1
per(0, 1) we choose Vh = span{φ1, ..., φN−1}. This gives us the semidiscrete

finite element approximation: find uh( · , t) ∈ Vh such that
� 1

0

∂uh
∂t

vh dx + µ
� 1

0

∂uh
∂x

∂vh
∂x

dx =
� 1

0
f (uh)vh dx for all vh ∈ Vh,

� 1

0
uh( · , 0)vh dx =

� 1

0
u0vh dx for all vh ∈ Vh.

We now discretise in time applying the Backward-Euler method for the diffusion terms

and time lag f . To this end, we choose 0 = t0 < t1 < . . . < tM = T to be a uniform

subdivision of the time interval [0, T] with time step ∆t. Furthermore, we represent the
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finite element approximation at time level tn by uh,n with 0 ≤ n ≤ M. This implies: find

uh,n ∈ Vh such that
� 1

0

uh,n − uh,n−1

∆t
vh dx + µ

� 1

0

∂uh,n
∂x

∂vh
∂x

dx =
� 1

0
fn−1vh dx

for all vh ∈ Vh, n = 1, . . . , M,
� 1

0
uh,0vh dx =

� 1

0
u0vh dx for all vh ∈ Vh,

(4.27)

where fn−1 = f (uh,n−1). Rearranging the first equation of (4.27) yields
� 1

0
uh,nvh dx + ∆tµ

� 1

0

∂uh,n
∂x

∂vh
∂x

dx = ∆t
� 1

0
fn−1vh dx +

� 1

0
uh,n−1vh dx

for all vh ∈ Vh, n = 1, . . . , M.

Writing

uh,n(x) =
N−1

∑
j=1

Un,jφj(x)

with appropriate coefficients Un,j, the finite element approximation (4.27) can be restated

as

(Z + ∆tµY)Un = ∆tb + ZUn−1,

ZU0 = c,

with Y, Z ∈ RN−1×N−1 and b, c ∈ RN−1 such that

Yj,k =
� 1

0

dφj

dx
dφk
dx

dx,

Zj,k =
� 1

0
φjφk dx,

bj =
� 1

0
fn−1φj dx,

cj =
� 1

0
u0φj dx.

The stiffness matrix Y and the mass matrix Z are non-singular, symmetric, positive definite

tridiagonal matrices with additional non-zero entries in the top right and the bottom left

corner, which account for the periodic boundary conditions.

Calculating the entries of the stiffness matrix and the mass matrix yields

Y =
1
h





2 −1 0 · · · −1

−1 2 −1 0 · · · 0

0 . . . . . . . . . 0
... . . . . . . . . . ...

0 · · · 0 −1 2 −1

−1 · · · 0 −1 2




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and

Z = h





2
3

1
6 0 · · · 1

6
1
6

2
3

1
6 0 · · · 0

0 . . . . . . . . . 0
... . . . . . . . . . ...

0 · · · 0 1
6

2
3

1
6

1
6 · · · 0 1

6
2
3





.

The load vector b is again calculated elementwise. To calculate the integral, fn−1 is approx-

imated on (xj, xj+1) by f
�

uh,n−1(xj)+uh,n−1(xj+1)
2

�
. We get

b1 =
� x2

x1

fn−1φ1 dx =
h1

2
f
�

uh,n−1(x1) + uh,n−1(x2)
2

�
,

bj =
� xj

xj−1

fn−1φj dx +
� xj+1

xj

fn−1φj dx

=
hj−1

2
f
�uh,n−1(xj−1) + uh,n−1(xj)

2

�
+

hj

2
f
�uh,n−1(xj) + uh,n−1(xj+1)

2

�

for j = 2, ..., N − 1,

where f is given by the reaction terms. The initial distributions for Fz and Vang are spec-

ified in Section 4.3.3. Initially, there are no complexes. Therefore, the entries of u0 corre-

sponding to DshFz and VangPk are zero.

This provides us with the necessary details for the linear systems corresponding to the

PDEs for Fz, Vang, DshFz and VangPk, which are subsequently solved numerically.

Diffusible in one edge of the domain border - 1-D Problem with zero Neumann bound-

ary conditions

As a last step we have to form the linear systems for the cell bridging complexes FzVang,

DshFzVang, FzVangPk and DshFzVangPk. As mentioned above, in this model, initially

there are no complexes. Hence, we consider the problem: find u(x, t) such that

∂u
∂t

= µ
∂2u
∂x2 + f (u) in (0, 1),

−∂u
∂x

(0, · ) =
∂u
∂x

(1, · ) = 0,

u( · , 0) = 0,

(4.28)

where µ > 0 represents diffusion and f the reaction terms. Multiplying (4.28) with a test

function v ∈ H1(0, 1), integrating by parts, and exploiting the homogeneous Neumann

boundary conditions yields the corresponding weak formulation: find u( · , t) ∈ H1(0, 1)
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such that
� 1

0

∂u
∂t

v dx + µ
� 1

0

∂u
∂x

∂v
∂x

dx =
� 1

0
f (u)v dx for all v ∈ H1(0, 1).

Similar to the previous sections we need further notation to be able to formulate the finite

element approximation. Let Th = {x1, . . . , xN} with 0 = x1 < x2 < ... < xN−1 < xN = 1 be

a partition of the interval [0, 1] into subintervals of length hj = xj+1− xj for j = 1, ..., N− 1.

Define the granularity h of the mesh as h := max1≤j≤N hj and φ1, ..., φN as above with

φi(xj) = δij (see Figure 4.12). As finite element space Vh ⊂ H1(0, 1) we choose Vh =
span{φ1, ..., φN}. This gives the semidiscrete finite element approximation: find uh( · , t) ∈
Vh such that

� 1

0

∂uh
∂t

vh dx + µ
� 1

0

∂uh
∂x

∂vh
∂x

dx =
� 1

0
f (uh)vh dx for all vh ∈ Vh.

In order to discretise in time we apply the Backward-Euler method for the diffusion terms

and time lag f . To this end, we uniformly subdivide the time interval [0, T] into 0 = t0 <

t1 < . . . < tM = T with time step ∆t. Writing uh,n with 0 ≤ n ≤ M to represent the finite

element approximation at time level tn, we get: find uh,n ∈ Vh such that
� 1

0

uh,n − uh,n−1

∆t
vh dx + µ

� 1

0

∂uh,n
∂x

∂vh,n
∂x

dx =
� 1

0
fn−1vh dx

for all vh ∈ Vh, n = 1, . . . , M,

where fn−1 = f (uh,n−1). Rearranging yields
� 1

0
uh,nvh dx + ∆tµ

� 1

0

∂uh,n
∂x

∂vh,n
∂x

dx = ∆t
� 1

0
fn−1vh dx +

� 1

0
uh,n−1vh dx

for all vh ∈ Vh, n = 1, . . . , M.
(4.29)

Writing

uh,n(x) =
N

∑
j=1

Un,jφj(x)

with appropriate coefficients Un,j, we can restate the finite element approximation (4.29) as

(Z + ∆tµY)Un = ∆tb + ZUn−1,

with Y, Z ∈ RN×N and b, c ∈ RN such that

Yj,k =
� 1

0

dφj

dx
dφk
dx

dx,

Zj,k =
� 1

0
φjφk dx,

bj =
� 1

0
fn−1φj dx.
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The matrices Y and Z are symmetric, positive definite and tridiagonal.

Calculating the entries of Y and Z yields

Y =
1
h





1 −1 0 · · · 0

−1 2 −1 0 · · · 0

0 . . . . . . . . . 0
... . . . . . . . . . ...

0 · · · 0 −1 2 −1

0 · · · 0 −1 1





and

Z = h





1
3

1
6 0 · · · 0

1
6

2
3

1
6 0 · · · 0

0 . . . . . . . . . 0
... . . . . . . . . . ...

0 · · · 0 1
6

2
3

1
6

0 · · · 0 1
6

1
3





.

The load vector b is calculated elementwise. To calculate the integral, we approximate fn−1

on the interval (xj, xj+1) by f
�

uh,n−1(xj)+uh,n−1(xj+1)
2

�
. We get

b1 =
� x2

x1

fn−1φ1 dx =
h1

2
f
�

uh,n−1(x1) + uh,n−1(x2)
2

�
,

bj =
� xj

xj−1

fn−1φj dx +
� xj+1

xj

fn−1φj dx

=
hj−1

2
f
�uh,n−1(xj−1) + uh,n−1(xj)

2

�
+

hj

2
f
�uh,n−1(xj) + uh,n−1(xj+1)

2

�

for j = 2, ..., N − 1,

bN =
� xN

xN−1

fn−1φ1 dx =
hN−1

2
f
�

uh,n−1(xN−1) + uh,n−1(xN)
2

�
,

where f represents the reaction terms.

Thus, we can compute the linear systems for the cell-bridging complexes FzVang, DshFz-

Vang, FzVangPk and DshFzVangPk, which we then solve numerically.

Implementation

In the previous section we have derived the finite element approximations and their equiv-

alent representation as linear systems for the PDEs of the system exemplified by equation
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(4.19). In this section we demonstrate how we combine the approaches to simulate the

whole system. The simulations are undertaken in Matlab for one hexagonal shaped do-

main. We apply periodic boundary conditions for the intercellular complex formation.

Therefore, our setup represents a whole field of cells with identical initial conditions. A

uniform mesh of granularity h is employed. The linear systems for Dsh and Pk are solved

for all points in the two-dimensional mesh. The linear systems for Fz, Vang, DshFz and

VangPk are only solved for the mesh points on the boundary of the domain. To compute

the load vectors we have to calculate the reaction terms as described in the previous sec-

tion. The size of the time step is adaptively chosen to ensure stability. The simulation

stops once the system has reached a steady state, i.e., the change of the sum of the Dsh

complexes at each mesh point is below a certain threshold.

Error convergence analysis

To validate our code we compared solutions for the system exemplified by equation (4.19)

for different mesh sizes to a reference solution. We chose the parameter values given in

Table 4.5.

Kpk 0.5

Kva 0.5

Kb 500

Kp 5

µ (100, 100, 0.1, 0.1, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1)
λ (50, 25, 0.001, 25, 50, 25, 25, 50, 25, 25)
R (100, 50, 1000, 50, 100, 50, 50, 100, 50, 50)

Table 4.5: Set of parameter values for simulations for Figures 4.13 and 4.15.

As initial condition we assumed an imbalance in Vang, since this yields a smoother refer-

ence solution than an initial imbalance in Fz as shown in Section 4.3.3. Initially, the other

proteins were distributed homogeneously and there were no protein complexes. As refer-

ence solution ur we simulated the system on a uniform mesh with mesh size h = 0.0312,

which corresponds to 12481 nodes and 24576 elements.

Figure 4.13 shows the error of solutions uh on coarser meshes compared to the reference

solution. We plotted log(�ur − uh�2) against log(h). All four figures show straight lines

with slopes of approximately 2; hence the error decreases quadratically as we refine the

mesh, which is indeed the optimal rate we would expect to observe [18].
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Figure 4.13: Errors of solutions for Dsh, Pk, Fz and Vang of the system exemplified by
(4.19) for different mesh sizes compared to a reference solution. We chose the
parameter values in Table 4.5. Initially, there was an imbalance in Vang while
the other proteins were distributed homogeneously and the complexes were
zero.

4.3.2 Relationship between the full two-dimensional and the compart-
mentalised version of the model

To further clarify the setup of the full spatial representation of the model, we discuss its

relationship to the compartmentalised representation in Section 4.2. For the latter, a cell

is subdivided into six compartments, hence, it is essentially represented by six points and

diffusion is the exchange of proteins or protein complexes between neighbouring points

that belong to the same cell. The transition from this representation of the cell to the full

spatial representation has to be explained separately for the three different groups of pro-

teins and complexes, which are distinguished by the domain in which they are diffusing

in the full spatial model.

The bridging complexes are only diffusing in the part of the membrane that is common to

the two cells they connect. Let Aj(t) denote the state variable for the bridging complexes

in compartment j (mod 6) then Ãj(x, t) represents the continuous function for the bridg-

ing complexes on piece j (mod 6) of the membrane in the full spatial model as shown in

the illustration in Figure 4.14. The transition of Ãj(x, t) to Ãj±1(x, t) at the vertices is not

necessarily continuous.

Now we consider the proteins and protein complexes that diffuse in the whole mem-

brane. If the state variable Bj(t) represent these proteins and complexes in compartment

j (mod 6), then it corresponds to the continuous function B̃j(x, t) in the full spatial model,

where j (mod 6) denotes the jth piece of the membrane. The transition of B̃j(x, t) to B̃j±1(x, t)
at the vertices has to be continuous.

The remaining proteins diffuse in the cytoplasm. This is unrelated to the compartmen-

talised representation of a cell, since the cell interior is not considered in that approach.

However, in the full spatial model we apply flux boundary conditions for the interactions

of these proteins with proteins and protein complexes in the membrane. Hence, the bound-
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ary conditions can be related to the state variables Ãj(x, t) and B̃j(x, t).

Ãj(x, t)Aj(t)

compartmentalised cell full spatial model

Figure 4.14: Illustration of the relationship between the compartmentalised version of the
model and the full spatial representation. In the compartmentalised cell on
the left, each compartment can be represented by a dot; in the full spatial
model on the right, the membrane is divided into six pieces, each piece cor-
responding to one dot in the compartmentalised model. The variable Aj(t)
denotes the state of the bridging complexes in compartment j (mod 6) of the
compartmentalised cell and Ãj(x, t) the continuous function representing the
bridging complexes in piece j (mod 6) of the membrane in the full spatial
model.

4.3.3 Numerical simulations

We simulated the system exemplified by equation (4.19) in Matlab for a hexagonal domain,

applying the finite element method as described in the previous section. The parameter

values we used are presented in Table 4.5. Figure 4.15 shows the four initial conditions we

have chosen and the corresponding final states for the sum of the Dsh complexes. All the

proteins and protein complexes considered in this figure only occur on the membrane. For

clarity, we show a line plot and a two dimensional plot in each case.

The initial conditions in row A and B of Figure 4.15 are symmetric with respect to the hor-

izontal axis whereas in row C and D they are asymmetric with respect to the same axis.

For the initial condition in A1 and A2 we assume that Fz has an imbalance towards the

right of the cell. All the other proteins are initially distributed homogeneously and there

are no protein complexes initially. The final state in A3 and A4 shows that for this initial

condition we do not get a significant polarity. The effects at mesh points 1 and 3 occur be-

cause there are discontinuities in the cell bridging complexes at these points. Refining the

mesh to a granularity of h = 0.008, we get the same final distribution of the Dsh complexes.
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Figure 4.15: Initial conditions and final states for simulations of the system exemplified
by (4.19) with the parameter values in Table 4.5. All the proteins and protein
complexes represented occur only on the membrane. In each case a line plot
and a two dimensional plot are shown. Row A: an initial imbalance in Fz
does not give significant polarity for the parameter values in Table 4.5; the
mesh size is h = 0.016; row B: an initial imbalance in Vang yields polarity;
the mesh is of size h = 0.031; row C: initial conditions that are asymmetric
with respect to the horizontal axis give rise to an asymmetric final state; the
line plots show top and bottom half of the membrane separately; the mesh
is of size h = 0.031; row D: initial condition in row B with an asymmetry
with respect to the horizontal axis yields an asymmetric final state; the line
plots show top and bottom half of the membrane separately; the mesh size is
h = 0.031.
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Row B shows that an initial imbalance in the Vang concentration yields polarity. We

present the time to reach the state in B3 and B4 because this is the one that has been

observed in the Drosophila pupal wings. In the biological system it takes about 32 h to

polarise the cells. Therefore, the time T to reach steady state in our simulations is very

small. Considering the relationship between our simulation time and the time in experi-

ments, a possible explanation could be that the value of the diffusion coefficient µbio
1 is less

than the assumed 1 µm2/s.

The difference in behaviour between row A and B is surprising. Comparing the final dis-

tributions for the individual proteins and protein complexes, we see that the two steady

states represented by A3/A4 and B3/B4 are qualitatively different (not shown). A pos-

sible explanation might be that initially the mechanism of the model works different for

the different initial conditions. The amplification of the initial imbalance is driven by the

feedback loop. The way the inhibition is implemented in the model, building of most of

the Dsh complexes is inhibited by themselves. Therefore, to get the amplification of the

polarity Vang, Pk and VangPk have to dominate over the other terms in equation (4.18).

For an initial imbalance in Fz the bridging complexes including Vang and Pk have first to

be formed to transfer the initial imbalance in Fz into a biased inhibition. For the initial im-

balance in Vang the inhibition is biased right from the start and therefore helps to generate

stronger polarity. However, to verify this theory, further analysis is necessary.

Figures 4.15 C1 and C2 show an initial imbalance in Vang that is asymmetric with respect

to the horizontal axis. The other proteins are initially distributed homogeneously. The fi-

nal state in C3 and C4 shows that the asymmetry remains throughout the simulations. The

same is true in row D. As initial condition we chose the imbalance in Vang in row B and

added a small asymmetry with respect to the horizontal axis. We see in D3 and D4 that the

corresponding final distribution of the total Dsh complexes is asymmetric with respect to

the same axis.

If we increase the diffusion in Figure 4.15 row B and C, the difference between the dif-

ferent parts of the cell becomes weaker and for a sufficiently large diffusion we get the

unpolarised steady state (not shown).

The results in this section support the findings in the previous sections that the persistent

global bias is not needed to get polarity if there is an initial imbalance which is symmetric

with respect to the horizontal axis. Furthermore, we found that there has to be an initial

imbalance in Vang to get a significant polarity.
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4.4 Discussion

In this chapter we presented an analysis of the model proposed by Amonlirdviman et al.

[3]. While in [3] the model was simulated for a field of hexagonal cells we started our

investigations by reducing it to a row of cells in one spatial dimension. The model con-

sists of two main parts, a persistent global bias and an inhibition loop. Our first result

was that the persistent global bias has a very strong impact, since it can reverse an initial

polarity even when the inhibition loop is switched off. However, it is also possible to get

polarity without the persistent global bias in one spatial dimension provided there is an

initial imbalance that can be amplified. Our analysis showed that this result is consistent

with linear stability analysis and does not depend on the parameter values. Similar to the

conservative model in Chapter 3, the model in this chapter can amplify polarity from an

initial imbalance in every cell or via a wave.

Extending the system to two spatial dimensions, assuming a hexagonal cell with six com-

partments gave further insight into the model. Again the persistent global bias is not

needed to amplify an initial imbalance. However, to get correct polarity the initial con-

ditions have to be symmetric with respect to the horizontal axis. Initial conditions that

are asymmetric with respect to the horizontal axis give rise to asymmetric final states,

which exist for the same parameter values as the desired polarised steady state and seem

more robust against fluctuations in the initial conditions. The analysis of the full spatial

model supports these findings. We numerically approximated the full spatial model in a

hexagonal cell applying the finite element method. To this end, we considered three dif-

ferent domains since this model includes proteins that diffuse in the whole cell, proteins

and complexes that only diffuse in the membrane and cell bridging complexes that are

restrained to the edge of the membrane common to the cells they link together. The results

of these simulations show that the persistent global bias is not needed provided there is

an initial imbalance in the cell that is symmetric with respect to the horizontal axis. We

further found out that an initial imbalance in Fz is not sufficient to polarise the cells sig-

nificantly; an initial imbalance in Vang gave polarity. Possibly, the feedback loop is more

suitable to amplify an initial imbalance in Vang than in Fz. So far, it is more common to

assume a global cue that affects Fz, but there is no biological evidence for that.

Concerning the persistent global bias our analysis shows that it is not needed to amplify

an initial imbalance. However, it is necessary to ensure correct polarisation if there is an

asymmetry with respect to the horizontal axis. Such an asymmetry can be introduced by

anomalies in the initial conditions or a clone. Therefore, we need to include the persistent

global bias in the model to get the behaviour observed in experiments.
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In all sections we have indicated the time it takes to reach the polarised steady state. Com-

pared with the time it takes to polarise the cells in experiments, our simulation time was in

a reasonable range in one spatial dimension, but too small for both two-dimensional rep-

resentations. This result indicates that under our assumptions the value we used for the

diffusion in the biological system is too large. This conclusion is supported by findings in

yeast [51], which show that membrane diffusion for some of the proteins involved in cell

polarisation is 1-2 orders of magnitude slower than the values given in [22] for membrane

diffusion in mammalian cells.



Chapter 5

The effect of the initial conditions in
the model by Le Garrec et al.

In [29] Le Garrec et al. proposed a model for PCP in the Drosophila wings. It is based on

interactions of six proteins, a ligand (Ld), Fz, Dsh, Vang, Pk and Fmi, assuming they bind

together to form complexes.

Fz*

Dsh

Fz*

Vang

Pk
Fmi

Fmi

Fmi

Fmi

Vang Dsh

Pk

(a)

Fz
Dsh*

Fz

Vang

Pk

Fmi
Fmi

Fmi

Fmi

Vang

Pk

Dsh*

(b)

Figure 5.1: Proposed mechanism for the model by Le Garrec et al.; light grey represents
less protein than black; = indicates binding over the cell membrane and T in-
hibition; (a) First feedback loop: Fz* (active Fz) and its complexes inhibit the
binding of Vang to Fmi, (b) second feedback loop: the Dsh* complexes inhibit
the binding of Pk to Vang complexes (Dsh is phosphorylated when binding to
the Fz*-ends of the cell bridging complexes, becoming Dsh*).

The idea of the mechanism is as follows (see also Figure 5.1). Initially there is an exponen-

tial Ld gradient decreasing from the proximal to the distal side of the region of cells. It is

used up very quickly by binding to Fz, generating a gradient of active Fz (Fz*). Since Fz*

97
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and Vang are both supposed to bind to Fmi, this competition for Fmi leads to two opposite

gradients, a Fz*Fmi gradient decreasing from the proximal end of the cell region and a

FmiVang gradient decreasing from the distal end. Formation of the cell bridging complex

Fz*Fmi=FmiVang combined with the shallow Fz*Fmi and FmiVang gradients favours ac-

cumulation of slightly more Fz*-containing complexes on the distal sides of the cells. This

is amplified by Fz* and its complexes inhibiting Vang from binding to Fmi, which is pre-

sented in Figure 5.1(a). To stabilise the cell bridging complexes Dsh binds to their Fz*-ends

and is phosphorylated (Dsh*), whereas Pk binds to their Vang-ends. The asymmetry is

further amplified by another feedback loop; Dsh* inhibits the binding of Pk as shown in

Figure 5.1(b). These interactions are described by the following reactions.

Fz + Ld
K f1
� Fz∗ (5.1)

Fz∗ + Fmi
K f2−−��−−
Kd2

Fz∗Fmi (5.2)

Vang + Fmi
inh3 K f3−−−−��−−−−
en3 Kd3

FmiVang (5.3)

Fz∗Fmi + FmiVang
K f4−−��−−
Kd4

Fz∗Fmi = FmiVang (5.4)

Fz∗Fmi = FmiVang + Pk
inh5 K f5−−−−��−−−−
en5 Kd5

Fz∗Fmi = FmiVangPk (5.5)

Dsh + Fz∗Fmi = FmiVang
K f6−−��−−
Kd6

Dsh∗FzFmi = FmiVang (5.6)

Dsh + Fz∗Fmi = FmiVangPk
K f7−−��−−
Kd7

Dsh∗FzFmi = FmiVangPk (5.7)

Dsh∗FzFmi = FmiVang + Pk
inh8 K f8−−−−��−−−−
en8 Kd8

Dsh∗FzFmi = FmiVangPk (5.8)

The symbol = indicates complexes that bridge the membranes of two neighbouring cells.

The forward reaction rate for equation (5.i) is K fi and the backward reaction rate is Kdi.

The two feedback loops are implemented by decreasing the forward reaction rates and in-

creasing the backward reaction rates of equations (5.3), (5.5) and (5.8). They are multiplied

by

inhi =
1

1 + Ai[inhibitor]
,

and

eni = 1 + Bi[inhibitor],

respectively. The parameters Ai and Bi are positive. For inh3 and en3 the inhibitor is the

sum of Fz* and its complexes, for inh5, en5, inh8 and en8 it is the sum of the Dsh* com-

plexes.



Chapter 5. The effect of the initial conditions in the model by Le Garrec et al. 99

In [29] these reactions are simulated in two spatial dimensions applying stochastic pro-

cesses. Their approach is similar to the Cellular Potts model and was first introduced in

[21]. A tissue is represented on a two-dimensional screen by a set of hexagonal pixels,

which are coloured depending on their function, e.g. as part of the membrane, the extra-

cellular matrix or the cytoplasm. They consider approximately 150 cells that are roughly

hexagonal. Each pixel can contain proteins or protein complexes. Diffusion and intercellu-

lar as well as extracellular reactions are considered. The dynamics are noisy and described

by stochastic difference equations. The reaction rates are assumed to fluctuate and intra-

cellular diffusion is introduced by comparison of the concentration of a certain protein

between two pixels of the same cell combined with a probability to move. Furthermore,

thermodynamic fluctuations are introduced in the diffusion process. In contrast to the ap-

proach by Amonlirdviman et al. [3] in the previous chapter, diffusion is restricted to the

membrane. Tests revealed that in this model cytoplasmic diffusion of Pk and Dsh does not

significantly alter polarisation, provided that initial concentrations are similar throughout

the cell. Ligand diffusion through the extracellular matrix also has a minimal effect on

polarity in this model, since the ligand is rapidly depleted. Cell division was omitted. The

choice of complexes results from experimental observations of interactions of the PCP pro-

teins. To determine the feedback loops Le Garrec et al. tested different regulations. The

loops chosen were the only ones that could reproduce the wild-type polarity for reason-

ably weak inhibition. Considering the parameter values, correct polarity is dependent on

the four dissociation rates Kd5 to Kd8 being significantly smaller than the other reaction pa-

rameters, i.e. the fully built complexes have to be more stable than the intermediate ones.

With this setup, the authors are able to reproduce wild-type polarity and the behaviour

seen in experiments around clones lacking Fz, Fmi, Vang or Dsh as well as clones with

higher levels of Fz, Fmi, Pk or Dsh. Furthermore, they find that the model is robust against

noise and boundary effects.

Our aim is to analyse the proposed mechanism mathematically, focusing on the role of the

initial global cue. To this end, we choose a deterministic approach, applying the law of

mass action to (5.1)-(5.8). We expect our approach to give similar results to the stochas-

tic simulations by Le Garrec et al.. To facilitate the analysis we first consider one spatial

dimension.
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5.1 Analysis in one spatial dimension

We assume a row of two-sided cells. On each side of a cell there are certain concentrations

of the six proteins and their complexes. Applying the law of mass action, reactions (5.1)-

(5.8) yield a system of ODEs for the rates of change of the protein and protein complex

concentrations in cell i. We present two sample equations. The full system can be found in

Appendix C.1. Here, we have

d[Pk]li
dt

= −inh5l
iKf5 [Fz∗FmiFmiVang]ri−1 · [Pk]li + en5l

iKd5 [Fz∗FmiFmiVangPk]ri−1

− inh8l
iKf8 [Dsh∗FzFmiFmiVang]ri−1 · [Pk]li

+ en8l
iKd8 [Dsh∗FzFmiFmiVangPk]ri−1

+ µ7
([Pk]ri − [Pk]li)

∆x2

d[Pk]ri
dt

= −inh5r
i Kf5 [Fz∗FmiFmiVang]li+1 · [Pk]ri + en5r

i Kd5 [Fz∗FmiFmiVangPk]li+1

− inh8r
i Kf8 [Dsh∗FzFmiFmiVang]li+1 · [Pk]ri

+ en8r
i Kd8 [Dsh∗FzFmiFmiVangPk]li+1

+ µ7
([Pk]li − [Pk]ri )

∆x2

(5.9)

where

inh5l
i =

1
1 + A5([Dsh∗FzFmiFmiVang]li + [Dsh∗FzFmiFmiVangPk]li)

,

inh5r
i =

1
1 + A5([Dsh∗FzFmiFmiVang]ri + [Dsh∗FzFmiFmiVangPk]ri )

,

en5l
i = 1 + B5([Dsh∗FzFmiFmiVang]li + [Dsh∗FzFmiFmiVangPk]li),

en5r
i = 1 + B5([Dsh∗FzFmiFmiVang]ri + [Dsh∗FzFmiFmiVangPk]ri ),

and inh8 and en8 are defined analogously. The parameter µ7 represents diffusion and ∆x

the spatial extension of a cell from left to right. The equations describe the variation of

the protein concentrations, indicated by the square brackets. Subscripts refer to the cell

number, superscripts to the cell side, left or right. Bridging complexes are not allowed to

diffuse and they are counted as if they belong to the same cell as their Fz part. If T, µbio
7

and ∆xbio denote the time, the diffusion coefficient and the side length of a cell in the

biological system they are related to the parameters in our model by t = kT, µ7 = 1
k µbio

7

and ∆x = p∆xbio with positive constants k and p.
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After rescaling, (5.9) can be stated in the general form

d[Pk]li
dτ

= F + µsim
7 ([Pk]ri − [Pk]li),

d[Pk]ri
dτ

= F + µsim
7 ([Pk]li − [Pk]ri ),

(5.10)

where F represents the reaction terms, µsim
7 = 1

∆x2 µ7 = 1
kp2(∆xbio)2 µbio

7 and τ = µsim
7 t. Hence,

the time in experiments T is related to the time in our analysis and simulations τ by

T =
1

kµsim
7

τ =
p2(∆xbio)2

µbio
7

τ. (5.11)

We assume p = 1, µbio
7 = 0.1 µm/s [22] and ∆xbio = 8 µm [19]; then k is determined by

equation (5.11). We chose a smaller value for µbio
7 than in Section 4.1, because membrane

diffusion, which we consider here, is slower than cytoplasmic diffusion [22]. The values

for p and ∆x are the same as in Section 4.1. The system exemplified by (5.10) conserves the

total concentration of each protein in a cell. However, reformulating the equations using

these laws would not simplify the system significantly. Considering that the system is very

complex we do not study it analytically, but conduct a computational analysis.

5.1.1 Numerical simulations

We commence our analysis by investigating the behaviour of the system exemplified by

(5.10) for the parameter values given in [29]. To this end, we have to find the appropriate

scaling for the diffusion coefficient. In [29] they consider 150 roughly hexagonal cells on a

screen of 175 by 175 pixels, whereby each pixel has a size of 1 µm. Hence, the side length

∆xhex of one cell is about 9 µm. Let µhex denote the rescaled diffusion coefficient for the

hexagonal cells in [29] and µ the rescaled diffusion coefficient for our one-dimensional

analysis. We get

µhex = µbio (∆xhex)2

(∆xbio)2 ,

µ =
1

∆x2 µbio,

and therefore substituting the values from above µ = 1
81 µhex. The parameter values are

shown in Table 5.1.
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A3 1.5

A5 1.5

A8 1.5

B3 3

B5 3

B8 3

K f (0.01, 0.01, 0.01, 0.015, 0.03, 0.03, 0.003, 0.003)
Kd (0, 0.04, 0.04, 0.04, 0.001, 0.001, 0.0005, 0.0005)
µ 1

81 (0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02)
Table 5.1: Set of parameter values from [29] after rescaling of the diffusion coefficients.

We used these values for the simulations in Figures 5.2- 5.4.

Behaviour for initial ligand gradient

We simulated the system exemplified by (5.10) using Matlab’s ODE solver ode15s, which is

faster than the previously used ode45. Initially Fz, Fmi, Vang, Dsh and Pk are distributed

homogeneously in every cell, with [Fz]li = [Fz]ri = 4, [Fmi]li = [Fmi]ri = 4, [Vang]li =
[Vang]ri = 2, [Dsh]li = [Dsh]ri = 2 and [Pk]li = [Pk]ri = 2 for all i. These numbers are the

concentrations of the proteins in each membrane pixel in [29]. We choose different initial

ligand gradients to gain insight into their effect on the final state of the system. As bound-

ary conditions we assume that at both ends of the row we have another half cell which has

its initial ligand concentration according to the one in the cell next to the boundary and

the initial concentrations of the other proteins equal to the ones in the rest of the cells. We

ensure these two cells are only half by setting all their intracellular diffusion coefficients

to zero; the remaining interactions in these cells are governed by the same equations as

for the rest of the cells. In [29] there are roughly 13 cells in each row. At the boundaries

they assume that no material escapes or enters the domain. We simulate the system for 11

cells plus 2 half boundary cells. We assume that the system has reached a final state if the

change of the protein and protein complex concentrations is below 10−4.

Different initial ligand gradients and the corresponding final states of the system exempli-

fied by (5.10) are shown in Figures 5.2 and 5.3. We present the final distributions of the

sum of the Dsh* complexes, because in [29] this is assumed to determine the direction of

the hair growth; the hairs are assumed to grow at the end of the cell with the highest Dsh*

concentration.

In Figure 5.2 A1 we assume a decreasing exponential ligand gradient similar to the ini-

tial condition in [29]. In the corresponding final state in B1 every cell is polarised to the
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right. Due to the boundary conditions the polarity of the cells at the two ends of the row is

weaker. The cells in the left half of the row are more weakly polarised than in the right half

of the row. This is because in cells 1-3 the total amount of ligand is greater than the total

amount of Dsh, Vang and Pk. Assuming an initial gradient with a lower level of Ld gives

a more uniform distribution of the polarity (not shown). Figures 5.2 B2 and B3 show that

the final distribution does not depend strongly on the type of gradient. An initial linear

ligand gradient gives similar polarity and so does an initial condition in which the initial

amount of ligand is the same on both sides of the cell. The direction of the final polarity

depends on the direction of the gradient. Increasing gradients lead to polarity to the left

(not shown). In all cases in Figure 5.2 the total amount of ligand in each cell is less than the

total amount of Fz. If we choose [Ld]total > [Fz]total within each cell, we do not get polarity

(not shown), because in this case there would not be a Fz* gradient which initiates polarity.
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Figure 5.2: Different initial ligand gradients and the corresponding final Dsh* distribu-
tions for the system exemplified by (5.10). The gradient in A1 is similar to the
one in [29]. The weaker polarity in the first and the last cell of the row in B1-B3
is due to the boundary conditions. The polarity in the left half of the row in
B1-B3 is weaker because in cell 1-3 there is more ligand than Dsh, Vang and Pk.
We see that the final polarity is not strongly dependent on the type of initial
ligand gradient.

Figure 5.3 shows the final distribution of the sum of the Dsh* complexes for gradients

with different slopes and different total amounts of Ld. Column 1 shows that a shallower

gradient yields weaker polarity. The initial ligand gradient in Figure 5.3 A2 only leads to

significant polarity on the left end of the row. On the right end, there is not enough Ld to

form a significant amount of Dsh* complexes. In Figure 5.3 column 3 we see the opposite

effect. On the left end of the row of Figure 5.3 A3, the total amount of Ld in each cell is
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greater than the total amount of Fz. Hence, we do not get polarity. On the right end of

the row the level of Ld is low enough and the gradient is steep. Therefore, we get strong

polarity.
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Figure 5.3: Different initial ligand gradients and the corresponding final Dsh* distribu-
tions for the system exemplified by (5.10); Column 1: a shallow gradient gives
weak polarity; column 2: if the ligand concentration is not sufficient we do not
get polarity; column 3: too much ligand hinders polarity.

These results show that as long as there is a sufficient amount of ligand, but less than Fz in

each cell, polarity occurs in the direction opposite to the direction of the initial ligand gra-

dient. The strength of the polarity is dependent on the slope of the initial ligand gradient.

Behaviour for an initial ligand imbalance in every cell

An initial gradient has a similar effect to the persistent global bias in the model by Amon-

lirdviman et al. (see Chapter 4, [3]); it gives the system a bias that lasts for the whole

process, preventing any homogeneous unpolarised steady states. Our aim is to investigate

whether an initial ligand distribution with a small imbalance in every cell can also yield

polarity. The initial condition and the corresponding final state for a row of ten cells and

the parameter set in Table 5.1 are presented in Figure 5.4. Note, that we chose the total

amount of ligand in each cell to be less than the total amount of any other protein to en-

sure that the ligand is the limiting factor and we do not get effects on the polarity caused

by excessive amounts of Ld. We apply periodic boundary conditions. Hence, our simu-

lations represent an infinite line of cells and the results do not depend on the number of

cells chosen. Figure 5.4 shows that even for a strong initial cue the system exemplified by
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(5.10) cannot generate polarity with this parameter set. This is supported by linear stabil-

ity analysis. We calculate the homogeneous unpolarised steady state for the given total

amounts of the proteins and the parameter set in Table 5.1. Subsequently, we evaluate the

eigenvalue with the greatest real part λ. In this case it is λ = −1.4 · 10−4 < 0. Hence, linear

stability analysis does not predict instabilities for this set of parameter values.
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Figure 5.4: The system exemplified by (5.10) does not polarise for an initial ligand im-
balance in every cell and the parameter values in Table 5.1. (a) Initial ligand
distribution with a strong polarity; (b) final Dsh* distribution for the parameter
values in Table 5.1.

The aim now is to find a parameter set for which the system polarises for a small initial

ligand imbalance in every cell. To this end, we use the parameter search method that

was introduced in Section 4.1.3, applying search steps based on the Nelder-Mead method

to increase the largest real part of the eigenvalues of the system (see Appendix A). Two

resulting parameter sets are shown in Table 5.2. For these parameter sets the largest real

part λ of the eigenvalues of the system exemplified by (5.10) is positive. Hence, we expect

polarisation.

To test this, we simulated the system exemplified by (5.10) for the parameter values in

Table 5.2, applying periodic boundary conditions. The total amount of each protein in

every cell is the same as above. As initial condition we assumed a small imbalance of the

ligand concentration in every cell. Figure 5.5 shows that we get polarity for both parameter

sets in Table 5.2. The polarity for parameter set 1 in Figure 5.5(b) is stronger than the

polarity for parameter set 2 in Figure 5.5(c). Furthermore, it takes longer to establish.

These results show that in one spatial dimension a small ligand imbalance in every cell can

give rise to polarity. Before investigating the behaviour of the model for anomalies in the

initial conditions and clones we will first extend the model to two spatial dimensions.
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Parameter Set 1 Parameter Set 2

A3 2.9577 3.3885

A5 8.1077 8.5385

A8 0.3692 0.8

B3 5.6271 6.0579

B5 10.3692 10.8

B8 0.1077 0.5385

K f (858.8877, 398.1077, 86.6077, 57.9227, (10.3185, 5.5385, 6.0385, 2.3535,

12.3716, 1.405, 10.1077, 10.9574) 13.5095, 1.8358, 10.5385, 11.3882)
Kd (0, 0.5657, 0.6713, 0.3533, (0, 0.9965, 1.1021, 1.4912,

0.2045, 0.001114, 0.9148, 0.001177) 0.6353, 0.4319, 2.7598, 0.4319)
µ (0.7519, 0.4829, 0.1695, 0.7507, (0.0625, 0.0625, 0.0019, 0.0625,

2.6369, 1.4969, 1.5244, 2.4982, 0.0269) 0.1250, 0.0625, 0.0625, 0.1250, 0.0019)
λ 0.0072 0.0081

Table 5.2: Two parameter sets resulting from a parameter search applying the method in
Section 4.1.3 and Appendix A. The parameter λ represents the maximal real
part of the eigenvalues of the system exemplified by equations (5.10).
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Figure 5.5: Results of simulations for the system exemplified by (5.10); (a) Initial ligand
distribution with a small imbalance in every cell, the difference between right
and left in each cell is 0.1; initially, the other proteins are distributed homo-
geneously and there are no protein complexes; (b) final state of total Dsh* for
parameter set 1 in Table 5.2; (c) final state of total Dsh* for parameter set 2 in
Table 5.2.
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5.2 Analysis in two spatial dimensions for compartmentalised

cells

In this section we extend our analysis to two spatial dimensions. We assume hexagonal

cells with six compartments. Applying reaction kinetics to equations (5.1)-(5.8) we get

the system of equations, which can be found in Appendix C.2. We present one sample

equation.

d[Pk]i,j
dt

= −inh5i,jKf5 [Fz∗FmiFmiVang]+i,j · [Pk]i,j

+ en5i,jKd5 [Fz∗FmiFmiVangPk]+i,j

− inh8i,jKf8 [Dsh∗FzFmiFmiVang]+i,j · [Pk]i,j

+ en8i,jKd8 [Dsh∗FzFmiFmiVangPk]+i,j

+ µ7
[Pk]i,j+1 + [Pk]i,j−1 − 2[Pk]i,j

∆x2 ,

(5.12)

where

inh5i,j =
1

1 + A5([Dsh∗FzFmiFmiVang]i,j + [Dsh∗FzFmiFmiVangPk]i,j)
,

en5i,j = 1 + B5([Dsh∗FzFmiFmiVang]i,j + [Dsh∗FzFmiFmiVangPk]i,j)

and inh8 and en8 analogue. The superscript + indicates binding over the cell membrane,

i is the cell number and j (mod 6) the number of the compartment. The diffusion is rep-

resented by µ7 and ∆x describes the distance between two neighbouring compartments

within a cell. Let T, µbio
7 and ∆xbio denote the time, the diffusion coefficient and the side

length of a cell in the biological system. Then, these parameters are related to the parame-

ters in our model by t = kT, µ7 = 1
k µbio

7 and ∆x = p ∆xbio with positive constants p and k.

Rescaling (5.12) yields

d[Pk]i,j
dτ

= F + µsim
7 ([Pk]i,j+1 + [Pk]i,j−1 − 2[Pk]i,j), (5.13)

where µsim
7 = 1

∆x2 µ7 = 1
kp2(∆xbio)2 µbio

7 is the diffusion parameter, F represents the reaction

terms and τ = µsim
7 t. Hence, the relation between the time T in experiments and our

simulation time τ is

T =
1

kµsim
7

τ =
p2(∆xbio)2

µbio
7

τ. (5.14)

We assume p = 1
4 , ∆xbio = 8 µm [19] and µbio

7 = 0.1 µm2/s [22]; then the parameter k

is determined by equation (5.14). In the following we will investigate whether a ligand

imbalance is sufficient to get polarity.
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5.2.1 Numerical simulations

We simulated the system exemplified by equation (5.13) for a hexagonal cell with six com-

partments in Matlab using the ODE solver ode15s. For the intercellular interactions we

apply periodic boundary conditions. Thereby, we ensure that our results are valid for an

array of hexagonal cells with identical initial conditions. For the parameter values we

choose parameter set 2 in Table 5.2 including a factor m to vary the diffusion as shown in

Table 5.3. After scaling of the diffusion coefficient, the parameter set in Table 5.3 corre-

sponds to parameter set 2 in Table 5.2 if m = 16. The total amount of each protein in a cell

is the same as in the previous section.

A3 3.3885

A5 8.5385

A8 0.8

B3 6.0579

B5 10.8

B8 0.5385

K f (10.3185, 5.5385, 6.0385, 2.3535, 13.5095, 1.8358, 10.5385, 11.3882)
Kd (0, 0.9965, 1.1021, 1.4912, 0.6353, 0.4319, 2.7598, 0.4319)
µ m · (0.0625, 0.0625, 0.0019, 0.0625, 0.1250, 0.0625, 0.0625, 0.1250, 0.0019)

Table 5.3: Parameter set 2 with a variable diffusion coefficient. We used these parameter
values for the simulations of the system exemplified by (5.13) in Figures 5.6-5.8.

Figures 5.6 and 5.7 show two initial conditions and the corresponding final states for dif-

ferent values of m. In Figure 5.6(a) we assume an initial ligand imbalance that is symmetric

with respect to the horizontal axis while the other proteins are initially distributed homo-

geneously and there are no complexes initially. For m = 16 this leads to a polarised final

distribution of total Dsh* that is symmetric with respect to the horizontal axis as shown in

Figure 5.6(b). For m = 320 we get a weaker polarised steady state (see Figure 5.6(c)). If we

increase m above a certain threshold, Figure 5.6(d) shows that we get the homogeneous

unpolarised steady state. We only show the times to reach the polarised steady states,

since this is the only type of steady state that has been observed in the Drosophila wing.

The initial ligand distribution in Figure 5.7(a) is asymmetric with respect to the horizontal

axis. The top three compartments have less ligand than the bottom three. This gives rise

to asymmetric final distributions of total Dsh* for sufficiently small m and we get the ho-

mogeneous unpolarised steady state for m above a certain threshold as shown in Figures

5.7(b)-(d). In Figure 5.7(c) total Dsh* is higher in the bottom middle compartment than in
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the two next to it and it is lower in the top middle compartment than in the two next to it

as shown in the illustration. We refer to this state as polarised toward the bottom middle

compartment. It exists for the same parameter values as the polarised steady state that is

symmetric with respect to the horizontal axis in Figure 5.6(c). Numerical analysis suggests

that there exist at least five other polarised steady states that are asymmetric with respect

to the horizontal axis; the states that are polarised toward each of the remaining five com-

partments in the cell.
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Figure 5.6: Final states for a single hexagonal cell with six compartments for the system
exemplified by (5.13). Due to the periodic boundary conditions this cell repre-
sents an array of identical cells with the same initial conditions. We used the
parameter values in Table 5.3 and different values of m. For clarity the com-
partments are divided by black lines. Note the different scales in the different
figures. (a) Initial ligand distribution, which is symmetric with respect to the
horizontal axis; initially, the other proteins are distributed homogeneously; (b)
final distribution of total Dsh* for m = 16; polarised steady state; these param-
eter values correspond after scaling of the diffusion coefficient to parameter
set 2 in the one-dimensional case in Section 5.1; (c) final distribution of total
Dsh* for m = 320, polarised steady state, the polarity of this state is slightly
weaker than of the state in (b); (d) final distribution of total Dsh* for m = 4800,
unpolarised steady state.

Analysing the existence and stability of the system exemplified by (5.13) would be very

complex. Therefore, we conducted a numerical analysis. To this end, we simulated the

system exemplified by equation (5.13) for the parameter values in Table 5.3 and m = 320.

As initial conditions we perturbed the steady states in two different ways. We chose a

symmetric perturbation and an asymmetric perturbation with respect to the horizontal

axis. The results suggest that the polarised steady state that is symmetric with respect to

the horizontal axis is stable to perturbations that are symmetric with respect to the same

axis but unstable to perturbation that are asymmetric with respect to the horizontal axis.

The steady states that are asymmetric with respect to the horizontal axis seem to be stable

to both types of perturbations. Hence, introducing an asymmetry with respect to the hor-
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izontal axis hinders correct polarisation. Including a clone or fluctuations in the field of

cells would yield such an asymmetry.
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Figure 5.7: Final states for a single hexagonal cell – representing a whole array of cells –
with six compartments for the system exemplified by (5.13), initial conditions
that are asymmetric with respect to the horizontal axis, the parameter values in
Table 5.4 and different values of m. For clarity the compartments are divided
by black lines; note the different scales in the different figures; (a) Initial ligand
distribution, which is asymmetric with respect to the horizontal axis; initially,
the other proteins are distributed homogeneously; (b) final distribution of total
Dsh* for m = 1.6; (c) final distribution of total Dsh* for m = 320, the amount
of total Dsh* is higher in the bottom middle compartment than in the two
neighbouring compartments, the amount in the top middle compartment is
lower than in the two neighbouring compartments as shown in the illustration;
(d) final distribution of total Dsh* for m = 3200, unpolarised steady state.

Figure 5.8 shows the result for a clone lacking Fz. As initial condition we assume an initial

ligand imbalance in every cell, while the other proteins are distributed homogeneously.

Furthermore, we include one cell that has no Fz as shown in Figure 5.8(a). On the left and

right boundaries of the 10× 10 field of cells we assumed that all the cells are only half with

their properties corresponding to the boundary cells. For the top and bottom boundaries

we applied periodic boundary conditions. The final state of the system exemplified by

(5.13) for the parameter values in Table 5.3 and m = 320 is shown in Figure 5.8(b). The

clone is indicated by the red border. The cells in the same row as the clonal cell show

polarity but the rest of the cells in the field show a disordered distribution of total Dsh*.

This differs from experimental findings in the Drosophila wing in which the cells close to the

clone show reorientation but the rest of the wing cells are polarised normally (see Figure

1.3(a)).
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Figure 5.8: Result for a 10× 10 field of cells with a Fz-null cell. At the top and bottom
boundary we apply periodic boundary conditions, while at the left and right
boundary we assume we have a column of half a cell with the same proper-
ties as the boundary cells; we chose the parameter values in Table 5.3 with
m = 320. (a) Initial Fz distribution with one cell without Fz; initially there is
a symmetric (with respect to the horizontal axis) Ld imbalance in every cell,
the remaining proteins are distributed homogeneously; (b) distribution of to-
tal Dsh*, the clonal cell is indicated by the red border, the cells in the same row
as the clone show an orientation.

5.3 Analysis of the full spatial model

In this section we consider the full spatial model on a hexagonal domain. Different to the

previous section we do not consider a coarse compartmentalisation of the cells but approx-

imate the full partial differential model for diffusion within the cell membrane. Applying

the law of mass action to reactions (5.1)-(5.8) we get the system of equations. Here we

present the equation for [Pk] as an example. The full system of equations can be found in

Appendix C.3.

We get

∂ [Pk]
∂t

= −inh5 Kf5 [Fz∗FmiFmiVang]+ [Pk] + en5 Kd5 [Fz∗FmiFmiVangPk]+

− inh8 Kf8 [Dsh∗FzFmiFmiVang]+ [Pk]

+ en8 Kd8 [Dsh∗FzFmiFmiVangPk]+ + µ7∇2[Pk],

(5.15)

where

inh5 =
1

1 + A5([Dsh∗FzFmiFmiVang] + [Dsh∗FzFmiFmiVangPk])
,

inh8 =
1

1 + A8([Dsh∗FzFmiFmiVang] + [Dsh∗FzFmiFmiVangPk])
,
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en5 = 1 + B5([Dsh∗FzFmiFmiVang] + [Dsh∗FzFmiFmiVangPk]),

en8 = 1 + B8([Dsh∗FzFmiFmiVang] + [Dsh∗FzFmiFmiVangPk]).

The superscript + indicates binding over the cell membrane and µ7 is the diffusion coef-

ficient. In contrast to the previous sections we now assume continuous distributions of

the protein concentrations. The side length of the domain in our model is given by ∆x. If

T, µbio
7 and ∆xbio denote the time, the diffusion coefficient and the side length of a cell in the

biological system, they are related to the parameters in our model by t = kT, µ7 = 1
k µbio

7

and ∆x = p ∆xbio with positive k and p.

After rescaling, (5.15) can be written in the general form

∂ [Pk]
∂τ

= F + µsim
7 ∇2[Pk], (5.16)

where F represents the reaction terms. The parameter µsim
7 is a diffusion coefficient, with

µsim
7 = p2µ7 = 1

k p2µbio
7 . Furthermore, τ = µsim

7 t. Hence, the simulation time τ is related to

time T in experiments by

T =
1

kµsim
7

τ =
1

p2µbio
7

τ (5.17)

We assume µbio
7 = 0.01 µm2/s [22], ∆xbio = 8 µm [19] and p = 1

4 . Then, the parameter k is

determined by (5.17).

In [29] Le Garrec et al. assume that the cell bridging complexes cannot diffuse. Further-

more, they found out that in this model cytoplasmic diffusion does not significantly alter

the polarisation. Therefore, we assume that all proteins and complexes occur in the mem-

brane and diffuse within this domain unless they are bridging complexes. Hence, the

Laplacian in (5.15) and (5.16) is only applied within the membrane.

5.3.1 Numerical simulations

We numerically approximated the system exemplified by equation (5.16) in Matlab, apply-

ing the finite element method introduced in Section 4.3. Since in this model all proteins and

protein complexes that diffuse do so in the whole membrane, our problem is essentially

one-dimensional. Hence, the finite element code derived in Section 4.3 can be reduced to

the case “ Diffusible in the domain boundary - 1-D Problem with periodic boundary con-

ditions”.

In Section 5.2 we had six compartments, i.e. essentially six dots representing a cell. Here,

the cell consists of six pieces of membrane and the proteins and protein complexes are rep-

resented by functions that are continuous on these membrane pieces. For the cell bridging



Chapter 5. The effect of the initial conditions in the model by Le Garrec et al. 113

complexes the transition at the vertices is not necessarily continuous, for the rest of the

proteins and protein complexes it has to be.

We simulated the system for one cell, applying periodic boundary conditions for the cell

bridging complex formation. Therefore, our setup represents a whole field of cells with

identical initial conditions. The total amounts of the proteins are the same as in the pre-

vious sections, i.e. [Ld]total = 3, [Fz]total = 8, [Fmi]total = 8, [Vang]total = 4, [Dsh]total = 4

and [Pk]total = 4. Our choice of parameter values is presented in Table 5.4. After scaling

the diffusion coefficients they correspond to parameter set 1 in the one-dimensional case

in Section 5.1.

A3 2.9577

A5 8.1077

A8 0.3692

B3 5.6271

B5 10.3692

B8 0.1077

K f (858.8877, 398.1077, 86.6077, 57.9227, 12.3716, 1.405, 10.1077, 10.9574)
Kd (0, 0.5657, 0.6713, 0.3533, 0.2045, 0.001114, 0.9148, 0.001177)
µ 4 · (0.7519, 0.4829, 0.1695, 0.7507, 2.6369, 1.4969, 1.5244, 2.4982, 0.0269)

Table 5.4: Parameter values we used for the simulations of the system exemplified by
(5.16) in Figures 5.9 and 5.10. They correspond to parameter set 1 in Table 5.2.
The factor 4 is derived by the scaling of the diffusion coefficient.

To validate our code we conduct an error convergence study similar to Section 4.3.1. We

calculated a reference solution ur for a uniform mesh with mesh size h = 0.0312 (384 nodes

and elements) and the parameter values in Table 5.4. Initially, we assume a ligand gradient

in the cell, increasing from left to right. The other proteins are initially distributed homo-

geneously and there are no complexes initially. We then compare solutions uh on coarser

meshes to the reference solution. We plotted log(�ur − uh�2) against log(h) in Figure 5.9.

It shows that the error decreases if the mesh is refined, which is what we expect. We do

not expect quadratic convergence, since the finite element solutions for the cell bridging

complexes are not necessarily continuous.
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Figure 5.9: Error convergence study to validate our finite element code for the system
exemplified by (5.16). As reference solution ur we chose the solution for mesh
size h = 0.0312, an initial ligand imbalance and the parameter values in Table
5.4; (a)-(f) Plots of the error of the solution uh for certain mesh sizes h compared
to the reference solution for the six proteins involve in the mechanism. They
show that the error decreases if the mesh is refined.

Figure 5.10 shows different initial conditions and the corresponding final distributions of

total Dsh* for the system exemplified by (5.16) and the parameter values in Table 5.4. In

each case we show a line plot and a two-dimensional image. In Figure 5.10 row A both

the initial condition and the final state are symmetric with respect to the horizontal axis.

We see that an initial ligand imbalance in the cell, which is effectively an initial imbalance

in Fz*, can lead to polarisation of the Dsh* distribution. Figure 5.10 row B shows that an

initial ligand distribution that is asymmetric with respect to the horizontal axis yields an

asymmetric distribution of total Dsh*, which has it’s maximum on one side of the mem-

brane. Note that the line plots in B1 and B3 show the distributions on the top and bottom

half of the cell separately. Increasing the diffusion in row A and B weakens the difference

of total Dsh* between the different parts of the cell. If the diffusion is sufficiently large we

get the unpolarised steady state.

These results support our findings in the previous sections. We can get polarity of a whole

field of cells from an initial ligand imbalance in every cell. However, this imbalance has to

be symmetric with respect to the horizontal axis. Otherwise it will give rise to asymmetric

Dsh* distributions.
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Figure 5.10: Final distribution of total Dsh* for the system exemplified by (5.16) the pa-
rameter values in Table 5.4 and different initial conditions. All protein and
protein complex distributions occur on the membrane. In every case a line
plot and a two-dimensional plot are shown. Row A: An initial ligand imbal-
ance which is symmetric with respect to the horizontal axis yields a polarised
final state of total Dsh* that is symmetric with respect to the horizontal axis;
row B: an initial ligand distribution that is asymmetric with respect to the
horizontal axis leads to an asymmetric final distribution of total Dsh*; the
line plots show top and bottom half of the membrane separately.

5.4 Discussion

In this chapter the model for PCP in the Drosophila wing was proposed by Le Garrec et al.

[29]. It is based on the interactions of the five core proteins Fz, Dsh, Fmi, Pk and Vang

which establish polarity from a global initial ligand gradient. To this end, the proteins are

assumed to act in two negative feedback loops. Our aim was to investigate whether this

mechanism would also polarise the cells for an initial local ligand imbalance instead of a

global gradient. We commenced our analysis in one spatial dimension for a row of cells.

Applying a parameter search method based on the Nelder-Mead algorithm we found pa-

rameter sets that yield polarity from an initial ligand imbalance in every cell. Extending

our investigations to two spatial dimensions, assuming a hexagonal cell which consists

of six compartments, we could confirm these results for certain initial conditions. For an

initial ligand imbalance that is symmetric with respect to the horizontal axis the desired

polarised steady state can arise. Choosing an initial ligand distribution that is asymmetric
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with respect to the horizontal axis, we found that a steady state which is asymmetric with

respect to the horizontal axis exists for the same parameter values as the polarised steady

state that is symmetric with respect to the horizontal axis. Furthermore, numerical analy-

sis suggests that the state that is asymmetric with respect to the horizontal axis is stable,

while the polarised steady state which is symmetric with respect to the horizontal axis is

unstable to perturbations that are asymmetric with respect to the same axis. Our analysis

of the full spatial model supports the need for symmetric initial conditions. We numeri-

cally approximated the system for a hexagonal cell, applying the finite element method.

The proteins and protein complexes were restricted to the membrane. Cell bridging com-

plexes were not allowed to diffuse, while all other proteins and protein complexes could

diffuse in the whole membrane. Simulations revealed that an initial ligand imbalance that

is symmetric with respect to the horizontal axis can give correct polarity, but for the same

parameter values an initial condition that is asymmetric with respect to the horizontal axis

can yield a steady state that is asymmetric with respect to the same axis. We cannot rule

out the possibility that a parameter set does exist for which the state that is symmetric with

respect to the horizontal axis is stable. However, extensive numerical investigations and

our understanding from previous chapters suggests that such a parameter set does not ex-

ist.

Introducing a clone in a field of compartmentalised hexagonal cells yields an asymmetric

initial condition that results in a final state with a disordered distribution of total Dsh*.

Therefore, we were not able to reproduce the experimental results for effects of clones. In

experiments only the cells near the clone are affected while the ones further away polarise

normally.

We conclude that this mechanism does not need a gradient to initiate cell polarisation, an

initial imbalance in every cell also yields polarity. However, the gradient is necessary to

overcome asymmetries with respect to the horizontal axis in the field of cells, which can be

introduced by anomalies in the initial conditions. Since biological systems always include

a certain rate of fluctuations, an initial gradient is essential for this model to reproduce

experimental results.

Considering the time to establish polarity we found great discrepancies between our sim-

ulation times and the time measured in experiments. In the one-dimensional case the sim-

ulation time was far too long while for both two-dimensional representations it was too

short. Experimental results in yeast suggest a second explanation for the short times in the

two-dimensional cases. Due to the relationship in our model between the simulation time

and the time in experiments, assuming a smaller diffusion coefficient for the biological

system would also increase the time calculated for the simulations. This seems reasonable
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since polarity in yeast has been shown to rely on slow membrane diffusion of the proteins

involved [51].



Chapter 6

Modelling the Dachsous system in
the Drosophila abdomen

The models by Amonlirdviman et al. and Le Garrec et al., which we presented in the pre-

vious two chapters focus on the polarising mechanism of the Fz system in the Drosophila

wings. In this chapter we concentrate on the Dachsous (Ds) system in the Drosophila ab-

domen.
2146

flexible cuticle, the pleura, with a small plate of sclerotised
cuticle, the sternite, centered on the ventral midline. The pleura
is covered with a uniform lawn of hairs, all pointing posteri-
orly, whereas the sternite contains a stereotyped pattern of
bristles. en, hh, ci and ptc are all expressed in both the pleura
and sternite in similar patterns as in the tergite (Fig. 7).
However, wg is expressed ventrally in the sternite but not in
the pleura. In the pleura, decapentaplegic (dpp), another gene
induced by Hh in the imaginal discs, is expressed along the
posterior edge of the A compartment, as if in place of wg (Fig.
7D). This situation is reminiscent of the mutually exclusive
expression of dpp and wg in the leg imaginal discs (Brook and
Cohen, 1996; Jiang and Struhl, 1996; Theisen et al., 1996)

where all A cells along the A/P compartment boundary express
ptc, but only specific subpopulations show high levels of dpp,
the remainder expressing wg. Indeed, it appears that Wg
specifies the choice of tergite/sternite rather than pleura
(Shirras and Couso, 1996; our unpublished findings) suggest-
ing that Wg and Dpp act in the abdomen to organize aspects
of the dorso-ventral pattern.

Ectopic Hh induces high levels of ptc expression in
A compartment cells: evidence for gradients of Hh
in the A compartment

In the imaginal discs, A compartment cells near the A/P com-
partment boundaries and hence within range of Hh secreted
by P compartment cells, express high levels of ptc (Phillips et
al., 1990; Capdevila et al., 1994). But cells positioned further
from the boundaries express only low levels of ptc, unless
exposed to ectopic Hh (Capdevila et al., 1994; Tabata and
Kornberg, 1994; Chen and Struhl, 1996). To test whether Hh
also induces A compartment cells in the abdomen to up-
regulate ptc transcription, we used the Flp-out technique
(Struhl and Basler, 1993) to generate marked clones of Hh-
secreting cells and then assayed for expression of a ptc-lacZ
reporter gene. Larvae carrying three transgenes,
Tub!1>y+>hh, hsp70-flp and ptc-lacZ were subjected to a
mild heat shock to generate rare Tub!1>hh cells by excision

G. Struhl, D. A. Barbash and P. A. Lawrence
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Fig. 2. en expression in ventral larval cells. (A) Expression of en-
lacZ in a 3rd-stage larva. The denticle band of the fourth abdominal
(A4) segment and en-lacZ-expressing cells of A3 are apparent. There
are 7 rows of denticles (when compared with the first instar larva, a
new row of fine denticles has been added in front of row 1; this row
(row 0) and row 1 itself are secreted by cells that stain blue and
therefore belong to the P compartment; see also Dougan and
DiNardo (1992). Note that the denticles in rows 0, 1 and 4 point
anteriorly, whereas those in the remaining rows point posteriorly
(detailed in B; see also Fig. 1).

e

Fig. 3. en expression in the ventral histoblast nest. Expression of en-
lacZ in the ventral histoblast nest of a 3rd-stage larva stained for "-
galactosidase. The histoblasts have small diploid nuclei
(arrowheads), which are distinct from the large polyploid epidermal
nuclei (e). This nest has about 14 histoblasts, of which 4 label with
en-lacZ and will make the ventral derivatives (sternite and pleura) of
the P compartment of a single abdominal segment.
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Fig. 4. Compartments and cell types in the tergite of a typical
abdominal segment (A3) The cuticle of the A compartment consists
of an anterior-to-posterior progression of six types distinguished by
ornamentation and pigmentation as follows: a1 = unpigmented,
without hairs; a2 = lightly pigmented with hairs; a3 = lightly
pigmented with hairs and bristles of moderate size; a4 = darkly
pigmented with hairs and bristles of moderate size; a5 = darkly
pigmented with hairs and bristles of large size; a6 = unpigmented
with hairs but no bristles. The P compartment (blue), in which en and
hh are expressed, shows three types of cuticle (p3 = unpigmented
with hairs; p2 = unpigmented without hairs, and p1 = unpigmented
but tessellated). Note that several hairs are secreted per cell and that
all bristles and hairs have a common polarity, pointing posteriorly.
Note also that the boundary between a3 and a4 tissue is not sharp;
instead the intensity of the dark pigment grades out over a few cell
diameters moving anteriorly from the a4 towards the a3 territory.
Finally, the p2, p1 and a1 cuticles are normally folded under the
remainder of the tergite and can only be seen in well-stretched
preparations.

Figure 6.1: Compartments and cell types of a typical abdominal segment. Anterior is at
the top and posterior at the bottom of the figure. The cuticle of the A compart-
ment (black) consists of six different stripes distinguished by pigmentation and
decoration, a1: unpigmented, without hairs; a2: lightly pigmented with hairs;
a3: lightly pigmented with hairs and bristles of moderate size; a4: darkly pig-
mented with hairs and bristles of moderate size; a5: darkly pigmented with
hairs and bristles of large size; a6: unpigmented with hairs but no bristles.
The P compartment (grey) can be divided into three stripes. p3: unpigmented
with hairs; p2: unpigmented without hairs; p1: unpigmented but tessellated.
Note that several hairs are secreted per cell and that all hairs and bristles point
posteriorly. The p2, p1 and a1 cuticles can only be seen in well-stretched prepa-
rations. They are normally folded under the remainder of the segment. Figure
from [43].
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The dorsal epidermis of the adult abdomen is divided into several segments. Each segment

is assigned an anterior (A) and a posterior (P) compartment. An illustration of a typical

segment is shown in Figure 6.1. We see that the A and P compartments consist of different

types of cuticle distinguished by pigmentation and decoration and that most of the surface

is covered with hairs and bristles that all point posteriorly.

As mentioned in Section 1.2 the Ds system includes the proteins Ds, Fat (Ft) and Four-

Jointed (Fj). All three are distributed in gradients. Ds forms an increasing gradient in the

A compartments and a decreasing gradient in the P compartments. The Ft and Fj gradients

decrease in the A compartments and increase in the P compartments. Figure 6.2 shows an

illustration of the Ds and Ft gradients.

P P AA

Ft Ds

Figure 6.2: Illustration of the Ds and Ft gradients in the A and P compartments. Apart
from the sign of the slope all features of the gradients are chosen arbitrarily
since so far they are unknown.

In [7] Casal et al. have found evidence in the Drosophila abdomen that the Ds system acts

in parallel to the Fz system to generate planar cell polarity. Their studies focus on the A

compartment. Hence, the idea of the mechanism is based on a Ds gradient that increases

from anterior to posterior and Fj and Ft gradients that decrease along the same axis. Fj is

assumed to inhibit Ds and activate Ft. Furthermore, Ds and Ft form complexes over the

cell membrane. The authors assume a row of cells in which each cell has a right and a

left side. The polarity of a cell is determined by the difference of cell bridging complexes

between its two ends. The cell will polarise towards the end with the lower number of

complexes.

Figure 6.3 shows an illustration of the mechanism. In this figure as well as in the rest of

this chapter we omit Fj for simplicity. We assume that we have a Ds and a Ft gradient.

In Figure 6.3 the protein names in italics represent the gradients while the abbreviated

protein names illustrate the formation of the cell bridging complexes. We do not specify

the number of cell bridging complexes in each cell.
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j j+1j-1

Dachsous

Fat

Dachsous
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Dachsous

Fat

Ds
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DsFt

Ft

Ft

Ft Ds

FtDs

FtDs

Ft Ds

Ft

Figure 6.3: Illustrations of the mechanism for the Ds system. The protein names in italics
represent the protein gradients and the abbreviated protein names illustrate
the formation of the DsFt complexes, which form over the cell membrane.

Figure 6.4 is taken from [7]. It illustrates the authors’ ideas of the mechanism of the Ds

system and an expected outcome. Omitting the role of Fj and focusing on Ds and Ft we

see that they assume Ds and Ft gradients and indicate that Ds and Ft bind over the cell

membrane. Finally, the number of bridging complexes determines the polarity of each

cell. To this end, they count bound Ds and bound Ft on every cell side and compare the

two. Each cell has a higher amount of bridging complexes on its left side. Furthermore,

the amount of bound Ds on the right side of cell j is the same as on the left side of cell j + 1

and the same is true for bound Ft.
4570

How do cells integrate the two separate inputs
from the Ds and Stan systems?
At first sight, the tergites might seem exceptional, for here the Ds
system can polarise cells in the absence of the Stan system – yet
neither in the ventral pleura nor in the wing do UAS.ft or UAS.ectoDs
clones repolarise cells that lack the Stan system. Thus, we now ask
whether our results represent a fundamental property that is
obscured in other places, or a special case that applies only to the
tergite. Our results tell that the Ds system has an inherent capacity
to confer and propagate PCP, and we rate this positive result as
decisive, suggesting that the apparent failure of the Ds system to act
independently in other parts of the fly could be explained in other
ways. There are several possible explanations.

First, if cells normally integrate separate inputs from the Ds and
Stan systems, the lack of one system might, in some places, interfere
with the response to the other system. For example, in the pleura, as
in the eye, polarity is randomised in the absence of the Stan system
(Zheng et al., 1995; Wehrli and Tomlinson, 1998; Yang et al., 2002;
Lawrence et al., 2004) and it may be impossible for the Ds system
to reorganise polarity where there is such a strong requirement for
the Stan system. Second, there are qualitative differences in the
outputs of the two systems: the Ds system being involved in growth,
cell shape and cell affinity (Bryant et al., 1988; Adler et al., 1998;
Matakatsu and Blair, 2006); the Stan system not affecting these
properties and instead possibly placing asymmetric structures, such
as actin filaments. These differences might help explain why the Ds
system can, even in the absence of the Stan system, reorient hairs in
some tissues. Third, experiments that create conflicts between the
Ds and Stan systems can lead to varying outcomes even in the
tergite, depending on the location of the clones (e.g. fz– UAS.ft
clones, see Results). Perhaps cell polarity is a composite property

(like height in humans!): the orientation of hairs being the
deceptively simple outcome of diverse inputs. At the least our results
show the linear pathway, Ds system j Stan system, is wrong in the
tergite and challenge its universality.

The behaviour of ptc– en– clones is pertinent because they
repolarise surrounding cells by means of both systems. In wild-type
flies, these clones reverse behind in the A compartment. The type of
cuticle made by ptc– en– clones corresponds to the back of the A
compartment and it is here that we believe the Ds activity should
normally peak and Ft activity should be minimal (Casal et al., 2002)
– thus, it makes sense for ptc– en– clones to resemble UAS.ectoDs or
ft– clones. Similarly, as cells in the tergite make hairs that point
towards neighbours with lower Fz activity, it makes sense that ptc–

en– clones behave like fz– clones: this is because all hairs in the wild-
type A compartment point towards the back of the compartment,
where Hh signalling peaks and where our model calls for Fz activity
to be minimal (Lawrence et al., 2004).

The ability of ptc– en– clones to repolarise surrounding cells in
ds– flies provides an intriguing hint as to how Hh signalling might
feed into the Stan system: we have made ptc– en– stan– clones and
these clones do not repolarise in ds– flies (genotype 91), in contrast
to ptc– en– clones. This result suggests that Hh might polarise the
Stan system by acting via Ptc to regulate Fz activity, a mechanism
that would depend on the ptc– en– cells communicating their
altered level of Fz activity to their wild-type neighbours via Stan.
If this were so, then Hh would be a component of the elusive Factor
X!

Finally, we need to address why the Stan system proteins can be
induced to form abnormal asymmetric distributions by manipulating
the Ds system; for example, ft– clones in the wing contain abnormally
polarised cells that also show corresponding changes in the

RESEARCH ARTICLE Development 133 (22)

Fig. 7. A speculative model of the Ds system. The A
compartment, anterior is towards the left. Ft is indicated in
blue and Ds in red. The long arrows indicate the polarity of
each cell: normal in black and reversed in red. In the wild
type (top), there is evidence for a gradient of Ds (Ds, light
red) increasing from anterior to posterior, and of opposing
gradients of Fj and Ft activity (Casal et al., 2002), as
indicated by the size of the letters. Although there is no
gradient of Ft protein (Ft, light blue), we envisage a
gradient of Ft activity (Ft, dark blue), driven by the action
of Fj on Ft. Active Ft could become stabilised in the
membrane of one cell so that it can form trans-
heterodimers with Ds in the next cell (provided that
sufficient Ds is present there). Only those molecules of Ft
and Ds that form trans-heterodimers are shown; free Ft
and Ds, as well as other possible forms of Ds and Ft (e.g.
cis-complexes) are not shown, even though they may be in
excess (the Ds protein gradient peaks posteriorly, but the
gradient of Ds molecules engaged in trans-heterodimers
peaks anteriorly). The polarity of a cell might depend on a
comparison between the number of Ds molecules (red
numbers above the cells) that are engaged in trans-
heterodimers on the anterior and posterior faces of the cell, with the polarity of that cell pointing down the differential (from high to low, as
shown). The probability of forming trans-heterodimers might depend on the availability of active free Ft, as well as on free Ds on abutting cell
surfaces, which in turn could depend on graded Fj activity (driving the production of active Ft), on graded Ds protein accumulation, and even the
possibility that Ds and Ft might form cis-heterodimers on the same cell surface. The middle row shows the effect of a ft– cell, in which all Ds will be
available to make trans-heterodimers with Ft on the facing (anterior) membrane of the wild-type cell on its right. Consequently, in this wild-type
cell, Ft engagement in trans-heterodimers will be promoted along the anterior face. Conversely, the absence of Ft protein in the ft– cell will deprive
Ds on the surface of the abutting wild-type cell of binding partners, and allow abnormally high levels of Ds to be recruited into trans-heterodimers
on the opposite (posterior) face. This excess of Ds molecules will then bind to Ft in the next most (more posterior) cell, and again, by depleting Ds
from its anterior face, will repolarise it. This effect will weaken from cell to cell. The lower row shows a UAS.ft cell that will attract more Ds to the
facing membrane (posterior) of the neighbour on its left, thereby polarising that cell, the effect spreading anteriorwards.

Figure 6.4: Figure from Casal et al. [7]. The Ds, Ft and Fj gradients are indicated by dif-
ferent font sizes. Fj is assumed to mainly act on Ft. More recent results have
shown that Fj acts on both Ds and Ft (correspondence with Peter Lawrence).
Ds (in red) binds to Ft (in blue) over the cell membrane. In each cell the num-
ber of bound Ds and bound Ft are counted which is indicated by the numbers
above the cells. The arrows above the cells depict the direction of polarity of
each cell, pointing from the higher to the lower number of cell bridging com-
plexes.

Based on these ideas we formulate a mathematical model. We assume a row of cells and

each cell has a left and a right side. On each cell side there are certain amounts of Ds (Ft)

which can bind to Ft (Ds) in the adjacent cell side of the neighbouring cell forming a cell

bridging complex DsFt. The chemical reaction underlying this model is given by

Ds + Ft+
R−��−
λ

DsFt,
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with the forward reaction rate R and the backward reaction rate λ. The superscript + in-

dicates that the two reactants are in different cells. Furthermore, we include intracellular

diffusion in the model.

It is unclear whether it is more reasonable to use a model which includes constant protein

production and degradation throughout the polarising process or to choose a conservative

approach that relies purely on intracellular protein movement. Therefore, we consider

both cases and compare their results. This gives us two possibilities to include the ob-

served gradients in the model. For the conservative version, we include the gradients via

the initial conditions; in the version with production and degradation we include the gra-

dients via the production terms.

The production and degradation term is based on the idea that the rate of production de-

pends on the position of a cell in the row but is the same everywhere in that cell. We define

the production rate of Ds in cell j as D̄sj = D̄1 + aj with a positive constant D̄1 which

describes the production rate in cell 1 and aj represents the difference in Ds production be-

tween cell j and cell 1. Similarly, the production rate of Ft in cell j is given by F̄tj = F̄1 + bj

where F̄1 > 0 is the production rate in cell 1 and bj represents the difference between cell

j and cell 1. We choose aj as an increasing sequence with non-negative elements and bj as

a decreasing sequence with non-positive elements. Thereby, we ensure an increasing Ds

gradient and a decreasing Ft gradient. These ideas yield the following system of equations

dDsl
j

dt
= δ(D̄1 + aj − Dsl

j)− R Dsl
j · Ftr

j−1 + λ DsFtl
j + µ1(Dsr

j − Dsl
j),

dDsr
j

dt
= δ(D̄1 + aj − Dsr

j )− R Dsr
j · Ftl

j+1 + λ DsFtr
j + µ1(Dsl

j − Dsr
j ),

dFtl
j

dt
= δ(F̄1 + bj − Ftl

j)− R Dsr
j−1 · Ftl

j + λ DsFtr
j−1 + µ2(Ftr

j − Ftl
j),

dFtr
j

dt
= δ(F̄1 + bj − Ftr

j )− R Dsl
j+1 · Ftr

j + λ DsFtl
j+1 + µ2(Ftl

j − Ftr
j ),

dDsFtl
j

dt
= R Dsl

j · Ftr
j−1 − λ DsFtl

j,

dDsFtr
j

dt
= R Dsr

j · Ftl
j+1 − λ DsFtr

j ,

(6.1)

where the subscripts give the number of the cell. The superscripts are l for the left side

of the cell and r for the right side. Assuming a suitable rescaling, the degradation rate is

included by δ, and µ1 and µ2 represent diffusion.

The aim of this chapter is to gain insight into the interactions of the Ds system by analysing

system (6.1) and comparing our results to experimental observations. We are interested in

the emergence of polarity depending on the parameter values and the initial conditions.

Furthermore, we investigate the potential of the model to overcome anomalies in the initial
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conditions and study its behaviour around clones. We commence in Section 6.1 with the

conservative approach, i.e. δ = 0. Section 6.2 contains the analysis for δ > 0, i.e. the case

which includes protein production and degradation.

6.1 Conservative form of the Ds model

Steady states

In this section we determine conditions for steady states of system (6.1), assuming δ = 0,

i.e. the total amounts of proteins are conserved in each cell.

At steady state, for µ1, µ2 > 0, system (6.1) yields

Dsr
j = Dsl

j and Ftr
j = Ftl

j, (6.2)

as well as

DsFtl
j =

R
λ

Dsl
jFtr

j−1,

DsFtr
j =

R
λ

Dsr
j Ftl

j+1.
(6.3)

This gives us a relationship between the final distributions of DsFt, and Ds and Ft. Initially,

we assume there is no DsFt. The initial conditions for Ds and Ft as well as the parameter

values of R and λ determine the final distributions of Ds and Ft. They are independent

of the diffusion parameters µ1 and µ2. The only homogeneous final distribution for DsFt

we can get is the unpolarised one. To identify conditions for an inhomogeneous polarised

steady state we consider three different ways of determining polarity in a cell. The cell

could detect the difference in bound Ds between its two sides or the difference in bound

Ft or the difference in the sum of bound Ds and bound Ft.

Counting bound Ds and using (6.2) and (6.3) we get

DsFtl
j − DsFtr

j =
R
λ

(Dsl
jFtr

j−1 − Dsr
j Ftr

j+1)

=
R
λ

Dsl
j(Ftl

j−1 − Ftl
j+1). (6.4)

Equation (6.4) implies a relation between the final distributions of Ft and DsFt. If the final

state of Ft is decreasing over the row of cells, we get polarisation of DsFt to the left. If

it is increasing, DsFt polarises to the right. If the steady state of Ft is flat, DsFt does not

polarise. The ratio R
λ influences the strength of the polarity.

Now we assume the cell polarises according to its distribution of bound Ft. Using (6.2)
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and (6.3) yields

DsFtr
j−1 − DsFtl

j+1 =
R
λ

[Dsr
j−1Ftl

j − Dsl
j+1Ftr

j ]

=
R
λ

Ftl
j[Dsr

j−1 − Dsl
j+1]

Hence, if the final distribution of Ds is increasing we get a distribution that is polarised

to the right and if it is decreasing we get polarity to the left. The strength of the polarity

depends on the ratio of R and λ.

If the cell detects the sum of bound Ds and bound Ft, using (6.2) and (6.3) we get

(DsFtl
j + DsFtr

j−1)− (DsFtr
j + DsFtl

j+1) =
R
λ

[Dsl
jFtr

j−1 + Dsr
j−1Ftl

j − Dsr
j Ftl

j+1 − Dsl
j+1Ftr

j ]

=
R
λ

[Dsl
j(Ftl

j−1 − Ftl
j+1) + Ftl

j(Dsl
j−1 − Dsl

j+1)].

Assuming a decreasing final distribution of Ft and an increasing final distribution of Ds we

see that a sufficient condition for polarity to the left is that Dsl
j is sufficiently larger than

Ftl
j for all j. The strength of polarity depends on the ratio R

λ .

The final distribution proposed by Casal et al.

The final DsFt distribution proposed by Casal et al. [7] is shown in Figure 6.4. We see that

the total amounts of cell bridging complexes as well as bound Ds and bound Ft in adjacent

sides of neighbouring cells are the same. In this section we want to investigate whether

system (6.1) can reproduce this distribution. First we calculate the difference of the total

amount of cell bridging complexes between adjacent cell sides of neighbouring cells. With

(6.3) we get

(DsFtr
j + DsFtl

j+1)− (DsFtl
j+1 + DsFtr

j ) = 0.

Hence, at steady state the total amount of cell bridging complexes on the right side of cell

j is the same as on the left side of cell j + 1.

We now consider bound Ds. The condition that we have the same amount of bound Ds

on adjacent sides of neighbouring cells can be written as DsFtr
j = DsFtl

j+1, which yields

Dsr
j Ftl

j+1 = Dsl
j+1Ftr

j , hence
Dsr

j

Dsl
j+1

=
Ftr

j

Ftl
j+1

. Therefore, the final distributions of the two

proteins have to be the same or the two ratios have to be 1. The first case is not possible

because the slopes of the initial gradients have opposite sign and the proteins get both

used up in the same way. The second case would imply that all the final distributions are

homogeneous, because of (6.2) and (6.4). Thus, this model cannot generate the proposed

distribution of bound Ds if we include diffusion.

If µ1 = µ2 = 0 equation (6.2) does not hold. Hence, the ratio could be 1 if Dsr
j = Dsl

j+1
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and Ftr
j = Ftl

j+1. A final state like this can only be reached if the initial distributions al-

ready fulfil these conditions, because the binding rates are the same on each side of the cell

and there is no diffusion. However, this would imply that the cells are already polarised

initially and the whole system might only strengthen this initial polarity. Furthermore, no

diffusion is unlikely in biological systems.

For the same reasons, for δ = 0 we cannot get a final state in which the amount of bound

Ft is the same in adjacent sides of neighbouring cells.

Hence, for δ = 0 system (6.1) cannot reproduce the final distribution proposed by Casal et

al. in [7].

Numerical simulations

We simulated systems (6.1) for δ = 0 for a row of 20 cells using the Matlab ODE solver

ode15s. For the parameter values we chose R = 5, λ = 0.1 and µ1 = µ2 = 0.5. At each

boundary we assume another half a cell in which the initial protein distributions continue

in the obvious way. We ensure that the cell is only half by setting its diffusion coefficients

to zero. To calculate the time to reach the steady states we need to relate the parameters in

our model to the corresponding parameters in the biological system. Similar to previous

chapters, it is µ1 = 1
∆x2 µ̃1 = 1

p2(∆xbio)2 µbio
1 , where ∆x denotes the spatial extension of a cell

in our model from left to right, ∆xbio the side length of a biological cell in the Drosophila

wing, µ1 the diffusion coefficient in our simulations and µbio
1 the diffusion coefficient in the

biological system. The parameter p is a positive constant. The time t in our simulations is

related to the time T in the experiments by

T =
1

kµ1
t =

p2(∆xbio)2

µbio
1

t. (6.5)

We assume ∆xbio = 8 µm [19], µbio
1 = 0.1 µm2/s [22] and p = 1; then the constant k is

determined by (6.5). As mentioned in Section 1.2, in the Drosophila wing it takes 32 h to

polarise the cells. Assuming the time scale for polarisation in the Drosophila abdomen is

similar, the times we get from our simulations are in a reasonable range.

We assume an increasing initial Ds gradient and a decreasing initial Ft gradient as shown

in Figure 6.5(a). Figure 6.5(b) shows the corresponding final distributions of free Ds and

free Ft. The final distributions of the complexes for system (6.1) are shown in Figure 6.5(c)-

(e). In Figure 6.5(c) the bridging complex is assumed to contribute to polarity of the same

cell as its Ds part. We see that in all cells the DsFt distribution is polarised to the left. Figure

6.5(d) shows the results if each cell counts its bound Ft. We get polarity to the right. If we

reverse the initial gradients the distribution of bound Ft polarises to the left (not shown).
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If each cell counts both its bound Ft and bound Ds we get the result in Figure 6.5(e). The

cells in the left half of the row for which the final value of Ds is less than their final Ft value

are polarised to the right; the cells in the right half of the row, with a higher final Ds than

Ft value are polarised to the left. Furthermore, the amount of bridging complexes on the

right of cell j is the same as on the left of cell j + 1.

In all three cases the overall slope of the distribution of the bridging complex seems to

depend on the Ft to Ds ratio; positive if there is more Ft than Ds in the cell and negative if

there is more Ds than Ft.
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Figure 6.5: Simulations for system (6.1) and the parameter values δ = 0, R = 5, λ = 0.1
and µ1 = µ2 = 0.5; (a) Initial condition, (b) final distribution for Ds and Ft for
system (6.1), (c) final distribution of bound Ds which we refer to as DsFt, (d)
final distribution of bound Ft, (e) final distribution of the sum of bound Ds and
bound Ft.

An interesting feature of the Drosophila abdomen is that the Ds and Ft gradients in the P

compartment have opposite slopes than in the A compartment. Nonetheless, the hairs in

both compartments point posteriorly indicating that all the cells are polarised the same

way. The results in Figure 6.5 suggest two hypotheses for solutions of this problem. One

possibility is that the readout differs between the A and the P compartment. The cells in

the A compartment compare the number of bound Ds on their cell membrane to determine

their polarity while the cells in the P compartment use the number of bound Ft (see Figures

6.5(c) and (d)). The second possibility is that the cells in both compartments count the sum

of bound Ds and bound Ft but the ratio between Ds and Ft is different in the different

compartments. In the A compartment the amount of Ds in each cell is greater than the
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amount of Ft while in the P compartment there is more Ft in each cell than Ds (see Figure

6.5(e)). Since in [7] Casal et al. focus on the A compartment we do not further analyse the

case in which each cell counts its bound Ft.

Assuming that every cell counts its bound Ds, equation (6.4) shows that the final DsFt

distribution depends on the final Ft distribution. Therefore, we want to investigate how

the final Ft distribution depends on the initial conditions and the parameter values.

initial condition final Ds and Ft final DsFt
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Figure 6.6: Different initial Ft and Ds distributions and the corresponding final states for
system (6.1), if each cell counts its bound Ds; the value of R varies, the re-
maining parameter values are δ = 0, λ = 0.1 and µ1 = µ2 = 0.5; Row A:
same initial condition as Figure 6.5, different forward reaction rate, R = 50,
stronger polarity, row B: initially Ds is distributed uniformly, R = 5, we get a
decreasing final Ft distribution and DsFt polarity to the left, row C: Ft is ini-
tially distributed uniformly, R = 5, the final Ft distribution is decreasing and
DsFt is polarised to the left.

Figure 6.6 shows different initial distributions for Ds and Ft and the corresponding final

states. The initial gradients shown in Figure 6.6 A1 are the same as in Figure 6.5(a). For

the final states in Figure 6.6 A2 and A3 we chose R = 50 instead of R = 5 and the other

parameter values as above. We see that it takes longer to reach the steady state and that the
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Ds and Ft gradients are slightly steeper than in Figure 6.5(b). Furthermore, the strength of

DsFt polarity is increased as expected from equation (6.4). Increasing the diffusion does not

change the final distribution but reduces the time to reach steady state (not shown). Figure

6.6, rows B and C show the final distribution of Ds, Ft and DsFt if there is either no Ds

gradient (row B) or no Ft gradient (row C). The parameter values are the same as for Figure

6.5. Figures 6.6 B2 and C2 show that both initial conditions can give a decreasing final Ft

gradient. Thus, in both cases we get a polarised distribution of DsFt as we see in Figures

6.6 B3 and C3. If both Ft and Ds are initially distributed uniformly in the row of cells their

final distributions are also flat and we do not get DsFt polarity (not shown). Reversing

the initial gradients yields reversed final gradients for Ds and Ft and DsFt polarity to the

right (not shown). This analysis suggests that if either Ds or Ft are initially distributed

in a gradient we get a final Ft gradient and the sign of its slope depends on the initial

conditions but not the parameter values.

A similar analysis is shown in Figure 6.7 for the case in which every cell counts the sum of

bound Ds and bound Ft. In Figure 6.7 A1 the initial amount of Ds in every cell is greater

than the initial amount of Ft. This yields polarity to the left for every cell as shown in A3.

Increasing the ratio R
λ does not change the steady state significantly but increases the time

to reach it (row B). Increasing the diffusion decreases the time to reach the steady state (not

shown) and the final distributions are the same as in Figure 6.7 row A. If we assume that

there is no Ds gradient we can still get polarity as shown in row C. For a flat Ft distribution

however we get a slight polarity to the right (see D3). The effects on the boundary cells in

D3 are due to the boundary conditions. Decreasing the initial level of Ft affects the total

amount of final cell bridging complexes and the strength of the polarity. It does not alter

the direction of polarisation. Both in row C and D the final distributions of Ds and Ft are

increasing and decreasing gradients, respectively. The final Ds gradient in C2 is less steep

than D2, the final Ft gradient in C2 is steeper than in D2. If the initial distributions for

Ft and Ds are both uniform we do not get polarity (not shown). Assuming an initial Ds

gradient that decreases, an initial Ft gradient that increases and that the initial amount of

Ds is higher in each cell than the initial Ft amount, we get reversed polarity (not shown).

These results suggest that the Ds model is more sensitive to the initial conditions if the cells

polarise according to the sum of bound Ds and bound Ft than if they only count bound Ds.
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Figure 6.7: Different initial Ft and Ds distributions and the corresponding final states for
system (6.1), each cell counts both its bound Ds and bound Ft; we assume
different values for R; the remaining parameter values are δ = 0, λ = 0.1 and
µ1 = µ2 = 0.5; Row A: initial gradients for which the amount of Ds is higher
in each cell than the amount of Ft, R = 5, we get polarity to the left; row B:
same initial conditions as in row A, R = 50, the total amount of cell bridging
complexes is slightly higher than in row A, row C: the initial Ds distribution
is uniform, R = 5, we get polarity to the left, row D: the initial Ft distribution
is uniform, R = 5, both figures in D3 show the final distribution of the cell
bridging complexes, the bottom figure shows an enlargement, we get a weak
polarity to the right.
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Anomalies in the initial conditions

As a next step we include anomalies in the initial conditions and investigate the behaviour

of the model.
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Figure 6.8: Behaviour of system (6.1) for anomalies in the initial conditions; cells polarise
according to their distribution of bound Ds; we chose δ = 0, R = 5, λ = 0.1
and µ1 = µ2 = 0.5; Row A: initially we assume an increasing Ds gradient
and a decreasing Ft gradient and add random values in [0,0.2] and [0,0.1], re-
spectively, left and right side of each cell have the same amounts of proteins,
in the final state the strength of polarity is affected but not the direction; row
B: initially we choose an increasing Ds gradient and a decreasing Ft gradient
and add random values in [0,0.2] and [0,0.1], respectively, left and right side of
each cell have different amounts of proteins; the anomalies can be corrected;
row C: initial conditions with a higher level of noise, we assume an increasing
Ds gradient and a decreasing Ft gradient and add random values in [0,0.4] and
[0,0.2], respectively, left and right side of each cell have the same amounts of
proteins, in the final state the strength as well as the direction of polarity is
affected, cells 1, 11 and 14 point to the right.
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Assuming that the cell polarises according to is distribution of bound Ds, Figure 6.8 shows

two initial conditions with different kinds of anomalies and the corresponding final distri-

butions for Ds, Ft and DsFt. In both initial conditions the gradients are no longer mono-

tone. We added random values in [0,0.2] to the Ds gradient and random values in [0,0.1]

to the Ft gradient. In Figure 6.8 A1 the left and right side of each cell have the same value.

In B1 there are differences between the left and the right sides. The final DsFt distributions

in A3 and B3 show that the anomalies affect the strength of polarisation but not its direc-

tion. These results depend on the initial conditions but are independent of R, λ and the

diffusion parameters. Increasing the strength of the anomalies in the initial conditions will

eventually disrupt polarity as shown in row C of Figure 6.8.

Now we investigate the behaviour of the model for anomalies in the initial conditions if

the polarity of each cell is determined by the sum of bound Ds and bound Ft. Figure 6.9

shows the initial conditions and the corresponding final states.
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Figure 6.9: Initial conditions including anomalies and corresponding final distributions
for system (6.1), each cell counts both its bound Ds and bound Ft; the param-
eter values are δ = 0, R = 5, λ = 0.1 and µ1 = µ2 = 0.5; changing R, λ or the
diffusion parameters does not alter the final direction of polarisation; Row A:
initial Ft and Ds gradients plus random disturbances, the left and right side of
each cell have the same value, in the final state several cells point the wrong
way; row B: initial conditions with smaller disturbances than in row A, left and
right side of each cell have the same protein amounts, in B3 cell 2 is polarised
the wrong way.
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In Figure 6.9 A1 we again added random values in [0,0.2] to the Ds gradient and random

values in [0,0.1] to the Ft gradient, such that the left and the right side of each cell have the

same value. In A3 we see that these anomalies cannot be corrected. Several cells point the

wrong way. In B1 the disturbance in the initial conditions are significantly smaller and both

sides of the cell still have the same values. The final distribution of the bridging complexes

shows that one cell is pointing to the right. Varying R, λ, µ1 or µ2 does not alter the final

direction of polarisation. The results suggest that if each cell orients according to the sum

of bound Ds and bound Ft on its membrane the model is less capable of correcting errors

in the initial conditions. This is an important issue since biological systems are known to

include certain levels of fluctuations.

Analysis of clones

We include clones in the row of cells by changing the initial amount of a protein in a group

of cells. First we consider clones which differ from the wild-type cells in the level of one

protein. In Figure 6.10 we assume the distribution of bound Ds determines the polarity

of the cells. Column 1 shows the initial conditions and column 2 and 3 the corresponding

final distributions of Ds, Ft and DsFt. The direction of the effects of the clones on the wild-

type cells are consistent with the experimental findings we presented in Section 1.2; clones

lacking Ds or with a high level of Ft disturb the polarity in front of the clone (see A3 and

D3) while clones lacking Ft or with a high level of Ds disrupt polarity behind the clone

(see B3 and C3). Within the clone we see no polarity in A3 and the cells at the boundaries

of the clones in B3-D3 are polarised. In experiments the hairs in clones lacking Ds show

a swirling pattern within the clone and hairs in clones lacking Ft do not show any orien-

tation [8]. Cells in clones with higher levels of Ds do not grow any hairs, while the hairs

in clones with higher levels of Ft do not show any orientation [7]. Hence, the behaviour

within the clones in our simulations does not fully match the experimental results.

The range of the effect of the clones varies between one cell in B3, two cells in A3 and C3

and three cells in D3. This does not change if we choose different positive values for R, λ

or the diffusion. If we set both diffusion coefficients to zero we see that for some cases the

effect of the clone is affected by diffusion and for some it is not. For the clone lacking Ds

in row A we do not see an effect if there is no diffusion as shown in Figure 6.11 row A. We

find that choosing µ1 = 0 and µ2 = 10−6 yields the same effect of the clone as in Figure

6.10 A3 but with weaker polarity in the wild-type cells. Tracing the evolution of the final

DsFt distribution we see that first all wild-type cells are polarised to the left and then the

two cells to the left of the clone start to tend to the right and the strength of the polarity of
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the cells to the right of the clone increases. During the whole process the amount of DsFt

on the left side of cell 6 is greater than on the right side of cell 5 and the amount of DsFt

on the right side of cell 12 is always less than on the left side of cell 13. This is due to the

rapid polarisation at the beginning of the process and seems to be independent of param-

eter values. Therefore, the third cells from the clone boundary do not notice a difference

and hence the clone never affects more than two cells.

The effect of a clone lacking Ft in Figure 6.10 row B is not driven by diffusion. For µ1 =
µ2 = 0 we get the same distribution as in B3 with a weaker polarity in the wild-type cells.

The Ds proteins in the clonal cell 8 and the wild-type cell 7 at the clone boundary do not

have any Ft proteins to bind to in the cell to their right. Therefore, the DsFt level on the

right side of these cells is zero. The DsFt level on their left sides is not disturbed. A similar

argument can be applied to cells 10 and 11. Hence, the clone affects only one cell on each

boundary and this is independent of the parameter values.

The effect of a clone with a higher Ds level in Figure 6.10 C3 is due to diffusion. Without

diffusion we get wild-type polarity with higher total DsFt levels in the clonal cells. Choos-

ing µ1 = 0 and µ2 = 10−5 yields the effect of the clone on the wild-type cells. During the

polarisation process we first get the wild-type polarity which subsequently changes to the

DsFt distribution in C3. Due to the higher level of Ds in the clone, Ft is drawn from the

two neighbouring cells. The range of two is independent of the parameter values.

Comparing Figure 6.10 D3 with Figure 6.11 B3 shows that the effect of a clone with a higher

Ft level on the wild-type cells adjacent to the clone does not depend on diffusion. The ef-

fect on the second and third cell from the clone boundary is diffusion driven. In this case

both Ds and Ft need to diffuse to get the effect. If we include diffusion and trace the po-

larisation process we see that at first the distribution in Figure 6.11 B3 arises and then the

effect of the clone becomes obvious in the second and third cell from the clone boundary.

The range of effect does not change if we change the parameter values. Similar to above,

during the whole process ds f tr
4 < ds f tl

5 and therefore cell 4 is not affected. The same ar-

gument explains why cell 14 is never affected.
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Figure 6.10: Simulations for system (6.1) for clones (in grey) which differ from the wild-
type in the level of either Ds or Ft; in column 3 we show the distribution of
bound Ds; the parameter values are δ = 0, R = 5, λ = 0.1 and µ1 = µ2 = 0.5;
Row A: a clone lacking Ds disrupts polarity in front of the clone; row B: a
clone lacking Ft disrupts polarity behind the clone; row C: a clone with a
high Ds level disrupts polarity behind the clone; row D: a clone with a high
Ft level disrupts polarity in front of the clone.
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Figure 6.11: Simulations without diffusion, i.e. µ1 = µ2 = 0, for system (6.1) for clones
(in grey) that differ from the wild type in the level of either Ds or Ft; each cell
counts its bound Ds; the remaining parameter values are δ = 0, R = 5 and
λ = 0.1; The results intend to give insight into the interactions of the cells in
our model but are biologically irrelevant. Therefore, the times to reach steady
state are not stated. Row A: without diffusion a clone lacking Ds does not
affect the wild-type cells around it, row B: without diffusion only part of the
effect of a clone with a higher Ft level occurs.

Experiments for clones lacking both Ft and Ds have shown that the wild-type cells are not

affected by the clone. A clone with higher levels of both Ft and Ds disrupts polarity in

front of the clone [7]. Figure 6.12 shows that the result from our simulations for the case

in which the cells polarise according to their distribution of bound Ds, do not match these

experimental findings. For the clone lacking both Ft and Ds the proteins in the wild-type

cells at the clone boundaries have nothing to bind to within the clone, so both of them

point away from the clone. Setting the diffusion coefficients to zero has revealed that this

effect in cells 7 and 11 is independent of diffusion while the effects in the second and third

cell from the clone boundary are diffusion driven. They are initiated by the polarisation

of cells 7 and 11 which offer their free Ft to these cells to form DsFt. Choosing µ1 = 0

and µ2 = 10−6 yields the effect of the clone with weaker polarity in the wild-type cells.

Increasing R
λ increases the strength of the polarity but does not change the range of the

effect of the clone. Comparing the results of our simulations to the experimental results

suggests that this model lacks a component that represses the effect of the clone. This

conclusion is mainly based on the finding that the effect on the two cells right next to the

clone occurs rapidly and is independent of diffusion. One possible explanation would be
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that the Fz system, which is assumed to act in parallel with the Ds system, hinders the

effect of the clone. Peter Lawrence’s group conducted an experiment with a clone lacking

Ds and Ft in a fly lacking Fz; effects of this clone on the surrounding tissue could not be

detected (personal correspondence with Peter Lawrence).
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Figure 6.12: Simulations for system (6.1) for clones (in grey) which differ from the wild

type in both protein levels, each cell counts its bound Ds, the parameter val-
ues are δ = 0, R = 5, λ = 0.1 and µ1 = µ2 = 0.5; Row A: a clone lacking Ds
and Ft has an effect on the wild-type cells on both sides of the clone, row B:
a clone with high levels of Ds and Ft has an effect on the wild-type cells on
both sides of the clone, the bottom figure in B3 shows an enlargement.

In our simulations, a clone with a higher level of Ds and Ft disturbs the polarity of the

cells in front of the clone as well as the second cell behind the clone as shown in Figures

6.12 row B. This effect occurs because the proteins in cell 11 have so much to bind to in the

clonal cell 10, that there are not enough binding partners for the proteins in cell 12. Hence,

the distribution of DsFt in cell 12 is polarised to the right. This effect is driven by diffusion

while the disturbance of cells 7 and 11 is independent of diffusion. Assuming that R, λ, µ1

and µ2 are positive, the range of the effect of the clone does not depend on the values of

these parameters.

We will now investigate the behaviour around clones if the polarity of the cells is deter-

mined by the distribution of the sum of bound Ds and bound Ft. Figure 6.13 shows an

initial condition with a clone that is lacking Ds and the final distributions of Ds, Ft and

the cell bridging complexes. We see that polarity is affected in the same way on both sides

of the clone. The same is true for the behaviour around the other clones we considered
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in Figure 6.10. Assuming that R, λ, µ1, µ2 are positive, these results are independent of

their values. As described in Section 1.2 experiments have revealed that the clones disrupt

polarity either in front or behind the clone. Hence, our results do not agree with the exper-

imental findings and therefore under our assumptions it is not reasonable to suggest that

the cells orient due to the distribution of the sum of bound Ds and bound Ft.

initial condition final Ds and Ft final bound Ds + bound Ft

A1 A2 A3

0 5 10 15 200

1

2

cell number

D
s

0 5 10 15 200

0.5

1

cell number

Ft

0 5 10 15 200

1

cell number

D
s

0 5 10 15 200

0.2

0.4

cell number

Ft

0 5 10 15 200

0.2

0.4

0.6

0.8

1

cell number

bo
un

d 
D

s 
+ 

bo
un

d 
Ft

T = 30.2h

Figure 6.13: Simulations for system (6.1) for a clone (in grey) lacking Ds, the cells polarise
according to the distribution of the sum of bound Ds and bound Ft, the pa-
rameter values are δ = 0, R = 5, λ = 0.1 and µ1 = µ2 = 0.5.

In this section we have presented a conservative model for the Ds system based on the

interactions of Ds and Ft as proposed by Casal et al. [7]. Our analysis clarified the difference

between three different ways of determining the polarity of a cell. Under our assumptions,

counting Ds seems the most suitable. However, there are still open questions remaining.

We defer further discussion to Section 6.3.

6.2 Ds model including protein production and degradation

Steady states

In this section we determine the steady states for the Ds model (6.1), assuming a degrada-

tion rate δ > 0. At steady state
dDsFtl

j
dt = 0 and

dDsFtr
j

dt = 0. Hence, we get

0 =
dDsl

j

dt
= δ(D̄1 + aj − Dsl

j) + µ1(Dsr
j − Dsl

j), (6.6)

0 =
dDsr

j

dt
= δ(D̄1 + aj − Dsr

j ) + µ1(Dsl
j − Dsr

j ). (6.7)

Reformulating (6.6) for µ1 > 0 yields

Dsr
j =

−δ(D̄1 + aj − Dsl
j)

µ1
+ Dsl

j. (6.8)
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Solving (6.7) for Dsr
j we get

Dsr
j =

µ1Dsl
j + δ(D̄1 + aj)

δ + µ1
. (6.9)

Since δ �= 0, equating (6.8) and (6.9) and solving for Dsl
j yields

Dsl
j = D̄1 + aj.

Substituting this in (6.6), we get

Dsr
j = D̄1 + aj.

Analogous calculations for Ft with µ2 > 0 yield

Ftr
j = Ftl

j = F̄1 + bj.

With these results we can calculate the steady states explicitly. Substitution yields

0 =
dDsFtl

j

dt
= R(D̄1 + aj)(F̄1 + bj−1)− λDsFtl

j

0 =
dDsFtr

j

dt
= R(D̄1 + aj)(F̄1 + bj+1)− λDsFtr

j ,

hence

DsFtl
j =

R
λ

(D̄1 + aj)(F̄1 + bj−1)

DsFtr
j =

R
λ

(D̄1 + aj)(F̄1 + bj+1).
(6.10)

We see that the steady state depends on the ratio of the reaction parameters and the prod-

uct of the production terms of the two proteins. Initial conditions, the degradation rate

and diffusion do not influence it. Furthermore, the final amount of DsFt in a cell is inde-

pendent of Ds in the neighbouring cells.

We consider the same three ways of determining the polarity of a cell as in Section 6.1.

Counting bound Ds, the difference of the equations in (6.10) yields

DsFtl
j − DsFtr

j =
R
λ

(D̄1 + aj)(bj−1 − bj+1). (6.11)

Thus, in this case the strength and direction of the polarisation depends on the difference in

production of Ft between the cells. The model can overcome certain forms of anomalies in

the production rates. Disturbance of the Ds production rate affects the strength of polarity

but not the direction. Anomalies in the Ft production rate can influence the strength of

polarity as well as the direction. The DsFt distribution is polarised to the left if bj−1 −
bj+1 > 0 for all j; it is polarised to the right if bj−1 − bj+1 < 0 for all j. If the production rate
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of Ft is the same in every cell, i.e. bj = 0 for all j, we do not get polarity.

Counting bound Ft, (6.10) yields

DsFtr
j−1 − DsFtl

j+1 =
R
λ

(F̄1 + bj)(aj−1 − aj+1).

Here, the direction of polarisation depends on the production rate of Ds. If it decreases

from left to right of the row of cells we get polarity to the left. Therefore, this approach

seems to be suitable for the P compartment. Since in this work we focus on the A compart-

ment, we omit this case.

If we assume that each cell orients with respect to the sum of bound Ds and bound Ft on

its membrane, (6.10) yields

(DsFtl
j + DsFtr

j−1)− (DsFtr
j + DsFtl

j+1) =
R
λ

[(D̄1 + aj)(bj−1 − bj+1)

+ (F̄1 + bj)(aj−1 − aj+1)].
(6.12)

We see that if the Ds production rate is the same in every cell, a decreasing Ft production

rate will still yield polarity. If we assume the production rate of Ft is the same in every cell,

the increasing Ds production rate will give polarity to the right. It is difficult to determine

from equation (6.12) how the model will behave for anomalies in the production rates of

the proteins. Therefore, we will analyse it numerically. For the same reasons as in Section

6.1, this model cannot reproduce the distribution proposed by Casal et al. [7] as shown in

Figure 6.4.
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Figure 6.14: Steady states derived from the analysis for system (6.1). We assume the
following parameter values: D̄1 = 2.1, F̄1 = 2.5, aj = 0.05(j − 1) and
bj = −0.1(j− 1), note the different scales in the different figures; (a) Steady
state for free Ds and free Ft for any R and λ; (b) steady state for DsFt for R = 5
and λ = 0.1 assuming each cell counts its bound Ds; (c) steady state for DsFt
for R = 0.5 and λ = 0.1, assuming each cell counts its bound Ds; (d) steady
state for the cell bridging complexes for R = 0.5 and λ = 0.1, assuming each
cell counts its bound Ds and bound Ft.

Figure 6.14 shows the steady states for Ds, Ft and the complexes for system (6.1). In Figure

6.14(a) we see the steady state for Ds and Ft which is independent of the parameter values
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of R and λ. If we assume each cell polarises according to its distribution of bound Ds, the

steady state for DsFt , R = 5 and λ = 0.1 is shown in Figure 6.14(b). The DsFt distribution

is polarised to the left in all cells. Furthermore, the final amount of DsFt in each cell is

much greater than the final Ds or Ft amounts. Decreasing R to 0.5 decreases the level of fi-

nal DsFt but does not change the polarity as displayed in Figure 6.14(c). If we assume that

every cell counts the sum of bound Ds and bound Ft on its membrane and choose R = 0.5

and λ = 0.1 we get the steady state in Figure 6.14(d). The distribution of the cell bridging

complexes is polarised to the left in every cell and the amount of cell bridging complexes

on the right side of cell j is the same as on the left side of cell j + 1.

Now we want to investigate the behaviour of the model if we include anomalies in the pro-

duction rates of Ds and Ft. We have seen above that if polarity is determined by bound Ds,

the system can overcome certain anomalies. If each cell counts both bound Ds and bound

Ft we were not able to determine the effect of disturbed production rates from equation

(6.12). Therefore, we consider the parameter values of Figure 6.14 and add random values

to the production rates. Figure 6.15 shows the steady states for the system (6.1) if we as-

sume aj = (0.05 + rj)(j− 1) for all j for the Ds production rate and bj = −(0.1 + qj)(j− 1)
for all j for the Ft production rate, where rj is a random number in [0, 0.01] and qj a random

number in [0, 0.02]. We see in Figure 6.15(b) that the anomalies affect the strength of the

polarity but not the direction. Increasing the level of disturbances in the production rate

will eventually disrupt polarity (not shown). As expected from equation (6.12) the direc-

tion of polarity is independent of the values of R and λ.
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Figure 6.15: Steady states for system (6.1) for anomalies in the production rates of Ds and
Ft; we assume the following parameter values: D̄1 = 2.1, F̄1 = 2.5, aj =
(0.05 + rj)(j − 1) and bj = −(0.1 + qj)(j − 1), with rj a random number in
[0, 0.01] and qj a random number in [0, 0.02]; (a) Steady states for Ds and Ft;
(b) steady state for the sum of bound Ds and bound Ft, all cells point to the
left, the anomalies in the production rate affect the strength of polarity but
not the direction.
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Analysis of clones

In this section we are interested in the effect of clones in the row of cells on the behaviour

of the model. The clonal cells have a different production rate than the wild-type cells. Fig-

ure 6.16 shows the steady states of system (6.1) for Ds, Ft and the cell bridging complex, if

we include three cells that do not produce Ds.

The final distributions of Ds and Ft are shown in Figure 6.16(a). Figure 6.16(b) displays

the final distribution of bound Ds. Comparing the result to Figure 6.11 A3 we see that the

two figures are qualitatively the same. Hence, if we include production in the model, the

behaviour around a clone lacking Ds is the same as without production and without diffu-

sion. Calculating the steady state for the clone lacking Ft and the clones with higher levels

of Ds or Ft we get the same result; the final states if we include protein production and

degradation are the same as in the conservative case if we have no diffusion (not shown).

This is what we would expect from our analysis. The protein interactions are the same

in both versions of the model. If we include production, the steady state is independent

of diffusion, hence we do not expect diffusion driven effects. Figure 6.16(c) supports this

result. It shows the final distribution of the bridging complexes if a cell counts both its

bound Ds and bound Ft. The resulting behaviour is the same as in the case without pro-

duction and without diffusion. In both cases (Figure 6.16(b) and (c)), changing the ratio R
λ

changes the final total amount of the bridging complex in each cell but not the pattern of

polarisation.
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Figure 6.16: Steady states for systems (6.1); we consider R = 0.5, λ = 0.1, D̄1 = 2.1, F̄1 =
2.5, aj = 0.05(j− 1) and bj = −0.1(j− 1) and include a clone that does not
produce Ds; (a) Steady states for Ds and Ft, (b) steady state for DsFt if we
assume that each cell counts its bound Ds; (c) steady state for the sum of
bound Ds and bound Ft.

In our simulations the wild-type cells on both sides of a clone show the same behaviour.

Furthermore, the range of the effect of the clone is fixed. Hence, these results are different

from the experimental observations described in Section 1.2.
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The analysis in this section has shown that if we include constant production of the pro-

teins the Ds model can generate wild-type polarity and correct certain anomalies in the

initial conditions, but it cannot reproduce the behaviour around clones.

6.3 Discussion

In this chapter we presented a model for the Ds system in one spatial dimension for a row

of cells. We considered several different cases. We distinguished between a conservative

approach and including protein production and degradation. Furthermore, we assumed

three different ways of determining the polarity of the cells. We focused on the A compart-

ment of an abdominal segment and investigated how these different versions of the model

behave for an increasing Ds gradient and a decreasing Ft gradient. In many cases we also

analysed the potential to overcome anomalies and the behaviour around clones. We found

out that if the cells polarise according to the distribution of bound Ft, we get polarity in the

wrong direction both for the conservative approach and if we include protein production

and degradation. Therefore, this method of determining polarity seems more suitable for

the P compartment.

If we assume that each cell counts the sum of its bound Ds and bound Ft we get wild-type

polarity for the conservative approach as well as if we include protein production and

degradation. For a positive degradation rate this version of the model can correct small

anomalies in the production rates; the initial conditions do not influence the final states. If

we set the degradation rate to zero the model has difficulties correcting anomalies in the

initial conditions. The effects around clones that differ from the wild-type cells in the level

of either Ds or Ft are similar in both cases. The wild-type cells around a clone are affected

in the same way on both sides of the clone. Furthermore, the range of the effect of the clone

is fixed. These results do not agree with experimental observations.

Assuming the distribution of bound Ds determines the polarity of the cells, we get the

wild-type polarity in the right direction for the conservative approach and if we choose a

positive degradation rate. In addition, certain anomalies in the protein gradients can be

overcome in both versions of the model. Considering clones in the row of cells that differ

from the wild-type cells in the level of one protein, we found out that the behaviour of the

model for a positive protein production rate is the same as for the conservative approach

without diffusion. In most cases these results do not agree with the experimental findings.

If we assume no protein production and positive diffusion the direction of the disturbance

of the clones that are different concerning one protein agrees with the experimental find-
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ings. The range of the effect of the clone varies between one and three cells depending

on the type of the clone but independent of the parameter values. The behaviour of our

model for clones that have either a higher level of Ds and Ft or lack both proteins does not

match the experimental observations.

Out of the different cases we have analysed, the conservative approach combined with

counting bound Ds to determine the polarity of the cells seems the best way to reproduce

the experimental observations in the A compartment of an abdominal segment. However,

it leaves many questions unanswered. The simulations for clones in the row of cells have

shown that this model cannot yield longer-range propagation. The range of the effect of

the clones is fixed for each type of clone. Experiments show a variability of the range of the

effect of the clone. As mentioned above, Fj is assumed to inhibit Ds and activate Ft. Clones

lacking either Ds or Ft show a longer-range effect if the surrounding tissue lacks Fj than in

a wild-type background. A second issue is that in our simulations the clone lacking both

Ds and Ft has an effect on the wild-type cells which is partly even independent of diffu-

sion. Experiments have shown that such a clone does not affect the cells around it. This

suggests that our model is missing a component that suppresses the effect of the clone.

This problem together with the inability of the model to produce longer-range effects are

the main issues to address when improving the model.

Apart from the abdomen the Ds system also occurs in the Drosophila wings and eyes. The

idea of the mechanism in the eyes is essentially the same as in the abdomen. Experiments

have shown that either the Ds or the Fj gradient are redundant [40]. A uniform Fj distri-

bution combined with a Ds gradient or vice versa yield polarity. Reversing the directions

of the gradients reverses polarity and if both proteins are distributed uniformly the cells

do not polarise. To compare this result with our model we have to remember that Fj is as-

sumed to enhance Ft, which yields a Ft gradient. Therefore, in our model this result would

mean that either the Ds or the Ft gradient are redundant. Our results show that out of the

cases we have studied, the approach without protein production and in which we count

bound Ds to determine the polarity of the cells is the only version of the model that can

reproduce these experimental findings.

In the Drosophila wing, Ft is distributed uniformly and the Ds and Fj gradients have op-

posite sign compared to the A compartment of an abdominal segment. A uniform Ds

distribution can still yield polarity everywhere in the wing apart from the most proximal

region and this is also true in the absence of a Fj gradient [31]. Together with further exper-

iments analysing the role of Ds and Fj gradients in the wings [40], these findings suggest

that the Ds system does not play an essential role in polarising the wing cells. This raises

another question. It is still unclear whether the mechanism of the Ds system is common to
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the different parts of the fruit fly. So far, evidence for the Ds system acting in parallel to the

Fz system to generate PCP has only been found in the abdomen.



Chapter 7

Discussion

Planar cell polarity is an important feature of the development of vertebrates and inver-

tebrates; its failure can lead to a variety of diseases like congenital deafness syndromes,

neural tube closure defects, respiratory diseases and polycystic kidneys. In this work we

focused on the fruit fly Drosophila melanogaster, particularly its wings and abdomen. There,

PCP is detected by the orientation of hairs. The underlying mechanism of PCP is still

mostly unknown. Experimentalists mainly focus on two protein networks, the Fz system

– also referred to as the core proteins – and the Ds system. So far, two possibilities have

been proposed of how these two systems interact; one idea is that the Fz system acts down-

stream of the Ds system while the second one is that the two systems act in parallel. The

study of the behaviour of wild-type cells next to clones has provided most of the insight

into the mechanism of PCP. The effects of clones are remarkably reproducible; in most

cases one sees reorientation of the hairs in the wild-type tissue either in front or behind the

clone, depending on which protein the clone is lacking.

Existing models of PCP consider the Fz system. Since the precise molecular interactions

of the different proteins involved are mostly unknown, these models test various assump-

tions for the mechanism. We followed a different approach. We were interested in the

features of whole classes of models that yield PCP. Therefore, we proposed two types of

models, a non-conservative feedback and diffusion model and a conservative model, in-

corporating a minimum of biological detail. Furthermore, we considered two examples

of the model class represented by the conservative model. These approaches were intro-

duced by Amonlirdviman et al. [3] and Le Garrec et al. [29] to model the establishment

of PCP in the Drosophila pupal wing. Concerning the Ds system we proposed a model for

PCP in the Drosophila abdomen. It is based on the experimental findings by Casal et al. [7],

which suggest that the Ds system can yield PCP on its own.

144
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To investigate the properties of the five models, we analysed them in one spatial dimen-

sion for a row of cells, applying algebraic as well as numerical analysis of the steady states.

For the feedback and diffusion model and the models by Amonlirdviman and Le Garrec

we extended our analysis to two spatial dimensions. To numerically approximate the so-

lutions of the full PDE systems of the two latter approaches we applied the finite element

method, taking into account the different diffusive behaviour of the different proteins and

protein complexes of the Fz system.

Our analysis of the feedback and diffusion model in Chapter 2 revealed that it can yield

polarity as well as an unpolarised period two pattern. Both steady states are stable for

strong feedback and weak diffusion. Polarity arises from homogeneous initial conditions.

Increasing the inhomogeneity in the initial conditions yields the period two pattern. Ro-

bustness of the polarised steady state can be increased by increasing the strength of the

feedback or decreasing the diffusion. Clones initiate the unpolarised period two pattern in

the surrounding wild-type cells. This is inconsistent with experimental findings in which

the direction of the hairs of cells next to a clone might be disturbed but they still have an

orientation.

The conservative model in Chapter 3 shows different properties. This approach can yield

polarity, either from an initial imbalance in every cell or via a wave. However, it cannot

exhibit an inhomogeneous pattern in a row of cells. Therefore, the polarised steady state

is more robust to anomalies in the initial conditions than in the feedback and diffusion

model. Furthermore, cells next to a clone show polarity. The disturbance of the direction

of those cells by clones lacking activity or with excessive activity resembles the effect of f z

clones on the surrounding wild-type tissue in experiments.

For both models we have chosen a generic approach, omitting biological details to ensure

that our results are relevant for whole classes of models. This course of action raises several

questions. In both models, increasing the diffusion above a certain threshold, depending

on the strength of the feedback, disrupts polarity. Therefore, the strength of intracellular

diffusion is a key component, which affects the behaviour of the models. It would be in-

teresting to investigate experimentally whether changing intracellular movement affects

the overall pattern of planar polarity in a system such as the Drosophila wing. Another

matter of interest would be to implement a specific type of protein transport into our mod-

els and investigate whether this changes the overall behaviour of the systems. A possible

mechanism would be polarised transport along microtubules [39]. Furthermore, there is

biochemical evidence which suggest the involvement of endocytosis in planar cell polarity.

However, in Drosophila no genetic evidence for it has been found, yet [13].

In the two models we refer to the variables as amounts of “activity”, leaving open the ques-
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tion of what they represent in terms of specific molecular species. A concrete assignment of

molecular identity to the activities in our models depends on the answer to a key question:

what is it that polarises cells? In wild-type tissue of the Drosophila larval wing, the core

PCP proteins become distributed asymmetrically in the membrane of cells shortly before

the hairs start to grow. However, recently reported experiments show that Drosophila lar-

val wings that are mutant for certain core proteins do not display asymmetric distribution

of the core proteins, but nonetheless show normal hair development [45]. These results

suggest that mechanisms other than asymmetric localisation of the core PCP proteins may

be polarising the cells, such as asymmetric distribution of certain protein complexes or

other intracellular components.

A third term that occurs in the analysis of these two models is the “strength of polarity”. So

far, in experiments polarity is detected by the orientation of structures like hairs or bristles.

Therefore, only a direction but not a strength can be observed. In our models, however we

see that the parameter values and initial conditions determine the direction as well as the

strength of polarity. If we were able to assign a value to the strength of the polarity of a cell

it would help to compare experimental findings with our results and give us the opportu-

nity to rule out parameter sets, which again would give us a better idea of the underlying

feedback mechanism.

The models by Amonlirdviman et al. [3] and Le Garrec et al. [29] are specific examples for

the model class represented by the conservative model. These two approaches are based

on the assumption that the distribution of the core proteins determines the polarity of a

cell. In Chapter 4 we analysed the model by Amonlirdviman et al.. It consists of two main

parts, a feedback loop and a persistent global bias. Our aim was to determine the relative

importance of the two components to generate polarity. We found out that either of the

two components is sufficient to obtain polarity. However, if we only rely on the feedback

loop we need an initial cue that can be amplified. Furthermore, the analysis in two spatial

dimensions for compartmentalised cells suggests that the desired polarised steady state is

unstable and only arises from an initial cue that is symmetric with respect to the horizontal

axis. Therefore, the system is very sensitive to any kinds of fluctuations, which are likely

to occur in nature. Including clones in the field of cells yields an almost completely disor-

dered behaviour of the wild-type cells in the field, which is inconsistent with experimental

findings where the cells further away from the clone show normal polarity. Investigations

of the full spatial model support this result. Therefore, the persistent global bias is not nec-

essary to amplify polarity but without it the model cannot correct anomalies in the initial

conditions. Furthermore, the results of the analysis of the full spatial model suggest that

the proposed feedback loop might be more suitable to amplify an initial imbalance in Vang
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than in Fz. However, this theory has yet to be investigated in more detail.

The model by Le Garrec et al. was analysed in Chapter 5. It consists of two feedback

loops that amplify an initial global ligand gradient. Such a gradient has a similar effect to

the persistent global bias in the model by Amonlirdviman et al.. Analogous analysis as in

Chapter 4 showed that the gradient is not needed to generate polarity but that it is neces-

sary to ensure robustness of the desired polarised steady state. For a row of cells in one

spatial dimension we found different sets of parameter values for which the system po-

larises from an initial ligand imbalance in every cell. Investigations in two spatial dimen-

sions for compartmentalised cells, however suggested that the desired polarised steady

state is unstable and only arises from initial conditions that are symmetric with respect to

the horizontal axis. Therefore, this steady state is very sensitive to fluctuations which are

common in biological systems. A clone in the field of cells yields a completely disordered

orientation of the surrounding cells, which does not match the experimental results. The

analysis of the full spatial model supports these results; an initial ligand imbalance that

is asymmetric with respect to the horizontal axis yields a similarly asymmetric final state,

while for the same parameter values an initial condition that is symmetric with respect to

the horizontal axis generates the desired polarity.

We see that both the model by Amonlirdviman et al. and the model by Le Garrec et al. need

a global bias to ensure correct polarity. Considering the diffusion coefficient we found that

for both models its value has to be below a certain threshold; otherwise the unpolarised

steady state arises. The models differ mostly in their feedback mechanism. Amonlirdvi-

man et al. assume that Vang, Pk and their complexes inhibit the binding of Dsh to Fz. Le

Garrec et al. propose that Fz* and its complexes inhibit the binding of Vang to Fmi, while

Dsh* complexes inhibit the binding of Pk to Vang. Hence the first feedback mechanism is

driven by Vang and Pk while the second is driven by Fz* and Dsh*. It would be interesting

to investigate in more detail whether the different feedback mechanisms have different ef-

fects on the final states of the models.

So far, we have discussed two approaches that represent certain classes of PCP models and

two specific models that are examples for one of the model classes. All four approaches

have shown that increasing the diffusion coefficient above a certain threshold leads to

disruption of polarity. In all models we have calculated the times it takes to reach the po-

larised steady state. In many cases assuming the diffusion coefficients given in [22] led

to simulation times that were in a reasonable range compared to the times measured in

experiments. For the two-dimensional representations of the models by Amonlirdviman

et al. and Le Garrec et al. however, we obtained simulation times that were far too short.

A possible explanation is that the diffusion in the biological system is slower than as-
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sumed. This idea is motivated by findings in yeast, which show that correct polarity relies

on membrane diffusion being 1-2 orders of magnitude slower than the usually assumed

speed [51].

The second key element of the four models is the feedback loop. We have seen that the

model by Amonlirdviman et al. and the model by Le Garrec et al. have different feedback

loops that both yield polarity. Together with the results of the analysis of the conservative

model, this suggests that there is a wide range of feedback loops that can give the desired

polarisation. Further theoretical as well as experimental analysis of the properties of the

feedback loop would help to narrow the range of possible feedback loops.

An important finding in Chapters 4 and 5 is that in both specific models the biases are

not necessary to amplify polarity but to ensure robustness of the models. Since the con-

servative model in Chapter 3 is a generalised form of these two models we would expect

to see the same sensitivity to the initial conditions in two spatial dimensions. It would be

interesting to investigate this matter further.

Overall, these results suggest that a feedback loop amplifying an initial imbalance in every

cell cannot ensure robust polarisation of a field of cells. Therefore, the important question

is whether nature uses some sort of global bias or a completely different mechanism. In the

latter case we would have to start from scratch. If a global bias is imposed on the system

further analysis of the amplifying mechanism would be of minimal interest, since finding

the bias would be sufficient to explain the establishment of PCP. Recent work by Simons

et al. [41] provides a first attempt at finding such a bias. Their results show that the inter-

actions of Fz and Dsh are stabilised by pH and charge-dependent interactions of Dsh with

the cell membrane. Hence, electrochemical cues could provide a bias.

Apart from the Fz system we also considered the Ds system. In Chapter 6 we proposed

a model for the interactions of Ds and Ft in the Drosophila abdomen, based on the results

of Casal et al. [7]. We analysed different versions of the model, with and without protein

production and degradation. Furthermore, we considered three different ways of deter-

mining the polarity of a cell. We discovered that out of these different possibilities, the

conservative version (without protein production and degradation) combined with polar-

isation of the cells according to their bound Ds distribution reproduces the experimental

findings the best. However, it still leaves some uncertainties. Particularly, the behaviour

around clones does not entirely match experimental findings. Contrary to observations in

the Drosophila abdomen the range of the effect of the clones on the surrounding cells in our

model is fixed; we do not get propagation. Furthermore, a clone lacking both Ft and Ds

does not influence the neighbouring wild-type cells in experiments. Our model could not

reproduce this result. It seems that our model is lacking a factor which can suppress or
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override the effect of such a clone.

Further insight into the mechanism of the Ds system has been provided by experimental

investigations in the Drosophila eye. Experiments in the Drosophila wing however, sug-

gested that the Ds system is not essential to the polarisation of the wing cells. This in-

dicates that the mechanisms polarising the cells in the different structures of the fruit fly

might not be the same. Therefore, it is important to determine which protein interactions

are common to the different structures of Drosophila and which are specific to certain parts.

So far the findings that the Ds system can polarise the cells in the absence of the Fz system

have only been obtained in the Drosophila abdomen. It has yet to be shown that they are

valid in other parts of the fruit fly.

In summary, we have presented five models considering different aspects of the process

of planar cell polarity. What is known so far can mainly be split into three modules. The

first one includes the interactions of Fz, Fmi and Vang, which act cell non-autonomously.

The second module describes the cell autonomous function of Dsh, Pk and Dgo to yield

an asymmetric protein distribution. The third module covers the Ds system, i.e. the inter-

actions of Ds, Ft and Fj. What remains unclear is how these modules are coordinated to

ensure robust polarisation of the cells. The Ds system might act upstream of the Fz system

or in parallel. Furthermore, it seems that the cell non-autonomous module of the Fz sys-

tem already polarises the cells, while the cell-autonomously acting module just stabilises

the polarity. In this context the feedback and diffusion model as well as the conservative

model can be used to describe any of the three modules, depending on how we interpret

the term ”activity”. The models by Amonlirdviman et al. and Le Garrec et al. mainly fo-

cus on the second module, while the model for the Ds system considers the third module.

Considering the lack of models for the first module and the possibility that it polarises the

cells on its own, in future work it would be interesting to investigate the interactions of

Fz, Vang and Fmi further. Recent experimental papers have focused on this issue, raising

the question whether Fmi acts actively to amplify polarity or passively by supporting the

binding of Fz to Vang [9, 47, 55]. Theoretical studies might help to investigate this issue

further.

We see that the work in this thesis has given some insight into the establishment of planar

cell polarity while posing several new problems at the same time. It will be necessary to

further investigate the raised questions both experimentally and theoretically.
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Nelder-Mead algorithm

In Chapters 4 and 5 we apply a parameter search based on the Nelder-Mead algorithm. It

was first introduced by Nelder and Mead [33] to solve unconstrained optimisation prob-

lems. It is a direct search method which relies on comparing the function values at the

n + 1 vertices xi of a simplex. To find a point with a better function value the vertices

of the simplex are changed by reflection, expansion, contraction and shrinkage. For our

problem the vertices x1, . . . , xn+1 are n + 1 parameter sets. The objective function f is min-

imised. To obtain the value of f (xi) we calculate the homogeneous unpolarised steady

state and the eigenvector with the largest real part λi of the given system for the param-

eter set xi. Then f (xi) = −λi. All our parameter values have to be positive. Hence, our

problem is constrained. We need to adapt the Nelder-Mead method; whenever a compo-

nent becomes negative we project it to the boundaries of our domain. Choosing α, β, γ

and σ as the reflection, expansion, contraction and shrink coefficients we get the following

algorithm:

Algorithm A.1

(S.0) Choose α > 0, β > 0, 0 < γ < 1 and 0 < σ < 1 and get a starting simplex.

(S.1) Sort the vertices x1, x2, ..., xn+1 of the current simplex so that their function values

f1, f2, ..., fn+1 are in ascending order.

(S.2) Compute the centroid of the n best points x̄ := 1
n ∑n

i=1 xi and the reflection point xr :=
x̄ + α(x̄− xn+1). If xr is out of the domain: projection to the boundary. Evaluate fr = f (xr).

(S.3) If f1 ≤ fr ≤ fn, set xn+1 := xr, go to (S.7).
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(S.4) If fr < f1, calculate the expansion point xe := x̄ + β(xr − x̄). If xe is out of the domain:

projection to the boundary. Evaluate fe = f (xe). If fe < fr set xn+1 = xe and got to (S.7);

otherwise (if fe ≥ fr) set xn+1 := xr and go to (S.7).

(S.5) If fr ≥ fn perform a contraction

(a) Inside: If fr ≥ fn, perform an inside contraction, i.e. calculate xic := x̄ + γ(xn+1 − x̄)
and evaluate fic = f (xic). If fic < fn+1, set xn+1 := xic and go to (S.7); otherwise go

to (S.6).

(b) Outside: If fr < fn+1, perform an outside contraction , i.e. calculate xoc := x̄ + γ(xr −
x̄). If xoc is out of the domain: projection to the boundary. Evaluate foc = f (xoc). If

foc ≤ fr, set xn+1 := xoc and go to (S.7); otherwise go to (S.6).

(S.6) Perform a shrink step. Evaluate f at the n points vi = x1 + σ(xi − x1), i = 2, ..., n + 1. The

(unordered) vertices of the simplex at the next iteration consist of x1, v2, ..., vn+1.

(S.7) If the stopping conditions are not satisfied go to (S.1).

As parameter values we use α = 1, β = 2, γ = 0.5 and σ = 0.5. To generate the starting

simplex we choose a point x0 ∈ Rn
+, where n is the number of parameters in our model.

Setting p =
√

n+1+n−1
n
√

2
and q =

√
n+1−1
n
√

2
, a vertex xi of the starting simplex {x0, ..., xn} is

given by

xi = x0 + pei +
n

∑
k=1
k �=i

qek for all i = 1, ..., n.

The parameter search is stopped if we have found a parameter set with a sufficiently large

λi.



Appendix B

Systems of equations for the model
by Amonlirdviman et al.

Here, we present the complete systems of equations for our analysis of the model by

Amonlirdviman et el. [3] in Chapter 4. The reactions for the model are given in equations

(4.1)-(4.10).

B.1 One-dimensional system

We assume a row of cells in which each cell has a left and a right side. Applying the law of

mass action to (4.1)-(4.10) we get the corresponding system of ODEs. The subscripts indi-

cate the cell number and the superscripts the side of the cell, l for left and r for right. The

diffusion coefficients are included by µk for k = 1, . . . , 6 and ∆x denotes the extension of a

cell from left to right. The square brackets indicate that we are dealing with concentrations.

The scaling factor for the feedback loop is given by

Bl
i = 1 + Kb(Kpk [Pk]li + [VangPk]li + [FzVangPk]li + [DshFzVangPk]li

+ Kva([Vang]li + [FzVang]li + [DshFzVang]li))
Kp

Br
i = 1 + Kb(Kpk [Pk]ri + [VangPk]ri + [FzVangPk]ri + [DshFzVangPk]ri

+ Kva([Vang]ri + [FzVang]ir + [DshFzVang]ir))Kp ,

and for the persistent global bias we have

M1 < 1.
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The resulting system of ODEs is

d[Dsh]li
dt

= −R1 [Dsh]li [Fz]li + λ1Bl
i [DshFz]li − R5 [Dsh]li [FzVang]ri−1

+ λ5 Bl
i [DshFzVang]ri−1 − R8 [Dsh]li [FzVangPk]ri−1

+ λ8Bl
i [DshFzVangPk]ri−1 + µ1

([Dsh]ri − [Dsh]li)
∆x2 ,

d[Dsh]ri
dt

= −R1 [Dsh]ri [Fz]ri + M1λ1Br
i [DshFz]ri − R5 [Dsh]ri [FzVang]li+1

+ M1λ5Br
i [DshFzVang]li+1 − R8 [Dsh]ri [FzVangPk]li+1

+ M1λ8Br
i [DshFzVangPk]li+1 + µ1

([Dsh]li − [Dsh]ri )
∆x2 ,

d[Pk]li
dt

= −R3 [Vang]li [Pk]li + λ3 [VangPk]li − R7[FzVang]li [Pk]li

+ λ7 [FzVangPk]li − R10 [DshFzVang]li [Pk]li

+ λ10 [DshFzVangPk]li + µ2
([Pk]ri − [Pk]li)

∆x2 ,

d[Pk]ri
dt

= −R3 [Vang]ri [Pk]ri + λ3 [VangPk]ri − R7 [FzVang]ri [Pk]ri

+ λ7 [FzVangPk]ri − R10 [DshFzVang]ri [Pk]ri

+ λ10 [DshFzVangPk]ri + µ2
([Pk]li − [Pk]ri )

∆x2 ,

d[Fz]li
dt

= −R1 [Dsh]li [Fz]li + λ1Bl
i [DshFz]li − R2 [Fz]li [Vang]ri−1

+ λ2 [FzVang]ri−1 − R6 [Fz]li [VangPk]ri−1 + λ6 [FzVangPk]ri−1

+ µ3
([Fz]ri − [Fz]li)

∆x2 ,

d[Fz]ri
dt

= −R1 [Dsh]ri [Fz]ri + M1λ1Br
i [DshFz]ri − R2 [Fz]ri [Vang]li+1

+ λ2 [FzVang]li+1 − R6 [Fz]ri [VangPk]li+1 + λ6 [FzVangPk]li+1

+ µ3
([Fz]li − [Fz]ri )

∆x2 ,

d[Vang]li
dt

= −R2 [Fz]ri−1 [Vang]li + λ2 [FzVang]li − R3 [Vang]li [Pk]li

+ λ3 [VangPk]li − R4 [DshFz]ri−1[Vang]li + λ4 [DshFzVang]li

+ µ4
([Vang]ri − [Vang]li)

∆x2 ,
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d[Vang]ri
dt

= −R2 [Fz]li+1 [Vang]ri + λ2 [FzVang]ri − R3 [Vang]ri [Pk]ri

+ λ3 [VangPk]ri − R4 [DshFz]li+1 [Vang]ri + λ4 [DshFzVang]ri

+ µ4
([Vang]li − [Vang]ri )

∆x2 ,

d[DshFz]li
dt

= R1 [Dsh]li [Fz]li − λ1 Bl
i [DshFz]li − R4 [DshFz]li [Vang]ri−1

+ λ4 [DshFzVang]ri−1 − R9 [DshFz]li [VangPk]ri−1

+ λ9 [DshFzVangPk]ri−1 + µ5
([DshFz]ri − [DshFz]li)

∆x2 ,

d[DshFz]ri
dt

= R1 [Dsh]ri [Fz]ri − M1λ1Br
i [DshFz]ri − R4 [DshFz]ri [Vang]li+1

+ λ4 [DshFzVang]li+1 − R9 [DshFz]ri [VangPk]li+1

+ λ9 [DshFzVangPk]li+1 + µ5
([DshFz]li − [DshFz]ri )

∆x2 ,

d[VangPk]li
dt

= R3 [Vang]li [Pk]li − λ3 [VangPk]li − R6 [Fz]ri−1 [VangPk]li

+ λ6 [FzVangPk]li − R9 [DshFz]ri−1 [VangPk]li

+ λ9 [DshFzVangPk]li + µ6
([VangPk]ri − [VangPk]li)

∆x2 ,

d[VangPk]ri
dt

= R3 [Vang]ri [Pk]ri − λ3 [VangPk]ri − R6 [Fz]li+1 [VangPk]ri

+ λ6 [FzVangPk]ri − R9 [DshFz]li+1 [VangPk]ri

+ λ9 [DshFzVangPk]ri + µ6
([VangPk]li − [VangPk]ri )

∆x2 ,

d[FzVang]li
dt

= R2 [Fz]ri−1 [Vang]li − λ2 [FzVang]li − R5 [Dsh]ri−1 [FzVang]li

+ M1λ5Br
i−1 [DshFzVang]li − R7 [FzVang]li [Pk]li + λ7 [FzVangPk]li ,

d[FzVang]ri
dt

= R2 [Fz]li+1 [Vang]ri − λ2 [FzVang]ri − R5 [Dsh]li+1[FzVang]ri

+ λ5Bl
i+1 [DshFzVang]ri − R7 [FzVang]ri [Pk]ri + λ7 [FzVangPk]ri ,



Appendix B. Systems of equations for the model by Amonlirdviman et al. 155

d[DshFzVang]li
dt

= R4 [DshFz]ri−1 [Vang]li − λ4 [DshFzVang]li + R5 [Dsh]ri−1 [FzVang]li

− M1λ5Br
i−1 [DshFzVang]li − R10 [DshFzVang]li [Pk]li

+ λ10 [DshFzVangPk]li ,
d[DshFzVang]ri

dt
= R4 [DshFz]li+1[Vang]ri − λ4 [DshFzVang]ri + R5 [Dsh]li+1 [FzVang]ri

− λ5 Bl
i+1[DshFzVang]ri − R10 [DshFzVang]ri [Pk]ri

+ λ10 [DshFzVangPk]ri ,

d[FzVangPk]li
dt

= R6 [Fz]ri−1 [VangPk]li − λ6 [FzVangPk]li + R7 [FzVang]li [Pk]li

− λ7 [FzVangPk]li − R8 [Dsh]ri−1 [FzVangPk]li
+ M1λ8Br

i−1 [DshFzVangPk]li ,
d[FzVangPk]ri

dt
= R6 [Fz]li+1 [VangPk]ri − λ6 [FzVangPk]ri + R7 [FzVang]ri [Pk]ri

− λ7 [FzVangPk]ri − R8 [Dsh]li+1 [FzVangPk]ri
+ λ8 Bl

i+1[DshFzVangPk]ri ,

d[DshFzVangPk]li
dt

= R8 [Dsh]ri−1 [FzVangPk]li − M1λ8Br
i−1 [DshFzVangPk]li

+ R9 [DshFz]ri−1 [VangPk]li − λ9 [DshFzVangPk]li
+ R10 [DshFzVang]li [Pk]li − λ10 [DshFzVangPk]li ,

d[DshFzVangPk]ri
dt

= R8 [Dsh]li+1 [FzVangPk]ri − λ8 Bl
i+1[DshFzVangPk]ri

+ R9 [DshFz]li+1 [VangPk]ri − λ9 [DshFzVangPk]ri
+ R10 [DshFzVang]ri [Pk]ri − λ10 [DshFzVangPk]ri .

B.2 Two-dimensional system for compartmentalised cells

Now we assume we have a field of hexagonal cells, which are subdivided into 6 triangular

compartments. Applying the law of mass action to the reactions (4.1)-(4.10) we get the

corresponding system of ODEs for the change of the protein concentrations in compart-

ment j(mod 6) of cell i. The superscript + indicates binding over the cell membrane. Note

that cell bridging complexes are counted in the same cell as their Vang part. The square

brackets indicate concentrations of the proteins and protein complexes. The parameters

µk for k = 1, . . . , 6 represent diffusion while ∆x denotes the distance between two neigh-
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bouring compartments in a cell. We omit the persistent global bias. The scaling factor B,

representing the feedback, is given by

Bi,j = 1 + Kb(Kpk[Pk]i,j + [VangPk]i,j + [FzVangPk]i,j + [DshFzVangPk]i,j

+ Kva([Vang]i,j + [FzVang]i,j + [DshFzVang]i,j))Kp .

This yields the following system of equations

d[Dsh]i,j
dt

= −R1 [Dsh]i,j [Fz]i,j + λ1Bi,j [DshFz]i,j − R5 [Dsh]i,j [FzVang]+i,j

+ λ5Bi,j [DshFzVang]+i,j − R8 [Dsh]i,j [FzVangPk]+i,j

+ λ8Bi,j [DshFzVangPk]+i,j

+ µ1
([Dsh]i,j+1 + [Dsh]i,j−1 − 2[Dsh]i,j)

∆x2 ,

d[Pk]i,j
dt

= −R3 [Vang]i,j [Pk]i,j + λ3 [VangPk]i,j − R7 [Pk]i,j [FzVang]i,j

+ λ7 [FzVangPk]i,j − R10 [Pk]i,j [DshFzVang]i,j

+ λ10 [DshFzVangPk]i,j + µ2
([Pk]i,j+1 + [Pk]i,j−1 − 2[Pk]i,j)

∆x2 ,

d[Fz]i,j
dt

= −R1 [Dsh]i,j [Fz]i,j + λ1Bi,j [DshFz]i,j − R2 [Fz]i,j [Vang]+i,j

+ λ2 [FzVang]+i,j − R6 [Fz]i,j [VangPk]+i,j + λ6 [FzVangPk]+i,j

+ µ3
([Fz]i,j+1 + [Fz]i,j−1 − 2[Fz]i,j)

∆x2 ,

d[Vang]i,j
dt

= −R2 [Vang]i,j[Fz]+i,j + λ2 [FzVang]i,j − R3 [Vang]i,j [Pk]i,j

+ λ3 [VangPk]i,j − R4 [Vang]i,j [DshFz]+i,j + λ4 [DshFzVang]i,j

+ µ4
([Vang]i,j+1 + [Vang]i,j−1 − 2[Vang]i,j)

∆x2 ,

d[DshFz]i,j
dt

= R1 [Dsh]i,j [Fz]i,j − λ1Bi,j [DshFz]i,j − R4 [DshFz]i,j [Vang]+i,j

+ λ4 [DshFzVang]+i,j − R9 [DshFz]i,j [VangPk]+i,j

+ λ9 [DshFzVangPk]+i,j

+ µ6
([DshFz]i,j+1 + [DshFz]i,j−1 − 2[DshFz]i,j)

∆x2 ,
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d[VangPk]i,j
dt

= R3 [Vang]i,j [Pk]i,j − λ3 [VangPk]i,j − R6 [VangPk]i,j [Fz]+i,j

+ λ6 [FzVangPk]i,j − R9 [VangPk]i,j [DshFz]+i,j

+ λ9 [DshFzVangPk]i,j

+ µ5
([VangPk]i,j+1 + [VangPk]i,j−1 − 2[VangPk]i,j)

∆x2 ,

d[FzVang]i,j
dt

= R2 [Vang]i,j [Fz]+i,j − λ2 [FzVang]i,j − R5 [FzVang]i,j [Dsh]+i,j

+ λ5B+
i,j [DshFzVang]i,j − R7 [Pk]i,j [FzVang]i,j + λ7 [FzVangPk]i,j,

d[DshFzVang]i,j
dt

= R4 [Vang]i,j [DshFz]+i,j − λ4 [DshFzVang]i,j + R5 [FzVang]i,j [Dsh]+i,j

− λ5B+
i,j [DshFzVang]i,j − R10 [Pk]i,j [DshFzVang]i,j

+ λ10 [DshFzVangPk]i,j,

d[FzVangPk]i,j
dt

= R6 [VangPk]i,j [Fz]+i,j − λ6 [FzVangPk]i,j + R7 [Pk]i,j [FzVang]i,j

− λ7 [FzVangPk]i,j − R8 [FzVangPk]i,j [Dsh]+i,j

+ λ8B+
i,j [DshFzVangPk]i,j,

d[DshFzVangPk]i,j
dt

= R8 [FzVangPk]i,j [Dsh]+i,j − λ8B+
i,j [DshFzVangPk]i,j

+ R9 [DshFz]+i,j [VangPk]i,j − λ9 [DshFzVangPk]i,j

+ R10 [Pk]i,j [DshFzVang]i,j − λ10 [DshFzVangPk]i,j.

B.3 Full two-dimensional system

As a last step we consider the full system of PDEs for a hexagonal cell, which we get by

applying the law of mass action to reactions (4.1)-(4.10). Different to the previous sections

we now assume a continuous distribution of the protein and protein complex concentra-

tions in the regions were they diffuse. For Dsh and Pk this region is the whole cell. Fz,

Vang, DshFz and VangPk are restricted to the membrane and therefore the Laplacian in

the corresponding equations is only applied in the membrane, indicated by the subscript
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M. The cell bridging complexes FzVang, DshFzVang, FzVangPk and DshFzVangPk do not

leave the edge of the membrane that is common to the two cells they connect. Hence, the

Laplacian in the corresponding PDEs is only applied in this regime, indicated by the sub-

script S. We omit the persistent global bias. The superscript + indicates that the reactants

are in different cells. The resulting cell bridging complex is counted in the same cell as its

Vang part. The diffusion coefficients are given by µk for k = 1, . . . , 10. The square brackets

indicate protein and protein complex concentrations. For the feedback we introduce the

scaling factor B by

B = 1 + Kb(Kpk[Pk] + [VangPk] + [FzVangPk] + [DshFzVangPk]

+ Kva([Vang] + [FzVang] + [DshFzVang]))Kp .

Hence the full system of PDEs is given by

∂ [Dsh]
∂t

= −R1 [Dsh][Fz] + λ1B [DshFz]− R5 [Dsh][FzVang]+

+ λ5B [DshFzVang]+ − R8 [Dsh][FzVangPk]+

+ λ8B [DshFzVangPk]+ + µ1 ∇2[Dsh],

∂ [Pk]
∂t

= −R3 [Vang][Pk] + λ3 [VangPk]− R7 [FzVang][Pk] + λ7 [FzVangPk]

− R10 [DshFzVang][Pk] + λ10 [DshFzVangPk] + µ2 ∇2[Pk],

∂ [Fz]
∂t

= −R1 [Dsh][Fz] + λ1B [DshFz]− R2 [Fz][Vang]+ + λ2 [FzVang]+

− R6 [Fz][VangPk]+ + λ6 [FzVangPk]+ + µ3 ∇2
M[Fz],

∂ [Vang]
∂t

= −R2 [Fz]+ [Vang] + λ2 [FzVang]− R3 [Vang][Pk] + λ3 [VangPk]

− R4 [DshFz]+ [Vang] + λ4 [DshFzVang] + µ4 ∇2
M[Vang],

∂ [DshFz]
∂t

= R1 [Dsh][Fz]− λ1B [DshFz]− R4 [DshFz][Vang]+

+ λ4 [DshFzVang]+ − R9 [DshFz][VangPk]+

+ λ9 [DshFzVangPk]+ + µ5 ∇2
M[DshFz],

∂ [VangPk]
∂t

= R3 [Vang][Pk]− λ3 [VangPk]− R6 [Fz]+ [VangPk] + λ6 [FzVangPk]

− R9 [DshFz]+ [VangPk] + λ9 [DshFzVangPk] + µ6 ∇2
M[VangPk],
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∂ [FzVang]
∂t

= R2 [Fz]+ [Vang]− λ2 [FzVang]− R5 [Dsh]+ [FzVang]

+ λ5B+ [DshFzVang]− R7 [FzVang][Pk] + λ7 [FzVangPk]

+ µ7 ∇2
S[FzVang],

∂ [DshFzVang]
∂t

= R4 [DshFz]+ [Vang]− λ4 [DshFzVang] + R5 [Dsh]+ [FzVang]

− λ5B+ [DshFzVang]− R10 [DshFzVang][Pk]

+ λ10 [DshFzVangPk] + µ8 ∇2
S[DshFzVang],

∂ [FzVangPk]
∂t

= R6 [Fz]+ [VangPk]− λ6 [FzVangPk] + R7 [FzVang][Pk]

− λ7 [FzVangPk]− R8 [Dsh]+ [FzVangPk]

+ λ8B+ [DshFzVangPk] + µ9 ∇2
S[FzVangPk],

∂ [DshFzVangPk]
∂t

= R8 [Dsh]+ [FzVangPk]− λ8B+ [DshFzVangPk]

+ R9 [DshFz]+ [VangPk]− λ9 [DshFzVangPk]

+ R10 [DshFzVang][Pk]− λ10 [DshFzVangPk]

+ µ10∇2
S[DshFzVangPk].
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Systems of equations for the model
by Le Garrec et al.

We present the systems of equations used for the analysis of the approach by Le Garrec et

al. [29], which we conduct in Chapter 5. The corresponding reactions are given by (5.1)-

(5.8).

C.1 One-dimensional system

First we assume a row of cells in which every cell has a left and a right side. We get

the system of ODEs by applying the law of mass action to (5.1)-(5.8). The superscripts

l and r indicate the cell side, left and right, respectively. The subscript denotes the cell

number. Diffusion is included in the equations by µk for k = 1, . . . , 9 and ∆x represents

the intracellular distance between left and right side of a cell. To indicate that we are

dealing with protein and protein complex concentrations we included square brackets.

The inhibition scalings are given by

inh3l
i =

1
1 + A3([Fz∗]li + [Fz∗Fmi]li + [Fz∗FmiFmiVang]li + [Fz∗FmiFmiVangPk]li)

,

inh3r
i =

1
1 + A3([Fz∗]ri + [Fz∗Fmi]ri + [Fz∗FmiFmiVang]ri + [Fz∗FmiFmiVangPk]ri )

,

inh5l
i =

1
1 + A5([Dsh∗FzFmiFmiVang]li + [Dsh∗FzFmiFmiVangPk]li)

,

inh5r
i =

1
1 + A5([Dsh∗FzFmiFmiVang]ri + [Dsh∗FzFmiFmiVangPk]ri )

,

inh8l
i =

1
1 + A8([Dsh∗FzFmiFmiVang]li + [Dsh∗FzFmiFmiVangPk]li)

,

160
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inh8r
i =

1
1 + A8([Dsh∗FzFmiFmiVang]ri + [Dsh∗FzFmiFmiVangPk]ri )

,

en3l
i = 1 + B3([Fz∗]li + [Fz∗Fmi]li + [Fz∗FmiFmiVang]li + [Fz∗FmiFmiVangPk]li),

en3r
i = 1 + B3([Fz∗]ri + [Fz∗Fmi]ri + [Fz∗FmiFmiVang]ri + [Fz∗FmiFmiVangPk]ri ),

en5l
i = 1 + B5([Dsh∗FzFmiFmiVang]li + [Dsh∗FzFmiFmiVangPk]li),

en5r
i = 1 + B5([Dsh∗FzFmiFmiVang]ri + [Dsh∗FzFmiFmiVangPk]ri ),

en8l
i = 1 + B8([Dsh∗FzFmiFmiVang]li + [Dsh∗FzFmiFmiVangPk]li),

en8r
i = 1 + B8([Dsh∗FzFmiFmiVang]ri + [Dsh∗FzFmiFmiVangPk]ri ).

This yields the following system of equations

d[Ld]li
dt

= −Kf1 [Fz]li [Ld]li + µ1
([Ld]ri − [Ld]li)

∆x2 ,

d[Ld]ri
dt

= −Kf1 [Fz]ri [Ld]ri + µ1
([Ld]li − [Ld]ri )

∆x2 ,

d[Fz]li
dt

= −Kf1 [Fz]li [Ld]li + µ2
([Fz]ri − [Fz]li)

∆x2 ,

d[Fz]ri
dt

= −Kf1 [Fz]ri [Ld]ri + µ2
([Fz]li − [Fz]ri )

∆x2 ,

d[Fz∗]li
dt

= −Kf2 [Fz∗]li [Fmi]li + Kd2 [Fz∗Fmi]li + Kf1 [Fz]li [ld]li

+ µ3
([Fz∗]ri − [Fz∗]li)

∆x2 ,

d[Fz∗]ri
dt

= −Kf2 [ fz∗]ri [Fmi]ri + Kd2 [Fz∗Fmi]ri + Kf1 [Fz]ri [ld]ri

+ µ3
([Fz∗]li − [Fz∗]ri )

∆x2 ,

d[Fmi]li
dt

= −Kf2 [Fz∗]li [Fmi]li + Kd2 [Fz∗Fmi]li

− inh3l
iKf3 [Vang]li [Fmi]li + en3l

iKd3 [FmiVang]li

+ µ4
([Fmi]ri − [Fmi]li)

∆x2 ,
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d[Fmi]ri
dt

= −Kf2 [Fz∗]ri [Fmi]ri + Kd2 [Fz∗Fmi]ri

− inh3r
i Kf3 [Vang]ri [Fmi]ri + en3r

i Kd3 [FmiVang]ri

+ µ4
([Fmi]li − [Fmi]ri )

∆x2 ,

d[Vang]li
dt

= −inh3l
iKf3 [Vang]li [Fmi]li + en3l

iKd3 [FmiVang]li

+ µ5
([Vang]ri − [Vang]li)

∆x2 ,

d[Vang]ri
dt

= −inh3r
i Kf3 [Vang]ri [Fmi]ri + en3r

i Kd3 [FmiVang]ri

+ µ5
([Vang]li − [Vang]ri )

∆x2 ,

d[Dsh]li
dt

= −Kf6 [Dsh]li [Fz∗FmiFmiVang]li

+ Kd6 [Dsh∗FzFmiFmiVang]li
− Kf7 [Dsh]li [Fz∗FmiFmiVangPk]li

+ Kd7 [Dsh∗FzFmiFmiVangPk]li + µ6
([Dsh]ri − [Dsh]li)

∆x2 ,

d[Dsh]ri
dt

= −Kf6 [Dsh]ri [Fz∗FmiFmiVang]ri

+ Kd6 [Dsh∗FzFmiFmiVang]ri
− Kf7 [Dsh]ri [Fz∗FmiFmiVangPk]ri

+ Kd7 [Dsh∗FzFmiFmiVangPk]ri + µ6
([Dsh]li − [Dsh]ri )

∆x2 ,

d[Pk]li
dt

= −inh5l
iKf5 [Fz∗FmiFmiVang]ri−1 [Pk]li

+ en5l
iKd5 [Fz∗FmiFmiVangPk]ri−1

− inh8l
iKf8 [Dsh∗FzFmiFmiVang]ri−1 [Pk]li

+ en8l
iKd8 [Dsh∗FzFmiFmiVangPk]ri−1

+ µ7
([Pk]ri − [Pk]li)

∆x2 ,
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d[Pk]ri
dt

= −inh5r
i Kf5 [Fz∗FmiFmiVang]li+1 [Pk]ri

+ en5r
i Kd5 [Fz∗FmiFmiVangPk]li+1

− inh8r
i Kf8 [Dsh∗FzFmiFmiVang]li+1 [Pk]ri

+ en8r
i Kd8 [Dsh∗FzFmiFmiVangPk]li+1

+ µ7
([Pk]li − [Pk]ri )

∆x2 ,

d[Fz∗Fmi]li
dt

= Kf2 [Fz∗]li [Fmi]li − Kd2 [Fz∗Fmi]li

− Kf4 [Fz∗Fmi]li [FmiVang]ri−1 + Kd4 [Fz∗FmiFmiVang]li

+ µ8
([Fz∗Fmi]ri − [Fz∗Fmi]li)

∆x2 ,

d[Fz∗Fmi]ri
dt

= Kf2 [Fz∗]ri [Fmi]ri − Kd2 [Fz∗Fmi]ri

− Kf4 [Fz∗Fmi]ri [FmiVang]li+1 + Kd4 [Fz∗FmiFmiVang]ri

+ µ8
([Fz∗Fmi]li − [Fz∗Fmi]ri )

∆x2 ,

d[FmiVang]li
dt

= inh3l
iKf3 [Vang]li [Fmi]li − en3l

iKd3 [FmiVang]li

− Kf4 [Fz∗Fmi]ri−1 [FmiVang]li + Kd4 [Fz∗FmiFmiVang]ri−1

+ µ9
([FmiVang]ri − [FmiVang]li)

∆x2 ,

d[FmiVang]ri
dt

= inh3r
i Kf3 [Vang]ri [Fmi]ri − en3r

i Kd3 [FmiVang]ri

− Kf4 [Fz∗Fmi]li+1 [FmiVang]ri + Kd4 [Fz∗FmiFmiVang]li+1

+ µ9
([FmiVang]li − [FmiVang]ri )

∆x2 ,

d[Fz∗FmiFmiVang]li
dt

= Kf4 [Fz∗Fmi]li [FmiVang]ri−1 − Kd4 [Fz∗FmiFmiVang]li

− inh5r
i−1Kf5 [Fz∗FmiFmiVang]li [Pk]ri−1

+ en5r
i−1Kd5 [Fz∗FmiFmiVangPk]li

− Kf6 [Dsh]li [Fz∗FmiFmiVang]li
+ Kd6 [Dsh∗FzFmiFmiVang]li ,
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d[Fz∗FmiFmiVang]ri
dt

= Kf4 [Fz∗Fmi]ri [FmiVang]li+1 − Kd4 [Fz∗FmiFmiVang]ri

− inh5l
i+1Kf5 [Fz∗FmiFmiVang]ri [Pk]li+1

+ en5l
i+1Kd5 [Fz∗FmiFmiVangPk]ri

− Kf6 [Dsh]ri [Fz∗FmiFmiVang]ri
+ Kd6 [Dsh∗FzFmiFmiVang]ri ,

d[Dsh∗FzFmiFmiVang]li
dt

= Kf6 [Dsh]li [Fz∗FmiFmiVang]li − Kd6 [Dsh∗FzFmiFmiVang]li

− inh8r
i−1Kf8 [Dsh∗FzFmiFmiVang]li [Pk]ri−1

+ en8r
i−1Kd8 [Dsh∗FzFmiFmiVangPk]li ,

d[Dsh∗FzFmiFmiVang]ri
dt

= Kf6 [Dsh]ri [Fz∗FmiFmiVang]ri − Kd6 [Dsh∗FzFmiFmiVang]ri

− inh8l
i+1Kf8 [Dsh∗FzFmiFmiVang]ri [Pk]li+1

+ en8l
i+1Kd8 [Dsh∗FzFmiFmiVangPk]ri ,

d[Fz∗FmiFmiVangPk]li
dt

= inh5r
i−1Kf5 [Fz∗FmiFmiVang]li [Pk]ri−1

− en5r
i−1Kd5 [Fz∗FmiFmiVangPk]li

− Kf7 [Dsh]li [Fz∗FmiFmiVangPk]li
+ Kd7 [Dsh∗FzFmiFmiVangPk]li ,

d[Fz∗FmiFmiVangPk]ri
dt

= inh5l
i+1Kf5 [Fz∗FmiFmiVang]ri [Pk]li+1

− en5l
i+1Kd5 [Fz∗FmiFmiVangPk]ri

− Kf7 [Dsh]ri [Fz∗FmiFmiVangPk]ri
+ Kd7 [Dsh∗FzFmiFmiVangPk]ri ,

d[Dsh∗FzFmiFmiVangPk]li
dt

= Kf7 [Dsh]li [Fz∗FmiFmiVangPk]li

− Kd7 [Dsh∗FzFmiFmiVangPk]li
+ inh8r

i−1Kf8 [Dsh∗FzFmiFmiVang]li [Pk]ri−1

− en8r
i−1Kd8 [Dsh∗FzFmiFmiVangPk]li ,
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d[Dsh∗FzFmiFmiVangPk]ri
dt

= Kf7 [Dsh]ri [Fz∗FmiFmiVangPk]ri

− Kd7 [Dsh∗FzFmiFmiVangPk]ri
+ inh8l

i+1Kf8 [Dsh∗FzFmiFmiVang]ri [Pk]li+1

− en8l
i+1Kd8 [Dsh∗FzFmiFmiVangPk]ri .

C.2 Two-dimensional system for compartmentalised cells

Now, we consider a field of hexagonal cells with 6 compartments each. Applying the law

of mass action to (5.1)-(5.8) we get the ODEs for the change of the protein concentrations

in compartment j(mod 6) of cell i. The distance between two neighbouring compartments

within a cell is given by ∆x, while µk for k = 1, . . . , 9 represent diffusion. Binding over the

cell membrane is indicated by the superscript +. Cell bridging complexes are counted in

th same cell as their Fz part. The square brackets are included to indicate concentrations

of the proteins and protein complexes. The inhibition scalings are given by

inh3i,j =
1

1 + A3([Fz∗]i,j + [Fz∗Fmi]i,j + [Fz∗FmiFmiVang]i,j + [Fz∗FmiFmiVangPk]i,j)
,

inh5i,j =
1

1 + A5([Dsh∗FzFmiFmiVang]i,j + [Dsh∗FzFmiFmiVangPk]i,j)
,

inh8i,j =
1

1 + A8([Dsh∗FzFmiFmiVang]i,j + [Dsh∗FzFmiFmiVangPk]i,j)
,

en3i,j = 1 + B3([Fz∗]i,j + [Fz∗Fmi]i,j + [Fz∗FmiFmiVang]i,j + [Fz∗FmiFmiVangPk]i,j),

en5i,j = 1 + B5([Dsh∗FzFmiFmiVang]i,j + [Dsh∗FzFmiFmiVangPk]i,j),

en8i,j = 1 + B8([Dsh∗FzFmiFmiVang]i,j + [Dsh∗FzFmiFmiVangPk]i,j).

Hence, we get the following system of equations

d[Ld]i,j
dt

= −Kf1[Fz]i,j[Ld]i,j + µ1
([Ld]i,j+1 + [Ld]i,j−1 − 2[ld]i,j)

∆x2 ,

d[Fz]i,j
dt

= −Kf1[Fz]i,j[Ld]i,j + µ2
([Fz]i,j+1 + [Fz]i,j−1 − 2[Fz]i,j)

∆x2 ,

d[Fz∗]i,j
dt

= −Kf2[Fz∗]i,j[Fmi]i,j + Kd2[Fz∗Fmi]i,j + Kf1[Fz]i,j[ld]i,j

+ µ3
([Fz∗]i,j+1 + [Fz∗]i,j−1 − 2[Fz∗]i,j)

∆x2 ,
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d[Fmi]i,j
dt

= −Kf2[Fz∗]i,j[Fmi]i,j + Kd2[Fz∗Fmi]i,j

− inh3i,jKf3[Vang]i,j[Fmi]i,j + en3i,jKd3[FmiVang]i,j

+ µ4
([Fmi]i,j+1 + [Fmi]i,j−1 − 2[Fmi]i,j)

∆x2 ,

d[Vang]i,j
dt

= −inh3i,jKf3[Vang]i,j[Fmi]i,j + en3i,jKd3[FmiVang]i,j

+ µ5
([Vang]i,j+1 + [Vang]i,j−1 − 2[Vang]i,j)

∆x2 ,

d[Dsh]i,j
dt

= −Kf6[Dsh]i,j[Fz∗FmiFmiVang]i,j + Kd6[Dsh∗FzFmiFmiva]i,j

− Kf7[Dsh]i,j[Fz∗FmiFmiVangPk]i,j

+ Kd7[Dsh∗FzFmiFmiVangPk]i,j

+ µ6
([Dsh]i,j+1 + [Dsh]i,j−1 − 2[Dsh]i,j)

∆x2 ,

d[Pk]i,j
dt

= −inh5i,jKf5[Fz∗FmiFmiVang]+i,j [Pk]i,j

+ en5i,jKd5[Fz∗FmiFmiVangPk]+i,j

− inh8i,jKf8[Dsh∗FzFmiFmiVang]+i,j [Pk]i,j

+ en8i,jKd8[Dsh∗FzFmiFmiVangPk]+i,j

+ µ7
([Pk]i,j+1 + [Pk]i,j−1 − 2[Pk]i,j)

∆x2 ,

d[Fz∗Fmi]i,j
dt

= Kf2[Fz∗]i,j[Fmi]i,j − Kd2[Fz∗Fmi]i,j

− Kf4[Fz∗Fmi]i,j[FmiVang]+i,j + Kd4[Fz∗FmiFmiVang]i,j

+ µ8
([Fz∗Fmi]i,j+1 + [Fz∗Fmi]i,j−1 − 2[Fz∗Fmi]i,j)

∆x2 ,

d[FmiVang]i,j
dt

= inh3i,jKf3[Vang]i,j[Fmi]i,j − en3i,jKd3[FmiVang]i,j

− Kf4[Fz∗Fmi]+i,j [FmiVang]i,j

+ Kd4[Fz∗FmiFmiVang]+i,j

+ µ9
([FmiVang]i,j+1 + [FmiVang]i,j−1 − 2[FmiVang]i,j)

∆x2 ,
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d[Fz∗FmiFmiVang]i,j
dt

= Kf4[Fz∗Fmi]i,j[FmiVang]+i,j − Kd4[Fz∗FmiFmiVang]i,j

− inh5+
i,jKf5[Fz∗FmiFmiVang]i,j[Pk]+i,j

+ en5+
i,jKd5[Fz∗FmiFmiVangPk]i,j

− Kf6[Dsh]i,j[Fz∗FmiFmiVang]i,j

+ Kd6[Dsh∗FzFmiFmiVang]i,j,

d[Dsh∗FzFmiFmiVang]i,j
dt

= Kf6[Dsh]i,j[Fz∗FmiFmiVang]i,j

− Kd6[Dsh∗FzFmiFmiVang]i,j

− inh8+
i,jKf8[Dsh∗FzFmiFmiVang]i,j[Pk]+i,j

+ en8+
i,jKd8[Dsh∗FzFmiFmiVangPk]i,j,

d[Fz∗FmiFmiVangPk]i,j
dt

= inh5+
i,jKf5[Fz∗FmiFmiVang]i,j[Pk]+i,j

− en5+
i,jKd5[Fz∗FmiFmiVangPk]i,j

− Kf7[Dsh]i,j[Fz∗FmiFmiVangPk]i,j

+ Kd7[Dsh∗FzFmiFmiVangPk]i,j,

d[Dsh∗FzFmiFmiVangPk]i,j
dt

= Kf7[Dsh]i,j[Fz∗FmiFmiVangPk]i,j

− Kd7[Dsh∗FzFmiFmiVangPk]i,j

+ inh8+
i,jKf8[Dsh∗FzFmiFmiVang]i,j[Pk]+i,j

− en8+
i,jKd8[Dsh∗FzFmiFmiVangPk]i,j.

C.3 Full two-dimensional system

As a last step we consider the full system of PDEs for a hexagonal cell, which we get

by applying the law of mass action to (5.1)-(5.8). All the proteins and protein complexes

are restricted to the membrane. Different to the previous sections we now assume their

concentrations are distributed continuously. Cell bridging complexes do not diffuse. The

remaining proteins and protein complexes diffuse in the whole membrane and therefore

the Laplacian in the corresponding PDEs is only applied in this regime. The diffusion

coefficients are µk with k = 1, . . . , 9. The superscript + indicates binding over the cell
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membrane. The resulting cell bridging complexes are counted in the same cell as their Fz

part. The square brackets indicate that we are dealing with concentrations. The inhibition

parameters are given by

inh3 =
1

1 + A3([Fz∗] + [Fz∗Fmi] + [Fz∗FmiFmiVang] + [Fz∗FmiFmiVangPk])
,

inh5 =
1

1 + A5([Dsh∗FzFmiFmiVang] + [Dsh∗FzFmiFmiVangPk])
,

inh8 =
1

1 + A8([Dsh∗FzFmiFmiVang] + [Dsh∗FzFmiFmiVangPk])
,

en3 = 1 + B3([Fz∗] + [Fz∗Fmi] + [Fz∗FmiFmiVang] + [Fz∗FmiFmiVangPk]),

en5 = 1 + B5([Dsh∗FzFmiFmiVang] + [Dsh∗FzFmiFmiVangPk]),

en8 = 1 + B8([Dsh∗FzFmiFmiVang] + [Dsh∗FzFmiFmiVangPk]).

Therefore, we get the following system of equations

∂ [Ld]
∂t

= −Kf1[Fz][Ld] + µ1∇2[Ld],

∂ [Fz]
∂t

= −Kf1[Fz][Ld] + µ2∇2[Fz],

∂ [Fz∗]
∂t

= −Kf2[Fz∗][Fmi] + Kd2[Fz∗Fmi] + Kf1[Fz][ld] + µ3∇2[Fz∗],

∂ [Fmi]
∂t

= −Kf2[Fz∗][Fmi] + Kd2[Fz∗Fmi]− inh3 Kf3[Vang][Fmi]

+ en3 Kd3[FmiVang] + µ4∇2[Fmi],

∂ [Vang]
∂t

= −inh3 Kf3[Vang][Fmi] + en3 Kd3[FmiVang] + µ5∇2[Vang],

∂ [Dsh]
∂t

= −Kf6[Dsh][Fz∗FmiFmiVang] + Kd6[Dsh∗FzFmiFmiVang]

− Kf7[Dsh][Fz∗FmiFmiVangPk]

+ Kd7[Dsh∗FzFmiFmiVangPk] + µ6∇2[Dsh],
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∂ [Pk]
∂t

= −inh5 Kf5[Fz∗FmiFmiVang]+ [Pk]

+ en5 Kd5[Fz∗FmiFmiVangPk]+

− inh8 Kf8[Dsh∗FzFmiFmiVang]+ [Pk]

+ en8 Kd8[Dsh∗FzFmiFmiVangPk]+ + µ7∇2[Pk],

∂ [Fz∗Fmi]
∂t

= Kf2[Fz∗][Fmi]− Kd2[Fz∗Fmi]− Kf4[Fz∗Fmi][FmiVang]+

+ Kd4[Fz∗FmiFmiVang] + µ8∇2[Fz∗Fmi],

∂ [FmiVang]
∂t

= inh3 Kf3[Vang][Fmi]− en3 Kd3[FmiVang]

− Kf4[Fz∗Fmi]+ [FmiVang]

+ Kd4[Fz∗FmiFmiVang]+ + µ9∇2[FmiVang],

∂ [Fz∗FmiFmiVang]
∂t

= Kf4[Fz∗Fmi][FmiVang]+ − Kd4[Fz∗FmiFmiVang]

− inh5+ Kf5[Fz∗FmiFmiVang][Pk]+

+ en5+ Kd5[Fz∗FmiFmiVangPk]

− Kf6[Dsh][Fz∗FmiFmiVang] + Kd6[Dsh∗FzFmiFmiVang],

∂ [Dsh∗FzFmiFmiVang]
∂t

= Kf6[Dsh][Fz∗FmiFmiVang]− Kd6[Dsh∗FzFmiFmiVang]

− inh8+ Kf8[Dsh∗FzFmiFmiVang][Pk]+

+ en8+ Kd8[Dsh∗FzFmiFmiVangPk],

∂ [Fz∗FmiFmiVangPk]
∂t

= inh5+ Kf5[Fz∗FmiFmiVang][Pk]+

− en5+ Kd5[Fz∗FmiFmiVangPk]

− Kf7[Dsh][Fz∗FmiFmiVangPk]

+ Kd7[Dsh∗FzFmiFmiVangPk],
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∂ [Dsh∗FzFmiFmiVangPk]
∂t

= Kf7[Dsh][Fz∗FmiFmiVangPk]− Kd7[Dsh∗FzFmiFmiVangPk]

+ inh8+ Kf8[Dsh∗FzFmiFmiVang][Pk]+

− en8+ Kd8[Dsh∗FzFmiFmiVangPk].
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