
Search Methodologies for Examination

Timetabling

Syariza Abdul Rahman, BSc., MSc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

July 2012

sax@cs.nott.ac.uk

Abstract

Working with examination timetabling is an extremely challenging task due to the dif-

ficulty of finding good quality solutions. Most of the studies in this area rely on im-

provement techniques to enhance the solution quality after generating an initial solution.

Nevertheless, the initial solution generation itself can provide good solution quality even

though the ordering strategies often using graph colouring heuristics, are typically quite

simple. Indeed, there are examples where some of the produced solutions are better

than the ones produced in the literature with an improvement phase. This research

concentrates on constructive approaches which are based on squeaky wheel optimisation

i.e. the focus is upon finding difficult examinations in their assignment and changing

their position in a heuristic ordering. In the first phase, the work is focused on the

squeaky wheel optimisation approach where the ordering is permutated in a block of

examinations in order to find the best ordering. Heuristics are alternated during the

search as each heuristic produces a different value of a heuristic modifier. This strategy

could improve the solution quality when a stochastic process is incorporated. Motivated

by this first phase, a squeaky wheel optimisation concept is then combined with graph

colouring heuristics in a linear form with weights aggregation. The aim is to generalise

the constructive approach using information from given heuristics for finding difficult

examinations and it works well across tested problems. Each parameter is invoked with

a normalisation strategy in order to generalise the specific problem data. In the next

phase, the information obtained from the process of building an infeasible timetable is

used. The examinations that caused infeasibility are given attention because, logically,

they are hard to place in the timetable and so they are treated first. In the adaptive de-

composition strategy, the aim is to automatically divide examinations into difficult and

easy sets so as to give attention to difficult examinations. Within the easy set, a subset

called the boundary set is used to accommodate shuffling strategies to change the given

ordering of examinations. Consequently, the graph colouring heuristics are employed on

those constructive approaches and it is shown that dynamic ordering is an effective way

to permute the ordering. The next research chapter concentrates on the improvement

approach where variable neighbourhood search with great deluge algorithm is investi-

gated using various neighbourhood orderings and initialisation strategies. The approach

incorporated with a repair mechanism in order to amend some of infeasible assignment

and at the same time aiming to improve the solution quality.

Acknowledgements

In the name of Allah, the Beneficent, the Merciful.

Firstly, I would like to express my deepest gratitude to all my supervisors, Prof. Edmund

K. Burke, Prof. Andrzej Bargiela, Dr. Ender Özcan and Dr Barry McCollum (Queen’s

University of Belfast) for their support and assistance through out my PhD journey.

I am most fortunate to have the advice and guidance of many talented people, whose

knowledge have enhanced this study in so many ways.

I would like to express my sincere gratitude to those who had been involved in con-

tributing their time, effort and support during my time in this university especially to

all members of ASAP research group. It is also a pleasure to thank Public Services

Department of Malaysia and Universiti Utara Malaysia for their sponsorship.

Finally, I’m forever indebted to my family who has always been understanding and

supporting throughout my study. My special thanks to beloved husband Abdul Manaf

Othman for his patient, care, love and prayer, and to my children, Ameerul, Marsya,

Aida, Aina and Kaisa. Not to forget my special thanks to my parents, my sister and

brothers for their constant support and prayer.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Timetabling . 1

1.2 Research Motivation . 4

1.3 Research Objective . 5

1.4 Research Contribution . 7

1.5 Dissemination . 8

1.6 Outline of the Thesis . 9

2 A Survey of Algorithmic Approaches for Examination Timetabling 11

2.1 Survey of Examination Timetabling . 11

2.2 Algorithmic Techniques . 14

2.2.1 Exact Approaches . 15

2.2.2 Constraint-based Approaches . 16

2.2.3 Constructive Heuristic Techniques 17

2.2.3.1 Graph-based Heuristics 17

2.2.3.2 Fuzzy-based Techniques 21

2.2.3.3 Decomposition Techniques 22

2.2.3.4 The Granular Modelling Technique 23

2.2.3.5 Neural Networks . 24

2.2.4 Meta-heuristic and Improvement Heuristic Techniques 24

2.2.4.1 Local Search-based Methodologies 25

Hill Climbing. 25

Tabu Search. 27

Simulated Annealing. 28

Large Neighbourhood Search. 30

Variable Neighbourhood Search. 31

Great Deluge. 32

Greedy Randomised Adaptive Search Procedure. 34

iii

Contents iv

Developmental Approach. 35

Harmony Search Algorithm. 35

2.2.4.2 Population-based Search Methodologies 36

Genetic Algorithms. 36

Memetic Algorithms. 38

Ant Algorithms. 40

2.2.5 Hyper-heuristic and Case-based Reasoning Techniques 41

2.2.5.1 Hyper-Heuristic . 41

Heuristic selection methodologies. 42

Heuristic generation methodologies. 45

2.2.5.2 Case-based Reasoning . 46

2.2.6 Multi-criteria and Multi-objective Techniques 47

2.3 A Survey of Research on the Second International Timetabling Competi-
tion (ITC2007) . 49

2.4 Real World Examination Timetabling Datasets 52

2.5 Description of Benchmark Problems . 54

2.5.1 Toronto . 55

2.5.2 ITC2007 . 56

2.6 Summary . 56

3 Construction of Examination Timetables Based on Adaptive Heuristic
Orderings 59

3.1 Adaptive Heuristics Ordering the Examinations Based on Priorities 60

3.1.1 Graph Colouring Heuristics . 61

3.1.2 Heuristic Modifiers . 63

3.1.3 Shuffling the Ordering of Examinations 64

3.1.4 Time-slot Choice . 65

3.1.5 Shuffling Best Ordering . 66

3.1.6 Heuristic Alternation . 66

3.2 Algorithm . 67

3.2.1 Toronto . 67

3.2.2 ITC2007 . 69

3.3 Experimental Results . 73

3.3.1 Toronto . 74

3.3.2 ITC2007 . 79

3.3.3 Discussion . 84

3.4 Conclusion . 95

4 Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetables 98

4.1 An Adaptive Linear Combination of Heuristics Orderings 99

4.1.1 The choosemax Function . 104

4.1.2 The Weight Assignment . 104

4.1.3 Shuffling the Ordering of Examinations 104

4.1.4 Strategies of Weight Changes . 105

4.1.4.1 Dynamic Weights . 105

4.1.4.2 Linear Weights . 106

Contents v

4.1.4.3 Reinforcement Learning 107

4.2 Experiments . 109

4.2.1 Results of Experiments . 111

4.2.1.1 Toronto . 111

4.2.1.2 ITC2007 . 120

4.3 Conclusion . 122

5 A Constructive Approach for Examination Timetabling based on Adap-
tive Decomposition and Ordering 125

5.1 Automated Decomposition and Ordering of Examinations 126

5.1.1 Interaction between Difficult and Easy Sets through a Boundary
Set . 129

5.1.2 Swapping the Examinations Between Difficult and Boundary Sets 130

5.1.3 Roulette Wheel Selection for Examinations 131

5.1.4 Comparison of Our Approach to a Previous Study 132

5.2 Experiments . 133

5.2.1 Parameter Tuning . 134

5.2.2 Best Performance Comparison of Different Strategies 136

5.2.3 Discussion on the Performance of the Algorithm on the Toronto
Benchmark Datasets . 138

5.2.4 Comparison with the Previous Approaches on the Toronto Datasets140

5.2.5 Implementation on the ITC2007 benchmark datasets 142

5.3 Conclusion . 147

6 A Variable Neighbourhood Search - Great Deluge for Examination
Timetabling Problem 149

6.1 Variable Neighbourhood Search (VNS) . 150

6.2 VNS for Examination Timetabling . 151

6.2.1 Initialisation . 154

6.2.2 Neighbourhood Structures . 155

6.2.3 Acceptance Criteria of VNS . 159

6.3 Experiments and Results . 161

6.3.1 Toronto . 162

6.3.2 ITC2007 . 166

6.3.3 Discussions . 168

6.4 Conclusion . 177

7 Conclusions and Future Work 178

7.1 Research Summary . 178

7.2 Future Work . 182

A Graphs of Adaptive Heuristic Ordering Approach 185

A.1 Toronto Benchmark Datasets . 185

A.2 ITC2007 Benchmark Datasets . 185

Contents vi

Bibliography 204

List of Figures

3.1 Shuffling strategy within block (a) Ordering of examinations with certain
graph colouring heuristic; (b) Ordering after shuffling examinations in the
block size 4 . 65

3.2 Shuffling strategy within top-window size four (a) Ordering of examina-
tions with saturation degree heuristic and choosing one examination from
the top-window size four randomly and schedule it; (b) Update the satu-
ration degree of the unscheduled examinations and order them according
to difficulty value (no need to update the ordering if using static heuris-
tic); (c) The process continues with choosing the next examination to be
scheduled within top-window size four randomly 66

3.3 Number of violated examinations at each iteration for yor83 I of the
Toronto benchmark datasets with custom (C) heuristic modifier tested
with basic AHO with top-window size five (a) the whole picture of each
heuristic behaviour; (b) the behaviour of the first fifty iterations; and (c)
the behaviour of the last fifty iterations 87

3.4 Number of violated examinations at each iteration for yor83 I of the
Toronto benchmark datasets with additive (AD) heuristic modifier tested
with basic AHO with top-window size five (a) the whole picture of each
heuristic behaviour; (b) the behaviour of the first fifty iterations; and (c)
the behaviour of the last fifty iterations 88

3.5 Number of violated examinations at each iteration for yor83 I of the
Toronto benchmark datasets with multiplicative (MP) heuristic modifier
tested with basic AHO with top-window size five (a) the whole picture
of each heuristic behaviour; (b) the behaviour of the first fifty iterations;
and (c) the behaviour of the last fifty iterations 89

3.6 Number of violated examinations at each iteration for yor83 I of the
Toronto benchmark datasets with exponential (EX) heuristic modifier
tested with basic AHO with top-window size five (a) the whole picture
of each heuristic behaviour; (b) the behaviour of the first fifty iterations;
and (c) the behaviour of the last fifty iterations 90

3.7 Number of violated examinations at each iteration for Exam 11 of the
ITC2007 benchmark datasets with custom (C) heuristic modifier of tested
with basic AHO with top-window size five (a) the whole picture of each
heuristic behaviour; (b) the behaviour of the first fifty iterations; and (c)
the behaviour of the last fifty iterations 93

3.8 Number of violated examinations at each iteration for Exam 11 of the
ITC2007 benchmark datasets with additive (AD) heuristic modifier tested
with basic AHO with top-window size five (a) the whole picture of each
heuristic behaviour; (b) the behaviour of the first fifty iterations; and (c)
the behaviour of the last fifty iterations 94

vii

List of Figures viii

3.9 Number of violated examinations at each iteration for Exam 11 of the
ITC2007 benchmark datasets with multiplicative (MP) heuristic modifier
tested with basic AHO with top-window size five (a) the whole picture
of each heuristic behaviour; (b) the behaviour of the first fifty iterations;
and (c) the behaviour of the last fifty iterations 95

3.10 Number of violated examinations at each iteration for Exam 11 of the
ITC2007 benchmark datasets with exponential (EX) heuristic modifier
tested with basic AHO with top-window size five (a) the whole picture
of each heuristic behaviour; (b) the behaviour of the first fifty iterations;
and (c) the behaviour of the last fifty iterations 96

4.1 Best solution quality for each of weight combination of LDSDHM for (a)
car91 and (b) tre92 for the Toronto benchmark datasets 119

4.2 Average performance of each top-window size and different group of weight
combination for LDSDHM for the Toronto benchmark datasets 120

5.1 Strategies of decomposition in timetabling 127

5.2 (a) All examinations are in easy set in the first iteration and examinations
that cause infeasibility are marked; (b) difficult and easy sets after an
iteration resulting with an infeasible solution; (c) boundary set with a
prefixed size is added to the difficult set after an iteration and reordering is
performed; (d) the step in (a) is repeated and the infeasible examinations
are placed in the difficult set, the size of difficult set increased 130

5.3 The boundary set is swapped with the difficult set and is reordered before
assigning examinations to the time-slots 131

5.4 Difficult and easy sets (a) in the first iteration; (b) after an iteration is
over (a) resulting with an infeasible solution; (c) after an iteration is over
(a) resulting with a feasible solution . 132

5.5 Average cost of overall performance for all problem instances for different
sizes of boundary set of the Toronto benchmark datasets 134

5.6 Average cost of overall performance for all problem instances for different
size of roulette wheel selection size of the Toronto benchmark datasets . . 136

5.7 Average number of examinations in the difficult set (its size) over all prob-
lems considering all shuffling strategies using different initialisation and
reordering heuristics of the Toronto benchmark datasets (Add = adding
strategy, Swap = swapping strategy) . 139

5.8 The change in the size of the difficult set and the solution quality at every
100 iterations during the sample runs for kfu93 (LD = largest degree, SD
= saturation degree) . 140

5.9 Average number of examinations in the difficult set (its size) over all
problems considering all shuffling strategies using different initialisation
and reordering heuristics of the ITC2007 benchmark datasets (Add =
adding strategy, Swap = swapping strategy) 144

5.10 The change in the size of the difficult set and the solution quality every 100
iterations during the sample runs for Exam 4 of the ITC2007 benchmark
datasets (LD = largest degree, SD = saturation degree) 145

6.1 The one-pair Kempe-chain (a) before and (b) after the move 156

6.2 The two-pair Kempe-chain (a) before and (b) after the move 157

6.3 Box-plot of different initial solutions for the Toronto benchmark datasets 172

List of Figures ix

6.4 The search movement of different initialisation for the (a) hec92 I and (b)
lse91 of Toronto benchmark datasets . 173

6.5 Box-plot of different initial solutions for the ITC2007 benchmark datasets 174

6.6 The search movement of different initialisation for (a) Exam 1 and (b)
Exam 9 of ITC2007 benchmark datasets 176

A.1 The number of violated examinations at each iteration for car91 with (a)
custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX)
heuristic modifier . 186

A.2 The number of violated examinations at each iteration for car92 with (a)
custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX)
heuristic modifier . 187

A.3 The number of violated examinations at each iteration for ears83 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 188

A.4 The number of violated examinations at each iteration for hec92 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 189

A.5 The number of violated examinations at each iteration for kfu93 with (a)
custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX)
heuristic modifier . 190

A.6 The number of violated examinations at each iteration for pur93 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 191

A.7 The number of violated examinations at each iteration for rye92 with (a)
custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX)
heuristic modifier . 192

A.8 The number of violated examinations at each iteration for sta83 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 193

A.9 The number of violated examinations at each iteration for uta92 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 194

A.10 The number of violated examinations at each iteration for ute92 with (a)
custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX)
heuristic modifier . 195

A.11 The number of violated examinations at each iteration for tre92 with (a)
custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX)
heuristic modifier . 196

A.12 The number of violated examinations at each iteration for Exam 1 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 197

A.13 The number of violated examinations at each iteration for Exam 2 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 198

A.14 The number of violated examinations at each iteration for Exam 3 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 199

List of Figures x

A.15 The number of violated examinations at each iteration for Exam 4 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 200

A.16 The number of violated examinations at each iteration for Exam 5 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 201

A.17 The number of violated examinations at each iteration for Exam 6 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 202

A.18 The number of violated examinations at each iteration for Exam 12 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential
(EX) heuristic modifier . 203

List of Tables

1.1 The category of educational timetabling 2

1.2 The most used hard and soft constraints 3

2.1 The graph colouring heuristics in examination timetabling 20

2.2 The examination timetabling datasets from different universities 52

2.3 The characteristics of the Toronto benchmark datasets 55

2.4 The hard and soft constraints of the examination timetabling track of
ITC2007 . 57

2.5 The characteristic of the ITC2007 benchmark 57

3.1 Comparison of different heuristics with different combinations of algo-
rithmic choices of the basic AHO for Toronto benchmark datasets (LD
= largest degree, LE, largest enrolment, LWD = largest weighted degree,
SD = saturation degree) . 75

3.2 Comparison of basic AHO and AHO with shuffling best ordering for four
different graph colouring heuristics for the Toronto benchmark datasets
(LD = largest degree, SD = saturation degree, LE = largest enrolment,
LWD = largest weighted degree, t(s) = running time in seconds) 77

3.3 Comparison of different combinations of graph colouring heuristics in
heuristic alternation strategy of AHO for the Toronto benchmark datasets
(The bold entries indicate the best results for given heuristic combination
type, while those in bold and italic indicate the best results found for
the given problem) (LD = largest degree, SD = saturation degree, LE =
largest enrolment, LWD = largest weighted degree) 78

3.4 Comparison of AHO with different constructive approaches of the Toronto
benchmark datasets . 80

3.5 Comparison of AHO with different hyper-heuristics approaches of the
Toronto benchmark datasets . 80

3.6 Comparison of AHO with different improvement approaches of the Toronto
benchmark datasets . 81

3.7 Comparison of different heuristics with different combination of algorith-
mic choices of the ITC2007 benchmark datasets for basic AHO (LD =
largest degree, LE = largest enrolment, LWD = largest weighted degree,
SD = saturation degree, inf. = infeasible). 82

3.8 Comparison of basic AHO and AHO with shuffling best ordering for four
different graph colouring heuristics for the ITC2007 benchmark datasets
(LD = largest degree, LE = largest enrolment, LWD = largest weighted
degree, SD = saturation degree, inf. = infeasible) 84

xi

List of Tables xii

3.9 Comparison of different heuristics strategies of AHO of the ITC2007
benchmark datasets (The bold entries indicate the best results for given
heuristic combination type, while those in bold and italic indicate the best
results found for the given problem) (LD = largest degree, SD = satu-
ration degree, LE = largest enrolment, LWD = largest weighted degree,
inf. = infeasible) . 85

3.10 Comparison of AHO with different approaches of the ITC2007 benchmark
datasets . 86

3.11 The effect of different size of block/top-window on the solution quality
of the Toronto benchmark datasets (6= indicates significant differences
among the sizes) . 91

4.1 Examples of ordering by combinations of single heuristics (LD = largest
degree; SD = saturation degree; HM = heuristic modifier; diff score =
difficulty score) . 102

4.2 Examples of ordering by combinations of multiple heuristics (LD = largest
degree; SD = saturation degree; HM = heuristic modifier; diff score =
difficulty score) . 103

4.3 The grouping of different weight combinations for LDSDHM 105

4.4 Comparison of single and combination of heuristics (LD = largest degree;
SD = saturation degree; HM = heuristic modifier) 112

4.5 The combination of weights and algorithmic approaches for the Toronto
benchmark datasets (LD = largest degree; SD = saturation degree; HM =
heuristic modifier; St = static; Dy = dynamic; REQ = random preference;
TW = top-window; AD = additive; EX = exponential; w = weight) . . . 113

4.6 Comparison of ALC with different strategies of weight changes for the
Toronto benchmark datasets (ALC = adaptive linear combination ap-
proach, the bold entries indicate the best results for given strategies) . . . 114

4.7 Comparison of ALC with different constructive approaches for the Toronto
benchmark datasets (ALC = adaptive linear combination approach, ()
= rank value, Av. Rank = average rank) 115

4.8 Comparison of ALC with different hyper-heuristics approaches for the
Toronto benchmark datasets (ALC = adaptive linear combination ap-
proach, () = rank value, Av. Rank = average rank) 116

4.9 Comparison of ALC with different improvement approaches for the Toronto
benchmark datasets (ALC = adaptive linear combination approach, ()
= rank value, Av. Rank = average rank) 117

4.10 The effect of different size of top-window for LDSDHM for the Toronto
benchmark datasets (6= = inequality; ' = approximately equal) 118

4.11 The effect of different group of weight combination for LDSDHM to so-
lution quality for the Toronto benchmark datasets (6= = inequality) 118

4.12 Different combination of weights and algorithmic approaches for the ITC2007
benchmark datasets (LD = largest degree; SD = saturation degree; HM
= heuristic modifier; Dy = dynamic; TW = top-window; AD = additive;
EX = exponential; w = weight) . 121

4.13 Comparison of ALC with different strategies of weight changes for the
ITC2007 benchmark datasets (ALC = adaptive linear combination ap-
proach, inf. = infeasible solution, the bold entries indicate the best results
for given strategies) . 121

List of Tables xiii

4.14 Comparison of ALC with different approaches of the ITC2007 benchmark
datasets (ALC = adaptive linear combination approach) 123

5.1 Comparing best solution quality of the Toronto benchmark datasets for
(a) [LD-LD], (b) [LD-SD], (c) [SD-LD] and (d) [SD-SD] by adding bound-
ary set into difficult set and swapping examinations between boundary
and difficult sets with δ = 3 (av. = average solution quality; std. =
standard deviation; t(s) = average running time in seconds) (Bold font
indicates the best for different ordering and strategy and bold and italic
is the best of all for each problem instance) 135

5.2 Comparing solution quality of the Toronto benchmark datasets for (a)
[LD-LD], (b) [LD-SD], (c) [SD-LD] and (d) [SD-SD] with shuffling strate-
gies of adding the boundary set into the difficult set and swapping exam-
inations between the boundary and difficult sets with δ = 3 and includes
roulette wheel selection for examinations with n = 3 (av. = average so-
lution quality; std. = standard deviation; t(s) = average running time in
seconds) (Bold font indicates the best for different ordering and strategy
and bold and italic is the best of all for each problem instance) 137

5.3 Comparison of different constructive approaches of the Toronto bench-
mark datasets (The bold entries indicate the best results for constructive
approaches only, while those in italic and bold indicate the best results
for the decomposition approach) . 142

5.4 Comparison of different improvement approaches (The bold entries indi-
cate the best results) . 143

5.5 Comparing solution quality of the ITC2007 benchmark datasets for (a)
[LD-LD], (b) [LD-SD], (c) [SD-LD] and (d) [SD-SD] with shuffling strate-
gies of adding the boundary set into the difficult set and swapping exam-
inations between the boundary and difficult sets with δ = 3 and includes
roulette wheel selection for examinations with n = 3 (av.=average solu-
tion quality; std.=standard deviation) (Bold font indicates the best for
different ordering and strategy and bold and italic is the best of all for
each problem instance) . 146

5.6 Comparison of different approaches for the ITC2007 benchmark datasets
(The bold entries indicate the best results) 148

6.1 The results of poor initial solution tested with different neighbourhood
orderings for the Toronto benchmark datasets (RL = reinforcement learn-
ing, stdev. = standard deviation, Av. t(m) = average running time in
minutes) . 163

6.2 The results of good initial solution tested with different neighbourhood
orderings for the Toronto benchmark datasets (RL = reinforcement learn-
ing, stdev. = standard deviation, Av. t(m) = average running time in
minutes) . 164

6.3 The results of multiple initial solutions tested with different neighbour-
hood orderings for the Toronto benchmark datasets (RL = reinforcement
learning, stdev. = standard deviation, Av. t(m) = average running time
in minutes) . 165

6.4 Comparison of different improvement approaches with VNS-GD 167

List of Tables xiv

6.5 The results of poor initial solutions tested with different neighbourhood
orderings for the ITC2007 benchmark datasets (RL = reinforcement learn-
ing, stdev. = standard deviation) . 168

6.6 The results of good initial solutions tested with different neighbourhood
orderings for the ITC2007 benchmark datasets (RL = reinforcement learn-
ing, stdev. = standard deviation) . 169

6.7 The results of multiple initial solutions tested with different neighbour-
hood orderings for the ITC2007 benchmark datasets (RL = reinforcement
learning, stdev. = standard deviation) . 170

6.8 Comparison of different approaches for ITC2007 benchmark datasets (The
bold entries indicate the best results). 171

Chapter 1

Introduction

1.1 Timetabling

Timetabling problems can be classified as a type of scheduling problem. A timetable

usually provides information about the time for particular events to occur, and eventually

relates to the allocation of resources (Wren, 1996). In real world timetabling problems,

the allocation of resources at the specified time is required. The task is challenging due

to the large number of entities that need to be scheduled and the extensive constraints

and preferences that must be satisfied. According to Burke et al. (2004c),

“A timetabling problem is a problem with four parameters: T, a finite set of times; R,

a finite set of resources; M, a finite set of meetings; and C, a finite set of constraints.

The problem is to assign times and resources to the meetings so as to satisfy the

constraints as far as possible.”

Much research has been conducted in this area, e.g. sport timetabling (Trick, 2011),

vehicle timetabling (Brandão de Oliveira and Vasconcelos, 2010), employee timetabling

(Meisels and Schaerf, 2003), educational timetabling, which includes school timetabling

(Avella et al., 2007), examination timetabling (Qu et al., 2009b) and course timetabling

(Abdullah et al., 2005). Timetabling can be considered as a placement procedure of

certain resources to particular events within certain time periods. At the same time,

this placement process should satisfy the restrictions related to the objective function

of an institution’s needs.

Generally, educational timetabling can be categorised into three major groups (Schaerf,

1999) and defined as in Table 1.1. The basic characteristics of these three groups are

similar in that they are required to be clash-free i.e. students or teachers cannot attend

1

Chapter 1. Introduction 2

two or more time-slots at any one time; however there are some significant differences.

In school timetabling, students must attend one full day class, while in university course

timetabling, the students are required to attend courses which are spread over the whole

week; at the same time the students are also given flexibility in choosing courses. With

examination timetabling, the requirement is to avoid, if possible, more than one exam-

ination in a day for any student. Usually this involves a fixed length of examination

duration which occurs twice in a year and which could last for two or three weeks.

Table 1.1: The category of educational timetabling

Category Descriptions

School timetabling Scheduling of school classes into time-slots over a week:
no teacher or student required to attend two classes at
one time.

Course timetabling Scheduling of courses to time-slots and rooms over a
week: no teacher or student required to attend two classes
at one time while satisfying room capacity requirement.

Examination timetabling Scheduling of examinations to limited time-slots (usually
the duration is two or three weeks): no student required
to sit two or more examinations at one time. In most
cases, the room capacity requirement is considered at the
same time.

The focus of this thesis is the examination timetabling problem. This problem is consid-

ered as an NP hard real world problem (Even et al., 1976). The real world problems are

rich and varied, involving significant levels of information from related problems. They

have gradually become more challenging in recent years due to the increase in student

enrolments and the growing flexibility of course choices (McCollum, 2007). The manual

solution of this problem is typically suboptimal (a feasible but not a very satisfactory

solution) since the extensive exploration of the solution space is beyond the scope of ad-

hoc search. Further research is required to enhance the quality of the obtained timetable

in order to satisfy both institutional and personal preferences.

Carter and Laporte (1996) defined the examination timetabling problem as the assign-

ing of examinations into a limited number of time-slots so that there are no conflicts or

clashes. The key objective of studying the examination timetabling problem is to deter-

mine the timetable that optimises some desired objective functions. A set of examina-

tions E = e1, e2, ...en must be assigned to a limited number of time-slots T = t1, t2, ...tm

i.e. it is subject to certain restricted constraints. In assessing the solution to this prob-

lem, there are both hard and soft constraints. The hard constraints must be strictly

adhered to under any circumstances, and when satisfied, produce a feasible solution. For

example, students cannot sit two examinations at the same time. On the other hand,

Chapter 1. Introduction 3

the soft constraints, such as giving students as much free time as possible between exam-

inations, do not affect the feasibility of the solution, although they need to be satisfied

as much as possible for the solution to be of high quality. Of course, soft constraints

usually have to be violated to some degree in a real world situation. The extent to which

the defined soft constraints are satisfied reflects the quality of the obtained timetable.

A survey presented in Burke et al. (1996a) revealed that many different sets of con-

straints are highlighted by different academic institutions in Britain. The preferences

of the constraint evaluation are usually based on the needs of the institution. Such

constraints can be categorised as time- and resource-related. Qu et al. (2009b) in as-

sessing timetable quality, described the most used hard and soft constraints within the

timetabling community (as shown in Table 1.2 below).

Table 1.2: The most used hard and soft constraints

Constraint type Descriptions

Hard constraints - No student should sit two examinations at any one time.
- The total number of students in the examination room should
not exceed the room capacity.

Soft constraints - Examinations that are in conflict should be distributed within
the timetable as evenly as possible.
- Some examinations are required to be scheduled at a particular
location or on the same day.
- Examinations should be scheduled consecutively.
- Examinations with large enrolment size should be scheduled as
early as possible.
- Examinations with limited enrolment should be scheduled into
a particular time-slot.
- Some examinations are required to be scheduled within a partic-
ular time-slot.
- Examinations in conflict on the same day should be located
nearby.
- Examinations should be split over similar locations.
- Examinations with the same duration should be allocated the
same room.
- Resource requirements for certain examinations should be met

Real-world timetabling problems typically require a significant computational effort due

to the need to satisfy as many real-life constraints as possible. It is extremely challenging

to obtain a good quality timetable using exact methods in many real-world situations

and researchers have tended to resort to heuristic approaches. A range of timetabling

problems and solution methodologies have been discussed in the academic literature

focusing on their complexity and problem solving efficiency, respectively.

The examination timetabling problem is very well known to the timetabling community

because of its inherent difficulty. There is almost no known proven optimal solution

Chapter 1. Introduction 4

even for most small real world problem instances. The largest such instance is reported

in Parkes and Özcan (2010) as a timetabling problem with thirty-eight examinations to

be scheduled at Yeditepe University. As a result, the goal of examination timetabling is

frequently defined as finding a high quality (but not necessarily optimal) schedule for a

given set of examinations subject to various institutional and personal constraints and

preferences. According to Burke et al. (2010b), a constructive approach starts with an

empty solution and incrementally builds a complete solution using construction heuris-

tics. The graph colouring heuristics can be used as the construction heuristics within

the timetabling problem. On the other hand, the improvement approach starts with

a complete solution and is concerned with further refining the current solution quality

iteratively, using a set of neighbourhood structures and/or simple local searcher until a

stopping condition is met. This thesis focuses on solving the examination timetabling

problem using an approach which consists of both constructive and improvement phases.

These problems can, therefore, be mapped through an identity relationship onto the

problem of colouring a graph in graph theory. Indeed, this observation underpins some

of the earliest and best-known approaches to examination timetabling problems (Carter,

1986). The graph colouring problem is defined as the problem of colouring vertices of

a graph with the least number of colours so that no two vertices connected by an edge

have the same colour. The vertices represent examinations and the edges connecting

vertices represent hard constraints such as student conflict between the examinations.

In timetabling, the objective is to schedule examinations in the time-slots while ensuring

that the conflicting examinations are not assigned to the same time-slot. The details on

the graph colouring problem see Burke et al. (2004c) and the approaches employed to

examination timetabling problem can be found in Chapter 2.

A compilation of educational timetabling problems and approaches for solving them can

be found in conference volumes by Burke and Ross (1996), Burke and Carter (1998),

Burke and Erben (2001), Burke and De Causmaecker (2003), Burke and Trick (2005),

Burke and Rudová (2007) and Burke and Barry (2010).

1.2 Research Motivation

The successful assignment of an examination to a time-slot can be strongly dependent

on the order in which examinations are processed. Consequently, an investigation of

the examination ordering strategy is an important part of this thesis. In particular, the

present research investigates the ordering of examinations according to the perceived

difficulty of scheduling them in the available time-slots. The examinations deemed to

Chapter 1. Introduction 5

be the most difficult are scheduled first in the timetable in the hope that the remain-

ing scheduling problem would be less difficult than the original task. The relatively

less difficult examinations are assigned at the later stages in the timetabling process.

The approaches to timetabling which encompass this basic graph colouring implemen-

tation are known as constructive approaches and are often used during the initialisation

strategy before going on to the improvement phase.

Since none of the ordering strategies provides a guarantee of successful scheduling, there

have been extensive studies on constructive approaches reported in academic literature.

Most of these incorporated graph colouring heuristics have employed some adaptive

strategies (Abdul Rahman et al., 2009, Burke and Newall, 2004), fuzzy techniques (As-

muni et al., 2009, Pais and Burke, 2010), decomposition (Abdul Rahman et al., 2010, Qu

and Burke, 2007), granular modelling (Abdul Rahim et al., 2009) and neural networks

(Corr et al., 2006). As a result, approaches related with these ordering strategies are used

either for constructing a good quality timetable or for producing a good initial solution

before proceeding to improve the solution quality. As shown by several studies, a good

initial solution can help to produce better final solutions (Burke and Newall, 2003, Gogos

et al., 2010a). These findings have motivated this research to focus on searching for good

quality solutions during the timetable construction and, additionally, the solutions are

improved in the improvement phase. In examination timetabling, this phase is typically

concerned with improving the solution quality using other sophisticated approaches such

as meta-heuristics.

The research begins with an investigation into the constructive approaches that are based

on the ordering strategy from the graph colouring heuristics. An investigation of the

squeaky wheel optimisation and decomposition strategies seeks to change the ordering

by referring to the unscheduled examinations encountered in previous timetable con-

structions. In addition, an improvement approach is also considered in order to improve

the generated solution in various ways, using a variable neighbourhood search - great

deluge algorithm where the focus is to investigate the influence of different initialisations

and neighbourhood orderings on producing good quality solutions.

1.3 Research Objective

The research into constructive and improvement approaches examined two different

examination timetabling problems, known as the Toronto instances and the Second

International Timetabling Competition (ITC2007) benchmark datasets. In the first

phase, the study concentrates on finding good quality solutions based on an ordering

strategy where the heuristics used are adapted from graph colouring heuristics. The

Chapter 1. Introduction 6

squeaky wheel optimisation is simultaneously explored in changing the examination

ordering, while in other research work, considers a decomposition strategy in order to

divide the problem based on the difficulty of scheduling individual examinations. The

strategies investigate the unscheduled examinations that are obtained in the previous

timetable construction by giving them priority to be scheduled first. In the second phase,

an improvement strategy is employed to refine the previously identified solutions. The

objectives listed below summarise the scientific aim of the thesis. Objectives one to

three focus on the construction of an examination timetable while objective four seeks

on the improvement of the solution quality:

1. An investigation of the squeaky wheel optimisation strategy for exam-

ination ordering: this research identifies the effect of changing the examina-

tion ordering within the block or top-window strategy and the use of heuristic

modifier and graph colouring heuristics that contribute to the solution quality

and the number of unscheduled examinations during timetable construction. Fur-

ther, the choice of time-slot selection, shuffling current best ordering whenever

no improvement for a certain period and the combination of a number of graph

colouring heuristics while constructing the solutions are considered throughout the

timetabling process. The research also aims at contributing to an improved un-

derstanding of how various types of graph colouring heuristics provide a different

number of unscheduled examinations when incorporated with different types of

heuristic modifier.

2. A further investigation of the squeaky wheel optimisation concept with

the linear combination of heuristics: this research investigates the advan-

tages of combining more than one graph colouring heuristic simultaneously with a

heuristic modifier in linear approach in order to find the best ordering for exami-

nations based on examination difficulty. Using this method, each graph colouring

heuristic and heuristic modifier is invoked with a normalisation strategy in order

to generalise the specific problem data and is embedded with a different combi-

nation of weights values. The research aims at obtaining a new score value for

each examination based on the difficulty of assigning examinations to time-slots.

This new score value is used for ordering and constructing examination timeta-

bles. Instead of fixing the weight value for each parameter, the study also seeks

to investigate the changes of weight values automatically while constructing the

examination timetables.

3. A development of decomposition strategy that makes use of information

obtained from the unscheduled examinations: the problem is decomposed

Chapter 1. Introduction 7

into two subsets and each subset is embedded with a heuristic ordering and shuf-

fling strategy with the roulette wheel selection method. The research issue is to

identify whether the examinations that generate an infeasible timetable can gen-

erate good initial solutions when they are treated first. A new subset, known as a

boundary set, is introduced in order to vary the examination orderings.

4. An investigation of variable neighbourhood search - great deluge algo-

rithm to improve the solution quality from the constructed solutions:

the research aims to build an algorithm that can effectively improve the solution

quality constructed using constructive approaches that are introduced. Different

neighbourhood structures are considered, including the Kempe-chain moves that

accept infeasible moves and this infeasibility is resolved using a repair mecahnism.

The study is concerned with testing different neighbourhood orderings and initial-

isations in order to observe the effect on the solution quality obtained.

1.4 Research Contribution

The research reported in this thesis resulted in a number of original research contribu-

tions as described below:

1. An investigation into adaptive heuristic ordering based on the squeaky wheel op-

timisation has been incorporated with a shuffling strategy. This has shown an

improvement to the solution quality when compared with the ordering without

the shuffling strategy. Statistical analysis revealed that different sizes of block

or top-window strategy could significantly affect the solution quality. The study

found that different graph colouring heuristics employed in the approach give a

different number of unscheduled examinations at each iteration. It is also demon-

strated that the incorporation of different types of heuristic modifier has a signifi-

cant effect on the contribution of the number of unscheduled examinations at each

iteration and at the same time greatly influences the solution quality. In addition,

the study has established that the use of more than one graph colouring heuristic

while constructing the solution is beneficial where a number of graph colouring

heuristics were alternated during the timetable construction, and that this could

assist in obtaining a good quality timetable.

2. Within the squeaky wheel optimisation method, the combination of a number of

graph colouring heuristics with a heuristic modifier adapted with weight values

within a linear approach can significantly improve the examination ordering where

the ordering is based on a new difficulty score value. This approach has led to good

Chapter 1. Introduction 8

quality timetables. The research concluded that different weight values adapted

to different parameters in the linear approach could influence the solution quality.

Moreover, instead of using a fixed weight value for each parameter, the automatic

weight changes during timetable construction have the potential to produce a good

examination ordering.

3. An investigation of the decomposition approach to the unscheduled examinations

showed that scheduling the difficult examinations first could be advantageous for

improving the solution quality. The study introduced a boundary set that is lo-

cated between the difficult and easy set. Merging or swapping the boundary set

with the difficult set has produced improved solution quality. Furthermore, a

stochastic component based on a roulette wheel selection was embedded into the

approach in order to enhance the probability of selection of an examination with

a high score of difficulty. It is concluded that this decomposition strategy ap-

proach, which gives priority to the unscheduled examinations obtained in previous

iterations, could enhance the solution quality obtained.

4. The research has ascertained that the improvement approach based on variable

neighbourhood search and the great deluge algorithm is competitive when com-

pared with other improvement approaches in the literature. The approach accepts

infeasible moves in order to diversify the search. In order to overcome the infea-

sibility, a repair mechanism was introduced which removed the infeasibility and,

at the same time, further improved the solution quality. The finding of this re-

search is that the neighbourhood orderings and initialisations give an advantage

for producing good solution quality and these have an effect depending on the

characteristic of the implemented problems.

1.5 Dissemination

A number of research results described in this thesis have been published or are accepted

for publication in peer-reviewed publication outlets. Additionally, there are papers cur-

rently being prepared for submission for publication. The following is a list of the papers

that have emerged from this thesis:

1. Syariza Abdul Rahman, Andrzej Bargiela, Edmund K. Burke, Barry McCollum,

and Ender Ozcan. Construction of examination timetables based on ordering

heuristics. In Proceedings of the 24th International Symposium on Computer and

Information Sciences, pages 727-732, 2009.

Chapter 1. Introduction 9

2. Syariza Abdul Rahman, Andrzej Bargiela, Edmund K. Burke, Barry McCollum,

and Ender Ozcan. A construction approach for examination timetabling based

on adaptive decomposition and ordering. In Proceedings of the 8th International

Conference on the Practice and Theory of Automated Timetabling, (PATAT 2010),

10-13 August 2010, Belfast, Northern Ireland, pages 353-372, 2010.

3. Syariza Abdul Rahman, Andrzej Bargiela, Edmund K. Burke, Barry McCollum,

and Ender Ozcan. A constructive approach for examination timetabling based

on adaptive decomposition and ordering. Accepted for publication in Annals of

Operations Research.

4. Syariza Abdul Rahman, Andrzej Bargiela, Edmund K. Burke, Barry McCollum,

and Ender Ozcan. Linear combination of adaptive heuristic orderings in con-

structing examination timetable. Submitted to European Journal of Operational

Research.

5. Syariza Abdul Rahman, Andrzej Bargiela, Edmund K. Burke, Barry McCollum,

and Ender Ozcan. Initialisation and neighbourhood ordering in VNS for improving

examination timetables. In preparation for submission to Journal of Scheduling.

1.6 Outline of the Thesis

This thesis comprises seven chapters. The first chapter has presented an introduction

of the timetabling problem as well as the motivation and aims of the research and an

outline of the dissemination of the research work. Chapter 2 describes recent approaches

to the examination timetabling problem and categorises them into several major groups.

The benchmark datasets widely used in the examination timetabling community are also

described in this chapter.

Chapters 3, 4, 5 and 6 introduce new approaches to the examination timetabling prob-

lem and discuss their implementation and the analysis and experiments for the two

well-known benchmark datasets. Chapter 3 is an initial investigation of the squeaky

wheel optimisation strategy introduced by Joslin and Clements (1999) and first im-

plemented in examination timetabling by Burke and Newall (2004). The unscheduled

examinations are identified as difficult and their difficulty levels are increased so that

they are given priority to be chosen first in the next iteration. The investigation focuses

on the examination selection in the ordering where the change of position of ordering

within the block or top-window strategy are identified. At the same time, shuffling cur-

rent best ordering whenever no improvement to the solution quality for a certain period

and alternating a number of graph colouring heuristics in order to change examination

Chapter 1. Introduction 10

ordering are also explored, while the choice of time-slot selection is examined throughout

the timetabling process. Further, the chapter presents an investigation into the contri-

bution of the number of unscheduled examinations produced when using different graph

colouring heuristics and different heuristic modifiers.

The squeaky wheel optimisation technique is further explored in Chapter 4 where the

concept of a linear approach that combines a number of graph colouring heuristics with

a heuristic modifier is studied. This research investigates the merits of combining more

than one graph colouring heuristic in order to find the best ordering for the examinations

based on their difficulty. A normalisation strategy is invoked for each heuristic and is

embedded with different combinations of weights values. The research generates a new

score value for each examination and a new ordering of examinations is obtained based on

the difficulty of assigning examinations to the time-slots. Several strategies on changing

the weights automatically are also examined.

In Chapter 5, a further study of unscheduled examinations considers the decomposition

of the problem into two subsets that divide unscheduled and scheduled examinations

so that they can be timetabled separately. The unscheduled subsets of examinations

are given priority by scheduling them first, followed by the scheduled subset. A fixed

size of boundary set is introduced in the chapter in order to diversify the search, and

a number of experiments are performed involving different heuristics used for ordering

the examinations in each set.

In Chapter 6, a variable neighbourhood search - great deluge algorithm is employed on

the examination timetabling problems in order to improve the solution quality yielded

by the constructed solutions in previous chapters. The approach is incorporated with a

mechanism that repairs the infeasible examination moves while at the same time aiming

for further improvement of the solution quality. Different neighbourhood orderings and

initialisations are investigated in order to observe their effect on the solution quality.

Finally, Chapter 7 offers overall conclusions drawn from the present study, and outlines

the research direction for future work based on the ideas and results presented in this

thesis.

Chapter 2

A Survey of Algorithmic

Approaches for Examination

Timetabling

This chapter overviews the existing approaches to examination timetabling. Section

2.1 points out the surveys on examination timetabling, while Section 2.2 discusses the

solution methodologies used for examination timetabling in six different categories. In

Section 2.3, a survey on the approaches proposed for solving the real world problem in-

stances from the second International Timetabling Competition (ITC2007) is presented.

Section 2.4 introduces the real world examination timetabling problem datasets in the

literature. Section 2.5 describes the benchmark problems used during the study in de-

tail, covering both hard and soft constraints along with the relevant evaluation functions.

Finally, Section 2.6 provides a summary.

2.1 Survey of Examination Timetabling

The examination timetabling problem has been extensively studied and a wide range

of approaches has been taken across a variety of associated problem descriptions. This

problem is very well recognised in the academic literature and surveys have concentrated

on various methods and strategies for solving it (Carter, 1986, Carter and Laporte, 1996,

Lewis, 2008, Qu et al., 2009b, Schaerf, 1999). One of the earliest surveys was conducted

by Schmidt and Strohlein (1980), who presented studies related to examination timetable

constructions which appeared in 1979 or earlier. Most of the review studies at that time

presented the timetabling problem as a graph colouring problem.

11

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 12

A later survey by Carter (1986), one of the most popular timetabling surveys within

the timetabling community, discussed major approaches to examination timetabling,

and modeled the problem as a graph colouring problem. The survey, carried out from

1964 to 1984, was a chronological discussion of the implementation of graph colouring

heuristics and the requirement of handling secondary constraints in several institutions.

At that time, the graph colouring problem was used to find a non-conflict timetable,

and there was no attempt at hybridising the approach or to find the best approach for

testing the problem.

As a continuation of the first survey paper in 1986, Carter and Laporte (1996) contin-

ued to contribute to the examination timetabling literature. The focus of the survey is

the research of examination timetabling approaches in the 1990’s. Carter and Laporte

(1996) provided a general definition of the examination timetabling problem. Several

common soft constraints were discovered, some of these being associated with related

resources such as room availability, requirement of special resources, invigilators and

examiners’ requirements. The authors introduced public datasets which are used widely

today as a test bed for the examination timetabling problem and which are referred to

as the ‘Toronto’ sets. The first implementation of these datasets was by Carter et al.

(1996), a study which has encouraged researchers within the timetabling community

to engage in research of this problem in order to improve the solution quality and at

the same time give new insight into timetabling approaches. In their paper, Carter

and Laporte (1996) categorised examination timetabling into four main methods: clus-

ter, sequential, meta-heuristic and constraint-based. Their surveys illustrated several

successful implementations of these methods.

In the same year, Bardadym (1996) presented a survey on educational timetabling prob-

lems and discussed automated timetabling approaches. Educational timetabling was

classified into five common types, namely, faculty timetabling, class-teacher timetabling,

course timetabling, examination timetabling and classroom assignment. The university

timetabling problem was said to be the most difficult task in educational routine work.

The difficulties arise when the problem is large, the requirements are contradictory and

there is an interaction of various constraints in finding a better quality timetable. Ac-

cording to Bardadym (1996), work on timetabling systems was first attempted when

computers became available in universities. Early approaches to timetabling were based

mainly on mathematical programming and combinatorial approaches (which included

representing the timetabling problem as a graph colouring problem) as well as on net-

work flows and transportation problems. Some other combinatorial structures, such as

integer mathematical programming and general scheduling theory (network planning

and calendar scheduling) were also included.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 13

In an attempt to identify various constraints related to university timetabling, Burke

et al. (1996a) conducted a survey on examination timetabling in fifty-six universities in

Britain, which revealed that a wide range of constraints had been used. Consequently,

various constraints and the needs of different institutions were found very significantly

across institutions.

In a previous study, Schaerf (1999) grouped the educational timetabling problem into

three categories: school, course and examination, all sharing similar basic characteristics.

Discussions were focused on the mathematical formulations, variants and techniques that

had been applied to the three problems. The approaches implemented to the exami-

nation timetabling problem consisted of direct heuristics, graph colouring, simulated

annealing, genetic algorithms and other techniques related to a network model with a

Lagrangian relaxation.

Burke and Petrovic (2002) discussed three major approaches in educational timetabling,

namely, heuristic and evolutionary algorithm, multi-criteria decision making and case-

base reasoning. Their study revealed that interest in educational timetabling at that

time focused on the meta-heuristic and hybrid approaches. As described by Burke

and Petrovic (2002), a solution generated using a constructive heuristic alone was not

enough to provide a good solution quality. These approaches concentrated on improving

the solutions by employing a search strategy to avoid getting stuck in the local optima;

however, they needed a proper parameter setting and involved some computational cost.

On the other hand, the multi-criteria approach could handle many criteria simultane-

ously at any one time, while the case-base reasoning used the previous problems, storing

the solutions in the case base. Both approaches showed significant achievement in the

timetabling arena.

An overview of state of the art methods dealing in timetabling problems was presented by

a research group led by Petrovic and Burke (2004). These consisted of meta-heuristic and

multi-criteria approaches, case-based reasoning and hyper-heuristics, and self-adaptive

approaches. Meta-heuristics were successfully applied to the university timetabling dur-

ing the last two decades. Nevertheless, these approaches require certain good param-

eter tuning in order to produce good solution quality. As suggested by Petrovic and

Burke (2004), the incorporation of parameters that can be understood by users of the

approaches could produce worthwhile real-world implementations. Moreover, the meta-

heuristic approaches presented in their study were less dependent on parameter setting.

In the application of case-based reasoning approaches, Petrovic and Burke (2004) em-

ployed previous knowledge of timetabling by representing it within two important roles,

namely, ‘solution reuse’ and ‘methodology reuse’.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 14

The success of the meta-heuristic approaches has given attention to Lewis (2008) to

classify them into three groups that were related to the hard and soft constraints, which

are one-stage optimisation algorithms, two-stage optimisation algorithms and algorithms

that allow relaxations. The one-stage optimisation algorithms satisfied both hard and

soft constraints simultaneously and the violations are allowed in order to achieve good

quality solutions, while the two-stage optimisation algorithms focused on satisfying the

soft constraints as much as possible once the feasible timetable is obtained. On the

other hand, the algorithms that allow relaxations employed a relaxation strategy to the

implemented algorithms in order to give more possibility of satisfying the soft constraints

and at the same time maintained the feasibility of the problems. These classifications

were followed by some illustrations of previous implemented approaches.

In the most recent survey of examination timetabling problems, Qu et al. (2009b) pro-

vided an extensive survey on the development of search methodologies and automated

systems for examination timetabling. This survey was a much updated discussion of

the literature which has expanded considerably since the earlier study by Carter and

Laporte (1996) on algorithmic approaches. Qu et al. (2009b) highlighted the new re-

search pattern in the timetabling problem and the achievement in finding solutions in the

last decade. The survey found that meta-heuristic approaches and their hybridisation

with other search techniques have been implemented quite extensively. Furthermore, Qu

et al. (2009b) drew attention to some clarification issues concerning the naming of the

examination timetabling problem by the benchmark datasets. Some of the benchmark

datasets used by researchers were discovered to be slightly different (but having the same

name). This has created great confusion among researchers in creating various solutions

from diverse benchmark datasets. Thus, an alternative naming convention was proposed

by Qu et al. (2009b) to differentiate those datasets in order to avoid future misunder-

standing. The survey paper also listed some automated systems and their development

in the timetabling area.

2.2 Algorithmic Techniques

Most surveys in examination timetabling problems place the algorithmic techniques

into several categories (Burke and Petrovic, 2002, Carter and Laporte, 1996, Lewis,

2008, Petrovic and Burke, 2004, Qu et al., 2009b, Schaerf, 1999). The following discus-

sion divides these algorithmic techniques into subsections each considering one of six

categories: exact, constraint-based, heuristic, meta-heuristic, hyper-heuristic and multi-

objective approaches. The meta-heuristic technique comprises two major methodologies

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 15

i.e. local search-based methodologies and population-based methodologies. The hyper-

heuristic techniques can be further divided into two categories with respect to the nature

of the heuristic space during the search process at a specific decision point, i.e. heuris-

tic selection methodologies that deal with the existing heuristics and the combinations,

and heuristic generation methodologies that generate and employ new heuristic methods

from the existing heuristics. Further, the variable neighbourhood search and large neigh-

bourhood search as meta-heuristic approaches can also be classified as hyper-heuristic

when the heuristics used are chosen by the high level heuristic. Most of the exist-

ing algorithmic techniques applied to timetabling are based on single objective models;

however, there are a few studies which concentrate on the multi-objective and multi-

criteria approaches in the literature. Other recent approaches related to timetabling are

fuzzy-based, granular modeling, developmental approach and harmony search algorithm.

2.2.1 Exact Approaches

Exact approaches represent a classical search methodology that evokes mathematical

procedures. Usually, mathematical formulations are incorporated in order to repre-

sent the objective of solving problems and constraint requirements. Examples of these

approaches include integer programming (Bosch and Trick, 2005, Sierksma, 2001), lin-

ear programming (Sierksma, 2001) and branch and bound (Chen and Bushnell, 1996).

Currently, their application to timetabling problems is being investigated in order to

solve extensive difficulties. Such approaches aim to find an optimal solution for a par-

ticular issue. However, they are not always successful, especially when attempting to

solve widespread timetabling problems due to computational expense. Furthermore, the

mathematical model of these approaches needs to be carefully developed and treated.

In order to solve the examination timetabling problem at the University of Technology

of Compiègne, Boufflet and Nègre (1996) used an exact approach and developed three

methods by considering several different constraints. The exact approach based on the

graph coloring technique was used to search the path in the tree. These were combined

with tabu search and an interactive computer-aided design system. The tree search as

an exact approach was shown to perform well in solving the problem. However, the

approach has never been applied to any benchmark problem and its effectiveness cannot

be assessed and compared with other approaches in the literature.

A recent study by MirHassani (2006) modelled the examination timetabling problem

at the Shahrood University of Technology as an integer programming approach. The

objective of the study was to maximise the examination spread in the timetable. The

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 16

study presented a mathematical model formulation and considered three types of ex-

amination clashing, i.e. in the same time-slot, on the same day and on two consecutive

days. The approach was able to produce a conflict-free timetable within a reasonable

running time. Meanwhile, Qu et al. (2009c) investigated the application of the integer

programming approach in solving the difficult sub-problem of examination timetabling.

The nature of the problem at first was divided into ‘easy’ and ‘difficult’, as described

by Qu and Burke (2007). The difficult sub-problem was then solved using an integer

programming model in order to achieve an optimal solution as this sub-problem was

said to add a large amount of cost even though the size of the problem was small. The

integer programming model introduced in the study was adapted with clique inequali-

ties. Moreover, the problem of specific cutting planes was introduced in order to reduce

the gap to the optimal solution to less than 10% from the constructed solutions. This

integer programming approach, hybridised with a decomposition strategy, has achieved

promising results regarding the tested problems.

2.2.2 Constraint-based Approaches

Examination timetabling can employ a constraint-based approach. The survey by Carter

and Laporte (1996) highlighted the constraint-based approach which included constraint

logic programming and constraint satisfaction problems. In a study, Merlot et al. (2003)

presented a three-phase hybrid algorithm for capacitated and un-capacitated examina-

tion timetabling problems. The study hybridised a three-phase approach that makes

use of constraint programming, simulated annealing and hill climbing. The constraint

programming employed in the approach was similar to that used by Boizumault et al.

(1996). The first phase used constraint programming in order to create a feasible so-

lution in a very short time. If during the process the examination still could not be

scheduled, then the algorithm allowed the examination to remain unscheduled. Once

more, the solution was enhanced in the improvement phase where simulated annealing

with the Kempe-chain neighbourhood (Thompson and Dowsland, 1996a) was employed

to allow diversification in the search. The solution then was further improved by the

hill climbing method. This hybridisation technique was tested on the problem faced at

the University of Melbourne, and proved to be superior to the previous method being

applied there, although testing with datasets at Toronto and Nottingham have provided

the best results.

A study by Duong and Lam (2004) employed a constraint programming approach to

construct an initial feasible timetable before improving it with the simulated annealing

technique. The constraint programming introduced in the study used a ‘backtracking

with forward checking’ (BC-FC) strategy so as to obtain a good initial solution. The

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 17

reason was that the success of the simulated annealing approach was vitally determined

by the quality of the initial solution that was fed into it. The BC-FC strategy performed

a dynamic variable ordering that determined the priority of each examination. The

examinations were ordered based on the priority score value that were introduced in the

study before assignment to the available time-slots was made.

2.2.3 Constructive Heuristic Techniques

2.2.3.1 Graph-based Heuristics

The examination timetabling problem can be represented as a graph colouring problem

where the vertices represent the examinations, the edges represent the conflict between

two examinations and the colour of the vertices represent different time-slots in the

timetable. The discussion of the timetabling problem as a graph theoretical model is

described in studies by de Werra (1985), de Werra (1997) and Burke et al. (2004c).

A definition of the concepts and terms that relate to a graph can be found in Burke

et al. (2004c). An undirected graph G = (V,E) is a representation that consists of

a set of vertices, V = v1, ..., vn, and a set of edges, E. If (vi, vj) is an edge in a

graph G = (V,E), then vertex vi is adjacent to vertex vj (Burke et al., 2004c). The

graph colouring method creates a timetable by using a sequential strategy. Most of the

early timetabling studies used the sequential technique to solve the problem because it

was the simplest and easiest to implement. It is based on an ordering strategy which

allows the examination with the most difficulty to be chosen first, by trying to place the

examinations sequentially into time-slots in order to produce a timetable. Burke et al.

(2004c) also listed the most commonly used graph colouring heuristics for examination

timetabling, i.e. largest degree, largest weighted degree, colour degree and saturation

degree. From this point onwards, the graph-based ordering strategies in this thesis are

referred to as graph colouring heuristics.

A study by Broder (1964) was one of the earliest that utilised the ordering strategy of

graph colouring theory for solving examination timetabling problems. The use of the

‘largest degree’ heuristic as an ordering strategy was based on the difficulty of the exam-

ination to be scheduled. This difficulty was measured by the number of edges connecting

to vertices. The largest number of edges of a vertex shows which examination is the

most difficult to schedule due to the large number of conflicts with other examinations.

A study by Cole (1964) also employed the largest degree heuristic to examination

timetabling problems. A table of conflict matrix N × N was presented which listed

the conflict by courses and in order to allocate the courses into suitable time-slots, the

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 18

largest degree heuristic was employed. Further, Peck and Williams (1966) presented

the graph colouring procedure when using the largest degree heuristic for examination

timetabling. The ordering was modified by partitioning and rearranging the assignment

of examinations to time-slots. Welsh and Powell (1967) also made use of the graph

colouring heuristic in order to find the least number of colours (chromatic number) ap-

plied to the vertices of a graph. The main idea was to create a non-conflict graph where

there was no matching colour for two adjacent vertices. The largest degree heuristic was

used in identifying the colour of the vertices.

The relationship between the examination timetabling and the graph colouring problem

was studied by Wood (1969) who identified the chromatic number of a graph so that

the number of time-slots needed in a certain examination session could be obtained. In

another study, Wood (1968) constructed a system for university timetabling for the Uni-

versity of Manchester. In order to determine examinations to be fitted into timetables,

an ordering strategy called ‘largest enrolment’ was introduced. This strategy attempted

to fit the examinations with the largest student enrolment in the first time-slot in the

timetable. Three different methods of identifying the examination session of the shortest

duration were compared, i.e. largest degree heuristic, similarity matrix and the upper

bound approach proposed by Welsh and Powell (1967). In this study, the similarity

matrix produced the best result among them. However, the approach was tested on a

small problem involving only twenty vertices in the graph colouring problem.

A dynamic ordering strategy, known as ‘saturation degree’, was first introduced by

Brélaz (1979). This method is very effective compared with other heuristic methods

because it dynamically colours the vertex. This heuristic has been applied successfully

to examination timetabling (Abdul Rahman et al., 2009, Burke and Newall, 2004, Carter

and Laporte, 1996). It works by giving priority to the vertex with the least colour

available to be coloured first. Practically, the vertex with the least available colour

is the most difficult to be scheduled since it has the smallest saturation degree. A

study by Mehta (1981) was one of the earliest investigations implementing this dynamic

ordering strategy to solve the examination timetabling problem. The examinations were

ordered based on the number of time-slots in conflict, the examinations with the highest

conflicting time-slot being the first to be fitted into the schedule.

Laporte and Desroches (1984) developed a system named HORHEC for solving exami-

nation timetabling problems at the University of Montreal Business School. During the

construction phase, the solution used several graph colouring heuristics: largest degree,

largest weighted degree, largest enrolment and random ordering. This was repeated

several times in order to obtain a feasible examination timetable. Whenever there were

examinations that could not be assigned into the timetable, a backtracking procedure

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 19

was incorporated in order to make sure that the problematic examinations could be

fitted in.

In another study, Burke et al. (1994) produced a university timetabling spreadsheet

type system for examination and course timetabling problems based on graph colouring

and constraint manipulation. The events (examination/course) were scheduled in the

appropriate time-slot and at the same time fulfilled the room capacity requirement.

The user could interact with the system to obtain a desired solution and if no solution

was found, the backtracking strategy of the system was employed in order to develop a

complete timetable and to improve the solution quality. The examination timetabling

system applied to the University of Nottingham dataset with real world features was

presented in Burke et al. (1993).

Johnson (1990) constructed examination timetables based on the ‘difficulty factor’ ob-

tained from graph colouring heuristics. During the first phase of the implemented ap-

proach, the combination of largest enrolment and largest degree was used as an ordering

strategy to assign examinations to time-slots. Several variations of the relative weights

of each criterion were considered in order to produce a number of different timetables.

In the next phase, the simulated annealing approach was used to improve the solution

quality of the obtained timetable.

Essentially, the sequential heuristics have proved to be very efficient when incorporating

a backtracking procedure (Carter et al., 1994). This procedure is implemented whenever

some examinations (violated examinations) cannot not be assigned to a timetable due

to conflict with other examinations and they should therefore be rescheduled into the

available time-slots. Examinations that conflict with the current infeasible examination

are unscheduled in order to allow the current violated examination to be scheduled first.

Then, the unscheduled examinations are rescheduled back into new time-slots. There

are a number of studies relating to the backtracking procedure implemented with graph

colouring heuristics in order to obtain a feasible timetable (Asmuni et al., 2009, Burke

and Newall, 1999, Carter et al., 1996, Gogos et al., 2008, Laporte and Desroches, 1984).

In 1996, Carter et al. developed a commercial software for examination timetabling,

named EXAMINE. Their study incorporated a backtracking procedure in order to re-

solve the infeasibility problem during the timetable construction. The approach was

found to reduce the length of the examination session by half compared with sequential

techniques without backtracking. Five graph colouring heuristics were implemented to

order the examinations based on its scheduling difficulties (see Table 2.1). The study

found that the saturation degree heuristic provided a good sequence ordering of exami-

nations, while experimental results on the Toronto benchmark datasets showed that the

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 20

quality of the final solution was enhanced when combining a backtracking strategy and

tabu list.

Table 2.1: The graph colouring heuristics in examination timetabling

Heuristic Descriptions

Largest degree (Broder,
1964)

The largest number of edges/conflicting examinations is
scheduled first.

Saturation degree
(Brélaz, 1979)

Ordering is based on the number of time-slots in conflict
where the examination with the fewest time-slots is sched-
uled first.

Largest weighted degree
(Carter and Laporte,
1996)

The examination with the largest number of students who
are involved in the conflict is scheduled first.

Largest enrollment
(Wood, 1969)

The largest number of students registered for the examina-
tions is scheduled first.

Random ordering The ordering is random for the purpose of benchmarking
and comparison with other sequencing strategies.

Current research trends in examination timetabling include the use of an adaptive or-

dering technique combined with graph colouring heuristics. The adaptive approach in

Burke and Newall (2004) was based on the concept of ‘squeaky wheel optimisation’,

proposed by Joslin and Clements (1999). The approach could adapt to any given prob-

lem by adding a heuristic modifier to the basic graph colouring heuristic technique and

by promoting difficult examinations to be scheduled first at each iteration based on its

order. The study took into account different considerations of hard and soft constraints

in order to test the effectiveness of heuristic modifiers. The details of this approach are

discussed in Chapter 3. The technique introduced a good initialisation strategy for ex-

amination timetabling problems, the results demonstrating that the adaptive heuristic

ordering approach could improve the quality of the obtained solution compared with

using only a basic graph colouring heuristic approach.

The adaptive ordering strategy proposed by Burke and Newall (2004) was further studied

by Abdul Rahman et al. (2009) who incorporated shuffling strategies, i.e. block and

top-window, to different graph coloring heuristics. These strategies acted as a stochastic

component and ordered the examinations within a group of examinations. Different sizes

of examinations in a group and diverse modifier types have been tested with the Toronto

benchmark datasets. Their study found that the saturation degree heuristic produced

better results compared with the largest degree heuristic. It was concluded that the

dynamic nature of saturation degree caused this heuristic to work very effectively on the

tested problem. For more details on the study see Chapter 3.

A recent study by Carrington et al. (2007) used the weighted graph model proposed by

Kiaer and Yellen (1992) for solving examination/course timetabling. The vertices and

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 21

edges of a graph usually hold much information related to the objective function that help

in the ordering of examinations. The weighted graph model was enhanced by introducing

several new heuristics for vertex-selection and time-slot-selection and the implementation

was varied with various combinations and partitions. The vertex introduced by the

graph was selected and coloured until it was finished. The approach was tested on

the Toronto benchmark datasets and showed promising results compared with the pure

graph colouring heuristics. The study was extended by Burke et al. (2010e) where the

introduced heuristics were combined with a linear approach. Moreover, weights were

adapted to each heuristic that contributed to the ordering of the vertices.

Kahar and Kendall (2010) solved the examination timetabling problem at the Universiti

Malaysia Pahang, using four graph colouring heuristics, the time-slots being chosen

based on the best time-slot from the candidate list of five. The approach was able

to produce a feasible solution to the problem and was found to be better than the

university’s current software.

2.2.3.2 Fuzzy-based Techniques

The fuzzy-based technique is underpinned by the concept of fuzzy logic that was first

introduced by Zadeh (1965). Essentially, a fuzzy technique deals with the uncertainty

condition and relates reasoning with linguistic terms. Typically, it is an approximate

approach that can handle several reasons or factors simultaneously in making a decision.

Fuzzy-based techniques have now become a successful method in various scheduling ar-

eas. An implementation of a fuzzy technique in examination timetabling was carried out

by Asmuni et al. (2005), who combined several sets of two graph colouring heuristics and

ordered the examinations based on their difficulties. Three graph colouring heuristics

were used in the experiment, i.e. largest degree, saturation degree and largest enrol-

ment with three combinations of two heuristics. Their study used the fuzzy approach to

represent the knowledge from the heuristics (named as ‘input variables’), evaluate them

and construct an examination weight as an input variable. The examinations then were

placed in a decreasing order based on the examination weight values and scheduled in

the timetable without violating any of the hard constraints. The ‘bumped back’ strategy

was employed only if infeasible examinations occurred. The work showed that a tuning

procedure was needed for different combinations of heuristics in order to obtain good

solution quality.

Asmuni et al. (2009) continued to carry out research on the fuzzy methodology for

solving university examination timetabling problems by focusing on the construction

phase. The performance of the approach was based on three criteria, namely, the penalty

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 22

cost compared with other constructive approaches, the number of bump-back strategies

required for each dataset and the processing time for a static and dynamic heuristic

for each combination. The study obtained one best result on the Toronto benchmark

datasets when compared with other constructive approaches at that time.

Pais and Burke (2010) used the fuzzy approach to measure the difficulty of examinations

using graph colouring heuristic combined with Choquet integral. In the study, the Cho-

quet integral was used to measure the expected utility of an uncertain event. The study

incorporated weight value to each combination and the weight values were identified

based on the information of a given graph colouring heuristic. The examination with

the highest value of Choquet integral was scheduled first.

2.2.3.3 Decomposition Techniques

Complex problems are often difficult to solve due to the size of search spaces, and

the decomposition technique is therefore an alternative to resolving this problem: it is

divided into smaller sub-problems that are easier to handle and at the same time give

rise to high quality solutions. Nevertheless, feasibility often could not be attained due

to early assignment of certain sub-problems (Qu et al., 2009b).

There are a few studies within the field of examination timetabling that are closely re-

lated to the decomposition technique. A study by Burke and Newall (1999) implemented

the memetic algorithm with a decomposition strategy for the examination timetabling

problem. Before proceeding to the next sub-component, this multi-stage approach split

the large problems into a defined number of sub-components so that the algorithm could

schedule a group of examinations into the timetable at one time. The backtracking and

forward checking strategies were incorporated if an infeasible timetable occurred in the

early assignment. It was shown that, this algorithm could reduce significantly the pro-

cessing time and improved the solution quality when tested on four large benchmark

datasets.

An investigation into the clique initialisation in examination timetabling problems by

Carter and Johnson (2001) observed that more than one maximum clique was available

on the tested examination timetabling problem. In graph theory, an undirected graph

forms a clique whenever a subset of vertices are all connected by edges. In their study,

several dense sub-graphs were found to be potentially almost clique. The examinations

in the dense sub-graph were identified as very difficult to solve and should be scheduled

earlier.

An adaptive decomposition approach for constructing examination timetables was stud-

ied by Qu and Burke (2007). The problem was grouped into two sets, i.e. ‘difficult’

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 23

and ‘easy’. The difficult set consisted of difficult examinations that were identified ac-

cording to the feasibility of the examination in a previous iteration and the size of the

set was modified accordingly. At the end of the iteration, the rigid size of the difficult

set was determined. On the other hand, the easy set was then reordered so as to im-

prove the solution quality. The study also introduced the concept of a set of ‘boundary

examinations’ between the difficult and easy sets, i.e. the difficult and easy sets share

some overlapping examinations, which contributed an improved solution quality. The

study found that the examinations in the difficult set could contribute a large amount

of penalty cost even though the size of the set was small. The approach was tested on

the Toronto benchmark datasets and found to be simple and effective.

In another study, Kendall and Li (2008) investigated the simplification of examina-

tion timetabling problems by combining several examinations into one examination that

had equal features when measuring the compatibility value. The reason for combining

those examinations was to reduce the search space during the attempts to construct the

timetable. The study has shown that the strategy could increase the solution quality,

although it could also contribute to an increase in searching time. So far, this approach

has been tested only on the sta83 I of the Toronto benchmark datasets, but it has shown

promising results. However, the compatibility measure was hard to find and it does not

exist in all problem instances.

When Abdul Rahman et al. (2010) investigated the decomposition of the examination

timetabling problem, they stratified it into two sets, as introduced in Qu and Burke

(2007). The examinations causing the infeasibility of a solution were moved to the

difficult set because this indicated that those examinations were difficult to place and

should perhaps have been treated in different ways. Initially, the assumption that all

examinations can be easily scheduled presented the problem, and the difficult set was

gradually to increase as infeasibility occurred during the timetabling process. The study

introduced a boundary set located between the difficult and easy sets, where the exam-

inations in the boundary set could also be considered as difficult. The roulette wheel

selection considering information about two graph colouring heuristics was taken into

account within a predefined size of top-window in order to shuffle the ordering. For

further information on this approach see Chapter 5.

2.2.3.4 The Granular Modelling Technique

One of the latest approaches applied to examination timetabling is the granular mod-

elling technique. This approach focuses on identifying higher level of information entities

that simplify the description of the original problem. Abdul Rahim et al. (2009) initiated

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 24

the application of this technique to examination timetabling problems. A new model of

granular examination to time-slot allocation was proposed using the pre-processed in-

formation from student-exam data for the capacitated and un-capacitated examination

timetabling problem. The outcome of the pre-processed student-examination informa-

tion was a set of conflict chains that could construct a simple scheduling task by assigning

a group of examinations into a particular time-slot rather than one examination at one

time. The scheduling cost was minimised by rearranging the examination spread matrix.

The approach was tested on the University of Nottingham and the Toronto datasets and

produced promising results.

2.2.3.5 Neural Networks

The idea of a neural network is inspired by the network of biological neurons that form

an interconnected group of nodes, i.e. input, hidden and output layers (Haykin, 1999),

information being processed between groups of nodes that are connected to each other

based on a learning system. The effectiveness of the neural network in constructing an

examination timetable was investigated by Corr et al. (2006). The approach applied

graph colouring heuristics and the Kohonen self-organising neural network to train the

regularities of the input data known as ‘feature vectors’. Principally, the difficulty of

each examination was measured using the neural network before proceeding to ordering

and scheduling the most difficult examination first to a time-slot. The network divided

the examinations into three categories of scheduling position - early, middle and late -

during timetable construction. As the examinations were ordered, they were assigned

to the time-slots adaptively. This approach has significantly created feasibility in the

solution compared with a single graph colouring heuristic.

2.2.4 Meta-heuristic and Improvement Heuristic Techniques

Much research in the area of timetabling has utilised meta-heuristic approaches with

great success. These techniques begin with one or more initial solutions and employ

search strategies for the purpose of improving the solution quality (Petrovic and Burke,

2004). Essentially, various search strategies, for examples, tabu search, simulated an-

nealing, genetic algorithms and ant colony optimisation, are designed to escape from

local minima. Hybrid, meta-heuristic approaches have also been shown to be partic-

ularly effective. An overview of meta-heuristic approaches can be found in studies by

Burke and Kendall (2005), Petrovic and Burke (2004) and Qu et al. (2009b). The meta-

heuristic technique can be divided into two categories: local search-based techniques that

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 25

deal with a single candidate solution at each iteration, and population-based that em-

ploy a population of candidate solutions during the search process. The next subsection

discusses the categories of meta-heuristic approaches.

2.2.4.1 Local Search-based Methodologies

Local search approaches can search extensively in the search space and at the same time

they often aim to avoid the search from being stuck in local optima. These algorithms

can start the search with poor initial solution and the feasibility of the initial solution

is not crucial as most of the computation time will be spent in the improvement phase.

Carter et al. (1996) stated that this method drew a large potential in producing good

quality results for timetabling but might have required a long running time for an opti-

mal solution. These local search-based methodologies can be broken down into several

approaches and are discussed in the following subsections.

Hill Climbing. The analogy of the hill climbing method illustrates the incremental

changes of solution quality iteratively. Hill climbing is a type of local search which is

very straightforward to implement, such simplicity making it popular for implementation

in optimisation problems. It starts with the current solution in hand and generates

neighbouring solutions, evaluating and replacing it with a candidate solution that is

better. Nevertheless, this method can have a relatively poor performance due to being

easily trapped in local optima. However, the hybridisation of hill climbing with other

methods can be very successful, as demonstrated by Caramia et al. (2008), Merlot et al.

(2003), Kendall and Mohd Hussin (2005a), Ross and Corne (1995) and Burke and Bykov

(2008).

Caramia et al. (2008) proposed local-search based algorithms to solve capacitated and

un-capacitated examination timetabling problems. Their study sought two main objec-

tives: to minimise the time-slot number and to maximise the timetable quality for a

fixed time-slot number. The algorithm started with a greedy scheduler assigning exam-

inations to time-slots with respect to the conflict-free requirements. An examination

with higher priority, i.e. high clashing, was selected first for an assignment. At this

stage, the number of time-slots was increased to ensure that all of the examinations

were scheduled into a timetable. Then, the hill climbing as a penalty-decreaser was used

to improve the quality of timetable with the current number of time-slots or with de-

creasing number of time-slots until there was no further improvement. Hill climbing as

the penalty-trader was used once again if there was no improvement in timetable quality

by the penalty-decreaser. This approach was tested against the Toronto and Nottingham

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 26

benchmark datasets and showed superiority by producing several best known results in

the examination timetabling literature.

A hybrid algorithm for capacitated and un-capacitated problems of examination timetabling

was presented by Merlot et al. (2003). The hybridisation consisted of three phases,

namely, constraint programming, simulated annealing and hill climbing, the latter method

being used to further improve the obtained solution. Their hybridisation technique was

tested on the University of Melbourne problem and the Toronto and Nottingham bench-

mark datasets. In another study, Kendall and Mohd Hussin (2005b) demonstrated the

implementation of a hyper-heuristic with hill climbing to solve examination timetabling

problems.

Ross and Corne (1995) investigated the performance of a genetic algorithm compared

with stochastic hill climbing and simulated annealing on different features of capacitated

examination timetabling problems. They found that these approaches generated good

solution quality in most problem features and were better than the genetic algorithm.

Moreover, the study found that, while the genetic algorithm could generate a number

of distinct solutions compared with stochastic hill climbing and simulated annealing

because it was able to produce a pool of solutions at one time, the stochastic hill climbing

and simulated annealing worked very effectively on difficult problems. They concluded

that the stochastic method is generally suitable for investigating examination timetabling

problems.

A new variant of hill climbing known as ‘late acceptance strategy’ was introduced by

Burke and Bykov (2008) to the timetabling problem. The approach considered several

objective function values in the previous steps as a reference in considering whether or

not the current solution should be accepted. In contrast to the basic hill climbing, the

late acceptance strategy listed several previous values with k size. The current solution

had several choices for being accepted or rejected. The acceptance criteria followed the

pure hill climbing where the current solution was accepted whenever it achieved better

or equal performance. Once the current solution was accepted, it was included in the

list and the last element of the list was discarded. The test on the Toronto benchmark

datasets demonstrated that this approach was superior and able to produce several best

results when compared with other approaches in the examination timetabling literature.

The late acceptance strategy was then implemented within a hyper-heuristic framework

by Özcan et al. (2009) with a combination of different heuristic selection methodologies.

It was found that the combination of simple random heuristic selection with the late

acceptance strategy could perform better than the other combinations.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 27

Tabu Search. Tabu search was initiated by Glover (1986). This approach is based

on the hill climbing algorithm in that it principally improves the current solutions by

restricting certain moves using adaptive memories known as a ‘tabu list’. Hence, this

strategy could avoid the part of the procedure from cycling to the previous non-improving

solution, as well as to explore more solution space. These tabu moves are forbidden for

some occasions (usually a number of iterations) where the time resume is called ‘tabu

tenure’. Nevertheless, since there is a possibility that this approach could prohibit good

moves, an ‘aspiration criterion’ is employed in order to override the tabu status of moves.

The ideas of intensification and diversification are introduced in tabu search in order

to search effectively for good solutions. A discussion on tabu search strategies was

carried out in Glover and Laguna (1997), Glover (1989), Glover (1990), Pirlot (1996)

and Gendreau and Potvin (2005).

Recently, the tabu search approach has been implemented in examination timetabling

quite extensively and the few examples illustrated in this section have shown the success

of this approach. White and Xie (2001) investigated the application of short term and

longer term memory of tabu search to the examination timetabling problem using a

four-phase system called OTTABU. It was found that the algorithm worked effectively

when both types of memory were applied together and the use of longer term memory

could improve the solution quality by 34% compared with short term memory alone.

Furthermore, the active examinations were detected by the longer term memory based

on the frequency of moves and the movement of these examinations was avoided so that

cycling could be prevented and at the same time diversify the search. Typically, the

active examinations could help to estimate the size of the tabu list. The idea of the

relaxation of the tabu list was to find a new neighbourhood in order to seek a better

solution during the search. Besides that, the four-phase algorithm also incorporated

the diversification and intensification strategy in the search for a solution. The study

was extended by White et al. (2004) who beside longer term memory, also considered a

relaxation strategy to the tabu list. Whenever there was no improvement to the solution

quality, the tabu list was emptied in order to force the search to the unvisited region.

The approach was found to generate a better solution compared with the approach with

short term memory or without relaxation strategy.

Di Gaspero and Schaerf (2001) examined the tabu search approach based on the feature

of graph coloring problems in solving the examination timetabling problem. Additional

information was obtained from the edges and the nodes of the graph with the adapta-

tion of weight values that represented the number of students in conflict between two

examinations and the number of students enrolled for an examination, respectively. The

shifting penalty mechanism was incorporated in order to vary the weights of hard and

soft constraint in the objective function so that the exploration of the search space was

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 28

guided. This approach also integrated a dynamic neighbourhood selection based on a

violation examinations list that infringed either only a hard constraint or hard and soft

constraints. Moreover, the adaptation of the variable size feature of the tabu list showed

that this approach, tested against two benchmark problems and random instances, has

had promising results.

Di Gaspero (2002) extended the study presented by Di Gaspero and Schaerf (2001). A

multi-neighbourhood algorithm was proposed to the tabu search approach that combined

two types of moves i.e. ‘recolor’ and ‘shake’. The aim of the different neighbourhood

combination was to diversify the search so that it could escape from local minima. The

proposed approach involved a three-phase algorithm. In the first phase, it was concerned

with creating a feasible solution and at the same time optimising the objective function.

At this stage, only examinations that contributed to the changes of cost incurred by

violation of either hard or soft constraints were considered to be moved. This phase is

known as ‘recolor TS’. In the second phase, ‘shake TS’ aimed to create a new starting

point by exchanging the time-slots of two whole groups of examinations at once. Finally,

the ‘kicker’ was performed in order to find further improvement to the current solution.

This approach obtained superior results compared with their previous approach and

with the constructive approach by Carter et al. (1996).

The tabu search approach is hybridised with an exponential Monte-Carlo procedure

by Sabar et al. (2009) where the study is an extension of work by Ayob and Kendall

(2003). The tabu search was incorporated in order to limit the non-improving moves

during the solution search. Moreover, a counter-strategy that counted the successive

non-improving iterations was incorporated with the approach that determined whether

the worse solution should be accepted or not. The approach was tested on the un-

capacitated problem of the Toronto benchmark datasets and results demonstrating the

success of the implementation with several best results were obtained.

Simulated Annealing. Simulated annealing is a popular local search approach that

draws upon the concept of annealing material in metallurgy. The simulated anneal-

ing algorithm moves towards the global optimum by moving the current solution to a

randomly selected neighbouring solution with certain probability. The probability is

controlled by a temperature which decreases monotically with each successive iteration.

In a simulated annealing algorithm, the process starts at a very high temperature to

give a higher probability of acceptance to the solution quality, and as it cools slowly, the

probability of rejecting worsening moves increases. Consequently, there are three main

parameters involved in directing the search in order to improve the solution quality:

initial temperature, cooling schedule and end temperature. This approach was proposed

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 29

by Kirkpatrick et al. (1983) and further discussion on simulated annealing can be found

in Aarts et al. (2005) and Pirlot (1996).

Simulated annealing has proved successful in the timetabling area. Studies by Thompson

and Dowsland (1996b), Thompson and Dowsland (1996a) and Thompson and Dowsland

(1998) investigated the utilisation of simulated annealing in solving the examination

timetabling problem. Thompson and Dowsland (1998) examined the robustness of sim-

ulated annealing for the examination timetabling system, where the focus of the study

was to apply different neighbourhood structures and cooling schedules to the basic frame-

work implemented in their previous study (Thompson and Dowsland, 1996a,b). They

also considered the effect of sampling bias to the obtained solution. The problem was

divided into a two-phase approach. In the first phase, they attempted to find a feasible

solution, while the second phase sought to optimise the soft constraints for a better

solution quality. The approach was tested on various datasets from several universities

with different real world features. Three different neighbourhood structures were tested:

standard, Kempe-chain and s-chain.

The standard neighbourhood structure is a simple move of a randomly selected ex-

amination to a random feasible time-slot, and is the most common one used in solving

timetabling problems (Abdullah et al., 2005, Burke et al., 2010a, McCollum et al., 2009).

The Kempe-chain neighbourhood structure is determined by two subsets of examina-

tions, i.e. H and H ′ in two different time-slots, t and t′, where t 6= t′. Both of H and

H ′ are not conflicting with each other and the time-slots t and t′ are exchanged between

the two subsets. The implementation of this neighbourhood structure is discussed in

Chapter 6. On the other hand, the s-chain neighbourhood structure is a variant of basic

Kempe-chain where the chain is more than two subsets considered in moving time-slots.

The study considered the maximum chain, s is as 2, and found that the basic Kempe-

chain neighbourhood outperformed other neighbourhood structures in terms of solution

quality. It was concluded that the neighbourhood selection in a simulated annealing

approach might lead to a better quality timetable.

Burke et al. (2004a) also discussed the application of simulated annealing and the great

deluge algorithm in the case of time-predefined methods for examination timetabling

problems. The main objective of their study was to incorporate user-defined parameters

in the algorithm, i.e. the computational time and desired solution quality. Computa-

tional time and solution quality were the input parameters based on the users’ pref-

erences of the timetable outcomes. It was understood that the longer searches would

have significantly improved the quality of solution when there was greater exploration of

the search space by the algorithms. The time-predefined simulated annealing employed

an additional time-predefinition algorithm in order to make sure that the approach did

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 30

not converge too quickly. Further, the hybridisation of simulated annealing with other

approaches in examination timetabling showed promising results. Examples of such ap-

plications are found in Merlot et al. (2003) and Duong and Lam (2004) and are discussed

as constraint-based approaches.

Large Neighbourhood Search. Large neighbourhood search was originally pro-

posed by Ahuja et al. (2001), when investigating solution search methodologies on a

large neighbourhood structure in the area of combinatorial optimisation. Abdullah et al.

(2007) were the first to implement this approach in solving the problem of examination

timetabling. Their study examined the capacitated and un-capacitated examination

timetabling problems. A number of disjoined cliques of examinations were formed using

the partitioning method. A cyclic exchange operation was then implemented in order to

design a large neighbourhood structure which moved examinations from one clique to

another. In the next phase, an improvement graph was used to solve the examination

timetabling problem by employing the modified shortest path label-correcting algorithm

in order to identify the negative cost partition-disjoint cycles. The ‘insert’ and ‘eject’

moves were used in the algorithm. Furthermore, the exponential Monte-Carlo procedure

(Kendall and Mohd Hussin, 2005a) was employed in the algorithm which accepts worst

solution and non-improving moves with certain probability. This was to ensure that the

algorithm was less likely to get stuck at local optima during the cycle. Nevertheless,

some problems occurred during the cycling where improvement moves were kept in the

tabu list for the capacitated examination timetabling problems which slowed down the

algorithm. This occurred with datasets that had a large value of conflict density and it

was suggested that a larger solution space was needed to solve difficult problems. The

computational time for this approach is very expensive as the algorithm needs to ex-

plore a large solution space. As tested on capacitated and un-capacitated problems, the

approach obtained a number of best results compared with other approaches applied to

the Toronto benchmark problem.

Meyers and Orlin (2007) presented a survey on university timetabling problems which

emphasized the very large-scale neighbourhood search (VLNS) techniques. The struc-

ture of a cyclic exchange neighbourhood and the way in which this algorithm works on

certain problems was described. Three criteria of VLNS algorithm that had been used

in several areas in the literature were identified, i.e. variable depth method, network

flow-based methods and neighbourhood based on restriction. The success of the VLNS

techniques was found to be based on the choice of good neighbourhood functions and the

development of an effective heuristic method to search the neighbourhood for improving

solutions. Furthermore, two new approaches that had a high potential in solving the

timetabling problem were proposed. These new approaches, namely, optimised crossover

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 31

in a genetic algorithm and functional annealing (combination of neighbourhood search

method with simulated annealing) could be applied to the cyclic exchange operation

in VLNS. Optimised crossover proved to be superior to several previous applications

noted in the literature. The approach was operated by finding the best child from all

possible sets of all children in the population. Hence, the best objective function value

was considered in order to find the best child. Functional annealing was operated by

joining the elements of neighbourhood search and the simulated annealing approaches,

and incorporated the objective function to escape efficiently from local optima while

the neighbourhood search heuristic provided a more effective search of feasible solu-

tions. This algorithm has been successfully applied in VLSN and has demonstrated the

performance in several application areas.

Variable Neighbourhood Search. Variable neighbourhood search (VNS) is a

meta-heuristic technique inspired by Mladenović and Hansen (1997). It represented a

systematic change of more than one neighbourhood structure during the search. In order

to avoid being trapped in local minimum, VNS acted by jumping to a new neighbourhood

from the current solution if a better improvement was found. More details on the VNS

approach can be viewed in Chapter 6.

In their preliminary study, Mladenović and Hansen (1997) applied the VNS technique

to the travelling salesman problem with and without backhauls in order to illustrate

the success of the methodology. The problem description shows that the adaption of

GENIUS heuristic with VNS technique can produce competitive results compared with

the basic GENIUS. VNS requires several neighbourhood structures of a different nature.

The neighbourhood structures are employed one at a time. If one fails to improve the

current solution, the other one may still have a chance. The neighbourhood continues

to be improved until there is no more improvement and this process will continue with

other neighbourhoods. In a study by Hansen and Mladenović (2001), the order of

neighbourhood structures is based on a pre-defined sequence.

Within the VNS approach, Hansen et al. (2001) introduced a decomposition strategy

which was applied to the p-Median problem. Variable neighbourhood decomposition

search (VNDS) divides the problem into a sequence of sub-problems which are generated

from the different pre-selected sets of neighbourhoods. During the improvement phase,

the neighbourhood will be changed only if there is an improvement on the sub-problem

solution. Otherwise, the search continues from the incumbent in the first pre-selected

neighbourhood. This technique obtained superior results when applied to large problem

instances. It showed good results compared with the fast interchange approach that

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 32

had also been implemented in the same study. It was concluded that this approach

consumed less computational time than the basic VNS.

In the area of examination timetabling, Wong et al. (2005) implemented variable neigh-

borhood descent using multiple neighborhood structures to the un-capacitated problem.

Each neighborhood structure was integrated by a different local search operator in order

to explore and exploit the search space of solutions. The aim was to balance the intensi-

fication and diversification during the search space exploration. This approach has been

tested on several well known benchmark problems and has shown superior performance.

Recently, Burke et al. (2010a) demonstrated that VNS and a hybridisation with a genetic

algorithm could produce a good quality solution and the best known results in the

literature. In their study, the genetic algorithm imitated the concept of hyper-heuristic

and case-based reasoning where this method did not directly apply to the problem but

worked at the high-level of abstraction. Since the solution quality was dependent on the

selection of the neighbourhood, the genetic algorithm worked intelligently by selecting

the list of neighbourhoods from the VNS framework. Recent studies have concentrated

on the implementation of VNS as high-level heuristic (Ahmadi et al., 2003, Qu and

Burke, 2005), and are discussed in Section 2.2.5.

Great Deluge. The great deluge algorithm was first introduced by Dueck (1993).

The algorithm belongs to a type of local search approach based on the analogy of the

raising of a water level. This algorithm has some similarity with the simulated annealing

approach in that it accepts worse solutions subject to certain requirements. However,

this algorithm is much simpler than the simulated annealing since it requires fewer

parameter settings i.e. the ‘up’ parameter that determines whether the solution will

be accepted or not if its quality is less than or equal to the current solution of the

minimisation problem. The algorithm starts with an initial water level - the initial

solution quality based on the objective function value. During the process, the water

level will decrease based on an amount of decrease (‘up’). Dueck (1993) suggested that

the best ‘up’ value should be small enough, i.e. less than 1% of decrease, so that the

algorithm could spend more time in searching for good solution quality. A further review

on the great deluge algorithm can be found in Dueck (1993).

Burke and Newall (2003) presented local search methods, namely, hill climbing, simu-

lated annealing and the great deluge algorithm, to improve high quality initial solutions

obtained from an adaptive approach (Burke and Newall, 2004) during the construction

phase. In the study, several parameters on local search methods (initial ceiling values

and initial average probabilities) were observed in order to identify their role in pro-

ducing good solution when initiated with high quality solutions. Their study showed

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 33

that the high quality initial solution influenced the final solution of the constructed ex-

amination timetable. The great deluge algorithm performed effectively when compared

with the other two local search methods and it produced several good results on the

Toronto benchmark datasets at that time. The study found that the parameter tuning

was needed for both the great deluge and simulated annealing algorithm in order to

enhance the performance of the constructed solutions.

Petrovic and Bykov (2003) presented a multi-objective technique for the examination

timetabling problem. This technique drove the search through a predefined path in the

criteria space in order to give direction to the solution search. A weighted sum cost

function was incorporated within the great deluge algorithm and the weight of each

criterion was changed dynamically during the search process. This approach produced

the best results published in the examination timetabling literature at that time.

The great deluge algorithm was employed by Burke et al. (2004a) to enhance the accep-

tance criteria by accepting improving moves even if they were greater than some given

levels implemented in hill climbing. This was to ensure that the algorithm explored fur-

ther into the restricted region of the search space. The approach was investigated only

on a single neighbourhood structure and it was shown to be very effective and superior

regarding examination benchmark problems compared with other approaches.

Burke and Bykov (2006) extended their earlier study (Burke et al., 2004a), by introduc-

ing the flex-deluge algorithm for solving the examination timetabling problems. This

approach was a modification of the great deluge algorithm and hill climbing where new

acceptance criteria based on flexibility coefficient were introduced. The approach avoided

certain moves adaptively in order to search for more solutions by flexibility change in

the coefficient. In order to overcome the infeasibility problem, the approach employed

Kempe-chains as used by Thompson and Dowsland (1996a). The approach was tested

on the Toronto benchmark datasets and obtained several best results when compared

with other best approaches in the literature.

In a recent study by Turabieh and Abdullah (2011), the great deluge algorithm was

hybridised with a heuristic procedure known as the ‘electromagnetic-like mechanism’

within timetabling approaches. The proposed heuristic procedure was first introduced

by Birbil and Fang (2003) and based itself on particle swam optimisation. It worked by

forcing the search to a promising area by dynamically changing the decay rate of the great

deluge algorithm utilising the calculation of the obtained solutions. The approach was

very competitive where it obtained best results on the Toronto and ITC2007 benchmark

datasets.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 34

Greedy Randomised Adaptive Search Procedure. Greedy randomised adap-

tive search procedure (GRASP) is an iterative method that consists of two phases of

algorithm, i.e. constructive and improvement phases, where at the end of iteration the

best solution is returned. Compared with other constructive phases, GRASP involves

two main processes - dynamic construction heuristic and randomisation (Blum and Roli,

2003). The solution construction is achived gradually where each element is chosen ran-

domly from the top n in the list (called candidate list). The order of the remaining

elements is based on its heuristic criterion.

An example of GRASP implementation in examination timetabling was provided by

Casey and Thompson (2003) who developed an iterative method for solving the prob-

lem. The objective was to minimise the proximity cost of the timetable (Carter and

Laporte, 1996). In the first phase, the greedy approach based on graph colouring heuris-

tics introduced by Carter et al. (1996) was implemented. The next examination to be

scheduled was chosen from the candidate list using roulette wheel selection and the

chosen examination was assigned to the first available time-slot. The strategy was to

launch the local search algorithm iteratively. If the examination could not be assigned

to the time-slot due to a clash with other examinations, then the backtracking strategy

was employed with the insertion of the tabu list in order to avoid cycling during the

search. In the next phase, a limited form of simulated annealing was implemented using

a drastic cooling procedure that started with a high temperature and cooled with a fast

rate. In addition, the Kempe-chain based neighbourhoods (Thompson and Dowsland,

1996b) and memory function were incorporated. These improvement algorithms were

used to maximise the quality of solution and create a diversification strategy in the

search. The result showed that the initial solution generated by the saturation degree

heuristic performed the best compared with other heuristics. The GRASP technique

obtained competitive results among examination timetabling approaches and held one

of the best results on the Toronto benchmark datasets in the literature.

The GRASP has also been applied within the hyper-heuristic framework by Burke et al.

(2009). In their study, the examination timetable was constructed dynamically using a

hybridisation of two graph colouring heuristics. The restricted candidate list was the

list of examinations due to be scheduled next, created during the construction phase of

GRASP. During the search, the examination from the list was chosen randomly. The size

of the restricted candidate list was adaptively determined by the hyper-heuristic at each

iteration. The study introduced a switching point of changing from the implementation

of largest weighted degree to saturation degree adaptively. In the next phase, the solution

was improved using steepest descent and was able to produce a good solution in a shorter

time period compared with their tabu search approach.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 35

Developmental Approach. The developmental approach, first introduced by Pil-

lay and Banzhaf (2008) in solving un-capacitated problems of examination timetabling,

is an approach that mimicks the cell biology process of growth and development of or-

ganisms. Their approach created a population of organisms starting from a single cell

that referred to a time-slot in the timetable, and a number of processes related to cell

division, interaction and migration were employed for constructing and improving the

initial timetable. This was constructed based on saturation degree ordering which began

with a single cell and examinations were assigned to feasible cells. On the other hand,

the examinations with no feasible cell caused the cell to divide into two other cells which

contained examinations that caused the clash and list of all examinations. In the next

phase, the cell was migrated by swapping examinations between feasible cells and inter-

acted with by exchanging the cell position in order to offer better or matured algorithm

based on solution quality. The approach was tested on the Toronto benchmark datasets

and obtained superior results when compared with other population-based approaches.

Pillay (2009b) continued to study the developmental approach proposed by Pillay and

Banzhaf (2008) by improving the solution quality and also the processing time of the

algorithm. The revised version included random elements to choose examinations in the

cells instead of considering each pair of examinations and each examination during a

cell migration and interaction process during the improvement phase. Furthermore, the

ordering of examinations employed a new heuristic, namely, the highest cost introduced

by Pillay and Banzhaf (2009), as a second heuristic to help in choosing the right exam-

ination in the list if there was a tie in saturation degree original ordering. The test on

the un-capacitated problem of the Toronto benchmark datasets showed that the revised

version of the developmental approach significantly improved the solution quality and

reduced the processing time.

Harmony Search Algorithm. The harmony search algorithm, first introduced by

Geem et al. (2001), used the idea of a musical improvisation process. Al-Betar et al.

(2010) applied this approach to the un-capacitated examination timetabling problem;

it had also previously been successfully implemented in the course timetabling problem

(Al-Betar and Khader, 2009, Al-Betar et al., 2008). A new solution, known as ‘new har-

mony’, was obtained at each iteration and stored in ‘harmony memory’. Meanwhile, in

producing the solution, three main groups of criteria were considered: memory consider-

ation, random consideration and pitch adjustment. Each of these criteria was associated

with recombination, randomness and neighbourhood structure of the algorithm, respec-

tively. Al-Betar et al. (2010) investigated the contribution of solution quality based on

the various combinations of meta-heuristic components. Their study found that the

combination of the three components produced the best results compared with other

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 36

combinations of meta-heuristic components. When tested on the Toronto benchmark

datasets, the performance of this approach was competitive compared with other ap-

proaches in the literature.

2.2.4.2 Population-based Search Methodologies

Recent research trends in timetabling have explored population-based search methodolo-

gies. The search within these methodologies is concerned with more than one different

initial solution at any one time. A collection of initial solutions is called the ‘population’

and is treated simultaneously in generating a number of new distinct solutions. There

are several population-based search methodologies within the examination timetabling

problem: genetic algorithm, memetic algorithm and ant algorithm, each of which is

discussed in the following subsections.

Genetic Algorithms. Genetic algorithms were inspired by the principles of evolu-

tion in nature that operate on the population of solutions to search problems (Glover

and Kochenberher, 2003, Sastry et al., 2006). The solutions are represented by chro-

mosomes where the solution quality is determined by the fitness function and random

new generations of solutions are produced accordingly. The new generations of solu-

tions are modified through reproduction progression by applying crossover (combining)

or mutation (altering) operators iteratively in order to find a better solution. The defi-

nition of parameters is user-specific and each combination of parameters influences the

performance of the approach.

A simple survey on genetic algorithms in educational timetabling was presented by Corne

et al. (1994). The process of evolutionary algorithms within educational timetabling was

briefly discussed with a focus on the two types of chromosome representation - direct and

indirect. The survey raised several issues on the current implementation of chromosome

representation, including their comparison and implementation in existing studies.

Since this approach generally promised successful implementations, it was employed

in many studies of the examination timetabling problem. For instance, Burke et al.

(1995) implemented a recombination operator of evolutionary algorithms with direct

representation of a timetable and the property of feasibility was maintained during the

search process. The graph colouring heuristic was hybridised with a crossover parameter

in order to obtain a good timetable. In their study, new heuristics relating to genetic

search space were designed in order to reduce the length of the timetable and to maximise

the examination spread across the timetable period.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 37

Ross et al. (1996) discovered a new phase transition relating to timetabling problems

that focused on different homogeneity degrees and connectivity of graph colouring issues.

The problem was tested with an evolutionary algorithm and stochastic hill climbing with

the existence of phase transition in order to understand the performance of different

algorithms. In another study, Ross et al. (1998) found that the genetic algorithm with

direct encoding failed to work effectively on the examination timetabling problem due to

a lack of success in exploring different areas. This conclusion led to the general method

of searching for good algorithms rather than searching for a solution to a problem, with

the introduction of a hyper-heuristic approach, discussed in Section 2.2.5.

The crossover operator in a genetic algorithm based on maximal clique in timetabling

problems was investigated by Terashima-Marin et al. (1999). The aim of their study was

to produce a better offspring from the mating parents and to search for a higher quality

solution from the exploration of the selected search space. In order to create a larger

solution space, two parts of the solutions from the clique were combined. The study was

tested on twelve datasets, eleven of which were randomly generated with certain features,

while the twelfth came from real data from the Department of Artificial Intelligence at

the University of Edinburgh.

Erben (2001) applied a grouping strategy of genetic algorithms to the graph colouring

and the examination timetabling problems. This algorithm implemented a tournament

selection strategy where a set of examinations that were scheduled in the same time-slot

was considered as a group. The mutation operator applied in the algorithm acted by

swapping two groups of examinations chosen randomly in the chromosome, while other

genetic operators worked for more than two groups or reversed the order of the scheduled

groups. The study found that adequate representation of individuals in a genetic algo-

rithm was very important, as was the fitness function that depicted the solution quality

obtained. The results obtained with the standard benchmark examination timetabling

problems showed that this algorithm obtained promising results.

A genetic algorithm was also used by Wong et al. (2002) and Sheibani (2002) to solve

real world examination timetabling problems. For Wong et al. (2002), the problem was

highly constrained and provided the motivation to map it into a constrained satisfac-

tion problem combined with a genetic algorithm. On the other hand, Sheibani (2002)

presented a genetic algorithm for solving the examination timetabling problem in a train-

ing centre. The aim of the study was to spread out the examinations within a schedule

considering the relationship between examinations evaluated using an activity-on-arrow

network. A standard genetic algorithm with crossover operator was employed where L

length of two parents were randomly selected and mated. Both of the approaches were

successfully implemented in the institutions.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 38

In another study, Côté et al. (2005) investigated a hybrid bi-objective evolutionary algo-

rithm with a local search operator for the un-capacitated examination timetabling prob-

lem. The timetables were generated, taking into account two objectives: 1) obtaining a

good quality feasible timetable and 2) minimising timetable length. The evolutionary al-

gorithm used in their study employed tabu search as a local search operator. A simplified

version of variable neighbourhood descent was also applied to search for more neighbours

of good solutions. At the early stage of the algorithm, the random initialisation was al-

lowed to produce infeasible timetables. The tabu search algorithm was used to reduce

the constraint violation from the pool of initial timetables produced during the early

stage. The simplified version of variable neighbourhood descent was then performed in

order to increase the solution quality using two neighbourhood structures, i.e. Kempe-

chain and one move with tabu search. The Kempe-chain neighbourhood structure as

explained by Thompson and Dowsland (1996a) acted as a chain of conflicting examina-

tions and was swapped by interchanging two time-slots. This approach demonstrated

that non-dominated timetables could be produced using different timetable lengths and

it was shown to be superior for several tested benchmark problems.

Cheong et al. (2007) demonstrated a multi-objective evolutionary algorithm in relation

to the examination timetabling of the capacitated problem. The approach was capable

of tackling the problem that required minimisation of the timetable length while at

the same time distributing the students in the timetable. A timetable could easily be

generated without earlier information about the timetable length. A variable-length

chromosome was introduced to change the length of examination session in a flexible

way, while the day-exchange crossover was performed to diversify examinations in the

time-slot of the day. The goal-based Pareto ranking was introduced in the study, which

involved a two-phased process in order to choose the relative strength of solutions.

The results showed that this approach could easily produce a feasible solution and was

superior to several well-known approaches in the literature on benchmark datasets.

Memetic Algorithms. Within the population-based search methodologies, the

memetic algorithm is a well-known approach. It is known as a hybridisation of evo-

lutionary algorithm and local search methods (mainly hill climbing) which is used in

order to improve the solution quality. The used of the memetic term was first initiated

by Moscato in 1989 (Moscato and Cotta, 2003). There have since been several suc-

cessful implementations of the memetic algorithm within the examination timetabling

problems, including those by Burke et al. (1996b), Burke and Newall (1999), Özcan and

Ersoy (2005) and Ersoy et al. (2007).

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 39

Burke et al. (1996b) combined an evolutionary algorithm with a local search method

to study the capacitated problem of examination timetabling. The combination of light

and heavy mutation was employed in the algorithm in order to reassign single and groups

of examinations into a timetable. In the next phase, the hill climbing method was added

after each of the mutation operators to improve the solution quality. The evaluation

function in the problem penalised the unscheduled examinations heavily with the weight

value of 2000, and considered the spread of the timetable by taking into account the

number of conflicts between two time-slots on the same day. Although this technique

showed great success, the computational expense increased due to the incorporation of

the hill climbing method.

Burke and Newall (1999) implemented the memetic algorithm used in the previous study

(Burke et al., 1996b) with a decomposition strategy for the examination timetabling

problem. The purpose of this multi-stage approach was to split the large problems

into a defined number of sub-components so that the algorithm could schedule the

examinations all at once before proceeding to the next sub-component. Four large

benchmark datasets were tested and it was demonstrated that the processing time could

be reduced significantly while at the same time the solution quality was improved. Three

graph colouring heuristics (colour degree, largest degree and saturation degree) were

hybridised and the saturation degree showed good improvement among those heuristics.

The backtracking and forward checking strategy were also incorporated if an infeasible

timetable occurred in the early assignments.

A standard data format for the examination timetabling problem at the Faculty of

Engineering and Architecture, Yeditepe University in Turkey, was proposed by Özcan

and Ersoy (2005). In their paper, Final Examination Scheduler (FES) was introduced

as a tool that accepted Timetabling Markup Language (TTML) as the input. The

timetabling problem was solved using a memetic algorithm approach, introduced by

Alkan and Özcan (2003), which employed a genetic algorithm that cooperated with mod-

ified violation directed hierarchical hill climbing (VDHC). The VDHC strategy worked

by creating a hill climbing approach for each type of constraint. The entire set of hill

climbing approaches were then gathered under a single hill climbing approach named

VDHC. Three hierarchical levels of resolution were introduced to change the resolution

level depending on the fitness function.

Ersoy et al. (2007) proposed a hyper-heuristic methodology known as ‘hyperhill-climber’

that adapted within a memetic algorithm for selecting the best hill climber in exam-

ination timetabling problems. The hill climber determined the best ordering for the

successive application of hill-climbers. In their study, three types of hill climbers were

introduced, i.e. deterministic, adaptive and self-adaptive, which were evaluated within

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 40

a memetic algorithm in different orderings. The results were tested on the six problems

of the Toronto benchmark datasets and the approach obtained promising results. The

study found that the deterministic hyperhill-climber with the implementation of a single

hill climber at any one time performed the best. This approach is an extension of their

previous work in studies by Alkan and Özcan (2003) and Özcan and Ersoy (2005).

Ant Algorithms. The idea of the ant algorithm was inspired by the concept of real

ants foraging for food, and was first introduced by Marco Dorigo (Dorigo and Blum,

2005, Dorigo et al., 1996). The ant moves to find food and produces pheromone trails

when searching for the shortest way from the food sources to their nest. The path with

a higher pheromone level gives an indication of the quality and quantity of the food

brought back by the ants from the sources. This has obviously guided the other ants in

their search for more food from the new discovery of food sources.

The ant algorithm has been used to solve hard combinatorial optimisation problems

including timetabling, and surveys on the application of the ant algorithm can be found

in Dorigo and Blum (2005). A study by Eley (2007) which employed an ant algorithm

in solving the examination timetabling problem, incorporated the ant systems and the

max-min ant systems with two randomised strategies in order to find the constructive

heuristic and the pheromone trail. During the test, different parameter settings, i.e. the

number of cycles, the weighting factors and the evaporation rate, were required in order

to make sure that the algorithm worked effectively. The approach was tested on the

Toronto benchmark datasets and obtained encouraging results.

This approach is also studied by Azimi (2004) and Azimi (2005). In the earlier study,

ten randomly generated datasets of examination timetabling problems were investigated

using simulated annealing, tabu search, genetic algorithms and the ant colony system

within a similar framework. The initial solution for each algorithm was created randomly,

while the ant colony system was created based on heuristic figures. A comparison of

these approaches showed the ability of the ant colony system to produce a good quality

solution when demonstrated under a given running time. In this study, the tabu search

was found to be more effective than the ant colony system in improving the solution. The

hybridisation of the ant colony system was further examined in his later study (Azimi,

2005). Comparisons of three different hybridisations of the ant colony system and the

tabu search with other single local search algorithms demonstrated the superiority of

the approach. The study found that the sequential ant colony system and tabu search

was the best variant for the tested problem. During the search, the effect of pheromones

from the ant colony system caused the solution to converge. Tabu search was therefore

applied in order to disrupt the search. Nevertheless, the success of this approach could

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 41

not be compared with other approaches in the literature since it was not tested against

benchmark datasets.

The ant algorithm was also used by Dowsland and Thompson (2005) to solve the ex-

amination timetabling problem within graph colouring theory. The aim of their study

was to find the minimum number of time-slots for the problem by considering the clash

free requirement as the hard constraint. The proposed variants of ant algorithm were

based on two graph colouring heuristics - recursive largest first and saturation degree.

Different trail calculations were also considered, including one that was introduced for

the purpose of diversification in the search and to avoid the occurrence of infeasible

timetables. Moreover, two statistical measurements were used to evaluate the perfor-

mance of the introduced combinations and the approach was comparable to others in

the literature. The study suggested that the incorporation of time-windows, seating

capacity and second-order conflicts could be considered during the investigation.

2.2.5 Hyper-heuristic and Case-based Reasoning Techniques

One disadvantage of the approaches described in the previous section is that there is often

a reliance on parameter tuning in the production of solutions in particular circumstances.

Moreover, most of the approaches are problem dependent and need a different setting

of parameters, revealing the inconsistency across various instances. This drawback has

motivated the introduction of more general methodologies i.e. hyper-heuristic (Burke

et al., 2003c, Ross, 2005) and case-based reasoning (CBR) (Burke and Petrovic, 2002,

Petrovic and Burke, 2004) and they are discussed in the following subsections.

2.2.5.1 Hyper-Heuristic

A hyper-heuristic is a search methodology that has received recent attention for timetabling.

One of the motivating goals is that it should be a more general approach than other meta-

heuristic approaches in the literature. Burke et al. (2003c) defined a hyper-heuristic as

“the process of using (meta-) heuristics to choose (meta-) heuristics to solve the prob-

lem in hand”. Recently, Burke et al. (2010b) presented a more general definition - “A

hyper-heuristic is an automated methodology for selecting or generating heuristics to

solve hard computational search problems” - that reflects current research trends. Gen-

erally, the hyper-heuristic works as a high-level heuristic and intelligently chooses a set

of low-level heuristics based on learning mechanisms. The low-level heuristics are usually

a set of simple heuristics that have different potential (either strength and weaknesses)

on different problem instances. The idea of using sets of low level-heuristics allows the

approach to work on various characteristic of problems.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 42

Throughout the search process, some learning mechanisms are embedded in the given

information for identifying the best low-level heuristic to be used. The learning mecha-

nism could be on-line or off-line or there could be no-learning at all (Burke et al., 2010b).

Essentially, the on-line learning happened to have an effect during the search process

while the off-line learning involved an initial learning mechanism on the training prob-

lem. Thus, the generated information from the off-line learning could be used to solve

the problem in hand. The no-learning mechanism involved no learning to the problem

and so no information is needed to solve the problem. Generally, the hyper-heuristic

approach can be categorised into two methodologies, i.e. heuristic selection and heuristic

generation. This classification is based upon the nature of the heuristic search space. An

overview of the hyper-heuristic approach can be found in Burke et al. (2003c), Petrovic

and Burke (2004), Ross (2005) and Burke and Kendall (2005). The following subsection

discusses the classification of hyper-heuristic approaches.

Heuristic selection methodologies. Heuristic selection methodologies involve a se-

lection of existing heuristics in a hyper-heuristic framework. Usually, the hyper-heuristic

aims to choose the most appropriate problem-specific constructive heuristic that already

exists in the framework, and continue to search for a solution with a perturbation heuris-

tic. Within hyper-heuristic approaches, the most common constructive heuristics used

in examination timetabling are graph colouring heuristics and moving strategies. The

successful application of hyper-heuristics as the heuristic selection methodologies has

increased recently in studies of examination timetabling problems. Within these ap-

proaches, there are several heuristic selection methodologies reported in the literature -

for example, simple random, random descent, greedy search, choice function, reinforce-

ment learning, tabu search and the Monte-Carlo procedure.

The tabu search hyper-heuristic selection employs a certain length of tabu list of low-

level heuristics to prevent the non-performed low-level heuristic being chosen too quickly

and to ensure that other potential heuristics could be applied. Examples of the tabu

search hyper-heuristic selection in examination timetabling are provided by Kendall

and Mohd Hussin (2005a), Burke et al. (2005a) and Burke et al. (2007). In the first

of these studies, Kendall and Mohd Hussin (2005a) and Kendall and Mohd Hussin

(2005b) investigated the implementation of the tabu search hyper-heuristic framework

for examination timetabling problems at the University Technology MARA (UiTM),

Malaysia and Toronto benchmark datasets. The approach considered several graph

coloring heuristics and moving strategies (i.e. 1-opt or 2-opt) as the low-level heuristics.

Essentially, the low-level heuristics acted as a strategy to allow movement through a

solution space. A number of low-level heuristics was stored in a fixed length of tabu

list whenever they could not improve the solution quality. The approach was tested on

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 43

eight problems of the Toronto benchmark and obtained good quality solutions across

the problem range. In real world implementations, their solutions were compared with

the manually generated timetable, indicating that their approach was better in at least

80% of cases in terms of solution quality.

Burke et al. (2005b) proposed hybrid graph colouring heuristics within a hyper-heuristic

framework for constructing examination timetables. Two graph colouring heuristics -

largest degree and saturation degree - were employed as low-level heuristics. In their

study, the tabu search approach was used as a perturbation heuristic within hyper-

heuristic. These graph colouring heuristics were intelligently selected for constructing

solutions. Within the tabu search hyper-heuristic, a knowledge based approach, namely,

case-based reasoning, was hybridised to choose graph colouring heuristics based on the

knowledge of the appropriate heuristic. The approach was tested on random and Toronto

benchmark datasets and the results were comparable to other best approaches. Further-

more, Burke et al. (2007) investigated a multi-stage hyper-heuristic where the graph

colouring heuristics had been permutated into two stages. Graph colouring heuristics

as low-level heuristics were applied in order to obtain solutions based on a learning

mechanism and the solutions then were modified by high-level heuristic indirectly. Tabu

search worked as a high-level heuristic which indirectly modified the solutions in hand

rather than operating directly on the problem. Several permutations of graph heuris-

tics were employed to construct solutions for examination and course timetabling. The

study found that the increasing number of low-level heuristics would significantly in-

crease the solution quality. However, the computational time would also increase due

to the growing size of the search space. The approach produced competitive results on

both examination and course benchmark timetabling problems.

The variable neighbourhood search can also be used as a high-level heuristic within the

hyper-heuristic approach. A study by Ahmadi et al. (2003) described the application

of variable neighbourhood search as a perturbation-based algorithm to the examination

timetabling problem. In order to construct solutions, the study incorporated weight

values to low-level heuristics, namely, examination selections, time-slot selections and

room selection. Later, Qu and Burke (2005) investigated the application of a hybrid

variable neighbourhood search to choose the sequence of low-level heuristics, i.e. graph

colouring heuristics for examination timetabling problems. The two neighbourhood

structures used consisted of a graph colouring heuristic sequence that changed to single

or double flipped. The approach was tested on the Toronto benchmark datasets and

its performance compared with different perturbation heuristics: tabu search, steepest

descent method and iterated local search. Of these, the iterated local search performed

the best compared with other approaches. The study found that even though a good

perturbation heuristic was used, it may not necessarily found good quality solutions. It

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 44

was concluded that good quality solutions could be obtained when a huge search space

was used.

Other studies within the hyper-heuristic approach employed a genetic algorithm as the

heuristic selection methodology. A study by Ross et al. (2004) used a genetic algo-

rithm to search iteratively for the nearest labelled point within a simplified search space

of problem-state-description. Each label in the algorithm described each heuristic in

the list, where two different categories of heuristics were used - event-picking and slot-

picking. In order to evaluate the overall performance of each heuristic, three different fit-

ness measures were introduced on violation scores considering the pairs of event-picking

and slot-picking heuristic. The algorithm was demonstrated on examination and course

timetabling problems and showed promising results. The approach was judged to be

very fast in solving the given problems.

Several heuristic selection methodologies, acceptance criteria and their combinations

within the timetabling problem were investigated by Bilgin et al. (2007). The study

considered simple random, random descent, tabu search, choice function and greedy as

their heuristic selection methodologies, and the performance of thirty-five combinations

of different mechanisms of the hyper-heuristic were compared in depth. The result

showed that the combination of heuristic selection and a move acceptance strategy did

have an impact on the solution quality. Further, the combinations were found to work

differently with diverse problem instances. The analysis indicated that some of the

combinations worked better on different objective functions.

A reinforcement learning method presented in a study by Nareyek (2003) has been

used by Özcan et al. (2010) to choose the low-level heuristics based on a reward and

punishment scheme known as ‘utility value’. This learning mechanism employed an

adaptation scheme that was based on the move acceptance by a remembrance mecha-

nism whether to remember or to forget. The forgetting mechanism creates the upper

and lower bound of utility value. This strategy was combined with the great deluge

algorithm as a move acceptance criterion. The Monte-Carlo hyper-heuristic was inves-

tigated by Burke et al. (2010c) in relation to un-capacitated problems of the Toronto

benchmark. The Monte-Carlo procedure was incorporated as a learning mechanism to

select heuristic components. The approach also incorporated simulated annealing with

reheating mechanism as the move acceptance strategy.

The heuristic selection methodologies could be based on the performance of low-level

heuristics . Qu et al. (2009a) introduced an adaptive heuristic hybridisation for con-

structing examination timetables and solving the graph colouring problem. The ap-

proach was named ‘random iterative graph-based hyper-heuristic’ and used to construct

various solution qualities using different heuristic sequences. The heuristic sequences

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 45

consisted of several graph colouring heuristics: saturation degree, largest weighted de-

gree, largest enrolment and largest degree. During the solution construction, a sequence

of heuristics was developed randomly and the sequence was analysed in terms of feasi-

bility. The infeasible sequence was put aside and only the feasible sequence was used

for further analysis. The study observed that the hybridisation of the largest weighted

degree and the saturation degree heuristics could produce good solution quality espe-

cially at the early stage of solution construction. The study also analysed the way in

which graph colouring heuristics were automatically hybridised. Comparison with other

approaches to examination timetabling and graph colouring problems has shown that

the hybrid heuristics, though general, are very competitive.

Meanwhile, Pillay and Banzhaf (2009) presented a hierarchical concept of the hyper-

heuristic where several heuristics were combined and applied simultaneously. The com-

bination of heuristics was divided into primary and secondary heuristics. The primary

heuristics included several graph colouring heuristics with one of these being identified

as a priority heuristic, i.e. an important entity while performing the Pareto combina-

tion among the heuristics. When executing the comparison, the second heuristic was

used in the timetabling process. This approach was tested on the Toronto benchmark

datasets and produced several best results when compared with other hyper-heuristic

approaches. Furthermore, the same study introduced a new heuristic known as ‘highest

cost’ which was defined dynamically during the timetabling process. Based on this new

heuristic, the most difficult examination was identified by obtaining the examination

cost evaluation function introduced by Carter et al. (1996) and the examination with

the highest cost value was scheduled first in the timetable. This heuristic was used as

one of the low-level heuristics employed in the hyper-heuristic implementation.

Heuristic generation methodologies. So far, few studies have utilised heuris-

tic generation methodologies in order to solve timetabling problems. An example of

such an approach is demonstrated by Pillay and Banzhaf (2007) for generating low-level

heuristics using genetic programming for the un-capacitated examination timetabling

problem. A number of low-level heuristic sequences were evolved using the genetic oper-

ator whereby the new sequence of low-level heuristics was used to construct examination

timetables. The approach was tested on the Toronto benchmark datasets and was able

to produce a feasible timetable for all tested problems. An extension of this study

by Pillay (2009a) employed genetic programming to evolve a function for generating a

combination of low-level heuristics based on the scheduling difficulty. This combination

was used hierarchically in constructing examination timetables. Both studies showed

that the generation of a hyper-heuristic could be successfully applied to the timetabling

problem.

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 46

Pillay (2010a) continued to investigate the evolving hyper-heuristic. The study pre-

sented a highly constrained examination timetabling problem of the ITC2007 which im-

plemented this approach. It found that the evolutionary algorithm combined with three

chromosome representations simultaneously performed better than the single chromo-

some representation in evolving low-level heuristics. A number of low-level heuristics

were used to evolve a new combination of heuristics. The results demonstrated the

success of the approach when compared with other approaches within the ITC2007.

However, the study did not take into account the restrictions on the running time.

2.2.5.2 Case-based Reasoning

Case-based reasoning (CBR) is a knowledge-based system that collects information from

previous problems and stores the solutions in the case base. In solving current problems,

the most similar cases are retrieved from the case base using a similarity measure. An

overview of CBR on educational timetabling can be found in Burke and Petrovic (2002)

and Petrovic and Burke (2004).

In their application of CBR approaches to timetabling problems, Petrovic and Burke

(2004) employed the previous knowledge by presenting it in terms of two important roles,

i.e. solution reuse and methodology reuse. In a further study, CBR was investigated

as a heuristics selection for the examination and course timetabling problems (Burke

et al., 2006) where several well-known heuristics that worked effectively on timetabling

problems were stored in the case base and used to solve the current problems. The low-

level heuristics used were largest degree first, largest degree with tournament selection,

colour degree, saturation degree and a hill climbing heuristic. The CBR system was

constructed by two stages approach. In the first stage, problem learning using specific

heuristics was involved and the best heuristics found in the case base were used for the

current problem. In the second stage, the source case was revised and the unwanted

heuristic was removed in order to avoid any confusion during the retrieval process. The

study demonstrated that CBR could work at the level of generality in solving timetabling

problems by choosing the right heuristic to be employed.

The CBR approach was also implemented by Yang and Petrovic (2004) as a method to

decide a suitable graph colouring heuristic for initialisation strategy before proceeding to

the next phase that employed great deluge algorithm. Their study proposed a similarity

measure of two different graph representations based on fuzzy set (Zadeh, 1965). The

approach proved to be successful where it obtained several best results when tested on

the Toronto benchmark datasets. The similarity measure was further discussed in Burke

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 47

et al. (2004b) for implementation in the CBR system, when it was used to choose the

problem-solving method based on the features of timetabling problems.

2.2.6 Multi-criteria and Multi-objective Techniques

In the area of timetabling, the perception of educational timetabling as a multi-objective

problem is not common even though in real world application many criteria arise in

solving the problem. The approach considers several criteria for making decisions and is

able to handle these simultaneously. Many approaches combine multiple objectives into

a simple linear combination by using weighted aggregating functions in order to obtain

a solution. However, it is often preferable to present several compromise solutions to

the decision-maker in order to fulfill the various requirements (Landa-Silva et al., 2004).

To perform this strategy, an intention is given to the Pareto optimisation technique as

a method for multi-objective problems. It tries to find a set of compromise solutions

that represent a good approximation to the Pareto optimal front. The Pareto-based

meta-heuristic was introduced in order to overcome the difficulties in establishing the

preferences among the criteria before the search. The evolutionary algorithm was re-

ported as a method for the Pareto optimisation technique in multi-objective timetabling

problems.

The survey paper by Landa-Silva et al. (2004) discussed a multi-objective meta-heuristic

approach with Pareto optimisation for scheduling problems, i.e. machine scheduling,

educational timetabling and personnel scheduling. The Pareto optimisation technique

was preferable for producing various compromise solutions with a good approximation

to the Pareto optimal front for the scheduling problem. Recently, many researches have

used this technique to solve the multi-objective problem.

Recent studies in examination timetabling attempt to engage with the multi-criteria

decision-making technique especially in solving real world problems. This technique has

shown a significant achievement in the timetabling arena. Burke et al. (2001) applied a

multi-criteria approach to examination timetabling by splitting nine criteria into three

categories relating to: 1) room capacities, 2) proximity of examinations and 3) time and

order of examinations. This approach was based on compromise programming (Zeleny,

1974) with regard to the concept of an ideal point defined in the criteria space and the

mapping into the preference space. Consequently, the approach accepted constraints

by taking into account the relative importance expressed by the timetable officer. The

distances from the approximate ideal point indicated the quality of timetable that was

obtained after considering all criteria. A hybrid of heavy mutation and hill-climbing was

used as the search algorithm. The study was continued by Petrovic and Bykov (2003)

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 48

who combined it with the great deluge algorithm for solving examination timetabling.

This technique considered many criteria and improved the reference solution by changing

the weight of criteria dynamically in order to direct the search. During the process, the

search was driven through a predefined trajectory in the criteria space to approach

the solution to the origin (ideal point) as possible. The variable weights great deluge

algorithm produced some superior results to those that were published in the literature

at that time.

An evolutionary algorithm within the multi-objective of real world problems has shown

high rates of success. Paquete and Fortseca (2001) investigated the application of the

multi-objective evolutionary algorithm to examination timetabling problems at the Unit

of Exact and Human Science, University of Algarve. The approach used direct repre-

sentation and Pareto ranking of population to evaluate each objective of the problem.

Further, Côté et al. (2005) investigated a hybrid bi-objective evolutionary algorithm

with a local search operator for the un-capacitated examination timetabling problem.

The timetables that were generated considered two objective functions, namely, creat-

ing a clash-free requirement while satisfying student spread and minimising timetable

length. In another study, Cheong et al. (2007) demonstrated a multi-objective evolu-

tionary algorithm in relation to examination timetabling for capacitated problems. The

approach was capable of tackling the problem by minimising the timetable period and

at the same time distributing the students in the timetable.

A recent study by Asmuni et al. (2007) proposed a new fuzzy evaluation function for

examination timetabling which involved multiple decision criteria. In addition to the

most common objective used in examination timetabling i.e. the average penalty per

student, the highest penalty imposed on any of the students was also considered to

evaluate the quality of timetable solutions. They showed that fuzzy reasoning could

be successfully applied to multiple decision criteria problems. The properties of multi-

objectives for a new examination track for the ITC2007 was investigated by Burke et al.

(2008). In order to overcome the complexity of multi-dimensional problems, the seven

soft constraints introduced in the objective function were separated into two categories:

(1) student and (2) administration. The trade-off between student and administration

preference was investigated using the integer programming solver CPLEX 10 so that the

Pareto-optimal solutions could be found. From the result, it was observed that there

was a standard trade-off between the student and administrative preferences. More

information on multi-criteria decision-making approaches in educational timetabling is

cited in Burke and Petrovic (2002), Petrovic and Burke (2004) and Landa-Silva et al.

(2004).

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 49

2.3 A Survey of Research on the Second International

Timetabling Competition (ITC2007)

The International Timetabling Competition was first introduced in 2002 and its success

led to a second competition in 2007 where three different tracks of problems were intro-

duced: examination timetabling, post-enrolment-based course timetabling and curriculum-

based course timetabling (McCollum et al., 2008). These problems described the real

world implementation of timetabling with more problem constraints taken into consid-

eration. The problem required time restriction while generating timetables as stated in

the competition rules.

Since the introduction of the ITC2007 datasets, the problems have been actively inves-

tigated. This survey focuses solely on the examination timetabling track and the aim is

to give an overview of the approaches to the datasets that were introduced. More details

on the problem descriptions and constraints are provided by McCollum et al. (2008) and

McCollum et al. (2010). The characteristics and constraints examination timetabling

track are also discussed in Section 2.5.2. In this section, the implementation by the

five winners of the competition (Atsuta et al., 2008, De Smet, 2008, Gogos et al., 2008,

Müller, 2009, Pillay, 2008), together with the current implementations of the introduced

datasets, are briefly discussed.

The first winner of the competition, Müller (2009) used the hybridisation of great deluge

with other local search with great success for solving the three problems of ITC2007.

The objective of the study was to build a general framework of algorithms that worked

on various problem instances. A feasible solution was constructed employing an itera-

tive forward search together with conflict-based statistics (Müller et al., 2004) in order

to avoid revisiting the same solution. Hill climbing was then used to find the local

optimum until no further improvement was observed. The solution continued to be

enhanced by the great deluge algorithm where, during implementation, the bound was

decreased using the cooling rate. Once the bound had reached the defined lower limit,

the simulated annealing algorithm was employed to improve the solution quality. The

process continued to work by repeating the hill climbing algorithm until it reached the

time allocated. The results demonstrated the successful implementation of the approach

and were shown to be superior in the three tracks of the ITC2007.

Gogos et al. (2008), the second winners of the ITC2007, presented a multi-stage ap-

proach. In the first phase, the approach was able to produce good quality feasible solu-

tions during the solution construction. GRASP, a two-phase approach for constructing

and improving solution quality, was applied. The solution construction employed five

graph colouring heuristics (Burke and Petrovic, 2002) and the examination ordering was

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 50

based on adaptive ordering introduced by Burke and Newall (2004). A backtracking

procedure was incorporated during the construction phase whenever no feasible assign-

ment was found. Once the feasible initial solution was obtained, the simulated annealing

with Kempe-chain (Thompson and Dowsland, 1996a) and a reheating procedure began

to improve the solution quality. Tabu search was incorporated during the search process

to avoid cycling moves. Moreover, the solution was further improved with an integer

programming approach using an open source mathematical solver GLPK based on the

branch and bound procedure; it obtained superior results in the competition.

In the third place, Atsuta et al. (2008) proposed a general purpose solver for solving

the three tracks of the ITC2007. The approach employed a hybridisation of tabu search

and iterated local search combined with a constraint satisfaction solver. The hybrid

algorithm incorporated a dynamic weighting scheme in order to improve the solution

quality and the approach has been proven to work effectively on the ITC2007 datasets.

This general purpose solver has also been explained in studies by Ibaraki (2008) and

Ibaraki (2010) and has been successfully implemented in other timetabling problems.

The tabu search algorithm with an open source framework known as ‘drools-solver’ was

applied by De Smet (2008) to generate a solution for the examination track of ITC2007.

Three types of neighbourhood structure were employed, consisting of time-slot move,

room move and examination switch. Examinations that had already been visited were

kept tabu for a certain time. This approach was ranked fourth in the competition.

The fifth placed competitor was Pillay (2008) who proposed a developmental approach

that mimicked the growth and development of organisms in cell biology. The approach

involved a number of processes related to cell division, interaction and migration for

constructing and improving the obtained timetable. As the process started, examina-

tions were ordered with a saturation degree heuristic and each of the examinations was

assigned to the feasible and lowest cost of cell (i.e. time-slot) and in the cases where

more than one good cell was available, the cell was chosen randomly. From the best

cell, the room was chosen based on the best fit heuristic. Meanwhile, the phase of cell

division started whenever an examination could not be assigned into a time-slot. During

the division phase, the cell was divided into two and the violated examination was set to

be in a new cell. The cell was rearranged in order to lower the timetabling costs. If the

constructed timetable was infeasible, then the cell interaction phase started in order to

produce a feasible timetable. Finally, the timetable was improved in the migration phase

by swapping two cells of the same duration. This approach has also been discussed in

Pillay and Banzhaf (2008) and Pillay (2009b) in Section 2.2.4.2.

In the current implementation of the post-competition of the ITC2007, McCollum et al.

(2009) successfully implemented an extended great deluge approach to the examination

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 51

timetabling track. It was a two-phase approach where the first phase was concerned with

the creation of a feasible initial solution using the adaptive strategy introduced by Burke

and Newall (2004). In the second phase, the extended great deluge approach was applied

using a move and swap heuristic while maintaining feasibility. A reheat mechanism of

the great deluge algorithm was employed whenever there was no improvement in the

solution quality. In the study, the boundary ceiling was set to be greater than the

current best value and the decay rate was set to be higher in order to search for further

better solutions. This study showed that the ITC2007 datasets were able to produce a

feasible solution for all problem instances and the approach obtained six best results out

of the twelve instances when compared with other ITC2007 approaches at that time.

A study by Burke et al. (2010f) improved the constructed timetable using the hyper-

heuristic framework based on the idea proposed by Qu et al. (2009a). Examinations

that contributed to the penalty cost of a timetable were identified and ordered using

the hybridisation of graph colouring heuristics. The study found that the saturation

degree with the largest weighted degree as a tiebreaker generated the best sequence while

hybridisation of Kempe-chain moves with swapping time-slots led to better improvement

to the solution quality. The Toronto benchmark datasets and the examination track of

ITC2007 were tested to show the generality of the proposed approach.

Gogos et al. (2010a) further improved the approach after their first implementation in

the competition by incorporating a few stages to improve the solution quality. Before the

search continued with simulated annealing, a hill climbing approach was incorporated

with Kempe-chain neighbourhood. Additionally, the improved approach employed a

shaking procedure if there was no improvement to the current solution for a certain

time, passing back to a simulated annealing phase. Within the time limit, the approach

was able to produce competitive results and obtained four best results out of eight

problem instances, with the exception of the hidden datasets.

In an earlier study, Gogos et al. (2009) had investigated the grid resources approach

for solving the examination track of the ITC2007. This had distributed the problem

instances to be solved into a number of nodes and had attempted to solve the problem

simultaneously using a different temperature parameter for simulated annealing. The

later approach, however, used a simple swarm-inspired logic that continuously improved

the solution. The result demonstrated that the continuous improvement approach per-

formed better than the first approach and the results were comparable to the best results

in the literature. Gogos et al. (2010b) similarly implemented the distributed approach in

considering the same problem, but this time the scatter search, i.e. a population-based

approach, was used to solve the problem. The scatter search was hybridised with a path

relinking strategy that connected two timetables, transforming them to an improved

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 52

timetable where one of the timetables acted as a reference. Other approaches that were

also tested with the examination track of ITC2007 include Burke et al. (2010f), Pillay

(2010a) and Turabieh and Abdullah (2011) and have been discussed in the previous

section.

2.4 Real World Examination Timetabling Datasets

Several real world datasets have been widely introduced to the examination timetabling

community with variants of measurement and more practical constraints that represent

the real world problems. These datasets were tested on a variety of approaches and a

comparison was made for the purpose of scientific research. Table 2.2 shows the list of

datasets from universities that were introduced in the literature.

Table 2.2: The examination timetabling datasets from different universities

Pioneer University

Carter et al. (1996) Carleton University, Ottawa; Earl Haig Collegiate Insti-
tute, Toronto; Ecole des Hautes Etudes Commercials, Mon-
treal; King Fahd University, Dharan; London School of
Economics; Ryeson University, Toronto; St. Andrew’s
Junior High School, Toronto; Trent University, Peterbor-
ough, Ontario; Faculty of Arts and Sciences, University
of Toronto; Faculty of Engineering, University of Toronto;
York Mills Collegiate Institute, Toronto

Burke et al. (1996b) University of Nottingham

Ergül (1996) Middle East Technical University

Wong et al. (2002) École de Technologie Supérieure

Merlot et al. (2003) University of Melbourne

Kendall and
Mohd Hussin (2005b)

University of Technology MARA

Özcan and Ersoy (2005) Yeditepe University

Kahar and Kendall
(2010)

Universiti Malaysia Pahang

The first problem was introduced by Carter et al. (1996) with thirteen sets of problems

from various universities around the world. These benchmark datasets were used widely

as test beds in the examination timetabling community, introducing different problem

dimensions and characteristics. These datasets are publicly available and can be accessed

at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. A significant contribution

by Carter et al. (1996) was the introduction of a penalty cost proximity function to

evaluate the quality of examination timetable. The penalty cost was imposed by the

number of students distributed across the timetable. A minimum number of time-slots

for each benchmark dataset was introduced to this dataset for the purpose of solution

ftp://ftp.mie.utoronto.ca/pub/carter/testprob/

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 53

quality assessment. Since there was a problem relating to the circulation of datasets

under the same name, Qu et al. (2009b) introduced notations to differentiate various

versions of the datasets. In the present thesis, the notation introduced is adapted to

specify the datasets and version I is used as a test bed to the proposed approaches. For

further details on the datasets and the problem description see Section 2.5.

The University of Nottingham benchmark dataset was first introduced by Burke et al.

(1996b), who, in a further study (Burke et al., 1998b) added more constraints that

considered consecutive examinations overnight. The original problem involved room

requirements and capacities and at the same time took into account the minimisation of

students attending two consecutive examinations per day. This dataset can be reached at

http://www.asap.cs.nott.ac.uk/resources/data.shtml. An earlier study by Burke

et al. (1993) had incorporated real world features: eliminating students sitting two

consecutive examination periods, minimising disturbance during examination session,

assigning the examination to a special room facility and employing variable size of time-

slots so that examination length could be reduced.

Ergül (1996) initiated the datasets which involved two real world instances of the exami-

nation timetabling problem at the Middle East Technical University. Firstly, there were

682 examinations, while the second instance concerned a larger problem with 1449 ex-

aminations and with more constraints. However, some of these constraints were ignored

since the implemented system did not take them into account. Study by Wong et al.

(2002) introduced the examination timetabling dataset from the École de Technologie

Supérieure for four departments of the engineering school in Montreal. In another study,

Kendall and Mohd Hussin (2005b) drew attention to the examination timetabling prob-

lem for the Universiti Technology MARA in Malaysia. This dataset is unique since

the university has more than one hundred campuses all over the country and an exten-

sive timetabling task was involved. An additional constraint posed by the state public

holiday was also introduced to the dataset.

Two datasets from the University of Melbourne which related to semesters 1 and 2

for the year 2001 were proposed by Merlot et al. (2003). Two new additional hard

constraints were introduced, i.e. the availability of an examination and scheduling large

examinations first. The objective was to produce a feasible good quality timetable. The

examinations were required to schedule two time-slots per day for five working days and

also to fulfill the room capacity requirement for each examination session. The datasets

are available at http://www.or.ms.unimelb.edu.au/timetabling.

Özcan and Ersoy (2005) presented examination timetabling datasets from the Fac-

ulty of Engineering and Architecture at Yeditepe University. Two sets of problem

instances for two educational years from 2001 until 2003 were used for solving the

http://www.asap.cs.nott.ac.uk/resources/data.shtml
http://www.or.ms.unimelb.edu.au/timetabling

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 54

timetabling problem, namely, the requirement that students were distributed over the

schedule and the room capacity constraint. The objective was to minimise the stu-

dents sitting two consecutive exams on the same day. The datasets can be accessed at

http://cse.yeditepe.edu.tr/∼eozcan/research/TTML.

The most recent benchmark dataset of educational timetabling, presented by McCol-

lum et al. (2008) and McCollum et al. (2010) originates from the Second International

Timetabling Competition (ITC2007), which was the continuation of the previous com-

petition first introduced in 2002. The aim of the competition was to build a better

understanding between researchers and practitioners of real-life problems by allowing

new implementation in the problem introduced. The instances of real-life data repre-

sented richer problems and several new requirements and limitations that satisfy the real

world implementations in examination timetabling. A description of the problem and

the results of the competition for each dataset are available in the competition website

at http://www.cs.qub.ac.uk/itc2007/ (with the exception of the hidden datasets).

This dataset is used to investigate the proposed approaches of the present thesis. Fur-

ther discussion on the survey of the implemented approaches and characteristics of the

datasets is presented in Sections 2.3 and 2.5.2.

A recent implementation of a real-world dataset was conducted by Kahar and Kendall

(2010) at the Universiti Malaysia Pahang. The problem considered two new real-world

constraints, i.e. the distance between examination rooms and separating single exami-

nation into several rooms. Since the university is still new and there are few large rooms

available, examinations are required to be assigned into multiple rooms. The separation

of examinations are evaluated based on the distance between rooms.

2.5 Description of Benchmark Problems

In this thesis, two benchmark datasets - Toronto and ITC2007 - are used to test the

proposed approaches. The Toronto dataset is an un-capacitated problem where no room

capacity is considered during the timetable construction, while the ITC2007 dataset is a

capacitated problem that requires the assignment of examinations to rooms and at the

same time satisfies the room capacity restriction. Moreover, the ITC2007 problem is

rich with many considerations related to hard and soft constraints. In order to show the

generality of the proposed approaches, this thesis explains the implementation relating

to both of the benchmark problems. These datasets are described and discussed briefly

below.

http://cse.yeditepe.edu.tr/$\sim $eozcan/research/TTML
http://www.cs.qub.ac.uk/itc2007/

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 55

2.5.1 Toronto

The Toronto instances, also known as ‘the Carter benchmark datasets’ were introduced

by Carter et al. (1996) drawing from various universities around the world and presenting

different problem dimensions and characteristics. It consists of thirteen instances which

are very well known within the timetabling community. The conflict density of each

problem illustrates the difficulty in terms of examinations in conflict. This value is

measured by dividing the average number of examinations in conflict with the total

number of examinations. However, as stated in Section 2.4, different versions of these

datasets circulate within the timetabling community. Qu et al. (2009b) differentiated

the various versions of the datasets with new notations. Version I of the introduced

datasets is used as the test bed for the proposed approaches. The characteristics of the

experimental datasets are summarised in Table 2.3.

Table 2.3: The characteristics of the Toronto benchmark datasets

Problem Time-slots Exams Students Conflict
density

car92 32 543 18 419 0.14
car91 35 682 16 925 0.13
ears83 I 24 190 1 125 0.27
hec92 I 18 81 2 823 0.42
kfu93 20 461 5 349 0.06
lse91 18 381 2 726 0.06
pur93 I 42 2419 30 032 0.03
rye92 23 486 11 483 0.08
sta83 I 13 139 611 0.14
tre92 23 261 4 360 0.18
uta92 I 35 622 21 266 0.13
ute92 10 184 2 750 0.08
yor83 I 21 181 941 0.29

The objective of the Toronto benchmark problem is to create a feasible timetable so

that no student is required to sit two examinations at any one time. To achieve a

high quality timetable, the soft constraints need to be satisfied as much as possible.

Thus, during the timetable construction, it is required that student’s examinations are

assigned as far apart as possible in order to give a wider student spread in the timetable.

The proximity cost function introduced in Carter et al. (1996) in conjunction with the

introduced datasets was used in order to measure the quality of the obtained timetable

and to describe the average penalty of students distributed in the examination schedule.

The formulated cost function is to minimise:

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 56

∑N−1
i=1

∑N
j=i+1 cijw|tj−ti|

M
(2.1)

where N is the number of examinations, cij is the number of students enrolled to both

examinations i and j, ti is the assigned time-slot for examination i, tj is the assigned

time-slot for examination j, w|tj−ti| is the weight whenever students enrolled for two

examinations are scheduled |tj − ti| apart and M is the total number of students. The

penalty weight, w|tj−ti| is calculated as 32/2|tj−ti| where, |tj − ti| ∈ {1, 2, 3, 4, 5}.

2.5.2 ITC2007

The ITC2007 dataset is used for the evaluation of the approach proposed in this thesis,

where the focuses are on the examination timetabling track. It differs from the Toronto

datasets in that ITC2007 is a capacitated problem that requires room assignment for

each examination. Moreover, time-slot-related constraints and room-related constraints

are also considered as the hard constraints to be adhered to. In order to obtain a good

quality timetable, several new soft constraints are also taken into account to fulfill the

real world requirements; there are seven soft constraints to be satisfied simultaneously

with their contribution to the quality of the obtained timetable. The classification of the

hard and soft constraints of the examination timetabling track can be viewed in Table

2.4.

The evaluation function of the timetable quality is based on the weighting scheme of

several criteria of soft constraint violations derived from the Institutional Model Index.

The Institutional Model Index is a weighting system for each soft constraint violation

in order to illustrate the quality measure of the timetable that is obtained. For more

details on the problem descriptions, the constraints and the mathematical formulations

of the examination timetabling track see McCollum et al. (2008) and McCollum et al.

(2010). In contrast to other datasets, ITC2007 requires time restrictions in generating

the timetable and it is benchmarked using the provided benchmark program as a fair

policy in generating solutions. The characteristics of each dataset of the examination

timetabling track of ITC2007 is illustrated in Table 2.5.

2.6 Summary

Many ideas have been introduced to the discussion of examination timetabling prob-

lems in recent years in order to improve the obtained timetable in terms of solution

quality. Within the past two decades, exact methods, approximation algorithms and

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 57

Table 2.4: The hard and soft constraints of the examination timetabling track of
ITC2007

Constraint Descriptions
type

Hard - No students should sit two examinations at any one time.
- The total number of students in an examination room should not be
more than the room capacity and no more than one examinations is
allowed to be in the same room.
- The examinations are assigned to appropriate time-slot lengths.
- Time-slot related constraints (e.g. exam A coincides with exam B)
should be satisfied.
- Room related constraints (e.g. exam C should be assigned to room 1)
should be satisfied.

Soft - Two examinations in a row: the number of times students sit two
adjacent examinations in a day.
- Two examinations in a day: the number of times students sitting for
examinations in a day.
- Period spread: the number of times students sit for examinations
within the specified durations.
- Mixed durations: the number of times examinations in the same room
have a different examination duration.
- Larger examinations constraints: the number of examinations with the
largest number of enrollment scheduled at the start of the examination
session.
- Room penalty: the number of times rooms associated with penalty are
utilised.
- Period penalty: the number of times a time-slot associated with penalty
is utilised.

Table 2.5: The characteristic of the ITC2007 benchmark

Problem Time- Exams Students Rooms Time- Room Conflict
slots slot(HC) (HC) density (%)

Exam 1 54 607 7 891 7 12 0 5.05
Exam 2 40 870 12 743 49 12 2 1.17
Exam 3 36 934 16 439 48 170 15 2.62
Exam 4 21 273 5 045 1 40 0 15.0
Exam 5 42 1018 9 253 3 27 0 0.87
Exam 6 16 242 7 909 8 23 0 6.16
Exam 7 80 1096 14 676 15 28 0 1.93
Exam 8 80 598 7 718 8 20 1 4.55
Exam 9 25 169 655 3 10 0 7.84
Exam 10 32 214 1 577 48 58 0 4.97
Exam 11 26 934 16 439 40 170 15 2.62
Exam 12 12 78 1 653 50 9 7 18.45

Chapter 2. A survey on Algorithmic Approaches to Examination Timetabling 58

also constructive heuristic approaches based on graph colouring algorithm have been

introduced. Other approaches such as fuzzy-based, decomposition, granular modelling

and neural network continue to demonstrate successful implementations regarding the

problem. Recently, the most popular of these is the hybrid meta-heuristic which em-

ploys search strategy to candidate solution (e.g. simulated annealing, hill climbing, tabu

search, great deluge, variable neighbourhood search, large neighbourhood search, devel-

opmental approach and harmony search algorithm). Population-based approaches have

achieved great success in examination timetabling (e.g. genetic algorithm, memetic al-

gorithm and ant algorithm). Other recent approaches, including case-based reasoning,

hyper-heuristic, multi-objective and multi-criteria, also promise to solve examination

timetabling problems. Further, the approaches proposed to ITC2007 were presented.

The benchmark datasets with various constraints within the examination timetabling

problem are also highlighted.

In this thesis, Toronto and the examination timetabling track of ITC2007 benchmark

datasets are used as a test bed to determine the superiority of the proposed approaches.

These two benchmark datasets can be represented in the form of graph colouring prob-

lems in graph theory, thus, making it suitable to construct the initial solutions using

the graph colouring heuristics. Furthermore, the constructed solutions can then be im-

proved using approaches, such as meta-heuristics, due to their success in dealing with

examination timetabling problems in recent years. Since this problem belongs to the

NP-hard problem group (Even et al., 1976), then the exact method is not suitable due

to computational expense and impracticality. The overview of approaches described in

this chapter provides the ideas for the following chapters on the approaches for solving

the examination timetabling problem.

The next chapter discusses the implementation of the proposed approach in constructing

a good quality examination timetable.

Chapter 3

Construction of Examination

Timetables Based on Adaptive

Heuristic Orderings

This chapter presents an initial investigation of the adaptive strategies that order the

examinations to be scheduled within a constructive approach. The aim is to construct

a good quality timetable based on the ordering and shuffling processes. This study

draws on the previous work completed by Burke and Newall (2004) where a heuristic

modifier is used to change examination ordering. Examinations are chosen from the

ordering based on a shuffling strategy and a stochastic component is incorporated into

the process of assigning a chosen examination to a time-slot. Meanwhile, in order to

search for a good quality solution, the current best ordering is shuffled so that improved

examination ordering could be obtained. Combinations of different graph colouring

heuristics during the construction process are also considered by alternating the given

heuristics to vary the examination ordering, since different graph colouring heuristics

tended to produce different ordering based on the number of unscheduled examinations in

the previous timetable construction. The following section presents the algorithm of the

adaptive heuristics that order examinations based on priorities inspired by the squeaky

wheel optimisation (Joslin and Clements, 1999). Section 3.2 describes the algorithm

of un-capacitated and capacitated problems of the implemented datasets. Section 3.3

presents the experiments and discusses the results. Finally, the conclusions are provided

in Section 3.4.

59

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 60

3.1 Adaptive Heuristics Ordering the Examinations Based

on Priorities

An adaptive approach with a heuristic modifier was applied to the examination timetabling

problem by Burke and Newall (2004). Their approach is based on the idea of squeaky

wheel optimisation initiated by Joslin and Clements (1999). Squeaky wheel optimisation

is a greedy approach and works by iteratively cycling around three procedures: Con-

structer, Analyzer and Prioritizer. In examination timetabling problems, squeaky wheel

optimisation gives priority to a ‘difficult’ examination so that it is chosen earlier in the

next iteration. In relation to the examination timetabling problem, the procedures are

as follows:

• Constructor. First, the constructor generates an initial solution for a set of un-

scheduled examinations based on the initial ordering (which can be generated by a

chosen graph colouring heuristic). The unscheduled examinations are individually

assigned to the best time-slot i.e. whichever generates the least penalty. During

the assignment, there is a possibility that some of the examinations cannot be

assigned to a time-slot due to the existence of conflicts with other examinations.

In this case, such examinations remain unscheduled.

• Analyzer. Once the constructor has completed the assignment, each examination

is analysed to check whether there was a problem related with the assignment

i.e. whether there is conflict with other examinations during the assignment. A

strategy is used to increase the priority of the problematic examination so that it

will be given a higher priority in the next iteration. A certain value is added to

the difficulty value of the unscheduled examination in order to indicate that this

unscheduled examination is more difficult to handle than other examinations. This

difficulty value will therefore increase at the end of each iteration if an examination

remains unscheduled during the assignment.

• Prioritizer. Increasing the difficulty by adding a certain value to a heuristic may

change the ordering of examinations. At this stage, the updated difficulty value

will be ranked in a decreasing order and the most difficult examination will be

chosen to be scheduled first in the next iteration. The process continues until

some stopping criterion is met and finally the best solution found is returned.

The proposed approach adapts the examination orderings based on four different graph

colouring heuristics. Each examination has a priority determined by the chosen graph

coloring heuristic. Such a value can be considered to represent a default difficulty level

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 61

of scheduling a given examination. If an assignment cannot be found for a certain

examination, then it can be considered to be more difficult to schedule than expected.

This unscheduled examination is given higher priority in the next iteration. Its difficulty

level is modified using a heuristic value added to the value provided by the graph coloring

heuristic. The algorithm of the adaptive heuristic ordering approach is explained in

Section 3.2.

This approach constructs the solution considering the hard constraint of the tested prob-

lem and the quality of the constructed solution is measured based on the soft constraint

violation. The type of hard and soft constraints and the evaluation of the quality of the

constructed timetable differ across different problem instances. For further detail on the

hard and soft constraint evaluation on the tested benchmark datasets see Section 2.5 in

Chapter 2.

In order to modify the difficulty value of an examination over time, the idea of a heuristic

modifier introduced by Burke and Newall (2004) is used. The formula for examination

difficulty is presented in equation (3.1). The difficulty of examination i at iteration t is

a discrete variable that is an estimation of the difficulty of scheduling the examination

after completing the iteration while the heuristic of examination i is a chosen graph

colouring heuristic value that estimates the difficulty. heurmodi(t) for examination i at

iteration t is a heuristic modifier value. At each iteration, heurmodi(t) is increased by

a modify function whenever examination i cannot be scheduled (illustrated in equation

(3.1)). This approach can be considered as an online learning algorithm where the

feedback from the search process while solving the problem is used to construct the next

solution during the iteration.

difficultyi(t) = heuristici + heurmodi(t) (3.1)

where,

heurmodi(t+1) =

{
modify(heurmodi(t)) , if examination i cannot be scheduled

heurmodi(t) , otherwise

3.1.1 Graph Colouring Heuristics

Four different graph colouring heuristics were used in this suite of experiments of our

study: largest degree (LD), largest enrolment (LE), largest weighted degree (LWD) and

saturation degree (SD). The LD, LE and LWD can be categorised as static heuristics

because the heuristic value for each examination remains unchanged throughout the

iteration. The SD represents a dynamic heuristic due to the dynamic change in each

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 62

successive examination assignment. One of the objectives of our study is to see the

behavior and the performance of these graph colouring heuristics in terms of solution

quality and the count of the examinations that violated the hard constraints. In order to

compare their contributions to solution quality, a series of experiments has been carried

out with different combinations of parameters of these graph colouring heuristics. Below

are the details of each graph colouring heuristic:

• Largest Degree (LD). The ordering is based on the largest number of conflicting

examinations and heuristici(t) holds the number of conflicting examinations for

examination i. difficultyi(t) is increased at each of iteration t if the examinations

are cannot be scheduled. At this stage, the heuristici(t) remains unchanged how-

ever, heurmodi(t) is increased during the iteration based on the modify function.

Priority is given to the highest value of difficulty.

• Largest Enrolment (LE). The ordering is based on the number of student enrol-

ments for a particular examination where examinations are ordered decreasingly

with respect to the heuristic value. heuristici(t) holds the number of student

enrolments for each examination i at each iteration t.

• Largest Weighted Degree (LWD). This heuristic is similar to the largest degree

heuristic except that the ordering is based on the number of students in conflict.

The heuristici(t) holds the number of students in conflict for each examination

i at each iteration t. Like other static heuristics, the heuristic value remains

unchanged throughout the iteration. Only the difficulty value is increased based

on the heurmod value.

• Saturation Degree (SD). The ordering of examinations is based on the number

of remaining time-slots. The examination with the smallest number of available

time-slots is scheduled first. The number of remaining time-slots of unscheduled

examinations will keep changing as the conflicting examinations are assigned to

time-slots. The ordering of unscheduled examinations may change due to the

current successive assignment. Since the saturation degree value of an examina-

tion decreases from time to time, it requires an adjustment. In this study, the

complement of it is used where the saturation degree on an examination is (max-

number-of-time-slot - saturation-degree-of-an-examination). The saturation degree

value, heuristici(t) is initialised with 0 and keeps increasing until the maximum

number of time-slots is reached if the examination cannot be scheduled during the

iteration. The complement of saturation degree is used to increase the difficulty

of an examination by adding it to the heuristic modifier. As for the capacitated

problem (i.e. the problem relating to room capacity requirement), its saturation

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 63

degree value also considers the availability of rooms for the remaining time-slot.

For example, the number of remaining time-slots of an examination that can be

used to schedule is seven. Assuming that three of the remaining time-slots are

considered invalid due to the unavailability of rooms. In these circumstances, the

number of remaining time-slots of an examination that can be scheduled is reduced

to four considering room availability at the same time. Using this heuristic, the

priority of choosing an examination is given to the higher value of difficulty. Algo-

rithms 2 and 6 illustrate the process of updating the saturation degree value of the

un-capacitated and capacitated problems of the Toronto and ITC2007 benchmark

datasets.

3.1.2 Heuristic Modifiers

Different modify functions for heuristic modifiers are used in order to express giving

priority to the difficult examinations. Equations (3.2), (3.3), (3.4) and (3.5) show the

description of each characteristic, where c is a constant and gives different value to

the difficulty. The constant value, c is modified to suit the experiments. The modify

functions are based on the study by Burke and Newall (2004). For more details, see

Section 2.2.3 of the thesis.

• Custom (C). This is a conventional strategy of a heuristic. The heuristic modifier

has no contribution and the heuristic value solely determines the priority of the

examinations to be scheduled. If there are several examinations having the same

heuristic value, then a random examination is chosen for scheduling:

heurmodi(t) = heurmodi(t− 1), heurmodi(0) = 0 (3.2)

• Additive (AD). The modifier is increased by one at each iteration, if an examination

cannot be scheduled. This strategy has a modest effect on the difficulty of a given

examination. If the difference between the heuristic value of a given examination i

and its predecessor in the priority list is large, then it will take longer in using this

approach to reorder the given examination i, emphasizing that this examination i

is difficult to schedule:

heurmodi(t) = heurmodi(t− 1) + c, heurmodi(0) = 0 (3.3)

where c = 1.

• Multiplicative (MP). The modifier value becomes a multiple of a constant where

the factor is determined by the current step, c providing a higher priority for the

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 64

problematic examinations. Reordering for a given examination that is difficult to

schedule occurs faster than the AD strategy:

heurmodi(t) = heurmodi(t− 1) + c, heurmodi(0) = 0 (3.4)

where c = 2.

• Exponential (EX). This modifier will upgrade the priority significantly, if the ex-

amination is difficult to schedule:

heurmodi(t) = c× heurmodi(t− 1), heurmodi(0) = 1 (3.5)

where c = 2.

3.1.3 Shuffling the Ordering of Examinations

In order to choose an examination to be scheduled, the examinations are ordered based

on the difficulty measure with which graph colouring heuristics are often used. Instead

of using the ordering of examinations directly, they can be shuffled within a group of

difficult examinations and an unscheduled examination can be chosen based on this

shuffling strategy. This strategy uses a block size parameter. All ordered examinations

are partitioned into blocks of fixed size and are shuffled randomly within each block

before an assignment is made. The significance of this strategy is that it gives a different

examination ordering by which an examination is chosen randomly from a group that

has a close difficulty measure. In these circumstances, the examination to be chosen

appears from a certain size of grouped examinations that have been ordered based on

graph colouring heuristics.

As an example, Figure 3.1 below illustrates the shuffling strategy within a certain sized

block of examinations. Let us say the block size is four. First, all examinations are

sorted with respect to their difficulty of scheduling using the chosen graph colouring

heuristic and each four consecutive examinations are shuffled within the block randomly.

Some of the examinations may remain in the same position because this process is done

stochastically. Each examination is scheduled based on this new ordering. It can be

noted that this strategy is used only with the static type of graph colouring heuristic. The

technique has also been tested with a block size of 0, indicating that the measure(s) used

directly determines the difficulty of scheduling an examination for comparison purposes.

The experiments are performed using different block sizes in order to observe the effect

of this parameter on the performance of the approach. This will be referred to as the

block approach.

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 65

e2 e5 e8 e4 e10 e12 e1 e9 e11 e3 e6 e7

(a)

e2 e4 e8 e5 e1 e10 e12 e9 e3 e11 e6 e7

Shuffling within block size 4

(b)

Figure 3.1: Shuffling strategy within block (a) Ordering of examinations with certain
graph colouring heuristic; (b) Ordering after shuffling examinations in the block size 4

For the saturation degree graph colouring heuristic, it is not possible to rearrange the

examinations using the block approach due to its dynamic nature. This is because

examination ordering keeps changing after each examination assignment, thus making

this heuristic unsuitable for block strategy. A previous study (Burke et al., 1998a),

suggested that a random examination could be chosen from a fixed number of the most

difficult examinations. It can be observed that, this strategy may be used with both

static and dynamic heuristics. An examination is chosen randomly from a given number

of the most difficult examinations, referred to as top-window size. After the selected

examination is scheduled, the saturation degree and difficulties are updated accordingly.

An example of the shuffling strategy using a saturation degree heuristic is illustrated

in Figure 3.2. Let us say the top-window size is four. Once the list of examinations is

ordered using the saturation degree heuristic, one examination is chosen randomly from

the first four unscheduled examinations. After the chosen examination is assigned to

the selected time-slot, the remaining examinations are reordered based on the difficulty

of saturation degree values. The next examination to be chosen can be selected among

the most difficult examinations within the top-window size four. This strategy will be

referred to as top-window. The proposed approach is experimented with block and top-

window with different sizes in {none, 2, 3, 4, 5, 6, 7, 8, 9} in order to see the difference

in shuffling a number of examinations within block or top-window sizes.

3.1.4 Time-slot Choice

Once an examination is chosen, it is assigned to the most appropriate time-slot. The

assignment is made to ensure the smallest penalty cost from among all the available

time-slot assignments. Previous studies (Burke and Newall, 2004, Burke et al., 2009,

Casey and Thompson, 2003) have indicated that the first time-slot that generates the

least penalty is chosen for an assignment. Since there is a possibility that some time-

slots generate the same least penalty, a random element is incorporated in making this

choice, introducing a variation of assignments in the timetable. In such a situation, there

is a possibility of an examination being assigned to a different time-slot during another

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 66

e2 e5 e8 e4 e10 e12 e1 e9 e11 e3 e6 e7

Choose one exam within top-window size 4

(a)

e2 e4 e8 e5 e1 e10 e12 e9 e3 e11 e6 e7

Order exams based on saturation degree

(b)

e2 e5 e8 e4 e10 e12 e1 e9 e11 e3 e6 e7

Choose next exam within top-window size 4

(c)

Figure 3.2: Shuffling strategy within top-window size four (a) Ordering of exami-
nations with saturation degree heuristic and choosing one examination from the top-
window size four randomly and schedule it; (b) Update the saturation degree of the
unscheduled examinations and order them according to difficulty value (no need to up-
date the ordering if using static heuristic); (c) The process continues with choosing the

next examination to be scheduled within top-window size four randomly

iteration, even though the order of examinations in the current iteration is the same as

in the previous iteration.

3.1.5 Shuffling Best Ordering

The observation on the initial test found that some of the solutions could not be further

improved since some of the best solutions were at the early stage of the solution search.

It is clear that by allocating more time for the search, there are higher chances of

obtaining good results; however, the search needs to be properly established. In these

circumstances, whenever there is no improvement to the solution quality for a number of

iterations, the solution search is focused on the current best ordering. The examinations

are shuffled in the current best ordering using the top-window strategy in order to find

a better ordering within the current best solution.

3.1.6 Heuristic Alternation

Different heuristics tend to produce different numbers of violated examinations at each

iteration. Observations from the initial tests showed that the saturation degree could

produce a smaller number of violated examinations compared with the static graph

colouring heuristic due to the dynamic nature of this heuristic. The number of times

that the violated examinations occurred in this approach is illustrated by the heuris-

tic modifier, which holds the number of times an examination cannot be scheduled in

previous iterations, and the difficulty value is then increased using a modify function.

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 67

The higher the value of this heuristic modifier of an examination, the more we have an

indication that the examination is more difficult to schedule due to conflict with other

examinations in the previous iteration. Since different heuristics give different num-

bers of violated examinations, it would be advantageous to use different graph colouring

heuristics simultaneously during the timetable construction by alternating the heuristics.

Different graph colouring heuristics are alternated to order the examinations. Algorithm

7 illustrates the heuristic alternation in constructing the examination timetable.

First, the graph colouring heuristic to be used is chosen randomly. The examination

timetable is constructed based on the adaptive heuristic ordering approach and the

quality of the obtained timetable is evaluated. Based on the obtained solution quality,

the graph colouring heuristic is alternated. In this strategy, when the solution quality

is improved, the current graph colouring heuristic is used to construct the examination

timetable in the next iteration. Otherwise, if there is no improvement to the solution

quality, the current graph colouring heuristic is used for another n trials of timetable

construction before proceeding with other graph colouring heuristics. After the nth trial

of the current heuristic, if there is still no improvement to the solution quality, then the

graph colouring heuristic is alternated with the next graph colouring heuristic that is

chosen randomly. The number of trials for this experiment is set as n = 10. The aim

of the heuristic alternation is to construct the examination timetable differently as the

number of violated examinations occurred is varied when incorporating different graph

colouring heuristics simultaneously. Using this strategy, the combinations of two, three

and all graph colouring heuristics were tested i.e. LD-SD, LD-LE, LD-LWD, SD-LE,

SD-LWD, LE-LWD, LD-SD-LE, LD-SD-LWD, LD-LE-LWD, SD-LE-LWD and LD-SD-

LE-LWD.

3.2 Algorithm

There are two different benchmark datasets tested using the adaptive heuristic ordering

approach, i.e. the un-capacitated problem of the Toronto and the capacitated problem

of the ITC2007. The following subsections 3.2.1 and 3.2.2 describe the pseudo-code of

the proposed approach for both types of datasets.

3.2.1 Toronto

The pseudo-code of the adaptive heuristic ordering for the un-capacitated problem is

illustrated in Algorithm 1. The initial ordering of examinations at the beginning of

the timetabling process is set based on the identified graph colouring heuristic. The

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 68

saturation degree value of each examination i is set to be equal to 0 at the beginning

of each iteration if it is chosen as the heuristic of the algorithm. As mentioned in

Section 3.1.1, this value will keep increasing up to the maximum number of time-slots

and is added with the heuristic modifier indicating the difficulty of certain examinations

i. Once the timetabling process begins, the current examination i is checked for the

hard constraint violation. If examination i can be scheduled, then it is scheduled with

the least penalty time-slot. In the case of more than one same least penalty time-slot

available, then the best time-slot is selected randomly from the list. In the case of

examination i being violated, then it is left unassigned and at this stage the heuristic

modifier of examination i is increased based on the identified type of modify function

of the heuristic modifier. For the saturation degree heuristic, the saturation degree

value for each examination is updated after each successive examination assignment.

After all examinations have been assigned to the time-slots, the solution quality of the

constructed timetable is evaluated and the best solution quality is stored.

Algorithm 1 Construction of an examination timetable based on adaptive heuristic
orderings for the Toronto benchmark datasets

Choose a fixed heuristic and do the initial ordering
for t = 1 to number of iterations do

if Saturation degree then
Set the saturation degree for each examination as 0

end if
for i = 1 to number of examinations do

Apply shuffling strategy (block or top-window)
if i can be scheduled then

Schedule i in the time-slot with the least penalty. In the case of the availability
of multiple time-slots with the same penalty, choose one randomly

else
Increase and modify heuristic modifier of i

end if
if Saturation degree then

Update the Saturation degree (Algorithm 2)
end if

end for
Evaluate solution, store if it is the best found so far

end for

Algorithm 2 shows how the saturation degree for each examination is changed during the

timetable construction of the un-capacitated problem. The saturation degree for each

unscheduled examination is updated considering the current assignment by checking

their conflict. If the examination to be scheduled, s conflicts with the current scheduled

examination i and the current time-slot has not yet been assigned to any conflicting

examination, then the saturation degree of the unscheduled examinations s is increased.

Algorithms 1 and 2 are applied to the Toronto benchmark datasets while Algorithm 7 is

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 69

employed for the heuristic alternation strategy. This has also been explained in Section

3.1.6.

Algorithm 2 Saturation degree for the un-capacitated problem

for each examination s that is not scheduled yet do
if s is in conflict with i then

Increase saturation degree value until number of time-slots
end if

end for

3.2.2 ITC2007

The ITC2007 benchmark datasets represent heavily constrained problems and require

different treatment in order to satisfy the feasibility of each problem. Since these datasets

are different from the Toronto in terms of the room constraints and the existence of a

number of other hard and soft constraints, it is necessary to code them differently. Nev-

ertheless, the general framework of the adaptive heuristic ordering approach remains the

same. The pseudo-code of the adaptive heuristic ordering of the ITC2007 benchmark

datasets is illustrated in Algorithms 3, 4, 5 and 6. Algorithm 3 illustrates how the

approach works for the ITC2007 benchmark datasets which consider the time-slots and

room requirements simultaneously. During the time-slots search of examination i, two

types of time-slot lists are considered. The first is the list of time-slots with the same

least penalty, named as ‘(All best slot)’ list where the penalty is calculated based on the

time-slot utilisation. The second is the list of time-slots that are not the least penalty

but not violated by examination i, named as ‘(All feasible slot)’ list. The feasible list is

used whenever the least penalty time-slot fails to create a feasible assignment when con-

sidering room availability or due to the violation to other pairs of examinations related

with hard constraint requirement. Scheduling of examinations of the hard constraint

requirement is essential in order to achieve feasibility for the obtained timetable. For

further discussion on the hard and soft constraints of the ITC2007 benchmark datasets

see Section 2.4. In general, the partitioning into two sets is also applied to the room

search, i.e. a list of same least penalty rooms, ‘(All best room)’ and feasible rooms,

‘(All feasible room)’.

In these benchmark datasets, the heuristic modifier of examination i has the chance to

be increased twice during the iteration since there is a possibility that examination i

cannot be scheduled to a time-slot and a room. If examination i can be assigned to a

certain time-slot but no room is available, despite a number of assignment trials, then

the heuristic modifier of examination i is increased once during the iteration. During the

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 70

timetabling process, if examination i is violated due to room assignment, then the reas-

signment process is started (as illustrated in Algorithm 5). Examination i is unassigned

from the current best time-slot and one new best time-slot j within the (All best slot)

list will be assigned to examination i and the search for a new best room will continue.

The search for the best room for examination i continues with the new best time-slot j

from the (All best slot) list, or the (All feasible slot) is used if no feasibility is achieved

from the (All best slot). If there is still no room available for examination i, then the

heuristic modifier for examination i is increased.

During the timetable construction, examination i is verified whether this examination

is one of the examinations from the hard constraint list. The examinations in the hard

constraint list are required to be satisfied and they are related with the time-slot and

room related hard constraints. For more details on the constraints of the ITC2007 see

Section 2.4. If so, then this examination has to be assigned to the appropriate time-

slot and room simultaneously with the related examination(s). Algorithm 4 shows the

assignment process of the examinations related to hard constraints. Once examination

i is identified as one of the examinations from the hard constraint list, the assignment

of examination i to a time-slot and room is verified to see whether it suits the hard

constraint requirement that relates to its pair i.e. examination h. At the same time,

the best time-slot and room for examination h are identified and they are assigned to

examination h if it fulfills the requirement. If searches for a non-violated time-slot and

a room for examination h are unsuccessful, then a reassignment process is started. This

is may be because the time-slot or room assignment of examination i has prompted

examination h to create a hard constraint violation. The time-slot and room search of

examination h may be unsuccessful due to the assignment of examination i. For example,

supposed examination i should be assigned to the same time-slot with examination h,

or if examination i should be concurrent with examination h; however, the assignment

cannot be made because examination h is violated the best time-slot of examination i and

cannot be assigned to this best time-slot. In this case, the best time-slot of examination

i should be changed to another time-slot in order to ensure that examination h could

be assigned to the same time-slot as examination i. If all the time-slots of examination

i in the (All best slot) list violated examination h, then these are kept tabu so that

these time-slots are not chosen again in the next assignment trial. Next, the new best

time-slot of examination i is obtained by choosing one time-slot randomly from the

(All feasible slot) list. After the reassignment process has been repeated for a number

of times and the examination h still cannot be assigned to any time-slot or room, then

this examination h is kept unscheduled.

With this approach, the saturation degree of the capacitated problem is treated differ-

ently. Since the room requirement should be satisfied, the saturation degree value of

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 71

Algorithm 3 Construction of an examination timetable based on adaptive heuristic
orderings for the ITC2007 benchmark datasets

Choose a fixed heuristic and do the initial ordering
for t = 1 to number of iterations do

if Saturation degree then
Set the saturation degree for each examination as 0

end if
for i = 1 to number of examinations do

Apply shuffling strategy (block or top window)
//Find time-slot for examination i
for j = 1 to number of time-slots do

Find (All best slot) and (All feasible slot)
end for
if i can be scheduled to any time-slot then

Choose one best slot j randomly from (All best slot)
Assign i to best slot j

else
Increase and modify heuristic modifier of i

end if
//Find rooms related to best slot j
for k = 1 to number of rooms do

Find (All best room) and (All feasible room)
end for
if i can be scheduled to room then

Choose best room randomly from (All best room)
Assign i to best room

else
if more time-slot from the (All best slot) is available then

Reassignment Process (Algorithm 5)
else

Choose new time-slot j from the (All feasible slot)
Reassignment Process (Algorithm 5)

end if
else

if No room for (All best slot) and (All feasible slot) then
Increase and modify heuristic modifier of i

end if
end if
if i is examination in the hard constraint list then

Do the assignment of examination(s) related to i (Algorithm 4)
end if
if Saturation degree then

Update the Saturation degree of i (Algorithm 6)
if i is examination in the hard constraint list then

Update saturation degree of related examinations (Algorithm 6)
Update difficulty of related examinations in the hard constraint list

end if
end if

end for
Evaluate solution, store if it is the best found so far

end for

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 72

Algorithm 4 Examination assignment related to hard constraints requirements

for h = 1 to number of examinations hard constraint do
if i is related to h then

Find time-slot and room of h and assign them
while h is violated do

Reassignment process of hard constraint violation:
Unassigned and change time-slot of i from (All best slot)
while time-slot of (All best slot) of i violated to h do

Choose other time-slot randomly from (All best slot)
if all time-slot of (All best slot) has been checked and violated to h then

tabu (All best slot)
while time-slot of (All feasible slot) of i violated to h do

Choose other time-slot from (All feasible slot)
if all time-slot of (All feasible slot) has been checked and violated to h
then

Stop the search
Increase and modify heuristic modifier of h

end if
end while

end if
end while

end while
end if

end for

Algorithm 5 Reassignment process

Unassign i and choose a new time-slot from the list
while no feasible room for the chosen time-slot do

Choose other time-slot from the list
if all time-slots in the list have been checked and no feasible room available then

Stop the search and tabu the list
end if

end while

each unscheduled examination i is also updated according to room requirement. In Algo-

rithm 6, once the saturation degree of each of the unscheduled examinations i have been

updated, each non-violated time-slot is checked for room availability. Room availability

consists of rooms that fulfill the capacity requirement, i.e. the number of students for a

certain examination is less or equal to the room capacity. If the non-violated time-slot

has no room to be assigned to it, then the saturation degree of examination i is updated

accordingly. On the other hand, the largest degree heuristic is treated the same as in

the un-capacitated problem where it does not consider the room capacity requirement

during each examination assignment. Algorithm 7 illustrates the heuristic alternation

of the adaptive heuristic ordering and has been explained in Section 3.1.6.

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 73

Algorithm 6 Saturation degree for the capacitated problem

for each examination s that is not scheduled yet do
if s is in conflict with i then

Increase saturation degree value of s until number of time-slots
for each feasible time-slot fs of examination s do

if fs has no feasible room then
Increase saturation degree value of s until number of time-slots

end if
end for

end if
end for

Algorithm 7 Alternating the heuristics during the search

G = {SD,LD,LE,LWD}
Set number of trial, n
Choose heuristics randomly from G
for t = 1 to number of iterations do

if Saturation degree then
Set the saturation degree for each examination as 0

end if
Timetable construction based on adaptive heuristic ordering (Algorithm 1 for
Toronto and Algorithm 3 for ITC2007 benchmark datasets).
Evaluate solution, store if it is the best found so far
if Solution quality is improved then

Continue with the current heuristic
else

Count number of trial
if number of trial is more than n then

Randomly alternate to other heuristic in G
end if

end if
end for

3.3 Experimental Results

The experiments were conducted on a PC with Intel Harpertown 3.0 GHz. processor

and 16 Gb memory. All runs were repeated fifty times for the Toronto and ITC2007

benchmark datasets. The solution was generated for each combination of graph coloring

heuristic, heuristic modifier, shuffling strategy and the relevant parameter due to the

stochastic nature of the proposed approaches. Each run of the Toronto benchmark

dataset was terminated whenever the maximum number of iterations was reached. Two

different values, {2000, 4000} were used for the maximum number of iterations during the

experiments for the Toronto benchmark datasets while the ITC2007 benchmark datasets

followed the running time requirement as stated in the competition rules. The details of

the ITC2007 can be found at http://www.cs.qub.ac.uk/itc2007/. Sections 3.3.1 and

http://www.cs.qub.ac.uk/itc2007/

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 74

3.3.2 discuss the experimental results of the proposed approaches of the Toronto and

ITC2007 benchmark datasets, respectively. The best result for each problem instance

is highlighted in bold font. Section 3.3.3 discusses the analysis of the approaches. For

the rest of the discussion, the proposed approach is represented as adaptive heuristic

ordering (AHO).

3.3.1 Toronto

Table 3.1 illustrates the experimental results for the four graph colouring heuristics

using different combinations of algorithmic choices, respectively using the basic AHO

approach. The basic AHO approach consists of the implementation of different com-

binations of heuristic modifier and block or top-window strategy but with no shuffling

best ordering. The table reports the best penalty values obtained out of fifty runs for

the four graph colouring heuristics for each combination and each problem instance. A

saturation degree-based approach provides the best performance compared with other

graph colouring-based approaches in most of the problem instances, except for lse91 and

pur93 I. The best solution quality for lse91 is obtained when using the largest enrolment

heuristic, while for pur93 I, it is achieved by using the largest degree heuristic. Con-

sidering the maximum number of iterations, the saturation degree with 4000 iterations

performs better than 2000 iterations by producing eight best results out of thirteen

instances.

As demonstrated in Table 3.1, the best results for the saturation degree heuristic are

mostly obtained by using the exponential modifier (six best results), showing that up-

grading the modifier with large values could yield a better ordering of examinations.

This approach is followed by the custom modifier approach, which does not make use

of a heuristic modifier, achieving four best results. The difference in the custom ap-

proach from previous implementations is that the AHO approach utilised the idea of

assigning a random time-slot in case of equal quality possibilities for a given unsched-

uled examination, and the top-window strategy is also incorporated. The multiplicative

and additive modifiers obtain two and one best results respectively, for the saturation

degree heuristic.

In considering the largest degree graph colouring heuristic, Table 3.1 shows that the

exponential heuristic modifier is the best choice for changing the order of examinations

based on its difficulty. The exponential heuristic modifier provides ten best results out

of thirteen instances, followed by the multiplicative heuristic modifier with three best

results. The custom and additive heuristic modifiers do not deliver a good performance

since they made small changes in updating the difficulty value and take a greater amount

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 75

T
a
b
l
e
3
.1
:

C
om

p
ar

is
on

of
d

iff
er

en
t

h
eu

ri
st

ic
s

w
it

h
d

iff
er

en
t

co
m

b
in

a
ti

o
n
s

o
f

a
lg

o
ri

th
m

ic
ch

o
ic

es
o
f

th
e

b
a
si

c
A

H
O

fo
r

T
o
ro

n
to

b
en

ch
m

a
rk

d
a
ta

se
ts

(L
D

=
la

rg
es

t
d

eg
re

e,
L

E
,

la
rg

es
t

en
ro

lm
en

t,
L
W

D
=

la
rg

es
t

w
ei

g
h
te

d
d

eg
re

e,
S

D
=

sa
tu

ra
ti

o
n

d
eg

re
e)

C
o
m

b
in

a
ti

o
n

of
al

go
ri

th
m

ic
ch

oi
ce

s
{n

u
m

b
er

of
it

er
at

io
n

s,
m

o
d

ifi
er

ty
p

e,
b

lo
ck

/t
op

-w
in

d
ow

si
ze
}

P
ro

b
le

m
L

D
L

E
L
W

D
S

D

ca
r9

1
5
.3

6
{4

0
00

,
E

X
,

9}
5.

51
{4

00
0,

A
D

,
5}

5.
66
{2

00
0,

A
D

,
8}

5
.0

8
{4

00
0,

E
X

,
5}

ca
r9

2
4.

56
{4

00
0,

E
X

,
3}

4.
55
{2

00
0,

E
X

,
n

on
e}

4.
80
{4

00
0,

M
P

,
3
}

4
.3

8
{2

00
0,

E
X

,
n

on
e}

ea
rs

83
I

4
0.

00
{4

00
0,

M
P

,
3
}

39
.8

3
{2

00
0,

A
D

,
5}

40
.4

8
{4

00
0,

M
P

,
9
}

3
8
.4

4
{4

00
0,

M
P

,
2
}

h
ec

9
2

I
1
1.

84
{2

00
0,

M
P

,
6
}

11
.9

3
{4

00
0,

M
P

,
5
}

11
.5

5
{2

00
0,

M
P

,
5
}

1
1
.6

1
{2

00
0,

C
,

5}
k
fu

9
3

1
5.

54
{4

00
0,

E
X

,
n

on
e}

14
.8

6
{4

00
0,

C
,

2}
15

.6
5
{2

00
0,

A
D

,
9}

1
4
.6

7
{4

00
0,

E
X

,
2}

ls
e9

1
1
1.

78
{4

00
0,

E
X

,
3}

1
1
.6

7
{2

00
0,

A
D

,
6}

12
.1

5
{4

00
0,

M
P

,
2
}

11
.6

9
{2

00
0,

M
P

,
6
}

p
u

r9
3

I
5
.9

1
{4

0
00

,
M

P
,

9
}

6.
20
{2

00
0,

A
D

,
2}

6.
49
{4

00
0,

A
D

,
5}

5.
93
{2

00
0,

E
X

,
8}

ry
e9

2
9
.6

9
{4

0
00

,
E

X
,

4}
9.

94
{4

00
0,

E
X

,
6}

10
.0

9
{4

00
0,

M
P

,
5
}

9
.4

9
{4

00
0,

A
D

,
5}

st
a8

3
I

15
7.

85
{4

0
00

,
E

X
,

9}
15

8.
19
{4

00
0,

A
D

,
7}

15
7.

82
{4

00
0,

A
D

,
4}

1
5
7
.7

2
{4

00
0,

C
,

n
on

e}
tr

e9
2

8.
88
{4

0
00

,
E

X
,

2
9.

08
{4

00
0,

E
X

,
3}

9.
12
{4

00
0,

M
P

,
4
}

8
.7

8
{4

00
0,

C
,

9}
u

ta
9
2

I
3.

66
{4

00
0,

E
X

,
2}

3.
70
{4

00
0,

A
D

,
3}

3.
75
{4

00
0,

E
X

,
3}

3
.5

5
{4

00
0,

E
X

,
3}

u
te

92
2
6.

82
{4

0
00

,
E

X
,

7}
27

.3
7
{4

00
0,

A
D

,
7}

27
.3

6
{4

00
0,

M
P

,
6
}

2
6
.6

3
{2

00
0,

E
X

,
7}

yo
r8

3
I

4
1.

59
{4

00
0,

E
X

,
6}

41
.9

9
{4

00
0,

M
P

,
3
}

43
.7

5
{2

00
0,

A
D

,
7}

4
0
.4

5
{4

00
0,

C
,

5}

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 76

of time to demonstrate significant changes to the examinations ordering. On the other

hand, the largest enrolment heuristic works effectively with the additive heuristic modi-

fier, which provides seven out of thirteen problem instances, followed by the exponential

heuristic modifier providing best results for three instances, and the multiplicative and

custom modifiers providing best results for two and one problem instances respectively.

Meanwhile, the largest weighted degree graph colouring heuristic performs well with

the multiplicative heuristic modifier, on seven of the instances, followed by the additive

heuristic modifier with five instances and the exponential heuristic modifier with one

instance. It can be concluded that, in most cases, the approach works effectively by

obtaining more best results when more searching time is given, i.e. with 4000 as the

maximum number of iterations as experimented in this study.

It can also be concluded that the block or top-window size choice affects the performance

on the shuffling strategy especially with the smaller block/top-window size. However,

as can be seen in Table 3.1, increasing the block or top-window to a larger size does not

seem to improve the performance significantly. This might be because the arrangement

of examinations in bigger chunks reduces the effectiveness of the approach by increasing

the chance of shifting towards a more random ordering of examinations. As another ap-

proach using a graph colouring heuristic, different parametric choices using a number of

block and top-window sizes respectively are considered to execute. Since the parametric

choice in both cases is a constant factor (2 to 9), it does not affect the overall running

time. The discussion on the statistical test on the size of block and top-window for the

Toronto and ITC2007 benchmark datasets is discussed in Section 3.3.3.

The solution quality of the implementation of basic AHO and AHO with shuffling best

ordering (as described in Section 3.1.5) for four different graph colouring heuristics is

illustrated in Table 3.2. As can be seen, most of the time, the largest degree heuristic of

AHO with shuffling best ordering can improve the solution quality compared with the

largest degree heuristic of the basic AHO, where ten out of thirteen instances obtain

better results. The saturation degree heuristic of the AHO with shuffling best ordering

obtains four better results, while the largest enrolment heuristic and the largest weighted

degree heuristic achieve six and five better results respectively, compared with the basic

AHO. Nevertheless, for five problems, (i.e. hec92 I, lse91, pur93 I, sta83 I and ute92)

the AHO with the shuffling strategy is overall better than the basic AHO. However,

although the incorporation of shuffling best ordering strategy with the basic AHO can

improve the solution quality, the results in Table 3.2 show that the improvement rate is

not very significant however the running time is about the same for both approaches.

The heuristic alternation strategy of AHO, illustrated in Table 3.3, also produces compa-

rable results. Heuristic alternation is better than the basic AHO and the AHO with the

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 77

Table 3.2: Comparison of basic AHO and AHO with shuffling best ordering for four
different graph colouring heuristics for the Toronto benchmark datasets (LD = largest
degree, SD = saturation degree, LE = largest enrolment, LWD = largest weighted

degree, t(s) = running time in seconds)

Basic AHO AHO - shuffling best ordering
Problem LD LE LWD SD LD LE LWD SD

car91 5.36 5.51 5.66 5.08 5.33 5.51 5.72 5.17
t(s) 35 92 37 145 77 77 36 162

car92 4.56 4.55 4.80 4.34 4.57 4.61 4.80 4.45
t(s) 22 28 48 164 48 27 49 183

ears83 I 40.0 39.83 40.48 38.44 39.01 40.15 40.61 39.35
t(s) 4 5 9 10 5 6 10 12

hec92 I 11.78 11.93 11.55 11.61 11.41 11.87 11.37 11.13
t(s) 1 2 1 3 1 2 2 2

kfu93 15.54 14.86 15.65 14.67 14.92 15.43 15.32 15.0
t(s) 6 12 6 105 13 12 12 140

lse91 11.78 11.67 12.15 11.69 11.56 12.0 12.25 11.79
t(s) 4 5 10 44 9 11 4 66

pur93 I 5.91 6.20 6.49 5.93 5.90 6.18 6.50 5.91
t(s) 146 229 300 1803 148 317 210 2741

rye92 9.69 9.94 10.09 9.49 9.78 9.83 10.05 9.67
t(s) 10 23 20 74 23 20 20 66

sta83 I 157.85 158.19 157.82 157.72 157.34 157.76 158.09 157.58
t(s) 1 3 2 9 2 2 1 11

tre92 8.88 9.08 9.12 8.78 8.94 8.83 9.20 8.84
t(s) 5 11 12 17 11 13 11 20

uta92 I 3.66 3.70 3.75 3.55 3.61 3.72 3.77 3.56
t(s) 28 64 75 134 60 32 60 222

ute92 26.82 27.37 27.36 26.63 26.55 27.02 27.35 26.40
t(s) 1 2 2 10 3 2 2 7

yor83 I 41.59 41.99 43.76 40.45 40.76 43.19 43.23 40.48
t(s) 3 7 5 17 3 10 8 23

shuffling best ordering approach. However, this does not apply to the saturation degree

heuristic because in most cases the saturation degree heuristic of the basic AHO approach

performs better than the heuristic alternation strategy. As the table demonstrates, in

most problems the combination of the largest degree heuristic or the saturation degree

heuristic with the largest enrolment heuristic has the potential of obtaining a good solu-

tion quality. The results of combining two heuristics show that each of the combination

of LD-LE and SD-LE obtain four best results out of thirteen instances. The combination

of three heuristics, LD-SD-LE, LD-LE-LWD and SD-LE-LWD, obtained four, three and

five best results respectively. This indicates that the combination of graph colouring

heuritics during timetable construction is very useful in helping to order the examina-

tions based on their difficulties while at the same time producing good solution quality

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 78

T
a
b
l
e
3
.3
:

C
om

p
ar

is
on

of
d

iff
er

en
t

co
m

b
in

at
io

n
s

of
g
ra

p
h

co
lo

u
ri

n
g

h
eu

ri
st

ic
s

in
h

eu
ri

st
ic

a
lt

er
n

a
ti

o
n

st
ra

te
g
y

o
f

A
H

O
fo

r
th

e
T

o
ro

n
to

b
en

ch
m

a
rk

d
at

as
et

s
(T

h
e

b
ol

d
en

tr
ie

s
in

d
ic

at
e

th
e

b
es

t
re

su
lt

s
fo

r
g
iv

en
h
eu

ri
st

ic
co

m
b

in
a
ti

o
n

ty
p

e,
w

h
il

e
th

o
se

in
b

o
ld

a
n

d
it

a
li

c
in

d
ic

a
te

th
e

b
es

t
re

su
lt

s
fo

u
n

d
fo

r
th

e
gi

ve
n

p
ro

b
le

m
)

(L
D

=
la

rg
es

t
d

eg
re

e,
S

D
=

sa
tu

ra
ti

o
n

d
eg

re
e,

L
E

=
la

rg
es

t
en

ro
lm

en
t,

L
W

D
=

la
rg

es
t

w
ei

g
h
te

d
d

eg
re

e)

H
eu

ri
st

ic
co

m
b

in
at

io
n

s
T

w
o

h
eu

ri
st

ic
s

T
h

re
e

h
eu

ri
st

ic
s

A
ll

h
eu

ri
st

ic
s

P
ro

b
le

m
L

D
-S

D
L

D
-L

E
L

D
-L

W
D

S
D

-L
E

S
D

-L
W

D
L

E
-L

W
D

L
D

-S
D

-
L

D
-S

D
-

L
D

-L
E

-
S

D
-L

E
-

L
D

-S
D

-
L

E
L
W

D
L
W

D
L
W

D
L

E
-L

W
D

ca
r9

1
5
.1

6
5.

21
5.

3
5.

19
5
.1

5
5.

36
5.

18
5
.1
1

5.
29

5.
13

5.
18

t(
s)

21
3

7
5

85
29

9
96

52
83

10
8

84
79

75

ca
r9

2
4
.4

9
4.

44
4.

59
4.

44
4.

51
4
.4

2
4.

41
4.

5
4.

47
4
.3
9

4.
43

t(
s)

24
58

54
69

67
28

58
65

25
18

0
93

ea
r8

3
I

39
.0

7
3
8.

99
38

.9
4

39
.0

1
3
8
.2
8

39
.6

3
3
8
.9

8
39

.8
5

39
.5

5
39

.3
1

39
.1

8
t(

s)
9

9
5

8
10

13
15

8
14

8
6

h
ec

9
2

I
11

.4
3

1
1.

57
11

.3
2

1
1
.2
3

11
.3

2
11

.4
9

11
.5

2
11

.5
6

11
.5

3
1
1
.3

9
11

.4
5

t(
s)

3
1

3
2

3
2

2
3

2
3

3

k
fu

93
14

.9
6

1
4.

81
15

.0
6

14
.6

3
1
4
.4
2

14
.9

14
.9

7
14

.9
1
4
.8

2
14

.8
3

14
.9

t(
s)

37
6

14
83

77
14

54
78

13
62

55

ls
e9

1
1
1
.6

2
1
1
.6

2
11

.7
11

.6
6

11
.7

9
11

.7
2

1
1
.4
3

11
.9

2
1
1
.6

4
11

.6
5

11
.6

6
t(

s)
39

4
9

48
40

11
17

35
9

14
15

p
u

r9
3

I
5
.8

6
5
.7
4

5.
93

5.
85

5.
9

5.
85

5.
82

5.
94

5
.7

9
5.

87
5.

87
t(

s)
1
50

8
3
46

19
1

19
05

15
43

39
4

29
10

11
73

16
2

11
58

29
7

ry
e9

3
9
.5

6
9
.6

9.
58

9.
59

9.
63

9.
65

9
.5

4
9.

57
9.

57
9.

57
9
.3
7

t(
s)

70
22

21
80

37
21

93
57

10
60

49

st
a
83

I
1
57

.5
5

1
5
7
.5

3
15

7.
84

15
7.

62
15

7.
55

15
7.

59
1
5
7
.6

8
15

7.
8

1
5
7
.4
5

15
7.

7
15

7.
69

t(
s)

6
1

2
4

8
3

2
4

3
4

5

tr
e9

2
8
.8

3
8
.9

6
8.

92
8
.7
3

8.
86

8.
88

8.
9

8.
9

8.
95

8
.7

4
8.

91
t(

s)
31

6
11

12
27

14
26

28
11

11
10

u
ta

92
I

3
.5

9
3
.5

3
3.

66
3
.5
2

3.
64

3.
54

3
.5

5
3.

6
3.

58
3.

56
3.

57
t(

s)
8
4

6
0

30
76

10
2

43
19

5
18

9
61

14
6

12
9

u
te

92
26

.4
3

2
6
.3

26
.7

3
26

.7
8

26
.7

6
26

.6
7

2
6
.2

7
26

.6
4

26
.6

5
26

.5
5

2
6
.2
4

t(
s)

5
2

1
7

12
1

7
6

2
8

3

yo
r8

3
I

4
0.

63
40

.8
2

41
.9

2
4
0
.3
8

40
.8

7
41

.6
40

.6
6

40
.6

2
41

.5
4

4
0
.4

9
41

.1
5

t(
s)

14
4

7
8

9
10

17
6

9
15

11

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 79

compared with using only a single graph colouring heuristic.

Tables 3.4, 3.5 and 3.6 illustrate the best results obtained for the Toronto benchmark

datasets as reported in the literature, using constructive, hyper-heuristics and improve-

ment approaches respectively, compared with the best results of AHO approaches. A

comparison with previously proposed constructive approaches in Table 3.4 reveals that

the AHO approach provides no best result. Nevertheless, the AHO approach is compet-

itive with other previous constructive approaches in the literature. Overall, the results

obtained are comparable, and are very close, to the best known among constructive

approaches - for example, car91, car92, sta83 I, uta92 I and yor83 I. The AHO approach

generates a better performance in five out of thirteen instances, i.e. car91, car92, sta83

I, tre92 and yor83 I, compared with the previous approaches described by Carter and

Laporte (1996). A comparison with the constructive approach proposed by Burke and

Newall (2004) shows that the AHO approach generates better results for five instances,

namely hec92 I, kfu93, sta83 I, ute92 and yor83 I. Additionally, the approach by Burke

and Newall (2004) does not provide results for rye92 and pur93 I. However, in terms

of the running time, the approach by Burke and Newall (2004) is faster than our ap-

proach. This is due to the process of finding the least penalty time-slot that considered

all time-slots to be evaluated and also the incorporation of the shuffling strategy.

The comparison with previous hyper-heuristic approaches depicted in Table 3.5 shows

that the AHO approach generates best results for four instances (hec92 I, kfu93, rye92

and ute92) out of thirteen of the Toronto benchmark datasets. The AHO approach ob-

tains good solution quality even though no further improvement is required, while most

of the hyper-heuristic approaches incorporated improvement strategy. As illustrated in

Table 3.6, the best results obtained using improvement approaches are stronger, but the

results of the AHO approach is nevertheless comparable with the previous improvement

strategies.

3.3.2 ITC2007

Table 3.7 shows the results of basic AHO implemented in the ITC2007 benchmark

datasets with different combinations of algorithmic choices for largest degree, largest

enrolment, largest weighted degree and saturation degree heuristics. As can be seen,

the largest degree heuristic produces a better performance in terms of the solution

quality compared with other heuristics, producing eight better results out of the twelve

instances. This differs from the Toronto benchmark datasets where the saturation degree

approach is better than the other heuristics. The saturation degree heuristic obtains two

best results while the largest enrolment and the largest weighted degree heuristic each

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 80

Table 3.4: Comparison of AHO with different constructive approaches of the Toronto
benchmark datasets

Problem [1] [2] [3] [4] [5] [6] AHO

car91 7.10 4.97 5.45 5.29 5.03 5.18 5.08
car92 6.20 4.32 4.50 4.54 4.22 4.44 4.34
ears83 I 36.40 36.16 36.15 37.02 36.06 39.55 38.28
hec92 I 10.80 11.61 11.38 11.78 11.71 12.20 11.13
kfu93 14.00 15.02 14.74 15.80 16.02 15.46 14.42
lse91 10.50 10.96 10.85 12.09 11.15 11.83 11.43
pur93 I 3.90 - - - - 4.93 5.74
rye92 7.30 - - 10.38 9.42 10.04 9.37
sta83 I 161.50 161.9 157.21 160.4 158.86 160.50 157.34
tre92 9.60 8.38 8.79 8.67 8.37 8.71 8.73
uta92 I 3.50 3.36 3.55 3.57 3.37 3.49 3.52
ute92 25.80 27.41 26.68 28.07 27.99 29.44 26.24
yor83 I 41.70 40.77 42.20 39.8 39.53 42.19 40.38

[1]-Carter and Laporte (1996); [2]-Burke and Newall (2004); [3]-Qu and Burke (2007);
[4]-Asmuni et al. (2009); [5]-Burke et al. (2010e); [6]-Pais and Burke (2010)

Table 3.5: Comparison of AHO with different hyper-heuristics approaches of the
Toronto benchmark datasets

Problem [7] [8] [9] [10] [11] [12] AHO

car91 5.37 5.36 4.97 5.16 5.17 5.19 5.08
car92 4.67 4.53 4.28 4.16 4.32 4.31 4.34
ears83 I 40.18 37.92 36.86 35.86 35.70 35.79 38.28
hec92 I 11.86 12.25 11.85 11.94 11.93 11.19 11.13
kfu93 15.84 15.20 14.62 14.79 15.30 14.51 14.42
lse91 - 11.33 11.14 11.15 11.45 10.92 11.43
pur93 I - - 4.73 - - - 5.74
rye92 - - 9.65 - - - 9.37
sta83 I 157.38 158.19 158.33 159.00 159.05 157.18 157.34
tre92 8.39 8.92 8.48 8.60 8.68 8.49 8.73
uta92 I - 3.88 3.40 3.42 3.30 3.44 3.52
ute92 27.60 28.01 28.88 28.30 28.00 26.70 26.24
yor83 I - 41.37 40.74 40.24 40.79 39.47 40.38

[7]-Kendall and Mohd Hussin (2005a); [8]-Burke et al. (2007); [9]-Pillay and Banzhaf
(2009); [10]-Qu and Burke (2009); [11]-Qu et al. (2009a); [12]-Burke et al. (2010f)

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 81

Table 3.6: Comparison of AHO with different improvement approaches of the Toronto
benchmark datasets

Problem [13] [14] [15] [16] [17] [18] [19] AHO

car91 5.1 4.5 5.4 5.2 6.6 4.6 4.8 5.08
car92 4.3 3.93 4.2 4.4 6.0 3.90 4.1 4.34
ears83 I 35.1 33.71 34.2 34.9 29.30 32.8 34.92 38.28
hec92 I 10.6 10.83 10.4 10.3 9.2 10.0 10.73 11.13
kfu93 13.5 13.82 14.3 13.5 13.8 13.0 13.0 14.42
lse91 10.5 10.35 11.3 10.2 9.6 10.0 10.01 11.43
pur93 I - - - - 3.7 - 4.73 5.74
rye92 8.4 8.53 8.8 8.7 6.8 - 9.65 9.37
sta83 I 157.3 158.35 157.0 159.2 158.2 156.9 158.26 157.34
tre92 8.4 7.92 8.6 8.4 9.4 7.9 7.88 8.73
uta92 I 3.5 3.14 3.2 3.6 3.5 3.2 3.2 3.52
ute92 25.1 25.39 25.3 26.0 24.4 24.8 26.11 26.24
yor83 I 37.4 36.53 36.4 36.2 36.2 34.9 36.22 40.38

[13]-Merlot et al. (2003); [14]-Yang and Petrovic (2004); [15]-Côté et al. (2005);
[16]-Abdullah et al. (2007); [17]-Caramia et al. (2008); [18]-Burke et al. (2010a);
[19]-Turabieh and Abdullah (2011).

achieves one best result for the basic AHO. There is also an overall variation in the

type of heuristic modifier. The custom approach with no modifier does not perform well

for these datasets, while the largest enrolment and the largest weighted degree fail to

generate any feasible solution for Exam 4.

Table 3.7 also illustrates that the largest degree heuristic performs well with the ex-

ponential heuristic modifier providing best results for six instances, the multiplicative

and additive heuristic modifiers each for three instances and no best result for the cus-

tom heuristic modifier. The saturation degree heuristic also delivers variation in the

performance of heuristic modifiers. The results show that each of the exponential, mul-

tiplicative and additive heuristic modifiers obtain four best results while there are none

for the custom heuristic modifier.

The exponential heuristic modifier shows great success when implemented in the largest

weighted degree heuristic, with eight of the tested instances performing best with the

exponential heuristic modifier, the multiplicative and additive heuristic modifiers pro-

duced two best results respectively, while none for the custom heuristic modifier. Mean-

while, the largest enrolment heuristic has variation in performance within the type of

heuristic modifier. The largest enrolment heuristic performs best for five problems with

the multiplicative heuristic modifier, four problems with the additive heuristic modifier,

three problems with the exponential heuristic modifier and none for the custom heuristic

modifier.

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 82

T
a
b
l
e
3
.7
:

C
om

p
ar

is
on

of
d

iff
er

en
t

h
eu

ri
st

ic
s

w
it

h
d

iff
er

en
t

co
m

b
in

a
ti

o
n

o
f

a
lg

o
ri

th
m

ic
ch

o
ic

es
o
f

th
e

IT
C

2
0
0
7

b
en

ch
m

a
rk

d
a
ta

se
ts

fo
r

b
a
si

c
A

H
O

(L
D

=
la

rg
es

t
d

eg
re

e,
L

E
=

la
rg

es
t

en
ro

lm
en

t,
L
W

D
=

la
rg

es
t

w
ei

g
h
te

d
d

eg
re

e,
S

D
=

sa
tu

ra
ti

o
n

d
eg

re
e,

in
f.

=
in

fe
a
si

b
le

).

C
om

b
in

at
io

n
of

al
go

ri
th

m
ic

ch
oi

ce
s
{m

o
d

ifi
er

ty
p

e,
b

lo
ck

/t
op

-w
in

d
ow

si
ze
}

P
ro

b
le

m
L

D
L

E
L
W

D
S

D

E
x
am

1
1
1
1
5
5
{A

D
,

9
}

12
26

1
{A

D
,

7
}

11
89

7
{E

X
,

8
}

11
22

8
{A

D
,

5
}

E
x
am

2
32

72
{E

X
,

4
}

31
75
{E

X
,

6
}

3
1
2
8
{E

X
,

6
}

31
59
{E

X
,

0
}

E
x
am

3
1
9
6
6
1
{E

X
,

9
}

20
95

7
{A

D
,

7
}

21
20

4
{E

X
,

9
}

19
70

5
{M

P
,

8}
E

x
am

4
2
3
9
7
8
{M

P
,

3}
in

f.
in

f.
24

19
5
{A

D
,

2
}

E
x
am

5
80

33
{E

X
,

6
}

87
68
{M

P
,

0}
86

78
{E

X
,

4
}

8
0
3
2
{A

D
,

7
}

E
x
am

6
2
8
2
9
5
{E

X
,

2
}

58
44

5
{M

P
,

5}
28

42
5
{E

X
,

4
}

28
58

0
{M

P
,

5}
E

x
am

7
16

00
2
{E

X
,

2
}

1
5
5
7
3
{M

P
,

9}
16

11
5
{M

P
,

9}
16

16
3
{A

D
,

6
}

E
x
am

8
1
9
8
0
2
{M

P
,

7}
20

32
2
{A

D
,

6
}

20
12

4
{E

X
,

3
}

20
14

6
{E

X
,

7
}

E
x
a
m

9
2
1
9
2
{A

D
,

9
}

22
07
{A

D
,

2
}

22
48
{E

X
,

9
}

22
71
{E

X
,

0
}

E
x
am

1
0

1
6
8
2
8
{E

X
,

4
}

17
42

9
{M

P
,

8}
17

30
1
{A

D
,

8
}

17
33

6
{M

P
,

6}
E

x
am

1
1

4
4
9
2
1
{M

P
,

3}
48

80
7
{E

X
,

2
}

49
48

2
{E

X
,

4
}

46
58

3
{E

X
,

0
}

E
x
a
m

1
2

65
02
{A

D
,

6
}

66
54
{M

P
,

4}
67

55
{A

D
,

2
}

5
8
5
8
{M

P
,

5}

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 83

A comparison of basic AHO and AHO with shuffling best ordering of four different

graph colouring heuristics is presented in Table 3.8. It is interesting to see that some

of the heuristics fail to improve the solution quality even though the shuffling strategy

is incorporated. Some of the solutions do not improve when compared with the basic

AHO. Further, the improvements to some of the problem instances are not so significant

because only small increments occurred to the solution quality. This may be due to the

nature of the problem to be solved since it is a complex problem and involves many

constraints.

Table 3.9 illustrates the AHO with different combinations of graph colouring heuris-

tics within the heuristic alternation strategy. Considering various heuristics during the

timetable construction appear to assist better ordering, especially in improving the so-

lution quality of the single heuristics of largest enrolment and largest weighted degree.

Nevertheless, this is not the case for the largest degree and saturation degree heuristics,

where the improvements to their solution quality are not very significant. A considera-

tion of the combination of largest degree and largest enrolment heuristics shows that it

is a success where it obtains five best results compared with other combinations of two

heuristics. It is also demonstrated in the combination of three heuristics that the com-

bination of largest degree and largest enrolment can produce better results. Table 3.9

shows that the combination of LD-SD-LE and LD-LE-LWD obtain three and four best

results respectively, while the other two combinations, LD-SD-LWD and SD-LE-LWD,

each achieves two best results within the combination of three heuristics. The combi-

nation of all heuristics appear to work well but it still cannot obtain any best results

when compared with other combinations. It is clear that the combinations of multiple

heuristics in the AHO approach cannot create any feasible solutions to Exam 4.

Table 3.10 compares the best results of different approaches of the ITC2007 benchmark

datasets with the best results obtained by the AHO approach. It can be noted that

the approaches from [1] to [5] are the results from the competition, while the remaining

approaches are obtained after the competition. It is observed that no best result has been

achieved so far within the same computational time and that the obtained results are not

close to other best approaches except for Exam 6, Exam 10 and Exam 12. Nevertheless,

some of the results are better than Müller (2008) for Exam 10, Atsuta et al. (2008) for

Exam 2 and Exam 6, Pillay (2008) for Exam 4, Exam 6, Exam 7 and Exam 10 and

Burke et al. (2010f) for Exam 4, Exam 6 and Exam 8. It can also be noted that the

AHO approach is simply a constructive one and that improvement is required in order to

increase its solution quality. This is therefore considered to be an indirect comparison,

because the other approaches are improvement strategies. The implementation of the

improvement approach is discussed in Chapter 6.

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 84

Table 3.8: Comparison of basic AHO and AHO with shuffling best ordering for four
different graph colouring heuristics for the ITC2007 benchmark datasets (LD = largest
degree, LE = largest enrolment, LWD = largest weighted degree, SD = saturation

degree, inf. = infeasible)

Basic AHO AHO - shuffling best ordering
Problem LD LE LWD SD LD LE LWD SD

Exam 1 11155 12261 11897 11228 11019 12163 11950 11173
Exam 2 3272 3175 3128 3159 3164 3152 3212 3148
Exam 3 19661 20957 21204 19705 19920 21025 21077 19707
Exam 4 23978 inf. inf. 24195 27399 inf. inf. 31676
Exam 5 8033 8768 8678 8032 8253 8626 8655 8041
Exam 6 28295 58445 28425 28580 28595 28460 28625 28600
Exam 7 16002 15573 16115 16163 16032 16038 16001 16275
Exam 8 19802 20322 20124 20146 19921 20095 19684 20238
Exam 9 2192 2207 2248 2271 2212 2230 2207 2225
Exam 10 16828 17429 17301 17336 16741 17160 16847 17157
Exam 11 44921 48807 49482 46583 46695 47063 48288 47213
Exam 12 6502 6654 6755 5858 6430 6551 6189 6534

3.3.3 Discussion

The overall results of the proposed constructive approaches showed that the approach is

very competitive when compared with other constructive approaches within the Toronto

benchmark instances. Moreover, the approach also showed promising results for certain

instances when compared with other improvement approaches within the Toronto and

ITC2007 benchmark instances. As can be seen in the table of results (Table 3.4, 3.5, 3.6

and 3.10), the shuffling current best ordering and also alternating the heuristics, also

contributed to better ordering. The results also demonstrated that the size of block or

top-window of shuffling strategy should not be too large and the statistical analysis on

the size of the shuffling strategy is shown later in this subsection.

Figures 3.3 to 3.10 demonstrate the contribution of the number of violated examinations

at each iteration for four different graph colouring heuristics from one problem instance

of the Toronto and ITC2007 benchmark datasets. Each problem instance illustrates the

number of violated examinations for four different heuristic modifiers: custom, additive,

multiplicative and exponential, in different figures. The illustrations are from the test

of basic AHO with top-window size 5 and at 1000 iterations. Figures 3.3 to 3.6 show

the pattern of largest degree, largest enrolment, largest weighted degree and saturation

degree for yor83 I of the Toronto benchmark datasets.

As Figure 3.3 illustrates, there are significant differences in the number of violated exam-

inations among all of these graph colouring heuristics. In Figure 3.3 (a), the number of

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 85

T
a
b
l
e
3
.9
:

C
om

p
ar

is
on

of
d

iff
er

en
t

h
eu

ri
st

ic
s

st
ra

te
g
ie

s
o
f

A
H

O
o
f

th
e

IT
C

2
0
0
7

b
en

ch
m

a
rk

d
a
ta

se
ts

(T
h

e
b

o
ld

en
tr

ie
s

in
d

ic
a
te

th
e

b
es

t
re

su
lt

s
fo

r
gi

ve
n

h
eu

ri
st

ic
co

m
b

in
at

io
n

ty
p

e,
w

h
il

e
th

os
e

in
b

ol
d

a
n

d
it

a
li

c
in

d
ic

a
te

th
e

b
es

t
re

su
lt

s
fo

u
n

d
fo

r
th

e
g
iv

en
p

ro
b

le
m

)
(L

D
=

la
rg

es
t

d
eg

re
e,

S
D

=
sa

tu
ra

ti
on

d
eg

re
e,

L
E

=
la

rg
es

t
en

ro
lm

en
t,

L
W

D
=

la
rg

es
t

w
ei

g
h
te

d
d

eg
re

e,
in

f.
=

in
fe

a
si

b
le

)

H
eu

ri
st

ic
co

m
b

in
at

io
n

s
T

w
o

h
eu

ri
st

ic
s

T
h

re
e

h
eu

ri
st

ic
s

A
ll

h
eu

ri
st

ic
s

P
ro

b
le

m
L

D
-S

D
L

D
-L

E
L

D
-L

W
D

S
D

-L
E

S
D

-L
W

D
L

E
-L

W
D

L
D

-S
D

-
L

D
-S

D
-

L
D

-L
E

-
S

D
-L

E
-

L
D

-S
D

-
L

E
L
W

D
L
W

D
S

L
W

D
L

E
-L

W
D

E
x
a
m

1
1
12

17
1
12

34
1
1
0
5
1

11
23

3
11

23
1

12
02

6
11

12
3

11
27

4
11

31
1

11
42

6
11

17
5

E
x
a
m

2
32

32
3
04

2
31

61
31

56
32

02
31

37
32

75
31

82
2
8
8
0

32
53

31
00

E
x
a
m

3
2
01

39
1
9
2
8
8

19
94

8
20

18
6

20
37

3
21

30
0

20
22

5
20

31
1

20
15

1
20

58
7

20
31

7
E

x
a
m

4
in

f.
in

f.
in

f.
in

f.
in

f.
in

f.
in

f.
in

f.
in

f.
in

f.
in

f.
E

x
a
m

5
8
0
9
1

8
38

7
84

11
84

05
83

07
87

50
82

95
82

65
87

13
83

29
82

48
E

x
a
m

6
2
86

10
2
87

35
28

62
0

28
69

0
2
8
5
9
5

28
65

0
28

72
0

28
75

5
28

71
5

28
77

0
28

71
5

E
x
am

7
1
61

00
1
60

37
16

15
6

16
32

6
16

17
7

18
18

8
1
5
8
9
5

16
09

8
16

13
6

16
19

7
16

22
3

E
x
am

8
1
98

53
1
9
7
7
2

20
15

7
20

33
5

20
19

4
20

41
5

20
07

5
20

27
1

19
98

9
19

90
0

20
25

9
E

x
a
m

9
21

98
2
20

4
2
1
5
7

21
94

22
01

21
84

22
54

22
04

22
14

22
16

22
38

E
x
a
m

1
0

17
24

4
17

01
6

17
06

3
17

24
4

17
26

0
1
6
9
4
3

17
15

7
17

19
4

17
01

9
17

23
9

17
06

1
E

x
a
m

1
1

46
13

4
47

85
0

46
16

0
48

66
2

48
84

1
49

63
4

4
5
6
7
4

47
15

6
49

26
1

50
16

2
48

96
9

E
x
am

1
2

8
16

9
6
5
6
6

71
81

74
44

82
91

65
87

87
16

86
20

84
69

74
56

90
37

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 86

T
a
b
l
e
3
.1
0
:

C
om

p
ar

is
on

of
A

H
O

w
it

h
d

iff
er

en
t

a
p

p
ro

a
ch

es
o
f

th
e

IT
C

2
0
0
7

b
en

ch
m

a
rk

d
a
ta

se
ts

P
ro

b
le

m
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
[7

]
[8

]
[9

]
[1

0]
[1

1]
A

H
O

E
x
a
m

1
43

70
5
90

5
80

06
66

70
12

03
5

43
70

46
33

85
59

62
35

47
75

4
3
6
8

11
01

9
E

x
am

2
4
00

1
00

8
34

70
62

3
30

74
38

5
40

5
83

0
29

74
3
8
5

39
0

28
80

E
x
a
m

3
1
00

49
13

86
2

18
62

2
-

15
91

7
93

78
90

64
11

57
6

15
83

2
8
9
9
6

98
30

19
28

8
E

x
am

4
1
81

41
18

67
4

22
55

9
-

23
58

2
1
5
3
6
8

15
66

3
21

90
1

35
10

6
16

20
4

17
25

1
23

97
8

E
x
a
m

5
29

88
4
13

9
47

14
38

47
68

60
29

88
30

42
39

69
48

73
2
9
2
9

30
22

80
32

E
x
am

6
2
69

50
27

64
0

29
15

5
27

81
5

32
25

0
26

36
5

25
88

0
28

34
0

31
75

6
2
5
7
4
0

25
99

5
28

29
5

E
x
a
m

7
42

13
6
68

3
10

47
3

54
20

17
66

6
41

38
4
0
3
7

81
67

11
56

2
40

87
40

67
15

57
3

E
x
a
m

8
78

61
10

52
1

14
31

7
-

16
18

4
75

16
7
4
6
1

12
65

8
20

99
4

77
77

75
19

19
68

4
E

x
am

9
10

47
1
15

9
17

37
12

88
20

55
10

14
10

71
-

-
9
6
4

-
21

57
E

x
am

1
0

1
66

82
-

15
08

5
14

77
8

17
72

4
14

55
5

14
37

4
-

-
1
3
2
0
3

-
16

74
1

E
x
am

1
1

3
41

29
43

88
8

-
-

40
53

5
31

42
5

29
18

0
-

-
2
8
7
0
4

-
44

92
1

E
x
am

1
2

55
35

-
52

64
-

63
10

53
57

56
93

-
-

5
1
9
7

-
58

58

[1
]-

M
ü

ll
er

(2
00

8)
;

[2
]-

G
o
go

s
et

a
l.

(2
00

8)
;

[3
]-

A
ts

u
ta

et
al

.
(2

00
8)

;
[4

]-
D

e
S

m
et

(2
00

8)
;

[5
]-

P
il

la
y

(2
00

8)
;

[6
]-

M
ü

ll
er

(2
00

9)
;

[7
]-

M
cC

ol
lu

m
et

al
.

(2
0
09

);
[8

]-
G

og
os

et
al

.
(2

0
09

);
[9

]-
P

il
la

y
(2

01
0a

);
[1

0]
-B

u
rk

e
et

al
.

(2
01

0f
);

[1
1]

-G
og

os
et

al
.

(2
01

0a
);

[1
2]

-T
u

ra
b

ie
h

an
d

A
b

d
u

ll
ah

(2
01

1)

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 87

violated examinations generated by the saturation degree heuristic is very low compared

with other heuristics, especially at the end of the iteration. Thus, the saturation degree

heuristic has greater chances of creating feasible solutions. On the other hand, among

the static types of heuristic, the largest degree heuristic generates a less number of vio-

lated examinations, while the largest enrolment and the largest weighted degree heuristic

contribute a higher number of violated examinations. Figure 3.3 (a) demonstrates the

largest weighted degree contributes the highest number of violated examinations. Never-

theless, these heuristics still fail to generate a feasible solution throughout the iteration,

except for the saturation degree heuristic. The yor83 I of the Toronto benchmark dataset

is one of the difficult problem instances to be solved with conflict density 0.29. This

might be the reason why the static types of heuristics fail to generate a feasible solution

when implemented with a different type of heuristic modifier (see Figures 3.4 to 3.6).

It is also shown in Figure 3.3 that that there is no convergence to each heuristic over

iterations. This is may be due to the employment of custom type of heuristic modifier

which only uses heuristic value for the difficulty value, and it requires no increment to

the difficulty value if an examination cannot be scheduled to a time-slot.

0

5

10

15

20

25

30

0 99 198 297 396 495 594 693 792 891 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

LD

LE

LWD

SD

0

5

10

15

20

25

30

0 10 20 30 40

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

0

5

10

15

20

25

30

950 960 970 980 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

(a)

(b) (c)

Figure 3.3: Number of violated examinations at each iteration for yor83 I of the
Toronto benchmark datasets with custom (C) heuristic modifier tested with basic AHO
with top-window size five (a) the whole picture of each heuristic behaviour; (b) the
behaviour of the first fifty iterations; and (c) the behaviour of the last fifty iterations

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 88

0

10

20

30

40

50

60

70

0 99 198 297 396 495 594 693 792 891 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

LD

LE

LWD

SD

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

0

2

4

6

8

10

12

14

16

949 959 969 979 989 999

Iterations

N
o
.
o
f

v
io

la
te

d
 e

x
a
m

in
a
ti

o
n

s

(a)

(b) (c)

Figure 3.4: Number of violated examinations at each iteration for yor83 I of the
Toronto benchmark datasets with additive (AD) heuristic modifier tested with basic
AHO with top-window size five (a) the whole picture of each heuristic behaviour; (b)
the behaviour of the first fifty iterations; and (c) the behaviour of the last fifty iterations

Different patterns of behaviour can be seen in Figure 3.4 when the additive heuristic

modifier is employed. Figure 3.4 (a) shows a downward movement in the number of

violated examinations for all of the static types of heuristics, while the behaviour of

the saturation degree heuristic remains the same throughout the iteration. Within the

first fifty iterations (as shown in Figure 3.4 (b)), as the iteration starts, the behaviour

of the number of violated examinations is about the same as in Figure 3.3 (b) when

implemented with the custom heuristic modifier. The heuristic modifier keeps the in-

formation of the number of violated examinations to be interacted with. However, at

the end of the iteration (as shown in Figure 3.4 (c)), some of the static heuristics have

successfully generated feasible solutions.

The multiplicative heuristic modifier applied to yor83 I in Figure 3.5 shows the increment

in the number of violated examinations compared with the additive heuristic modifier

in Figure 3.4. Although it essentially shows a downward movement, at the end of the

iteration (as shown in Figure 3.4 (c)), the number of violated examinations remains

slightly higher for all heuristics compared with the additive heuristic modifier in Figure

3.4. With this heuristic modifier, as can be seen in Figure 3.5, only largest degree and

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 89

0

5

10

15

20

25

0 99 198 297 396 495 594 693 792 891 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

LD

LE

LWD

SD

0

5

10

15

20

25

0 10 20 30 40

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

0

2

4

6

8

10

12

14

950 960 970 980 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

(a)

(b) (c)

Figure 3.5: Number of violated examinations at each iteration for yor83 I of the
Toronto benchmark datasets with multiplicative (MP) heuristic modifier tested with
basic AHO with top-window size five (a) the whole picture of each heuristic behaviour;
(b) the behaviour of the first fifty iterations; and (c) the behaviour of the last fifty

iterations

saturation degree can generate feasible solutions, but the frequency remains too small

for the largest degree heuristic.

The exponential heuristic modifier in Figure 3.6 shows an obvious movement for the

static heuristics. At the beginning of the iteration, the number of violated examinations

is decreased gradually while the number of violated examinations for saturation degree

heuristic is rising and after a while remained constant. After half way through the

iteration, the number of violated examinations for the static type of heuristic suddenly

grows very high and fails to reach a feasible solution. On the other hand, the number

of violated examinations for the saturation degree heuristic remains constant and can

still generate a feasible solution even though this is not as often as the custom, additive

and multiplicative heuristic modifiers. From this observation, it is indicated that, for

the yor83 I problem, the longer the run, the greater the chances of generating the

higher number of violated examinations especially, for the static type of heuristic. It

can be noted that the test is run with the exponential modifier type and it is assumed

that increasing the difficulty in greater amounts of difficulty value for this problem

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 90

0

5

10

15

20

25

30

0 99 198 297 396 495 594 693 792 891 990

Iterations

N
o
.

o
f
 v

io
la

te
d

 e
x

a
m

in
a

ti
o
n

s
LD

LE

LWD

SD

0

5

10

15

20

25

0 10 20 30 40

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

0

5

10

15

20

25

30

950 960 970 980 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

(a)

(b) (c)

Figure 3.6: Number of violated examinations at each iteration for yor83 I of the
Toronto benchmark datasets with exponential (EX) heuristic modifier tested with basic
AHO with top-window size five (a) the whole picture of each heuristic behaviour; (b)
the behaviour of the first fifty iterations; and (c) the behaviour of the last fifty iterations

could drastically change the examination ordering and at the same time give a higher

possibility of generating infeasible solutions. On the other hand, the success of the

ordering with saturation degree heuristic and exponential heuristic modifier is due to

the nature of this heuristic that can adapt the difficulty value at each assignment. This

has given advantage for the saturation degree heuristic for better ordering and this

feature is different from the static type of heuristics that always use the same heuristic

value for ordering. General observation and the behaviour of other problem instances of

Toronto benchmark datasets can be viewed in Appendix A.

A two-way analysis of variance (ANOVA) tested on different graph colouring heuristics

and different modifier types used, i.e. custom, additive, multiplicative and exponential,

was performed. From the statistical analysis, F(15,9584) = 19.514 and ρ(0.000) < 0.05.

The test revealed that there are significant differences between the solution quality for

the exponential heuristic modifier and that of the other three modifier types. It has

also been shown that there is a significant difference between the solution quality within

heuristic types, with the largest degree heuristic producing significantly different results

from those obtained with the largest enrolment, largest weighted degree and saturation

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 91

degree heuristics. When comparing the effect on the block and top-window size, different

solution qualities are tested with different sizes of block and top-window from {none, 2,

3, 4, 5, 6, 7, 8, 9}. In general, there is a significant difference of solution quality between

the different sizes of block or top-window where F(8,10215) = 18.098 and ρ(0.000) < 0.05.

Table 3.11 shows the effect between different size of block or top-window on solution

quality. In the table, the solution quality without the shuffling strategy (none) and

with shuffling strategy (All sizes) shows a significant difference. This indicates that the

incorporation of shuffling strategy has helped the approach to obtain better solution

quality. However, the solution quality obtained from the block or top-window sizes 2, 3,

4, 5, and 6 are not significantly different and this shows that shuffling with these sizes

could obtain close solution quality.

Table 3.11: The effect of different size of block/top-window on the solution quality of
the Toronto benchmark datasets (6= indicates significant differences among the sizes)

Size Effect Size

none 6= All sizes
2 6= none, 7, 8, 9
3 6= none, 7, 8, 9
4 6= none, 7, 8, 9
5 6= none, 8, 9
6 6= none, 9
7 6= none, 2, 3, 4
8 6= none, 2, 3, 4, 5
9 6= none, 2, 3, 4, 5, 6

Figures 3.7 to 3.10 show the behaviour of Exam 11 from the ITC2007 benchmark

datasets, tested with the same parameter setting as yor83 I for custom, additive, mul-

tiplicative and exponential heuristic modifiers. From the figures, it is interesting to see

that the behaviour of the saturation degree and largest degree heuristics is about the

same in terms of the number of violated examinations generated during the timetable

construction. Further, the number of infeasible solutions achieved for the largest degree

and saturation degree heuristics are very similar, while the largest enrolment and the

largest weighted degree heuristics are varied in certain ways. Within the custom heuris-

tic modifier (as shown in Figure 3.7), the largest degree and saturation degree have

constant movement throughout the iteration and sometimes generate feasible solutions.

The largest enrolment and the largest weighted degree heuristic also have constant move-

ment. However, the numbers of violated examinations for both heuristics are very high

and far from achieving the feasible solution. This behaviour is about the same as for

yor83 I when the approach utilised the custom type of heuristic modifier. The custom

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 92

heuristic modifier made no changes to the difficulty value due to that only the heuristic

value is used to evaluate the difficulty of an examination.

As the additive heuristic modifier is employed with Exam 11 (see Figure 3.8), the number

of violated examinations is gradually decreased for all heuristics. More feasible solutions

are achieved for all heuristics. However, the number of infeasible solutions for the largest

weighted degree is still high. The same behaviour is observed for Exam 11 when using

the multiplicative heuristic modifier (see Figure 3.9). This time the largest weighted

degree heuristic generates more improvement with a lower number of infeasible solutions.

Moreover, by using this modifier the other heuristics also generate feasible solutions more

often compared with the custom and additive heuristic modifiers.

Using the exponential heuristic modifier shows more improvement in generating feasible

solutions. As illustrated in Figure 3.10, although all heuristics generate a very high

number of violated examinations at the beginning, in a short time they can generate

feasible solutions for the remaining iteration. Figure 3.10 (c) is an illustration of the

behaviour of all heuristics. It can be observed that the largest enrolment has a higher

number of violated examinations at the end of the iteration but still managed to achieve

feasibility. It can also be noted that the conflict density of Exam 11 is 0.0262, illustrating

the difficulty of the problem in terms of examinations in conflict. However, although

Exam 11 is less difficult than yor83 I in terms of conflict density value, it is difficult in

satisfying the room capacity as well as the other time-slots and the room hard constraints

requirement. Behaviour on different problem instances of ITC2007 benchmark datasets

can be viewed in Appendix A.

From the two-way analysis of ANOVA of the ITC2007 benchmark datasets, it has been

shown that there is a significant difference between the solution quality obtained with the

largest degree heuristic compared with the other three heuristics, and also that there is a

significant difference between the solution quality of the multiplicative heuristic modifier

with the other three heuristic modifiers, where F(15,10384) = 409.052 and ρ(0.000) < 0.05.

It is also demonstrated in other test that there is a significant difference in the solution

quality when implemented with different block/top-window sizes with F(8,9391) = 104.930

and ρ(0.000) < 0.05.

The AHO approach for constructing examination timetables draws upon the work by

Burke and Newall (2004). Recent investigation on AHO approach shows a significant

improvement to the solution quality for certain problem instances when compared with

the study by Burke and Newall (2004). In Burke and Newall (2004), two types of

adaptation i.e. hard constraint only and hard and soft constraints were considered for

constructing examination timetables. However, when using the approach condering hard

constraint only, the approach increased the heuristic modifier whenever an examination

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 93

0

10

20

30

40

50

60

70

80

0 99 198 297 396 495 594 693 792 891 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

LD

LE

LWD

SD

0

10

20

30

40

50

60

0 10 20 30 40

Iterations

N
o
.

o
f

v
io

la
te

d
 e

x
a

m
in

a
ti

o
n

s

0

10

20

30

40

50

60

950 960 970 980 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

(a)

(b) (c)

Figure 3.7: Number of violated examinations at each iteration for Exam 11 of the
ITC2007 benchmark datasets with custom (C) heuristic modifier of tested with basic
AHO with top-window size five (a) the whole picture of each heuristic behaviour; (b)
the behaviour of the first fifty iterations; and (c) the behaviour of the last fifty iterations

cannot be assigned to a timetable and the run was terminated whenever a feasible

solution was found. In the second type of adaptation, the soft constrains were optimised

considering examination cost that is less than the maxCost value and this maxCost

value was identified based on the highest cost found for examination assignment during

a dummy run. Moreover, the approach only considered exponent heuristic modifier and

a random value in order to increase the difficulty value. The approach also considered

the ‘top-window’ strategy.

Our approach follows the same concept as in the first approach of Burke and Newall

(2004) where the heuristic modifier is increased whenever an examination cannot be

scheduled into a timetable. However during the timetabling process, our approach con-

sidered the best time-slots assignment in order to reduce the examination cost through-

out the iterations. Our approach considered top-window strategy for the dynamic type

of heuristic and block strategy specialised for the static type of heuristics. Moreover,

different sizes of shuffling strategies were tested in order to find the best size combination

statistically. We tested with different type of heuristic modifiers, i.e. custom, additive,

multiplicative and exponential, in order to differentiate their performance in terms of

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 94

0

10

20

30

40

50

60

70

0 99 198 297 396 495 594 693 792 891 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

LD

LE

LWD

SD

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

0

2

4

6

8

10

12

14

16

949 959 969 979 989 999

Iterations

N
o
.
o
f

v
io

la
te

d
 e

x
a
m

in
a
ti

o
n

s

(a)

(b) (c)

Figure 3.8: Number of violated examinations at each iteration for Exam 11 of the
ITC2007 benchmark datasets with additive (AD) heuristic modifier tested with basic
AHO with top-window size five (a) the whole picture of each heuristic behaviour; (b)
the behaviour of the first fifty iterations; and (c) the behaviour of the last fifty iterations

solution quality and the number of examinations that cannot be scheduled obtained from

the timetabling process. Further, we considered shuffling the best examination ordering

whenever there is no improvement to the solution quality for a certain time and at the

same time combined a number of graph colouring heuristics in the AHO framework.

The results have shown that our approach is comparable with the approach by Burke

and Newall (2004) where for half of the instances of the Toronto benchmark dataset,

we obtained better results. Moreover, Burke and Newall (2004) did not provide results

for some problem instances i.e. pur93 I and rye92. On the other hand, results for

the remaining instances are closed to those of Burke and Newall (2004). However, our

approach takes longer processing time when compared with Burke and Newall (2004).

This is due to that our approach incorporates a strategy to find the least penalty time-

slot that considered all time-slots to be evaluated and the incorporation of the shuffling

strategy also contribute to the increment of the running time.

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 95

0

10

20

30

40

50

60

0 99 198 297 396 495 594 693 792 891 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

LD

LE

LWD

SD

0

10

20

30

40

50

60

0 10 20 30 40

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

0

2

4

6

8

10

12

14

16

18

950 960 970 980 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

(a)

(b) (c)

Figure 3.9: Number of violated examinations at each iteration for Exam 11 of the
ITC2007 benchmark datasets with multiplicative (MP) heuristic modifier tested with
basic AHO with top-window size five (a) the whole picture of each heuristic behaviour;
(b) the behaviour of the first fifty iterations; and (c) the behaviour of the last fifty

iterations

3.4 Conclusion

This chapter investigated the adaptive heuristic ordering that schedules examinations

within a constructive approach drawing on the work of Burke and Newall (2004) that in-

corporated a heuristic modifier to order examinations based on difficulty. The approach

explored different graph colouring heuristics with different combinations of heuristic

modifier and block and top-window size. Further, in the present study the current best

ordering was shuffled using the top-window strategy in order to obtain better ordering

and, by alternating the heuristics in the list, the choice of the difficult examinations

can be varied. A stochastic component was incorporated into the process of assigning a

selected examination to a time-slot. The AHO approaches can produce solutions com-

parable to the other approaches. The difficulty levels generated by combining a graph

coloring heuristic and a heuristic modifier were used in ordering the examinations for the

timetabling process. From this observation, good approximate solutions can be obtained

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 96

0

10

20

30

40

50

60

0 99 198 297 396 495 594 693 792 891 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

LD

LE

LWD

SD

0

10

20

30

40

50

60

0 10 20 30 40

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

0

1

2

3

4

5

6

7

8

9

950 960 970 980 990

Iterations

N
o

.
o

f
v

io
la

te
d

 e
x

a
m

in
a

ti
o

n
s

(a)

(b) (c)

Figure 3.10: Number of violated examinations at each iteration for Exam 11 of the
ITC2007 benchmark datasets with exponential (EX) heuristic modifier tested with basic
AHO with top-window size five (a) the whole picture of each heuristic behaviour; (b)
the behaviour of the first fifty iterations; and (c) the behaviour of the last fifty iterations

by increasing the difficulty in certain ways. As a dynamic graph coloring heuristic, sat-

uration degree has produced the largest number of the best results compared with other

static heuristics applied to the Toronto benchmark datasets, while the ITC2007 bench-

mark datasets performed differently. In considering the appropriate heuristic modifier,

the exponential approach is the best for largest degree and saturation degree for the

Toronto benchmark datasets, while the largest enrolment and the largest weighted de-

gree are varied. The performance of the algorithm on the ITC2007 benchmark datasets

also varies with different types of heuristic modifiers. In comparing the performance of

different heuristics, it is statistically validated that the saturation degree performed bet-

ter than the other graph colouring heuristics in terms of producing good quality feasible

solutions. Furthermore, the statistical analysis showed that different graph colouring

heuristics and different heuristic modifiers could affect the solution quality. The block

and top-window size approaches in this study have varied since the incorporation of a

stochastic element in the AHO approach. The statistical test demonstrated that there

was a significant difference when employing different block or top-window sizes to the

AHO approach. It was shown that, by alternating the graph colouring heuristic, we

Chapter 3. Construction of Examination Timetables Based on Adaptive Heuristics
Ordering 97

could achieve better ordering and at the same time improve the solution quality. Never-

theless, this approach is simple, effective and requires less computational time. Hence,

it has potential for practical use.

In the next chapter, the approach is further enhanced by combining graph colouring

heuristics with a heuristic modifier in a linear form, and the incorporation of a weight

value for each parameter has been shown to assist in changing the examination ordering

based on its difficulty.

Chapter 4

Adaptive Linear Combination of

Heuristic Orderings in

Constructing Examination

Timetables

This chapter presents an adaptive linear combination of heuristic orderings in construct-

ing examination timetables that are based upon the previous work presented in Chapter

3. The aim is to obtain new difficulty values that are extracted from the combination of

graph colouring heuristics with a heuristic modifier using a linear approach. Different

weights are assigned to each parameter and the effectiveness of the proposed approach

is analysed. The effect of weights associated with ordering on the quality of the ex-

amination schedules is explored using different graph colouring heuristics. Further, the

chapter investigates the effectiveness of weight changes that can change automatically

during the examination assignment to suit different problem instances. An explanation

of the adaptive linear combination of heuristic ordering and the strategies of weight

changes is provided in Section 4.1. Section 4.2 describes the implementation and analy-

sis of the results on two benchmark datasets. Finally, conclusions are drawn in Section

4.3.

98

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 99

4.1 An Adaptive Linear Combination of Heuristics Order-

ings

With most of the approaches taken within the overall family of constructive methods,

it is often the case that a single heuristic is used during the initial ordering phase.

In considering the difficulty of an examination, it is useful to take into account other

factors that affect the ordering of examinations. Considering many factors at one time

represents the real world situation. The difficulty of scheduling an examination can

be approximated more reliably if several heuristics lend support to the final ordering

of examinations. Consequently, the current constructive study by Burke et al. (2010e)

combined graph colouring heuristics with weights within a linear approach as to measure

the difficulty of a vertex of weighted graph. The study used the vertex-selection heuristics

to represent the difficulty of a vertex and it was continually updated throughout the

timetabling process.

Studies by Johnson (1990) and Asmuni et al. (2009) have also deployed this strategy

by considering more than one heuristic at one time and it has been shown that it has

an effect on the ordering of the examinations. Based on the ‘difficulty factor ’, Johnson

(1990) used graph colouring heuristics, i.e. the combination of largest enrolment and

largest degree as an ordering strategy for assigning examinations to time slots. Several

variations of relative weight of each criterion were considered in order to produce a num-

ber of different feasible timetables. Further, Asmuni et al. (2009) combined two graph

colouring heuristics within the framework of a fuzzy methodology in order to deal with

uncertainty in ordering the examinations based on its difficulties. Three graph colouring

heuristics were used, i.e. largest degree, largest enrolment and saturation degree with

three combinations of two heuristics. The studies indicated that the solution quality

was superior compared with using only a single heuristic. Encouraged by these studies,

the present investigation on the implementation of the heuristic modifier (described in

Chapter 3) is extended by combining graph colouring heuristics with a heuristic modifier

using a linear approach.

An adaptive linear combination of heuristic orderings in this study is a combination of a

number of normalised graph colouring heuristics with normalised difficulty measures of

the heuristic modifier where the heuristic modifier was introduced by Burke and Newall

(2004). Adaptive linear combination of heuristic orderings is a flexible approach because

different weights can be assigned to different parameters used in the combination. In-

formation from the chosen heuristics and heuristic modifiers are used to identify new

orderings of examination to be scheduled. The new ordering of an examination based

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 100

on an adaptive linear combination of heuristic orderings is represented by the following

equation:

difficulty scorei(t) =
n∑

j=1

wj × heuristicNij + wHM × heurmodi(t) (4.1)

where,

heuristicNij =
heuristicij

maxheuristicj
(4.2)

heurmodNi(t) =
heurmodi(t)

choosemax(heurmod(t))
(4.3)

n∑
j=1

wj + wHM = 1 (4.4)

The difficulty scorei(t) is used as a difficulty measure for examination i at iteration

t based on the information evaluated. In the present study, a zero-one normalisation

method is used to obtain the normalised value between 0 and 1 for for each heuristicNij

and heurmodNi(t) to ensure a simple generalisation characteristic of the problem data.

The heuristicNij in equation (4.2) is the normalised graph colouring heuristic j for

examination i while heurmodNi(t) in equation (4.3) is the normalised heuristic modifier

for examination i at iteration t. The maxheuristicj is the maximum identified value

of heuristic j while the choosemax function is provided to give an alternative to the

heuristic modifier to change dynamically or statically. Given in equation (4.4) the total

weight of heuristic j, wj and heuristic modifier, wHM is equal to 1.

Two types of graph colouring heuristics were used in this suite of experiments. In

order to compare their contribution to solution quality, a series of experiments has been

carried out, firstly, using each single heuristic separately, and subsequently combining

both heuristics with and without a heuristic modifier. The purpose was to compare

the performances of single and multiple heuristics and to identify the most effective

combination of heuristics with the heuristic modifier. It should be noted that, although

not investigated here, more graph colouring heuristics can be used within this approach.

In our previous study, Abdul Rahman et al. (2009) used various modify function for

heuristic modifiers to change the order of examinations based on their difficulty value.

The difficulty values were updated and increased with four strategies: custom, additive,

multiplicative and exponential. The examination ordering was based on only one graph

colouring heuristic during the timetabling. In this study, the same modify function i.e.

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 101

additive and exponential are employed and the linear approach adapts the normalisation

strategy in order to generalise the ordering of difficulty score by combining a number of

graph colouring heuristic with a heuristic modifier. Section 3.1.2 in Chapter 3 describes

the type of modify function of the heuristic modifier.

Once the heuristic modifier and the difficulty of an examination have been updated,

the difficulty value of the heuristic modifier is normalised statically or dynamically

based on the choosemax function. After all the heuristic values and the heuristic

modifier have been updated with the chosen weights, all the values are summed up

to obtain difficulty score. The examinations are then ordered decreasingly based on

difficulty score before an assignment is made. The pseudocode of the implemented

approach in this thesis is described in Algorithm 8.

Algorithm 8 Construction of a timetable based on adaptive linear combination of
heuristic orderings

for t = 1 to number of iterations do
for i = 1 to number of examinations do

for j = i to number of examinations do
Calculate the normalise value of chosen heuristics: choosemax(heurmodNj(t))
, HeuristicNLD,j , HeuristicNSD,j (refer equation 4.2, 4.3 and 4.4) with weight
value
Calculate the difficulty scorej(t) for each examination according to the cho-
sen heuristics using equation 4.1

end for
Sort(difficulty score(t)) in a decreasing order
if i can be scheduled then

Schedule i in the time-slot with the least penalty
In the case of the availability of multiple time-slots with the same penalty,
choose one randomly

else
Increase and modify heuristic modifier of i (refer Subsection 3.1.2)

end if
if Saturation degree then

Update the Saturation degree
end if

end for
Evaluate solution, store if it is the best found so far

end for

Tables 4.1 and 4.2 show an example of how the ordering is achieved using various combi-

nations of heuristics after a certain number of iterations. In this example, it is assumed

that the total number of time-slots is 10. Table 4.1 illustrates the ordering using a single

heuristic. Since we want to use only one heuristic for the ordering, then the weight value

for the single heuristic that is chosen is set to 1.0 and the other heuristics are set as

0. Referring to column 2 of an unordered list in Table 4.1, we assumed all the largest

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 102

degree values. In that case, the maxheuristic for largest degree is equal to 19. The cal-

culation of the difficulty score value for the single ordering of LD in column 5 is based

on equation 4.1 where the difficulty score for e4 = (1.0)19/19 = 1.0, e1 = (1.0)17/19 =

0.89 and so on.

Table 4.1: Examples of ordering by combinations of single heuristics (LD = largest
degree; SD = saturation degree; HM = heuristic modifier; diff score = difficulty score)

Unordered list Ordering by Ordering by Ordering by
single LD single SD single HM

exams LD HM exams diff score exams diff score exams diff score

e1 17 4 e4 1.00 e2 - e2 1.00
e2 14 20 e1 0.89 e4 0.1 e4 0.75
e3 16 10 e10 0.84 e6 0.1 e6 0.70
e4 19 15 e3 0.84 e10 0.1 e8 0.60
e5 9 0 e2 0.74 e3 0.0 e10 0.60
e6 11 14 e6 0.58 e1 0.0 e3 0.50
e7 8 7 e5 0.47 e9 0.0 e7 0.35
e8 8 12 e7 0.42 e5 0.0 e1 0.20
e9 8 0 e9 0.42 e7 0.0 e9 0.00
e10 16 12 e8 0.42 e8 0.0 e5 0.00

The example for SD is shown in column 2. The single ordering for SD is dynamic. After

each assignment of a time-slot, the new examination ordering is obtained. Initially, as

implemented by Abdul Rahman et al. (2009), the saturation degree value is set to 0.

Assumed that e2 is chosen as the first examination to be assigned to a time-slot. Once e2

is assigned to a time-slot, the saturation degree value for the unscheduled examinations

is updated by considering the conflict with other examinations in a previous assignment.

Assumed that e4, e6 and e10 have conflicts with e2, then the saturation degree of these

examinations are increased by one and the difficulty score (using equation 4.1) for e4

= (1.0)1/10 = 0.1, e6 = (1.0)1/10 = 0.1 and e10 = (1.0)1/10 = 0.1 while there rest

are zero due to no conflict with e2. The calculation of the difficulty value for each

unassigned examinations continues until no more examinations are to be assigned to a

time-slot. The ordering by single heuristic modifier (HM) in column 3 in Table 4.1 is

based on the number of times an examination cannot be scheduled during the previous

iterations. It is assumed that the figures in column 3 are the number of times these

examinations cannot be assigned into a timetable during the previous iterations. By

considering equation 4.1, the difficulty score for e2 = (1.0)20/20= 1.0, e4 = (1.0)15/20

= 0.75, e6 = (1.0)14/20 = 0.70 and so on.

Table 4.2 illustrates the example combination of more than one heuristic. It is assumed

that the total number of time-slot to be assigned is 10. The ordering by LDSD is a

dynamic ordering. Considering the weight for LD, wLD = 0.2 and the weight for SD,

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 103

Table 4.2: Examples of ordering by combinations of multiple heuristics (LD = largest
degree; SD = saturation degree; HM = heuristic modifier; diff score = difficulty score)

Ordering by LDSD Ordering by LDHM Ordering by LDSDHM

exams diff score exams diff score exams diff score

e2 - e4 0.800 e2 -
e4 0.280 e6 0.676 e4 0.500
e1 0.200 e10 0.648 e10 0.408
e3 0.100 e3 0.568 e6 0.396
e10 0.100 e8 0.564 e3 0.368
e6 0.100 e7 0.364 e8 0.324
e5 0.000 e1 0.279 e1 0.299
e7 0.080 e2 0.147 e7 0.224
e9 0.000 e5 0.095 e5 0.095
e8 0.000 e9 0.084 e9 0.084

wSD = 0.8. By using equation (4.2), the difficulty score for this combination for e4

= (0.2)(19/19) + (0.8)(0.1) = 0.28, for e1 = (0.2)(17/19) + (0.8)(0.2) = 0.34 and so

on where it is based on the combination of information from the largest degree and

saturation degree heuristics. Furthermore, it is assumed that e2 is the first examination

to be chosen for assignment and it has been assigned to a time-slot and assuming also that

e2 has conflict only with e4 and e1. In this case, the saturation degree values for e4 and e1

are increased by 1. By using equation 4.1 and considering the largest degree value from

Table 4.1, the difficulty score for this combination for e4 = (0.2)(19/19) + (0.8)(1/10)

= 0.280, for e1 = (0.2)(17/19) + (0.8)(1/10) = 0.258, e3 = (0.2)(16/19) + (0.8)(0/10) =

0.168 and so on, where these calculations are based on the combination of information

from the largest degree and saturation degree heuristics. Let us consider the weight for

LD, wLD = 0.2 and the weight for HM, wHM = 0.8 for ordering the examinations using

combination of LDHM. Considering the largest degree and HM values from Table 4.1,

the difficulty score (equation 4.1) for e4 = (0.2)(19/19) + (0.8)(15/20) = 0.800, e6 =

(0.2)(11/19) + (0.8)(14/20) = 0.676 , e10 = (0.2)(16/19) + (0.8)(12/20) = 0.648 etc.

In the next combination of heuristics, let us consider the weight for LD, wLD = 0.2, the

weight for SD, wSD = 0.4 and the weight HM, wH M = 0.4 for ordering the examinations

with combination of LDSDHM. It is assumed that e2 is the first examination to be chosen

for assignment at certain iteration and it has been assigned to a time-slot and has conflict

only with e4 and e1. Considering the information from Table 4.1, the difficulty score for

e = (0.2)(19/19) + (0.4)(1/10) + (0.4)(15/20) = 0.500, e10 = (0.2)(16/19) + (0.4)(0/10)

+ (0.4)((12/20) = 0.408, e6 = (0.2)(11/19) + (0.4)(0/10) + (0.4)(14/20) = 0.396 etc.

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 104

4.1.1 The choosemax Function

The normalised value of the heuristic modifier is determined by the choosemax function

that gives significant modification to the heurmodNi(t):

• Static (S). The heurmodi(t) is normalised with the total number of iterations used

in the algorithm. The larger the heurmodi(t), the more significant the value of

heurmodNi(t).

• Dynamic (D). The heurmodi(t) is normalised with the current maximum num-

ber of heurmod of all examinations that change during the iteration. This value

continues to change until the end of the iteration.

4.1.2 The Weight Assignment

Since this approach required weight assignment for each parameter, this study needs a

strategy to assign the weight value. Each of the heuristics and the heuristic modifiers

is assigned with different weight values. Using this approach, the weight values are

assigned to each heuristic and heuristic modifier with the value from 0 to 1 with a 0.1

increment for each variable. The total of all weight values is equal to 1 (equation (4.4)).

The combination of these weight values is tested for each of the variables in order to

assess the performance of the heuristics and the heuristic modifier when different weight

values are incorporated. It is important to know which heuristic is performing well and

to note the importance of the heuristic modifier in this combination, so that the higher

weight value is given to the appropriate parameters.

4.1.3 Shuffling the Ordering of Examinations

The present study employed the shuffling strategy used in our previous study (Ab-

dul Rahman et al., 2009) in order to shuffle the examinations in the ordering, where the

top-window (TW) strategy is adapted to choose examinations. These are ordered based

on the difficulty score and from a fixed size of top-window, an examination is chosen

randomly. The insight of this strategy is to give more possibility to an examination to

be chosen from a group of difficult examinations. An appropriate examination to be

chosen might appear in a certain size of grouped examinations that has been ordered

based on the difficulty score. The initial test has shown that the incorporation of the

shuffling strategy could assist in finding a better examinations ordering. This study

uses the top-window size from two to nine, as suggested by Abdul Rahman et al. (2009).

Since there is also a possibility that examinations have the same value of difficulty score,

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 105

another strategy introduces a random preference (REQ) in order to choose different

examinations when several sequences of examinations have equal scores.

4.1.4 Strategies of Weight Changes

This section introduces three different strategies to change the weights of each heuristic

and heuristic modifier during the timetable construction. As reported in Chapter 3,

the heuristics are changed during the timetable construction by alternating the graph

colouring heuristics in the list. The alternation of graph colouring heuristics is based

on the improvement to the solution quality. Due to the different number of violated

examinations detected during examination assignment when using different heuristics, it

is advantageous to change dynamically the examination weights during the examinations

assignment. In this case, the number of violated examinations could be varied and

different examination ordering could be obtained when a different heuristic modifier is

incorporated. To simplify implementation, the weight combinations are divided into four

main groups related to the contribution of current heuristics, namely, highLD, highSD,

highHM and balance. The weight combinations of each group are illustrated in Table

4.3 and there are determined adhocly. The three strategies introduced in this section

adaptively change the weight values for each heuristic and are discussed in the following

subsection. It can be noted that these strategies are employed only with the combination

of LDSDHM tested with the dynamic heuristic modifier and top-window approach.

Table 4.3: The grouping of different weight combinations for LDSDHM

Group Weight Combination

highLD (0.8, 0.1, 0.1), (0.7, 0.2, 0.1), (0.7, 0.1, 0.2)
highSD (0.1, 0.8, 0.1), (0.1, 0.7, 0.2), (0.2, 0.7, 0.1)
highHM (0.1, 0.1, 0.8), (0.1, 0.2, 0.7), (0.2, 0.1, 0.7)
balance (0.3, 0.3, 0.4), (0.4, 0.3, 0.3), (0.3, 0.4, 0.3)

4.1.4.1 Dynamic Weights

This strategy changes the weight combinations based on the cost of each examination

assignment. If the assignment of an examination incurred some penalty cost, the weight

combination is changed in order to find a lower penalty cost than the current examina-

tion. Thus, the new examination ordering based on the chosen weight combination is

obtained. A new difficult examination is chosen and evaluated whether or not it should

be accepted for the time-slot assignment based on penalty cost. The implemented strat-

egy is described in Algorithm 9 below. Let G be the set of heuristic groups. During the

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 106

iteration, the process is started by choosing the weight combination randomly within

HighSD. The weight from the HighSD is chosen because, as explained in Chapter 3,

the saturation degree could give better ordering compared with other graph colouring

heuristics. It can be observed that the weight combination from the HighSD group still

utilised the normalised value of the largest degree heuristic and heuristic modifier but

with a smaller contribution.

The penalty cost is calculated for an examination found to have the best time-slot. If

the best found time-slot incurred some penalty cost, then the weight combination is

changed by choosing randomly from the next successive heuristic group in the list in G.

At this stage, only the difficulty scorei(t) of examinations within the top-window size is

calculated and ordering is performed only for examinations within the top-window size in

order to reduce the running time. After calculating the normalised value of examination

i and reordering of examinations, the examination with the highest difficulty score

is taken for further analysis. The process continues until zero penalty cost is found.

Once all G has been visited and still no zero penalty cost is found, then the size of

the top-window is doubled and the weight changes are repeated once more within the

heuristic group in G. If still no zero penalty cost is found, then the examination with the

lowest penalty is chosen and is assigned to the best time-slot. The time-slot assignment

is implemented as described in Chapter 3 where the least penalty time-slot is chosen for

the time-slot assignment. If more than one least penalty time-slot is found then they

are chosen randomly.

4.1.4.2 Linear Weights

The strategy is to automatically change the weight value linearly as the number of

iterations is increased. This strategy involves only the weight changes of SD and HM.

As the process starts, the weight of SD is set to the highest value, while the weight of

HM is set to the lowest. On the other hand, the weight value of LD remains constant

throughout the iterations. The aim is to change only the weight of SD and HM as both

heuristics make significant changes to the examinations ordering. The reason for setting

the weight of HM to the lowest is because, at the beginning of the iteration, the HM

value is zero and no examinations are considered cannot be scheduled. The HM value

contributes no significant changes to examination ordering at that time. As the number

of iterations increased, the HM value of some examinations might increase due to the

possibility of cannot be scheduled during the iterations. Moreover, our previous study

showed that dynamic ordering of saturation degree can contribute to good examination

ordering and it is the reason why the weight of SD is set as the highest weight at the

start of iterations. As shown in Algorithm 10, at each successive k ∗ counter iterations,

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 107

Algorithm 9 Dynamic change of weights during the timetable construction

G = {HighLD,HighSD,HighHM,Balance}
for t = 1 to number of iterations do

Choose weight combination randomly from the group of HighSD
for i = 1 to number of examinations do

for j = i to number of examinations do
Calculate the normalise value of chosen heuristics: choosemax(heurmodNj(t)),
HeuristicNLD,j , HeuristicNSD,j with weight value
Calculate the difficulty scorej(t) for each examination according to the cho-
sen heuristics using equation 4.1

end for
Sort(difficulty scorei(t)) in decreasing order
Calculate penalty-cost for assigning i to the best time-slot
if penalty-cost of i > 0 then

Change to next group of weight and choose weight combinations randomly
Calculate the normalise value for examinations within top-window size and
order examinations
if All G has been applied and penalty cost of i > 0 then

Increase the top-window size * 2
Calculate the normalise value for examinations within top-window size and
order examinations

else
Choose the lowest penalty-cost and assigned i to lowest penalty time-slot

end if
else

Assign i to the best time-slot
end if
if i cannot be scheduled then

Increase and modify heuristic modifier of i (refer Subsection 3.1.2)
end if
Update the Saturation degree

end for
Evaluate solution, store if it is the best found so far

end for

the weight values of SD, wSD and HM, wHM are simultaneously changed. The weight

value of SD, wSD is decreased by 0.05 while the weight value of HM, wHM is increased

by 0.05. Timetables are constructed and evaluated for k time before proceeding to the

next weight changes. The process continues until the weight of SD, wSD reaches the

minimum value and the weight of HM, wHM reaches the maximum value.

4.1.4.3 Reinforcement Learning

Reinforcement learning is a learning mechanism that interacts with the behaviour of

the environment by giving negative and positive rewards based on the performance

of an environment and it is achieved by training a learning agent (Sutton and Barto,

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 108

Algorithm 10 Linear change of weights during the timetable construction

Set the weight combination wLD = 0.1, wSD = 0.85 and wHM = 0.05
Set counter = 1
if Linear increment of wHM then

Set k = (numberofiterations/m) where, m = the number of weight changes that
occurred during the iteration in order to achieve the highest value of wHM

end if
for t = 1 to number of iterations do

//Linear weight changes
if t = k ∗ counter then

change the weight value with 0.05 decrement to wSD and 0.05 increment to wHM

Increase counter by one
end if
for i = 1 to number of examinations do

for j = i to number of examinations do
Calculate the normalise value of chosen heuristics: choosemax(heurmodNj(t)),
HeuristicNLD,j , HeuristicNSD,j with weight value
Calculate the difficulty scorej(t) for each examination according to the cho-
sen heuristics using equation 4.1

end for
Sort(difficulty scorei(t)) in a decreasing order
if i can be scheduled then

Schedule i in the time-slot with the least penalty
In the case of the availability of multiple time-slots with the same penalty,
choose one randomly

else
Increase and modify heuristic modifier of i (refer Subsection 3.1.2)

end if
Update the Saturation degree

end for
Evaluate solution, store if it is the best found so far

end for

1998). The reinforcement learning method involved three main concepts namely the

environment, the actions and the reward. The environment allows the learning agent

to behave at a defined time, the actions indicates the desirable state of an environment

and the reward gives feedback of agent’s action in the environment. The approach was

successfully implemented in scheduling problems such as nurse rostering (Burke et al.,

2003d), parallel machines job shop scheduling (Martinez et al., 2010), wake-up schedul-

ing (Mihaylov et al., 2010), resource constrained project scheduling (Gersmann and

Hammer, 2003), examination timetabling (Özcan et al., 2010) and course timetabling

(Obit et al., 2009). Burke et al. (2003d)) used a hyper-heuristic method incorporated

with tabu search as high level heuristic and a number of low level heuristic that op-

pose each other based on the rules motivated by reinforcement learning principal, while

study by Martinez et al. (2010) introduced value iteration strategy and policy iteration

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 109

strategy as their reinforcement learning method implemented on the parallel machines

job shop scheduling problem. In a wake-up scheduling problem, Mihaylov et al. (2010)

presented a decentralized reinforcement learning algorithm. Meanwhile, Gersmann and

Hammer (2003) implemented a reinforcement learning approach to resource constrained

project scheduling using rout-algorithm combined with support vector machine. Study

by Özcan et al. (2010) chose the low-level heuristics based on a reward and punishment

scheme known as ‘utility value’ where this learning mechanism employed an adaptation

scheme that was based on the move acceptance by a remembrance mechanism i.e. by

remembering or forgetting of the utility value. The forgetting mechanism creates the

upper and lower bounds of the utility value. This strategy was combined with the great

deluge algorithm as a move acceptance criterion. In a course timetabling problem, Obit

et al. (2009) employed a reinforcement learning method with a non-linear great deluge

acceptance criteria as a strategy to choose low level heuristics within the hyper-heuristic

framework. For further details on the application of reinforcement learning within the

hyper-heuristic approach, see Section 2.2.5.

In this study, the strategy uses a reinforcement learning mechanism to punish and reward

each weight combination by giving them scores. As illustrated in Algorithm 11, the

punishment is based on the performance of each weight combination. If the chosen

weight combination can improve the current best solution, then a reward is given by

increasing the score by one. On the other hand, if no improvement occurs then a penalty

is given to the chosen weight combination by decreasing the score by one. At first, all

the score values for each weight combination are initialised as 5 and are decreased or

increased at each iteration until they reach the ceiling level. The score value of each

weight combination never exceed the value of 10 and the value remains constant even

though more improvement occurred in successive iterations. However, the score value of

weight combination never less than 0 if no improvement occurs in successive iterations.

The next weight combination to be used in the next iteration is chosen based on the

best weight combination that has the best score value. In the event that there is more

than one best score, then the best score is chosen randomly.

4.2 Experiments

In the experiment described, two benchmark problems were tested. Due to the stochastic

nature of the proposed approaches, fifty different timetables were constructed for each

dataset from the Toronto and ITC2007. Various combinations of heuristics and heuristic

modifiers were considered in order to determine and compare the performance of the

proposed approaches. Different weights were also assigned to each heuristic and heuristic

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 110

Algorithm 11 Changing the weight combination based on reinforcement learning dur-
ing the timetable construction

G = {All weight combinations}
for t = 1 to number of iterations do

Choose weight combination randomly
Set all scoreWeightCombination = 5
for i = 1 to number of examinations do

for j = i to number of examinations do
Calculate the normalise value of chosen heuristics: choosemax(heurmodNj(t)),
HeuristicNLD,j , HeuristicNSD,j with weight value
Calculate the difficulty scorej(t) for each examination according to the cho-
sen heuristics using equation 4.1

end for
Sort(difficulty score(t)) in a decreasing order
if i can be scheduled then

Schedule i in the time-slot with the least penalty
In the case of the availability of multiple time-slots with the same penalty,
choose one randomly

else
Increase and modify heuristic modifier of i (refer Subsection 3.1.2)

end if
Update the Saturation degree

end for
Evaluate solution of current cost
if current cost < best cost then

store the best found so far
scoreWeightCombination is increased by 1
if scoreWeightCombination > 10 then
scoreWeightCombination = 10

end if
else
scoreWeightCombination is decreased by 1
if scoreWeightCombination < 0 then
scoreWeightCombination = 0

end if
end if
Choose weight combination that has highest scoreWeightCombination

If more than one has equal highest score then choose randomly
end for

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 111

modifier with the total weight equal to one for each combination. The stopping condition

for this approach was set to 2000 iterations for the Toronto benchmark datasets, while

the experiment for ITC2007 was based on the running time given in the competition.

The best combination of heuristics and heuristic modifiers is identified based on the best

solution obtained. The best penalty value obtained from fifty runs is highlighted in bold

for each problem instance. The proposed approach is referred to as the Adaptive Linear

Combination (ALC) from this point onwards.

4.2.1 Results of Experiments

4.2.1.1 Toronto

The results of the experiments for different combinations of graph colouring heuristics are

provided in Table 4.4. The results show the best penalty value obtained from fifty runs

for different combinations of heuristics. The comparison shows that the combination

of LDSDHM performed the best with ten out of thirteen datasets and one equal with

SDHM, while SDHM obtained best results for two datasets. This circumstance shows

that by considering information from more than one parameter simultaneously, the new

difficulty measure can be obtained and at the same time a new ordering of examinations

can be generated. It can be seen that the single SD performed well in comparison with

the single LD and this may be because of the dynamic nature of this heuristic. The single

HM also performed well and obtained the best results for six out of thirteen datasets

when compared with the other single heuristics.

Table 4.5 illustrates the combination of weights and algorithmic approaches for the

best results obtained from the experiments. It shows that most of the best results

are obtained using the dynamic heuristic modifier. The value of the dynamic heuristic

modifier is updated by finding the highest value of the heuristic modifier each time the

assignment process is completed. Taking the shuffling strategy into account, best results

are obtained for ten out of thirteen datasets using the top-window strategy, while random

preference works more effectively with three out of thirteen datasets. As observed in the

table, the weight for HM is the highest for six of the datasets, while four of the datasets

obtained the best result with high weight value for SD and the other three datasets

performed well with LD as the highest value of weight.

The investigation into different strategies of weight changes is depicted in Table 4.6. As

can be seen, the dynamic and linear weight approaches performed almost the same with

six and seven best quality solutions respectively on the Toronto benchmark datasets.

On the other hand, the reinforcement learning approach obtained no best result for this

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 112

Table 4.4: Comparison of single and combination of heuristics (LD = largest degree;
SD = saturation degree; HM = heuristic modifier)

Problem LD SD HM LDSD LDHM SDHM LDSDHM Best

car91 5.32 5.26 5.43 5.22 5.25 5.18 5.12 5.12
t(s) 468 387 888 357 642 389 368

car92 4.61 4.58 4.63 4.55 4.49 4.42 4.41 4.41
t(s) 259 22 487 208 365 222 215

ears83 I 38.41 39.83 39.52 38.62 38.47 39.06 36.91 36.91
t(s) 27 24 25 24 29 24 25

hec92 I 11.7 11.68 11.72 11.52 11.52 11.42 11.31 11.31
t(s) 4 4 3 4 4 5 4

kfu93 15.24 14.97 15.53 14.97 15.08 14.75 14.93 14.75
t(s) 106 234 422 127 128 236 137

lse91 12.23 11.98 11.79 11.55 11.64 11.51 11.41 11.41
t(s) 72 97 260 75 77 98 80

pur93 I 5.93 6.05 6.42 5.93 5.95 5.92 5.87 5.87
t(s) 229 361 1586 290 821 877 920

rye92 10.25 9.89 9.76 9.95 9.65 9.61 9.63 9.61
t(s) 131 202 521 172 136 194 156

sta83 I 158.63 158.08 157.75 157.84 157.97 157.77 157.52 157.52
t(s) 10 14 11 9 10 14 11

tre92 3.61 3.67 3.67 3.6 3.59 3.54 3.54 3.54
t(s) 358 292 850 283 416 295 302

uta92 I 27.14 26.92 26.79 26.79 26.55 26.27 26.25 26.25
t(s) 12 20 24 13 13 19 14

ute92 9.25 8.94 8.85 8.94 8.76 8.81 8.76 8.76
t(s) 45 43 55 42 53 43 41

yor83 I 41.88 40.96 41.48 40.73 41.1 40.08 39.67 39.67
t(s) 22 25 26 22 26 24 22

problem. This is may be due to that the learning mechanism in this approach may

require more input or information in learning the behavior of the implemented problem.

The success of the linear weight approach may be due to the heuristic modifier that is

adapted from time to time. As the number of iterations increased at each successive

k ∗ counter iterations, the weight value of the heuristic modifier is increased with 0.05

increment. This is due to the number of violated examinations that may occasionally in-

crease and have a significant effect when the weight of the heuristic modifier is gradually

increased. In these circumstances, increasing the weight value of the heuristic modifier

can significantly change the examination ordering, the weight value of the saturation

degree heuristic also decreases synchronously. On the other hand, the dynamic weight

approach also appears to work well. The incorporation of assigning examination cost

helps to change the weight combination value. However, this approach increased the

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 113

Table 4.5: The combination of weights and algorithmic approaches for the Toronto
benchmark datasets (LD = largest degree; SD = saturation degree; HM = heuristic
modifier; St = static; Dy = dynamic; REQ = random preference; TW = top-window;

AD = additive; EX = exponential; w = weight)

Problem Best wLD wSD wHM

car92 I 4.41 {LDSDHM, Dy, TW(4), AD} 0.2 0.3 0.5
car91 I 5.12 {LDSDHM, Dy, REQ, EX} 0.1 0.2 0.7
ears83 I 36.91 {LDSDHM, St, TW(4), AD} 0.3 0.1 0.6
hec92 I 11.31 {LDSDHM, Dy, TW(3), AD} 0.2 0.5 0.3
kfu93 14.75 {SDHM, Dy, TW(4), EX} 0.0 0.1 0.9
lse91 11.41 {LDSDHM, Dy, REQ, EX} 0.1 0.5 0.4
pur93 I 5.87 {LDSDHM, St, TW(4), AD} 0.2 0.6 0.2
rye92 9.61 {SDHM, Dy, REQ, EX} 0.0 0.1 0.9
sta83 I 157.52 {LDSDHM, Dy, REQ, EX} 0.5 0.4 0.1
tre92 8.76 {LDSDHM, Dy, REQ, EX} 0.8 0.1 0.1
uta92 I 3.54 {LDSDHM, Dy, REQ, EX} 0.2 0.2 0.6
ute92 26.25 {LDSDHM, Dy, REQ, EX} 0.8 0.1 0.1
yor83 39.67 {LDSDHM, Dy, REQ, EX} 0.1 0.8 0.1

running time as on each occasion no suitable weight combination is found, a new order-

ing is performed and a new calculation cost of assigning examinations within top-window

size to time-slot is obtained.

Tables 4.7, 4.8 and 4.9 report the comparison of results for the thirteen problem instances

of the Toronto benchmark for three different groups of approaches i.e. constructive

heuristic, hyper-heuristic and other improvement. The comparison with constructive

approaches in Table 4.7 shows that the ALC approach obtained no best result. However,

some results, such as hec92 I, sta83 I, ute92 and yor83 I, are very close to the best

for constructive approaches and were ranked as the second best. Further, based on

the overall average rank, the ALC approach is the second best approach after that

proposed by Burke et al. (2010e). Comparison with other hyper-heuristic approaches

shows that the ALC approach obtained two best results out of thirteen problem instances

and is placed as the third best approach. It can be observed that some of the hyper-

heuristic approaches shown in Table 4.8 have incorporated a two-phase algorithm, i.e.

constructive and improvement. The ALC approach is purely a constructive algorithm

that constructs the examination timetables using heuristic ordering. On the other hand,

the comparison with other improvement approaches indicates that most of the results

from the ALC approach are far from the best results. Nevertheless, some are better

than other improvement approaches such as car92 and sta83 I.

In order to identify the difference in solution quality when using various top-window sizes

and different groups of weight combination, a two-way analysis of variance is performed.

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 114

Table 4.6: Comparison of ALC with different strategies of weight changes for the
Toronto benchmark datasets (ALC = adaptive linear combination approach, the bold

entries indicate the best results for given strategies)

Best of Dynamic Linear Reinforcement
Problem ALC weights weights learning

car91 5.12 5.33 5.13 5.22
t(s) 368 538 273 330

car92 4.41 4.43 4.60 4.61
t(s) 215 367 199 176

ear83 I 36.91 39.02 39.71 39.76
t(s) 25 41 13 16

hec92 I 11.31 11.50 11.91 12.00
t(s) 4 11 2 2

kfu93 14.75 15.70 15.61 15.90
t(s) 236 140 78 89

lse91 11.41 12.19 11.78 12.34
t(s) 80 96 44 48

pur93 I 5.87 6.27 6.29 6.51
t(s) 120 1824 1264 1145

rye93 9.61 10.40 10.55 10.51
t(s) 194 140 80 91

sta83 I 157.52 158.50 158.35 158.93
t(s) 11 15 9 6

tre92 8.76 9.11 9.03 9.11
t(s) 41 82 42 29

uta92 I 3.54 3.63 3.6 3.62
t(s) 302 445 210 280

ute92 26.25 27.48 28.35 27.91
t(s) 14 13 7 8

yor83 I 39.67 42.83 42.77 43.55
t(s) 22 32 11 15

From the statistical analysis, F(31,58156) = 18.750 and ρ(0.000) < 0.05, it is clear that

there are significant differences to solution quality when different top-window sizes and

groups of weight combination are employed. Table 4.10 illustrates the effect of differ-

ent top-window sizes. In most cases different top-window sizes performed significantly

differently to one another. However, the top-window size 2 is not significantly different

from size 3, while size 3 is not significantly different from sizes 2 and 4.

As stated in Section 4.1.4, the weight combinations are divided into four different groups

based on the heuristic contribution. The initial test of the weight combination reveals

that there is only little difference when using different types of weight combination. For

instance, the weight combination of (0.1, 0.1, 0.8) is not very different from the weight

combination of (0.2, 0.1, 0.7) in terms of the performance of solution quality since these

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 115

T
a
b
l
e
4
.7
:

C
om

p
ar

is
on

of
A

L
C

w
it

h
d

iff
er

en
t

co
n

st
ru

ct
iv

e
a
p

p
ro

a
ch

es
fo

r
th

e
T

o
ro

n
to

b
en

ch
m

a
rk

d
a
ta

se
ts

(A
L

C
=

a
d

a
p

ti
ve

li
n

ea
r

co
m

b
in

a
ti

o
n

ap
p

ro
ac

h
,

(
)

=
ra

n
k

va
lu

e,
A

v
.

R
a
n

k
=

av
er

a
g
e

ra
n

k
)

P
ro

b
le

m
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
A

L
C

ca
r9

1
7
.1

(7
)

4
.9

7
(1

)
5.

45
(6

)
5.

29
(5

)
5.

03
(2

)
5.

18
(4

)
5.

12
(3

)
ca

r9
2

6
.2

(7
)

4.
32

(2
)

4.
5

(5
)

4.
54

(6
)

4
.2

2
(1

)
4.

44
(4

)
4.

41
(3

)
ea

rs
8
3

I
36

.4
(4

)
36

.1
6

(3
)

36
.1

5
(2

)
37

.0
2

(6
)

3
6
.0

6
(1

)
39

.5
5

(7
)

36
.9

1
(5

)
h

ec
9
2

I
1
0
.8

(1
)

11
.6

1
(4

)
11

.3
8

(3
)

11
.7

8
(6

)
11

.7
1

(5
)

12
.2

(7
)

11
.3

1
(2

)
k
fu

9
3

1
4

(1
)

15
.0

2
(4

)
14

.7
4

(2
)

15
.8

(6
)

16
.0

2
(7

)
15

.4
6

(5
)

14
.7

5
(3

)
ls

e9
1

1
0
.5

(1
)

10
.9

6
(3

)
10

.8
5

(2
)

12
.0

9
(7

)
11

.1
5

(4
)

11
.8

3
(6

)
11

.4
1

(5
)

p
u

r9
3

I
3
.9

(1
)

-
(5

.5
)

-
(5

.5
)

-
(5

.5
)

-
(5

.5
)

4.
93

(2
)

5.
87

(3
)

ry
e9

2
7
.3

(1
)

-
(6

.5
)

-
(6

.5
)

10
.3

8
(5

)
9.

42
(2

)
10

.0
4

(4
)

9.
61

(3
)

st
a
83

I
1
61

.5
(6

)
16

1.
9

(7
)

1
5
7
.2

1
(1

)
16

0.
4

(4
)

15
8.

86
(3

)
16

0.
5

(5
)

15
7.

52
(2

)
tr

e9
2

9
.6

(7
)

8.
38

(2
)

8.
79

(6
)

8.
67

(3
)

8
.3

7
(1

)
8.

71
(4

)
8.

76
(5

)
u

ta
9
2

I
3
.5

(4
)

3
.3

6
(1

)
3.

55
(6

)
3.

57
(7

)
3.

37
(2

)
3.

49
(3

)
3.

54
(5

)
u

te
92

2
5
.8

(1
)

27
.4

1
(4

)
26

.6
8

(3
)

28
.0

7
(6

)
27

.9
9

(5
)

29
.4

4
(7

)
26

.2
5

(2
)

yo
r8

3
I

41
.7

(5
)

40
.7

7
(4

)
42

.2
(7

)
39

.8
(3

)
3
9
.5

3
(1

)
42

.1
9

(6
)

39
.6

7
(2

)

A
v
.

R
a
n

k
3.

5
4

(3
)

3.
62

(4
)

4.
23

(5
)

5.
35

(7
)

3
.0

4
(1

)
4.

92
(6

)
3.

31
(2

)

[1
]-

C
ar

te
r

an
d

L
ap

o
rt

e
(1

99
6)

;
[2

]-
B

u
rk

e
an

d
N

ew
al

l
(2

00
4)

;
[3

]-
Q

u
an

d
B

u
rk

e
(2

00
7)

;
[4

]-
A

sm
u

n
i

et
al

.
(2

00
9)

;
[5

]-
B

u
rk

e
et

al
.

(2
01

0e
);

[6
]-

P
ai

s
an

d
B

u
rk

e
(2

0
10

)

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 116

T
a
b
l
e
4
.8
:

C
om

p
ar

is
on

of
A

L
C

w
it

h
d

iff
er

en
t

h
y
p

er
-h

eu
ri

st
ic

s
a
p

p
ro

a
ch

es
fo

r
th

e
T

o
ro

n
to

b
en

ch
m

a
rk

d
a
ta

se
ts

(A
L

C
=

a
d

a
p

ti
v
e

li
n

ea
r

co
m

b
in

a
ti

o
n

ap
p

ro
ac

h
,

(
)

=
ra

n
k

va
lu

e,
A

v
.

R
a
n

k
=

av
er

a
g
e

ra
n

k
)

P
ro

b
le

m
[7

]
[8

]
[9

]
[1

0]
[1

1]
[1

2]
A

L
C

ca
r9

1
5
.3

7
(7

)
5.

36
(6

)
4
.9

7
(1

)
5.

16
(3

)
5.

17
(4

)
5.

19
(5

)
5.

12
(2

)
ca

r9
2

4
.6

7
(7

)
4.

53
(6

)
4.

28
(2

)
4
.1

6
(1

)
4.

32
(4

)
4.

31
(3

)
4.

41
(5

)
ea

rs
83

I
4
0.

18
(7

)
37

.9
2

(6
)

36
.8

6
(4

)
35

.8
6

(3
)

3
5
.7

(1
)

35
.7

9
(2

)
36

.9
1

(5
)

h
ec

92
I

1
1.

86
(4

)
12

.2
5

(7
)

11
.8

5
(3

)
11

.9
4

(6
)

11
.9

3
(5

)
1
1
.1

9
(1

)
11

.3
1

(2
)

k
fu

93
1
5.

84
(7

)
15

.2
(5

)
14

.6
2

(2
)

14
.7

9
(4

)
15

.3
(6

)
1
4
.5

1
(1

)
14

.7
5

(3
)

ls
e9

1
-

(7
)

11
.3

3
(4

)
11

.1
4

(2
)

11
.1

5
(3

)
11

.4
5

(6
)

1
0
.9

2
(1

)
11

.4
1

(5
)

p
u

r9
3

I
-

(5
)

-
(5

)
4
.7

3
(1

)
-

(5
)

-
(5

)
-

(5
)

5.
87

(2
)

ry
e9

2
-

(5
)

-
(5

)
9.

65
(2

)
-

(5
)

-
(5

)
-

(5
)

9
.6

1
(1

)
st

a8
3

I
15

7.
38

(2
)

15
8.

19
(4

)
15

8.
33

(5
)

15
9

(6
)

15
9.

05
(7

)
1
5
7
.1

8
(1

)
15

7.
52

(3
)

tr
e9

2
8
.3

9
(1

)
8.

92
(7

)
8.

48
(2

)
8.

6
(4

)
8.

68
(5

)
8.

49
(3

)
8.

76
(6

)
u

ta
92

I
-

(7
)

3.
88

(6
)

3.
4

(2
)

3.
42

(3
)

3
.3

(1
)

3.
44

(4
)

3.
54

(5
)

u
te

9
2

2
7.

6
(3

)
28

.0
1

(5
)

28
.8

8
(7

)
28

.3
(6

)
28

(4
)

26
.7

(2
)

2
6
.2

5
(1

)
yo

r8
3

I
-

(7
)

41
.3

7
(6

)
40

.7
4

(4
)

40
.2

4
(3

)
40

.7
9

(5
)

3
9
.4

7
(1

)
39

.6
7

(2
)

A
v
.

R
an

k
5
.3

1
(6

)
5.

54
(7

)
2.

85
(2

)
4.

00
(4

)
4.

46
(5

)
2
.6

2
(1

)
3.

23
(3

)

[7
]-

K
en

d
a
ll

a
n

d
M

o
h

d
H

u
ss

in
(2

00
5a

);
[8

]-
B

u
rk

e
et

al
.

(2
00

7)
;

[9
]-

P
il

la
y

an
d

B
an

zh
af

(2
00

9)
;

[1
0]

-Q
u

an
d

B
u

rk
e

(2
00

9)
;

[1
1]

-Q
u

et
al

.
(2

00
9a

);
[1

2]
-B

u
rk

e
et

a
l.

(2
01

0f
)

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 117

T
a
b
l
e
4
.9
:

C
om

p
ar

is
on

of
A

L
C

w
it

h
d

iff
er

en
t

im
p

ro
ve

m
en

t
a
p

p
ro

a
ch

es
fo

r
th

e
T

o
ro

n
to

b
en

ch
m

a
rk

d
a
ta

se
ts

(A
L

C
=

a
d

a
p

ti
ve

li
n

ea
r

co
m

b
in

a
ti

o
n

ap
p

ro
ac

h
,

(
)

=
ra

n
k

va
lu

e,
A

v
.

R
a
n

k
=

av
er

a
g
e

ra
n

k
)

P
ro

b
le

m
[1

3]
[1

4]
[1

5]
[1

6]
[1

7]
[1

8]
[1

9]
A

L
C

ca
r9

1
5
.1

(4
)

4
.5

(1
)

5.
4

(7
)

5.
2

(6
)

6.
6

(8
)

4.
6

(2
)

4.
8

(3
)

5.
12

(5
)

ca
r9

2
4.

3
(5

)
3.

93
(2

)
4.

2
(4

)
4.

4
(6

)
6

(8
)

3
.9

(1
)

4.
1

(3
)

4.
41

(7
)

ea
rs

8
3

I
35

.1
(7

)
33

.7
1

(3
)

34
.2

(4
)

34
.9

(5
)

2
9
.3

(1
)

32
.8

(2
)

34
.9

2
(6

)
36

.9
1

(8
)

h
ec

92
I

1
0.

6
(5

)
10

.8
3

(7
)

10
.4

(4
)

10
.3

(3
)

9
.2

(1
)

10
(2

)
10

.7
3

(6
)

11
.3

1
(8

)
k
fu

9
3

13
.5

(3
)

13
.8

2
(6

)
14

.3
(7

)
13

.5
(3

)
13

.8
(5

)
1
3

(1
)

13
(1

)
14

.7
5

(8
)

ls
e9

1
10

.5
(6

)
10

.3
5

(5
)

11
.3

(7
)

10
.2

(4
)

9
.6

(1
)

10
(2

)
10

.0
1

(3
)

11
.4

1
(8

)
p

u
r9

3
I

-
(6

)
-

(6
)

-
(6

)
-

(6
)

3
.7

(1
)

-
(6

)
4.

73
(2

)
5.

87
(3

)
ry

e9
2

8
.4

(2
)

8.
53

(3
)

8.
8

(5
)

8.
7

(4
)

6
.8

(1
)

-
(8

)
9.

65
(7

)
9.

61
(6

)
st

a8
3

I
15

7.
3

(3
)

15
8.

35
(7

)
15

7
(2

)
15

9.
2

(8
)

15
8.

2
(5

)
1
5
6
.9

(1
)

15
8.

26
(6

)
15

7.
52

(4
)

tr
e9

2
8
.4

(4
)

7.
92

(3
)

8.
6

(6
)

8.
4

(4
)

9.
4

(8
)

7.
9

(2
)

7
.8

8
(1

)
8.

76
(7

)
u

ta
9
2

I
3
.5

(5
)

3
.1

4
(1

)
3.

2
(2

)
3.

6
(8

)
3.

5
(5

)
3.

2
(2

)
3.

2
(2

)
3.

54
(7

)
u

te
92

2
5.

1
(3

)
25

.3
9

(5
)

25
.3

(4
)

26
(6

)
2
4
.4

(1
)

24
.8

(2
)

26
.1

1
(7

)
26

.2
5

(8
)

yo
r8

3
I

37
.4

(7
)

36
.5

3
(6

)
36

.4
(5

)
36

.2
(2

)
36

.2
(2

)
3
4
.9

(1
)

36
.2

2
(4

)
39

.6
7

(8
)

A
v
.

R
an

k
4.

62
(5

)
4.

23
(4

)
4.

85
(6

)
5.

00
(7

)
3.

62
(2

)
2
.4

6
(1

)
3.

92
(3

)
6.

69
(8

)

[1
3]

-M
er

lo
t

et
al

.
(2

00
3)

;
[1

4
]-

Y
a
n

g
a
n

d
P

et
ro

v
ic

(2
00

4)
;

[1
5]

-C
ôt

é
et

al
.
(2

00
5)

;
[1

6]
-A

b
d

u
ll

ah
et

al
.
(2

00
7)

;
[1

7]
-C

ar
am

ia
et

al
.
(2

00
8)

;
[1

8]
-B

u
rk

e
et

al
.

(2
0
10

a)
;

[1
9
]-

T
u

ra
b
ie

h
a
n

d
A

b
d

u
ll

ah
(2

01
1)

.

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 118

Table 4.10: The effect of different size of top-window for LDSDHM for the Toronto
benchmark datasets (6= = inequality; ' = approximately equal)

Size Effect Size

2 6= (4, 5, 6, 7, 8 and 9 (p = 0.000))
2 ' (3 (p = 0.110))
3 6= (5, 6, 7, 8 and 9 (p = 0.000))
3 ' (2 (p = 0.110)) and (4 (p = 0.089))
4 6= (2, 5, 6, 7, 8 and 9 (p = 0.000))
4 ' (3 (p = 0.089))
5 6= (2, 3, 7, 8 and 9 (p = 0.000)), (4 (p = 0.018)) and (6 (p = 0.025))
6 6= (2, 3, 4, 8 and 9 (p = 0.000)), (5 (p = 0.025)) and (7 (p = 0.001))
7 6= (2, 3, 4, 5, 8 and 9 (p = 0.000)) and (6 (p = 0.001))
8 6= (2, 3, 4, 5, 6 and 7 (p = 0.000)) and (9 (p = 0.001))
9 6= (2, 3, 4, 5, 6 and 7 (p = 0.000)) and (8 (p = 0.001))

weight combinations are almost identical. In this case, the weight combinations are

divided into four different groups, i.e. highLD, highSD, highHM and balance. The

details of weight combinations of each group are depicted in Table 4.3. The result from

the two-way analysis of variance illustrated in Table 4.11 shows that the solution quality

of each group is statistically different. In these circumstances, the solution quality that is

tested with the weight combination from any different group of heuristics is statistically

different.

Table 4.11: The effect of different group of weight combination for LDSDHM to
solution quality for the Toronto benchmark datasets (6= = inequality)

Group Effect Group

highLD 6= (highSD, highHM and balance (p = 0.000))
highSD 6= (highLD, highHM and balance (p = 0.000))
highHM 6= (highLD, highSD and balance (p = 0.000))
balance 6= (highLD, highSD and highHM (p = 0.000)

Figure 4.1 illustrates the best performance of LDSDHM for car92 I and tre92 considering

all combinations of weight. It demonstrates a pattern in the performance of best solution

quality obtained for each combination. By looking at the median value, when the weight

value of HM is high enough then the solution quality value rapidly drops. On the other

hand, whenever the weight value of HM is gradually decreased, then the solution quality

also decreases progressively. Most of the peaks are obtained from the lowest weight value

of HM, whilst most of the slumps are obtained from the highest weight value of HM. This

shows that the existence of the heuristic modifier in this adaptive linear combination of

heuristics has an effect on the solution quality. Furthermore, by using the information

from the other two heuristics we have increased the effectiveness of the new ordering.

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 119

The results indicate that the combinations are most effective when the weight of HM is

very high, while the other heuristics may vary in certain ways.

4.90

5.00

5.10

5.20

5.30

5.40

5.50

5.60

(0
.8

, 0
.1

, 0
.1

)

(0
.6

, 0
.1

, 0
.3

)

(0
.4

, 0
.1

, 0
.5

)

(0
.2

, 0
.1

, 0
.7

)

(0
.7

, 0
.2

, 0
.1

)

(0
.5

, 0
.2

, 0
.3

)

(0
.3

, 0
.2

, 0
.5

)

(0
.1

, 0
.2

, 0
.7

)

(0
.5

, 0
.3

, 0
.2

)

(0
.3

, 0
.3

, 0
.4

)

(0
.1

, 0
.3

, 0
.6

)

(0
.4

, 0
.4

, 0
.2

)

(0
.2

, 0
.4

, 0
.4

)

(0
.4

, 0
.5

, 0
.1

)

(0
.2

, 0
.5

, 0
.3

)

(0
.3

, 0
.6

, 0
.1

)

(0
.1

, 0
.6

, 0
.3

)

(0
.1

, 0
.7

, 0
.2

)

Weight combination

P
e
n

a
lt

y
 v

a
lu

e
max

min

median

(a)

8.20

8.40

8.60

8.80

9.00

9.20

9.40

9.60

9.80

(0
.8

, 0
.1

, 0
.1

)

(0
.6

, 0
.1

, 0
.3

)

(0
.4

, 0
.1

, 0
.5

)

(0
.2

, 0
.1

, 0
.7

)

(0
.7

, 0
.2

, 0
.1

)

(0
.5

, 0
.2

, 0
.3

)

(0
.3

, 0
.2

, 0
.5

)

(0
.1

, 0
.2

, 0
.7

)

(0
.5

, 0
.3

, 0
.2

)

(0
.3

, 0
.3

, 0
.4

)

(0
.1

, 0
.3

, 0
.6

)

(0
.4

, 0
.4

, 0
.2

)

(0
.2

, 0
.4

, 0
.4

)

(0
.4

, 0
.5

, 0
.1

)

(0
.2

, 0
.5

, 0
.3

)

(0
.3

, 0
.6

, 0
.1

)

(0
.1

, 0
.6

, 0
.3

)

(0
.1

, 0
.7

, 0
.2

)

Weight combination

P
e
n

a
lt

y
 v

a
lu

e

max

min

median

(b)

Figure 4.1: Best solution quality for each of weight combination of LDSDHM for (a)
car91 and (b) tre92 for the Toronto benchmark datasets

Figure 4.2 illustrates the average performance of each top-window size and different

groups of weight combination for LDSDHM. It indicates that the group of highLD con-

tributed a higher penalty value at each top-window size while the highSD, highHM

and balance are almost identical in terms of penalty value during smaller sizes of top-

window performance. However, the average performance for highSD, highHM and bal-

ance started to differ when the top-window size is 6 and above. In these circumstances,

using a smaller chunk of top-window size with a good choice of weight combinations may

lead to a better quality solution.

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 120

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

2 3 4 5 6 7 8 9

top-window size

P
e
n

a
lt

y
 v

a
lu

e High LD

High HM

Balance

High SD

Figure 4.2: Average performance of each top-window size and different group of
weight combination for LDSDHM for the Toronto benchmark datasets

4.2.1.2 ITC2007

The experiment on the twelve problem instances of ITC2007 was tested with several

combinations of weights with only top-window sizes 3 and 5. The heuristic modifier

was increased using additive and exponential strategies with dynamic modification of

the heuristic modifier value. Table 4.12 illustrates the best penalty value obtained from

fifty runs and each solution is provided with information about weight combination and

the algorithmic approach. The table reveals diverse patterns of the weight combination

of each heuristic for different instances. About half of the problem instances obtained

good quality solutions when the weight of the SD is high, while the weights LD and HM

are varied in specific ways. Since the ITC2007 benchmark datasets have been tested

with only certain parameter settings, unlike the Toronto benchmark datasets, and with

time limitations, they might not show the exact pattern of the whole weight behaviour.

Moreover, the ITC2007 benchmark datasets represent a capacitated timetabling problem

and, therefore, they differ from the Toronto benchmark datasets in terms of various hard

and soft constraint requirements.

Table 4.13 illustrates the results of implementing different strategies of weight changes

for the ITC2007 benchmark datasets. It is clear that the dynamic weight strategy

performed the best among the three strategies with eight problem instances, while the

linear weight and reinforcement learning strategies performed the best with three and

one problem instances respectively. Although the dynamic weight strategy performed

well, this strategy is nevertheless unable to produce a feasible solution for Exam 4.

As the ITC2007 instances involve many constraint requirements, the dynamic weight

changes might have been an advantage since weight combination is identified based on

the cost of each successive assignment. However, as stated previously, this strategy may

take up considerable time in calculating the examination assignment cost. It can be

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 121

Table 4.12: Different combination of weights and algorithmic approaches for the
ITC2007 benchmark datasets (LD = largest degree; SD = saturation degree; HM =
heuristic modifier; Dy = dynamic; TW = top-window; AD = additive; EX = exponen-

tial; w = weight)

Problem Best wLD wSD wHM

Exam 1 11060 {LDSDHM, Dy, TW(5), EX} 0.5 0.3 0.2
Exam 2 3133 {LDSDHM, Dy, TW(3), AD} 0.4 0.1 0.5
Exam 3 19098 {LDSDHM, Dy, TW(3), EX} 0.1 0.7 0.2
Exam 4 21309 {LDSDHM, Dy, TW(3), AD} 0.3 0.6 0.1
Exam 5 7975 {LDSDHM, Dy, TW(3), EX} 0.3 0.5 0.2
Exam 6 28330 {LDSDHM, Dy, TW(5), EX} 0.1 0.8 0.1
Exam 7 15912 {LDSDHM, Dy, TW(5), AD} 0.1 0.8 0.1
Exam 8 20066 {LDSDHM, Dy, TW(3), EX} 0.7 0.1 0.2
Exam 9 2165 {LDSDHM, Dy, TW(3), AD} 0.4 0.2 0.4
Exam 10 16516 {LDSDHM, Dy, TW(3), AD} 0.1 0.3 0.6
Exam 11 45873 {LDSDHM, Dy, TW(3), AD} 0.1 0.6 0.3
Exam 12 7465 {LDSDHM, Dy, TW(3), AD} 0.7 0.2 0.1

noted that the experiments on the ITC2007 benchmark datasets followed the running

time requirement as stated in the competition rules.

Table 4.13: Comparison of ALC with different strategies of weight changes for the
ITC2007 benchmark datasets (ALC = adaptive linear combination approach, inf. =

infeasible solution, the bold entries indicate the best results for given strategies)

Best of Dynamic Linear Reinforcement
Problem ALC weights weights learning

Exam 1 11060 11220 13004 12922
Exam 2 3133 3176 3399 3363
Exam 3 19098 19187 21245 21147
Exam 4 21309 inf. 20830 24562
Exam 5 7975 8521 8201 8370
Exam 6 28330 28780 28960 29060
Exam 7 15912 16122 16353 16262
Exam 8 20066 20608 20480 20609
Exam 9 2165 2265 2250 2237
Exam 10 16516 16754 16811 16965
Exam 11 45873 45124 50944 66089
Exam 12 7465 7465 8348 11488

So far, most of the ITC2007 approaches have concentrated on the multiple phases of

solution that construct and improve the solution quality in sequence. The adaptive

linear combination approach in this chapter is presented as a constructive approach that

iteratively constructs the examination timetable. Table 4.14 shows the comparison of the

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 122

best penalty values of the adaptive linear combination approach with other approaches

from the competition and post-competition. It is clear that the results of the adaptive

linear combination approach cannot beat the best results obtained so far and are further

from them. However, it is able to produce a feasible solution for all problem instances

and is better than some of the approaches from the competition and post-competition.

The adaptive linear combination approach is able to produce better results compared

with Müller (2009) for Exam 10, Atsuta et al. (2008) for Exam 2, Exam 4 and Exam 6,

Pillay (2008) for Exam 1, Exam 4, Exam 6, Exam 7 and Exam 10, Pillay (2010b) for

Exam 4 and Exam 6 and also Burke et al. (2010f) for Exam 4, Exam 6 and Exam 8.

By contrast, some of the approaches do not produce solutions for some of the problem

instances, for example Gogos et al. (2008) for Exam 10 and Exam 12, Atsuta et al. (2008)

for Exam 11, De Smet (2008) for Exam 3, Exam 4, Exam 8, Exam 11 and Exam 12

while Pillay (2010b), Burke et al. (2010f) and Turabieh and Abdullah (2011) do not

achieve solutions for Exam 9, Exam 10, Exam 11 and Exam 12.

4.3 Conclusion

This chapter proposed an adaptive linear combination of heuristics with a heuristic modi-

fier within the framework of adaptive strategies in order to solve examination timetabling

problems. Two graph colouring heuristics with a heuristic modifier were adapted with

different weights for each parameter. Each parameter was normalised in order simply

to generalise the implemented problem data. A difficulty score was used to deter-

mine the ordering of examinations and the most difficult examination with the highest

difficulty score was scheduled first based on two strategies. This approach was tested

with single and multiple heuristics with and without a heuristic modifier on the Toronto

benchmark datasets while the ITC2007 benchmark datasets were tested with multiple

heuristics with heuristic modifier. The results show that by combining multiple heuris-

tics with a heuristic modifier, good solution quality can be obtained. Furthermore, the

results from the combination of LDSDHM are comparable with the results of other con-

structive approaches published in the literature within the Toronto benchmark datasets.

The results on the highly constrained ITC2007 benchmark datasets are feasible solutions

and some are comparable with previous approaches. In this study, the combination of

weight values that are adapted to the heuristics and heuristic modifier could significantly

change the examination ordering based on the difficulty score value. It is found that

by changing the weight values of the heuristic and heuristic modifier, good approximate

solutions could be obtained. It is also identified that the best top-window size to use

for this approach is six and below as the higher value of top-window size could cause

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 123

T
a
b
l
e
4
.1
4
:

C
om

p
ar

is
on

of
A

L
C

w
it

h
d

iff
er

en
t

ap
p

ro
a
ch

es
o
f

th
e

IT
C

2
0
0
7

b
en

ch
m

a
rk

d
a
ta

se
ts

(A
L

C
=

a
d

a
p

ti
ve

li
n

ea
r

co
m

b
in

a
ti

o
n

a
p

p
ro

a
ch

)

P
ro

b
le

m
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
[7

]
[8

]
[9

]
[1

0]
[1

1]
A

L
C

E
x
a
m

1
43

70
5
90

5
80

06
66

70
12

03
5

43
70

46
33

85
59

62
35

47
75

4
3
6
8

11
06

0
E

x
am

2
4
00

1
00

8
34

70
62

3
30

74
38

5
40

5
83

0
29

74
3
8
5

39
0

31
33

E
x
a
m

3
1
00

49
13

86
2

18
62

2
-

15
91

7
93

78
90

64
11

57
6

15
83

2
8
9
9
6

98
30

19
09

8
E

x
am

4
1
81

41
18

67
4

22
55

9
-

23
58

2
1
5
3
6
8

15
66

3
21

90
1

35
10

6
16

20
4

17
25

1
20

83
0

E
x
a
m

5
29

88
4
13

9
47

14
38

47
68

60
29

88
30

42
39

69
48

73
2
9
2
9

30
22

79
75

E
x
am

6
2
69

50
27

64
0

29
15

5
27

81
5

32
25

0
26

36
5

25
88

0
28

34
0

31
75

6
2
5
7
4
0

25
99

5
28

33
0

E
x
a
m

7
42

13
6
68

3
10

47
3

54
20

17
66

6
41

38
4
0
3
7

81
67

11
56

2
40

87
40

67
15

91
2

E
x
a
m

8
78

61
10

52
1

14
31

7
-

16
18

4
75

16
7
4
6
1

12
65

8
20

99
4

77
77

75
19

20
06

6
E

x
am

9
10

47
1
15

9
17

37
12

88
20

55
10

14
10

71
-

-
9
6
4

-
21

65
E

x
am

1
0

1
66

82
-

15
08

5
14

77
8

17
72

4
14

55
5

14
37

4
-

-
1
3
2
0
3

-
16

51
6

E
x
am

1
1

3
41

29
43

88
8

-
-

40
53

5
31

42
5

29
18

0
-

-
2
8
7
0
4

-
45

12
4

E
x
am

1
2

55
35

-
52

64
-

63
10

53
57

56
93

-
-

5
1
9
7

-
74

65

[1
]-

M
ü

ll
er

(2
00

8)
;

[2
]-

G
o
go

s
et

a
l.

(2
00

8)
;

[3
]-

A
ts

u
ta

et
al

.
(2

00
8)

;
[4

]-
D

e
S

m
et

(2
00

8)
;

[5
]-

P
il

la
y

(2
00

8)
;

[6
]-

M
ü

ll
er

(2
00

9)
;

[7
]-

M
cC

ol
lu

m
et

al
.

(2
0
09

);
[8

]-
P

il
la

y
(2

0
10

a)
;

[9
]-

B
u

rk
e

et
a
l.

(2
01

0f
);

[1
0]

-G
og

os
et

al
.

(2
01

0a
);

[1
1]

-T
u

ra
b

ie
h

an
d

A
b

d
u

ll
ah

(2
01

1)

Chapter 4. Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable 124

a significant change in the examination ordering. It is, therefore, concluded that this

approach is simple and effective, and hence has potential for practical use.

Chapter 5

A Constructive Approach for

Examination Timetabling based

on Adaptive Decomposition and

Ordering

This chapter draws upon the research from previous chapters by further considering

the unscheduled examinations obtained during timetable constructions. The work is

based on a similar adaptive approach by Qu and Burke (2007) that has made use of

a decomposition strategy. A methodology which divides the problem into two sub-

problems related to the feasibility of the current assignment is proposed. The same

naming convention is adopted from Qu and Burke (2007) for these sets as ‘difficult’ and

‘easy’. In this chapter, the problem is decomposed into difficult and easy sets at each

iteration. A timetable is constructed based on the associated heuristic ordering for each

set. An additional set of examinations which is located between the difficult and easy

sets is also introduced. This is referred to as the boundary set. Several mechanisms

associated with the boundary set are described in order to vary the search space of

solutions. Section 5.1 presents the details of the proposed approach based on adaptive

decomposition and ordering (ADO) for examination timetabling. Section 5.2 discusses

the analysis and experimental results. Finally, the conclusion is provided in Section 5.3.

125

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 126

5.1 Automated Decomposition and Ordering of Examina-

tions

The study of constructive approaches within a decomposition strategy is a relatively

unexplored area of timetabling. In decomposition approaches, a problem is divided into

a smaller sub-problem and the solution is obtained from each sub-problem taking into

account the related constraints. Carter and Laporte (1996) stated that this strategy

could reduce the processing time. However, it could adversely affect the quality of the

final solution because of the drastic reduction of the search space during the scheduling

process. In these circumstances, the sub-problems need to be carefully reunited to

sustain the optimality of the solution.

One of the decomposition approaches related to mathematical programming method is

the Bender decomposition, which separates integer variables and real variables by al-

lowing large problem to be decomposed into block structures in order to achieve for

efficiency (Benders, 1962). A number of studies in scheduling problems used this ap-

proach for decomposing the problem into smaller problems. Such application can be

found in the employee timetabling problem (Detienne et al., 2009), workforce scheduling

problem (Benoist et al., 2002) and crew scheduling problem (Mercier et al., 2005). Other

approaches related to decomposition within timetabling problems are by Meisels et al.

(1994), De Causmaecker et al. (2009) and Burke et al. (2010d). The study by Meisels

et al. (1994) focused on solving the binary form of the school timetabling problem by

representing it as constraint networks. The problem was solved using graph decom-

position. Meanwhile, De Causmaecker et al. (2009) worked on the course timetabling

problem by using decomposition approach and focused on the overlapping time-slots

and irregular weekly timetable. The approach introduced a ‘pillar’ structure in order

to reduce the number of courses and considered only one constraint at a time before

proceeding with the next constraints during the timetabling. The next study, Burke

et al. (2010d) proposed a hybrid metaheuristic approach for solving course timetabling

problems where it was based on a mix formulation of different sub-problems formulated

in integer programming.

The decomposition approach in timetabling is related to splitting a problem into a several

smaller sub-problems with the purpose of easing the scheduling process and at the same

time aiming for high quality solutions. There are several implementation strategies for

splitting the problem within timetabling approaches. Figure 5.1 shows decomposition

strategies in timetabling (Figures 5.1 (a) to (c) are adopted from Özcan and Alkan

(2007)). Each strategy has a number of stages to be processed to each subset and each

subset contains a set of events to be scheduled.

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 127

The strategy depicted in Figure 5.1 (a) was implemented by Burke et al. (1996b) in their

attempt to solve the examination timetabling problem. During the scheduling process, at

each stage, a selected subset was scheduled separately. As the scheduling was completed

for the current subset, then the scheduling was continued to the next subset of events.

Burke and Newall (1999) implemented the second strategy, as shown in Figure 5.1 (b),

which was a union of a scheduled and an unscheduled subset. The scheduled subset was

fixed until the end of a phase and the problematic examinations that cause infeasible

timetable was solved using a look-ahead approach. The third strategy introduced by

Özcan and Alkan (2007) was applied to the course timetabling problem. This was more

flexible in that the scheduled subset could be reassigned to a timetable. As depicted in

Figure 5.1 (c), the unscheduled subset is incrementally added to the scheduled subset

for the assignment process. The three strategies have a fixed size of problem subsets.

However, they differ from the fourth approach illustrated in Figure 5.1 (d) where the

strategy used a flexible size of subsets depending on the unscheduled events occurring

during the timetabling. This strategy, introduced by Qu and Burke (2007) in relation

to the examination timetabling problem, considered two subsets to be scheduled, and

introduced boundary examinations between the two subsets. The study provides the

basis for the proposed approach in this chapter.

Subset A Subset B

Subset C

…….

Subset A Subset B

Subset C

Stage 1 Stage 2 Stage 3

…….

Stage 1 Stage 2

(a)

(b)

Subset A Subset B

Stage 1 Stage 2

(d)

Subset A Subset B

Subset C

…….

(c)

Stage 1 Stage 2 Stage 3

Boundary set

Figure 5.1: Strategies of decomposition in timetabling

Most timetabling approaches in the literature do not make use of information obtained

from the process of building an infeasible timetable. The examinations causing the

infeasibility of a solution indicates that they are difficult to place and should perhaps be

treated in different ways. A general constructive framework as presented in Pseudocode

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 128

12 is proposed for solving the examination timetabling problem, based on the adaptive

decomposition and ordering of a set of examinations into two sets: difficult and easy.

Let E be the set for all unscheduled examinations. At first, all the examinations from

E are considered in the EasySet, while there is no examination in the DifficultSet as

all examinations are assumed to be easy to schedule at the beginning of the timetabling

process. As the timetabling process begins, some of the examinations causing infeasibil-

ity are moved to the DifficultSet. At each iteration, each DifficultSet and EasySet

is ordered based on the chosen heuristic within the sets. The BoundarySet is created

within the EasySet where a fixed number of examinations, δ, with higher difficulty

value are chosen to be in the BoundarySet. This BoundarySet is merged or swapped

with the DifficultSet using the chosen strategy. Each examination is scheduled to

the least penalty time-slot and if there is more than one least penalty time-slot then

they are chosen randomly. If examination e cannot be scheduled it is left unscheduled

and is moved to the DifficultSet. In case of no improvement to the solution quality

for a certain scheduling trial, the shuffling-strategy is employed. The shuffling-strategy

aims to shuffle the current best examination ordering so that a new ordering could be

obtained.

Algorithm 12 Construction of a timetable based on automated decomposition and
ordering of examinations

E = {e1, e2, ., eN}
BoundarySetSize = δ
EasySet = E; DifficultSet = φ; BoundarySet = φ; TempSet = φ
Initial ordering
for i = 1 to number of iterations do
OrderExamsWithinSubsets(DifficultSet, EasySet)
BoundarySet = CreateBoundarySet(DifficultSet, EasySet)
while there are examinations to be scheduled do

Consider changing the ordering of examinations using Shuffling-Strategy
Employ Selection-Strategy to choose an unscheduled exam, e
if e can be scheduled then
TempSet = TempSet ∩ {e}
Schedule e in the time-slot with the least penalty
In the case of the availability of multiple time-slots with the same penalty,
choose one randomly

else
Move exam e to DifficultSet

end if
EasySet = TempSet

end while
Evaluate solution, store if it is the best found so far

end for

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 129

During each iteration, a new solution is constructed from an ordered list of examinations.

The difficult set consists of the examinations that cannot be placed into a time-slot

within the timetable due to conflicts with other examinations from the previous iteration.

These examinations need to be associated with a large penalty imposed on the unplaced

examinations. On the other hand, the examinations in the easy set are examinations that

cause no violations during the timetabling. Using this approach, all the examinations

that contribute to the infeasibility in a solution are given priority. They are moved

forward in the ordered list of examinations and are processed first. Such examinations

are detected and included in the difficult set at each iteration and a predefined ordering

strategy is employed before their successive assignment to the available time-slots. The

remaining examinations (that generate no feasibility issues) are placed into the easy set

and the original ordering of those examinations is maintained. In order to incorporate

a stochastic component for the selection of examinations from the generated ordering,

some shuffling strategies are utilised. The following subsections discuss these strategies.

5.1.1 Interaction between Difficult and Easy Sets through a Boundary

Set

The ADO approach is investigated using two graph colouring heuristics for generating

the initial ordering of examinations. The approach is tested with the largest degree

heuristic that orders examinations in a decreasing number of conflicts with each ex-

amination and the saturation degree heuristic that dynamically orders the unscheduled

examinations based on the number of available time-slots for each examination during

the timetable construction. The reason for testing these two graph colouring heuristics

is to compare their performance in terms of solution quality and the contribution of in-

feasible examinations to the size of the difficult set, as they represent static and dynamic

ordering of heuristics. Initially, all the examinations are considered to be members of

the easy set (as illustrated in Figure 5.2 (a)).

During each iteration, examinations causing infeasibility are identified. Figure 5.2 (a)

shows that all such examinations are marked as members of the difficult set to be

moved forward towards the top of the list of examinations (Figure 5.2 (b)), while the

examinations that caused no violation during the assignment to a time-slot remain in

the easy set. In Figure 5.2 (c), the boundary set with a prefixed size within the easy set

is created and it is located in between the difficult and the easy sets. Examinations in

the boundary set are chosen based on the difficulty value where the most difficult ones

in the easy set are chosen to be included in the boundary set. The examinations in the

boundary set are merged with the examinations in the difficult set by combining both

sets before a reordering is performed. Once the ordering for all examinations within

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 130

e3 e10 e5 e7 e1 e9 e2 e6 e11 e8 e12 e4

Easy set

(a)

e7 e9 e5 e11 e10 e1 e3 e2 e6 e8 e12 e4

Difficult set Easy set

(b)

e7 e9 e5 e11 e10 e1 e3 e2 e6 e8 e12 e4

Boundary set Easy set Difficult set

(c)

e3 e5 e9 e7 e6 e11 e10 e1 e2 e8 e12 e4

Boundary set Difficult set Easy set

(d)

Figure 5.2: (a) All examinations are in easy set in the first iteration and examinations
that cause infeasibility are marked; (b) difficult and easy sets after an iteration resulting
with an infeasible solution; (c) boundary set with a prefixed size is added to the difficult
set after an iteration and reordering is performed; (d) the step in (a) is repeated and the
infeasible examinations are placed in the difficult set, the size of difficult set increased

the difficult and boundary sets are performed, each examination is assigned one by one

to a feasible time-slot and followed by the assignment of the easy set. In the next

iteration, more infeasible examinations are detected and included in the difficult set.

Consequently, the size of the difficult set is increased from one iteration to another if

there are infeasible examinations.

5.1.2 Swapping the Examinations Between Difficult and Boundary

Sets

This strategy shuffles the difficult set and the boundary set by swapping examinations

randomly between them. Some examinations causing infeasibility are not necessarily

the one that are very difficult to schedule. The infeasibility may happen due to the

previous assignment and ordering. This strategy introduces an opportunity for some of

the examinations in the difficult set to be chosen later in the timetable. There is also a

possibility that the examinations in the boundary set are swapped back to the original

set because this process is done randomly. Figure 5.3 illustrates how the swapping of

examinations between two sets might take place.

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 131

e7 e9 e5 e11 e7 e1 e3 e2 e6 e8 e12 e4

Boundary set Easy set Difficult set

Figure 5.3: The boundary set is swapped with the difficult set and is reordered before
assigning examinations to the time-slots

5.1.3 Roulette Wheel Selection for Examinations

A roulette wheel selection strategy that incorporates a stochastic element in choosing

examinations is utilised before assigning them to the time-slots. If there is no improve-

ment evident within a certain time, a list of examinations of size n is chosen from the

ordered list in the difficult set from which an examination is chosen based on a probabil-

ity. The probabilities of an examination being chosen are calculated based on a score, si

of each examination in the list of size n. The new size of the difficult set will be the set

which includes the size of the boundary set whenever there is improvement to the solu-

tion quality. The score value, si is a dynamic measure that is obtained from the largest

degree and saturation degree values (as in equation (5.1)), where Num clashi is the

number of examinations in conflict with the examination i, Max clash is the maximum

number of conflicts with all examinations, Sat degreei is the saturation degree value

for the examination i and Num slots is the number of time-slots given to the specified

problem. The score, si for the ith examination measures the difficulty of scheduling it,

which combines the saturation degree, Sat degreei of the given examination and the

number clashing examinations, Num clashi. The larger the score, the more difficult it

is to schedule the examination. The Num clashi value is aligned with this formulation,

while Sat degreei requires an adjustment, as the saturation degree of an examination

gets lower and lower, scheduling it becomes more difficult. In this study, the comple-

ment of Sat degreei as (max-number-of-time-slots - Sat degreei + 1) is used for the ith

examination while computing si. Consequently, its initial value is set to 1. This strategy

is adopted from Abdul Rahman et al. (2009).

si =
Num clashi
Max clash

+
Sat degreei
Num slots

(5.1)

The probability, pi of an examination being chosen from n list of examinations is,

pi =
si∑n−1
i=0 si

(5.2)

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 132

A random number from (0, 1) is obtained in order to choose an examination from a list

of examinations of size n. An examination with higher score value, si will have a greater

chance to be chosen.

5.1.4 Comparison of Our Approach to a Previous Study

Qu and Burke (2007) previously proposed an adaptive decomposition approach to con-

struct examination timetables. Their approach started with an initial ordering of exam-

inations using a graph colouring heuristic, namely, saturation degree. A perturbation

was made by randomly swapping two examinations in order to obtain a better ordering.

Examinations were then decomposed into two sets: difficult and easy.

The initial size of the difficult and easy sets is prefixed as half of the number of exam-

inations in a given problem, as shown in Figure 5.4 (a). At each iteration, the size of

the difficult set is modified according to the feasibility of the solution. If the solution

is infeasible after the adjustment of the ordering of examinations then the first exami-

nation that causes infeasibility (for example, e11) is moved forward for a fixed number

of places (for example, five as illustrated in Figure 5.4 (b)). The size of the difficult

set is then re-set to the point where the difficult examination is placed. Otherwise, if a

feasible solution or an improved solution is obtained, then the size of the difficult set is

increased (Figure 5.4 (c)). The approach also introduced boundary examinations where

half of the examinations in the difficult set are considered to be in the easy set due to

assumption that some examinations within the difficult and easy sets are overlapping.

e3 e10 e5 e7 e1 e9 e2 e6 e11 e8 e12 e4

Difficult set Easy set

(a)

e3 e10 e5 e11 e7 e1 e9 e2 e6 e8 e12 e4

Difficult set Easy set

Examination that

causes infeasibility

(b)

e3 e10 e5 e11 e1 e9 e2 e6 e7 e8 e12 e4

Easy set Difficult set

(c)

Figure 5.4: Difficult and easy sets (a) in the first iteration; (b) after an iteration is
over (a) resulting with an infeasible solution; (c) after an iteration is over (a) resulting

with a feasible solution

The ADO approach initialises the easy set including all the examinations and the difficult

set is formed during each construction phase at each iteration. The size of the difficult

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 133

set depends on the number of unscheduled examinations that cannot be assigned to any

time-slot from all previous iterations. The size of the difficult set never decreases and

after a certain number of iterations, the number of examinations in the difficult set might

settle. On the other hand, in the previous approach, the size of the difficult set is prefixed

and increased when the feasible solution or improved solution is obtained statically. The

set is also allowed to shrink. Additionally, the previously proposed approach uses an

initial ordering and reorders all the examinations without using a heuristic, which is not

the case in the ADO approach. Although the ADO approach used the same approach

for reordering examinations in the difficult and easy sets separately, examinations in

different sets can be reordered based on a different heuristic at each iteration. The ADO

approach also considered the boundary set which contains examinations from the easy

set that has higher difficulty value and these examination are considered difficult due to

the higher difficulty value within the easy set and they are moved into the boundary set.

The examinations in the boundary set can be merged or swapped with the examinations

within the difficult set.

5.2 Experiments

Numerical experiments were carried out using Pentium IV 1.86 GHz. Windows machines

with 1.97 Gb. memory. The experiments on the Toronto benchmark datasets were

performed with twenty-five runs and the stopping condition was set at 2000 iterations

in order to be comparable with the experiments conducted by Qu and Burke (2007).

The previous study (Abdul Rahman et al., 2010) demonstrated that the increase of

the number of iterations produced no significant improvement to the solution quality.

Therefore, it was decided to increase the number of runs while reducing the number

of iterations. Meanwhile, the experiments for the ITC2007 benchmark datasets were

performed with fifty runs in order to be equal to some of the previous implementations.

For further detail on the descriptions and the constraints of the Toronto and ITC2007

benchmark datasets see Section 2.5. Two types of heuristic ordering for initialisation

were investigated: largest degree (LD) and saturation degree (SD). The difficult set

was created using these two initial orders, then reordered with either largest degree or

saturation degree. In this study, the same heuristic for initialisation was used to order

the examinations in the easy set. The heuristics used in a given approach were denoted

by a pair as [heuristic used for ordering examinations in the difficult set - heuristic used

for ordering examinations in the easy set] from this point onwards.

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 134

5.2.1 Parameter Tuning

In order to identify the best parameter setting, the approach was tested on the Toronto

benchmark datasets with six different sizes of the boundary set {0, 3, 5, 10, 15, 20}.
Figure 5.5 illustrates the experiments on the average cost of overall performance for dif-

ferent sizes of boundary sets with different heuristic orderings for the difficult and easy

sets combined with both adding and swapping strategies. Considering overall perfor-

mance, it appears that, on average, boundary set size 3 is the best for implementation

with lower standard deviation compared with other sizes. Based on the T test, it is also

statistically significant that boundary set size 3 is different compared with sizes {0, 10,

15, 20} where the p value is < 0.05. However, when compared with boundary set size

5, the performance is about the same but boundary set size 3 is still better in terms of

the average cost and the standard deviation. In this case, the boundary set size 3 is

chosen to be experimented in the ADO approach. Table 5.1 presents the solution quality

experiment with boundary set size 3 and tested with thirteen problems of the Toronto

benchmark datasets.

39.40 35.78 38.74
63.57 73.97

105.34

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0 3 5 10 15 20

Boundary size

A
v
e
ra

g
e
 c

o
s
t

Figure 5.5: Average cost of overall performance for all problem instances for different
sizes of boundary set of the Toronto benchmark datasets

The utilisation of the shuffling strategy of the Toronto benchmark datasets with roulette

wheel selection is also investigated, where different sizes of n examinations are stochasti-

cally selected from size n = {0, 3, 5, 10, 15}. Figure 5.6 shows the different performances

of the approach with different sizes of roulette wheel selection. The statistical test

revealed that there is a significant difference when incorporating the roulette wheel se-

lection in the approach; the p value < 0.05 when comparing size 3 with size {0, 10, 15}.
However, size 3 is statistically no different from size 5. In choosing the best setting for

the roulette wheel size, it is observed that size n = 3 performed best in terms of the

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 135

T
a
b
l
e

5
.1
:

C
om

p
ar

in
g

b
es

t
so

lu
ti

on
q
u

al
it

y
of

th
e

T
o
ro

n
to

b
en

ch
m

a
rk

d
a
ta

se
ts

fo
r

(a
)

[L
D

-L
D

],
(b

)
[L

D
-S

D
],

(c
)

[S
D

-L
D

]
a
n

d
(d

)
[S

D
-S

D
]

b
y

ad
d

in
g

b
ou

n
d

ar
y

se
t

in
to

d
iffi

cu
lt

se
t

an
d

sw
ap

p
in

g
ex

a
m

in
a
ti

o
n

s
b

et
w

ee
n

b
o
u

n
d

a
ry

a
n

d
d

iffi
cu

lt
se

ts
w

it
h
δ

=
3

(a
v
.

=
av

er
a
g
e

so
lu

ti
o
n

q
u

a
li

ty
;

st
d

.
=

st
an

d
ar

d
d

ev
ia

ti
on

;
t(

s)
=

av
er

ag
e

ru
n

n
in

g
ti

m
e

in
se

co
n

d
s)

(B
o
ld

fo
n
t

in
d

ic
a
te

s
th

e
b

es
t

fo
r

d
iff

er
en

t
o
rd

er
in

g
a
n

d
st

ra
te

g
y

a
n

d
b

o
ld

a
n

d
it

al
ic

is
th

e
b

es
t

o
f

a
ll

fo
r

ea
ch

p
ro

b
le

m
in

st
a
n

ce
)

ca
r9

1
ca

r9
2

ea
r8

2
I

h
ec

92
I

k
fu

93
p

u
r9

3
I

ls
e9

1
ry

e9
3

st
a8

3
I

tr
e9

2
u

te
92

u
ta

92
I

y
or

83
I

A
d

d
th

e
(a

)
5.

69
4
.8

5
41

.1
5

12
.6

6
16

.3
5

6.
44

13
.4

4
10

.5
2

16
0.

73
9.

46
29

.1
5

3.
88

44
.7

0
b

ou
n

d
a
ry

se
t

av
.

5
.8

8
5
.1

0
42

.7
1

13
.8

5
16

.8
7

6.
54

14
.0

7
11

.1
6

16
5.

31
9.

94
30

.1
2

4.
00

72
5.

71
(δ

=
3
)

in
to

st
d

.
0.

06
0
.0

9
0.

68
0.

67
0.

31
0.

04
0.

24
0.

28
1.

42
0.

20
0.

59
0.

05
31

8.
47

d
iffi

cu
lt

se
t

t(
s)

22
.4

4
1
4.

16
2.

44
0.

80
4.

40
98

.8
4

3.
12

6.
72

0.
68

3.
60

0.
84

17
.4

4
2.

40

(b
)

5
.7

0
4
.7
4

42
.2

7
1
2
.3

5
16

.4
5

6.
56

12
.8

7
1
0
.3

0
1
5
9
.0
3

9
.0
7

29
.2

7
3.

79
4
4
.2

3
av

.
5
.8

5
5.

01
43

.8
8

13
.0

9
17

.0
2

6.
66

13
.4

1
10

.8
1

16
0.

42
9.

74
30

.1
1

3.
91

46
.2

0
st

d
.

0.
07

0
.0

9
0.

88
0.

39
0.

31
0.

05
0.

19
0.

20
0.

92
0.

27
0.

51
0.

06
0.

71
t(

s)
53

.5
2

3
1.

36
5.

04
1.

16
8.

20
36

7.
52

5.
80

12
.3

2
1.

28
7.

36
1.

40
40

.3
6

4.
96

(c
)

5
.2
7

4
.7

9
4
1
.1
2

12
.6

9
16

.1
1

6.
15

1
2
.4

4
10

.3
8

16
0.

98
9.

49
28

.8
1

3.
73

45
.2

7
av

.
5.

60
5
.0

0
43

.6
4

13
.3

9
16

.8
7

6.
41

13
.4

3
10

.7
1

16
3.

68
9.

85
29

.9
5

3.
91

46
.8

8
st

d
.

0
.1

5
0
.0

8
1

0.
41

0.
32

0.
11

0.
33

0.
17

1.
60

0.
16

0.
62

0.
10

0.
97

t(
s)

10
2.

48
5
9.

36
6

1.
24

30
.9

6
14

37
.0

4
17

.3
6

35
.1

2
2.

00
12

.2
4

3.
92

80
.8

4
5.

00

(d
)

5.
4
1

4
.7

5
42

.0
2

12
.7

0
1
6
.0
1

6
.0
5

12
.7

4
10

.3
9

16
0.

05
9.

35
2
8
.6

3
3
.7
2

44
.4

8
av

.
5
.5

9
4.

99
43

.7
3

13
.2

4
16

.9
2

6.
36

13
.3

0
10

.7
9

16
2.

23
9.

82
29

.9
6

3.
91

46
.4

8
st

d
.

0.
12

0
.0

9
0.

72
0.

37
0.

45
0.

16
0.

29
0.

14
1.

05
0.

19
0.

49
0.

09
0.

62
t(

s)
1
02

.7
6

59
.4

4
6.

20
1.

16
31

.3
6

14
25

.6
0

17
.8

4
34

.8
8

2.
24

12
.1

2
3.

92
79

.7
2

5.
04

S
w

ap
in

th
e

(a
)

5.
77

4
.9

9
41

.8
3

12
.9

8
16

.3
0

6.
44

13
.4

3
10

.6
3

16
0.

55
9.

36
28

.9
6

3.
89

in
f.

b
ou

n
d

a
ry

av
.

5
.9

0
6
5.

16
63

.5
5

11
3.

86
16

.9
7

6.
55

34
.0

6
31

.2
7

16
3.

16
10

.0
3

30
.1

9
4

94
4.

7
(δ

=
3
)

a
n

d
st

d
.

0.
07

1
65

.7
9

99
.6

0
20

3.
64

0.
29

0.
06

99
.6

6
99

.9
8

1.
64

0.
27

0.
65

0.
06

24
9.

34
d

iffi
cu

lt
se

t
t(

s)
13

.7
2

8.
52

1.
64

0.
48

2.
68

61
.5

2
1.

92
4.

04
0.

48
2.

20
0.

48
10

.5
6

1.
48

(b
)

5
.7

7
4
.8

1
42

.2
4

1
2
.0
5

1
6
.2

5
6.

45
12

.8
5

1
0
.2
4

1
5
9
.6

2
9.

51
28

.8
8

3.
82

44
.9

3
av

.
5.

88
5
.0

7
44

.1
0

13
.4

0
17

.0
5

6.
63

13
.4

1
10

.8
16

0.
86

9.
81

29
.9

0
3.

96
46

.5
7

st
d

.
0
.0

7
0
.0

9
0.

76
0.

54
0.

39
0.

11
0.

31
0.

24
0.

96
0.

16
0.

55
0.

06
0.

80
t(

s)
3
2.

04
18

.8
0

3.
08

0.
76

4.
92

22
4.

76
3.

48
7.

36
0.

76
4.

44
0.

80
24

.0
8

2.
96

(c
)

5
.3

3
4
.7

5
42

.1
8

12
.5

3
16

.4
3

6
.0

9
1
2
.4
1

10
.4

8
16

0.
29

9
.2

7
29

.1
1

3
.7

7
4
4
.1
9

av
.

5
.6

3
4.

99
43

.7
9

13
.1

5
16

.9
2

6.
41

13
.3

0
10

.7
6

16
2.

79
9.

87
29

.9
4

3.
91

46
.5

5
st

d
.

0.
14

0
.0

9
0.

80
0.

28
0.

26
0.

17
0.

31
0.

14
1.

29
0.

17
0.

37
0.

10
1.

00
t(

s)
60

.6
8

3
5.

28
3.

68
0.

76
18

.0
4

86
5.

04
10

.3
6

21
.1

6
2.

00
7.

40
2.

28
47

.4
0

3.
04

(d
)

5
.3

2
4
.8

1
4
1
.3

4
12

.5
1

16
.3

3
6.

14
12

.8
7

10
.3

6
16

0.
29

9.
41

2
7
.7
5

3.
78

44
.9

4
av

.
5
.6

0
4.

98
43

.7
4

13
.1

7
16

.8
8

6.
42

13
.4

6
10

.7
2

16
2.

79
9.

86
29

.8
4

3.
92

46
.6

1
st

d
.

0.
12

0
.0

8
1.

05
0.

33
0.

33
0.

17
0.

28
0.

15
1.

29
0.

19
0.

66
0.

10
0.

56
t(

s)
60

.5
6

3
5.

40
3.

72
0.

76
18

.1
2

86
5.

32
10

.4
8

21
.3

2
2.

08
7.

32
2.

32
47

.3
6

3.
12

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 136

average solution quality and also the standard deviation. The size n = 3 is chosen to be

experimented with boundary size 3. This analysis has shown that the incorporation of

the shuffling strategy improved the performance in terms of the average and the vari-

ance of the solution cost. The solution quality for each problem instance of the Toronto

benchmark with different setting of heuristic combination of the boundary size δ = 3

and roulette wheel selection size n = 3 is presented in Table 5.2.

45.64 40.83 41.49 51.64

78.52

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0 3 5 10 15

Roulette wheel selection size

A
v
e
ra

g
e
 c

o
s
t

Figure 5.6: Average cost of overall performance for all problem instances for different
size of roulette wheel selection size of the Toronto benchmark datasets

5.2.2 Best Performance Comparison of Different Strategies

Table 5.1 summarises the experimental results obtained by applying the proposed ap-

proach to the Toronto benchmark problem instances with boundary size 3. By looking at

the best strategy of this approach, it is observed that the adding boundary set strategy

performed better with eight best problem instances compared with the swapping bound-

ary set strategy. Table 5.1 illustrates that the saturation degree based initial solution

performed significantly better than the largest degree based initial ordering in terms of

average best solutions obtained.

By looking at the best heuristic ordering for the difficult and the easy sets, it is observed

that with the boundary set size 3, the adding boundary set strategy performed slightly

better with the saturation degree based initial ordering where seven out of the thirteen

problem instances performed significantly better than the largest degree based initial

ordering. On the other hand, the swapping strategy performed better with the saturation

degree based initial ordering with nine out of thirteen problem instances being better

when compared with the largest degree initial ordering.

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 137

T
a
b
l
e
5
.2
:

C
om

p
ar

in
g

so
lu

ti
on

q
u
al

it
y

of
th

e
T

or
on

to
b

en
ch

m
a
rk

d
a
ta

se
ts

fo
r

(a
)

[L
D

-L
D

],
(b

)
[L

D
-S

D
],

(c
)

[S
D

-L
D

]
a
n

d
(d

)
[S

D
-S

D
]
w

it
h

sh
u

ffl
in

g
st

ra
te

gi
es

of
ad

d
in

g
th

e
b

ou
n

d
ar

y
se

t
in

to
th

e
d

iffi
cu

lt
se

t
a
n

d
sw

a
p

p
in

g
ex

a
m

in
a
ti

o
n

s
b

et
w

ee
n

th
e

b
o
u

n
d

a
ry

a
n

d
d

iffi
cu

lt
se

ts
w

it
h
δ

=
3

a
n

d
in

cl
u

d
es

ro
u

le
tt

e
w

h
ee

l
se

le
ct

io
n

fo
r

ex
am

in
at

io
n

s
w

it
h
n

=
3

(a
v
.

=
av

er
a
g
e

so
lu

ti
o
n

q
u

a
li

ty
;

st
d

.
=

st
a
n

d
a
rd

d
ev

ia
ti

o
n
;

t(
s)

=
av

er
a
g
e

ru
n

n
in

g
ti

m
e

in
se

co
n

d
s)

(B
ol

d
fo

n
t

in
d

ic
at

es
th

e
b

es
t

fo
r

d
iff

er
en

t
o
rd

er
in

g
a
n

d
st

ra
te

g
y

a
n

d
b

o
ld

a
n

d
it

a
li

c
is

th
e

b
es

t
o
f

a
ll

fo
r

ea
ch

p
ro

b
le

m
in

st
a
n

ce
)

ca
r9

1
ca

r9
2

ea
r8

2
I

h
ec

92
I

k
fu

93
p

u
r9

3
I

ls
e9

1
ry

e9
3

st
a8

3
I

tr
e9

2
u

te
92

u
ta

92
I

y
or

83
I

A
d

d
th

e
(a

)
5.

75
4
.8

6
41

.1
5

1
2
.2
6

16
.2

7
6.

42
12

.9
3

10
.7

2
16

0.
51

9.
33

2
7
.7
1

3.
91

46
.3

0
b

ou
n

d
a
ry

se
t

av
.

5
.8

0
5
.0

2
42

.5
8

12
.7

7
16

.7
2

6.
53

13
.4

1
11

.0
8

16
1.

62
9.

91
28

.5
2

3.
98

62
5.

53
(δ

=
3
)

in
to

st
d

.
0.

10
0
.1

0
0.

67
0.

32
0.

27
0.

05
0.

23
0.

29
0.

66
0.

24
0.

72
0.

04
27

6.
37

d
iffi

cu
lt

se
t

t(
s)

31
.9

2
1
8.

44
3.

00
0.

72
4.

83
22

5.
56

3.
48

7.
40

0.
68

4.
36

0.
80

23
.8

8
2.

96

(b
)

5
.7

4
4
.8

2
41

.8
5

12
.4

4
16

.3
5

6.
48

12
.7

7
1
0
.2

2
1
5
8
.1
2

9.
40

28
.3

7
3.

82
45

.0
0

av
.

5.
82

4
.9

0
42

.8
8

12
.9

9
16

.8
3

6.
63

13
.1

4
10

.7
2

15
9.

81
9.

68
28

.9
3

3.
90

46
.0

8
st

d
.

0
.0

5
0
.0

9
0.

84
0.

30
0.

25
0.

07
0.

21
0.

17
0.

69
0.

18
0.

49
0.

05
0.

51
t(

s)
3
2.

56
19

.1
6

3.
16

0.
76

5
22

8.
08

3.
56

7.
48

0.
80

4.
60

0.
84

24
.3

6
3.

00

(c
)

5
.3

0
4.

88
42

.1
4

12
.4

3
1
6
.2

7
6
.0

7
1
2
.5
8

10
.3

9
16

1.
59

9.
37

27
.8

7
3.

77
44

.4
4

av
.

5.
43

4
.9

5
42

.8
9

12
.9

1
16

.5
8

6.
37

13
.0

2
10

.5
9

16
3.

09
9.

65
28

.3
1

3.
90

45
.7

1
st

d
.

0
.1

1
0
.0

6
0.

74
0.

36
0.

26
0.

19
0.

24
0.

15
1.

20
0.

17
0.

41
0.

10
0.

98
t(

s)
60

.4
35

.0
8

3.
64

0.
76

17
.0

0
86

6.
6

10
.0

4
20

.8
4

1.
20

7.
16

1.
96

47
.2

4
3.

12

(d
)

5.
3
1

4
.7
4

4
0
.9
1

12
.3

6
16

.3
1

6
.0

7
12

.8
4

10
.4

0
15

9.
20

9
.3
0

27
.8

0
3
.7

4
4
3
.9
8

av
.

5
.4

5
4.

82
41

.9
3

12
.7

8
16

.8
4

6.
36

13
.0

6
10

.6
2

15
9.

84
9.

54
28

.2
5

3.
89

44
.5

3
st

d
.

0.
10

0
.0

9
0.

78
0.

31
0.

35
0.

19
0.

30
0.

17
1.

02
0.

21
0.

63
0.

08
0.

86
t(

s)
60

.5
2

3
5.

16
3.

60
0.

80
17

.4
4

86
8.

84
9.

84
20

.4
0

1.
20

7.
28

2.
00

47
.2

4
3.

12

S
w

ap
in

th
e

(a
)

5.
74

5
.0

2
42

.2
0

1
2
.4

7
16

.2
3

6.
41

12
.6

9
10

.6
1

15
9.

62
9.

60
28

.5
4

3.
92

in
f.

b
ou

n
d

a
ry

av
.

5
.8

4
6
5.

09
43

.8
9

13
.1

16
.7

4
6.

54
13

.5
4

11
.3

2
16

1.
01

9.
98

29
.1

9
3.

99
72

5.
24

(δ
=

3
)

a
n

d
st

d
.

0.
10

1
65

.7
8

1.
21

0.
40

0.
38

0.
10

0.
48

0.
73

0.
87

0.
16

0.
46

0.
05

24
4.

22
d

iffi
cu

lt
se

t
t(

s)
52

.9
6

3
0.

36
5.

04
1.

16
8.

04
36

4.
76

5.
92

12
.2

4
1.

24
7.

40
1.

36
39

.6
4

4.
84

(b
)

5
.7

6
4
.7

9
41

.8
4

12
.5

2
16

.0
1

6.
48

12
.7

3
1
0
.1
1

1
5
8
.5

5
9
.4

9
2
7
.8

9
3.

88
45

.3
9

av
.

8
.8

5
4.

88
42

.8
7

13
.2

0
16

.7
7

6.
64

13
.2

5
10

.7
8

16
0.

10
9.

78
28

.0
3

3.
95

46
.4

2
st

d
.

0.
06

0
.1

0
1.

04
0.

32
0.

37
0.

09
0.

25
0.

23
0.

88
0.

14
0.

66
0.

04
0.

62
t(

s)
54

.2
0

3
1.

52
5.

24
1.

24
8.

20
37

0.
76

5.
80

12
.3

2
1.

40
7.

32
1.

40
40

.2
8

4.
96

(c
)

5
.1
7

4
.8

2
42

.7
7

12
.5

5
16

.4
2

5
.8
7

1
2
.6

7
10

.4
6

16
0.

29
9.

58
28

.5
8

3
.6
5

4
4
.2

6
av

.
5
.3

8
4.

97
43

.0
7

12
.9

2
16

.8
1

6.
25

13
.2

6
10

.6
9

16
2.

79
9.

71
28

.7
1

3.
73

45
.9

2
st

d
.

0.
09

0
.0

8
0.

58
0.

41
0.

20
0.

21
0.

21
0.

11
1.

29
0.

13
0.

47
0.

11
0.

81
t(

s)
1
04

.3
6

60
.2

0
6.

20
1.

24
29

.2
8

14
70

.2
1

18
.6

4
36

.9
6

3.
52

12
.2

8
3.

20
85

.9
2

5.
08

(d
)

5
.1
7

4
.7

6
4
1
.3

3
12

.8
4

1
5
.8
5

6.
02

13
.0

1
10

.4
1

16
0.

29
9.

57
28

.3
7

3
.6
5

44
.5

5
av

.
5
.3

7
42

.7
1

13
.2

3
16

.5
2

6.
38

13
.3

2
10

.7
0

16
2.

79
9.

74
28

.4
2

3.
73

45
.9

1
st

d
.

0.
08

0
.0

9
0.

63
0.

28
0.

33
0.

23
0.

13
0.

11
1.

29
0.

12
0.

45
0.

11
0.

97
t(

s)
1
14

.1
2

6
5.

4
6.

68
1.

40
33

.1
6

14
80

.5
8

17
.4

8
35

.7
2

3.
64

12
.1

2
3.

60
80

.7
6

5.
24

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 138

In the next set of experiments, the effect of incorporating the shuffling strategy using

roulette wheel selection in the examination selection process is tested with n = 0, 3,

5, 10, 15 and n = 3 is chosen based on the statistical test that proved that size 3 is

the best selection. As the results in Table 5.2 reveal, the addition of the boundary set

strategy with roulette wheel selection performed better by providing eight better solu-

tions compared with the swapping strategy with roulette wheel selection. The addition

of the boundary set and the selection strategy performed the best with a combination

of [SD-SD] while the best combination ordering for swapping with selection strategy is

[LD-SD] and [SD-SD] where the equal number of best solutions is achieved. Comparing

the average results obtained from the strategies without roulette wheel selection in Table

5.1 and the strategies with roulette wheel selection in Table 5.2, most of the time the

incorporation of the shuffling strategy improves the performance of the approach.

From the perspective of the strategies, the swapping strategy of the boundary set with

the difficult set indicates that the solution quality can be improved. However, this

strategy produced higher standard deviation compared with the adding strategy and

also generates a possibility of producing an infeasible solution during the search. With

boundary size 3 and roulette wheel size 3, it is observed that the adding strategy obtained

eight better results while the swapping strategy produced better results for only five

problem instances.

5.2.3 Discussion on the Performance of the Algorithm on the Toronto

Benchmark Datasets

The overall results once again highlight the importance of the methodology used to

change the ordering of difficult examinations, particularly those causing infeasibility. In

our approach, the ordering of the examinations within the difficult set with respect to

the others appears to be vital, combined with the assignment strategy. As shown in

Figure 5.7, the experiments on adding and swapping the boundary set and difficult set

with a shuffling strategy of roulette wheel selection have resulted in the average number

of the examinations in the difficult set varying with different ordering strategies. The

approach using the largest degree ordering generates infeasibility more often for a given

solution during the time-slot assignments compared with the one using the saturation

degree ordering. This feature has contributed to the higher size of the difficult set. On

the other hand, the saturation degree ordering might easily create a feasible solution

for some problem instances (for example car91 and uta92 I). However, using saturation

degree alone does not guarantee good quality of the solution. Adding or swapping the

boundary set with the difficult set might increase the number of examinations in the

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 139

difficult set. This has benefitted the shuffling strategy in attempting to avoid getting

stuck during the search process.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

[LD-LD] [SD-LD] [LD-SD] [SD-SD]

A
v
e
ra

g
e
 n

o
.

o
f

e
x
a
m

s
 i

n
 d

if
fi

c
u

lt
 s

e
t

Add

Swap

Figure 5.7: Average number of examinations in the difficult set (its size) over all
problems considering all shuffling strategies using different initialisation and reordering
heuristics of the Toronto benchmark datasets (Add = adding strategy, Swap = swapping

strategy)

Figure 5.8 illustrates the size of the difficult set and the solution quality every 100

iterations for different combinations of initial ordering and reordering heuristics for the

kfu93 problem instance. It shows that using the largest degree as initial ordering causes

an increased number of examinations to generate infeasible solutions when compared

with the saturation degree initial ordering. This infeasibility contributed to the size of

the difficult set. The trend between the two dotted lines in the graphs shows that there

is a significant drop in the solution quality when the size of the difficult set is increased

for different heuristic combinations. The [SD-LD], however, does not demonstrate any

improvement to the solution quality for a certain time, but only after the shuffling

strategy of roulette wheel selection is incorporated. On the other hand, the [LD-SD]

shows a slight movement and remains steady for a certain time even though there is a

small increase in the number of examinations in the difficult set. Meanwhile, the [SD-

SD] drastically changes the solution quality, which is significantly consistent with the

increasing size of the difficult set. It is interesting to observe that the increasing size of

the difficult set with [LD-LD] in this Figure 5.8 gives a higher possibility of achieving

a good solution quality with the help of the boundary size and the shuffling strategy of

roulette wheel selection.

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 140

0

20

40

60

80

100

120

140

160

180

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

Iteration

N
o

.
o

f
e
x
a
m

s
 i

n
 t

h
e
 d

if
fi

c
u

lt
 s

e
t

[LD-LD]

[SD-LD]

[LD-SD]

[SD-SD]

15.5

16

16.5

17

17.5

18

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

Iteration

C
o

s
t

[LD-LD]

[SD-LD]

[LD-SD]

[SD-SD]

Figure 5.8: The change in the size of the difficult set and the solution quality at every
100 iterations during the sample runs for kfu93 (LD = largest degree, SD = saturation

degree)

5.2.4 Comparison with the Previous Approaches on the Toronto Datasets

Tables 5.3 and 5.4 compare respectively the best results of the chosen heuristic combi-

nation and the best of all heuristics combination obtained from the strategy of roulette

wheel selection with the previous results on constructive and improvement approaches.

The result from the [SD-SD] of the adding strategy is chosen as it obtained the highest

number of best solutions among other heuristic combinations from the adding strategy,

for the sake of comparison with other constructive approaches. In Table 5.3, the results

of [7] are from the [SD-SD] of the adding strategy and the results of [8] are the best

results of all heuristic combinations, while Table 5.4 shows that [7] is the best results of

the ADO approach.

The method of Qu and Burke (2007), as described in Section 5.1.4, is the closest com-

parison with the ADO approach as they also implemented a decomposition strategy.

Comparing the solutions across all problem instances, it is observed that the ADO

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 141

approach does not yield the best overall results on all problem instances within con-

structive approaches. On the other hand, it provides a better result when compared

with the approach proposed by Qu and Burke (2007) for car91. Moreover, the ADO

approach obtained better results than those reported by Carter et al. (1996) for four

problems (car91, car92, sta83 I, tre92), Burke and Newall (2004) for one problem (sta83

I), Asmuni et al. (2009) for four problems (car91, rye93, sta83 I and ute92) and Burke

et al. (2010e) for three problems (kfu93, sta83 I and ute92). However, Burke and Newall

(2004) and Qu and Burke (2007) do not provide the result for rye93. Moreover, no other

approaches provide results for pur93 I except for that of Carter and Laporte (1996).

Burke and Newall (2004) did use the pur93 I instance, but they used a different variant

of the instance than that tested in this study. For details on the constructive approaches,

see Section 2.2.3.

Nevertheless, this approach does not performed well when compared with those in Qu

and Burke (2007). Our approach keeps increasing the size of the difficult set from time

to time whenever there is examination that cannot be scheduled into the timetable.

However, we introduced the merging and swapping strategies in order to vary the or-

dering in the difficult set and this strategy has improved the solution quality but still

the results are very far from Qu and Burke (2007) except for car91. We assumed that

the strategy to increase the difficult set size without considering releasing some other

examinations in the difficult set might be the reason why the results are not so good

as Qu and Burke (2007). It is suggested in the future study that some examinations in

the difficult set should be released and this would involve some analysis on identifying

which examination should be released and should be considered no longer difficult to

be scheduled. On the other hand, this study found that at a certain point, the size of

the difficult set might be settled and this has helped in better ordering when using the

roulette wheel selection strategy where this ordering combines the information from the

largest degree and saturation degree value. The examinations in the boundary set also

help in better ordering where these examinations are coming from examination in the

easy set i.e. these examinations have higher difficulty value within the easy set. They are

either merged or swapped with the examination in the difficulty set so that a different

ordering could be obtained after the process.

The results of the ADO approach are also compared with those obtained using other

improvement approaches which have incorporated a multi-phase processing that involves

the construction of an initial solution before proceeding with the improvement of the

solution quality. Table 5.4 shows the comparison of the improvement approaches with the

ADO approach. The results depict clearly that the ADO approach is broadly comparable

with the improvement strategies. The results of the ADO approach are better than

those of Di Gaspero and Schaerf (2001) for nine problem instances (car91, car92, hec92

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 142

Table 5.3: Comparison of different constructive approaches of the Toronto benchmark
datasets (The bold entries indicate the best results for constructive approaches only,
while those in italic and bold indicate the best results for the decomposition approach)

Problem [1] [2] [3] [4] [5] [6] [7] [8]

car91 7.10 4.97 5.29 5.08 5.03 5.45 5.31 5.17
car92 6.20 4.32 4.54 4.38 4.22 4.5 4.76 4.74
ear83 I 36.40 36.16 37.02 38.44 36.06 36.15 40.91 40.91
hec92 I 10.80 11.61 11.78 11.61 11.71 11.38 12.36 12.26
kfu93 14.00 15.02 15.80 14.67 16.02 14.74 16.31 15.85
pur93 I 3.90 - - - - - 6.07 5.87
lse91 10.50 10.96 12.09 11.69 11.15 10.85 12.84 12.58
rye93 7.30 - 10.38 9.49 9.42 - 10.40 10.11
sta83 I 161.50 161.90 160.40 157.72 158.86 157.21 159.20 158.12
tre92 9.60 8.38 8.67 8.78 8.37 8.79 9.30 9.30
ute92 25.80 27.41 28.07 26.63 27.99 26.68 27.80 27.71
uta92 I 3.50 3.36 3.57 3.55 3.37 3.55 3.74 3.65
yor83 I 41.70 40.88 39.80 40.45 39.53 42.2 43.98 43.98

[1] Carter et al. (1996), [2] Burke and Newall (2004), [3] Asmuni et al. (2009), [4]
Abdul Rahman et al. (2009), [5] Burke et al. (2010e), [6] Qu and Burke (2007), [7]
ADO with [SD-SD] and RWS, [8] Best of ADO for δ = 3 and n = 3)

I, kfu93, lse91, sta83 I, tre92, ute92, uta92 I), Paquete and Fortseca (2001) for three

problem instances (kfu93, lse91, ute92) and a tie with tre92, Burke and Newall (2003)

for (sta83 I), Yang and Petrovic (2004) for (sta83 I), Abdullah et al. (2007) for (car91,

sta83 I), Eley (2007) for one problem instance (car91), Caramia et al. (2008) for four

problem instances (car91, car92, sta83 I, tre92) and Turabieh and Abdullah (2011) for

one problem instance (sta83 I). Only three of the approaches (Eley (2007), Caramia

et al. (2008) and Turabieh and Abdullah (2011)) provided a result for pur93 I.

5.2.5 Implementation on the ITC2007 benchmark datasets

The proposed approach is also tested on the ITC2007 benchmark datasets. As with the

previous test, the roulette wheel selection strategy made a significant improvement to

the solution quality to the Toronto benchmark datasets. In this case, the test on the

ITC2007 benchmark datasets is implemented with the roulette wheel selection strategy.

The same parameter setting as in the Toronto benchmark datasets is employed where

the boundary set size and the roulette wheel selection size are 3. Figure 5.9 illustrates

the average number of examinations in the difficult set based on the outcome from the

tested experiment. It shows that the largest degree ordering generates more infeasible

examinations compared with the saturation degree ordering. On the other hand, the

saturation degree ordering performed better in terms of generating a feasible solution

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 143

T
a
b
l
e
5
.4
:

C
om

p
ar

is
on

of
d

iff
er

en
t

im
p

ro
ve

m
en

t
a
p

p
ro

a
ch

es
(T

h
e

b
o
ld

en
tr

ie
s

in
d

ic
a
te

th
e

b
es

t
re

su
lt

s)

P
ro

b
le

m
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
[7

]
[8

]
[9

]
[1

0]
[1

1]
A

D
O

ca
r9

1
6.

2
-

4.
65

5.
1

4
.5

5.
4

5.
2

5.
2

6.
6

4.
6

4.
8

5.
17

ca
r9

2
5
.2

-
4.

1
4.

3
3.

93
4.

2
4.

4
4.

3
6

3
.9

4.
1

4.
74

ea
rs

83
I

4
5.

7
3
8.

9
37

.0
5

35
.1

33
.7

1
34

.2
34

.9
36

.8
2
9
.3

32
.8

34
.9

2
40

.9
1

h
ec

9
2

I
12

.4
1
1.

2
11

.5
4

10
.6

10
.8

3
10

.4
10

.3
11

.1
9
.2

10
10

.7
3

12
.2

6
k
fu

9
3

1
8

16
.5

13
.9

13
.5

13
.8

2
14

.3
13

.5
14

.5
13

.8
1
3

1
3

15
.8

5
ls

e9
1

1
5.

5
13

.2
10

.8
2

10
.5

10
.3

5
11

.3
10

.2
11

.3
9
.6

10
10

.0
1

12
.5

8
p

u
r9

3
I

-
-

-
-

-
-

-
4.

6
3
.7

-
4.

73
5.

87
ry

e9
2

-
-

-
8.

4
8.

53
8.

8
8.

7
9.

8
6
.8

-
9.

65
10

.1
1

st
a
83

I
1
60

.8
15

8.
1

16
8.

73
15

7.
3

15
8.

35
15

7.
0

15
9.

2
15

7.
3

15
8.

2
1
5
6
.9

15
8.

26
15

8.
12

tr
e9

2
10

9.
3

8.
35

8.
4

7.
92

8.
6

8.
4

8.
6

9.
4

7.
9

7
.8

8
9.

30
u

ta
9
2

I
4
.2

-
3.

2
3.

5
3
.1

4
3.

2
3.

6
3.

5
3.

5
3.

2
3.

2
3.

65
u

te
92

29
2
7.

8
25

.8
3

25
.1

25
.3

9
25

.3
26

26
.4

2
4
.4

24
.8

26
.1

1
27

.7
1

yo
r8

3
I

4
1

38
.9

37
.2

8
37

.4
36

.5
3

36
.4

36
.2

39
.3

36
.2

3
4
.9

36
.2

2
43

.9
8

[1
]

D
i

G
a
sp

er
o

an
d

S
ch

ae
rf

(2
00

1)
,

[2
]

P
aq

u
et

e
an

d
F

or
ts

ec
a

(2
00

1)
,

[3
]

B
u

rk
e

an
d

N
ew

al
l

(2
00

3)
,

[4
]

M
er

lo
t

et
al

.
(2

00
3)

,
[5

]
Y

an
g

an
d

P
et

ro
v
ic

(2
0
04

),
[6

]
C

ôt
é

et
a
l.

(2
0
05

),
[7

]
A

b
d

u
ll

ah
et

al
.

(2
00

7)
,

[8
]

E
le

y
(2

00
7)

,
[9

]
C

ar
am

ia
et

al
.

(2
00

8)
,

[1
0]

B
u

rk
e

et
al

.
(2

01
0a

),
[1

1]
T

u
ra

b
ie

h
an

d
A

b
d

u
ll

a
h

(2
01

1)
an

d
[1

2]
B

es
t

o
f

A
D

O
fo

r
δ

=
3

an
d
n

=
3

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 144

than the largest degree ordering. This shows the same behaviour as the Toronto bench-

mark datasets on the contribution of the number of infeasible examinations to different

heuristic orderings. Nevertheless, the difference between these two types of ordering is

not as great as in the Toronto benchmark datasets.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

[LD-LD] [SD-LD] [LD-SD] [SD-SD]

A
v
e
a
rg

e
 n

o
.

o
f

e
x
a
m

s
 i

n
 d

if
fi

c
u

lt
 s

e
t

Add

Swap

Figure 5.9: Average number of examinations in the difficult set (its size) over all
problems considering all shuffling strategies using different initialisation and reorder-
ing heuristics of the ITC2007 benchmark datasets (Add = adding strategy, Swap =

swapping strategy)

Figure 5.10 illustrates the size of the difficult set and the solution quality every 100 iter-

ations for different combinations of initial ordering and reordering heuristics for Exam 4

of the ITC2007 benchmark datasets tested with the ADO approach with roulette wheel

selection strategy. As can be seen, the analysis between the two dotted lines shows

that the saturation degree initial ordering creates more unscheduled examinations for

Exam 4 compared with the largest degree initial ordering. The number of unscheduled

examinations for each heuristic combination shows an upward movement throughout the

iterations. On the other hand, the solution quality demonstrates a downward movement

for each heuristic combination. Nevertheless, the solution quality shows a drop-off at

the first 200 iterations while for the remaining iterations the solution quality remains

steady. With the exception of [SD-SD], the solution quality shows a decrement through-

out the iterations. However, this heuristic combination indicates the worst of the solution

quality. It is assumed that this occurred because of the nature of the problem, where

Exam 4 is one of the difficult problem instances among the ITC2007 benchmark datasets

with a conflict density of 0.15. Moreover, the problem has a difficult hard constraint

requirement to cater for scheduling forty hard constraint time-slots.

Table 5.5 shows the solution quality obtained using the parameter setting with the adding

and the swapping strategy. It is interesting to note that the swapping strategy achieved

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 145

0

50

100

150

200

250

0
20

0
40

0
60

0
80

0
10

00

12
00

14
00

16
00

18
00

Iteration

N
o
 o

f
e
x
a
m

s
 i
n

 d
if

fi
c
u

lt
 s

e
t

[LD-LD]

[LD-SD]

[SD-LD]

[SD-SD]

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0
20

0
40

0
60

0
80

0
10

00

12
00

14
00

16
00

18
00

Iteration

C
o
s
t

[LD-LD]

[LD-SD]

[SD-LD]

[SD-SD]

Figure 5.10: The change in the size of the difficult set and the solution quality every
100 iterations during the sample runs for Exam 4 of the ITC2007 benchmark datasets

(LD = largest degree, SD = saturation degree)

ten out of twelve better results compared with the adding strategy. This obviously differs

from the results obtained from the experiments from the Toronto benchmark datasets,

when the adding strategy performed better than the swapping strategy. This may be due

to the nature of the ITC2007 benchmark problems that includes consideration of room

capacity and other hard and soft constraints. Considering the best heuristic combination

within this strategy, it can be observed that the adding strategy performed effectively

with the saturation degree ordering of the difficult set, with eight problem instances

achieving better results. On the other hand, the performance for both largest degree

and saturation degree ordering for the difficult set is equal in terms of the number of

best results obtained.

A comparison of different approaches for the ITC2007 benchmark datasets with the ADO

approach is illustrated in Table 6.8. It can be seen that the ADO approach is not close

to other approaches within the ITC2007 benchmark datasets. This could be because

of the ADO approach is simply a constructive approach, while all other approaches

employed a multi-phase strategy in order to improve the solution quality. It is clear

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 146

T
a
b
l
e

5
.5
:

C
om

p
ar

in
g

so
lu

ti
on

q
u

al
it

y
of

th
e

IT
C

2
0
0
7

b
en

ch
m

a
rk

d
a
ta

se
ts

fo
r

(a
)

[L
D

-L
D

],
(b

)
[L

D
-S

D
],

(c
)

[S
D

-L
D

]
a
n

d
(d

)
[S

D
-S

D
]

w
it

h
sh

u
ffl

in
g

st
ra

te
gi

es
of

ad
d

in
g

th
e

b
ou

n
d

ar
y

se
t

in
to

th
e

d
iffi

cu
lt

se
t

a
n

d
sw

a
p

p
in

g
ex

a
m

in
a
ti

o
n

s
b

et
w

ee
n

th
e

b
o
u
n

d
a
ry

a
n

d
d

iffi
cu

lt
se

ts
w

it
h
δ

=
3

an
d

in
cl

u
d

es
ro

u
le

tt
e

w
h

ee
l

se
le

ct
io

n
fo

r
ex

am
in

at
io

n
s

w
it

h
n

=
3

(a
v
.=

av
er

a
g
e

so
lu

ti
o
n

q
u

a
li

ty
;

st
d

.=
st

a
n

d
a
rd

d
ev

ia
ti

o
n
)

(B
o
ld

fo
n
t

in
d

ic
a
te

s
th

e
b

es
t

fo
r

d
iff

er
en

t
or

d
er

in
g

an
d

st
ra

te
g
y

a
n

d
b

o
ld

a
n

d
it

a
li

c
is

th
e

b
es

t
o
f

a
ll

fo
r

ea
ch

p
ro

b
le

m
in

st
a
n

ce
)

E
1

E
2

E
3

I
E

4
E

5
E

6
E

7
E

8
E

9
E

10
E

11
E

12

A
d

d
th

e
(a

)
11

49
8

33
30

2
0
4
0
3

26
98

7
88

01
28

93
5

16
57

7
20

72
5

2
2
7
2

1
6
8
7
6

4
6
6
4
9

10
88

1
b

ou
n

d
a
ry

se
t

av
.

1
18

76
.0

36
11

.9
21

51
0.

7
31

28
4.

3
91

99
.7

29
56

5.
5

17
37

4.
0

21
18

6.
7

24
13

.5
2

17
63

3.
3

52
21

0.
7

16
05

3.
8

(δ
=

3
)

in
to

st
d
.

1
62

.1
10

1.
5

36
1.

6
21

96
.9

17
1.

6
30

9.
4

32
4.

4
22

0.
1

47
.5

28
6.

8
19

20
.2

14
35

.7
d

iffi
cu

lt
se

t

(b
)

1
1
3
7
8

34
00

20
40

5
40

79
1

87
94

2
8
7
4
5

16
61

0
2
0
5
0
8

22
73

16
93

8
47

96
7

11
74

7
av

.
1
19

28
.5

36
04

.0
21

46
7.

1
52

52
4.

4
91

52
.6

29
58

4.
5

17
35

2.
6

21
21

7.
7

24
12

.1
17

64
2.

4
51

31
4.

9
14

94
1.

8
st

d
.

1
84

.6
9
1.

9
41

7.
9

62
90

.6
16

6.
7

32
1.

4
25

0.
3

29
4.

0
42

.8
24

1.
4

16
23

.4
18

43
.0

(c
)

1
14

17
3
37

9
20

71
9

2
5
4
4
9

8
2
2
6

28
81

5
16

73
4

21
09

2
22

90
17

55
5

47
52

0
11

23
3

av
.

12
02

8.
9

36
25

.1
21

45
6.

0
30

14
2.

6
88

15
.7

29
47

2.
0

17
45

1.
1

21
66

2.
8

24
24

.0
18

12
7.

8
51

14
6.

4
14

17
2.

9
st

d
.

1
55

.5
11

9.
0

37
6.

4
24

35
.2

16
5.

6
25

2.
0

31
6.

7
27

5.
6

44
.0

24
5.

0
18

06
.8

18
07

.6

(d
)

1
16

45
3
2
4
3

20
45

7
42

93
1

82
72

29
09

0
1
6
4
0
3

20
92

7
23

07
17

38
3

50
33

1
7
4
4
5

av
.

12
00

6.
5

36
02

.2
21

50
0.

9
59

74
5.

9
88

33
.0

29
88

9.
0

17
40

2.
0

21
65

2.
1

24
24

.5
18

13
0.

2
59

89
1.

9
15

13
8.

5
st

d
.

1
77

.8
10

9.
2

43
0.

8
62

39
.9

18
9.

6
36

6.
1

32
4.

0
33

6.
8

38
.3

26
2.

3
27

59
.7

22
27

.6

S
w

a
p

in
th

e
(a

)
1
14

38
3
2
4
5

2
0
5
5
9

27
90

2
85

51
2
8
7
5
0

16
54

7
20

55
9

23
30

17
31

9
48

60
6

10
80

3
b

ou
n

d
a
ry

av
.

11
89

3.
4

35
96

.2
21

45
4.

2
32

80
1.

8
91

75
.1

29
68

9.
8

17
39

1.
6

21
29

3.
4

24
19

.1
17

70
8.

0
53

84
8.

0
14

22
5.

8
(δ

=
3
)

a
n

d
st

d
.

14
6.

1
9
6.

3
39

7.
4

21
06

.2
17

1.
1

41
7.

6
29

7.
2

33
1.

4
35

.6
21

4.
9

24
80

.7
19

63
.1

d
iffi

cu
lt

se
t

(b
)

11
65

2
33

42
20

60
6

39
23

8
89

03
29

30
0

16
49

7
20

72
1

22
77

1
6
9
4
6

47
81

4
1
0
3
0
6

av
.

11
92

1.
6

36
15

.9
21

41
4.

5
48

99
1.

1
92

13
.2

29
80

5.
9

17
28

1.
0

21
27

4.
2

24
15

.5
17

67
4.

5
51

84
1.

7
15

49
6.

6
st

d
.

1
42

.2
10

7.
9

35
7.

4
56

51
.6

15
9.

2
34

4.
2

27
0.

2
27

3.
9

51
.5

24
6.

0
18

33
.6

17
98

.7

(c
)

1
14

21
3
42

5
20

67
2

2
7
0
3
5

8
1
9
9

28
95

0
16

69
9

2
0
3
0
8

22
48

17
44

0
48

56
3

11
15

6
av

.
11

96
0.

4
36

50
.4

21
50

5.
7

31
81

1.
5

88
44

.6
29

41
2.

9
17

50
3.

0
21

63
1.

1
24

14
.5

18
18

8.
0

51
63

9.
6

14
67

2.
5

st
d

.
2
09

.0
8
7.

7
40

2.
8

20
72

.8
19

5.
4

23
6.

9
29

7.
5

38
2.

2
49

.5
23

4.
6

17
41

.3
19

17
.6

(d
)

1
1
4
0
6

34
77

20
71

1
32

09
6

84
82

28
78

5
1
6
3
8
1

20
58

7
2
1
7
1

17
57

1
4
6
8
0
4

11
31

1
av

.
11

95
2.

7
36

41
.0

21
53

0.
3

45
99

6.
6

88
24

.2
29

46
2.

2
17

36
4.

7
21

63
4.

6
24

18
.1

18
19

3.
3

50
49

4.
0

15
82

8.
8

st
d

.
1
98

.3
8
2.

7
32

2.
3

59
57

.8
15

1.
3

25
6.

5
33

4.
3

31
9.

9
57

.6
24

9.
4

16
47

.5
14

82
.4

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 147

that a modification is essential for incorporating other improvement methods in order

to improve the performance of the ADO approach. A discussion of the improvement

approach is provided in Chapter 6.

5.3 Conclusion

This study discusses an approach based on adaptive strategies that decomposes the

examinations in a given problem into two sets: difficult to schedule examinations and

easy to schedule examinations. This decomposition is performed automatically at each

iteration, and is augmented with a suitable ordering of examinations within each set.

In this study, it is observed that by merging or swapping the boundary set with the

difficult set, solution quality could be improved. A stochastic component based on

roulette wheel selection is embedded into the approach in order to shuffle the order of

examinations. This mechanism provides a higher chance that an examination with a

higher score will be selected for timetabling. Different parameters are tested on the

boundary size and roulette wheel selection size and the parameter setting is undertaken

based on the statistical analysis. It is observed that, using saturation degree heuristic,

the possibility of creating infeasible solutions could be decreased and that dynamic

ordering achieves better ordering of examinations in the list. This study shows that the

proposed approach is simple to implement, yet it is competitive with previously published

constructive and improvement approaches. In this study, the same ordering heuristics

are used for reordering the examinations in the difficult and easy sets. The proposed

framework allows the use of different strategies. The next chapter will discuss the

improvement strategy for enhancing solutions obtained from the proposed constructive

approaches.

Chapter 5. A Construction Approach for Examination Timetabling based on Adaptive
Decomposition and Ordering 148

T
a
b
l
e
5
.6
:

C
om

p
ar

is
on

of
d

iff
er

en
t

ap
p

ro
ac

h
es

fo
r

th
e

IT
C

2
0
0
7

b
en

ch
m

a
rk

d
a
ta

se
ts

(T
h

e
b

o
ld

en
tr

ie
s

in
d

ic
a
te

th
e

b
es

t
re

su
lt

s)

P
ro

b
le

m
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
[7

]
[8

]
[9

]
[1

0]
[1

1]
[1

2]
[1

3]
A

D
O

E
x
am

1
43

70
5
90

5
80

06
66

70
12

03
5

43
70

46
33

46
99

85
59

62
35

47
75

4
1
2
8

43
68

11
37

8
E

x
a
m

2
4
00

1
00

8
34

70
62

3
30

74
38

5
40

5
38

5
83

0
29

74
38

5
3
8
0

39
0

32
43

E
x
a
m

3
1
00

49
13

86
2

1
86

22
-

15
91

7
93

78
90

64
85

00
11

57
6

15
83

2
89

96
7
7
6
9

98
30

20
40

3
E

x
a
m

4
1
81

41
18

67
4

2
25

59
-

23
58

2
15

36
8

15
66

3
14

87
9

21
90

1
35

10
6

16
20

4
1
3
1
0
3

17
25

1
25

44
9

E
x
a
m

5
29

88
4
13

9
47

14
38

47
68

60
29

88
30

42
27

95
39

69
48

73
29

29
2
5
1
3

30
22

81
99

E
x
a
m

6
2
69

50
27

64
0

2
91

55
27

81
5

32
25

0
26

36
5

25
88

0
25

41
0

28
34

0
31

75
6

25
74

0
2
5
3
3
0

25
99

5
28

74
5

E
x
a
m

7
42

13
6
68

3
1
04

73
54

20
17

66
6

41
38

40
37

38
84

81
67

11
56

2
40

87
3
5
3
7

40
67

16
38

1
E

x
a
m

8
78

61
10

52
1

1
43

17
-

16
18

4
75

16
74

61
74

40
12

65
8

20
99

4
77

77
7
0
8
7

75
19

20
30

8
E

x
a
m

9
10

47
1
15

9
17

37
12

88
20

55
10

14
10

71
-

-
-

96
4

9
1
3

-
21

71
E

x
a
m

1
0

1
66

82
-

15
08

5
14

77
8

17
72

4
14

55
5

14
37

4
-

-
-

13
20

3
1
3
0
5
3

-
16

87
6

E
x
a
m

1
1

3
41

29
43

88
8

-
-

40
53

5
31

42
5

29
18

0
-

-
-

28
70

4
2
4
3
6
9

-
46

64
9

E
x
a
m

1
2

55
35

-
5
26

4
-

63
10

53
57

56
93

-
-

-
51

97
5
0
9
5

-
74

45

[1
]

M
ü

ll
er

(2
00

8)
,

[2
]

G
og

os
et

a
l.

(2
0
08

),
[3

]
A

ts
u

ta
et

al
.

(2
00

8)
,

[4
]

D
e

S
m

et
(2

00
8)

,
[5

]
P

il
la

y
(2

00
8)

,
[6

]
M

ü
ll

er
(2

00
9)

,
[7

]
M

cC
ol

lu
m

et
al

.
(2

0
09

),
[8

]
G

og
os

et
al

.
(2

00
9)

,
[9

]
P

il
la

y
(2

01
0a

),
[1

0]
B

u
rk

e
et

al
.

(2
01

0f
),

[1
1]

G
og

os
et

al
.

(2
01

0a
),

[1
2]

G
og

os
et

al
.

(2
01

0b
),

[1
3]

T
u

ra
b

ie
h

an
d

A
b

d
u

ll
a
h

(2
01

1)
)

Chapter 6

A Variable Neighbourhood Search

- Great Deluge for Examination

Timetabling Problem

Most successful approaches to examination timetabling, including that adopted by the

winner of the ITC2007 competition (Müller, 2009), consist of multiple stages, in which a

constructive approach is used in finding a good initial solution, and then one or more im-

provement approaches are employed to further improve the quality of solution obtained

in the previous stage. The main objectives of this chapter are to show how previously

constructed solutions are improved and to investigate the influence of various initialisa-

tion methods and neighbourhood orderings on the performance of the search algorithm.

The chapter presents a variable neighbourhood search approach combined with a great

deluge acceptance method, allowing the acceptance of some worsening solutions for solv-

ing the examination timetabling problem. A range of neighbourhood structures were

tested within this approach for diversification purposes. The neighbourhood orderings in

VNS and the effect of the initialisation methods on the solution quality of the improve-

ment approach were investigated in relation to two well-known examination timetabling

benchmarks. The results illustrate the success of the variable neighbourhood search -

great deluge (VNS-GD) approach in solving examination timetabling problems. This

study has shown that initialisation is crucial for the success of the improvement ap-

proach used in a multistage setting, particularly for VNS. The present chapter describes

variable neighbourhood search in Section 6.1. The details of the variable neighbourhood

search - great deluge approach are discussed in Section 6.2, focusing on the algorithmic

components, initialisations, neighbourhood structures and acceptance criteria. Section

6.3 provides the experimental results and comments. Finally, the conclusion is presented

in Section 6.4.

149

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 150

6.1 Variable Neighbourhood Search (VNS)

Most local search approaches could trap at a local minimum during the search process.

As described by Mladenović and Hansen (1997) and Hansen and Mladenović (2001),

different neighbourhood structures have their own local minimum. Motivated by this,

the use of a set of neighbourhood structures was introduced by Mladenović and Hansen

(1997) so that the search process could continue by changing to one of the other neigh-

bourhood structures, while at the same time the search could avoid being trapped at

a local minimum. VNS is a descent-ascent approach that iteratively applies a shaking

strategy and local search in order to find the best solution for a problem at hand. This

algorithm can be considered as a single point-based selection hyper-heuristic (Burke

et al., 2010b) which requires several neighbourhood structures with different natures. If

one of these fails to improve the solution, the other may still have a chance. The VNS

main framework consists of three main steps: ‘shaking’, ‘local search’ and ‘move’.

Algorithm 13 below illustrates the steps of the basic VNS algorithm adopted by Mlade-

nović and Hansen (1997). Nk is a set of neighbourhood structures that will be selected

during the search, where k = 1, ..., kmax. The foundation of basic VNS was a descent

approach that only accepts the improving move. The current solution is accepted if it is

better than the incumbent solution. In this circumstance, the neighbourhood structures

are alternated in order to avoid local optimum since different neighbourhood structures

have their own local optimum. The local search procedure acts as an intensification

strategy to converge to a good solution. At the shaking procedure, the point s′ is gen-

erated randomly. The shaking procedure is a diversification strategy that avoids cycling

during the search. There are several stopping conditions utilised in this approach, such

as the maximum number of iterations, the number of non-improving iterations and the

preset of CPU time.

Algorithm 13 Basic VNS algorithm

Initialisation: Select the set of neighbourhood structures Nk, k = 1, ..., kmax, to be
used in the search; find an initial solution s; choose stopping condition;
Repeat until stopping criteria is satisfied:
1. Set k := 1;
2. Until k = kmax, repeat:
(a) Shaking: Generate a point s′ at random from the kth neighbourhood of s(s′ ∈
Nk(s));
(b) Local Search: Apply a local search method with s′ as initial solution until local
optimum s′′ is obtained.
(c) Move or not: Accept s′′(s ← s′′) if it is better than incumbent solution and
continue the search with N1(k ← 1); otherwise k = k + 1;

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 151

The VNS approach has been successfully implemented in the field of university timetabling.

Wong et al. (2005), for example, implemented variable neighbourhood descent using mul-

tiple neighbourhood structures for solving the un-capacitated problem of examination

timetabling. Each neighbourhood structure was formulated into a different local search

operator in order to explore and exploit the search space of solutions. The aim was

to balance the intensification and diversification during the exploration of the search

space. Furthermore, Ahmadi et al. (2003) employed the VNS as a high-level heuris-

tic that chose low-level heuristics. Their study described the application of VNS as a

perturbation-based algorithm to the examination timetabling problem that incorporated

weight values to each low-level heuristic in order to find good quality solutions. The low-

level heuristics used within this hyper-heuristic were based on a combined selection of

an examination, time-slot and room.

A recent study has incorporated a genetic algorithm as neighbourhood selector within a

VNS approach. Burke et al. (2010a) showed that VNS and hybridisation with a genetic

algorithm could yield good quality solutions, a method which produced several best

known results in the literature. In their study, the genetic algorithm imitated the concept

of hyper-heuristics and case-based reasoning, where it was not directly applied to the

problem but instead worked at a high-level. Since the solution quality was dependent

on the selection of a neighbourhood, the genetic algorithm performed the search by

selecting the list of neighbourhoods from the VNS framework.

The VNS approach was implemented for the course timetabling by Abdullah et al.

(2005). The course timetabling problem required a search for the best assignment of

lectures to time-slots and rooms, subject to constraints. The study employed a VNS

approach using exponential Monte-Carlo as an acceptance criteria for worsening moves,

and during the search, a tabu list was utilised to prohibit a non-improving neighbourhood

being used for a certain period.

There have been further recent studies based on the VNS approach. For example, VNS

was employed to solve a nurse rostering problem (Burke et al., 2003b), a graph colouring

problem (Avanthay et al., 2003), a median cycle problem (Morena Pérez et al., 2003),

project scheduling (Fleszar and Hindi, 2004) and an external graph problem (Caporossi

and Hansen, 2000).

6.2 VNS for Examination Timetabling

Studies by Hansen and Mladenović (2001), Burke et al. (2003b) and Abdullah et al.

(2005) have shown that the choice of neighbourhood structures and their ordering

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 152

(changing from one to another) within the VNS framework could considerably influ-

ence the solution quality. The neighbourhood structures were ordered on the basis of

a pre-defined sequence with increasing step size, on the assumption that this might be

the best sequence of neighbourhood structures yielding a better solution quality. At the

same time, the running time could be reduced since the search always started with a

small neighbourhood structure each time an improvement occurred. Burke et al. (2003b),

introduced a parameter successk to penalise a non-improving neighbourhood structure.

In the case that an improvement to the solution quality was found, the search always

started with the first neighbourhood with the smallest size, while at the same time con-

sidering the successk value for choosing a neighbourhood. Any neighbourhood that had

successk less than 1, could not have priority in the next iteration as it showed that the

neighbourhood could not make any improvement to the solution quality. Nevertheless, a

recent study by Burke et al. (2010a) has shown that the ordering of neighbourhood struc-

ture was not essential: the neighbourhood structure was chosen by a genetic algorithm

and the solution quality depended on the selection of a neighbourhood.

Motivated by these studies, an investigation has been undertaken into the ordering of

neighbourhood structures, in which five variants of neighbourhood ordering are explored.

The first and second variants are the ordering of neighbourhood structures based on

increasing size, as implemented by Burke et al. (2003b) and Abdullah et al. (2005): the

first variant is a basic VNS (as illustrated in Algorithm 13) where the next neighbourhood

structure to be used always starts with k = 1 whenever an improvement is found; the

second variant is when each time improvement is found, the current neighbourhood k is

used in the next iterations for further search. These variants of neighbourhood orderings

are represented by ‘basic VNS’ and ‘start-k’.

The third variant of neighbourhood ordering is based on the strategy adapted from

the squeaky wheel optimisation (Joslin and Clements, 1999), by giving penalty to the

parameter ‘priority’ to the non-improving moves. If there is no improvement to the

solution quality when using the current k neighbourhood, then the next neighbourhood

to be chosen is the one with the lowest priority value. As illustrated in Algorithm 14, a

parameter, priorityk, is increased to any neighbourhood that cannot improve the current

solution. This value is increased by one each time an improvement to the solution quality

cannot be found. In this study, this ordering strategy is represented by ‘adaptive I’. The

effect of small size neighbourhood on the adaptive change of neighbourhood structure is

also investigated: the fourth variant of neighbourhood is similar to the third but gives

greater priority to a small neighbourhood to be chosen first (it is referred as ‘adaptive

II’). In the case where more than one neighbourhood has the same priority value, then

the smaller size neighbourhood is chosen first in the next iteration.

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 153

In this circumstance, the neighbourhood structures are first classified into small and large

group sizes, based on the effect on the chosen moves. For example, the small neighbour-

hood structure consists of the single move of an examination to a new feasible time-slot,

while the large neighbourhood consists of a number of examinations to be moved and

might incur large differences to the solution quality when the chosen move takes place,

for instance, when two time-slots are swapped at random. This neighbourhood structure

involves all examinations in one time-slot to be swapped with all examinations in the

other time-slot.

Algorithm 14 Adaptive VNS algorithm

Select the set of neighbourhood structures Nk, k = 1, ..., kmax, to be used in the search;
set initial solution s; choose stopping condition;
Repeat until stopping criteria is satisfied:
1. Set k := 1;
2. Until k = kmax, repeat:
(a) Shaking: Generate a point s′ at random from the kth neighbourhood of s(s′ ∈
Nk(s));
(b) Local Search: Apply a local search method with s′ as initial solution until local
optimum s′′ is obtained.
(c) Move or not:
if s′′ is better than incumbent solution or is accepted based on acceptance criterion
then
s← s′′

else
priorityk ← priorityk + 1

end if
Continue the search with k that has the lowest priority value and if more than one
neighbourhood that has highest priority then choose k that is from small size of
neighbourhood.

As the fifth variant of neighbourhood ordering, the reinforcement learning mechanism

is also investigated, a strategy which has previously been implemented and discussed

in Section 4.1.4.3 of Chapter 4. Reinforcement learning is a mechanism that interacts

with the behaviour of an environment by assigning punishments and rewards based on

its performance. In this case, the improving move of a neighbourhood is given a reward,

while a punishment is given if the move fails to improve the current solution. Each time

the reward or punishment is assigned, the score value scorek of a k neighbourhood is

increased or decreased by one. Initially, the scorek is initiated with 5. The increment of

scorek value never exceeds the value of ten and remains constant if the neighbourhood

continues to improve, while the decrement never exceeds the value of zero and remains

constant if the neighbourhood keeps failing to improve. This variant of neighbourhood

ordering in this study is referred as ‘RL’. The pseudo-code of the reinforcement learning

algorithm is illustrated in Algorithm 15.

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 154

Algorithm 15 Reinforcement learning VNS algorithm

Select the set of neighbourhood structures Nk, k = 1, ..., kmax, to be used in the search;
set initial solution s; choose stopping condition;
Repeat until stopping criteria is satisfied:
1. Set k := 1;
2. Until k = kmax, repeat:
(a) Shaking: Generate a point s′ at random from the kth neighbourhood of s(s′ ∈
Nk(s));
(b) Local Search: Apply a local search method with s′ as initial solution until local
optimum s′′ is obtained.
(c) Move or not:
if s′′ is better than incumbent solution or is accepted based on acceptance criterion
then
s← s′′

scorek ← scorek + 1
if scorek > 10 then
scorek = 10

end if
else
scorek ← scorek − 1
if scorek < 0 then
scorek = 0

end if
end if
Continue the search with k that has highest score and if more than one neighbourhood
has highest score then choose k randomly.

6.2.1 Initialisation

The study is concerned with improving the initial solution obtained from the construc-

tive approaches in previous chapters. The main objective is to understand the influence

of different kinds of initialisation to the solution quality when an improvement approach

is employed. Several studies have shown that good initial solutions may ultimately trans-

late to a further better quality solution within a short time (Burke and Newall, 2003,

Gogos et al., 2010a). Three different variants of initial solutions are considered, i.e.

poor, good and multiple. The good initial solution is the best obtained using the previ-

ous constructive approaches, while the poor initial solution is that which is worse by at

least 20% compared with the good initial solution. The good and poor initial solutions

are only one value and they are kept and used for a number of runs for improvement,

while the multiple initial solutions are generated at each run before proceeding with the

improvement approach, and their quality is varied. It is possible that some of them

are not feasible, although this infeasibility has occurred only in relation to the ITC2007

benchmark datasets, and can be dealt with during the improvement phase with a re-

pair mechanism that is incorporated into the VNS-GD algorithm. The multiple initial

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 155

solutions are obtained from the constructive approach of Adaptive Heuristic Orderings

described in Chapter 3.

6.2.2 Neighbourhood Structures

The choice of neighbourhood structure affects the search for better solution quality. The

purpose of employing more than one neighbourhood structure is to attempt to ensure

that it is possible to escape from a local optimum. This is due to the fact that each

neighbourhood structure tends to have a different local minimum. In this case, if one

neighbourhood structure fails to improve the current solution, then the other neigh-

bourhood structures might still have a chance. Recently, the Kempe-chain move has

been successfully applied to timetabling problems, presented in studies by Casey and

Thompson (2003), Merlot et al. (2003), Côté et al. (2005), Tuga et al. (2007), Shaker and

Abdullah (2009), Burke and Bykov (2006), Burke et al. (2010a), Gogos et al. (2010b)

and Abdullah et al. (2010). The first implementation of the Kempe-chain move in

timetabling was by Thompson and Dowsland [1996b], the focus of their study being

to investigate the robustness of a simulated annealing approach with varying cooling

schedules and three different neighbourhood structures in relation to the examination

timetabling problem: the standard, the Kempe-chain and the s-chain. It was found that

the Kempe-chain neighbourhood structure outperformed the others, and it was there-

fore concluded that the neighbourhood selection in the simulated annealing approach

contributed significantly to a better quality timetable.

A standard neighbourhood structure as discussed by Thompson and Dowsland (1996b) is

a single move neighbourhood which chooses an examination randomly and moves it to a

new feasible time-slot. In addition to this simple neighbourhood structure, Kempe-chain

is introduced as a variant. The Kempe-chain neighbourhood operates over two subsets of

examinations by swapping between two feasible time-slots. Each subset of examinations

is connected by edges to represent conflict between the examinations. Figures 6.1 (a)

and 6.1 (b) show the standard Kempe-chain before and after the move. For instance,

Figure 6.1 (a) depicts how e1 is chosen to be moved to a new time-slot, t2. In this

circumstance, the Kempe-chain of e1 contains {e1, e2, e3, e5, e6, e8}, shaded in colour.

Let us suppose e1 has to be moved to t2. However, the single move is impossible since

conflict occurs with e5, e6 and e7. In this case, all examinations that are connected

to e1 are swapped between these two time-slots, as shown in Figure 6.1 (b). On the

other hand, any other examinations that are not connected to e1 remain in the current

time-slot. This variant of Kempe-chain is called pair-wise Kempe-chain, a term used

by Tuga et al. (2007), while a study by Thompson and Dowsland (1996b) named this

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 156

Kempe-chain as s-chain. The pair-wise Kempe-chain consists of a k-pair of Kempe-

chain in a set of neighbourhood structures, where k is a positive integer value. In this

circumstance, Figure 6.1 is an example of a one-pair Kempe-chain or one-chain (s = 1).

e1

e2

e3

e4

e5

e6

e7

e8

t1 t2

(a)

e4

e5

e6

e8

e1

e2

e3

e7

t1 t2

(b)

Figure 6.1: The one-pair Kempe-chain (a) before and (b) after the move

As the most common Kempe-chain neighbourhood in examination timetabling considers

only a single move between two distinct time-slots, another variant of Kempe-chain is

a two-pair Kempe-chain that involves examinations connected within k different time-

slots. The Kempe-chain described in Thompson and Dowsland (1996b) used s = 2, while

Tuga et al. (2007) chose k number of pairs randomly. Figures 6.2 (a) and 6.2 (b) below

show an example of a two-pair Kempe-chain. For instance, e1 is chosen to be moved

to a new time-slot. As Figure 6.2 (a) illustrates, the Kempe-chain of e1 contains {e1,

e2, e3, e5, e6, e8, e9, e10, e11}, connected with edges and all connected examinations

shaded in colour. The intention is to swap between two distinct time-slots - in this case,

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 157

all the connected examinations in t1 and t3 are swapped. Figure 6.2 (b) shows that the

connected examinations remain in the current time-slot, t2.

e1

e2

e3

e4

e5

e6

e7

e8

t1 t2 t3

e9

e10

e11

e12

(a)

e4

e9

e10

e11

e5

e6

e7

e8

t1 t2 t3

e1

e2

e3

e12

(b)

Figure 6.2: The two-pair Kempe-chain (a) before and (b) after the move

It was decided to use only the one-pair Kempe-chain because the two-pair chain did not

perform well when compared with the one-pair chain, based on the initial test to the

proposed approach. It was also proven by Thompson and Dowsland (1996b) that the

one-pair Kempe-chain was the best neighbourhood to be used when compared with the

s-chain neighbourhood with s = 2.

The neighbourhood structures in this study allow for infeasible moves. In the case of

the Kempe-chain neighbourhood, the infeasible move may be due to more examinations

from different time-slots being connected to the chosen examination. One of the aims of

multiple neighbourhood structures in VNS is to shake the current solution s in various

ways. In this case, the neighbourhood structures shake the solution s by allowing an

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 158

infeasible move. In order to treat this infeasibility, a repair mechanism is invoked to the

VNS algorithm. The detail of this process is discussed in Section 6.2.3.

Fifteen neighbourhood structures are considered in this study. As stated earlier, in

order to generate the best sequence of neighbourhood structures, these are initially

ordered based on their increasing size. Biased neighbourhood structures as used in Burke

et al. (2010a) and Abdullah et al. (2005) were also considered. These neighbourhood

structures (neighbourhood 8, 9, 11 and 12) are additionally considered - they choose

the highest penalty value examination from a number of examinations that are selected

randomly. The implemented neighbourhood structures are ordered as follows:

1. One examination at random and move to a new random feasible time-slot.

2. Two examinations at random and move each examination to a new random feasible

time-slot.

3. Two examinations at random and swap the time-slots between these two exami-

nations. The feasibility of the two examinations is maintained.

4. Three examinations at random and move each examination to a new random

feasible time-slot.

5. Four examinations at random and move each examination to a new random feasible

time-slot.

6. Five examinations at random and move each examination to a new random feasible

time-slot.

7. One move of 1-pair Kempe-chain of one random examination.

8. One move of 1-pair Kempe-chain of one highest penalty examination selected from

a random 10% selection of the examination.

9. One move of 1-pair Kempe-chain of one highest penalty examination selected from

a random 20% selection of the examination.

10. Two moves of 1-pair Kempe-chain of one random examination.

11. Two moves of 1-pair Kempe-chain of one highest penalty examination selected

from a random 10% selection of the examination.

12. Two moves of 1-pair Kempe-chain of one highest penalty examination selected

from a random 20% selection of the examination.

13. Two time-slots at random and swap between them.

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 159

14. One time-slot at random and move to a new feasible time-slot.

15. Shuffle all time-slots at random.

The neighbourhood structures (1 to 15) were employed with the Toronto benchmark

datasets, while the ITC2007 benchmark datasets employed the neighbourhood structures

1 to 9 only. This is because, in order to reduce the running time whenever a move was

employed, a new best room need to be searched i.e. the best room that has the lowest

penalty value of all rooms.

6.2.3 Acceptance Criteria of VNS

Algorithm 16 below illustrates the pseudo-code of the VNS algorithm with the great

deluge algorithm as acceptance criteria. The great deluge algorithm is a local search

approach that accepts worst solution based on an acceptance level of quality, B and

simultaneously B is decreased with a certain amount called decay rate, β. This approach

has demonstrated good performance within the timetabling problem. Implementation of

these approaches is exemplified in studies in examination timetabling (McCollum et al.,

2009, Özcan et al., 2010, Turabieh and Abdullah, 2011) and in course timetabling (Burke

et al., 2003a, Landa-Silva and Obit, 2008). The pioneer of this approach, Dueck (1993),

suggested that the decay rate, β should be low enough to allow the algorithm to search

for more regions. Nevertheless, various implementations on the decay rate have been

investigated by Turabieh and Abdullah (2011) (dynamic change of decay rate based

on the ‘electromagnetic-like mechanism’), by Landa-Silva and Obit (2008) (non-linear

decay rate), and by McCollum et al. (2009) (re-heating decay rate).

In order to ease implementation, the decay rate, β for this study is set as 0.001 for the

Toronto benchmark datasets and 0.05 for the ITC2007 benchmark datasets. This is

based on the initial test and it is found that these values are the best setting depending

on how much the acceptance level of quality, B should be reduced for each problem

instance. On the other hand, the acceptance level of quality, B is initialised as the

initial solution quality of f(s) as discussed in Dueck (1993).

With reference to Algorithm 16, let s be an initial solution and is set as the best solution,

sbest, obtained so far. The quality of solution s, f(s) is set as f(sbest). While the

algorithm starts the search, a solution s′ is generated randomly by visiting the kth

neighbourhood sequentially until a local optima s′′ is found. The solution s′′ is accepted

whenever the solution quality of s′′, f(s′′) is better than f(sbest). Otherwise, if f(s′′)

is better than the acceptance level of quality, B, then the solution s′′ is accepted. The

acceptance level of quality, B is updated by reducing it with a decay rate, β. Every

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 160

time the solution quality, f(s) is accepted, the search will continue with the identified

neighbourhood, k as defined in Section 6.2.1.

Algorithm 16 Acceptance criteria of VNS algorithm

Select the set of neighbourhood structures Nk, k = 1, ..., kmax, to be used in the search;
choose stopping condition;
set initial solution s; sbest ← s; f(sbest ← f(s));
Estimate the acceptance level of quality to be accepted, B = f(s); set the decay rate,
β;
Repeat until stopping criteria is satisfied:
1. Set k := 1;
2. Until k = kmax, repeat:
(a) Shaking: Generate a point s′ at random from the kth neighbourhood of s(s′ ∈
Nk(s));
Repair mechanism:
(b) Local Search: Apply a local search method with s′ as initial solution until local
optimum s′′ is obtained.
(c) Move or not:
Calculate f(s′′)
Great deluge acceptance criteria:
if f(s′′) is better than f(sbest) then
s← s′′

sbest ← s′′

else
if f(s′′) is better than B then
s← s′′

end if
end if
B = B − β
Continue the search with identified k.

The approach is incorporated with a repair mechanism since infeasible moves are consid-

ered. The repair mechanism for the Toronto benchmark datasets is shown in Algorithm

17. Each examination is considered to be moved to the time-slot that could be reduced to

the lowest delta cost. The examination with the lowest delta cost to be moved, is moved

to the best time-slot, jbest, and the process continues until no delta cost is incurred for

further improvement.

The repair mechanism for the ITC2007 benchmark datasets is illustrated in Algorithm

18. It does not, however, consider all examinations to be repaired: only a number of

examinations are considered, including those in the list of G that are related to the

infeasible moves. This is to avoid long running times during the repair process involved

when searching for new best room each time the delta cost is calculated. In any circum-

stance, if the delta cost could reduce the current penalty cost, then the examination e

is moved to time-slot j and their best room. The repair mechanism then is restarted

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 161

Algorithm 17 Repair mechanism for the Toronto benchmark datasets

Repair mechanism:
while the delta cost > 0 do

for i = 1 to number of examinations do
for j = 1 to number of slots do

Find the lowest delta cost;
ibest ← i;
jbest ← j;

end for
end for
Move ibest to jbest

end while

with i = 0. The number of examinations to be repaired is only one percent of the over-

all examinations and if there is no improvement for a certain time then the number of

examinations is increased to two percent.

Algorithm 18 Repair mechanism for the ITC2007 benchmark datasets

Repair mechanism:
G ={list of examinations related with infeasible move}
Set number of examinations, numEx to be repaired where the examination from 1
to n are chosen randomly from all examinations and the remaining examinations i.e.
from n+ 1 to numEx are examinations related with the infeasible move
for i = 1 to numEx do

if i < n then
Choose e randomly from all examinations

else
Choose e from G

end if
for j = 1 to number of time-slots do

Find the best room of examination e and best slot j
Calculate delta cost
if delta cost < 0 then

Move e to j and the best room
i = 1

end if
end for

end for

6.3 Experiments and Results

The stopping conditions for the experiments were set as 50000 iterations for the Toronto

benchmark datasets, while the ITC2007 benchmark datasets followed the running time

stated in the competition rules. However, the running time for the initial solutions is not

included during the improvement phase due to the reason of comparing the performance

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 162

of the algorithm using different initial solution values. A hundred runs were obtained

for each dataset tested with three different initial solutions and with different types

of neighbourhood orderings. The results are provided in the tables below, each table

representing the results for each initial solution tested with different neighbourhood

orderings. The best solution for each dataset is represented in bold font.

6.3.1 Toronto

Tables 6.1, 6.2 and 6.3 illustrate the results of poor, good and multiple initial solutions

respectively, tested with different neighbourhood orderings for the Toronto benchmark

datasets. The initial values of the poor and good solutions for each datasets are also

provided in the tables. It is intended that these values will be improved using the VNS-

GD algorithm, repeating each value for a hundred runs. On the other hand, since the

multiple initial solution is generated at each run before proceeding to the improvement

phase, only the average value of all generated initial solutions is provided in Table 6.3.

The overall results of poor initial solution illustrates in Table 6.1 show that the basic

VNS that always starts with k = 0 whenever there is improvement to the solution quality,

generates most of the best solutions with four best results and two ties for kfu93 and

sta83 I. With other neighbourhood orderings, start-k obtained four best results with one

tie, adaptive I obtained one best result and one tie with other types of neighbourhood

orderings, adaptive II obtained one best result but tied with basic VNS and RL obtained

one best result and a tie for sta83 I. The standard deviation (of less than one) for different

neighbourhood orderings are relatively small.

The results generated using the good initial solution indicate the same pattern as that for

the poor initial solution, where the basic VNS obtained best results of six problems and

a tie for sta83 I. On the other hand, the other neighbourhood ordering types obtained

three best results for start-k, one best result for the adaptive II and RL. The rest of

neighbourhood orderings are tied for sta83 I. Considering the standard deviation value,

the good initial solution provides less than the poor initial solution. The poor initial

solution contributes higher standard deviation and this is due to the poor starting-point

which tends to generate variation in the final solution quality.

The results from the multiple initial solutions also appear to work well with this ap-

proach, indicating the same pattern when the solutions are generated. The basic VNS

shows great success with best solutions of six problems, while start-k, adaptive I and RL,

each obtained one best results respectively while adaptive II obtained two best results.

The rest of the neighbourhood orderings are tied for the sta83 I problem. The standard

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 163

Table 6.1: The results of poor initial solution tested with different neighbourhood
orderings for the Toronto benchmark datasets (RL = reinforcement learning, stdev. =

standard deviation, Av. t(m) = average running time in minutes)

One poor initial solution
Initial Basic Adaptive Adaptive Av.

Problem value Start-k VNS I II RL t(m) Best

car91 6.35 4.95 4.89 4.97 4.97 4.97 518.95 4.89
stdev. 0.06 0.06 0.06 0.07 0.07
car92 5.43 4.19 4.18 4.14 4.15 4.18 274.76 4.14
stdev. 0.07 0.06 0.06 0.05 0.05
ear83 I 47.85 33.45 33.55 33.52 33.63 33.60 18.56 33.45
stdev. 0.52 0.59 0.51 0.51 0.55
hec92 I 13.91 10.29 10.21 10.25 10.38 10.33 1.33 10.21
stdev. 0.15 0.14 0.14 0.14 0.14
kfu93 18.03 13.48 13.46 13.56 13.46 13.52 68.87 13.46
stdev. 0.15 0.15 0.15 0.15 0.14
lse91 14.29 10.53 10.55 10.60 10.57 10.55 57.30 10.53
stdev. 0.19 0.19 0.15 0.17 0.19
rye93 11.71 8.37 8.45 8.57 8.50 8.61 120.96 8.37
stdev. 0.10 0.10 0.10 0.11 0.11
sta83 I 196.68 157.06 157.06 157.06 157.07 157.06 1.06 157.06
stdev. 0.06 0.05 0.06 0.06 0.05
uta92 I 4.40 3.41 3.40 3.44 3.43 3.42 485.08 3.40
stdev. 0.05 0.04 0.03 0.04 0.04
ute92 32.80 25.04 24.96 25.08 25.06 24.96 4.06 24.96
stdev. 0.10 0.10 0.11 0.11 0.10
tre92 10.91 8.18 8.26 8.32 8.28 8.29 38.08 8.18
stdev. 0.11 0.13 0.09 0.10 0.10
yor83 I 50.48 36.22 36.77 36.23 36.71 36.05 10.32 36.05
stdev. 0.40 0.40 0.39 0.36 0.44

deviation among the neighbourhood orderings are clearly about the same, but there are

some significant differences when compared with different types of initial solutions.

Among the problems, sta83 I shows almost no differences when employed with different

types of neighbourhood ordering. Even though sta83 I starts with different initial so-

lutions, the move is tended to get stuck at local optimum and no further improvement

could be obtained. This may be due to the incorporation of the repair mechanism that

checked and moved each examination and time-slot which could reduce the least penalty

cost to the lowest level. Although there are variations in the standard deviation values

for different initial solutions used for the sta83 I problem, the start with good initial

solution shows that the standard deviations (less than 0.004) are very small.

The overall results demonstrate that the basic VNS performed very well where it ob-

tained most best results of the thirteen problems of the Toronto benchmark datasets

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 164

Table 6.2: The results of good initial solution tested with different neighbourhood
orderings for the Toronto benchmark datasets (RL = reinforcement learning, stdev. =

standard deviation, Av. t(m) = average running time in minutes)

One good initial solution
Initial Basic Adaptive Adaptive Av.

Problem value Start-k VNS I II RL t(m) Best

car91 5.08 4.86 4.87 4.89 4.94 4.88 542.65 4.86
stdev. 0.03 0.03 0.03 0.02 0.03
car92 4.34 4.24 4.22 4.22 4.21 4.20 286.64 4.20
stdev. 0.02 0.01 0.01 0.01 0.02
ear83 I 36.91 34.36 33.81 34.08 33.76 34.17 17.62 33.76
stdev. 0.54 1.01 0.69 0.69 0.63
hec92 I 11.13 10.11 10.19 10.28 10.23 10.30 1.38 10.11
stdev. 0.15 0.15 0.14 0.16 0.14
kfu93 14.42 13.83 13.62 13.89 13.80 13.84 60.38 13.62
stdev. 0.06 0.09 0.05 0.07 0.06
lse91 11.41 10.65 10.58 10.65 10.66 10.59 54.89 10.58
stdev. 0.12 0.13 0.14 0.12 0.11
rye93 9.37 8.51 8.45 8.51 8.50 8.53 133.74 8.45
stdev. 0.08 0.08 0.08 0.09 0.08
sta83 I 157.34 157.08 157.08 157.08 157.08 157.08 1.10 157.08
stdev. 0.00 0.00 0.00 0.00 0.00
uta92 I 3.52 3.49 3.46 3.48 3.48 3.47 496.32 3.46
stdev. 0.00 0.01 0.01 0.01 0.01
ute92 26.24 24.95 24.99 24.97 25.04 24.97 4.52 24.95
stdev. 0.12 0.13 0.11 0.11 0.13
tre92 8.73 8.36 8.28 8.31 8.37 8.38 36.08 8.28
stdev. 0.06 0.08 0.06 0.06 0.06
yor83 I 39.67 37.53 36.51 37.14 37.19 37.31 10.39 36.51
stdev. 0.35 0.52 0.42 0.38 0.39

when tested with various initialisations. This suggests that the neighbourhood ordering

with respect to the size of the neighbourhood can affect the search for good solutions.

On each occasion that there is improvement to the solution quality, the search always

starts with a small neighbourhood structure. This would allow the search to explore

more regions that cannot be achieved by other larger neighbourhood structures, while

at the same time it could reduce the processing time because the search always begins

with a small size neighbourhood.

The running time for this approach is quite long because of the incorporation of a

repair mechanism. The repair mechanism for the Toronto benchmark datasets considers

each examination to be repaired or improved, taking into consideration a move to time-

slot that can reduce the current penalty cost to the lowest level. In this study, the

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 165

Table 6.3: The results of multiple initial solutions tested with different neighbourhood
orderings for the Toronto benchmark datasets (RL = reinforcement learning, stdev. =

standard deviation, Av. t(m) = average running time in minutes)

Av. Multiple initial solution
initial Basic Adaptive Adaptive Av.

Problem value Start-k VNS I II RL t(m) Best

car91 5.65 4.87 4.88 4.89 4.87 4.83 519.42 4.83
stdev. 0.08 0.07 0.08 0.07 0.08
car92 4.93 4.10 4.06 4.07 4.13 4.12 299.9 4.06
stdev. 0.06 0.05 0.06 0.18 0.06
ear83 I 41.94 33.43 33.22 33.38 33.53 33.41 19.49 33.22
stdev. 0.52 0.70 0.47 0.47 0.63
hec92 I 12.76 10.25 10.27 10.28 10.23 10.35 1.35 10.23
stdev. 0.16 0.17 0.16 0.14 0.15
kfu93 16.23 13.39 13.30 13.57 13.46 13.41 66.36 13.30
stdev. 0.18 0.17 0.13 0.15 0.16
lse91 12.82 10.45 10.45 10.36 10.38 10.46 56.81 10.36
stdev. 0.25 0.27 0.26 0.25 0.28
rye93 11.08 8.56 8.42 8.53 8.48 8.53 140.12 8.42
stdev. 0.09 0.11 0.13 0.10 0.12
sta83 I 160.16 157.04 157.04 157.04 157.04 157.04 1.37 157.04
stdev. 0.08 0.08 0.07 0.07 0.07
uta92 I 3.88 3.36 3.38 3.37 3.36 3.40 504.24 3.36
stdev. 0.04 0.05 0.05 0.05 0.05
ute92 28.55 24.97 24.92 24.99 24.93 24.93 4.38 24.92
stdev. 0.12 0.13 0.09 0.09 0.09
tre92 9.58 8.25 8.12 8.22 8.24 8.22 39.38 8.12
stdev. 0.11 0.13 0.11 0.11 0.14
yor83 I 45.18 36.48 35.88 36.27 36.37 35.96 10.69 35.88
stdev. 0.35 0.50 0.42 0.40 0.38

repair mechanism not only works for the infeasible moves but also tries to repair each

examination assignment by reducing the assignment cost.

Tables 6.4 (a) and (b) illustrate the comparison of different improvement approaches

in the literature with the VNS-GD approach. In order to see the best approach, the

results of each problem are ranked and the best approach is identified based on the

least average rank. The rank value of each approach is provided in brackets next to

the solution quality in each table. From the average ranked, the VNS-GD approach is

placed as the second best approach; however, it has not obtained a best result for any of

the benchmark problems. The best approach with the least rank is represented by the

study of Burke et al. (2010a) which employed the VNS approach with genetic algorithm.

The results of pur93 I were not included in the previous tables since it required a long

running time and it was almost impossible to obtain the results for a hundred runs due

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 166

to the size of the problem. The run for purdue93 I was performed with only good initial

solution starting with solution quality (5.74), and was repeated only three times. The

best results of pur93 I is presented in Table 6.4.

6.3.2 ITC2007

The results of three different initialisations and different neighbourhood orderings of the

ITC2007 benchmark datasets are presented in Tables 6.5, 6.6 and 6.7. Table 6.5 shows

the performance of poor initial solution on different neighbourhood orderings, where it

behaves effectively with neighbourhood ordering type adaptive I and II, for which each

of these neighbourhood orderings obtained four best results. The RL neighbourhood

ordering also performed well with two best results and one tie with adaptive II, while

the basic VNS obtained only two best results and start-k do not yield any best result.

The performance of neighbourhood orderings are quite dissimilar when the good initial

solution is used for improvement. Table 6.6 illustrates that start-k yields three best

results while the basic VNS achieves only one best result. The adaptive neighbourhood

ordering demonstrates a good performance, the adaptive II obtaining six best results

while the adaptive I achieves one best result. The results of multiple initial solutions are

presented in Table 6.7, which shows that adaptive I performed effectively when starting

with multiple initial solutions with four best results. The other neighbourhood orderings

also performed well where start-k and basic VNS obtained two best results each, while

adaptive II and RL neighbourhood ordering each obtained one best result.

As can be observed in Table 6.7, the initial solutions for Exam 12 can not be obtained,

nor do the repair mechanism work effectively to repair the infeasibility. It is worth

noting that the conflict density of Exam 12 is the highest among the ITC2007 benchmark

datasets with 18.45%. This may explain why the repair mechanism failed to place the

unscheduled examination in the correct time-slot and room. Nevertheless, the repair

mechanism works well on Exam 11. As Table 6.7 demonstrates, the average initial value

of Exam 11 is slightly higher because some of the generated solutions were infeasible.

The repair mechanism can fix the infeasibility for the unscheduled examinations, but to

do this, a long running time is required. In the case of the ITC2007 benchmark datasets,

the results that started with infeasible initial solutions were not encouraging due to the

limitation of running time.

The standard deviation depicted in Tables 6.5, 6.6 and 6.7 reveals variations in the

performance of the solution quality when implemented with different neighbourhood

orderings. These variations may be caused by the characteristics of the benchmark

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 167

Table 6.4: Comparison of different improvement approaches with VNS-GD

Problem [1] [2] [3] [4] [5] [6]

car91 6.2 (10) - 4.65 (3) 5.1 (6) 4.5 (1) 5.4 (9)
car92 5.2 (10) - 4.1 (4.5) 4.3 (7.5) 3.93 (2) 4.2 (6)
ears83 I 45.7 (12) 38.9 (11) 37.05 (10) 35.1 (8) 33.71 (4) 34.2 (5)
hec92 I 12.4 (12) 11.2 (10) 11.54 (11) 10.6 (6) 10.83 (8) 10.4 (5)
kfu93 18 (12) 16.5 (11) 13.9 (8) 13.5 (4.5) 13.82 (7) 14.3 (9)
lse91 15.5 (12) 13.2 (11) 10.82 (8) 10.5 (7) 10.35 (5) 11.3 (9.5)
pur93 I - - - - - -
rye92 - - - 8.4 (2) 8.53 (4) 8.8 (6)
sta83 I 160.8 (11) 158.1 (6) 168.73 (12) 157.3 (4.5) 158.35 (9) 157 (2)
tre92 10 (12) 9.3 (10) 8.35 (5) 8.4 (6.5) 7.92 (3) 8.6 (8.5)
uta92 I 4.2 (11) - 3.2 (3.5) 3.5 (8) 3.14 (1) 3.2 (3.5)
ute92 29 (12) 27.8 (11) 25.83 (7) 25.1 (4) 25.39 (6) 25.3 (5)
yor83 I 41 (12) 38.9 (10) 37.28 (8) 37.4 (9) 36.53 (7) 36.4 (6)
Av. Rank 11.15 10.38 7.62 6.35 5.04 6.38
Rank 12 11 9 6 5 7

(a)

Problem [7] [8] [9] [10] [11] VNS-GD

car91 5.2 (7) 5.2 (7) 6.6 (11) 4.6 (2) 4.8 (4) 4.83 (5)
car92 4.4 (9) 4.3 (7.5) 6 (11) 3.9 (1) 4.1 (4.5) 4.06 (3)
ears83 I 34.9 (6) 36.8 (9) 29.3 (1) 32.8 (2) 34.92 (7) 33.22 (3)
hec92 I 10.3 (4) 11.1 (9) 9.2 (1) 10 (2) 10.73 (7) 10.11 (3)
kfu93 13.5 (4.5) 14.5 (10) 13.8 (6) 13.0 (1.5) 13.0 (1.5) 13.3 (3)
lse91 10.2 (4) 11.3 (9.5) 9.6 (1) 10 (2) 10.01 (3) 10.36 (6)
pur93 I - 4.6 (2) 3.7 (1) - 4.73 (3) 5.71 (4)
rye92 8.7 (5) 9.8 (8) 6.8 (1) - 9.65 (7) 8.37 (2)
sta83 I 159.2 (10) 157.3 (4.5) 158.2 (7) 156.9 (1) 158.26 (8) 157.04 (3)
tre92 8.4 (6.5) 8.6 (8.5) 9.4 (11) 7.9 (2) 7.88 (1) 8.12 (4)
uta92 I 3.6 (10) 3.5 (8) 3.5 (8) 3.2 (3.5) 3.2 (3.5) 3.36 (6)
ute92 26 (8) 26.4 (10) 24.4 (1) 24.8 (2) 26.11 (9) 24.92 (3)
yor83 I 36.2 (3.5) 39.3 (11) 36.2 (3.5) 34.9 (1) 36.22 (5) 35.88 (2)
Av. Rank 6.62 8.00 4.88 3.00 4.88 3.62
Rank 8 10 3.5 1 3.5 2

(b)
[1] Di Gaspero and Schaerf (2001), [2] Paquete and Fortseca (2001), ([3] Burke and
Newall (2003), ([4] Merlot et al. (2003), [5] Yang and Petrovic (2004), [6] Côté et al.

(2005), [7] Abdullah et al. (2007), [8] Eley (2007), [9] Caramia et al. (2008), [10] Burke
et al. (2010a) and [11] Turabieh and Abdullah (2011)

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 168

datasets. However, the best results shown within each table indicate that the adaptive

approach works effectively on the ITC2007 benchmark datasets.

Table 6.5: The results of poor initial solutions tested with different neighbourhood
orderings for the ITC2007 benchmark datasets (RL = reinforcement learning, stdev. =

standard deviation)

Initial One poor initial solution
Problem value Start-k Basic VNS Adaptive I Adaptive II RL Best

Exam 1 13374 8404 8591 8247 8529 8403 8247
stdev. 202.05 208.30 239.25 184.71 220.39

Exam 2 3557 582 563 557 577 562 557
stdev. 58.26 47.10 46.62 52.47 55.57

Exam 3 23622 14440 14330 14444 14525 14629 14330
stdev. 826.40 1087.19 1432.19 863.75 1237.44

Exam 4 26515 21429 21543 21148 20929 21810 20929
stdev. 368.42 359.75 366.64 391.21 383.92

Exam 5 9608 4655 4733 4646 4639 4589 4589
stdev. 296.58 263.00 314.44 285.24 285.38

Exam 6 34265 27395 27505 27405 27270 27350 27270
stdev. 613.93 960.80 693.82 767.69 700.90

Exam 7 18726 5819 6015 5883 5805 5914 5805
stdev. 244.58 237.92 244.62 243.82 268.31

Exam 8 23620 11152 10947 10982 11241 11246 10947
stdev. 1244.01 1258.25 1342.16 1163.68 1228.04

Exam 9 2594 1303 1332 1262 1325 1259 1259
stdev. 46.67 44.66 60.83 45.63 56.64

Exam 10 36725 15116 15210 14343 15276 15361 14343
stdev. 292.33 266.90 335.06 256.22 263.88

Exam 11 43672 44404 43345 43614 43511 43345
stdev. 54674 1683.41 1335.58 2377.75 1702.52 1483.07

Exam 12 6361 6361 6361 6285 6285 6285
stdev. 7273 100.21 105.74 107.06 85.73 101.27

Comparison of the VNS-GD results with other approaches within the ITC2007 bench-

mark datasets shows that the VNS-GD does not yield any best results. However, placed

as the fifth best approach, the results are competitive with other approaches.

6.3.3 Discussions

Overall, the performance of the ITC2007 benchmark datasets differs from the Toronto

benchmark datasets in its type of initialisation: the ITC2007 benchmark datasets per-

formed effectively with an adaptive approach (either adaptive I or II) while the Toronto

benchmark datasets, in most cases, performed well with the basic VNS. The significant

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 169

Table 6.6: The results of good initial solutions tested with different neighbourhood
orderings for the ITC2007 benchmark datasets (RL = reinforcement learning, stdev. =

standard deviation)

Initial One good initial solution
Problem value Start-k Basic VNS Adaptive I Adaptive II RL Best

Exam 1 11019 6887 7043 7085 6984 6913 6887
stdev. 193.84 191.18 179.59 169.88 213.29

Exam 2 2880 631 631 642 631 625 631
stdev. 29.96 38.12 53.68 60.30 47.75

Exam 3 19098 11550 11600 11919 11808 11659 11550
stdev. 485.67 486.29 388.16 984.76 1031.55

Exam 4 20830 18034 18583 17949 17891 17960 17891
stdev. 222.98 134.42 239.14 308.82 210.38

Exam 5 7975 4554 4672 4631 4729 4680 4554
stdev. 147.85 129.85 181.18 128.36 211.25

Exam 6 28330 26305 26325 26380 26345 26290 26305
stdev. 90.47 74.46 66.73 71.28 89.51

Exam 7 15573 6132 6087 6168 6204 6072 6087
stdev. 185.93 218.25 192.13 168.98 209.59

Exam 8 19684 10678 10676 10608 10608 10634 10608
stdev. 581.42 593.23 589.76 605.52 623.62

Exam 9 2157 1248 1264 1239 1233 1233 1233
stdev. 26.06 27.17 35.93 50.18 30.93

Exam 10 16516 14989 15084 15042 14906 14926 14906
stdev. 162.92 114.58 121.40 126.56 141.47

Exam 11 44921 36968 37113 36537 36300 36338 36300
stdev. 1204.67 927.76 1101.87 1193.64 1861.44

Exam 12 5858 5624 5632 5610 5610 5624 5610
stdev. 34.84 32.79 38.56 43.02 35.21

difference between the features and constraint requirements of these two datasets clearly

suggests different treatment.

Figure 6.3 below illustrates the box-plot of different initial solutions of basic VNS applied

to the Toronto benchmark datasets. In most problems, the good initial solution has lower

variation compared with other types of initial solution, (with the exception of ear83 I)

while the multiple initial solutions demonstrate the largest variation of all. In the case

of the Toronto benchmark datasets, to start with different initial solutions offers the

possibility to obtain good solution quality compared with using only a single initial

solution, since diverse starting points could create different search features.

Figures 6.4 (a) and (b) illustrate the search movement of the first run for the basic VNS

for the hec92 I and lse91 instances with different types of initial solutions. For hec92

I, the poor and multiple initial solutions show a sharp drop at the beginning of the

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 170

Table 6.7: The results of multiple initial solutions tested with different neighbourhood
orderings for the ITC2007 benchmark datasets (RL = reinforcement learning, stdev. =

standard deviation)

Av. Initial Multiple initial solution
Problem value Start-k Basic VNS Adaptive I Adaptive II RL Best

Exam 1 12473.86 8026 8329 8089 8067 8120 8026
stdev. 327.87 294.00 270.20 282.47 379.56

Exam 2 4052.18 663 633 661 657 636 633
stdev. 81.36 78.03 73.78 78.36 86.66

Exam 3 25340.86 13901 13842 13657 13725 14060 13657
stdev. 728.87 846.38 994.32 529.48 798.05

Exam 4 35276.19 20778 22213 23508 20858 22705 20778
stdev. 3373.91 4301.51 3912.41 5160.88 2845.69

Exam 5 9153.17 4527 4448 4467 4420 4626 4420
stdev. 214.91 207.60 233.33 249.18 202.21

Exam 6 29150.06 26685 26410 26480 26525 26385 26385
stdev. 207.79 266.07 265.54 240.75 263.97

Exam 7 17068.30 6147 5972 6052 6072 6213 5972
stdev. 245.31 247.73 193.80 200.73 190.28

Exam 8 22200.98 10989 10903 10310 10618 10788 10310
stdev. 291.57 348.00 400.97 297.41 323.67

Exam 9 2283.62 1269 1266 1260 1251 1251 1251
stdev. 72.50 65.12 48.48 54.03 55.84

Exam 10 17852.39 15095 14927 14826 15286 15168 14826
stdev. 316.17 328.78 260.60 265.95 275.36

Exam 11 106586.57 49701 46468 42669 47363 46150 42669
stdev. 47998.54 12896.80 11001.79 11692.19 11608.70

Exam 12 inf. inf. inf. inf. inf. inf. inf.
stdev. - - - - -

search. This is due to the employment of a mechanism that repaired each examination

by reducing their assignment cost. As can be observed, the poor initial solution is

gradually moved to improve the solution quality throughout the iteration and started to

get stuck half way through out the search until the search is finished. On the other hand,

the multiple initial solution shows that the search stuck at the beginning of the iterations,

taking a longer searching time to jump to the other region; the solution quality is then

successfully reduced until the iterations end. The good initial solution already started

with a good solution quality at the beginning of the search, and the solution quality is

improved by reducing the value gradually. For the Toronto benchmark instances, the

search for the good initial solution tends to get stuck easily, and for some problems, only

little improvement can be obtained until the end of the iterations. Since the solution

is already started with a good initial solution, the cannot jump out of its local optima.

This is due to the lack of ability of the neighbourhood structure that was used in the

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 171

T
a
b
l
e
6
.8
:

C
om

p
ar

is
on

of
d

iff
er

en
t

ap
p

ro
a
ch

es
fo

r
IT

C
2
0
0
7

b
en

ch
m

a
rk

d
a
ta

se
ts

(T
h

e
b

o
ld

en
tr

ie
s

in
d

ic
a
te

th
e

b
es

t
re

su
lt

s)
.

P
ro

b
le

m
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
[7

]
[8

]
[9

]
[1

0]
[1

1]
V

N
S

-G
D

E
x
am

1
4
37

0
5
90

5
80

06
66

70
12

03
5

43
70

46
33

85
59

62
35

47
75

4
3
6
8

68
87

(2
)

(6
)

(1
0)

(8
)

(1
2)

(2
)

(4
)

(1
1)

(7
)

(5
)

(1
)

(9
)

E
x
a
m

2
40

0
1
00

8
34

70
62

3
30

74
3
8
5

40
5

83
0

29
74

38
5

39
0

55
7

(4
)

(9
)

(1
2)

(7
)

(1
1)

(1
)

(5
)

(8
)

(1
0)

(1
)

(3
)

(6
)

E
x
am

3
10

04
9

13
86

2
18

62
2

-
15

91
7

93
78

90
64

11
57

6
15

83
2

8
9
9
6

98
30

11
55

0
(5

)
(8

)
(1

1)
(1

2)
(1

0)
(3

)
(2

)
(7

)
(9

)
(1

)
(4

)
(6

)
E

x
a
m

4
18

14
1

18
67

4
22

55
9

-
23

58
2

1
5
3
6
8

15
66

3
21

90
1

35
10

6
16

20
4

28
92

4
17

89
1

(5
)

(6
)

(8
)

(1
2)

(9
)

(1
)

(2
)

(7
)

(1
1)

(3
)

(1
0)

(4
)

E
x
am

5
2
98

8
4
13

9
47

14
38

47
68

60
29

88
30

42
39

69
48

73
2
9
2
9

30
22

44
20

(2
)

(8
)

(1
0)

(6
)

(1
2)

(2
)

(5
)

(7
)

(1
1)

(1
)

(4
)

(9
)

E
x
a
m

6
26

95
0

27
64

0
29

15
5

27
81

5
32

25
0

26
36

5
25

88
0

28
34

0
31

75
6

2
5
7
4
0

25
99

5
26

30
5

(6
)

(7
)

(1
0)

(8
)

(1
2)

(5
)

(2
)

(9
)

(1
1)

(1
)

(3
)

(4
)

E
x
a
m

7
4
21

3
6
68

3
10

47
3

54
20

17
66

6
41

38
4
0
3
7

81
67

11
56

2
40

87
40

67
58

05
(5

)
(8

)
(1

0)
(6

)
(1

2)
(4

)
(1

)
(9

)
(1

1)
(3

)
(2

)
(7

)
E

x
a
m

8
7
86

1
10

52
1

14
31

7
-

16
18

4
75

16
7
4
6
1

12
65

8
20

99
4

77
77

75
19

10
31

0
(5

)
(7

)
(9

)
(1

2)
(1

0)
(2

)
(1

)
(8

)
(1

1)
(4

)
(3

)
(6

)
E

x
am

9
1
04

7
1
15

9
17

37
12

88
20

55
10

14
10

71
-

-
9
6
4

-
12

33
(3

)
(5

)
(8

)
(7

)
(9

)
(2

)
(4

)
(1

1)
(1

1)
(1

)
(1

1)
(6

)
E

x
am

10
1
66

82
-

15
08

5
14

77
8

17
72

4
14

55
5

14
37

4
-

-
1
3
2
0
3

-
14

34
3

(7
)

(1
0
.5

)
(6

)
(5

)
(8

)
(4

)
(3

)
(1

0.
5)

(1
0.

5)
(1

)
(1

0.
5)

(2
)

E
x
am

11
3
41

29
4
38

88
-

-
40

53
5

31
42

5
29

18
0

-
-

2
8
7
0
4

-
36

30
0

(4
)

(7
)

(1
0)

(1
0)

(6
)

(3
)

(2
)

(1
0)

(1
0)

(1
)

(1
0)

(5
)

E
x
am

12
5
53

5
-

52
64

-
63

10
53

57
56

93
-

-
5
1
9
7

-
56

10
(4

)
(1

0
)

(2
)

(1
0)

(7
)

(3
)

(6
)

(1
0)

(1
0)

(1
)

(1
0)

(5
)

A
v
.

R
an

k
4.

33
7.

63
8.

83
8.

58
9.

83
2.

67
3.

08
8.

96
10

.2
1

1.
92

5.
96

5.
75

R
a
n

k
(4

)
(7

)
(9

)
(8

)
(1

1)
(2

)
(3

)
(1

0)
(1

2)
(1

)
(6

)
(5

)

[1
]

M
ü

ll
er

(2
00

8)
,

[2
]

G
og

os
et

a
l.

(2
0
08

),
[3

]
A

ts
u

ta
et

al
.

(2
00

8)
,

[4
]

D
e

S
m

et
(2

00
8)

,
[5

]
P

il
la

y
(2

00
8)

,
[6

]
M

ü
ll

er
(2

00
9)

,
[7

]
M

cC
ol

lu
m

et
al

.
(2

0
09

),
[8

]
P

il
la

y
(2

0
10

a)
,

[9
]

B
u

rk
e

et
a
l.

(2
01

0f
),

[1
0]

G
og

os
et

al
.

(2
01

0a
),

[1
1]

T
u

ra
b

ie
h

an
d

A
b

d
u

ll
ah

(2
01

1)

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 172

9.5

10

10.5

11

11.5

12

poor good multi

LSE91

31

32

33

34

35

36

37

38

poor good multi

ear83 I

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

poor good multi

hec92 I

12.8

13

13.2

13.4

13.6

13.8

14

14.2

14.4

poor good multi

kfu93

156.8

156.9

157

157.1

157.2

157.3

157.4

157.5

poor good multi

sta83 I

7.6

7.8

8

8.2

8.4

8.6

8.8

9

poor good multi

tre92

24.4

24.6

24.8

25

25.2

25.4

25.6

25.8

26

poor good multi

te92

34

35

36

37

38

39

40

poor good multi

yor83 I

4.7

4.8

4.9

5

5.1

5.2

5.3

poor good multi

car91

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

poor good multi

car92

3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

poor good multi

tas92 I

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

poor good multi

rye92

Figure 6.3: Box-plot of different initial solutions for the Toronto benchmark datasets

study. In that case, a drastic move should be performed in order to jump from its

local optima in order to obtain better results. However, the jump should be carefully

developed so that it is not too far from the current best solution and at the same time,

it could reduce the running time while searching for good solutions.

The lse91 instance demonstrates almost the same behaviour of movement as the hec92 I

instance. However, the good initial solution of the lse91 problem could obtain the best

solution quality compared with other types of initial solutions. Although the search

tends to get stuck, the solution quality could still be reduced from time to time until

the end of iterations. The multiple initial solution is also competitive with the good

initial solution. However, it has a tendency to get stuck in the middle of the search.

Meanwhile, the poor initial solution continues to improve throughout the iterations and

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 173

is stuck in the middle of the search. However, the stuck point is avoided after a number

of iterations and the solution quality continues to improve.

10

10.5

11

11.5

12

12.5

13

13.5

14

0

3
.1

6
.2

9
.3

1
2

.4

1
5

.5

1
8

.6

2
1

.7

2
4

.8

2
7

.9 3
1

3
4

.1

3
7

.2

4
0

.3

4
3

.4

4
6

.5

4
9

.6

Iterations ('000)

P
en

al
ty

 c
o

st

poor

good

multiple

(a)

10.5

11.5

12.5

13.5

14.5

15.5

0

3
.1

6
.2

9
.3

1
2
.4

1
5
.5

1
8
.6

2
1
.7

2
4
.8

2
7
.9 3
1

3
4
.1

3
7
.2

4
0
.3

4
3
.4

4
6
.5

4
9
.6

Iterations ('000)

P
en

al
ty

 c
o
st

poor

good

multiple

(b)

Figure 6.4: The search movement of different initialisation for the (a) hec92 I and (b)
lse91 of Toronto benchmark datasets

Figure 6.5 illustrates the box-plot of different initial solutions for the ITC2007 benchmark

datasets. Most of the results for each dataset appear to have small variations when

implemented with different initialisations, except for Exam 6, Exam 7 and Exam 10. It

can be observed that, when starting the improvement phase with a good initial solution,

there is a tendency to obtain a good solution at the end of the iterations. This is

shown by almost all datasets except for Exam 2, Exam 5 and Exam 7. Starting with

multiple initial solutions also demonstrates good performance when some of the datasets,

for example, Exam 5, Exam 7 and Exam 10, obtained best results with this type of

initialisation. Since the multiple initial solution failed to generate a feasible solution for

Exam 12 when implemented with the improvement approach, the box-plot of Exam 12

shows only two types of initialisation, with the exception of multiple initial solutions.

The search movement of three different initialisations during the first run for two different

datasets of the ITC2007 benchmark is illustrated in Figures 6.6 (a) and (b). A sharp

drop in the solution quality during the first few iterations can be seen in both datasets

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 174

0

2000

4000

6000

8000

10000

12000

poor good multi

Exam_1

0

200

400

600

800

1000

1200

poor good multi

Exam_2

0

5000

10000

15000

20000

25000

poor good multi

Exam_3

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

poor good multi

Exam_4

0

1000

2000

3000

4000

5000

6000

7000

poor good multi

Exam_5

24000

25000

26000

27000

28000

29000

30000

31000

32000

poor good multi

Exam_6

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

7400

poor good multi

Exam_7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

poor good multi

Exam_8

0

200

400

600

800

1000

1200

1400

1600

1800

poor good multi

Exam_9

14000

14500

15000

15500

16000

16500

17000

poor good multi

Exam_10

0

20000

40000

60000

80000

100000

120000

poor good multi

Exam_11

0

1000

2000

3000

4000

5000

6000

7000

8000

poor good

Exam_12

Figure 6.5: Box-plot of different initial solutions for the ITC2007 benchmark datasets

and it can be concluded that this behaviour was caused by the incorporation of a repair

mechanism. This is also shown for the Toronto benchmark datasets. However, after a

while, the improvement to the solution quality is too small, and it easily stuck during

the search.

Figure 6.6 (a) indicates that starting with a good initial solution has an advantage in that

the penalty cost continues to decrease from time to time. In the case of Exam 1, starting

with a good initial solution could reduce the running time in order to achieve optimal

solution. On the other hand, while starting with poor or multiple initial solution did

lead to some improvement to the solution quality, it would take longer to achieve optimal

solutions. It should be noted that as Exam 1 is a large dataset with 607 examinations and

7891 student enrolments, it may take a while for the algorithm to search for solutions

and for the incorporation of a repair mechanism. In this case, it will take longer for

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 175

the solution to achieve an optimal solution and there will be an obvious advantage in

starting with a good initial solution for this size of problem. Figure 6.6 (b) illustrates

different behaviour of search movement for Exam 9. Although it starts with a good

initial solution, the search tends to get stuck during the search and could not improve

further, while the multiple initial solution appeared to work effectively, improving the

solution quality better than when using a good initial solution. However, the behaviour

of the poor initial solution for Exam 9 is the same as that for Exam 1, requiring a longer

time for the approach to achieve an optimal solution. It can be noted that Exam 9

is a smaller dataset with only 169 examinations and 655 student enrolments. This

characteristic of Exam 9 may explain why the good initial solution performs differently

from that of Exam 1.

The incorporation of a repair mechanism enables the algorithm to spend more time in

repairing and improving examination assignment. As shown in Figure 6.6, the results of

Exam 1 are obtained with less than a thousand iterations, while Exam 9 is performed

with more than twenty thousand iterations. The size of a dataset clearly affects the

search for solutions. Since the runs of the ITC2007 benchmark datasets are required

to follow the running time stated in the competition rules, only a small number of

iterations could therefore be obtained by the larger datasets. It is believes that when

longer running time is allocated, the results of the ITC2007 benchmark datasets could

be further improved.

Observation on the results of different benchmark problems shows that different types

of initialisation can shows different performance during the improvement phase in the

multistage setting particularly for the VNS approach in this study. The results of the

Toronto benchmark datasets are found to improve well with the multiple generated initial

solution while for the ITC2007 benchmark datasets, it is good to start with good initial

solutions. The results from different datasets give different performance on different

types of initialisation. The Toronto benchmark datasets does not performed well with

good initial solution. This is due to commencing with really good initial solutions which

make the search to get stuck during the process even though a mechanism is employed

to solve the problem. The multiple initial solutions with variety of solution qualities can

assist in finding better solution. Meanwhile, the search for the poor initial solution is

started very far from the good solution and will take a longer time for solution search.

On the other hand, it is observed that the solution quality of ITC2007 can be much

improved and faster when starting with good initial solutions, but this is different from

the Toronto scenario. The ITC2007 benchmark datasets have different features in terms

of the number of hard and soft constraints and these datasets are much more complicated

when compared with the Toronto benchmark datasets. Meanwhile, the poor and the

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 176

multiple generated initial solutions for the ITC2007 do not performed as well as good

initial solutions within the given processing time.

Previous studies have shown that a good initial solution can help to produce better

final solutions (Burke and Newall, 2003, Gogos et al., 2010a). Motivated by the studies,

this research is focused on searching for good quality solutions during the timetable

construction and, further, the initial solutions are improved in the improvement phase.

In this study, the initial solutions are categorised into three major groups which are

good, poor and multiple initial solutions. Nevertheless, the results show that starting

the improvement phase with a good initial solution is not necessarily result in a good

final solution. The study found that the performance of two datasets can differ and

this may be due to the characteristic of the datasets. It can be concluded here that

the utilisation of complex datasets can yield in the best performance with a good initial

solution.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Iterations

P
en

al
ty

 c
o

st

poor

good

multiple

(a)

0

500

1000

1500

2000

2500

3000

0

1
3

.5 2
7

4
0

.5 5
4

6
7

.5 8
1

9
4

.5

1
0

8

1
2

2

1
3

5

1
4

9

1
6

2

1
7

6

1
8

9

2
0

3

Iterations ('00)

P
en

al
ty

 c
o
st

poor

good

multiple

(b)

Figure 6.6: The search movement of different initialisation for (a) Exam 1 and (b)
Exam 9 of ITC2007 benchmark datasets

Chapter 6. A Variable Neighbourhood Search - Great Deluge for the Examination
Timetabling Problem 177

6.4 Conclusion

This chapter aimed to improve the previously constructed solutions and at the same

time to investigate the influence of various initialisations and neighbourhood orderings

to the solution quality. The variable neighbourhood search - great deluge algorithm

was presented and the experimental results showed that the approach could effectively

improve various initialisations. In order to diversify the search, the study accepted in-

feasible moves and this infeasibility was repaired by a mechanism that was incorporated

in the algorithm. At the same time, the repair mechanism worked simultaneously to

further improve the solution quality, although the computational time was very expen-

sive. Various initialisations and neighbourhood ordering influenced the solution quality,

the effect of this depending on various characteristics of the implemented problems. The

multiple initial solution demonstrates good performance to the solution quality of the

Toronto benchmark datasets since starting the solution at different initial points can

vary the search process and at the same time offers the possibility of obtaining good

solution quality. On the other hand, the ITC2007 performed the best with a good initial

solution. Note that, the ITC2007 is a complex problem with various types of constraints.

In considering the neighbourhood orderings, the Toronto benchmark datasets performed

the best with a strategy that always started with a small neighbourhood structure when-

ever improvement occurred, while the ITC2007 benchmark datasets performed the best

with adaptive approach i.e. either Adapive I or Adaptive II. The characteristics of

the ITC2007 problem that were required to satisfy many hard and soft constraints si-

multaneously explain why it performed differently from the Toronto problem instances.

The VNS-GD approach can effectively improve the solution quality on two different

examination timetabling problems and the obtained results are comparable with other

improvement approaches mentioned in the literature.

Chapter 7

Conclusions and Future Work

The research work in this thesis investigates approaches for solving two different exam-

ination timetabling problems, where the focus is on the initialisation and improvement

strategies proposed in the early chapters. Section 7.1 presents overall conclusions for

the work that has been carried out and Section 7.2 highlights some research directions

for future work.

7.1 Research Summary

This thesis explored some key issues related to initialisation strategies based on squeaky

wheel optimisation, graph colouring heuristics and decomposition. The research then

undertook a further investigation into the use of an improvement strategy based on a

variable neighbourhood search - great deluge approach. Two main components were

explored relating to initialisation and neighbourhood ordering in order to identify their

effectiveness in improving the initial solution quality. The approaches introduced in

this thesis were tested over two different benchmark datasets: Toronto and ITC2007

benchmarks and the problem instances in each benchmark have their own distinct fea-

tures capturing real world complexities. Generally, the ITC2007 benchmark datasets

are considered to be more difficult since they have many simultaneous hard and soft

constraints.

The investigation of the squeaky wheel optimisation combined with graph colouring

heuristics (namely, saturation degree, largest degree, largest weighted degree and largest

enrollment) is presented in Chapter 3. The incorporation of a shuffling strategy has

shown an improvement in the overall performance of the approach. Two different strate-

gies were studied based on block and top-window, where examinations were shuffled

178

Chapter 7. Conclusions and Future Work 179

randomly within a group having close difficulty values. Various sizes of block and top-

window were investigated and statistical analysis showed that a shuffling strategy could

yield a better ordering of examinations to be scheduled. It was observed that differ-

ent sizes of block or top-window provided a varied performance for the algorithm. It

is therefore suggested that the size should not be too large since, clearly, shuffling the

examinations in a larger ‘chunk’ could, obviously, almost randomise the examination or-

dering, thus discarding what has been learned during the previous stages. Moreover, the

trade-off between the computation time and solution quality was also observed during

the experiments. The approach produced better quality solutions, particularly over the

Toronto benchmark problem instances when given a longer computational time. This

was possibly because a heuristic modifier significantly increases the timetabling diffi-

culty value for the examinations, ultimately causing a substantial change in their order-

ings. The study also demonstrated that different graph colouring heuristics with various

heuristic modifiers can lead to a different performance and cause a different number of

unscheduled examinations. The study showed that the saturation degree generated the

best performance when compared to the other graph colouring heuristics regardless of

the heuristic modifier used in the approach. This success of saturation degree is possibly

due to its dynamic nature. Additionally, it is observed that the exponential heuristic

modifier may improve the performance of the approach when compared to the custom,

additive or multiplicative heuristic modifiers. Seeing that different heuristic modifiers

yield different performances motivated the idea of combining graph colouring heuristics

for measuring the difficulty of scheduling an examination during the construction of

timetables. The graph colouring heuristics were alternated during the search for a good

timetable and this process was found to be useful to improve the performance of the

overall approach.

The squeaky wheel optimisation approach was further investigated in Chapter 4 where

graph colouring heuristics (namely, saturation degree and largest degree) were com-

bined with a heuristic modifier in a linear formula where the resulting weighted sum

was used to generate an overall score/value to order the examinations. The experimen-

tal results revealed that the combination of multiple graph colouring heuristics with a

heuristic modifier can outperform the single graph colouring heuristic in squeaky wheel

optimisation. Three strategies to decide on the values of weights are tested using this

framework. Firstly, weights were fixed for each component/parameter. It was observed

that different combinations of weight values generated different performances. Using

a higher weight value for the heuristic modifier against graph colouring heuristics en-

hanced the performance of the overall approach, in particular for the Toronto benchmark

instances. On the other hand, the performance of the approach for the ITC2007 bench-

mark datasets was not consistent. Instead of fixing the weight values of each parameter,

Chapter 7. Conclusions and Future Work 180

we investigated changing them automatically using three strategies i.e. dynamic weight-

ing, linear weighting and reinforcement learning. The experimental results revealed that

the dynamic strategy based on calculating a penalty cost for each assignment is the best

strategy in changing the weight values for the parameters. Nevertheless, this strategy

increases the computation time because of the penalty cost calculation at each time

when an assignment is made.

The effective use of the information regarding the unscheduled examinations within a

constructive heuristic framework processing partial solutions was further investigated in

Chapter 5. An approach is proposed where the unscheduled and scheduled examina-

tions are separated automatically into two subsets. The unscheduled examinations were

considered to be difficult to schedule and they are attempted to be scheduled first at

each iteration. Each subset was augmented with a suitable ordering that is based on

graph colouring heuristics. A boundary set was introduced where the examinations in

the set were merged or swapped with the difficult set. It was observed that the use of

the boundary set improved the overall performance of the approach. The roulette wheel

selection is embedded into the approach giving a higher chance to an examination with a

higher score of difficulty value to be selected for timetabling. Statistical analysis showed

that the boundary size and roulette wheel selection size have significant effects in im-

proving an initially generated solution. The experiments showed that choosing the sizes

for both parameters beyond ten does not greatly improve the performance. Overall, the

constructive approaches undertaken in this thesis demonstrated that the dynamic graph

colouring heuristic yielded better orderings when compared to the static type of graph

colouring heuristics. Furthermore, it was observed that the dynamic graph colouring

heuristic produces fewer unscheduled examinations throughout the timetabling process.

The solutions from the constructive approaches pointed out earlier are later used as

initial solutions fed into an improvement approach; variable neighbourhood search -

great deluge. More on the improvement approach is provided in Chapter 6. There are

successful multistage algorithms reported in the literature combining constructive and

improvement stages (Müller, 2009). The goal of this part of the study was to see the

effects of combining different constructive algorithms for initialisation and improvement

approach. The variable neighbourhood search - great deluge algorithm was chosen as

the improvement approach to be investigated based on its successful performance in

examination timetabling problems reported in the literature (Müller, 2009). The vari-

able neighbourhood search approach is capable of escaping from local optima since the

approach incorporates various neighbourhood structures. Moreover, as a threshold ac-

ceptance strategy the great deluge algorithm considers poor solutions for acceptance

based on a level at any given time when a worsening solution is obtained during the

Chapter 7. Conclusions and Future Work 181

search process. A strategy to accept worsening solution might produce an infeasible so-

lutions. In order to overcome a resulting infeasibility in a solution, a repair mechanism

was used to ensure feasibility with respect to the problem constraints and, at the same

time, to improve the quality of the solution in hand. The experimental results showed

that the repair mechanism was effective and resolved the infeasibilities for all problem

instances except for Exam 12, an ITC2007 benchmark problem instance. This problem

has been identified as the most difficult instance within the ITC2007 benchmark with

regard to the conflict density values. Although the repair mechanism is effective, it is

computationally expensive because of the need for checking each potential examination

in order to find the best assignment that could reduce the penalty cost.

Three sets of initial solutions i.e. poor, good and multiple initial solutions generated

by the constructive approaches introduced in the previous chapters were considered

in order to observe their influence on the performance of the overall approach. An

investigation on the effect of initialisation indicated that a good initial solution did

not necessarily yield the best solution at the end and there is a possibility that the

improvement approach could get stuck at local optima. A special mechanism was needed

in order to escape. It was observed that the improvement approach could not much

improve an initially constructed solution for some problem instances. Sometimes starting

from a good solution saved time for the improvement approach in the search for a

better solution (assuming the algorithm is stopped after converging to a value). On

the other hand, the poor initial solution has the potential to be further improved by

allowing exploration of the search space around it. However, the search would take longer

since the search started far away from a promising solution. The reason for the good

performance of the multiple initial solutions on the Toronto benchmark is that these

solutions allow for better exploration of solution search when starting with different

starting points. Different initialisations or starting points for solution search creates

an advantage for the algorithm to work at different starting points, thus, allowing a

greater possibility of finding good solutions. On the other hand, the approach performed

differently for the ITC2007 benchmark. It has been found that the problem could achieve

best solutions when the search starts from good initial solutions. This was possibly due

to the large number of hard and soft constraints that have to be satisfied simultaneously

and also the size of the search space.

An investigation on the effect of the neighbourhood orderings for the variable neighbour-

hood search on its performance was also performed. The neighbourhood structures were

ordered according to their sizes relating to the number of reassigned examinations. Five

neighbourhood ordering strategies were introduced. The study reveals that starting the

search process using a small neighbourhood structure and then increasing the step size

Chapter 7. Conclusions and Future Work 182

offers the advantage of exploring immediate ‘close’ neighbourhoods first and then diver-

sifying using larger step sizes. The repair mechanism in the study acts as a hill climber

that either improves the solution further or returns the same quality solution. This

phenomenon was observed for the Toronto benchmark problem instances. On the other

hand, the performance of the approach for the ITC2007 benchmark varies for different

neighbourhood orderings. There was no clear winner for the choice of a neighbourhood

ordering strategy.

The overall approach combining different initialisation strategies with an improvement

approach generated a successful performance when compared to the other improvement

approaches in the literature over the Toronto and ITC2007 benchmarks. However, the

performance of the overall approach is sensitive to parameter settings, such as, the

weighting strategy or setting the decay rate of the great deluge algorithm. More adap-

tation mechanisms and automated parameter tuning strategies should be investigated.

7.2 Future Work

Several major research directions can be further explored in order to improve the per-

formance of the proposed approaches. A framework based on the squeaky wheel optimi-

sation combined with the use of graph colouring heuristics is very promising especially

when several graph colouring heuristics are alternated (as shown in Chapter 3) or com-

bined in a linear way (as shown in Chapter 4) with a heuristic modifier during the

timetable construction. It would be interesting to investigate other heuristic selection

methodologies within hyper-heuristic methods to select from constructive heuristics and

whether the graph colouring heuristics could be combined under a generational (on-line

or off-line) hyper-heuristic framework instead of a squeaky wheel optimisation framework

in order to construct examination timetables.

In addition, there could be further investigation into the importance of the difficulty

value as an aspect in changing the examination ordering. Since the study undertaken

in this thesis has increased only a static amount of difficulty, it would be worthwhile to

investigate the amount of difficulty value that should be increased in order to modify

the examination ordering, while at the same time demonstrating that the examination

is more difficult. The difficulty value of an examination can be explored in order to

ascertain whether the value can modify the overall examination ordering, or to observe

if the examination will still be in the same position. In the latter case, the amount of

increase in the difficulty value can be adjusted to ensure the position of the relevant

examination changes in the overall examination ordering.

Chapter 7. Conclusions and Future Work 183

Using a weighted average of parameters in order to obtain new difficulty values in the

proposed linear approach offers a better ordering before the assignment of timetable slots

to the examinations. The dynamic change of weight values within a linear approach can

be further improved. It would be an advantage if the weight values could be changed

or modified automatically. A mechanism may be required to decide when to change

and which weight to change in order that it can be used during the timetabling process.

Furthermore, more graph colouring heuristics combined with a heuristic modifier could

be considered during timetable construction as the proposed approaches employ a subset

of existing graph colouring heuristics.

As described in Chapter 5, the approach grouped the examinations into two subsets

based on the difficulty of scheduling the examinations. The size of the difficult set

containing the examinations which are difficult to timetable increases until some point

during the search process where the size remains steady. It might be worth investigating

ways of deciding which examination should be released from the difficult set, indicating

that these examinations are no longer difficult and can be placed into the ‘easy’ set.

The variable neighbourhood search - great deluge approach requires significant running

time due to the repair mechanism used within the approach for ensuring each move

complies with the constraints and improves the current solution quality. In the case of

the Toronto benchmark datasets, we showed that starting the search from a good initial

solution fails to achieve good results as compared to initialising using multiple initial

solutions. Using a good initial solution potentially seems to be a better strategy for

obtaining improved results with a low standard deviation when compared to the other

types of initial solutions.

Previous analysis on the search trajectory of the variable neighbourhood search - great

deluge approach showed that it tends to get stuck during the search process. Since,

currently, the move acceptance uses a static decay rate, methods such as ‘rerising’ for

changing the decay rate dynamically, depending on the search progress can be inves-

tigated further. Previous studies in the literature show that changing the decay rate

dynamically may guide the search to the promising regions of the search space, disal-

lowing premature convergence to a local optimum.

Furthermore, the investigation of the neighbourhood ordering suggests that starting with

a small neighbourhood structure could assist in searching for an unexplored region of so-

lution space. An investigation into the size of the implemented neighbourhood structure

can be undertaken by deciding the point up to which the small or large neighbourhood

should be used. As this study demonstrates, using the small neighbourhood could re-

duce the computational time, while the large neighbourhood structure requires longer

computational time for moving the related examinations or time-slots. It is proposed

Chapter 7. Conclusions and Future Work 184

that the small neighbourhood can be used, especially when the search is stuck, because

this small neighbourhood structure could reach to an unexplored region of the solution

space.

Further exploration of variable neighbourhood search within a hyper-heuristic framework

holds some promise. The mixing of neighbourhood structures can be enhanced and a

variable neighbourhood search may be a high level heuristic that chooses from a subset

of neighbourhood structures automatically.

Appendix A

Graphs of Adaptive Heuristic

Ordering Approach

A.1 Toronto Benchmark Datasets

Figures A.1 to A.11 show the number of violated examinations at each iteration of the

Toronto benchmark datasets with different heuristic modifier tested with basic AHO

with top-window size five.

A.2 ITC2007 Benchmark Datasets

Figures A.12 to A.18 show the number of violated examinations at each iteration of the

ITC2007 benchmark datasets with different heuristic modifier tested with basic AHO

with top-window size five. Since the solutions of Exam 7 to Exam 10 are feasible during

the first run, no graphs are provided for those instances.

185

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 186

0

5
10

15
20

25

30
35

40
45

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0
5

10
15
20
25

30
35
40

45

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f i

nf
ea

si
bl

e
ex

am
s

Iterations

LD

LE

LWD

SD (b)

0
5

10
15
20
25
30
35
40
45

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0
5

10
15
20
25
30
35
40
45

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.1: The number of violated examinations at each iteration for car91 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 187

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.2: The number of violated examinations at each iteration for car92 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 188

0

5

10

15

20

25

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

2
4

6
8

10

12
14

16
18

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0
2

4
6
8

10

12
14
16

18

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.3: The number of violated examinations at each iteration for ears83 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 189

0

2

4

6

8

10

12

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

2

4

6

8

10

12

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0
1
2
3
4
5
6
7
8
9

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0
1
2
3
4
5
6
7
8
9

10

1 100 199 298 397 496 595 694 793 892 991

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.4: The number of violated examinations at each iteration for hec92 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 190

0

2
4
6
8

10
12

14
16
18

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

2

4

6

8

10

12

14

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

2

4

6

8

10

12

14

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

2

4

6

8

10

12

14

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.5: The number of violated examinations at each iteration for kfu93 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 191

0
10
20
30

40
50
60
70

80
90

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0
10
20
30
40
50
60
70
80
90

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0
10

20
30
40
50

60
70
80

90

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0
10
20
30
40
50
60
70

80
90

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.6: The number of violated examinations at each iteration for pur93 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 192

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.7: The number of violated examinations at each iteration for rye92 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 193

0

5

10

15

20

25

30

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.8: The number of violated examinations at each iteration for sta83 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 194

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.9: The number of violated examinations at each iteration for uta92 I with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 195

0

2
4

6
8

10

12
14

16
18

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0
1
2
3
4
5
6
7
8
9

10

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

2

4

6

8

10

12

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

2

4

6

8

10

12

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.10: The number of violated examinations at each iteration for ute92 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 196

0

2

4

6

8

10

12

14

16

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

2

4

6

8

10

12

14

16

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

2

4

6

8

10

12

14

16

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

2

4

6

8

10

12

14

16

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.11: The number of violated examinations at each iteration for tre92 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 197

0

2

4

6

8

10

12

14

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0
1
2
3
4
5
6
7
8
9

10

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0
1

2
3
4
5

6
7
8

9

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

1

2

3

4

5

6

7

8

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.12: The number of violated examinations at each iteration for Exam 1 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 198

0

0.5

1

1.5

2

2.5

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

0.5

1

1.5

2

2.5

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

0.5

1

1.5

2

2.5

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

0.5

1

1.5

2

2.5

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.13: The number of violated examinations at each iteration for Exam 2 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 199

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

2

4

6

8

10

12

14

16

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

2

4

6

8

10

12

14

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

2

4

6

8

10

12

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.14: The number of violated examinations at each iteration for Exam 3 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 200

0

10

20

30

40

50

60

70

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

10

20

30

40

50

60

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0
5

10
15
20
25
30
35
40
45
50

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

5

10

15

20

25

30

35

40

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.15: The number of violated examinations at each iteration for Exam 4 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 201

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

0.5

1

1.5

2

2.5

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

0.5

1

1.5

2

2.5

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

0.5

1

1.5

2

2.5

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.16: The number of violated examinations at each iteration for Exam 5 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 202

0
2
4
6
8

10
12
14
16
18
20

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

2

4

6

8

10

12

14

16

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

2

4

6

8

10

12

14

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

2

4

6

8

10

12

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.17: The number of violated examinations at each iteration for Exam 6 with
(a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX) heuristic

modifier

Appendix A. Graphs of Adaptive Heuristic Ordering Approach 203

0

5

10

15

20

25

30

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (a)

0

5

10

15

20

25

30

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (b)

0

5

10

15

20

25

30

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (c)

0

5

10

15

20

25

0 99 198 297 396 495 594 693 792 891 990

N
o.

 o
f v

io
la

te
d

ex
am

in
at

io
ns

Iterations

LD

LE

LWD

SD (d)

Figure A.18: The number of violated examinations at each iteration for Exam 12
with (a) custom (C), (b) additive (AD), multiplicative (MP) and exponential (EX)

heuristic modifier

Bibliography

Aarts, E., Korst, J., and Michiels, W. (2005). Search methodologies: Introductory tuto-

rials in optimization anddecision support methodologies, chapter 7: Simulated anneal-

ing, pages 187–210. Springer.

Abdul Rahim, S. K., Bargiela, A., and Qu, R. (2009). Granular modelling of exam

to slot allocation. In Proceedings of the 23rd European Conference on Modelling and

Simulation (ECMS), Madrid, Spain, pages 861–866.

Abdul Rahman, S., Bargiela, A., Burke, E. K., McCollum, B., and Özcan, E. (2009).

Construction of examination timetables based on ordering heuristics. In Proceedings

of the 24th International Symposium on Computer and Information Sciences, pages

727–732.

Abdul Rahman, S., Bargiela, A., Burke, E. K., McCollum, B., and Özcan, E. (2010). A

construction approach for examination timetabling based on adaptive decomposition

and ordering. In Proceedings of the 8th International Conference on the Practice

and Theory of Automated Timetabling, (PATAT 2010), 10-13 August 2010, Belfast,

Northern Ireland, pages 353–372.

Abdullah, S., Ahmadi, S., Burke, E. K., and Dror, M. (2007). Investigating ahuja-orlin’s

large neighbourhood search approach for examination timetabling. OR Spectrum,

29(2):351–372.

Abdullah, S., Burke, E. K., and McCollum, B. (2005). An investigation of variable

neighbourhood search for university course timetabling. In Proceedings of the 2nd

Multi-disciplinary International Conference on Scheduling: Theory and Applications

(MISTA), New York, USA, 18-21 July, pages 413–427.

Abdullah, S., Shaker, K., McCollum, B., and McMullan, P. (2010). Incorporating great

deluge with kempe chain neighbourhood structure for the enrolment-based course

timetabling problem. In Yu, J., Greco, S., Lingras, P., Wang, G., and Skowron,

A., editors, Rough Set and Knowledge Technology, volume 6401 of Lecture Notes in

Computer Science, pages 70–77. Springer Berlin / Heidelberg.

204

Bibliography 205

Ahmadi, S., Barone, R., Cheng, P., Cowling, P., and McCollum, B. (2003). Perturbation

based hyper-heuristic for examination timetabling problems. In Proceeding of The 1st

Multidisciplinary International Conference on Scheduling: Theory and Applications

(MISTA), Nottingham.

Ahuja, R. K., Orlin, J. B., and Sharma, D. (2001). Multi-exchange neighbourhood

search algorithm for capacitated minimum spanning tree problem. Mathematical Pro-

gramming, 91:71–97.

Al-Betar, M. A. and Khader, A. T. (2009). A hybrid harmony search for university course

timetabling. In Proceedings of the 4th Multidisciplinary International Scheduling:

Theory and Applications 2009 (MISTA 2009), 10-12 August 2009, Dublin, Ireland.

Al-Betar, M. A., Khader, A. T., and Gani, T. A. (2008). A harmony search algorithm for

university course timetabling. In Proceedings of the Practice and Theory of Automated

Timetabling (PATAT 2008), Montreal, 19-22, August 2008.

Al-Betar, M. A., Khader, A. T., and Thomas, J. J. (2010). A combination of meta-

heuristic components based on harmony search for the uncapacitated examination

timetabling. In Proceedings of the 8th International Conference on the Practice and

Theory of Automated Timetabling, (PATAT 2010), 10-13 August 2010, Belfast, North-

ern Ireland.

Alkan, A. and Özcan, E. (2003). Memetic algorithms for timetabling. In Proceeding of

IEEE Congress on Evolutionary Computation, pages 1796–1802.

Asmuni, H., Burke, E. K., Garibaldi, J. M., and McCollum, B. (2005). Fuzzy multiple

heuristic orderings for examination timetabling. In Burke, E. K. and Trick, M., editors,

Lecture notes in computer science: Practice and theory of automated timetabling V:

selected papers from the 5th international conference, volume 3616, pages 334–353.

Berlin: Springer.

Asmuni, H., Burke, E. K., Garibaldi, J. M., and McCollum, B. (2007). A novel fuzzy

approach to evaluate the quality of examination timetabling. In Burke, E. K. and

Rudova, H., editors, Lecture notes in computer science: Practice and theory of au-

tomated timetabling V: selected papers from the 6th international conference, volume

3867, pages 327–346. Berlin: Springer.

Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B., and Parkes, A. J. (2009).

An investigation of fuzzy multiple heuristic orderings in the construction of university

examination timetables. Computers and Operations Research, 36(4):981–1001.

Bibliography 206

Atsuta, M., Nonobe, K., and Ibaraki, T. (2008). Itc2007 track 2: An approach using gen-

eral csp solver. In Proceedings of the Practice and Theory of Automated Timetabling

(PATAT 2008), Montreal, 19-22, August 2008. www.cs.qub.ac.uk/itc2007.

Avanthay, C., Hertz, A., and Zuffere, N. (2003). A variable neighbourhood search for

grap coloring. European Journal of Operational Research, 151:379–388.

Avella, P., D’Auria, B., Salerno, S., and Vasil’ev, I. (2007). A computational study

of local search algorithms for italian high-school timetabling. Journal of Heuristics,

13:543–556.

Ayob, M. and Kendall, G. (2003). A monte carlo hyper-heuristic to optimise component

placement sequencing for multi head placement machine. In Proceedings of the Inter-

national Conference on Intelligent Technologies, InTech’03, Chiang Mai, Thailand,

pages 132–141.

Azimi, Z. N. (2004). Comparison of metaheuristic algorithms for examination

timetabling problem. Applied Mathematics and Computation, 16(1-2):337–354.

Azimi, Z. N. (2005). Hybrid heuristics for examination timetabling problem. Applied

Mathematics and Computation, 163(2):705–733.

Bardadym, V. A. (1996). Computer-aided school and university timetabling: The new

wave. In Selected papers from the First International Conference on Practice and

Theory of Automated Timetabling, pages 22–45, London, UK. Springer-Verlag.

Benders, J. (1962). Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematic, 4:238–252.

Benoist, T., Gaudin, E., and Rottembourg, B. (2002). Constraint programming contri-

bution to benders decomposition: A case study. In Proceedings of the eigth interna-

tional conference on principles and practice of constraint programming (CP), lecture

notes in computer science, volume 2470, pages 603–617.

Bilgin, B., Özcan, E., and Korkmaz, E. E. (2007). An experimental study on hyper-

heuristics and exam scheduling. In Burke, E. K. and Rudova, H., editors, Lecture

notes in computer science (Practice and theory of automated timetabling VI: selected

papers from the 6th international conference), volume 3867, pages 394–412. Berlin:

Springer.

Birbil, S. I. and Fang, S.-C. (2003). An electromagnetism-like mechanism for global

optimization. Journal of Global Optimization, 25:263–282.

Blum, C. and Roli, A. (2003). Meta-heuristics in combinatorial optimisation: Overview

and conceptual comparison. ACM Computing Survey, 35(3):268–308.

Bibliography 207

Boizumault, P., Delon, Y., and Peridy, L. (1996). Constraint logic programming for

examination timetabling. Journal of Logic Programming, 26(2):217–233.

Bosch, R. and Trick, M. (2005). Search Methodologies: Introductory tutorials in optimi-

sation and decision support techniques, chapter Integer Programming, pages 69–96.

Berlin: Springer, Berlin.

Boufflet, J. P. and Nègre, S. (1996). Three methods used to solve an examina-

tion timetable problem. In Selected papers from the First International Conference

on Practice and Theory of Automated Timetabling, pages 327–344, London, UK.

Springer-Verlag.

Brandão de Oliveira, H. C. and Vasconcelos, G. C. (2010). A hybrid search method

for the vehicle routing problem with time windows. Annals of Operational Reseach,

180:125–144.

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of

the ACM, 22(4):251–256.

Broder, S. (1964). Final examination scheduling. Communications of the ACM,

7(8):494–498.

Burke, E. K. and Barry, M., editors (2010). Practice and theory of automated timetabling

2010.

Burke, E. K. and Bykov, Y. (2006). Solving exam timetabling problems with the flex-

deluge algorithm. In Proceedings of the International Conference on the Theory and

Practice of Automated Timetabling (PATAT 2006), pages 370–372.

Burke, E. K. and Bykov, Y. (2008). A late acceptance strategy in hill-climbing for

examination timetabling problems. In Proceedings of the Conference on the Practice

and Theory of Automated Timetabling (PATAT 2008).

Burke, E. K., Bykov, Y., Newall, J., and Petrovic, S. (2003a). A time-predefined ap-

proach to course timetabling. Yugoslav Journal of Operations Research, 13(2):139–151.

Burke, E. K., Bykov, Y., Newall, J. P., and Petrovic, S. (2004a). A time-predefined local

search approach to exam timetabling problem. IIE Transactions, 36(6):509–528.

Burke, E. K., Bykov, Y., and Petrovic, S. (2001). A multicriteria approach to examina-

tion timetabling. In Burke, E. K. and Erben, W., editors, Lecture notes in computer

science: Practice and theory of automated timetabling V: selected papers from the 3rd

international conference, volume 2079, pages 118–131, London, UK. Berlin: Springer.

Bibliography 208

Burke, E. K. and Carter, M. W., editors (1998). Practice and theory of automated

timetabling II, volume 1408. Springer-Verlag.

Burke, E. K. and De Causmaecker, P., editors (2003). Practice and theory of automated

timetabling IV, volume 2740. Springer-Verlag.

Burke, E. K., De Causmaecker, P., Petrovic, S., and Vanden Berghe, G. (2003b). Meta-

heuristics: Computer decision-making, chapter 7: Variable neighbourhood search for

nurse rostering problems, pages 153–172. Kluwer.

Burke, E. K., Dror, M., Petrovic, S., and Qu, R. (2005a). Hybrid graph heuristics in

hyper-heuristics applied to exam timetabling problems. In Golden, G. L., Raghavan,

S., and Wasil, E. A., editors, The next wave in computing, optimization, and decision

technologies, pages 79–91. Springer: Maryland.

Burke, E. K., Dror, M., Petrovic, S., and Qu, R. (2005b). The next wave in comput-

ing, optimization, and decision technologies, chapter Hybrid graph heuristics within

a hyper-heuristic approach to exam timetabling problems, pages 79–91. Springer.

Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., and Qu, R. (2004b).

Analysing similarity in examination timetabling. In Burke, E. and Trick, M., edi-

tors, Proceedings of The 5th International Conference on the Practice and Theory of

Automated Timetabling. 18th-20th Aug, Pittsburgh, PA USA, pages 89–106.

Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., and Qu, R. (2010a). Hybrid

variable neighbourhood approaches to university exam timetabling. European Journal

of Operational Research, 206(1):46–53.

Burke, E. K., Elliman, D., Ford, P. H., and Weare, R. F. (1996a). Examination

timetabling in british universities: A survey. In Selected papers from the First Inter-

national Conference on Practice and Theory of Automated Timetabling, pages 76–90,

London, UK. Springer-Verlag.

Burke, E. K., Elliman, D., and Weare, R. F. (1995). Specialised recombinative operators

for timetabling problems. In Lecture notes in computer science: Selected Papers from

Artificial Intelligence and Simulation of Behaviour (AISB) Workshop on Evolutionary

Computing, volume 993, pages 75–85, London, UK. Springer-Verlag.

Burke, E. K., Elliman, D. G., and Weare, R. (1993). Extensions to a university exam

timetabling system. In Proceeding of the IJCA-93 Workshop on Knowledge-based

Production, Planning, Scheduling and Control, Chambery, France.

Burke, E. K., Elliman, D. G., and Weare, R. (1994). A university timetabling sys-

tem based on graph colouring and constraint manipulation. Journal of Research on

Computing in Education, 27(1):1–18.

Bibliography 209

Burke, E. K. and Erben, W., editors (2001). Practice and theory of automated timetabling

III, volume 2079. Springer-Verlag.

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P., and Schulenburg, S. (2003c).

Handbook of meta-heuristics, chapter Hyper-heuristics: An emerging direction in mod-

ern search technology, pages 457–474. Kluwer.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., and Özcan, E. (2010b). Handbook

of metaheuristics, volume 146, chapter A classification of hyper-heuristic approaches,

pages 449–468. Springer.

Burke, E. K. and Kendall, G., editors (2005). Search methodologies: Introductory tuto-

rials in optimization and decision support techniques. Springer.

Burke, E. K., Kendall, G., Misir, M., and Özcan, E. (2010c). Monte carlo hyper-

heuristics for examination timetabling. Annals of Operations Research.

Burke, E. K., Kendall, G., and Soubeiga, E. (2003d). A tabu-search hyperheuristic for

timetabling and rostering. Journal of Heuristics, 9(6):451–470.

Burke, E. K., Kingston, J., and de Werra, D. (2004c). Handbook of graph theory, chapter

Applications to timetabling, pages 445–474. Chapman Hall/CRC Press.

Burke, E. K., Mareček, J., Parkes, A. J., and Rudová, H. (2010d). Decomposition,

reformulation, and diving in university course timetabling. Computers & Operations

Research, 37(1):582–597.

Burke, E. K., McCollum, B., McMullan, P., and Parkes, A. J. (2008). Multi-objective

aspects of the examination timetabling competition track. In Procedings of the 7th In-

ternational Conference on the Practice and Theory of Automated Timetabling PATAT

2008.

Burke, E. K., Mccollum, B., Meisels, A., Petrovic, S., and Qu, R. (2007). A graph-based

hyper-heuristic for educational timetabling problems. European Journal of Operational

Research, 176:177–192.

Burke, E. K., Newall, J., and Weare, R. F. (1998a). A simple heuristically guided search

for the timetable problem. In Alpaydin, E. and Fyte, C., editors, Proceedings of the

International ICSC Symposium on Engineering of Intelligent Systems (EIS’98), pages

574–579, University of La Laguna, Spain 1998. ICSC Academic Press.

Burke, E. K. and Newall, J. P. (1999). A multistage evolutionary algorithm for the

timetable problem. IEEE Trans. Evolutionary Computation, 3(1):63–74.

Bibliography 210

Burke, E. K. and Newall, J. P. (2003). Enhancing timetable solutions with local search

methods. In Lecture notes in computer science: Practice and theory of automated

timetabling IV: selected papers from the 4th international conference, volume 2740,

pages 195–206. Springer-Verlag.

Burke, E. K. and Newall, J. P. (2004). Solving examination timetabling problems

through adaptation of heuristic orderings. Annals of Operations Research, 129:107–

134.

Burke, E. K., Newall, J. P., and Weare, R. F. (1996b). A memetic algorithm for uni-

versity exam timetabling. In Burke, E. K. and Ross, P., editors, Lecture notes in

computer science: Selected papers from the First International Conference on Prac-

tice and Theory of Automated Timetabling, volume 1153, pages 241–250, London, UK.

Springer-Verlag.

Burke, E. K., Newall, J. P., and Weare, R. F. (1998b). Initialisation strategies and

diversity in evolutionary timetabling. Evolutionary Computation Journal (special issue

on Scheduling), 6(1):81–103.

Burke, E. K. and Petrovic, S. (2002). Recent research directions in automated

timetabling. European Journal of Operational Research, 140:266–280.

Burke, E. K., Petrovic, S., and Qu, R. (2006). Case-based heuristic selection for

timetabling problems. Journal of Scheduling, 9(2):115–132.

Burke, E. K., Pham, N., Qu, R., and Yellen, J. (2010e). Linear combinations of heuristics

for examination timetabling. Annals of Operations Research.

Burke, E. K., Qu, R., and Soghier, A. (2009). Adaptive selection of heuristics within

a grasp for exam timetabling problems. In Proceedings of the 4th Multidisciplinary

International Scheduling: Theory and Applications 2009 (MISTA 2009), 10-12 August

2009, Dublin, Ireland, pages 409–423.

Burke, E. K., Qu, R., and Soghier, A. (2010f). Adaptive selection of heuristics for

improving constructed exam timetables. In Proceedings of the 8th International Con-

ference on the Practice and Theory of Automated Timetabling (PATAT 2010), 10-13

August 2010, Belfast, Northern Ireland, pages 136–152.

Burke, E. K. and Ross, P., editors (1996). Practice and theory of automated timetabling,

volume 1153. Springer-Verlag.

Burke, E. K. and Rudová, H., editors (2007). Practice and theory of automated

timetabling VI, volume 3667. Springer-Verlag.

Bibliography 211

Burke, E. K. and Trick, M., editors (2005). Practice and theory of automated timetabling

V, volume 3616. Springer-Verlag.

Caporossi, G. and Hansen, P. (2000). Variable neighbourhood search for external graphs:

I the autographix system. Discrete Mathematics, 212:29–44.

Caramia, M., Dell’Olmo, P., and Italiano, G. (2008). Novel local search based approaches

to university examination timetabling. INFORMS Journal of Computing, 20:86–99.

Carrington, J. R., Pham, N., Qu, R., and Yellen, J. (2007). An enhanced weighted graph

model for examination/course timetabling. In Proceedings of the 26th Workshop of

the UK Planning and Scheduling (PlanSIG2007).

Carter, M. W. (1986). A survey of practical applications of examination timetabling

algorithms. Operational Research, 34(2):193–202.

Carter, M. W. and Johnson, D. G. (2001). Extended clique initialisation in examination

timetabling. Journal of the Operational Research Society, 52:538–544.

Carter, M. W. and Laporte, G. (1996). Recent developments in practical examination

timetabling. In Selected papers from the First International Conference on Practice

and Theory of Automated Timetabling, pages 3–21, London, UK. Springer-Verlag.

Carter, M. W., Laporte, G., and Chinneck, J. W. (1994). A general examination schedul-

ing system. Interfaces, 24(3):109–120.

Carter, M. W., Laporte, G., and Lee, S. (1996). Examination timetabling: Algorithmic

strategies and applications. Journal of the Operational Research Society, 47(3):373–

383.

Casey, S. and Thompson, J. (2003). Grasping the examination scheduling problem. In

Lecture notes in computer science: Practice and theory of automated timetabling IV:

selected papers from the 4th international conference, volume 2740, pages 234–244.

Berlin: Springer.

Chen, X. and Bushnell, M. L. (1996). Efficient branch and bound search with application

to computer-aided design. Kluwer Academic Publishers.

Cheong, C. Y., Tan, K. C., and Veeravalli, B. (2007). Solving the exam timetabling

problem via a multi-objective evolutionary algorithm - a more general approach. In

Proceedings of the IEEE Symposium on Computational Intelligence in Scheduling (CI-

Sched 2007), pages 165–172.

Cole, A. J. (1964). The preparation of examination timetables using a smallstore com-

puter. Computer Journal, 7:117–121.

Bibliography 212

Corne, D., Ross, P., and Fang, H. (1994). Evolutionary timetabling: Practice, prospects

and work in progress. In Prosser, P., editor, Proceedings of the UK Planning and

Scheduling SIG Workshop.

Corr, P., McCollum, B., McGreevy, M., and McMullan, P. (2006). A new neural network

based construction heuristic for the examination timetabling problem. In Proceedings

of the Parallel Problem Solving from Nature - PPSN IX, Lecture Notes in Computer

Science, volume 4193, pages 392–401. Springer-Verlag.

Côté, P., Wong, T., and Sabourin, R. (2005). A hybrid multi-objective evolutionary

algorithm to the uncapacitated exam proximity problem. In Lecture Notes in Com-

puter Science: Selected papers from the 5th International Conference on Practice and

Theory of Automated Timetabling (PATAT 2004), volume 3616, pages 151–168.

De Causmaecker, P., Demeester, P., and Vanden Berghe, G. (2009). A decomposed

metaheuristic approach for a real-world university timetabling problem. European

Journal of Operational Research, 195:307–318.

De Smet, G. (2008). Itc2007 - examination track. In Proceedings of the Practice and

Theory of Automated Timetabling (PATAT 2008), Montreal, 19-22, August 2008.

de Werra, D. (1985). An introduction to timetabling. European Journal of Operational

Research, 19(2):151–162.

de Werra, D. (1997). Restricted colouring models for timetabling. Discrete Mathematics,

165/166:161–170.

Detienne, B., Péridy, L. andPinson, E., and Rivreau, D. (2009). Cut generation

for an employee timetabling problem. European Journal of Operational Research,

197(3):1178–1184.

Di Gaspero, L. (2002). Recolour, shake and kick: A recipe for the examination

timetabling problem. In Proceedings of the 4th International Conference on the Prac-

tice and Theory of Automated Timetabling (PATAT IV), Gent, Belgium.

Di Gaspero, L. and Schaerf, A. (2001). Tabu search techniques for examination

timetabling. In Lecture notes in computer science: Practice and theory of automated

timetabling III: selected papers from the 3rd international conference, pages 104–117,

London, UK. Berlin: Springer.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical

Computer Science, 344:243–278.

Bibliography 213

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant sytem: Optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B:

Cybernetics, 26 (1):29–41.

Dowsland, K. A. and Thompson, J. (2005). Ant colony optimization for the examination

scheduling problem. Journal of Operational Research Society, 56:426–438.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the

record-to-record travel. Journal of Computational Physics, 104:86–92.

Duong, T. A. and Lam, K. H. (2004). Combining constraint programming and sim-

ulated annealing on university exam timetabling. In Proceedings of the RIVF 2004

conference, Hanoi, Vietnam.

Eley, M. (2007). Ant algorithms for the exam timetabling problem. In Burke, E. K. and

Rudova, H., editors, Lecture notes in computer science: Practice and theory of auto-

mated timetabling VI: selected papers from the 6th international conference, volume

3867, pages 364–382. Berlin: Springer.

Erben, W. (2001). A grouping genetic algorithm for graph colouring and exam

timetabling. In Burke, E. K. and De Causmaecker, P., editors, Lecture Notes in

Computer Science, The Practice and Theory of Automated Timetabling III: Selected

Papers from 3rd International Conference on the Practice and Theory of Automated

Timetabling (PATAT IV), volume 2740, pages 132–156. Berlin: Springer.

Ergül, A. (1996). Ga-based examination scheduling experience at middle east technical

university. In Selected papers from the First International Conference on Practice and

Theory of Automated Timetabling, pages 212–226, London, UK. Springer-Verlag.

Ersoy, E., Özcan, E., and Sima Uyar, A. (2007). Memetic algorithms and hyperhill-

climbers. In Baptiste, P.and Kendall, G., Kordon, A. M., and Sourd, F., editors, Lec-

ture notes in computer science: Multidisciplinary international conference on schedul-

ing: theory and applications: selected papers from the 3rd international conference,

pages 159–166.

Even, S., Itai, A., and Shamir, A. (1976). On the complexity of timetable and multi-

commodity flow problems. SIAM Journal on Computing, 5(4):691–703.

Fleszar, K. and Hindi, K. H. (2004). Solving the resource-constrained project schedul-

ing problem by a variable neighbourhood search. European Journal of Operational

Research, 155(2):402–413.

Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001). A new heuristic optimization

algorithm: Harmony search. Simulation, 76 (2):60–68.

Bibliography 214

Gendreau, M. and Potvin, J. (2005). Introductory tutorials in optimisation, decision

support and search methodology, chapter 6: Tabu search, pages 165–186. Kluwer.

Gersmann, K. and Hammer, B. (2003). Improving iterative repair strategies for schedul-

ing with the svm. In Proceedings of european symposium on artificial neural networks.

Glover, F. (1986). Future paths for integer programming and links to artificial intelli-

gence. Computer and Operational Research, 13 (5):533–549.

Glover, F. (1989). Tabu search-part i. ORSA Journal on Computing, 1 (3):190–206.

Glover, F. (1990). Tabu search-part ii. ORSA Journal on Computing, 2 (1):4–32.

Glover, F. and Kochenberher, G. (2003). Handbook of meta-heuristics. Kluwer.

Glover, F. and Laguna, M. (1997). Tabu search. Kluwer Academic Publisher.

Gogos, C., Alefragis, P., and Housos, E. (2008). A multi-staged algorithmic process for

the solution of the examination timetabling problem. In Proceedings of the Practice

and Theory of Automated Timetabling (PATAT 2008), Montreal, 19-22, August 2008.

Gogos, C., Alefragis, P., and Housos, E. (2010a). An improved multi-staged algorithmic

process for the solution of the examination timetabling problem. Annals of Operation

Research, 3:1–3.

Gogos, C., Goulas, G., Alefragis, P., and Housos, E. (2009). Pursuits of better results

for the examination timetabling problem using grid resources. In Proceedings of the

Computational intelligence in scheduling (CISched09).

Gogos, C., Goulas, G., Alefragis, P., Kolonias, V., and Housos, E. (2010b). Dis-

tributed scatter search for the examination timetabling problem. In Proceedings of the

8th International Conference on the Practice and Theory of Automated Timetabling,

(PATAT 2010), 10-13 August 2010, Belfast, Northern Ireland, pages 211–223.

Hansen, P. and Mladenović, N. (2001). Variable neighborhood search: Principles and

applications. European Journal of Operational Research, 130(3):449–467.

Hansen, P., Mladenović, N., and Perez-Britos, D. (2001). Variable neighborhood decom-

position search. Journal of Heuristics, 7(4):335–350.

Haykin, S. (1999). Neural networks: A comprehensive foundation. Prentice Hall.

Ibaraki, T. (2008). Problem solving by general purpose solvers. In Proceeding of the 7th

International Symposium of Operations Research and Its Applications (ISORA08),

Lijian, China, pages 10–17.

Bibliography 215

Ibaraki, T. (2010). A personal perspective on problem solving by general purpose solvers.

International Transactions in Operational Research, 17:303–315.

Johnson, D. (1990). Timetabling university examinations. Journal of the Operational

Research Society, 41(1):39–47.

Joslin, D. E. and Clements, D. P. (1999). “squeaky wheel” optimization. Journal of

Artificial Intelligence Research, 10:353–37.

Kahar, M. N. M. and Kendall, G. (2010). The examination timetabling problem at

universiti malaysia pahang: Comparison of a constructive heuristic with an existing

software solution. European Journal of Operational Research, 207:557–565.

Kendall, G. and Li, J. (2008). Combining examinations to accelerate timetable construc-

tion. In Proceedings of The 7th International Conference on the Practice and Theory

of Automated Timetabling, Montreal.

Kendall, G. and Mohd Hussin, N. (2005a). An investigation of a tabu search based hyper-

heuristic for examination timetabling. In Kendall, G., Burke, E. K., and Petrovic, S.,

editors, Selected papers from Multidisciplinary Scheduling: Theory and Applications

1st International Conference (MISTA2003). Springer.

Kendall, G. and Mohd Hussin, N. (2005b). Tabu search hyper-heuristic approach to the

examination timetabling problem at university technology mara. In Burke, E. K. and

Trick, M., editors, Lecture notes in computer science. Practice and theory of automated

timetabling V: selected papers from the 5th international conference, pages 199–217,

Pittsburgh, USA.

Kiaer, L. and Yellen, J. (1992). Weighted graphs and university course timetabling.

Computers and Operations Research, 19(1):59–67.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimisation by simulated annealing.

Science, 220:671–380.

Landa-Silva, D. and Obit, J. H. (2008). Great deluge with nonlinear decay rate for

solving course timetabling problems. In Proceedings of the 2008 IEEE Conference on

Intelligent Systems (IS 2008), pages 8.11–8.18. IEEE press.

Landa-Silva, J. D., Burke, E. K., and Petrovic, S. (2004). Metaheuristic for multiobjective

optimisation, lecture notes in economics and mathematical systems, volume 535, chap-

ter An introduction to multiobjective metaheuristics for scheduling and timetabling,

pages 91–129. Springer.

Laporte, G. and Desroches, S. (1984). Examination timetabling by computer. Computers

& Operations Research, 11(4):351–360.

Bibliography 216

Lewis, R. (2008). A survey of metaheuristic-based techniques for university timetabling

problems. OR Spectrum, 30(1):167–190.

Martinez, Y., Wauters, T., De Causmaecker, P., Nowe, A., Verbeeck, K., Bello, R., and

Suarez, J. (2010). Reinforcement learning approaches for the parallel machines job

shop scheduling problem. In Proceedings of the cubaflanders workshop on machine

learning and knowledge discovery.

McCollum, B. (2007). A perspective on bridging the gap between research and practice

in university timetabling. In Burke, E. K. and Rudova, H., editors, Proceedings of

the Practice and Theory of Automated Timetabling VI, Lecture Notes in Computer

Science, volume 3867, pages 3–23. Springer.

McCollum, B., McMullan, P., Burke, E. K., Parkes, A. J., and Qu, R. (2008). A new

model for automated examination timetabling. Annals of OR, 2:2–3.

McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K., and Abdullah, S. (2009). An

extended great deluge approach to the examination timetabling problem. In Proceed-

ings of the 4th Multidisciplinary International Conference on Scheduling: Theory and

Applications (MISTA09), Dublin.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J.,

Gaspero, L. D., Qu, R., and Burke, E. K. (2010). Setting the research agenda in au-

tomated timetabling: The second international timetabling competition. INFORMS

Journal on Computing, 22(1):120–130.

Mehta, N. K. (1981). The application of a graph coloring method to an examination

scheduling problem. INTERFACES, 11(5):57–65.

Meisels, A., Ell-sana, J., and Gudes, E. (1994). Decomposing and solving timetabling

constraint networks. Computational Intelligence, 1997:486–505.

Meisels, A. and Schaerf, A. (2003). Modelling and solving employee timetabling prob-

lems. Annals of Mathematics and Artificial Intelligence, 39 (1-2):41–59.

Mercier, A., Cordeau, J.-E., and Soumis, F. (2005). A computational study of ben-

ders decomposition for the integrated aircraft routing and crew scheduling problem.

Computers & Operations Research, 32(6):1451–1476.

Merlot, L. T. G., Boland, N., Hughes, B. D., and Stuckey, P. J. (2003). A hybrid

algorithm for the examination timetabling problem. In Burke, E. K. and Erben,

W., editors, Lecture notes in computer science: Practice and theory of automated

timetabling V: selected papers from the 4th international conference, volume 2740,

pages 207–231. Berlin: Springer.

Bibliography 217

Meyers, C. and Orlin, J. B. (2007). Very large-scale neighborhood search techniques

in timetabling problems. In Burke, E. K. and Rudova, H., editors, Lecture notes in

computer science: Practice and theory of automated timetabling VI: selected papers

from the 6th international conference, volume 3867, pages 24–39. Berlin: Springer.

Mihaylov, M., Le Borgne, Y., Nowe, A., and Tuyls, K. (2010). Decentralized reinforce-

ment learning for wake-up scheduling. In Proceedings of the 7th european conference

on wireless sensor networks.

MirHassani, S. A. (2006). Improving paper spread in examination timetables using

integer programming. Applied Mathematics and Computation, 179:702–706.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers &

Operations Research, 24(11):1097–1100.

Morena Pérez, J. A., Marcos Moreno-Vega, J., and Rodŕıguez Mart́ın, I. (2003). Variable

neighbourhood tabu search and its application to the median cycle problem. European

Journal of Operational Research, 151:365–378.

Moscato, P. and Cotta, C. (2003). Handbook of meta-heuristics, chapter A gentle intro-

duction to memeticalgorithms, pages 105–144. Kluwer Academic Publishers.

Müller, T. (2008). Itc 2007: Solver description. In Proceedings of the Practice and

Theory of Automated Timetabling (PATAT 2008), Montreal, 19-22, August 2008.

Müller, T. (2009). Itc2007 solver description: a hybrid approach. Annals OR,

172(1):429–446.

Müller, T., Barták, R., and Rudová, H. (2004). Conflict-based statistics. In Gottlieb, J.,

Landa Silva, D., Musliu, N., and Soubeiga, E., editors, EU/ME Workshop on Design

and Evaluation of Advanced Hybrid Meta-Heuristics. University of Nottingham.

Nareyek, A. (2003). Metaheuristics: Computer decision-making, chapter Choosing

search heuristics by non-stationary reinforcement learning., pages 523–544. Dordrecht,

The Netherlands: Kluwer Academic Publishers.

Obit, J. H., Landa-Silva, D., Ouelhadj, D., and Sevaux, M. (2009). Non-linear great

deluge with learning mechanism for solving the course timetabling problem. In Pro-

ceedings of the 8th metaheuristics international conference (MIC 2009), Hamburgh

Germany.

Özcan, E. and Alkan, A. (2007). A memetic algorithm for solving a timetabling problem:

An incremental strategy. In Proceeding of the 3rd Multidisciplinary International

Conference On Scheduling: Theory and Applications (MISTA07), Paris, France.

Bibliography 218

Özcan, E., Bykov, Y., Birben, M., and Burke, E. K. (2009). Examination timetabling

using late acceptance hyper-heuristic. In Proceeding of the 2009 IEEE Congres on

Evolutionary Computation (CEC’09), pages 997–1004.

Özcan, E. and Ersoy, E. (2005). Final exam scheduler - fes. In Proceedings of the IEEE

Congress on Evolutionary Computation (CEC’05), volume 2, pages 1356–1363.

Özcan, E., Misir, M., Ochoa, G., and Burke, E. K. (2010). A reinforcement learning:

great deluge hyper-heuristic for examination timetabling. International Journal of

Applied Metaheuristic Computing, 1(1):39–59.

Pais, T. C. and Burke, E. (2010). Choquet integral for combining heuristic values for

exam timetabling problem. In Proceedings of the 8th International Conference on the

Practice and Theory of Automated Timetabling, (PATAT 2010), 10-13 August 2010,

Belfast, Northern Ireland, pages 305–320.

Paquete, L. F. and Fortseca, C. M. (2001). A study of examination timetabling with

multiobjective evolutionary algorithms. In Proceedings of the 4th Metaheuristics In-

ternational Conference (MIC 2001), pages 149–154.

Parkes, A. and Özcan, E. (2010). Properties of yeditepe examination timetabling bench-

mark instances. In Proceedings of the 8th International Conference on the Practice

and Theory of Automated Timetabling, pages 531–534.

Peck, J. E. L. and Williams, M. R. (1966). Algorithm 286: Examination scheduling.

Communications of the ACM, 9(6):433–434.

Petrovic, S. and Burke, E. (2004). University timetabling. In Handbook of Schedul-

ing: Algorithms, Models, and Performance Analysis, chapter 45. Chapman Hall/CRC

Press.

Petrovic, S. and Bykov, Y. (2003). A multiobjective optimisation technique for exam

timetabling based on trajectories. In Burke, E. K. and De Causmaecker, P., editors,

Lecture notes in computer science: Practice and theory of automated timetabling IV:

selected papers from the 4th international conference, volume 2740, pages 179–192.

Berlin: Springer.

Pillay, N. (2008). A developmental approach to the examination timetabling problem.

In Proceedings of the Practice and Theory of Automated Timetabling (PATAT 2008),

Montreal, 19-22, August 2008.

Pillay, N. (2009a). Evolving hyper-heuristics for the uncapacitated examination

timetabling problem. In Proceedings of the 4th Multidisciplinary International Con

Bibliography 219

ference on Scheduling: Theory and Applications (MISTA’09), Dublin, Ireland, pages

447–457.

Pillay, N. (2009b). The revised developmental approach to the uncapacitated exami-

nation timetabling problem. In Proceedings of the 2009 Annual Research Conference

of the South African Institute of Computer Scientists and Information Technologists,

pages 187–192.

Pillay, N. (2010a). Evolving hyper-heuristics for a highly constrained examination

timetabling problem. In Proceedings of the 8th International Conference on the

Practice and Theory of Automated Timetabling, (PATAT 2010), 10-13 August 2010,

Belfast, Northern Ireland, pages 336–346.

Pillay, N. (2010b). Evolving hyper-heuristics for a highly constrained, multi-objective

examination timetabling problem. In Proceedings of the 8th International Conference

on the Practice and Theory of Automated Timetabling (PATAT 2010), 10-13 August

2010, Belfast, Northern Ireland.

Pillay, N. and Banzhaf, W. (2007). A genetic programming approach to the generation

of hyper-heuristics for the uncapacitated examination timetabling problem. In Neves,

J., Santos, M., and Machado, J., editors, Lecture Notes in Computer Science: Progress

in Artificial Intelligence, 13th Portuguese Conference on Aritficial Intelligence, EPIA

Workshops 2007, volume 4874, pages 223–234. Springer.

Pillay, N. and Banzhaf, W. (2008). A developmental approach to the uncapacitated

examination timetabling problem. In Lecture notes in computer science: Parallel

Problem Solving from Nature PPSN X: selected papers from the international confer-

ence, volume 5199, pages 276–285.

Pillay, N. and Banzhaf, W. (2009). A study of heuristic combinations for hyper-heuristic

systems for the uncapacitated examination timetabling problem. European Journal

of Operational Research, 197(2):482–491.

Pirlot, M. (1996). General local search methods. European Journal of Operational

Research, 92:493–511.

Qu, R., Burke, E., and McCollum, B. (2009a). Adaptive automated construction of hy-

brid heuristics for exam timetabling and graph colouring problems. European Journal

of Operational Research, 198(2):392–404.

Qu, R. and Burke, E. K. (2005). Hybrid variable neighbourhood hyper-heuristics for

exam timetabling problems. In Proceedings of the 6th Metaheuristic International

Conference 2005, Vienna, Austria.

Bibliography 220

Qu, R. and Burke, E. K. (2007). Adaptive decomposition and construction for exam-

ination timetabling problems. In Proceedings of the Multidisciplinary international

scheduling: theory and applications (MISTA’07), Paris, France, pages 418–425.

Qu, R. and Burke, E. K. (2009). Hybridisations within a graph based hyper-heuristic

framework for university timetabling problems. Journal of Operational Research So-

ciety, 60:1273–1285.

Qu, R., Burke, E. K., Mccollum, B., Merlot, L. T., and Lee, S. Y. (2009b). A sur-

vey of search methodologies and automated system development for examination

timetabling. Journal of Scheduling, 12(1):55–89.

Qu, R., He, F., and Burke, E. K. (2009c). Hybridizing integer programming models with

an adaptive decomposition approach for exam timetabling problems. In Proceedings

of the 4th Multidisciplinary International Scheduling: Theory and Applications 2009,

pages 435–446, Dublin, Ireland.

Ross, P. (2005). Search methodologies: Introductory tutorials in optimisation and

decision support techniques, chapter Chapter 17: Hyper-heuristics, pages 529–556.

Springer.

Ross, P. and Corne, D. (1995). Comparing genetic algorithm, simulated annealing and

stochastic hill climbing of timetabling problems. In Proceedings of the 1995 AISB

Workshop on Evolutionary Computing, Lecture Notes in Computer science, volume

993, pages 94–102. Springer-Verlag.

Ross, P., Corne, D., and Terashima-Marin, H. (1996). The phase transition niche for

evolutionary algorithms in timetabling. In Burke, E. and Ross, P., editors, Practice

and Theory of Automated Timetabling: Selected Papers from the 1st International

Conference. Lecture Notes in Computer Science, volume 1153, pages 309–324.

Ross, P., Hart, E., and Corne, D. (1998). Some observations about ga-based exam

timetabling. In Burke, E. and Carter, M., editors, In Practice and Theory of Auto-

mated Timetabling: Selected Papers from the 2nd International Conference. Lecture

Notes in Computer Science, volume 1408, pages 115–129.

Ross, P., Marin-Blázquez, J., and Hart, E. (2004). Hyper-heuristics applied to class

and exam timetabling problems. In Proceedings of the 2004 Congress on Evolutionary

Computation (CEC2004), pages 1691–1698.

Sabar, N. R., Ayob, M., and Kendall, G. (2009). Tabu exponential monte-carlo with

counter heuristic for examination timetabling. In Proceedings of 2009 IEEE sympo-

sium on computational intelligence in scheduling (CISched 2009), 30 Mar - 2 Apr,

2009, Nashville, Tennessee, USA, pages 90–94.

Bibliography 221

Sastry, K., Goldberg, D., and Kendall, G. (2006). Introductory tutorials in optimisation,

decision support and search methodology, chapter 4: Genetic algorithms, pages 97–125.

Springer.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review,

13(2):87–127.

Schmidt, G. and Strohlein, T. (1980). Timetable construction-an annotated bibliogra-

phy. The Computer Journal, 23:307–316.

Shaker, K. and Abdullah, S. (2009). Incorporating great deluge approach with kempe

chain neighbourhood structure for curriculum-based course timetabling problems. In

Proceedings of the second Data Mining and Optimization, 2009. DMO ’09, pages 149

–153.

Sheibani, K. (2002). An evolutionary approach for the examination timetabling prob-

lems. In Burke, E. and Causmaecker, P. D., editors, Proceedings of the 4th Inter-

national Conference on Practice and Theory of Automated Timetabling. 21st-23rd

August 2002. KaHo St.-Lieven, Gent, Belgium, pages 387–396.

Sierksma, G. (2001). Linear and integer programming: Theory and practice. New York:

Marcel Dekker, Inc., 2nd edition.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: an introduction. The

MIT Press, Cambridge.

Terashima-Marin, H., Ross, P., and Valenzuela-Rendon, M. (1999). Application of the

hardness theory when solving the timetabling problem with gas. In Proceedings of the

Congress on Evolutionary Computation 1999, Washington, D.C, pages 604–611.

Thompson, J. and Dowsland, K. (1996a). Variants of simulated annealing for the exam-

ination timetabling problem. Annals of Operational Research, 63:105–128.

Thompson, J. and Dowsland, K. A. (1996b). General cooling schedules for a siimulated

annealing based timetabling system. In Lecture notes in computer science: Prac-

tice and theory of automated timetabling I: selected papers from the 1st international

conference, pages 345–363, London, UK. Berlin-Springer.

Thompson, J. M. and Dowsland, K. A. (1998). A robust simulated annealing based

examination timetabling system. Computers & Operations Research, 25(7-8):637–648.

Trick, M. A. (2011). Optimization and its applications. Hybrid Optimization, 45:489–

508.

Bibliography 222

Tuga, M., Berrettan, R., and Mendes, A. (2007). A hybrid simulated annealing with

kempe chain neighborhood for the university timetabling problem. In ACIS-ICIS’07,

pages 400–405.

Turabieh, H. and Abdullah, S. (2011). An integrated hybrid approach to the examination

timetabling problem. Omega, 39:598–607.

Welsh, D. J. A. and Powell, M. B. (1967). An upper bound for the chromatic number of a

graph and its application to timetabling problems. The Computer Journal, 10(1):85–

86.

White, G. M. and Xie, B. S. (2001). Examination timetables and tabu search with

longer-term memory. In E. K., B. and Erben, W., editors, Lecture notes in computer

science. Practice and theory of automated timetabling III: selected papers from the 3rd

international conference, volume 2079, pages 85–103. Berlin: Springer.

White, G. M., Xie, B. S., and Zonjic, S. (2004). Using tabu search with longer-term

memory and relaxation to create examination timetables. European Journal of Oper-

ational Research, 153 (1):80–91.

Wong, T., Bigras, P., and de Kelper, B. (2005). A multi-neighborhood and multi-

operator strategy for the uncapacitated exam proximity problem. In Proceeding of

IEEE International conference on Systems, Man and Cybernatic, volume 4, pages

3810–3816.

Wong, T., Côté, P., and Gely, P. (2002). Final exam timetabling: A practical approach.

In Proceedings of the IEEE Canadian conference on electrical and computer engineer-

ing (CCECE 2002), volume 2, pages 726–731.

Wood, D. C. (1968). A system for computing university examination timetables. The

Computer Journal, 11(1):41–47.

Wood, D. C. (1969). A technique for colouring a graph applicable to large scale

timetabling problems. The Computer Journal, 12(4):317–319.

Wren, A. (1996). Scheduling, timetabling and rostering - a special relationship? In

Burke, E. K. and Ross, P., editors, Lecture Notes in Computer Science:The Practice

and Theory of Automated Timetabling I: Selected Papers from 1st International Con-

ference on the Practice and Theory of Automated Timetabling (PATAT I), volume

1153, pages 46–75. Springer-Verlag.

Yang, Y. and Petrovic, S. (2004). A novel similarity measure for heuristic selection in

examination timetabling. In Proccedings of the 5th International Conference on the

Practice and Theory of Automated Timetabling (PATAT 2004), Pittsburg.

Bibliography 223

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8:338–353.

Zeleny, M. (1974). A concept of compromise solutions and method of displaced ideal.

Computers & Operations Researh, 1(4):479–496.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Timetabling
	1.2 Research Motivation
	1.3 Research Objective
	1.4 Research Contribution
	1.5 Dissemination
	1.6 Outline of the Thesis

	2 A Survey of Algorithmic Approaches for Examination Timetabling
	2.1 Survey of Examination Timetabling
	2.2 Algorithmic Techniques
	2.2.1 Exact Approaches
	2.2.2 Constraint-based Approaches
	2.2.3 Constructive Heuristic Techniques
	2.2.3.1 Graph-based Heuristics
	2.2.3.2 Fuzzy-based Techniques
	2.2.3.3 Decomposition Techniques
	2.2.3.4 The Granular Modelling Technique
	2.2.3.5 Neural Networks

	2.2.4 Meta-heuristic and Improvement Heuristic Techniques
	2.2.4.1 Local Search-based Methodologies
	Hill Climbing.
	Tabu Search.
	Simulated Annealing.
	Large Neighbourhood Search.
	Variable Neighbourhood Search.
	Great Deluge.
	Greedy Randomised Adaptive Search Procedure.
	Developmental Approach.
	Harmony Search Algorithm.

	2.2.4.2 Population-based Search Methodologies
	Genetic Algorithms.
	Memetic Algorithms.
	Ant Algorithms.

	2.2.5 Hyper-heuristic and Case-based Reasoning Techniques
	2.2.5.1 Hyper-Heuristic
	Heuristic selection methodologies.
	Heuristic generation methodologies.

	2.2.5.2 Case-based Reasoning

	2.2.6 Multi-criteria and Multi-objective Techniques

	2.3 A Survey of Research on the Second International Timetabling Competition (ITC2007)
	2.4 Real World Examination Timetabling Datasets
	2.5 Description of Benchmark Problems
	2.5.1 Toronto
	2.5.2 ITC2007

	2.6 Summary

	3 Construction of Examination Timetables Based on Adaptive Heuristic Orderings
	3.1 Adaptive Heuristics Ordering the Examinations Based on Priorities
	3.1.1 Graph Colouring Heuristics
	3.1.2 Heuristic Modifiers
	3.1.3 Shuffling the Ordering of Examinations
	3.1.4 Time-slot Choice
	3.1.5 Shuffling Best Ordering
	3.1.6 Heuristic Alternation

	3.2 Algorithm
	3.2.1 Toronto
	3.2.2 ITC2007

	3.3 Experimental Results
	3.3.1 Toronto
	3.3.2 ITC2007
	3.3.3 Discussion

	3.4 Conclusion

	4 Adaptive Linear Combination of Heuristic Orderings in Constructing Examination Timetables
	4.1 An Adaptive Linear Combination of Heuristics Orderings
	4.1.1 The choosemax Function
	4.1.2 The Weight Assignment
	4.1.3 Shuffling the Ordering of Examinations
	4.1.4 Strategies of Weight Changes
	4.1.4.1 Dynamic Weights
	4.1.4.2 Linear Weights
	4.1.4.3 Reinforcement Learning

	4.2 Experiments
	4.2.1 Results of Experiments
	4.2.1.1 Toronto
	4.2.1.2 ITC2007

	4.3 Conclusion

	5 A Constructive Approach for Examination Timetabling based on Adaptive Decomposition and Ordering
	5.1 Automated Decomposition and Ordering of Examinations
	5.1.1 Interaction between Difficult and Easy Sets through a Boundary Set
	5.1.2 Swapping the Examinations Between Difficult and Boundary Sets
	5.1.3 Roulette Wheel Selection for Examinations
	5.1.4 Comparison of Our Approach to a Previous Study

	5.2 Experiments
	5.2.1 Parameter Tuning
	5.2.2 Best Performance Comparison of Different Strategies
	5.2.3 Discussion on the Performance of the Algorithm on the Toronto Benchmark Datasets
	5.2.4 Comparison with the Previous Approaches on the Toronto Datasets
	5.2.5 Implementation on the ITC2007 benchmark datasets

	5.3 Conclusion

	6 A Variable Neighbourhood Search - Great Deluge for Examination Timetabling Problem
	6.1 Variable Neighbourhood Search (VNS)
	6.2 VNS for Examination Timetabling
	6.2.1 Initialisation
	6.2.2 Neighbourhood Structures
	6.2.3 Acceptance Criteria of VNS

	6.3 Experiments and Results
	6.3.1 Toronto
	6.3.2 ITC2007
	6.3.3 Discussions

	6.4 Conclusion

	7 Conclusions and Future Work
	7.1 Research Summary
	7.2 Future Work

	A Graphs of Adaptive Heuristic Ordering Approach
	A.1 Toronto Benchmark Datasets
	A.2 ITC2007 Benchmark Datasets

	Bibliography

