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Abstract

Introduction

Cerebral glioma is the most prevalent primary brain tumour, of which the

majority are high grade gliomas. High grade gliomas possess a poor progno-

sis, and glioblastoma patients survive less than one year after diagnosis. To

date, histological grading is used as the standard technique for diagnosis and

survival prediction. Previous studies using advanced techniques such as MR

Perfusion have achieved a high sensitivity but a low specificity in identifying

high grade gliomas. Moreover, they have failed to distinguish glioblastoma

from anaplastic glioma. The purpose of the study presented here is to as-

sess the diagnostic and prognostic value for cerebral glioma of cerebral blood

volume maps derived from MR perfusion.

Methods

This retrospective study was approved by the local research ethics commit-

tee and clinical audit office. This study included 123 patients with newly

diagnosed cerebral glioma, of all grades. Histological diagnosis was used as

the standard reference for all potential patients. The relative tumour blood

volume (rTBVmax) derived from MR perfusion was used for radiological grad-

ing of cerebral glioma. Receiver operating characteristics (ROC) were used

to define the best threshold value in distinguishing the glioma grades and

in determining the accuracy values (sensitivity, specificity, and positive and

negative predictive values). For survival analysis, Kaplan–Meier was used to
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illustrate and compare the discriminatory value of the histological and radi-

ological classifications. A multiple Cox regression model was used to assess

the prognostic value of both classifications in addition to other tested demo-

graphic and clinical variables. Finally, the influence of potential moderators

was assessed using ANOVA, to assess whether the variation in rTBVmax was

only due to the difference in tumour grades.

Results

A model data set (n = 50) produced a 7-fold increase of TBVmax in tumour

versus white matter and provided sensitivity and specificity of 97% and 94%,

respectively, in distinguishing high versus low grade glioma. Moreover, a

threshold value of 9.6 provided sensitivity and specificity of 100% and 56%

in differentiating glioblastoma within the group of high grade gliomas. These

threshold values were applied to the second group (n = 73) and provided

sensitivity and specificity of 96% and 95% in distinguishing high versus low

grade glioma, and 97% and 73% in differentiating, within the high grade

gliomas, glioblastoma from anaplastic glioma. Using these two thresholds for

a three-tier radiological classification, both the Kaplan-Meier plots and the

multiple Cox regression showed that radiological classification was the most

independent predictor of survival and tumour progression. The proposed

radiological classification system was better than histological classification in

predicting glioma patients survival especially noted in a group of moderately

hyperaemic rTBVmax.
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Conclusion

MR perfusion is a non-invasive and robust technique in glioma grading and

survival prediction. The diagnostic value of rTBVmax derived from MR per-

fusion in differentiating high versus low grade glioma is promising. It may

have a role in the future in defining the appropriate treatment. However, the

proposed radiological classification was inferior in differentiating anaplastic

glioma from glioblastoma multiforme. In the future, a more advanced mul-

timodal MR, such as MR spectroscopy and MR diffusion, may be studied,

besides MR perfusion, in order to improve this diagnostic accuracy.
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1.1 Introduction

Primary brain tumours are the most prevalent (75%) type of brain tumour

(Principi et al., 2003), of which the majority (65%) are high grade gliomas

(Daumas-Duport et al., 1988). In general, brain tumours are classified ac-

cording to their aggressiveness, i.e., benign or malignant; or to their ori-

gin, i.e., primary or secondary metastatic lesions; or to their tissue of origin

(gliomas, lymphoma, etc.); or to their location, i.e., supra or infratento-

rial. Gliomas are classified by tissue of origin as pure astrocytoma, oligoden-

drogliomas, or the mixed type of oligoastrocytoma (Louis et al., 2007).

Gliomas are classified histologically according to the WHO classification

system, which has been modified in the last two decades. The classification

of astrocytic and oligodendrocytic tumours started in 1979 when two main

categories were identified, astrocytomas and anaplastic astrocytomas (Klei-

hues and Ohgaki, 2000). In addition, oligoastrocytoma and mixed gliomas

were classified in the same year but no anaplastic form recognised (Schei-

thauer, 2008). In 1993, glioblastoma was classified as an astrocytic tumour,

and anaplastic oligodendroglioma was classified under the grade three World

Health Organization (WHO) classification (Louis et al., 2007). In 2007, the

very high oligodendroglial component with necrosis was classified as a com-

ponent of glioblastoma. Currently, the histological characteristics of glioma

based on the WHO classification are as follows: diffuse infiltrative glioma

(grade II) may have cytological atypia; anaplastic glioma (grade III) is char-

acterised by mitotic activity and cellular anaplasia; grade IV (glioblastoma

multiforme) is where additional microvascular proliferation and necrosis is
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present (Louis et al., 2007). Diffuse oligodendroglioma and oligoastrocytoma

were classified as a grade II tumour, while anaplastic oligodendroglioma and

anaplastic oligoastrocytoma were classified as a grade III tumour. The clas-

sification also codes pilomyxoid astrocytoma and pleomorphic xanthoastroc-

tyoma under the grade II group (Louis et al., 2007). Glioblastoma with

oligodendroglioma component was recommended to be classified as grade IV

(Louis et al., 2007).

Despite having this refined outlined histological diagnosis as the gold

standard for grading and treatment planning, a few but vital limitations have

been encountered. Sampling error may result from a wrong biopsy target’s

leading to histological under-grading. Moreover, there is the risk of non-

diagnostic biopsy of up to 17% (Teixeira et al., 2009) and post-operative

neurological morbidity and mortality of about 6% (Teixeira et al., 2009;

Dammers et al., 2010) of adverse events such as haematoma. Therefore,

in certain situations, tumour grades could not be accurately identified based

on histopathological findings alone.

In this chapter, the relevant background is presented for defining and eval-

uating non-invasive diagnostic tests based on perfusion scans. This includes

a review of the pathophysiological processes of glioma, the role of angiogene-

sis, and potential issues of dynamic MR perfusion. In addition, I will discuss

the MR perfusion parameters and their potential for clinical diagnostic.
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1.2 Limitations of conventional MR imaging

in grading gliomas

Conventional MR imaging has been used to define the tumour extension and

the enhanced areas within the tumour, by exploiting both T1 and T2 in order

to visualize the solid portion of the tumour and peri-tumoural areas. Never-

theless, oedema and/or microinfiltration into the adjacent brain tissue make

defining the tumour a difficult task (Strugar et al., 1995). Contrast enhance-

ment itself is not an accurate tool in tumour grading, as only about 60%

of grade IV gliomas showed maximum signal peak height in the contrast-

enhanced tumoural area, while the rest showed only slight changes in signal

intensity (Lupo et al., 2005). On the other hand, low grade gliomas may

presented with high vascular permeability and strong contrast enhancement

(Aronen et al., 1994). In addition, contrast enhancement is not specific to

brain tumours (Lupo et al., 2005), but may be manifested in inflammatory

brain diseases and post-radiation changes (Chang et al., 1995). It is not

clear, based on conventional MR images, whether the contrast enhancement

in the tumour area is due to tumour activity or BBB leak (Abbott et al.,

1999). Therefore, measuring the change in signal recovery in the enhanced

area may provide a clue to the nature of the enhancement (Lupo et al.,

2005). Brain tissue that has contrast enhancement but a decrease in percent-

age of signal recovery is indicative of blood brain barrier (BBB) breakdown,

while normal signal recovery is indicative of tumour activity and vasculoge-

nesis (Lupo et al., 2005). Again the latter method has a deficiency, as the

maximum peak height of signal intensity was detected in the peri-tumoural
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non-contrast-enhanced area in anaplastic astrocytoma patients(Lupo et al.,

2005). Conventional MR imaging with gadolinium-enhanced T1 weighted im-

ages has shown a discordance with the degree of vessel permeability when

compared with dynamic susceptibility contrast enhanced images (Cao et al.,

2006).

Practically, the conventional MR technique is less sensitive (72%) in dis-

criminating between low and high grade glioma: a large number of anaplastic

astrocytoma lesions (75%) failed to enhance (Sugahara et al., 1999) while 20%

of low grade gliomas showed enhanced lesion (Scott et al., 2002). The na-

ture of glioma heterogeneity and the non-specificity of contrast enhancement

on conventional MR imaging may lead to tumour misclassification. Conven-

tional MR also failed to clearly differentiate between remnant tumour tissue

or post-surgical enhancement in the surgical bed (Cho et al., 2002). Another

limitation is that conventional MR imaging is less accurate (50%) in differ-

entiating between tumour recurrence and pseudo progression (Taal et al.,

2008). This is because the appearance of peri-tumoural oedema and enhanc-

ing tumour were not predictive of the outcome of glioma patients (Chow

et al., 2000). These limitations may cause difficulties in patient management

and monitoring.
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1.3 The biological relevance of neovasculari-

sation and blood flow in tumour grading

Vascular proliferation is a common feature associated with growing tumours

due to the release of vascular endothelial growth factor (VEGF) in response

to proliferation, mitosis and hypoxia (Behin et al., 2003). The expression of

VEGF immune reactivity was found to be high in high grade gliomas (Maia,

Jr. et al., 2005). Similarly, a significant positive correlation was seen between

a high relative cerebral blood volume (rCBV) and a high VEGF in cases

with anaplastic astrocytoma and also in some low rCBV glioma tumours

(Maia, Jr. et al., 2005). This correlation may be attributed to the formation

of new vessels and/or the adoption of existing blood vessels (vascular co-

option) as a result of tumour growth (Cha et al., 2002). Both processes will

lead to an increase in microvascular density and vascular leakage, which are

positive indicators of tumour aggressiveness (Cao et al., 2006). Therefore,

in comparison with normal brain tissue, the tumour exhibits a high blood

volume as a result of the increased mitotic activity of the tumour cells and

vascular proliferation. The release of VEGF is not only responsible for the

formation of new blood vessels but also increases their permeability (Leung

et al., 1989). An association between vascular permeability and tumour

histological grade was also reported in the literature (Roberts et al., 2000;

Provenzale et al., 2002). However, vascular permeability metrics were found

to be very variable within the same tumour grade (McDonald and Choyke,

2003). This may be due to the influence of the degree of vascular blood

volume and flow or the effect of steroids (Ostergaard et al., 1999). Few
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studies have demonstrated a close association between an increase in blood

flow and tumour grade (Aronen et al., 1994; Sugahara et al., 1998; Boxerman

et al., 2006; Law et al., 2007a). The haemodynamic metrics hold promise

for grading gliomas and for tissue characterization. In addition, it has been

stated that the mapping of relative cerebral blood volume may help identify

the most malignant part of the tumour as a biopsy target, thus reducing the

sampling error and improving the accuracy of a stereotactic biopsy (Aronen

et al., 1994; Sugahara et al., 1998; Knopp et al., 1999; Uematsu et al., 2001;

Provenzale et al., 2002; Law et al., 2003; Cha et al., 2006).

1.4 Review of MR perfusion techniques

1.4.1 Introduction

Advanced MR perfusion techniques have evolved in the last two decades aim-

ing at grading gliomas based on their vascular characteristics. The dynamic

perfusion properties of tumour tissue are different from those of normal brain

tissue, having an increase in blood volume, flow, and permeability (Aronen

et al., 1994). This is manifested clearly in glioblastoma, where the increase in

blood vessel density is driven by high mitotic cell activity (Murat et al., 2009).

Previous studies have used different parameters derived from MR perfusion

to distinguish between grades of cerebral glioma, parameters such as cere-

bral blood volume (CBV) Aronen et al. (1994); Lev and Hochberg (1998);

Sugahara et al. (1998); Preul et al. (2003); Batra et al. (2004); Hakyemez

et al. (2005); Boxerman et al. (2006); Catalaa et al. (2006); Chaskis et al.
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(2006); Law et al. (2007b), cerebral blood flow (CBF) (Chaskis et al., 2006;

Law et al., 2006c; Callot et al., 2007; Haris et al., 2008), the volume transfer

constant (Ktrans) (Law et al., 2004a; Mills et al., 2006; Haris et al., 2008),

and the mean transit time (MTT) (Chaskis et al., 2006). Lastly, the peak

height and the percentage of signal intensity recovery were significantly dif-

ferent between normal brain tissue and tumours (Cha et al., 2007). Of the

MR perfusion parameters correlated to histological diagnosis, it is generally

concluded that cerebral blood volume is the best metric (Law et al., 2006c).

When tested to the standard WHO grading system, cerebral blood volume is

found to be strongly correlated to the tumour grades (Rees et al., 1996; Law

et al., 2003; Principi et al., 2003; Cha et al., 2005; Hakyemez et al., 2005;

Chaskis et al., 2006). Cerebral blood volume also was highly accurate in

differentiating glioma tumours from other brain tumours (Cha et al., 2002;

Cho et al., 2002; Hartmann et al., 2003; Chiang et al., 2004; Bulakbasi et al.,

2005; Hakyemez et al., 2006; Rollin et al., 2006; Cha et al., 2007).

1.4.2 MR perfusion techniques: The absolute cerebral

blood volume

Cerebral blood volume has been adopted, among other perfusion parameters,

as its value is closely correlated to tumour grades and tissue characteristics

(Aronen et al., 1994; Donahue et al., 2000; Lev et al., 2004). However, bi-

ological factors such as vascular autoregulation (Tofts, 2003), age (Leenders

et al., 1990), and atherosclerotic disease of the main feeding blood vessel

walls (Farhoudi et al., 2011) may affect the actual value of the blood volume
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and perfusion. The measurement of the absolute CBV requires accurate es-

timation and localization of the blood vessels solely supplying the tumour

area and ensuring that the blood vessels measured are not supplying other

normal brain tissue voxels (Wirestam et al., 2010) . During selection of the

region of interest, a sampling error may result in inadvertent inclusion of

brain tissue in addition to the blood vessels (Lu et al., 2008). The absolute

cerebral blood volume (CBV) values showed an overestimation with marked

between-subject variation, which resulted in poor reliability (Takasawa et al.,

2008).

1.4.3 MR perfusion techniques: Relative cerebral blood

volume

To avoid the pitfalls in the previous technique, the value of the CBV of the

tumour area was standardised to the CBV blood volume in the contralat-

eral normal white matter, thus obtaining the relative cerebral blood volume

(Catalaa et al., 2006). The white matter is considered to be representative

of normal brain tissue as it has sufficient tissue thickness compared to grey

matter (about 4 mm) (Aronen et al., 1994), thus making it less liable to

sampling error or partial volume artefacts from adjacent arteries. The rea-

son for not choosing grey matter is that its blood flow is about double (75

ml/100 gm/min) that of white matter (32 ml/100gm/min) (Brickman et al.,

2009). An underestimation of the measured relative cerebral blood volume

may ensue as a result of using grey matter. Few studies (Schmainda et al.,

2004; Law et al., 2007b, 2008) have used either normal white or grey mat-
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ter for CBV normalization. In those studies, the CBV value of tumour was

normalised based on location (white or grey matter) to its counterpart brain

tissue. The first two studies reported low specificity values and the last study

did not calculate any accuracy measures.

Tumour grades were reportedly correlated with the degree of tumour

vascularity as the main features in diagnosing glioblastoma (Aronen et al.,

1994). In parallel, the rCBVmax was reported to be higher in glioblastoma

(Sugahara et al., 1998). In the same study, a comparison between anaplastic

glioma and low grade glioma showed that the rCBVmax is significantly higher

in enhanced anaplastic glioma. Even among anaplastic gliomas, a difference

in rCBVmax was noted between enhanced and non enhanced lesions (Sug-

ahara et al., 1998). The higher the tumour grade, the larger the variation

in rCBVmax, which had a relatively wide range in glioblastoma multiforme

(Zonari et al., 2007).

Relative CBV has been measured using different approaches. The most

common method is obtaining the average value of each region of interest and

then selecting the highest value of the mean rCBV (rCBVmax) (Bulakbasi

et al., 2005; Arvinda et al., 2009). The second method is through obtaining

the average rCBV of each region of interest and then obtaining the average

of all (Barajas, Jr. et al., 2009). Others have used the 75th percentile of

the rCBV within the region of interest of the tumour, aiming at avoiding

averaging with normal tissue (Bian et al., 2009). However, that study did

not assess glioma grading, instead it analysed genotype differences in only

low grade glioma.
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1.4.4 Methods of reducing or eliminating T1 signal ef-

fect

Several methods have been adopted to reduce or eliminate T1 effects. The

most common method is by injecting a small amount of contrast agent (pre-

load dose) before the MR perfusion scan (Sugahara et al., 2000; Boxerman

et al., 2006). The proposed pre-load dose was about 20%–25% of the required

total dose calculated as 0.1 mmol/kg of body weight (Donahue et al., 2000;

Sugahara et al., 2000; Boxerman et al., 2006). A half-dose of the pre-load

dose (0.05 mmol/kg) was injected twice in a stepwise protocol, which was

successful in correctly differentiating treated anaplastic glioma from glioblas-

toma multiforme (Hu et al., 2009). Using a pre-load dose of 0.25 mmol/kg

provided higher sensitivity in differentiating glioma tumour recurrence from

post-treatment radiation changes (Hu et al., 2009). The technique of inject-

ing a pre-load dose acts through saturating and setting the tissue baseline

signal intensity to a new baseline level. The difference in signal change is then

further optimized by subtracting the baseline signal intensity, hence avoid-

ing any underestimation. However, it has been proposed that factors such

as data acquisition, type, the dose of contrast agent (Hu et al., 2009), and

steroid therapy govern T1 signal changes as a result of change permeability

(Ostergaard et al., 1999).

The second method of reducing the T1 effect has been through using a

small flip angle and a long repetition time to promote T ∗
2 rather than T1;

however, a long repetition time will reduce the signal to noise ratio and the

temporal resolution (Boxerman et al., 2006). The third method in reducing
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the T1 effect depends on applying two different echo-times and performing

two compartmental analyses: the intra-vascular T ∗
2 signal drop and extravas-

cular T1 signal enhancement (Uematsu et al., 2001). Though this technique

improved the overall detection of glioblastoma multiforme, the effectiveness

of the double echo method in other glioma grades has not been assessed.

Finally, signal changes arising from contrast extravasation can be cor-

rected by linear fitting (Boxerman et al., 2006). This method depends on

averaging the signal intensity of the whole brain after threshold background

noise. Afterwards, brain pixels that showed no enhancement above a cer-

tain threshold were excluded from the analysis. Then, the effect of leakage

and changes in uncontaminated relaxivity were calculated for each pixel. The

data is then averaged according to whole non-enhanced pixels, assuming neg-

ligible back diffusion of contrast into the intra-vascular space. Although the

study was conducted with only a small sample size (n = 43), it showed a

significant positive correlation in corrected rCBV values (0.60) compared to

uncorrected rCBV values (0.15). The study involved only a few patients with

brain tumours, and the accuracy measures were not reported.

1.4.5 Tumour grades and thresholds of cerebral blood

volume

A review of the literature found variations in the threshold values used in pre-

vious studies. This may be attributed to the difference in acquisition parame-

ters and demographic characteristics of human populations. We assumed the

acquisition parameter settings are the main issue in grading glioma, although
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no such study has assessed the effect of different MR parameters. Technically,

setting an appropriate cut-off value may assist in distinguishing high grade

from low grade glioma. Setting too low a cut-off may increase the chance of

false positive events within a lower grade glioma. On the other hand, setting

too high a cut-off may lower the sensitivity and under-grade some high grade

gliomas. However, in terms of weighing the clinical outcome, treating low

grade patients of high CBV is preferred rather than missing diagnoses in high

grade patients.

1.4.6 Technical aspects of using ROI to measure cere-

bral blood volume

High grade glioma tumours are heterogeneous tumours composed of tumour

tissue, blood vessels, and necrotic cells that may present within one lesion

(Roodink et al., 2010). The heterogeneity of a glioma, especially one of high

grade, will create a wide range of CBVs within the tumour area (Rollin et al.,

2006). From the histological point of view, grading should be based on the

most malignant features (Yang et al., 2002) where cellular over-activity and

vascular proliferation predominate. These features may appear in perfusion

images as areas of high signal intensity.

There are no standard methods for drawing and calculating regions of

interest (ROIs), which explains the variation of CBV values among stud-

ies. Previous studies identify cerebral blood volume using hot spot methods

where many ROIs are drawn over the highest hyperaemic areas of the tumour

(Aronen et al., 1994). An alternative strategy has been adopted by others
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(Catalaa et al., 2006), in which the median value of ROI was considered, and

this was significantly different between grade III and grade IV glioma in the

only contrast-enhanced area. While few studies have preferred using fixed

size ROI within the hot spot areas (Law et al., 2006c; Zonari et al., 2007),

others have used different sizes of ROIs (Hakyemez et al., 2005) to match the

size of the highest signal intensity.

ROI size and location are important for avoiding erroneous tissue sam-

pling. For example, an inclusion of necrotic tissue within the ROI will under-

rate the actual value as the total value inside ROI was averaged (Provenzale

et al., 2006). On the other hand, the inclusion of blood vessels within the

ROI may give false results and overestimate the CBV value. An exclusion

of blood vessels showed a better correlation (P = 0.026) between rCBV and

genetic phenotype in low grade glioma (Caseiras et al., 2008). Consequently,

to avoid partial voluming and contamination from adjacent brain tissue or

arteries, it is wise to select a small ROI in the hot spot areas. Despite this

solution, still the problem arises when using an echo planner MR sequence

to locate the hot spot area where the images experience geometric distortion

(Knopp et al., 1999).

1.4.7 Histogram method in calculating cerebral blood

volume

Relative cerebral blood volume (rCBV) could also be analysed using the

histogram method to avoid any bias that may be generated in utilizing the

hot spot method (Tofts, 2003). As the ROI is operator-dependent, there is
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the chance of inaccuracy, especially when comparing two consecutive MRI

sets for evaluating changes in rCBV, wherein the points in the tumour are

difficult to be matched. This has been studied in detecting brain tumour

infiltration into the white matter (Tofts, 2003).

The histogram method is described elsewhere (Tofts, 2003). Briefly, the

first step is to perform image segmentation to deal with partial volume voxels

that may contain cerebrospinal fluid (CSF). Second, to generate an absolute

histogram, the bin width is selected using a reasonable number of bins. Third,

the range of bins is chosen from zero to a value just higher than the highest

value of the parameters which need to be studied. Fourth, the absolute his-

togram is corrected for the brain size, to produce the normalized histogram.

To generate the rCBV value per voxel, the total value is divided by the total

number of voxels.

The accuracy of the histogram method was compared to that of the

hot spot method in classifying glioma grades and subtypes (Emblem et al.,

2008a). In only one study the CBV derived from the histogram method

possessed of a higher sensitivity (90%) than the hot spot method (74%). In

another study (Emblem et al., 2008b), the histogram method had a high

sensitivity (100%) and specificity (91%) in differentiating the loss of het-

erozygous oligodendroglioma from other glioma cell lines. The too small a

number of image slices used in this study made it possible to overlook any

hyperaemic lesion which may be detected by the hot spot method. In con-

trast, several studies have reported a higher degree of accuracy for the hot

spot method (Knopp et al., 1999; Law et al., 2003; Schmainda et al., 2004;

Bulakbasi et al., 2005).
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The histogram method has many drawbacks. Firstly, it requires a longer

time for the analysis than the hot spot method. Secondly, choosing the proper

number of bins and segmentation may mask important structures or produce

partial voluming in the voxels. For example, selecting too few bins may result

in missing important data due to smoothing effects, while selecting too many

bins will result in a decrease in the signal to noise ratio (SNR). Therefore

the number of bins should be optimised (Tofts, 2003). Thirdly, segmentation

does not work well between grey and white matter due to the thin tissue

thickness of the former, which may result in calculation error. Finally, it is

less sensitive in detecting changes in localized brain lesions such as tumours.

1.4.8 Vascular permeability methods in brain glioma

The volume transfer coefficient (Ktrans) is a measure of the difference between

the volume in the extravascular extracellular space (EES) and the vascular

plasma space (Figure 1.1) (Tofts, 2003). It is equal to the product of the

vascular wall permeability and its wall surface area per unit mass of tissue

(Tofts, 2003). The change in contrast concentration between the intravas-

cular and extravascular compartments is measured to indicate the degree

of contrast leak and endothelial permeability (Li et al., 2003). Assessment

of the transfer coefficient is undertaken during the first pass of contrast by

applying a pharmacokinetic modeling algorithm (Tofts et al., 1999).

Calculating the volume transfer coefficient (Ktrans) is carried out as part

of the perfusion technique to measure the changes in vascular permeability

associated with brain tumours (Tofts et al., 1999). Basically, the analysis is
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based on dynamic contrast enhanced (DCE) MR by using a steady-state T1-

weighted 3D spoiled gradient-recalled acquisition sequence after intravenous

contrast injection of gadolinium (Tofts et al., 1999).

Two main methods have been used for measuringKtrans, taking advantage

of the dynamic susceptibility contrast technique: pixel by pixel measurement

or detecting the drop in signal intensity in the first pass of contrast material

within the vessels (Tofts and Kermode, 1991). Pixel by pixel measurement

takes a long time and has a low SNR. The second method is to calculate the

maps of signal intensity drop at the first 25 seconds after contrast injection

(Law et al., 2006c). Regions of interest are drawn in the areas of high signal

drop. Calculation of Ktrans follows the two compartmental theory of contrast

exchange. The areas with high signal drop were reported to be strongly

associated with areas of high vascular permeability (Law et al., 2004a).

The vascular permeability derived from dynamic susceptibility was as-

sessed against the tumour grade (Law et al., 2006c). Permeabilities indexed

by high values of Ktrans were seen in high grade glioma whereas low val-

ues of Ktrans were seen in low grade glioma (Law et al., 2004b). However,

the correlation is lower than that between tumour grade and rCBV. In the

same study, vascular permeability showed a weak correlation to the rCBV

values obtained within the same population. In contrast, the degree of dif-

ference between glioma grades detected by Ktrans was reported to be better

(P = 0.003) than that for rCBV (P = 0.03).

Vascular permeability has been also assessed in the tumour bed after

surgery (Provenzale et al., 2005). The residual tumour at the periphery of

resected tumour showed high permeability, displayed in bright colours on
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the look up scale (Provenzale et al., 2005). However, in situations of blood-

tumour-barrier disruption such as post-radiotherapy, the vascular permeabil-

ity does not differ between partial tumour resection and tumour biopsy (Cao

et al., 2005). The increase in the degree of enhancement after radiotherapy

has been shown to be the same for both initial contrast and non-contrast en-

hancing lesions, which indicates vascular leakage (Cao et al., 2005). Another

factor affecting vascular permeability is treatment with steroids, which is

expected to reduce vascular permeation to contrast agents (Tjuvajev et al.,

1996) and hence alter the value of Ktrans. The factors affecting the vol-

ume transfer coefficient were vascular permeability, vascular surface area,

and blood flow (Padhani, 2003). Moreover, osmotic gradients across the en-

dothelial surface and the hydrostatic blood volume within the lesion may

also contribute to the leakiness of contrast (Law et al., 2006c).

Vascular permeability (Ktrans) has been used for survival prediction in

glioma patients (Sorensen et al., 2009). The decrease in Ktrans after doses of

anti-angiogenic therapy was correlated with prolonged overall survival and

progression free survival in patients with recurrent glioblastoma (Sorensen

et al., 2009). Ktrans had a positive correlation with glioma tumour grades

though it had an inferior sensitivity and specificity compared to relative

cerebral blood volume (Law et al., 2006c). The main issue in measuring

Ktrans in treated tumours is that the gradient between the two compartment

becomes less as a result of treatment (Larsson et al., 2009).

The second method used in measuring microvascular permeability is based

on T1 sequence (Kps) instead of T2∗ sequence (Roberts et al., 2000). Assess-

ing Kps is based on the cumulative effect of the contrast media, not on the
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first pass of contrast. The transfer coefficient factor is measured across the

vascular wall with a two-compartmental model to calculate the total per-

meability. Measurements take place in both intravascular and extravascular

compartments to avoid underestimating the vascular permeability, especially

in high grade glioma. This method has a good correlation (r = 0.76) with

tumour grades, but accuracy measures were not reported (Roberts et al.,

2000).

The third method is through calculating the relative recirculation (rR)

to evaluate tumour grades (Jackson et al., 2002). It is based on measur-

ing the signal response in the period after the first-pass contrast and the

data were measured during the recirculation phase (Jackson et al., 2002).

This method was used as a marker of angiogenic activity in monitoring the

tumoural response to anti-angiogenic therapy (Jackson et al., 2002). The

relative recirculation was generally low for both grade II and III glioma and

the difference between grade III and IV was not statistically significant.

1.4.9 Measurement of signal intensity changes for tu-

mour grading

Measuring the peak height and the percentage of signal recovery in the time-

intensity curve have been recently adopted for grading glioma (Lupo et al.,

2005; Cha et al., 2007). These parameters were obtained during the first

pass of contrast. Regions of interest (ROIs) were drawn in the tumour area

and the signal intensity of the voxels in these ROIs were measured. The

height of the signal peak within the tumour is normalized to the peak of the
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Figure 1.1: Diagram demonstrating the two main compartments in the cal-
culation of Ktrans

curve derived from brain tissue with a normal appearance. Voxels with a

signal peak height of more than double the signal peak height in the normal

curve were classified as abnormal values. The same method for generating a

signal intensity curve was applied to measuring signal recovery, and values of

less than 75% were considered abnormal (Lupo et al., 2005). Though signal

peaks are higher for high grade glioma and metastatic lesions, the difference

between the two types of lesions was not significant (Cha et al., 2007).

1.5 The theory of cerebral blood volume

calculation using dynamic MR perfusion

The understanding of the kinetic properties of the brain is facilitated by the

use of tracers (contrast agents). The kinetics is based on the concentra-
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tion of tracer and its interaction with the environment (Tofts, 2003). The

dynamic measurement of the contrast concentration in the feeding artery

is an indicator of time function (Tofts, 2003). The distribution of contrast

within the tissue is found by calculating the difference (mean transit time)

between contrast particles that enter and exit the tissue. The injection of the

contrast agent (Gadolinium) produces a shortening of the transverse relax-

ation time and generates a susceptibility difference across the intra-vascular

and extra-vascular spaces (Tofts, 2003). The change in relaxation rate was

approximately linear in the contrast concentration (Tofts, 2003).

Previous experiments assumed a linear correlation between the contrast

concentration and the changes in signal intensity (Boxerman et al., 1995).

The equation ∆R∗
2 = − ln(S(t)/S0)/TE was used to calculate the cerebral

blood volume, where the change in signal intensity ∆R∗
2 denotes the difference

in tissue relaxivity in proportion to the contrast concentration. The change

in tissue relaxation (∆R∗
2) is the reciprocal of the changes in T ∗

2 (∆R∗
2) as

a function of time. The time–intensity curve (Figure 1.2) produced is fitted

by a gamma-variate to correct for possible contrast leak (Boxerman et al.,

2006). The area under the corrected curve represent the cerebral blood vol-

ume (Knopp et al., 1999). The relative CBV is the ratio of the blood volume

of the maximum hyperaemic area (hot spot area) in the tumour to that of

the normal white matter. This theory is based on the assumption that the

contrast agent injected is confined within the blood vessels with no contrast

leak into the extravascular space and no recirculation (Knopp et al., 1999;

Catalaa et al., 2006). The assumption most probably is violated in high grade

glioma, in which a disruption of the blood brain barrier (BBB) may result in
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a contrast leak to the extravascular compartments (Lupo et al., 2005; Box-

erman et al., 2006). In this case, the gradient signal difference between the

intravascular and extravascular spaces is reduced, with a decrease in the ap-

parent relative cerebral blood volume. In fact, the contrast leakage leads to

T1 effects that diminish the drop in signal intensity of the T ∗
2 weighted im-

ages, and leads to an underestimation of the cerebral blood volume (Aronen

et al., 1994; Henry et al., 2000).

Figure 1.2: The time–intensity curve is fitted to correct for contrast leak

1.6 Cerebral blood volume in grading glioma

tumours

Several methods have been applied to measure the cerebral blood volume

in the tumour area to grade glioma. Measurements of hot spot within the

tumour is a common method used. Basically, the aim of using a hot spot area
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is to identify the part of the tumour with the largest CBV. As the absolute

value of the CBV obtained from the tumour area is affected by physiological

factors, the relative value of CBV is typically used to nullify these effects.

The relative CBV values were significantly correlated (r = 0.82) with glioma

grades (Law et al., 2004b; Bulakbasi et al., 2005). This method is highly

accurate in differentiating low grade glioma from high grade glioma, with

a sensitivity of 100% and a specificity of 91% for a two fold increase in

CBV (Hakyemez et al., 2005) and a sensitivity of 91% in a different study

(Shin et al., 2002), a specificity of 83% for a 2.93 fold increase in CBV.

Most previous studies did not attempt to differentiate between glioblastoma

multiforme (grade 4) and anaplastic glioma (grade 3); however, Calli et al.

(2006) only reported a significant difference between the two grade types

but did not report the accuracy. A few limitations were encountered in

those studies: First, most of those studies assessed the accuracy value on

a small sample of patients; Second, the MR settings and post-processing

methods were not optimized to reduce confounding effects; Third, most of

those studies did not use an independent test data set to assess the reliability

of their model predictions.

The assessment of tumor grades may be complicated by the presence

of different tumour cell lines (astrocytic or oligodendroglioma), which may

differ in terms of rCBV values and clinical outcome. For example, oligo-

dendroglioma had higher CBV values compared to astrocytic glioma of the

same grade (Lev et al., 2004). Furthermore, differences due to genotype were

also detected within the oligodendroglioma cell line: the CBV in oligoden-

droglioma 1p/19q deleted alleles was higher than in the oligodendroglioma



1.7 Prediction value of MR perfusion 24

with intact alleles (Jenkinson et al., 2007; Whitmore et al., 2007). The clini-

cal response of glioma to treatment is also different. Oligodendroglioma cell

line tumours respond better to chemotherapy (Pinto et al., 2008) or surgical

resection (Nagy et al., 2009) which translates into improved survival (Kitange

et al., 2005). The sensitivity of oligodendroglioma tumour to chemotherapy

and radiotherapy was ascribed to the existence of cytogenetic markers with

the loss of heterozygosity of the alleles 1p and 19q (Sugahara et al., 1998).

1.7 MR perfusion in predicting survival time

Glioblastoma patients have poor outcomes, with a median survival time of

about 7 months (Park et al., 2010a), which is slightly improved, to 14 months,

after treatment with Temozolomide and radiotherapy (Stupp et al., 2005).

Several factors may influence the survival time of glioma patients. Factors

such as age (P = 0.001) (Law et al., 2008), sex (P = 0.029) (Hirai et al.,

2008), treatment with Temozolomide (P < 0.006) (Valeriani et al., 2006;

Mineo et al., 2007), delay in radiotherapy treatment (P = 0.01) (Irwin et al.,

2007), and performance status (P = 0.024) (Durmaz et al., 2008), have been

reported as being able to predict survival for glioma patients. Treatment was

identified as one of the survival predictors in glioma patients (Lamborn et al.,

2008). Treatment with Temozolomide improved 6 months progression free

survival (66%) and survival rate, compared to untreated patients (P < 0.001)

(Lamborn et al., 2008) . Recently, genetic markers with loss of chromosomes

(P < 0.009) as it promotes favourable response to Temozolomide (Wemmert

et al., 2005)and tumour location (insular) (P < 0.001) (Talacchi et al., 2010)
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were identified as survival predictors for glioma patients.

Conventional MR techniques had earlier been used to predict glioma pa-

tients’ survival. This included features such as contrast enhancement (Guil-

lamo et al., 2001) and tumour growth (Brasil Caseiras et al., 2009) in survival

predicting. However, these parameters are not consistent, and are difficult to

assess using conventional MR techniques (Yang et al., 2002). Furthermore,

oedema in glioblastoma multiforme (hazard ratio (HR)= 1.6) and necrosis in

anaplastic glioma (HR = 4.4) have been reported to be survival predictors

(Pope et al., 2005). The extent of oedema and necrosis were found negatively

correlated with the survival rate (Pope et al., 2005). For instance, anaplastic

glioma patients with extensive tumour necrosis have a shorter survival time

than those without (Pope et al., 2005).

Perfusion MRI has been used in predicting survival in glioma patients.

Hyperaemic status in the brain tumours (Sugahara et al., 1999; Shin et al.,

2002; Law et al., 2003; Lev et al., 2004) may aid indirectly in glioma grad-

ing (Lupo et al., 2007). The relative CBV helped predict one year survival

(Bisdas et al., 2009) and time to progression (Law et al., 2008). Permeability

perfusion parameters such as Ktrans had significant prognostic value in pre-

dicting patient survival, independently of tumour grade (P = 0.008) (Mills

et al., 2006). However, few high grade glioma patients were presented with

both high permeability but longer survival time.

Low grade glioma patients with rCBV < 1.75 were found to have a longer

time to progression (median = 144 months) compared to same grade patients

with rCBV > 1.75 (median = 8 months) (Law et al., 2006a). Interestingly,

low grade glioma patients with high rCBV had a survival time comparable to
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those with high grade glioma (Law et al., 2006a). The prediction of survival

may be poorer when including tumours of mixed tissue cell types (Pope

et al., 2005). Oligodendroglioma with high rCBV have survived longer than

astrocytic cell type (Pope et al., 2005). The influence of cell phenotype

variation on rCBV will be assessed and discussed in Chapter 6.

1.8 Advanced glioma imaging with non-MRI

techniques

Endothelial proliferation, mitotic activity, cellular pleomorphism, and necro-

sis are characteristics of malignant glioma tumours (Kleihues et al., 1993).

The increas in vascular density causes an increase in blood volume and flow

(Packard et al., 2003). Diagnostic modalities other than MRI techniques can

be used to detect tumour characteristics such as vascular proliferation and

cell mitosis (Ellika et al., 2007; Jain et al., 2008).

CT perfusion was shown to be better than conventional MRI in detecting

cerebral tumours (Ellika et al., 2007) and in detecting glioblastoma multi-

forme (Jain et al., 2008). CT perfusion, similar to magnetic resonance per-

fusion (MRP), allows generating maps of the cerebral blood volume (CBV),

cerebral blood flow (CBF), permeability surface area product (PS), and mean

transit time (MTT), the same parameters used in the MR technique for grad-

ing cerebral glioma. Computed tomography (CT) perfusion had a higher sen-

sitivity (93%) and specificity (100%) in differentiating high from low grade

gliomas, whereas conventional MR images had a sensitivity of 86% and a
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specificity of 60% (Ellika et al., 2007). The difference among high grade

glioma was also significant (P = 0.039) using CBV derived perfusion CT

(Jain et al., 2008). The main drawbacks of this technique are its long acqui-

sition time and less anatomical coverage of brain areas, which may conceal

important tumour features.

Functional imaging using single photon emission computed tomography

(SPECT) is also used for brain tumours characterisation. Tracers such as

99m TC-methoxy isobuty-isonitrile (MIBI) (Le Jeune et al., 2006; Palumbo

et al., 2006) and Thallium-201 (Tie et al., 2008; Ortega-Lozano et al., 2009;

Iida et al., 2011) are used to differentiate between tumour recurrence and

radiation necrosis and in grading glioma (Walker et al., 2004). The use of

99m TC-MIBI has showed an accuracy of 91% (Le Jeune et al., 2006) and 93%

(Palumbo et al., 2006) in differentiating tumour recurrence from radiation

necrosis. Thallium-201 was a predictor of overall survival (HR = 2.3) in

patients with newly diagnosed glioblastoma multiforme (Vos et al., 2011).

Positron emission tomography (PET) functional imaging has been used in

grading cerebral glioma, demonstrating significant differences between high

and low grade oligodendroglioma (Derlon et al., 2000). The tracer uptake was

based on the idea that the increase in cellular proliferation and increase in

energy demand was reflected in high glucose consumption (hyper-metabolic)

in high grade glioma (Padma et al., 2003). 2-[F18] fluoro-2-deoxy-d-glucose

(18F-FDG), a commonly used PET tracer, provides a good-to-background

contrast and differentiates between tumour recurrence and radiation necro-

sis. The drawback of this glucose label radiotracer (18F-FDG) is that it had

an elevated uptake in non-malignant inflammatory tissue, the same as in
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tumoural areas (Weber et al., 1997). Another drawback is that 18F- FDG

is less sensitive: half of the oligodendroglioma subtype of anaplastic glioma

were classified as hypo-metabolic (Walker et al., 2004). 11C-Choline as a

PET tracer was developed for the investigation of gliomas (Hara et al., 2003)

with the advantage that they are not taken up by inflammatory tissue (Hara

et al., 1997). However, others found no difference in the tracer uptake be-

tween low and high grade glioma and the uptake is variable among tumours

with the same histological diagnosis (Utriainen et al., 2003). In addition, The

tendency of this tracer to pass the blood–brain barrier limited its accuracy

in post-operative and post-treated brain tumours. 11C-methionine (MET), a

different PET tracer, was tested against the cerebral blood volume obtained

from MR perfusion (Sadeghi et al., 2007). A positive and significant corre-

lation (r = 0.65) between the two parameters was found in the tumoural,

peri-tumoural, and infiltrated tissue. Albeit both modalities show the same

sensitivity of 69%, the specificity of MET uptake was deemed higher (80%)

than that of rCBV (70%). This was explained by the strong correlation

of MET uptake with mitotic activity and endothelial vascular proliferation

(Sadeghi et al., 2007). The low spatial resolution of PET images makes it

difficult to define tumoural and peri-tumoural areas precisely.
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1.9 Distinction of glioma tumours from other

brain tumours using MR techniques

Differentiation of brain tumours using only conventional MR is challenging,

as the technique does not assess specifically the different cellular character-

istics of different types of brain tumours. Tumour characteristics such as

location and the pattern of contrast enhancement may be similar for many

brain tumours. Meningiomas, for example, are relatively benign extra-axial

tumours with display a homogeneous and strong enhancement with gadolin-

ium contrast, and can be easily distinguished from gliomas. Nonetheless,

malignant meningioma may infiltrate into the brain parenchyma and be-

come difficult to be distinguished from intra-axial tumours (Cha et al., 2002).

Meningiomas exhibit strong contrast enhancement, similar to that of high

grade gliomas, due to the absence of the blood–brain barrier in both lesions

(Bruening et al., 1998).

Single brain metastatic lesions sometimes have a similar appearance to

glioblastoma, which makes it challenging to distinguish between them (Bu-

lakbasi et al., 2005; Calli et al., 2006). A sensitivity of 89% and a specificity

of 73% were achieved in differentiating between glioblastomas and single

metastatic lesions using a histogram distribution of normalized CBV (Ma

et al., 2010). Other studies, however, were unsuccessful in demonstrating

any significant difference between metastasis and high grade glioma (Calli

et al., 2006) or low grade oligodendroglioma (Bulakbasi et al., 2005). On

the other hand, a significant difference was detected for the peri-tumoural

area: peri-tumoural CBV was higher in HGG than that in metastatic lesions
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(Law et al., 2002; Chiang et al., 2004). The higher levels of CBV in the

peri-tumoural area was explained by the presence of infiltrating tumoural

cells in high grade gliomas (HGG) but not in metastatic lesions. However,

this effect might be reversed by the effect of the tumour mass or oedema

around the tumour (Hossman and Bloink, 1981). Finally, the peak of signal

intensity and contrast enhanced tumour volume measurements did not reveal

any statistical difference between the two lesions (Cha et al., 2007).

Primary cerebral lymphoma (PCNSL), one of the main differentials of

glioma tumours, constitutes about 6% of central nervous system tumours

(Jellinger and Paulus, 1992). The point in differentiating between the two

tumour types is that surgery is not recommended for PCNSL and the stan-

dard therapy results in poor outcomes (van Besien et al., 2008). A different

treatment regime, with systemic and intraventricular chemotherapy, showed

a median survival of about 50 months (Pels et al., 2003). A recent study

showed less median survival (34 months) on using only high-dose systematic

chemotherapy (Chamberlain and Johnston, 2010). Bihemispheric butterfly

appearance involvement at the corpus callosum commonly occurs in glioblas-

toma multiforme and may occasionally be present in cerebral lymphoma (Toh

et al., 2006). Conventional MR is not considered a powerful discriminatory

tool in differentiating between these two tumours, as both have marked en-

hancement on contrast enhanced T1-weighted images (Hartmann et al., 2003).

Lymphoma with ring enhancement, mostly presented in immunodeficient pa-

tients, resembles the appearance of glioblastoma. In contrast, glioblastoma

showed a higher transient drop of signal intensity and a higher relative CBV

than that of PCNSL (P < 0.0001) in perfusion dynamic susceptibility MR
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imaging (Hartmann et al., 2003).

1.10 MR perfusion techniques for evaluating

tumour response to treatment

To date, response to treatment is assessed by clinical and radiological criteria

(Macdonald et al., 1990). Tumour size changes and contrast enhancement

are the main characteristics in defining treatment response in conventional

MR images (Macdonald et al., 1990). However, conventional MR criteria

are usually not indicative of tumour progression as the degree of contrast

enhancement or oedema may also appear in pseudo progression cases after

treatment (Taal et al., 2008). In addition, these criteria have failed in evalu-

ating the clinical response to anti-angiogenic drugs (Taal et al., 2008). That

is because changes in tumour volume are not strongly correlated with clini-

cal outcomes (Vredenburgh et al., 2007; Kreisl et al., 2009). Anti-angiogenic

drugs are targeted at the vascular supply of the tumour, to cut off its growth

(Anderson et al., 2008). Hence MR perfusion is thought to be more suitable

for detecting treatment efficacy than conventional MR, based on the changes

in blood volume (Tomoi et al., 1999) and flow (Akella et al., 2004). Interest-

ingly, a reduction in absolute CBV values was also noted within the tumoural

area after fractionated radiotherapy in low grade astrocytoma (Wenz et al.,

1996). However, a transient increase in CBV may be noticed in the peri-

tumoural area (Jain, 2005), due to relief of the compression to the blood

vessels, followed by a CBV drop due to radiation damage to the vascular
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endothelium (Wenz et al., 1996).

Distinguishing tumour recurrence from post-radiation necrosis is of clin-

ical importance for treatment management and during follow-up. Regret-

tably, they can not be differentiated based on conventional MR imaging

as they are manifested with variable degrees of contrast enhancement and

oedema (Dooms et al., 1986; Sugahara et al., 2000; Hu et al., 2009). In

contrast, cerebral blood volume derived perfusion MR imaging achieved a

sensitivity range of 89%–92% in differentiating recurrent tumour from post-

radiation necrotic tissue (Barajas, Jr. et al., 2009; Hu et al., 2009). In gen-

eral, rCBV is higher in patients with tumour progression than in those with

post-treatment necrosis (Matsusue et al., 2010; Henry et al., 2000). An earlier

study (Sugahara et al., 2000) reached statistical significance (P < 0.03) in

differentiating recurrence from post-radiation necrosis, but the results were

not verified by histological diagnosis for the majority of the included patients.

Steroid usage in glioma tumours is the mainstay and first line treatment

to alleviate pressure symptoms caused by the tumours (Sinha et al., 2004).

Steroids reduce the vascular wall permeability within the tumour and hence

reduce the oedema around the tumour, and may lead to an increase in cere-

bral blood flow (Bastin et al., 2006). That study assesses the effect of steroids

on glioblastoma patients by quantitatively measuring perfusion parameters

using the MR technique. Borderline levels of significance of increased cere-

bral blood flow was detected in the peri-tumoural area after three days of

treatment with steroids (Bastin et al., 2006). The effect of steroids on rCBV

changes will be discussed later in Chapter 6.
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1.11 Conclusion

Gliomas are the most common primary brain tumours encountered in adults

with high mortality and poor outcome, especially for high grade gliomas.

Treatment planning is different for different glioma grades and types, so ap-

propriate tumour grading is crucial. The heterogeneity of gliomas, however,

predisposes to sampling error in stereotactic biopsy, which may result in

tumour misclassification. Vascular proliferation, besides other histopatho-

logical criteria, have been mainly used to grade brain gliomas. Conventional

MR imaging is less sensitive (72%) in differentiating high from low grade

glioma. In addition, conventional MR is less accurate (50%) in distinguishing

between tumour recurrence and post-radiation necrosis. Several functional

imaging techniques are available to index angiogenesis that may be used for

non-invasive glioma grading. Among the MR-perfusion based, CBV map-

ping seems to be the best predictor of tumour grades and survival. However,

current knowledge is limited due to the variable accuracy being reported

from mostly studies with small sample sizes and variation of techniques. To

address this knowledge gap for better patient management, we propose to

undertake (i) A systematic review of the studies using CBV derived from

MR perfusion in differentiating high from low grade glioma; (ii) Assessing

the accuracy of tumour blood volume (TBV) using 3T gradient echo in dif-

ferentiating high versus low grade and whether TBV allows of differentiating

grade IV from grade III, and (iii) To assess whether TBV independently pre-

dicts survival and tumour progression in potential patients. A systematic

review will be carried out in Chapter 2. The general methods of my thesis
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will be discussed in Chapter 3, and assessing the diagnostic and prognostic

value of TBV in glioma grading and survival prediction will be discussed in

Chapters 4, 5 and 6.



Chapter 2

Systematic review of DSC-MR
perfusion in grading cerebral
glioma
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2.1 Introduction and purpose

The national cancer database for the distribution of brain cancer in the years

1985–1994 has revealed about 30,000 glioblastoma and 15,000 astrocytoma

tumours with intracranial primary site of 75% and 67%, respectively (Davis

et al., 1999). Glioblastoma extension within the supra-tentorial area presents

in about 17% (Davis et al., 1999). Gliomas are classified according to the

WHO classification (Kleihues and Ohgaki, 2000), based on severity, into dif-

fuse low grade glioma (grade II), anaplastic gliomas (grade III), and glioblas-

toma multiforme (GBM) (grade IV). Recurrence after treatment is high in

malignant glioma due to its tendency to infiltrate into the adjacent brain tis-

sue (Kaba and Kyritsis, 1997). An accurate determination of glioma grades

is important, as the treatment differs for different grades (Louis et al., 2001).

Conventional MR has been used as an indicator of the degree of tumour

aggressiveness based on contrast enhancement; however, some low grade

glioma tumours do enhance while some high grade gliomas do not (Aronen

et al., 1994; Knopp et al., 1999). This is because the contrast enhancement is

not only an indicator of blood flow but also may indicate a vascular leak from

a disrupted blood–brain barrier (Abbott et al., 1999). Stereotactic biopsy is

then directed towards contrast enhanced lesions in the tumour area, however,

contrast enhanced areas did not necessarily match with high malignant tis-

sue, which may lead to sampling error (Aronen et al., 1994). A high success

rate of stereotactic biopsy was achieved when 4–5 target sites were taken

(Shastri-Hurst et al., 2006); however, postoperative complications such as

stroke and haematoma may occur. The occurrence of post operative intrac-
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erebral haematoma in brain tumours accounts for about 4.4% (Licata and

Turazzi, 2003).

Advanced MR imaging techniques have been used in brain tumour differ-

entiation as an effective tool in providing physiological information of tumour

haemodynamic (Law et al., 2004b). Endothelial proliferation and neovas-

cularisation, signs of tumour growth and aggressiveness, were recognized by

dynamic MR perfusion techniques (Knopp et al., 1999). Most of the previous

literature has focused on the role of MR perfusion as a non-invasive technique

for the accurate differentiation of cerebral glioma grades (Law et al., 2003;

Cho et al., 2002; Hakyemez et al., 2005; Schmainda et al., 2004; Arvinda

et al., 2009). Consequently, cerebral gliomas were grouped based on their ge-

netic phenotype as clinical outcome and treatments were reported differently

for different glioma grades (Spampinato et al., 2007; Whitmore et al., 2007;

Di Costanzo et al., 2008). The relative cerebral blood volume (rCBV), MR

perfusion parameter, was found to be strongly correlated with the histolog-

ical grading (Law et al., 2006c). However, a literature review (chapter 2)of

these studies found differences in the threshold values and accuracy measures

obtained . Few studies have reported a high rCBV accuracy (Spampinato

et al., 2007; Bulakbasi et al., 2005; Arvinda et al., 2009; Lee et al., 2001;

Shin et al., 2002), and the majority (Cho et al., 2002; Hakyemez et al., 2005;

Shin et al., 2002; Lee et al., 2001; Sadeghi et al., 2006) recruited only a small

number of patients. Others included non-glioma tumours and used different

MR sequences and parameters (Schmainda et al., 2004). A critical appraisal

was required of those studies as to whether the differences in accuracy values

is population based or based on technical characteristics.
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The aim of this study is to identify and appraise the quality of those other

studies and to provide a summary of the accuracies of using relative cerebral

blood volume in grading glioma. A systematic review was used to combine

and address the relevant studies in determining the role of MR perfusion as

a diagnostic tool.

2.2 Methodology

2.2.1 Eligibility Criteria

All the diagnostic studies performing MR perfusion in diagnosing cerebral

glioma were included, regardless of authors names, country, or year of publi-

cation. For a study to be included in the systematic review, it had to include

histological diagnosis as the standard reference for all subjects. Studies with

recurrent or post-surgery or post-therapy subjects were excluded due to the

effect of these treatments on the perfusion values, which may affect the ac-

curacy measures of those studies. Table 2.1 gives the inclusion and exclusion

criteria in detail.

2.2.2 Search Strategy

The search strategy was planned before beginning the study, with prior liter-

ature review knowledge (Figure 2.1). The search was conducted in September

2010 without restriction to publication date. The PubMed electronic search

engine http://www.ncbi.nlm.nih.gov\/pubmed/ was searched for the key

words ‘MR perfusion’, ‘brain or cerebral’ and ‘glioma or tumour or tumor’

http://www.ncbi.nlm.nih.gov\ /pubmed/
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Criteria type Criteria
Inclusion Articles in the English language

Studies including high and low grade cerebral glioma

Contrast enhanced MR perfusion studies using relative
cerebral blood volume as perfusion metric with clear ac-
curacy or quantitative measures

Newly diagnosed glioma patients who have pre-operative
pre-treatment MRP scans

Exclusion Studies with no histological diagnosis

Studies aimed at differentiating glioma from other in-
tracranial tumours

Studies merging pilocytic astrocytoma (grade 1) with
diffuse glioma into one group and whose accuracy mea-
sures could not be separated

Case control and case report studies

Table 2.1: Inclusion and exclusion criteria used in the systematic review

(Figure 2.2). The articles that were included on the basis of their titles

or abstracts were then retrieved for the sake of systematic analysis but the

corresponding authors were not contacted to clarify any ambiguous results.



2.2 Methodology 40

 

Search Keywords: MR Perfusion, brain or cerebral, and glioma or tumour or tumor 

What are the exclusion criteria?  

 Case report and case-control studies. 

Technical development studies (i.e. MR sequence optimization).   

Non-MR Techniques (i.e. CT or radioisotopes perfusion). 

 Studies using advanced MR techniques other than MR perfusion (i.e. MR diffusion) 

Studies using MR perfusion but not assessing cerebral blood volume 
(i.e. cerebral blood flow, vascular permeability (Ktrans). 

Studies that recruited non-gliomas (i.e. PCNSL, meningioma, metastatic lesions).   

Studies that use MR perfusion in treatment monitoring. 

Studies that recruit only one glioma grade (i.e. assessing grade 
transformation with serial MR perfusion scans).

Q1 

Studies that did not use the gold standard WHO histological diagnosis.  

How the quality of the included studies was appraised and judged?  Q2 

 14 items of QUADAS criteria applied (see appendix H). 

What if the accuracy measures were not undertaken in the 
included studies for the quantitative assessment?  Q3 

The studies are included and accuracies calculated if they were provided with 
tabulated data containing information such as grade and CBV values.  

What data would be extracted from the included studies to do quantitative 
assessment?  Q4 

A 

B 

C 

D 

E 

F 

G 

H 

I 

The data extracted are: authors names, year of publication, actual number of subjects 
per each glioma grade, threshold value, magnetic field strength, MR sequence 
(Gradient or Spin echo), average or maximum CBV, and accuracy measures.  

Figure 2.1: Flow chart of search strategy
.
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Figure 2.2: Literature search flow diagram; where GE and SE denote the
gradient echo and spin echo sequence, respectively

2.2.3 Study selection

The potential studies were reviewed by one researcher with prior experience

in systematic review. That reviewer applied the inclusion criteria to the

potential studies (Table 2.1). All studies concerned with using MR perfusion

with or without other multimodal MR imaging to differentiate high from low

grade glioma were included, with no lower limit on the number of glioma
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patients. Studies that include, in addition to cerebral glioma, other brain

tumours were also included in the systematic review but the accuracy data

of only glioma patients was considered wherever possible. Included studies

should have a clear report of the accuracy measures or at least tabulated

rCBVmax and grades of each subject for accuracy measurement calculations.

Accuracy measures were calculated for studies provide only CBV values and

the highest accuracy values selected for the final analysis. Selection bias was

not expected at this step as all articles that matched the inclusion criteria

were included.

2.2.4 Data extraction

The quality assessment of the studies of diagnostic accuracy (QUADAS) was

applied to the selected MR perfusion studies as a tool for quality assess-

ment of the included studies (Appendix H) (Whiting et al., 2003). Data

extraction and review of QUADAS items was performed by one researcher.

A general statistical consensus report was presented, based on 14 standard

items of QUADAS criteria for the included studies, but does not conform

to the accuracy measure assessment. The second part of the extracted data

was for the purpose of quantitative analysis and the data extracted were

the authors’ names, year of publication, type (dynamic contrast-enhanced

or dynamic susceptibility contrast), sequence of MR perfusion (gradient or

spin echo), magnetic field strength, threshold value, method of calculating

cerebral blood volume, number subjects, and accuracy measures.



2.2 Methodology 43

2.2.5 Data analysis

Meta-disc software (version 1.4) was introduced in 2006 (Zamora et al., 2006)

for the meta-analysis of diagnostic tests. The software is publicly available

at http://www.hrc.es/investigacion/metadisc_en.htm.

The data sheets used were introduced in form of accuracy parameters

(true positive, false positive, false negative, and true negative). The accu-

racy results were presented by meta-disc software in the form of tables and

forest plots or receiver operating characteristic curves (ROC) for ease of data

interpretation. The main pitfall in pooling data from different studies is the

heterogeneity which is either attributed to inconsistency of thresholds, vari-

ation in study populations, chance occurrences, or differences in technique

settings and operators (Lijmer et al., 2002; Zamora et al., 2006). To assess

the effect of threshold variation, both receiver operating characteristic curves

and Spearmans correlation coefficient were used.

Forest plots of sensitivity, specificity, and diagnostic odds ratio were used

to illustrate any variation between the included studies. The diagnostic odds

ratio was used to describe the chance of occurrence of positive results in pa-

tients with disease (i.e., high grade glioma) to the chance of occurrence of

positive results in patients without disease (i.e., low grade glioma). Summary

receiver operator characteristic (sROC) was used to provide a smooth pre-

sentation, where each study on the curve contributed one pair of sensitivity

and specificity at a certain point on the curve (Deville et al., 2002). The ran-

dom effects model (DerSimonian and Laird, 1986) was used to combine the

diagnostic odds ratios of the included studies and determine the best-fitting

http://www.hrc.es/investigacion/metadisc_en.htm
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ROC curve regardless of different thresholds (Zamora et al., 2006) .

2.3 Results

The electronic search via PubMed had 158 hits. A flow chart of this system-

atic review illustrates the number of included and excluded studies (Figure

2.2). There were 26 studies finally eligible for methodological appraisal. Au-

thors, year of publication, location of study, technical settings, and threshold

values of the studies included in the systematic review are presented in Table

2.2. The articles were selected based on the availability of accuracy measures,

which were be be subjected to quantitative assessment. The initial review of

the included studies revealed that a good number of studies used a gradient

echo sequence on a 1.5-T magnetic field while only a few studies used spin

echo sequence or performed an MR scan on a 3-T magnetic field.

2.3.1 Quality assessment using QUADAS criteria

Table 2.3 gives the refined 14 items of QUADAS criteria (Whiting et al.,

2003) used for assessing the quality of the included papers. A systematic

review revealed that three items in the QUADAS criteria were not fulfilled

by most of reviewed articles. A quick review disclosed criteria such as time

between standard reference test and radiological test, description of histolog-

ical procedures, and whether or not clinical data were available at the time

of diagnosis, were not recorded in most articles. Criteria such as appropriate

choice of patient spectrum, clear description of selection criteria, and veri-

fications with a standard reference, were described in most studied articles.
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Authors year country pt No. cut-off MR field
sequence strength

Aronen et al. 1994 USA 19 1.5 SE 1.5
Sugahara et al. 1998 Japan 30 2.5 GE 1.5
Knopp et al. 1999 USA 29 2.32 GE 1.5
Lee et al. 2000 S. Korea 22 2.6 GE 1.5
Ludemann et al. 2001 Germany 24 1.88 SE (T1) 1.5
Cho et al. 2002 S. Korea 29 NA GE 1.5
Shin et al. 2002 S. Korea 17 2.93 GE 1.5
Yang et al. 2002 Japan 17 1.55 GE 1.5
Law et al. 2003 USA 160 1.75 GE 1.5
Schmainda et al. 2004 USA 72 1.5 GE & SE 1.5
Lev et al. 2004 USA 30 1.5 SE 1.5
Hakyemez et al. 2005 Turkey 33 2 GE 1.5
Bulakbasi et al. 2005 Turkey 58 3.9 GE 1.5
Law et al. 2006 USA 73 NA GE 1.5
Sadeghi et al. 2006 Belgium 18 2.4 GE 1.5
Hou et al. 2006 USA 22 1.1 GE 1.5
Boxerman et al. 2006 USA 41 1.63 GE 1.5
Spampinato et al. 2007 USA 14 2.14 GE 1.5
Zonari et al. 2007 Italy 105 1.16 GE 1.5
Whitmore et al. 2007 USA 30 2 SE 1.5
Law et al. 2007 USA 92 2.15 GE 1.5
Lu et al. 2008 USA 39 NA GE 1.5
Arvinda et al. 2009 India 51 2.91 GE 1.5
Park et al. 2009 S. Korea 41 1.92 GE 3
Bisdas et al. 2009 USA 34 1.7 GE 1.5
Park et al. 2010 S. Korea 48 2.12 GE 3

Table 2.2: List of included studies using relative cerebral blood volume for
glioma grading

The most important criteria concerned for quality control in diagnostic tests

were those related to use and verification of the standard test (histology) and

the blind interpretation of the radiological test to the standard test.

2.3.2 Quantitative analysis

As mentioned earlier, 26 articles fit into the main aim, which is the use

of CBV in differentiating high from low grade glioma. Twenty-two studies
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Item Criteria Yes No Unclear
(No.) (No.) (No.)

1 Patient spectrum representative of the
brain glioma

25 1 0

2 Clear selection criteria 24 0 2
3 Use of standard reference 26 0 0
4 Clearly defined time between standard

and radiological test
5 3 18

5 Verification of standard test on entire
sample

26 0 0

6 Using the same reference standard 26 0 0
7 Independence of reference standard 26 0 0
8 Full description of the radiological test 26 0 0
9 Full description of the histological test 2 6 18
10 Radiological diagnosis blindly inter-

preted to histological diagnosis
7 0 19

11 Histological diagnosis blindly inter-
preted to radiological diagnosis

5 0 21

12 Availability of clinical data at time of
radiological diagnosis

2 2 22

13 Reporting uninterpretable results 26 0 0
14 Explaining patient withdrawal if any 26 0 0

Table 2.3: QUADAS criteria were applied on the candidate 26 studies.

performed T ∗
2 gradient echo sequence, three studies performed T2 spin echo

sequence, and one study used T1 spin echo sequence. Among the 22 studies

performing T ∗
2 gradient echo sequence, 20 studies applied a field strength of

1.5 T, and 2 studies applied a field strength of 3 T. All other studies of spin

echo used field strengths of 1.5 T. As the difference in MRI sequence and field

strength may contribute to variations in the MRI parameters, only studies

that performed gradient echo on a 1.5 T magnetic field were selected for

quantitative analysis. The total cohort of those studies was 834 patients. A

descriptive analysis showed the normality of the distribution of the threshold
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values, as the skewness falls within the range of the twice standard error of

skewness. The descriptive statistic showed that the mean of the threshold

values is 2.13, close to the threshold values in most of the included studies

(Table 2.4).

The cause of variation between the studies was assessed as to whether it

was the threshold effect or chance. Spearman’s correlation coefficient test of

the threshold on heterogeneity gave a positive correlation between sensitivity

and specificity, indicating no effect of threshold values between the studies

(Table 2.5). The β is equal to zero (0.018), indicating that the odds ratio

is constant regardless of the variation in the threshold. The variation in

accuracies between studies may be due to chance alone.

variable Min. Max. mean SD skewness std error
of skew-
ness

Threshold value 1.1 3.9 2.13 ± 0.71 0.88 0.55

Table 2.4: Descriptive statistics illustrated the normal distribution of thresh-
old values for all included studies.

Subjective analysis of the forest plot (Figures 2.3 and 2.4) showed that

both the sensitivity and the specificity were withing the confidence interval

of each study. The diagnostic odds ratio (Figure 2.5) gives the variation of
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variable coefficient standard error T P value
a 3.698 0.455 8.136 < 0.001
b 0.018 0.229 0.077 0.939

Tau-squared

estimate = 0.6258 (Convergence is achieved after 5 iterations)
Restricted Maximum Likelihood estimation (REML)

Logit (TPR) vs Logit (FPR). Mosess model (D = α+ βS)
Weighted regression (Inverse Variance)

Table 2.5: Analysis of Diagnostic Threshold. The effect of threshold variation
was tested for the diagnostic performance of the odds ratio, where TPR
denotes the true positive rate, FPR, the false positive rate, T, the predicted
probabilities test.

both the sensitivity and specificity within the 95% confidence interval. The

degree of heterogeneity between the included studies was medium (57%) for

sensitivity values and medium to high (62%) for specificity values. As the

Spearman’s correlation coefficient test found a positive correlation between

the sensitivity and specificity values, we expect the difference is because of

chance only.

A summary receiver operator characteristic curve (sROC) was made out

of the included studies (n = 20): the sensitivity and specificity of each study

is represented and a smooth curve is fitted to these points. It was tested

previously that the diagnostic odds ratio is constant between the studies

and the threshold variation did not effect between-study variation. So, the

symmetric was used to conclude the summary of accuracy measures between

the included studies. The area under curve was 93% indicating that a large

percentage of patients with cerebral glioma within the included studies were

diagnosed correctly (Figure 2.6). The equations for producing the sROC

were described in detail elsewhere (Zamora et al., 2006).
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Figure 2.3: Forest plot of pooled sensitivity among the candidate 20 studies
that used 1.5 T gradient echo sequence

A variation in threshold values usually affects the shape of a conventional

ROC curve as it based on values, not percentages. On the contrary, the

diagnostic odds ratio and summary ROC are not been affected by this vari-

ation, as they represent the relations between sensitivity and specificity of

each study. Table 2.6 summarises the diagnostic odds ratio with weighting

factors. (It is interesting to note that the three outlier studies had high

percentage weights and at the same time low diagnostic ratios though they

recruited only a small number of subjects.)
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Figure 2.4: Forest plot of pooled specificity of the candidate 20 studies that
used 1.5 T gradient echo sequence

2.4 Discussion

The WHO histological diagnosis is the standard reference to date for grading

cerebral glioma. Typically, surgical debulking is the appropriate approach

for grading; however, not all high grade glioma underwent surgical resec-

tion. Glioblastoma patients were mostly (88%) subjected to debulking but

a small percentage (12%) were subjected to stereotactic biopsy (Filippini

et al., 2008). In clinical practice, misdiagnosis due to sampling error was

about 10% in addition to the occurrence of major complication (6%)(Teix-

eira et al., 2009). Therefore, the diagnostic work-up requires a non-invasive

techniques to diagnose and differentiate cerebral glioma.
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Figure 2.5: Diagnostic odds ratio of 20 studies performing perfusion analysis
on 1.5 T gradient echo sequence

To my knowledge this is the first study performing a systematic review

of MR perfusion studies in evaluating the diagnostic performance of rela-

tive cerebral blood volume (rCBVmax) in distinguishing high from low grade

glioma. The reason for choosing rCBVmax in our systematic review is that

it was reported frequently as a powerful diagnostic tool for glioma grading

(Law et al., 2006c).

The analysis was made on two independent elements; qualitative eval-

uation using QUADAS criteria (Whiting et al., 2003) for quality appraisal

of the all studies performing rCBVmax in glioma grading. Most of the in-

cluded studies lacked a clear methodological description, which makes the

techniques used irreproducible. The diagnostic reliability of MR perfusion

could not be judged appropriately based on those deficient criteria, though
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Figure 2.6: Pooled summary ROC for all studies; where AUC denotes the
area under curve; SE, the standard error; Q∗, the point of equal sensitivity
and specificity; SE (Q∗), the standard error of Q∗

all 26 studies standardized the result to histological diagnosis. The quan-

titative analysis was conducted for the same studies assessed qualitatively,

but the studies basically sub-divided themselves into 20 studies using a 1.5

T gradient echo sequence (GE), 2 studies with 3 T GE, and 4 studies with

1.5 T Spin echo sequence (SE). This classification has created a homogene-

ity among the studies, as technical factors may contribute to differences in

rCBVmax values.

Almost all studies included patients with only glioma brain tumours while

two studies included also non-glioma tumours or pilocytic astrocytoma (grade
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Study DOR 95% confidence interval % weight
Sugahara (1998) 60.4 2.6–1382.4 2.82

Knopp (1999) 68.6 2.7–1745.2 2.66
Lee (2001) 86.3 2.9–2582.8 2.44

Yang (2002) 27.0 0.9–748.9 2.54
Shin (2002) 91.0 3.2–2585.4 2.51
Cho (2002) 4.3 0.7–24.8 7.03
Law (2003) 25.7 9.2–72.2 12.86

Schmainda (2004) 70.7 7.8–645.0 5.03
Hakyemez (2005) 315.0 11.8–8399.7 2.60
Bulakbasi (2005) 231.0 22.5–2370.3 4.64
Boxerman (2006) 108.5 8.9–1371.2 4.04

Law (2006) 86.1 10.3–718.6 5.36
Sadeghi (2006) 17.0 0.8–372.6 2.89

Hou (2006) 5.0 0.7–35.5 6.04
Law (2007) 80.6 18.7–347.9 8.95

Zonari (2007) 13.8 5.3–35.9 13.68
Spampinato (2007) 65.0 2.2–1887.4 2.48

Lu (2008) 112.0 8.9–1400.1 4.07
Bisdas (2009) 29.6 1.6–561.6 3.14

Arvinda (2009) 270.0 22.8–3193.9 4.22

Table 2.6: Summary of diagnostic odds ratio (random effects model), illus-
trating the power of each study based on the inverse variance of the log of
the DOR

1). For instance, one study (Bulakbasi et al., 2005) included, in addition to

gliomas, 10 patients with pilocytic tumour. Another study (Schmainda et al.,

2004) included one ependymoma patient and one neurocytoma patient which

could not be excluded from the analysis.

The variation in threshold was the mainstay to assess when performing

the meta-analysis. Luckily, the threshold values were close to the arithmetic

mean and they were normally distributed as evident by descriptive analysis.

In addition, a positive Spearman’s correlation with coefficient close to zero
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confirmed a flat effect of threshold variation. A close observation of the

sensitivity and specificity of each study shows there are three studies [Law

et al. (2004), Cho et al. (2002), and Lu et al. (2008)] which did not state

the threshold values, while two studies [Hou et al. (2006) and Zonari (2006)]

employed a relatively low threshold value.

The pooled sensitivities and specificities of the twenty studies with gra-

dient echo had a sensitivity and specificity of 93% and 75%, respectively.

Forest plot disclosed certain degrees of heterogeneity between the studies

more marked in between specificities values. The outliers in the pooled sen-

sitivity graph were mainly from three studies possessing sensitivity measures

≤ 81%.

Two models were proposed for analysis and statistical pooling: a fixed

effects model considering the weighting average of each study and assum-

ing the difference is only due to chance; and a random effects model based

on DerSimonian–Laird method, which considers also the differences due to

technical procedures and study populations (Deville et al., 2002). The de-

tails of the mathematical procedures and equations of these two models were

published elsewhere (Rutter and Gatsonis, 2001).

In this study, the 27 preferred reporting items for systematic review and

meta-analysis (PRISMA) (Moher et al., 2009) were followed except that the

studies’ authors were not contacted for any citing references and the other

technical variables were not regressed for their effect on the calculated ac-

curacy measures. The Cochrane tool for assessing the risk of bias in the

systematic review was checked, and it revealed that no such selection, per-

formance, detection, or reporting bias was present, partly because the papers
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included were not clinical trial studies and partly because of following the

QUADAS criteria for quality assessment.

Though such a study has not been conducted before showing the pre-

liminary data of the possible clinical application of cerebral blood volume-

derived MR perfusion in grading cerebral glioma, several limitations were

encountered at every step of systematic review. First, only a few key search

words were used and it would be interesting to use combinations of search

words, such as cerebral, blood volume, neoplasm, tumor, tumour, magnetic

resonance, and CBV. Second, only the PubMed search engine was used and

not other web sources such as EMBASE or the Cochrane library database.

Both of these have advantages over PubMed, as the EMBASE indexes many

European and non-English journals, while the Cochrane library includes

evidence-based practice, unpublished clinical trials, and systematic review

articles. Third, the reference lists of the retrieved articles were not searched.

The above limitations were due to the short time available within the period

of post-graduate study, and the fact that one researcher was responsible for

data selection and extraction. It would be appropriate to verify the data

search and extraction with a second researcher. Fourth, selection bias is ex-

pected in favour of English publication as only English key words and papers

published in the English language were included in this systematic review,

although some non-English articles had abstracts in English. However, qual-

itative analysis and data extraction could not be carried out based on an

abstract alone. Fifth, only one software for the meta-analysis was used and

the output was not compared or verified using different meta-analysis soft-

ware. Sixth, two studies included in the analysis recruited, in addition to
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glioma tumours, non-glioma tumours or pilocytic astrocytoma, and the ac-

curacy data of the glioma tumours could not be assessed separately, which

may affect the final results. Finally, 6 articles were excluded from the sys-

tematic review as they were inaccessible for review though their title and

abstract indicated the conducting of accuracy measures.

In conclusion, this study aimed at assessing the diagnostic performance

of the relative cerebral blood volume parameter derived from MR perfusion

in differentiating between high and low grade glioma. The initial assessment

in this study shows that CBV-derived MR perfusion is not able to promptly

differentiate high from low grade glioma. Two main issues need to be ad-

dressed in grading glioma: first, assessing the low specificity of this technique

with a large number of low grade gliomas and without the inclusion pilocytic

astrocytoma (grade I); second, assessing the diagnostic performance of CBV

in differentiating among high grade gliomas. These two issues will be assessed

and discussed in the next chapters.



Chapter 3

General methods:
Dynamic susceptibility contrast
MR perfusion and Dynamic
contrast enhanced MR
perfusion applied to cerebral
gliomas
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3.1 Introduction

This chapter describes the recruitment process, patient clinical data, conven-

tional and perfusion MR technical settings, and the histological procedures.

The theoretical assumption, the existence of a correlation between contrast

concentration and change in signal intensity, and the post-processing tech-

niques, including the methods for drawing and measuring ROI, will also be

given in detail in this chapter. The aim of this chapter is to provide the

methodology used in the studies (Chapters 4 and 5) that assessed the diag-

nostic and prognostic values of the maximum relative tumour blood volume

(rTBVmax) derived from dynamic susceptibility contrast (DSC) MR perfu-

sion applied to cerebral gliomas.

3.2 Subject Recruitment and Patient Crite-

ria

The MRI examinations were performed as part of clinical workups between

August 2006 and January 2010. In total, two hundred and five patients with

cerebral glioma were recruited, based on the approaches mentioned below.

Potential patient approach and recruitment were performed in parallel in the

two groups.

The first group was recruited based on research ethical approval (Ap-

pendix D). The recruiting approach to the potential participants, the de-

sign and duration of the study, and the transferral and storage of the MR

images are explained in detail in the research protocol (Appendix A). Po-
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tential patients were identified via the documentation of neuro-oncology in

Multi-disciplinary team (MDT) meetings, the low grade glioma clinic and

neurosurgery department (Queen’s Medical Centre), and the neuro-oncology

clinic (Nottingham City Hospital). Based on the research protocol, the po-

tential patients were approached at any time after they were informed from

their clinical team that they had brain glioma. The potential patients were

contacted by me once they had been informed by the clinical care team and

agreed to take part in the study. During the interview, a brief introduction to

the study’s aim and the study information sheet (Appendix C) was given to

the patients, explaining the study. The patients were given the opportunity

to read the information sheet and to ask questions and sign the consent form

(Appendix B) if they were happy to take part in the study. One hundred

and six patients with primary cerebral glioma were recruited based on local

research protocol.

The second group was recruited based on clinical audit approval (Ap-

pendix E) under project number 1272. The recruitment under this part was

part of assessing the performance of multimodality MR in brain tumour dif-

ferentiation. The potential patients recruited under the audit approval were

those who had either primary cerebral lymphoma (PCNSL), cerebral glioma,

or brain metastasis. However, only patients diagnosed with primary cerebral

glioma are being included in the present thesis. Patients in this category were

approached via the neuro-oncology documentation of the Multi-disciplinary

team (MDT) or histopathological data source. A research information sheet

and consent form are not required to qualify for accessing patient data. The

process of transferring and storing MR images followed the same procedures
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as for the first group. Ninety-nine patients diagnosed with primary cerebral

glioma were recruited based on audit approval.

The inclusion criteria were as follows:

• Patients with histologically confirmed newly diagnosed cerebral glioma

• Patients having undergone a pre-operative and pre-treatment MR Per-

fusion (MRP) scan

• Signing the consent form if they had been recruited via the research

approval (group one).

Exclusion criteria were as follows:

• Patients aged less than 18 years

• Patients who received an MR Perfusion scan at 1.5-T magnetic field

• Failure to sign the consent form if they had been recruited via the

research approval study (group one)

• Patients with too long a time interval between the histological diagnosis

and the MR perfusion.

One hundred and twenty-three patients matched the inclusion criteria

(53 women and 70 men, median age 53 years, age range 18–83 years) were

confirmed histologically with cerebral glioma. The diagnosis of glioma was
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confirmed by surgical resection (n = 67) or stereotactic biopsy (n = 56). Of

these, 105 patients were astrocytic cell phenotype and 18 patients were of

oligodendrogliotic cell type. All the tumours were graded according to the

WHO grading system (Kleihues et al., 1995; Kleihues and Sobin, 2000) as

revised in 2007 (Louis et al., 2007).

Eighty-two patients were excluded from the two recruited groups because

they matched the inclusion and exclusion criteria: 12 patients had not had

a histological diagnosis, 38 patients had not had any perfusion MR imaging

scans, 3 patients had received their perfusion scans at 1.5 T, 19 patients had

received a post-operative MR perfusion scan, 9 patients had too long a time

interval between their histological diagnosis and their MR perfusion scan, and

one patient was diagnosed later with a brain infection. The interval between

the WHO histological diagnosis and the MR perfusion scan was defined as

too long if it was more than 540 days in the case of low grade glioma, or 390

days in the case of anaplastic glioma, or 90 days in the case of glioblastoma

multiforme. Figure 3.1) is a detailed patient recruitment flowchart.

The tumour grades broke down as follows: 39 patients had diffuse glioma

(grade II), 24 patients had anaplastic glioma (grade III), and 60 patients had

glioblastoma multiforme (grade IV). Prior to the MR scan, no patient had

received any cancer treatment except corticosteroids (n = 91). The duration

of taking the steroids before MR perfusion scans was variable (8 ± 4).

The time interval between taking the histological sample and performing

the MR perfusion was carefully reviewed, for fear of a grade transformation

or change in the characteristics of the tumour if too wide a gap were to

be allowed. However, a relatively long interval was permitted for low grade



3.3 MR Imaging Protocol 62

gliomas and anaplastic gliomas if there was no clinical or radiological evidence

of disease progression that might have raised the suspicion of a histologic

grade transformation.

The most common presenting clinical symptom at the time of diagnosis

was a neurological manifestation (n = 50) such as mono- or hemi-paresis

followed by seizures (n = 44). 30 out of 50 patients with neurological mani-

festation were diagnosed as having GBM while half of the patients with low

grade glioma presented initially with seizures. Thirty-six (60%) out of 60

GBM patients had had surgical debulking, while the remaining GBM pa-

tients had had stereotactic biopsy. Fifty-four per cent of low grade glioma

and 42% of anaplastic glioma patients underwent surgical debulking.

3.3 MR Imaging Protocol

All MR imaging was performed as part of a clinical work up protocol using

a 3 Tesla Philips Achieva (Philips Healthcare, Best, Netherlands). The MR

perfusion imaging protocol followed a standardised procedure for all patients

as part of a tumour multimodal MRI protocol at 3 T. A localizing sagittal

T1-weighted image was obtained followed by axial non-enhanced T2-weighted

test spin echo (TR, 3000 ms; TE, 80 ms; echo train length 15), coronal non-

enhanced T1-weighted image spin echo (TR, 500 ms; TE, 10 ms; echo train

length 1), axial contrast-enhanced T1-weighted image spin echo (TR, 425 ms;

TR, 10 ms; echo train length 1) or axial high resolution contrast-enhanced

(MPRAGE) T1-weighted image fast field echo (TR, 8.1 ms; TE, 3.73 ms;

echo train length 205) and coronal contrast-enhanced T1-weighted image spin



3.3 MR Imaging Protocol 63

  Number of patients who underwent MRP 
between August 2008 and January 2010  

(n=205)

Consented patients who recruited 
via research study (n=106) 

Patients recruited via audit study
(n=99) 

 Patients excluded (n=57):  

•No MR Perfusion (n=34) 

•No histology diagnosis (n=9)

•Post-operative (n=8) 

•>18/12 between HP and MR 
Perfusion (n=4) 

•1.5 T scan (n=2) 

 Patients excluded (n=25):

•No MR Perfusion (n=4) 

•No histology diagnosis (n=3)

•Post-operative (n=11) 

•>18/12 between HP and MR 
Perfusion (n=5) 

•1.5 T scan (n=1) 

•Brain infection (n=1) 

49 Patients eligible for the study
[20 LGG, 9 AG, 20 GBM] 

74 Patients eligible for the study 
[19 LGG, 15 AG, 40 GBM] 

 Total of 123 patients [39 LGG, 24 AG, 60 GBM] 
were included in rTBVmax perfusion analysis 

 56 biopsies, 67 debulking   
LGG (18 B, 21 D)                
AG (14 B, 10 D)                   
GBM (24 B, 36 D)                

Figure 3.1: Flow chart of patient recruitment: HP (histopathology); OP (op-
erative); LGG (low grade glioma); AG (anaplastic glioma); GBM (glioblas-
toma multiforme); B (biopsy); and D (debulking)
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echo (TR, 423 ms; TE, 10 ms; echo train length 1). The post-contrast

T1-weighted or high resolution contrast-enhanced T1-weighted images were

obtained after acquisition of dynamic susceptibility contrast-enhanced MR

perfusion images.

Dynamic susceptibility contrast-enhanced (DSC) T ∗
2 -MR perfusion im-

ages were obtained using 3D gradient echo PRESTO scans during the first

pass of the bolus of the contrast agent. The MR perfusion 3D slab was

positioned to cover a large area of the brain in 30 slices. A series of 60

images were acquired at intervals of 1.2 seconds. The first five volumes be-

fore contrast arrivals were used as the baseline for the signal intensity of the

brain. The perfusion imaging parameters were as follows: acquisition ma-

trix 128 × 128; pixel size 1.8 × 1.8; TR 15.78 ms; TE 23.8 ms, flip angle 7◦;

field of view 230 mm×105 mm×187 mm); slice thickness 3.5 mm. A bolus

of contrast material was injected intravenously at a dose of 0.1 mmol/Kg of

Gadobutrol (Gadovist/ Bayer Schering Pharma). An MRI-compatible power

injector (Medrad/ Spectris Solaris) was used for contrast injection at a rate

of 3 ml/s followed by a bolus injection of 10 ml saline at the same rate.

Forty-three patients [9 LGG, 7 AG, and 27 GBM] underwent a dynamic

contrast enhanced (DCE)-T1 prior to the T ∗
2 -weighted perfusion images. In

this subset of patients, the total bolus dose was the same (0.1 mmol/kg) but

a quarter of the calculated dose was injected during the T1 perfusion and

the remaining three quarters were injected during the T ∗
2 perfusion. This

improved protocol was introduced as a pre-load dose to minimize potential

leakage effects in the T ∗
2 DSC perfusion.

The T1 perfusion images were acquired using T1 perfusion turbo field



3.4 CBV Post-Processing 65

echo (TFE) to obtain 45 sequential volumes in 10 sections with imaging pa-

rameters as follows: acquisition matrix 128×128, pixel size 2×2 mm; TR,

3.62 ms; TE, 2.36 ms; flip angle 5◦; field of view 224×176×100 mm) ; slice

thickness 10 mm; temporal resolution 2.4 sec. The contrast agent Gadovist

(BAYER/Schering Pharma, UK) was injected using an automatic MR com-

patible injector system (MedRad Spectris, PA, USA). The total required dose

was calculated based on patient weight at a dose of 0.1 mmol/Kg and rate of

3 ml/sec; however 25% of the total dose was injected to perform the T1-DCE

perfusion scan. The T1 and T ∗
2 MR perfusion scans were separated by a time

gap of about three minutes.

The T1 sequence used in this study is the turbo field echo (TFE), which

is a gradient echo sequence applied after a 180 degree pulse. The short

TR resulted in incomplete relaxation and hence low T1 contrast. Moreover,

a short TR creats a low flip angle know as the Ernst angle effect. Radio

frequency spoiling was performed for T1 contrast optimization. The idea of

the T1 MR perfusion in this study is not different from that of the T ∗
2 MR

perfusion but tissue signals in T1 had an increased signal intensity while in

T ∗
2 there was a decrease in signal intensity.

3.4 Post-Processing and CBV Map Genera-

tion

The radiographic analysis was performed blind to the histological diagnosis,

to test the accuracy of MR perfusion in glioma grading. All MR images
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including the dynamic MR perfusion images were anonymised before being

transferred as digital imaging (DICOM) through a compact disc and stored

in the server at the radiological and imaging science division (Queen’s Med-

ical Centre) according to research protocol (Appendix A). The process of

anonymisation was performed at two levels: first, at the hospital data base

in which the option of anonymised data was selected and hence the patient’s

name was stored in the compact disc as a coded number; second, at the ra-

diological division server in which the DICOM images transferred to analyze

images and every patient is coded and given a unique identity code. The

identity code is composed of the first two letters of the patient’s surname

and the first letter of the patient’s first name, followed by the scan date, so

the patient’s name and information can not be traced back or identified by

any third party users. However, the identity code and the patients’ hospi-

tal numbers were matched and kept in a secure place in case any clinical

data were requested. The details of data retention and period of keeping

these data were mentioned in Appendix A. The DICOM images were trans-

ferred to analyze images using a Linux workstation code. The MR perfu-

sion analysis was performed using Java Image software (www.xinapse.com).

An exponential relation was assumed between the concentration of contrast

agent in the blood vessels and the reduction in the signal intensity of the

brain tissue (Rosen et al., 1990). A Gamma variate was used to correct for

the recirculation of contrast agents based on the following equation (Tofts,

2003).

C(t) = K(t− t0)
α e(t−t0)/β (t > t0)

in which C(t) indicates the concentration of the contrast agent in the sup-

www.xinapse.com
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plying artery; K is a constant scale factor; α and β are constants describing

the shape of the contrast bolus; t is the time of the first pass contrast, and

t0 is the contrast arrival delay.

The software package uses a standard algorithm for deconvolution of the

tissue signal intensity (Ostergaard et al., 1999), which was used to generate

cerebral blood volume maps from the MR perfusion raw images (Figure 3.2).

During the first pass of contrast bolus, T ∗
2 is reduced, which is demon-

strated by signal reduction in the T ∗
2 -weighted images. The change in relax-

ation time (∆R∗
2), the reciprocal of T ∗

2 , is calculated based on the equation

∆R∗
2 = − ln(S(t)/S0)/TE,

where S (t) is the signal intensity at time t, S0 is the baseline intensity,

and TE is the echo time (Aronen et al., 1994). Arterial input function was

measured by localizing the region of interest to the internal carotid artery or

middle cerebral artery (Figure 3.3). Arterial sampling aimed at determining

the correlation between the contrast concentration and the change in signal

intensity. Only the first pass was included in the analysis through truncating

the signal curve from the point of signal drop to the half maximum signal

recovery.

In this study, the term tumour blood volume (TBV) is used as it is

exclusive to the tumour area rather than the term cerebral blood volume

(CBV), which may indicate any brain area. ROIs placed over the tumour

area to measure the TBV corresponds to the area under the curve (figure 3.4).



3.5 rTBVmax Calculation 68

Figure 3.2: A few cuts of perfusion raw images of histologically diagnosed
glioblastoma multiforme were obtained using 3T T ∗

2 -DSC at 3D gradient echo
PRESTO scans. The upper row is the baseline before contrast injection, the
middle row is at the maximum signal change (20 seconds), and the lower row
is after signal recovery and recirculation (40 seconds). Note the reduction
in signal intensity (middle row) compared to baseline signal intensity (upper
row). Tissue change in signal intensity over time was assessed over the whole
volume to detect changes in signal intensity.

3.5 Calculation of Maximum rTBV

The relative TBVmax analysis was performed blind to the histological diag-

nosis. Both post-contrast T1-weighted images (spin echo or MPRAGE) and

T2 weighted images were used to define the solid portion of the tumour and
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Figure 3.3: Time-intensity curve sampled from internal carotid artery. The
curve showed arterial signal drop as a result of contrast injection

Figure 3.4: Changes in tumour relaxivity: the shaded area under the curve
indirectly reflects the cerebral blood volume.

to delineate the blood vessels. The radiological criteria for defining a glioma

tumour (Kornienko, 2008) were based on the appearance in the T1-weighted

image (T1WI), post-contrast T1WI, and T2WI. Defining the tumour area
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of the tumour was based on the following criteria: The solid portion of the

tumour appears as isointense to hypointense on T1WI, with heterogeneous

signal and poorly defined margins. The tumour in T2 weighted images ap-

pears as a heterogeneous signal intensity. Contrast enhancement may be

affected by a blood–brain barrier breach and may vary from ill-defined poor

enhancement, focal enhancement, to strong peripheral ring enhancement.

Peri-tumoural oedema is not typical in low grade glioma whereas in high

grade gliomas, a marked oedema with mass effect is expected. Areas of

central necrosis, cysts, and haemorrhagic foci are criteria of GBM. Unfortu-

nately, tumour margins were difficult to define due to micro-infiltration into

normal brain tissue. The criteria used to define the blood vessels were an

enhanced linear structure that runs throug a few slices in post-contrast T1-

weighted images, and/or linear signal void structures in T2-weighted images.

The term hot spot is defined to include the most hyperemic areas in the

tumour, indicating a high value in the look up colour scale. In the CBV

map, the hot spot areas appear in the range of red to yellow colours within

the solid portion of the tumour. Multiple regions of interest (ROIs) of not

more than 28 mm2 were drawn on the CBV map over the solid portion of

the tumour. The small size of the ROIs used in this study was to avoid erro-

neous sampling from adjacent normal brain tissue or blood vessels. Although

large blood vessels were excluded from the analysis, small blood vessels were

retained as long as they were contained within the tumour. This is because

a complex vascular network across the tumour precludes complete exclusion.

The time spent on drawing ROIs on the CBV map within the tumour area

and guided by conventional MR images (T2 and T1 post-contrast) was in the
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range of 10–20 minutes. The mean value of TBV of each region of interest

was considered and then the maximum value (TBVmax) among the ROIs

was taken as representative of the most aggressive part of the tumour. The

absolute TBVmax was normalized to the CBV value obtained from normal

white matter. Within the normal white matter (i.e., Centrum semiovale)

two large regions of interest (ROIs) of about 140 mm2 were drawn for nor-

malization. The reason for drawing a large ROI within the normal white

matter is to extract a representative value. The average of both ROIs was

reported and used to normalize the representative tumour value. Figures

(3.5, 3.6, and 3.7) present patients with diffuse glioma, anaplastic glioma,

and glioblastoma multiforme respectively. Radiological conventional images

illustrate the tumour and peri-tumoural signal intensity, and the CBV maps

illustrate the hot spot area and ROI in the tumoural area.

Figure 3.5: Images of a 41 year old male with histological diagnosis of low
grade glioma (grade II). A, axial T2WI hyperintense lesion in Rt posterior
frontal gyrus. B, contrast-enhanced T1WI shows hypointense lesion. C, CBV
map shows mild hyperaemic signal (ROI) in the same area, with a rTBVmax

value of 1.59.
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Figure 3.6: Images of 25-year-old male with histological diagnosis of anaplas-
tic glioma (grade III). A, axial T2WI shows hyperintensity in Lt frontal lobe
with involvement of corpus callosum. B, T1WI shows the tumour is partly
heterogeneous with cystic appearance in tumour area. C, CBV map shows
moderate hyperaemia (ROIs) with rTBVmax value of 7.2

Figure 3.7: Images of a 72 year old female with a histological diagnosis of
glioblastoma multiforme (grade IV). A, T2 axial weighted image shows hy-
pointense lesion within a large surrounding oedema at right inferior parietal
lobule. B, axial MPRAGE contrast enhanced shows lesion at the same area
with mass effect and effacement of the overlaying sulci. C, CBV map shows
severe hyperaemic lesion in corresponding area (ROI) with a rTBVmax value
of 10.62.
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3.6 Histological Procedures

All specimens were analysed as part of clinical care by two neuropathologists

who have more than 20 years experience. They were blind to the perfusion

MR imaging findings. The grading was based on the WHO grading sys-

tem into diffuse low grade glioma (grade II), anaplastic glioma (grade III),

and glioblastoma multiforme (grade IV) (Kleihues et al., 1995; Kleihues and

Ohgaki, 2000; Louis et al., 2007). The main features in this grading system

are mitosis, vascular proliferation, and nuclear pleomorphism.

3.7 Statistical Analysis

SPSS software (version 17.0) was used for the statistical analysis. In brief,

the receiver operating characteristic was used as a binary classifier to assess

the diagnostic performance of rTBVmax in grading glioma. The Cox regres-

sion model was used to assess the prognostic value of rTBVmax as survival

predictor. ANOVA was performed to assess the influence of confounders on

rTBVmax variation. The statistical analysis was mentioned in full detail in

the context chapters.

Cross validation was performed through double entry of clinical, demo-

graphic, and radiological data. 10% of the total included potential subjects

were randomly selected by the SPSS software. The cross validation process

included 13 potential subjects and 16 variables. The same criteria in the

initial data extraction were followed for cross validation.



Chapter 4

The Diagnostic Value of
Dynamic Susceptibility
Contrast-Enhanced MR
Perfusion in Predicting the
Grade of Cerebral Gliomas
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4.1 Introduction

Brain cancer incidence, adjusted for age, is about 7 per 100,000, and accounts

for 2% of all adult cancer deaths (Legler et al., 1999). The incidence rate

increases rapidly after the age of 45 and declines after age 79 (Legler et al.,

1999). Cerebral gliomas are the most common brain tumours (Principi et al.,

2003) and mostly are of high grade (Daumas-Duport et al., 1988).

The WHO histological classification of cerebral glioma has been revised

four times since its first publication four decades ago (Scheithauer, 2008).

This is because the classification primarily is based only on cellular differ-

entiation rather than cellular phenotype. Clinical outcomes differ with dif-

ferent cellular phenotypes; for instance, the variant of glioblastoma, small

cell glioblastoma, has a poor prognosis compared to non-small glioblastoma

(Perry et al., 2004), although a different study showed no difference in overall

survival (Homma et al., 2006). Another main component in tumour classifi-

cation is tumour necrosis, which has been found to be associated with poor

survival in high grade gliomas (Miller et al., 2006).

High mitotic activity of tumour cells requires more oxygen consumption

and hence more blood flow to the tumour (Murat et al., 2009). This is

accomplished by selecting pre-existing blood vessels (Winkler et al., 2009)

and by the formation of new ones (Anderson et al., 2008). The process of

blood vessel formation (angiogenesis) is controlled by molecular regulation

through over expression of certain growth factors as a result of cell hypoxia

(Behin et al., 2003). Consequently, vascular density increases in the tumoural

area with the increased number of large newly formed vessels (Cao et al.,



4.1 Introduction 76

2006; Anderson et al., 2008). Hence it is expected that the process of blood

vessel formation would be more prominent in high grade glioma and especially

in glioblastoma.

The WHO histological grading is the gold standard in grading cerebral

glioma. In patients deemed ineligible for debulking surgery, histological grad-

ing is based on tissue sampled from stereotactic biopsy. The brain biopsy of

tumours carries a small but significant risk of mortality and morbidity (Hall,

1998). Two main issues arise as a result of biopsy procedures: first, there is a

chance of 10% sampling error, as reported in clinical practice (Shastri-Hurst

et al., 2006); second, major complications (6%) may occur after stereotactic

biopsy, such as intra-cerebral haemorrhage, which may pass to hemipresis and

death (Teixeira et al., 2009; Dammers et al., 2010; Shastri-Hurst et al., 2006;

Jackson et al., 2001). Other centres have reported complication rates ranging

between 3% and 20%, including intracerebral haemorrhage, sub-arachnoid

haemorrhage, deep venous thrombosis, wound infection, hydrocephalus, and

infarct (Coffey et al., 1988; Vecht et al., 1990; Kreth et al., 1993; Bernstein

and Parrent, 1994; Kelly and Hunt, 1994; Bernstein, 2001).

Standard MRI images fail to accurately grade cerebral glioma as radio-

logical criteria such as contrast enhancement are weakly correlated with the

histological findings of tumours (Lev and Rosen, 1999; Law et al., 2006a).

The radiological findings of different cerebral glioma grades may appear simi-

lar in standard MRI images (Sugahara et al., 1999; Scott et al., 2002). It has

been shown that standard MRI has poor sensitivity (73%) and specificity

(65%) for diagnosing tumour type and grade, compared with histological

analysis (Law et al., 2003).
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Recently there has been a move towards using advanced MRI techniques

which provide information on the tissue micro-environment to characterise

brain tumours. The tumour growth has been correlated with an increase in

blood flow and volume derived from perfusion MR (Cha et al., 2002). Pre-

vious studies showed rCBVmax to be correlated with the histological grading

and with an increased vascularity of the tumour (Aronen et al., 1994; Sug-

ahara et al., 1998; Knopp et al., 1999; Cha et al., 2002). The use of MR

perfusion promises to provide more detail in evaluating tumour properties

such as vasculogenesis, cellularity, and tissue composition. Advanced perfu-

sion MRI using relative cerebral blood volume was reported as the metric best

correlated with histological diagnosis (Law et al., 2006c). A literature review

performed by me has revealed a good number of studies using the relative

cerebral blood volume for differentiating high from low grade glioma. Two

studies evaluated the accuracy of relative cerebral blood volume using 3 T in

glioma grading; however, again they had only a small sample size. The main

issue in those studies is the difference in the threshold value, which makes

pooling the data cumbersome. A systematic review (Chapter 2) found a low

specificity in differentiating between high and low grade glioma. The advan-

tage of using a strong magnetic field of 3 T for perfusion scanning, compared

to 1.5 T, is its higher signal to noise ratio, which can be used for higher

spatial resolution (Tofts, 2003). Accordingly, the temporal resolution will be

improved without a large decrease in the spatial resolution. This may result

in early picking up of the signal during the first pass of contrast, and an easy

detection of hot spot areas within the tumour area (Tofts, 2003). The aim

of this study is to assess the diagnostic accuracy of MRP at 3 T in grading
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cerebral gliomas against the standard WHO histopathological diagnosis.

4.2 Methods

The subject recruitment, MR imaging protocol, post-processing, and histo-

logical diagnosis were described in Chapter 3. The demographic and clinical

data are tabulated in Appendix F.

4.2.1 MR imaging protocol

The imaging protocol was described in detail in Chapter 3.

4.2.2 Post-processing and CBV map generation

Post-processing and CBV map generation was described in detail in chapter

3.

4.2.3 Histological procedures

Histological procedures was described in detail in chapter 3.

4.2.4 Statistical analysis

SPSS software (version 17.0) was used for the statistical analysis. The inter-

class correlation (reliability test) was evaluated as part of quality control, in

the form of assessing the intra and inter-observer agreement. A diagnostic

accuracy test was performed for the first 50 recruited patients of different
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glioma grades. In order to test the reproducibility of the diagnostic accu-

racy in this study, the threshold values obtained as a result were applied to

the next 73 recruited patients. Receiver operator characteristic curves were

generated from rTBVmax values for different values of sensitivities and speci-

ficities in differentiating high from low grade gliomas and in differentiating

between all three histological grades. The threshold values were obtained to

differentiate high from low grade gliomas, anaplastic glioma versus low grade

glioma, and among high grade gliomas. Statistical significance was defined

to be p < 0.05.

4.3 Results

The intra-class correlation was obtained for a subset of 41 patients with

different gliomas to test the reliability of rTBVmax derived MR perfusion

in grading glioma. Almost perfect consistency value (0.95) and substantial

agreement (0.79) (Landis and Koch, 1977) were found within the same ob-

server measures (Table 4.1).

Intra-class 95% CI F test
correlation

lower limit upper limit value Df1 Df2 Sig.
0.792 0.644 0.883 8.56 40 40 <0.001

Table 4.1: Intra-class correlation coefficient (Kappa) showed high consistency
for two readings of rTBVmax performed blindly to each other. CI denotes
the confidence interval; df, the number of degrees of freedom; Sig., that the
level of significance < 0.05

Twenty patients with different glioma grades were selected randomly by
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a computer using SPSS software. The data were analysed independently

by a different observer to grade glioma lesions using the same method in

calculating rTBVmax and defining hot spot areas (Chapter 3). The inter-

class correlation coefficient is indicative of substantial agreement (Landis

and Koch, 1977) (Table 4.2).

Inter-class 95% CI F test
correlation

lower limit upper limit value Df1 Df2 Sig.
0.80 -0.488 0.920 4.94 19 19 <0.001

Table 4.2: Inter-class correlation indicates substantial agreement between
the two observers; df denotes the number of degrees of freedom; Sig., that
the level of significance < 0.05.

The diagnostic accuracy in predicting the grade was assessed with various

cut-offs of the relative cerebral blood volume (rTBVmax) on the first recruited

50 patients with different glioma grades (18 LGG, 9 AG, and 23 GBM),

using the standard reference WHO histological grading system. The best

threshold values were selected based on the optimum sensitivity and accuracy

in differentiating the grades of glioma. The accuracy measures with the

rTBVmax for the best threshold values at distinguishing tumour grades are

presented in Table 4.3. The optimal cut-off values were estimated to provide

the maximal accuracy in differentiating between glioma grades.

The threshold values were assessed for their reproducibility on the next

73 recruited glioma patients (21 LGG, 15 AG, and 37 GBM) using the same

standard reference. The results are summarized in Table 4.4.
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Tumour Threshold SEN. SPEC. PPV NPV Accuracy P

Grade value % % % % % value

LGG vs
HGG

7.0 97 94 97 89 96 < 0.001

II vs III 7.0 89 94 89 94 93 < 0.001

III vs IV 9.6 100 56 85 100 88 < 0.001

Table 4.3: Sensitivity and specificity for the first set of glioma patients are
represented with their significance values. The chi square test was used to
produce the p value. PPV denotes the positive predictive value; NPV, the
negative predictive value. The AUC for the difference between high and low
grade glioma, between low grade glioma and anaplastic glioma, and between
anaplastic glioma and glioblastoma multiforme, were 94%, 87%, and 94%,
respectively.

Tumour Threshold SEN. SPEC. PPV NPV Accuracy P

Grade value % % % % % value

LGG vs
HGG

7.0 96 95 98 91 96 < 0.001

II vs III 7.0 87 95 93 91 92 < 0.001

III vs IV 9.6 97 73 90 92 90 0.002

Table 4.4: Re-testing accuracy measures on the defined threshold value on
the next recruited new 73 glioma patients. The AUC for the difference be-
tween high grade glioma (HGG) and low grade glioma (LGG), between low
grade glioma (LGG) and anaplastic glioma (AG), and between glioblastoma
multiforme (GBM) and anaplastic glioma (AG), were 97%, 91%, and 89%,
respectively.

The threshold values obtained from the first set had produced about the

same accuracy in differentiating between high and low grade glioma and be-

tween low grade glioma and anaplastic glioma. However, testing the thresh-

old in differentiating among high grade gliomas yielded an even higher accu-

racy value than the first set. Figure 4.1 presents the ROC graphs comparing

the accuracy obtained from the first and the second set of recruited patients.
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Figure 4.1: A comparison of ROC curves between high and low grade gliomas
for A, the first set of glioma patients (n = 50) and B, the second set of glioma
patients (n = 73)

We also pooled all 123 patients to test the accuracy of rTBVmax-derived

MR perfusion against the histological grades as a standard reference. The

receiver operator characteristic (ROC) curve is applied to assess the accuracy

measures of rTBVmax in differentiating between high grade (n = 84) and low

grade glioma (n = 39) (Table 4.5). Four high grade gliomas were misclassi-

fied as low grade. All the misclassified cases were anaplastic gliomas. Two

patients with diffuse astrocytoma were misclassified as high grade. The ROC

graph illustrates the predictive value for detecting high grade glioma, with

95% sensitivity, 95% specificity, and 95% accuracy (P ≤ 0.001) (Figure 4.2).

An ROC curve analysis was performed for both low grade glioma (n = 39)

and anaplastic glioma (n = 24). The sensitivity is 88% and specificity 97%

(Table 4.6) with a significant difference between the two grades (P < 0.001)

and AUC of 0.89 (Figure 4.3.)



4.3 Results 83

Threshold value Sensitivity Specificity PPV NPV Accuracy
(%) (%) (%) (%) (%)

7 95 95 98 90 95

Table 4.5: Threshold value with corresponding accuracy measures in dis-
tinguishing between high and low grade glioma; PPV denotes the positive
predictive value; NPV, the negative predictive value.

Figure 4.2: ROC curve demonstrating the diagnostic accuracy of rTBVmax

for analysis high grade glioma (HGG) and low grade glioma (LGG). The
AUC for each threshold is 0.96.

The ROC curve was applied to test the diagnostic value of rTBVmax

in differentiating glioblastoma multiforme (n = 60) from anaplastic glioma

(n = 24). The test had a high sensitivity (98%) but low specificity (67%).

Fifty-nine out of 60 GBM patients were correctly diagnosed (Table 4.7).

One patient with GBM was falsely classified due to a low rTBVmax value,

however, this patient had a long period of survival and tumour progression

after one year. Sixteen patients with anaplastic glioma (grade III) had a low
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Threshold value Sensitivity Specificity PPV NPV Accuracy
(%) (%) (%) (%) (%)

7 88 97 95 93 94

Table 4.6: Threshold values with corresponding accuracy measures of
rTBVmax in differentiating anaplastic glioma (grade III) from low grade
glioma (grade II)

Figure 4.3: ROC curve analysis showing difference between low grade and
anaplastic glioma with AUC of 0.89

rTBVmax value compared with those having GBM. Eight anaplastic glioma

patients were falsely classified by the MR perfusion as GBM, with higher

rTBVmax of more than 9.6. Three out of eight patients had high rTBVmax

and the remaining (n = 5) had rTBVmax values close to the threshold value.

One out of three patients with a high rTBVmax were diagnosed based on

stereotactic biopsy that showed oligodendrogliotic subtype. Interestingly,

all misclassified anaplastic glioma presented with clinical symptoms such as

neurological manifestations and seizures. A discriminant analysis showed a
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significant difference between high grade glioma (P < 0.001) with an AUC

of 90% (Figure 4.4).

Threshold value Sensitivity Specificity PPV NPV Accuracy
(%) (%) (%) (%) (%)

9.6 98 67 88 94 89

Table 4.7: Accuracy measures in differentiating glioblastoma multiforme
(grade IV) from anaplastic glioma (grade III)

Figure 4.4: ROC curve analysis illustrating the differences among high grade
glioma. AUC was 90% with significant difference (P < 0.001).

4.4 Discussion

A new hyperaemia-based radiological grading system was suggested in this

study for human adult cerebral gliomas. The maximum value of tumour
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blood volume demonstrated consistently high accuracy (96%) in differenti-

ating between high and low grade glioma and even better accuracy (90%) in

distinguishing glioblastoma from anaplastic glioma, compared to the training

set accuracy (88%).

In this study we used 2D gradient PRESTO technique at 3 T MR scan

to assess the diagnostic accuracy of the perfusion parameter (rTBVmax) in

grading glioma. All patients recruited underwent a pre-treatment MR per-

fusion scan. Both short echo time (23.8 s) and low flip angle (7◦) improved

the T ∗
2 signal changes and reduced the T1 effect. In addition, the total acqui-

sition time for obtaining the perfusion scans was 72 seconds as of 1.2 second

per image volume, so the contrast bolus can be tracked within the tumour

and without much loss of SNR. PRESTO is less sensitive than EPI to field

inhomogeneity (Liu et al., 1993) and gives fast three-dimensional volumes

without significant geometric distortion (Tofts, 2003). In contrast, Echo pla-

nar imaging (EPI) causes image distortion at arterial input function curve.

In addition, the temporal resolution in 3-Dimension acquisition of EPI is

about two seconds per image volume (Yang et al., 1998), which is insufficient

for bolus tracking (Tofts, 2003). The less geometric distortion in PRESTO

compared to EPI is attributed to a relatively shorter time interval between

the first and last echo (van Gelderen et al., 1995).

Two main problems are usually encountered when calculating tumour

blood volume. First, the T1 effect due to contrast leak within the extracellular

space as a result of porous tumour blood vessels, which is minimized to a

large extent by the use of a low flip angle and short echo time. Second,

contrast agent re-circulation to the tumour area, which may falsely increase
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the reading of the tumour blood volume. This contrast re-circulation was

mitigated by considering first pass bolus via fitting to a gamma variate curve

and by truncating the time intensity curve to the point of mid half-maximum

of signal recovery. The techniques among the studies were different in terms

of reducing the T1 effect for optimization of the T ∗
2 signal. Many studies used

a relatively long echo time or a large flip angle (Yang et al., 2002; Bulakbasi

et al., 2005; Hakyemez et al., 2006; Whitmore et al., 2007; Hirai et al., 2008),

which may result in under-estimating the actual tumour volume and hence in

affecting the MR perfusion sensitivity in grading gliomas. Another technique

attempting to reduce the T1 effect was to inject a pre-load contrast dose;

however the accuracy in grading glioma was not improved (Schmainda et al.,

2004; Boxerman et al., 2006; Whitmore et al., 2007).

The technical settings of MR perfusion and the methods of selecting

and drawing ROI used in this study were slightly different from what had

been published previously; hence the threshold values were expected to differ

as well. A systematic review (Chapter 2) identified the range of rCBVmax

threshold values as being between 1.1 and 3.9 (mean 2.13) to distinguish high

from low grade (Hou et al., 2006; Bulakbasi et al., 2005). This study anal-

ysis generated threshold values for radiological grading of gliomas from the

first 50 patients. These threshold values were tested on the second recruited

patient group (n = 73) and showed a high reproducibility and substantial

reliability.

The diagnostic performance in detecting high grade glioma was 97% in

the training set (n = 50) and 96% on the test data (n = 73), which is in line

with the performance achieved by other studies using 1.5 T (Hakyemez et al.,
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2005; Lu et al., 2008; Park et al., 2010b; Spampinato et al., 2007; Bulakbasi

et al., 2005; Arvinda et al., 2009; Lee et al., 2001) and 3 T (Park et al., 2010b,

2009; Morita et al., 2010). Two studies (Law et al., 2003; Zonari et al., 2007)

recruited a large number of glioma patients. The specificity in these studies

ranges from 57%–78%. The improvement in diagnostic accuracy compared

to other studies (Law et al., 2003; Schmainda et al., 2004; Zonari et al.,

2007; Bisdas et al., 2009; Law et al., 2007b) was due to the optimization

in the MR technical parameters such as the flip angle and echo time, in

addition to the post-processing technique to reduce contrast leakage and re-

circulation. The lower accuracy of those studies may be attributed to the

inclusion of other tumour types such as brain metastasis, ependymoma, and

neurocytoma (Cho et al., 2002; Schmainda et al., 2004), or to including the

paediatric age group with pilocytic astrocytoma (Bisdas et al., 2009). Four

patients histologically confirmed as high grade glioma had a low rTBVmax

value. All four patients were, however, anaplastic astrocytoma. Three out

of four patients were diagnosed based on surgical debulking and one patient

was diagnosed based on stereotactic biopsy. Two low grade glioma patients

had high rTBVmax. Both had undergone surgical debulking and one patient

died six months after diagnosis.

This study also showed a high ability in differentiating between glioblas-

toma multiforme (grade IV) and anaplastic glioma (grade III). The diagnostic

accuracy was 88% in the training set and 90% in the test set. The clinical

importance of this separation is that the survival and treatment plans differ

for the two tumour grades (Louis et al., 2007). Only two studies (Lu et al.,

2008; Park et al., 2009), to the best of my knowledge, have attempted to
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distinguish between the two tumour grades: one had low accuracy (57%)

and the other produced comparable accuracy (86%) although the result was

not validated. In this study only one glioblastoma patient presented with

low rTBVmax. The histological diagnosis confirmed a GBM arising in a low

grade tumour with focal vascular proliferation and incipient necrosis. Eight

anaplastic glioma patients were falsely diagnosed as GBM, based on radio-

logical classification. Three out of eight patients had high rTBVmax values;

two patients died a few months after diagnosis and had a histological report

of high cellularity and mitotic activity, the other patient died after two years

and was diagnosed based on stereotactic biopsy. The remaining five anaplas-

tic glioma patients had a rTBVmax value close to the threshold value. Three

out of five patients were diagnosed based on stereotactic biopsy and two of

them had the histological phenotype of oligodendroglioma.

However, the diagnostic accuracy of stereotactic biopsy may reach up

to 93% when two target sites are undertaken (Shastri-Hurst et al., 2006).

A larger percentage of glioblastoma multiforme patients were subjected to

surgical debulking while the rest (40%) were biopsied, either because the

tumour was inaccessible or the patients clinical status did not permit of

doing so. We see that no such under-grading of tumour grade occurred

within the glioblastoma multiforme (GBM) group; however, false negative

results of GBM may ensue at lower grades.

Although we demonstrated a high accuracy and reproducibility in grad-

ing cerebral gliomas, a few limitations were encountered in this study. First,

the interval between the histological and radiological diagnosis was too wide

for four glioma patients (two low grade glioma patients and two anaplas-
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tic glioma patients). The two anaplastic glioma patients had more than

a one year difference, and there was an even longer period for the two low

grade glioma patients. However, the tumour characteristics, based on clinical

and radiological criteria, were stable for those patients during the follow-up

period. Second, 32 patients (51%) with low grade and anaplastic glioma un-

derwent surgical biopsy rather than surgical debulking. In patients deemed

ineligible for debulking surgery, histological grading is based on stereotactic

biopsy. In fact, 10 out of 14 misclassified patients had a higher radiological

grade than histological grade. Third, the reproducibility of this technique

needs to be applied in a multi-centre study as the threshold values depend

mainly on local MR perfusion setting and post-processing technique. Finally,

although the patients recruited in this study were consecutive, they were less

than half of the cerebral glioma patients diagnosed during the time of the

study. Selection bias is unlikely, as the MR perfusion was mainly driven by

scanner availability.

4.5 Conclusion

In this study we have shown that the rTBVmax derived from dynamic sus-

ceptibility MR perfusion at 3 T affords high accuracy for the grading of

cerebral gliomas. This suggests that a single physiological tumour parame-

ter, namely the increase in blood volume, is almost as powerful as the panel

of cellular changes to predict tumour aggressiveness. The substantial agree-

ment of post-processing of the perfusion MR images was indicative of the

reproducibility of this method, although our cut-offs are higher than those
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previously reported. Importantly, non-invasive assessment of this parameter

through MR perfusion highlights its clinical diagnostic utility. The clinical

application of MR perfusion would be valuable during the follow-up period of

low grade glioma patients to assess tumour progression (Law et al., 2006a).

In my opinion, by knowing the value of rTBVmax during the follow-up period,

the surgical decision and the risk-to-benefit of an operation can be judged

appropriately. In chapter 6, the diagnostic performance of rTBVmax-derived

MR perfusion in tumour grading will be assessed against the histological di-

agnosis in predicting survival in conjunction with other previously reported

survival predictors.



Chapter 5

The diagnostic value of DCE-T1
MR perfusion in predicting
cerebral glioma grades
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5.1 Introduction

Tumour growth is associated with the development of several immature and

hyper-permeable blood vessels which differ from those in normal brain tis-

sue. The increase in the vascularity of the tumour is associated with high

malignancy (Macchiarini et al., 1992; Weidner et al., 1991). The increase in

vascular permeability is greatly affected by the vascular endothelial growth

factor (VEGF) (Puduvalli and Sawaya, 2000), which increases the vascular

density, which, in return may result in an increase in relative CBV. Hence,

CBV maps are used to assess patients with brain tumours (Rosen et al.,

1991; Knopp et al., 1999; Aronen and Perki, 2002; Wetzel et al., 2002; Law

et al., 2003). A strong relationship between the histological grade of cerebral

glioma and the CBV readings has been found by several studies (Aronen

et al., 1994; Ludemann et al., 2001; Sugahara et al., 2001; Law et al., 2003,

2004b; Mills et al., 2006; Sadeghi et al., 2007).

T ∗
2 -DSC MR perfusion is the most common method (Aronen et al., 1995;

Aronen and Perki, 2002), applied and explained in detail in Chapters 3 and

4. The main disadvantage of this method is the susceptibility effect wherein

the residual relaxivity is affected by contrast leakage into the extravascular

space (Siegal et al., 1997). The major blood vessels in T ∗
2 CBV maps are

broader and appear distorted compared to those displayed in T1 CBV maps.

The susceptibility effect has resulted in concealing vascular structure details

(Haroon et al., 2007).

T1-DSC perfusion analysis of glioma has demonstrated a significant ability

to distinguish between grade II and grade IV (Mills et al., 2006), and a good
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correlation between the CBV obtained from T1-DCE and from T ∗
2 DSC MR

perfusion (Li et al., 2003; Haroon et al., 2007) and the arterial spin label

method (Zhang et al., 2012).

The aim of this study is to assess the diagnostic accuracy of T1-DCE MR

perfusion in grading glioma and compare it to that obtained from T ∗
2 -DSC

MR perfusion.

5.2 Methods

The subject recruitment, MR imaging protocol, post-processing and histo-

logical diagnosis were described in Chapter 3. The demographic and clinical

data are tabulated in Appendix F.

5.2.1 MR imaging protocol

The imaging protocol was described in detail in Chapter 3

5.2.2 Perfusion images post-processing

The DCE-T1 perfusion images were post-processed using JIM software (www.

xinapse.com) where DICOM images (Figure 5.1) are downloaded and trans-

formed into Analyze image format to perform the perfusion analysis. Rapid

and consecutive turbo field echo images were used over the brain area with

10 slices and 45 repeats. The concept of generating a T1 MR signal is the

same as in T ∗
2 MR perfusion, but the contrast arrival into the area of interest

produces an increase in signal intensity, which is in contrast to the signal

www.xinapse.com
www.xinapse.com
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changes occurring in T ∗
2 . The arterial input function (AIF) was determined

by manual registration of the signal changes over the internal carotid artery

or the middle cerebral artery and then saved as an AIF file. The time–

intensity curve obtained from the AIF (Figure 5.2), an indicator of changes

in signal intensity, was registered on raw data T1 perfusion images to create

the CBV map of T1 perfusion. In the signal-intensity–time curve, the time

from escalating signal intensity to the end of T1 perfusion scanning time was

used for the analysis.

Figure 5.1: Raw data of T1 MR perfusion used to generate dynamic CBV
map

5.2.3 Calculation of rTBVmax

Calculation relative tumour blood volume was the same described in chapter

3. The appearance of different glioma grades with an example of ROIs over

the tumour is shown in Figure 5.3.
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Figure 5.2: Signal intensity time curve obtained from major feeding artery
to produce T1 dynamic perfusion images

5.2.4 Histological procedures

The histological procedures for grading glioma based on the WHO grading

system were given in detail in Chapter 3.

5.2.5 Statistical analysis

SPSS (17.0) was used to perform the statistical analysis. ROC was used as

a binary classifier to assess the diagnostic accuracy of this T1 MR perfusion

technique in grading glioma. ROC was also used for groups of patients where

T ∗
2 DSC perfusion was performed without pre-load dose. The accuracy values

obtained from the three different techniques were compared, to assess their

accuracy in grading gliomas.
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Figure 5.3: Conventional images and CBV map of DCE-MR perfusion. A
is T2-weighted; B, MPRAGE images; C, T1 perfusion images of low grade
glioma (upper row), anaplastic glioma (middle row), and glioblastoma mul-
tiforme (lower row). Multiple ROIs were placed over the hyperaemic area on
CBV map C.
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5.3 Results

ROC curves (Figure 5.4) were also applied to assess the diagnostic accuracy

of T1 perfusion, T ∗
2 MR perfusion techniques with and without pre-load dose

of contrast (Tables 5.1, 5.2, and 5.3).

Tumour Threshold Sensitivity Specificity PPV NPV Accuracy P

grade value % % % % % value

HGG vs LGG 3.7 97 78 94 88 93 <0.001
AG vs LGG 3.7 86 78 75 88 81 0.02
GBM vs AG 6.4 93 100 100 78 86 <0.001

Table 5.1: Optimised thresholds for T1 perfusion technique and accuracy in
distinguishing glioma grades

Tumour Threshold Sensitivity Specificity PPV NPV Accuracy P

grade value % % % % % value

HGG vs LGG 7 98 93 96 97 96 <0.001
AG vs LGG 7 94 93 89 97 94 0.001
GBM vs AG 9.6 100 59 83 100 86 <0.001

Table 5.2: Optimised thresholds and accuracy for T ∗
2 perfusion without pre-

load dose contrast in differentiating glioma grades

Tumour Threshold Sensitivity Specificity PPV NPV Accuracy P

grade value % % % % % value

HGG vs LGG 7 94 100 100 82 95 < 0.001
AG vs LGG 7 71 100 100 82 88 0.05
GBM vs AG 9.6 96 100 100 88 97 <0.001

Table 5.3: Optimised thresholds and accuracy for T ∗
2 perfusion with pre-load

dose contrast in grading gliomas
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Figure 5.4: Diagnostic accuracy of rTBVmax in differentiating high from low
grade glioma was assessed. ROC curves A, B and C represent AUC of T1
MR perfusion, T ∗

2 MR perfusion with pre-load dose, and T ∗
2 MR perfusion

without pre-load dose of contrast, respectively.
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5.4 Discussion

In this chapter the objective was to test the diagnostic accuracy of T1 per-

fusion in differentiating between high and low grade gliomas and between

different glioma grades for possible use in the future as a clinical tool.

ROC was obtained to test the accuracy of T1 MR perfusion in diagnosing

glioma. The highest sensitivity and accuracy was in separating high from

low grade glioma and in separating glioblastoma multiforme from anaplastic

glioma. This technique was introduced recently in our institution aiming

at being a radiological tool supplementing T ∗
2 MR perfusion. The separa-

tion within high grade glioma is important clinically as both the treatment

regimens and survival times are different.

The optimum threshold values in separating glioma grades for T1 per-

fusion were lower than for T ∗
2 perfusion, which may be attributed to the

small sample size, the low contrast dose, and the lesser susceptibility to sig-

nal changes. The accuracy of T1 perfusion in differentiating high from low

grade gliomas is comparable to that of T ∗
2 perfusion. In addition, T1 per-

fusion showed a high sensitivity and specificity in differentiating between

glioblastoma and anaplastic glioma. In distinguishing high from low grade

glioma, one high grade patient possessed a low rTBVmax, and two low grade

patients had high rTBVmax. One of these two cases showed clinical deterio-

ration and later received radiotherapy and chemotherapy. Our results were

in line with the previously reported significant difference between high and

low grade glioma (Pauliah et al., 2007) using T1-dynamic contrast enhanced

MR perfusion. On the other hand, others (Hu et al., 2010) have reported
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improved accuracy only when using a combination of a higher pre-load dose

and a baseline subtraction method.

In terms of the comparison between the two different techniques of T ∗
2 per-

fusion, the accuracy in differentiating high from low grade glioma was about

the same when a threshold value of 7 was selected. The slight difference

between the two techniques in other accuracy measures may be attributed to

the difference in distribution of glioma cases within each tumour grade. T ∗
2

MR perfusion without a pre-load dose had a lower specificity in differentiat-

ing among high grade gliomas. In total, seven anaplastic glioma patients had

high rTBVmax, two patients were diagnosed histologically based on surgical

biopsy. Those two cases died less than one year after diagnosis. Our re-

sult found no statistical difference between DSC-T ∗
2 MR perfusion with, and

without, pre-load dose. This contradicts data previously reported (Boxerman

et al., 2006).

5.5 Conclusion

T1 perfusion demonstrated a comparable accuracy to that of T ∗
2 perfusion.

However, its robustness in glioma grading still needs to be assessed on a

larger scale.



Chapter 6

Is relative cerebral blood
volume-derived MR perfusion a
significant predictor of survival
in patients with brain glioma?
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6.1 Introduction

The prognosis for cerebral gliomas remains poor despite the introduction

of combined therapy (Stupp et al., 2005). The glioma prognosis is variable

within the same histological grade, which may be indicative of other factors

implicated in survival (Gilles et al., 2000). Although histological diagnosis

is the gold standard reference in grading gliomas, tumour heterogeneity and

sampling error from stereotactic biopsy make grade verification inadequate

(Jackson et al., 2001; Behin et al., 2003).

Several factors have been assessed for their influence on predicting sur-

vival in glioma patients. Gender has been reported as a significant predictor

in high grade glioma wherein females have a better prognosis than males

(Hirai et al., 2008). In other studies, age and performance status were the

most prognostic variables encountered in survival prediction (Behin et al.,

2003; Chang et al., 2009). This is, however, in contradiction with others who

found that age and performance status did not elicit any prognostic signif-

icance for progression free survival in low grade glioma patients (Dhermain

et al., 2009). The same factors were found not significant survival predictors

within a group glioblastoma multiforme (Hirai et al., 2008; Stark et al., 2007)

Tumour resection, radiotherapy and re-operation of recurrence not chemother-

apy were prognostic factors in elderly patients survival for glioblastoma mul-

tiforme (Stark et al., 2007). The extent of surgical resection was a predictor

of survival within high grade glioma patients (Hirai et al., 2008). Glioblas-

toma patients with gross total resection have a longer survival time than those

who have a subtotal resection or biopsy; however, the difference did not reach
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statistical significance (Saraswathy et al., 2009). Assessment of the effect of

post-operative radio- and chemotherapy in low grade glioma showed that

post-operative treatment did not improve overall survival (Schomas et al.,

2009b). In addition, radiotherapy and chemotherapy did not improve sur-

vival in patients with anaplastic oligodendroglioma (van den Bent et al.,

2010).

Regardless of tumour grading, histological cell lines showed different blood

volume values (Maia, Jr. et al., 2005; Whitmore et al., 2007) and variable

survival time (Engelhard et al., 2003; Derlon et al., 2000). Low grade glioma

with oligodendroglial elements showed a longer median survival and patients

do better than their counterparts with astrocytic elements (Schomas et al.,

2009b). Oligodendrogliomas with loss of heterozygosity demonstrated radio-

and chemosensitivity, with a longer survival rate (Cairncross et al., 1998;

Bauman et al., 2000). The genetic loss of 1p/19q showed a strong correla-

tion with overall survival and progression free survival (van den Bent et al.,

2010).

Radiological features were revealed as prognostic parameters in glioma

patients survival. Tumour size (> 4 cm) and location were reported to be

independent predictors of overall survival when adjusted for performance

status and age (Chang et al., 2009). Contrast enhanced derived from con-

ventional imaging, relative CBV, and microvascular leak have been presented

as survival predictors (Dhermain et al., 2009). Cerebral blood volume was

found to be an independent predictor of 2-year survival within high grade

glioma patients (Hirai et al., 2008). Low grade oligodendrogliomas with het-

erozygous chromosomal loss showed high tumoural blood volume compared
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to the astrocytic cell type of the same grade (Whitmore et al., 2007). The

non-invasive evaluation of tumour behaviour with MRI perfusion (rCBV)

was reported to be an independent predictor among high grade glioma and

within the glioblastoma multiforme grade (Hirai et al., 2008; Saraswathy

et al., 2009). An increase of cerebral blood volume of more than three times

the CBV of normal white matter was significantly associated with poor sur-

vival (Saraswathy et al., 2009).

Changes in cerebral blood volume may also predict tumour transforma-

tion in which rCBV was elevated over a period of time compared to the

baseline measures in non-transformers (Danchaivijitr et al., 2008). A high

relative CBV was associated with a short time to progression, irrespective of

tumour grade, and has shown a significant association even when adjusted

for histological grading (Law et al., 2008). The shortfalls in those studies

were either their small sample size and few death events or in their assess-

ing survival within one tumour grade. Confounders such as age, treatment,

steroid intake, surgical resection, and performance status, were not analysed

beside the perfusion parameters in order to assess whether the rTBVmax is

an independent survival predictor. Furthermore, rTBVmax as a perfusion

parameter was adjusted to the histological diagnosis (Law et al., 2008) while

the study aimed at evaluating rTBVmax for possible future use as a substitute

for histological diagnosis in survival prediction.

The aim of the present study is to assess the prognostic value of rela-

tive tumour blood volume (rTBVmax) derived from MR perfusion in survival

prediction of glioma tumour patients. The predictive value of rTBVmax was

also assessed within glioblastoma multiforme patients. The prognostic value
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of rTBVmax in survival prediction will be assessed with demographic and

clinical factors.

6.2 Methods

6.2.1 Patient population

The patient population and criteria were described in detail in Chapter 3.

6.2.2 MR Imaging protocol

The imaging protocol was described earlier in Chapter 3.

6.2.3 Post-processing of dynamic images

The post-processing method was described in Chapter 3.

6.2.4 Histological technique

The histological technique was described in Chapter 3.

6.2.5 Survival analysis

The clinical follow-up period ranged from 1 to 255 days (median 33 days).

Overall survival and time to progression were used as the primary end points.

Overall survival was defined from the time of the first MR images confirming

the diagnosis of brain tumour to the date of the last visit or date of death.

Time to progression was defined from the date of the first diagnosis with MR
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images to the date of disease progression. Disease progression was defined by

the MacDonald criteria (Macdonald et al., 1990) which is based on either or

both radiological and clinical criteria. Tumour progression was identified by

an increase in tumour size by 25%, the appearance of a contrast-enhanced

new lesion, clinical deterioration with neurological symptoms, and an increase

or dependence on steroid dose. On MR scan, the tumour was measured with

two lines perpendicular to each other at the largest cross sectional diameter.

The assessment of the increase in size of the tumour was established by

measuring the tumour size in the latest MR images and comparing it to

that in the first MR images at diagnosis. The appearance of neurological

symptoms such as paresis, seizures, and a drop of performance score below

50 (Karnofsky scale) are signs of disease progression (Kocher et al., 2008).

There were 53 events distributed as follows: glioblastoma multiforme (n =

44), anaplastic glioma (n = 4) and low grade glioma (n = 5). The remaining

patients (n = 70) were registered as censored. The censored patients were

those who were still alive or lost to follow-up. The age variable was used for

survival analysis as a continuous variable.

To assess the predictive value of treatment in our cohort study, the pa-

tients were sub-grouped into three treatment-groups. Treatment grouping

was based on a study which showed Temozolomide as an independent sur-

vival predictor associated with improved survival (Stupp et al., 2009). The

three treatment groups were as follows: patients not having received any

treatment; patients receiving either of or a combination of radiotherapy and

Procarbazine, Chloro-ethyl-nitrosourea and Vincristine (PCV), and a third

group comprising patients who receiving any of the above treatments plus
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Temozolomide.

The relative tumour blood volume-derived MR perfusion (rTBVmax) was

reconstructed into three categorical groups. The classifier was based on

threshold values obtained with high accuracy (Chapter 4): the mild hy-

peraemic group (rTBVmax ≤ 7), the moderate hyperaemic group (rTBVmax

7.1-9.6), and the severe hyperaemic group (rTBVmax > 9.6).

Cytogenetic profiles grouped the patients into two groups: the first group

being those with a histological diagnosis of astrocytoma, and the second

group those having either or both oligodendroglioma and oligoastrocytoma

cell line.

The Karnofsky performance status scale has been published elsewhere:

(Crooks et al., 1991) describes numerically, in incremental order, the patient’s

ability to perform daily tasks. The score is on a point scale between 0 and

100 points with 10 point increments. However, in our analysis, the scale

was re-arranged into five groups by combining two consecutive scale points

and the 0 point scale (dead) was omitted as it used as the end point of the

survival outcome (Table 6.1). For some analyses, the Karnofsky scale was

sub-classified into two groups, wherein the value 50 was taken as the cut-

off. This is because too few events makes it impossible to run a multivariate

analysis on the extended Karnofsky scale.

6.2.6 Statistical analysis

SPSS (version 17.0) was used for the statistical analysis. Both The Kaplan–

Meier survival curve and the Cox regression model of survival were used to
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Score Description
90–100 Patient is fully active, few symptoms of disease
70–90 Patient caring for himself, but not capable of normal activity

or work
50–70 Patient can look after himself but not enough to work
30–50 Patient in bed or sitting in chair for more than half day, need-

ing some help to look after himself
10–30 Patient in bed or chair all the time and needs a lot of looking

after.

Table 6.1: Karnofsky scale for describing performance status.

assess the relative tumour blood volume, histological grading, age, gender,

performance status, treatment, steroid intake, cytogenetic profile, and sur-

gical resection as survival predictors. Both Mann–Whitney and Chi square

tests were used to assess the significance level for continuous and categori-

cal data, respectively. For illustration, the Kaplan–Meier curve presents the

graphs of the WHO histological classification and the three-tier radiological

classification for comparison. The Cox regression model was used to test

each variable in a univariate analysis for the hazard ratio and level of sig-

nificance. Significant variables were combined to check for independency in

survival prediction. The number of variables in the Cox regression model

was determined by the number of events (EPV) in the study (Concato et al.,

1995). In a multiple regression, a small number of events may affect test

accuracy and produce a misleading association between the tested variable

and survival prediction. The log rank test was used, in which a p value less

than 0.05 is indicative of statistical significance.
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6.3 Results

6.3.1 Descriptive analysis

Descriptive statistics were obtained for variables such as age, gender, perfor-

mance status, treatment, steroid intake, surgical procedure, and glioma phe-

notype, in addition to the maximum relative tumour blood volume (rTBVmax),

to reveal the statistical significance of each variable in terms of confounding

factors for survival time (Table 6.2).

Patients with cerebral glioma were treated differently according to the

tumour grades and this was manifested clearly for the variables treatment,

steroid intake, and surgical procedures, in addition to the tumour genetic

profile. Therefore, when performing this statistical analysis to test for statis-

tical significance, the patients were grouped based on these variables (Tables

6.3 and 6.4). The analysis was performed in two steps: step one includes uni-

variate analysis for each variable to assess its significance; step two combines

all statistically significant variables in a multivariate analysis.

6.3.2 Kaplan–Meier plot for overall survival and time

to progression: A graphical comparison of the WHO his-

tological classification and the three-tier radiological classifica-

tion

The Kaplan–Meier survival analysis and log rank test were used to assess

the effects of the WHO histological diagnosis and the three-tier radiological

classification (rTBVmax) on overall survival and time to progression (Figures

6.1–6.4). MR perfusion imaging values were transformed into categorical
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Variable Total (n = 123) Event (death) p value

Yes (%) No (%)

WHO LGG (39) 9.4 48.6 < 0.001
histological grading AG (24) 7.5 28.6

GBM (60) 83.0 22.9
rTBVmax Mild hyperaemia (41) 7.5 52.9 <0.001
(3-Tier classification) Moderate (16) 9.4 15.7

Severe (66) 83.0 31.4
Age (continuous) Mean(dead) 59.6 ± 11.7 53 70 <0.001

Mean (alive) 45.1 ± 15.4

Age (categorical) ≤ 52 yrs (61) 24.5 68.6 <0.001
> 52 yrs (62) 75.5 31.4

Gender Male (70) 64.2 52.9 0.142
Female (53) 35.8 47.1

Performance status 90–100 (28) 15.1 28.6 0.026
70–90 (68) 50.9 60.0
50–70 (20) 24.5 8.6
30–50 (5) 5.7 2.9
10–30 (2) 3.8 0.0

Treatment No treatment (39) 18.9 40.0 0.032
Partial treatment (42) 39.6 34.3
Full treatment (42) 41.5 25.7

Steroid intake No steroid (34) 13.2 40.0 0.001
Steroid intake (89) 86.8 60.0

Surgical procedure Biopsy (56) 52.8 40.0 0.109
Debulking (67) 47.2 60.0

Phenotype Astrocytoma (105) 98.1 75.7 <0.001
Oligoastro cell type (18) 1.9 24.3

Table 6.2: Mann–Whitney and Chi square tests were used for all glioma
grades to test the statistical significance of continuous and categorical vari-
ables, respectively. The distribution in percentages is illustrated within each
variable. The tests evaluate the relative frequencies of occurrence of the ob-
served events and a p value < 0.05 indicates significant difference between
groups of each variable.
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Variable Total (n = 84) Event (death) p value

Yes (%) No (%)

WHO AG (24) 8.3 55.6 < 0.001
histological grading GBM (60) 91.7 44.4
rTBVmax Moderate hyperaemia (17) 4.2 41.7 <0.001
(3-tier classification) Severe hyperaemia (67) 95.8 58.3
Age (continuous) Mean (dead) 59.6 ± 12 48 36 0.001

Mean (alive) 48 ± 15.9

Age (categorical) ≤ 52 yrs (31) 22.9 55.6 0.002
> 52 yrs (53) 77.1 44.4

Gender Male (51) 64.6 55.6 0.270
Female (33) 35.4 44.4

Performance status 90–100 (14) 14.6 19.4 0.386
70–90 (44) 47.9 61.1
50–70 (19) 27.1 13.9
30–50 (5) 6.3 5.6
10–30 (2) 4.2 0.0

Treatment No treatment (16) 14.6 22.2 0.664
Partial treatment (29) 39.6 36.1
Full treatment (39) 45.8 41.7

Steroid intake No steroid (11) 10.4 19.4 0.196
Steroid intake (73) 89.6 80.6

Surgical procedure Biopsy (38) 50.0 38.9 0.215
Debulking (46) 50.0 61.1

Phenotype Astrocytoma (77) 100.0 80.6 0.002
Oligoastro cell type (18) 0.0 19.4

Table 6.3: Mann–Whitney and Chi square tests illustrating the significance
of the variables for high grade glioma. A p value was considered significant
if it is < 0.05.
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Variable Total (n = 60) Event (death) p value

Yes (%) No (%)
rTBVmax 1st (30) 43.2 68.8 0.072
(50th percentile) 2nd (30) 56.8 31.3
Age (continuous) Mean (dead) 59.7 ± 12 44 16 0.082

Mean (alive) 51.8 ± 15.8

Age (categorical) ≤ 52 yrs (18) 22.7 50.0 0.045
> 52 yrs (42) 77.3 50.0

Gender Male (34) 63.6 37.5 0.066
Female (26) 36.4 62.5

Performance status 90–100 (10) 15.9 18.8 0.854
70–90 (24) 43.2 37.5
50–70 (19) 29.58 31.3
30–50 (5) 6.8 12.5
10–30 (2) 4.5 0.0

Treatment No treatment (8) 15.9 0.0 0.036
Partial treatment (18) 38.6 18.8
Full treatment (34) 45.5 81.3

Steroid intake No steroid (5) 11.4 6.20 0.488
Steroid intake (55) 88.6 93.8

Surgical procedure Biopsy (24) 47.7 18.8 0.039
Debulking (36) 52.3 81.3

Table 6.4: Mann–Whitney and Chi square tests were performed for continu-
ous and categorical data, respectively, on patients with glioblastoma multi-
forme (grade IV). The patient distribution and percentage of patients with
and without events is given for each variable.



6.3 Results 114

data (three-tier radiological classification) as mentioned earlier based on the

threshold values of the highest accuracy. The starting point for determining

the overall survival was taking from the date of the first MR scan at time

of diagnosis to the date of the last visit or the date of death. The time to

progression was defined from the time point of the MR scan at diagnosis

to the appearance of radiological and/or clinical criteria based on the Mac-

Donald criteria (Macdonald et al., 1990). The graphical presentation of the

Kaplan–Meier survival curve aims at determining whether the WHO histo-

logical grading and rTBVmax were able to correctly classify patients with

cerebral glioma based on their overall survival and time to progression.

Both overall survival and time to progression are survival parameters

which are very close for low grade glioma and anaplastic glioma when apply-

ing the WHO histological grading. On the other hand, our rTBVmax using

the three-tier radiological classification showed that patients with mild hy-

peraemia have a long period of survival and time to progression compared to

patients with moderate hyperaemia, while patients with severe hyperaemia

have the shortest cumulative survival time among all groups.

The second stage was to assess rTBVmax in predicting both overall sur-

vival and time to progression in patients with glioblastoma multiforme. A

median rTBVmax value (14.0) within GBM patients was chosen and used

as the cut-off value to create two groups. The Kaplan–Meier survival curve

did not show any significant difference between the two groups (Figures 6.5

and 6.6). Despite the fact that rTBVmax had statistical significance in pre-

dicting survival for all glioma grades, it failed to show any difference within

glioblastoma multiforme. This may be attributed to the difference in age,
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performance status, treatment, and surgical resection among the GBM pa-

tients. Therefore, a Cox regression model was run to assess the influence of

these factors on both survival and time to progression in all glioma grades

and within each glioma grade.

Figure 6.1: Kaplan–Meier survival curve according to WHO grade in cerebral
gliomas. The curves of both low grade glioma and anaplastic glioma were
close to each other, indicating failure of the WHO histological diagnosis in
separating the two glioma grades.

6.3.3 Assessment of the effect of co-variables on sur-

vival and time to progression performed for all

glioma grades: Univariate and multivariate analyses

For assessing the prognostic power of different variables, the Cox proportional

hazard model was used to assess the influence of certain factors assumed to

affect glioma patients survival and time to progression. One hundred and
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Figure 6.2: Kaplan–Meier curve of time to progression of all glioma grades
based on WHO histological diagnosis.

twenty-three patients with different glioma grades [39 LGG, 24 AG and 60

GBM] were subjected to survival analysis.

The first step was to assess these factors separately in univariate analyses

to determine their influence on glioma patient survival and time to pro-

gression. Age, rTBVmax, WHO histological grade, treatment, performance

status, and steroid intake were recognised co-variables showing statistical

significance in predicting overall survival (Table 6.5). rTBVmax was much

better in predicting the survival in the intermediate groups of glioma pa-

tients (moderate hyperaemia) than was the WHO histological grading. This

was shown earlier in Figure 6.1, where both the graphs of low grade glioma

and of anaplastic glioma were inseparable. Patients with performance sta-

tus <70 had shorter survival times compared to those with good performance
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Figure 6.3: Kaplan–Meier survival curve illustrating the overall survival
based on the three-tier radiological classification obtained at the point of
high accuracy in differentiating glioma grades.

Figure 6.4: Kaplan–Meier curve illustrating time to progression based on
rTBVmax, which shows better separation between glioma grades.
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Figure 6.5: Kaplan–Meier survival curve illustrating survival within the two
groups of GBM patients. Log rank was also not significant.

Figure 6.6: Kaplan–Meier curve of GBM patients illustrating time to pro-
gression based on rTBVmax-derived MR perfusion. The difference among two
groups GBM was non-significant (0.418).
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status. In the same table, variables such as gender, surgical resection, and ge-

netic phenotype showed no statistical significance. The multivariate analysis

of the significant variables, Tables 6.6 and 6.7, demonstrated that rTBVmax,

the WHO histological grading, and age were independent predictors of sur-

vival. However, the histological grading failed to predict survival in grade 3

patients. Referring to the three-tier radiological classification, patients with

moderate and severe hyperaemia were at higher risk (short survival) than

those with mild hyperaemia. Treatment, performance status and steroid

intake were not significant for predicting survival.

The same variables were also assessed for their effect on predicting tu-

mour progression. Age, rTBVmax, WHO histological grading, performance

status, and steroid intake were predictors of tumour progression, see Table

6.8. Factors such as gender, treatment, genetic phenotype, and surgical resec-

tion were not predictors of progression. The combined effect of the significant

variables showed that age, rTBVmax, WHO histological grading, and perfor-

mance status were the only independent predictors of tumour progression

(Tables 6.9 and 6.10). rTBVmax was able to predict progression in glioma

patients with moderate hyperaemia but the WHO histological grading failed

to do the same for the equivalent group of anaplastic glioma (grade 3) pa-

tients. Steroids failed to demonstrate any significance in predicting tumour

progression.
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Co-variate HR 95% CI p value
Age 1.07 1.04–1.09 <0.001
Gender (Male) 1.44 0.82–2.53 0.203
rTBVmax

Moderate hyperaemia 4.74 1.27–17.68 0.021
Severe hyperaemia 15.76 5.61–44.29 < 0.001
WHO histological grading
Grade 3 1.66 0.44–6.18 0.453
Grade 4 17.94 6.90–46.59 <0.001
No treatment 2.50 1.08–5.78 0.032
Partial treatment 1.96 1.04–3.68 0.036
Performance status
70–90 1.48 0.67–3.26 0.330
50–70 4.50 1.86–10.89 0.001
30–50 11.47 2.90–45.33 0.001
10–30 21.88 4.34–110.30 <0.001
Surgery (Biopsy) 1.25 0.73–2.14 0.419
No steroid intake 0.281 0.13–0.63 0.002
Phenotype
Astrocytic tumour 4.57 0.58–36.18 0.151

Table 6.5: Cox regression model (univariate analysis) assessing the influence
of each co-variable on predicting survival for patients with cerebral glioma
grades
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Co-variate HR 95% CI p value
Age 1.07 1.04–1.10 <0.001
rTBVmax

Moderate hyperaemia 4.49 1.14–17.77 0.023
Severe hyperaemia 12.88 4.05–40.97 <0.001
No treatment 1.14 0.46–2.85 0.776
Partial treatment 1.03 0.54–1.98 0.923
Performance status
70–90 1.21 0.50–2.93 0.674
50–70 1.34 0.52–3.45 0.540
30–50 3.28 0.80–13.44 0.099
10–30 6.77 0.96–47.88 0.055
No steroid intake 0.83 0.30–2.32 0.728

Table 6.6: Cox regression model (multivariate analysis) for the effect of co-
variables including radiological classification on predicting survival for pa-
tients with all glioma grades

Co-variate HR 95% CI p value
Age 1.06 1.03–1.09 <0.001
WHO histological grading
Grade 3 1.47 0.37–5.88 0.588
Grade 4 25.55 7.50–87.07 <0.001
No treatment 3.03 1.08–8.50 0.03
Partial treatment 1.51 0.78–2.93 0.223
Performance status
70–90 1.22 0.52–2.86 0.643
50–70 0.92 0.35–2.41 0.866
30–50 2.70 0.66–11.04 0.168
10–30 2.96 0.41–21.44 0.283
No steroid intake 0.73 0.25–2.15 0.570

Table 6.7: Cox regression model (multivariate analysis) for the effect of co-
variables including the WHO histological diagnosis on predicting survival for
patients with all glioma grades
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Co-variate HR 95% CI p value
Age 1.07 1.04–1.09 <0.001
Gender (Male) 1.47 0.84–2.58 0.181
rTBVmax

Moderate hyperaemia 4.70 1.26–17.54 0.021
Severe hyperaemia 15.33 5.47–42.99 < 0.001
WHO histological grading
Grade 3 1.58 0.42–5.92 0.495
Grade 4 23.38 8.50–64.33 <0.001
No treatment 1.73 0.72–4.15 0.223
Partial treatment 1.53 0.83–2.85 0.175
Performance status
70–90 1.37 0.62–3.03 0.430
50–70 4.02 1.65–9.75 0.002
30–50 9.55 2.40–37.96 0.001
10–30 99.64 115.83–

627.02
<0.001

Surgery (Biopsy) 1.22 0.71–2.10 0.466
No steroid intake 0.27 0.12–0.61 0.001
Phenotype
Astrocytic tumour 4.93 0.63–38.64 0.129

Table 6.8: Cox regression model (univariate analysis) for the influence of
co-variables on predicting tumour progression of all glioma grades

Co-variate HR 95% CI p value
Age 1.06 1.04–1.09 <0.001
rTBVmax

Moderate hyperaemia 4.69 1.22–17.96 0.024
Severe hyperaemia 13.86 4.46–43.11 <0.001
Low performance status 3.41 1.25–9.27 0.016
No steroid intake 1.23 0.50–3.00 0.650

Table 6.9: Cox regression model (multivariate analysis) for the combined
effect of co-variables including radiological diagnosis on predicting time to
progression of all cerebral glioma grades. Low performance status includes
patients with Karnofsky scores <50.
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Co-variate HR 95% CI p value
Age 1.05 1.03–1.08 <0.001
WHO histological grading
Grade 3 1.88 0.48–7.41 0.367
Grade 4 21.16 6.48–69.09 <0.001
Low performance status 3.11 1.15–8.44 0.026
No steroid intake 1.23 0.50–3.00 0.650

Table 6.10: Cox regression model (multivariate analysis) for the combined
effect of co-variables including histological diagnosis on predicting time to
progression of all cerebral glioma grades. Low performance status includes
patients with Karnofsky scores <50.

6.3.4 Assessment of the influence of certain co-variables

on survival and time to progression performed

within high grade glioma: Univariate and multivariate

analysis

The Cox regression model was applied to patients with high grade glioma

(grades 3 and 4) to assess the influence of certain factors on survival and time

to progression. Age, rTBVmax, histological grading system, treatment and

performance status were recognized factors in predicting survival for high

grade glioma (Table 6.11). MR perfusion found patients with a rTBVmax

value above 9.6 have a higher risk and shorter survival compared to those

with a value below 9.6. This threshold value was based on the highest accu-

racy value in differentiating between glioblastoma multiforme (grade 4) and

anaplastic glioma (grade 3) mentioned earlier in Chapter 4. Multivariate

analysis (Tables 6.12 and 6.13) showed that rTBVmax, histological grading

system, and age are independent predictors of survival of GBM. Treatment

and performance status were inconsistent as they had a varying significance
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level for survival prediction. The influence of the same variables on predicting

tumour progression was also assessed wherein factors of rTBVmax, histolog-

ical grading, age and performance status were significant predictors (Table

6.14). rTBVmax as MR perfusion parameter was able to significantly showed

short period to tumour progression in patients with rTBVmax >9.6 compared

to those below 9.6. Only high grade glioma patients with performance status

<50 showed short period to tumour progression compared to those with high

performance status. Although the combined effect of those three variables

were independent predictors of tumour progression within high grade glioma,

only patients with low performance status below (<50; Karnofsky scoring)

showed short period of tumour progression (Tables 6.15 and 6.16).

Co-variate HR 95% CI p value
Age 1.07 1.04–1.10 <0.001
Gender (Male) 1.11 0.62–2.01 0.723
rTBVmax (>9.6) 10.00 2.42–41.45 0.001
WHO histological grading
Grade 4 10.65 3.69–30.80 <0.001
Surgical resection
Biopsy 1.10 0.62–1.93 0.757
No treatment 2.48 1.02–6.05 0.045
partial treatment 1.90 1.00–3.63 0.050
Performance status
70–90 1.20 0.51–2.79 0.681
50–70 2.42 0.96–6.06 0.060
30–50 6.08 1.50–24.68 0.011
10–30 11.47 2.22–59.18 0.004
No steroid intake 0.854 0.34–2.16 0.739

Table 6.11: Cox regression model (univariate analysis) for high grade glioma
was performed to assess the effect of variables on survival prediction.
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Co-variate HR 95% CI p value
Age 1.06 1.03–1.10 <0.001
rTBVmax (>9.6) 8.67 2.02–37.26 0.004
No treatment 1.15 0.46–2.89 0.766
partial treatment 1.13 0.60–2.15 0.701
Low performance status 3.42 1.24–9.43 0.018

Table 6.12: Cox regression model (multivariate analysis) was performed to
assess the influence of combined variables including radiological classification
in predicting survival among high grade glioma.

Co-variate HR 95% CI p value
Age 1.06 1.03–1.09 <0.001
WHO histological grading
Grade 4 14.60 4.21–50.62 <0.001
No treatment 2.89 1.04–7.98 0.041
partial treatment 1.48 0.76–2.87 0.246
Low performance status 2.49 0.86–7.21 0.092

Table 6.13: Cox regression model (multivariate analysis) was performed to
assess the influence of combined variables including histological diagnosis in
predicting survival among high grade glioma.
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Co-variate HR 95% CI p value
Age 1.06 1.04–1.09 <0.001
Gender (Male) 1.23 0.68–2.23 0.491
rTBVmax (>9.6)
Severe hyperaemia 9.17 2.22–37.85 0.002
WHO histological grading
Grade 4 14.88 4.43–49.94 <0.001
Surgical resection
Biopsy 1.04 0.59–1.84 0.888
No treatment 1.77 0.69–4.52 0.235
partial treatment 1.47 0.78–2.77 0.230
Performance status
70–90 1.02 0.44–2.37 0.970
50–70 1.99 0.79–5.02 0.147
30–50 4.56 1.12–18.51 0.034
10–30 47.22 7.41–301.00 <0.001
No steroid intake 0.95 0.37–2.41 0.914

Table 6.14: Cox regression model (univariate analysis) for the influence of
co-variables on time to progression for patients with high grade glioma

Co-variate HR 95% CI p value
Age 1.06 1.03–1.08 <0.001
rTBVmax(>9.6)
Severe hyperaemia 6.76 1.61–28.30 0.009
Low performance status 3.40 1.25–9.25 0.017

Table 6.15: Cox regression model (multivariate analysis) was performed to
assess the influence of combined co-variables including radiological classifica-
tion in predicting tumour progression in patients with high grade glioma.
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Co-variate HR 95% CI p value
Age 1.05 1.02–1.07 0.001
WHO histological grading
Grade 4 11.02 3.09–39.22 <0.001
Low performance status 3.14 1.16–8.55 0.025

Table 6.16: Cox regression model (multivariate analysis) was performed to
assess the influence of combined co-variables including histological diagnosis
in predicting tumour progression in patients with high grade glioma.

6.3.5 Assessment of the influence of variables on pre-

dicting survival and time to progression in glioblas-

toma multiforme: Univariate and multivariate analysis

Further univariate and multivariate analyses were performed only for glioblas-

toma multiforme patients, to investigate the prognostic value of rTBVmax

in addition to other co-variables in survival and tumour progression. Age,

treatment and performance status were significant variables in predicting pa-

tients’ survival (Table 6.17). Patients who had not received treatment had a

survival shortened by 70% compared to patients receiving full treatment in-

cluding Temozolomide. Patients with performance status < 30 demonstrated

shortened survival times by 85% compared to patients with high performance

status. Both steroid intake and rTBVmax did not show any significance in pre-

dicting survival for glioblastoma multiforme. Only the variables that showed

statistical significance were incorporated in the multivariate analysis (Table

6.18). Age and treatment were independent predictors of overall survival in

glioblastoma multiforme patients.

Time to progression was assessed for patients with glioblastoma multi-

forme to define the co-variables that may influence their survival. Table 6.19
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displays the univariate analysis of performance status, steroid and age, as

influencing tumour progression. Patients with performance status < 30 were

at a higher risk with a shorter period for tumour progression compared to

those with higher performance status. Patients who did not receive steroids

had their time to progression decreased by 70%. rTBVmax, using their me-

dian value, in addition to gender, treatment and surgical resection, did not

predict tumour progression in glioblastoma patients. Further assessment of

the combined effect of co-variables using multivariate analysis (Table 6.20)

revealed that performance status, steroid and age were independent factors

in tumour progression.

Sixteen patients with GBM survived longer than one year; 6/16 patients

were younger than 52 years, 10/16 patients presented initially with high

(=80) Karnofsky score; 11/16 patients received complete treatment, and 8/16

patients were subjected to surgical debulking. One patient with an overall

survival of about 3 years was diagnosed with brain stem glioma at the age of

34 years.
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Co-variate HR 95% CI p value
Age 1.06 1.03–1.09 <0.001
Gender (Male) 1.38 0.73–2.58 0.320
rTBVmax (>14) 1.26 0.69–2.31 0.454
No treatment 3.48 1.45–8.38 0.005
Partial treatment 2.09 1.07–4.08 0.031
Performance status
70–90 1.27 0.53–3.04 0.585
50–70 1.15 0.45–2.93 0.775
30–50 3.51 0.87–14.18 0.078
10–30 6.55 1.28–33.60 0.024
No steroid intake 1.43 0.56–3.68 0.457

Table 6.17: Cox regression model (univariate analysis) for the influence of
co-variables on survival in glioblastoma patients

Co-variate HR 95% CI p value
Age 1.06 1.03–1.10 <0.001
No treatment 5.37 1.92–15.02 0.001
Partial treatment 1.62 0.80–3.29 0.180
Low performance status 1.95 0.65–5.91 0.236

Table 6.18: Cox regression model (multivariate analysis) for the influence of
co-variables on survival in glioblastoma multiforme patients
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Co-variate HR 95% CI p value
Age 1.04 1.02–1.07 0.002
Gender (Male) 1.62 0.87–3.03 0.130
rTBVmax >14 1.28 0.70–2.33 0.431
No treatment 2.39 0.93–6.10 0.070
Partial treatment 1.62 0.84–3.12 0.148
Performance status
70–90 0.68 0.28–1.68 0.409
50–70 0.67 0.26–1.75 0.415
30–50 1.89 0.48–7.48 0.366
10–30 19.71 3.16–122.83 0.001
Surgery (Biopsy) 0.84 0.46–1.53 0.565
No steroid intake 3.10 1.18–8.14 0.022

Table 6.19: Cox regression model (univariate analysis) of GBM patients for
the influence of co-variables on tumour progression

Co-variate HR 95% CI p value
Age 1.04 1.01–1.07 0.006
Low performance status 3.54 1.28–9.80 0.015
No steroid intake 3.10 1.17–8.21 0.023

Table 6.20: Cox regression model (multivariate analysis) for the influence of
combined effect of co-variables on tumour progression
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6.4 Discussion

Perfusion MR imaging is increasingly being used as a complementary tool to

histological findings in diagnosing cerebral glioma. The relative TBVmax de-

rived from MR perfusion has high accuracy in differentiating cerebral glioma

in adults as shown in chapter 4. This study showed an extended gain of

rTBVmax in predicting overall survival and tumour progression for all glioma

grades, high grade glioma, and glioblastoma multiforme in specific. There

was the intention of particularly looking for the survival of GBM patients

due to the potential clinical concern stemming from the poor outcome and

shorter survival time of this grade.

In this study we used the Kaplan–Meier curve to compare the potential

prognostic value of the histological WHO grade and the MR perfusion derived

hyperaemia grade for overall and time to progression in patients with cerebral

glioma. It was shown that both overall survival and time to progression

survival curves were well separated for low hyperaemia, moderate and severe

hyperaemia based on the three-tier radiological classification. In contrast,

the WHO histological grading failed to make a clear distinction between

diffuse glioma and anaplastic glioma. This is the first study to compare

graphically overall survival and time to progression within groups of patients

with different glioma grades. Most previous studies have included one or two

cerebral glioma grades and one study (Hirai et al., 2008) compared grades

III and IV based on MR perfusion parameters. They reported rTBVmax

and histological diagnosis as independent 2-year survival predictors. Only

three studies (Blankenberg et al., 1995; Law et al., 2008; Bisdas et al., 2009)
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included three grades of cerebral glioma in which either overall survival or

time to progression were studied. Among those three studies, one study

(Law et al., 2008) compared time to progression between low grade gliomas

and glioblastoma multiforme or high grade glioma. The other two studies

recruited only a small population size of cerebral glioma and did not assess

rTBVmax (Blankenberg et al., 1995) or did not adjust for other variables

(Bisdas et al., 2009).

The Kaplan–Meier survival function was used to assess the prognostic

value of rTBVmax within patients with glioblastoma multiforme. The me-

dian value of rTBVmax was not useful as a cut-off in predicting survival and

time to progression. A few studies have assessed the prognostic value of in-

fluential factors within glioblastoma multiforme such as age (Nwokedi et al.,

2002; Chang and Barker 2nd, 2005; Mineo et al., 2007), tumour resection

(Hung and Howng, 2003; Stark et al., 2007; Flynn et al., 2008; Ma et al.,

2009), performance status (Hung and Howng, 2003; Gorlia et al., 2008; Ma

et al., 2009), and treatment with Temozolomide (Mineo et al., 2007; Gorlia

et al., 2008; Ma et al., 2009), which have been reported to be predictors of

survival. Only one study (Oh et al., 2004), with a small sample size of GBM,

assessed rCBVmax in predicting survival and showed no significance in using

a rCBVmax threshold value of 1.3. Our study is in line with what has been

reported, that rTBVmax was not predictive within glioblastoma multiforme

patients.

In this study, rTBVmax was assessed in combination with other factors.

The initial results using both the three-tier radiological and the WHO his-

tological classification showed that a large percentage (83%) of events were
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detected in patients of severe hyperaemia (high rTBVmax) and GBM. A large

percentage (75%) of events were also detected among patients who are more

than 52 years old. The effect of other factors such as performance status,

steroid treatment, and genetic phenotype, initially appeared significant in

some groups. In fact these factors were presented in a large percentage of

live and dead patients. This is as a result of the fact that a large number of

recruited patients were unevenly distributed within the variables’ subgroups.

When assessing the prognostic factors in predicting survival and time to

progression for all glioma grades, it was found that rTBVmax and age were in-

dependent predictors of survival and tumour progression. Histological grade

and treatment were independent predictors for overall survival but not for

time to progression, while performance status was an independent predictor

of tumour progression. Interestingly, steroid intake was shown to be asso-

ciated with a decrease in survival time, which is attributed to the fact that

steroids are mostly prescribed to high grade glioma patients. Our finding

that the maximum rTBV predicts survival in all glioma grades is in line with

previous studies (Law et al., 2008; Bisdas et al., 2009). The exception to

that is Bisdas (2009) who reported a rCBVmax threshold value of 4.2 in pre-

dicting tumour progression. Relative TBVmax demonstrated independence in

predicting survival which is in line with other imaging modalities such as sin-

gle photon emission computed tomography (SPECT). The SPECT, using the

amino acid analog [iodo-L-a-methyltyrosine], is an independent survival pre-

dictor when adjusted for age and histological grading (Weber et al., 2001).

The authors only assessed the prognostic value of SPECT among the two

main glioma grades (high versus low grade).
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Again assessing the prognostic value of co-variate was performed within

high grade glioma patients which revealed that rTBVmax, performance sta-

tus, and age were predictors of survival and tumour progression. Interest-

ingly, patients with severe hyperaemia (high rTBVmax) who had a perfor-

mance status <30 demonstrated a shorter survival by about 11-fold, com-

pared to those with moderate hyperaemia. This study for the subgroups of

patients with high grade glioma was comparable to a previously reported

study (Hirai et al., 2008) using a lower threshold value (2.3) of rTBVmax.

rTBVmax, age, and performance status as survival predictors were found

comparable to our study in predicting survival; however, that study did not

elicit any significance in gender and surgical resection.

Further assessment was performed only for GBM patients to determine

variables which might contribute to survival and tumour progression. Our

findings showed that relative TBVmax failed to predict survival in GBM pa-

tients, which is in line with a previous study (Crawford et al., 2009) but

is discrepant with others who found a significant association (Saraswathy

et al., 2009; Mangla et al., 2010). However, Mangle et al. (2010) assessed the

changes in cerebral blood volume after treatment with Temozolomide and

radiotherapy and Saraswathy et al. (2009) reported that a 3-fold increase

in CBV compared to white matter was associated with poor outcomes. Age

was an independent predictor of survival and tumour progression in GBM

patients, which is in line with several studies (Barker et al., 1996; Carson

et al., 2007; Hung and Howng, 2003; Ma et al., 2009; Mineo et al., 2007) but

disagrees with a few studies (Shinoda et al., 2001; Mangla et al., 2010). GBM

patients who had not received treatment are at higher risk (hazard ratio=
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6) with their survival shortened by 6-fold compared to those who received

treatment including Temozolomide, whereas those who have received either

or both chemotherapy and radiotherapy showed a trend towards significance.

The findings in this study were in agreement with a previous study (Mineo

et al., 2007). Others have found a significant association between conven-

tional treatment and survival (Barker et al., 1996; Allahdini et al., 2010;

Carson et al., 2007; Ma et al., 2009; Stark et al., 2007). We did not find

any association between gender, steroid intake, and surgical resection, which

in part is in agreement with previous studies (Barker et al., 1996; Carson

et al., 2007; Chang and Barker 2nd, 2005), whereas others have found surgi-

cal resection significantly associated with improved survival (Ma et al., 2009;

Mineo et al., 2007; Mangla et al., 2010). Age and performance status were

independent predictors for tumour progression in the current study, which

is in agreement with other studies (Li et al., 2009; Levin et al., 2000) albeit

steroid intake was not assessed previously to the best of our knowledge. On

the other hand, treatment, surgical resection, and gender did not demon-

strate any significant association with tumour progression, which is partially

in line with previous studies (Levin et al., 2000; Young et al., 2011).

Advanced MRI techniques and parameters have been assessed in survival

prediction by a few studies. Ktrans, vascular permeability factor, was assessed

in recurrent glioblastoma multiforme patients who received anti-vascular en-

dothelial growth factor (Sorensen et al., 2009). The reduction in Ktrans was

significantly associated with prolonged survival and progression free survival

but other demographic and clinical factors were not considered in the anal-

ysis. Moreover, the apparent diffusion coefficient (ADC) as a diffusion MRI
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bio-marker has been reported by several studies to be an independent sur-

vival predictor (Murakami et al., 2007; Yamasaki et al., 2010; Saksena et al.,

2010). ADC predicts tumour progression in recurrent glioblastoma patients

treated with anti-angiogenic therapy (Pope et al., 2009).

The methylated status of GBM is predictive of better outcomes in re-

sponse to Temozolomide treatment (Hegi et al., 2004; Carrillo et al., 2012).

The radiological features of the glioblastomas were under investigation by

others to assess their predictive value. Ring enhancement of the tumour was

associated with unmethylated MGMT status, indicating less sensitivity of

the tumour to chemotherapy (Drabycz et al., 2010). Furthermore, methy-

lated GBM without oedema had a longer survival than unmethylated or

methylated tumours with oedema (Carrillo et al., 2012). Isocitrate dehydro-

genase (IDH1) mutation in glioblastoma is reported as a survival predictor

and is associated with longer survival (Dubbink et al., 2009; Carrillo et al.,

2012). Interestingly, imaging features such as non-contrast enhanced are

highly correlated with IDH1 mutation. The diffusion parameter, ADC ratios,

and WHO histological grade were significantly higher in MGMT methylation

versus unmethylated group of high grade gliomas (Moon et al., 2011).

The main limitation of this study was the different treatment regime

applied to patients with the same glioma grades, which may reflect survival

prediction. It is not known whether patients with a short survival time are

so because of not receiving treatment or due to the effect of other influential

factors such as low performance status or clinical deterioration. The second

limitation was the small sample size and small number of events which did not

permit assessing confidently more factors at one time. The third limitation
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was that about half of the potential participants (n = 56) were histologically

diagnosed based on surgical biopsy. The chance of sampling error and under-

grading may arise when picking tissue of less malignant tumours in those

with high grade glioma. The fourth limitation is that one parameter of

MR perfusion was assessed and other functional imaging parameters such

as cerebral blood flow and vascular permeability were not considered in the

survival analysis.

6.5 Conclusion

The current method of predicting survival and tumour progression is based

on the histological WHO grading system; however, it is limited by sampling

error and under-grading. We implemented a Three-tier radiological classifica-

tion derived from MR perfusion to predict survival in patients with cerebral

glioma. The radiological classification was able to identify patients with in-

termediate hyperaemia as clearly separable from those with mild and severe

hyperaemia. A Cox regression for survival and tumour progression demon-

strated that radiological classification is an independent predictor of glioma

patients with intermediate and severe hyperaemia. It would be of interest in

the future to assess the baseline rTBVmax value and the changes after treat-

ment to monitor tumour response or progression in patients with cerebral

glioma.



Chapter 7

Assessing the Technical and
Biological Factors that may
Affect TBV Measurements
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7.1 Introduction

It is known that microvascular proliferation, along with an increase in mi-

totic activity and nuclear atypia, is one of the histological markers of tu-

mour aggressiveness adopted in the WHO histological grading for cerebral

gliomas (Scheithauer, 2008). An increase in cerebral blood volume can be

measured non-invasively with MR perfusion techniques. A systematic re-

view of the literature, with pooled data, (Chapter 2) found cerebral blood

volume-derived T ∗
2 MR perfusion possessing a high sensitivity (95.6%) but a

low specificity (75.5%) in differentiating high from low grade gliomas. But in

the present study, we achieved a comparable sensitivity (95%) and a higher

specificity (95%) than previously published in differentiating between high

and low grade gliomas. Tumour heterogeneity produces variations in CBV

values, most likely in high grade glioma, wherein the signal intensity may

range from 3 to 7 above the baseline images (Provenzale et al., 2006). An-

other probable cause of this variation in signal intensity may be the biological

effect in which differences may occur between individuals of the same glioma

grade subjected to the same technical settings (Roberts et al., 2000).

In addition, technical factors such as dose and concentration of the con-

trast agent, rate of injection, type of contrast, pre-loading contrast dose, echo

time, and flip angle, may affect the changes in MR signal and lead to varia-

tion within the same grade (Tofts, 2003). The biological factors which may

contribute to CBV variation are age, phenotypes, and steroid intake at time

of MRI scanning; the effects of these will be assessed in this chapter. There

was little technical variation in this retrospective dataset subjected to stan-
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dardized MR scanning clinical protocol. For example, one protocol variation

consisted of giving a pre-loading dose of contrast to a subset of the patients,

while other scanning protocols were applied equally to potential participants

in this study. A literature review showed that steroids lead to a decrease in

blood–brain barrier and decreased tumour perfusion (Kotsarini et al., 2010);

however, it is not clear whether the administration of steroids may specifically

change the blood volume. Accordingly, steroid intake and other factors such

a a pre-load contrast dose and phenotype will be assessed for their influence

on cerebral blood volume changes. The aim is to identify certain technical

and biological factors that may affect CBV measurements. The hypothesis

is based on the knowledge that a pre-loading dose and steroids lower CBV,

while glioma with an oligodendroglial cell line has an elevated CBV.

7.2 Methods

7.2.1 Patient criteria and clinical data

The patient criteria and data are described in Appendix F and Chapter 3.

The demographic and clinical data for the two subgroups are given in Table

7.1. Two groups were created to compare the accuracy between DSC-T ∗
2 MR

perfusion with and without a pre-load contrast dose. The first group com-

prised 43 patients with different glioma grades receiving a pre-load contrast

before DSC-T ∗
2 MR perfusion. The second group comprised the same number

of patients and were matched for grade, steroid intake, and phenotype, but

underwent DSC-T ∗
2 MR perfusion without a pre-load dose.
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Variable First group Second group
(Pre-load dose) (without pre-load dose)

(n = 43) (n = 43)
Age (Mean ± SD) 53.5 ± 15.6 55.6 ± 15.8
Gender (Male/Female) 23/20 30/13
rTBVmax (overall mean) 11.55 ± 6.6 11.80 ± 6.3
Biopsy 19 23
Debulking 24 20
No treatment 10 11
Partial treatment 12 18
Full treatment 21 14
Performance status
90–100 8 10
70–90 26 20
50–70 6 10
30–50 3 2
10–30 0 1

Table 7.1: Comparison of demographic and clinical data between the two
groups (1) Patients receiving DSC-T2∗MR perfusion with pre-load dose con-
trast (2) Patients receiving DSC-T2∗MR perfusion without pre-load dose
contrast
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7.2.2 Statistical analysis

SPSS (17.0) was used to perform the statistical analysis. The difference in

means of rTBVmax per each group and grade were evaluated using the Mann–

Whitney test. The correlation between the DSC-T ∗
2 perfusion techniques

was assessed with Spearmans correlation coefficient and is presented in a

scatter plot graph. Pearson’s Chi square was used to assess the distribution

of patients in number, percentage, means, and standard deviation per each

factor and grade. To identify the effect from biological and clinical factors,

analysis of covariance (ANOVA) was used to test the null hypothesis that the

means of the groups per each factor were equal. The analysis was corrected

using the Bonferroni procedure for single and combined factors. A p value

<0.05 was considered significant throughout the analysis.

7.3 Results

7.3.1 Correlation of different MR perfusion techniques

The means and standard deviations of rTBVmax derived from DSC-T ∗
2 MR

perfusion, with and without pre-load contrast, showed no significant differ-

ence per each glioma grade (Table 7.2). Figure 7.1 illustrates the goodness-

of-fit between the two techniques in a scatter plot with a value of 0.62.
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MR DSC-T ∗
2 without DSC-T ∗

2 with p value
techniques pre-load dose pre-load dose

Mean ± SD
LGG 4.26 ± 1.49 4.20 ± 1.17 0.895
AG 8.6 ± 2.90 7.36 ± 2.79 0.565

GBM 15.14 ± 5.33 15.08 ± 5.68 0.917

Table 7.2: Mean values of rTBVmax of different glioma grades were mea-
sured per each technique. Non-parametric Mann–Whitney test of indepen-
dent samples found no differences between the techniques per each grade.

Figure 7.1: Scatter plots of the correlations between the relative tumour
blood volume values obtained from T ∗

2 DSC-MR perfusion with and without
pre-load dose. The correlation was assessed for two groups matched for
tumour grade, steroid and phenotype. The best fit was determined by the
coefficient of determination (R2) between the two techniques.

7.3.2 Assessment of the potential effect of biological

and clinical factors on changes in rTBVmax

Table 7.3 uses Pearson’s Chi square to illustrate the distribution in number

and percentage of glioma patients per each tested factor. The means and
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standard deviations were obtained from pairwise comparisons for the groups

of steroid, pre-load dose, and phenotype, for each glioma grade (Table 7.4).

Factors LGG AG GBM
Receiving steroids yes 16 (41%) 18 (75%) 54 (90%)

No 23 (59%) 6 (25%) 6 (10%)
Pre-load dose Yes 9 (23%) 7 (29%) 27 (45%)

No 30 (77%) 17 (71%) 33 (55%)
Cell line Astrocytoma 28 (72%) 18 (75%) 59 (98%)

Mixed cell type 11 (28%) 6 (25%) 1 (2%)

Table 7.3: Pearson Chi square for the distribution of patients within each
factor

Factors LGG AG GBM
Mean ± SD

Receiving steroids Yes 4.79 ± 1.3 9.04 ± 3.7 15.25 ± 5.4
No 4.77 ± 3.7 9.77 ± 3.3 18.00 ± 6.0

Pre-load dose Yes 4.20 ± 1.2 7.36 ± 2.8 15.08 ± 5.7
No 4.95 ± 3.2 9.99 ± 3.5 15.88 ± 5.4

Cell line Astrocytoma 4.59 ± 3.3 8.48 ± 3.1 15.50 ± 5.5
Mixed cell type 5.26 ± 1.3 11.46 ± 4.0 17.1

Table 7.4: The means and standard deviations of rTBVmax among the groups
were compared per each group and grade

Steroid intake, administration of a pre-load contrast dose, and pheno-

type, were assessed for their possible effect on changes in rTBVmax. An

analysis of variance was performed to test for differences in means between

the steroid, pre-load contrast dose, and phenotype groups. The main effect

of the tested factors for their influence on the changes of rTBVmax derived

from MR perfusion was adjusted to the tumour grades. The three groups

of patients based on steroids (Table 7.5), pre-load contrast dose (Table 7.6)
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and phenotype (Table 7.7) found no differences between subjects per each

group, with p values of 0.139, 0.140, and 0.411, respectively. All three fac-

tors were adjusted to grade because most patients with high grade gliomas

receive steroids as part of their treatment. On the other hand, patients with

low grade glioma or anaplastic glioma were assigned, based on their histo-

logical grade, to either of both astrocytoma and oligodendrogliomas, while

patients with glioblastoma multiforme were assigned to astrocytoma, except

for one patient, based on the old WHO classification. The F ratios of the

between-groups mean squared to the within-groups mean squared are close

to unity, indicating that the sample variances were characteristic of a nor-

mal population. The null hypothesis of no difference between groups was

retained, which means the all cases in each group are equal. The second

step in the analysis is to test if there is an interaction effect between those

factors on rTBVmax variation (Table 7.8). It is worth noting that during

the assessment of either the separate effect of each factor or in combination

with other factors, the Bonferroni procedure was performed, which adjusts

the observed significance level to the number of comparisons used. Table 7.8

shows that the pairwise interactions between all factors were not significant

and that even combining two or three factors does not result in a difference

between the groups. As mentioned before, all assessments were adjusted by

histological grade, which shows that it is the only significant factor in all in-

teractions. The F ratio was very small for each factor and for each possible

interactions except that of the grade. It is to be concluded that the means

of rTBVmax were equal within each group categorised by steroids, pre-load

contrast, and cell line.
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Test of between-subjects effect (rTBVmax dependent variable)
Source Sum df Mean F Sig. Partial Eta

of Squares Square Squared

Corrected Model 3039.91 5 607.98 28.6 .000 .550
Intercept 7318.26 1 7318.26 343.7 .000 .746
Steroids 47.14 1 47.14 2.2 .139 .019
Grade 2006.02 2 1003.01 47.1 .000 .446
Steroid*Grade 57.05 2 28.53 1.3 .266 .022
Error 2490.99 117 21.29
Total 20353.29 123
Corrected Total 5530.91 122

Table 7.5: Analysis of variance of the effect of steroids on rTVBmax showed
no difference between subjects and the difference is mainly attributed to the
difference in grades

Test of between-subjects effect (rTBVmax dependent variable)
Source Sum df Mean F Sig. Partial Eta

of Squares Square Squared

Corrected Model 3010.15 5 602.0 27.9 .000 .544
Intercept 8057.48 1 8057.5 373.9 .000 .762
Pre-load dose 47.50 1 47.5 2.2 .140 .018
Grade 2541.84 2 1270.9 58.9 .000 .502
Pre-load dose*Grade 8.66 2 4.3 .20 .818 .003
Error 2520.76 117 21.6
Total 20353.29 123
Corrected Total 5530.91 122

Table 7.6: Analysis of variance of effect of pre-load dose of contrast showed
rTVBmax is the same across groups with different MR techniques
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Test of between-subjects effect (rTBVmax dependent variable)
Source Sum df Mean F Sig. Partial Eta

of Squares Square Squared

Corrected Model 2986.71 5 597.3 27.5 .000 .540
Intercept 2824.46 1 2824.5 129.9 .000 .526
cell line 14.80 1 14.8 .68 .411 .006
Grade 609.17 2 304.6 14.0 .000 .193
cell line*Grade 9.23 2 4.6 .212 .809 .004
Error 2544.19 117 21.8
Total 20353.29 123
Corrected Total 5530.91 122

Table 7.7: Analysis of variance of the effect of phenotype showed rTVBmax

is not different across subjects

7.4 Discussion

The objective of this chapter was to assess the potential effect of certain fac-

tors on the rTBVmax obtained from DSC-T ∗
2 MR perfusion. The hypothesis

is that there is no difference between the means of the different groups other

than that attributed to the difference in tumour grade. Validating the robust-

ness of the T ∗
2 MR perfusion technique was a suitable measure for a possible

substitute of invasive histological diagnosis. Factors such as steroids, pre-

load dose of contrast agent, and phenotype, adjusted for tumour grade, were

assessed as potentially confounding factors that may contribute to rTBVmax

variation. An analysis of variance (ANOVA) was used to test whether there

is any difference within and between patient groups with regard to steroids,

pre-load dose, and phenotype. The analysis was performed in two steps: the

first step was to test each factor separately for its potential contribution to

rTBVmax variation; the second step was to analyse the factors’ interaction
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Test of between-subjects effect (rTBVmax dependent variable)
Source Sum of df Mean F Sig. Partial Eta

Squares Square Squared

Corrected Model 3110 17 183 7.9 .000 .562
Intercept 2628 1 2629 114.0 .000 .521
Steroid 4.49 1 4.5 .20 .660 .002
Pre-load dose 8.82 1 8.8 .38 .538 .004
cell line 5.15 1 5.2 .22 .637 .002
Grade 647.8 2 324 14.1 .000 .211
Steroid*Pre-load dose .17 1 .17 .01 .933 .000
Steroid*cell line .29 1 .29 .01 .911 .000
Steroid*Grade 24.9 2 12.5 .54 .584 .010
Pre-load dose*cell line .12 1 .12 .01 .942 .000
Pre-load dose*Grade 1.87 2 .93 .04 .961 .001
cell line*Grade .86 2 .43 .02 .982 .000
Steroid*Pre-load 5.81 1 5.8 .25 .617 .002
dose*cell line

Steroid*Pre-load dose* .68 1 .68 .03 .864 .000
Grade

Steroid*cell line* 1.50 1 1.5 .07 .799 .001
Grade

Pre-load dose* .00 0 .000
cell line*Grade

Steroid*Pre-load dose* .00 0 .000
cell line*Grade

Total 20353 123
Corrected Total 5531 122

Table 7.8: Two-way analysis of variance of the interacting factors was ad-
justed for grades and corrected by Bonferroni procedures
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to assess the combined effect of all included factors. As it was expected to

have variation due to glioma grades, all the statistical analyses were grade-

adjusted.

Steroids have been used for the treatment of intracranial tumours due

to their quick and beneficial effect on reducing brain oedema and relieving

symptoms. A total of 88 out of 123 patients received steroids as part of the

treatment protocol (Table 7.3). A large percentage (86%) of patients with

high grade glioma received steroids while fewer low grade glioma patients

(41%) did. Comparing the means of the two groups using ANOVA revealed

no statistical significance (p = 0.139), which indicates that the rTBVmax of

patients who have received steroids did not differ from those who had not.

The F ratio was about 2, which is close to the population variance (F = 1), so

the group variances are not different from the population variances. When

examining the changes in rTBVmax for each tumour grade, patients with

diffuse astrocytoma showed no change in means between the two groups

while a lower mean was found for glioblastoma patients who received steroids

(p = 0.246). Our result was in line with a previous study (Bastin et al., 2006)

conducted on glioblastoma multiforme patients who were treated for three

days with steroids and showed no difference in cerebral blood volume before

and after treatment. In contrast, cerebral blood volume was significantly

decreased in peri-tumoural gray matter assessed by dynamic MR imaging

(Ostergaard et al., 1999) and in tumoural area using a PET study (Leenders

et al., 1985).

Contrast leak into the extravascular space is often present in brain tu-

mours as a result of a breach in the blood–brain barrier (Rosen et al., 1990).
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During contrast injection, the leak of contrast leads to a shortening of the

T1 in tissue, which results in a high T1 signal. The contrast leak into the

extravascular space leads to a decrease in the T ∗
2 signal and hence under-

estimation of the rTBVmax value (Hu et al., 2010). Pre-load injection of

contrast prior to dynamic susceptibility MR imaging is one of the methods

that may saturate the brain tissue and minimize this effect. The effect of a

pre-load dose of contrast was assessed in pairwise groups to evaluate its effect

on changes in rTBVmax. The hypothesis is that injection of pre-load contrast

results in a decrease in rTBVmax. In this study we performed ANOVA test of

means to compare the effect of a pre-load dose on two different groups treated

differently in regard to the pre-load dose. A minimal decrease in the means

of rTBVmax in patients with a pre-load dose of contrast was noted, but this

did not reach statistical significance (p = 0.140). Our result is in line with a

previously published study (Paulson and Schmainda, 2008) which showed no

significant difference in relative cerebral blood volume between patients with

and without pre-loading dose of contrast. The small changes that appear in

patients with a pre-load dose could be attributed to the small flip angle (7◦)

used in this study, which reduced the sensitivity to the T1 effect. Testing

the effect of the small flip angle was not possible as patients were retrospec-

tively studied and the scanning protocol was basically set for clinical workup.

Other reasons for the reduced sensitivity to a T1 leak are the post-processing

gamma fitting algorithm and the correction for contrast re-circulation. In-

deed, the dynamic MR perfusion technique in this study was based on hot

spot localization within the tumour area that did not necessarily match the

enhancement areas of the tumour.
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A total of 18 out of 123 patients were diagnosed as having oligoden-

droglioma or oligoastrocytoma. Only one patient with glioblastoma was

diagnosed with the cell type of oligoastrocytoma based on the new WHO

classification. In this study, we compared the means of patients with as-

trocytoma cell type to that of oligodendroglioma and oligoastrocytoma and

found no difference (p = 0.411) between the two groups. The sample variance

did not differ from the population variance as the F ratio was closer to unity.

The non-significant elevation of rTBVmax in patients of oligodendroglioma

and oligoastrocytoma in this study is in agreement with a previous study

(Lev et al., 2004) while contradictory to others (Bian et al., 2009; Cha et al.,

2005).

Finally, the combined effect of those factors was assessed to evaluate any

synergistic effect. Yet the interaction of the factors was not significant and

only the grade showed statistical significance. To our knowledge, building a

model to test the variance in rTBVmax between groups for these factors had

not yet been performed to demonstrate the robustness of MR derived-cerebral

blood volume.

One of the limitations of this study is that other factors such as tumour

size, presence of necrosis, and the site of the tumour were not studied to

assess whether they potentially affect variation in rTBVmax. Tumour size

has been reported as a survival predictor (Fujii et al., 2010; Schomas et al.,

2009a), while others did not find any statistical significance (Mangla et al.,

2010; Back et al., 2007). The presence of necrosis was reported as a survival

predictor in (van den Bent et al., 2009; Ekici et al., 2011), while others found

contradictory findings (Idbaih et al., 2011). Tumour location was reported by
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others as a significant survival predictor (Idbaih et al., 2011) and in one study

showed a trend (Barri et al., 2005) whereas contradictory survival findings

had been reported earlier(Yamada et al., 1993). However, treatment choice

was greatly affected by the location of the tumour: parietal lobe tumours

were more likely to receive radiation therapy and less likely to receive surgical

resection (Claus and Black, 2006).

7.5 Conclusion

In the present study, the potential effect of steroids, pre-load contrast dose,

and phenotype, was assessed on rTBVmax derived from T ∗
2 MR perfusion.

Univariate analysis showed no difference in rTBVmax between the groups of

steroid, pre-load contrast, and phenotype, which is indicative of the robust-

ness of rTBVmax as a perfusion parameter in assessing gliomas. The current

limitations associated with histological diagnosis with consequent brain tis-

sue damage, neurological symptoms, bleeding, and tumour inaccessibility,

could be overcome in the future with an MR perfusion technique.



Chapter 8

General conclusions and future
outlook
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8.1 Conclusions

The current project was that of assessing the diagnostic accuracy of T ∗
2 -DSC

and T1-DCE MR perfusion in grading cerebral gliomas in adults. Further-

more, the prognostic value of this technique in predicting survival and tumour

progression was assessed in conjunction with other variables.

Chapter 1 presented the background about the prevalence of cerebral

glioma and a historical review of the implementation of the WHO histologi-

cal diagnosis for cerebral gliomas and their limitations. We also highlighted

the limitations associated with conventional MR imaging in grading gliomas.

An overview of the literature about MR perfusion parameters in grading and

predicting survival was performed, and their techniques and limitation were

explored. This includes the use of absolute and relative CBV in glioma grad-

ing and the methods used in reducing the T1 signal effect. In that chapter,

non-MRI techniques, such as CT perfusion and radioisotope scanning, for

grading gliomas were discussed. The accuracy of these is generally lower

than MR perfusion, in addition, they expose patients to the hazards of ra-

diation. In terms of predictive value, MR perfusion imaging is a plausible

method for prediction of survival and tumour progression and for monitor-

ing treatment response. Nevertheless, a few limitations were encountered by

the previous techniques, either in grading gliomas or in survival prediction.

These limitations were mainly due to the small sample sizes involved, the

MR parameters used, or the post-processing methodology. The next chap-

ters dealt with the current knowledge gap and the variation in accuracy in

the previous studies.
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Chapter 2 carried out a systematic review of the previous literature. The

aim was to identify studies assessing the diagnostic value of MR perfusion,

specifically the rCBV max parameter, in differentiating between high and

low grade gliomas. The included studies were subjected to qualitative and

quantitative analysis. QUADAS criteria were used to assess the quality of

these studies. A quantitative analysis was performed on a subgroup of 20

studies that had the same MR sequence and magnetic field strength (1.5

T). That systematic review revealed a homogeneity among the studies with

pooled sensitivity of 93% and pooled specificity of 75%. However, differences

in the threshold values among the studies is salient, which may lead to a

variability of the accuracies obtained. In addition, those studies included

brain tumours of different nature from gliomas, which may have resulted in

inaccuracies in defining the appropriate threshold value. The final conclusion

from the systematic review was that there was a difference in accuracy among

the studies either because of chance or the technical settings of the MR

parameters.

In Chapter 3, we provided the methods used in my thesis. The study

was approved by the research ethical committee (Appendix D) and the clin-

ical audit service (Appendix E). The initial recruitment from both routes

was 205 patients. The final recruited glioma patients numbered 123, af-

ter excluding patients with post-operative or post-treatment MR perfusion

scans, patients without histological diagnosis, patients with a wide gap (>18

months) between histological diagnosis and MR perfusion scan, and patients

who underwent MR perfusion scan at 1.5 T. The MR imaging was performed

as part of their clinical work up protocol using 3 T field strength. DSC-T ∗
2
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MR perfusion was performed after gadolinium contrast injection to assess the

degree of change in signal intensity. A subset of patients (n = 43) underwent,

in addition to DSC-T ∗
2 , DCE-T1 MR perfusion wherein 25% of the total dose

of contrast was received in this analysis. Post-processing was performed to

generate CBV maps using Java Image software (www.xinapse.com). The

technique used in this study is different from that which had been previously

published; this is partly to be attributed to the clinical setting of a low flip

angle and echo time and partly due to truncation in the signal intensity time

curve to avoid counting any contrast recirculation or leakage. Multiple ROIs

were drawn over the most hyperemic areas (hot spot) in the tumour. The

highest value among the means of hot spots was considered and normalized

to that of the averaged value obtained from normal white matter. The nor-

malized value was considered as representative of the tumour and used in

the final analysis to assess both the diagnostic and prognostic value of MR

perfusion. The histological diagnosis was used as the standard reference to

assess the diagnostic accuracy of the MR perfusion parameter in question.

Chapter 4 assessed the diagnostic accuracy of T ∗
2 -DSC MR Perfusion at 3

T in grading cerebral gliomas against histological diagnosis. Intra-rater and

inter-rater reliability tests showed substantial agreement within and between

raters’ observations. The first recruited group of patients (n = 50) was used

as a training set to generate, based on optimising the accuracy separately

for each glioma grade, the threshold value to be used subsequently. These

threshold values obtained were then assessed for reproducibility on the test

set (n = 73). The accuracy in differentiation between high and low grade

glioma and between diffuse astrocytoma and anaplastic glioma were the same

www.xinapse.com
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in the training and test sets. Our threshold values are different from those

which had been previously published, for two reasons: the technical MR

parameters included a short echo time (TE) and low flip angle (7◦), and

the post-processing technique. In this thesis, we obtained high accuracy in

differentiating between glioblastoma and anaplastic glioma. This separation

is important clinically, as the treatment plan and survival differ between

the two glioma grades. Only two studies had attempted such separation:

one yielding low accuracy (Lu et al., 2008) and the other (Park et al., 2009)

obtaining comparable accuracy of 86% albeit without validation. The results

of our study need to be validated in a multi-centre study as the threshold

values depend mainly on our local MR perfusion settings and post-processing

technique.

Chapter 5 aimed at evaluating the diagnostic accuracy of T1-DCE MR

Perfusion based on turbo field echo. A subset (n = 43) of cerebral glioma

patients underwent T1 MR perfusion as part of their clinical workup. These

patients received 25% of the total calculated dose of gadolinium per body

weight. Ten slices with 45 repeats were performed for each patient. Java Im-

age software (www.xinapse.com) was used for post-processing to produce T1

CBV maps. The diagnostic accuracy of T1-DCE MR perfusion was compared

to that of T ∗
2 -DSC MR Perfusion. It showed high accuracy in differentiating

between high and low grade glioma; diffuse glioma and anaplastic glioma;

and between glioblastoma and anaplastic glioma.

Chapter 6 assessed the prognostic value of the relative tumour blood

volume derived from MR perfusion in predicting overall survival and tumour

progression. The rTBV max value was categorized based on the optimal

www.xinapse.com
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diagnostic accuracy threshold into three hyperaemic groups: mild, moderate,

and severe hyperaemia. The prognostic value of this MR perfusion parameter

was assessed against the WHO histological grading system in addition to

other known variables such as age, type of treatment, performance status,

steroid intake, phenotype, and surgical procedure. Fifty-three patients died

in our cohort study during the follow up period from August 2006 to January

2010, of which 90% were among the high grade gliomas. The Kaplan–Meier

survival curves illustrated a better separation between diffuse astrocytoma

and anaplastic glioma compared to that of the WHO histological diagnosis. A

Cox regression model showed that radiological classification is an independent

predictor of survival and tumour progression. Patients with moderate or

severe hyperaemia had short survival and their tumour progressed in a shorter

time compared to patients who had mild hyperaemia. The WHO histological

diagnosis failed to predict overall survival and tumour progression in grade

3 glioma patients.

Chapter 7 discussed the probable confounders that may affect the varia-

tion of tumour blood volume derived from T ∗
2 -DSC MR perfusion. We tested

the hypothesis that a pre-loading dose of contrast agent or steroid intake low-

ers TBV and the oligodendrogliotic component tumour cell has an elevated

TBV. Each confounder (variable) is created in a pairwise group. Statistical

analysis was performed using analysis of variance to test the difference in

means per each variable. A subset of glioma patients (n = 43) underwent

a pre-load dose before T ∗
2 -DSC MR perfusion (first group). A similar num-

bered group matched for grade, steroid intake, and phenotype, was created

and compared to the first group. Goodness-of-fit between the two groups
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was 0.62. The three tested confounders were adjusted to histological grade

and corrected by Bonferroni procedures. All the variables were not signifi-

cant between the groups except for histological grade. In this test of a few

variables, we conclude that the changes in rTBVmax values are to be ascribed

only to the difference in histological grade and that the assumed variables

have no effect.

8.2 Clinical impact

WHO histological grading based on surgical debulking or stereotactic biopsy

carries significant risk of mortality and morbidity. Major complications (6%)

such as intra-cerebral haemorrhage, which may pass to hemiparesis and death

(Teixeira et al., 2009; Dammers et al., 2010; Shastri-Hurst et al., 2006; Jack-

son et al., 2001). Other centres have reported complication rates ranging

between 3% and 20%, including intracerebral haemorrhage, sub-arachnoid

haemorrhage, deep venous thrombosis, wound infection, hydrocephalus, and

infarct (Coffey et al., 1988; Vecht et al., 1990; Kreth et al., 1993; Bernstein

and Parrent, 1994; Kelly and Hunt, 1994; Bernstein, 2001). Moreover, there

is a chance of 10% sampling error was reported in clinical practice (Shastri-

Hurst et al., 2006).

Recently there has been a move towards using advanced MRI techniques

which provide information on the tissue micro-environment to characterise

brain tumours. The tumour growth showed correlation with an increase in

blood flow and volume derived from perfusion MR (Cha et al., 2002). Previ-

ous studies showed rCBVmax is correlated with the histological grading and
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with an increased vascularity of the tumour (Aronen et al., 1994; Sugahara

et al., 1998; Knopp et al., 1999; Cha et al., 2002).

Accurate grading of different glioma grades is important clinically because

survival and treatment plans differ especially for the differentiation among

high glioma grades (Louis et al., 2007). Only two studies (Lu et al., 2008;

Park et al., 2009), have attempted to distinguish between the two tumour

grades but demonstrated low accuracy or unvalidated data. In this study,

we demonstrated high sensitivity (98%) where only one GBM in this cohort

study was falsely classified as anaplastic glioma. On the other side, more

anaplastic glioma cases were falsely classified as GBM but some of them pre-

sented later with clinical deteroriation and short survival time. In addition,

the survival analysis has shown that the radiological classifcation used in the

study is a robust and able to discriminate patients with intermediate hyper-

aemia, while histological diagnosis failed to seperate between low grade and

anapalstic glioma.

A subset sample (n = 42)of the cohort performed T1 MR perfusion as part

of new clinical MRI protocol. The worked out accuracy in this subset showed

comparable sensitivity (97%) to that of T ∗
2 MR perfusion in distinguishing

between low and high grade gliomas. Importantly, T1 MR perfusion showed

same accuracy compared to T ∗
2 MR perfusion in differentiation among high

grade gliomas but with optimum specificity (100%). At the same analysis

type, the test is able to define GBM with sensitivity of 93%. This sequence is

less sensitive to susceptibility artefact and therefore would provide a better

resolution than T ∗
2 MR perfusion images especially for infratentorial tumours

and in assessing post-operative tumour bed (Roberts et al., 2000). In addi-
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tion, T1 MR perfusion images overcome the disadvantages associated with

contrast leak and expected to be used in tumours with blood brain barrier

disruption or absence such as Meningioma (Pauliah et al., 2007).

In survival analysis data showed a new 3-tier radiological classification

based MR perfusion images. Importantly, this classification creates a well

defined group of rTBVmax intermediate hyperaemia and coincides with mod-

erate period of overall survival when histological classification failed to seg-

regate anaplastic glioma patients’ group from low grade glioma. The sig-

nificance of radiological classification proposed in this study is manifested

again when assessing the hazard ratio and being compared to other variables

including the histological grading system. Adding to the previous use of the

radiological criteria in assessing tumour progression (Macdonald et al., 1990),

tumour blood volume assessment can now be used in predicting survival and

tumour progression independent of other clinical and demographic factors.

MR perfusion could be used in the future for several applications such as

MR perfusion can be used as non-invasive tool for assessing treatment efficacy

(Tomoi et al., 1999; Akella et al., 2004; Wenz et al., 1996), distinguishing

tumour recurrence from post-radiation necrosis (Barajas, Jr. et al., 2009; Hu

et al., 2009; Matsusue et al., 2010; Henry et al., 2000). Importantly, non-

invasive assessment via MR perfusion highlights its clinical diagnostic utility

which could be used during the follow-up period of low grade glioma patients

to assess tumour progression (Law et al., 2006b). In my opinion, by knowing

the value of rTBVmax during the follow-up period, the surgical decision based

on the risk-to-benefit analysis can be judged appropriately. Unfortunately,

the aim of this study was not inclusive of such analysis as only pre-operative
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and pre-treatment scans were included in a single time point.

In this study we showed comparable high accuracy, using histological

grading as standard reference, in both the training and test data in dif-

ferentiating high from low grade glioma and anaplastic glioma from low

grade glioma. Moreover, we showed a high sensitivity in differentiating

glioblastoma from anaplastic glioma. The study showed an extended gain of

rTBVmax-based radiological classification in predicting overall survival and

tumour progression for all glioma grades, high grade glioma. Our study did

not demonstrate any significance in predicting survival among glioblastoma

patients

8.3 Future outlook

The present research and systematic review defined preliminary answers to

the questions of whether MRI perfusion, specifically relative cerebral blood

volume, is a diagnostic tool in differentiating between high and low grade

gliomas. However, to combat the limitations arising in the systematic review,

diverse web sources should be included such as the EMBASE and Cochrane

library database, in addition to PubMed, to assure the involvement of a

diversity of related scientific papers and abstracts.

The diagnostic value of rTBVmax MR perfusion derived from both T ∗
2 -

DSC and T1-DCE is promising; however, the generalizability of these findings

need to be proven in a multi-centre study.

Molecular genetic findings in gliomas are now being applied to refine the

WHO histological grading (Reifenberger and Wesseling, 2010). A further
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development in application of this approach would be to integrate imaging

and molecular findings in an attempt to achieve better survival prediction.
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A.1 Study objectives and purpose

A.1.1 Purpose

The aim of this research is to assess the accuracy of multimodality MRI

techniques in characterising and classifying brain tumours.

A.1.2 Primary objective

The predictive value of multimodality MRI for (i) glioma grading and (ii) tu-

mour classification (gliomatous, non-gliomatous primary and secondary brain

tumours) will be assessed against histopathological findings as the standard

reference. Their diagnostic accuracy will be compared with that achieved

by conventional MRI. As histopathological grading may be flawed by tis-

sue sampling error, the value of multimodal MR in predicting the biological

aggressiveness of tumours will be assessed against clinical and radiological

outcomes. Lastly, we will assess whether multimodality imaging can pre-

dict outcomes within a histologically uniform grade by performing a survival

analysis in patients with histologically defined Glioblastoma.

This prospective study involves the analysis of scans and tissue that will

have been obtained for clinical patient management only. We will not perform

any additional research scanning or tissue sampling for research purposes,

nor will there be any influence on the standard of care. The research entails

solely (i) the refined and systematic analysis of clinical imaging data, (ii)

comparison of the findings with clinical data and histology, as well as (iii)

additional biological tissue tests on existing samples. All histological samples
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that we will use will have been acquired for clinical assessment and treatment

purposes only. Hence the study carries no risk for the participants.

A.1.3 Secondary objectives

Measure the survival rate and find if there is any correlation between the

different cut-off values derived from advanced MR imaging and the survival

rate (the expected period of living after the diagnosis) in relation to tumour

types and grades.

A.2 Study design

A.2.1 Study configuration

Participants: About 150–200 patients who are newly diagnosed with brain

lesion and aged 18 years and above. Magnetic resonance images and his-

tological findings will be subjected to data analysis. Participants who have

no contraindications to MRI scanning will be able to complete the consent

process and proceed to scanning.

Methods: All patients will already be undergoing conventional MRI and

perfusion, diffusion, and MR spectroscopy scanning as part of their routine

clinical investigations prior to biopsy or other neurosurgical treatment. Thus

patients will only have to attend for the scan requested by their neurosur-

geon, and will not have to have any additional scans, appointments, or hos-

pital admissions. Furthermore, they will not be subjected to any additional

scanning sequences for research purposes. All patients will have the same op-
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portunity to have conventional MRI scans primarily as part of their clinical

care. Patients with MRI findings of having brain lesions will be required to

have additional multimodality MRI techniques as part of their clinical care,

while other patients with normal brain findings will be dismissed, as usually

happens within routine clinical care. There is no sub-grouping or classifica-

tion of patients, as we won’t recruit normal healthy volunteers. Consecutive

patients will be recruited and subjected to image data analysis. The whole

process, which includes different scanning techniques, won’t take more than

one hour and one clinical visit, which will require the intravenous injection

of a contrast material at the time of scanning, something which is part of

clinical care. The time allocated for the data analysis does not affect the

time of scanning or the patient’s stay in the hospital, as the data will be

analysed off-line with a specially encrypted workstation.

As part of identifying the accuracy of these new multimodality tech-

niques in diagnosing or excluding brain lesions, the data obtained from the

participants’ scans will be analysed using specialised analysis software on a

computer station. All imaging data will be stored electronically after being

anonymously transformed into a secure computer system within the Aca-

demic Radiology department.

The ability of this data to predict tumour type and grade (as defined by

subsequent histopathological examination of biopsy tissue) will be evaluated

and compared to conventional MRI. By defining the degree of tumour ag-

gressiveness and whether the tumour is in its early or late stage, treatment

planning can be made.
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A.2.2 Study management

Part of assessing scientific quality is through weekly meetings within the

department of Academic Radiology. Adding to that, the outcome of this

research will be published either in a national and /or international journal,

and displayed at an academic conference related to neuroradiology. Further-

more, both an external and internal peer reviewer will be asked to contribute

through a formal critical appraisal.

A.2.3 Duration of the study and participant involve-

ment

The potential participants are those newly diagnosed and confirmed as hav-

ing brain tumours. The normal management scheme will comprise conven-

tional and multimodality magnetic resonance imaging followed by surgical

intervention as treatment and for histopathological diagnosis. This research

study will not interfere with the management scheme in any way. It does not

require extra time or extra scanning sequences; the patients’ data will only

be used for finding out the efficacy of the multimodality MRI in diagnosing

the brain tumours.

A.2.4 End of the Study

The part of the study involving data collection will be ended once the target

number (about 200) of potential participants is achieved. However, the data

collected will be used for about two years.
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A.2.5 Selection and withdrawal of participants

Recruitment

Potential patients will be identified (I) via documentation of the neuro-

oncology in Multi-disciplinary Team (MDT) meeting that contains infor-

mation on multimodality MRI, (II) by checking the clinical request forms for

multimodality MR scans, and (III) by asking clinical colleagues to inform the

named researchers when patients report on multimodality MRI. The poten-

tial participants are those newly diagnosed and proved to have brain lesions

by using all of clinical diagnosis, MRI data, and histological findings.

Patients will be approached at any given time and once in which patients

will be asked to read the information pack. Different ways will be followed

to approach the potential participants: First, the vast majority of potential

participants are in-patients who are under the care of the clinical team. Our

approach for those patients will be at any time after they have been informed

from their clinical team that they have brain lesion. The approach will occur

once a member of the clinical care team asks the patient if he or she is willing

to take part in the study and if so the patients will be contacted by one of

our researchers. Second, out-patients could only be approached during their

follow-up visit to one of the clinical care departments (i.e., neurosurgery,

neurology, or neuro-oncology) after they were proved to have a brain lesion.

In this case, the patient will be asked by a member of the clinical team taking

care of him or her for his/her willingness to meet with one of our researchers.

In either of these two approaches, one of our named researchers will have

a brief introduction in which the aim of the study will be explained and
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then the patient will be asked if they are happy to participate. Time will be

given to the patients to read the information sheet and they will have the

opportunity to ask questions and sign the consent form if they are interested

in taking part. The consent form will allow the research team to access their

MR data and histopathological specimens and associated details.

Participation in the study is voluntary and the participant has the right

to withdraw from the study at any time and without giving a reason. This

will not affect the standard of care that the patients receive.

Inclusion criteria

- Adult patients who are proved to have a brain lesion and are aged 18 years

or older - Due to undergo MRI for tumour evaluation prior to biopsy or other

neurosurgical treatment - Patients of different sexes, ethnic origins, religions,

and those with a physical disability or a low literacy level are included in the

study if they presented with brain lesions and agree to take part.

Exclusion criteria

- History of previous brain surgery or brain radiotherapy - Those unable to

complete the consent process - Those with implanted devices that are mag-

netic incompatible, such as intra-orbital metallic foreign bodies, pacemakers,

or implantable defibrillators.

Expected duration of participant participation

Study participants will be participating in the study for one visit which is

within the normal caring services; however, their data will be used for a
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longer period. The participant will not be asked to revisit the hospital for

research purposes.

Participant withdrawal

The consent is primarily being taken to allow the researchers to use the

imaging data for further study. Given the poor prognosis that many brain

tumours have, it is possible that some of the participants will lose capacity

or die in the months following the MRI scan while the data is still being

analysed. It is assumed in the consent process that participants will be giving

permission for the imaging data to be used for analysis regardless of clinical

outcome, unless they specifically request that their data is withdrawn from

the study. As stated in the consent form and information sheet, participants

are free to withdraw from the study at any time without giving any reason

and without their medical care being affected; however, their data will be

used in the analysis unless they ask us not to do so. Withdrawn participants

will be replaced during the period of the study until the required number of

participants is achieved.

Informed consent

A short interview will be taken by one of our trained researcher (Prof.

Dorothee Auer, Dr. Muftah Manita) during which the aim of the study

and its methods will be explained and the information sheet will be handed

out to the participant. Written informed consent will be obtained by one of

the co-investigators after the potential participant has had an opportunity

to read the information sheet and invitation letter and been given the op-
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portunity to ask questions. All participants will provide written informed

consent. The consent form will be signed and dated by the participant be-

fore they enter the study. The investigator will answer any questions that

the participant has concerning study participation. Informed consent will be

collected from each participant before their data will be analysed. One copy

of this will be kept by the participant, one will be kept by the investigator,

and a third will be retained in the patients hospital records. Should there be

any subsequent amendment to the final protocol which might affect a partic-

ipants participation in the study, continuing consent will be obtained using

an amended consent form which will be signed by the participant.

A.2.6 Study regimen

The study involves evaluation data obtained from participants when MRI

scanning is performed and during their clinical visit. Potential patients with

brain tumours and who are above 18 years of age are involved if they agree

to take part in the study. Patients of different sexes, ethnic origins, religions,

and those with a physical disability or a low literacy level are welcomed

to participate. There are some exclusion criteria related essentially to the

incompatibility with the MR magnetic field. For example, patients with a

cardiac defibrillator or an intra-orbital metallic foreign body are excluded.

Also, patients with previous brain surgery and radiotherapy will be excluded

as the study involves newly diagnosed brain lesions. The exclusion criteria

usually are set out from the clinical side and the research study will not

intervene with the clinical scheme.
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A.3 Statistics

A.3.1 Methods

Group differences between various tumour types and grades will be tested

using standard statistical approaches in a multivariate framework where ap-

propriate. Both techniques are standardized to histopathological findings

for calculating sensitivity, specificity, positive and negative predictive values,

in addition to calculating other measurable diagnostic parameters. Positive

and negative predictive values will be computed as well as receiver operating

characteristic (ROC) curves. Survival analysis will be done by Kaplan–Meier

tests and univariate and multivariate regression analyses for selected predic-

tors.

It is anticipated that the results of this research will be presented at

national and international research conferences, and the findings published

in international journals of neuroimaging, cancer, and neurosurgery.

For each individual sub-study, formal sample size estimations will be per-

formed. Based on the results from the retrospective audit, we are confident

of being able to recruit sufficient numbers to assess the diagnostic accuracy

and predictive power of rCBV for glioma grading. The sub-study requiring

the largest sample is the survival analysis, especially for the intended multi-

variate regression. Practically, we cannot change the length of the study, and

we therefore aim at recruiting consecutively, aiming for about 100 patients

with glioblastoma, which is the expected number based on the frequency of

multimodality and expected acceptance rate as per our previous experience.

The final included number of glioblastomas will then determine the num-
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ber of regressors we will be able to enter into the survival prediction model.

We will then use a combination of prior knowledge and univariate testing to

select the most promising indicators.

The histology of all participating studies will be systematically reviewed

by one of the consultant neuropathologists. For subgroups of patients, bio-

logical studies will be performed including the assessment of hypoxia markers

and MGMT (O6-methyl-guanine-DNA methyltransferase) promoter methy-

lation status. Standard procedures within pathology will be followed for

tissue handling and all biological investigations will be performed according

to established protocols.

A.3.2 Sample size and justification

The aim is to get a large sample size with a powerful statistical study. Fur-

ther sub-groupings of the total number, according to types of tumour, will

be created and will result in a smaller number for each tumour type if a

sufficient number has not been undertaken from the start. In analysing the

survival rate for the different tumour grades, and especially for the multi-

variate regression, a large number of participants is encouraged. A powerful

statistical result is guaranteed with a large sample of participants, and also

to minimize the standard error. The sample size can be increased to validate

our results in promoting the statistical significance of the advanced technique

used.
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A.4 Adverse events

The occurrence of an adverse event as a result of participation within this

study is not expected and no adverse event data will be collected.

A.5 Ethical and regulatory aspects

The research involves the analysis of data which has been acquired for clinical

purposes. The ethical issues therefore concern data storage and keeping tissue

samples for the study purposes.

Written formal consent will be taken from potential participants after

full explanation of the aim of the study and the participants will be given

sufficient time to read the information sheet and have an opportunity to

ask questions and sign if they are happy to participate. Furthermore, the

participants are free to withdraw from the study at any time of the study.

Patients’ data will be kept anonymised and any personal information will be

deleted and every participant will be given a code number so they won’t be

identified. As the research will employ a high standard of data management

performed within the confines of the data protection act, and as informed

consent for data storage and retention will be sought in all cases, we do not

anticipate there being any ethical conflict.

The research does NOT involve taking new tissue samples. In contrast,

only tissue samples that had been taken as part of clinical care for diagnostic

purposes will be used for research after the clinical diagnosis has been estab-

lished. The histological investigations are performed within the pathology
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department as part of routine clinical tissue diagnosis and tumour grading;

nevertheless, the research team will re-examine the specimen for the benefit of

the research in a refined and more systematic fashion including novel biolog-

ical assays such as the MGMT promoter methylation and hypoxia markers.

In conducting the study, there will thus be no extra tissue specimen taken,

but we plan to re-examine tissue samples that had previously been taken

for routine tissue diagnosis if the participants agree for us to do so. The

research handling of those tissue specimens will be in accordance with the

Human Tissue Act, only anonymous specimens will be investigated. The

participants have the right to withdraw from this agreement at any time and

their tissue samples will be immediately destroyed should the participants so

wish.

A.5.1 Ethics committee and regulatory approvals

The study will not be initiated before the protocol, consent forms, and partic-

ipant and GP information sheets have received approval / favourable opinion

from the Research Ethics Committee (REC) and from the respective National

Health Service (NHS) Research and Development department. Should a pro-

tocol amendment be made that requires REC approval, the changes in the

protocol will not be instituted until the amendment and revised informed con-

sent forms and participant and GP information sheets (if appropriate) have

been reviewed and received approval / favourable opinion from the REC and

Research and Development departments. A protocol amendment intended

to eliminate an apparent immediate hazard to participants may be imple-
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mented immediately provided that the REC are notified as soon as possible

and an approval is requested. Minor protocol amendments only for logistical

or administrative changes may be implemented immediately, and the REC

will be informed.

The study will be conducted in accordance with the ethical principles

that have their origin in the Declaration of Helsinki, 1996; the principles of

Good Clinical Practice; and the Department of Health Research Governance

Framework for Health and Social Care, 2005.

A.5.2 Informed consent and participant information

The consent form is designed according to REC guidance and the partici-

pation in the study is entirely voluntary and the participants have the right

to withdraw from the study without giving reason and without affecting

the quality of medical care. The original form will be retained in the study

records, a first copy will be handed to the participant, and a second copy will

be filed in the participants medical notes. The consent form will be signed by

both the participant and one of the named researchers. Should the consent

form be amended, new approval will be sought and the participants, if appli-

cable, will be asked to sign the revised consent form. Potential participants

should be informed of any changes which might happen in the design of the

study.
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A.5.3 Direct access to source data / documents

All source documents shall made be available at all times for review by the

Chief Investigator, Sponsors designee, and inspection by relevant regulatory

authorities.

A.5.4 Data protection

The study and data analysis will take place at the Academic Radiology de-

partment of the University of Nottingham and the Queen’s Medical Centre.

The study will be conducted by members of the research team and the data

analysis will be analysed by the same team with statistical consultation if

needed. In addition, the clinical team who are taking care of the partici-

pants will have access to the participants’ data. The imaging data required

for research purposes will be stored on DVDs kept within a locked office in

the Department of Academic Radiology for about 10 years. The data will

also be kept anonymised on the secure Academic Radiology computer sys-

tem (which can only be accessed by authorised co-researchers from within

the department) for up to 10 years. [The Data protection act states that

personal data which are processed only for research purposes in compliance

with the relevant conditions may, notwithstanding the fifth data protection

principle, be kept indefinitely]. 33/3 (1998) part iv.

As the MRI scan is being performed for clinical purposes, the imaging

data will also be stored in the Nottingham University Hospitals image storage

network referred to as the Picture Archiving and Communication System

(PACS) for an indefinite period. This data is not anonymised but can only
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be accessed by authorised NHS staff (in accordance with Trust policy).

A.6 Quality assurance and audit

A.6.1 Insurance and indemnity

The usual diagnosing protocol is applied within the routine health care frame

already designed, so the investigators won’t interrupt the diagnosing scheme.

In addition, the potential participants will not be scanned in sites other than

the usual site organized for diagnosis and management. The University of

Nottingham has taken out an insurance policy to provide indemnity in the

event of a successful litigious claim for proven non-negligent harm.

A.6.2 Study data

The imaging data required for research purposes will be stored on DVDs kept

within a locked office in the Department of Academic Radiology for about

10 years. The data will also be kept anonymised on the secure Academic

Radiology computer system (which can only be accessed by authorised co-

researchers from within the department) for up to 10 years. [The Data pro-

tection act states that personal data which are processed only for research

purposes in compliance with the relevant conditions may, notwithstanding

the fifth data protection principle, be kept indefinitely]. 33/3 (1998) part iv.

As the MRI scan is being performed for clinical purposes, the imaging

data will also be stored in the Nottingham University Hospitals image stor-

age network referred to as the Picture Archiving and Communication Sys-
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tem (PACS) for an indefinite period. This data is not anonymised but can

only be accessed by authorised NHS staff (in accordance with Trust policy).

One part of assessing scientific quality is through weekly meeting within the

department of Academic Radiology. Adding to that, the outcome of this

research will be published either in national and/or international journals

and displayed at academic conferences related to neuroradiology. Further-

more, both an external and internal peer reviewer will be asked to contribute

through a formal critical appraisal. Professor Dorothee Auer (Academic Ra-

diology, University of Nottingham) has control of keeping the data and acts

as the custodian.

A.6.3 Record retention and archiving

In compliance with the ICH/GCP guidelines, regulations and in accordance

with the University of Nottingham Research Code of Conduct, the Chief or

local Principal Investigator will maintain all records and documents regarding

the conduct of the study. These will be retained for at least seven years or

for longer if required. If the responsible investigator is no longer able to

maintain the study records, a second person will be nominated to take over

this responsibility. The study documents held by the Chief Investigator on

behalf of the Sponsor shall be finally archived at secure archive facilities at

the University of Nottingham. This archive shall include all study databases

and associated meta-data encryption codes.
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A.6.4 Discontinuation of the trial by the sponsor

The Sponsor reserves the right to discontinue this study at any time for

failure to meet expected enrolment goals, for safety or any other administra-

tive reasons. The Sponsor shall take advice as appropriate in making this

decision.

A.6.5 Statement of confidentiality

Individual participant’s medical or personal information obtained as a result

of this study are considered confidential and disclosure to third parties is

prohibited with the exceptions noted above. Participant confidentiality will

be further ensured by utilising identification code numbers to correspond to

treatment data in the computer files.

Such medical information may be given to the participants medical team

and all appropriate medical personnel responsible for the participants welfare.

Data generated as a result of this study will be available for inspection

on request by the participating physicians, the University of Nottingham

representatives, the REC, local research and development Departments, and

the regulatory authorities.

A.7 Publication and dissemination policy

Results of this research will be retained within the department of Academic

Radiology at the University of Nottingham. An overview of the results (that

is not specific to any participant) will be supplied to participants on request.
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In addition, the usual caring team will be notified of any relevant positive

data that may lead in the future to re-designing the scanning protocol.

A.8 Study finances

A.8.1 Funding source

The MRI scanning will have no additional research costs, as the scan is

already being performed on clinical grounds. The salary cost of the lead

investigators is already covered. The computing equipment required for the

data storage and analysis are already available within the Department of

Academic Radiology. All other costs will be covered by divisional funds.

We foresee an extra 15 minutes for histopathological re-assessment and case

discussion (about 30 per case) and costs for biological studies such as MGMT

methylation status assessment for a subgroup of patients will be required.

The majority of this cost will be covered by supervision fees funded by the

Libyan government for Dr. Manita, which have been allocated in part to the

division of Academic Radiology.

A.8.2 Participant stipends and payments

Participants will not be paid to participate in the study as the study involves

data analysis. The first and the follow-up visits are part of the clinical caring

scheme.
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Consent form version 1.2 – 15.07.08 
 
 
 
    

   

 
 
Study Number: 
 
Patient Identification Number for this trial:  
 
 

CONSENT FORM 
 
 

Title of Project: The Prognostic Value of Multimodality MRI in Brain 
Tumours      
  
 
Name of Researcher: Prof. Dorothee Auer 
 
       Please initial box 
 
1 I confirm that I have read and understand the information sheet dated   15th July 2008 

(version 1.2) for the above study and have had the opportunity to ask questions. 
  

    

2 I understand that my participation is voluntary and that I am free to withdraw at any 
time, without giving any reason, without my medical care or legal rights being affected. 

  

    

3  I understand that as part of this research, sections of any of my medical notes, clinical 
diagnostic images and pathology samples will be looked at by research team 
members. I give permission for these individuals to have access to my records, 
diagnostic images and tissue samples for research purposes. 

  

 

4  I agree for samples of my brain lesion to be stored and used in the biological research 
studies integrated into this study. 

  

    

5 I agree to take part in the above study.    
 

 
 
________________________ ________________ ____________________ 
Name of Patient   Date Signature 
 
 
_________________________ ________________ ____________________ 
Name of Person taking consent Date  Signature 
(If different from researcher) 
 
 
_________________________ ________________ ____________________ 
Researcher   Date  Signature 
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What if something goes wrong?

Medical research is covered for mishaps in the same wayMedical research is covered for mishaps in the same way
for patients undergoing treatment in the NHS, i.e. 
compensation is only available if negligence occurs.  As t
study involves data analysis with no clinical intervention, 
there is no risk to you by participation in this study.  
Regardless of this if you wish to complain about any aspRegardless of this, if you wish to complain about any asp
of the way you have been approached or treated during 
course of this study, the normal National Health Service 
complaints mechanisms may be available to you.  The 
Patient Advice and Liaison Service (PALS) are can be 
contacted for further assistance at QMC by calling 0800contacted for further assistance at QMC by calling 0800 
1830204

Who has reviewed the study?

This study has been approved by the LeicestershireThis study has been approved by the Leicestershire, 
Northamptonshire and Rutland Research Ethical Committ
1 and by the Development Department of the Queen’s 
Medical centre, Nottingham. 

Contact for further information

If you would like to discuss the study further or would lik
more information, please feel free to contact me:

P f D h AProf. Dorothee Auer
Dept. of Academic Radiology,
Queen’s Medical Centre,
Nottingham,
NG7 2UH Tel: 0115 8231178

Email:

Many thanks for taking the time to read this informatio
and for considering participating in this study.

Email: 
dorothee.auer@nottingham.ac.uk

and for considering participating in this study.

y asy as 

the 

pectpect 
the 

The prognostic value of 
multimodality MRI in 

brain tumours

You are being invited to take part in a 
research study.  Before you decide it is 
important for you to understand why the 
research is being done and what it will 
involve Please take time to read the

tee 

involve.  Please take time to read the 
following information carefully and 
discuss it with friends and relatives if 
you wish.  Ask us if there is anything 
that is not clear or if you would like 
more information Take time to decide

ke 

more information.  Take time to decide 
whether or not you wish to take part. 

on Study Number: 08.H0406.102

Patient information leaflet A Version 1.2 date 15.07.08
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What is the purpose of the study?
Our main aim is to enhance the diagnostic value 

Wha

Thereg
of MRI scan. We will specifically investigate 
whether dedicated analysis of recently enhanced 
MRI scan offered added value for managing with 
brain lesion.

Why have I been chosen?

There

What

Althou
Why have I been chosen?

You have been chosen because your consultants 
considered a particular advanced MRI scan of 
clinical value for you to guide decisions about 
your further treatment plan.  

future

Will m
confi

Do I have to take part?

It is up to you to decide whether or not to take 
part.  If you do decide to take part you will be 
given this information sheet to keep and be 

Yes.  
during
confid
leaves
remov

asked to sign a consent form, a copy of which 
you will get to keep.  If you decide to take part 
you are still free to withdraw at any time and 
without giving a reason.  This will not affect the 
standard of care you receive.

remov
With y
and o
neuro
inform

What is involved?

If you consent to participate, your brain scans, 
clinical data and tissue findings will be used for 
analysis. The data used for the research will ALL 
h b bt i d f li i l

What
resea

The re
medichave been obtained for your clinical care.

Is there anything that means I should not 
take part?

I cannot think of any reason why you should not 
t k t i th t d i k i i l d

medic
Howe
availa
will no
arising

take part in the study as no risk is involved.

at are the possible risks of taking part?

e is no risk involved in this studye is no risk involved in this study.

t are the possible benefits of taking part?

ugh there is no direct benefit to participants, 
e care may be improved.

my taking part in this study be kept 
dential?

All information which is collected about you 
g the course of the research will be kept strictly 
dential.  Any information about you which 
s the hospital will have your name and address 
ved so that you cannot be recognised from it.ved so that you cannot be recognised from it. 
your permission the consultant neurosurgeons 

other team members of the multi-disciplinary 
o-oncology team looking after you will be 
med of your participation. 

t will happen to the results of the 
arch study?

esults of the study will be published in a 
cal journal specialising medical imagingcal journal specialising medical imaging. 
ever, the result will takes over a year to become 
able after the end of the study.  Of course, you 
ot be identified in any report or publication 
g from this research.

Patient information leaflet A Version 1.2 date 15.07.08
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08/H0406/102 Page 1 

 

 
Leicestershire, Northamptonshire & Rutland Research Ethics Committee 1 

1 Standard Court 
Park Row 

Nottingham 
NG1 6GN 

 
Telephone: 0115 912 3344 ext 39428 

Facsimile: 0115 9123300 
30 July 2008 
 
Professor Dorothee Auer 
Professor of Radiology 
University of Nottingham 
Queen's Medical Centre 
Academic Radiology department 
Nottingham 
NG7 2UH 
 
 
Dear Professor Auer 
 
Full title of study:  The prognostic value of multimodality MRI in brain 

tumours      
REC reference number: 08/H0406/102 
 
Thank you for your letter of 17 July 2008, responding to the Committee’s request for further 
information on the above research and submitting revised documentation, subject to the 
conditions specified below. 
 
The further information was considered at the meeting of the Committee held on 30 July 
2008.  A list of the members who were present at the meeting is attached. 
 
Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the 
above research on the basis described in the application form, protocol and supporting 
documentation as revised. 
 
Ethical review of research sites 
 
The Committee has designated this study as exempt from site-specific assessment (SSA.  
There is no requirement for [other] Local Research Ethics Committees to be informed or for 
site-specific assessment to be carried out at each site. 
 
Conditions of the favourable opinion 
 
The favourable opinion is subject to the following conditions being met prior to the start of 
the study. 
 
Management permission or approval must be obtained from each host organisation prior to 
the start of the study at the site concerned. 
 
Management permission at NHS sites (“R&D approval”) should be obtained from the 
relevant care organisation(s) in accordance with NHS research governance arrangements.  
Guidance on applying for NHS permission is available in the Integrated Research 
Application System or at http://www.rdforum.nhs.uk. 
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Approved documents 
 
The final list of documents reviewed and approved by the Committee is as follows: 
  
Document    Version    Date    
Application  AB/137187/1 30 April 2008  
Investigator CV    18 May 2008  
Protocol  1.2  15 July 2008  
Letter from Sponsor    19 May 2008  
Peer Review    11 April 2008  
Participant Information Sheet  1.2  15 July 2008  
Participant Consent Form  1.2  15 July 2008  
Response to Request for Further Information    17 July 2008  
Evidence of Insurance - Clinical Trials Legal Liability    13 August 2007  
Evidence of Insurance - Employer's Liability    09 August 2007  
 
Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees (July 2001) and complies fully with the Standard Operating 
Procedures for Research Ethics Committees in the UK. 
 
After ethical review 
 
Now that you have completed the application process please visit the National Research 
Ethics Website > After Review  
 
You are invited to give your view of the service that you have received from the National 
Research Ethics Service and the application procedure.  If you wish to make your views 
known please use the feedback form available on the website. 
 
The attached document “After ethical review – guidance for researchers” gives detailed 
guidance on reporting requirements for studies with a favourable opinion, including: 
 

• Notifying substantial amendments 
• Progress and safety reports 
• Notifying the end of the study 

 
The NRES website also provides guidance on these topics, which is updated in the light of 
changes in reporting requirements or procedures. 
 
We would also like to inform you that we consult regularly with stakeholders to improve our 
service. If you would like to join our Reference Group please email 
referencegroup@nres.npsa.nhs.uk. 
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08/H0406/102 Please quote this number on all correspondence 

 
With the Committee’s best wishes for the success of this project 
 
Yours sincerely 
 
 
 
Dr Carl Edwards / Miss Jeannie McKie 
Chair / Committee Coordinator 
 
Email: jeannie.mckie@nottspct.nhs.uk 
 
 
Enclosures: “After ethical review – guidance for researchers” SL- AR2  

 
 
Copy to: Mr Paul Cartledge, University of Nottingham 

R&D office for NHS care organisation at lead site – NUH (via email) 
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Project ID 1272

Audit lead: Prof D Auer, Dr M Manita, 

Contact/bleep No: 55962/63900

Background information

Magnetic resonance (MR) imaging is the standard imaging method for the assessment of brain tumours. Multimodal MR 
imaging includes conventional MRI, which provides the anatomical detail of a tumour and its environment, as well as newer 
modes of MR imaging that provide physiological information about a tumour.Examples of MR modalities used in standard clinical 
practice include Perfusion MR imaging, Diffusion Weighted Imaging and MR Spectroscopy. A combination of these modes of 
imaging (multimodal imaging) allows a more accurate diagnosis to be made of the type of tumour in many cases (Aronen et al., 
1994, Sugahara et al., 1998, Hartmann et al., 2003, Calli et al., 2006)The treatment and prognosis of brain tumours differs 
according to the type and grade (aggressiveness) of the tumour, thus differentiating between tumour types is critical. Currently, 
the gold standard to obtain a pathological diagnosis is the stereotactic biopsy, an invasive procedure that carries a small, but 
significant, risk of morbidity and mortality. A recent audit of stereotactic biopsies carried out in Nottingham for cases over 4 years 
showed an overall diagnostic success rate of 89.3% (Shastri-Hurst et al., 2006). Multimodal imaging does not yet replace 
stereotactic biopsy to definitively determine the histology and nature of a brain tumour, but may be useful to avoid the need for 
biopsies in some cases. This audit aims to assess whether the performance of multimodality MR imaging is to a standard 
sufficient to provide the information required for tumour type differentiationMethodology: Retrospective audit spanning 3 to 4 
years, including about 100 patients with brain masses who have had multimodal imaging. For each patient, multimodal imaging 
data from the MRI scanner / PACS system will be retrieved, anonymised and analysed to determine a diagnosis. These results 
will be compared to the tissue or best clinical diagnosis. Subset analysis will be included to determine if certain subsets of 
tumours are more accurately diagnosed.Aronen, H. J., Gazit, I. E., Louis, D. N., Buchbinder, B. R., Pardo, F. S., Weisskoff, R. 
M., Harsh, G. R., Cosgrove, G. R., Halpern, E. F., Hochberg, F. H. & Et Al. (1994) Cerebral blood volume maps of gliomas: 
comparison with tumor grade and histologic findings. Radiology, 191, 41-51.
Calli, C., Kitis, O., Yunten, N., Yurtseven, T., Islekel, S. & Akalin, T. (2006) Perfusion and diffusion MR imaging in enhancing 
malignant cerebral tumors. Eur J Radiol, 58, 394-403.
Hartmann, M., Heiland, S., Harting, I., Tronnier, V. M., Sommer, C., Ludwig, R. & Sartor, K. (2003) Distinguishing of primary 
cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett, 338, 119-22.
Shastri-Hurst, N., Tsegaye, M., Robson, D. K., Lowe, J. S. & Macarthur, D. C. (2006) Stereotactic brain biopsy: An audit of 
sampling reliability in a clinical case series. Br J Neurosurg, 20, 222-6.
Sugahara, T., Korogi, Y., Kochi, M., Ikushima, I., Hirai, T., Okuda, T., Shigematsu, Y., Liang, L., Ge, Y., Ushio, Y. & Takahashi, 
M. (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of 
vascularity of gliomas. AJR Am J Roentgenol, 171, 1479-86.

Title Pre-op and post-op multimodal MR imaging of brain tumours

Aims of the audit

- We aim to compare the accuracy of radiological diagnosis of multimodal imaging, since its inception in clinical practice in 
Nottingham, for specific types of brain tumours including lymphoma, glioma and metastases to a benchmark defined in the 
literature by a recent local audit of stereotactic biopsies (Shastri-Hurst et al., 2006).

Secondary aims:
- To evaluate the added value of multimodality MR imaging of patients with brain masses in order to maximise the benefit of new 
technology to patients and neurosurgeons.

Is this a re-audit?

CG

Integrated care pathway

Clinical indicators

NHSLA HCC National audit NICE guideline NSF

Other link (Specify) Availability of neuros

Standards Audit of stereotactic biopsies carried out in Nottingham for cases over 4 years - 
diagnostic success rate of 89.3% (Shastri-Hurst et al., 2006).

Designation: Consultant

Priority links.  Please tick all that apply

Quality assurance

Keywords Insert words (not in title) that will help identify the audit

Original audit ID

Including literature review and audit rationale

Childcare protection agency

Clinical Audit  Registration Form

Medical 1 Medical 2 Surgical 1 Surgical 2

Family health Clinical support Trust wide

Directorate:  1 Radiology

3

2

City QMCampus:

Priority:

E-mail address:

Please specify specific 
standard and its source

Is this a baseline audit to set new standards

Local guidance

Patient experience Royal college

Division:

Interface audit

4

If designation is 'Medical Student' has an honary contract been signed off?:

Teleform Number: 0

Is this a survey?

Priority C, Local & Other

SBH
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Leicestershire, Northamptonshire & Rutland Research Ethics Committee 1 
The Old Chapel 

Royal Standard Place 
Nottingham 

NG1 6FS 
 

Tel: 0115 8839368 
Fax: 0115 9123300 

 
 
16 September 2010 
 
Professor Dorothee Auer 
Professor of Radiology 
University of Nottingham 
Queen's Medical Centre 
Academic Radiology Department 
Nottingham 
NG7 2UH 
 
Dear Professor Auer, 
 
Study title:  The prognostic value of multimodality MRI in brain 

tumours      
REC reference: 08/H0406/102 
Amendment number: 1  
Amendment date: 09 September 2010 
 
Thank you for your letter of 09 September 2010, notifying the Committee of the above 
amendment. 
 
The Committee does not consider this to be a “substantial amendment” as defined in the 
Standard Operating Procedures for Research Ethics Committees.  The amendment does 
not therefore require an ethical opinion from the Committee and may be implemented 
immediately, provided that it does not affect the approval for the research given by the R&D 
office for the relevant NHS care organisation. 
 
Documents received 
 
The documents received were as follows: 
 

 Document  Version  Date    

Investigator CV: Additional investigator   10 September 2010   

Notification of a Minor Amendment - additional member of research 
team 

1  09 September 2010   

  
Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees (July 2001) and complies fully with the Standard Operating 
Procedures for Research Ethics Committees in the UK. 



202
 

  
08/H0406/102:      Please quote this number on all correspondence 
 
Yours sincerely, 
 
 
 
 
Miss Susie Cornick-Willis 
Committee Co-ordinator 
 
E-mail: susie.cornick-willis@nottspct.nhs.uk 
 
Copy to: Mr Paul Cartledge – University of Nottingham 

 
R&D office for NHS care organisation at lead site - NUH 
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Items Yes No Unclear

1 Was the spectrum of patients representative of the () () ()
patients who will receive the test in practice?

2 Were selection criteria clearly described? () () ()
3 Is the reference standard likely to correctly classify () () ()

the target condition?

4 Is the time period between reference standard and index () () ()
test short enough to be reasonably sure that the target

condition did not change between the two tests?

5 Did the whole sample or a random selection of the () () ()
sample,receive verification using a reference

standard of diagnosis?

6 Did patients receive the same reference standard () () ()
regardless of the index test result?

7 Was the reference standard independent of the index () () ()
test (i.e. the index test did not form part of the

reference standard)?

8 Was the execution of the index test described in () () ()
sufficient detail to permit replication of the test?

9 Was the execution of the reference standard described () () ()
in sufficient detail to permit its replication?

10 Were the index test results interpreted without () () ()
knowledge of the results of the reference standard?

11 Were the reference standard results interpreted without () () ()
knowledge of the results of the index test?

12 Were the same clinical data available when test results () () ()
were interpreted as would be available

when the test is used in practice?

13 Were uninterpretable/ intermediate test () () ()
results reported?

14 Were withdrawals from the study explained? () () ()

Table H.1: QUADAS Items
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