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Abstract

This thesis is devoted to Ruin Theory which sometimes referred to the collective ruin

theory. In Actuarial Science, one of the most important problems is to determine the

finite time or infinite time ruin probability of the risk process in an insurance company.

To treat a realistic economic situation, the random interest factor should be taken into

account.

We first define the model with the interest rate and approximate the ruin probability for

the model by the Brownian motion and develop several numerical methods to evaluate

the ruin probability.

Then we construct several models which incorporate possible investment strategies.

We estimate the parameters from the simulated data. Then we find the optimal invest-

ment strategy with a given upper bound on the ruin probability.

Finally we study the ruin probability for our class of models with the Heavy- Tailed

claim size distribution.
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CHAPTER 1

Introduction

1.1 Introduction and Literature Review

1.1.1 Ruin Probability

Ruin theory, sometimes called as collective ruin theory, is the branch of actuarial science

that studies an insurer’s insolvency based on mathematical modelling of the insurer’s

policy. In Actuarial Science, one of the most important problems is determining the

finite time or ultimate ruin probability of the risk process in an insurance or investment

company, for independent and dependent claims, see e.g. Cheng and Pai (2003, for

independent claims); Dufresne and Gerber (1989, for general methods); Embrechts et

al (1997, for modelling); Albrecher (1998); Schmidli (2008, for stochastic techniques)

and Laven et al. (2005, for dependent claims).

Probability of ruin is the probability that liabilities will exceed assets on a present value

basis at a given future valuation date, resulting in ruin. It is considered as the measure

of risk of insolvency for an insurance company. Hence the ruin probability is a crucial

parameter for assessing the risk exposure of companies.

The theoretical foundation of ruin theory/risk probability, known as the classical risk

model in the literature, is introduced in 1903 by Lundberg (1934). The model is stated

below.

Let U(u, t) > 0 be a classical continuous time surplus process, then

U(u, t) = u + ct−
Nt

∑
i=1

Xi,
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where

• u is the insurer’s initial surplus,

• c is the insurer’s rate of premium income per unit time,

• Nt is the number of claims in the time interval (0, t] and has a Poisson distribution

with mean λt and,

• {Xi} is a sequence of independent and identically distributed (i.i.d.) random

variables representing the individual claim amount.

In Lundberg’s model, the company does not have any investment return on its assets.

Ruin occurs when U(t) falls below 0, this may equate to insolvency. The probability of

ruin is

Ψ(u) = P[U(t) < 0 for some t 0 < t < ∞].

Lundberg establishes an explicit formula for the ruin probability when claim sizes are

exponentially distributed and another main result he obtained is known as Lundberg’s

inequality (1930), which gives an upper bound on the probability of ultimate ruin. It

states that

Ψ(u) ≤ exp(−Ru),

where the parameter R known as the adjustment coefficient. Assenter and Nielsen

(1995) get a similar result when the premium rate is a right continuous function of the

reserve. Taylor (1976) derives an improvement to the above inequality function.

Later, the corresponding ideas are developed by Thorin (1973). He studies the classical

model where claim size has gamma distribution. Grandell (1991) derives Lundberg

inequalities for the finite time horizon ruin probability in the Cox-Ingersoll-Ross Model

(Ross, 2000). Another method uses the connection between the probability of ruin and

the maximal aggregate random variable which is suggested by Goovaters and Vylder

(1984a, 1984b).

The classical model is widely studied and developed in the actuarial literature. An-

derson (1957) extends the model in which claims occur as a general renewal process.
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In this new model, the inter-claim times form a sequence of independent and identi-

cally distributed (i.i.d.) random variables with common distribution function and the

claim sizes are also i.i.d. He obtains an equation for the surviving probability and the

equation has an exact solution when claims sizes are exponentially distributed. In ad-

dition, an explicit result for the ultimate ruin probability is derived for a particular case.

Then, much of the study of this model has concentrated on numerical procedures for

calculating ruin probabilities (for example, Dickson, 1998).

In the classical model, when the claim size is exponentially distributed (or closely re-

lated to it), simple analytic results for the probability of ruin in infinite time exist. For

more general claim amount distributions, e.g. heavy-tailed, the Laplace transform tech-

nique does not work and one needs some approximations. There are some common

approximations.

Cramer-Lundberg Approximation (Grandell, 1991) yields quite accurate results, how-

ever it requires the adjustment coefficient to exist. Vylder (1996) derives Exponential

Approximation. The Beekman-Bowers approximation (Burnecki, et al. 2004) gives the

better results, it even becomes an exact formula in some cases.

The drawback of the above methods is that they ignore the interest rate of surplus

of insurance company. In more recent developments, the ruin probability of a risk

process with interest rate has received considerable attention. Brekelmans and Wae-

genaere (2002) split the time horizon into small intervals of equal length and consider

ruin probability in the case when the premium income (reserve) in a time interval is

received at the beginning of that interval, instead of assuming claims are paid at the

end of an interval, and derive lower and upper bounds of the ruin probability. The

combined results of two bounds converge to the actual ruin probability with the high

accuracy.
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Recently, research has focused on calculating the ruin probability modelled when a

stochastic interest rate is used. Cai (2002) develops two models. The first model as-

sumes that the interest rates form an i.i.d. sequence. The second model assumes that

the interest rates form an autoregressive time series model. He obtains Lundberg type

inequalities for the ruin probability. Yang and Zhang (2006) use martingale techniques

(Hall and Heyde, 1980) to prove the convergence of the discounted surplus process

and to obtain an expression for the ruin probability of a discrete time risk model with

random interest rate.

Markov Model

Paulsen (2008) shows that since 1998, there has been three particular new developments

in risk theory. These are

• The emphasis on heavy tailed claim distribution;

• The application of Gerber-Shiu penalty function;

• By control of the risky investments and possibly reinsurance, the possibility to

influence the ruin probability.

He also introduces the risk process by means of two basic processes: A basic process

P with P0 = 0; and a return on investment generating process V with V0 = 0. By

assumption, P and V have the forms

Pt = pt + σPWP,t −
Nt

∑
i=1

Si, Vt = vt + σVWV,t.

Here WP and WV are Brownian motion, N is a Poisson process with rate λ and the {Si}

are positive i.i.d. random variables with distribution function F. Moreover, WP, WV , N

and {Si} are all independent, p is the premium rate. WP is the small claim. The return

on process V is the standard Black Scholes return process. Under these assumptions,

Yt is a strong homogeneous Markov Process and defined as

Yt = Y0 + Pt +
∫ t

0
YjdVj.
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The probabilities of ruin in finite versus infinite time is defines as

Ψ(t, y) = P(T ≤ t|Y0 = y) and Ψy = P(T < ∞|Y0 = y)

respectively where T is the time of ruin as T = in f {t : Yt < 0}.

Some Results for the Markov Model with heavy tails

Following the above definition and assumption, then Ψ(y)<1 if v > 1
2 σ2

V and Ψ is twice

differentiable on (0, ∞) and is a solution of the equation, LΨ(y) = −λF(y), with bound-

ary conditions limy→∞ Ψ(y) = 0 and Ψ(0) = 1 if σP > 0. L is the integral-differential

operator and F = 1− F(y).

Asymptotic Results

Asymptotic results for heavy tail distributions is a popular topic (e.g. Embrechts et al.

(1997), Mikosch and Nagaev (2001), Biard et al. (2008)). To present the results, let us

introduce some definitions.

• F ∈ Rα if F = x−α f (x) where f is a slowly varying function (see Chapter 4 for

more notation).

• F ∈ ERV(α, β) if for 0 < α ≤ β < ∞ and all t > 1,

t−β ≤ lim
x→∞

in f
F(tx)
F(x)

≤ lim
x→∞

sup
F(tx)
F(x)

≤ t−α.

• F ∈ S if limx→∞
F∗2(x)

F(x)
= 2.

• F ∈ L if limx→∞
F(x+1)

F(x)
=1.

• F ∈ D if limx→∞ sup F(x/2)
F(x)

< ∞.

It is obvious that R−α = ERV(α, α). Then when σV = 0 and F ∈ S, Jiang and Yan (2006)

prove that

Ψ(t, y) ∼ λ

αv
F(y)(1− eαvt), 0 < t ≤ ∞,

5



when N is the Poisson process and otherwise

Ψ(t, y) ∼ F(y)
∫ t

0
e−αvsdm(s),

where m is the renewal measure of N.

For the light tailed case with σV > 0 and p = 2v
σ2

V α
, the most precise results are (Grandits,

2004):

• If F ∈ R−α where α < p, then Ψ(y) ∼ 2λ
σ2

V α(p−α)
F(y);

• If F ∈ R−PandF(y) = x−p f (x) and M < ∞ where M =
∫ ∞

1
f (x)

x dx, then Ψ(y) has

the similar result as above. If M = ∞ then

Ψ(y) ∼ 2λ

σ2
V p

∫ y

1

f (x)
x

dx.

The Finite Time Model and ruin probability

Let Sn be the surplus of the company at the end of time n, n = 1, 2, · · · . Let Vn be the

income at the end of time n, we can construct a recurrence equation

Sn = (1 + δn)Sn−1 + Vn, n = 1, 2, · · · ,

where δn denotes the interest rate between [n-1, n] and constitute a sequence of i.i.d.

random variables. Tang and Tsitsiashvili (2003) prove that, if F ∈ L
⋂

D and EYp < ∞

for some positive number p then

Ψ(g, n) ∼
n

∑
j=1

P(G
j

∏
i=1

Yi > g), n = 1, 2, · · · ,

where Gn is premium minus claim between time n− 1 and n, Yn = 1
1+δn

.

Except the above surplus model we state, there are other classical risk processes, such

as, for example,
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Classical Binomial Risk Model defined by

• The claim-number process is a binomial process Nt, t=0,1,2,. . . In each time pe-

riod, the probability of a claim is q, 0 < q < 1 and the probability of no claim is

p = 1− q,

• Let It be a sequence of i.i.d. Bernoulli random variables denoting occurrences of

claims,

• Let Xt be a sequence of positive i.i.d. r.v.’s representing the claim amounts.

For t=1, 2, . . . , the surplus at time t is

Ut = u + t− [X1 I1 + X2 I2 + · · ·+ Xt It],

where u > 0 is the initial surplus.

This model is called classical compound binomial risk model which was first proposed

by Gerber (1988), and extended by Cossette et al. (2003) to the so-called compound

Markov binomial model. They derive a more general model by using a Markovian

environment in 2004. Yang, et al. (2008) consider a Markov risk model, in which the

claim occurrence and the claim amount are both regulated by a Markov process which

is a discrete time finite space homogeneous and irreducible Markov chain.

When the initial surplus u = 0, they derive an explicit expression for the discounted

joint probability function of the surplus before ruin.

Relationship to the Time-Series, Modelling and Statistical Analysis

In statistics and mathematical finance, a time-series is considered as an ordered se-

quence of values of a variable at equally spaced time points

For example, Autoregressive (AR) model, the autoregressive process of order p is de-

noted AR(p), and defined as

Xt = c +
p

∑
i=1

αiXt−i + εt,

7



where α1, · · · , αp are the fixed constants, εt is a sequence of independent (or uncorre-

lated) random variables with mean 0 and variance σ2, c is constant.

Maximum likelihood estimation. Bayesian and other computation-intensive statis-

tical methods.

To fit the model to the data, the estimation of parameters is an important problem.

There are two powerful estimation methods: Bayesian and Maximum likelihood esti-

mation (MLE). Although, MCMC methods approved to be more flexible (e.g. McCul-

loch and Tsay (1993) use Gibbs sampler in time-series analysis), in economics, how-

ever, MLE is traditionally considered the most appropriate method (Tanner and Wong

(1987), Tsay (1989), Tong, (1990), Magdalinos (2005)).

Parameter and Model Uncertainty.

In actuarial science, the estimation is often not robust due to the model uncertainty.

In insurance cases, model and parameter uncertainty are often ignored. However, re-

cently the parameter uncertainty in general insurance problems is acknowledged (see

Klugman, (1992) for overview, see Scollnik, (1998) for a case study, see Harris (1999)

for MCMC for regime switching models, see Parker (1997) for the uncertainty in the

pension and life insurance problems, see Draper (1995) for theoretical assessments of

uncertainty and see Cairns (2000) for discussions of the process of parameter and model

uncertainty.)

Other developments of the actuarial sciences

For other directions in actuarial sciences, we mention Engle (1982), Maravall (1983) (for

linear); Tong, (1990) (for non-linear) time-series modelling; Tong (1978), Tsay (1989) and

Tiao and Tsay (1994) for the threshold auto regressive (TAR) models, Hosking (1981),

Tiao and Tsay (1994) for ARMA model ; Tiao and Xu (1993), Tiao and Tsay (1994) for

adaptive Forecasting and Philips and Solo (1992) for asymptotics.
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1.1.2 Optimal investment Strategy and Gambling

A series of papers discussed the optimal strategy in the gamble game. It provides main

motivation for our approach to the Optimal Investment Strategy under Ruin probabil-

ity constraint.

Formulation of problem There is a primitive casino where one can stake any amount in

one’s possession, gaining r times the stake with probability w and losing the stake with

probability 1− w ( r > 0, 0 < w < 1 ). The casino is subfair or fair if w(1 + r) ≤ 1. α is

the inflation rate and if r = 1, the casino is called red-and-black casino. We formulate

the above game as a Dubins-Savage gambling game (1965).

For each integer n ≥ 1, let fn−1 be the gambler’s fortune before the nth play (with f0

denoting the initial fortune). A strategy θ = {y1, y2, · · · } is a sequence of stakes, where

0 ≤ yn ≤ fn−1 is the gambler’s stake on the nth play. The value of the strategy θ is

defined as Vθ( f )=P[ fn ≥ 1 for some n ≥ 0 | f0 = f ] for f ≥ 0.

The gambler is said to use the bold strategy (B) if he takes the bold stake b( f ) such that

b( f )=min { f, (1 + α− f )/r } if 0 ≤ f ≤ 1 and b( f ) = 0 if f ≥ 1. Then by considering

one play, we have

VB( f ) = (1− w)VB(
f − b( f )

1 + α
) + wVB(

f + rb( f )
1 + α

).

Dubins and Savage (1967) show that an optimal strategy is a bold strategy if the prim-

itive casino is subfair or fair and the α is 0 since there is no other strategy that provides

gambler with a higher probability of reaching the goal. Klugman (1977) shows all opti-

mal strategies are characterised when w ≤ 1
2 for the discounted red-and-black casinos.

Chen (1977, 1978) prove that the bold strategy is optimal in the subfair red-and-black

casino. But Chen et al. (2004, 2005) find that the bold strategy is not optimal for subfair

primitive casinos with inflation if both r > 1 and 1/r ≤ α < r. They conjectured that

the bold strategy is optimal for subfair primitive casinos if r < 1.

Simulation approach.

We applied the simulation approach to find that our results support the Chen Shepp

theoretical results (Chen 1977). This motivated us to use the simulation approach to
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find the optimal investment strategy with the given upper bound on the ruin probabil-

ity.

1.2 Aims and objectives

Throughout this thesis, we attempt to determine the finite or infinite time ruin prob-

ability which employed in several different risk processes. In this way, we model the

every risk process we list. We take into account the random interest factor to treat a

realistic economic situation. For example, we assume that the interest rates are the ran-

dom variables distributed with normal distribution given in Section 2.2. We define the

model with the interest rate and approximate the ruin probability at fixed time point for

the models by the Brownian motion in Chapter 2 and 3. Then we also construct several

models which incorporate possible investment policies. We not only use the simula-

tions to estimate the parameters in the models from the simulated data, but also test

the different approximations. In Section 3.5, we hope to find the optimal investment

policy with a given upper bound on the approximated ruin probability.

Finally we study the ruin probability for our class of models with the Heavy-Tailed

claim size distribution.

1.3 Structure of the Thesis

In Chapter 2, we first define a model with a continuous interest rate and show how

to approximate the ruin probability for the model by Brownian motion. We develop

several numerical methods to evaluate the ruin probability. The model is introduced in

Section 2.2.

In Section 2.3 the first approach via the Approximation of Sum of Correlated Lognor-

mal Random Variables is reviewed.

In Sections 2.4 and 2.5, the second approach through the Approximation by Brownian

Motion is analysed. Numerical calculations support the claim that ruin probability is

increasing function of the variance of interest rate. However it appears that the ap-

proximation is not stable. In addition, it numerically discovered a surprising threshold

10



such that the rate of increasing of the ruin probability much higher after the threshold

point. Also the results for some parameters agreed with the Gaussian approximation

suggested in Matsumoto and Yor (2005) (Proposition 2.6).

In Chapter 3, we construct several models which incorporate possible investment strate-

gies. We estimate the parameters from the simulated data. Then we find the optimal

investment strategy with a given upper bound on the ruin probability. The models,

likelihood functions and MLE’s are introduced in Sections 3.2 and 3.3. Numerical anal-

ysis with stochastic simulation for the estimation of the parameters is conducted in

Section 3.4. In Section 3.5 we find via the random search algorithm the optimal invest-

ment strategy with a given upper bound on the ruin probability. Finally, in Section

3.6 we approximate the ruin probability by the associated integrals of the Brownian

motion.

Again, the numerical threshold discovered in Chapter 2 was supported in all the exam-

ples. Also, it was discovered that although the estimation of interest rate was stable in

all the models, the estimation of the exponential claim was unstable in many models,

which was partly inspired by Magdalinos (2007).

Finally, in Chapter 4, motivated by Biard et al (2008), we study the ruin probability for

our class of models with the Heavy - Tailed claim size distribution. Two new realistic

models with interest rate factors were suggested and treated in Sections 4.3 and 4.4.

The derived results extend Biard et al. (2008) to models (discrete and continuous time)

with interest rate.
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CHAPTER 2

The Ruin Probability with

Brownian Motion

In this chapter we define a model with a continuous interest rate and show how to ap-

proximate the ruin probability for the model by Brownian motion. We develop several

numerical methods to evaluate the ruin probability. The model is introduced in Section

2.2.

In Section 2.3 the first approach via the Approximation of Sum of Correlated Lognor-

mal Random Variables is reviewed.

In Sections 2.4 and 2.5, the second approach through the Approximation by Brownian

Motion is analysed. Numerical calculations support the claim that ruin probability is

increasing function of the variance of interest rate.

2.1 Introduction

In order to obtain a good approximation for the ruin probability in a realistic economic

situation, it should be taken into account that random interest factor may fluctuate

stochastically with time. That means it is more realistic to use continuous interest rates

in the modelling of the ruin probability and consider them as stochastic process. Con-

tinuous interest rate is a form of compound interest rate. With the continuous interest

the length of the compounding period is assumed to be infinitely small. Therefore the

interest is continuously compounded. In addition it is possible to measure how fast the

12



sum of money growing at specific time point as the force of interest (e.g. per annum).

To match the continuous interest rate (δ) and the discrete interest rate i we assume that

exp (δ) = 1 + i.

In this chapter, we define the model with interest rate and discuss two approaches

Approximation by Sum of Correlated Lognormal Random Variables and Approximation by

Brownian motion to evaluate the ruin probability. For the second approach, we also

develop several numerical methods.

2.2 The Model and Assumptions

Brekelmans and Waegenaere (2002) develop a model for the ruin probability with a

stochastic interest rate. Here we develop a similar model which is based upon the

following assumptions and notation.

• the rate of claims occurrence is constant;

• the amount of each claim, denoted by C, is constant and is paid by the insurance

company just after the end of each time interval;

• the premium is a single payment and this premium is paid just after the beginning

of first time interval;

• the reserve of the insurance company will be denoted by A at time n=0;

• δk is the interest rate at the time k;

• the capital and the claim of the company are increasing with continuous stochas-

tic interest rate δ.

At time n the accumulated capital is given by Ae∑n
i=1 δi . The accumulated claims at time

n is C ∑n
i=1 e∑n

k=i+1 δk . Therefore the surplus Zn of the company at time n is given by

Zn = Ae∑n
i=1 δi − C

n

∑
i=1

e∑n
k=i+1 δk , n = 0, 1, 2, . . . .

13



We note that this simple model does not include insurance risk. This will be incorpri-

ated with later models. To calculate the ruin probability, we need to know the present

value of Zn. The present value of a single or multiple future payments known as cash

flows is the nominal amounts of money to change hands at some future date, dis-

counted to account for the time value of money. The present value of Zn, denoted by

Z̄n, is given by

Z̄n = Zn/e∑n
i=1 δi

= A− C
n

∑
i=1

e
−

i
∑

k=1
δk

.

Here the {δk} are i.i.d. and have a normal distribution with mean 0 and variance σ2.

Therefore for the above model, the ruin probability is

Ψn = P[Z̄n < 0] = P[(A− C
n

∑
i=1

e
−

i
∑

k=1
δk
) < 0]. (2.2.1)

Here the ruin probability we defined in Chapters 2 and 3 deal with ruin at a fixed

time n only, which is different form the classical European ruin definition we stated in

Chapter 4.

2.2.1 Approaches to calculating Ψn

To calculate the ruin probability as given in (2.2.1), Ψn can be rewritten in the following

form

P[(A− C ∑n
i=1 e

−
i

∑
k=1

δk
) < 0] = P[(A− C ∑n

i=1 βi) < 0]

= P[(
n

∑
i=1

βi) >
A
C
]. (2.2.2)

We note that E(e
−

i
∑

k=1
δk
) = e

iσ2
2 and Var(e

−
i

∑
k=1

δk
) = (eiσ2 − 1)eiσ2

. In addition−
i

∑
k=1

δk has

a limit Normal distribution. Therefore βi has a Log-normal distribution with mean e
iσ2
2

and variance (eiσ2 − 1)eiσ2
. We proposed two approaches calculating Ψn.

First approach is to use an approximation for sum of correlated lognormal random

14



variables. It is difficult to obtain an explicit formula for above probability, because the

{βi} are not independent. Moreover, it is tempting to use the Central limit theorem

(CLT) applied to ∑n
i=1 βi. Because firstly the complicated sum can be treated as a single

log normal random variable; secondly ∑n
i=1 βi could be considered as a linear process;

and finally CLT for i.i.d sequences can be extended to general linear processes (Peligrad

and Utev, 2006).

However, as we show later (Section 2.3) CLT is not appropriate and we need its stronger

version called functional central limit theorem (FCLT) or invariance principle.

Second approach is to use an approximation based upon Brownian motion. If the con-

tinuous interest rates have other common distributions rather than normal, they could

be transformed to the normal random variables followed by FCLT. In addition based

upon our simulation, it seems that the transformation does not effect accuracy of the

approximation for the considered model.

2.3 First approach: Approximating the sum of correlated log-

normal random variables

Mehta et al. (2006) use a method based on matching a low-order Gauss-Hermite ap-

proximation of the moment generating function (MGF) of the sum of random variables

with that of a lognormal distribution at a small number of points to evaluate an ap-

proximation to the sum of the correlated lognormal random variables. Therefore, the

∑n
i=1 βi in (2.2.2) can be approximated as a single log-normal random variable, and con-

sequently we can obtain an approximation to the ruin probability (see Gauss Hermite

formula in APPENDIX 1). Applying the above method, firstly there exists a lognormal

random variable B, whose MGF can be written as

ΦB(s) =
∫ ∞

0
exp(−sb)PB(b)db

=
∫ ∞

0
exp(−sb)

1
σb
√

2π
exp[− (lnb− u)2

2σ2 ]db

=
N

∑
n=1

Wn√
π

exp[−s× exp(
√

2σan + u)] + RN .

15



In the above PB(b) is the probability density function of B, N is the Hermite integration

order and RN is a reminder term that decreases as N increases. Wn, an are weights and

abscissas respectively, which can be both derived by using an appropriate computer

package (e.g. Matlab).

For our model as shown in (2.2.1), we want to find the MGF of the sum of N cor-

related lognormal random variables,
{

βi
}N

i=1 (same random variables in (2.2.2)) with

the corresponding Gaussian,
{

Xi
}N

i=1, Xi = 10 log10 βi, i = 1, . . . , N, follow the joint

distribution below

PX(x) =
1

(2π)N/2|C|1/2 exp(− (x− µx)TC−1(x− µx)

2
). (2.3.1)

Where x is a vector, C is the covariance matrix, µx is the vector of means, |.| denotes

the determinant, and (.)T denotes the Hermitian transpose. By using (2.3.1) and the

Gauss-Hermite approximation, the MGF. of β1 + · · ·+ βN can be written as

Φ(c)
(∑N

i=1 βk)
(s) =

∫ ∞
−∞

1
(2π)N/2|C|1/2

N
∏
i=1

exp(−s[exp( xi
ξ )])

× exp(− (x−ux)TC−1(x−ux)
2 dx

4
=

N
∑

n1=1
. . .

N
∑

nN=1

[ N
∏
i=1

wni√
π

]
× exp

(
− s

N
∑

i=1

[
exp

(√
2

ξ

N
∑

j=1
c′ijanj +

ui
ξ

)])
,

where ξ = 0.1ln10. The sum of β1 + · · ·+ βN (N correlated lognormal random vari-

ables) is approximated by a simple lognormal random variable, B. We assume that

there exists an equation

N

∑
n=1

Wn√
π

exp[−s× exp(
√

2σan + u)] = Ψ(c)
(∑N

i=1 βk)
(s),

where the u and σ can be calculated numerically using a computer package such as

Matlab. However this method only works for small n, so we are going to show another

method for calculating the ruin probability in next section.
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2.4 Second approach: Approximation by Brownian Motion

Brownian motion, {Bt, t ≥ 0}, is a continuous-time stochastic process with continuous

sample paths, B(0) = 0 and Bt has independent increments with distribution Bt −

Bs ∼N (0, t-s) for 0 ≤ s ≤ t. N(µ, σ2) denotes the Normal distribution with mean µ

and variance σ2. (Ross 2000)

The approach we applied uses a key lemma as below.

Lemma 2.1: For any continuous sequence {ai}, there is the following equation

[nx]

∑
j=1

aj−1 = n
∫ x

0
a[ny]dy. (2.4.1)

[ny] in (2.4.1) is integer part of ny and has formula

[ny]
n

= y + o(
1
n
). (2.4.2)

Proof: Consider an integral ∫ k
n

k−1
n

a[ny]dy.

Since k− 1 < yn < k, so if we consider integer part of yn, [yn] = k− 1, so a[ny] = ak−1,

hence ∫ k
n

k−1
n

a[ny]dy =
1
n

ak−1.

This leads to the following equality

n
M

∑
k=1

∫ k
n

k−1
n

a[ny]dy =
M

∑
k=1

ak−1.

It is same as

n
∫ M

n

0
a[ny]dy =

M

∑
k=1

ak−1.

Now if M=[nx], we complete the proof of (2.4.1). Next, let e−∑i
t=1 δt in (2.2.1) equal to
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aj−1 and applying Lemma 2.1 to (2.2.1) we have

P[(A− C
n

∑
i=1

e
−

i
∑

k=1
δk
) < 0] = P[(A− C · n

∫ [nx]
n

0
a[ny]dy) < 0]

= P[(A− C · n
∫ [nx]

n

0
exp(−

[ny]+1

∑
k=1

δk)dy) < 0]

≈ P[(A− C · n
∫ x

0
exp(−h · By)dy) < 0]

= P[
∫ x

0
exp(−h · By)dy >

A
Cn

],

where h =
√

n + 1σk. We use approximation
[ny]
∑

k=1
δk

d
= hBy, since {δk} is i.i.d. random

variables. Given x=1, our approximation for ruin probability is

Ψn ≈ P[
∫ 1

0
exp(−h · By)dy >

A
Cn

]. (2.4.3)

The probability does not have a simple form, and will be found by numerical approxi-

mation.

2.5 Integral of Exponential Brownian motion

Let Bµ = {Bµ
t = Bt + µt} be the corresponding Brownian motion, Bt, with constant

drift µ ∈ R. The exponential functional Aµ = {Aµ
t } is defined by

Aµ
t =

∫ t

0
exp(2Bµ

s ) ds, t ≥ 0.

When µ = 0, A0
t is written as At.

Matsumoto and Yor (2005) in a survey state that Bougerol (1983) obtains an interesting

and important identity in probability, which plays an important role in the results that

flow. Here is the simplest form of it.

Proposition 2.1: Define Wt as a one-dimensional Brownian motion starting from 0, indepen-

dent of B. Then,
∫ t

0 exp(Bs) dWs, sinh(Bt) and WAt are identical in law for every fixed t.

From the above proposition, Matsumoto and Yor (2005) derive the following by con-

sidering the corresponding densities and characteristic functions.
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Proposition 2.2: For every a ∈ R and t > 0, there is

E[
1√
At

exp(− a2

2At
)] =

1√
(1 + a2)t

exp(− (Arcsinh(a))2

2t
) (2.5.1)

and

E[exp(− a2

2
At)] =

√
2

πt

∫ ∞

0
cos(a× sinh(s))exp(− s2

2t
) ds. (2.5.2)

2.5.1 The Law of Aµ
t at fixed times

Dufrense (2001), Alili and Gruet (1997) have some results that show the integral repre-

sentations for the density of Aµ
t by somewhat complicated forms, even Aµ

t is simplified.

Many specialists have tried to obtain simpler expressions. Yor (1992) proves the follow-

ing formula:

P(Aµ
t ∈ dµ, Bµ

t ∈ dx) = eµx−µ2t/2exp(−1 + e2x

2µ
)θ(ex/µ, t)

dµdx
µ

, (2.5.3)

where for t > 0 and r > 0,

θ(r, t) =
r

(2π3t)1/2 eπ2/2t
∫ ∞

0
e−s2/2te−r×cosh(s) sinh(s) sin(

πs
t
) ds. (2.5.4)

The function θ(r, t) represents the density of the Hartman-Watson distribution (Hart-

man and Watson, 1974) and satisfies

∫ ∞

0
e−a2t/2θ(r, t) dt = Ia(r), a > 0, (2.5.5)

where Ia is the modified Bessel function.

As following the identity in law, when µ > 0, Dufrense (2001) shows that

A−µ
∞ =

∫ ∞

0
exp(2B−µ

s ) ds =
1

2γµ
,

where γµ is a gamma random variable with parameter µ, that is,

P(γµ ∈ dx) =
1

Γ(µ)
xµ−1e−xdx, x ≥ 0.
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Let the function f µ(a, t) be the density function of 1/2Aµ
t , then following integral rep-

resentation (2.5.4) for θ(r, t), Matsumoto and Yor (2005) obtain

f µ(a, t) =
2

(2π3t)1/2 eπ2/2t−µ2t/2e−aa−(µ+1)/2
∫ ∞

0
ξµe−ξ2

dξ

×
∫ ∞

0
e−s2/2te−2

√
aξ cosh(s) sinh(s) sin(

πs
t
) ds

if µ > -1. When µ = 0, Dufresne (2001) carries out the complex integral and obtains the

a simple expression for f µ(a, t).

Proposition 2.3: For t >0 and a > 0, there is

f 0(a, t) =
2eπ2/8t

π
√

2ta

∫ ∞

o
e−y2/2te−a(cosh(y))2

cosh(y) cos(
πy
2t

) dy (2.5.6)

and

f 1(a, t) =
2eπ2/8t−t/2

π
√

2ta

∫ ∞

o
e−y2/2te−a(cosh(y))2

sin(y) cosh(y) cos(
πy
2t

) dy. (2.5.7)

By using the Hermite function we also can obtain the function for general value µ.

2.5.2 Moments

We present some results about positive moments of At.

Proposition 2.4: For any t > 0, there is

E[(At)
n] =

1
E[(B1)2n

∫
R
(sinh(x))2n

1√
2πt

e−x2/2t dx, n = 1, 2, . . . .

From above proposition, there is

E[(At)
n] =

√
π

Γ(n + 1/2)23n−1 e2n2t(1 + o(1)) as t→ ∞.

For a general value of µ, E[(Aµ
t )

n] can be written as

E[(Aµ
t )

n] = e−µ2t/2E[exp(µBt)(At)
n],
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which is can be derived by the Cameron-Martin theorem (Cameron and Martin (1944)).

When µ ≥ 0, Aµ
t → ∞ as t→ ∞, and there is the limit theorem for log(Aµ

t ).

Proposition 2.5: N is defined as a standard normal random variable. Then, as t→ ∞:

1. if µ = 0, t−1/2log(A0
t ) converges in law to 2|N|;

2. if µ > 0, t−1/2(log(A0
t )− 2µt) converges in law to 2N,

Remark,

A0
t = t

∫ 1

0
e2
√

tBs ds.

2.5.3 Application

The exponential type functional always plays an important role. For example, In ruin

probability, Mathematics Finance, diffusion processes in random environments. Mat-

sumoto and Yor (2005) shows an example about pricing formula for call options for

the Asian options. Asian options were first introduced by Boyle and Emanuel (1980).

Its pay off is determined by the average underlying price over some pre-set period of

time. In the recent years, Asian options are so popular due to lots of economic reasons.

By the Black-Scholes model (Black and Scholes (1973)), there is a risk-less bond b = bt

with a constant interest rate and risky asset S = St with a constant rate and volatility.

When r > 0, µ ∈ R and σ > 0 are constants, there is the stochastic differential equation

dbt

bt
= rdt,

dSt

St
= µdt + σdBt,

where B = Bt is a one dimensional Brownian motion with B0 = 0 on a complete

probability space. In this example, b0 = 1, then we have

bt = exp(rt), St = S0exp(σBt + (µ− σ2/2)t).

With fixed strike price k > 0 and maturity T, the pay-offs of the European and Asian

call option are given by

(ST − k)+ and (ζ(T)− k)+,
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respectively, where f+=max [ f , 0] and for 0 < t ≤ T

ζ(t) =
1
t

∫ t

0
Su du.

By the non-arbitrage argument, the theoretical price C(k, T) of Asian call options at

time t=0 is

C(k, T) = e−rTEQ[(ζ(T)− k)+],

where EQ denotes the expectation with respect to the martingale measure Q. we can

obtain several integral representations for C(k, T) by using explicit expressions for the

density of Au
t showed in last section. Geman and Yor (1993 ) use the Laplace transform

of C(k, T) in T to obtain the simpler form.

Proposition 2.6: For all µ ∈ R, λ > max{2(1 + µ), 0} and k > 0, there is

λ
∫ ∞

0 e−λTEQ[(ζ(T)− k)+] dt

= 1
(λ−2(1+µ))Γ(b−1)

∫ 1/2k
0 e−ttb−2(1− 2kt)a+1dt,

where σ = 2 and Aµ
t =

∫ ∞
0 exp(2Bµ

s ) ds.

Linetsky (2004) revisit the continuously sampled arithmetic Asian option problem and

consider the constant dividend yield. He used the similar method to obtain the spectral

representation of the expected value of pay-offs of Asian options.

2.5.4 Numerical evaluation of the stochastic integral

Even implicit expressions of integrals of a stochastic process exists, normally the forms

of expressions are very complicated and it is hard to evaluate it. Therefore numerical

methods are important. (see Badr, 2011).
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Definition: Let B = Bt, t ≥ 0 be a one dimensional Brownian motion starting from 0

defined on a probability space (Ω, F, P). Let tn, n ≥ 0 be a partition of the interval [0,

T] and let h(B(t), t) = h(t) be a continuous function on [0,T]. The stochastic integral∫ T
0 h(t)dB(t), which satisfies E(

∫ T
0 h(t)dB(t)) = 0, is defined as

I(h) =
∫ T

0
h(t)dB(t) = lim

n→∞

n

∑
i=0

h(ti)(B(ti+1)− B(ti)).

Badr (2011) applied quadrature rules to obtain the following approximation for the

stochastic integral.

Proposition 2.7: Let MN be the roots of a legendre polynomial of degree N and let τk, k =

1, 2, · · · , N be the corresponding weights. A quadrature approximation to the stochastic integral

is ∫ T

0
h(t)dB(t) =

N

∑
k=1

Qkg(Mk) + R( f ),

where R(f) is a remainder term.

Now back to our case, we set y = a2s in (2.4.3) then we can rewrite

∫ 1

0
exp(−h · By)dy = a2

∫ 1
a2

0
exp(−haBs)ds =

2
h

2 ∫ h2
4

0
exp(2Bs)ds,

where we set a2 = 22

h . Then by Proposition 2.3, it is possible to derive the analytic

expressions for the density function of

∫ 1

0
exp(−h · By)dy .

However, the analytic expressions still require numerical computations. In the next sec-

tion, we will introduce numerical methods to approximate the ruin probability which

agreed with Proposition 2.5.
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2.6 Approximation of the Integral

In this section, we establish three approximations for the integral

∫ 1

0
exp(−h · By)dy

in (2.4.3) by exploring different methods, so that the ruin probability can be calculated

by simulation that will be shown in next section. The basic idea of every approximation

is to transform
∫ 1

0 exp(−h · By)dy to the suitable expression, similar to Badr.

2.6.1 First Approximation: Classical approach

The classical approach for evaluating approximation of the integral of any function is

∫ 1

0
f (s)ds ≈

m

∑
k=1

(
f ( k−1

m ) + f ( k
m )

2
)

1
m

.

Let

f (y) = exp(−h · By),

then we get

∫ 1

0
exp(−h · By)dy ≈

m

∑
k=1

[exp(−h · B k−1
m
) + exp(−h · B k

m
)]

2
1
m

. (2.6.1)

2.6.2 Second Approximation: via Taylor Formula

We first write ∫ 1

0
exp(−h · By) dy =

m

∑
k=1

∫ k
m

k−1
m

exp(−h · Bs) ds.

Since exp(h · Bs)
d
= exp(−h · Bs), we use the Taylor expansion to expand exp(h · Bs) as

exp(h · Bs) ≈ exp(h · B k−1
m
) + h2

2 exp(h · B k−1
m
)(Bs − B k−1

m
)2

+h · exp(h · B k−1
m
)(Bs − B k−1

m
),
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by computing integral of exp(h · Bs) respect to s from k−1
m to k

m we have the following

equation∫ k
m

k−1
m

exp(h · Bs) ds ≈ exp(h·B k−1
m
) 1

m + h2

2 exp(h·B k−1
m
)
∫ k

m
k−1

m
(s− k−1

m ) ds.

+ h · exp(h · B k−1
m
)
∫ k

m

k−1
m

(Bs − B k−1
m
) ds, (2.6.2)

since

E(Bs − B k−1
m
)2 = (s− k− 1

m
) for

k− 1
m
≤ s ≤ k

m
.

Let

Yk =
∫ k

m

k−1
m

(Bs − B k−1
m
)ds

Xk = B k
m
− B k−1

m
.

Then

E(Xk) = E(Yk) = 0,

Var(Xk) = E(Xk
2) = E(B k

m

2 − 2B k
m

B k−1
m

+ B k−1
m

2) =
k
m
− 2

k− 1
m

+
k− 1

m
=

1
m

,

and

Var(Yk) = E(Yk
2) =

1
2m3 .

Moreover

E(XkYk) =
∫ k

m

k−1
m

E[(BsB k
m
− BsB k−1

m
− B k−1

m
B k

m
+ B k−1

m

2)]ds

=
∫ k

m

k−1
m

(s− k− 1
m

) ds

=
1

2m2 .

It is obvious that [Xk, Yk] are i.i.d Gaussian random vectors. Now take

Yk = aXk + bZk,
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where Zk ⊥ Xk and {Zk} are normal distributed with mean 0 and variance 1. Using

E(Xk
2), E(Y2

k ) and E(XkYk), we obtain

E(XkYk) = E[Xk(aXk + bZk)] = E[(aXk
2) + bE(XkZk)] = aE(Xk

2),

since Xk and Zk are independent, hence we deduce that a = 1
2m . Using a similar idea,

but working with V(Yk) we deduce that b = 1
2
√

m3 . Hence

Yk =
1

2m
Xk +

1

2
√

m3
Zk,

so that ∫ k
m

k−1
m

(Bs − B k−1
m
)ds d

=
1

2m
(B k

m
− B k−1

m
) +

1

2
√

m3
Zk.

This gives the following

∫ 1

0
exp(h · By)dy =

m

∑
k=1

exp(hB k−1
m
)

1
m

+
m

∑
k=1

h2

2
exp(hB k−1

m
)
∫ k

m

k−1
m

(s− k− 1
m

)ds

+
m

∑
k=1

hexp(hB k−1
m
)
∫ k

m

k−1
m

(Bs − B k−1
m
) ds.

After rearrangement, we get the 2nd approximation

∫ 1

0
exp(h · By)dy =

1
m
{[1 + h2

4m
+

1
2
(B k

m
− B k−1

m
) +

1√
mZk

]
m

∑
k=1

exp(h · B k−1
m
)}. (2.6.3)

2.6.3 Third Approximation: Itô Formula

In this approximation we employ the Itô formula (Itô (1951))

f (B1) = f (B0) +
∫ 1

0
f ′(Bs)dBs +

1
2

∫ 1

0
f ′′(Bs)ds (2.6.4)

We let f ′′(Bs) = exp(h · Bs). So

f ′(Bs) =
1
h

exp(h · Bs) and f (Bs) =
1
h2 exp(h · Bs).

In order to find
∫ 1

0 exp(−h · Bs)ds, it should be known the value of
∫ 1

0 f ′(Bs)dBs.
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Applying a Taylor expansion to
∫ 1

0 f ′(Bs)dBs in a similar way as in the second approx-

imation, we get

∫ 1

0
f ′(Bs)dBs =

m

∑
k=1

∫ k
m

k−1
m

exp(h · Bs)dBs

≈
m

∑
k=1

exp(h · B k−1
m
)[(B k

m
− B k−1

m
) + h

∫ k
m

k−1
m

(Bs − B k−1
m
)dBs]

=
m

∑
k=1

exp(h · B k−1
m
)[(B k

m
− B k−1

m
) + h(

∫ k
m

k−1
m

BsdBs −
1
m

B k−1
m
)],

where ∫ k
m

k−1
m

BsdBs =
∫ k

m

0
BsdBs −

∫ k−1
m

0
BsdBs. (2.6.5)

Now we apply Itô formula to
∫ k

m
0 BsdBs. We get

∫ k
m

0
BsdBs =

B2
k
m
− k

m

2
, and

∫ k−1
m

0
BsdBs =

B2
k−1

m
− k−1

m

2
,

which leads (2.6.5) is to be

∫ k
m

k−1
m

BsdBs =
1
2
[(B2

k
m
− B2

k−1
m
)− 1

m
]. (2.6.6)

By combining equations (2.6.4) and (2.6.6) for ∑m
k=1
∫ k

m
k−1

m
exp(h · Bs)dBs, we obtain

∫ 1

0
exp(h · Bs)dBs

=
m

∑
k=1

exp(h · B k−1
m
)[(B k

m
− B k−1

m
) + h(

1
2
[(B2

k
m
− B2

k−1
m
)− 1

m
]− 1

m
B k−1

m
)].

Substituting above equation for the corresponding term in (2.6.4) and after rearrange-

ment, we have the third approximation:

∫ 1

0
exp(h · By) dy = 2{exp(h · B1)−

1
h2 −

1
h

m

∑
k=1

exp(h · B k−1
m
)[(B k

m
− B k−1

m
)

+h(
1
2
[(B2

k
m
− B2

k−1
m
)− 1

m
]− 1

m
B k−1

m
)]} (2.6.7)
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2.7 Simulation and Comparison

The objective of simulation is

• To compare different approximations of
∫ 1

0 exp(−h · By)dy;

• To compare three approximations with ordinary model we considered;

• To find the relationship, if any exists, between variance of the interest rate and

ruin probability.

2.7.1 Basic Idea and Method

We use the R language to carry out the simulation and derive corresponding values

and graphs.

Firstly in the simulation of every approximation for
∫ 1

0 exp(−h · By)dy, we consider the

key transformation:

B k
m

d
=

Sk√
m

Sk =
k

∑
i=1

Zi,

which is a typical way to simulate Brownian Motion by random walk in discrete time,

where the Zk are i.i.d. normal random variables with mean 0 and variance 1.

Therefore the first approximation, (2.6.1) becomes:

∫ 1

0
exp(−h · By)dy ≈

m

∑
k=1

[exp(−h · B k−1
m
) + exp(−h · B k

m
)]

2
1
m

=
m

∑
k=1

[exp(−h Sk−1√
m ) + exp(−h Sk√

m )]

2
1
m

.

The second approximation, (2.6.3) becomes:

∫ 1

0
exp(−h · By) dy ≈ 1

m
{[1 + h2

4m
+

1
2
(B k

m
− B k−1

m
) +

1√
mZk

]
m

∑
k=1

exp(h · B k−1
m
)}

=
1
m
{[1 + h2

4m
+

1
2
(

Sk√
m
− Sk−1√

m
) +

1√
m

Zk]
m

∑
k=1

exp(h
Sk−1√

m
)}.
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The third approximation (2.6.7) becomes:

∫ 1
0 exp(−h · By) dy ≈ 2{exp(h · B1)− 1

h2 − 1
h ∑m

k=1 exp(h·B k−1
m
)[(B k

m
− B k−1

m
)

+h( 1
2 [(B2

k
m
− B2

k−1
m
)− 1

m ]− 1
m B k−1

m
)]}

≈ 2{exp(h Sm√
m )− 1

h2

− 1
h ∑m

k=1 exp(h·B k−1
m
)[ Sk√

m + h
m ( S2

k−S2
k−1−1

2 − Sk−1√
m )]}.

Next, for each approximation we use R language to generate Zk and calculate corre-

sponding expression above, the simulation of
∫ 1

0 exp(−h · By)dy. We do this K times.

Hence we can calculate the sample mean and variance of the simulations, and com-

pare them with mean and variance of
∫ 1

0 exp(−h · By)dy for the specific variance of δk.

Finally the most important step is that for each approximation, recording how many

times the simulated approximation of
∫ 1

0 exp(−h · By)dy is bigger than A
Cn in (2.4.3), but

we should check the situation that ∑n
i=1 βi >

C
A . We end up the process with dividing

this time described above by K, which is the simulated ruin probability we are looking

for.

Value of parameter in simulation. We consider

• the replications number K = 500

• the term for policy n = 5

• in every approximation, m = 40

• the capital A = 10000 and the claim size C = 200

• using R language to simulate 100 realisations from a U(0, 1) distributed to use as

the variance of interest rate, σ2
k . (the exact value is given in Appendix 2)
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2.7.2 Comparison of mean and variance for different approximations

In this section, we will compare mean and variance between the model stated in Section

2.2 and three approximations, for this purpose, we take σ2
k , the variance of interest rate,

equal to 1.

So in the ordinary example, for comparing with
∫ 1

0 exp(−h · By)dy, we compute the

expectation of (∑n
i=1 e

−
i

∑
k=1

δk
)/n

E[(
n

∑
i=1

e
−

i
∑

k=1
δk
)/n] = (

n

∑
i=1

e
iσ2
2 )/n.

The variance is

Var[(
n

∑
i=1

e
−

i
∑

k=1
δk
)/n] =

n

∑
i=1

[eiσ2 − 1)eiσ2
]/n2,

where σ = σk, since the δk are i.i.d. random variables.

We can also obtain the mean and variance of
∫ 1

0 exp(−h · By)dy as

E[
∫ 1

0
exp(−h · By)dy] =

1
h2 2[e

h2
2 − 1]

and

Var[
∫ 1

0
exp(−h · By)dy] =

4
3h4 [

1
2
(e2h2 − 1)− 2(e

h2
2 − 1)]− 1

h2 2[e
h2
2 − 1]

2
,

where we take h =
√
(n + 1)σ.

Now replace σ by 1, the mean and variance of (∑n
i=1 e

−
i

∑
k=1

δk
)/n and its approxi-

mations are given in the Table 2.1. As we can see from the Table 2.1, the results of

simulation show the expected values of (∑n
i=1 e

−
i

∑
k=1

δk
)/n and

∫ 1
0 exp(−h · By)dy. The

first and second approximation are quite close, in fact the biggest difference is just 0.35.

Otherwise although the variance of
∫ 1

0 exp(−h · By)dy and the second approximation

are nearly 1.3 times than (∑n
i=1 e

−
i

∑
k=1

δk
)/n, by taking into account the large variance

for ordinary model, 1057.71 and 1009.42 in Table 2.1 are acceptable. In contrast either

the mean or variance of third approximation is too big compare with others, especially
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Table 2.1: Comparison of mean and variance for different approximations

σ = 1 Mean / Sample Mean Variance /Sample Variance

(∑n
i=1 e

−
i

∑
k=1

δk
)/n 6.01 776.30∫ 1

0 exp(−h · By)dy 6.37 1057.71
1st Approx. 6.02 780.03
2nd Approx. 6.23 1009.42
3rd Approx. 17.93 18949.45

variance of it is almost 19000. In consideration of mean and variance, it is reasonably

believe that
∫ 1

0 exp(−h · By)dy is a good approximation of (∑n
i=1 e

−
i

∑
k=1

δk
)/n, so are the

first and second approximation.

2.7.3 Comparison of Simulated Ruin Probabilities

For every simulation, we use the same value of the parameters as described before and

derive two kinds of plots using R.

Figure 2.1 shows the four histograms that display the tabulated frequencies of simu-

lated ruin probability for (2.2.1) and other three approximations. In every histogram,

there are one hundred simulated values of ruin probability corresponding to one hun-

dred different values of variance of interest rate. Even though the summaries of ruin

probability in each simulation are quite close (see Appendix 3), the first and second

histograms (from the left to the right) are more analogous whereas the third and fourth

plots are also looked similar. It is clear from the histograms that over one half of the

simulated ruin probabilities are equal to 0 in the ordinary model and the first approxi-

mation, but less 50 % in the second and the third approximations.

As similar as Section 2.7.2, the first approximation works well here. The performance

of the second approximation is better in this section. The large sample variance does

not effect the value of simulation, especially in consideration of similar results given

by the third approximation. To sum up the distribution of simulated ruin probabilities

in ordinary model and each approximation are nearly same on the whole.
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Figure 2.1 Histograms of ruin probabilities in simulation where R.P. denotes ruin

probability.
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Figure 2.2 Plots of simulated ruin probability against variance of interest rate for

ordinary model and each approximation.
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Figure 2.2 is the combination of four plots which show the relationships between the

simulated ruin probability and the variance of the interest rate. The surprise is that

there is a "threshold" in every plot which was empirically discovered. In first and sec-

ond plot, the "threshold" is around nearly 0.5 compare with 0. 3 in third and fourth

plot. The probability of ruin raises significantly from beyond "threshold" values. But

the appearance and position of "threshold" is not fixed, they both depend on the value

of parameter in Section 2.7.1, For example, if the n change from 5 to 15 and the rest

parameters change less, then there should be no "threshold" any more. Besides this, a

noticeable trend in every plot is the simulated ruin probability which is increasing as

the variance is increasing without "threshold". In addition in top right of the second

plot the points form a distinct curve, but in other plots this is less so

In summary, from the simulation, the approximation of (∑n
i=1 e

−
i

∑
k=1

δk
)/n,

∫ 1
0 exp(−h ·

By)dy, is no problem. Among three approximations, the first one works very well, it

does not only has the similar expected value and variance compare with (∑n
i=1 e

−
i

∑
k=1

δk
)/n,

but has also quite similar simulated ruin probabilities with our ordinary model. Al-

though the second and third approximation do not perform as well as first one, they

are still valuable approximations.
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2.8 The Advanced Model

2.8.1 Construction of Model

In real insurance world, our previous ruin probability models has too many restric-

tions. Normally the claim size of an insurance is not fixed but random, and it is not

possible that there is a claim in every time interval. As a consequence many researchers

consider the claims as a stochastic process. Therefore the model of ruin probability will

be more complicated.

For constructing this model, we firstly make same assumption for the continuous in-

terest rate, then the surplus of insurance company at time n, Zn, changes to be

Zn = An −
n

∑
i=1

Die
n
∑

k=i+1
δk

, (2.8.1)

where Di is claim size at time i, An is the capital of insurance company at time n and

An = A0 +
n

∑
i=1

Kie
n
∑

k=i
δk

,

where A0 is the reserve at the beginning, Ki is the premium received at time i. Next by

considering the present valuation of Zn, (2.8.1) becomes:

Z̄n = A0 −
n

∑
i=1

Cie
−

i
∑

k=1
δk

,

where

Ci = Di − Ki.

Now, our new ruin probability for finite time point M is

Ψ′M = P[ min
0≤n≤M

(A0 −
n

∑
i=1

Cie
−

i
∑

k=1
δk
) < 0]. (2.8.2)

We call it the earliest ruin probability.
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For the purpose of approximation, we rewrite (2.8.2) as

Ψ′M = P[ max
0≤n≤M

(
n

∑
i=1

Cie
−

i
∑

k=1
δk
) > A0].

Let n = [Mx] and I[Mx] = ∑n
i=1 Cie

−
i

∑
k=1

δk
. Then by applying Lemma 2.1 to I[Mx] we

obtain

I[Mx] ≈ M
∫ x

0
e−h·By−ΓydC(y).

We use a new transformation as shown as below

[My]

∑
i=1

δi = h · By + Γy,

where Γ is fixed and > 0.

We treat Ci as a jump and set Ci = dC(y) on [ i
M , i+1

M ]. So, we have derived the

following result.

Property: Under conditions in above

Ψ′M ≈ P( max
0≤n≤M

∫ x

0
e−h·By−ΓydC(y) >

A0

M
). (2.8.3)

Remark: Let us explain how this property can be used together with stochastic simu-

lation to compute numerically the ruin probability. We set

C(y) = −Cy + JPoλ(y)

where C and J are constant, Poλ(y) is a Possion process with rate λ. Hence

∫ x

0
e−h·By−ΓydC(y) = −C

∫ x

0
e−h·By−Γydy + J

∫ x

0
e−h·By−ΓydPoλ(y), (2.8.4)

note: ∫ x

0
e−h·By−ΓydPoλ(y) =

q−1

∑
i=1

e−h·BTi−ΓTi .

36



where Ti is the waiting time until ith event for a Possion process with mean rate λ

and q is the minimum number for Tk > x. We also consider the approximation for

−C
∫ x

0 e−h·By−Γydy:

− C
∫ x

0
e−h·By−Γydy ≈ −C

1
mx

mx

∑
k=1

e
−h·B k

m
−Γ k

m (2.8.5)

from (2.8.4) and (2.8.5) we have:

∫ x

0
e−h·By−ΓydC(y) ≈ −C

1
mx

mx

∑
k=1

e
−h·B k

m
−Γ k

m +
q−1

∑
i=1

e−h·BTi−ΓTi . (2.8.6)

By using the same methods as in section 2.7.1, to do the simulation for (2.8.6), but we

consider here:

By −→
S[ym]√

m
instead of

Sym√
m

for Ti,

Ti = E1 + · · ·+ Ei,

where {Ei} are i.i.d. exponential random variables with parameter λ. So we have

described the simulation process for (2.8.6). Similar techniques will be suggested and

applied in Chapter 3.
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2.9 Conclusion

In this chapter, firstly we tried to use simple model suggested by Dr. Neil Butler to de-

scribe the risk process of the insurance company. we approximated the ruin probability

for the model by Brownian motion and develop several numerical methods to evaluate

the approximated ruin probability. Numerical calculations is applied on the approx-

imation and show that the ruin probability is increasing function of the variance of

stochastic interest rate. A surprising threshold is found such that the rate of increasing

of the ruin probability much higher after the threshold point. Also the results for some

parameters agreed with the Gaussian approximation suggested in Matsumoto and Yor

(2005) (Proposition 2.6). We applied three approximations in Section 2.6 to the ruin

probability. Using simulation, they works reasonably well. The approximations reflect

the same relationship between the variance of interest rate and the ruin probability.

Although there is no explicit way to derive the ruin probability with the stochastic con-

tinuous interest rate, by approximation and simulation we can find how the variance

of the interest rate effects the probability of ruin in finite time. Then, in Chapter 3 we

will extend our model with incorporating investment policy.
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CHAPTER 3

Optimal constant fraction policies

under the ruin probability

constraints

In Chapter 3, we construct several models which incorporate possible investment strate-

gies. We estimate the parameters from the simulated data. Then we find the optimal

investment policy with a given upper bound on the ruin probability. The models, like-

lihood functions and MLE’s are introduced in Sections 3.2 and 3.3. Numerical analysis

with stochastic simulation for the estimation of the parameters is conducted in Section

3.4. In Section 3.5 we find via the random search algorithm the optimal investment

strategy with a given upper bound on the ruin probability. Finally, in Section 3.6 we

approximate the ruin probability by the associated integrals of the Brownian motion.

3.1 Approach

In this chapter, we want to investigate the optimal investment strategy of the insur-

ance company if there is a given upper bound on the risk or ruin probability for the

insurance policies (e.g. Paulsen, 2008). When the insurance companies receive the pre-

mium from policy holders, they may use that to invest. Therefore how to choose the

investment policy is an important objective for them. As we know, the more profitable

and risky investment, such as stocks are, the more the uncertainty is. That means that
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these types of investments will have high expected return rate however the variation is

also high. In contrast, the less profitable and risky investments, such as bonds, saving

accounts and so on, have a low expected return but less variation. In Chapter 2, we

have found that the high variance of investment/interest rate will result in high ruin

probability. In this situation, it is reasonable for the insurance company to construct an

optimal investment strategy to find the balance between the two kinds of investments.

We apply our analysis to the simulated data. Then we find the optimal investment

strategy by the random search algorithm. The method is as follows:

• Construct the stochastic model with unknown parameters which are to be esti-

mated from data;

• Estimate the parameters from the data;

• Use the estimated parameter to calculate the ruin probability or obtain an upper

bound for it;

• Find the optimal constant fraction policies.

To estimate the parameters, we evaluate the likelihood functions, then whenever it is

possible, we find the maximum likelihood estimation (MLE) of the parameter by direct

calculations or by using the numerical or stochastic simulation techniques.

3.2 The Construction of Model

At the beginning, we use the simple model as which is based upon the following as-

sumptions:

• the claim size, denoted by Ci, is random variable and is paid by the insurance

company just after the end of each time interval, the rate claim occurrence is constant;

• the premium is one payment and paid just after the beginning of the first time

interval;

• A0 is the reserve at the beginning, An is the surplus of insurance company at time

n;
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• δk is the i.i.d. continuous interest rate at time k, and has normal distribution with

mean 0 and variance σ2;

• the capital and the claim payment of the company are increasing with continuous

stochastic interest rate δn.

In our model, at time n the accumulated surplus is given by

An = An−1eδn − Cn

= A0e∑n
i=1 δi −

n

∑
i

Cne∑n
k=i+1 δk .

Thus An is a function of An−1, δn, Cn, i.e An = f (An−1; δn, Cn), where we assume {δn}

and {Cn} are independent. Therefore {An} is homogeneous Markov Chain.

As you can see, the above model we constructed is very simple. There is just one

kind of investment policy that means there is just one kind of interest rate and we

do not need any investment strategy. In the following section, we add the second

interest/investment rate and make different assumptions about claim sizes and their

occurrence.

In statistics, maximum likelihood estimation is a well-known method of estimation.

The estimation begins with finding the likelihood function of the sample data. The

values of these parameters that maximize the sample likelihood are known as the max-

imum likelihood estimates or MLE’s.

Suppose we have a set D = {x1, · · · , xn} of i.i.d. realisations from the density p(x|θ).

L(θ|D) is defined as the likelihood function of θ, unknown parameter, with respect to

D as

L(θ|D) = p(D|θ) = p(x1, · · · , xn|θ) =
n

∏
i=1

p(xi|θ),

where θ is a parameter. It is often easier to work with the logarithm of the likeli-

hood function, called the log-likelihood, or its scaled version, called the average log-

likelihood:

ln L(θ | x1, . . . , xn) =
n

∑
i=1

ln p(xi|θ), ˆ̀ =
1
n

ln L,
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and the log-likelihood of θ is

l(θ) = l(θ | x1, . . . , xn).

The MLE of θ is, by definition, the value of θ̂ that maximise L(θ|D) and can be com-

puted as

θ̂mle = arg max ˆ̀(θ | x1, . . . , xn).

A MLE estimate is the same regardless of whether maximum the likelihood or the log-

likelihood function, since log is a monotone transformation.

To estimate the parameters from the data, we apply the max-likelihood method.

The conditional probability density function(pdf) for An is found as follows if we let

f (An|An−1) to be the conditional pdf of An|An−1 then we can express the conditional

likelihood function of A1, . . . , An:

L(A1, . . . , An) = f (A1)× f (A2|A1) · · · f (An|An−1).

For the single parameter model we may calculate the estimate directly, but for the two

or more parameters it is not too easy to obtain the likelihood function. So we use

computer to find the maximum of the likelihood. We also use MLE to test our model

and assumptions.
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3.3 Estimation: Likelihood Functions

In this section, we evaluate the likelihood functions, then whenever its possible, find

the MLE by direct calculations. In the next section, we apply numerical methods.

3.3.1 Model 1

We keep all the assumptions as in Section 3.2 except we assume the claim size is con-

stant at C. Hence our conditional probability for the first model is

P[An < t|An−1 = an−1] = P[An−1eδn − C < t|An−1 = an−1]

= P[δn < ln(
t + C
an−1

)].

Then the conditional pdf of An is

d
dt

P[δn < ln(
t + C
an−1

)] =
1

t + C
× 1

σ
√

2π
× exp(−

(ln( t+C
an−1

))2

2σ2 ),

since δn has normal distribution with mean 0 and variance σ2.

By considering the product of conditional pdfs and then taking the log-likelihood func-

tion of σ, l(σ), is

l(σ) ∝ −n× ln(σ)−
∑n

i=1 ln( t+C
ai−1

)2

2σ2 .

By solving ∂l
∂σ = 0, we obtain the MLE of θ, denoted by σ̂, is gien by

σ̂ =

√
∑n

i=1(ln(
t+C
ai−1

))2

n
,

where the t, C and ai are known constants.

3.3.2 Model 2

In our second case we assume the Cn are exponentially distributed with mean λ−1

instead of constant in the first model. Furthermore we assume that the {δk} are inde-

pendent of the {Ck}. So we have two unknown parameters, σ and λ, to estimate.
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If {ak} ≥ 0, then for each n the conditional probability of An given An−1 = an−1 is

P[An < t|An−1 = an−1] = P[An−1eδn − Cn < t|An−1 = an−1]

= P[an−1eδn − Cn < t]

= P[Cn > an−1eδn − t]

= E[I(Cn > an−1eδn − t)]. (3.3.1)

Since Cn has an exponential distribution with mean λ−1 we have

P[Cn > x] = e−λx I(x ≥ 0) + I(x < 0).

This leads (3.3.1) to be

E[e−λ(an−1eδn−t) I(an−1eδn − t ≥ 0) + I(an−1eδn − t < 0)]

= E[e−λ(an−1eδn−t) I(an−1eδn − t ≥ 0)] + E[I(an−1eδn − t < 0)].

Since δn is a normal variable with mean 0 and variance σ2, then we obtain

P[An < t|An−1 = an−1] = P(δn < ln(
t

an−1
)) +

1
σ
√

2π
eλt
∫ +∞

ln( t
an−1

)
e−λan−1ex− x2

2σ2 dx.

Then we can express the conditional pdf of An < t|An−1 = an−1 as

d
dt

P[An < t|An−1 = an−1]

=
d
dt

P(δn < ln(
t

an−1
)) +

d
dt

1
σ
√

2π
eλt
∫ +∞

ln( t
an−1

)
e−λan−1ex− x2

2σ2 dx.

The first part is
d
dt

P(δn < ln(
t

an−1
)) =

1
t

1√
2πσ

e−(
ln( t

an−1
)

σ
√

2
)2

.
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The second part is

d
dt

1
σ
√

2π
eλt
∫ +∞

ln( t
an−1

)
e−λan−1ex− x2

2σ2 dx

=
λ

σ
√

2π
eλt
∫ +∞

ln( t
an−1

)
e−λan−1ex− x2

2σ2 dx− 1
t

1√
2πσ

e−(
ln( t

an−1
)

σ
√

2
)2

.

By combining the first and second parts, we have that the conditional pdf of An|An−1 =

an−1

d
dt

P[An < t|An−1 = an−1] =
λ

σ
√

2π
eλt
∫ +∞

ln( t
an−1

)
e−λan−1ex− x2

2σ2 dx.

Since the integral does not have a simple form, we write

d
dt

P[An < t|An−1 = an−1] = λeλtE[Q(y)I(y ≥ ln(
t

an−1
))],

where Q(y) = e−λan−1ey
, y being a realisation from a normal random variable with

mean 0 and variance σ2. We apply Monte Carlo methods (Ross 2001). We generate i.i.d.

random variables yi with conditional pdf of An|An−1 = an−1 and by the law of large

numbers and we obtain the approximation to the conditional pdf of An|An−1 = an−1

d
dt

P[An < t|An−1=an−1 ] ≈ λeλt 1
M

M

∑
i=1

Q(yi)I(yi ≥ ln(
t

an−1
)).

3.3.3 Model 3-Binomial Model

In this model we assume the claim size is a constant instead of random variable, but

we do not know when claim occurs. So the surplus of the company at time n is

An = An−1eδn − Cyn,

where we set constant C as claim size, and yn is a realisation of a random variable Yn

with probability p of a claim being made. So the conditional probability for t, an−1 ≥ 0
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is

P[An < t|An−1 = an−1] = P[an−1eδn − Cyn < t]

= P[an−1eδn < t | yn = 0]P[yn = 0]

+P[an−1eδn − C < t | yn = 1]P[yn = 1]

= (1− p)P[δn < ln(
t

an−1
)] + pP[δn < ln(

t + C
an−1

)].

Then the conditional pdf of An|An−1 = an−1 is given by

d
dt

P[An < t|An−1 = an−1] =
1
t

1√
2πσ

e−(
ln( t

an−1
)

σ
√

2
)2
× (1− p)

+
1

t + C
1√
2πσ

e−(
ln( t+C

an−1
)

σ
√

2
)2
× p.

3.3.4 Model 4- Model with investment strategy with constant claim size

So far we have introduced three different models. In these models, we do just think

about only one investment/interest rate, so there is nothing to do with strategy. How-

ever in next three models, an investment strategy will be modelled. Hence there are

two interest rates in our model, one is bond interest rate and the other is the invest-

ment rate. The new time series model for surplus An is

An = An−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− C,

where

• The C is claim size and it is constant by assumption.

• The δn
(1) and δn

(2) define the return rates of two different investment policies. In

this case δn
(1), the investment interest, is a normal random variable with mean 0

and variance σ2 and δn
(2), the bond interest rate, is a constant, and we let v = eδn

(2)
.

• The θ is the most interesting parameter which is the proportion to invest, we

assume that θ′ is fixed.
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Firstly, we are looking for the conditional probability

P[An < t | An−1 = an−1]

= P[an−1(θeδn
(1)
+ (1− θ)eδn

(2(
)− C < t]

= P[an−1θeδn
(1(
+ an−1v− an−1θv− C < t]

= P[δn
(1) < ln(

t + C− an−1v(1− θ)

an−1θ
)].

So the conditional pdf of An | An−1 = an−1 is

d
dt

P[An < t|An−1 = an−1]

=
1

t + C− an−1v(1− θ)

1
σ
√

2π
exp(−

(ln( t+C−an−1v(1−θ)
an−1θ ))2

2σ2 ),

where δn
(1) has normal distribution with mean 0 and variance σ2. Hence log-likelihood

function of σ, l(σ) is

l(σ) ∝ −nln(σ)−
∑n

i=1 ln( t+C−ai−1v(1−θ)
ai−1θ )

2× σ2 .

By solving ∂l
∂σ = 0, we obtain, σ̂, the MLE of σ as

σ̂ =

√
∑n

i=1(ln(
t+C−ai−1v(1−θ)

ai−1θ ))2

n
,

since the t, C and ai−1 are known constants. The estimate of σ̂ depends on θ.

3.3.5 Model 5-Model with investment strategy with exponential claims

Assumption:

• {Cn} are iid exponentially distributed with mean 1
λ ;

• {δk} are independent;

• The novelty is that the claims {Cn} are not constants as in Model 4. This Model
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extends Model 4 by allowing the claims to be exponentially distributed.

The surplus An will be

An = An−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− Cn,

where Cnhas an exponential distribution with mean λ−1. The conditional probability

P[An < t | An−1 = an−1] can be expressed as follows

P[An < t | An−1 = an−1]

= P[an−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− Cn < t]

= P[an−1θeδn
(1)
+ an−1v− an−1θv− Cn < t].

Let θeδn
(1)

= eln(θ)+δn
(1)

and let ln(θ) + δn
(1) = δn, so that

P[An < t | An−1 = an−1]

= P[an−1eδn − Cn < t− an−1v + an−1θv]

= P[Cn > an−1eδn − t + an−1v− an−1θv]

= E[I(Cn > an−1eδn − t + an−1v− an−1θv)]

= E[I(an−1eδn − t + an−1v− an−1θv < 0)

+e−(λan−1eδn−t+an−1v−an−1θv) I(an−1eδn − t + an−1v− an−1θv > 0)]

= E[I(δn < ln(
t− an−1v + an−1θv

an−1
))

+I(δn > ln(
t− an−1v + an−1θv

an−1
))e−λ(an−1eδn−t+an−1v−an−1θv)]

= P(δn < ln(
t− an−1v + an−1θv

an−1
))

+
∫ +∞

ln(
t−an−1v+an−1θv

an−1
)

e−λ(an−1ex−t+an−1v−an−1θv) 1
σ
√

2π
e−

(x−ln(θ))2

2σ2 dx,

where δn is a normal random variable with mean ln(θ) and variance σ2. By using

d
dt

∫ ∞

f (t)
g(x) dx = [

d
dt
(− f (t))]g( f (t)) +

∫ ∞

f (t)

dg
dt

dx,
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with f (t) = ln( t−an−1v+an−1θv
an−1

), we derive

g(t, x) = e−λ(an−1ex−t+an−1v−an−1θv) 1
σ
√

2π
e−

(x−ln(θ))2

2σ2 .

Then

d
dt

P[An < t|An−1 = an−1]

=
1

t− an−1v + an−1θv
× 1

σ
√

2π
e−

(ln(
t−an−1v+an−1θv

an−1θ
))2

2σ2

− 1
t− an−1v + an−1θv

× 1
σ
√

2π
e−

(ln(
t−an−1v+an−1θv

an−1θ
))2

2σ2

+
∫ +∞

ln(
t−an−1v+an−1θv

an−1
)

λe−λ(an−1ex−t+an−1v−an−1θv) 1
σ
√

2π
e−

(x−ln(θ))2

2σ2 dx

=
∫ +∞

ln(
t−an−1v+an−1θv

an−1
)

λe−λ(an−1ex−t+an−1v−an−1θv) 1
σ
√

2π
e−

(x−ln(θ))2

2σ2 dx.

For the purpose of approximation, we rewrite the above expression as

λe−λ(an−1v−an−1θv−t)
∫ +∞

ln(
t−an−1v+an−1θv

an−1
)

e−λ(an−1ex) 1
σ
√

2π
e−

(x−ln(θ))2

2σ2 dx.

= λe−λ(an−1v−an−1θv−t)E(Q(y)I(y > ln( t−an−1v+an−1θv
an−1

)),

where Q(y) = e−λan−1ey
, and y is normal random variable with mean 0 and variance σ2.

Then by using the law of large numbers, we obtain the approximation

d
dt P[An < t|An−1 = an−1] ≈

λe−λ(an−1v−an−1θv−t) 1
M ∑M

i=1 Q(y)I(y > ln( t−an−1v+an−1θv
an−1

)).

3.3.6 Model 6

This is the last model we consider. It is quite similar to the previous one, but we let

δn
(2) be a random variable instead of being a constant. The surplus of policy at time n
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is

An = An−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− Cn.

In this case δn
(1) is a normal random variable with mean 0 and variance σ1

2. We let δn
(2)

also be a normal random variable with mean 0 and variance σ2
2. The conditional cdf is

P[An < t | An−1 = an−1] = P[An−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− Cn < t | An−1 = an−1]

= P[an−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− Cn < t]

We let θeδn
(1)

= eδn , where δn is the normal random variable with mean ln(θ) and vari-

ance σ2. We let

(1− θ)eδn
(2)

= eδn
(2)

θ̂ ,

where δn
(2)

θ̂ is the normal random variable with mean ln((1 − θ)) and variance σ2.

Therefore by standard simplifications

P[An < t | An−1 = an−1]

= P[an−1(eδn + eδn
(2)

θ̂ )− Cn < t]

= P[Cn > an−1(eδn + eδn
(2)

θ̂ )− t]

= E(I(Cn > an−1(eδn + eδn
(2)

θ̂ )− t))

= E(I(an−1(eδn + eδn
(2)

θ̂ ))− t < 0)

+e−λ(an−1(eδn+eδn(2) θ̂ ))−t) I(an−1(eδn + eδn
(2)

θ̂ ))− t > 0))

= E[I(eδn + eδn
(2)

θ̂ <
t

an−1
) + e−λ(an−1(eδn+eδn(2) θ̂ ))−t) I(eδn + eδn

(2)
θ̂ >

t
an−1

)].

50



By using Gaussian density (Ross 2001), we have

P[An < t | An−1 = an−1]

=
∫ ∞

0

∫ t
an−1
−y

0

1
xσ
√

2π
e
(ln(x)−ln(θ))2

2σ2 × 1
yσ
√

2π
e−

(ln( y
1−θ

))2

2σ2 dx dy +

∫ ∞

0

∫ ∞

t
an−1
−y

1
xσ
√

2π
e
(ln(x)−ln(θ))2

2σ2 × 1
yσ
√

2π
e−

(ln( y
1−θ

))2

2σ2 e−λ(an−1(x+y)−t) dx dy.

Now, let

g(y) =
t

an−1
− y,

h(x) =
1

xσ
√

2π
e
(ln(x)−ln(θ))2

2σ2 ,

and

f (y) =
1

yσ
√

2π
e−

(ln( y
1−θ

))2

2σ2 ,

q(x, y) = e−λ(an−1(x+y)−t).

With these notations then

P[An < t | An−1 = an−1]

=
∫ ∞

0

∫ g(y)

0
h(x) f (y) dx dy +

∫ ∞

0

∫ ∞

g(y)
h(x) f (y)q(x, y) dx dy

=
∫ ∞

0
[H(x) f (y)]g(y)0 dy +

∫ ∞

0

∫ ∞

g(y)
h(x) f (y)q(x, y) dx dy

=
∫ ∞

0
H(g(y)) f (y)− H(0) f (y) dy +

∫ ∞

0

∫ ∞

g(y)
h(x) f (y)q(x, y) dx dy,
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where H(x) =
∫

h(x)dx. Hence by standard calculation and differentiating integrals,

d
dt

P[An < t|An−1 = an−1]

=
∫ ∞

0

dg(y)
dt

dH(g(y))
dg(y)

f (y) dy−
∫ ∞

0

dg(y)
dt

h(g) f (y)q(g(y), y, t) dy

+
∫ ∞

0

∫ ∞

g(y)

dq(x, y)
dt

h(x) f (y)q(x, y) dx dy

=
∫ ∞

0

dg(y)
dt

h(g(y)) f (y) dy−
∫ ∞

0

dg(y)
dt

h(g(y)) f (y)q(g(y), y) dy

−
∫ ∞

0

∫ ∞

g(y)

dq(x, y)
dt

h(x) f (y)q(x, y) dx dy.

Because q(g(y), y) = 1 and dq(x,y)
dt = −λ, then

d
dt

P[An < t|An−1 = an−1]

=
∫ ∞

0

∫ ∞

g(y)
λh(x) f (y)q(x, y) dx dy

= λ
∫ ∞

0

∫ ∞

t
an−1
−y

1
xσ
√

2π
e
(ln( x

θ
))2

2σ2 × 1
yσ
√

2π
e−

(ln( y
1−θ

))2

2σ2 e−λ(an−1(x+y)−t) dx dy.

For the purpose of approximation, we rewrite the above expression as

λ
∫ ∞

0

∫ ∞

t
an−1
−y

1
xσ
√

2π
e
(ln( x

θ
))2

2σ2 × 1
yσ
√

2π
e−

(ln( y
1−θ

))2

2σ2 e−λ(an−1(x+y)−t) dx dy

= λE[L(x, y)I(x + y >
t

an−1
],

where

L(x, y) = e−λ(an−1(x+y)−t),

x is a log-normal random variable with mean e
σ2

1
2 and variance (e

σ2
1
2 − 1)e

σ2
1
2 and y is

another log-normal random variable with mean e
σ2

2
2 and variance (e

σ2
2
2 − 1)e

σ2
2
2 .

As before, at the last step, by the law of large numbers to obtain the approximation

of d
dt P[An < t|An−1 = an−1] in the following way

d
dt

P[An < t|An−1 = an−1] ≈ λ
1
M

M

∑
i=1

L(xi, yi)I(xi + yi >
t

an−1
).
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3.4 Estimation of the parameters: Numerical Analysis with Stochas-

tic Simulation

For a particular model, we simulated data for given values of the parameters, and then

we use the simulated data to estimate the parameters. The reason to do the simulation

is we can compare the estimate with the true values of parameters. Next, we use the

estimated parameters and simulation approach to find the optimal investment strategy.

Now the question is how we construct data.

Since in Model 1, we can estimate the parameter directly, we begin with Model 2. In

Model 2, the surplus of policy at time n is

An = An−1eδn − Cn.

In this model the σ2, the variance of δn, and the λ, the inverse of the mean of Cn, are

both the parameters. So if we set the value of A0, σ, and λ, we can simulate the whole

sequence of {An}. There are some assumptions on our data.

• our data {an} from a time series model

an = an−1eδn − Cn;

• we use given σ and λ to simulate {δn} and {Cn};

• {an} > 0 in the estimation.

• The number of replications is 1000

3.4.1 How to choose A0 in the simulation

Since by assumption {An} > 0 so we should choose A0 carefully. An > 0 means

A0e∑n
i=1 δi −

n

∑
i=1

Cie∑i
i=k+1 δi > 0.
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If we replace the Ci by 1
λ = E(Ci) then

A0e∑n
i=1 δi >

1
λ

n

∑
i=1

e∑i
i=k+1 δi .

Next we use present valuation instead of future valuation then

A0 >
1
λ

n

∑
i=1

e−∑i
i=k+1 δi ,

hence there is a lower bound for A0 in our simulation. However we should not set

large value for A0 if λ−1 is not large.

We do estimations twice. Once is for short term using n = 20. Another is for long

term using n = 60. We use two different computer packages, namely R-language and

Maple, carry out the simulation.

3.4.2 The results of estimation

In this section, we will do the estimation for every model. Maple is a tool we used in

this section, because it can calculate the integral in the model directly and carry out the

whole process quicker than using R.

Experiment 1, λ = 1, σ = 0.05.

In this experiment, we set λ = 1 and σ = 0.05. But we use different initial value, A0, to

construct different data. In Model 1, we consider claim size, C = 1, over time. In Model

3, we consider the probability of occurrences of claims, p, as 0.5 in our data. Since there

are two interest/investment rates in Model 5 and 6, we take constant rate, v = 1.05, in

Model 4, and additional variable rate, σ1 = 0.1. In addition we use θ = 0.5 to construct

data in Model 5 and 6.

The Table 3.1 shows that the estimation of σ works well. For different initial value the

results of estimation of σ are good. Because of the way we construct data, both σ̂ for

n = 20 and n = 60 are same.
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a0 C σ n = 20 n = 60

σ̂ σ̂

50 1 0.05 0.052 0.052

60 1 0.05 0.054 0.054

100 1 0.05 0.048 0.048

200 1 0.05 0.058 0.058

Table 3.1: The results of estimation for Model 1 ( Experiment 1 )

a0 λ σ n = 20 n = 60

λ̂ σ̂ λ̂ σ̂

50 1 0.05 1.0 0.05 1.2 0.05

60 1 0.05 0.7 0.05 1.4 0.06

100 1 0.05 0.9 0.05 1.7 0.05

200 1 0.05 0.7 0.05 0.7 0.05

Table 3.2: The results of estimation for Model 2 ( Experiment 1 )

As shown in the Table 3.2, for different sample data, we always get the good estimation

of σ. In contrast, the estimation of λ is very unstable. When n = 20, the estimated value

for λ is better than when n = 60. And we find when n is 20, the estimated value of λ is

decreasing when a0 is increasing from 50 to 100 but jump to 0.5 with a0 = 200. When

n = 60, the estimated value of λ is increasing when a0 is increasing from 50 to 100 but

is just 0.5 when a0 is 200.
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a0 p σ n = 20 n = 60

p̂ σ̂ p̂ σ̂

50 0.5 0.05 1.0 0.05 0.2 0.05

60 0.5 0.05 0.95 0.05 0.05 0.05

100 0.5 0.05 0.45 0.05 0.05 0.05

200 0.5 0.05 0.7 0.04 1 0.05

Table 3.3: The results of estimation for Model 3 ( Experiment 1 )

The Table 3.3 shows that the results of estimation of p is bad and very unstable in

contrast the simulation on σ is good and stable over different sample data. And the

values of p̂ at n = 60 is much less than at n = 20 except the last simulation in the above

figure.

a0 θ C σ n = 20 n = 60

σ̂ σ̂

50 0.5 1 0.05 0.036 0.046

60 0.5 1 0.05 0.053 0.051

100 0.5 1 0.05 0.056 0.049

200 0.5 1 0.05 0.044 0.046

Table 3.4: The results of estimation for Model 4 ( Experiment 4 )

a0 λ σ n = 20 (θ = 0.5) n = 60 (θ = 0.5)

λ̂ σ̂ λ̂ σ̂

50 1 0.05 1.1 0.05 0.8 0.04

60 1 0.05 2.0 0.06 0.7 0.05

100 1 0.05 0.6 0.04 0.9 0.05

200 1 0.05 2.0 0.06 1.3 0.05

Table 3.5: The results of estimation for Model 5 ( Experiment 1 )
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a0 λ σ1 σ2 n = 20 (θ = 0.5) n = 60 (θ = 0.5)

λ̂ σ̂1 σ̂2 λ̂ σ̂1 σ̂2

50 1 0.1 0.05 0.03 0.10 0.06 0.03 0.11 0.04

60 1 0.1 0.05 0.02 0.10 0.06 0.02 0.10 0.05

100 1 0.1 0.05 0.01 0.10 0.05 0.02 0.11 0.06

200 1 0.1 0.05 0.01 0.10 0.05 0.01 0.08 0.04

Table 3.6: The results of estimation for Model 6 ( Experiment 1 )

The Table 3.4, 3.5 and 3.6 show the good and stable estimation of σ, standard deviation

of interest rate, again. However, the estimation of λ in the last two models is not good,

especially in the last model. The possible explanations are that in short term, the initial

value does not effect the estimation too much. Also when the initial value is large, the

whole model does not strongly depend on λ, so the estimation is unstable.

There is a new parameter, θ, in the last two models. So we will do some simulations to

examine if the estimation of parameters is stable over different value of θ.

The Table 3.7 shows that the estimation of σ and λ for different value of θ. We construct

data by considering σ = 0.1, λ = 1, v = 1.05, and A0 = 220. We obtain good and stable

estimations of σ in short and long term. The results of λ̂ is not bad in long term for

different θ. Therefore we believe that the estimation of σ is stable over θ

θ 0.2 0.3 0.4 0.6 0.8 0.9

λ̂ (n = 20) 0.6 2.0 0.4 0.4 0.4 0.3

σ̂ (n = 20) 0.1 0.08 0.10 0.08 0.09 0.10

λ̂ (n = 60) 1.1 1.1 1.2 0.5 0.6 0.7

σ̂ (n = 60) 0.09 0.12 0.10 0.10 0.10 0.11

Table 3.7: The estimation for Model 4 using different values of θ
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Experiment 2 λ = 1, σ = 0.1.

For this experiment, we set λ = 1 and σ = 0.1. We still use different initial value, a0, to

construct different data. In addition we consider p = 0.02 in Model 3, and we take one

of two rates in Model 5 as 0.15 instead of 0.05.

a0 C σ n = 20 n = 60

σ̂ σ̂

150 1 0.1 0.1206 0.1206

200 1 0.1 0.1279 0.1279

300 1 0.1 0.1013 0.1013

400 1 0.1 0.0949 0.0949

Table 3.8: The results of estimation for Model 1 (Experiment 2)

a0 λ σ n = 20 n = 60

λ̂ σ̂ λ̂ σ̂

150 1 0.1 1.0 0.1 1.2 0.1

200 1 0.1 0.9 0.1 1.4 0.1

300 1 0.1 1 0.1 1.5 0.1

420 1 0.1 1 0.1 1 0.1

Table 3.9: The results of estimation for Model 2 (Experiment 2)
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a0 p σ n = 20 n = 60

p̂ σ̂ λ̂ σ̂

150 0.2 0.1 0.05 0.11 0.05 0.09

200 0.2 0.1 0.3 0.11 0.45 0.11

300 0.2 0.1 0.4 0.12 0.1 0.1

420 0.2 0.1 1 0.09 0.05 0.1

Table 3.10: The results of estimation for Model 3 (Experiment 2)

a0 θ C σ n = 20 n = 60

σ̂ σ̂

150 0.5 1 0.1 0.080 0.106

200 0.5 1 0.1 0.100 0.106

300 0.5 1 0.1 0.106 0.104

400 0.5 1 0.1 0.099 0.091

Table 3.11: The results of estimation on Model 4 (Experiment 2)

A0 λ σ n = 20 (θ = 0.5) n = 60 (θ = 0.5)

λ̂ σ̂ λ̂ σ̂

150 1 0.1 0.3 0.09 0.3 0.09

200 1 0.1 2.0 0.12 1.1 0.11

300 1 0.1 2.0 0.08 0.7 0.08

420 1 0.1 0.9 0.11 0.2 0.11

Table 3.12: The results of estimation on Model 5 (Experiment 2)

As can be seen from Table 3.8 to 3.12, the results are similar to those of Experiment

1.
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a0 λ σ1 σ2 n = 20 (θ = 0.5) n = 60 (θ = 0.5)

λ̂ σ̂1 σ̂2 λ̂ σ̂1 σ̂2

150 1 0.15 0.10 0.10 0.13 0.11 0.01 0.16 0.11

200 1 0.15 0.10 0.1 0.13 0.07 0.2 0.15 0.09

300 1 0.15 0.10 0.2 0.17 0.12 0.20 0.16 0.08

420 1 0.15 0.10 0.10 0.23 0.11 0.11 0.18 0.06

Table 3.13: The results of estimation for Model 6 (Experiment 2)

The Table 3.13 shows that results of estimation for Model 6 in Experiment 1 are worse

than the results for Experiment 2. Especially, λ̂, is very small in every simulation.

In conclusion, in both two Experiments, the estimated value of σ is stable over the time

and initial value. However the estimated value of λ is very unstable in Model 5 and 6

and in Model 2 when the n is 60. It’s worthy to notice that, for same value of A0, the λ̂

is bigger when n is 20 than n is 60 in the most cases.

Since the estimated value for λ is unstable, we will try to find the reason why we do

not obtain the stable estimation for λ and the relationship between the estimated value

and the initial value.

3.4.3 Discussion: Analysis of estimation

We have found that it is possible to obtain the robust (stable) estimation of σ but the

estimation of the parameter λ is unstable.

Now we want to know if the estimation of σ is robust when λ varies, i.e. over a range

different values of λ. In addition, we also wish to ascertain if there are reasons why we

always obtain the robust estimation for σ.

Let us focus on Model 1. As described before

σ̂ =

√
∑n

i=1(ln(
ai+C
ai−1

))2

n
,
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after rearrangement we have

σ̂2 =
∑n

i=1(ln(
ai+C
ai−1

))2

n
.

We assume we do not know the value of the constant C and use random variable in-

stead of constant, so the σ̂ will be the conditional MLE estimator:

σ̂2 =
∑n

i=1(ln(
ai+Ĉk
ai−1

))2

n
.

Here we will do different assumptions for Ĉk and check the value of σ̂. We do many

simulations, but we only simulate our data once.

Firstly we set E(Ck) = Ĉk, then

(σ̂)2 =
∑n

k=1(ln(
Ak+E(Ck)

Ak−1
))2

n
.

By our simulation, we know the stable estimation value of σ for different E(Ck).

The next question is whatever distribution of Ck we consider, whether or not we will

get stable estimation of σ.

Now we assume that Ck is i.i.d exponentially distributed. But we do not know the

observation of Ck so

(σ̂)2 =
∑n

k=1(ln(
Ak+Ĉk
Ak−1

))2

n

=
∑n

k=1(ln(
Ak

Ak−1
) + ln(1 + Ĉk

Ak−1
))2

n
. (3.4.1)

Here we apply the following Lemma.

Lemma 3.1: Let An → ∞ let {Cn} be i.i.d then if E(C1) < ∞ then:

1. 1
N ∑N

n=1
Cn
An
→ 0 as N → ∞

2. 1
N ∑N

n=1 ln(1 + Cn
An
)→ 0 as N → ∞
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Proof:

(1) If An → ∞ then Cn
An
→ 0 almost surely in probability. Hence

E(
Cn

An
) =

E(Cn)

An
=

E(C1)

An
→ 0,

by Convergence theorem (see Ross (2001)).

(2) Because

0 ≤ ln(1 + x) ≤ x for x ≥ 0,

then

0 ≤ E(ln(1 +
Cn

An
)) ≤ E(

Cn

An
).

It follows from the (1), that E(ln(1 + Cn
An
))→ 0.

By the Lemma 3.1, if Ĉk is asymptotically smaller than Ak then the equation (3.4.1) will

be
∑n

k=1(ln(
Ak

Ak−1
) + ln(1 + Ĉk

Ak−1
))2

n
≈ 1

n

n

∑
k=1

(ln(
Ak

Ak−1
)2 + o(1),

o(1) here means the omitted value. Since Ak = Ak−1eδk − Ck. then

1
n

n

∑
k=1

(ln(
Ak

Ak−1
)2 ≈ 1

n

n

∑
k=1

δ2
k ,

so the estimated value of σ2 will approximately equal to

σ̂2 =
1
n

n

∑
k=1

δ2
k .

It shows that the estimation of σ̂ is stable if claims are relatively small.

However if the value of Ck is close to the value of Ak, ie if the claim is similar to the

asset at time k, then the value of ∑n
k=1 ln(1 + Ĉk

Ak−1
) is not stable. As a result the value

of σ̂ will be unstable. The simulation process supports that. If we use λ = 1, σ = 0.1

and a0 = 600 to construct the data by the same way described in Section 3.4.2. In

addition we assume {Ĉk} is exponentially distributed with mean λ−1. We do ten times

62



estimations with ten different rates of {Ĉk} at n = 20 and n = 60. Table 3.14 shows the

results of simulation. As we see, the value of σ̂ is very unstable when λ is small. When

the value of 1
λ is bigger than 10, we can not obtain good estimation.

1
λ 1 5 10 15 20

σ̂(n = 20) 0.112 0.1216 0.0907 0.1133 0.1009

σ̂(n = 60) 0.10 0.1086 0.2492 0.1752 0.1996

1
λ 25 30 35 40 45

σ̂(n = 20) 0.1898 0.4484 1.832 9.909 0.278

σ̂(n = 60) 4.6198 0.2838 0.2237 0.4897 2.5061

Table 3.14: The results of estimation of σ

Now, we consider a similar model as Model 1, but where {Ck} are being i.i.d exponen-

tially distributed with mean 1 so that

Ak = Ak−1v− Ck,

where v is constant.

Further assume that av-t>0 for observed variables. The conditional probability

P(An < t|An−1 = a) = p(av− Cn < t)

= P(Cn > av− t)

= e−λ(av−t) I(av− t > 0) + I(av− t < 0)

= e−λ(av−t).

Then
d
dt

P[An < t|An−1 = a] = λe−λ(av−t),
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and the conditional likelihood function L(λ|a1, · · · an) is

λne−λ ∑n
k=1(ak−1v−ak).

The log-likelihood function is

l(λ) = nlog(λ)− λ
n

∑
k=1

(ak−1v− ak).

Therefore by the equation belo

dl(λ)
dλ

= n
1
λ
−

n

∑
k=1

(ak−1v− ak) = 0,

and so the MLE of λ is given by

λ̂ =
n

∑n
k=1 ak−1v̂− ak

.

If we know the value of v̂, we should obtain good and stable estimation of λ. A simple

simulation can support that. If we use λ = 1, σ = 0.01 to 0.1 and A0 = 200 to construct

the data by the same way described in section 3.4. We assume that we know the value

of v̂ as 0.1 here. We simulate the data and estimate λ. Then Table 3.15 shows that the

estimation of λ is good and stable over σ.

σ 0.01 0.02 0.03 0.04 0.05

λ̂(n = 20) 0.94 0.0.96 1.05 0.90 0.80

σ 0.06 0.07 0.08 0.09 0.10

λ̂(n = 20) 1.10 0.96 1.22 1.01 1.02

Table 3.15: The results of estimation of λ with known value of v̂ = 1.1
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However if we do not know the value of v̂, we consider v̂ as a random variable. and

we use same data as in the last simulation to estimate λ.

σ 0.01 0.02 0.03 0.04 0.05

λ̂(n = 20) 0.85 0.0.73 0.50 0.90 1.80

σ 0.06 0.07 0.08 0.09 0.10

λ̂(n = 20) -0.66 0.96 1.62 -0.71 0.62

Table 3.16: The results of estimation of λ with unknown value of v̂

As shown in Table 3.16, the estimation on λ is unstable and even give negative values

in some cases. The above three simulations show the reason why we always obtain

good and stable estimation of σ, but unstable estimation of λ.

The research was partly motivated by Magdalinos (2007). The simulation results and

the discussion support his theoretical discoveries. The unrestricted estimation of the

parameter is shown to be inconsistent for an autoregressive process.
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3.5 Optimal investment policy

By now we have constructed models to describe the process of insurance policy, and

how to estimate the parameters of the models. Although the estimated value of param-

eter of the claim is not stable, we understood the reason why and we will try to avoid

the bad estimation by simulating the proper initial value. The next step is to investi-

gate the how to obtain an optimal investment with respect to constant fraction policies.

We should notice the optimality discussed in this section is not among all admissible

strategies.

3.5.1 Simulation process

The simple and fast way is that we simulate the whole process of policy and then find

the best investment strategy with given upper bound on ruin probability. We assume

we have known the estimated value of parameters in the model based on the real data.

Then we do the four different experiments for Model 6 by using averaging process. For

both experiments. We set one hundred different values of θ from 0 to 1. For every θ

we use the value of parameters to simulate the value of surplus M times and record

the value of surplus at the end of time. Finally we calculate the average value of it for

every θ.

For experiment 3: Initial value A0 = 200, the standard deviation of the risk-investment

interest rate σ1 = 0.15, the standard deviation of the bond interest rate σ2 = 0.1, the

mean of claim size is 1, the term of policy n = 60 and the recycle times M is 5000.

For experiment 4, we keep the same value for all the parameters except we consider

new σ1 = 0.45.

The Figures 3.1 and 3.2 show that the average value of A60 against θ, the value of A60

is increasing when θ is increasing in both plots. In the Figure 3.1, the points distributed

as a straight line, we believe the reason is that the value of σ1 = 0.15 is quite close to

σ2 = 0.1. However in the Figure 3.2, because σ1 = 0.45 is much bigger than σ2 = 0.1,

so the points distributed as a curve. The value of A60 on the Figure 3.2 is much bigger

than on the Figure 3.1. The simulation tell us for the same investment strategy, the

investments with high variance will take also high expected return.
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Figure 3.1: Plot of the average value of An=60 against θ (σ1 = 0.15, σ2 = 0.1)

Figure 3.2: Plot of the average value of An=60 against θ (σ1 = 0.45, σ2 = 0.1)
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Figure 3.3: Plot of the ruin probability for Model 6 against θ (σ1 = 0.15, σ2 = 0.1)

Figure 3.4: Plot of the ruin probability for Model 6 against θ (σ1 = 0.45, σ2 = 0.1)

In experiments 5 and 6, we still set one hundred values of θ from 0 to 1. For every θ,

we use R language to generate M=5000 times value of An and record how many times

the simulated An < 0 in the Model 6. We end up the process with dividing this time

described above by M, which is the simulated ruin probability we are looking for.

For experiment 5, we take σ1 = 0.15, σ2 = 0.1, A0 = 200 and n=60.

For experiment 6, we take σ1 = 0.45, σ2 = 0.1, A0 = 200 and n=60.

The Figures 3.3 and 3.4 show the relationship between the simulated ruin probability

and θ. Here we use the same value of parameters as in the first simulation. The surpris-
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ing result is that there is a threshold in every plot which was empirically discovered. In

the first plot, the threshold is around θ = 0.5 compare with θ = 0.4 in the second plot.

After the probability of ruin raise significantly. Another noticeable point is the value of

simulated ruin probability on the Figure 3.4 plot is much higher than on the Figure 3.3

because of high value of σ1. The horizontal lines on both plots show A60 = 0.05 against

different value of θ. It shows that the investment policy take more percentage of the

first investment with higher variance by considering same ruin probability.

Discussion

In conclusion, the simulations support intuitive results. When the value of θ is increas-

ing which means that the percentage of high risk investments is increasing, as a result,

the ruin probability is increasing. However the rising of θ will make higher profit at

time n = 60. Therefore if there is an upper bound, on the ruin probability, for example

0.05 on the Figure 3.3 and 3.4, then the optimal investment policy is that the policy

makes the ruin probability close to this value. Figure 3.3 shows that the θ as required

is 0.93, then A60 with 0.93 on the Figure 3.1 is 298.6. Figure 3.4 shows that the θ we

are looking for is 0.54, then A60 with this value on the Figure 3.2 is 6641. This optimal

policy is the balance, we are looking for, between the high return and the low risk.

Now we extend our simulation process. For experiment 7, we still use the same initial

value A0 = 200 and the variance of bond interest rate, σ2
2, is 0.01. Because σ1 should

be bigger than σ2 , then we set one hundred different values of σ1 from 0.15 to 1.14.

For every σ1, we find the optimal policy as described by considering an upper bound

of ruin probability (0.5 here) above with the simulation. Figure 3.5 shows that the plot

of the optimal θ against σ1. The value of θ is decreasing until σ1 is about 0.45. For

σ1 > 0.45, θ appears to vary about the value value 0.5.

For every σ1, we have determined the optimal strategy, hence the optimal investment

(surplus at time n) will be calculated. The Figure 3.6 is the plot of log(A60) against

σ1, and 1e+03 means 103 on the figure. As we can see, the surplus is increasing when

σ1 is increasing. Therefore, the insurance company will receive higher return with the

optimal strategy if they make the more risky investment.
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Figure 3.5: Plot of the value of θ that gives the optimal policy against the standard de-
viation of interest rate optimal (with σ2 = 0.1, n=60, A60=0.05,) experiment
7.

Figure 3.6: Plot of the standard deviation of the interest rate against the optimal in-
vestment An (with σ2 = 0.1, A0 = 200, n=60,) experiment 7
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Figure 3.7: Plot of the value of θ that gives the optimal policy against the standard de-
viation of interest rate optimal (with σ2 = 0.1, n=60, A60=0.05,) experiment
8

Figure 3.8: Plot of the standard deviation of the interest rate against the optimal in-
vestment An (with σ2 = 0.1, A0 = 200, n=60,) experiment 8

In experiment 8, for more realistic assumption, we set one hundred different values of

σ1 from 0.10 to 0.19. And we repeat same simulation approach. The Figure 3.7 and 3.8

show the results of simulation. It is notable that there are two points on the Figure 3.7

close to 0. Because at that point, the value of σ1 and σ2 are quite close.
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3.6 Approximation of the ruin probability

Simulation is a relatively simple way to estimate ruin probability. But are there any

theoretical approaches that could be used?

In this section, we use the weak convergence results (Billingsley, 1968) together with

traditional Taylor-type analysis to find appropriate approximations for the ruin proba-

bilities to be applied with the further numerical analysis. In this section, proofs precede

results.

3.6.1 Approximation to Model 1

To explain our approach, we start with Model 1 described in Section 3.1. The accumu-

lated surplus at time n in this model is given by

An = An−1eδn − C

= A0e∑n
i=1 δi −

n

∑
i=1

Ce∑n
k=i+1 δk .

Hence the ruin probability for this model is

P[(A0e∑n
i=1 δi −

n

∑
i=1

Ce∑n
k=i+1 δk) < 0] = P[(A0 −

n

∑
i=1

Ce−∑i
k=1 δk) < 0]. (3.6.1)

Next, let e−∑i
t=1 δt in (3.6.1) equal to aj−1 and applying Lemma 2.1 to (3.6.1) we have

similar result as (2.4.3), namely

P[(A0 − C
n

∑
i=1

e
−

i
∑

k=1
δk
) < 0] = P[(A− C · n

∫ [nx]
n

0
a[ny]dy) < 0]

≈ P[
∫ x

0
exp(−h · By)dy >

A0

Cn
] ,

where h =
√

n + 1σk and By represents Brownian motion with distribution Bt − Bs ∼N

(0, t-s) for 0 ≤ s ≤ t. N(µ, σ2) denotes the Normal distribution with mean µ and

variance σ2. Here, by the Donsker invariance principle (see below Fact (DIP)) we use

72



approximation
[ny]

∑
k=1

δk
d≈ hBy,

since {δk} are i.i.d.random variables.

Given x = 1, our approximation for ruin probability is

P[
∫ 1

0
exp(−h · By)dy >

A0

Cn
]. (3.6.2)

Fact (DIP) (Donsker Invariance Principle, (Billingsley, 1968)):

Let X be i.i.d. with E(X)=0, E(X2) = 1. Define Sn(t) = 1√
n ∑[nt]

i=1 Xi, Then, Sn → B in

C[0,1], where C[0.1] is a space of continuous functions on interval [0,1]. In particular, if L is

continuous, then

f (Sn) =
∫ 1

0
L(Sn(t))dt→

∫ 1

0
L(B(t))dt

weakly, where B is a standard Brownian motion.

Therefore we derive the following theorem.

Theorem 3.2: Under the same assumption in Section 3.2, as n → ∞, the ruin probability is

approximated by

P[An < 0] ≈ P[
∫ 1

0
exp(−h · By)dy >

A0

Cn
].

As you can see, the probability in (3.6.2) can not be calculated directly because there is

the integral of the Brownian motion. However we will calculate the approximated ruin

probability in (3.6.2) by using the simulation approach. Approximations to Models 3

and 4 can be found in a similar fashion.
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3.6.2 Approximation to Model 4

Now we apply the similar method to Model 4. We still need to know the surplus at

time n under assumption which given by, (see Section 3.3)

An = An−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− Cn

= An−1(θeδn + (1− θ)v)− C.

If we let f (n) = θeδn + (1− θ)v, then

An = An−1 f (n)− C

= A0

n

∏
i=1

f (i)− C
n

∑
i=1

n

∏
j=i+1

f (j).

Hence

P(An < 0) = P(A0

n

∏
i=1

f (i)− C
n

∑
i=1

n

∏
j=i+1

f (j) < 0)

= P(
n

∑
i=1

i

∏
j=1

f (j)−1 >
A0

C
).

The method we applied uses Lemma 2.1.

Let ∏i
j=1 f (j)−1 = ai−1, then

n

∑
i=1

n

∏
j=1

f (j)−1 = n
∫ 1

0
a[ny]dy = n

∫ 1

0

[ny]

∏
j=1

f (j)−1dy

= n
∫ 1

0
eln(∏

[ny]
j=1 f (j)−1)dy.

We write

ln(
[ny]

∏
j=1

f (j)−1) = −
[ny]

∑
j=1

ln(θeδj + (1− θ)v).

When n→ ∞, we consider

δk =
h√
n

Zk,

where the Zk are i.i.d standard normal random variables. Using a Taylor expansion we
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have

ln(θeδk + (1− θ)v)

= ln[θ(1 +
h√
n

Zk +
h2

2
Z2

k
n

+ o(
1
n
)) + (1− θ)v]

= ln[(θ + (1− θ)v) + θ(
h√
n

Zk +
h2

2
Z2

k
n

+ o(
1
n
))]

= ln[v + θ(1− v) + θ(
h√
n

Zk +
h2

2
Z2

k
n

+ o(
1
n
))].

If we let v = e
γ
n = 1 + γ

n + o( 1
n ), where γ is a constant then

ln(θeδk + (1− θ)v)] = ln[1 +
γ

n
− θ(

γ

n
) + θ(

h√
n

Zk +
h2

2
Z2

k
n

+ o(
1
n
))].

By considering

ln(1 + x) = x− x2

2
+

x3

3
+ o(x4),

when n is n→ ∞, we can write

ln[1 +
γ

n
− θ(

γ

n
) + θ(

h√
n

Zk +
h2

2
Z2

k
n

+ o(
1
n
))]

= (1− θ)
γ

n
+ θ(

h√
n

Zk +
h2

2
Z2

k
n
)− θ2h2

n
Z2

k
2

+ o(
1
n
).

Therefore

[ny]

∑
j=1

ln(θeδj + (1− θ)v)

=
[ny]

∑
j=1

γ(1− θ)

n
+

[ny]

∑
j=1

hθ√
n

Zj +
[ny]

∑
j=1

(1− θ)
θh2

n

Z2
j

2
+ o(1)

= γy(1− θ) + hθBy + (1− θ)
θh2

2

[ny]

∑
j=1

Z2
j

n
+ o(1)

→ γy(1− θ) + hθBy + (1− θ)
θh2

2
y,

by the Donsker invariance principle (see Fact (DIP)), where By denotes Brownian Mo-

tion. This leads to the following theorem
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Theorem 3.3: Under assumption in the Model 4, as n → ∞, the ruin probability is approxi-

mated by

P(An < 0) ≈ P(
∫ 1

0
e−[γy(1−θ)+hθBy+(1−θ) θh2

2 y]dy) >
A0

Cn
).

It is difficult to explicitly calculate this probability directly. Therefore, we consider

the following key transformation

B k
m

d
=

Sk√
m

Sk =
k

∑
i=1

Zi.

Then we have the approximation

∫ 1

0
e−[γy(1−θ)+hθBy+(1−θ) θh2

2 y]dy

≈
m

∑
k=1

[
e
−[γ k−1

m (1−θ)+hθB k−1
m

+(1−θ) θh2
2

k−1
m ]

+ e
−[γ k

m (1−θ)+hθB k
m
+(1−θ) θh2

2
k
m ]
]( 1

2m
)

=
m

∑
k=1

[
e−[γ

k−1
m (1−θ)+hθ

Sk−1√
m +(1−θ) θh2

2
k−1

m ]
+ e−[γ

k
m (1−θ)+hθ

Sk√
m+(1−θ) θh2

2
k
m ]
]( 1

2m
)
.

So with the help of a computer package, we can estimate the ruin probability.

We do two types of the simulations on the same model, the first simulation is same as

the one in Section 3.5.1, and the second one is that we calculate the above approxima-

tion M times, and record how many times the simulated value is bigger than A0
Cn . The

simulated probability will be this value divided by M.

We set initial value A0 = 200, the standard deviation of the first interest rate σ1 = 0.65,

the rate of the second interest rate is v = 1.02, the claim size, C, is 1, the term of policy

n = 60, the recycle times M is 2000 and number of grids m = 2000 also.
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The Figure 3.9 and 3.10 show the simulated ruin probability plotted against θ. The two

plots are similar. The ruin probability increases as θ increases. There are ’threshold’ in

both plots. In conclusion, the simulation supports the theoretical approximation.

Figure 3.9: Plot of the tuin probability against θ produced by simulation of the approx-
imation (σ1 = 0.65, v=1.02 )

Figure 3.10: Plot of the ruin probability against θ produced by simulation of the pro-
cess (σ1 = 0.65, v=1.02 )
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3.6.3 Approximation to Model 5

However in Model 5, the answer is a little different from the previous ones because the

claim size is random variable but not a constant. The surplus at time n is

An = An−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− Cn

= A0

n

∏
i=1

f (i)−
n

∑
i=1

Ci

n

∏
j=i+1

f (j),

where

f (n) = θeδn
(1)
+ (1− θ)v.

Hence the ruin probability is

P(An < 0) = P(
n

∑
i=1

Ci

i

∏
j=1

f (j)−1 > A0).

We let

Ci

i

∏
j=1

f (j)−1 = ai−1,

by using Lemma 3.1, we get

n

∑
i=1

Ci

n

∏
j=1

f (j)−1 = n
∫ 1

0
a[ny]dy = n

∫ 1

0
C[ny]

[ny]

∏
j=1

f (j)−1dy

= n
∫ 1

0
C[ny]e

ln(∏
[ny]
j=1 f (j)−1)dy.

We have known the approximation of ln(∏
{ny}
j=1 f (j)−1), so we could have the theorem

below.

Theorem 3.4: Under the assumptions of Model 5,

P(An < 0) ≈ P(
∫ 1

0
C[ny]e

−[γy(1−θ)+hθBy+(1−θ) θh2
2 y]dy >

A0

n
).

as n→ ∞.
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Moreover, we have the approximation

∫ 1

0
C[ny]e

−[γy(1−θ)+hθBy+(1−θ) θh2
2 y]dy

≈
m

∑
k=1

(2m)−1
(

C
[ n(k−1)

m ]
e
−[γ k−1

m (1−θ)+hθB k−1
m

+(1−θ) θh2
2

k−1
m ]

+C[ nk
m ]e
−[γ k

m (1−θ)+hθB k
m
+(1−θ) θh2

2
k
m ]
)

=
m

∑
k=1

[
C
[ n(k−1)

m ]
e−[γ

k−1
m (1−θ)+hθ

Sk−1√
m +(1−θ) θh2

2
k−1

m ]
+ C[ nk

m ]e
−[γ k

m (1−θ)+hθ
Sk√

m+(1−θ) θh2
2

k
m ]
]( 1

2m

)
.

where [ny] is an integer part of ny and has the formula

[ny]
n

= y + o(1/n).

We use the same method and assumptions as on Section 3.5.2 to do the simulation

except we consider that the claim size is exponentially distributed with mean 1 here.

The Figure 3.11 shows the results of simulation. The the plot on the left produced by

the simulation of the approximation, and another plot is from the simulation of the

approximation. We have the similar conclusion as the Figures 3.9 and 3.10.

Figure 3.11: Plots of the ruin probability against θ produced by two different simula-
tions (σ1 = 0.65, v=1.02 )
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3.6.4 Approximation to Model 6

The same method will be applied to Model 6 which has random claim size and two

random return rates. The surplus at time n in this model is

An = An−1(θeδn
(1)
+ (1− θ)eδn

(2)
)− Cn.

Finally, to find the similar approximation to Model 6, we start with

P(An < 0) = P(
n

∑
i=1

Ci

i

∏
j=1

f (j)−1 > A0)

= P(n
∫ 1

0
C[ny]e

ln(∏
[ny]
j=1 f (j)−1)dy > A0),

where

ln(
[ny]

∏
j=1

f (j)−1) = −
[ny]

∑
j=1

ln(θeδn
(1)
+ (1− θ)eδn

(2)
).

For n large, we consider

δk
(1) =

h1√
n

Zk and δk
(2) =

h2√
n

Ẑk,

where h1 =
√

nσ1 and h2 =
√

nσ2. Zk, Ẑk are both i.i.d standard normal random

variables. Then by a Taylor expansion we have

ln(θeδk
(1)
+ (1− θ)δk

(2))

= ln(θe
h1√

n Zk + (1− θ)e
h2√

n Ẑk)

= ln[θ(1 +
h1√

n
Zk +

h2
1

2
Z2

k
n

+ o(
1
n
)) + (1− θ)(1 +

h2√
n

Ẑk +
h2

2
2

Ẑk
2

n
+ o(

1
n
))]

= ln[1 + θ(
h1√

n
Zk +

h2
1

2
Z2

k
n

+ o(
1
n
)) + (1− θ)(

h2√
n

Ẑk +
h2

2
2

Ẑk
2

n
+ o(

1
n
))].

When n→ ∞,
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ln[1 + θ(
h1√

n
Zk +

h2
1

2
Z2

k
n

+ o(
1
n
)) + (1− θ)(

h2√
n

Ẑk +
h2

2
2

Ẑk
2

n
+ o(

1
n
))]

= θ(
h1√

n
Zk +

h2
1

2
Z2

k
n
) + (1− θ)(

h2√
n

Ẑk +
h2

2
2

Ẑk
2

n
)

−1
2
(θ2h2

2
Z2

k
n

+ 2θ(1− θ)
h1h2

n
ZkẐk + (1− θ)2h2

2
Ẑ2

k
n
) + o(

1
n
).

Therefore

[ny]

∑
j=1

ln(θeδj
(1)
+ (1− θ)eδj

(2)
)

=
[ny]

∑
j=1

θ(
h1√

n
Zk +

h2
1

2
Z2

k
n
) +

[ny]

∑
j=1

(1− θ)(
h2√

n
Ẑk +

h2
2

2
Ẑk

2

n
)

−
[ny]

∑
j=1
−1

2
(θ2h2

2
Z2

k
n

+ 2θ(1− θ)
h1h2

n
ZkẐk + (1− θ)2h2

2
Ẑ2

k
n
) + o(1)

→
√
(θh1)2 + ((1− θ)h2)2By + θ(1− θ)

h2
1 + h2

2
2

y.

We obtain the following result.

Theorem 3.5: By the construction and assumption of the Model 6 described in Section 3.3.6,

as n→ ∞, then

P(An < 0) ≈ P(
∫ 1

0
C[ny]e

−[
√

(θh1)2+((1−θ)h2)2By+θ(1−θ)
h2

1+h2
2

2 y]dy) >
A0

n
),

∫ 1

0
C[ny]e

−[
√

(θh1)2+((1−θ)h2)2By+θ(1−θ)
h2

1+h2
2

2 y]dy

≈
m

∑
k=1

[
C
[ n(k−1)

m ]
e−[
√

(θh1)2+((1−θ)h2)2 Sk−1√
m +θ(1−θ)

h2
1+h2

2
2

k−1
m ]
]( 1

2m

)
+

m

∑
k=1

[
C[ nk

m ]e
−[
√

(θh1)2+((1−θ)h2)2 Sk√
m+θ(1−θ)

h2
1+h2

2
2

k
m ]
]( 1

2m

)
.

By the same simulation approach, we set initial value A0 = 200, the standard deviation

of the first interest rate σ1 = 0.45, the standard deviation of the second rate is σ1 = 0.1,
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the claim size, Ck, is an exponential random variable with men 1, the term of policy

n = 60 and Both M and m are set to 2000.

The Figure 3.12 shows the results of simulation. The left side of figure is the plot pro-

duced by the simulation of the approximation we introduced in section 3.5.1, and an-

other plot is from the simulation of the risk process. Again, the two plots are quite

similar that supports that the approximation works very well.

Figure 3.12: Plots of the Ruin probability against θ produced by two simulations
(σ1 = 0.45, σ2 = 0.1), the plot on the left is produced by simulation of
the approximation and the plot on the right is produced by simulation of
the risk process
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3.7 Remarks

In this chapter, we constructed the six stochastic risk models stated in Sections 3.2 and

3.3. with unknown parameters which are to be estimated from simulated data in Sec-

tion 3.3. We simulated the several groups of data in different experiments and use to

obtain the estimated parameter. As shown in Section 3.4.3, the experiments 1 to 3 show

that we always obtain good and stable estimation of standard deviation of interest rate,

σ, but unstable estimation of rate of the claim size, λ, even give negative values in some

case. This found was partly motivated by Magdalinos (2007). The simulation results

and the discussion support his theoretical discoveries.

We use the estimated parameter to approximate the ruin probability or obtain an upper

bound for it and find the optimal constant fraction policies investment strategy with a

given upper bound on the ruin probability. Again, the numerical threshold discovered

in Chapter 2 was supported in all the examples. Numerical analysis with stochastic

simulation for the estimation of the parameters is conducted in Section 3.4.

Finally, in Section 3.6 we approximate the ruin probability by the associated integrals

of the Brownian motion. By using a Taylor expansion, Theorems 3.3 to 3.6 show the

approximated ruin probability in Models 1, 4, 5 and 6 respectively. The simulations

we applied support Theorems by compare the simulation of approximations and the

simulation of risk processes.
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CHAPTER 4

Ruin probability with Heavy-Tailed

claim amounts

In this chapter, Sections 4.1 and 4.2 introduce the heavy-tailed distribution and cor-

responding definition. Two new realistic models with interest rate factors were sug-

gested and treated in Sections 4.3 and 4.4. The derived results extend Biard et al. (2008)

to models (discrete and continuous time) with interest rate.

4.1 Introduction

An insurance company wants to measure and manage risks and stay solvent with a

high probability. On the other hand the company wants to make a high profitable

portfolio to minimise the ruin probability. In the analysis of insurance processes, com-

puting the optimal investment policy and capital requirement for claim often includes

calculating the approximate ruin probabilities using an appropriate model.

We remind the reader of classic Anderson model (Anderson 1957). In this model, the

risk process U(u, t) is a continuous time surplus process and for t ≥ 0 is defined as

follows:

U(u, t) = u + pt− S(t),

where u is the insurer’s initial surplus,
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p is the insurer’s rate of premium income per unit time,

N(t) is the number of claims in the time interval [0, t] and has a renewal process,

S(t) is the cumulated claim amount up to time t and S(t) = ∑N(t)
i=1 Xi,

{Xi} is a sequence of independent and identically distributed (i.i.d), random vari-

ables representing the individual claim amounts.

Ruin occurs when U falls below 0, this may equate to insolvency. The probability of

ruin with initial capital u is denoted by Ψ(u, t)

Ψ(u, t) = P[U(s) < 0 for some s , 0 < s < t].

Here we only consider the finite time ruin probabilities.

Many recent papers in insurance and finance, connected with heavy-tailed risks, have

considered heavy-tailed distributions to model the risk such as individual claim amounts.

Normally tail of distribution associated with large losses (Glasserman et. al.2002). Heavy

trailed gives more risks and empirical data always show higher peaks and heavier tails

than estimated by normal or log-normal distribution. For example, see Embrechts et

al. (1997). In probability theory, Heavy-Tailed distributions (also known as power-law

distributions) are probability distributions whose tails are not exponentially bounded:

that is, they have heavier tails than the exponential distribution. In this chapter, we

refer to a heavy-tailed distribution as having finite coefficient of (regular) variation

as opposed to the exponential distribution which has infinite coefficient (Asmussen

1995). Motivated by Embrechts et al. (1997) and numerous papers (notably by Birad et

al. 2008), in this chapter we study the ruin probability for our class of models but now

with the heavy-tailed claim size distribution.

85



4.2 Definition

The distribution of a random variable X with cdf, F, is a heavy-tailed distribution (As-

mussen 2003) if

lim
x→∞

eλx Pr[X > x] = ∞ , for all λ > 0.

We rewrite it in terms of the tail distribution function

lim
x→∞

eλxF(x) = ∞ for all λ > 0,

where

F(x) = Pr(X > x) = 1− F(x).

We list three important sub classes of heavy-tailed distributions, the long-tailed dis-

tributions, the sub exponential distributions and the regular variation for the further

study (Cai and Tang 2004):

• L (Long-tailed ) : a distribution function F is long-tailed distribution if

lim
x→∞

F(x + t) = F(x) , for any t > 0,

• S ( sub exponential ) : a distribution function F is sub exponential distribution if

lim
x→∞

F∗n(x) = nF(x) , for any n ≥ 2,

where F∗n(x) refer to a common distribution function of a sum of n independent

random variables X1, . . . , Xn. That is

F∗n(x) = Pr(X1 + · · ·+ Xn > x),
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• R ( regular variation ) : A distribution function F belong to Regular variation for

index number α (written F ∈ R−α) if

lim
x→∞

F(xy)
F(x)

= y−α

for some α ≥ 0 and for any y > 0.

It is well known (Cai and Tang 2004) that these classes satisfy the following inclusions

:

R ⊂ S ⊂ L.

Back to the risk process U(u, t), one way is to derive the asymptotic of ruin probability

Ψ(u, t) by analysing directly properties of the distribution functions that belong to

R−α of sums of independent random variables, when initial reserve is large enough

(Lundberg 1934):

Ψ(u, t) ∼ 1
E(T1)

u−α as u→ +∞,

Here we define (Tk) k ≥ 1 as the internal occurrence times and assume that they and

claim amounts are mutually independent.

Note: Throughout this chapter f(x) ∼ h(x) means limx→∞
f (x)
h(x) = 1.

However in the real financial world, the mutual independence of claim amounts and

occurrence times is not always reasonable. Normally, the claims amounts are not in-

dependent and they have strong positive dependence. Such as in car insurance. In

addition, claim amounts have strong dependence in conditions such as economic cri-

sis, natural calamity, war and so on. When the crisis happens, claim correlation rises.

Furthermore the distribution or the parameter of the claim amounts could changes.

(See Biard et al. 2008)
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4.3 The Simple Model with Heavy-Tailed Claims

In this section we investigate the asymptotic of finite time ruin probability based upon

the simple model we provided in Section 4.1. We consider the counting number of

claims as a renewal process that is independent from the distribution of claim amounts

Firstly, we introduce a property for distributions named max-sum equivalent.

Distributions F1 and F2 are said to be max-sum-equivalent, written as F1 ∼M F2, if

F1 ∗ F2(x) = P[X1 + X2 > x] ∼ F1(x) + F2(x),

where * is defined as convolution and F(x) is defined as the tail distribution of F,

F(x) = 1− F(x).

For example, suppose there are two independent random variables X1 and X2. If they

have distributions F1 and F2 respectively, then F1 ∼M F2 is equivalent to

P[X1 + X2 ≥ x] ∼ P[max(X1, X2) ≥ x]

which means the maximum of the two random variables determines the tail probability

of the sum of two independent random variables asymptotically.

This is a very important property for describing heavy-tailed distributions and some-

times also used in modelling extreme events. In addition, F is a sub exponential distri-

bution if F ∼M F. (Cai and Tang 2004)

Following the definition of regular variation and max-sum-equivalent, we state several

lemmas for the later works (Bingham et al. 1989). Although the results are well known

by now, we provide slightly modified proofs which make it easy for us to generalize.

Lemma 4.1: Let random variables δ and υ be independent, non-negative and their distribution

are Fδ and Fυ respectively regularly varying of index −γ with γ > 0, then the distribution

Fδ+υ is regularly varying of index γ.
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Proof:

By definition of Regular Variation, we need to show:

lim
t→∞

Fδ+υ(ta)
Fδ+υ(t)

= a−γ, for some γ ≥ 0 and for any y > 0.

Since Fδ and Fυ belong to R−γ then max-sum-equivalent shows

Fδ ∗ Fυ(x) ∼ Fδ(x) + Fυ(x).

This leads to

Fδ+υ(ta)
Fδ+υ(t)

∼ Fδ(ta) + Fυ(ta)
Fδ(t) + Fυ(t)

=
Fδ(t)

Fδ(ta)
Fδ(t)

+ Fυ(t)
Fυ(ta)
Fυ(t)

Fδ(t) + Fυ(t)
.

Then for large t,

Fδ+υ(ta)
Fδ+υ(t)

=
Fδ(t)a−γ + Fυ(t)a−γ

Fδ(t) + Fυ(t)
= a−γ.

Therefore we have proved of the Lemma. �

Lemma 4.2 Let {Wi}0≤i≤n be a sequence of i.i.d positive random variables with distribution

FW that is regularly varying index −γ with γ ≥ 0, then

P[W1 + · · ·+ Wn > x] ∼ P[W1 >] + · · ·+ P[Wn > x].
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Proof:

We use induction to prove this lemma.

Firstly, when n=2, by the Lemma 4.1 and max-sum-equivalent, we obtain

P[W1 + W2 > x] ∼ P[W1 > x] + P[Wn > x].

Secondly, we assume the Lemma is true when n = k.

Finally, when n = k + 1

P[W1 + · · ·+ Wk+1 > x] = P[(W1 + · · ·+ Wk) + Wk+1 > x],

since {Wi}0≤i≤n are i.i.d. random variables and (W1 + · · · + Wk) and Wk+1 are sub

exponential. Hence

P[(W1 + · · ·+ Wk) + Wk+1 > x] ∼ P[W1 + · · ·+ Wk > x] + P[Wk+1 > x].

With the assumption,

P[(W1 + · · ·+ Wk) + Wk+1 > x] ∼ P[W1 > x] + · · ·+ P[Wk+1 > x],

which means the equation holds when n = k + 1. Therefore by induction, we have

proved the lemma.�

Lemma 4.3 Let random variables δ and υ be dependent, non-negative with distribution are Fδ

and Fυ respectively regularly varying of index −γ with γ > 0. Then for any p, q ≥ 0 with

p + q > 0,

lim
t→∞

Fδ(ta)p + Fυ(ta)q
Fδ(t)p + Fυ(t)q

= a−γ.
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Proof:

For and a > 0

lim
t→∞

Fδ(ta)p + Fυ(ta)q
Fδ(t)p + Fυ(t)q

= lim
t→∞

Fδ(ta)
Fδ(t)

pFδ(t) +
Fυ(ta)
Fυ(t)

qFυ(t)

Fδ(t)p + Fυ(t)q

=
a−γ pFδ(t) + a−γqFυ(t)

Fδ(t)p + Fυ(t)q
,

since Fδ and Fυ ∈ <−γ. Then

lim
t→∞

Fδ(ta)p + Fυ(ta)q
Fδ(t)p + Fυ(t)q

= a−γ.

This completes the proof of Lemma 4.3. �

Moreover, in the mixtures case, p and q should be defined so that p + q = 1. Which

means we can make Fδ p + Fυq as a mixture distribution. Therefore from lemma 4.3, we

have

Fδ p + Fυq ∈ <−γ.

From Lemmas 4.2 and 4.3, we derive another lemma, which does not require the inde-

pendence of random variables.

Lemma 4.4 Let {Wi}0≤i≤n is a sequence of positive random variables with distribution FWi

that is regularly varying index −γ with γ > 0. Then for any real constants

C1 + C2 + · · ·+ Cn 6= 0 Ci ≥ 0,

we have

lim
t→∞

C1P(W1 ≥ ta) + · · ·+ CnP(Wn ≥ ta)
C1P(W1 ≥ t) + · · ·+ CnP(Wn ≥ t)

= a−γ.
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Proof:

lim
t→∞

C1P(W1 ≥ ta) + · · ·+ CnP(Wn ≥ ta)
C1P(W1 ≥ a) + · · ·+ CnP(Wn ≥ a)

= lim
t→∞

C1
P(W1≥ta)
P(W1≥t) P(W1 ≥ t) + · · ·+ Cn

P(Wn≥ta)
P(Wn≥t) P(Wn ≥ t)

C1P(W1 ≥ t) + · · ·+ CnP(Wn ≥ t)

=
C1a−γ ∗ P(W1 ≥ t) + · · ·+ Cna−γP(Wn ≥ t)

C1P(W1 ≥ t) + · · ·+ CnP(Wn ≥ t)
,

Since FWi is regularly varying index −γ with γ > 0. Hence

lim
t→∞

C1P(W1 ≥ ta) + · · ·+ CnP(Wn ≥ ta)
C1P(W1 ≥ t) + · · ·+ CnP(Wn ≥ t)

= a−γ.

This completes the proof. �

If we assume

C1 + C2 + · · ·+ Cn = 1,

then there is a mixture distribution FW written as

FW(x) =
n

∑
i=1

CiFWi(x),

we use Lemma 4.4 to get FW ∈ <−γ.

Corollary 4.5 Let the random variable W be non-negative and its distribution be regularly

varying of index −γ with γ > 0, then for any b ≥ 0, Wb ∈ <−γ with index −γ.

By combining the Lemmas 4.1 to 4.5, we derive

Lemma 4.6 Let {Wi}0≤i≤n be a sequence of positive, independent random variables of dis-

tribution FWi that is regularly varying index −γ with γ > 0, then for b1, . . . , bn ≥ 0, the

distribution of ∑n
i=1 Wibi is regularly varying with index −γ.

For the purpose of future work, we review the proposition and its proof established

by Biard, Lefevre and Loisel (2008). They consider a compound renewal process risk

model with assumption of regular variation. They have established the asymptotic ruin

probability. More exactly, suppose that premiums (income) arrive at a constant rate b
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and claims occur according to some point process N(t)t≥0. In addition, independently

of this arrival claim process, the successive claim amounts (Xn)n≥1 are defined as

Xn = IN M0 + (1− In)Mn, n ≥ 1,

where (Mn)n≥0 is a sequence of i.i.d. positive random variables with distribution func-

tion FM where

FM ∈ <−γ, γ ≥ 0,

and (In)n≥1 is a sequence of i.i.d. Bernoulli random variables with

P[In = 1] = p ∈ [0, 1].

The two sequences Mn and In are assumed to be mutually independent. Let u be the

initial reserve and let Ψp(u, t) be the ruin probability over any fixed finite-time horizon

(0,t).

Proposition 4.7: (Biard,Lefevre and Loisel (2008)): When u is large enough,

Ψp(u, t) ∼ {(1− p)E[N(t)] + E[Zp(t)]γ}FM(u + ct),

∼ {(1− p)E[N(t)] + E[Zp(t)]γ}FM(u).

where Z(p)t is a mixed binomial random variable Bin[N(t), p].

We will present the modified version of their proof in order to use it in our case.

Proof:

Define the aggregate claim amount as

Sp(t) =
N(t)

∑
n=1

Xn.

There are two steps to the proof. The first is deriving P[SP(t) ≥ x] for large x, and

second is finding an approximation of Ψp(u, t) by P[SP(t) ≥ u].
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Step 1: The convolution closure (Cai and Tang 2004), states that

F1 ∗ F2 ∈ <−γ,

when

F1 and F2 belong to <γ, γ ≥ 0.

The max-sum-equivalence shows that

F1 ∗ F2(x) ∼ F1 + F2.

We can use these properties and the Lemma 4.6 we developed to obtain that for any

k ≥ 1 and any pairwise distinct n1, . . . , nk−j ≥ 1 with 0 ≤ j ≤ k− 1,

P(Mn1 + · · ·+ Mnk−j + jM0 ≥ x) ∼ (k− j)FM(x) + FM(
x
j
)

∼
(

k− j +
FM( x

j )

FM(x)

)
FM(x)

∼ (k− j + jγ)FM(x).

Therefore, for any k ≥ 1 and 0 ≤ j ≤ k− 1 we have

P

(
Sp(t) ≥ x|N(t) = k,

k

∑
i=1

Ii = j

)
∼ (k− j + jγ)FM(x).

For the case j = k and k ≥ 1 we have

P

(
Sp(t) ≥ x|N(t) = k,

k

∑
i=1

Ii = k

)
= P(kM0 ≥ x)

=
FM( x

k )

FM(x)
FM(x)

∼ kγFM(x),

and for k = j = 0,

P[Sp(t) ≥ x|N(t) = 0] = 0.
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Combining three cases above,

P[Sp(t) ≥ x] ∼
{

∞

∑
k=1

P[N(t) = k]
k

∑
j=0

(
k
j

)
pj(1− p)k−j(k− j + jγ)

}
FM(x). (4.3.1)

Since where Z(p)t is a mixed binomial random variable Bin[N(t), p], we define

P(Zk = j) =
(

k
j

)
pj(1− p)k−j,

this leads the right hand side of (4.3.1) to be

{
∞

∑
k=1

P[N(t) = k]
k

∑
j=0

(
k
j

)
pj(1− p)k−j(k− j + jγ)

}
FM(x)

=

{
∞

∑
k=1

P[N(t) = k]
k

∑
j=0

P(Zk = j)(k− j + jγ)

}
FM(x),

where
k

∑
j=0

P(Zk = j)jγ = E[Zγ
k ],

k

∑
j=0

P(Zk = j)j = E[Zk] = kp,

and
k

∑
j=0

P(Zk = j)k = k.

Therefore, equation (4.3.1) can be rewritten as

{
∞

∑
k=1

P[N(t) = k]
k

∑
j=0

(
k
j

)
pj(1− p)k−j(k− j + jγ)

}
× FM(x)

=

{
∞

∑
k=1

P[N(t) = k][k(1− p) + E[Zγ
k ]]

}
× FM(x)

=

{
∞

∑
k=1

P[N(t) = k]k[(1− p)] +
∞

∑
k=1

P[N(t) = k]E[Zγ
k ]

}
× FM(x)

=
{
(1− p)E[N(t)] + E[Zp(t)]γ

}
× FM(x),
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since
∞

∑
k=1

P[N(t) = k]k = E[N(t)].

Hence

P[Sp(t) ≥ x] ∼
{
(1− p)E[N(t)] + E[Zp(t)]γ

}
× FM(x). (4.3.2)

Step 2: As u→ ∞,

0 ≤
Ψp(u, t)− P[SP(t) ≥ u + ct]

Ψp(u, t)

≤ P[SP(t) ≥ u)− P[SP(t) ≥ u + ct]
P[SP(t) ≥ u + ct

∼ FM(u)
FM(u + ct)

− 1.

For any x ∈ R, when u→ ∞,
FM(u)

FM(u + ct)
∼ 1,

which is proved in Embrechts et al. (1997). So that

Ψp(u, t) ∼ P[SP(t) ≥ u + ct]. (4.3.3)

Finally, the proposition is proved by combining equations (4.3.2) and (4.3.3). �

In particular, let p = 1 which means that

Xn = Mn.

and hence

Ψp(u, t) ∼ E[N(t)]FM(u + ct).

If p = 0 then

Xn = W0 for all n,

hence

Ψp(u, t) ∼ E[N(t)]γFM(u + ct).
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We can extend Proposition 4.7 to different cases by considering the different types of

claim amount (Mn)n≥0 or we can add new factors to the model, for example, interest

rate.

We again use all the definitions and assumptions as in Proposition 4.7 except the fol-

lowing. We let (Mn)n≥1 a sequence of i.i.d. positive random variables with distribution

function FM with

FM ∈ <−γ, γ ≥ 0.

M0 is a positive random variables of distribution function FM0 with

FM0 ∈ <−γ, γ ≥ 0.

Here (Mn)n≥1 and M0 are independent. By this assumption there are two types of

claim amounts, one has a a small amount of value, and another has a bigger amount of

value.

Property: Based upon above definitions, let Ψp(u, t) be the ruin probability over (0, t).

As u→ ∞ we have the following result

Ψp(u, t) ∼ {(1− p)E[N(t)]}FM(u + ct) + {E[Zp(t)]γ}FM0(u). (4.3.4)

Proof: We followed similar proof process as in Proposition 4.7. In first step, for any

k ≥ 1 and any pairwise distinct n1, . . . , nk−j ≥ 1 with 0 ≤ j ≤ k− 1,

P(Mn1 + · · ·Mnk−j + jM0 ≥ x) ∼ (k− j)FM(x) + FM0(
x
j
)

∼ (k− j)FM(x) +
FM0(

x
j )

FM0(x)
∼ (k− j)FM(x) + jγFM0(x).

For the case j = k and k ≥ 1, we have

P

(
Sp(t) ≥ x|N(t) = k,

k

∑
i=1

Ii = k

)
∼ kγFM0(x),
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hence

P[Sp(t) ≥ x] ∼ {(1− p)E[N(t)]}FM(x) + {E[Zp(t)]γ}FM0(x).

Then we have established equation (4.3.4) by usinga similar idea as in the step 2 of the

proof process of Proposition 4.7. �

In the Chapter 2 and 3, we constructed models which included the important factor

of variable interest rate. Here we now model the case of Heavy-Tailed claim amounts

together with the interest rate factor.

We begin with the following simple model. The risk process U(u, t) is a surplus pro-

cess and for t ≥ 0 is defined as follows:

U(u, t) = uΓt − S(t),

where

• u is the insurer’s initial surplus;

• N(t) is the number of claims in the time interval [0, t], and has a renewal process;

• S(t) is the accumulated claim amount up to time t and S(t) = ∑N(t)
i=1 XiΓi;

• Γi is aggregate interest rate from time i to time t. Γi = exp(∑t
i+1 δi), where δi is

the continuous interest at time i;

• Xi is the claims amounts;

• Define the (Tk)k≥1 as the inter-occurrence times of the claims and assumed to be

mutually independent with claim amounts.

The probability of ruin with initial capital u denoted by Ψ(u, t)

Ψ(u, t) = P[U(s) < 0 for some s , 0 < s < t].

Notice that if Γi = Γ, and under the same definitions as in Proposition 4.7. Then

Sp(t) = Γ
N(t)

∑
i=1

Xi
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for 0 ≤ j ≤ k− 1,

P[Sp(t) ≥ x] ∼
{
(1− p)E[N(t)] + E[Zp(t)]γ

}
× FM(x)× Γγ,

which yield to

Ψp(u, t) ∼ P[Sp(t) ≥ uΓ],

as u→ ∞, thus

Ψp(u, t) ∼
{
(1− p)E[N(t)] + E[Zp(t)]γ

}
× FM(u).

As the approximation shows whatever value of Γ we take, as u → ∞, the constant

aggregate interest factor does not affect the ruin probability. This result is as expected,

since in the real economic world, this assumption is not strong.

Let (Tk)k≥1 be the inter-occurrence times between successive claims and in the point

process of claims, N(t). And let

Wn =
n

∑
i=1

Ti, n ≥ 1,

We refer to Wn as the waiting time until the nth event or the arrival time of the nth

event.

Important assumption.

We consider the compound interest rate as the random value and changing over time

that is given by

Γj = Γ(Wj),

where N(t)t≥0, X(t)t≥0 and Γ(t)t≥0 are mutually independent. Then we consider the

similar definition of claim amount as in Proposition 4.7 and use similar proof to find

asymptotic on Ψp(u, t) as u→ ∞.
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Theorem 4.8: Let claim amounts (Mi)i≥0 have the distribution FM with F ∈ <−γ, γ ≥ 0.

Consider the aggregate interest rate as the random variable at time j and changing over time

that is given by

Γj = Γ(
j

∑
i=1

Ti),

In addition, let N(t)t≥0, X(t)t≥0 and Γ(t)t≥0 be mutually independent. Then, for u large

enough,

Ψp(u, t) ∼ {(1− p)E[
N(t)

∑
i=1

Γγ
ni ] + E[(

N(t)

∑
h=k−j+1

Γnh)
γ]} × FM(u). (4.3.5)

Example. We can apply this approximation to

Γj = 1, 1 ≤ j ≤ t.

Then we have

Ψp(u, t) ∼
{
(1− p)E[N(t)] + E[Zp(t)]γ

}
× FM(u), (4.3.6)

same as the result of Proposition 4.7.

Proof of Theorem 4.8:

Firstly, for any k ≥ 1 and 0 ≤ j ≤ k− 1,

P(Γn1 Mn1 + · · ·+ Γnk−j Mnk−j + Γnk−j+1 M0 + · · ·++Γnk M0)

∼ E[
k−j

∑
i=1

Γγ
ni + (

k

∑
h=k−j+1

Γnh)
γ]FM(x). (4.3.7)

Therefore for any k ≥ 1 and 0 ≤ j ≤ k− 1,

P

(
Sp(t) ≥ x|N(t) = k,

k

∑
i=1

Ii = j

)

∼ E[
k−j

∑
i=1

Γγ
ni + (

k

∑
h=k−j+1

Γnh)
γ]FM(x). (4.3.8)
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For k = j = 0 we have

P
(
Sp(t) ≥ x|N(t)

)
= 0. (4.3.9)

For k ≥ 1 and j = k, we have

P

(
Sp(t) ≥ x|N(t) = k,

k

∑
i=1

Ii = k

)
= P(

k

∑
i=1

Γi M0 ≥ x)

∼ E(
k

∑
h=1

Γnh)
γFM(x). (4.3.10)

By combining (4.3.8) to (4.3.10), and since N(t)t≥0, X(t)t≥0, I(t)t≥0 and Γ(t)t≥0 are mu-

tually independent, we obtain

P[Sp(t) ≥ x]

∼
{

∞

∑
k=1

P[N(t) = k]
k

∑
j=0

(
k
j

)
pj(1− p)k−jE[

k−j

∑
i=1

Γγ
ni + (

k

∑
h=k−j+1

Γnh)
γ]

}
(4.3.11)

×FM(x).

Now, let us divide [0 , t] into the m intervals such as

[0
t
m
], (

t
m

,
2t
m
], · · · ,

Since probability P(N(t) = 0) = 1, overlaps over 1 point is not important. Then

equation (4.3.8) can be rewritten as

P[Sp(t) ≥ x]

∼ {
∞

∑
k=1

k

∑
j=0

(
k
j

)
pj(1− p)k−j

× ∑
n1 6=···6=nk

P[N(t) = k, k points occur in intervals [
tni

m
,

tni+1

m
] i = 1, · · · k]

×E[
k−j

∑
i=1

Γγ
ni + (

k

∑
h=k−j+1

Γnh)
γ] × FM(x). (4.3.12)
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Let (Ui)1≤i≤k be a sequence of uniform variables U[0, Ti], then

P[N(t) = k, k points occur in intervals [
tni

m
,

tni+1

m
] i = 1, · · · k]

= P[N(t) = k]× P[
k⋂

i=1

Ui ∈ [
tni

m
,

tni+1

m
] ]

= P[N(t) = k]×
k

∏
i=1

P[Ui ∈ [
tni

m
,

tni+1

m
] ]

= P[N(t) = k]
k

∏
i=1

1
m

= P[N(t) = k]m−k, (4.3.13)

where t is the time of whole process, ni represent how many intervals that the i points

occur in and since for (Ui)1≤i≤k

P(Ui ∈ [a, b]) =
b− a

t
,

and for n1 = 0

∑
0≤n1 6=···6=nk≤m−1

=

(
m
k

)
k!. (4.3.14)

Using equations (4.3.13) and (4.3.14), equation (4.3.12) can be rewritten as

P[Sp(t) ≥ x]

∼ {
∞

∑
k=1

P[N(t) = k]
k

∑
j=0

(
k
j

)
pj(1− p)k−j ×m−k

(
m
k

)
k!

×E[
k−j

∑
i=1

Γγ
ni + (

k

∑
h=k−j+1

Γnh)
γ]}

×FM(x), (4.3.15)

Notice that choosing time intervals does not effect results, because probability of a

jump at a fixed a point is 0.

102



when m→ ∞. We have similar condition as in Proposition 4.7, and

lim
m→∞

k!m−k
(

m
k

)
=

m!
(m− k)!mk

=
m− k + 1

m
× m− k + 2

m
× · · · × m

m

= (1− k + 1
m

)× (1− k + 2
m

)× · · · × 1

= 1,

which leads equation (4.3.15) to be written

P[Sp(t) ≥ x] ∼ {
∞

∑
k=1

P[N(t) = k]
k

∑
j=0

(
k
j

)
pj(1− p)k−j

×E[
k−j

∑
i=1

Γγ
ni + (

k

∑
h=k−j+1

Γnh)
γ]}

×FM(x). (4.3.16)

Further, Z(p)t is a mixed binomial random variable Bin[N(t), p] same as in Proposition

4.7, hence

P[Sp(t) ≥ x] ∼ {(1− p)E[
N(t)

∑
i=1

Γγ
ni ] + E[

Nt

∑
h=k−j+1

Γnh)
γ]} × FM(x). (4.3.17)

As u→ ∞,

Ψp(u, t) ∼ P[SP(t) ≥ u]. (4.3.18)

Followed by (4.3.17) and (4.3.18), we derive the formula

Ψp(u, t) ∼ {(1− p)E[
N(t)

∑
i=1

Γγ
ni ] + E[

Nt

∑
h=k−j+1

Γnh)
γ]} × FM(u).

The proof of Theorem 4.8 is complete. � Exact asymptotic for finite time ruin proba-

bility is traditionally on possible claims, on the other hand it is impossible in general.

Our results gives a particular example imply the results by Biard et al. (2008) who give

illustration and numerical examples.
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4.4 Sum of Two Compound Poisson Processes

4.4.1 Construction of new model

In the last section, we use a compound renewal process to model the accumulated

claim amount up to a finite time, and we obtained some asymptotics for heavy-tailed

claim amounts under suitable assumptions. The homogeneous Poisson process (HPP)

or called by classical Poisson process (Ross 2000) is the most common and best known

claim arrival point process with stationary and independent increments. Poisson law is

used to model the number of claims in a given time interval. Poisson process is usually

appropriate in connection with life insurance modelling. For example, the number of

deaths in the hospital, car accidents or birth defects and genetic mutations are often

modelled by Poisson process.

We define the accumulated claim amount until time t as follows:

S(t) =
N
′
(t)

∑
j=1

MjΓj +
N”(t)

∑
j=1

M0Γj,

where the claims occur at the point of the Poisson process, N(t), with parameter λ. With

each claim occurrence point, there are associated

probability p with claim size (Mn)n≥0

probability q with claim size M0,

where p+q=1. The number of claims (Mn)n≥0 until time t is modelled by Poisson pro-

cess N
′
(t) with parameter λq and the number of claims M0 is modelled by Poisson

Process N”(t) with parameter λp.

The assumptions of the model are

• the i.i.d positive inter-occurrence times of claims occur. (Tk)k≥1, has exponential

distribution FT assumed to be mutually independent with claim amounts, Wn =

∑n
i=1 Ti is defined as the arrival time of the nth amount;

• the Laplace transform of T1 exists over subset of R;
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• The Γj = Γ(Wj) is aggregate interest rate time of jth claim to time t;

• For claim amounts (Mi)i≥0 that have the distribution FM with F ∈ <−γ, γ ≥ 0;

• N
′
(t), N”(t), and X(t)t≥0 are mutually independent.

Obviously in this model, we can split the claim process up to two components

4.4.2 Model Expression

We again use the similar process to find the approximate ruin probability under the

Poisson assumption, i.e., we calculate P[S(t) ≥ x] for large x. Then

P[S(t) ≥ x] = P[(
N
′
(t)

∑
j=1

MjΓj +
N”(t)

∑
j=1

M0Γj) ≥ x]

= P[
∫ t

0
MsΓ(Ws)dN

′
(s) ≥ x] + P[

∫ t

0
M0Γ(Ws)dN”(s) ≥ x].

If we consider the first term we obtain

P[
∫ t

0
MsΓ(s)dN

′
(s) ≥ x] ∼ E[

N
′
(t)

∑
i=1

Γ(Wi)
γ]× FM(x)

= E[
∫ t

0
Γ(Ws)dN

′
(s)]× FM(x).

From Fubini’s theorem (Kudryavtsev 2001), there is

E[dN
′
(s)] = λ

′
ds,

hence

P[
∫ t

0
MsΓ(s)dN

′
(s) ≥ x] ∼ λ

′
∫ t

0
Γ(s)γds× FM(x).

The second part is:

P[
∫ t

0
M0Γ(Ws)dN”(s) ≥ x] ∼ E[K(t)γ]× FM(x),

where

K(t) =
∫ t

0
Γ(Ws)dN”(s).
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Combining the two parts, we have

P[S(t) ≥ x] ∼ {λ′
∫ t

0
Γ(s)γds + E[K(t)γ} × FM(x). (4.4.1)

Then followed by similar calculation as in Theorem 4.8, we have

Theorem 4.9: Let claim amounts (Mi)i≥0 have the distribution FM with F ∈ <−γ, γ ≥ 0. Let

the aggregate rate be defined by

Γj = Γ(
j

∑
i=1

Ti),

The number of claims (Mn)n≥0 until time t is modelled by Poisson process N
′
(t) with parame-

ter λq and the number of claims M0 is modelled by Poisson Process N”(t) with parameter λp.

In addition N(t)t≥0, X(t)t≥0 and Γ(t)t≥0 are mutually independent. Then, for u large enough

Ψp(u, t) ∼
{

λ
′
E[
∫ t

0
Γ(Ws)

γds] + E[K(t)γ]
}
× FM(u). (4.4.2)

Example. As before, for Γ(i) = 1 up to time t, this leads (4.4.2) to

P[S(t) ≥ x] ∼ {λ′ t + E[
N”(t)

∑
0

]} × FM(x),

which is same as

P[Sp(t) ≥ x] ∼
{
(1− p)E[N(t)] + E[Zp(t)]γ

}
× FM(x),

when we assume N(t) is Poisson process with parameter λ.

4.4.3 Moments of MGF

For purpose of future work, we use aggregate discounted value of the claim at time 0

over the time interval [0, t]. We let

Γ(Wj) = e−δWj ,
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where δ is the stochastic interest rate factor and considered as constant until time t, then

the present value of S(t), Ŝ(t) is

Ŝ(t) =
N
′
(t)

∑
j=1

Mje−δWj +
N”(t)

∑
j=1

M0e−δWj .

Then

P[Ŝ(t) ≥ x] ∼ {λ′
∫ t

0
e−δsγds + E[K̂(t)γ]} × FM(x), (4.4.3)

where

K̂(t) =
∫ t

0
e−δWj dN”(s).

We can derive the expression of
∫ t

0 e−δsγds, but it is not possible to obtain the distri-

bution of K̂(t)γ, the accumulated aggregate claims. We could assume the γ as integer

value to make approximation computable, then we could find the value of E[K̂(t)γ] by

calculated moment generating function of K̂(t).

We note that

E[K̂(t)] = E[
N”(t)

∑
j=1

e−δWj ]

=
∫ t

0
e−δs dFT(s) +

∫ t

0
e−δsE[K̂(t− s)] dFT(s)

=
∫ t

0
e−δs dE[N”(s)] = λp

∫ t

0
e−δs ds.

Hence we have

P[Ŝ(t) ≥ x] ∼
∫ t

0
e−δs ds× FM(x) =

1− e−tδ

δ
× FM(x).
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We note that

E[K̂(t)2] = E{E[(
N”(t)

∑
j=1

e−δWj)2|N”(t)]}

= E{E[
N”(t)

∑
j=1

e−2δWj ] +
N”(t)

∑
j=1

N”(t)

∑
j=1,i 6=j

e−δ(Wj+Wi)|N”(t)]}

= E[
N”(t)

∑
j=1

e−2δWj ] +
N”(t)

∑
j=1

N”(t)

∑
j=1,i 6=j

e−δ(Wj+Wi),

which can be derived by renewal argument.

Lemma 4.10 For any t ≥ 0,

E[K̂(t)2] =
∫ t

0
e−2δs dE[N”(s)] +

∫ t

0

∫ t−s

0
e−δ(2s+v) dE[N”(v)]dE[N”(s)]

= λp
∫ t

0
e−2δs ds + 2(λp)2

∫ t

0

∫ t−s

0
e−δ(2s+v) dv ds

= λp
1− e−2tδ

2δ
+ (λp)2(

1− e−tδ

δ
)2.

Hence equation (4.4.3) leads to

P[Ŝ(t) ≥ x] ∼ [λ
1− e−2tδ

2δ
+ (λp)2(

1− e−tδ

δ
)2]× FM(x).

We have calculated the first two moments of K̂(t)γ. For γ > 2, we then derive the

moment generating function of K̂(t), MK̂(t)(s).

Below we use the Cauchy principal integral (Frederick 2009) with singularity point x=0,

defined by ∫ ∞

−∞
f (x)dx = lim

a↓0

( ∫ −a

−∞
f (x)dx +

∫ ∞

a
f (x)dx

)
,

when
∫ a

0 f (x)dx = 0.
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Theorem 4.11: Following the definition of K̂(t)γ, then for any s ∈ R, and γ ∈ Z, the MGF

of K̂(t)γ is given by

MK̂(t)(s) = exp(−λp
Ei(1,−s)− Ei(1,−se−δ t) + δ t

δ
),

where Ei is Cauchy principal value exponential integral function and defined as

Ei(x) = −
∫ ∞

−x

e−t

t
dt,

for real, non-zero value of x.

Proof:

Jang (2004) found a suitable martingale to derive the Laplace transform of the distribu-

tion of accumulated aggregate claims at time t. Such a martingale is

f (K̂, t) = exp(−sK̂(t)eδt)exp
{

λp
∫ t

0
[1− f̂x(seδv)]dv

}
,

is a martingale where fx is the density function of claim size and

f̂x(s) =
∫ ∞

0
e−sy dFx(y).

From the above equation, we can obtain the Laplace transform of distribution of K̂t at

time t

E(e−sK̂t |K̂0) = exp(−sK̂(0)e−δt)exp
{

λp
∫ t

0
[1− f̂x(seδv)]dv

}
.

In our case, the initial value of K̂t, K̂0 is 0 so the MGF of K̂t is

MK̂(t)(s) = exp{λp
∫ t

0
[ f̂x(se−δv)− 1]dv},

where Xk = 1 up to time t. This leads to

MK̂(t)(s) = exp{λp
∫ t

0
[(ese−δv − 1]dv}

= exp(−λp
Ei(1,−s)− Ei(1,−se−δ t) + δ t

δ
).
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Since it is hard to obtain the simple calculable expression of this M.G.F., the numerical

method maybe applied to find the moments. �

4.5 Conclusion

In this chapter, we have investigated the different risk models form the ones in Chap-

ters 2 and 3. To treat realistic economic situation and fit for empirical data, heavy-tailed

distribution is more used to model individual claim amounts. In Sections 3.1 and 3.2,

we introduced this distribution and applied lemmas.

We study the ruin probability for our class of models with the Heavy - Tailed claim size

distribution motivated by Biard et al (2008). Theorems 4.8 and 4.11 extend Biard et al.

(2008) to models (discrete and continuous time) with interest rate
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CHAPTER 5

Concluding and further work

In Chapter 1 of thesis, we introduced ruin probability, the probability that liabilities

will exceed assets on a present value basis at a given future valuation date, resulting in

ruin. It is the crucial parameter for assessing the risk exposure of companies and the

measure of risk of insolvency for an insurance company. There are many risk models,

for example Markov model, finite time model and binomial risk model.

For approximating the ruin probability, we start with a simple risk model suggested

by Dr. Neil Butler in Chapter 2. By using Brownian motion , we approximated the

ruin probability for the model and develop several numerical methods such as Tay-

lor expansion and Black-Scholes model to evaluate the approximated ruin probability.

Numerical calculations is applied on the approximation and show that the ruin prob-

ability is increasing function of the variance of stochastic interest rate. A surprising

threshold is found such that the rate of increasing of the ruin probability much higher

after the threshold point. This threshold probably merits further investigation to dis-

cover how it can be explained. Also the results for some parameters agreed with the

Gaussian approximation suggested in Matsumoto and Yor (2005) (Proposition 2.6). We

applied three approximations in Section 2.6 to the ruin probability. Using simulation,

they works reasonably well. The approximations reflect the same relationship between

the variance of interest rate and the ruin probability.

Although there is no explicit way to derive the ruin probability with the stochastic con-

tinuous interest rate, by approximation and simulation we can find how the variance

of the interest rate effects the probability of ruin in finite time. Insurance world, our
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ruin models stated in Section 2.1 has too many restrictions. Normally the claim size of

an insurance is not fixed but random. As a consequence many researchers consider the

claims as a stochastic process. Therefore we develop an advanced model in Section 2,8.

The more simulations will be studied in the future.

In Chapter 3, the risk models were developed in Sections 3.2 and 3.3 with unknown

parameters which are to be estimated We simulated the several groups of data in dif-

ferent experiments and use to obtain the estimated parameter. As shown in Sections 3.4

to 3.6, Numerical analysis supports the claim that ruin probability is increasing func-

tion of the variance of interest rate. It numerically discovered a surprising threshold

such that the rate of increasing of the ruin probability much higher after the threshold

point. We always obtain good and stable estimation of standard deviation of interest

rate, σ, but unstable estimation of rate of the claim size, λ, even give negative values in

some case. Theorems 3.3 to 3.6 show the approximated ruin probability for Models 1,

4, 5 and 6 respectively. The simulations support these theorems.

We found the optimal constant fraction policies investment strategy with a given upper

bound on the ruin probability. Again, the numerical threshold discovered in Chapter 2

was supported in all the examples. In the future, more works about dynamic optimal

investment strategy should be considered.

Finally, in Chapter 4, we developed model in Chapters 2 and 3 by make more realistic

assumption on interest rate and claims motivated by Biard et al. (2008). Hevay-tailed

distribution is introduced and used to model the claim size. The two new risk models

were build and Theorems 4.8 and 4.11 are the biggest achievements we obtain through-

out the work. Even the MGF is hard to calculate in Theorem 4.11 when γ > 2, how-

ever we could use Maple to obtain more results. And the explicit formula could be

expressed by using induction. This work will leave for the future.
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Appendix 1

Gauss-Hermite Formula, (Abramowitz 1970)

The formula uses the Hermite polynomials Hn(x) to deal with the integration of (−∞, ∞).

∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
e−x2

[ex2
f (x)]dx

=
n

∑
k=1

w(xk)[ex2
f (xk)] + Rn(x)

where Xk is kth zero of Hn(x),

w(xk) =
2n−1n!

√
π

n2[Hn−1(xk)]2

and

Rnx =
n!
√

π f (2n)(x)
2n(2n)!

H.P are solution of Hermite’s Differential Equation

Hnx = (1)nex2 dn

dxn (e
−x2

)

when n = 0, 1, 2, 3
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Appendix 2 (Section 2.7.1)

100 variance of continuous interest rate used in simulation

0.25826142 0.28196884 0.38056092 0.73379036 0.27992473

0.69031010 0.45596998 0.16809908 0.48333321 0.57925480

0.17107121 0.83717329 0.68685754 0.39312954 0.29171645

0.90578313 0.57274508 0.29797457 0.25786461 0.15742122

0.50140450 0.92092187 0.03908921 0.74042513 0.43082837

0.88079442 0.30414883 0.86055642 0.03959701 0.85914356

0.09825043 0.51445155 0.41006651 0.22429632 0.69829572

0.63322432 0.31853664 0.95329933 0.81460351 0.34068674

0.42312630 0.10879914 0.83224278 0.66680408 0.81215068

0.17022953 0.01699669 0.92429300 0.25056953 0.73283787

0.38285285 0.72968434 0.55214482 0.79146790 0.14384940

0.28866631 0.70765106 0.60944191 0.53375864 0.57642442

0.18855107 0.87076188 0.74425246 0.54577662 0.84693434

0.30166596 0.09180047 0.34487122 0.17820724 0.48614927

0.11067378 0.95718657 0.18979385 0.95704486 0.13525687

0.08381547 0.62340073 0.47487325 0.81743876 0.89783200

0.8951250 0.47930268 0.08092672 0.90664777 0.70357941

0.67254306 0.21283616 0.98634889 0.43533704 0.40823803

0.31513155 0.13342939 0.24477215 0.45545881 0.23368945

0.08694565 0.02539103 0.30113375 0.40851137 0.10627077
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Appendix 3

Summary of simulated ruin probabilities of ordinary example and approximations 1

to 3.

ordinary ex. 1st approx. 2nd approx. 3rd approx.

Min 0.000 0.000 0.000 0.000

1st Qu. 0.00000 0.00000 0.00200 0.00200

Median 0.00100 0.00000 0.02600 0.02300

Mean 0.02064 0.01354 0.036920 0.03576

3rd Qu. 0.03450 0.01650 0.07200 0.06500

Max 0.11400 0.10400 0.11400 0.12000
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