
THE PHASE SPACE

OF 2+1 ADS GRAVITY

CARLOS SCARINCI, MSc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

AUGUST 2012





Abstract

We describe what can be called the “universal” phase space of 2+1 AdS gravity, in which the

moduli spaces of globally hyperbolic AdS spacetimes with compact Cauchy surface, as well as

the moduli spaces of multi black hole spacetimes are realized as submanifolds. Importantly

our phase space also includes all Brown-Henneaux excitations on the conformal boundary of

asymptotically AdS spacetimes, with Diff+(S1)/SL(2,R) × Diff+(S1)/SL(2,R) contained as a

submanifold.

Our description of the universal phase space is obtained from results on the correspondence

between maximal surfaces in AdS3 and quasi-symmetric homeomorphisms of the unit circle. We

find that the phase space can be parametrized by two copies of the universal Teichmüller space

T (D), or equivalently by the cotangent bundle over T (D). This yields a symplectic map from

T ∗T (D) to T (D)× T (D) generalizing the well-known Mess map in the compact spatial surface

setting.

We also relate our parametrization to the Chern-Simons formulation of 2+1 gravity and,

infinitesimally, to the holographic (Fefferman-Graham) description. In particular, we relate the

charges arising in the holographic description (such as the mass and angular momentum of

asymptotically AdS spacetimes) to the periods of holomorphic quadratic differentials arising via

the Bers embedding of T (D)× T (D).
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Chapter 1

Introduction

1.1 Introduction to 2+1 gravity

1.1.1 The case for 2+1 gravity

Quantization of the gravitational force can be considered one of the most important open prob-

lems in theoretical physics. Almost one hundred years have passed since Einstein’s publication of

his general theory of relativity [1], and even more than that since the birth of quantum mechanics

[2], and yet a consistent theory of quantum gravity remains elusive. There are by now many

distinct approaches for tackling this problem, with some bringing remarkable developments, but

so far none has produced a satisfactory formulation incorporating the lessons learned from both

general relativity and quantum mechanics.

Nonetheless, one cannot overstate that the search for such a theory has been one of the

main driving forces of modern theoretical physics. The development of quantum field theory,

a partial marriage between relativity and quantum mechanics, has indeed produced the most

successful model of fundamental interactions, the standard model of particle physics [3], bring-

ing our understanding of nature to a level never before seen in any scientific theory. Further,

one may argue that the search for quantum gravity also motivates developments in pure math-

ematics. Since the 80’s, the close interactions between high energy physics and geometry has

shed new light on fundamental problems of both disciplines. For example Donaldson’s theory

of 4-dimensional manifolds based on Yang-Mills gauge theory [4] and Witten’s understanding

of the Jones polynomial, and other low-dimensional topological invariants, using Chern-Simons

[5]. In developments related to the search of quantum gravity, one has now string theory and its

dualities [6, 7] playing an influential role in modern mathematical fields ranging from algebraic

geometry to number theory.

The problem of quantization of gravity is clearly not easy to tackle. It presents many technical

difficulties due to the highly non-linear nature of Einstein’s equations. To some extent, this

1
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explains the use for ever more refined mathematical tools in the attempts made to solve it. On

the other hand, there are also conceptual difficulties. For example, the importance of background

structures, the role played by spacetime diffeomorphisms and the role of time [8].

General relativity in 2+1 dimensions serves as a toy model for the study of quantization of

the full 3+1 dimensional theory. It presents the same conceptual issues as its higher dimen-

sional counterpart while eliminating many of the technical problems. Its simplicity comes from

absence of local degrees of freedom, implying that any solution of Einsteins equation is locally

indistinguishable from either 3-dimensional Minkowski, de Sitter or anti-de Sitter spacetime,

depending on the sign of the cosmological constant Λ. The theory of gravity in 2+1 dimensions

is thus closely related to the study of 3-dimensional geometric structures [9], which also becomes

apparent from its relation with Chern-Simons gauge theory, due to Achucarro and Townsend

[10] and further developed by Witten [11]. This, in its turn, connects the theory directly to

modern developments on lower dimensional topology, such as topological quantum field theories

and knot invariants on 3-manifolds [5].

The Chern-Simons formulation of 2+1 gravity also provides a global understanding of the

classical phase space of the theory, which is shown to be a finite dimensional cotangent bundle,

allowing for the application of the usual quantization techniques. By the phase space of the

theory, we mean the space of all solutions, or moduli space, on a given topological spacetime

manifold, for now taken to be R × S with S a closed Riemann surface. This corresponds, in

Chern-Simons theory, to the space of all flat G connections over the spatial Riemann surface S

modulo gauge transformation, the so called representation variety of π1(S) into G. Here G is

the isometry group of the corresponding 3-geometry, that is, it is ISO(2, 1) ≈ PSL(2,R) n R3

for Λ = 0, SO(3, 1) ≈ PSL(2,C) for Λ > 0 and SO(2, 2) ≈ SL(2,R)× SL(2,R)/Z2 for Λ < 0.

Gravity, however, is not equivalent to Chern-Simons theory. In fact, from the point of view of

2+1 dimensional general relativity, in spacetimes with closed spatial topology, the representation

variety is too big1. It contains degenerate solutions with no metric interpretation and the phase

space of gravity, therefore, only represents a special embedded subspace on the Chern-Simons

theory phase space. In [11] Witten identifies this embedded subspace, in the case of vanishing

cosmological constant, as T ∗T (S) the cotangent bundle over Teichmüller space of an initial

Cauchy surface. Moncrief [13] gives a different proof for the same description of the phase space

using the canonical ADM Hamiltonian formulation in terms of space+time decomposition of

the spacetime metric, thus seeing gravity as a constraint dynamical system. As could have

been expected, the lack of local degrees of freedom makes it possible to explicitly solve the

Hamiltonian and momentum constraints (Gauss-Codazzi equations) in terms of initial data on

a Cauchy surface. Both approaches can be readly applied to other values of the cosmological

1Note that in more general contexts, e.g. with the inclusion of point particle singularities, the phase space of

Chern-Simons theory may also be smaller than that of 2+1 gravity [12].
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constant, leading to similar parametrizations of the corresponding phase spaces [14]. In this

work, we are mainly interested in the case of negative cosmological constant, for which the

Chern-Simons formulation also provides a parametrization by two copies of Teichmüller space

T (S)× T (S) as shown by Mess [15].

For the uninitiated reader, Teichmüller spaces are closely related to the Riemann moduli

spaces classifying all Riemann surfaces with given topology. It has several definitions as the

space of conformal, complex or hyperbolic structures on 2 dimensional manifolds modulo small

diffeomorphisms. Topologically it is very simple, a 6g − 6 dimensional ball where g ≥ 2 is the

genus of the Riemann surface, but it also presents a variety of interesting structures, complex,

symplectic and several distinct metric structures, including a Kählerian one. In particular,

the existence of a symplectic structure allows for the discussion of quantization of such spaces,

[16, 17, 18]. Accessible references can be found in [19, 20, 21, 22].

Teichmüller theory is by now a highly developed subject serving as a link between many

different branches of mathematics. And, although its appearance in physically inclined studies,

mainly those with lower dimensional aspects, is by no means unexpected, it may be seen as

further motivation, for the mathematically inclined reader, to study 2+1 gravity. And, indeed,

the close relations to the theory of 3-dimensional geometric structures and lower dimensional

topology has already awaken some interest in the mathematics community, see [23, 24] and

reference therein.

1.1.2 The status of 2+1 AdS gravity

Our focus on the case of negative cosmological constant is related to developments in the physical

side of the story. In [25] it was shown that the theory, although “trivial” from a local point

of view, admits black hole solutions with similar thermodynamical properties of their higher

dimensional counterparts. This suggests the study of 2+1 gravity may indeed be very fruitful

for understanding relevant aspects of more realistic quantum gravity models. One might, for

example, expect that, by quantizing negative cosmological constant gravity in 2+1 dimensions,

new light will be shed on the statistical nature of black hole thermodynamics.

In fact, further developments in the field seem to corroborate such expectation. In [26], a

few years before the discovery of 2+1 dimensional black holes, the study of the asymptotically

AdS spacetimes lead to a startling discovery that the algebra of charges associated with asymp-

totic symmetries is given by two copies of the centrally extended Virasoro algebra. Since upon

quantization the physical states must form a representation of this algebra, this means that the

quantum theory of asymptotically AdS 2+1 gravity should be a conformal field theory of the

corresponding central charge. And, remarkably, the obtained value c = 3/2G for this Virasoro

central charge is enough, together with the assumption of modular invariance, to compute the
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black hole entropy in agreement with the Bekenstein-Hawking formula, see [27].

The result of [26] is now seen as a precursor of Maldacena’s conjecture [28] on the AdS/CFT

correspondence, considered one of the most significant development of string theory. Roughly, it

states that quantum gravity or, more correctly, string theory on a anti-de Sitter background is

dual to a conformally invariant supersymmetric quantum field theory on the conformal boundary

of this background. Although, in the context of [26], the origin of such duality is, of course, very

different from that in [28], this also serves to show how 2+1 AdS gravity relates to questions in

the forefront of theoretical physics.

The AdS3/CFT2 picture is reasonably well-understood in the string theory setting of 3-

dimensional gravity coupled to a large number of fields of string (and extra dimensional) origin.

At the same time, the question of whether there really is a CFT dual to pure AdS 2+1 gravity

remains open, see [29] and [30] for the most recent, yet unsuccessful, attempts in this direction.

In particular, the attempt [30] to construct the genus one would-be CFT partition function

by summing over modular images of the partition function of pure AdS leads to discouraging

conclusions. It thus appears that pure AdS 2+1 gravity either does not have enough states

to account for the Bekenstein-Hawking entropy microscopically, or that the known such states

cannot be consistently put together into some CFT structure.

On the other hand, it seems sensible to tackle the problem of 2+1 quantum gravity as a

problem of quantization of the arising classical phase spaces. And, we have seen above, the phase

spaces of spatially compact 2+1 AdS spacetimes indeed present all the necessary ingredients for

the application of usual quantization techniques. They are however too simple for the CFT type

description. With finite dimensional phase spaces, quantum gravity, in this context, is simply

quantum mechanics.

Note however that, in the context of 2+1 black holes, the topological setting one needs to

consider is that of open spatial topologies and, therefore, the relevant phase spaces are much less

understood. Constructions presented in [31, 32] show that there exists a large zoo of so called

multi-black holes spacetimes, among which the BTZ black hole is only the simplest example,

presenting a rather arbitrary number of asymptotic regions and internal topology. In descriptions

found in the literature, [33, 34, 35, 36], much like in the compact case, the geometry of multi-

black holes continues to be parametrized by two hyperbolic metrics on a spatial section. The

only difference is the use of Riemann surfaces with geodesic boundaries (with hyperbolic ends

attached) so that, now, there are additional moduli prescribing the lengths of each boundary

component with respect to each of these metrics.

It might then seem that the phase spaces of spatially non-compact 2+1 AdS gravity are

again finite dimensional. However, it is clear that the geometric description of multi-black hole

spacetimes is not the whole story. In fact, purely geometric descriptions neglect the most relevant
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aspect of asymptotically AdS spacetimes. Namely, in the presence of conformal boundaries, the

theory fails to be invariant under diffeomorphisms and new, non-geometric, degrees of freedom

must be included to differentiate between inequivalent diffeomorphic configurations. And, in fact,

the asymptotic symmetries of [26] consists exactly of these non-trivial diffeomorphism mapping

one asymptotically AdS spacetime into a inequivalent one.

The corresponding phase spaces of 2+1 asymptotically AdS spacetimes then becomes infinite

dimensional, parametrized by the space of certain diffeomorphisms of a fixed reference spacetime,

and the problem of its quantization becomes much more non-trivial. It does not seem unreason-

able to argue that a better description of these phase spaces may lead to a better understanding

of the dual CFT picture of pure 2+1 gravity. And, although it might as well be that no such

picture is possible, the development of global descriptions of these phase spaces will certainly

play a relevant role for any development of a quantum theory of 2+1 AdS gravity.

1.2 The plan for this thesis

1.2.1 The universal phase space of 2+1 AdS gravity

In this thesis, we propose a new description for the phase space of 2+1 AdS spacetimes which is

equally applicable in both cases of compact and non-compact spatial topologies and which, at

the same time, includes the Brown-Henneaux asymptotic degrees of freedom. Our description

gives a natural generalization of Mess’ parametrization to non-spatially compact AdS space-

times, following the generalization of Teichmüller space to non-compact Riemann surfaces. For

simplicity let’s consider the spatial topology to be that of a disc. We shall show in this thesis

that the phase space of 2+1 AdS spacetimes, with topology R×D, is given by T (D)×T (D). It

is important to remark that the usual definition of Teichmüller space as the space of conformal

structures modulo small diffeomorphisms is not the one relevant to define T (D). Already in

2-dimensions it is too strong to impose all diffeomorphic non-compact Riemann surfaces to be

considered equivalent. The most natural definition for T (D) is, rather, given by the possibility of

describing the usual Teichmüller spaces of closed Riemann surfaces as quasiconformal deforma-

tion spaces of given reference surfaces. This then has a natural generalization to the unit disc and

one defines the so called universal Teichmüller space, T (D), as the space of (certain equivalence

classes of) quasiconformal self-maps of D, see [21, 20, 22]. Much like the usual Teichmüller spaces

of compact surfaces, the universal Teichmüller space also presents a large range of interesting

structures, most importantly a symplectic structure, [37]. It is also infinite dimensional, being

realized as the space of Möbius normalized quasisymmetric homeomorphisms of the unit circle,

and has, therefore, enough space to accommodate the Brown-Henneaux degrees of freedom.

Interestingly, the universal Teichmüller space T (D) contains all Teichmüller spaces T (S) of



6 CHAPTER 1. INTRODUCTION

compact Riemann surfaces as well as Teichmüller space of non-compact Riemann surfaces, now

also defined as quasiconformal deformation spaces, as embedded submanifolds. This explains the

adjective “universal” used in this theory. This can be seen as a consequence of the uniformization

theorem of Poincaré and Kobe [38], see also [19]. Since all compact Riemann surfaces (of

genus ≥ 2) are quotients of D by discrete groups of isometries, one can lift the quasiconformal

deformations, parametrizing a Riemann surface, to a quasiconformal self-map of D. Conversely,

any quasiconformal self-map of D invariant under a discrete group of isometries Γ will descend

to a quasiconformal map of D/Γ.

It is then clear that our phase space T (D) × T (D) of 2+1 AdS spacetimes with topology

R×D will then also contain all phase spaces T (S)×T (S), of (fixed) non-trivial spatial topology

AdS spacetimes, as embedded submanifolds. In this sense, we shall call such phase space the

“universal phase space”.

Our construction of AdS spacetimes from points in T (D)× T (D) builds on and extends the

results in [39] and [40]. In particular, [39] presents the existence and uniqueness of maximal sur-

faces in AdS3 with prescribed boundary curve in ∂∞AdS3. For existence, only mild assumptions

on the boundary curve are necessary. For uniqueness, on the other hand, further restrictions are

needed. The boundary curve is then characterized as the graph of a homeomorphism of S1 and

the uniqueness result follows if this is taken to be quasisymmetric. This then gives a one-to-one

correspondence between points in T (D), now realized as quasisymmetric homeomorphisms, and

maximal surfaces in AdS3.

In [40] a closely related aspect of maximal surfaces in AdS3 was described. Namely, it is

shown that the “generalized” Gauss map from a constant mean curvature surface in AdS3 is

composed by a pair of harmonic diffeomorphisms into D. These are not completely arbitrary,

being related by the condition that their Hopf differentials add to zero. This then allows [40] to

associate to a maximal surface in AdS3 a unique minimal map between hyperbolic discs. It is

also shown that the first and second fundamental forms of the maximal surface, and therefore

the geometry in its domain of dependence, are completely characterized by such minimal map.

This is also related to another possible parametrization of the universal phase space, now

by the cotangent bundle over universal Teichmüller space. As in the compact case, this follows

from the Hamiltonian (ADM) description from the existence and uniqueness of solutions of

the constraint equations, following from work of [41]. We shall see the relation between the

two parametrizations is given exactly by the harmonic decomposition of minimal maps of the

hyperbolic disc presented in [40], which will allow us to obtain simple expressions for the maximal

surface’s initial data in terms of the parametrizing point in T (D)× T (D).

In the present thesis, we shall use these results, as well as other results from the universal

Teichmüller literature, to describe the universal phase space in terms of quasiconformal defor-
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mations of the domain of dependence of a maximal spacelike surface in AdS3. One non-obvious

point of our construction, which is also where we depart from the works cited above, is the

existence of two independent phase space directions. It might seem, from the above discussion,

that a single copy of T (D) would be sufficient to describe the phase space as, indeed, it is clear

that a single quasisymmetric homeomorphism suffice to describe all the initial data needed to

characterize the geometry of the maximal surface’s domain of dependence, via its embedding in

AdS3. One must not, however, forget that asymptotic degrees of freedom must also be taken

into account.

It is clear, from the construction in [39], that the geometry of this domain of dependence

is insensitive to any diffeomorphism which preserves the maximal surface’s boundary curve.

Such purely spatial diffeomorphism may however alter the asymptotic degrees of freedom and,

therefore, cannot be considered as gauge. We thus argue in the present work that one needs not

only one copy of T (D), describing the boundary curve of a maximal surface, but also a second

copy, describing further quasiconformal deformations of that surface. And we shall in fact verify

that these two types of deformations — the geometric corresponding to deformations of the

boundary curve, and the non-geometric corresponding to quasiconformal deformations of the

maximal surface it self — are canonically conjugated with respect to the symplectic structure

induced by the gravitational action. Both are thus equally important as far as 2+1 AdS gravity

is concerned.

1.2.2 Relations to Fefferman-Graham expansion

Another important point which needs to be made clear is that the spacetimes under discussion are

not globally hyperbolic. The initial data on a spacelike surface, although enough to characterize

its domain of dependence, is not enough to characterize the whole spacetime geometry. Thus, for

our description of the phase space to be of any use, we need to describe a well defined analytic

continuation of the spacetime metric beyond the Cauchy horizon. This will be obtained through

the relation between our parametrization and another useful parametrization of asymptotically

AdS spacetimes in terms of an expansion of the spacetime metric in a neighbourhood of the

conformal boundary, see [42, 43, 44].

For any asymptotically AdS3 spacetime, one can find the so called Fefferman-Graham coor-

dinates, in a neighbourhood of (each component of) the conformal boundary, where the bulk

metric takes the form

ds2 =
dρ2

ρ2
+

1

ρ2
(γ(0) + ρ2γ(2) + ρ4γ(4))

Here γ(0) is a representative of the conformal class on the conformal boundary and

γ(2) =
1

2

(
T −R(0)γ(0)

)
, γ(4) =

1

4
γ(2)γ

−1
(0)γ(2)
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with R(0) the Ricci scalar of γ(0) and T the Brown-York quasilocal stress-tensor [45, 46, 47]. This

is a very natural description from the AdS/CFT correspondence point of view, with the Brown-

York stress-tensor T being interpreted as the expectation value of the dual CFT stress-tensor

[46, 47]. The components of T are, in fact, the only free parameters for asymptotic AdS metrics

and thus, to some extent, also parametrize the 2+1 AdS gravity phase space. This description

is, however, not entirely satisfactory. Since the Fefferman-Graham coordinate ρ extends only

over a portion of spacetime near its conformal boundary, very little control over what happens

inside the spacetime bulk is available. In particular, it is not possible to characterize the bulk

spacetime geometry from T alone. We note, however, that the knowledge of T is very useful to

compute the spacetime conserved charges.

In the present thesis, we shall also describe the relation between the universal phase space and

the Fefferman-Graham description. Although only accomplished at the infinitesimal level, with

an identification between the generators of quasiconformal and asymptotic deformations, this

relation will be enough to demonstrate our phase space contains all Brown-Henneaux asymptotic

degrees of freedom. In fact, our construction provides a new interpretation for the Brown-

Henneaux generators as tangent vectors to universal Teichmüller space, which gives further

justification for the naturalness of our parametrization. It will also provide us with a well defined

way of analytically continuing the metric on the maximal surface’s domain of dependence beyond

the Cauchy horizon, and enable us to derive expressions for the spacetime charges as functions

on the universal phase space. Although these expressions will only be valid at the infinitesimal

level we shall see they admit natural conjectural generalizations to the finite case in terms of the

so called Bers embedding of T (D).

1.2.3 The Mess map between T ∗T (D) and T (D)× T (D)

The last point we shall address in this thesis is related to arising map Mess : T ∗T (D) →

T (D)× T (D) from the above described parametrizations of the phase space. We note that this

is still work in progress, in collaboration with Jean-Marc Schlenker, and therefore the results

presented here are not yet in their final form.

We shall consider the question of whether this map is a symplectomorphism. As mentioned

above, both parametrization of the phase space of AdS gravity are naturally symplectic man-

ifolds. We shall thus obtain the relation between both these symplectic structures and the

symplectic structure induced by the gravitational action. Both will be shown to agree with

the induced gravitational symplectic structure coming, respectively, from the Hamiltonian and

Chern-Simons formulations of 2+1 gravity. From the physical point of view this might be con-

sidered enough to claim that the Mess map is symplectic. However, from a mathematical point

of view, this is perhaps not entirely justified.
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We shall thus present arguments which, we believe, lead to a proof of the above claim in

a more mathematically acceptable way. Having explicit expressions for the Mess map we shall

compute the pull-back of the symplectic form on T (D)×T (D) to T ∗T (D). We start by computing

the derivative of the Mess map and then describe, in rather explicit terms, the Weil-Petersson

symplectic structure at an arbitrary point in T (D). These ingredients are enough to compute

the induced symplectic form in T ∗T (S), which, we shall see, in fact agrees with the canonical

cotangent bundle symplectic form.

There are still some subtleties in these arguments, in special with respect to boundary terms,

which will not be dealt here. However, setting aside these boundary terms, the argument pre-

sented here gives a proof that the bulk contributions to the symplectic structures agree via

the Mess map. Therefore, this can be seen as the first necessary steps towards a more general

complete proof that the map Mess is indeed a symplectomorphism.

1.2.4 The organization of the thesis

The organization of this thesis is as follows. In the next section 1.3, we present some basic facts

about the hyperbolic plane and AdS3 spacetime with the purpose of introducing some important

concepts and results needed in the course of the thesis.

In chapter 2 we shall review the construction of the phase space 2+1 gravity in the closed

spatial topology case. We thus start with a quick introduction to Teichmüller theory in 2.1 and

then the distinct descriptions of the the gravity phase space in the Hamiltonian and Chern-

Simons formulation in section 2.2.

Chapter 3 gives some physical motivations for the constructions presented in this thesis. We

review the construction of AdS spacetimes with non-compact topology in section 3.1 and then

proceed to a more detailed study of the asymptotic properties of such spacetimes in section 3.2.

The construction of the universal phase space of 2+1 gravity is given in chapter 4. We starts

with some review of universal Teichmüller theory in section 4.1 and its relation with maximal

surfaces in AdS3 in the following section 4.2. Section 4.3 proceeds with the construction of AdS

spacetimes given pairs of points in T (D) and the equivalent construction from T ∗T (D).

We then relate the universal phase space description to the, more standard, holographic

description in chapter 5. Section 5.1 gives the identification between the generators of asymptotic

and quasiconformal deformations and section 5.2 relates the quasilocal stress tensor with the

complex analytic realization of universal Teichmüller space.

In chapter 6 we discuss the symplectic properties of the Mess map. We first relate, in section

6.1, the natural symplectic forms in both parametrizations of the universal phase space with

the induced gravitational symplectic form. Then, in section 6.2, we consider the pull-back of

the difference of Weil-Petersson symplectic forms in T (D)× T (D) to T ∗T (D) showing it agrees
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with the canonical cotangent bundle one. We finish this section with some comments on the

caveats and yet unresolved issues related to boundary contributions to the symplectic forms in

consideration.

We conclude in chapter 7 with a summary of the obtained results and some discussion on

future research directions.

1.3 Further preliminaries

1.3.1 The hyperbolic plane

Let R2,1 denote R3 with the pseudo-Riemannian flat metric of signature (2, 1). We define the

hyperbolic plane as the hyperboloid

H2 = {p = (x, y, t) ∈ R2,1; 〈p, p〉 = −1, t > 0}

with the induced metric, which is easily seen to be of Euclidean signature. In fact, we may

introduce global coordinates on H2,

x = sinhχ cos θ, y = sinhχ sin θ, t = coshχ,

with (χ, θ) ∈ R× S1, and write down the metric explicitly as

Ihyp = dx2 + dy2 − dt2 = dχ2 + sinh2 χdθ.

A simple calculation show this metric has negative constant curvature −2.

Being a submanifold of Minkowski space its isometries are closely related to the signature

(2, 1) orthogonal group. More concretely, the isometry group of H2 is SO+(2, 1), the special

orthochronous Lorentz group. This is shown isomorphic to PSL(2,R) ≈ PSU(1, 1) which

becomes clear in a different parametrization via projection to the unit disc D. We thus consider

the map

(χ, θ)→ z = eiθ sinhχ

1 + coshχ
.

The hyperbolic metric then acquires it usual Poincaré form

Ihyp =
4|dz|2

(1− |z|2)2
(1.1)

whose isometries are given by Möbious transformations

z → A(z) =
αz + β

β̄z + ᾱ
, A =

α β

β̄ ᾱ

 ∈ PSU(1, 1).

An isometry A ∈ PSU(1, 1) of the hyperbolic disc is classified according to its trace as

• elliptic, if |trA| < 2;
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• parabolic, if |trA| = 2;

• hyperbolic, if |trA| > 2.

This is related to the Jordan form of A. Thus, elliptic isometries are conjugated to rotations and

have a single fixed point on the interior of the unit disc, parabolic isometries are conjugated to

a transvection and have a single fixed point on the boundary circle, and hyperbolic isometries

are conjugate to translations and have two fixed points on the boundary circle. Hyperbolic

isometries are particularly important in the construction of closed Riemann surfaces, see section

2.1 for a precise definition of Riemann surface, through the uniformization theorem [38, 48] see

also [19].

Theorem 1.3.1. (Uniformization theorem) Every compact Riemann surface is conformally

equivalent to

• the Riemann sphere S2, if its genus is 0;

• a quotient C/L, where L is a lattice in C, if its genus is 1;

• a quotient D/Γ, where Γ is a discrete group of hyperbolic isometries of D, if its genus is

≥ 2.

We are mostly interested in the last case of hyperbolic Riemann surfaces. The discrete groups

of isometries Γ appearing in the theorem are the so called (cocompact) Fuchsian groups. Taking

the quotient D/Γ we are thus describing the (genus ≥ 2) Riemann surface as a fundamental

domain in D for the action of Γ, that is, a region of D containing exactly one point of each

orbit of Γ. Since the isometries of D map geodesics into each other, the fundamental domain is

bounded by geodesic segments, a pair per generator of Γ. The geodesics of the hyperbolic plane,

in the hyperboloid model H2, are obtained by intersection with planes through the origin of R2,1.

In the description given by the Poincaré disc, these become arcs of circles and straight lines with

end points orthogonal to the boundaries circle. Thus we may describe a (genus ≥ 2) Riemann

surface as a 4g-gon in D with sides identified pair wise as in figure 1.1. This can be thought

as a single coordinate chart on the surface, with the only caveat of having to show unwanted

boundary contributions indeed cancel by the Γ equivariance of the coordinates.

1.3.2 The anti-de Sitter spacetime

Very similar to the definition of the hyperbolic plane, we now describe the 3-dimensional anti-de

Sitter spacetime. Let R2,2 denote R4 with the pseudo-Riemannian flat metric of signature (2, 2).

We define the 3-dimensional anti-de-Sitter spacetime as the quadratic

AdS3 = {p = (x, y, u, v) ∈ R2,2; 〈p, p〉 = −1}
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Figure 1.1: Fundamental domain for a genus 2 Riemann surface.

with the induced metric, which is now shown to have Lorentzian signature. We may again

introduce global coordinates

x = sinhχ cos θ, y = sinhχ sin θ, u = coshχ cos t, v = coshχ sin t,

with (χ, θ, t) ∈ R× S1 × S1, and write down the metric explicitly as

gAdS = dx2 + dy2 − du2 − dv2 = − cosh2 χdt2 + dχ2 + sinh2 χdθ.

It is again simple to compute its curvature, R = −6. It is clear, in this description, that the

hyperbolic plane H2 can be considered as a spatial section of AdS3. This will be a useful fact for

the constructions presented in this work. Note that one can also work with the universal cover

of AdS3, by unwrapping the time dimension, or with the so called projective model of AdS3, by

taking the quotient by the antipodal map. These are sometimes used as definitions of AdS3. For

our purposes, the difference introduced by considering these spaces is unimportant.

The isometry group of AdS3 is given by SO(2, 2)0, which is now shown isomorphic to

SL(2,R)×SL(2,R)/Z2. In fact, R2,2 can be identified with the group GL(2,R) with the metric

induced by the quadratic form given by (minus) the determinant

p = (x, y, u, v) ∈ R2,2 ! p =

u+ x y + v

y − v u− x

 ∈ GL(2,R),

〈p, p〉 = −det p =
1

2

(
tr p2 − (tr p)2

)
.

AdS3 is then identified with SL(2,R) and both SL(2,R)-actions by left and right multiplication

are isometries in the connected component of the identity. This gives a surjective homomorphism

SL(2,R)× SL(2,R)→ SO(2, 2)0 whose kernel is (±Id,±Id).

The geodesics and geodesic planes of AdS3 are also obtained by intersection with hyperplanes,

respectively 2 and 3-dimensional, through the origin of R2,2. In particular, AdS3 isometries

preserve geodesic and geodesic planes. This then implies, since the geodesic plane obtained

by intersection with the v = 0 hyperplane is simply a copy of the hyperbolic plane and since

AdS3 isometries will preserve the induced metric of any embedded surfaces, that every spacelike
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geodesic plane in AdS3 has a hyperbolic induced metric. In fact, choosing a new radial coordinate

r = tanh(χ/2) ∈ R+ we obtain a description of AdS3 where the spatial geometry is explicitly

that of the hyperbolic Poincaré disc

gAdS = −
(

1 + r2

1− r2

)2

dt2 +
4

(1− r2)2
(dr2 + r2dθ2). (1.2)

We shall refer to such parametrization as cylindrical since it is now possible to visualize (the

universal cover of) AdS3 as a solid cylinder.

We may also attach an asymptotic boundary to AdS3 ≈ D × S1 by the conformally com-

pactifying D. We remind the reader that a (pseudo-)Riemannian (M, g) manifold is said to be

conformally compact if it is diffeomorphic to the interior of a compact manifold (M̃, g̃) with

boundary ∂M̃ and there exists a smooth function ρ : M̃ → R such that

• g̃ = ρ2g in M ,

• ρ|M > 0 and ρ|∂M̃ = 0,

• dρ|∂M̃ 6= 0.

The spacetime (M̃, g̃) is then called the conformal compactification of (M, g) and ∂M̃ , also

denoted ∂∞M , is its asymptotic boundary.

Thus, in cylindrical coordinates in AdS3, we may take

ρ =
1− r2

1 + r2
, g̃ = −dt2 +

4

(1 + r2)2
(dr2 + r2dθ2)

and the asymptotic boundary ∂∞AdS3 ≈ S1 × S1 becomes a flat cylinder with induced metric

γ = −dt2 + dθ2.

It is important to note that only the conformal structure of γ is well defined from this con-

struction, since different choices of ρ leads to different boundary metrics on the same conformal

class.

The introduction of the conformal boundary also provides an interesting identification be-

tween SO(2, 2)0, or rather a index 2 subgroup thereof, and PSL(2,R) × PSL(2,R), see [15].

This as can be seen from the projective model of AdS3 where one considers the projection of

AdS3 into RP 3

π(AdS3) = {[p] ∈ RP 3; 〈p, p〉 < 0}.

π(AdS3) can then be identified with PSL(2,R) and both PSL(2,R)-actions by left and right

multiplication are isometries of the induced Lorentzian structure. The conformal boundary of

π(AdS3) is the projective quadric

∂π(AdS3) = {[p] ∈ RP 3; 〈p, p〉 = 0}.
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Figure 1.2: The conformal boundary of AdS3 is foliated by two families of null geodesics.

It is foliated by two families of projective lines L+ and L− corresponding to left and right null

geodesics on the conformal boundary of AdS3, see figure 1.2. Each line in one of the families

intersects a line in the other family at a single point. In particular, we have a canonical iden-

tification of ∂π(AdS3) with RP 1 × RP 1 and each family L+ and L− has a natural projective

structure. Each PSL(2,R) factor of Isom(π(AdS3)) is then identified with the projective trans-

formations of one of the families L± and, therefore, any pair of such projective transformations

uniquely determine an isometry of π(AdS3) which can then be lifted to AdS3. This property

will be the key for relating AdS3 geometry and Teichmüller theory in what follows. It will

allow us to construct pairs of diffeomorphisms S → D, between any spacelike surface S and

the hyperbolic disc, which will become important for constructions in chapters 2 and 4 and for

the geometric interpretation of the Mess parametrization of the phase space of 2+1 dimensional

globally hyperbolic AdS spacetimes with compact spatial topology.

Theorem 1.3.2. (Mess [15]) Every (maximal) 2+1 dimensional AdS spacetime with a compact

Cauchy surface is obtained as a quotient of a convex domain of AdS3 by a discrete group Γ+×Γ−

of hyperbolic-hyperbolic isometries.



Chapter 2

Compact Spatial Topology

This chapter gives a review on the description of the phase space of AdS 2+1 gravity in the

spatially compact case mainly as a motivation for the constructions that follows. We start

with a quick introduction to the theory of Riemann surfaces and Teichmüller theory. The main

objective of section 2.1 is the definition of Teichmüller space of a given surface as the space of

quasiconformal deformations of a Riemann surface structure, see [21, 22]. This will later be the

starting point for the generalization to non-compact spatial topologies in chapter 4. We also

present the infinitesimal description, that is, the tangent space to Teichmüller space, following

[49].

We then turn to gravity with a presentation of the ADM Hamiltonian formulation in globally

hyperbolic spacetimes. We start considering general dimension and cosmological constant but

quickly focus on the 2+1 AdS case. With convenient choices of spatial coordinates and time

foliation, we give a rather explicit description of the reduced phase of the theory as the cotangent

bundle over Teichmüller space of a unique embedded maximal surface. These results can be found

in [14].

Also following [14], we then describe the construction of two hyperbolic metrics on the

maximal surface from its first and second fundamental forms. This produces a map from

the cotangent bundle over Teichmüller space into the product of two copies of that space

T ∗T (S) → T (S) × T (S). We describe how to construct the inverse map and, therefore ob-

tain a new parametrization of the phase space by two copies of Teichmüller space, see [15].

We finish the chapter with the interpretation of this new parametrization in terms of the

Chern-Simons formulation of 2+1 gravity [11].

15
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2.1 Teichmüller theory

2.1.1 Teichmüller spaces of closed Riemann surfaces

In this section S will denote a smooth compact oriented surface of genus ≥ 2. We shall endow

S with a complex structure X, that is, an atlas of coordinate charts z : U → C whose transition

maps are biholomorphic. This turns S into a complex manifold and will enable us to use

analytical tools in the constructions that follow. We call the pair (S,X) a Riemann surface

modelled on S, see [19].

Note that the requirement of such analytical structure on the surface S is not at all a strong

assumption. It is a basic fact of 2-dimensional geometry that any orientable surface admits a

complex structure. In fact, given any Riemannian metric I on S, there is a canonical complex

structure XI induced by the isothermal coordinates of I. Given two isothermal coordinate charts

for I where we may write

I = e2ϕ(dx2 + dy2) = e2ϕ̃(du2 + dv2),

it is easy to see that the transition map (x, y) 7→ (u, v) satisfy Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Thus, defining complex coordinates z = x+ iy, on each isothermal coordinate chart, we obtain

the desired complex structure on S.

Note that the induced complex structure only depends on the conformal structure determined

by I, that is, on the equivalence class [I] of metrics considered up to scaling by a positive smooth

function

Ĩ ∈ [I] iff Ĩ = λI.

Conversely, a complex structure X also determines, uniquely, a conformal class of metrics on S

by associating to each holomorphic coordinate patch the pull-back of the Euclidean metric on C.

Thus, in two dimensions, we have a one-to-one correspondence between complex and conformal

structures on closed oriented surfaces S.

We denote the space of complex/conformal structures on S by C(S) and consider the natural

action of the group Diff+(S) of orientation preserving diffeomorphism of S on this space via pull-

back: given f ∈ Diff+(S) and a conformal structure X ∈ C(S), we may define a new conformal

structure f∗X by composing the charts in X with f . The identity map id : (S, f∗X) → (S,X)

then becomes a biholomorphic map and the analytic structures determined by X and f∗X may

not be distinguished. We would thus like to identify diffeomorphism related conformal structures

and introduce a smaller space consisting of orbits of the Diff+(S)-action on C(S)

M(S) = C(S)/Diff+(S).
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This is the so called Riemann moduli space. It gives a classification of distinct conformal struc-

tures on S considered up to diffeomorphisms. Our interest in such space will be justified from

our considerations about the Hamiltonian formulation of 2+1 gravity, where we shall see that

2-dimensional conformal structures represent the (physical) configurational variables in this the-

ory.

There are several equivalent definitions of the Riemann moduli space. Importantly, it follows

from the uniformization theorem (1.3.1) that the universal conformal covering of a genus ≥ 2

Riemann surface is given by the hyperbolic Poincaré disc D, the group of deck transformations

being a discrete group of isometries of D. As seen in section 1.3 this means that every Riemann

surface can be written as a quotient (S,X) = D/Γ of the Poincaré disc by a Fuchsian group

Γ and, therefore, that S admits an induced complete hyperbolic metric compatible with its

conformal structure. This is to say that one can always find a unique hyperbolic representative

of the conformal class of metrics on (S,X). The Riemann moduli space can then be described

as

M(S) = H(S)/Diff+(S),

where H(S) is the space of hyperbolic metrics on S and the action of Diff+(S) is again given

via pull-back.

Also, since the Fuchsian group Γ is isomorphic to the fundamental group of S, the mod-

uli space may be described in terms of representations of π1(S) into PSL(2,R) ≈ PSU(1, 1).

The equivalence relation between representations is then given by the action of the group of

automorphisms of π1(S). More precisely, we consider the quotient space

Hom(π1(S), PSU(1, 1))/Aut(π1(S))

and the moduli space is obtained as a connected component therein. This is just saying that

not all representations of π1(S) into PSU(1, 1) will define a Riemann surface. In fact, to obtain

completeness of the induced hyperbolic metric one needs the group Γ to act freely properly

discontinuously. This then implies that each generator of Γ needs to be hyperbolic, that is, have

trace grater then 2 in modulus, see section 1.3

The Riemann moduli space turns out to be quite complicated, presenting very non-trivial

topology. It thus becomes interesting to introduce another, better behaved, space by strength-

ening the equivalence relations in the above definitions. The Teichmüller space of a surface

S, denoted T (S), is again defined as the space of equivalence classes of conformal structures

on S, where the equivalence relation is now taken with respect to the action of the subgroup

Diff0(S) ⊂ Diff+(S) of diffeomorphisms homotopic to the identity. Thus we define

T (S) = C(S)/Diff0(S) = H(S)/Diff0(S).

In terms of representations of the fundamental group of S, this space is realized as a connected
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component of the so called representation variety

Hom(π1(S), PSU(1, 1))/Inn(π1(S)).

Here, the subgroup Inn(π1(S)) ⊂ Aut(π1(S)) of inner automorphisms acts via conjugation. To

obtain T (S) we again have to consider the restriction that the representations under considera-

tion map the generators of π1(S) into hyperbolic element of PSU(1, 1).

Topologically, Teichmüller space T (S) is much simpler thanM(S). It is shown to be simply

connected, in fact it is homeomorphic to a 6g− 6 dimensional ball, where g is the genus of S. It

can be considered as the covering space of the Riemann moduli space, withM(S) being obtained

as a quotient by the so called mapping class group

M(S) = T (S)/MCG(S),

where

MCG(S) = Diff+(S)/Diff0(S)

can be viewed as the group of connected components of Diff+(S). Note, however, that the action

of MCG(S) on T (S) is not free, although it can be shown to be proper and discontinuous. Thus,

M(S) presents topological singularities in the form of ramification points.

2.1.2 Quasiconformal deformation of complex structures

We shall now give yet another definition of T (S) as the space of quasiconformal deformations

of a given Riemann surface. This will be useful latter in the generalization of the moduli space

of noncompact Riemann surfaces and its relation to the phase space of 2+1 AdS spacetimes. In

fact, the equivalence relation used so far in the definition of the Teichmüller space turns out to

be rather weak. When dealing with the general case of open topologies, it will not be reasonable

to consider all diffeomorphic Riemann surfaces as equivalent. For example, consider the complex

plane C and the unit Poincaré disc D. Although these are diffeomorphic surfaces, they cannot be

consider equivalent from the complex analytic point of view and a good definition of Teichmüller

space should be able to distinguish between them. We shall thus give another (equivalent in the

compact case) definition of the Teichmüller space using tighter analytic conditions which will be

convenient for our later purposes.

The key concept here will be that of quasiconformal maps between Riemann surfaces [21,

22]. These are certain generalizations of holomorphic maps in which deformations of angles are

allowed in a controlled manner. More concretely, a quasiconformal map f : (S,X) → (S,X ′)

is an orientation preserving almost everywhere differentiable homeomorphism with uniformly

bounded dilatation. Geometrically, the dilatation of f , denoted Df , can be understood by

looking at the image of infinitesimal circles centred at each point of S. While in the case of a
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holomorphic map these images would again be infinitesimal circles, for a quasiconformal map

the images become infinitesimal ellipses and Df (z) provides the ratio between their major and

minor axis. The dilatation, therefore, controls the amount by which f is allowed to deform

angles. In coordinates z : U → C in (S,X), the dilatation of f is given by

Df (z) =
|∂zf |+ |∂z̄f |
|∂zf | − |∂z̄f |

,

and the condition for f to be quasiconformal is

sup
S

|∂zf |+ |∂z̄f |
|∂zf | − |∂z̄f |

< K (2.1)

for some positive K ∈ R. It should be clear that any conformal map is in fact quasiconformal,

with constant dilatation Df = 1.

Another, more convenient, measure of how much a given map f : (S,X) → (S,X ′) fails to

be holomorphic is given by the so called complex dilatation, or Beltrami coefficient, of f . This

is defined in each coordinate chart z : U → C in X by

µz = ∂z̄f/∂zf.

It is then easy to show that the collection of Beltrami coefficients, in each coordinate chart,

defines a (-1,1)-tensor on S

µf = µz
dz̄

dz
.

To see this, let z : U → C and w : V → C be coordinate charts in X and denote

µz =
∂z̄(f ◦ z−1)

∂z(f ◦ z−1)
, µw =

∂w̄(f ◦ w−1)

∂w(f ◦ w−1)
.

It is then clear that under the transition map w ◦ z−1 we have the required transformation rule

µz = µw(w ◦ z−1)
∂z̄w̄

∂zw
.

Thus, µf is also called the Beltrami differential of f .

In terms of its Beltrami differential, f is quasiconformal if and only if µf is bounded by 1.

This is clear from the relation between the µf and Df

|µf | =
|Df | − 1

|Df |+ 1
.

Also, f is holomorphic if and only if its Beltrami differential vanishes identically.

The advantage of working with Beltrami differentials is that we may then describe quasicon-

formal maps as solution of the Beltrami differential equation

∂z̄f = µ∂zf. (2.2)

We make use of the following theorem which states that, up to post-composition by a Möbious

transformation, quasiconformal self-maps of Ĉ are completely determined by their Beltrami

coefficients.
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Theorem 2.1.1. (Measurable Riemann mapping theorem [50]) Given a bounded measurable

complex valued function µ on Ĉ with ‖µ‖∞ < 1 there exists a unique solution of the Beltrami

equation (2.2), fixing 0, 1,∞, which is a quasiconformal homeomorphism. Further, the solution

to (2.2) depends holomorphically on µ.

We shall denote by BD(S,X) the space of Beltrami differentials on (S,X) and by BD(S,X)1

the ball of radius 1 with respect to the ‖ · ‖∞ norm. Given µ ∈ BD(S,X)1 we may use the

mapping theorem to construct a new complex structure Xµ on S and a quasiconformal map

(S,X)→ (S,Xµ) whose Beltrami differential is exactly µ. For each coordinate chart z : U → C

in X, we first use theorem (2.1.1) to construct a quasiconformal map fz : z(U)→ fz(z(U)) whose

Beltrami coefficient is µz and define then a new coordinate chart z̃ = fz ◦ z : U → C. That

these indeed define a new complex structure on S, follows from the vanishing of the Beltrami

coefficients of the new transition maps w̃ ◦ z̃−1. In fact, it is not hard to compute the Beltrami

coefficient of a composition of quasiconformal maps. If f has Beltrami coefficient µ and g has

Beltrami coefficient ν then f ◦ g has coefficient

µ+ ν ◦ f(∂z̄ f̄/∂zf)

1 + µ̄ν ◦ f(∂z̄ f̄/∂zf)
. (2.3)

This implies in particular that post- and pre-compositions with conformal maps does not alter

the Beltrami coefficient and it is an easy exercise to show the Beltrami coefficients of the new

transition maps w̃ ◦ z̃−1 above vanishes. It also follows directly, that the identity map id :

(S,X)→ (S,Xµ) is now quasiconformal with Beltrami differential µ and, if f : (S,X)→ (S,X ′)

is another quasiconformal map with the same Beltrami differential µ, then id ◦ f−1 : (S,X ′)→

(S,Xµ) is conformal. We have therefore described a one-to-one correspondence between the

space of bounded Beltrami differentials BD(S,X)1 on a Riemann surface (S,X) and the space

QC(S,X) of quasiconformal “deformations” of that surface.

The connection to Teichmüller space can be made through the uniformization theorem (1.3.1)

by translating quasiconformal deformations of D into deformations of Fuchsian groups. Thus, let

(S,X) = D/Γ be the Fuchsian model of the Riemann surface (S,X). Given µ ∈ BD(S,X)1 we

may consider its lift to D, that is, the unique Beltrami coefficient µ̃ ∈ BD(D)1 whose projection

to the quotient D/Γ agrees with µ. Since µ is actually a (−1, 1) tensor, this property amounts

to the following Γ invariance of µ̃

µ̃ ◦A A′

A′
= µ̃, ∀A ∈ Γ. (2.4)

We then describe the quasiconformal deformation determined by µ as follows. First, in order to

solve Beltrami equation, we extend the coefficient µ̃ to the whole complex plane as

µ̃(z) =


µ̃(1/z̄)z2/z̄2, z ∈ Ĉ\D,

µ̃(z), z ∈ D.
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This is obtained by reflection around the unit circle S1 which ensures the solutions of Beltrami

equation preserve the unit disc. Indeed, the solution fµ satisfies

fµ(1/z̄) = 1/fµ(z), (2.5)

thus preserving D, D∗ = Ĉ\D and also S1. The action of fµ on D then conjugates Γ to a new

Fuchsian group Γµ = fµ ◦ Γ ◦ f−1
µ and descends to a quasiconformal map fµ : (S,X)→ (S,Xµ)

with (S,Xµ) = fµ(D)/Γµ.

We are now ready for our last definition of Teichmüller space. It consists in considering

those conformal structures which lay in the quasiconformal deformation space QC(S,X) of a

given Riemann surface structure (S,X). In other words, we strengthen the equivalence relation

given above by restricting it to the subset QC(S,X) ⊆ C(S) and define T (S,X) as the space of

equivalence classes determined by this new relation. We thus define

T (S,X) = QC(S,X)/ ∼

with the equivalence relation given by the existence of a conformal map between the quasiconfor-

mal deformations in question. Note that, in the compact case, this new definition is innocuous

since any two homeomorphic compact Riemann surfaces are automatically quasiconformal and,

therefore, QC(S,X) = C(S).

Using the correspondence between the quasiconformal deformation space and the space of

Beltrami coefficients we may then realize Teichmüller space as a quotient

T (S) = BD(S,X)1/ ∼ .

Here, the equivalence between µ, ν ∈ BD(S,X)1 is obtained by looking at the corresponding

solutions of Beltrami equation on Ĉ with reflection symmetry as above. We then say µ ∼ ν if

the composition fν ◦ f−1
µ is trivial, that is, is just the identity map, when restricted to S1.

Other definitions for the equivalence relation on BD(S,X)1 are also possible by choosing

different extensions of µ to the complement of the unit disc. In fact, we shall see in section 4.1

that a definition extending µ to vanish in Ĉ\D will also be of interest in the study of noncompact

Riemann surfaces.

2.1.3 Infinitesimal theory

The previous construction also allows for an explicit description of the holomorphic tangent

space of T (S). We shall proceed with the description at the preferred reference point X, the

generalization for arbitrary points Xµ will become clear in a more general context in chapter 4.

Since we have realized Teichmüller space as a quotient of BD(S,X)1 we need to understand the

derivative of the projection BD(S,X)1 → T (S) at X. More precisely, we need to describe the
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kernel N(S,X) of this map, since we may then define T[0]T (S) as the vector space quotient of

BD(S,X) = T0BD(S,X)1 by its subspace N(S,X).

We denote by δµ an element of BD(S,X) thought of as a tangent vector at the origin of

BD(S,X)1. As in the previous construction, let’s lift and extend δµ by reflection to a tangent

vector δµ̃ at the origin of BD(Ĉ)1. Then, the infinitesimal version of Beltrami equation is given

by

∂z̄f = tδµ∂zf, (2.6)

for t an infinitesimal parameter, and the corresponding solutions may be written

ftδµ(z) = z + tδz +O(t2), ∂z̄δz = δµ. (2.7)

Now, we may consider the infinitesimal deformation Γtδµ of the Fuchsian group Γ uniformizing

S by conjugating its elements with ftδµ

Atδµ = ftδµ ◦A ◦ f−tδµ.

We say that δµ is infinitesimally trivial if it does not alter, to first order in t, the conformal

structure of (S,X). More concretely, expanding the elements of Γtδµ as

Atδµ = A+ t(δz ◦A−A′δz) +O(t2),

an infinitesimal Beltrami coefficient δµ is said to be infinitesimally trivial if for every A ∈ Γ,

δA = δz ◦A−A′δz = 0.

The following lemma gives equivalent characterizations of the space N(S,X) of such infinitesi-

mally trivial Beltrami coefficients, see [49] for a proof.

Lemma 2.1.1.1. Let δµ ∈ BD(S,X) and consider δz the solution of the infinitesimal version

of Beltrami equation, ∂z̄δz = δµ, and δA = δz ◦A−A′δz the variation of an element A ∈ Γ, as

described above. Then the following conditions are equivalent

1. δA = 0 for every A ∈ Γ,

2. δz = 0 on ∂D = S1,

3. 1
2i

∫
D/Γ dz ∧ dz̄qδµ = 0 for every q ∈ HQD(S,X).

The holomorphic tangent space to T (S) at the base point X is then given by

TXT (S) = BD(S,X)/N(S,X),

the so called harmonic Beltrami differentials.
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The space HQD(S,X) in the lemma is the space of holomorphic quadratic differentials on the

Riemann surface (S,X). These are (2,0)-tensors q = q(z)dz2 whose coefficients are holomorphic

in every coordinate charts. With respect to the Fuchsian model (S,X) = D/Γ, q may be

described as a holomorphic function q : D→ C satisfying the invariance condition

q ◦A(A′)2 = q, ∀A ∈ Γ. (2.8)

The lemma also makes use of the so called Weil-Petersson pairing between holomorphic quadratic

differentials and Beltrami differentials

〈q, δµ〉WP = i

∫
D/Γ

dz ∧ dz̄qδµ. (2.9)

This then provides a duality between harmonic Beltrami differentials and holomorphic quadratic

differentials, thus identifying HQD(S,X) and the holomorphic cotangent space to Teichmüller

space

T ∗XT (S) = HQD(S,X).

The Hermitian inner-product

〈h, q〉WP =
1

2i

∫
D/Γ

dz ∧ dz̄(1− |z|2)2hq̄ (2.10)

on HQD(S,X) can then be translated to infinitesimal Beltrami coefficients defining a Hermitian

metric on T (S)

〈δµ, δν〉WP =
1

i

∫
D/Γ

dz ∧ dz̄ 2δµ̄δν

(1− |z|2)2
, (2.11)

which defines the Weil-Petersson metric and symplectic form on T (S) as the real and imaginary

parts, respectively.

2.2 The phase space of 2+1 gravity

2.2.1 Hamiltonian formulation of general relativity

General Relativity is a theory of Lorentzian metrics on a given topological spacetime manifold.

Like most theories in physics it is defined by an action functional

SEH[g] =
1

2π

∫
M

dnx
√
−g(R− 2Λ), (2.12)

the so called Einstein-Hilbert action, whose critical points describe the solutions of Einstein’s

equations

Rµν −
1

2
Rgµν + Λgµν = 0. (2.13)

Here, R and Rµν are the scalar and Ricci curvatures of the metric g and Λ is the cosmological

constant. Our conventions for the Riemann tensor and its contractions are

Rρσµν = 2∂[µΓρν]σ + 2Γρα[µΓαν]σ, Rµν = Rρµρν ,
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and our unit conventions are 8G = 1. Later we shall also set Λ = −1 for convenience.

We consider globally hyperbolic spacetimes whose topology is R×S, where R represents the

time direction and S the spatial manifold, for now considered to be compact without boundaries.

Einstein’s equations (2.13) can then be considered as evolution equations for the spatial metric

over time and GR becomes a constraint dynamical system for (n− 1)-dimensional Riemannian

metrics on S. The constraints are nothing but the Gauss-Codazzi equations relating the intrincic

and extrinsic spatial geometries with the ambient spacetime geometry. These are n equations

on the n(n+ 1)/2 for the components of the spacetime metric, but they further generate gauge

transformations which also need to be taken into account. Thus we further need to gauge fix

n components. While in 3+1 dimensions this gives the usual counting, 10 − 4 − 4 = 2, of

propagating degrees of freedom, in 2+1 dimensions the same counting gives zero propagating

degrees of freedom, 6− 3− 3 = 0. We shall see, this leads to a great simplification in analysing

the phase space of this lower dimensional theory.

Note that the restriction to globally hyperbolic spacetimes is not strong from physical con-

siderations. In fact global hyperbolicity is a very natural condition from the point of view of the

causal structure of spacetimes. We shall not give here the actual definition of global hyperbolic

spacetimes as details on causality conditions will not be relevant for the present work, see [51]

for such a definition. We only remark that global hyperbolicity is equivalent to the existence of

a foliation of spacetime by Cauchy surfaces from which the initial data description can be given.

In particular, it implies the non existence of closed causal curves, in fact, not even “almost”

closed causal curves, as desired from causality reasons.

Let us thus introduce such a foliation by choosing a smooth time function t : M → R on

the spacetime manifold. Such a choice is not canonically defined, but can be interpreted as a

partial gauge fixing of the spacetime diffeomorphism freedom. For now, we shall not specify

which function t we are to consider, with the only condition imposed being that its gradient,

with respect to the spacetime metric, be always timelike on M .

We then fix a constant time Cauchy surface S and decompose the spacetime metric, following

the ADM procedure [52], as

g = −N2dt2 + Iij(dx
i +N idt)(dxj +N jdt) (2.14)

where I is the induced metric on S and N and ~N are the lapse function and shift vector, defined

in terms of the extrinsic geometry of S as follows. Let n be the unit normal future pointing

timelike vector field to S. Then every spacetime vector field ξ can be decomposed at a point in

S into tangent and normal parts

ξ = (ξ + g(ξ, n)n)− g(ξ, n)n.

The lapse function and shift vector are then defined by the decomposition of the vector field ∂t
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as

∂t = ~N +Nn. (2.15)

These are closely related to the extrinsic curvature of S, a measure of the difference between

the restriction of spacetime Levi-Civita connection to the initial surface S and its intrinsic Levi-

Civita connection defined by the induced metric. Given ξ, ζ tangent vectors fields on S we may

decompose the covariant derivative ∇ξζ in its tangent and normal parts as

∇ξζ = (∇ξζ + g(∇ξζ, n)n)− g(∇ξζ, n)n.

It is an easy exercise to see that the tangent part defines a torsion free connection on S compatible

with the induced metric, thus it is nothing but the Levi-Civita connection of that metric. The

normal part can then be written as

II(ξ, ζ)n = ∇ξζ −Dξζ,

which defines the extrinsic curvature of S

II(ξ, ζ) = g(∇ξn, ζ). (2.16)

Using the ADM decomposition (2.14) of the spacetime metric as above, it is easy to obtain

a coordinate expression for II in terms of the lapse and shift and the time derivative of spatial

metric

IIij =
1

2N
(İij −DiNj −DjNi). (2.17)

The Einstein-Hilbert action can then be written as

SEH =
1

2π

∫
R
dt

∫
S

dn−1x
√
IN(IR− 2Λ + IIijII

ij − II2). (2.18)

One continues with the Hamiltonian analysis by computing the canonically conjugated momenta

associated to the spatial metric,

Πij =
δL
δİij

=

√
I

2π
(IIij − IIIij), (2.19)

solving for the “velocities” in terms of momenta

İij = 2N
2π√
I

(Πij −
1

n− 2
ΠIij) +DiNj +DjNi,

and writing the action in the canonical form

SEH =

∫
R
dt

∫
S

dn−1x
(

Πij İij −NC −NiCi
)

(2.20)

Here,

C =
2π√
I

(ΠijΠij −
1

n− 2
Π2)−

√
I

2π
(IR− 2Λ), Ci = −2DjΠ

ij , (2.21)
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are the Hamiltonian and momentum constraints and are required to vanish by the field equations

obtained from the variation of the lapse function and shift vector, which play the role of Lagrange

multipliers. As previously mentioned, these constraints are nothing but the Gauss-Codazzi

equations for the fundamental forms (I, II) of S.

We now read off from the action the gravitational Hamiltonian and the Poisson brackets

HGR =

∫
S

dn−1x
(
NC +NiC

i
)
,

{F,G} =

∫
S

dn−1x
( δF
δIij

δG

δΠij
− δF

δΠij

δG

δIij

)
(2.22)

and compute the remaining evolution equations

İij = {Iij ,HGR} = 2N
2π√
I

(Πij −
1

n− 2
ΠIij) +DiNj +DjNi,

Π̇ij = {Πij ,HGR} =
N

2

2π√
I

(
ΠklΠkl −Π2

)
Iij − 2N

2π√
I

(
ΠikIklΠ

lj −ΠΠij
)

−N
√
I

2π

(
IRij − 1

2
(IR− 2Λ)Iij

)
+

√
I

2π

(
DiDjN − IijDkDkN

)
+
√
IDk

(
NkΠij

√
I

)
−ΠikDkN

j −ΠjkDkN
i. (2.23)

2.2.2 2+1 dimensional globally hyperbolic spacetimes

In three dimensions a drastic simplification occurs which allows one to explicitly solve the con-

straints and completely describe the reduced phase space of the theory. The main reason for

such simplification is the vanishing of Weyl tensor of any 3-metric, which implies the Riemann

curvature is completely determined by the Ricci tensor

Rρσµν = 2(gµ[ρRσ]ν − gν[ρRσ]µ)−Rgµ[ρgσ]ν . (2.24)

Then, since Einstein’s condition (2.13) equates Ricci to a multiple of the metric, one easily obtain

that any Einstein 3-metric has constant sectional curvature and is therefore a 3-dimensional space

form. This means that all 3-dimensional Einstein manifolds are locally isometric to either anti-de

Sitter, Minkowski or de Sitter 3-spacetimes, depending on the value of the cosmological constant

Λ.

Let’s consider a spacetime (M, g) admitting a compact Cauchy surface S of genus ≥ 2. Then,

M is globally hyperbolic, with topology R× S, and we may apply the Hamiltonian formulation

presented above. Thus, let I denote the induced metric of a initial Cauchy surface S and II its

extrinsic curvature. Without any loss of generality, we may introduce isothermal coordinates on

the Cauchy surface and write

I = e2ϕ|dz|2, II =
1

2
(qdz2 + q̄dz̄2) +He2ϕ|dz|2. (2.25)

In these coordinates the Gauss-Codazzi equations become quite simple: Codazzi equation simply

relates the extrinsic curvature components q and H

∂z̄q = e2ϕ∂z̄H (2.26)
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and the Gauss equation becomes an elliptic differential equation for the conformal factor e2ϕ

4∂z∂z̄ϕ = e2ϕ(H2 − Λ)− e−2ϕ|q|2. (2.27)

Note that H is the mean curvature of the chosen Cauchy surface, that is, it is the trace of the

extrinsic curvature II with respect to the induced metric I.

Let’s now focus on the case of interest to the present work of a negative cosmological con-

stant. What we now want, is to exploit a further simplification occurring for Λ < 0. We note,

however, that the discussion that follows will remain valid for other values of Λ with only minor

modifications, see [14]. The important aspect of globally hyperbolic AdS spacetimes that we

shall make use here is the existence of a unique spacelike maximal surface, that is, a spacelike

surface with vanishing mean curvature, H = 0. This property was first obtained in [53] as a

consequence of the existence of a CMC time foliation of negative curvature spacetimes.

Thus, let us consider the initial data

I = e2ϕ|dz|2, II =
1

2
(qdz2 + q̄dz̄2) (2.28)

on the maximal (H = 0) Cauchy surface. Then, the Codazzi equation simply imposes holomor-

phicity for the quadratic differential qdz2 determined by the, now traceless, extrinsic curvature.

The Gauss equation reads

4∂z∂z̄ϕ = e2ϕ − e−2ϕ|q|2 (2.29)

and is shown to uniquely determine the conformal factor e2ϕ making I = e2ϕ|dz|2 a complete

metric on S.

The remaining evolution equations (2.23) can then be solved with an appropriate choice of

time gauge. We shall impose an equidistant foliation from the initial maximal Cauchy surface,

which can achieved by setting N = 1 and ~N = 0. The evolution equations become

İij =
π√
I

(Πij −Πhij)

Π̇ij =
π√
I

(
ΠklΠkl −Π2

)
Iij − 4π√

I

(
ΠikIklΠ

lj −ΠΠij
)
−
√
I

2π

(
IRij − 1

2
(IR+ 2)Iij

)
(2.30)

and it is easy, although somewhat lengthy, to verify that these are satisfied by

Iτ = e2ϕ| cos τdz + sin τe−2ϕq̄dz̄|2,

Πτ =
1

π

cos 2τ(q̄∂2
z + q∂2

z̄ ) + sin 2τ(e2ϕ − e−2ϕ|q|2)∂z∂z̄

(cos2 τe2ϕ − sin2 τe−2ϕ|q|2)
. (2.31)

The spacetime metric, in these coordinate, can then be written in a nice explicit form

g = −dτ2 + cos2 τe2ϕ|dz|2 + sin τ cos τ(qdz2 + q̄dz̄2) + sin2 τe−2ϕ|q|2|dz|2. (2.32)

Note that the choice of working with isothermal coordinates on the maximal surface also

introduced a partial gauge fixing of spatial diffeomorphism freedom. The only gauge freedom
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we are left with is that of spatial conformal transformations and the physical configurational

variable is, therefore, just the conformal structure of the maximal surface. The construction

above thus describes a map from the space of globally hyperbolic AdS spacetimes with closed

spatial topology to the cotangent bundle over Teichmüller space of the initial surface.

The converse statement, on the existence and uniqueness of a (maximal) globally hyperbolic

AdS spacetime, with topology M = R×S, given a point in T ∗[µ]T (S) follows from the application

of an AdS version of the fundamental theorem of surface geometry to the universal cover of S,

see [14].

Theorem 2.2.1. (Fundamental theorem of surface geometry) Given a Riemannian metric I

and a symmetric bilinear form II on a simply connected surface S̃ satisfying the Gauss-Codazzi

equations (2.21), there exists a unique immersion of S̃ in AdS3 such that the induced metric is

I and the second fundamental form is II.

We have therefore obtained a parametrization of the reduced (physical) phase space of AdS

2+1 gravity, on a spacetime M = R × S, by the cotangent bundle T ∗T (S) over Teichmüller

space of the maximal Cauchy surface.

2.2.3 Mess’ parametrization

Another parametrization is possible for the reduced phase space, now by two copies T (S) ×

T (S) of Teichmüller space it self. This was obtained by Mess in [15] associating pairs of flat

PSU(1, 1) connections with hyperbolic holonomy to any Cauchy surface of a globally hyperbolic

AdS spacetimes. This result is analogous to Bers’ simultaneous uniformization of Riemann

surfaces by quasi-Fuchsian groups [54], related to so called quasi-Fuchsian hyperbolic 3-manifolds.

Mess’ work, in fact, attracted attention of the mathematics community to the subject of AdS

geometry by giving simple proofs of some well known theorems in low dimensional topology. See

[23, 24] and references therein for recent developments associate with AdS geometry.

Given (M, g) a globally hyperbolic AdS spacetime with a closed spacelike Cauchy surface S,

Mess proves that M is a quotient of AdS3 by discrete groups of hyperbolic-hyperbolic isometries,

that is, by a group of AdS3 isometries given as the product of two cocompact hyperbolic Fuchsian

groups, see theorem (1.3.2). Thus to any such globally hyperbolic AdS spacetime there is a pair of

associated hyperbolic Riemann surfaces or, in other words, a point in T (S)×T (S). Remarkably,

Mess proves that any point in T (S)× T (S) can be obtained from this construction and that it,

in fact, completely characterizes the spacetime M . His argument is very involved and we shall

follow a different, more geometric, route presented in [14] using the unique maximal surface in

globally hyperbolic AdS spacetimes.

Let (M, g) be a globally hyperbolic locally AdS spacetime with a compact Cauchy surface S.

Being locally AdS, the universal covering of M is AdS3 and we may lift S to a spacelike surface S̃
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Figure 2.1: Left: AdS3 isometries associated with a geodesic plane P . Right: Diffeomorphisms

associate with spacelike surface S

therein. Associated to S̃ there is a pair of hyperbolic metrics on S̃, which we shall now define. We

remind the reader, the projective model of AdS3 provides a foliation of ∂∞AdS3 by two families

of projective lines L+ and L−, corresponding to the left and right null geodesics in ∂∞AdS3, and

that projective transformations on such lines completely determine AdS3 isometries, see end of

section 1.3. This will be used to construct a pair of diffeomorphisms ΦS̃± : S̃ → D which then

lead to the pair of hyperbolic metrics on S̃ via pull-back of the Poincaré metric on D.

Let’s start considering two geodesic spacelike surfaces P and P0. Their conformal boundaries,

∂∞P and ∂∞P0 in ∂∞AdS3, intersect each line in L+, or rather their lifts to ∂∞AdS3, at exactly

one point. We may therefore use L+ to define a bijection φ+ : ∂∞P → ∂∞P0, by simply following

the lines in L+ from their intersection with ∂∞P to their intersection with ∂∞P0. This map

permutes the lines of L− while keeping those of L+ fixed and, thus, it is nothing but a projective

transformation on L−. From the discussion of section 1.3, it then extends to a unique AdS3

isometry sending the geodesic surface P into P0. The same construction can be carried out

using L−, so we obtain a pair of such isometries ΦP± mapping P to P0, see figure 2.1.

Now, one can associate to the spacelike surface S̃ a pairs of diffeomorphisms ΦS̃± : S̃ → P0

by simply taking

ΦS̃+(p) = Φ
P (p)
+ (p), ΦS̃−(p) = Φ

P (p)
− (p),

where P (p) is the geodesic spacelike surface tangent to S̃ at p, see figure 2.1. Since the induced

metric I0 on P0 is hyperbolic, we obtain a pair of hyperbolic metrics

Ĩ± = (ΦS̃±)∗I0

and, since S̃ is the lift of S, these metrics then descends to a pair of hyperbolic metrics I± on S.

Note that such pair does not depend on the choice of initial Cauchy surface and is completely

characterized by the AdS spacetime. In fact, choosing a different spacelike surface S′ it is not

hard to see that the maps ΦS̃
′

± ◦ (ΦS̃±)−1 : S → S′ are isometries between the corresponding
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hyperbolic metrics. We have, therefore, associated to an AdS spacetime (M, g), with compact

Cauchy surface S, a point in the product T (S)×T (S) of two copies of the Teichmüller space of

S.

The existence of a unique maximal surface now also becomes useful for the converse construc-

tion of globally hyperbolic AdS spacetimes in terms of points in T (S) × T (S), see [14]. First,

note that the pair of hyperbolic metrics can be written in rather explicit terms, with the initial

data (I, II) on such surface

I± = I(E ± JB · , E ± JB · ). (2.33)

Here E is the identity operator on TS and J is the almost-complex structure induced by I and

B = I−1II is the shape tensor, or Weingarten operator, of the maximal surface. It is not hard

to show that hyperbolicity of I± are a direct consequence of the Gauss-Codazzi equations (2.21)

for (I, II).

The converse construction can now be described using the existence of minimal Lagrangian

diffeomorphisms between hyperbolic surfaces (S, I+) → (S, I−). These are area preserving dif-

feomorphisms whose graph is minimal in the product (S×S, I+× I−). A useful characterization

of such diffeomorphisms was given by Labourie [55], see also [14].

Lemma 2.2.1.1. A diffeomorphism f : (S, I+) → (S, I−) is minimal Lagrangian if and only if

there exists an operator b : TS → TS, acting fiberwise, satisfying

1. b is self-adjoint with respect to I+, with positive eigenvalues;

2. det b = 1;

3. dD
+

b = 0, where D+ is the Levi-Civita connection of I+;

4. f∗I− = I+(b · , b · ).

It is in terms of the operator b that the pair of hyperbolic metrics I+, I− encode the infor-

mation about (I, II).

Thus, given a pair of points in T (S), represented by a pair of hyperbolic metrics I± on

S, we consider the associated operator b satisfying conditions (1-4) above, and construct two

symmetric bilinear forms on S by

I =
1

4
I+(E + b · , E + b · ), II = −IJ(E + b)−1(E − b) (2.34)

which can be shown to satisfy the Gauss-Codazzi equations (2.21) as well as the tracelessness

condition of II, see [14]. Therefore, this pair describes the first and second fundamental forms

of a maximal surface in a globally hyperbolic AdS spacetime and an explicit expression for the

spacetime metric is then given by

g = −dτ2 + cos2 τI + 2 sin τ cos τII + sin2 τIII−1II. (2.35)
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again providing an efficient parametrization of globally hyperbolic AdS3 spacetimes (with com-

pact spatial slices) by two copies of the Teichmüller space. We shall derive a more explicit

expression for the pair (I, II) in terms of the Beltrami representatives of I± in chapter 4.

We have therefore described a second parametrization of the reduced phase space of 2+1 on

a spacetime M = R× S by T (S)× T (S).

It is interesting to note that both spaces arising in the parametrizations of the reduced

phase space of 2+1 AdS gravity are naturally symplectic manifold. The first, T ∗T (S) is a finite

dimensional cotangent bundle and, therefore, carries the canonical cotangent bundle symplectic

structure. The second, T (S)× T (S), has a symplectic structure induced by the Weil-Petersson

symplectic structure on each copy of T (S). This leads to an interesting question on whether

such symplectic structures, and their possible quantization, are in any way related to 2+1 grav-

ity. Also, since the both T ∗T (S) and T (S) × T (S) parametrize the same phase space, the

constructions above define a bijective map

Mess : T ∗T (S)→ T (S)× T (S). (2.36)

Another question that then arises is whether this map is natural form the point of view of the

symplectic structures on each space, that is, if the map Mess is a symplectomorphism between

T ∗T (S) and T (S)× T (S).

We shall see in chapter 6 that indeed the gravitational symplectic form, coming from the

ADM formulation, agrees with the canonical cotangent bundle symplectic form. The symplectic

structure on the product of Teichmüller spaces arises from a different formulation of 2+1 gravity

which we now describe.

2.2.4 Chern-Simons formulation

Mess’ parametrization of the reduced phase space of AdS gravity by two copies of Teichmüller

space could in fact be expected from the Chern-Simons formulation of 2+1 General Relativity

first introduced in [10] and further developed by Witten in [11]. In this formulation, one promotes

the first order variables θ and ω, the frame field and the spin connection,to gauge fields by taking

combinations

A± = (ωa ± θa)Ta,

where Ta are generators of su(1, 1). The Einstein-Hilbert action, when written in terms of A+

and A−, then becomes the difference of two decoupled PSU(1, 1) Chern-Simons actions

SEH [A+, A−] = SCS [A+]− SCS [A−]

where

SCS [A] =
k

4π

∫
M

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.37)
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In this sense we say that 2+1 GR is equivalent to Chern-Simons theory. Note, however, that the

phase space of CS theory, the space of solutions modulo gauge transformations, is actually much

bigger than that of GR. The critical points of the CS action are given by pairs of flat PSU(1, 1)

connections on the spacetime manifold. Although every locally AdS metric give rise to such a

pair of connections, the converse is not true. For example, the trivial connection A+ = A− = 0,

a perfectly good solution of CS theory, determines a vanishing frame field and, thus, presents no

metric interpretation.

The phase space of Chern-Simons theory is easily described from the Hamiltonian formalism.

Thus, we choose a space+time split of spacetime M = R× S and write the action as

SCS [A] =

∫
dt

∫
S

d2xεijtr
[
Ai∂tAj −A0

(
∂iAj − ∂jAi + [Ai, Aj ]

)]
. (2.38)

This clearly describes a constrained dynamical system on the space of all connections over the

spatial Riemann surface S, with the constraint imposing the flatness condition

F [A] = dA+A ∧A = 0. (2.39)

We further need to identify points on constraint surface which differ by a gauge transformation.

In other words, not all flat connections represent physically distinct solutions and we should

remove the superfluous degrees of freedom. Thus, the reduced phase space of the theory is

space of flat connections modulo gauge transformations and can be realized as the PSU(1, 1)

representation variety

Hom(π1(S), PSU(1, 1))/PSU(1, 1).

We now see, that the relation between the phase space of AdS 2+1 gravity and the phase

space of PSU(1, 1)× PSU(1, 1) Chern-Simons theory on spacetime M = R× S generalizes the

description of Teichmüller space T (S) as a connected component of the representation variety

Hom(π1(S), PSU(1, 1))/PSU(1, 1)

mentioned in section 2.1. The phase space of Chern-Simons theory on M is nothing but two

copies of the PSU(1, 1) representation variety for its spatial surface S and contains the 2+1

gravity phase space T (S)× T (S) as a connected component.

It is well know that the PSU(1, 1)-Chern-Simons theory symplectic from reduces to the Weil-

Petersson symplectic form on T (S), see [56]. Thus, the Chern-Simons formulation of 2+1 gravity

gives a simple argument for why one should expect the map Mess to be a symplectomorphism.

We shall see this more explicitly in chapter 6.



Chapter 3

2+1 Black Holes and Holography

We now continue with the motivations for the constructions of the following chapters. In this

chapter we turn to the study of locally AdS spacetimes with noncompact spatial topology. In

section 3.1 we present the construction of a large class of such spacetimes, the so called multi-

black holes, as quotients of AdS3 by appropriate discrete subgroups of isometries, [31, 32]. We

start considering the non-rotating case, where some simplifications occur due to the existence of

a time-symmetric surface, and give the generalization to rotating black holes towards the end of

the section. We also give some brief comments on their thermodynamical properties.

In section 3.2 we study, more generally, asymptotically AdS spacetimes. We shall focus on

their asymptotic properties providing an explicit parametrization of these spacetimes in a neigh-

bourhood of their conformal boundary, [42]. We shall also describe their asymptotic symmetries,

following [26]. This gives an interpretation of the space of all such spacetimes as an asymptotic

deformation space of a given reference spacetime, which we shall see will share similarities to

the quasiconformal description of Teichmüller spaces presented in section 2.1. We also provide

expressions for the charges of asymptotically AdS spacetimes and discuss their relation to the

conjectured CFT description of 2+1 gravity.

3.1 Black Holes in 2+1 dimensions

3.1.1 The construction of AdS black holes

We now consider the construction of multi-black holes in 2+1 AdS gravity. As in the com-

pact case, these are obtained from AdS3, or some region therein, as quotients by appropriate

discrete subgroups of isometries. The groups we consider are given as products of a pair of hy-

perbolic Fuchsian groups which are now required to be non-cocompact, that is, they uniformize

non-compact complete hyperbolic surfaces with infinite area. The simplest example of such a

spacetime is the BTZ black hole of [25], obtained from a discrete group generated by a single

33
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hyperbolic-hyperbolic element of PSU(1, 1) × PSU(1, 1). Given its simplicity and importance,

we shall give some special attention to this black hole, using it as an illustrative example for the

constructions we present.

Following [31, 32], we shall start describing the construction of non-rotating multi-black

holes. The introduction of angular momentum will be given at the end of this section as a

generalization of the non-rotating case. As we shall see, non-rotating black hole spacetimes will

be completely described in terms of data on a special hyperbolic spacelike surface symmetric

under time reflection. Note that the spacetimes we will consider here will not be globally

hyperbolic due to the presence of a timelike conformal boundary. Thus, the following “initial

data” construction is not obtained, strictly speaking, by time evolution of the initial surface

but from the possibility of extending to AdS3 the action of the Fuchsian group uniformizing

that surface. This can then be interpreted as performing certain analytic continuation of the

spacetime metric on the initial surface’s domain of dependence beyond its Cauchy horizon.

Thus, let’s consider a locally AdS spacetime (M, g) with topology M = R × S, where S

is a noncompact surface. Further let’s assume that the spacetime is time symmetric, that is,

there exists a choice of time function t such that the spacetime metric is invariant under the

transformation t 7→ −t. Taking the ADM decomposition of the metric with respect to the

foliation determined by this time function, we obtain the following transformation for the lapse

function, shift vector and the components of the induced spatial metric

N2(−t, x) = N2(t, x), N i(−t, x) = −N i(t, x), Iij(−t, x) = Iij(t, x).

As a consequence, the extrinsic curvature (2.17) transforms as

N(−t, x)IIij(−t, x) = −N(t, x)IIij(t, x).

We then see that the time symmetry surface t = 0 has vanishing extrinsic curvature and, via

the Gauss equation (2.21), hyperbolic induced metric.

Conversely, given a noncompact hyperbolic surface (S,X) = D/Γ we may construct a time

symmetric AdS spacetime whose time symmetry surface is isometric to (S,X). This is obtained

by extending the action of Γ on D to the whole of AdS3 by identifying the hyperbolic disc D

with a totally geodesic plane P in AdS3. With no loss of generality, we may choose P to be the

v = 0 plane in the group manifold model, where points in AdS3 are parametrized by

p =

u+ x y + v

y − v u− x

 , det p = 1.

Then, P is the time symmetry surface with respect to, say, the global AdS3 coordinates,

x = sinhχ cos θ, y = sinhχ sin θ, u = coshχ cos t, v = coshχ sin t,
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introduced in section 1.3. It is now easy to see that the subgroup of AdS3 isometries leaving P

invariant is a diagonal copy PSU(1, 1) ⊂ PSU(1, 1) × PSU(1, 1) consisting of transformations

p 7→ ApAT . The action of Γ thus admits a unique extension from D to AdS3 obtained by

embedding Γ into this diagonal subgroup

Γ ↪→ PSU(1, 1) ⊂ PSU(1, 1)× PSU(1, 1).

Since Γ acts freely properly discontinuously as a group of AdS3 isometries preserving P , we

obtain a black hole spacetime (M, g) = AdS3/Γ× Γ with the prescribed time symmetry surface

(S,X) = D/Γ.

Let us illustrate this construction more explicitly with the non-rotating BTZ black hole. In

this case, Γ = 〈A〉 is the group generated by a single hyperbolic element A ∈ PSU(1, 1). Without

loss of generality, we may choose the fixed points of A to be z = −1, 1 so it can be parametrized

(as an PSU(1, 1) element) as

A =

 2 cosh(πr+) −2 sinh(πr+)

−2 sinh(πr+) 2 cosh(πr+)

 .

The relation between the SL(2,R) model coordinates on the P = {v = 0} and usual the complex

coordinate z on D is given by

z =
x+ iy

1 + u

so the action of A

z 7−→ A(z) =
cosh(πr+)z − sinh(πr+)

− sinh(πr+)z + cosh(πr+)

translates to

p =

u+ x y

y u− x

 7−→ ApAT =

e2πr+(u+ x) y

y e−2πr+(u− x)


which can be immediately extended to the whole of SL(2,R).

It is now possible to introduce natural coordinates adapted to the action of Γ from which its

fundamental domain is easily visualized and the usual metric description is obtained. We start

working in a Poincaré patch in AdS3 with

u = r cosh θ, x = r sinh θ

v = (r2 − 1)1/2 sinh t, y = (r2 − 1)1/2 cosh t, (3.1)

with (r, t, θ) ∈ (1,∞)× R2, so the AdS3 metric becomes

gAdS3 = −(r2 − 1)dt2 +
1

r2 − 1
dr2 + r2dθ2. (3.2)

The action of Γ is now simply given by translations in the coordinate θ by factors of 2πr+.

Note that the level sets of the coordinate θ are given by hyperbolic geodesics on the t = 0
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Figure 3.1: Fundamental domains of time symmetry surfaces. Left: BTZ black hole. Center:

Sphere with three punctures. Right: Punctured torus.

time-symmetry surface. Thus, from the point of view of this surface, a fundamental domain of

the action of Γ is given by a region between two such hyperbolic geodesics, see figure 3.1. Also,

allowing t to be non-zero it is not hard to see that the level sets of θ in AdS3 describe timelike

geodesic surfaces and the fundamental domain of the action of Γ is the region between such

surfaces, figure 3.2.

The next step is to consider another transformation by rescaling the coordinates as

t 7−→ r+t̃, r 7−→ 1

r+
r̃, θ 7−→ r+θ̃.

This ensures that, upon identification θ ∼ θ+2πr+, we have a true angular coordinate θ̃ ∈ [0, 2π]

and leads to the usual expression for the BTZ metric

gBTZ = −(r̃2 −M)dt̃2 +
1

r̃2 −M
dr̃2 + r̃2dθ̃2 (3.3)

with mass parameterM = r2
+. The surface r = r+, where the metric becomes singular, represents

the BTZ black hole’s event horizon. This is only a coordinate singularity and, although the just

introduced coordinates do not cover the whole of BTZ, they can be readily extended to cover a

bigger region therein. We note, however, that we shall only need to consider the explicit local

expression for these metrics in a neighbourhood of conformal infinity. The above coordinate

patches will thus suffice for the constructions that follow.

To obtain a better global understanding of more general multi-black holes, we now describe

the fundamental domain for the action of an arbitrary hyperbolic Fuchsian group Γ generalizing

the previous discussion of the BTZ case. On the time-symmetry geodesic plane the fundamental

domain is again obtained as the region between hyperbolic geodesic segments mapped pairwise

into one another by generators of Γ, see figure 3.1. To obtain the spacetime bulk fundamental

domain we then evolve these pairs of geodesics, both forward and backward in time, into pairs

of geodesic surfaces. These are again mapped to one another by Γ and the region between

them represents, upon identification, the multi-black hole spacetime. Note that, because of the
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Figure 3.2: BTZ black hole. Left: Spacetime fundamental fundamental domain. Center: Bound-

ary fundamental domain. Right: Event horizon.

positive pressure generated by the negative cosmological constant, timelike geodesics in AdS3 are

attracted to each other and, therefore, the geodesic surfaces, bounding the fundamental domain,

eventually intersect and the spacetime collapses into a final singularity.

We may also include in this discussion the conformal boundary of AdS3. We remind the

reader, the isometries of AdS3 extend to conformal transformations of ∂∞AdS3, see section 1.3.

It therefore makes sense to describe the conformal boundary of quotients of AdS3 as quotients

of its conformal boundary ∂∞AdS3. We note however that the fundamental domain of the

conformal boundary of a multi-black hole is not the whole of ∂∞AdS3 but only a disconnected

subset therein. We again start looking at the time symmetry surface. The covering space of

its conformal boundary is the circle S1 minus the set Λ(Γ) of limit points of orbits of Γ. The

complement S1\Λ(Γ) is then a disjoint union of open spacelike segments on ∂∞AdS3 which

are invariant under the action of Γ. Looking at the development in ∂∞AdS3 of such segments

we obtain a disjoint union of open causal diamonds which are tessellated by the conformal

boundaries of fundamental domains of Γ. The components of the conformal boundaries of the

multi-black hole are then obtained as quotients of such diamonds by the extended action of Γ.

Each of these component is then a conformal copy of ∂∞AdS3, that is, a topological cylinder

with collapsed end points corresponding to the final and initial spacetime singularity. In this

sense we may say that the multi-black hole spacetimes here described are asymptotically AdS

[57].

Again, let’s make the discussion above more explicit in the case of a BTZ spacetime. The limit

set of Γ then consists only of the pair of fixed points of the generator A. Thus, the development

of S1\Λ(〈A〉) is described by two causal diamonds with vertices at the fixed points of A and at

the initial and final spacetime singularity, see figure 3.2.

We may write the generator A as the exponential of a Killing vector field

A = eξ, ξ = r+(x∂u + u∂x).
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The two diamonds can then be described as the regions in ∂∞AdS3 where the flow of ξ is spacelike.

Introducing null coordinates x± = t ± θ on the conformal boundary of AdS3, associated with

the global cylindrical coordinates

x = sinhχ cos θ, y = sinhχ sin θ, u = coshχ cos t, v = coshχ sin t,

we may write ξ as

ξ = −r+(sinx+∂+ + sinx−∂−)

and it is clear from this expression the diamond regions are given by

−π < x+ < 0, 0 < x− < π and 0 < x+ < π, −π < x− < 0.

These are then the covering spaces of each component of the conformal boundary of the BTZ

black hole. Note that the null coordinates introduced here are simply related with the global

cylindrical coordinates (1.2) and not the Poincaré patch coordinates in (3.2).

To see that, upon identification, we obtain two regions asymptotic to AdS3 we note that we

may take the induced metric on ∂∞AdS3 to be

dŝ2 = − dx+dx−

r2
+ sinx+ sinx−

so that ξ is not only conformal Killing but now a true Killing vector field for dŝ2. On the BTZ

quotient ξ will then be the generator of spatial rotations. There also exists a second Killing

vector field orthogonal to ξ, let’s call it ζ. In our coordinates this is given by

ζ = −r+(sinx+∂+ − sinx−∂−).

It is easy to see that in the diamond regions above the flow of ζ is timelike so on the BTZ

spacetime it will be the generator of time translations. This shows the conformal boundaries

of the BTZ are nothing but timelike cylinders and we are thus entitled to call such spacetime

asymptotically AdS.

Having described the fundamental domain, it is now easy to identify the event horizons of

the multi-black hole. In fact, since the fundamental domain of its conformal boundary only

occupy a finite region of the conformal boundary of AdS3, there exists, in the bulk fundamental

domain, a causally disconnected region from which the conformal boundary can only be reached

via spacelike curves. This inner region is obtained as the complement of the causal past of

the spacetime conformal boundary and the event horizons are the components of its boundary.

Equivalently, the horizons can be defined as the past light cones of the final singularity of each

component of the conformal boundary, figure 3.2.

We finish the discussion on the construction of AdS multi-black holes briefly describing the

inclusion of angular momentum. The generalization is a natural one: instead of having a single
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hyperbolic Fuchsian group acting diagonally in AdS3 we now consider the product of distinct

hyperbolic Fuchsian groups Γ+ × Γ− ↪→ PSL(2,R)× PSL(2,R, ) acting via

(A+, A−)p 7−→ A+pA
T
−

on the group manifold parametrization. There will now be no surface of time symmetry so the

“initial data” construction is no longer possible. The physical interpretation of these spacetimes

is still available through the analysis of their conformal boundaries, in a direct generalization of

the discussions above. In particular, it is possible to obtain expressions for interesting physical

quantities, in terms of traces of the generators of Γ±, see [32, 35].

We present here the description of the rotating BTZ black hole corresponding to a group

〈A+〉 × 〈A−〉 generated by hyperbolic elements A+, A− ∈ PSU(1, 1). We may write the genera-

tors as

A+ =

eπ(r+−r−) 0

0 e−π(r+−r−)

 , A− =

eπ(r++r−) 0

0 e−π(r++r−)


and the corresponding Killing vector

ξ = r+(x∂u + u∂x) + r−(y∂v + v∂y).

For convenience we consider r+ ≥ r−. Introducing Poincaré coordinates for AdS3, we see that

the action of Γ now also includes translations in the time coordinate by factors of −2πr−. We

thus consider more appropriate coordinates

t 7−→ r+t̃− r−θ̃, r2 7−→
r̃2 − r2

−
r2
+ − r2

−
, θ 7−→ r+θ̃ − r−t̃.

The new time coordinate is then easily seen to remain unchanged under the action of (A+, A−)

while the angular coordinate is shifted by a factor of 2π. Upon identification θ̃ ∼ θ̃ + 2π we

recover the usual expression for the rotating BTZ metric

gBTZ = −(r̃2 −M)dt̃2 +
1

r̃2 −M + J2

4r̃2

dr̃2 − Jdt̃dθ̃ + r2dθ̃2 (3.4)

with the mass and angular momentum

M = r2
+ + r2

−, J = 2r+r−. (3.5)

Note that the new coordinates just introduced are relevant for the r ≥ r+. Similar definitions

for the appropriate coordinates in the regions r+ ≥ r ≥ r− and r− ≥ r are also possible leading

to the same expression for the BTZ metric.

From the point of view of the conformal boundary, it is again natural to introduce null

coordinates x+, x−. The Killing vector ξ now reads

ξ = −(r+ + r−) sinx+∂+ − (r+ − r−) sinx−∂−
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and its timelike orthogonal

ζ = −(r+ + r−) sinx+∂+ + (r+ − r−) sinx−∂−.

The two causal diamonds describing the covering space of the conformal boundary are still again

given by

−π < x+ < 0, 0 < x− < π and 0 < x+ < π, −π < x− < 0,

but now the flow of ξ depends on the ratio Ω = r−/r+. The fundamental domain of the conformal

boundary of the rotating BTZ black hole is thus the same as that of the non-rotating black hole,

only the identifications are different.

3.1.2 Black hole thermodynamics

The class of spacetimes described in this section, although much simpler than their 3+1 dimen-

sional counterparts, still presents the most interesting aspects of black holes, namely their ther-

modynamical properties. For the general rotating BTZ black hole we obtained expressions (3.5)

for mass and angular momentum in terms of the (traces of) generators (A+, A−). The other

relevant extensive variable is the entropy which, by the Bekenstein-Hawking formula [58], is

proportional to the event horizon’s length

S = 4πr+. (3.6)

Thus, solving for M , this gives a relation between the thermodynamical variables

M =
S2

16π2
+

4π2J2

S2

from which we may compute the intensive variables. In fact, the relation above implies the

following “first law”

dM =
r2
+ − r2

−
2πr+

dS +
r−
r+
dJ. (3.7)

Thus the BTZ black hole has temperature and angular velocity

T =
r2
+ − r2

−
2πr+

, Ω =
r−
r+
. (3.8)

Although the spacetime geometry is enough to compute these thermodynamical properties

of black holes, their microscopical origin remains a mystery. Only a full theory of quantum

gravity will allow us to obtain a statistical description for this thermodynamical phenomenon.

Nonetheless, an explanation for the origin of black hole entropy can be given from a conjectured

dual CFT description of 2+1 AdS gravity.

In the present section, our considerations for the construction of multi-black hole spacetimes

were mainly geometric, exploiting the lack of local bulk degrees of freedom in three dimen-

sions. There is, however, another very important, non-geometric, aspect of multi-black holes or,
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more generally, asymptotically AdS spacetimes which was not taken into account. Namely, in

the presence of a timelike conformal boundary the theory fails to be diffeomorphism invariant

and certain class of diffeomorphisms can no longer be consider as gauge. These form the so

called group of asymptotic symmetries and represent new degrees of freedom, introduced at the

conformal boundary, distinguishing between inequivalent diffeomorphic configurations.

Remarkably, this plays a key role in the understanding of black hole thermodynamics. As

the classical result of [26] shows, the algebra of asymptotic symmetries contains two copies of

the infinite dimensional Virasoro algebra with central charge c = 3/2G. This thus suggests a

dual description of the AdS gravitational bulk theory by a lower dimensional CFT of central

charge c, in the spirit of the now acclaimed AdS/CFT correspondence of string theory. Although

this is not yet enough to explain the microscopic (quantum) origin of black hole entropy, since

this dual CFT remains unknown, the obtained value for the central charge c, together with

modular invariance, is enough for the computation of black hole entropy in agreement with the

Bekenstein-Hawking area formula (3.6), see [27, 59].

3.2 Asymptotically AdS spacetimes

3.2.1 Fefferman-Graham expansion

Let’s now start with a more precise definition of asymptotically AdS spacetimes as these will

be the main objects of interest in the remainder of the chapter. Since all solutions of negative

cosmological constant Einstein’s equation are locally indistinguishable, the key aspect we would

like to impose on a spacetime so it can be considered asymptotically AdS is related to its

behaviour near conformal infinity. We therefore define an asymptotically AdS spacetime to

be a locally AdS spacetime (M, g) admitting a (spatial) conformal completion (ρ, ∂∞M), see

section 1.3, such that its conformal boundary ∂∞M is a disjoint union of copies of R× S1 with

a conformally flat Lorentzian metric [57]. From now on, we shall restrict our attention to a

single component of the conformal boundary, the generalization for the other components being

immediate.

A useful description of the spacetime metric can then be given in a neighbourhood of the

conformal boundary. Similarly to the choice of lapse function and shift vector in the canonical

formulation presented in section 2.2, one begins by fixing part of the gauge freedom by choosing a

foliation of spacetime by constant radius cylinders starting from the boundary. This is achieved

by taking the spatial conformal completion defining function ρ so that the spacetime metric can

be written as

g =
1

ρ2
dρ2 +

1

ρ2
γ, (3.9)

with γ the induced metric on the constant ρ cylinder. As a result of the work of Fefferman and



42 CHAPTER 3. 2+1 BLACK HOLES AND HOLOGRAPHY

Graham [60], see also [42] for a physics motivated approach, Einstein’s equations can then be

used to determine γ order by order in ρ in an asymptotic expansion

γ = γ(0) + ρ2γ(2) + ρ4γ(4) · · ·

starting from an arbitrary representative γ(0) of the conformal class of the boundary metric. In

three dimensions this expansion stops at order ρ4 with

γ(4) =
1

4
γ(2)γ

−1
(0)γ(2), tr (γ−1

(0)γ(2)) = −1

2
R(0), Djγ(2)

j
i −Diγ(2)

j
j = 0. (3.10)

Note that a similar expansion is also possible for higher dimensional asymptotically AdS space-

times. The possibility of writing down the Fefferman-Graham type expansion in a closed form,

that is, with a finite number of terms, is, however, peculiar to 2+1 dimensions due to the absence

of local degrees of freedom.

It is clear from (3.10) that not all components of the tensor γ(2) are determined by Einstein’s

equations. The undetermined part of γ(2), referred to as the Fefferman-Graham ambiguity [42],

should then be included in the asymptotic expansion (3.9) by the introduction of an arbitrary

symmetric tensor T in γ(2) satisfying

γ(2) =
1

2
(T −R(0)γ(0)), tr (γ−1

(0)T ) = R(0), DjT
j
i = 0. (3.11)

We may then further gauge fix the remaining 2-dimensional diffeomorphism freedom by

working with null coordinates for a flat boundary metric

γ(0) = −1

4
dx+dx−. (3.12)

Note this is always possible by appropriately rescaling the defining function ρ. The tensor

ambiguity T then becomes traceless and can be written as

T = a+(dx+)2 + a−(dx−)2, (3.13)

with chiral components a± satisfying

∂+a− = ∂−a+ = 0,

and the most general asymptotically AdS metric can be written as

g =
1

ρ2
dρ2 − 1

4ρ2
dx+dx− +

1

2
(a+(dx+)2 + a−(dx−)2)− ρ2a+a−dx

+dx−. (3.14)

The only freedom in this parametrization is the specification of the pair of chiral functions a±.

We have therefore obtained a realization of the phase space of asymptotically AdS spacetimes

space of such pairs of functions for each conformal boundary component.



3.2. ASYMPTOTICALLY ADS SPACETIMES 43

3.2.2 The quasilocal stress tensor

It remains to be shown that distinct pairs a+, a− indeed describe inequivalent physical configu-

rations. This can be readly justified with a direct computation identifying the tensor ambiguity

(3.13) as the quasilocal stress tensor of Brown and York [45] and, therefore, relating its compo-

nents with the spacetime conserved charges.

First, note that in dealing with spatially noncompact spacetimes, the Einstein-Hilbert action

(2.12) needs to be complemented by boundary terms for the well posedness of the variational

principle with the given boundary conditions [61, 62]. To impose the asymptotically AdS bound-

ary conditions we must keep fixed the conformal structure of the boundary at infinity. It is thus

sufficient to add the usual York-Gibbons-Hawking integral of the boundary’s mean curvature,

as well as a renormalization counter term proportional to the area of the boundary for on-shell

convergence [47]. Thus, we consider

S[g] =
1

2π

∫
M

d3x
√
−g(R+ 2) +

1

π

∫
∂M

d2x
√
−γ(Θ− 1). (3.15)

Here, γ is the boundary metric and Θ the boundary extrinsic curvature. Note that our convention

for a timelike extrinsic curvature is Θµν = −∇(µuν) with u = ρ∂ρ the unit inwards directed

normal vector field to the boundary. The quasi-local stress tensor is then obtained as the

variation of this renormalized action with respect to the boundary metric

2√
−γ

δS

δγµν
= − 1

π

(
Θµν −Θρ

ργµν + γµν

)
(3.16)

in analogy with the definition of energy in Hamilton-Jacobi theory. A direct computation now

shows that (3.16) is proportional to the tensor ambiguity (3.13)

2√
−γ

δS

δγ
=

1

2π

(
a+(dx+)2 + a−(dx−)2

)
=

1

2π
T.

To see this, simply denote by Mρ the portion of the spacetime manifold interior to a constant ρ

cylinder and compute the induced metric and extrinsic curvature of its timelike boundary

γ = − 1

4ρ2
dx+dx− +

1

2
(a+(dx+)2 + a−(dx−)2)− ρ2a+a−dx

+dx− (3.17)

Θ = −
( 1

4ρ2
− ρ2a+a−

)
dx+dx−. (3.18)

The quasilocal stress tensor measures the spacetime conserved charges. For each asymptotic

Killing vector field ξ we have an asymptotic charge

Q[ξ] = lim
ρ→0

1

π

∫
∂Sρ

dθ
√
σnµξνTµν (3.19)

where Sρ is the intersection of a spacelike slice S = {t = 0} and Mρ,

n =

(
1

4ρ2 + a− + ρ2a+a−
)
∂+ +

(
1

4ρ2 + a+ + ρ2a+a−
)
∂−(

1
4ρ2 − ρ2a+a−

)(
1

4ρ2 + 1
2 (a+ + a−) + ρ2a+a−

)1/2
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its unit normal timelike vector field and

σ =
( 1

4ρ2
+

1

2
(a+ + a−) + ρ2a+a−

)
dθ2

the induced metric on the boundary of Sρ. We may readly compute the mass and angular mo-

mentum of the spacetime (3.14). Mass is the asymptotic charge associated with time translation

symmetry (ξ = 1
2 (∂+ + ∂−))

M = lim
ρ→0

1

2π

∫
∂Sρ

dθ
√
σ(n+T++ + n−T−−) =

1

2π

∫
∂S

dθ (a+ + a−) (3.20)

and angular momentum the one associated with rotation symmetry (ξ = 1
2 (∂+ − ∂−))

J = lim
ρ→0

1

2π

∫
∂Σρ

dθ
√
σ(n+T++ − n−T−−) =

1

2π

∫
∂S

dθ (a+ − a−). (3.21)

A quick justification for these expressions can be given by computing the associated charges of

the BTZ black hole. This is easily done by rewriting the BTZ metric (3.4) in Fefferman-Graham

coordinates (3.14). This is achieved by introducing the coordinate

1

ρ2
= 2r2

(
1− M

2r2
+

√
1− 1

r2
M +

J2

4r4

)

for 2r2 > M +
√
M2 − J2. We can now read the quasilocal stress tensor

T =
1

2
(M + J)(dx+)2 +

1

2
(M − J)(dx−)2 (3.22)

thus supporting the above expressions for the spacetime charges. We shall give a proper justifi-

cation towards the end of this section making use of the canonical formalism.

3.2.3 The group of asymptotic symmetries

It is important to note that the spacetimes described above are all related by diffeomorphisms. In

fact, the gauge fixing conditions introduced earlier does not exhaust all diffeomorphism freedom.

There remains a subgroup of diffeomorphisms preserving the asymptotic expansion (3.9) and the

flatness of the boundary metric (3.12) but transforming the components of the quasilocal stress

tensor (3.13). By the discussion above, these diffeomorphisms are not simply gauge degrees of

freedom and, in fact, parametrize the phase space of asymptotically AdS spacetimes.

It is thus interesting to study the corresponding algebra of infinitesimal generators. These

are easily obtained imposing invariance, under Lie derivatives, of the leading terms

g =
1

ρ2
dρ2 − 1

4ρ2
dx+dx− + · · ·

of asymptotically AdS metrics. These generators, so called Brown-Henneaux vector fields, can

be written in component as

ξρ =
ρ

2
(∂+ε+ + ∂−ε−) +O(ρ2), ξ± = ε± ∓ 2ρ2∂2

∓ε∓ +O(ρ4) (3.23)
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where ε± are arbitrary chiral functions of t ± θ and ∂± = 1
2 (∂t ± ∂θ). The only contributions

generated by such infinitesimal diffeomorphisms occurs in the components of the quasilocal stress

tensor T as can be seen taking the Lie derivative of the metric (3.14)

δg = Lξg =
1

2
(ε+∂+a+ + 2∂+ε+a+ − ∂3

+ε+)(dx+)2

+
1

2
(ε−∂−a− + 2∂−ε−a− − ∂3

−ε−)(dx−)2 + · · · . (3.24)

The phase space of 2+1 asymptotically AdS spacetimes can therefore be obtained by apply-

ing Brown-Henneaux generators to a fixed “vacuum” spacetime and can be interpreted as an

“asymptotic deformation space” of such reference spacetime. This is very similar to the descrip-

tion of the Teichmüller space as a quasiconformal deformation space of a reference Riemann

surface given in section 2.1.

Note, however that the above description of the phase space is not entirely satisfactory.

The Fefferman-Graham coordinate ρ only extends over a portion of the spacetime, eventually

breaking down as one move towards the bulk. Thus, one only has control over what happens

in a neighbourhood of the conformal boundary. In particular, it is not possible to characterize

those choices of a± leading to particular bulk spacetime geometries.

As we shall see, this is in sharp contrast with the characterization of noncompact Riemann

surfaces by quasiconformal deformations, in which the moduli (now certain homeomorphisms of

the unit circle) completely determine the topological and metric properties in the whole of the

Riemann surface. Given the close relation between the Teichmüller space of compact Riemann

surfaces and the phase space of spatially compact AdS spacetimes presented in the last chapter,

we are thus motivated to search for a better description of the phase space of asymptotically

AdS spacetimes based on the Teichmüller space of noncompact Riemann surfaces.

3.2.4 Canonical formulation

Some justification is in order for our interpretation of (3.19) as the conserved charges of spacetime

(3.13). Turning to the canonical formulation we shall now reobtain this above formula directly

from the gravitational Hamiltonian.

In section 2.2 we have computed the Hamiltonian of general relativity ignoring all boundary

contributions (2.22). Now, with a noncompact spacetime, H will need to be supplemented by

boundary terms in order to become functionally differentiable. We thus write

H[ξ] =

∫
S

d2xξµc Cµ +Q[ξ], (3.25)

where Cµ are the constraints (2.21) and ξµc are surface deformation vectors corresponding to the

generators of asymptotic symmetries ξ via

ξ⊥c = Nξt ξρc = ξρ +Nρξt, ξθc = ξθ +Nθξt, (3.26)
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see [26]. The boundary term Q[ξ] is obtained imposing the variation of H[ξ] to take the form

δH[ξ] =

∫
S

d2x
[
( · · · )ijδhij + ( · · · )ijδπij

]
.

Thus, to obtain the charges we need to functionally integrate the following expression

δQ[ξ] = − 1

2π

∫
d2x
√
IDl

[
(IikIjl − IijIkl)(DkξcδIij − ξcDkδIij)

− 4π√
I
ξckδΠ

kl − 2π√
I
ξck(2ΠjlIik −ΠijIkl)δIij

]
(3.27)

Our approach will be to directly compute the asymptotic behaviour of the canonical variables

and their variations in terms of the Fefferman-Graham parametrization (3.14). This computation

turns out to be rather simple as we shall only need up to first subleading terms.

Thus, performing the ADM decomposition (2.14) for the t = 0 surface of a general asymp-

totically AdS spacetime (3.14) we get the following expressions for the induced spatial metric

and its extrinsic curvature

I =
1

ρ2
dρ2 + (

1

4ρ2
+

1

2
(a+ + a−) + ρ2a+a−)dθ2,

Π√
I

=
1

π

[
ρ5(∂+a+ + ∂−a−)∂2

ρ − 4ρ4(a+ − a−)∂ρ∂θ

]
+ · · · , (3.28)

and for their variations

δI =
1

2
(δa+ + δa−)dθ2 + · · · ,

δΠ√
I

=
1

π

[
ρ5(∂+δa+ + ∂−δa−)∂2

ρ − 4ρ4(δa+ − δa−)∂ρ∂θ

]
+ · · · . (3.29)

The ellipses represent subleading terms. We remind the reader, the canonical momentum Π is

not a tensor, but a tensor density weight 1. One must therefore be careful when performing its

variation. In particular, this explains the square roots of the metric determinant appearing in

the denominator of most formulas.

Now, using Stoke’s theorem and the asymptotic relation (3.26) between the components of

the vector fields ξc and ξ,

ξ⊥c =
1

2ρ
ξt + · · · ξρc = ξρ, ξθc = ξθ + 2ρ2(a+ − a−)ξt + · · · ,

it is not hard to compute the variation of the charges at a constant ρ cylinder. In the limit ρ→ 0

we have

δQ[ξ] =
1

2π

∫
∂S

dθ
[
(δa+ + δa−)ξt + (δa+ − δa−)ξθ

]
(3.30)

which directly integrates to

Q[ξ] =
1

2π

∫
∂S

dθ
[
(a+ + a−)ξt + (a+ − a−)ξθ

]
−Q0[ξ] (3.31)

in agreement with the above expressions for mass and angular momentum. The constant term

Q0 is determined by setting the charges of a reference spacetime to zero. This can be chosen
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arbitrarily but there are some obviously preferred candidates, for example the AdS spacetime

it self. Our choice (3.19), however, does not take AdS3, for which a+ = a− = −1/2, as the

zero charge spacetime, but the spacetime with vanishing quasilocal stress tensor a+ = a− = 0.

Although, with this convention, AdS3 becomes negatively massive, we get the expected charges

(3.5) for the BTZ black hole, see formula (3.22).

The canonical realization Q[ξ] of the algebra of asymptotic symmetries plays a key role in

the dual CFT interpretation of asymptotically AdS gravity in 2+1 dimensions. As shown in [26]

the algebra of charges contains two copies of centrally extended Virasoro algebra

{Q[ξ±m],Q[ξ±n ]} = (m− n)Q[ξ±m+n] +
c

12
m(m2 − 1)δm+n,0.

Here, Q[ξ±n ] is the charge associated with the Brown-Henneaux generator (3.23) where ε± =

e−in(t±θ), that is,

ξ±n = e−in(t±θ)(∂± −
in

2
ρ∂ρ) + · · · , (3.32)

Since upon quantization the quantum gravity states must form a representation of this algebra,

a quantum theory of asymptotically AdS 2+1 gravity must be (dual to) a conformal field theory

of the central charge c. We shall not perform here a computation of this algebra, see [26, 59] for

more details, but we note that the value of the central charge can be obtained directly from the

properties of the quasilocal stress tensor (3.16). In fact, we can read off the transformation of

the components of T directly from the action (3.24) of the Brown-Henneaux generators on the

metric (3.14)

δa± = ε±∂±a± + 2∂±ε±a± − ∂3
±ε±. (3.33)

This can be readly recognized as transformation of the chiral part of the stress tensor of a

conformal field theory with central charge c = 3/2G = 12, with our choice of units 8G = 1, see

[63, 47].



48 CHAPTER 3. 2+1 BLACK HOLES AND HOLOGRAPHY



Chapter 4

The Universal Phase Space

In the present chapter we give the construction of the universal phase space of 2+1 AdS gravity.

We start in section 4.1 with a brief introduction to universal Teichmüller theory, generalizing

the quasiconformal description of fixed compact topology Teichmüller spaces of section 2.1.

The main references we shall follow are [21, 20, 22, 37]. We describe two distinct realizations,

models A and B, of universal Teichmüller space T (D) which will later be related to distinct

(bulk/boundary) aspects of AdS spacetimes. The relation between these models will be made

very explicit at the infinitesimal level, see [49, 65], which will allow us, in chapter 5, to obtain

an explicit relation between the holographic (Fefferman-Graham) description of asymptotically

AdS spacetimes, presented previously, and the maximal surface description, to be introduced

below.

In section 4.2 we shall quickly review the constructions of Bonsante and Schlenker [39] of

maximal surfaces in AdS3 given a point in T (D). We shall not present a complete proof of their

results, but will try to give a broad idea of how these are obtained. This is mainly done for

completeness and we refer the reader to [39] for more rigorous details. We shall also describe

the relation between minimal Lagrangian and harmonic diffeomorphisms, associated with the

generalized Gauss map of a maximal surface in AdS3, see [40].

Section 4.3 presents the construction of AdS spacetimes from pairs of points in T (D), gener-

alizing Mess’ parametrization of spatially compact AdS spacetimes. We discuss the need for two

independent Teichmüller sectors and their interpretation as “geometric” and “non-geometric”

deformation directions of the domain of dependence of a geodesic surface in AdS3. We then

present a generalization of the cotangent bundle parametrization by T ∗T (D) and, using the har-

monic decomposition of minimal Lagrangian diffeomorphisms, give a rather simple description

of a generalized Mess map T ∗T (D)→ T (D)× T (D).

We finish the section with a more explicit relation between the T (D)×T (D) parametrization

and the Chern-Simons formulation of 2+1 gravity.

49
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4.1 Universal Teichmüller theory

4.1.1 The universal Teichmüller space

In general terms, the universal Teichmüller space T (D) is the space of equivalence classes of

quasiconformal deformations of the unit disc D, generalizing the construction of Teichmüller

space of closed surfaces given in section 2.1. Via the Riemann mapping theorem (2.1.1), we shall

think interchangeably about bounded Beltrami coefficients and the corresponding (normalized)

quasiconformal solution of Beltrami equation. Thus T (D) will be realized as a quotient of the

space of bounded Beltrami coefficients on D. For the equivalence relation, we shall present

two distinct definitions, leading to two realizations of universal Teichmüller space. Although

equivalent, these realizations look quite different, introducing distinct types of structures on

T (D). They will also relate to distinct aspects of AdS 2+1 gravity in spatially non-compact

spacetimes, as we shall see in the next sections, 4.2 and 4.3, and chapter 5.

Thus, let’s consider

BD(D)1 =

{
µ : D→ C; ‖µ‖∞ = sup

D
|µ(z)| < 1

}
,

the unit ball in the space of bounded Beltrami differentials on D. As in section 2.1, we shall use

the measurable Riemann mapping theorem to identify BD(D)1 and QC(D) the quasiconformal

deformation space of D. We then define the universal Teichmüller space T (D) as the space of

equivalence classes of bounded Beltrami differentials µ ∈ BD(D)1,

T (D) = BD(D)1/ ∼, (4.1)

with the equivalence relation being defined as follows.

Model A. For each Beltrami coefficient µ ∈ BD(D)1 one solves Beltrami equation

∂z̄f = µ∂zf (4.2)

in C with coefficients extended to D∗ by reflection

µ(z) =


µ(z), z ∈ D,

µ(1/z̄)z2/z̄2, z ∈ D∗.
(4.3)

The solution fµ must then satisfy

fµ(1/z̄) = 1/fµ(z) (4.4)

and therefore leaves invariant both D and D∗ = Ĉ\D and, thus, also S1 = ∂D = ∂D∗. We

then normalize such solution requiring it to fix −1, −i and 1 and define two bounded Beltrami

coefficients µ, ν to be equivalent if the corresponding (normalized) solutions agree on S1

fµ
∣∣
S1 = fν

∣∣
S1 . (4.5)
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Such boundary values of quasiconformal maps of the unit disc are homeomorphisms of the

unit circle satisfying the 1-dimensional analogue of the bounded dilatation condition (2.1) of

quasiconformal maps: they are allowed to alter the cross ratios of “symmetrically” placed points

on S1 by a bounded ratio. More precisely, the so called quasisymmetric homeomorphisms are

orientation preserving homeomorphism φ : S1 → S1 such that

1

k
≤ |φ(ei(θ+θ′))− φ(eiθ)|
|φ(eiθ)− φ(ei(θ−θ′))|

≤ k, (4.6)

for θ 6= θ′, for some constant k. We have therefore, in model A, a realization of universal

Teichmüller space as the space of Möbius normalized quasisymmetric homeomorphisms of S1

T (D) = QS(S1)/Möb(S1). (4.7)

This description readily introduces a group structure on T (D) induced by the composition

of quasisymmetric homeomorphisms. The group multiplication, in terms of the Beltrami repre-

sentatives, is defined as [λ] = [ν ∗ µ] if and only if the following relation is satisfied

(ν ◦ fµ) =
λ− µ
1− λµ̄

∂zfµ
∂z̄ f̄µ

.

More explicitly, λ is the Beltrami coefficient of fλ = fν ◦ fµ and is given by

λ =
µ+ ν ◦ fµ(∂z̄ f̄µ/∂zfµ)

1 + µ̄ν ◦ fµ(∂z̄ f̄µ/∂zfµ)
. (4.8)

Note that, in section 2.1, the equivalence relation on the quasiconformal deformation space of

a closed Riemann surface (S,X) = D/Γ, used to obtain the Teichmüller space T (S), was defined

applying exactly the same procedure of model A to lifts of Beltrami differentials on (S,X).

Therefore, the Teichmüller spaces T (S) of compact Riemann surfaces are obtained as embedded

submanifold of T (D). The classes of Beltrami differentials in T (D) representing points of T (S)

are those satisfying the Γ-invariance property (2.4)

µ ◦A A′

A′
= µ ,∀A ∈ Γ.

This, in particular, justifies the adjective “universal” used in the theory and clarifies the type of

generalizations being made in this context.

Model B. Alternative definitions of equivalence relation on BD(D)1 can be introduced by choos-

ing different extensions of the Beltrami coefficients to D∗. We now choose a particularly natural

extension setting each Beltrami coefficient to zero in D∗

µ(z) =


µ(z), z ∈ D,

0, z ∈ D∗.
(4.9)

The corresponding solution fµ of Beltrami equation will then be holomorphic on D∗. It is in

fact biholomorphic onto its image and maps the unit disc D into a quasi-disc Dµ = fµ(D). The
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solutions are now normalized to have a simple pole of residue 1 at∞ and to satisfy f(z)− z → 0

for z →∞, that is, the Möbius normalization imposes the solutions to acquire the Laurent form

fµ(z) = z
(

1 +
c2
z2

+
c3
z3

+ · · ·
)
. (4.10)

Again, we define a pair of coefficients µ, ν to be equivalent if the corresponding normalized

solutions agree now on D∗

fµ
∣∣
D∗ = fν

∣∣
D∗ . (4.11)

Thus, in model B, we have obtained a realization of the universal Teichmüller space by Möbius

normalized univalent holomorphic functions f : D∗ → Ĉ on the complement of the unit disc D∗.

This realization now allows for an embedding of T (D) into the Banach space of holomorphic

quadratic differentials on D∗

HQD(D∗) =
{
h : D∗ → C holomorphic; |h(z)(1− |z|2)2|∞ <∞

}
.

The associated quadratic differential to a point [µ] ∈ T (D) is obtained via the Schwarzian

derivative

S(fµ|D∗) =
∂3
zf

µ

∂zfµ
− 3

2

(
∂2
zf

µ

∂zfµ

)2

(4.12)

of the model B solution (4.10). This is the so called Bers embedding of Teichmüller space. It

provides the structure of a complex Banach manifold to universal Teichmüller space with T (D)

being mapped into a bounded domain of HQD(D∗). The complete norm of HQD(D∗) is given

by the hyperbolic sup norm

‖h‖∞ = sup
D∗

(1− |z|2)2|h(z)|,

see [64].

We would now like to quickly discuss the equivalence between the two descriptions above.

We emphasize that the objects appearing in these two realizations are indeed very contrasting.

Even the dependence of the normalized solutions fµ and fµ, and thus of the related quasisym-

metric homeomorphisms and holomorphic quadratic differential, on the Beltrami coefficient µ

are of different analytical nature. The solution fµ in model B depends complex analytically

on µ whereas for the model A solution fµ this dependence is only real analytic. Note, also,

that the group structure in T (D) becomes somewhat obscure in the B model description. The

quasiconformal maps obtained in model B cannot directly be composed since they do not leave

D and D∗ invariant. In a similar way, the complex and Banach structures of T (D) are also not

obvious from the point of view of the model A realization.

This should by no means be interpreted as a weakness of the theory. It in fact show how

Teichmüller theory acts as a focus point of different branches of mathematics and provides the



4.1. UNIVERSAL TEICHMÜLLER THEORY 53

theory with a wider range of tools. Understanding explicitly the relation between the two models

may thus prove useful in translating problems into different mathematical languages allowing

them to be tackled from different angles. And, in fact, we shall argue in section 5.2 that, in

the context of 2+1 gravity, this passage between the models is closely related to the conjectured

dual CFT description of AdS gravity.

In the general situation, the relation between the models is not as straightforward as one

would like. It is given by the so called conformal welding associating a homeomorphism of the

unit circle to each Jordan region D on Ĉ. The first step of this construction is to use the classical

Riemann mapping theorem to obtain two conformal maps f : D∗ → D from the complement

of the Jordan region to the unit disc and g : D∗ → D from the region itself to the complement

of the disc. Both f and g then extend continuously to the boundary ∂D and the welding

homeomorphism is defined as

W (D) = f ◦ (g
∣∣
S1) : S1 → S1, (4.13)

normalized to fix −1,−i, 1. Applied to a quasi-disc Dµ, image of D∗ under a quasiconformal

univalent function fµ from model B, the welding homeomorphism is then quasisymmetric and

agrees with fµ from model A. This can be easily seen taking f = fµ◦(fµ)−1
∣∣
(Dµ)∗

and g = fµ
∣∣
D∗ .

As we shall see below, the relation between the models can be made much more explicit at

the infinitesimal level, that is, via the derivative of the conformal welding map at the level of

tangent spaces, see [65]. This explicit relation will later allow us to move back and forwards

between the geometric and holographic descriptions of AdS spacetimes.

4.1.2 The tangent space to T (D)

Let’s consider the quotient map BD(D)1 → T (D) sending each bounded Beltrami coefficient µ

on D into its equivalence class [µ] ∈ T (D). As in the compact case, see section 2.1, its derivative

is a surjective map BD(D) → T[0]T (D) and identifies the tangent space, T[0]T (D), to universal

Teichmüller space at the origin with the quotient space, BD(D)/N(D), of the space of Beltrami

coefficients by its subspace N(D) of infinitesimally trivial coefficients, which we now wish to

describe.

Denoting δµ ∈ BD(D) a tangent vector at the origin of BD(D)1, we again look at the

infinitesimal version of Beltrami equation

∂z̄f = tδµ∂zf (4.14)

and the corresponding one-parameter family of infinitesimal solutions

ftδµ(z) = z + tδz +O(t2), ∂z̄δz = δµ. (4.15)
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Here, the extension of δµ to the complex plane depends on the particular model one would like

to work with. For models A and B, these extensions are given by the same expressions as in the

finite case (4.3) and (4.9), respectively.

We say that δµ is infinitesimally trivial if, to first order in t, the restriction of this family to

S1, in model A, or to D∗, in model B, is given just by the identity transformation, that is, if the

corresponding variation δz|S1 or δz|D∗ vanishes identically, compare this with lemma (2.1.1.1).

This, of course, means that δµ does not change the of conformal structure on D and, therefore,

that it is in the kernel, N(D), of the derivative of the quotient map. As in the compact case,

the infinitesimally trivial condition can be given different characterizations. It can be shown,

see [21], that δµ ∈ N(D) is equivalent to

1

2i

∫
D
dz ∧ dz̄ qδµ = 0,

for any holomorphic quadratic differential q ∈ HQD(D). Here, we define the space of holomorphic

quadratic differentials as

HQD(D) =
{
q : D→ C holomorphic; |q(z)(1− |z|2)2|∞ <∞

}
.

We may thus write

N(D) =

{
δµ ∈ BD(D);

1

2i

∫
D
dz ∧ dz̄ qδµ = 0,∀h ∈ HQD(D)

}
.

On the other hand, any Beltrami differential, which is not infinitesimally trivial, is shown, see

[21], to be dual to a holomorphic quadratic differential

δµ = − (1− |z|2)2

2
q(z), (4.16)

that is, the space BD(D) can be decomposed as

BD(D) = N(D)⊕HBD(D),

with the space of harmonic Beltrami differentials on D being given

HBD(D) =

{
δµ ∈ BD(D); δµ = − (1− |z|2)2

2
q(z) with q ∈ HQD(D)

}
.

We have, therefore, an identification between T[0]T (D) and HBD(D).

Let us comment on the description of a tangent vector δµ at an arbitrary point [µ] ∈ T (D).

The corresponding one-parameter family of quasiconformal maps associated with δµ ∈ T[µ]T (D)

can be written

fµ+tδµ(z) = fµ(z) + tδw ◦ fµ(z) +O(t2)

with

∂z̄(δw ◦ fµ)− µ∂z(δw ◦ fµ) = δµ∂zfµ.
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Note that the choice of notation δw ◦ fµ for the infinitesimal quasiconformal map above is

convenient for we may also work in coordinates w = fµ(z). Thus, we may compose the family

of quasiconformal maps fµ+tδµ with f−1
µ so that

fµ+tδµ ◦ f−1
µ (w) = w + tδw +O(t2)

and δw now satisfies the previous expression for the infinitesimal Beltrami equation

∂w̄δw = δµ̃

where

δµ̃ ◦ fµ =
δµ

(1− |µ|2)

∂zfµ
∂z̄ f̄µ

.

In terms of the group structure on T (S) this is simply saying that the tangent vector δµ at [µ]

is obtained from the tangent vector δµ̃ at [0] by right translation by [µ], that is,

fµ+tδµ = ftµ̃ ◦ fµ, µ+ tδµ = tδµ̃ ∗ µ = µ+ t(1− |µ|2)δµ̃ ◦ fµ
∂w̄f̄µ
∂wfµ

,

so we may write T[µ]T (D) = (R[µ])∗T[0]T (D). We shall therefore continue to work at the base

reference point [0] ∈ T (D), understanding that the following constructions are easily translated

to arbitrary points with the group structure on T (D).

For the model A realization, one may think of the family ftδµ of infinitesimal quasiconformal

deformations as the one-parameter flow of a vector field δz∂z on D. Its restriction to S1 is then

given

δz∂z
∣∣
S1 = u(eiθ)∂θ (4.17)

with

u(eiθ) =
δz(eiθ)

ieiθ
=

∑
k 6=−1,0,1

uke
ikθ (4.18)

an element of the so called Zygmund class Λ(S1), [66, 67]. The Zygmund class is defined in the

upper half plane model by

Λ(R) =
{
A : R→ R continuous such that

|A(x+ t) +A(x− t)− 2A(x)| ≤ k|t|, k > 0
}
.

In passing to the Poincaré disc model, we relate the real line Zygmund class functions A to the

unit circle Zygmund class functions u via

Au(x) =
1

2
(x2 + 1)u

(
x− i

x+ i

)
.

Thus, the Zygmund class on the unit circle is defined as

Λ(S1) =
{
u : S1 → R continuous such that Au ∈ Λ(R)

}
,
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Note that, since u is a real function, u−k = ūk. Also, the coefficients u−1, u0, u1 were dropped due

to the normalization condition. Consequently, u belongs to the quotient space Λ(S1)/Möb(S1)

and the construction above provide a realization of T[0]T (D) as the Möbius normalized Zygmund

class on S1

T[0]T (D) = Λ(S1)/Möb(S1).

The tangent space in the B model realization of universal Teichmüller space is obtained

similarly by considering the infinitesimal solutions of the corresponding Beltrami equation. Now,

the one-parameter family f tµ is of the form

f tδµ(z) = z + tδz +O(t2),

with the function δz being holomorphic on D∗. It thus admits an expansion in D∗ as

f tδµ(z) = z
(

1 +
tc2
z2

+
tc3
z3

+ . . .
)
. (4.19)

The corresponding holomorphic quadratic differential, is then obtained via the (infinitesimal)

Schwarzian derivative ∂3
wf

tδµ and can also be expanded in D∗ as

h(z) =
1

z4

(
h0 +

h1

z
+
h2

z2
+ . . .

)
, (4.20)

where the coefficients hk are related to those in (4.19) via

hk−2 = ck(k − k3), k ≥ 2. (4.21)

Thus, the tangent space T[0]T (D) is now realized as the space of holomorphic quadratic differ-

entials on D∗ with Laurent expansion (4.20).

The relation between the coefficients in the A and B models now becomes quite simple. For

the ck coefficients one gets

ck =
1

π

∫
D
δµ(z)zk−2dx dy (4.22)

and for the uk

uk =
i

π

∫
D
δµ̄(z)z̄k−2dx dy. (4.23)

Thus, in view of (4.21) we have

uk = i
h̄k−2

(k − k3)
, k ≥ 2, (4.24)

see [65] for a proof.

The relation above could in fact be expected from the identification of T[0]T (D) with the

space of harmonic Beltrami coefficient HBD(D), in which the infinitesimal Beltrami coefficient

δµ is given in terms of a dual holomorphic quadratic differential q ∈ HQD(D). Writing

q(z) =
∑
k≥0

qkz
k (4.25)
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for the Laurent expansion of q, one can explicitly find δz by integration of

∂z̄δz = − (1− |z|2)2

2
q(z).

For z ∈ D we get

δz(z) =
1

2

∑
k≥2

q̄k−2z̄
k−1

(k − k3)

[
k(k + 1)− 2(k2 − 1)|z|2 + k(k − 1)|z|4

]
+ F (z),

where F is some holomorphic function on D, and, by reflection symmetry δz(z) = −z2δz(1/z̄),

for z ∈ D∗

δz(z) = −1

2

∑
k≥2

qk−2z̄
−k−1

(k − k3)

[
k(k + 1)|z|4 − 2(k2 − 1)|z|2 + k(k − 1)

]
− z2F (1/z̄).

We may then write F as

F (z) =
∑
k≥0

vkz
k

and restrict δz to S1 to get

δz(eiθ) =
∑
k≥2

q̄k−2e
−(k−1)iθ

(k − k3)
+ v0 + v1e

iθ + v2e
2iθ +

∑
k≥2

vk+1e
(k+1)iθ

= −
∑
k≥2

qk−2e
(k+1)iθ

(k − k3)
− v̄0e

2iθ − v̄1e
iθ − v̄2 −

∑
k≥2

v̄k+1e
−(k−1)iθ.

Thus we get v0 = −v̄2, v1 = −v̄1, vk+1 = iuk for k ≥ 2 and

δz(z) =
1

2

∑
k≥2

q̄k−2z̄
k−1

(k − k3)

[
k(k + 1)− 2(k2 − 1)|z|2 + k(k − 1)|z|4

]
+ v0 + v1z + v2z

2 −
∑
k≥2

qk−2z
k+1

(k − k3)
, z ∈ D (4.26)

Note that, because of the normalization condition imposing δz to vanish at −1, −i and 1, the

coefficients v0, v1, v2 are completely determined by the qk−2, k ≥ 2. From now on we will drop

these coefficients, understanding that they acquire the necessary values to make δz vanish at

−1,−i, 1.

We can now read off the Fourier coefficients of the Zygmund function u. With our choice of

coefficients for q as above, u is simply given by

u(eiθ) =
∑

k 6=−1,0,1

uke
ikθ,

with

uk = i
qk−2

(k − k3)
, u−k = ūk (4.27)

In particular, the dual quadratic differential to δµ, in the A model description, relates to the

Bers embedding quadratic differential by the simple reflection rule

q(z) ∈ HQD(D) 7−→ h(z) = q(1/z̄)
1

z4
∈ HQD(D∗). (4.28)
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For the later purposes, we now note that in all the discussions of the B-model above we could

have replaced D and D∗. In fact, this is the choice made in some of the references, see e.g. [37].

In this case one works with bounded Beltrami differentials on D∗, solves the Beltrami equation

continuing µ to vanish in D and gets a univalent holomorphic function on D whose Schwarzian

derivative produces a holomorphic quadratic differential on the unit disc. The analogues of (4.19)

and (4.20) in this realization of T (D) are then given by

f̂ tµ(z) = z + tδẑ = z(1 + tĉ2z
2 + tĉ3z

3 + . . .), z ∈ D, (4.29)

and

ĥ(z) = ĥ0 + ĥ1z + ĥ2z
2 + . . . z ∈ D, (4.30)

where we have denoted the quantities arising in this “B̂-model” by letters with an extra hat.

Note that there is an extra minus as compared to (4.21) in the relation between the coefficients

in this realization

ĥk−2 = −ĉk(k − k3). (4.31)

Also note, we can always map a holomorphic function inside the disc to an anti-holomorphic

function outside by reflection z → 1/z̄. By applying this to the quadratic differential (4.30) we

get a new anti-holomorphic quadratic differential h(z̄) outside of the disc by complex conjugating

h(z̄) = ĥ

(
1

z

)
1

z4
=

1

z4

(
ĥ0 +

ĥ1

z
+
ĥ2

z2
+ . . .

)
in z ∈ D∗. (4.32)

This gives the same expression as in (4.20), but with the change z → z̄. We shall also make use,

in what follows, of this B̂ model of T (D) in terms of univalent anti-holomorphic functions on D∗

or their associated anti-holomorphic quadratic differentials.

We now need the relation between the ĉ-coefficients in the realization of the B̂-model in terms

of Beltrami coefficients on D∗ and the Fourier coefficients uk of the Zygmund functions u of the

A-model. The derivation is a straightforward adaptation of the proof in [65]. One finds

ĉk = − 1

π

∫
D∗

µ(z)

zk+2
dx dy. (4.33)

In relating it to the A-model Fourier coefficients we use the fact that the A-model Beltrami

coefficient on D∗ is obtained by reflection. Thus, the integral in (4.33) can be taken over the

unit disc with the reflected Beltrami given by

µ

(
1

z̄

)
= µ(z)

z2

z̄2
.

Substituting this to the integral, and taking into account the change of integration measure

dx dy → −dx dy/|z|4 we get

ĉk =
1

π

∫
D
µ(z)z̄k−2dx dy.
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The c and ĉ-coefficients are thus related by complex conjugation and the A and B̂ model coeffi-

cients by

uk = ic̄k = iĉk. (4.34)

We finish the presentation on the infinitesimal description of universal Teichmüller space with

some useful identities following the identification of T[0]T (D) with harmonic Beltrami coefficients.

These identities relate the variations of quasiconformal maps δz and its derivatives and are related

to the holomorphicity of the dual quadratic differential of δµ. We shall need them in chapter 5,

for the infinitesimal description of the phase space of 2+1 AdS gravity, and chapter 6, for our

considerations of the symplectic structure on that phase space.

First, we have the identity

∂zδµ+
2z̄

(1− |z|2)
δµ, (4.35)

which is a direct consequence of the holomorphicity of the dual quadratic differential

q =
−2δµ̄

(1− |z|2)2
.

The second identity is more non-trivial, see [49],

2
z̄δz + zδz̄

(1− |z|2)
+ ∂zδz + ∂z̄δz̄ = 0. (4.36)

It can be directly verified from the mode expansion (4.26) of δz obtained previously by direct

integration of the infinitesimal Beltrami equation. It is easy to obtain a geometric interpretation

of this condition as an area preserving condition for the map ftδµ. In fact, the hyperbolic area

form in D is given by

daI =
4dz ∧ dz̄

(1− |z|2)2

and its variation is easily shown to vanish as a consequence of (4.36)

δdaI =
(

2
z̄δz + zδz̄

(1− |z|2)
+ ∂zδz + ∂z̄δz̄

)
daI = 0.

4.2 Maximal surfaces in AdS3

4.2.1 Existence and uniqueness

We now describe the relation between universal Teichmüller theory and maximal surfaces in

AdS3, established in [39]. The general idea comes from the possibility of associating to any

homeomorphism of S1 a closed acausal curve on the conformal boundary ∂∞AdS3 coming from

the (2-to-1) identification between ∂∞AdS3 and S1 × S1. In fact, we have given in section

2.2 the converse construction. There, we have defined, given a spacelike surface S in AdS3,

a pair of homeomorphisms φ± = ΦS±
∣∣
∂∞S

: ∂∞S → S1 which may then be composed into a
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Figure 4.1: Left: Circle homeomorphisms form acausal curves. Right: Acausal curves as graphs

of homeomorphisms the circle.

homeomorphism φ = φ− ◦ φ−1
+ : S1 → S1. The homeomorphisms φ± were obtained by, first,

fixing an arbitrary geodesic spacelike plane in AdS3, which maybe identified with the unit disc

and looking at the intersection of its conformal boundary with null geodesics, in each family

L±, starting at points in the conformal boundary of S, see figure 4.1. Thus, starting from a

homeomorphism φ : S1 → S1, we now construct the corresponding acausal curve by taking the

set of intersection points between the left-moving null geodesic starting at points in S1 and the

right-moving null geodesic starting at the corresponding image by φ. Here the invertibility of φ

is sufficient for this set to be an acausal curve.

This construction, in particular, identifies T (D) with a special class of closed acausal curves

in the conformal boundary of AdS3 and we would like to understand the geometrical meaning

of that class. We will then have to look at spacelike surfaces in AdS3 intersecting the conformal

boundary ∂∞AdS3 along graphs of quasisymmetric homeomorphisms of S1. As shown in [39]

any closed acausal curves in ∂∞AdS3 is the conformal boundary of a maximal spacelike surface

and it will be possible to characterize the quasisymmetry condition in terms of the extrinsic

geometry of such surfaces.

We do not wish here to present a complete proof for the existence and uniqueness of maximal

surfaces given quasisymmetric boundary conditions. This can be found in [39]. Our aim is to

give only a brief overview of this result for the convenience of the reader.

We start with the existence of maximal surfaces with given boundary curve at infinity. This

relies on an analogous existence result for compact spacelike maximal surfaces with boundaries

laying on constant radius cylinders in AdS3 and on convexity and causality arguments, ensuring

the convergence of a sequence of such compact spacelike maximal surfaces to a maximal spacelike

surface with the prescribed asymptotic boundary. Thus, thinking of AdS3 as a product R × D

one describe spacelike surfaces as graphs of smooth functions F : D→ R satisfying

|∂zF |2 <
1

(1 + |z|2)2
. (4.37)
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Figure 4.2: Convergent sequence of compact maximal surfaces with boundaries in the future

boundary component of the convex core of an acausal curve.

Thus only says its unit normal vector is timelike. The maximality condition then becomes a

second order differential equation for F

∂z∂z̄F +
2z

(1− |z|4)
∂zF +

2z̄

(1− |z|4)
∂z̄F = 0, (4.38)

which states the vanishing of the mean curvature. These expressions are easily obtained using

global cylindrical coordinates (1.2) with z = reiθ.

Then, given a closed acausal curve C in ∂∞AdS3, one consider its convex hull K(C), the

smallest convex domain in AdS3 containing C. Its boundary is formed by two connected com-

ponents S±(C), called the future and past boundaries, having C as their asymptotic boundary.

For 0 < r < 1, it is shown that there exists a compact maximal surface Sr, contained in K(C),

whose boundary is the intersection of S+(C) with the radius r cylinder in AdS3. Further, Sr

can be viewed as the graph of some function Fr on disc Dr of radius r. It is then possible to

construct a convergent sequence Frk such that the limiting function F : D → R still satisfies

equation (4.38) with the given boundary conditions thus describing a maximal spacelike surface

with the prescribed asymptotic boundary, see figure 4.2.

The uniqueness result is only obtained assuming further regularity to the data at infinity. It is

here that the quasisymmetry condition becomes relevant. Thus, [39] introduce the notion of the

width w(C) of the convex hull. It is defined as the supremum of the time distance between points

in its future and past boundaries S±(C) and gives a partial measure of the extrinsic properties of

the maximal surfaces intersecting ∂∞AdS3 along C. By causality/convexity reasons, the width

cannot be greater than π/2, being strictly less than π/2 if and only if C is the graph of a

quasisymmetric homeomorphism. On the other hand, the w(C) < π/2 condition is sufficient

for the uniqueness result. First, it is shown to imply that the corresponding maximal surface

has sectional curvature bounded from above by a negative constant. Then, based on convexity

properties, this maximal surface with uniformly negative sectional curvature is shown to be
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unique among complete maximal graphs with the given asymptotic boundary and bounded

second fundamental form. This then gives a one-to-one correspondence between points in T (D)

and maximal spacelike surfaces with bounded second fundamental form and uniformly negative

sectional curvature.

Theorem 4.2.1. (Bonsante and Schlenker [39]) Let C ⊂ ∂∞AdS3 be the graph of a quasi-

symmetric homeomorphism of S1. Then there exist a unique maximal spacelike surface S in

AdS3 with asymptotic boundary ∂∞S = C, bounded second fundamental form and uniformly

negative sectional curvature.

4.2.2 Minimal Lagrangian and harmonic diffeomorphisms

Note that the maximal surfaces come equipped with their induced metric I and extrinsic curva-

ture II coming from the ambient AdS3 geometry. Similarly to the compact case, see section 2.2,

this initial data (I, II) on maximal surfaces can be described in terms of quasiconformal minimal

Lagrangian diffeomorphisms of the unit disc. We remind the reader, minimal Lagrangian diffeo-

morphisms are area preserving diffeomorphisms whose graphs are minimal in the product D×D

with the product metric. The existence and uniqueness result just described is then equivalent

to the existence and uniqueness of quasiconformal minimal Lagrangian extensions of quasisym-

metric homeomorphisms of S1 to the interior of the disc. This is an interesting result in its own

right from the point of view of Teichmüller theory. It is closely related to Schoen’s conjecture [68]

on the existence and uniqueness of harmonic extensions. This is to say, the interplay between

AdS geometry and Teichmüller theory, far from being only a mathematical curiosity, proves to

be an interesting tool for the development of new results in Teichmüller theory.

Concretely, harmonic diffeomorphisms Φ : D→ D are critical points of the energy functional

E(Φ) =
1

2i

∫
D

4dz ∧ dz̄
(1− |z|2)2

(
|∂Φ|2 + |∂̄Φ|2

)
, (4.39)

where

|∂Φ| = 1− |z|2

1− |Φ|2
|∂zΦ| |∂̄Φ| = 1− |z|2

1− |Φ|2
|∂z̄Φ| (4.40)

are the holomorphic and anti-holomorphic energy densities of Φ. The corresponding Euler-

Lagrange equation is given by

∂z∂z̄Φ +
2Φ̄

1− |Φ(z)|2
∂zΦ∂z̄Φ = 0. (4.41)

One can then show that the above equation for the harmonicity of Φ is equivalent to holomor-

phicity of an associated quadratic differential, the Hopf differential of Φ,

Hopf(Φ) =
4∂zΦ∂zΦ̄

(1− |Φ(z)|2)2
dz2. (4.42)
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This can be checked by a direct computation.

The relation to minimal Lagrangian diffeomorphisms is then obtained from the following

lemma, due to Schoen [68], see also [40].

Lemma 4.2.1.1. A diffeomorphism f : D → D is minimal Lagrangian if and only if f may

be decomposed as f = Φ− ◦ Φ−1
+ in terms of two harmonic maps Φ± : D → D whose Hopf

differentials add up to zero

Hopf(Φ+) + Hopf(Φ−) = 0.

As we shall see in the next section, this relationship leads to a particularly simple expressions

for the geometric data on the maximal surface. This decomposition is in fact very natural from

the maximal surface’s point of view with the harmonic maps Φ± being interpreted as generalized

Gauss maps associated to the maximal surface, see [40].

4.3 The Universal Phase Space

4.3.1 The expected generalization

We are now ready to describe the construction of the phase space of 2+1 AdS spacetimes with

non-compact spatial topology. As seen in chapter 2 the phase space of spatially compact 2+1 AdS

gravity is given by two copies of Teichmüller space of a initial Cauchy surface or, equivalently,

by the cotangent bundle over a single copy of that space. It thus seem natural to expect that

the generalization for the phase space of spatially non-compact 2+1 AdS spacetimes, say, with

topology R × D, would be given by two copies of universal Teichmüller space or, else, by its

cotangent bundle. On the other hand, it seems from the discussion of the previous section,

that a single quasisymmetric homeomorphism of the circle (single point in T (D)) is sufficient to

specify all the data (I, II) for an “initial value” description. We are thus left with the question

whether a second phase space direction, that is, a second copy of T (D), is indeed necessary.

The case for a second direction on the phase space is related to the asymptotic, non-geometric,

degrees of freedom introduced in the presence of a conformal boundary, as discussed in the pre-

vious chapter, section 3.2. We remind the reader that the equivalence relation between AdS

spacetimes considered here is not given by the action of full group of diffeomorphisms, but only

that of the group of asymptotically trivial diffeomorphisms, see 3.2. It is clear, form the construc-

tions of [39], that the initial data (I, II) determined by a single quasisymmetric homeomorphism

φ : S1 → S1 is insensitive to any spacetime diffeomorphism preserving graph(φ) ⊂ ∂∞AdS3, here

thought of as a closed acausal curve on the conformal boundary. In particular, from the point of

view of 2+1 gravity, applying an asymptotically non-trivial diffeomorphism which preserves the

maximal surface, in other words, a purely spatial diffeomorphism, produces an new spacetime

inequivalent to the one we started from.
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We shall argue, in this section, that such purely spatial diffeomorphism is nothing but a qua-

siconformal deformation of the maximal surface and, therefore, is parametrized by another point

in T (D). Then, our parametrization of the phase space of 2+1 AdS gravity by T (D)×T (D) can

be interpreted as the quasiconformal deformation space of domains of dependence of a geodesic

surface in AdS3. The first phase space direction is given by deformations of its boundary curve.

It is thus interpreted as a “geometric” direction since it completely determines the initial data

(I, II) on a new maximal surface. The second direction is then given by spatial quasiconformal

deformations of this new maximal surface itself. It is interpreted as “non-geometric” since it

does not alter the maximal surface’s initial data.

Note that the spacetimes we consider here are not globally hyperbolic and, therefore, the

initial data on a spacelike surface is not enough to characterize the whole spacetime geome-

try. Our parametrization will then only make sense if a well defined analytic continuation of

the spacetime metric on the maximal surface’s domain of dependence can be performed to a

region beyond the Cauchy horizon. This will be given in chapter 5, where we shall obtain an

identification between the generators of quasiconformal and asymptotic deformations. Such an

identification not only provides a well defined analytic continuation of the initial data description

beyond the the Cauchy horizon, it also proves that both our deformation directions are asymp-

totically non-trivial in the sense of chapter 3. Even further, this identification also shows that

the quasiconformal deformations described here contain all Brown-Henneaux excitations of the

given reference spacetime, thus justifying our characterization of the quasiconformal deformation

space T (D)× T (D) as the phase space of 2+1 AdS gravity on R× D.

We would also like to remark that our focus on spacetimes with topology R×D is not at all

restrictive. We may later obtain nontrivial topologies by taking quotients by appropriate pairs

of Fuchsian groups. Similarly to the two dimensional case, the phase space space of fixed spatial

topology AdS manifolds will then embed in T (D) × T (D) in the same manner fixed topology

Teichmüller space embeds in T (D). They can then be recovered by restricting our construction

to pairs of quasisymmetric homeomorphisms invariant under appropriate discrete subgroups of

PSU(1, 1). In this sense, we shall call the phase space T (D)×T (D) the “universal phase space”

of AdS 2+1 gravity.

4.3.2 The generalized parametrization

We start with the construction of the initial data on a maximal surface in an AdS spacetime

from a pair of points [µ+], [µ−] ∈ T (D). We shall here consider the real analytic realization

of T (D) as the space of normalized quasisymmetric homeomorphisms of the unit circle. Let’s

denote the homeomorphisms associated to [µ±] by φ± : S1 → S1. As will become clear below, it

will be useful to extend φ± to two quasiconformal maps fµ± from a “base point” reference unit
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minimal Lagrangian

harmonic harmonic

Figure 4.3: Diagram of quasiconformal deformations.

disc, representing the preferred point in T (D). We call the complex coordinate in this reference

disc z, see Figure 4.3, and interpret the quasiconformal deformations fµ± as defining complex

coordinates z± = fµ±(z) on the target discs Dµ± = fµ±(D).

Each of these discs then has its standard hyperbolic metric

I± =
4|dz±|2

(1− |z±|2)2

which can then be used to represent the given points in T (D). Note that I± are to be considered

as representatives of inequivalent classes of bounded Beltrami coefficients. Although I± are

isometric, the isometry mapping I+ to I− acts nontrivially at infinity changing corresponding

the boundary homeomorphisms. The existence of a preferred point in T (D) thus becomes quite

helpful in avoiding confusion. In fact, when pulled back to the reference disc, the metrics I±

explicitly involve the Beltrami coefficients they are to represent

I± =
4|∂zfµ± |2

(1− |fµ±(z)|2)2
|dz + µ±dz̄|2. (4.43)

It is in this sense only that we shall use the hyperbolic metrics I± on D as representatives of

points in T (D).

This discussion can, perhaps, be made more clear in the context of nontrivial spatial topology.

Thus, let’s fix (S,X) = D/Γ a Riemann surface (compact or not) and consider the corresponding

Teichmüller space T (S). We remind the reader, our description of Teichmüller space as the space

of quasiconformal deformations of (S,X) associates to each Beltrami coefficient µ a deformation

of the reference Fuchsian group Γ into Γµ = fµ ◦ Γ ◦ f−1
µ and defines a new Riemann surface

(S,Xµ) = Dµ/Γµ. Now, it becomes clear that the hyperbolic metrics in (S,X) and (S,Xµ)

cannot be globally isometric since, for example, they assign, for corresponding nontrivial cycles,

different values of length (associated with the traces of the corresponding generators A and Aµ).

Note that there are many equivalent quasiconformal maps fµ± in the sense of universal

Teichmüller theory, i.e. having the same restrictions φ± to the unit circle. Therefore, a word is in
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order about which quasiconformal extensions fµ± of quasisymmetric boundary homeomorphisms

φ± are to be considered here. We shall see below that, for our purposes, the composition fµ−◦f−1
µ+

will be imposed to satisfy certain property, making it unique given the boundary values. Apart

from this restriction, the extensions fµ± are arbitrary and, for our construction of the phase

space, it will not matter which specific extension is chosen.

Let us now consider the composition φ = φ− ◦ φ−1
+ : S1 → S1. This is also a quasisymmetric

homeomorphism and, according to [39], there is a unique maximal surface S (with bounded

second fundamental form and uniformly negative sectional curvature) in AdS3 whose asymptotic

boundary is the graph of φ. Then, let f : D+ → D− denote the minimal Lagrangian extension of

φ, see section 4.2. We fix the arbitrariness in fµ± (to some extent) by requiring their composition

to agree with the map f

fµ− ◦ f−1
µ+

= f. (4.44)

As in the compact case, see lemma 2.2.1.1, the knowledge of f is sufficient to reconstruct

both the first and second fundamental forms on the maximal surface up to diffeomorphisms.

These are again constructed from an associated operator b : TD+ → TD+ satisfying

1. det b = 1;

2. b is self-adjoint with respect to I+;

3. dD
+

b = 0, where D+ is the Levi-Civita connection of I+;

4. f∗I− = I+(b · , b · )

via

I =
1

4
I+(E + b · , E + b · ), II = −IJ(E + b)−1(E − b). (4.45)

As in section 2.2, E is the identity operator and J is the almost-complex structure induced by

I. Conditions (1-4) on b are again equivalent to the Gauss-Codazzi equations (2.21) for the pair

(I, II) and we may construct the spacetime metric in equidistant coordinates

g = −dτ2 + cos2 τI + 2 sin τ cos τII + sin2 τIII−1II. (4.46)

Note that this construction only makes use of the “difference” φ = φ− ◦ φ−1
+ between the

quasisymmetric homeomorphisms. This can thus be interpreted as a “geometric” direction on

the phase space. The other direction is encoded in the particular way φ decomposes into φ±,

giving rise to a quasiconformal deformation describing the relation between the maximal surface

conformal structure and the preferred reference disc. Again, it becomes convenient to pull-back

the maximal surface data to the reference disc to obtain expressions with an explicit dependence

on ([µ+], [µ−]).
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We then need a more explicit description of the operator b : TD+ → TD+ associated with

the minimal Lagrangian diffeomorphism f . In complex coordinates z+ on the source disc of f it

is possible to use conditions 1,2 and 4 above to write b as

b = |∂f |
(
∂z+dz+ + λ∂z+dz̄+ + λ̄∂z̄+dz+ + ∂z̄+dz̄+

)
, (4.47)

where λ = ∂z̄+f/∂z+f is the Beltrami coefficient of f and

|∂f | = 1− |z+|2

1− |f |2
|∂z+f |

its holomorphic energy density. It is then easy to compute the induced metric of the maximal

surface via (4.45)

I =
|∂f |(|∂f |+ 1)

(1− |z+|2)2

(
2|dz+|2 + λ̄dz2

+ + λdz̄2
+

)
, (4.48)

the almost-complex structure of I

J = i|∂f |
(
∂z+dz+ + λ∂z+dz̄+ − λ̄∂z̄+dz+ − ∂z̄+dz̄+

)
and the operator (E + b)−1(E − b)

(E + b)−1(E − b) = − |∂f |
|∂f |+ 1

(
λ∂z+dz̄+ + λ̄∂z̄+dz+

)
.

This leads, via (4.45), to the following expression for the second fundamental form

II = −i
|∂f |

(1− |z+|2)2
(λ̄dz2

+ − λdz̄2
+). (4.49)

We may now pull-back (I, II) to the reference z-disc with the map fµ+
. The transformation of

the Beltrami coefficient λ and the holomorphic energy density |∂f | are easily obtained computing

derivatives of fµ− = f ◦ fµ+

λ ◦ fµ+

∂z̄ f̄µ+

∂zfµ+

=
µ− − µ+

1− µ−µ̄+
, |∂f | ◦ fµ+

|∂zfµ+
| = |∂fµ− |

|1− µ̄+µ−|
1− |µ+|2

.

Using the area preserving condition for f , we then get the following expressions for the maximal

surface data

I =
|∂fµ+

||∂fµ− |
(1− |z|2)2

(
1 +

|1− µ−µ̄+|
(1− |µ−|2)1/2(1− |µ+|2)1/2

)(
2

1− |µ−|2|µ+|2

|1− µ−µ̄+|
|dz|2

+
µ̄+(1− |µ−|2) + µ̄−(1− |µ+|2)

|1− µ−µ̄+|
dz2 +

µ+(1− |µ−|2) + µ−(1− |µ+|2)

|1− µ−µ̄+|
dz̄2

)

II = i
|∂fµ+ ||∂fµ− |
(1− |z|2)2

(
2
µ+µ̄− − µ̄+µ−
|1− µ−µ̄+|

|dz|2 +
µ̄+(1 + |µ−|2)− µ̄−(1 + |µ+|2)

|1− µ−µ̄+|
dz2

− µ+(1 + |µ−|2)− µ−(1 + |µ+|2)

|1− µ−µ̄+|
dz̄2

)
. (4.50)
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Again,

|∂fµ± | =
1− |z|2

1− |fµ± |2
|∂zfµ± |,

are the holomorphic energy densities of fµ± .

Let’s now give further explanation on the ambiguity that entered into the above construction.

Recall, the only condition imposed on the quasiconformal extensions fµ± of the quasisymmetric

maps φ± was that their composition fµ− ◦ f−1
µ+

was given by the minimal Lagrangian diffeomor-

phism extending φ− ◦ φ−1
+ . One can now see that nothing depends on the remaining extension

ambiguity. Indeed, choosing different extensions for φ±, say f̃µ± , which are in the same universal

Teichmüller class as fµ± and still satisfy (4.44), that is, f̃µ− ◦ f̃−1
µ+

= f , we obtain another pair

(Ĩ , ĨI), as well as the corresponding spacetime metric

g̃ = −dτ2 + cos2 τ Ĩ + 2 sin τ cos τ ĨI + sin2 τ ĨIĨ−1ĨI.

It is, however, clear that this metric can be mapped into (4.46) by the (purely spatial) diffeo-

morphism f̃µ+
◦ f−1

µ+
. This, in its turn, is easily seen to be asymptotically trivial in the sense of

Teichmüller theory since its restriction to the boundary is nothing but the identity homeomor-

phism

f̃µ+
◦ f−1

µ+

∣∣∣
S1

= φ+ ◦ φ−1
+ = Id.

The spacetime metrics g and g̃ should, therefore, be considered equivalent and nothing in the

above construction depends on which particular extension of φ± are chosen, provided the minimal

Lagrangian condition (4.44) holds.

4.3.3 The Mess map

We would now like to describe a generalization of the map (2.36), following from a cotan-

gent bundle parametrization of the universal phase space. One direction of this map, namely

T ∗T (D)→ T (D)×T (D), arises in the same way as in the compact setting. The only non-trivial

point is the existence and uniqueness of solutions of the Gauss equation (2.29) on D. This can

be found in [41] to which we refer the reader for more details. Note that, although the treatment

in this reference is carried out for CMC surfaces in the Minkowski space R2,1, it needs very

little adaptation to the present situation. The converse direction is achieved using the harmonic

decomposition of minimal Lagrangian diffeomorphism discussed in section 4.2.

Thus, given a point ([µ], q) ∈ T ∗T (D) there exists a unique solution ϕ for the Gauss equation

4∂w∂w̄ϕ = e2ϕ − e−2ϕ|q|2 (4.51)

making I = e2ϕ|dw|2 a complete Riemannian metric on D. One also defines a symmetric bilinear

form as the real part of the quadratic differential qdw2

II =
1

2
(qdw2 + q̄dw̄2).
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Since II is traceless with respect to I, the holomorphicity of q is then equivalent to Codazzi

equation and, by the fundamental theorem of AdS geometry 2.2.1, the pair (I, II) defines a

maximal surface in an AdS spacetime. Here the interpretation in terms of deformations of the

domain of dependence of a geodesic surface in AdS3 is also valid, with the “geometric” and “non-

geometric” directions given respectively by the vertical and horizontal directions of T ∗T (D) and

the reference domain of dependence determined by the pair

I0 =
4|dz|2

(1− |z|2)2
, II0 = 0

where z = f−1
µ (w).

The converse construction is also easily obtained. Given a maximal surface in an AdS space-

time we may write its fundamental forms as

I = e2ϕ, II =
1

2
(qdw2 + q̄dw̄2)

where w is the isothermal coordinate of I, q is holomorphic with respect to w by the Codazzi

equation and ϕ is obtained via the Gauss equation, thus determining a holomorphic quadratic

differential qdw2. Further, by comparing isothermal coordinate in our maximal surface with that

of the fixed reference geodesic surface in AdS3, we obtain a quasiconformal map z 7→ w = fµ(z),

which determines the base point [µ] in T ∗T (D).

To obtain the corresponding pair of points in T (D), we first construct associated hyperbolic

metrics via formula (2.33)

I± = e2ϕ|dw ± ie−2ϕq̄dw̄|2. (4.52)

To see these are indeed hyperbolic, let

θz± = eϕdw ± ie−ϕq̄dw̄, θz̄± = eϕdw̄ ∓ ie−ϕqdw

denote co-frame fields for the metrics I±. Using the holomorphicity of q, it is easy to compute

the spin connection associated with these fields

ωz±z± = ∂wϕdw − ∂w̄ϕdw̄, ωz̄± z̄± = ∂w̄ϕdw̄ − ∂wϕdw

and, therefore, the associated curvature 2-form

Rz±z± = −2∂w∂w̄ϕdw ∧ dw̄, Rz̄± z̄± = 2∂w∂w̄ϕdw ∧ dw̄.

The scalar curvature is then given by

R = Rabijθ
i
aη
jkθbk = − 8∂w∂w̄ϕ

(e2ϕ − e−2ϕ|q|2)
= −2

from Gauss equation (4.51).

We now obtain the point in T (D) × T (D) by reading from the hyperbolic metric I± the

associated Beltrami coefficients. Note that the base point [µ], with respect to which the quadratic
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differential q is holomorphic, is not the preferred point in T (D). Thus we still have to consider

another quasiconformal deformation fµ, mapping the reference disc coordinate z to the maximal

surface’s coordinate w = fµ(z). Writing

ν± = ±ie−2ϕq̄

for the Beltrami associated to I± on the maximal surface, it is now just a matter of using the

group structure (4.8) of T (D) to get the Beltrami coefficients on the reference disc

µ± =
µ± ν ◦ fµ(∂z̄ f̄µ/∂zfµ)

1± µ̄ν ◦ fµ(∂z̄ f̄µ/∂zfµ)
.

This gives an explicit description of the generalized Mess map in terms of Beltrami representa-

tives of classes in T (D).

Let’s now describe the inverse of this map. Thus, given ([µ+], [µ−]), we again consider their

quasisymmetric realizations φ± : S1 → S1. Then, we take the harmonic decomposition, given by

lemma (4.2.1.1), of the associated minimal Lagrangian extension f : D→ D of the composition

φ− ◦ φ−1
+

f = Φ− ◦ Φ−1
+ , Hopf(Φ−) = −Hopf(Φ+).

As described above, the harmonicity (4.41) of Φ± is equivalent to the holomorphicity of the Hopf

differentials

Hopf(Φ±) =
4∂wΦ±∂wΦ̄±
(1− |Φ±|2)2

dw2.

Note that, here, w = Φ−1
± (z±) denotes the coordinate on the source disc of Φ± and needs not

be the same as the reference disc coordinate z. Using the associated Beltrami differentials

ν± = ∂w̄Φ±/∂wΦ±,

we may write these differentials as

Hopf(Φ±) =
4|∂Φ±|2ν̄±
(1− |w|2)2

dw2,

where

|∂Φ±| =
1− |w|2

1− |Φ±|2
|∂wΦ±|

are the corresponding holomorphic energy densities. Since the Hopf differentials are required to

add up to zero we have

ν+ = −|∂Φ−|2

|∂Φ+|2
ν−.

Then the area preserving condition for f reduces to

|∂Φ−|4

|∂Φ+|4
|ν−|2 +

|∂Φ−|2

|∂Φ+|2
(1− |ν−|2)− 1 = 0,

which implies
|∂Φ−|2

|∂Φ+|2
= 1,
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in particular, ν+ = −ν−. The fundamental forms (4.50) of the maximal surface now become

I =
4|∂Φ+|2

(1− |w|2)2
|dw|2, II =

i

2

(
Hopf(Φ+)−Hopf(Φ+)

)
(4.53)

which is clearly just the cotangent bundle description, with conformal factor and quadratic

differential given by

e2ϕ =
4|∂Φ±|2

(1− |w|2)2
, qdw2 = iHopf(Φ+). (4.54)

We note that Gauss-Codazzi equations for ϕ and q now follow directly from the harmonicity

(4.41) of Φ±. This gives a nice analytic interpretation of the generalized Mess map T ∗T (D) →

T (D)× T (D) and a proof that is is bijective.

The maps Φ± are closely related to the pair of diffeomorphisms ΦS± constructed in section

2.2 for the description of the Mess map in the compact context, see e.g. [41, 40]. These maps

can thus be referred to as the generalized Gauss map, given the resemblance of the construction

of the metrics I± with the famous Gauss map between the data on a constant mean curvature

surface in R2,1 and hyperbolic metrics.

We note that the realization of T (D) relevant for all discussions above was the one given by

model A. It will be interesting, later on, to understand what type of information the model B

realization of T (D) has to offer in the context of AdS spacetimes. As one might expect from

the complex analytic character of model B, this dual realization plays an important role in the

holographic description of AdS spacetimes. And, in fact, we shall see in the next chapter that

the quadratic differentials coming from the Bers embedding of T (D) are quite directly related

to the quasilocal stress tensor studied in section 3.2.

4.3.4 Chern-Simons connections

To finish the section, we now present a relation between our T (D)×T (D) parametrization of the

phase space and Chern-Simons formulation of 2+1 general relativity. We achieve this by a direct

computation of the associated pair of flat PSU(1, 1) connections to our equidistant AdS metric

(4.46) with initial data (4.50). As expected, we shall see that each copy of T (D) parametrizes

one sector of the PSU(1, 1)× PSU(1, 1) Chern-Simons theory, thus providing further evidence

for the naturality of our construction.

Note that the representation of points in T (D) by flat PSU(1, 1) connections on the unit disc

is only meaningful if taken in an appropriate sense. Similarly to the use of hyperbolic metrics as

representative of T (D), we need to differentiate between diffeomorphic connections if they are

related by an asymptotically non-trivial diffeomorphism. This is reason for insisting in pulling-

back all constructions to the preferred reference disc on T (D). By doing so, the expressions of

the connection components explicitly involve the Beltrami coefficients they represent.
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Again, this becomes clearer in the context of nontrivial spatial topology. Let (S,X) and

(S,Xµ) denote a reference Riemann surface and its quasiconformal deformation. Then the

associated flat PSU(1, 1) connections will assign distinct holonomies, respectively A and Aµ, to

nontrivial cycles.

It is convenient to start working with isothermal coordinate for the maximal surface

ds2 = −dτ2 + cos2 τe2ϕ|dw|2 + sin τ cos τ(qdw2 + q̄dw̄2) + sin2 τe−2ϕ|q|2|dw|2.

The frame field and spin connection for the 3-metric above are easily obtained

θτ = dτ, θw = eϕ cos τdw + e−ϕ sin τ q̄dw̄

ωwτ = −eϕ sin τdw + e−ϕ cos τ q̄dw̄, ωww = ∂wϕdw − ∂w̄ϕdw̄,

and the corresponding SL(2,R) connections are, in components,

A±w =
1

2

 ∂wϕ ∓eϕe∓iτ

ie−ϕe±iτq −∂wϕ

 , A±w̄ =
1

2

 −∂w̄ϕ −ie−ϕe∓iτ q̄

∓eϕe±iτ ∂w̄ϕ

 ,
A±τ =

i

2

±1 0

0 ∓1

 .
Here we choose to work with SU(1, 1) generators

T0 =
i

2

1 0

0 −1

 , T1 =
1

2

 0 −1

−1 0

 , T2 =
1

2

0 −i

i 0


so that we have

tr (TaTb) =
1

2
ηab, [Ta, Tb] = εab

cTc.

The τ dependence is easily seen to be pure gauge and can be removed by performing a

transformation A± 7→ g−1Ã±g + g−1dg with

g =

e±iτ/2 0

0 e∓iτ/2

 .
The connections components then become

A±w =
1

2

 ∂wϕ ∓eϕ

ie−ϕq −∂wϕ

 , A±w̄ =
1

2

−∂w̄ϕ −ie−ϕq̄

∓eϕ ∂w̄ϕ

 .
Recalling that the Liouville field and the holomorphic quadratic differential can be written, in

terms of Φ±, as

e2ϕ =
4|∂Φ+|2

(1− |w|2)2
, qdw2 = iHopf(Φ+),
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we need just another gauge transformation A± 7→ g−1A±g + g−1dg, with

g =

(∂wΦ±/|∂wΦ±|)−1/2
0

0 (∂wΦ±/|∂wΦ±|)1/2

 ,
to see the connections indeed decouple as functions of (µ+, µ−). A pull-back to the reference

disc then gives

A±z =
1

(1− |fµ± |2)

 1
2 (f̄µ±∂zfµ± − fµ±∂z f̄µ±) ∓∂zfµ±

∓∂z f̄µ± − 1
2 (f̄µ±∂zfµ± − fµ±∂z f̄µ±)

 ,
A±z̄ =

1

(1− |fµ± |2)

− 1
2 (f̄µ±∂z̄fµ± − fµ±∂z̄ f̄µ±) ∓∂z̄ f̄µ±

∓∂z̄fµ± 1
2 (f̄µ±∂z̄fµ± − fµ±∂z̄ f̄µ±)

 , (4.55)

and we see that each copy of T (D) parametrizes one of the Chern-Simons sectors, as could have

been expected.
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Chapter 5

Relations to Holography

We now relate the previous description (2.35) of AdS spacetimes as evolving maximal surface

data (4.50) to the Fefferman-Graham description presented in section 3.2. In section 5.1 we start

with a description of infinitesimal deformations of the AdS3 metric generated by both Brown-

Henneaux and infinitesimal quasiconformal generators. By interpreting the resulting spacetimes

to be nothing but different representations of the same physical state, we are then able to match

these generators to leading and subleading order. This shows our quasiconformal deformations

are indeed asymptotically non-trivial in the sense of chapter 3 and that, in fact, it includes all

Brown-Henneaux excitations on the conformal boundary.

This will then allow us, in section 5.2, to describe the quasilocal stress tensor in terms of

the holomorphic quadratic differentials associated to our maximal surface parametrization via

the Bers embedding of each copy of T (D). This can then be used to provide an expression for

the spacetime charges in terms of maximal surface data in the T (D)× T (D) parametrization of

the phase space. Such description is only valid the infinitesimal level, but we note it admits a

natural conjectural generalization for the finite case.

5.1 The infinitesimal case

5.1.1 Infinitesimal Fefferman-Graham metric

In order to perform a comparison between the maximal surface (4.46) and Fefferman-Graham

(3.9) descriptions we find convenient to work with coordinates t = (x+ + x−)/2 and θ = (x+ −

x−)/2, on the constant radius cylinders, and radial coordinate χ = log(1/ρ). The metric (3.14)

can then be written as

ds2 =
e2χ

4
(−dt2 + dθ2) + dχ2 +

1

2
(adt2 + 2bdtdθ + adθ2)

+
e−2χ

4
(a2 − b2)(−dt2 + dθ2), (5.1)

75
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where, in comparison with (3.14), a = a+ + a− and b = a+ − a−. In these coordinates, the

Brown-Henneaux vector fields (3.23) are given by

ξχbh = −1

2
(∂+ε+ + ∂−ε−) + · · ·

ξtbh =
1

2
(ε+ + ε−) + e−2χ(∂2

+ε+ + ∂2
−ε−) + · · ·

ξθbh =
1

2
(ε+ − ε−)− e−2χ(∂2

+ε+ − ∂2
−ε−) + · · · (5.2)

where ε± are chiral functions on the conformal boundary and the dots stand for the subleading

components.

The infinitesimal version of the metric (5.1) is now given by

ds2 = ds2
AdS3

+
1

2
(δadt2 + 2δbdtdθ + δadθ2), (5.3)

with the infinitesimal part obtained as the Lie derivative of the AdS3 metric

ds2
AdS3

= dχ2 − cosh2 χdt2 + sinh2 χdθ2,

corresponding to a+ = a− = −1/2 in (5.1), with respect to a Brown-Henneaux vector field (5.2).

The arising relation between the perturbations δa and δb and the functions ε± parametrizing

the vector field (5.2) is directly obtained from (3.33) and read

δa = −(∂+ε+ + ∂3
+ε+)− (∂−ε− + ∂3

−ε−),

δb = −(∂+ε+ + ∂3
+ε+) + (∂−ε− + ∂3

−ε−). (5.4)

5.1.2 Generators of quasiconformal deformations

We now consider a similar infinitesimal description of the spacetime metric (4.46) in terms of

initial data (4.50) on a maximal surface. We thus consider a pair δµ± of harmonic Beltrami

coefficients and define corresponding infinitesimal quasiconformal deformations of the preferred

base disc in T (D) in the direction of δµ±

fδµ± = z + δz± + · · · .

We remind the reader the first variations δz± are solutions of the infinitesimal Beltrami equation

∂z̄δz± = δµ±. (5.5)

It then becomes easy to obtain the corresponding infinitesimal versions of the data (4.50)

I =
4|dz|2

(1− |z|2)2
+

2

(1− |z|2)2

[
(δµ̄+ + δµ̄−)dz2 + (δµ+ + δµ−)dz̄2

]

II =
i

(1− |z|2)2

[
(δµ̄+ − δµ̄−)dz2 − (δµ+ − δµ−)dz̄2

]
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and, therefore, the infinitesimal AdS metric in equidistant coordinates to a maximal surface

ds2 = ds2
AdS3

+
2 cos2 τ

(1− |z|2)2

[
(δµ̄+ + δµ̄−)dz2 + (δµ+ + δµ−)dz̄2

]
+

2i sin τ cos τ

(1− |z|2)2

[
(δµ̄+ − δµ̄−)dz2 − (δµ+ − δµ−)dz̄2

]
. (5.6)

Here,

ds2
AdS3

= −dτ2 +
4 cos2 τ

(1− |z|2)2
|dz|2 (5.7)

is the AdS3 metric in equidistant coordinates to a geodesic plane.

We would like to compare the infinitesimal metric (5.6), arising in the universal phase

space description, with the infinitesimal metric (5.3), obtained from the holographic (Fefferman-

Graham) setting. Our interpretation is that (5.6) and (5.3) are simply different coordinate

representation of the same physical spacetime. What this means is that both spacetimes are

obtained as deformations of AdS3 by infinitesimal diffeomorphisms whose difference is trivial at

the conformal boundary. To see this is indeed the case, the approach we are going to take will

be to asymptotically compare the generators of quasiconformal and asymptotic deformations.

By performing a change of coordinates, in a neighbourhood of the maximal surface’s boundary

curve, where both the equidistant and Fefferman-Graham coordinates are valid, we shall see that

the generators can be made to agree, to leading and first subleading order, by an identification

between the chiral functions ε± in (5.2) and the pair u± of Zygmund class functions defining

(5.6).

We start describing the infinitesimal generator of the metric (5.6). Let’s thus consider a

general vector field

ξ = ξτ∂τ + ξz∂z + ξz̄∂z̄

written in the coordinates relevant for the maximal surface description. We would like to fix

the components of such vector field so that its action on the AdS3 metric, via Lie derivative,

generates the infinitesimal part of (5.6). We thus take the Lie derivative of ds2
AdS3

in the direction

of ξ

Lξds2
AdS3

= −2∂τξ
τdτ2 +

(
4 cos2 τ∂τξ

z̄

(1− |z|2)2
− 2∂zξ

τ

)
dτdz

+

(
4 cos2 τ∂τξ

z

(1− |z|2)2
− 2∂z̄ξ

τ

)
dτdz̄ +

4 cos2 τ∂zξ
z̄

(1− |z|2)2
dz2 +

4 cos2 τ∂z̄ξ
z

(1− |z|2)2
dz̄2

+
4 cos2 τ

(1− |z|2)2

(
2
z̄ξz + zξz̄

(1− |z|2)
+ ∂zξ

z + ∂z̄ξ
z̄ − 2 tan τξτ

)
|dz|2

and then equate the obtained tensor with the infinitesimal part of the metric (5.6). This now

leads to the following set of equations

∂τξ
τ = 0,

4 cos2 τ∂τξ
z̄

(1− |z|2)2
− 2∂zξ

τ = 0,

2
z̄ξz + zξz̄

(1− |z|2)
+ ∂zξ

z + ∂z̄ξ
z̄ − 2 tan τξτ = 0,
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2∂z̄ξ
z = (1− i tan τ)δµ+ + (1 + i tan τ)δµ−.

In view of (5.5), the last equation is clearly satisfied by

ξz =
1

2
(1− i tan τ)δz+ +

1

2
(1 + i tan τ)δz− =

1

2
(δz+ + δz−) +

1

2i
tan τ(δz+ − δz−).

The third equation then becomes

2 tan τξτ =
z̄(δz+ + δz−) + z(δz̄+ + δz̄−)

(1− |z|2)
+

1

2
∂z(δz+ + δz−) +

1

2
∂z̄(δz̄+ + δz̄−)

+ tan τ

(
1

i

z̄(δz+ − δz−)− z(δz̄+ − δz̄−)

(1− |z|2)
+

1

2i
∂z(δz+ − δz−)− 1

2i
∂z̄(δz̄+ − δz̄−)

)
and, using identity (4.36) for each δz±, we finally have

ξτ =
1

2i

z̄(δz+ − δz−)− z(δz̄+ − δz̄−)

(1− |z|2)
+

1

4i
∂z(δz+ − δz−)− 1

4i
∂z̄(δz̄+ − δz̄−)

=
1

i

z̄(δz+ − δz−)

(1− |z|2)
+

1

2i
∂z(δz+ − δz−).

The first and second equations in the set are then directly satisfied.

We have now obtained the infinitesimal quasiconformal generator of the metric (5.6)

ξτqc =
1

i

z̄(δz+ − δz−)

(1− |z|2)
+

1

2i
∂z(δz+ − δz−),

ξzqc =
1

2
(δz+ + δz−) +

1

2i
tan τ(δz+ − δz−), (5.8)

which gives us component expressions for what can be interpreted as a Brown-Henneaux vector

field in the universal phase space description.

5.1.3 Matching the quasiconformal and asymptotic generators

We now relate the two descriptions using the fact they simply represent different coordinates on

the same spacetime. Thus, let us compute the components of the Brown-Henneaux vector fields

(5.2) in the coordinates used in (5.7). The coordinate transformation relating the AdS3 metric

in the form (5.1) and its equidistant coordinates description is given by

tan t =
1− |z|2

1 + |z|2
tan τ, sinhχ =

2|z|
1− |z|2

cos τ, θ = arg z.

These can be directly applied to the Brown-Henneaux vector field (5.2), which leads to the

following relation between their coordinate components

ξτbh =
1 + |z|2

1− |z|2
ξtbh +

2|z| sin τ
[(1− |z|2)2 + 4|z|2 cos2 τ ]1/2

ξχbh

ξwbh = z tan τξtbh + izξθbh −
1

2

z

|z|
(1− |z|4) sec τ

[(1− |z|2)2 + 4|z|2 cos2 τ ]1/2
ξχbh. (5.9)

We need only consider the asymptotic behaviour of these components around the τ = 0 maximal

surface. Thus, expanding to first order in τ , we get the following leading and first subleading

terms

ξτbh =
( 1

1− |z|2
− 1

2

)
(ε+ + ε−)

∣∣
τ=0

+ · · ·
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ξzbh =
1

2
iz
(

(ε+ − ε−)
∣∣
τ=0

+
(1− |z|2)

2i
(∂+ε+ + ∂−ε−)

∣∣
τ=0

)
+
τ

2i
iz
(

(ε+ + ε−)
∣∣
τ=0
− 1− |z|2

2i
(∂+ε+ − ∂−ε−)

∣∣
τ=0

)
+ · · · . (5.10)

It now becomes clear that these are nothing but the leading components of the quasiconformal

generators (5.8) with

δz± = ±iz
(
ε±
∣∣
τ=0
± (1− |z|2)

2i
∂∓ε∓

∣∣
τ=0

)
+ · · · . (5.11)

The restriction to the boundary of the above relation can be readly recognized as the relation

(4.18) between infinitesimal quasiconformal maps and the corresponding Zygmund class func-

tions on the circle

δz±(eiθ)

ieiθ
= u±(eiθ) = ±ε±(±θ). (5.12)

We have therefore identified the space of chiral Brown-Henneaux generators with the tangent

space to each T (D) sector in the universal phase space. At least for infinitesimal metrics,

this shows how one may continue the geometry of the maximal surface’s domain of depen-

dence beyond the Cauchy horizon. Indeed, by asymptotically matching the quasiconformal and

asymptotic generators, we have shown the infinitesimal metrics (5.6) and (5.3) are related by an

asymptotically trivial diffeomorphism and, therefore, they represent the same physical state.

5.2 Bers embedding and the stress tensor

5.2.1 Analytic continuation

We now develop an interpretation of the obtained relation (5.12) between the universal phase

space and the holographic descriptions in terms of the B model realization of universal Tei-

chmüller space. In the previous section we have seen how the two chiral functions ε± parametriz-

ing the Brown-Henneaux vector fields are given in terms of Zygmund functions u± parametrizing

the boundary values of the (infinitesimal) quasiconformal maps. An equally interesting question

we would now like to address is that of a relation between the holographic stress-energy tensor

components — functions a, b in (5.1) — and these quasiconformal maps.

In this section we shall see that this relation is that between the holomorphic quadratic

differentials arising via the Bers embedding of T (D). In other words, we shall see that the

stress-energy tensor components of the holographic description are nothing but the components

of the quadratic differentials arising from the B model realization of T (D) × T (D). Here, our

convention for the dual realization of T (D)× T (D) will be to use the B-model for the first copy

of T (D) and the B̂-model for the second. Thus a point ([µ+], [µ−]) ∈ T (D)× T (D) gives rise to

a pair (h+, h−) ∈ HQD(D) × HQD(D) formed by holomorphic and anti-holomorphic quadratic

differentials on D∗.
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We shall continue to work on the infinitesimal case, but note that the results we shall obtain in

this section presents a natural conjectural extension to the general case. The clear advantage of

working with the infinitesimal description are the explicit expressions for the Laurent coefficients

of h± in terms of the Zygmund functions u± and, therefore, in terms of the Brown-Henneaux

generators. We remind the reader that, by expanding the quadratic differentials in Laurent series

h+ =
∑
k≥2

h+
k−2

zk+2
, h− =

∑
k≥2

h−k−2

z̄k+2

and the corresponding Zygmund functions in Fourier series

u+ =
∑
k≥2

u+
k e

ikθ, u− =
∑
k≥2

u−k e
ikθ,

we have obtained in 4.1 the following relations

h±k−2 = ±iū±k (k − k3). (5.13)

Turning to the holographic description, we now rewrite the quasilocal stress tensor

T = adt2 + 2bdtdθ + adθ2 (5.14)

of section 3.2 in a more suggestive way. To this end, we shall analytically continue the t coordinate

to take imaginary values. Thus, let us continue all the functions appearing in T via

t =
1

2i
log |z|2, θ =

1

2i
log

z

z̄
, (5.15)

so that the new (imaginary) time coordinate runs between −i∞ and i∞ while z runs over the

complex plane, with the unit circle |z| = 1 corresponding to t = 0. With this choice, we have

ei(t+θ) = z, ei(t−θ) = z̄,

so that functions of ei(t±θ) become holomorphic (anti-holomorphic) functions on the complex

plane. In particular, the functions a±, whose sum and difference give a, b, would now seem to

become a holomorphic and anti-holomorphic function on the complex plane.

Let us expand a± into Fourier modes. When restricted to t = 0 these are periodic functions

of θ, and so the Fourier expansion is indeed possible. We have

a±(t± θ) =

∞∑
k=−∞

a±k e
ik(t±θ),

with ā±k = a±−k, imposed by the fact these are real functions. Now, with hindsight, we shall

not continue a+ and a− as holomorphic or anti-holomorphic functions on the whole complex

plane. The continuation we shall perform will be to take, say, the negative frequency part of

a± and continue this part only as holomorphic/anti-holomorphic functions on the complement

of the disc. The reality condition ā±k = a±−k then ensures there is no loss of information in this
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procedure, since we may obtain the positive frequency part by complex conjugation on the unit

circle.

Thus, let us introduce

ã±(t± θ) = −1

2
+

−2∑
k=−∞

a±k e
ik(t±θ)

for the negative frequency parts. Here we have used the fact that |k| ≥ 2 for the expansion of

the variation of the a± components around AdS3, which will become manifest below. We now

continue the negative frequency parts, via (5.15), to the complement of the unit disc to get

ã+(z) = −1

2
+
a+
−2

z2
+
a+
−3

z3
+ · · · , ã−(z̄) = −1

2
+
a−−2

z̄2
+
a−−3

z̄3
+ · · · , (5.16)

which are, respectively, holomorphic and anti-holomorphic functions on D∗. We can now ana-

lytically continue the negative frequency part T̃ of the stress tensor (5.14), which is the tensor

T with functions a± replaced by their negative frequency parts. A simple computation gives

T̃ = − ã+(z)

z2
dz2 − ã−(z̄)

z̄2
dz̄2. (5.17)

The last step we shall need, before relating the negative frequency parts ã± of the stress-

energy tensor to the quadratic differentials arising via the Bers embedding, is to obtain the

relation between a±k and the Fourier coefficients of the parametrizing functions ε± of the Brown-

Henneaux generators. From (5.4) we know that

a± = −1

2
− ∂±ε± − ∂3

±ε±.

Thus, if we expand

ε±(t± θ) =

∞∑
k=−∞

ε±k e
ik(t±θ),

with ε±−k = ε̄±k , we get the following relation between the Fourier coefficients

a±0 = −1

2
, a±k = −iε±k (k − k3), k ≥ 2.

The relation to the quadratic differentials h± are now easily obtained. Using (5.12), we may

write

a±−k = ±iū±k (k − k3), k ≥ 2

and, comparing this with (5.13), this gives a very simple relation,

h±k−2 = a±−k, k ≥ 2,

between the Laurent coefficients in the expansions (5.16) of the negative frequency parts of the

stress-energy tensor and those of the Bers quadratic differentials (4.20), (4.32).



82 CHAPTER 5. RELATIONS TO HOLOGRAPHY

The relation above can also be written as a direct relation

ã+(z) = −1

2
+ z2h+(z), ã−(z̄) = −1

2
+ z̄2h−(z̄). (5.18)

And, finally, the analytic continuation of the negative frequency part (5.17) of the stress-energy

tensor is equal to (minus) the sum of two quadratic differentials arising via the Bers embedding

T̃ =
( 1

2z2
− h+(z)

)
dz2 +

( 1

2z̄2
− h−(z̄)

)
dz̄2 (5.19)

which is our final result for the (infinitesimal) relation between the maximal surface and the

holographic descriptions. Note that the constant term

T̃AdS3
=

1

2z2
dz2 +

1

2z̄2
dz̄2 (5.20)

is simply the negative frequency part of the reference spacetime, here taken to be AdS3.

5.2.2 Spacetime charges

We finish this section with an expression for the conserved charges of an AdS spacetime in terms

of the maximal surface parametrization. In section 3.2, we have obtained these charges as spatial

boundary integrals of the components of the quasilocal stress tensor

Q[ξ] =
1

2π

∫
∂S

dθ
[
a+ξ

+ + a−ξ
−
]
.

Now, the relations above allows for a direct translation to the maximal surface description. The

full components a± on the circle can be obtained from their negative frequency parts by adding

their complex conjugate. Thus, we have 2Re(ã±)
∣∣∣
|z|=1

= a±(±θ) and, therefore,

Q[ξ] =
1

2π

∫
∂S

dθ
[
2Re(−1

2
+ e2iθh+)ξ+ + 2Re(−1

2
+ e−2iθh−)ξ−

]
. (5.21)

Decomposing the Brown-Henneaux generators into modes, see section 3.2, we obtain

Q[ξ±n ] =
1

2π

∫
∂S

dθ
(
− 1

2
+
∑
k≥2

h±k−2e
∓ikθ + h̄±k−2e

±ikθ
)
e∓inθ =


− 1

2 , n = 0

h̄±n−2, n ≥ 2

h±−n−2, n ≤ −2.

In particular

M =
1

2
(Q[ξ+

0 ] +Q[ξ−0 ]) = −1, J =
1

2
(Q[ξ+

0 ]−Q[ξ−0 ]) = 0

as could have been expected since there are no 1/z2 and 1/z̄2 terms in the expansion of the in-

finitesimal quadratic differentials h±, see (4.20), (4.32). This only says, the first order variations

of mass and angular momentum, computed at the reference spacetime AdS3, are zero for any

infinitesimal deformation. It is however clear that by considering non-trivial spatial topologies
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the expressions above will render non-trivial charges in each asymptotic region of more general

spacetimes.

As a final remark, we note that, although the formulas above are, of course, only valid at

the infinitesimal level, they admit a natural conjectural extension to the finite case, by the

understanding the Bers embedding quadratic differentials h± are the analytic continuations

of the negative frequency parts of a± composing the stress-energy tensor, see (5.18). It is then

natural to conjecture that such negative frequency components continue to be related to the Bers

quadratic differentials in the same way as they do in the infinitesimal case. This would leads

to a more explicit relation between the universal phase space and the holographic (Fefferman-

Graham) descriptions, where one could directly construct from holographic data the whole of

spacetime’s bulk geometry. We leave an attempt to demonstrate such conjectural extension to

the finite case to future work.
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Chapter 6

Symplectic Structure

In this chapter, we would like to address two points. First we would like to obtain the relation

between the natural symplectic structures on T ∗T (D) and T (D)× T (D) parametrizing the uni-

versal phase space and the symplectic structure induced by the gravitational action. We shall see,

up to boundary terms, the induced gravitational symplectic form obtained from the (ADM) for-

mulation of gravity will provide the canonical cotangent bundle symplectic form on the T ∗T (D)

parametrization. On the other hand, the symplectic form coming from the Chern-Simons for-

mulation will describe the difference of Weil-Petersson symplectic forms on T (D)× T (D).

This lead us to the second point we want to address, namely the symplectic properties of the

map Mess : T ∗T (D) → T (D) × T (D). It is clear that the possibility of rewriting the Einstein-

Hilbert action in both ADM and CS forms suggests this map is a symplectomorphism. We shall

verify this explicitly by considering the pull-back of the T (D) × T (D) symplectic forms by the

Mess map and showing it agrees with the cotangent bundle symplectic form.

We warn the reader the results of this chapter are not yet completely developed and are still

under research, in collaboration with Jean-Marc Schlenker. In particular, we shall not consider

the delicate issues associated with boundary terms. The results presented here can then be seen

as the first necessary steps for a proof that Mess : T ∗T (D) → T (D) × T (D) is symplectic. We

describe these partial results for we feel most the ingredients for a complete proof are already

present, only some technical difficulties remain to be addressed.

6.1 Symplectic structures on T ∗T (D) and T (D)× T (D)

6.1.1 The horizontal directions on TqT
∗T (D)

In section 4.1 we have given a description of the tangent space to (universal) Teichmüller space

T[0]T (D) as the space of harmonic Beltrami coefficients δµ on D. At an arbitrary point [µ] ∈

T (D), we have seen that T[µ]T (D) = R[µ]T[0]T (D) is simply obtained by right translating the

85
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tangent space at the origin by [µ]. We remind the reader that a tangent vector δµ at point

[µ] ∈ T (D) then defines a one-parameter family of quasiconformal maps

fµ+tδµ(z) = ftδµ̃ ◦ fµ(z) = fµ(z) + tδw ◦ fµ(z) +O(t2) (6.1)

with

∂z̄(δw ◦ fµ)− µ∂z(δw ◦ fµ) = δµ∂zfµ (6.2)

or, equivalently,

∂w̄δw = δµ̃, δµ̃ ◦ fµ =
δµ

(1− |µ|2)

∂zfµ
∂z̄ f̄µ

.

We therefore already have an understanding about the tangent bundle over our phase space in

its parametrization by T (D)×T (D). For the discussion that follows, we shall also need a similar

understanding of this tangent bundle in the T ∗T (D) parametrization.

As for the tangent bundle over any vector bundle, TT ∗T (D) admits a decomposition into

vertical and horizontal sub-bundles. The vertical sub-bundle is, as usual, canonically defined. It

is given, at each point ([µ], q) ∈ T ∗T (D), as the kernel subspace of the derivative of the projection

map π : T ∗T (D) → T (D), associating to ([µ], q) the conformal structure [µ] = π([µ], q) with

respect to which q is holomorphic. Thus, at each point ([µ], q) the vertical subspace consists of

infinitesimal quadratic differentials δq holomorphic with respect to [µ].

The horizontal sub-bundle, on the other hand, is not canonical. Its definition amounts to the

choice of a connection on T ∗T (D) identifying fibres T ∗[µ]T (D) at distinct base points via parallel

transport. Here we shall not delve into the theory of connections over (infinite dimensional)

vector bundles and will be satisfied with a simple, rather natural, choice for parallel transporting

holomorphic quadratic differentials on D along quasiconformal deformations.

Given a quadratic differential q holomorphic with respect to [µ] ∈ T (D) and a curve [µt]

in T (D) with µ0 = µ, we define the parallel transport of q along [µt] by applying the the

quasiconformal map fµt ◦ f−1
µ to its argument

q(w) 7−→ q(wt) = q(fµt ◦ f−1
µ (w)).

We are thus simply substituting in q the holomorphic coordinate w, associated with [µ] ∈ T (D),

with the holomorphic coordinate wt, associated with [µt]. Note this is not the same as taking the

pull-back of the quadratic differential which would clearly not render a holomorphic differential

with respect to [µt].

To define the horizontal sub-bundle let’s now take a tangent vector δµ ∈ T[µ]T (D) and con-

sider the one-parameter family (6.1). Our definition for the parallel transport of the holomorphic

quadratic differential q then reads

q(w) 7−→ q(w) + t∂wqδw +O(t2),



6.1. SYMPLECTIC STRUCTURES ON T ∗T (D) AND T (D)× T (D) 87

which describes a horizontal vector in T([µ],q)T
∗T (D). We may thus write

H([µ],q)T
∗T (D) =

{
(δµ, ∂wqδw); δµ ∈ T[µ]T (D)

}
for the horizontal subspace and, similarly,

V([µ],q)T
∗T (D) =

{
(0, δq); δq ∈ T ∗[µ]T (D)

}
for the vertical subspace.

It should be clear that the quadratic differential q+ t∂wqδw is now holomorphic with respect

to the conformal structure [µ + tδµ] so our definition does makes sense, at least for the case of

trivial topology. To see this we only need the variations, in the δµ direction, of the coordinate

vector fields ∂w and ∂w̄. Let’s start with the variations of the coordinate 1-forms dw and dw̄

δδµdw = dδw = ∂wδwdw + δµ̃dw̄, δδµdw̄ = dδw̄ = ∂w̄δw̄dw̄ + δ ¯̃µdw. (6.3)

The variations δ∂w and δ∂w̄ are the obtained by imposing

(dw + δδµdw)(∂w + δδµ∂w) = 1, (dw + δδµdw)(∂w̄ + δδµ∂w̄) = 0,

which is easily seen to provide

δδµ∂w = −∂wδw∂w − δ ¯̃µ∂w̄, δδµ∂w̄ = −∂w̄δw̄∂w̄ − δµ∂w.

It is now a simple computation that q + t∂wqδz satisfies

(∂w̄ + δ∂w̄)(q + t∂wqδw) = ∂w̄q + t
(
∂w̄(∂wqδw)− ∂w̄δw̄∂w̄q − δµ̃∂wq

)
= 0,

where we have made use of the holomorphicity of q.

With the above definitions for the vertical and horizontal subspaces we may now write down

the action of a tangent vector (δµ, δq) ∈ T([µ],q)T
∗T (D) on an arbitrary function Q on T ∗T (D)

δ(δµ,δq)Q = ∂wQδw + ∂w̄Qδw̄ +
δQ
δq
δq +

δQ
δq̄
δq̄.

In particular, the action of such tangent vector on the quadratic differential q it self becomes

δ(δµ,δq)q = ∂wqδw + δq.

6.1.2 The cotangent bundle symplectic form

In sections 2.2 and 4.3 we gave distinct parametrizations of the space of 2+1 dimensional AdS

spacetimes, with both compact and noncompact spatial topology, in terms of Teichmüller space

of an embedded maximal surface. We note that both parametrizations carry natural symplectic

structures. The first, being a cotangent bundle T ∗T (D), carries the canonical cotangent bundle

symplectic form. The second, given by two copies of T (D), carries the structure induced from the
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Weil-Petersson symplectic form in each copy of T (D). The constructions given in the previous

chapters also provided a bijective map between T ∗T (D) and T (D) × T (D), referred to here as

the (generalized) Mess map. The existence of natural symplectic structures in both spaces, and

a bijection between them then leads to the question of whether the Mess map is natural from

the symplectic point of view, that is, if its action maps one symplectic structure to the other.

We shall now describe some evidence suggesting this is indeed the case. A proof will be given

at the end of the section.

Thus, let us now consider the induced symplectic structures coming from the gravitational

Einstein-Hilbert action (2.12). In the ADM formulation of 2+1 gravity, see section 2.1, the

gravitational pre-symplectic form is obtained directly from this action in its Hamiltonian form

ΩGR =

∫
S

d2x tr (δΠ ∧ δI). (6.4)

Note that, since our considerations allows for non spatially compact spacetimes, the Einstein-

Hilbert action is complemented by the York-Gibbons-Hawking boundary term and renormaliza-

tion counter term (3.15). These terms do contribute the symplectic potential, which is obtained

from the first variation of the Lagrangian of the theory, but they do not alter the symplectic

structure since they only add to the symplectic potential a variational exact form. Another

source of ambiguity is the possibility of adding (spacetime) exact terms to the symplectic poten-

tial itself. These terms would then contribute to the symplectic structure, since they need not

be exact in the variational sense. It may be that the asymptotic fall-off conditions are enough

to ensure these contributions are zero or, else, to fix them to particular values, see section 3 of

[69] for similar discussion in the case of asymptotically flat spacetimes. We shall not address

such issues leaving them to future studies. In fact, we shall discard all boundary terms in the

considerations that follow. Some comments on such terms will be given in the end of the section.

We remind the reader, ΩGR is the canonical symplectic structure on the cotangent bundle of

the space of two dimensional Riemann metrics on S. This is not yet the reduced (physical) phase

space of 2+1 gravity and we still need to impose the Gauss-Codazzi constraints and eliminate

the remaining gauge freedom. To obtain the physical gravitational symplectic structure on

the reduced phase space parametrized by T ∗T (D), we shall thus impose the constraints and

gauge fixing conditions directly by writing the canonical fields explicitly in terms of the variable

([µ], q) ∈ T ∗T (D).

Since we may use any Cauchy surface S in the computation of the symplectic form, we make

the simplest choice of working with the maximal surface data

I = e2ϕ|dw|2, II =
1

2
(qdw2 + q̄dw̄2).

The canonically conjugated momentum can be easily computed as in section 2.2

Π =

√
I

2π
(I−1III−1 − tr (I−1II)I−1) =

e−2ϕ

π
(q̄∂2

w + q∂2
w̄),
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and we may compute the variations of (I,Π) in the direction of (δµ, δq)

δ(δµ,δq)I = e2ϕ
(
δ ¯̃µdw2 + δµ̃dw̄2 + (2δ(δµ,δq)ϕ+ ∂wδw + ∂w̄δw)|dz|2

)
,

δ(δµ,δq)Π =
√
Iδ(δµ,δq)

( Π√
I

)
+

1

2
tr (I−1δ(δµ,δq)I)Π

=
e−2ϕ

π

(
− 2(qδµ̃+ q̄δ ¯̃µ)∂w∂w̄ + (δ(δµ,δq)q̄ − q̄(2δ(δµ,δq)ϕ+ ∂wδw − ∂w̄δw̄))∂2

w

+(δ(δµ,δq)q − q(2δ(δµ,δq)ϕ− ∂wδw + ∂w̄δw̄))∂2
w̄

)
.

Note that, when taking these variations, one must take into account that the canonical momen-

tum Π is not a tensor but a tensor density weight 1.

Now, substituting the above expressions in (6.4), and for now discarding boundary terms,

the gravitational pre-symplectic structure becomes simply

ΩGR =
1

2πi

∫
fµ(D)

dw ∧ dw̄
(
δ(δµ,δq)q ∧ δµ̃+ δ(δµ,δq)q̄ ∧ δ ¯̃µ+ 2q̄∂w̄δw̄ ∧ δ ¯̃µ+ 2q∂wδw ∧ δµ̃

)
=

1

2πi

∫
fµ(D)

dw ∧ dw̄
(
δq ∧ δµ̃+ δq̄ ∧ δ ¯̃µ

)
+

1

2πi

∫
∂fµ(D)

(
q̄δw̄ ∧ dδw̄ − qδw ∧ dδw

)
=

1

2πi

∫
fµ(D)

dw ∧ dw̄
(
δq ∧ δµ̃+ δq̄ ∧ δ ¯̃µ

)
=

1

π
ΩT
∗T , (6.5)

which gives, up to a multiplicative factor, the cotangent bundle symplectic structure on T ∗T (D).

6.1.3 The Chern-Simons symplectic form

From the Chern-Simons theory point of view the symplectic structure is given by a different

expression. For a single PSU(1, 1) Chern-Simons theory, the Hamiltonian formalism gives the

following symplectic form on the space of all connections over the spatial slice S

ΩCS =
k

4π

∫
S

tr (δA ∧ δA). (6.6)

This is to be restricted to connections satisfying the flatness condition

F [A] = dA+A ∧A = 0

and one must further mod out the remaining gauge degrees of freedom. Once again, we shall

impose the flatness constraint by working directly with the reduced phase space parametrization

by T (D). Note that we are only interested in the geometric sector of the theory. Therefore, we

do not consider connections with no metric interpretation.

We shall now start working in the reference point [0] ∈ T (D). The connection can then be

written

A =
1

(1− |z|2)

 1
2 (z̄dz − zdz̄) −dz

−dz̄ − 1
2 (z̄dz − zdz̄)

 ,
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and we now compute its variation in the direction of a tangent vector δµ

δδµAz =
1

2

− 1
2∂z

(
∂zδz − ∂z̄δz̄

)
−∂zδz−∂z̄δz̄(1−|z|2)

− 2δµ̄
(1−|z|2)

1
2∂z

(
∂zδz − ∂z̄δz̄

)


δδµAz̄ =
1

2

− 1
2∂z̄

(
∂zδz − ∂z̄δz̄

)
− 2δµ

(1−|z|2)

∂zδz−∂z̄δz̄
(1−|z|2)

1
2∂z̄

(
∂zδz − ∂z̄δz̄

)
 .

Here, we have made use of the identities (4.35) and (4.36) of section 4.1

∂zδµ+ 2
z̄δµ

(1− |z|2)
= 0, 2

z̄δz + zδz̄

(1− |z|2)
+ ∂zδz + ∂z̄δz̄ = 0.

We may now introduce these expressions in (6.6) to obtain, again discarding boundary terms,

the following expression

ΩCS =
k

8π

∫
D
dz ∧ dz̄ δµ̄ ∧ δµ

(1− |z|2)2
+

k

4π

∫
∂D

(∂zδz − ∂z̄δz̄) ∧ d(∂zδz − ∂z̄δz̄)

=
k

8π

∫
D
dz ∧ dz̄ δµ̄ ∧ δµ

(1− |z|2)2
=

k

8π
ΩWP , (6.7)

which is proportional to the Weil-Petersson symplectic structure on T (D).

Thus, the gravitational pre-symplectic structure (at the reference point) in the Chern-Simons

formulation is now simply obtained as the difference of two Weil-Petersson symplectic forms

ΩCS+ − ΩCS− =
k

8π

∫
D

dz ∧ dz̄
(1− |z|2)2

(
δµ̄+ ∧ δµ+ − δµ̄− ∧ δµ−

)
,

thus suggesting the generalized Mess map T ∗T (D)→ T (D)× T (D) is in fact symplectic.

6.2 Symplectic properties of the Mess map

6.2.1 The derivative of the map Mess

We now turn to a more explicit argument showing Mess : T ∗T (D)→ T (D)×T (D) is a symplecto-

morphism. Our approach will be to consider, at an arbitrary point ([µ+], [µ−]) ∈ T (D)× T (D),

the pull-back of the difference of Weil-Petersson symplectic forms via the Mess map. To per-

form this computation, the only ingredients we shall need are expressions for the Weil-Petersson

symplectic form at an arbitrary point [µ] ∈ T (D) and for the derivative of the Mess map.

Let’s start with the description the derivative of the Mess map. We remind the reader,

see section 4.3, given a point ([µ], q) ∈ T ∗T (D), the Mess map associates a pair of harmonic

harmonic maps Φ± with Hopf differentials satisfying

iHopf(Φ±) = ±qdw2. (6.8)

We then we obtain the pair ([µ+], [µ−]) as the Beltrami coefficients of the composition Φ± ◦ fµ.

To obtain the derivative of this map we shall now compute the variation of the above relation
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between the quadratic differential q the Hopf differentials Hopf(Φ±). Note that we may use

the group structure on T (D) to perform this computation at the the point [µ] ∈ T (D), rather

then the preferred point [0]. This will bring many simplifications since both Hopf differentials

are holomorphic with respect to this conformal structure. Thus we consider the one-parameter

families of quasiconformal maps

ftδµ̃± ◦ Φ±(w) = Φ±(w) + tδz± ◦ Φ±(w) +O(t2),

with

∂z̄±δz± = δµ̃±, δµ̃± ◦ fµ± =
δµ±

(1− |µ±|2)

∂zfµ±
∂z̄ f̄µ±

,

and compute the corresponding Hopf differentials

4∂wΦ±∂wΦ̄±
(1− |Φ±|2)2

+ t
4|∂wΦ±|2

(1− |Φ±|2)2

[
δ ¯̃µ± ◦ Φ±

∂wΦ±
∂w̄Φ̄±

+ ν̄2
±δµ̃± ◦ Φ±

∂w̄Φ̄±
∂wΦ±

−(1 + |ν±|2)δ ¯̃µ− 2ν̄±∂wδw
]
, (6.9)

where

ν± =
∂w̄Φ±
∂wΦ±

= ±i
(1− |Φ±|2)2

4|∂wΦ±|2
q̄

are the Beltrami differentials of Φ±. Comparing with the variation of q via formula (6.8) we get

δ ¯̃µ± ◦Φ±
∂wΦ±
∂w̄Φ̄±

+ ν̄2
±δµ̃± ◦Φ±

∂w̄Φ̄±
∂wΦ±

= (1 + |ν±|2)δ ¯̃µ+ 2ν̄±∂wδw±
(1− |Φ±|2)2

4i|∂wΦ±|2
(
δq + ∂wqδw

)
,

which then implies, after some algebra,

(1− |ν±|2)δµ̃± ◦ Φ±
∂w̄Φ̄±
∂wΦ±

= (δµ̃− ν2
±δ ¯̃µ) + 2ν±

(∂w̄δw̄ − |ν±|2∂wδw)

1 + |ν±|2

∓ (1− |Φ±|2)2

4i|∂wΦ±|2
δq̄ + ν2

±δq

1 + |ν±|2
∓ (1− |Φ±|2)2

4i|∂wΦ±|2
∂w̄ q̄δw̄ + ν2

±∂wqδw

1 + |ν±|2
.

This is the expression of the tangent vectors δµ± ∈ T[µ±]T (D) corresponding, via the Mess map,

to a vector (δµ, δq) ∈ T([µ],q)T
∗T (D) written in terms of the holomorphic coordinate associated

with [µ].

6.2.2 Weil-Petersson symplectic form at arbitrary points

Now, we must understand of the Weil-Petersson symplectic form at an arbitrary point of T (D).

The Weil-Petersson symplectic form is defined by

ΩT =

∫
D
dz ∧ dz̄ δµ̄ ∧ δµ

(1− |z|2)2
,

at the base point [0]. It is then extended to arbitrary points [µ±] by imposing right invariance

under the group structure, that is,

ΩT[0]( · , · ) = R∗[µ±]Ω
T
[µ±]( · , · ) = ΩT[µ±](R[µ±]∗· , R[µ±]∗· ).
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Such defining property is nothing but a change of integration coordinates and leads to the

following expression for the Weil-Petersson symplectic form at an arbitrary point [µ±] ∈ T (D)

ΩT[µ±] =

∫
fµ± (D)

dz± ∧ dz̄±
δ ¯̃µ± ∧ δµ̃±
(1− |z±|2)2

=

∫
D
dz ∧ dz̄

|∂zfµ± |2

(1− |fµ± |2)2

δµ̄± ∧ δµ±
(1− |µ±|2)

and the difference of Weil-Petersson symplectic forms, at point ([µ+], [µ−]) ∈ T (D)×T (D), now

becomes

ΩT[µ+] − ΩT[µ−] =

∫
D
dz ∧ dz̄

( |∂zfµ+
|2

(1− |fµ+
|2)2

δµ̄+ ∧ δµ+

(1− |µ+|2)
−

|∂zfµ− |2

(1− |fµ− |2)2

δµ̄− ∧ δµ−
(1− |µ−|2)

)
.

We may also use the right invariance property to write this symplectic form as an integral over

fµ(D)

ΩT[µ+] − ΩT[µ−] =

∫
fµ(D)

dw ∧ dw̄ |∂wΦ+|2(1− |ν+|2)

(1− |Φ+|2)2

[
(δ ¯̃µ+ ◦ Φ+) ∧ (δµ̃+ ◦ Φ+)

−(δ ¯̃µ− ◦ Φ−) ∧ (δµ̃− ◦ Φ−)
]
.

Here we have made use of the area preserving properties of Φ− ◦ Φ−1
+ which, we remind the

reader, is minimal Lagrangian, see section 4.2.

A rather tedious computation shows

(1− |ν±|2)(δ ¯̃µ± ◦ Φ±) ∧ (δµ̃± ◦ Φ±) =
(1− |Φ±|2)4

16|∂wΦ±|4
δ(δµ,δq)q ∧ δ(δµ,δq)q̄

(1 + |ν±|2)

± (1− |Φ±|2)2

4i|∂wΦ±|2
[
δ(δµ,δq)q ∧

(
δµ̃+

2ν±
1 + |ν±|2

∂w̄δw̄
)

+ δ(δµ,δq)q̄ ∧
(
δ ¯̃µ+

2ν̄±
1 + |ν±|2

∂wδw
)]

+(1 + |ν±|2)
(
δ ¯̃µ+

2ν̄±
1 + |ν±|2

∂wδw
)
∧
(
δµ̃+

2ν±
1 + |ν±|2

∂w̄δw̄
)

and anti-symmetrizing in ± we get

2i
|∂wΦ+|2(1− |ν±|2)

(1− |Φ+|2)2

(
(δ ¯̃µ+ ◦ Φ+) ∧ (δµ̃+ ◦ Φ+)− (δ ¯̃µ− ◦ Φ−) ∧ (δµ̃− ◦ Φ−)

)
=

δ(δµ,δq)q ∧ δµ̃+ δ(δµ,δq)q̄ ∧ δ ¯̃µ+ 2q∂wδw ∧ δµ̃+ 2q̄∂w̄δw̄ ∧ δ ¯̃µ.

Now, the difference of Weil-Petersson symplectic forms, pulled-back via the Mess map, gives

exactly the cotangent bundle symplectic form

ΩT[µ+] − ΩT[µ−] =

∫
fµ(D)

dw ∧ dw̄ |∂wΦ+|2(1− |ν+|2)

(1− |Φ+|2)2

[
(δ ¯̃µ+ ◦ Φ+) ∧ (δµ̃+ ◦ Φ+)

−(δ ¯̃µ− ◦ Φ−) ∧ (δµ̃− ◦ Φ−)
]

=
1

2i

∫
fµ(D)

dw ∧ dw̄
(
δ(δµ,δq)q ∧ δµ̃+ δ(δµ,δq)q̄ ∧ δ ¯̃µ+ 2q∂wδw ∧ δµ̃+ 2q̄∂w̄δw̄ ∧ δ ¯̃µ

)
= ΩT

∗T
([µ],q)

which proves, up to the subtleties associated with boundary terms, the Mess map is a symplecto-

morphism.

6.2.3 Boundary terms and other caveats

We would like to finish this chapter with a few words on the boundary terms dropped in the last

computations and the related question of well definedness of the symplectic structures described

above.
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Already in the context of universal Teichmüller space, the noncompactness of D introduces

subtleties regarding convergence of the symplectic forms. In fact, the universal Weil-Petersson

hermitian metric, from which the symplectic form is obtained as the imaginary part, in known

diverge unless the harmonic Beltrami coefficients are dual to square integrable holomorphic

quadratic differentials [65]. More explicitly, the universal Weil-Petersson hermitian metric is

only well defined on{
δµ ∈ HBD(D); δµ = − (1− |z|2)2

2
q̄ with

1

2i

∫
D
dz ∧ dz̄(1− |z|2)2|q(z)|2 <∞

}
.

It should be clear that in the present work we have considered the symplectic forms only at a

formal level, not worrying about this convergence problem.

A solution for this problem was introduced by Tahktajan and Teo in [37] with the introduction

of a new complex Hilbert manifold structure on T (D) with well defined Weil-Petersson hermitian

metric in each tangent space. We shall not reproduce their arguments here and refer the reader

to [37] for more information. We note that it is possible to apply the same arguments to each

T (D) sector of the universal phase space introduced here.

More importantly, we note that the gravitational symplectic form agrees with the difference

of Weil-Petersson form only up to boundary terms. Such terms certainly play an important

role for the convergence of the symplectic form. We shall not speculate here whether these

gravitational boundary terms are enough to make the symplectic form well defined and leave

this question for future research.

It should also be noted that in the case of spatially compact AdS spacetimes the arguments

presented here are well posed since the symplectic forms under consideration are then completely

well defined. In this context, there are still remains some technical issues to be addressed, again

regarding boundary terms. We note that when writing the analogous of formula (6.5) for the

gravitational symplectic structure for in a spatially compact spacetime manifold we perform

the integration over a fundamental domain D/Γ. Such fundamental domain is a 4g-gon with

boundaries, described by geodesic on D, being identified by the action of Γ. Therefore, the

boundary contributions cannot be discarded on the basis of compactness, but should cancel

pairwise via the identification. We shall not present here any demonstration that the needed

cancellations do in fact occur, leaving this for future studies. We would just like to describe how

such process should be carried out.

We first decompose the fundamental domain’s boundary integral as a sum over its geodesic

segments ∫
∂D/Γ

=

2g∑
i=1

(∫
ci

+

∫
−Aici

)
,

where ci and Aici denote the boundary edges being identified by a generator Ai ∈ Γ. Since S is

obtained identifying ci and Aici, we need to cancel the unwanted boundary contributions along
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these geodesics by the use of the Γ invariance properties

µ ◦AĀ
′

A′
= µ, q ◦A(A′)2 = q

of Beltrami differentials and holomorphic quadratic differentials.

Note that the definition of the horizontal and vertical sub-bundles of TT ∗T (D/Γ) are not so

straightforward anymore. For example, one now needs to make sure the function

q + t(∂wqδw + δq),

which is was shown holomorphic with respect to w + δw, also satisfies the correct invariance

property under the generators of Γ. Only then it will define a quadratic differential on D/Γ.

One should then allow, in the definition of the horizontal direction on T([µ],q)T
∗T (D/Γ), for a

more general expression

(δµ, ∂wqδw +Q) ∈ H([µ],q)T
∗T (D/Γ),

where Q satisfies the transformation

Q ◦A(A′)2 = Q+ 2∂wq
(
δw − δw ◦A 1

A′

)
+ 4q∂w

(
δw − δw ◦A 1

A′

)
+ 2q(∂wδw) ◦A.

Only after solving such equation it is possible to describe the horizontal space. This is a technical

difficulty we shall leave for future work



Chapter 7

Conclusion

This final chapter concludes with a summary of achieved results and some possible future research

directions.

7.1 Conclusion

7.1.1 Results and future directions

In this thesis, we have provided two equivalent parametrizations of what can be called the

universal phase space of 2+1 AdS spacetimes. These were given in terms of two copies T (D)×

T (D) of universal Teichmüller space and by the cotangent bundle T ∗T (D) over that space. The

use of the adjective “universal” is the same as in universal Teichmüller theory, since our phase

space contains the phase spaces of all spatially compact globally hyperbolic AdS spacetimes,

as well as that of all multi black holes, as submanifolds. It also contains the Brown-Henneaux

asymptotic excitations on the conformal boundary.

While the standard description of asymptotically AdS spacetimes is given by deformations

of, say, AdS3 by non-trivial asymptotic symmetries generated by Brown-Henneaux vector fields,

we have described these spacetimes by considering two types of deformations of the domain

of dependence of a spacelike geodesic surface in AdS3. The first, interpreted as “geometric”

direction, was obtained by prescribing a deformation of the boundary curve of the surface,

determining a new maximal surface in AdS3. This corresponds to the “difference” between the

two Teichmüller sectors in T (D)× T (D), and to the vertical direction in T ∗T (D). The second,

was given by a purely spatial quasiconformal deformation applied to the initial spacelike geodesic

surface. This did not alter the intrinsic or extrinsic properties of maximal surfaces in AdS3 and,

therefore, was interpreted as a “non-geometric” direction. It corresponds to the “sum” of the

Teichmüller sectors in T (D)× T (D), and to the horizontal direction in T ∗T (D).

Our construction was based on results already known in the mathematics literature, mainly

95
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[39, 40, 41], where different geometric aspects of maximal, or more generally constant mean

curvature, surfaces in AdS3 were described in terms of universal Teichmüller theory. We have

extended these results to the context of 2+1 AdS spacetimes where, from the work of Brown

and Henneaux [26], it is clear one also needs to account for non-geometric data associated with

non-trivial asymptotic symmetries. Therefore, the main contribution in this thesis comes in the

realization of these asymptotic symmetries in terms of maximal surface data in AdS3 which, in

fact, turns out to be a quite natural generalization of the compact case phase space of [15] and

[13], see also [14] for the relation of these descriptions in terms of maximal surfaces.

On the other hand, in the physics literature, most attention was given to the non-geometric

(asymptotic) aspects of the theory, mainly due to its relations to Maldacena’s AdS/CFT con-

jecture [28]. The phase space of 2+1 AdS gravity, from this point of view, was described by

two copies of the quotient Diff+(S1)/SL(2,R), see e.g. [30], but the spacetime bulk moduli,

parametrizing nontrivial spatial topology, were not available. By expressing the asymptotic

symmetries in terms of maximal surface data, our results now extend this description to include

the bulk moduli and thus the topological information about the whole spacetime.

More explicitly, our work gives a new interpretation for the Brown-Henneaux generators in

terms of Zygmund class vector fields on S1. This was obtained from an infinitesimal analysis,

around AdS3, of the spacetime metrics arising in our maximal surface parametrization and in the,

more standard, holographic Fefferman-Graham type parametrization of spatially-noncompact

AdS spacetimes. We have described infinitesimal deformations of the AdS3 metric in the direction

of both quasiconformal and Brown-Henneaux generators, and were then able to match these

generators asymptotically by imposing the resulting spacetimes to represent the same physical

state. This shows, at the infinitesimal level, there is a well defined analytic continuation of the

spacetime metric on the maximal surface’s domain of dependence beyond the Cauchy horizon,

to a region including the components of the conformal boundary. It is then expected that

such continuation can be extended to the case of finite transformations thus identifying, to a

certain extent, the group of asymptotic symmetries of AdS spacetimes and the quasiconformal

deformation space of domains of dependence of maximal surfaces in those spacetimes.

Note that such an identification cannot be one-to-one since, although enough to describes

all possible asymptotically AdS metrics in a neighbourhood of conformal infinity, the group of

asymptotic symmetries does not contain the bulk geometry moduli, that is, they do not fix the

internal spacetime topology. This is the main advantage of the new parametrization proposed

in this thesis. The maximal surface data also provides the bulk moduli parameters via the Γ

invariance properties of the associate pair of quasisymmetric homeomorphisms of the unit circle.

Thus, if φ± ∈ T (D) × T (D) are Γ invariant, in the sense that A ◦ φ± ◦ A−1 ∈ Möb(S1) for all

A ∈ Γ, we may take the quotient of the arising AdS metric on R × D to a metric in R × D/Γ.
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Then, on each boundary component of D/Γ we have pairs of homeomorphisms into S1, and these

are the moduli parametrizing the group of asymptotic symmetries.

This now suggests a possible application of our construction to the debate on the microscopic

origin of 2+1 dimensional black hole entropy. Since the universal space includes all possible multi

black holes, together with the Brown-Henneaux excitations in each of their asymptotic regions,

it seems that one could now compute the partition function with, say, fixed temperature and

angular velocity on a single asymptotic region, by summing over all inner horizon geometries.

In terms of the model A realization, one would then fix some properties of the quasisymmetric

homeomorphisms φ± on some appropriate interval I ⊂ S1, say determined by the fixed points

of a fixed hyperbolic-hyperbolic generator, and sum over all quasisymmetric homeomorphisms

satisfying those properties. Note this would also include a sum over topologies coming from Γ

invariance properties of the restriction of φ± to the complement of I. The entropy could then be

extracted from this canonical partition function by the standard thermodynamic formulas. Note

that for such computation to work one needs expressions for the spacetime charges in terms of

the quasisymmetric homeomorphisms φ±. Our (infinitesimal) expression for the charges is then

a first step in this direction.

Another interesting future direction would be to reformulate such partition function compu-

tation as that in the context of some conformal field theory. In this respect we note that the

Gauss-Codazzi equations that arise on the maximal surface description are integrable, associated

with the so-called sl2 conformal affine Toda system [70]. It might be that the conformal field

theory corresponding to this system is of relevance for the quantum description of AdS3 gravity.

We note that such conformal field theory would naturally live on the maximal surface, not on

the asymptotic boundary. On the other hand, we have seen that the analytic continuation (to

the imaginary time) of the chiral functions on ∂∞AdS3 has a natural interpretation in terms of

maximal surface’s data. At least at the infinitesimal level, the descriptions of TT (D) obtained

in [65] can be used to show the variations of quasilocal stress-tensor of Brown and York are

closely related to the B model realization of T (D). This then admits an immediate generaliza-

tion to the finite case, with the components of the (analytic continued negative frequency part of

the) quasilocal stress-tensor being given by the Bers embedding holomorphic/anti-holomorphic

quadratic differentials. Giving a proof that such finite relation is indeed realized in this manner

is an important open problem we would like to address in future works. Nonetheless, already

the infinitesimal relation suggests it might be possible to translate Lorentzian CFTs on the con-

formal timelike boundary to Euclidean CFTs on the spacelike maximal surface, and vice versa.

It is thus possible that Euclidean signature CFTs, in particular the sl2 Toda field theory, are of

interest for the AdS/CFT type description of 2+1 dimensional quantum gravity.

Finally, it would also be interesting to investigate directly the quantization of the universal
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phase space of AdS gravity and its relation to the theory of quantum Teichmüller spaces. These

were introduced by Kashaev [16] and, independently, Chekhov and Fock [17] in the setting of

punctured Riemann surfaces. Generalizations for the universal Teichmüller space context were

also discussed in [18]. We have presented, in this thesis, an analysis of the symplectic properties

of the map Mess : T ∗T (D) → T (D) × T (D). We have seen that, at a formal level, the bulk

contributions of the symplectic form induced by the gravitational action agrees with the natural

symplectic forms on both parametrizations of the phase space. This not only shows that AdS 2+1

quantum gravity could be understood within the framework of quantum Teichmüller theory, but

may also lead to new ways of addressing problems in this theory by recasting the Weil-Petersson

form (or rather the difference of two such symplectic forms) as a much simpler cotangent bundle

symplectic form.

This was obtained by writing the gravitational pre-symplectic form, in both the ADM and

Chern-Simons formulations, directly in terms of the reduced phase space variables, ([µ], q) ∈

T ∗T (D) and ([µ+], [µ−]) ∈ T (D)×T (D) respectively. In the case of the Weil-Petersson symplectic

form, coming from the Chern-Simons formulation, a more detailed analysis was needed. We thus

explained how to describe this symplectic form at an arbitrary point in T (D) by making use

of the right group structure induced by composition of quasiconformal maps. Together with a

description of the derivative of the Mess map, this was enough to pull-back the difference of

Weil-Petersson symplectic forms at [µ+] and [µ−] to a symplectic form in T ∗T (D), which agreed

with the cotangent bundle symplectic form.

As a final remark, we note that although our arguments in the last chapter still need some

improvements, in particular regarding the boundary contributions, they represent an important

first step in the direction of a proof that the Mess map is symplectic. This is non-trivial even in

the case of compact spatial topologies, where the problem of well definiteness of the symplectic

structure is not present. Work is in progress on completing this proof.
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