
 1

Documents as Functions
John William Lumley, MA CEng FIEE

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

May 2012

 2

ABSTRACT

Treating variable data documents as functions over their data bindings opens opportunities for

building more powerful, robust and flexible document architectures to meet the needs arising

from the confluence of developments in document engineering, digital printing technologies

and marketing analysis.

This thesis describes a combination of several XML-based technologies both to represent and

to process variable documents and their data, leading to extensible, high-quality and ‘higher-

order’ document generation solutions. The architecture (DDF) uses XML uniformly through-

out the documents and their processing tools with interspersing of different semantic spaces

being achieved through namespacing.

An XML-based functional programming language (XSLT) is used to describe all intra-

document variability and for implementing most of the tools. Document layout intent is declared

within a document as a hierarchical set of combinators attached to a tree-based graphical present-

ation. Evaluation of a document bound to an instance of data involves using a compiler to cre-

ate an executable from the document, running this with the data instance as argument to cre-

ate a new document with layout intent described, followed by resolution of that layout by an

extensible layout processor.

The use of these technologies, with design paradigms and coding protocols, makes it possible

to construct documents that not only have high flexibility and quality, but also perform in higher-

order ways. A document can be partially bound to data and evaluated, modifying its present-

ation and still remaining variably responsive to future data. Layout intent can be re-satisfied

as presentation trees are modified by programmatic sections embedded within them. The key

enablers are described and illustrated through example.

 3

Relevant Papers

As principal or sole author:

Lumley, J., Gimson, R. and Rees, O. A Framework for Structure, Layout & Function in

Documents. ACM DocEng, 2005.[62]

Lumley, J., Gimson, R. and Rees, O. Extensible Layout in Functional Documents. SPIE-

IS&T Electronic Imaging, 2006. [65]

Lumley, J., Gimson, R. and Rees, O. Resolving Layout Interdependency with Presenta-

tional Variables. ACM DocEng, 2006. [66]

Lumley, J., Gimson, R. and Rees, O. Endless Documents: A Publication as a Continu-

al Function. ACM DocEng, 2007. [64]

Lumley, J., Gimson, R. and Rees, O. Configurable Editing of XML-based Variable-Data

Documents. ACM DocEng, 2008. [63]

Lumley, J. Automated Extensible XML Tree Diagrams. ACM DocEng, 2009. [60]

Lumley, J. Pre-evaluation of Invariant Layout in Functional Variable-Data Documents.

ACM DocEng, 2010.[61]

As secondary author:

Macdonald, A., Brailsford, D. and Lumley, J. Evaluating Invariances in Document Lay-

out Functions. ACM DocEng, 2006. [70]

Macdonald, A., Brailsford, D., Bagley, S. and Lumley, J. Speculative document evaluation.

ACM DocEng, 2007. [68]

Di Iorio, A., Furini, L., Vitali, F., Lumley, J. and Wiley, A. Higher Level Layout through

Topological Abstraction. ACM DocEng, 2008. [15]

Lumley, J., Gimson, R. and Rees, O.
A Framework for Structure, Layout & Function in Documents

Lumley, J., Gimson, R. and Rees, O.
Extensible Layout in Functional Documents

Lumley, J., Gimson, R. and Rees, O.
Resolving Layout Interdependency with Presentational Variables

Lumley, J., Gimson, R. and Rees, O.
Endless Documents: A Publication as a Continual Function

Lumley, J., Gimson, R. and Rees, O.
Configurable Editing of XML-based Variable-Data Documents

Lumley, J.
Automated Extensible XML Tree Diagrams

Lumley, J.
Pre-evaluation of Invariant Layout in Functional Variable-Data Documents

Macdonald, A., Brailsford, D. and Lumley, J.
Evaluating Invariances in Document Layout Functions

Macdonald, A. et al.
Speculative document evaluation

Di Iorio, A. et al.
Higher Level Layout through Topological Abstraction

 4

for

colleagues
with thanks

Judy
with love

Mum & Dad
at long last!

 5

ACKNOWLEDGEMENTS

The author gratefully acknowledges the permission and support of the Hewlett-Packard Com-

pany for use of the technology and intellectual property developed as DDF, in HPLabs Bris-

tol over the period 2004-8 and specifically the granting to me of permission to publish this

academic thesis, which uses DDF to explore completely new document composition possibil-

ities.

I must thank my colleagues and friends at HPLabs with whom work has been a joy over recent

years, especially Roger Gimson and Owen Rees, where between us we tamed the beast we

originally named DDF.

Management support from Tony Wiley (and before that Henry Sang) to let me ‘follow my

nose’, has been exemplary. Many other colleagues deserve mention in their contribution to

various features or posing interesting problems. In alphabetical order they include Alfie Abdul-

Rahman, Helen Balinsky, Hui Chao, Xiaofan Lin, Greg Nelson and Mark Restall. Contract-

ors made valuable additions to some of the earlier implementations of the support tools: Philip

Fennell, Ian Hoyle, Peter West, Peter Woods and the group at HP Brazil.

Academic collaborators in Nottingham and Bologna used the (partly documented) experiment-

al technology with some publishing success – at Bolgona Luca Furini and Fabio Vitali deserve

thanks and I must particularly acknowledge the contribution of Angelo di Iorio, who stretched

DDF much much further than I anticipated. At Nottingham my PhD students, Alex Macdon-

ald and James Ollis, have used its ideas and challenges to doctoral-level success. Steve Bagley,

now my supervisor, showed how it could integrate with his approach to document components.

I am grateful to Nathan Hurst (then of Monash University) for access to his extensive bibli-

ography on document layout.

 6

I am indebted to my supervisors, Dr. Steven Bagley and Prof. David Brailsford for all their

support and guidance during the ‘thesis years’ and Prof. Graham Hutton for advice on some

aspects of functional programming.

And my partner Judy will finally get her reward for all her patience and long-suffering.

 7

CONTENTS

Part A – Introduction, Context and Prior Art 17

Chapter 1: Introduction 18

1.1 Motivation 19

1.2 Variable documents and document engineering 21

1.3 The context of DDF 24

 Tools 26

1.4 Contributions 27

1.5 Thesis outline 29

1.6 Conventions within this thesis 30

1.7 Provenance 32

Chapter 2: Prerequisites 33

2.1 XML 33

2.2 XSLT 2.0 35

2.3 Scalable Vector Graphics (SVG) 40

2.4 XPath 42

2.5 Miscellaneous 46

Chapter 3: Prior Art 47

3.1 Document processors, editors and processes 48

3.2 Separating data and presentation; logical structure 49

 DocBook 50

 XHTML 51

3.3 Document layout 52

 Layout models and solution methods 53

 Representations 55

 8

3.4 Variable documents 58

3.5 XSL, XSL-FO and XSLT 59

3.6 Variable document editing 61

3.7 Other functional approaches 63

3.8 Partial evaluation and constant folding 65

Part B – Prior Art in DDF 68

Chapter 4: Document Description Framework 69

4.1 The ‘life’ of a DDF document 71

4.2 The basic structure of a DDF document 72

4.3 Authoring and editing from the document's range 74

Chapter 5: Functional Implementation 76

5.1 Evaluating the (XSLT) functionality 77

 The DDF document ‘compiler’ 78

 Compiler design 80

 External references 83

5.2 Document workflow 84

Chapter 6: Layout in DDF 87

6.1 Extensible layout 88

6.2 Text layout 96

6.3 Advanced layouts 97

6.4 Non-local effects 101

 Acyclic dependency and single-assignment presentational variables 103

 Cyclic dependencies 107

 Post-presentational global effects 109

6.5 Pagination 110

6.6 Conclusion 112

Chapter 7: Example Document – a Travel Brochure 113

7.1 Input data 114

7.2 Processing the input data 116

7.3 General layout model 117

 Document background and common sections 118

 Construction of pages 119

 9

 Providing graphics for a saleItem 123

7.4 Brochure conclusion 125

Part C – Documents as Functions 126

Chapter 8: Documents as Functions 127

8.1 Definitions 128

 Higher-order documents 129

 Approximate tree isomorphism 129

 Good XML citizen 130

8.2 Variable-data functional semantics 130

8.3 Documents as passive arguments 133

Chapter 9: Variable Layout as a Higher-Order Function 136

9.1 Layout and approximate tree-isomorphism 137

9.2 Layout with embedded function 138

9.3 Attributive layout and embedded program 139

9.4 One-to-many mappings 144

9.5 Foreign namespaces within layout 146

9.6 Modification of the SVG tree 150

9.7 Retained XSLT 153

9.8 Hybrid XSLT/meta-layout action 155

9.9 Conclusion 158

Chapter 10: Partial Evaluation and Constant Folding 160

10.1 Partial data binding 160

10.2 Constant folding of invariant layout 167

 Processing attribute sets 171

 Presentational variables 172

 Results 172

Chapter 11: Active Documents as Variable Data 175

11.1 Simple combinators 176

11.2 Higher-order syntax for DDF 180

11.3 Resource name conflicts 182

11.4 Compound documents 184

 Compound inclusion – document ‘imposition’ 186

 10

11.5 Conclusion 189

Chapter 12: Example Document – a Medical Record 190

12.1 Data and the document life 191

12.2 Implementation 195

12.3 Conclusion 205

Chapter 13: Discussion and Conclusion 206

13.1 General discussion 208

 Robustness and resilience 208

 Efficiency 210

13.2 Key findings 210

 Universal XML 212

 Interspersed namespaces 213

 XSLT as the programming model 213

 Document compilers 213

13.3 Redesign 214

 SVG as presentation and layout 214

 Hold data and structure within presentation 215

 Use higher-order XSLT and additional compilation 215

 Simplify external resource tracking 216

13.4 Other further work 217

 User feedback 217

 Document type 218

 Editing documents and incremental change 218

13.5 Lessons 220

 XML and XSLT 220

 Correct choices 223

 Difficulty, error and disappointment 224

13.6 Conclusion 227

Appendices 228

Appendix A: Detailed views of main examples 229

Appendix B: Advanced Pagination 234

Appendix C: Compressed display of XML, XSLT and DDF 238

 11

Appendix D: Employment of namespaces 244

Appendix E: Construction of the Thesis 246

 Code base statistics 247

References 249

Papers, Books and Journals 249

Software 256

Standards 256

 12

LIST OF FIGURES

1. A direct-marketing offer 22

2. A general advertising flyer 23

3. Workflow management interface 25

4. Visual document editing 26

5. Main DDF toolchain 27

6. Full and compressed XSLT 31

7. An example XML tree 35

8. An example XSLT program, reversing SVG drawing order 38

9. SVG graphics, before and after reversal by the program of Figure 8 39

10. An example of SVG graphics 41

11. XPath requests from the root of an XML 44

12. XPath requests from context nodes within Figure 11 45

13. XSLT/XPath patterns matching in Figure 11 45

14. Typical workflows for a DDF document 72

15. Simplified XSLT evaluation of DDF spaces 77

16. Typical internal workflow for a DDF document 78

17. Compile & Run 79

18. The DDF documents for the brochure – main, resort & pages 79

19. The XLST output of the compiler operating on Figure 18 79

20. The result of executing Figure 19 on a data instance 80

21. Compiler design 81

22. Simple document workflow graph 85

23. Complex document workflow graphs 86

24. Presentation declaration for a 4-page brochure 92

 13

25. Final brochure after layout-resolution of Figure 24 92

26. Simple compound flow layout – intentional declaration 92

27. Simple compound flow layout – resulting graphics 93

28. Simple ‘square’ layout & source declaration 94

29. Modifying text texture to enhance contrast against background 98

30. Drop capitals and wrap around images 99

31. ‘Only child’ Layout 100

32. A tree-breaking example: tracking pieces within a flow 102

33. The layout requirements of Figure 32 102

34. Using a presentational variable to recover information from a layout 103

35. Identifying named pieces 107

36. Simple pagination 111

37. Example instance of travel brochure 114

38. A second instance of the travel brochure 114

39. An example customer record 115

40. Example company, resort and map details 115

41. Pre-processing maps 116

42. Canonical form for brochure data 117

43. Brochure page background 119

44. First page 120

45. Main brochure pages for salesItems 120

46. Diagram page 121

47. Customer response page 123

48. Presentations for a saleItem 124

49. The brochure reused in a different field 125

50. Approximate tree isomorphisms 129

51. Good XML citizen transformations 130

52. Named field mapping 132

53. Model projected on data or document 132

54. Simple auto-documentation 135

55. Simple rotational layouts & source declaration 139

56. Element & attribute defined flow layout 140

57. Simple attributive flow layout – resulting graphics 140

 14

58. Attribute defined flow layout 141

59. Simple attributive flow layout – constant result 141

60. Simple attributive flow layout – data-modified graphics 142

61. Layout with two sections of variability 142

62. Two different data bindings for Figure 61 & resulting graphics 143

63. XSLT & layout evaluations for binding test1 followed by test2 143

64. One-to-many pagination layout 144

65. One-to-many layout resatisfaction code 145

66. One-to-many pagination with continuous alteration. 146

67. Three successive bindings to the paginations of Figure 66 146

68. Foreign element aware constructs 148

69. Resatisfying pagination with background templates 149

70. Layout function to support tree replacement 151

71. Original document 152

72. First stage binding and layout 152

73. Replacement of text at second binding and layout 153

74. Four successive bindings of a document 156

75. Programmatic hiding and revelation of graphical content 157

76. Four successive bindings with a data-variable graphic component 158

77. Two-stage binding of a variable brochure 162

78. Retention declarations for main page generators 163

79. Retained variability after company binding 164

80. Simple schemas for brochure data 165

81. Automatically generated retention declarations 167

82. Presentation for the brochure background and second page 169

83. Interspersed layout and program 170

84. Document template with invariant sections identified 173

85. Main document template after invariant processing 173

86. Three separate variable documents 177

87. DDF ‘higher-order’ information flow 178

88. DDF combinator document 178

89. Document evaluations 179

90. A combined document 179

 15

91. Simplified DDF combinator & bound result 181

92. Information flows within ‘higher-order’ 182

93. Combination with (styling) attribute sets 182

94. Style conflict in document combination 183

95. Directed resource renaming 183

96. Combined document with style renaming 184

97. Compound application 184

98. Compound application with duplication removed 186

99. Imposition code 187

100. Imposition for saddle-stitch binding with fixed-page argument documents 187

101. An 8-up imposition with variable-page documents 188

102. Sample patient details and medical data 191

103. Medical record after binding patient details 192

104. Pages of the medical record after binding two days’ data 193

105. Record pages after further binding 194

106. Record pages after final binding 195

107. Record with contained data & implementation markers 197

108. Conditionally revealed warnings 198

109. Conditionally altered graphics over three stages of binding 199

110. Embedded before and after evaluated variables 200

111. Constructing the accounts charges page 202

112. Graph generator at three stages during progressive binding 203

113. Continuation points within the document 204

114. Skiing brochure – pages 1 and 3 230

115. Skiing brochure – pages 5 and 8 231

116. Medical record – pages 1 and 2 232

117. Medical record – pages 6 and 10 233

118. A variable width component 235

119. Conditional page templates 237

120. Full and compressed XSLT 239

121. Full DDF 240

122. Compressed display of Figure 121 241

123. Horizontal tree display of Figure 121 241

 16

124. Vertical tree display of Figure 121 242

125. Highly-compressed tree display of Figure 121 242

126. Substitutions for condensed XML 243

 17

PART A

INTRODUCTION, CONTEXT

AND PRIOR ART

 181 Introduction |

Chapter 1

Introduction

This chapter introduces the background and structure of the thesis, which describes

and develops a research framework for variable documents known as DDF. The

business context for automatically generated documents is surveyed briefly, a syn-

opsis of the operational (software package) context for DDF is presented and the

major contributions of the research are listed. The three-part structure of the thes-

is, its conventions and provenance are discussed.

In the past 20 years, variable data documents, documents that are constructed automatically

with customisation or variation in their content and presentation, have become an important

part of communication from businesses to their customers. The technologies for definition, gen-

eration and delivery of these documents have been influenced by many factors, not least of

course the Web, but also by developments in printing.

This thesis uses ideas from functional programming as a part of such document technology.

It is based on a research framework, the Document Description Framework (DDF), developed

by the author and two principal colleagues at Hewlett-Packard Laboratories, Bristol between

2004 and 2008, which emphasised viewing a document as a ‘function’. DDF was designed

to explore flexible and easily extensible variable documents, based on a highly functional mod-

el, exclusively using XML technologies. It was used for research by that team, in collabor-

ations with academic partners and by my two PhD students at the University of Nottingham.

 191.1 Introduction |

Details of the architecture are described, along with the reasoning behind it, possibilities that

can be exploited from treating ‘document as function’ and conclusions about the overall

research. Work on DDF has already been published in a series of papers[60, 61, 62, 63, 64,

65, 66] but this adds to the breadth and depth of those, as well as showing further possibilities.

This is a thesis in document engineering, not functional programming – emphasis is on build-

ing documents that behave in a more function-like manner, rather than developing an archi-

tecture for documents based entirely on functional languages.

The title "Documents as Functions" was chosen deliberately to emphasise the nature of doc-

uments that vary in response to some data input (as opposed to editing input). As will be shown,

this ‘functional’ nature can be exploited in several, often surprising, ways beyond a simple

evaluation.

1.1 Motivation

The work described in this thesis is fundamental research in document representation, exploit-

ating the tree as a critical structure in document engineering: as the representation of a digit-

al document itself, its internal logical structures, its presentational definitions and resolved visu-

al form and programmatic definition of any variation of the document as a function of data

binding. The aim of the research was to explore and demonstrate the boundaries of the pos-

sible rather than devising ‘user friendly’ interfaces that obscure the fundamental issues.

The original motivation arose from developments in digital printing technologies that made

high-quality ‘every-page-different’ document printing possible at high production rates and

affordable costs, the background to which is discussed in the next section. The question was

how such documents should be described to maximise their utility, given that individual

instances had to be generated completely automatically, but robustly. The main goal was extens-

ibility, both in the types of documents (reports, brochures, photobooks...) that could be described

and how ‘variable’ they could be. Equally important, as the data volumes at bitmap level are

immense, are methods to reduce runtime computational loads, either by pre-evaluation or

exploiting result reuse.

Any study of digital documents will soon show that the tree is the main organisational struc-

ture – either in terms of presentation (pages, groups, flows) or in logical relationships (group-

Lumley, J.
Automated Extensible XML Tree Diagrams

Lumley, J.
Pre-evaluation of Invariant Layout in Functional Variable-Data Documents

Lumley, J., Gimson, R. and Rees, O.
A Framework for Structure, Layout & Function in Documents

Lumley, J., Gimson, R. and Rees, O.
Configurable Editing of XML-based Variable-Data Documents

Lumley, J., Gimson, R. and Rees, O.
Endless Documents: A Publication as a Continual Function

Lumley, J., Gimson, R. and Rees, O.
Extensible Layout in Functional Documents

Lumley, J., Gimson, R. and Rees, O.
Resolving Layout Interdependency with Presentational Variables

 201.1 Introduction |

ings, sequences). It provides a natural representation for locality (the sub-tree), sequence (sib-

ling order), ‘ownership’ (parent-child) and similarity (tree isomorphism). Components and sec-

tions are arranged together in ‘scopes’ which most naturally fall into tree structures. These might

be visual scopes, such as within a page, where for example quality requires all the body text

to have the same line spacing, or in grouping scopes, such as a set of brochure items all con-

taining the same logical components (picture, description, price) displayed in the same relat-

ive way, but otherwise being presented in a manner such that they are clearly distinct1. We

might therefore expect that many of the techniques developed in computer science for rep-

resenting and using trees in areas such as compiling, program transformation and language

design will be pertinent to document engineering.

Digital documents using a variety of markup ‘tags’ have existed for 40 years or more – these

tags can control aspects of final printed appearance directly (font size, position...) or describe

some more abstract structure in the document (citation...) or sometimes both. More well-

developed tools (troff, LaTeX) began to treat their tags as a loose grammar which can be used

to impose some degree of tree structure, but neither developed the idea very far. In the absence

of clearly separated sections (which trees usually provide) then small partial changes within

a document require re-evaluation of the complete document from source code through render-

ing to determine the effect on the final visual form. It is either impossible, or impossibly expens-

ive, to determine whether a given portion of the document can be re-processed on its own safely,

i.e. without side-effecting somewhere else.

When the document is programmatically variable, as expected for variable data documents,

this becomes even more problematic. However, there are three approaches that may hold prom-

ise: i) using a programming language that is written in a tree-based syntax and manipulates

data (including other programs) in the same syntax, ii) using programming languages that are

free from side-effects and with near-functional semantics and iii) representing all the document's

definition (program, structure, presentation..) as a strict tree in a common basic syntax.

McCarthy's work on LISP[73] showed that it was possible to cover the first two points – a

programming language and its data could be represented as trees, sometimes deep, sometimes

flat. LISP's removal of the destructive assignment operation, to be replaced by deeper bind-

ings of variables within tree-nested scoping opened up the possibility of inferring and prov-

1This is critical – such visual representations in a brochure can constitute a contract and merging two items togeth-
er might have unhelpful consequences.

McCarthy, J.
Recursive functions of symbolic expressions and their computation by machine, Part I

 211.2 Introduction |

ing that parts of a LISP program would behave in certain ways, have certain effects and retain

certain properties, leading to ‘safe’ program transformation.

Developments in Web technology have satisfied the third point, defining an agreed standard

meta-syntax for trees: XML. Its model is sufficient to describe very extensive propertied trees

which can contain interspersed sections defined in different namespaces implying differing

semantic treatments. Serialisation makes XML almost accessible to be read and understood

by a human. Many XML-based technologies have been defined and some have been imple-

mented extensively. Of most interest here are SVG as a geometric layout of drawing primit-

ives and effects and XSLT as a tree-transforming near-functional programming language.

By describing documents completely in XML and defining their variability as buried XSLT

sub-trees, it is possible to isolate, reason about and modify the behaviour of sections of the

document in the resulting output, free from side-effects, owing to the ‘binding as single-

assignment’ model of XSLT result re-use. Coupling this with a declarative combinatoric mod-

el of presentation layout makes it possible i) to approach reuse and optimisation in a principled

manner and ii) to generate robust ‘higher order’ variable documents: documents that adapt and

modify in response to external data in predictable ways. Both of these are important issues

for document engineering.

1.2 Variable documents and document engineering

This thesis is about variable documents, but to understand what that means and why they are

important, we need to discuss the business context of document engineering that developed

in the past 30 years, as well as some of the hardware technologies that have acted as enablers.

Document engineering is a term that has been used over the past 15 years, with a variety of

meanings, though all are centred around solution of problems (both business and personal) by

construction, transmission, management and consumption of documents. Glushko & McGrath,

in their book[27], focus on the solution of business process problems through the management

of documents mainly as objects. This thesis discusses the inner details of the documents them-

selves and only tangentially discusses systems of documents.

We can discern two broad classes of variable document, based on their utility:

Glushko, R. and McGrath, T.
Document Engineering: Analyzing and Designing Documents for Business Informatics and Web Services

 221.2 Introduction |

Documents that must be variable by their nature, such as bank statements, passports and wills.

Documents that may become more valuable by being variable, such as through personal-

isation, with examples in direct marketing, and up-to-the-minute, such as on-demand news-

papers.

Here are a couple of document examples that are, or could be, variable. The first is a direct

marketing offer, personalised to the recipient. This document has been generated in two passes

– the first on a conventional lithographic offset press in full colour and the second by either

an ink-jet or a laser printer pass, which adds the (mostly variable) text. Those variable text

areas that can be substituted in an ‘open-ended’ manner and those that must include some of

the ‘fixed’ content in the substitution are highlighted – specifically the phrase ‘are detailed

inside’ in Figure 1 needs to be added to the city data before the composite text is written2.

Figure 1. A direct-marketing offer

Figure 2 is a supermarket flyer presenting a series of special offers, including one that is excep-

tionally seasonal. Whilst this document wasn't variable, and was probably designed ‘by hand’,

the type of challenge in document engineering is to build these automatically from a series

2The red boxes are merely to show extent and are not part of the final document

 231.2 Introduction |

of design paradigms, which are incorporated in the document itself. For example if the num-

ber of ‘Gifts’ was 2 or 4, what should happen? Are the correct validities shown for any offer

items3 and can they be generated automatically from the data?

Figure 2. A general advertising flyer

Software technologies for construction of such documents are described in more detail in

Chapter 3, but in the late 1990s and early 21st century, developments in digital presses, by

Xerox, Indigo (acquired by HP) and others, enabled the production of offset-quality public-

ations that could be different on every page at production costs and rates that were tolerable

for high-value marketing material, especially in short runs. Basically the technologies employ

laser rendering at resolutions up to 1200dpi, liquid toners and extensive colour gamuts and

impression sizes up to A3, at rates approaching 4 pages/sec. Increasing use of extensive cus-

tomer records and data mining built higher-value marketing propositions, so that personalised

communications between business and consumer became more worthwhile, thus increasing

demand for variable-data printing.

3The author is aware of a mail-order house where a graphics designer added the ‘Intel Centrino’ (wireless)
icon to some laptops on a two page spread, ‘for graphical consistency’ – the company had an expensive oper-
ation retrofitting WiFi functionality to many of the machines sold. The image constituted part of the contract.

 241.3 Introduction |

Given these technologies and very flexible ‘data sources’ for material for publication, a con-

sequential business problem is how to design and construct the material to feed these presses,

and how to do that effectively, economically and with little or no sacrifice of publication qual-

ity and professionalism – the intention after all is to convey a message from business to con-

sumer as clearly and effectively as possible.

The dichotomy is that the data and printing technologies provide the means for generating high

print-quality, carefully crafted communications, but the documents cannot be designed on an

individual craftsman basis – they must be generated completely automatically from data

instances. And the problem is how are such documents defined in ways that i) are robust and

predictable, as mistakes can be costly both in production and downstream consequences, ii)

have a professional look-and-feel to them, iii) are flexible enough to adapt to the limits of

the variability in the targetted data, iv) can be generated at rates at least as fast as the presses

themselves4 and v) are capable of being defined, authored and edited by skilled designers (albeit

through visual tools), rather than document engineers.

Similar ideas appear for personalised editions of newspapers[54], where the delivery medium

may be web pages or ‘print-yourself’ PDF-based publications. In this case the problem becomes

one of selecting and fitting larger-scale stories, features and advertising together to give a pub-

lication that is both accurate, effective (for advertisers at least!), pleasing to the eye and reflect-

ing the ‘house-style’ of the publication. Many of the approaches being taken are hybrid, in

that a carefully crafted set of templates are designed, with automation choosing which ones

are appropriate for the data sets being projected.

1.3 The context of DDF

As mentioned earlier, DDF was designed as a research tool intended to lead to innovative archi-

tectures for commercial production of variable documents. The audience for such a system

would range from those in document engineering research, through engineers developing

document-based solutions to eventually document designers, authors, editors and creators.

The DDF framework comprised a small number of document-processing tools, outlined in the

4As will be discussed later, at the highest rates this needs close attention to maximising the use of invariances in
the documents, and even techniques such as speculative (eager) evaluation, rather than a (lazy), ‘process everything
only when the data is completely bound’ approach.

Krakovsky, M.
All the News That's Fit for You

 251.3 Introduction |

next section, intended for different types of user. For research, these tools are typically driv-

en through command-line interfaces as batch processes, or incorporated via standard APIs into

some higher level test solution. ‘Programming’ a document solution involving DDF would

involve constructing at least two sections: i) the variable documents themselves – *.ddf XML

files, which are described in this thesis and ii) some declaration of what data should be bound

to what variable document, what tools should be invoked and any further processing – i.e.

a workflow that might be defined as some batch process file or in a declarative form inter-

preted by a workflow processor. In cases where the repertoire of functionality within the doc-

uments needs to be extended, the tools are generally capable of accepting additional modules

to do so.

For those developing document-based applications, control could be applied through a GUI

tool that took a description of workflow and permitted control of document generation based

on examination of document interdependency and updates. Figure 3 shows such an interface

displaying a multi-stage binding process and the status of various document instances.

Figure 3. Workflow management interface

In both the above circumstances the documents themselves were edited ‘by hand’, usually with

the assistance of an XML editing tool. Later work examined how to arrange that end users,

acting purely as authors and editors, might design, view and change documents directly from

graphical interfaces providing selectable views of the final documents. Figure 4 shows two

views of the experimental tool5.

 261.3 Introduction |

Figure 4. Visual document editing

This tool, which was configurable, was also capable of supporting users with different levels

of ‘power’ – higher-level users could adjust what types of editing a lower-level user was per-

mitted on a particular variable document6.

The DDF package was intended for research by HP and was used by the team in HPLabs Bris-

tol and two academic collaborators. Apart for some user trials of the editing system, the only

developers of documents were engineers familar with XSLT as a programming language. The

general ideas have all been published in the papers cited earlier. Some of the techniques (com-

piling, context referencing...) are covered by patents, both in application and granted, and the

software developed in HP was not, at any time, made freely available, nor is it expected to be7.

Tools

Processing a DDF document involves a small number of tools, whose relationships are shown

in Figure 5. The three horizontal tools (compiler/evaluator, layout processor and observer) are

the main processing chain for binding a document to data and determining the final graphic-

al result for display or printing. Each of these three can be extended in functionality by adding

extra XSLT code to support new features or formats.

The workflow processor can schedule the application of this pipeline to documents and data

bindings, driven by a declarative definition of the required workflow and data instances. The

5A web-based client-server version was also developed for trials. Brief details of this approach are covered in sec-
tions 4.3 and 13.5.
6See [63] for details.
7The author's use of the software for the purposes of research leading to a PhD thesis was permitted by HP under
a personal licence.

Lumley, J., Gimson, R. and Rees, O.
Configurable Editing of XML-based Variable-Data Documents

 271.4 Introduction |

DDF editor uses the workflow and a definition of ‘editability’ to arrange that final graphic-

al views of a document can be used to edit parts of an original variable document. Most of

the emphasis in this thesis is on the compile/evaluate and layout processing actions.

Figure 5. Main DDF toolchain

1.4 Contributions

This thesis, and the work described within, makes the following broad contributions to (or

insights in) the field of document engineering:

An XML-based variable document framework (DDF) that supports research on extensible

variable document functionality, both in terms of layout capability and models, and in types

of variability that can be defined. It emphasises declaration in its document representation,

whilst not restricting the complexity of document response that can be defined. This has

been demonstrated to work on large-scale documents (this thesis), on variable documents

with continual activity, and as a vehicle for document engineering research by the Univer-

sities of Nottingham and Bologna, with publication and doctoral success.

 281.4 Introduction |

Designing variable documents primarily as functions that construct presentations, rather than

as documents with variability added, provides a basis for highly flexible and smoothly extens-

ible architectures. Such architectures are not confined to one particular type of document

(e.g. a report) but can support many types from combination and reuse of document-borne

function.

Using XML as the exclusive representation of document, data, presentation and program

is exceptionally valuable. Its tree representation provides suitable locality and grouping,

appropriate for structure and presentation; structures in separate namespaces can be inter-

spersed effectively, enabling description of hybrid properties in documents.

A key to combining different XML models within single defining trees is that processing

tools should behave as good XML citizens, following a general protocol of transferring

unknown information in their source trees to equivalent positions in their results. This

provides the basis for many critical features, such as hierarchical combination of hetero-

geneous layouts, higher-order functionality and GUI-based editing of variable documents

from presentational instances.

The XML-based functional programming language XSLT/XPath is highly appropriate both

for describing intra-document variability and also as the principal vehicle for implement-

ing processing machinery. Document variability can be placed where it should have its effect

– in the correct place in the document; all structures, including the program, are accessed

consistently through XPath searches; compilers can create document generators by manip-

ulating source documents, adding necessary contextual features or modifying program to

support extended (e.g. higher-order or code-propagation) semantics.

Defining layout as a tree-aligned set of combinator functions, together with a canonical XML-

based representation of presentation results (SVG), enables a very extensive suite of types

of layout to be defined, implemented and extended monotonically. Arranging that these com-

binators are held as attribute declarations on corresponding hierarchical tree nodes provides

a basis for re-satisfiable (idempotent) layout. Resolution of layout by a recursive set of

pattern-matching agents supports smooth extension of the layout repertoire, as well as sup-

porting internal re-use of partial results and meta-layout operations.

 291.5 Introduction |

Variable documents with higher-order semantics can be constructed through a combination

of hybrid action between embedded program with compiler-supported code-propagation

properties and meta-layout functions. Variable documents can be designed which contin-

ue to generate and modify presentation through an indefinitely extended sequence of data

bindings.

1.5 Thesis outline

The thesis has three broad sections, followed by appendices and references:

Part A starts by describing the context of variable data documents – where they occur, their

different types and scales and some of the applications that can be expected. Pre-requisite tech-

nologies are then discussed. Prior art in this area has much overlap with ‘normal’ document

production, especially in layout. Both the general area of document definition, layout and pro-

duction and specific approaches to variability are surveyed.

Part B introduces the design philosophy and goals for DDF, leading to a description of the

essence of DDF, how it is used and its anticipated limitations. Subsequent chapters cover the

structure and semantics of DDF as a ‘function’ responding to variability in data, implement-

ation of document evaluation and the extensible model for layout. A method of editing such

documents is discussed briefly. A detailed example document is then presented.

Part C examines extending the functional nature of the documents. That DDF documents could

be extended as functions became apparent early on when I realised that the result of a ‘vari-

able binding’ in the framework need not be a fully-grounded document – it could still be a

DDF document capable of further variable response. Examples include generation of more spe-

cific templates from generic forms (e.g. a specific set of company templates built from a

commercial-service generic offering) or documents that continue to respond variably to mul-

tiple stages of data binding.

These ideas are discussed in some depth, illustrating indefinitely bound documents with a med-

ical record example. Detailed consideration of the functional behaviour and properties of DDF

is made, both in terms of variability and its model of layout, leading to disussion of partial eval-

uation, constant folding and possibilities of constructing higher-order documents.

This final part then draws conclusions and outlines possible redesign of the architecture and

 301.6 Introduction |

related areas of further work, such as types for variable documents and a document differen-

tial calculus.

Small-scale examples will be used throughout the dissertation. Two ‘large’ examples appear

in chapters of their own, to illustrate some features in some depth. These are:

Travel brochure (Chapter 7). A conventional ‘record-oriented’ customer publication, which

involves substitution of data and potentially unbounded ‘content’ from a record into the pub-

lication.

Continual medical record (Chapter 12). A more complex document that adds and alters

presentation as it processes input data by stages. It illustrates higher-order use of function-

al properties.

1.6 Conventions within this thesis

The thesis was itself prepared in DDF and many of the examples are buried within its body,

and evaluated as the thesis is generated8.

Fonts and styles are used to differentiate different meanings within inline text:

code refers to some piece of defined XML program or data structure. Where needed a

namespace prefix may be added, e.g. fo:block.

Angle brackets <> around XML element tags within text are normally omitted unless con-

tent is required.

Attributes are often identified with the XPath shortcut @ e.g. @fill="red".

Product and software names, e.g. DialogueLive, XPath, are italicized at their first appear-

ance. For the most common (e.g. XSLT) subsequent references are in normal font.

Key findings and lessons deriving from points in a discussion will be represented in

the text by this construct.

In the PDF version of the thesis all references, cross-references and external hyper-links (URLs)

are presented as hyper-links, including tables of contents and figures. Bibliographic references

8See Appendix E for details.

 311.6 Introduction |

also present a ‘hover’ of the authors and title. References are sorted by classes (papers, stand-

ards etc.) and alphabetically by authors.

There will be many examples of XML-based data structures and XSLT program fragments.

Some will be displayed in serialised forms, some with sections elided and some as graphic-

al trees, especially when discussing layout descriptions. Usually sections in different

namespaces are presented in different colours – the colour mapping is consistent throughout

the thesis.

Displaying large XML structures (including XSLT program) in fully-serialised form takes valu-

able thesis real-estate and can be difficult to read, leading to a sense of “I can't see the code

for the angle-brackets”. Where there is no ambiguity, I have used a compressed readable rep-

resentation, full details of which are given in Appendix C; Figure 6 has samples of full XSLT

and the textually-shortened version.

<xsl:template match="A" mode="m">
 <xsl:variable name="var" select="1234"/>
 <xsl:variable name="parts">
 <xsl:apply-templates select="C | D" mode="
#current"/>
 </xsl:variable>
 <xsl:for-each select="E">
 <xsl:choose>
 <xsl:when test="count(*) gt 23">
 <fo:block >
 <xsl:value-of select=".,@repeat"/>
 </fo:block>
 </xsl:when>
 <xsl:otherwise>
 <f/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
</xsl:template>

match:A mode="m"
var=1234
parts=

Þ C | D mode="#current"

" E :

choose
when:count(*) gt 23

block
val(.,@repeat)

otherwise
f

xsl: fo:

Figure 6. Full and compressed XSLT

 321.7 Introduction |

1.7 Provenance

With a thesis that covers prior art of the author predating the study period for the PhD it is

necessary to be clear about how the work is partitioned, as well as the author's role with respect

to other research colleagues’ contribution.

The text of the thesis itself is entirely my own work and entirely new, save for reuse of a few

illustrations from earlier professional papers, and the part on invariant layout pre-evaluation

(section 10.2) which is a modest reworking of a DocEng 2010 paper, the work for which (and

its publication) was within the study period.

The basic technologies of DDF, described in Part B, date from 2005-8. The detailed brochure

example therein is a more extensive reworking during the study period of one used in a pre-

vious paper.

The entirety of Part C is novel, especially the critical Chapter 9 which describes the key find-

ings of the PhD in terms of a model of interspersed variability and layout declaration with-

in grounded graphical constructs, all within an entirely XML context. The continuous docu-

ment example (Chapter 12) is a ‘proper’ reworking of an example proof of concept that was

presented at an earlier conference.

The research proposing and exploring DDF at HPLabs Bristol, before this thesis, was carried

out by me and my two principal collaborators – Roger Gimson and Owen Rees. We collect-

ively designed the main architectures and implemented appropriate tools, as well as being joint

patentees. I was totally responsible for ideas involved with the DDF compiler, the entirety of

the approach and implementation for document layout as well as the key methods for doc-

ument editing. I was the principal author of all the externally published papers on DDF.

 332.1 Prerequisites |

Chapter 2

Prerequisites

Four existing software standards play a crucial role in this research: their details

are discussed in this chapter in enough depth that their use within the rest of the

thesis can be understood. XML acts as the underlying representation for almost

all data and programs. Extensible Stylesheet Language Transformations (XSLT)

is the principal programming language used both within documents and the imple-

mentation of processing tools. Scalable Vector Graphics (SVG) describes the

grounded graphical constructs of documents. Both these are XML-based repres-

entations and can be interwoven. Finally XPath is a language for describing

searches around an XML tree, used extensively by XSLT.

2.1 XML

Extensible Markup Language (XML) was originally designed as a meta-syntax for Web-based

markup languages, but has since grown to be used for many hundreds of different languages

and thousands of data representations. An XML document is a tree, with nodes and subtrees,

and may be held within memory data structures, or within specialist databases optimised for

certain types of query or in a serialised character form for storage on disc or transmission over

networks. Common parsing and serialisation engines and access mechanisms such as SAX or

DOM can be used between transmitted and stored XML and in-memory data structures.

 342.1 Prerequisites |

Nodes can be of several types, data being held in element, attribute and text nodes (the first

two have names, which may be namespace-qualified – referred to as a QName), with ancil-

lary nodes being comment and processing-instruction. The tree structure is defined by the

element node which can contain element and text nodes as a strictly ordered sequence of

children1. text nodes are Unicode strings which may contain character entities (not least to

encode characters, such as ’ <’, that are reserved within the XML serialisation). attribute nodes

have a name and a string-based value and are attached as unordered sets to element nodes,

where the names must be unique within the set attached to the element2.

Using namespaces is intended to permit the mixing of XML representations for different pur-

poses without interference, provided the namespaces themselves do not clash. For example an

XSLT program (in the namespace http://www.w3.org/1999/XSL/Transform) can contain sec-

tions of tree with other syntaxes, such as SVG (namespace http://www.w3.org/2000/svg) and

XSL-FO (which uses http://www.w3.org/1999/XSL/Format). All three of these could freely use

elements with the same local name3 but which are clearly differentiated in their separate

namespaces. XML makes no restrictions on the string used for the namespace, provided it is

properly encoded – there is an optional convention that it might link to a further source of

information about the markup space – hence these W3C4 examples are HTTP links to web

pages, but this has no bearing at all on any XML processing.

Serialisation of the XML tree is a key feature: element nodes are represented with angle-

bracketed opening and closing tags (<E>....</E>) with children in between, properly nested.

attribute nodes are held in (order insensitive) sequences within the owning element head tag

(<E a="A value" b="B value">). text nodes are represented as simple text, with possible char-

acter entities (this text ends with a closing angle bracket >). Treatment of whitespace

can be defined – for most purposes extended whitespace is not considered significant and can

be trimmed.

Namespaces are defined with prefix declarations within element head tags (<E xmlns:a="A-

namespace">): the prefix then has scope in that element or its subtrees (<a:EinA>) unless

1comment and processing-instruction nodes can be in this sequence but are peripheral to the ‘data’ and are irrel-
evant to this thesis.
2Certain attribute names are reserved such as anything starting with xml; id is by convention reserved to use for
unique identifiers within a tree.
3E.g. svg:g, fo:g – actually these three don't have any common element names.
4World Wide Web Consortium (www.w3.org)

 352.2 Prerequisites |

superseded within the scope of a subtree. A default namespace for untagged elements can be

declared with xmlns="default-namespace" and has scope within the subtree of the declar-

ation, again unless superseded in some descendant. Finally element nodes with no children

(elements or text) can collapse their opening and closing tags (<E a="A"/> can be used as an

abbreviation for <E a="A"></E>). Figure 7 shows a simple XML tree and its serial form.

A

B

some text

more text B a="23"

a:C

C text

D E b="7" f="alpha"

further

<A>
 some text more text <B a="23">
 <a:C xmlns:a="A-namespace">C text</a:C>
 <D/>
 <E b="7" f="alpha">further</E>

Figure 7. An example XML tree

In essence that is all XML is – a means to represent a tree of named elements, properties

(attributes) and text. All the rest of the syntax and semantics is up to the language that exploits

it. Languages that use tree structures extensively have a head-start – trees fall out naturally.

Others that require structures such as graphs (e.g. RDF) will need to represent edges expli-

citly and use attributes or element text values to identify join points.

2.2 XSLT 2.0

The technology developed in this thesis involves very significant use of XSLT2.0[128], a lan-

guage for transforming XML documents into other XML documents. Discussion of the devel-

opment of XSLT is given in Chapter 3. This section gives a brief overview of the XSLT pro-

cessing model as it stood for the 2.0 standard of 2006-8 used throughout this work – for fur-

ther details the reader is referred to Kay[45].

An XSLT program generally converts one well-formed XML file into another5. To do this the

language's model is a restricted form of functional program6 which operates in both ‘pull’ and

‘push’ (pattern-matching) manners and is described as a series of ‘templates’ that match spe-

cific types of XML component, as well as named and parametrised functions. The matches

are described as XPath [123] patterns (see section 2.4 for some examples).

5Ingestion and emission of plain text is supported but is not the design-focus of the language.

W3C, World Wide Web Consortium
XSL Transformations (XSLT) Version 2.0

Kay, M.
XSLT 2.0 and XPath 2.0, 4th Edition

W3C, World Wide Web Consortium
XML Path Language (XPath) 2.0

 362.2 Prerequisites |

All templates and functions are ‘top-level’, i.e. they cannot contain inner bindings of templates

or functions. Templates can operate in partitioned spaces called modes, which can include the

default mode (#default or ‘blank’) , a set of named modes (using QNames) or in all modes

(#all) – the latter is very rarely used. Invocations of templates can be in the default mode,

in a named mode (mode="html2svg") or continue in the current mode (mode="#current").

Well-designed libraries use private namespaced modes for their internal templates.

There is a well-defined system of resolution between multiple matching templates when presen-

ted with a specific component in an XML input tree. A ‘winning’ template then has complete

control to generate any result it wishes, usually in the form of a tree or components of a tree.

These results are yielded to the ‘calling template’, i.e. the template which requested processing

of some nodes. Nodes are extracted from the input XML tree through the use of XPath, which

in XPath 2.0 can also generate scalar items such as numbers, strings and dates as well as extrac-

ted nodes, and handle flat sequences of such as ‘composite values’.

Usually templates operate in a depth-first manner across the input XML tree, building up an

output result tree progressively, sometimes by shallow or deep copying of subtrees, sometimes

building up new composite subtrees, with or without additional processing. However they have

complete freedom to wander around the tree from the ‘context point’ (the node being processed).

Instructions that transfer information from the input tree to result have seven forms: copy which

is shallow and just makes a copy of the input context node in the result, copy-of which does

a deep copy of the entire input trees from each of the nodes selected by the instruction (using

an XPath expression), sequence which returns a sequence of nodes and value-of which pro-

duces a scalar (string) serialisation of the text of the selected nodes, constants and functions

thereof. element and attribute create new nodes in the result (whose name can be computed)

and attribute values (but not names) in defined result elements can be constructed dynamic-

ally using an attribute value template where XPath expressions whose values are to be inter-

polated as strings are surrounded in braces (height="{2 * $height}pt").

As well as ‘push’ mode templates, XSLT supports two forms of on-demand ‘function’ of sim-

ilar form but used in different ways – the named template is called from XSLT (call-template

name="name") with a set of optional and named parameters and inherits the same context

6Functions are not entities that can be passed as arguments, though extensions[105] and specific techniques[77,
106] can simulate some similar operations. XSLT2.1/3.0[129] introduces function items as passable arguments to
functions as well as lambdas.

Kay, M. Saxonica Ltd
Saxonica: XSLT and XQuery Processing

Novatchev, D.
Higher-Order Functional Programming with XSLT 2.0 and FXSL

Novatchev, D.
FXSL -- the Functional Programming Library for XSLT

W3C, World Wide Web Consortium
XSL Transformations (XSLT) Version 2.1

 372.2 Prerequisites |

as the calling point, as well as the mode for any eventual push applications. XPath can be exten-

ded with a user-defined XPath function, defined similarly (function name="ns:name") with

a sequence of parameters, but which is called from within the evaluation of XPath expressions

(ns:name(args)). Parameters are bound by argument position, but there is no carry-through

of context (including mode) from the calling position – all information must come through

the arguments. Functions with the same name but differing numbers of arguments (‘arities’)

are permitted. Polymorphic functions are not supported directly, but some techniques involving

functions and template can simulate some appropriate behaviours.

XSLT contains the usual control primitive operations which can (only) be embedded in the

result tree: iteration (for-each) which repeats the tree beneath for each member of a selected

sequence setting the context successively to each member, grouping (for-each-group), con-

ditionality (if, choose/when/otherwise) and recursive application (apply-templates) which

requests that each member of the selected sequence of nodes be processed further in a push

manner. Processing order can be altered by a sort declaration, analyze-string processes text

with regular expressions and critical searches can be indicated by use of a key heuristic.

XSLT has single-assignment variables (variable) whose naming scope follows the nesting of

the tree and can be set to have values that are either calculated from XPath expressions on

the ‘current context’ or constructed from contained result trees. Values of variables can be inter-

polated, tested, iterated over or processed recursively within nesting scope through inclusion

in the XPath expressions of instructions. A variant (param) can optionally have its value set

‘from above’, permitting extra state to be transmitted ‘down’ the processing stack through para-

meters to template execution. (In functions this acts as a strict required parameter.) These para-

meters can have local definition (i.e. arguments to a template) or be defined to propagate a

value further down the execution stack until possibly over-ridden (‘tunnelled variables’).

All instructions generating values (template, function, variable and param) can be typed using

date-type models defined in XML Schema[124] (as="xs:double") which can be checked either

at runtime or the information used by the compiler for optimization or error checking. The

basic types (xs:integer, xs:anyURI, xs:dateTime ...) are normally supported by XSLT eval-

uation engines – schema-aware processors can use extended, user-supplied, type definitions.

The main I/O model consists of two parts: parsing and serialising between XML trees and tex-

tual representations, and the use of input and output XML trees – for some applications the

W3C, World Wide Web Consortium
XML Schema Part 0: Primer Second Edition

 382.2 Prerequisites |

only parsing and serialisations occur at the beginning and end of long processing pipelines,

within which only in-memory XML data structures exist.

Since the language is effectively functional (there is no reassignment of values of variables

and the I/O model is restricted to straightforward ingestion and writing of complete tree/files,

with no re-entrancy between input and output spaces), provided any extension functions used

are free of side-effects7, then the language can be evaluated lazily. The most complete imple-

mentation Saxon[105] does this extensively, as well as exploiting tail-recursive properties. Fur-

ther features of the language being defined in XSLT2.1 support infinite stream processing.

So far we have described the main semantics of XSLT, but not the syntax. This is where it

becomes interesting, as XSLT programs are written entirely in XML: instructions are elements

in a reserved namespace (http://www.w3.org/1999/XSL/Transform). Parameters to those

instructions are either attributes (e.g. group-by="author") or specialist child elements in the

namespace (e.g. <xsl:sort>). All other elements are taken to be part of some result tree.

Figure 8 is an example XSLT program that reverses the order of all SVG elements in a tree

(in effect inverting the drawing or Z order), whilst leaving all others intact:

<xsl:stylesheet >
 <xsl:output method="xml" indent="yes"/>
 <xsl:template match="/">
 <xsl:apply-templates select="*" mode="reverse-svg"/>
 </xsl:template>
 <xsl:template match="*|@*|text()" mode="reverse-svg">
 <xsl:copy>
 <xsl:apply-templates select="@*|*|text()" mode="#current"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="svg:*" mode="reverse-svg">
 <xsl:copy>
 <xsl:apply-templates select="@*,reverse(*|text())" mode="#current"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Figure 8. An example XSLT program, reversing SVG drawing order

It starts with an output declaration that controls the serialisation on file output – the output

is XML and should be indented. A template to match the input document ‘root’ (/) follows,

7They are also constant-valued within an execution – hence time() produces a constant value (defined to be some
time that occurred during the execution). random() has similar problems to that in other functional programming
languages.

Kay, M. Saxonica Ltd
Saxonica: XSLT and XQuery Processing

 392.2 Prerequisites |

which will apply template matching to the child element of the root, whatever that is8. These

templates will be in the mode reverse-svg and the result of the entire program will be the

tree that those templates produce. There is no copying of the tree by default and the input tree

is only ever read, and possibly copied by parts, not altered or rewritten.

Two templates are defined in that mode – the first is a common ‘copy-all’ form, which has

a match attribute of @*|*|text(), i.e. any general attribute, element or text node is copied and

then any sub-nodes are processed recursively9. The second template (match="svg:*") is the

one that does the real work. By default, its match pattern has a higher priority than the ‘copy-

all’, so it is used preferentially for elements in the svg: prefixed namespace. It copies the ele-

ment and processes all attributes and then processes child elements and text nodes in reverse

order, using the XPath function reverse() to invert the sequence. Figure 9 shows sample input

and output from this program in both tree and graphical form.

svg

svg svg

svg

svg

svg

svg

svg

svg:

Figure 9. SVG graphics, before and after reversal by the program of Figure 8

Note that this program could operate on any well-formed XML structure, not just an SVG file.

As it only reverses the children of SVG elements, order is preserved and all information is

retained within elements in other spaces, so it could be used on an XSLT program that con-

tained, or generated, embedded SVG10.

The top-level structure of an XSLT program has some restrictions in terms of permitted ele-

ments in the XSLT namespace, and has mechanisms to link to other program files, define out-

put formats, encodings and so forth, as well as the set of templates and functions. Other ele-

ments in foreign namespaces are permitted at the top level of an XSLT (tree) program – as

we shall see later this is beneficial for activities such as documentation and testing.

8There will be exactly one if the input is legal XML.
9Whilst an attribute or a text() node will have no attributes, elements or text nodes of its own, it is not an error
to attempt to process them – the result of asking for them is a null sequence.
10Strictly it would need a little more: SVG children within an XSLT generator would need reversing (*[svg:*])
and xsl:variable elements embedded within svg:* need careful attention – for implementation reasons variable
definitions must precede their references.

 402.3 Prerequisites |

But most importantly, XSLT programs can be manipulated just like any other XML trees – there

is no problem ‘parsing’ an XSLT program in XSLT (it happens automatically on input) or

generating correct syntax output (XML serialisation takes care of that). This power can be used

either to analyse (such as documenting, constructing test harnesses, editing...) or to produce

new XSLT programs with different properties. It is this latter capability that has been used

extensively in the work described in this thesis. To handle the quoting problem (embedding

XSLT code that is intended to be written into the output), a namespace-alias declaration is

provided, defining a remapping of selected namespaces when a tree is being constructed, thus

enabling static fragments of generated code to be embedded in the program11.

2.3 Scalable Vector Graphics (SVG)

As we are eventually dealing with presentational material in graphical/pictorial form, we need

a representation, preferably in a fully XML format. Scalable Vector Graphics[119] was chosen

to represent all grounded layout. SVG was developed from 1999 after experience with oth-

er attempts at an XML graphics format[120]12. It derives its geometry model from the affine

user-space mappings of PostScript/PDF. Here we give a very brief overview of SVG, partic-

ularly as we have used it, and a couple of ‘proposed extensions’ that have been used, but are

currently not part of the main standard.

SVG is a fully XML-based declarative means of describing the drawing of material based on

vector, raster and textual graphics. The lowest level atoms are primitive drawing actions (rect,

line, path, ellipse etc.), image renditions (image) and textual strings (text, tspan). These prim-

itives have a comprehensive set of styling parameters (fill, stroke, stroke-width, arrows, align-

ment and so forth) and specific parameters related to positioning and sizing (x, y, width, height,

points..) that control the rendered appearance. Three other important parameters are possible:

transform which introduces an affine transformation of co-ordinate space between the part's

co-ordinates and that of the ‘parent’, clip-path which defines a ‘mask’ to be applied to the

rendering, and viewBox which provides a rectangular scaling window into the child's geomet-

ric context. The styling parameters can be attached directly to the elements or inherited from

11For continual documents this ability is essential, sometimes with triple or even quadruple levels of quoting.
12More active compiled programmatic/graphic technologies, most noticeably Flash, have recently eclipsed its take-
up. However its inclusion in HTML5, some potential halt to Flash development and the rise of the e-book where
the EPUB standard supports SVG for graphics [111] holds promise of a welcome renaissance .

W3C, World Wide Web Consortium
Scalable Vector Graphics (SVG) 1.1 Specification

W3C, World Wide Web Consortium
The Secret Origin of SVG

International Digital Publishing Forum
EPUB Content Documents 3.0

 412.3 Prerequisites |

parents in the XML tree (or even superposed by a set of CSS styling rules).

Figure 10 shows a simple example in source and rendered form. The outer layer contains a

pink rectangle and white ellipse which eclipses the background since being later in document

order it is also later in drawing order. This is followed by another group containing a yellow

square and two pieces of text, one of which is subjected to a scaling and rotation transform

– both text pieces are clipped by the edge of their parent group.

<svg:svg width="60" height="60" overflow="hidden">
 <svg:rect fill="pink" width="60" height="60"/>
 <svg:ellipse fill="white" stroke="red" cx="20" cy="20" rx="10" ry="5"/>
 <svg:svg x="20" y="20" width="30" height="30">
 <svg:rect fill="yellow" width="30" height="30"/>
 <svg:text font-family="Courier" font-weight="bold" font-size="6" x="
5" y="18">Some text</svg:text>
 <svg:text transform="scale(1.5) rotate(20)" font-family="Courier" font-
size="5" x="3" y="3">Rotated text</svg:text>
 </svg:svg>
</svg:svg>

Some text

Rotated text

Figure 10. An example of SVG graphics

These primitives are collected together in two types of grouping: g which provides a means

to apply common styling or transformation to a group of parts (which are obviously the chil-

dren of the g node) and svg, which is a translatable group which can have an explicit rect-

angular extent – by default this acts as a clip-path for the contents13.

There are models for resources in the form of color-space, gradient-fill and font which can

be attached to suitable parts (or groups thereof). There is also a model for reuse of sub-

components (defs, symbol and use) which allows (unparametrised) graphics to be defined

once and used in several places, subject to possible geometric transformation.

The text model used is simplistic and does not involve line-wrapping or smart-layout14 – text

manipulation is limited to defining alignment and anchoring, word and character spacing and

specific micro-positioning of text spans in block-absolute and predecessor-relative modes.

We chose to use the simple svg:pageSet and svg:page elements that were proposed in SVG

1.2 but never adopted, to represent pages in our paginated documents.

13The parts inside can extend outside this rectangle – ordinarily their display will just be clipped to this extent.
14At least in the standards of 2005-6. Later proposals are re-examining paragraph-style layouts.

 422.4 Prerequisites |

It is worth re-emphasising that SVG does not perform layout – a flow of pieces cannot be

defined in SVG such that an SVG renderer will line them up beneath each other automatically.

2.4 XPath

XPath[123] is an expressional language used to search within and derive results from an XML

tree. As such it is used by XSLT as the means to select nodes within an input XML tree and

define patterns against which nodes are matched.

An XPath expression used for search is evaluated at a context node within the tree and pro-

duces a result, assuming the expression is legal and the tree is valid. In the version used in

this thesis, XPath2.0, this result is a (possibly null) sequence of items, which can be a vari-

ety of atomic types – nodes within the tree, numbers, strings, booleans etc. The sequence is

flat, i.e. it cannot contain other sequences.

The expressions contain nine types of construct as well as three additional features suppor-

ted by XPath executing within XSLT:

Atomic constants: strings ('Chamonix') and numbers (-1, 2.34).

Paths to search through the XML tree from the context node, e.g. resort/pic[1]/@href which

returns all the href attributes of the first pictures of each resort that's a child of the cur-

rent context node or //footnote which returns every footnote node within the tree, even foot-

notes buried within footnotes15.

Predicates over sequences, e.g. resort/pic[@height ge 200] which filters out pictures that

don't have a height attribute or for which it is less than 200, or *[airport][time] choosing

child elements that themselves have both airport and time children (a non-null sequence

result is taken as boolean true for the predicate) or resort[name=('Chamonix','StAnton')]

which selects either of those resorts (= is nearly ‘set intersection’ based on values).16

Conjunctives on sequences: ,(comma) concatenate, | union (which preserves document

order) and bracketing controlling operator precedence. Thus (@height,150)[1] gives a

default value of 150 if a height is not defined for a piece17.

15By default // starts from the tree ‘root’ – .//footnote would only find those below the current context
16The value of an element node is the string concatenation of its text nodes and the values of any element nodes,
taken in document order and possibly cast to type if required.

W3C, World Wide Web Consortium
XML Path Language (XPath) 2.0

 432.4 Prerequisites |

Special ‘functions’ relating to the tree – position() yields the position of the context piece

amongst its siblings (starting at 1), last() gives the number of children the parent has18 and

root() is the root of the tree. element(), attribute() and text() match element, attribute and

text nodes of the current context. true() and false() yield constant boolean values.

Functions on node sequences or other items, e.g. count(../*) returning the number of chil-

dren of a node's parent or sum(subsequence(amount,2)) which yields the sum of all the

amount (children), cast to numbers, of the current node, except the first.

Arithmetic and similar expressions on items that are castable as numeric, e.g. @width *

@height which yields the area of a node from its presumed attributes, which will be cast

from string to numeric.

Conditionality, e.g. if(count(resort) gt 1) then 'resorts' else 'resort'.

Iterative maps and existential expressions using local variables, e.g. for $i in //image return

($i/@width * $i/@height) yielding a list of the areas of all images and some $i in //image

satisfies ($i/@width gt 200 or $i/@height gt 200) is true if there is a ‘large’ image.

XPath expressions within XSLT have a small number of extra functions to attach to res-

ults from XSLT instructions, noteably current-group() and current-grouping-key() access-

ing group partitioning and regex-group(n) used in regular expression analysis of strings.

XPath expressions within XSLT can make reference to user-defined functions from the main

XSLT program (ddfl:left-of($piece)) or extension functions added to the XSLT implement-

ation engine (pic:imageSize(@url) where pic: binds to some resolvable pointer, such as

a Java class java:com.hp.hpl.ddf.picFunctions).

Expressions within XSLT can contain variable interpolations ($main-body) which refer

to the binding of an XLST variable referenced by that name – scoping follows the XML

tree. For example //book[page-count=$max-pages] gives the books which have the largest

number of pages, assuming that earlier in the XSLT tree (and in scope) appeared <xsl:vari-

able name="max-pages" select="max(//book/page-count)"/>.

The most important of these constructs to understand is the path. A path is made of a sequence

17This construct appears remarkably often.
18Hence *[last()] being equivalent to *[position()=last()] yields the last child element

 442.4 Prerequisites |

of steps separated by the solidus (/). Each step starts from the current context node and searches

along one of thirteen possible axes – the main ones are child and descendant (working down

the tree from the context), parent and ancestor (working up), preceding and preceding-

sibling (working towards the document start) and following and following-sibling (towards

the end). attribute selects attributes of the node and self steps onto the context node itself.

In practice the vast majority of steps involve child, descendant or attribute. These can be

abbreviated, e.g. pic/@height is equivalent to child::pic/attribute::height and .//book is an

abbreviation of descendant::book.

At each step nodes are tested along the specified axis – element and attribute names19 can

have namespaces, usually indicated by a prefix – all matching the name are collected (* is

a wild-card). These are then subjected to any following predicate tests ([...]) which are

conjunctive20. All nodes that pass are then treated in sequence as the context node for the next

step, if any. The final set is then returned as the result of that path in document order.

Figure 11 is a simple XML tree with both element and tree nodes – most of the leaf nodes

have text values, shown in grey. The results of evaluating various XPath queries are also shown,

where the context node for each of them is the root of the tree.

.//picture

.//*[airport='YVR']

.//*[starts-with(normalize-space(.),'Easy’)]

brochure

company

name
Honest Joh

terms
Welcome to

contact
Email:hone

customer
Otis B. Dr

resort

flight

outbound

airline
EasyJet

no
EZ123

from

airport
LGW

time
2011/05/17

to

airport
YVR

time
2011/05/17

inbound

airline
EasyJet

no
EZ124

from

airport
YVR

time
2011/05/22

to

airport
LGW

time
2011/05/23

name
BackBowl

description
Nam libero

picture
cref://ima

picture
cref://ima

price
997

Figure 11. XPath requests from the root of an XML

But the context node can be within the tree and usually is in XSLT. Figure 12 shows quer-

ies evaluated from various buried context nodes – the context is outlined in grey.

19Legal names can include - (‘hyphen -minus’, U+002D) which is a bit disturbing at first.
20In practice the predicate tests can be compiled into the axis search.

 452.4 Prerequisites |

preceding::*[empty(*)]

following::*[empty(following-sibling::*)]

brochure

company

name
Honest Joh

terms
Welcome to

contact
Email:hone

customer
Otis B. Dr

resort

flight

outbound

airline
EasyJet

no
EZ123

from

airport
LGW

time
2011/05/17

to

airport
YVR

time
2011/05/17

inbound

airline
EasyJet

no
EZ124

from

airport
YVR

time
2011/05/22

to

airport
LGW

time
2011/05/23

name
BackBowl

description
Nam libero

picture
cref://ima

picture
cref://ima

price
997

Figure 12. XPath requests from context nodes within Figure 11

When an XPath expression is used as a pattern within XSLT, semantics are altered slightly.

The pattern can be union of patterns (|) and a sequence of steps match the last non-predicate

step. Thus a pattern image/@href | picture[@type='JPEG']/ref matches either a href attrib-

ute of an image element or the ref element that is a child of a picture element of JPEG type.

Figure 13 shows elements in the tree that would match certain patterns

to/airport

outbound//* inbound//*[(position() mod 2)=0]

brochure

company

name
Honest Joh

terms
Welcome to

contact
Email:hone

customer
Otis B. Dr

resort

flight

outbound

airline
EasyJet

no
EZ123

from

airport
LGW

time
2011/05/17

to

airport
YVR

time
2011/05/17

inbound

airline
EasyJet

no
EZ124

from

airport
YVR

time
2011/05/22

to

airport
LGW

time
2011/05/23

name
BackBowl

description
Nam libero

picture
cref://ima

picture
cref://ima

price
997

Figure 13. XSLT/XPath patterns matching in Figure 11

It should be apparent that some queries and patterns can be written in several different ways.

The patterns a/b and b[parent::a] are identical, as are the queries x/y[empty(preceding-

sibling::*|following-sibling::*)] and x[count(*)=1]/y (y is the only child of x). Practical XPath

implementations reduce expressions to a canonical form which can be compiled into efficient

code depending upon the use[19, 29].

Flesca, S., Furfaro, F. and Masciari, E.
On the minimization of XPath queries

Gottlob, G., Koch, C. and Pichler, R.
Efficient algorithms for processing XPath queries

 462.5 Prerequisites |

2.5 Miscellaneous

There are a number of other terms that will be used through the thesis that warrant some simple

explanation. They are:

URI – Uniform Resource Identifier: a string of characters used to identify a name or resource.

URI is used mostly here to define different namespaces (xmlns:jwL="johnlumley.net"

where johnlumley.net is the URI). A subset of URI is:

URL – Uniform Resource Locator: a ‘route’ to some resource, either in some relative form

(templates/thesis.ddf) or some absolute notation (file://C/thesis/templates/thesis.ddf). In

the latter case the URL starts with a scheme tag (e.g. http:) which a URI resolution agent

will use to decide how to decipher the rest of the ‘address’. Within DDF a specialist scheme

(cref:) is used for tracking relative resource references through document processing.

 473 Prior Art |

Chapter 3

Prior Art

Prior art in document definition, layout and processing is surveyed in this chapter,

with a specific bias to those automated approaches relevant to the construction

of variable-data documents. Work in functional programming specifically aimed

at document generation is also discussed. Effectively this is the relevant prior art

that is not directly from DDF: that is covered in Part B of the thesis.

Computer-assisted generation of documents has been a significant part of ‘software engineer-

ing’, especially since the desktop PC and desktop-publishing revolutionised the print/publish-

ing industry in the mid 1980s. Some foundations were laid in academia in the 1970s (type-

setting etc.) but significant progress in the later 1980s/early 1990s centered on standardisa-

tion (Open Document Architecture[110]) and the Web. The Web actually shifted focus away

from formalisation and print for some years, as many scrambled to join the ‘gold-rush’ – we

still see significant remnants of this in the conflicts between HTML versions, extensions and

the ‘browser wars’.

We start by discussing general document processing ideas together with editing, then exam-

ine approaches to separating presentation from content and the role of logical structure. Doc-

ument formats are intricately tied up with models for their layout, which will have implica-

tions for variable documents – both semantic and syntactic approaches are reviewed. Tech-

niques for describing variable data documents are surveyed, both in representation of variab-

ISO, International Standards Organisation
Open Document Architecture

 483.1 Prior Art |

ility and implications for possible processing. The XSL family is the most important of these

for this thesis and its origins are described. Editing and authoring variable documents is more

tricky than for static ones and several methods for this will be outlined.

Techniques of document generation using functional programming are then reviewed. As will

become apparent later in the thesis, partial evaluation of documents is important, both for

performance and to support more complex document activity – relevant prior art in this area

is discussed and completes the review.

3.1 Document processors, editors and processes

Early systems for document preparation were built as standalone processors that took some

source input (with modest contained ‘markup’) and generated some ‘print-ready’ output. Whilst

somewhat old (1992), Furuta's review of document preparation systems[20] is still relevant

to study of this prior art. The markup was often ad hoc and concentrated on paragraph and

line boundaries, limited fonting and so forth. The output for the printer was typically a stream

of content interspersed with suitable control characters to control micro-spacing. The ‘source

documents’ were usually edited with a general purpose editor, i.e. treated as a uniform file

of lines of characters.

These standalone processing systems developed, mainly through academic needs, in two dir-

ections: increasing functionality and extensions into specialist document domains, and attach-

ment to more sophisticated printing facilities. The former is typified by the development of

Scribe[87], Troff[48] and TeX[51] as de facto standard markups coupled with the development

of extensive suites of ‘add-ons’ and ‘front-ends’ to support specialist application needs such

as mathematical printing and complex tables. (Troff had a built-in macro system enabling such

extensions, TeX used front-ends such as LaTeX[55] which exploited its macros, traps and diver-

sions very extensively.)

At the same time computer-controlled photo-typesetters and especially the laser printer, gave

a much richer output ‘palette’ and specialist formats developed, most notably Postscript[109]

and then subsequently PDF[108]. Each had a rendering model for a set of pages based on affine

geometries, clipping, colour spaces and gradients, primitive shapes and text placement, enabling

very fine-grain image creation, down to the pixel level. Whilst Postscript was a reverse-Polish

stack-based programming language, and thus capable of considerable self-extension, it was

Furuta, R.
Important papers in the history of document preparation systems: basic sources

Reid, B. Carnegie-Mellon University, Pittsburgh PA
Scribe: A Document Specification Language and its Compiler

Kernighan, B.
A TROFF Tutorial, Unix Version 7 manual

Knuth, D.
TeX - the program

Lamport, L.
LaTeX: A Document Preparation System (2nd Edition)

Adobe Systems Incorporated.
PostScript language tutorial and cookbook

Adobe Systems Incorporated
PDF Reference version 1.6, 5th Edition

 493.2 Prior Art |

replaced increasingly by PDF, in part for reasons of security and determinism, and later because

of the increasing take-up and investment in PDF itself.

The advent of the personal computer and high-resolution windowed displays opened the pos-

sibility for document editors to work in WYSIWYG modes, typified by MSWord and Frame-

maker so the document format became internal and proprietary to the tool, but ‘unskilled’ edit-

ing could produce semi-professional results. Higher-end versions, such as InDesign, concen-

trated on desktop-publishing, where the models for layout were more complex and much finer

control was available to the author/editor. PDF became a de facto interface between the doc-

ument as completed by the editing tool and external commercial printers for professional pub-

lications.

In parallel, commercial use of document generation processes developed, both in transaction-

al situations (e.g. account summaries, bank and utility statements) and in direct marketing. The

volumes involved are considerable and until the advent of the digital press printing solutions

were typically a hybrid of offset for background and ‘constant’ material, coupled with laser

or ink-jet for ‘variable’. Variable data models are usually confined to placing text (and some-

times images) into blank ‘copy-holes’.

Such large scale systems need careful attention to document breakdown and the role of the

document in the business process – Glushko & McGrath[27] discuss some of the ‘infomat-

ics’ issues involved. The rest of the thesis generally ignores the business process context and

concentrate on document definition, editing and evaluation.

Technologies for the document generation tools can vary from specific application programs

to generic systems using a suite of intermediate document formats and standardised processing

tools. It is the latter that is my main focus for variable document generation.

3.2 Separating data and presentation; logical structure

Separating presentation and style from data and content has been a significant goal of doc-

ument engineers from the earliest use of computers in document generation. It offers the pos-

sibility of significantly increased and robust reuse of document components and styles. The

volume by André et al[2] raises many of the issues being investigated just pre-Web.

Presentational models for documents, such as PDF, are principally concerned with describ-

Glushko, R. and McGrath, T.
Document Engineering: Analyzing and Designing Documents for Business Informatics and Web Services

André, J., Furuta, R. and Quint, V.
Structured Documents

 503.2 Prior Art |

ing how to draw the resulting document, potentially in very great detail, as the PDF model

of primitives, text, patterns, masking, transformation, transparency and colour spaces shows.

It may contain other mechanisms such as grouping, forms, hyper-linking and alternative rep-

resentations that together make the document richer in final interaction (for example being able

to copy long meaningful sequences of text from such a document) but it doesn't inherently

describe any of the structure of the document – something that makes reuse of parts of such

documents easier1.

Developing a model of logical structure for a document introduces some types of common

vocabulary for ideas and concepts, such as grouping, sequence, hierarchical containment and

detailing, similarity of meaning and so forth.

With a suitable model for structure it is possible to consider generation of an eventual present-

ation for a document as a mapping from this description into graphics, either directly, or via

some propertied model (e.g. nested tables) or by generation of a presentation declaration (flows,

packings, sub-assemblies etc.) that then will be interpreted to a final presentation. Changing

the mappings can be a route to adaptation (for example between different media, or to dif-

fering end-user preferences); extraction of self-contained subsections of the structure can sup-

port reuse.

These models for logical structure have tended to focus on tree-based descriptions, where ‘con-

tainment’ of one part of structure completely within another is meaningful and natural (and

emphasises grouping), though it can be argued that documents that quote highly from others

(e.g. review material) often break this[81]. Such models, given their tree nature, are now con-

veniently described in XML notations, with ‘minor’ referential mechanisms to ‘link across the

tree’. A few have developed significantly enough to be regarded as standards: DocBook for

book-like publications and XHTML for web pages.

DocBook

DocBook[130] is an XML logical format intended for book-like material which was origin-

ally developed as a specialisation of SGML. There has been much recent work on extensive

use of XSLT with DocBook[92].

1Disciplined use of grouping constructs can make it possible to build a PDF with more readily reusable compon-
ents – see Bagley[7] .

Peroni, S. and Vitali, F.
Annotations with EARMARK for arbitrary, overlapping and out-of order markup

Walsh, N. and Muellner, L.
DocBook: The Definitive Guide

Stayton, B.
DocBook XSL: The Complete Guide

Bagley, S., Brailsford, D. and Hardy, M.
Creating reusable well-structured PDF as a sequence of component object graphic (COG) elements

 513.2 Prior Art |

DocBook works its way down from a description of a set of books, through book, part, art-

icle, chapter, and section with metadata components such as title, down to block-level ele-

ments such as para, table and list and inline elements, such as emphasis, mathphrase and

hyperlink. Elements for linking and cross-referencing (link, xref) are defined, with a variety

of models for resolution of the reference into a textual form. Bibliographic references are sup-

ported by citation and a family of suitable structures, though it prescribes no particular formats.

Permitted elements are designed to support suitable presentations. For example section ele-

ments (which are recursively nestable) can be preceded by block-level elements (para etc.)

but not followed by such. The rationale is that whilst it is possible with general mechanisms,

such as headings, to clue a move into a deeper level when reading in ‘document order’, is it

not possible to clue a move back out into the parent level, unless the document uses strict

indentation.

XHTML

XHTML [121] developed as an attempt at rationalisation of the HTML[118] ‘soup’ of the late

1990s, and a desire to build an XML-compliant version of the base of the Web. It has had

mixed success, HTML4 being rather deeply entrenched, but for our purposes it provides a suit-

able set of approximate semantics to act as a logical format for report-like documents. It

describes a single web page, split into a meta-data section (head) and content (body). Recent

developments in e-book technologies and standards have rekindled interest in the use of

XHTML: it is one of the possible internal formats in the EPUB standard[111].

Content includes primitive blocks (p, li, img...), inline modifications (em, br) and links (a).

Grouping structures include section (which can nest and implies hierarchy), div and span

which group for similar properties outside and inside primitives respectively, table for tab-

ular arrangements and ul, ol and dl supporting different types of lists, sequences or sets.

Simple stylistic models are defined for the primitives in layout (border, padding, margins), col-

our and fonting (family, size, weight, text-alignment etc.) Coupled with a model of hierarch-

ical inheritance of properties and an external styling mechanism (CSS or XSLT), it provides

a default mapping into presentation, but need not necessarily be considered constrained by that.

W3C, World Wide Web Consortium
XHTML™ 2.0

W3C, World Wide Web Consortium
HTML 4.01 Specification

International Digital Publishing Forum
EPUB Content Documents 3.0

 523.3 Prior Art |

3.3 Document layout

Generated and edited documents need layout – arranging the elements in appropriate sequences

and groupings, so that both the message can be perceived clearly and styling requirements are

satisfied. We can discriminate between three aspects of such layout:

What the basic model of layout is, e.g. absolute placement, paragraph filling, columnar and

pages, tables, declared constraints and so forth ?

How the layout can be resolved – what algorithms are suitable, are they convergent, robust

and stable, are dependencies cyclic, are results deterministic, are results required to be optim-

al or just ‘satisfactory'?

How are layout requirements represented in the document or associated styling?

There is extensive prior art in the geometric construction of documents, particularly around

text-based layout. For a comprehensive recent survey of the field, the reader is referred to the

excellent review of automated document formatting by Hurst et al[38].

Text is usually the predominant item requiring layout, almost always in a rectangular para-

graph style. This requires attention to internal detail (micro-typography is a good term from

Hurst), preserving suitable density, appropriate line-breaking and the avoidance of indesiderata

such as ‘rivers of whitespace’. Early work such as Troff[48] took a ‘first-fit’ approach, with

limited two-line examination. The critical work on this is Knuth-Plass[52] which treats a para-

graph as a single optimisation entity, solved with dynamic programming, using penalties for

word-breaking, repeated hyphenation, inter-word spacing and repeated vertical whitespace.

Non-rectangular text containers complicate the issue a little, requiring available line width to

be calculated – with mixed-size fonts the interactions become non-linear and possibly non-

monotonic[40]. The character edge shapes (A vs. W) become significant with large font sizes

and strongly sloping borders. In extreme cases text containers can be multi-regioned, with com-

plex connectivity (such as embedded object images with close-around flow) – da Silva et al

[91] show techniques within the context of XSL-FO2.

2XSL-FO is described in section 3.5

Hurst, N., Li, W. and Mariott, K.
Review of Automatic Document Formatting

Kernighan, B.
A TROFF Tutorial, Unix Version 7 manual

Knuth, D. and Plass, M.
Breaking paragraphs into lines

Hurst, N., Marriott, K. and Moulder, P.
Minimum sized text containment shapes

Silva, A. et al.
Support for arbitrary regions in XSL-FO

 533.3 Prior Art |

Layout models and solution methods

At the level above text, simple geometric primitives and images, pieces have to be laid out,

usually in pages. There are a wide variety of possible models, from simple absolute position-

ing to packing, hierarchical composition and flow-based arrangements. In the most general sense

there is a large network of constraints: on pieces themselves (usually relationships between

width and height) and between pieces, sub-assemblies and the publication context itself, e.g.

page size. Such constraints can be of many types, mostly numeric relationships, but they might

range in complexity from simple linear forms to non-linear and discrete. And given the pos-

sible sizes of the constraint networks, approaches to solutions are critical for any practical use.

The two main models involved are paginated flow systems, where mostly text content is flowed

into a series of fixed-size containers within page templates, and hierarchically composed

arrangements of components and sub-assemblies, usually considered as rectangular regions.

Flow systems generally have a simple deterministic model and solution algorithms, with suc-

cessive items of content being generated for the ‘next place’ in the flow and then added by

parts (lines). Other minor features (footnotes, floats, marginalia and so forth) add a little to

the complexity3, with some non-deterministic corner cases, such as a footnote denying space

for its associated paragraph, requiring specialist treatment. Multiple intertwining flows that are

often found in magazines and web pages can also be problematic – Giannetti [24] investig-

ates approaches using the XSL-FO model with flow mappings.

Hierarchical composition is more challenging and typical of less text-centric documents, such

as marketing material and brochures or even some esoteric magazines. Groups of primitive

components and compound subgroups are arranged in relative dimensional positions and main-

tain these during translation, rotation and to varied extents, scaling.

A critical distinction is whether these arrangements are imposed by imperative actions at design

time (align, distribute etc.) or actively maintained for a document by the environment satis-

fying declarative requirements. Most authoring systems support such imperative actions on

a set of pieces within a group or even on arbitrary sets of pieces across groups, but very few

maintain the relationship thereafter, which will be vital if some of the components are data-

dependent in size, such as variable text or images with varied aspect ratios.

3As long as the floats appear within the text column – when the floating (picture) is able to influence the columns
themselves it becomes much more complex – problems that have been investigated by Marriott, Hurst et al [37, 72]

Giannetti, F.
Paginate dynamic and web content

Hurst, N. and Marriott, K.
Satisficing scrolls: a shortcut to satisfactory layout

Marriott, K., Moulder, P. and Hurst, N.
Automatic float placement in multi-column documents

 543.3 Prior Art |

It is interesting that the construction of graphical user interfaces (GUI) within programs typ-

ically has such declarative support for nested groups of widgets (text entries, check boxes, labels

etc.) – as items expand and contract or change visibility due to user interaction or other change

of state, the layout is continually recomputed to meet the declared constraints. Generally the

definition of such constraints is either built programmatically with library support or with spe-

cialist editors that prepare such programs, though layout grammars[53] have been explored

to provide a firm foundation. Similar mechanisms are crucial in computer-aided geometric

design tools. In multimedia and hypertext there have been experiments on deduction of con-

straints between display items from rhetorical structures such as sequencing[89].

Commercial systems such as Dialogue[103] use a nestable set of ‘containers’ to support such

composition, with text containers linkable through named flows. Others such as InDesign[98]

and QuarkXPress[107] using grouping of primitives, text containers and sub-groups, with much

emphasis on extensive design-time support, such as grid, alignment and distribution actions.

In print publications, page boundaries are hard outer constraints and often layout involves some

‘packing’ of sub-assemblies. In cases where there are several possible page layout topologies

then a linked problem becomes the choice of which layout to use for the ‘next’ set of con-

tent. Searching for a solution for the chosen layout can involve many techniques, broadly split

into continuous and discrete methods and hybrid uses, employing the topologies for boundaries.

Tables provide a significant set of challenges to layout, being a multi-connected set of indi-

vidual problems, coupled with global constraints and stylistic demands. In general the prob-

lem is NP-hard, but there have been several recent examinations of heuristic optimisation tech-

niques[41] as well as investigations on benchmark optimal solutions [22]. Many higher-level

approaches attempt to reduce to a canonical tabular form and use a generic approach to solve

such as in Feiner[17]. Similarly, in layout of text where paragraph width is itself a variable

(e.g. a paragraph-and-image spanning a column horizontally), the non-linear (and discrete)

nature of the text box dimensions requires different solution techniques[36, 57].

Other approaches have been examined based on different search techniques and optimization

criteria. Grid-based layouts have benefits for text-dense documents with high rectangularity

such as newspapers: Jacobs et al[42] is an example which chooses between a variety of grid-

ded templates; automated construction of yellow-page directories has also stimulated much

research[30] and even commercial products.

Kong, J., Zhang, K. and Zeng, X.
Spatial graph grammars for graphical user interfaces

Rutledge, L. et al.
Generating presentation constraints from rhetorical structure

HPExstream
Dialogue

Adobe
Adobe InDesign

Quark
QuarkXPress

Hurst, N., Marriott, K. and Moulder, P.
Toward tighter tables

Gange, G. et al.
Optimal automatic table layout

Feiner, K.
A grid-based approach to automating display layout

Hurst, N. and Marriott, K.
Approximating text by its area

Lin, X.
Active layout engine: Algorithms and applications in variable data printing

Jacobs, C. et al.
Adaptive Grid-Based Document Layout

Graf, H., Neurohr, S. and Goebel, R.
YPPS---A constraint-based tool for the pagination of yellow-page directories

 553.3 Prior Art |

Æsthetic measures such as alignments, size similarities and symmetries have been explored

by several investigators[9, 32, 84]. Non-deterministic and stochastic methods such as simu-

lated annealing and genetic algorithms have been used, often with a guillotine-tree partitioned

page structure[28], or using a physical force analogy [82], or ‘weight maps’ [58] or a probab-

ilistic model with training sets [13].

At an even more abstract level it is possible to define a document's layout in an under-constrained

manner and use a variety of search techniques. di Iorio et al[15] showed how ‘topological’

views of layout (similarity, order, grouping, etc.) can be described in a DDF document and

evaluated by higher level searching.

Designing a layout so that it expresses the document's structure clearly has similarities with

the inverse problem, i.e. document understanding from OCR results – Harrington et al[33]

discuss the types of layout components (whitespace, group alignment etc.) which can act as

effective clues to the document structure and thus form part of objective functions for searches.

Differential layout of documents is usually concerned with adaptation to changes in the dis-

play environment, usually in terms of page size. In modest cases (A4 vs. Letter page size) pre-

servation of document topology can be successful by altering whitespace margins and possibly

extending and repeating patterns, derived from a surface level analysis of the document[11,

12]. More radical changes will require operating from the document's logical structure, either

explicitly described or inferred from context – some of the inference techniques are simil-

ar to generating a template document from an instance. Most work has typically been on ‘reduc-

tion’ (for mobile devices) but some recent work examines the problem when display space

increases substantially [75].

Representations

The model for layout has to be represented explicitly or implicitly in the document or some

associated ‘styling’ declaration attached. Typically this is defined by the syntax of the rep-

resentation, which in the case of open XML-based formats means elements in reserved

namespaces defining conditions or constraints, with properties usually attached as attributes,

and objects of these conditions usually as child trees of the element. This is the approach used

in XSL-FO and DDF.

An alternative is to split the layout between the document and some associated styling resources

Balinsky, H. and Pilu, M.
Evaluating interface aesthetics: a measure of symmetry

Harrington, S. et al.
Aesthetic measures for automated document layout

Purvis, L. et al.
Document formatting: Creating personalized documents: an optimization approach

Goldenberg, E.
Automatic layout of variable-content print data

Piccoli, R. et al.
A novel physics-based interaction model for free document layout

Lok, S., Feiner, S. and Ngai, G.
Evaluation of visual balance for automated layout

Damera-Venkata, N., Bento, J. and O'Brien-Strain, E.
Probabilistic document model for automated document composition

Di Iorio, A. et al.
Higher Level Layout through Topological Abstraction

Harrington, S. et al.
Expression of document structure in automatic layout

Chao, H., Gabbur, P. and Wiley, A.
Preserving the aesthetics during non-fixed aspect ratio scaling of the digital border

Chao, H., Zhang, X. and Tretter, D.
Structured layout for resizable background art

Nebeling, M. et al.
Adaptive layout template for effective web content presentation in large-screen contexts

 563.3 Prior Art |

such as in the use of CSS. In this case the document contains the ‘semantics’ of the layout

or structure (e.g. h is considered to be a text heading, section is a collection of grouped con-

tent) and the stylesheet controls the parameters and properties for certain of those layouts.

Cascading Style Sheets (CSS)[115] was originally proposed in the mid 1990s as a means of

declaratively separating style from content mainly on HTML. It is described as a series of rules

which match elements in the document object model (DOM) with simple patterns and ‘classes’

– this is a much simpler match system than XPath patterns used in XSLT. The results of the

matches describe stylistic properties of that element (font, colour, borders and other decora-

tion) as well as minor decorative additions (e.g. numbering sequences, preludes and postludes)

cascaded with others from earlier matches.

CSS's layout model is particularly sparse, being limited to defining sizes within flows (mostly

width in absolute, relative and parent-proportional measures), some absolute positioning and

defining pieces as floating, but it lacks any expressional capability – hence interdependent

layouts that might be expected in highly-variable documents require external processing. How-

ever it does encourage separation of presentation (style) from content and can support differ-

ent page layouts (e.g. sizing) by replacement of the stylesheet. Recent proposals within CSS3

[114] address control of layout with ‘template-based’ positioning (rather than absolute) with

named target areas (‘slots’) aligned usually in rows and columns and layout policies as prop-

erties of CSS rules, which describe which template slot a given element should be placed with-

in. As such this gives a declarative ‘content routing’ effect that in XSLT would be handled

by selective expressions or as series of ‘push’ mode templates.

An alternative is to ‘overload’ an existing graphical representation with a computational net-

work that can be triggered on external state changes (which can include the passage of time)

and recomputes properties (sizes, positions, even visibility) of the representation with con-

sequential changes to the display. SVG is a very suitable candidate for this and there have been

several experiments on active graphical SVG. An integrated system of linear inequality con-

straints was added to an SVG framework by Badros et al[3]4. Numerical properties (attrib-

utes) of SVG primitive and group elements could be replaced by named variables and a series

of declarative expression constraints (equalities and inequalities) included which related these

variables and a series of implicit ones (e.g. rectA.width). The constraints could be prioritised

(effectively into four numeric spaces for weighting the error penalty for failing a constraint

W3C, World Wide Web Consortium
Cascading Style Sheets, Level 1

W3C, World Wide Web Consortium
CSS Template Layout Module

Badros, G. et al.
A constraint extension to scalable vector graphics

 573.3 Prior Art |

– each space acted as an ‘infinity’ for the space at next lower priority) and the solver had

the benefit of always returning an answer. Whilst the solver was efficient (employing mod-

ified Simplex techniques), capable of handling large networks of constraints, and able to per-

form incremental re-computation after external perturbation, the constraints were strictly lin-

ear, which doesn't suit the width-height relationship for text.

A simpler acyclic series of constraint relationships was developed by McCormack et al[74],

in a manner similar to that of King on SMIL (see section 3.7) – scalar attributes denoting

properties, especially numeric ones, can be replaced by evaluable expressions. These relation-

ships can be non-linear, but must be acyclic. Pre-compilers convert these expressions into a

network of dependencies and thence into a JavaScript program with callbacks attached to

‘context-modifying events’ such as window resizing or mouse-dragging. This has the advant-

age that only the properties that must be altered as a consequence of the event are actually

changed. Macdonald et al[69] is similar, using ‘component’ SVG with JavaScript manipulation.

Other graphical representations can be susceptible to the same approach of separating inde-

pendent components. Personalised Print Markup Language (PPML)[113] is designed to describe

re-usable ‘objects’ for printing purposes. The objects are compound constructions of graph-

ical pieces (images, PDF pages, SVG graphics etc.) that can be subjected to affine transform-

ations and masking. Documents and sets of documents can be described as combinations of

these objects (subject only to translation – thus rendered pixel-maps can be cached and reused

without loss of any print quality). Bagley and Brailsford [6] used this representation as a ‘link-

editing script’ for document construction – positional results of layout are encoded in the PPML

‘top-level’, using the predefined components.

This approach has been extended to PDF documents when they are ‘componented’ – arranged

in self-contained parts (termed COGs). Bagley, Ollis and Brailsford [5, 7, 8, 79] have used

this to support building an effective PDF editor, which is the first stage in providing facilit-

ies for automatic layout. Pinkney et al[83] explore re-flowing content in this system.

4The constraint solver used, Cassowary, was the one used within DDF.

McCormack, C., Marriott, K. and Meyer, B.
Adaptive layout using one-way constraints in SVG

Macdonald, A., Brailsford, D. and Bagley, S.
Encapsulating and manipulating component object graphics (COGs) using SVG

PODi, Print On Demand Initiative
Personalized Print Markup Language (PPML) Version 2.0

Bagley, S. and Brailsford, D.
Page composition using PPML as a link-editing script

Bagley, S.
COG Extractor

Bagley, S., Brailsford, D. and Hardy, M.
Creating reusable well-structured PDF as a sequence of component object graphic (COG) elements

Bagley, S., Brailsford, D. and Ollis, J.
Extracting reusable document components for variable data printing

Ollis, J., Bagley, S. and Brailsford, D.
Tracking sub-page components in document workflows

Pinkney, A., Bagley, S. and Brailsford, D.
Reflowable Documents Composed from Pre-rendered Atomic Components

 583.4 Prior Art |

3.4 Variable documents

Most architectures for documents are designed either as a human-editable form closely linked

to the editing tool (MSWord, OpenOffice, RTF, Framemaker, InDesign, QuarkXPress ...) or

as a markup intended to be edited directly by experts or generated as output from other doc-

umenting tools (TeX, Scribe, HTML ...) When the requirement is to generate a large set of

variable documents from some data set automatically, there are two general approaches using

such architectures:

The architecture/tool may have a number of reserved forms for interpolating data into the res-

ulting document. The most common is used for applications similar to mail-merge: manual

editing adds interpolating fields that relate to named or positional elements from records in

a dataset, each record corresponding to a separate document. These fields are represented in

similar way to other ‘system’ variables, such as current date or author information. When the

document is ‘printed’ from the tool, data (almost invariably text) is interpolated from the record

in the dataset and then treated like any other static element.

The data model employed is usually simple – either a regular constant record (e.g. comma-

separated variables), or some well-known standard query into a database, this being especially

true for mail-merge where contacts are usually extracted from a mail system. There are often

limited boolean guards or simple expressions that enable conditional or compound data inter-

polation and some support of data-conditional inclusion attached to ‘sections’ in the document.

(Cases where the data being interpolated involves formatted content can be much more com-

plex to deal with and can only be successful when the content being imported is in an import-

able format of the document, or more usually the same format as the document itself.)

Alternatively an application is specially constructed to generate markup from data sources, the

resulting documents being passed to a final processor to generate ‘readable’ publications. Such

is typical of many Web-based server-side variable document systems and transactional applic-

ations (e.g. account statements.) The response to data can be very precise, but the adaptabil-

ity is low – changing the document requires skilful alteration of code.

The design problem with architectures for variable documents is to choose something between

these two extremes – high precision and good adaptability and reuse. The first can be sat-

isfied with a combination of either a markup language or document format that has a wide

 593.5 Prior Art |

variety of features, which behave in predictable ways, along with a suitable comprehensive

model for response to data variability. For example, we should be able to respond to a vari-

able number of ‘special offers’ on a product by altering the layout dependent upon that num-

ber – this requires some coupling between the data structure and the presentational declaration.

Adaptability and reuse requires some arrangement of a template, or intermediate language, or

document format, that deliberately emphasises a document ‘in parts’ and can capture both the

declaration of layout and the response to data variability. Alterations can then be confined to

operating on the template itself; reuse comes from being able to combine templates and parts

thereof together in predictable ways.

Disregarding the specially-written applications, there are three main methods to achieve this:

i) overload a static document tool with these interpolating features and some repetitive gen-

erator mechanism – effectively the mail-merge solution, ii) build a custom system that is

designed from the start for generation from data-sets (as used by Dialogue), or iii) develop

an architecture of models, standards and implementations from which suitable tools can be built.

For this thesis the latter is the approach taken and standards of the XSL family are worthy

of specific study.

3.5 XSL, XSL-FO and XSLT

After the Web had started to show some of its potential in the mid 1990s, it became appar-

ent that HTML had insufficient flexibility to handle expected future needs in a number of areas

including presentation and layout (CSS was several years in the future). A number of semi-

proprietary de facto extensions to HTML started to appear, aligned with particular browsers

and many Web designs used specific direct styling (e.g. setting fonts) to achieve required res-

ults. All this began to ‘undo’ notions of separation of (logical) content from presentation that

the SGML roots of the Web tried to emphasise.

The formation of the World-Wide Web Consortium (W3C) began the process of building a

series of well-defined consensus standards in the field, starting with the development of the

Extensible Markup Language (XML) as the base syntax layer for a lot of other standards. On

top of this one of the ‘compounds’ being developed was the Extensible Stylesheet Language

XSL[117], describing detailed document formatting based on a rectangular area model and with

a programmatic component for the generation of documents from potentially variable data. The

W3C, World Wide Web Consortium
Extensible Stylesheet Language (XSL)

 603.5 Prior Art |

intention was that the stylesheet could be loaded into a browser, along with appropriate data,

and the browser could then produce appropriate imagery, thus helping re-establish separation

of data and presentation, encouraging standardisation whilst still supporting finer granularity

and controllable presentation.

XSL's formatting model was based on supporting both scrollable and paginated documents

defined in terms of ‘page-master’ objects that contained regions and columns to be filled from

content streams. These content streams involve hierarchical blocks of bound textual and image

content, with properties described as attributes on their XML representation. A lot of work

went in to defining a model that could accommodate detailed text formatting (font position-

ing, text decoration, diacritical marks and other micro-typography) and a wide variety of

languages5. This section was termed Formatting Objects.

The variability in a document was supported by another orthogonal near-functional program-

ming language Transformations that had no side-effects, operated in both pattern-driven (push)

and explicit (pull) modes, used a subsidiary language XPath to search within XML data, and

was represented in XML in a separate namespace to that of the formatting. Since the two parts

could be mixed almost arbitrarily in the XML tree, a wide variety of variable documents could

be constructed – the transformation code responds to the XML data and generates format-

ting code that is eventually evaluated to produce final results with bound geometry, such as

in PDF, Postscript or image formats.

By the time the standard reached the ‘Version 1.1’ stage it was clear that the two languages

were sufficiently orthogonal that each could stand alone successfully. The formatting became

known as XSL-FO and the transformation as XSLT. XSL-FO has developed gradually adding

features such as non-rectangular text areas, but has not really been greatly successful. The format

was not intended for direct document authoring, but rather as a ‘standard’ output form for oth-

er authoring tools which could then be used to generate sequences of final documents. It has

also been used as one of the content types for PPML.

As XSLT was capable of operating on, and generating, arbitrary XML structures, not just that

of formatting objects, it started to be used as a server-side XML® XML transformation tool

and subsequently moved to a 2.0 version (with single-assignment variables, static and dynam-

ic typing, user-defined functions, etc.) A final 3.0 version will make it a full functional lan-

5Not only L®R and R®L but vertical styles and mixed styles (e.g. L®R quoted in a R®L language)

 613.6 Prior Art |

guage in XML syntax, when functions can be treated as entities (and generated on the fly, unlike

in many FP languages where they must be defined at compile-time) as well as having fea-

tures to support streaming (i.e. infinite i/o) processing.

There is a complementary technology XQuery[126] developed alongside XSLT, principally

intended for making queries over large-scale sets of XML documents or databases. It shares

the use of XPath and can also generate XML output. It is functional as well but does not sup-

port template-driven processing and its syntax is not in XML but closer to a typical function-

al language (for $act in doc("hamlet.xml")//ACT let $speakers := distinct-values

($act//SPEAKER) return....). Whilst there are many similarities and parallels with function-

al programming, this thesis does not employ this technology.

For several reasons6 the goal of XSLT sitting inside the browser wasn't achieved and both XSL-

FO and XSLT are mostly executed by standalone processes. Kay has recently started a fresh

attempt, utilising the increasing power of JavaScript within current browsers[46] to make

browser-implemented XSLT possible, without the need for any disturbance of the platform.

3.6 Variable document editing

Whilst the separation of content and structure from presentation offers engineering advantages

as suggested, especially in reuse, there is a major problem in how such documents are edited.

The preference is to carry out such authoring and alteration in the ‘presentation space’ rather

than in ‘definitional code’ – e.g. WYSIWYG rather than coding LaTeX. This problem has

been a thorny issue for many years – Roisin & Vatton[88] examined how this might be achieved

in experimental systems for ‘static’ documents in the early 1990s. With variable-data docu-

ments this becomes even more tricky as by their very nature the documents are variable – sec-

tions might vary significantly from document instance to instance and how this is described

and edited in final presentation is a challenge. There could be two sorts of editing from the

final visual presentation of a document instance – altering the specific data, such as chan-

ging the customer's name, or more usually, altering the appearance of the layout or some of

the static content of the document. When the layout can be highly programmatic this can be

akin to altering a program by operating on the results of the execution of that program.

6There was a chicken-and-egg situation requiring both XSLT content and browser functionality whilst the browser
wars proceeded, though interestingly Microsoft was the one group that rapidly built and deployed XSLT1.0 func-
tionality in Internet Explorer even before the standard was completed.

W3C, World Wide Web Consortium
XQuery 1.0: An XML Query Language (Second Edition)

Kay, M.
XSLT in the Browser

Roisin, C. and Vatton, I.
Merging logical and physical structures in documents

 623.6 Prior Art |

The most common user-controlled variable-data documents are probably those used for ‘mail

merge’ in word processors like MSWord, which was discussed briefly earlier. In this case the

template is created with reserved structures (often with specialist field codes) to indicate the

presence of a variable interpolation point and how the value of the variable should be inter-

polated. Typically this is then processed using a ‘wizard’ to complete the mapping process

and project the output data. These variables are usually only interpolating text, which means

the styling is taken from the text in which the reference is written, and the layout (usually a

text-flow) is again taken from the context. These wizards might be third-party plug-ins such

as CatBase[102] for the InDesign class of desktop publishers.

Recent developments in variable data publishing technologies have introduced a small num-

ber of products that support a more general solution. Pageflex[101] provides standalone and

Web-deployed tools for editing presentation material in a grounded-layout and text-flow copy-

hole model, with support for editing configuration and a suite of tools. DialogueLive[104] sup-

ports role-based editing of document instances against a computed variable document mod-

el, which is extensible.

Quint discusses the use of structured editing in XML[86], where DTD-driven constructor pro-

grams are created on a data instance within the Amaya editor. He and his colleagues also

approach editing documents where the stylistic and to some extent layout appearance of the

document is defined in a separate CSS stylesheet[85]. In this case the CSS stylesheet is ana-

lysed to produce an inversion map, to discover which part styled a particular result element.

When the document processing is performed by XSLT, theoretical studies of optimized, incre-

mental and reversible XSLT execution are relevant. Several studies [16, 47] consider optim-

ization by static analysis to eliminate dynamic (runtime) search and generating lazy XML pars-

ing – some of these techniques have made their way into practical compilers. Noga, Schott

& Löwe [76, 90] use representations of the XML trees that are deliberately designed for lazy

processing, showing how an XSLT interpreter can make effective use of it when only access-

ing few parts of the tree (e.g. creating a top-level outline).

Villard & Layaïda [94] describe an approach to incremental processing which recomputes only

those sections of output that need to be recomputed from changes to source or transforma-

tion. An execution flow tree structure could perhaps be used to trace back from the output

to causal points in source document or transformational template and thus support template

CatBase
CatBase database publishing

Bitstream Inc.
Pageflex

HPExstream
DialogueLive

Quint, V. and Vatton, I.
Techniques for authoring complex XML documents

Quint, V. and Vatton, I.
Editing with Style

Dong, C. and Bailey, J.
Static analysis of XSLT programs

Kenji, M. and Hiroyuki, S.
Static optimization of XSLT stylesheets: template instantiation optimization and lazy XML parsing

Noga, M., Schott, S. and Löwe, W.
Lazy XML processing

Schott, S. and Noga, M.
Lazy XSL transformations

Villard, L. and Layaïda, N.
An Incremental XSLT Transformation Processor for XML Document Manipulation

 633.7 Prior Art |

editing from interaction in the result document. Ollis[78, 80] has shown how a state-tracing

XSLT processor can generate significant performance optimisations for re-evaluations of parts

of a computation, exploiting the functional separation of the programmatic model.

3.7 Other functional approaches

Several document generation systems have been based purely on functional programming or

with a strong functional model at their heart. Impetus from ‘pretty-printers’ for code docu-

mentation has generated a number of approaches. Hughes[35] defined a relational algebra of

vertical and horizontal combinators of sub-assemblies. Using this algebra, implemented in

Haskell, it was possible to generate and select solutions from exhaustive sets of possible arrange-

ments in a lazy manner, using monad representations to accomodate backtracking in search.

Wadler[96] refined this approach by using a single concatenation operator between ‘sub-

documents’, which is possible given the requirements for indentation as an indicator of nest-

ing in program code, and the inherent serial nature of the code to be displayed.

Hansen[31] developed a formatting model based on pure functions defining layout, and a type

for content/geometry based on boxes with a small number of properties – direction, align-

ment, gluing and reference points. A small initial set of primitive functions is defined (Lay-

out, Break, all, first etc) from which useful compound functions can be built by composi-

tion, such as paragraph, adj-lines (justification) and table. Document descriptions are writ-

ten in a domain specific language, FFL, which is evaluated through interpretation.

Kingston[50] produced Lout as a purpose-designed minimal expression language for document

layout which is highly extensible through functional libraries. It has a relatively small num-

ber of expression operators that both combine content sub-assemblies that have a canonical

rectangular aspect into compounds with a similar projection, as well as imposing styling.

Aspects such as name visibility are addressed to support modularity and packaging.

The document is parsed from a single large expression into a tree which is then subjected to

(multiple) lazy evaluation. A number of higher-order compound actions are supported, most

notably pagination through a system of galleys into which content pieces are promoted as the

layout tree is evaluated progressively – this also uses a ‘force width’ operator to impose suit-

able constraints from the current target galley. The implementation performs five passes across

the tree, distributing and collecting information in both downward and upward directions. Cross-

Ollis, J. University of Nottingham
Optimised Editing of Variable Data Documents via Partial Re-Evaluation

Ollis, J., Brailsford, D. and Bagley, S.
Optimized reprocessing of documents using stored processor state

Hughes, J.
The Design of a Pretty-printing Library

Wadler, P.
A prettier printer

Hansen, B.
A function-based formatting model

Kingston, J.
The design and implementation of the Lout document formatting language

 643.7 Prior Art |

references are resolved through multiple passes. Kahl[44] has taken the ideas from Lout and

produced a formalisation of the galley concept using Haskell.

Skribe[21] is a report-style document generator, implemented in Scheme, which is function-

al, in that abstractions can be defined (in Scheme) and functional composition can be performed.

But its geometry is confined to the usual text-flow model inherent in most report generators

(and that of HTML) and cannot define arbitrary graphical relationships and placements. It is

capable of being targeted to several output formats, including Lout.

Slideshow (Findler and Flatt[18]) is a functional DSL attempting to bridge the gap between

LaTeX and Powerpoint in producing slide presentations that have both the ‘style’ available

within GUI-based presentation tools and the extension and abstraction that programming sys-

tems provide7. Basic graphical components (canonically treated by their bounding rectangle)

are combined through a small vocabulary of geometric relations (superimpose, append etc.)

or altered through affine transforms (scale, rotate ...). Parametrised functions with single-

assignment variables permit definition of more extensive abstract assemblies. A ‘search’ action

is provided to enable geometric information to be acquired from subassemblies – this is used

to support ‘cross-tree’ relationships, such as drawing arrows between components8. Further

functions can generate a sequence of slides over a list of parameters, such that pseudo-animation

is possible. Slideshow diagrams are defined in Scheme and evalution generates Postscript.

Whilst it is rarely used as a direct programming language these days, Postscript can build

(named) functions on the fly and provide a basis for higher level document generation librar-

ies, though lacking a lambda construction limits higher-order capabilities9.

Other functional systems have been developed as attachments to an existing graphics format,

most noteably decorating SVG documents. King et al[49] approach defining continuous mul-

timedia animation by attaching the XML dialect SMIL (which describes event causality over

time) to an SVG graphical framework. Links between the two and external events (button

presses, mouse drags, passage-of-time...) are supported by embedding functional expressions

in attributes, both ones that are ‘known’ to one of the dialects, and specialist declaration ones.

7And we should perhaps, as computer scientists, preach.
8There are strong similarities with the presentational variable model of DDF (section 6.4) where XPath is used
as the search tool.
9The author remembers fondly when his monthly wall calendar was a Postscript source whose first two variables,
year and month were manually edited as appropriate before sending the result off to the printer.

Kahl, W.
Beyond Pretty-Printing: Galley Concepts in Document Formatting Combinators

Gallesio, E. and Serrano, M.
Skribe: a functional authoring language

Findler, R. and Flatt, M.
Slideshow: functional presentations

King, P., Schmitz, P. and Thompson, S.
Behavioral reactivity and real time programming in XML: functional programming meets SMIL animation

 653.8 Prior Art |

This declarative representation can then be ‘safely’ compiled into some appropriate function-

al framework – several examples such as Yampa, exploit Haskell for the implementation engine.

Thompson et al[93] extended this idea to a more general notion of declarative extensions to

XML with functional properties. The primary goal was to support reusable or event-modified

behaviour that required structured XML fragments to describe and were thus not placeable dir-

ectly in attribute values. They propose a variant of the static SVG symbol, use constructs (

template, instance) with a parameterisation model that is purely declarative.

3.8 Partial evaluation and constant folding

Partial evaluation of some program or function involves determining the consequences on parts

of their computation resulting from some knowledge of the context within which the program

or function will be evaluated, and modifying it accordingly. For a function this might be a

specific binding for one if its arguments; for a program it might be restrictions on its inputs.

In both cases it may be possible to propagate this information through the internal semantics,

to discover sub-sections whose results can be computed precisely. For example, an arithmet-

ic expression can be replaced by its numeric result if all variable terms have been bound; con-

ditional sections can be flattened if there is enough information to determine truth of their tests.

In extreme cases an expression may be completely invariant to any influence from the input

– pre-emptive evaluation and replacement in such circumstances is termed constant folding.

A key opportunity with documents being considered as functions is to exploit such partial eval-

uation either as a specific step in the document's life-cycle (e.g. observing documents when

they are only partially bound to data) or to optimise performance in document generation. As

one of the essential properties of functions is absence of side-effects, which extends to these

document representations, this implies that under clearly defined circumstances, parts of the

documents can be evaluated and replaced with results in a piecemeal, predictable and robust

manner.

Such evaluation can take place either because the document generation context means only

parts are complete enough for full evaluation (e.g. ‘continual’ or streaming documents) or dur-

ing some preparative stage, such as compilation, for subsequent processing, when the optim-

ization involves constant folding. As such this is eager as opposed to lazy evaluation.

Thompson, S., King, P. and Schmitz, P.
Declarative extensions of XML languages

 663.8 Prior Art |

There has been much work in functional and logic programming on the use of partial eval-

uation[43]. Strictly it implies inferring one, usually more efficient, program from another giv-

en some specialisation of its input, which often involves fixing one or more of a set of argu-

ments to the function. Quoting Launchbury[56]: ‘at its simplest, partial evaluation may be

thought of as currying on programs’.

This approach can also be used for some surprising applications such as generating efficient

language compilers or software architectures from interpretive language definitions[71]. A

simple example is a compiler partially evaluating a regular-expression interpreter for a giv-

en regular expression string in the program input, thus generating efficient specialist code to

be placed in-line[1]. A related approach[10] supports partial re-evaluation by analysing intern-

al data dependencies as a dataflow graph and propagating consequences to appropriate nodes.

For this thesis the interest lies in two specific areas of partial evaluation: i) evaluating a pro-

gram when not all its data is bound – this can occur when a template is specialised to gen-

erate another template, such as binding company details to a generic ‘invoice’ template, or

when data can be piecewise continuous, e.g. a medical record, and ii) evaluation of invari-

ant sections within the document itself – this is mostly confined to sections of layout and can

be merely a special case of some more generic partial evaluation.

Canonical representations of functional signatures, such as currying, where the basic function

is of one argument and multi-argument functions are compounds, make such evaluation pos-

sible. In the case of XSLT, the language being represented in the main data type (the XML

tree) makes it possible to consider surface-level evaluation techniques.

It is interesting that XQuery3.0[127] proposes not just first-class functions for XML search

queries, but also partial function application, i.e. binding some of the arguments and return-

ing a function of a reduced set of arguments as the result. Whether or not any partial eval-

uation actually takes place within that step is a decision for the implementation.

It is also worth noting overlap with techniques in high-performance compilers, where programs

are modified, whilst preserving correctness, to optimise performance against some character-

istics of the input data. Similarly techniques such as partial redundancy elimination[14], sub-

sume both identification of common subexpressions and movement of invariant sections.

There appears to be very little exploration of layout invariance for document construction. Mac-

Jones, N.
An introduction to partial evaluation

Launchbury, J.
A Strongly-Typed Self-Applicable Partial Evaluator

Marlet, R., Thibault, S. and Consel, C.
Efficient Implementations of Software Architectures via Partial Evaluation

Ager, M., Danvy, O. and Rohde, H.
Fast partial evaluation of pattern matching in strings

Burchett, K., Cooper, G. and Krishnamurthi, S.
Lowering: a static optimization technique for transparent functional reactivity

W3C, World Wide Web Consortium
XQuery 3.0: An XML Query Language

Dhamdhere, D.
E-path_PRE: partial redundancy elimination made easy

 673.8 Prior Art |

donald [67, 70] explores invariances in pure layouts for the purpose of partial binding, and

exploits the details of the layout functions themselves, with associativity as a main technique,

such as in flows.

Giannetti and others[26] have explored optimisations for very large document print operations

based on XSL-FO. PPML's reusable objects[113] are used to wrap invariant sections and a

parallel renderer based on FOP[100] exploits this higher-level description. It seems that doc-

uments must be designed ab initio for such use, or the authoring tools (such as InDesign) need

specialist extensions.

Macdonald, A. University of Nottingham
Progressive Document Evaluation

Macdonald, A., Brailsford, D. and Lumley, J.
Evaluating Invariances in Document Layout Functions

Giannetti, F. et al.
High performance XSL-FO rendering for variable data printing

PODi, Print On Demand Initiative
Personalized Print Markup Language (PPML) Version 2.0

Apache XML Graphics Project
Apache FOP (Formatting Objects Processor)

 68

PART B

PRIOR ART IN DDF

 694 Document Description Framework |

Chapter 4

Document Description Framework

The philosophy and general design of DDF as an extensible variable document

framework is presented in this chapter, detailing choices made during the origin-

al research and outlining the major structures within a DDF document. The expec-

ted operations on documents (i.e. anticipated workflows) are discussed and

approaches to authoring and editing such documents are presented briefly.

Three factors influenced the design choices for a framework for flexible variable documents.

Firstly the requirements for future documents and the forms they might take were not at all

clear – the roles the document could fulfill, especially when considered as a self-contained

entity1 may vary immensely. Secondly, documents would have to be capable of extreme ‘per-

sonalisation’ and, thirdly, they would need high presentational quality to ensure that their inher-

ent communication is effective. As discussed in section 1.2, these last two requirements have

generally been at odds with each other – high quality has typically involved skilled graph-

ic designers hand-tweaking their documents – something that is not possible in high volumes2.

DDF focussed primarily on ensuring that the document framework developed would be extens-

ible to accommodate such uncertainties in required functionality. Some new technique would

1The paper form we have all grown up with is ‘self-contained’ – it doesn't fail when the Internet is down.
2Eric Gill is said to have altered some of the wording of poems he was printing in order to produce a better typo-
graphical result.

 704 Document Description Framework |

not require a complete overturn of existing programs – rather, modest and unintrusive exten-

sion to the implementation machinery would be sufficient, or a document or template could

be ‘programmed’ to accommodate the needs. Five main features were developed:

The document was considered generally as an executable function over its ‘data binding’.

Variation over the data was primarily declared as fragments of XSLT functional program

contained within the document itself, or other documents that it would reference as dynam-

ic templates. In this manner much of the programmatic variation can be handled exclus-

ively through ‘code’ buried in the document, with no need to change the implementation-

al framework. For example the inclusion of a data mapper[23] could be incorporated merely

by importing a suitable library document rather than overhauling the implementation engine.

Presentational layout for a document was described as a hierarchy of combination of sub-

components, represented as a functional tree of combinators over component parts and asso-

ciated control information. Programs within the document could generate declarations of

layout intent (as trees), dependent upon new data binding; layout agents in the implement-

ation interpret these declarative trees by building up resultant sub-assemblies. This is dis-

cussed more fully in Chapters 6 and 9.

A logical document structure layer was added to increase the buffering between data and

layout and enable effective use of well-developed libraries.

A declarative system of describing sets (families) of documents and their inter-processing

in an XML form. A wide variety of different document solutions could be supported with

a single common implementation engine (the ‘DDF Family processor’). This could also

examine inter-document dependencies and minimise rework under change conditions3.

A methodology for authoring and editing such documents by graphical interaction with a

presentation of an instance of the document – this will be outlined in section 4.3.

The first three became distinct spaces within the document – data, structure and presentation,

which were conveniently represented in the XML tree. Programmatic behaviour was described

by XSLT fragments embedded in each space that generates new content and declarations from

information in a default source (bound variable data ®data ®structure ®presentation).

3This will only be discussed briefly in this section and will not be examined in detail later in the thesis, save where
a particular feature is required for, or is useful to, the management of document families.

Giannetti, F.
 A Multi-format Variable Data Template Wrapper extending PODi's PPML-T Standard

 714.1 Document Description Framework |

A document after binding should be ‘self-contained’ – apart from obvious resources that nor-

mally live ‘outside’, such as images and fonts, most DDF documents are represented by single

XML structures, i.e. stored as single files4. This corresponds more usefully to the human notion

of a document, reduces errors in ‘cross-linking’ and also has implementational efficiencies.

4.1 The 'life' of a DDF document

DDF documents are intended to be used to make large sets of variable documents. As such

there are five distinct main types of operation:

1. Binding a document to some variable data.

2. Evaluating all the ‘variability’ described in the document, which will inevitably produce new

layout requirements and declarations.

3. Resolving all the layout within a document to produce a defined graphical result.

4. ‘Observing’ the document to create a visible image – usually in a well-defined visual final

format such as JPEG images or a PDF file.

5. Authoring and editing the document and related companion documents.

A DDF document can also utilise resources from other DDF documents through methods of

importation, inclusion or merging. This is essential if ‘library documents’ are to be used, rather

than implementation frameworks being overloaded with libraries for particular types of doc-

ument (e.g. documentation-generating documents). Such functionality is contained within oth-

er DDF documents, usually not destined to produce output ‘on their own’, which are then drawn

on as required. The functional nature of the underlying XSLT model, especially the use of

‘push’ templates, makes this comparatively simple.

The most usual action is running the first four operations in sequence, often over a vector of

data bindings – producing a vector of output final results. But the document architecture for

DDF was such that a number of different types of operation could take place, including bind-

ing data in multiple stages and merging documents together at different stages of binding and

evaluation. Figure 14 shows a number of possibilities, which will be explained in more detail

in the following sections.

4Later work suggests that a heterogeneous storage system, e.g. ZIP, on the front end might be more generally useful.

 724.2 Document Description Framework |

a) Binding data b) Building structure

c) Constructing presentation d) Multiple data bindings

Figure 14. Typical workflows for a DDF document

4.2 The basic structure of a DDF document

With these design choices, a DDF document was represented in the following XML form:

<ddf:doc >
 <ddf:data> application data + programs </ddf:data>
 <ddf:struct> logical structure + programs </ddf:struct>
 <ddf:pres> presentation + programs </ddf:pres>
</ddf:doc>

where the top-level structures fill the following purposes:

ddf:data holds pure application data. For most unbound documents this section is empty

– on binding to an instance of data a copy is placed here. One reason for this is that dur-

ing possible subsequent bindings and document evaluations new requirements on previously

bound data may be necessary – hence the document carries around some ‘state’ inform-

ation about its data bindings.

 734.2 Document Description Framework |

ddf:struct can describe logical structures in resulting documents. This layer is primarily

used to support a possible canonical buffer between data sources and presentational forms,

which may involve use of a standard (such as XHTML), or a special-purpose semantics for

a family of documents, all aimed at increasing document re-use.

ddf:pres contains presentational instructions to create final visible forms. In an unbound

document this contains sections of completed presentation and sections of XSLT that gen-

erate such instructions from the structures held within the logical structural layer. During

a subsequent layout resolution phase these instructions are converted into a grounded present-

ation (SVG). This operation is covered in much more depth in Chapter 6.

‘program’ components generate new content as a result of variable bindings. These pro-

grams are described in XSLT. Each of the spaces can contain such program, though that

in ddf:data is only used for special effects in higher-order and multiple-binding situations.

Placing these programs within the space where they are going to generate results means that

programs do not need separate ‘linking’ and were self-contained with the documents for

which they were relevant.

There are a few other ancillary top-level structures within a DDF document such as for describ-

ing documentation or even provenance. One significant set of features support reference to

external resources, most notably images held in file-systems. This consists of two possible

forms: ddf:data-external which declares patterns in the input data that should be considered

to describe references to external resources (e.g. picture|image) and context maps (cmap:

context-map) declaring mappings between context tags and universal resource locations – this

is described more fully in Chapter 5.

The use of XSLT as the language to describe response to variability has proven very advant-

ageous. Firstly of course it works exceptionally well on XML-based data of many types.

Secondly, being written in XML itself, it can reside comfortably within the DDF document,

as well as being processed by other XSLT-based tools in a very consistent manner (includ-

ing during document editing). Thirdly, it is entirely capable of describing many forms of manip-

ulation in a flexible way.

For example consider a document that needs to partition two sets of sales items between two

pages, with all the higher-value ones on the first page and the rest on the second. In the case

of a fixed system5 some specialised extension would have to be added, or the ‘upstream’ data

 744.3 Document Description Framework |

generators reprogrammed to produce a page1, page2 grouping in the data. Using XSLT it

is a simple matter within the appropriate generator to place a computation of a ‘split-point’

and two different expressions:

<xsl:variable name="split-price" select="sum(product/@price) div count(product)"/>
<page>
 <xsl:apply-templates select="product[@price gt $split-price]"/>
</page>
<page>
 <xsl:apply-templates select="product[@price le $split-price]"/>
</page>

The following chapters of Part B discuss the syntax and semantics of these sections of a DDF

document more fully, with many examples and explanations of some of the implementation

techniques. Satisfying the goal of significant flexibility and extensibility from document-borne

variation is hopefully demonstrated.

4.3 Authoring and editing from the document's range

Documents that are variable need some approach to editing them that does not require doctoral-

level programming skills. A series of integrated tools should preferably present almost WYSI-

WYG editing, albeit with the full benefit of being able to control considerable variability in

the document's layout and its response to data variation. The basic technique has been described

at some length in [63] and the details will not be repeated here in this thesis.

The approach is equivalent to editing a function through ‘reverse-mappings’ from values found

in the range of that function. In this case the document is the function and the range value

is the ‘multi-dimensional’ tree result that has been generated by the document from a simil-

arly multi-dimensional instance value in the domain. Obviously there are constraints on when

this can be achieved sensibly and robustly, but it seems that for many ‘document-like’ func-

tions this can be performed remarkably often: within a typical document ‘template’ most of

the features are nodes within a tree-like construction. In the case of DDF, layout itself is defined

by such nodes and there is one-to-one or one-to-many correspondence between the nodes in

the function definition and nodes in the result.

The technique involves injecting ‘editability’ annotations as attributes on suitable (i.e. edit-

5Such as Dialogue, though that product does have data mappers that might be capable of such a trick.

Lumley, J., Gimson, R. and Rees, O.
Configurable Editing of XML-based Variable-Data Documents

 754.3 Document Description Framework |

able) nodes in the source document, and relying on ‘good XML citizenship’ and approxim-

ate tree isomorphism6 in the XML tool-chain that generates instance result documents to propag-

ate these to positions in those (XML) results. From those results some active view can sup-

port user interface actions such as selection of elements and groups and the generation of edit-

ing dialogues. The annotations also include source ‘addresses’ so the required changes can be

performed on the correct nodes in the original source document tree.

This is enabled by an extensive compiler that take descriptions of document work-flows and

declarations about types of node that are editable and how. The compiler generates i) a suite

of transforms that are stitched into the work-flow to add suitable annotations, ii) active views

for a generic user interface which will add the desired interactive behaviour and iii) ‘effect-

or’ transforms to alter the original sources as a result of the edit requested. Drawbacks and

possible developments are discussed in section 13.4

6These two concepts are discussed in more depth in Chapter 9.

 765 Functional Implementation |

Chapter 5

Functional Implementation

Before final consumption by an intended recipient, a variable document has to

be bound to, and evaluated over, an instance of that variable data. In this chapter

we discuss how the programmatic variability in the document (that is the sections

defined by XSLT code) is executed, by using a ‘compiling’ transformation of the

document into an XSLT executable that is then run to produce a bound result doc-

ument containing the appropriate presentational layout description.

Variable documents are developed specifically for binding to many instances of data and pro-

ducing large sets of personalised documents on an individual basis and without human inter-

vention. Documents must therefore be evaluated over a specific data instance, thereby determ-

ining the presentation that results. Previously two aspects of the variable document response

have been shown – the data/structural (XSLT) variability (what groups of content are needed,

order and choice of components, generated content) and the presentational (layout) declara-

tion, generated from this, and whose final visual form is calculated from that declaration.

In the most extreme cases every presentational part of every instance might be totally differ-

ent, but in practice there is much commonality and pre-evaluation of common subcompon-

ents is a distinct possibility. This chapter discusses the ab initio evaluation of the document's

functional aspect – Part C considers methods of optimisation through partial evaluation and

constant folding. Resolution of layout is considered in the next chapter.

 775.1 Functional Implementation |

5.1 Evaluating the (XSLT) functionality

The XSLT fragments within a document are the only source of data variability (the only chan-

nel through which data information propagates) and can be executed in a separate phase before

layout. A DDF document contains three distinct ‘spaces’ of such XSLT – data, struct and

pres, which operate on input, data and struct sources respectively1. An implementation of

this phase would have to propagate the effects from the input into the data space2, and thence

progressively through struct to pres. Figure 15 below, using only the ‘pull’ mode, shows what

is expected in production of a simple web page, where the three sections are split apart.

<ddf:doc >
 <ddf:data>... </ddf:data>
 <ddf:struct>... </ddf:struct>
 <ddf:pres>... </ddf:pres>
</ddf:doc>

data
customers

copy-of(.//customer)
countries

copy-of(.//customer/address/country)

ddf: xsl: text

a) Overall document b) Data with extraction

struct
section

h
Customers

ul
" customers/customer :

li
val(name)

h
Countries

ul
" countries/country :

li
val(abbreviation)

pres
html

title
Our customers

body
h

Our esteemed customers
copy-of(·)

c) Forming (XHTML) logical structure d) Creating Web presentation

Figure 15. Simplified XSLT evaluation of DDF spaces

Diagrammatically, we are carrying out the following stages of evaluation:

1Alternative source ‘routes’ needed for higher-order documents are described in Chapter 11.
2Programmatic operation during input is usually confined to evaluating indirections, such as inclusions, contained
in the data set – this is helpful with templates that make ‘report-like’ documents, such as a PhD thesis.

 785.1 Functional Implementation |

Figure 16. Typical internal workflow for a DDF document

There were a number of possible strategies for this evaluation: each space could be taken sep-

arately, the XSLT ‘extracted’ and then run as a transform on the appropriate input source to

produce a modified output, this process being repeated ‘down the chain’. A processing descrip-

tion language such as XProc [125] could be employed with a suitable implementation engine

and extractor and combinator tools to work between DDF document components.

An alternative, as used here, is to ‘compile’ the document into an equivalent single XSLT trans-

form, which when operated over the input, carries out all the above operations in sequence,

building up the final correct bound DDF document, with the data variability projected through

completely and operating at the start of the document processing pipeline, as shown in Fig-

ure 5. As we shall see, this approach has a lot of attractions, especially in being able to sup-

port many of the additional features needed for more powerful document solutions.

The DDF document 'compiler'

The compiler is naturally an XSLT program that takes a DDF ‘main’ source document as input

and produces an XSLT executable program as the result. Running this executable on an input

data source will produce a DDF document correctly bound as result, even though the layout

resolution phase has not been executed3. What we are doing is shown in Figure 17.

3For a full production operation this might be incorporated into the compiler's output, but for research purposes
keeping them separate increases flexibility. Note that the compiler itself could actually attach to the layout pro-
cessor for detection and evaluation of invariant layout sections – see section 10.2.

W3C, World Wide Web Consortium
XProc: An XML Pipeline Language

 795.1 Functional Implementation |

Figure 17. Compile & Run

The compiler has to extract relevant sections from the defining documents and correctly

assemble them into a computational sequence that will provide the required result. This is made

much easier by the use of push processing within XSLT. Figure 18 shows tree-graphics rep-

resenting the three major documents making up the brochure document described in Chapter 7.

Figure 18. The DDF documents for the brochure – main, resort & pages

The sections shaded light blue are ddf:struct sections; those in light green are ddf:pres. (Only

the main document generates structure, the other two are effectively reusable partial present-

ational documents.) The result of the compiler operating on this constructs an XSLT execut-

able transform shown in tree form in Figure 19.

xsl: ddfl: svg: ddf: cmap: fo:

Figure 19. The XLST output of the compiler operating on Figure 18

The shaded sections are xsl:template components operating in ‘default’ modes, transferred

 805.1 Functional Implementation |

from the original documents, with colours corresponding to those used in Figure 18. When

this transform is executed over a data binding the result is the XML tree structure shown in

Figure 20 which is a valid, but now static, DDF document. The four principal subtrees cor-

respond respectively to the context maps (see next section), the data, structure and present-

ation sections of the resulting document.

Context Map

StructureData

Presentation

ddfl: ddf: cmap: svg: fo: xsl:

Figure 20. The result of executing Figure 19 on a data instance

The large subtree on the right (the ddf:pres section) holds the resulting presentational declar-

ation with elements in three main namespaces: ddfl: for layout directives, fo: for text blocks

for line-wrapping and svg: as grounded pieces of graphic content. How this layout is resolved

to final graphical form is described in the next chapter and shown in Figure 24.

Compiler design

The compiler generates XSLT from elements buried inside both the DDF documents and the

compiler itself. Some of its actions are merely simple transformations of XLST fragments

embedded in the DDF document, others generate sections of XSLT from ‘DDF’ directives and

declarations therein. In part the tool is merely a program transformer, in part it compiles from

elements in one language into another. In all cases it arranges that the result of execution of

the generated XSLT on an XML input tree produces a legal DDF document as output. Fig-

ure 21 shows a general schematic of its major components and actions.

 815.1 Functional Implementation |

Figure 21. Compiler design

The preliminary steps performed by the compiler are:

1. Read the input (XML) DDF file, expanding recursively any importations and inclusions of

other DDF files, while checking for multiple requests and only bringing in a file once.

2. Construct a transform result skeleton, first adding ‘control’ elements, e.g. xsl:output, that

specify desired output formats, and indirect requests for any required XSLT libraries that

a DDF document calls on, through xsl:import or xsl:include statements.

3. Write in all global parameters, variables and functions (appearing at the top-level in their

respective documents or spaces such as ddf:doc/xsl:param, ddf:pres/xsl:variable), check-

ing for name uniqueness. Attribute sets are processed similarly except that multiple sets can

have the same name – the attributes within the superset are merged.

The next stage is key: program sections which are ‘push’ xsl:templates within each of the

spaces are altered to operate on the correct source space. (‘Pull’ construction does not use modes

and is entirely contained within a single tree.) We define a number of ‘transfer’ modes: ddf:

input-data, ddf:data-struct and ddf:struct-pres. The templates in each of the spaces is trans-

formed so that instructions that operate in the default (blank) mode are changed. Default tem-

plates for each of the modes (e.g. root matches encompassing static material) are also added.

 825.1 Functional Implementation |

This transformation is performed by ‘push-mode’ XSLT templates operating in a specific mode

– ddf:modal and the transforming is ‘deep’, that is all code is processed by templates defined

in this mode. As we shall see later, by adding to this set of code-transforming templates, the

semantics of some parts of DDF can be extended smoothly. In the more complex situations

described in Part C, a document might contain directives to support application to partially-

bound or continual data, requiring that programmatic constructs are propagated forward into

the resulting DDF documents. Adding an extra module to the compiler which contains addi-

tional templates operating in the mode ddf:modal means that such changes to code can be

performed relatively simply and in a monotonic manner.

It is reasonable to expect that XML data sources might contain indirections to other sources,

such as embedded XInclude[122] directives (<xi:include href="URL"/>). A document-borne

library could contain code to match such situations, but having to track external references,

that such remote resources might contain, requires deeper support. The compiler can gener-

ate integrated code to support such XInclude semantics in the input, which involves adding

a set of additional push templates into the ddf:input-data suite.

Finally the main thread of the document's ‘run-time’ form is then written as a sequence of

variable-generating stages that will appear in the document run-time code. When executed this

will build a DDF document as the result:

TEMPLATES
match:/

data=
Þ / mode="ddf:input-data"

struct=
Þ $data mode="ddf:data-struct"

pres=
Þ $struct mode="ddf:struct-pres"

doc
OTHER-DATA
data

$data
struct

$struct
pres

$pres

W3C, World Wide Web Consortium
XML Inclusions (XInclude) Version 1.0 (Second Edition)

 835.1 Functional Implementation |

External references

Early prototypes showed an issue when application data acted as relative references to extern-

al objects, most notably images. Final documents and intermediates may be in different places

from sections of the original application data, thereby making such references exceptionally

fragile. Immediately resolving the references to an absolute form helps only partially – a later

move of a set of documents and resources would invalidate these new references.

A mechanism was needed to track such references through arbitrary XSLT program (especially

when forming temporary trees where ancestry paths back to source routes are normally broken).

A solution is an explicit system of context maps. Source locations (documents, data files) are

given tags (e.g. input.0.2 for perhaps the third file indirectly ‘imported’ by the first (main)

input file4). Relative referential elements in that file can be altered to a URL protocol that uses

that tag as a discriminant (e.g. cref://input.0.2/photo.jpg) and an associated context map, stored

usually within the document, that contains the source ‘pointer’ (<cmap name="input.0.2">file:

//...</cmap>) from which an eventual absolute URI can be resolved as required5.

The implementation machinery contains a URI resolver for this cref: protocol and loads an

appropriate set of context maps from documents. Subsequent references to such a URL will

be resolved to the correct source automatically. The DDF document compiler ensures that ‘rel-

ative reference’ elements are actually tagged. But these references could occur anywhere, and

in multiple forms, e.g. a customer data record may contain a photo element which ‘names’

a local JPEG, relative to the data record file. To track this a source-recording tag must be added.

Documents that process potential referential material declares cases of such reference through

a statement ddf:data-external containing patterns of elements or attributes that should be so

treated (e.g. svg:image/@xlink:href | customer/photo).

The compiler converts such declarations into pre-emptive templates that will match such nodes

during the initial input and if the reference is relative (i.e. not an absolute path or other URL)

alters its value to be a URL using the cref: protocol and the context tag. At run-time the con-

text tag parameter is set appropriately during each move into another included document to

support relative references in deep inclusions.

4Zero based.
5It was expected that such maps would support switching between different forms of a resource, such as high and
low resolution versions of pictures, simply by altering the mapping – little use was made of this in practice.

 845.2 Functional Implementation |

5.2 Document workflow

The essence of the variable document is that of a simple function, evaluated on an argument,

but in practice the real value lies in repeated evaluation and other operations. This will usu-

ally be conducted through some form of workflow, most commonly with repeated application

of a template document to an entire vector of data bindings producing a corresponding vec-

tor of result documents for distribution or print. This is the usual ‘publish for customers’ oper-

ation, where we can expect the data vectors to be up to O(104) data records long or even lar-

ger. In such cases the efficiency of the workflow execution is vitally important.

Alternatively a document might be taken through a progression of partial bindings and eval-

uations to yield a further template. For example a very generic brochure template may be bound

to a specific supplying company's information to produce a specialised brochure that can then

be populated across large volumes of customer data as before.

Both of these examples need accurate description of what is required, so the implementation

machinery can produce correct and efficient executable programs to generate the required doc-

uments. In the common case the following are important:

Only the final presentations of the resulting documents are needed and these documents will

not be processed further or bound to more data. With knowledge of this the compiler can

be optimized to generate executable XSLT that drops unwanted result sections (ddf:data,

ddf:struct)

When a very large number of documents is generated it can be worthwhile pre-evaluating

as much of layout as possible, either exploiting invariance or speculation. This can be

achieved either by the compiler detecting such conditions or by suitable pre-processing of

the main template6.

6This is discussed in Chapter 10.

 855.2 Functional Implementation |

Again, with large data sets, it may be avantageous to ‘compile-in’ the layout processor to

increase performance, or arrange that significant common resources and sections are passed

as far as possible down the processing chain. For example a static background could be totally

evaluated and passed as a common resource to the eventual PDF generator, whilst the indi-

vidual document instances refer to the resource rather than containing the static background.

(Overloading svg:use is a possibility, or employing a standard, such as PPML, for describ-

ing reuse over large document sets.)

A machine-based description of the workflow for such a case would contain either specific

directives to control such actions or information (such as the size of data vectors) that would

enable this to be determined. An XML representation was developed that could describe the

type of relationship shown in Figure 22 where ‘Customer Data’ can be bound to an XML rep-

resentation of an instance vector.

Figure 22. Simple document workflow graph

The representation can support much more complex dependencies. Figure 23a is a workflow

from document editing, which itself has been generated from another workflow by an XLST-

based edit compiler7 to arrange that edit traces are injected correctly into source documents.

Figure 23b is a multi-stage binding of data for a medical record, used in Chapter 12.

7This is an excellent example of the power of everything being described in XML – even the workflows descrip-
tions can be read and modified by XSLT.

 865.2 Functional Implementation |

a) Editing documents

b) Multi-stage binding

Figure 23. Complex document workflow graphs

 876 Layout in DDF |

Chapter 6

Layout in DDF

The model for document layout within DDF uses a tree-based framework of ‘func-

tional combinators’. This chapter describes this in some detail, demonstrating the

use of a ‘sea of agents’ and a canonical rendered XML form (SVG) to build a

system with considerable extensibility and flexibility. Additional well-founded

facilities that provide XSLT-like facilities within the layout phase, such as present-

ational variables, can add extra flexibility within the document and are discussed..

Eventually a document has to produce a visual form, and this visual form must be effective

in communicating the messages inherent in the document. Aspects of these messages are usu-

ally contained in the document's logical structure, including grouping, order, importance, com-

monality and so forth. The presentation must clue all these aspects through visual and geo-

metric effects such as position, size, relative placement, fonting, colour, visual scope and dec-

oration. The mapping of such effects from logical structure is the essential style of the doc-

ument. When a style is also used to carry corporate overtones, this is also termed branding.

Some parts of style are simple properties, such as a particular font for standard body text, a

colour for a background or different ‘bullets’ for nested list items. Others are relational – the

relative placement between a ‘group’ header element and the content items of that group, and

collecting footnotes at the end of a visual-scope (page) are examples. Some of these are very

local in scope (a contrasting background colour for an element with variable foreground col-

 886.1 Layout in DDF |

our), others are global across a document (e.g. the same relative placements for members of

every group corresponding to the same type of logical group), or even across a whole suite

of documents.

In the most general sense these properties and relations of style are a set of constraints on and

between presentational elements of the document. These constraints could be described in many

different ways, from direct equational relationships (para3right < line27left - 17, background14

fill = contrast(para3fill)) to very abstract under-constraints (group15 similar-structure group24,

image24 smaller-than image52).

In practice these mappings are described in some form of presentational language with con-

sistent syntax and reasonably simple semantics, which are both relevant to the general type

of document being built and computationally feasible to implement. The language can be extern-

al – source files can be written directly, such as the Troff/Scribe/TeX family; alternatively

they can be internal to some authoring and generating tool, such as MSWord or Dialogue.

The language can vary in complexity, from the most simplistic (Euclidean and grouping con-

straints in Juno[34]; simple paragraph/list markings in nroff) to full-blown document control

with support for ‘plug-in’ extensions, such as InDesign. External languages are usually writ-

ten as markup, that is the bulk of the document is content text, with elements or commands

denoting markup directives interspersed through the text, as opposed to a language where tex-

tual content is buried in ‘program statements’.

6.1 Extensible layout

One of the major design goals for DDF was that it should be easy to extend its capabilities

without extensive rework of tools and implementations. Preferably such extensions should be

monotonic – merely adding a new section of code via some declarative manifest should be

sufficient to add new functionality, without having to rework other sections. This was partic-

ularly the case in document layout. We had no detailed knowledge of what sorts of layout would

be required in future: a fixed ‘format’ such as a paginated text flow would be inadequate and

only one of the types required.

There were a number of requirements:

Heydon, A. and Nelson, G.
The Juno-2 constraint-based drawing editor

 896.1 Layout in DDF |

Many different types of layout could conceivably be needed and mixed. Some unusual

examples might include placing items in colour-contrasting positions on an image back-

ground, altering text font-size to make a paragraph fit a given box or dropping optional con-

tent when given containers are full.

The layout should be able to support functional binding within it, and the transmission of

future functional binding into result layouts – this latter being necessary to support template-

generating templates and continual documents.

Text needs to be supported at ‘professional’ levels for actions such as line and paragraph

wrapping, inline decoration, kerning and the like, but documents which were not text-centric

should also be supported. The framework should not be based entirely around text.

Grouping of components should be accomplished easily. In fact grouping should be almost

built-in to the framework, if only to encourage the use of logical structure in document design.

Functionality could also be described in documents themselves, acting as ‘macro libraries’.

However, we should also assume some ‘default’ view of the document layout. The critical

choices to be made included:

Is layout primarily inward or outward facing – do the ‘pages’ in general drive the ‘size’

of components, or vice versa?

Is layout generally local (i.e. the effects of geometry are generally confined to neighbour-

ing elements) or is it much more global?

Are non-local effects cyclic or acyclic between sections of document layout?

There is also the issue of where in the document processing chain the evaluation of the present-

ation should be made. As already seen, a DDF document can contain significant sections of

XSLT-based processing code, so through the use of XSLT template-bearing documents we

could extend a layout repertoire in some cases entirely within the documents themselves. For

example if every child of a flow had a defined size, positioning of those children could be

accomplished easily by code within the document.

However there is a point at which the power of XSLT diminishes in solving geometric prob-

lems: the simplest of these problems to understand is that of line-wrapping. Fonts have to be

identified and metrics recovered, word distances have to be computed and potential hyphen-

 906.1 Layout in DDF |

ation points determined, line breaks have to be decided based on measures that might cover

a whole paragraph or more (Knuth-Plass) before the actual text placement can be performed.

This all requires careful and detailed coding, assisted by extensive code libraries. It will prob-

ably have to be coded in something like Java – such code has to be included in a more stat-

ic platform than documents themselves1. Some of the required information (e.g. font metrics

and hyphenation dictionaries) is unlikely to be contained within documents.

Considering these requirements, six main decisions were made:

1. ‘Laid-out’ presentation is described in an XML-based form. SVG is used with a canonic-

al rectangular representation of pieces and compounds. This reflected the fact that most of

the layouts we expected would primarily involve horizontal and vertical arrangements of

some form and the bounding-rectangle would be a suitable starting point2. SVG was

developed enough to be able to represent professional level documents3, was well suited

to generate printable PDF from it, and had sufficient additional features (animation, reuse)

to give a little future-proofing. As we will see subsequently, having the presentational res-

ult described entirely in XML opens up significant possibilities in XSLT/XPath-based post-

processing of presentation for many useful features.

2. Presentation is written primarily as a tree of combinator nodes that declares layout func-

tions over a set of children. Properties for these functions are attached as attributes on the

nodes or in reserved children – all other children are considered to be further presentation

declarations. This matched well with supporting locality of layout action.

3. There is a standalone layout processor constructed as a set of templates that match specif-

ic layout combinator nodes, gather parameters, process children through recursion, form up

the compound result and return it to the calling context. This is a very good match to an

XSLT model. The layout processor operates in a separate phase after the document's vari-

able function (XSLT) semantics have been evaluated through the compile-run action

described in previous chapters. Thus layout needs very little knowledge of XSLT at all, save

recognising such constructs for program-retaining documents.

1Arbitrary side-effecting code within a document raises security issues – staying with side-effect-free XSLT with-
in the document reduces this risk significantly.
2This does not exclude non-rectangular layout processing – implementations merely have to do a little more work.
3We used draft standards-proposed representations for page sets – these did not reach the main standard.

 916.1 Layout in DDF |

4. The main layout evaluation is outward facing, i.e. usually combining pieces that have already

been evaluated and thus have a bounded size. This reflects use mainly in situations where

content wasn't being packed progressively into a fixed container, but built bottom-up from

components and sub-assemblies. However both directions of ‘constraint propagation’ are

possible.

5. The layout processor is written as a series of XSLT modules with only a minimum of neces-

sary (Java-based) extension functions. Many relatively complex operations, such as dynam-

ic font-warping, are written as simple XSLT compound modules exploiting other modules.

6. There is a system of single-assignment presentational variables, akin to XSLT's variables.

Document engineers can describe a large variety of acyclic presentational interdependen-

cies through declaration and use of such variables and functions thereof4. Modest extensions

in choice and iteration within this layer make it possible for many complex acyclic arrange-

ments to be document-borne, such as pointing into trees (Figure 20) and partial magnific-

ation (Figure 35).

Choosing to represent the layout as an XML tree of combinators of primitives has many advant-

ages. Possibly the most important is supporting approximate isomorphism between the declar-

ation tree and the result tree. For example the declarative tree for one of the example brochure

instances is shown symbolically in Figure 24, corresponding to the presentation tree shown

in Figure 20. As will be discussed later, the shaded portion on the left describes some pro-

grammatic constructs (presentational variables) within the presentation. The large subtree on

the right is a group of four page definitions – within each page is a hierarchy of combinators

(ddfl:) over primitives nested up to ten levels deep. (The large structure within the third page

of the brochure describes a labelled picture.)

When this set of layout declarations is resolved, the resulting tree (Figure 25) is completely

defined in SVG which can then be visualised or converted to PDF. (The presentational vari-

ables have been interpolated into the result.) The important point is that the tree structure of

the result is generally similar to that of the input. Most combinators generate a correspond-

ing tree node in the result. By transferring additional information between these two nodes

as a matter of course (such as @name) higher layout operations can exploit this information.

4Cyclic dependency means there is no simple evaluation order over ‘equations’ which will solve them all and requires
other simultaneous techniques needing very detailed knowledge of the functions involved.

 926.1 Layout in DDF |

ddf: ddfl: svg: fo: xsl:

Figure 24. Presentation declaration for a 4-page brochure

Figure 25. Final brochure after layout-resolution of Figure 24

To explain this approach in detail, here is a simple layout declaration in an XML form togeth-

er with its equivalent tree (Figure 26):

<ddfl:layout function="flow">
 <svg:rect fill="blue" width="25" height="5"/>
 <ddfl:layout function="flow" direction="x">
 <svg:rect fill="red" width="10" height="9"/>
 <svg:image xlink:href="../figures/patent.png" height="15"/>
 <svg:rect fill="green" width="12" height="12"/>
 </ddfl:layout>
</ddfl:layout>

layout(flow)

layout(flow)

ddfl: svg:

Figure 26. Simple compound flow layout – intentional declaration

which declares some hierarchical ‘flow’ relationships between a set of children. A suitable

presentation that satisfies those declarations is shown in Figure 27 with the equivalent SVG:

 936.1 Layout in DDF |

<svg:svg height="20" width="33.32">
 <svg:rect fill="blue" height="5" width="25" x="0" y="0"/>
 <svg:svg height="15" width="33.32" x="0" y="5">
 <svg:rect fill="red" height="9" width="10" x="0" y="0"/>
 <svg:image height="15" width="11.32" x="10" xlink:href="..
/figures/patent.png" y="0"/>
 <svg:rect fill="green" height="12" width="12" x="21.32" y="
0"/>
 </svg:svg>
</svg:svg>

Figure 27. Simple compound flow layout – resulting graphics

A trivial XSLT template can evaluate the flow5:

match:ddfl:layout[@function='flow'] mode="ddfl:layout"
(element()*) children=

Þ mode="#current"

svg width="{max($children/@width)}" height="{sum($children/@height)}"
" $children :

copy
@*
@y=sum(preceding-sibling::*/@height)
*|text()

The essential point is that by using a tree both for the definition and the result forms of the

presentation, we can define and construct many different types of layout without each need-

ing much detailed knowledge of other forms. Provided all layout results produce a translat-

able and sized svg:svg component consistently, this flow ‘agent’ can process any of the chil-

dren layouts. In the example the rectangles are already sized and a specialist layout agent reads

the image data to find its aspect ratio, thus determining width given that its required height

has been declared6. By using an XML tree there is a well-founded coherent tool (XPath) to

examine both definitions and results within the supporting implementation code. As an example,

suppose we wish to layout a series of (similarly sized) parts ‘in a square’:

5The implementation shown is O(n2), due to the sum(preceding-sibling::*) calculation – a tail-recursive recast-
ing can make this O(n). Evaluating the horizontal flow is similar.
6Some other SVG primitives (circle,path etc..) need pre-encapsulation to provide size and translation but this can
be handled coherently by very low-level leaf-processing agents.

 946.1 Layout in DDF |

layout(square)

layout(encapsulate)

layout(align)

layout(square)

Figure 28. Simple ‘square’ layout & source declaration

Our intention can be described in a document by constructing a tree over all the children, with

a parent node that i) declares ‘layout in square’ and ii) adds any other configuration paramet-

ers such as outlining, spacing etc. as attributes. The implementation is written as an XSLT

template matching the type of node shown at the top of Figure 28:

match:ddfl:layout[@function='square'] mode="ddfl:layout"
(element()*) children=

Þ * mode="#current"

row-length=ceiling(math:sqrt(count($children)))
size=max(($children/@height,$children/@width))
svg x="0" y="0" width="{$size * $row-length}" height="{$size * $row-length}"

" $children :

copy
copy-of(@*)
@x=$size * ((position() – 1) mod $row-length)
@y=$size * ((position() – 1) idiv $row-length)
copy-of(*|text())

There are a few points to note:

Layout command element nodes are represented as ddfl:layout function="xxx", reserving

the value of the function attribute as the discriminant – it has to be unique across all the

layout agents in an implementation and definitions/descriptions of the semantics of that lay-

out. A ‘catch-all’ agent can discover the use of ‘unknown’ or mistyped layouts.

The first usual action is to evaluate (render) all the children – they could themselves be

layouts and the recursive application of templates handles this succinctly. (In our example

one of the children is itself a ‘square’ layout.) Note that the results do not have to be in

one-to-one correspondence with the children – the layout for one child might be several

distinct items, or for another it might bizarrely be null (see the next section for an example).

 956.1 Layout in DDF |

Normally these rendered children are examined, both as a group and individually, to determ-

ine some properties of the eventual layout. In this example the number of cells on the square

edge (row-length) is found by counting the number of elements – we could have coun-

ted the number of children pre-rendering, but this would have been incorrect if any of the

children were rendered to a non-unity set. The size of the cell is calculated by finding the

maximum dimension of all cell contents.

Usually the rendered children are altered no more than by applying some simple affine trans-

form – most usually by translation.The order of the children is usually preserved, permit-

ting appropriate use of overlapping and obscuration for layouts that depend on such effects

(e.g. centering a set of pieces on top of each other). But this is not mandatory and the pro-

cessing ‘agent’ can examine and reconstruct the returned children in any way it wishes.

Finally the results are (usually) grouped and possibly decorated (background, borders etc.)

into a new rectangular group (svg:svg), whose size can be determined, and which can be

translated easily by any code processing its parent layout.

This approach can be developed for a wide variety of primitive forms combined in cascaded

trees. Simple examples include:

Flows in horizontal or vertical directions with definable spacing between elements.

Distribution of pieces in horizontal and vertical directions.

Alignment of a set of pieces by edges or centres or even fractional dimensions.

An encapsulator that takes a collection of pieces and combines them unmodified into a group

with optional padding, margin and border properties. This then provides a single entity with

appropriate rectangular bounds for a parent to further position with respect to siblings. Simple

extensions can include colouring the background, adding shadows or even using shapes such

as page or tab-folder icons for the background/surround 7.

Positioning pieces along a described path.

Sorting a set of children based on size, or filtering out a set of pieces outside a defined range

of size.

7Many of the other layout combination functions use the code for this encapsulator to produce a coherent single
group result to their parent.

 966.2 Layout in DDF |

6.2 Text layout

Almost every document requires text of some form. DDF uses part of the syntax and semantics

of XSL-FO to describe text intent, particularly the fo:block which defines a sequence of ‘dec-

orated’ text that is to be laid out with some provided common properties, both stylistic (font,

colour, size) and associated with paragraphs (line spacing, justification, hyphenation...). The

fo:inline element is the main means to alter text style properties within the block.

Within XSL-FO such blocks act as content stream definitions to be flowed into containers which

provide the dimensional constraints. In DDF the fo:block can stand on its own, so a few addi-

tional attribute properties (@width, @max-width, @single-line) were added. The model is

to line-wrap the text into a semi-infinite column of the given width returning an svg:svg group

containing lines of svg:text and svg:tspan descendants with appropriately positioned and

styled characters in SVG space. (The lines are represented as svg:svg[@ddfl:element-type="

text-line"] structures, which allows breaking paragraphs across container and page boundaries.)

The size of the block generated is provided on the group (@width,@height) – if the attrib-

ute @max-width is specified, the width returned is the minimal bounding width, otherwise

the actual width specified is returned. Group decorative properties (margin, border, padding,

background) can be specified and visible elements to display that will be part of the group

returned.

The implementation of this transform is carried out with a rather complex Java class that has

to collect all font statistics and proceed to execute a modified Knuth-Plass algorithm to decide

line break points in the presence of hyphenation and multiply-styled strings, keeping a close

correspondence between the original fo:definition and the resulting svg: structure. In partic-

ular if a portion of text is surrounded by an fo:inline in the source, it must be surrounded by

an equivalent svg:tspan (or perhaps svg:text) element in the result, complete with any ‘for-

eign’ attributes that the original element had. This is a vital part of ensuring that information

can be transmitted across the generation of presentation and used for other purposes of higher-

level manipulation later. A very good example of this is marking pieces of text as page-number

place holders (@ddf:page-no=".") which can then be picked out of a page subsequently and

replaced with the appropriate number.

A simple extension introduced the possibility of providing a path-defined container via the

 976.3 Layout in DDF |

@svg:path attribute somewhat similar to [91]. The implementation supports simple paths defin-

ing single regions without holes and which for which unique left and right boundaries exist

for any vertical postion (i.e. there is no horizontal re-entrancy). This is used for some more

advanced text layouts described in the next section.

Finally an approximate method for ensuring a text block just fills a shape by altering the font-

size (font warping) can be implemented in a simple two-pass activity. When an fo:block has

defined size ([@width and @height] and declared with a mutable font-size (@mutable-font="

8pt-12pt") then such cases can be intercepted before normal processing. The font size is set

to some default on a copy of the fo:block which is then evaluated. The result is then examined

to find its area and assuming there are enough characters for the text to approximate a ‘liquid’,

the font size is adjusted by sqrt(area/areatest). The new estimate is limited or quantified as

required, and written again onto the final fo:block which is then evaluated and returned as

the result. The entire code is some 40 lines long. Other approaches to this, with more com-

plex shapes, are covered in [25, 40]. Little more about text needs to be discussed here; all the

text you are reading has been generated by these means.

6.3 Advanced layouts

The previous section described the general architecture for declaring layout presentations and

the implementation of their evaluation. Many layouts are simple movements of subcompon-

ents, based on their geometry, but we can have other special-purpose forms of layout. Two

relatively simple examples illustrate this and show how more advanced ones can be built.

The first example is one where some content (perhaps a title or caption) is modified to max-

imise contrast against a non-uniform background. In the simplest case assume that the back-

ground is a picture and text is to be written with a contrasting colour, such as Figure 29: in

one case the text is treated as a block and given an ‘average’ background, in the other text

colour is altered on a word-by-word basis.

Silva, A. et al.
Support for arbitrary regions in XSL-FO

Giannetti, F.
XSL-FO 2.0: automated publishing for graphic documents

Hurst, N., Marriott, K. and Moulder, P.
Minimum sized text containment shapes

 986.3 Layout in DDF |

layout(image-text-contrast) word-split="yes"
image xlink:href="LumleyGimsonRees.JPG" width="150"
block x="55" y="20" font-family="Helvetica" font-weight="bold" font-size="7"

John Lumley
block x="2" y="85" font-family="Helvetica" font-weight="bold" font-size="7"

Roger Gimson
block x="90" y="80" font-family="Helvetica" font-weight="bold" font-size="7"

Owen Rees

ddfl: svg: unknown: fo: text

John Lumley

Roger Gimson
Owen Rees

Contrast &
Background Contrast &

Background

Contrast &
Background

Figure 29. Modifying text texture to enhance contrast against background

The problem can be broken down into three parts: establishing what the background and fore-

ground pieces are, determining a suitable contrasting colour and then modifying the foreground

piece, followed by encapsulating (grouping) the pair to produce a single final result. Construct-

ing the pieces is simple: the layout processor is invoked through xsl:apply-templates on the

subtrees in the definition. Once the necessary changes have been determined then simple XSLT

code can produce modified (SVG) trees for the result, by changing the @fill property. The new

functions needed are to determine what colour the foreground piece should be. To do this we

need to ‘look’ over the background image in its colour pixel space.

For pictures a single function pic-color(URL,xlow,ylow,xhigh,yhigh) will suffice. This function

would return the ‘average’ pixel colour (i.e. red, green and blue components) of a given rect-

angle within the image. Such a function can be implemented easily in Java. In the example

above the function is used to measure the colour of the image behind the given text: a con-

trasting colour for the @fill property of the foreground piece can then be chosen. The same

function can assist a more complex layout that positions foreground images in maximal con-

trast positions over a background.

The second example supports simple floats and drop capitals in text blocks (Figure 30). The

paragraph primitive fo:block can have two extra attributes (@text-indent and @text-indent-

 996.3 Layout in DDF |

depth) which define an initial top-left indent. If we indicate a requirement for an Initial by

the attribute @drop-capital="n", then a higher-priority agent can intercept this before that for

the default fo:block. This removes the first n characters and generates a separate larger text

(with an optional @drop-font-size) for the initial.

a written or published work,
an initial is a letter at the
beginning of a work, a

chapter, or a paragraph that is lar-
ger than the rest of the text. The
word is derived from the Latin ini-
tialis, which means standing at the
beginning. An initial often is sev-
eral lines in height and in older
books or manuscripts, sometimes
ornately decorated. (From Wikipe-
dia)

In ne variation on
dropped capit-
als is rather old.
In illuminated
manuscripts, ini-
tials with images
inside them, like

those illustrated here, are known
as historiated initials; they were
an invention of the Insular art of
the British Isles in the 8th century.

Initials containing, typically, plant-
form spirals with small figures of
animals or men that do not repres-
ent a specific scene are known as
"inhabited" initials. Certain import-
ant initials,
such as the
B of Beatus
vir ... at the
opening of
Psalm 1 at
the start of a
vulgate Lat-
in psalter,
could occupy a whole page of a
manuscript.

Figure 30. Drop capitals and wrap around images

The initial text, being generated consistently by the layout processor, is returned as an svg:

svg fragment and assigned to a variable drop. Its size can be found by the XPath expression

$drop/(@width,@height) and copied onto the text indentation properties for the (shorter) text

block text, which is then evaluated in turn. Finally both drop and text are encapsulated and

returned as a single svg:svg. Text can be flowed around images or other content on the con-

tainer edges similarly, calculating a suitable @svg:path parameter for the fo:block after the

wrapped entity has been evaluated8.

By defining and evaluating layout by parts in this manner we can build other useful effects

such as skeletonisation – removing everything that is smaller than a given size or area from

a completed layout, acting as a ‘level of detail’ filter.

Another useful type can be considered a meta-layout function. An example is a layout that

evaluates to a null result if it has siblings, i.e. it evaluates its children if and only if it is

an only child of its parent9:

8The dependency is acyclic, so this could also be achieved through the use of presentational variables generated
by document-borne code.
9Meta-layout functions will become important in Chapter 9

 1006.3 Layout in DDF |

layout(flow) encapsulate="shape:folder;label:folder;label-font-size:2;
background-color:pink;stroke:black;padding:1"

layout(only-child)
block background-color="yellow" max-width="25" padding="1"
text-align="center" font-family="Helvetica" font-size="12pt"

Add new elements here

folder

Add new
elements

here

a) Empty

layout(flow) encapsulate="shape:folder;label:folder;label-font-size:2;
background-color:pink;stroke:black;padding:1"

layout(only-child)
block background-color="yellow" max-width="25" padding="1"
text-align="center" font-family="Helvetica" font-size="12pt"

Add new elements here
ellipse cx="10" cy="5" rx="10" ry="5" fill="red" stroke="black"
ellipse cx="10" cy="5" rx="10" ry="5" fill="blue" stroke="black"

folder

b) With filling

match:ddfl:layout[@function='only-child'] mode="ddfl:layout"
if:empty(../*[not(@function='only-child’)])

Þ * mode="#current"

ddfl: fo: svg: xsl: unknown: text

c) Processing agent code

Figure 31. ‘Only child’ Layout

This layout is useful when the presence of some form of layout needs indication, even if it

is empty, such as during document editing, where a ‘new’ flow or other layout is added. Usu-

ally such layouts evaluated over a null sequence of children either produce a null result or

perhaps some boundary decoration around a ‘null-point’: this may be invisible and thus can-

not be selected during editing.

If the new layout is added from a template where the archetype contains a suitable descrip-

tion wrapped in an ‘only-child’ guard, this only-child will immediately appear in the final res-

ult and can act as a mouse-target when the initial layout is empty. As soon as another child

is added, the description disappears. If, later, all other children have been deleted, the layout

description/target will re-appear. Implementing this only child is trivial, guarding evaluation

by empty(../*[not(@function='only-child')])10.

Finally, perhaps mainly of interest for documents in computer-science research, a structure of

10The code allows for multiple ‘only-child’ children – which could support some interesting effects. The simpler
empty(preceding-sibling::* | following-sibling::*) supports just a single ‘only-child’.

 1016.4 Layout in DDF |

combinations of subparts can often be explained in the form of a graphical tree representa-

tion – a node placed above and connected to a set of subtrees, these subtrees placed close

together, preserving order and not overlapping each other. We could define a layout function

tree that contains information about display of the node itself, either as a reserved child or

attribute. Other children of the layout would then be laid out in close proximity to each oth-

er, which requires finer boundary detail than the bounding rectangle to get usefully dense res-

ults. If any of the children themselves are tree layout functions then they would themselves

provide trees-graphical results, otherwise they are treated as any other form of layout.

In fact, all the tree examples shown within this thesis are generated in a slightly different way

as the original need was for graphical display of XML trees. The tree layout function assumes

that everything below is XML to be displayed by default in text-and-line form. However spe-

cialist nodes can alter the processing behaviour for the element node concerned: @ddfl:eval-

uate produces an atomic piece by evaluating the subtree as a complete layout; child::ddfl:cap-

tion or @ddfl:caption define the caption to use, either as a graphical piece or a textual form,

@tree:polygon requests a shaded background for this element. Other options, such as remov-

ing nodes or eliding repetitive sequences can be supported by pre-processing. But the prin-

ciple of unknown information transmission still applies and the resulting tree nodes will con-

tain attributes from the original – this allows pointing into specific places within tree diagrams.

For more details of this see [60].

6.4 Non-local effects

In the previous sections, all layout has been local to the specific part of the definition tree.

Detailed and variable parameters for the specific definition requested can be decided during

the XSLT phase of document generation, e.g. altering spacing or background because of the

presence of a particular type of child. But no information from the rendered layout of anoth-

er part of the document can be used in determining the layout. Only information from the

tree below the node can be used, either from pre- or post-rendered results. As an example con-

sider the layout effect shown in Figure 32.

Lumley, J.
Automated Extensible XML Tree Diagrams

 1026.4 Layout in DDF |

This text should
track the ellipse.

This is a flow of text and
pieces, some elements of
which might be variable and
hence could change in size

Several pieces are here and
the number could change as
a result of programmatic
selection of variable input
data.
But for this piece we want a
marginal note.
And this is some more
content that in this case
follows the targetted block.

This is the marginal note,
which follows the start of
the source.

Figure 32. A tree-breaking example: tracking pieces within a flow

Here we want to position two parts (marginal notes) in positions relative to specific elements

within the central flow layout. But those parts are not part of that flow, having no influence

on the flow itself – its size or the ordering or relative positions of its constituents. In tree

terms (Figure 33) the problem is to place the two higher-level blocks at vertical positions determ-

ined from where their anchor points end up after rendering the main flow:

some-layout

layout(flow)

block ellipse block block block

This text should
track the ellipse.

This is the marginal note,
which follows the start of
the source.

ddfl: fo: svg:

Figure 33. The layout requirements of Figure 32

Clearly there has to be some mechanism for the marginal note blocks to identify their anchors

within the original definition of the flow. This problem is obviously not local to the flow itself

(unless we complicated the flow with other specific ephemera such as marginal notes), but

belongs to some parent. We could develop a special-purpose layout, which detected the pres-

ence of inline marginal notes, removed them, remembered the anchor elements, laid out the

flow and then examined the positions of the anchors in that rendering and positioned the

(rendered) marginal note blocks at the appropriate positions, finally wrapping up the whole

assembly.

In some circumstances something as complex as that might have to be done, but this is a fairly

simple problem which has acyclic dependencies between the flow layout and the layout of

the notes. That is, it is possible to write a finite sequence of expression evaluations that will

lead to the final solution, without having to attempt any simultaneous solutions. (The next sec-

 1036.4 Layout in DDF |

tion will consider cyclic and near-cyclic problems.) So we could think about a system where

such evaluable expressions can be written in the presentation description, with a common eval-

uation engine, enabling a wide variety of such problems to be tackled by the document engin-

eer writing ‘code’ in the presentation, rather than adding further layout agents to an imple-

mentation platform.

Acyclic dependency and single-assignment presentational variables

The solution was a system of single-assignment presentational variables, which unsurpris-

ingly, had a lot in common with the variable system within XSLT. Basically a variable can

be bound to the rendered result of some layout, and then a copy of that variable, or an expres-

sion over values of several variables, can be interpolated into another layout, which is then

subsequently rendered. Figure 34 shows a very simple example:

<ddfl:variable name="flow">
 <ddfl:layout function="flow" direction="x" encapsulate="line">
 <svg:circle cx="5" cy="5" r="5" fill="red"/>
 <svg:rect height="10" width="15" fill="green"/>
 </ddfl:layout>
</ddfl:variable>
<ddfl:layout function="flow">
 <ddfl:copy-of select="$flow"/>
 <svg:rect width="0.5" height="5">
 <ddfl:attribute name="x" select="$flow/*/@width"/>
 </svg:rect>
 <fo:block font-family="Helvetica" font-size="12pt">This is <ddfl:
value-of select="$flow/*/@width"/>mm wide </fo:block>
</ddfl:layout>

This is 25mm wide

This is 35mm wide

ddfl: svg: fo:

Figure 34. Using a presentational variable to recover information from a layout

The ddfl:variable statement binds the result of a rendering into a named variable – actually

it can be a sequence of item() pieces, so for example we can bind to a property of the res-

ult, such as a dimension, or a complete set of nodes within some part of the presentation. Names

of variables follow usual tree-scoping, so they do not have to be globally unique, and can be

‘overridden’ deeper in the tree if needed11 .

XML tree values of variables can be interpolated with ddfl:copy-of. Scalar values of variables

can be added through ddfl:value-of which can have expressions over variables. In our example

we use this to print the width of the horizontal flow by adding the string value of the width

11Appendix B shows using this for indented list and tabular layout in paginated documents.

 1046.4 Layout in DDF |

to a text block before it is rendered. References to variables ($name) are interpolated just like

in XLST, and expressions are written in XPath2.0. This allows search through the tree val-

ues of the variables for sub-trees, properties, conditions etc.

A ddfl:attribute command allows us to add to an element's properties before it is rendered,

so the layout of that piece can be altered. In our example we position the narrow rectangle

horizontally at the end of the flow, by setting the x attribute to the width of the rendered flow12.

Implementing this variable system is not as difficult as might be imagined, though some of

the coding is rather ‘delicate’. There are two key points, both related to the layout processor

being written mainly in XSLT.

Firstly the layout processor consists, as we have seen, of a ‘sea’ of agents matching layout

declaration intent nodes. Some agents can be promoted to higher priority and pre-empt oth-

ers for processing the same node. This means that we can pre-emptively process nodes that

contain presentational variable declarations and interpolations to generate a new tree within

which all the presentational variable content has been evaluated and interpolated. This new

tree is then ‘thrown’ back in for processing by its usual agent, whatever that might be – this

is a critical point as it means these acyclic variables can be used in any form of layout. Indeed

almost all layout agents have no knowledge of the existence of such variables – in fact they

never see any children of such forms.

Secondly, using a simple XPath processing extension, we can generate and process variable

XPath expressions at runtime within this agent, which means we have the ability to search

within variable tree-values and evaluate expressions as thoroughly as within XSLT.

This is a key feature – the use of indirect evaluation of XPath expressions is crit-

ically important. In XSLT3.0 this will be possible as standard; in XSLT2.0 a fully-

featured extension function supports this.

The pattern *[ddfl:variable]|*[ddfl:copy-of].. can recognise cases containing variables, both

in definition and use. The XSLT template matching this case is placed at very high priority,

and having gained responsibility for processing the node proceeds through a recursive process

to evaluate all the children. The node is now reconstructed without contained variable defin-

12There is no equivalent of XSLT's attribute value template allowing values to be written directly into element
attributes (e.g. width="{3 * $piece/@width}" – there is no spare character sequence.

 1056.4 Layout in DDF |

itions, but with the variable interpolations completed, and then submitted for reprocessing (and

the children have already been fully evaluated – it is possible to mark such children so that

re-evaluation is not performed.)

Since presentational variables may have sequence values of arbitrary length, they are actually

stored as a stack frame of values (ddfl:variables) pointed to via a lookup index (ddfl:variable-

names) which identifies position and length of the appropriate values. The last matching index

for a given variable name is used: in this way local names can over-ride remote ones smoothly

and variables can even be redefined in terms of their previous values. The variable storage

is transmitted between layout agents as a set of ‘tunnelled’ XSLT parameters , which natur-

ally follow appropriate processing of tree structure13.

Now we have explained enough to show how the marginal notes can be declared in a document:

layout(flow) direction="x" spacing="4" overflow="visible"
main=

layout(flow) encapsulate="background-color:white;stroke:red;shadow:2" overflow="visible"
block font-family="Helvetica" font-size="4" width="50"

This is a flow of text and pieces, some elements of which might be variable and hence
could change in size

ellipse name="ellipse" cx="25" ...
block font-family="Helvetica" font-size="4" width="50"

Several pieces are here and the number could change as a result of programmat-
ic selection of variable input data.

block name="marginal" font-family="Helvetica" ...
But for this piece we want a marginal note.

block font-family="Helvetica" font-size="4" width="50"
And this is some more content that in this case follows the targetted block.

block font-family="Helvetica" font-size="6" width="50" ...
@y=$main/*/*[@name='ellipse']/@cy
This text should track the ellipse.

copy-of($main)
block font-family="Helvetica" font-size="6" font-weight="bold" ...

copy-of($main/*/*[@name='marginal']/@y)
This is the marginal note, which follows the start of the source.

ddfl: fo: svg: text

The top-level layout is a horizontal flow. Within this we evaluate the main text flow and assign

it to the presentational variable main. Within the definition of the flow the two anchor points

(the ellipse and a following paragraph) have been given ‘names’, in this case through an attrib-

ute @name. The layout agents are ‘good XML citizens’ (see section 9.5 for more details) and

thus these @name will appear in the rendered result attached to the relevant graphic compon-

13See section 2.2 on page 37

 1066.4 Layout in DDF |

ent and can be used to search for the element in that result. To track the ellipse in the flow,

we add @y to the fo:block with the value from $main/*/*[@name='ellipse']/@cy. For the mar-

ginal note we copy the @y from the anchor paragraph.

What we have done here is to provide a document-borne layout computational mechanism to

solve certain types of problem (i.e. acyclic geometric dependency) without resort to building

a new computational layout agent. So it should be possible to extend the document vocabu-

lary to cover more complex arrangements through suitable mappings between structural and

presentation space.

As an example, assume our text flow is mapped from an XHTML sequence of paragraphs with-

in a division: div ® ddfl:layout function="flow", p ® fo:block. We want to add margin-

al notes (which we will assume are all to be held in the right margin) and decide to add them

as @note attributes to p elements as needed. Some simple XSLT code in the structure-

presentation mapping can suffice:

match:div[p/@note]
flow=

layout(flow)
Þ *

copy-of($flow)
" p[@note] :

block
@x=$flow/@width
copy-of($flow/*[@name='{generate-id(.)}']/@y
)
val(@note)

match:p[@note]
temp=

copy
@* except @note
@name=generate-id(.)
*|text()

Þ $temp

xsl: ddfl: fo:

Paragraphs with notes have a unique identifier added within the flow (generate-id()). The notes

are then collected into individual text blocks and their position set to be interpolated after the

flow has been laid-out: horizontally to the width of the flow (@x=$flow/@width) and vertic-

ally to that of the corresponding anchor ($flow/*[@name='{generate-id(.)}']/@y), the identi-

fier having been placed in the XPath expression during the XSLT phase.

This concept of document-borne simple acyclic presentation computation can be extended to

add several useful analogous features from XSLT semantics: conditionality (ddfl:if), choice

(ddfl:choose/(ddfl:when|ddfl:otherwise)) and iteration (ddfl:for-each). This will be dis-

cussed more fully in Chapter 9, but a typical example using it is shown in Figure 35.

 1076.4 Layout in DDF |

layout(encapsulate)

doc=

Honest John's
Helitours

Page 107Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

copy-of($doc)

":$doc//*[@name]
rect copy-of(@x,@y,@width,

@height)

block
copy-of(@x,@y)

value-of

Honest John's
Helitours

Page 1076.4 Layout in DDF | Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

page
companyicon

pageNo
office

blank

Honest John's
Helitours

Page 1076.4 Layout in DDF | Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

page
companyicon

pageNo
office

blank

ddfl: svg: fo:

Figure 35. Identifying named pieces

In this case we have a portion of graphics with a number of pieces decorated with the attrib-

ute @name, probably used to denote sections that were used in construction or are available

as ‘containers’ for further work.The result of evaluating the presentation is assigned to the vari-

able doc, which is then interpolated without alteration. Then for each of the pieces $doc//*

[@name] a rectangle that shows the extent of the piece (@x|@y|@width|@height) is gener-

ated as well as a positioned label (@x|@y, value-of(@name)).

Cyclic dependencies

Some required layouts have dependencies or constraints between components that are mutu-

al. A typical, though actually quite hard, example is a column containing a picture beside a

(caption) paragraph, where the desire is for them to be the same height and together just span

the entire column. The picture may be resized but will preserve its aspect ratio; the paragraph

will roughly preserve its area but may have a variety of widths and heights. A model for ‘large’

paragraphs (lots of characters/words) yields four simultaneous equations, which have a non-

determinstic analytic solution as the roots of a quadratic. Thus there are limits for real solu-

tions in terms of a minimum column width, above which there are always two solutions.

Practical approaches to solving more general versions of this require complex approximations

and searches using non-linear or quasi-linear approaches[39, 40, 57]. The integral nature of

the paragraph as a set of lines introduces additional non-determinism in the solution space. In

practice a series of approximations, coupled with using micro-adjustments such as line-spacing

and margins can be used to generate acceptable solutions with small amounts of text.

Hurst, N., Marriott, K. and Moulder, P.
Dynamic approximation of complex graphical constraints by linear constraints

Hurst, N., Marriott, K. and Moulder, P.
Minimum sized text containment shapes

Lin, X.
Active layout engine: Algorithms and applications in variable data printing

 1086.4 Layout in DDF |

In the most general cases we can consider all layouts to be described by a set of constraints

between component parts – the nature of these constraints govern whether, and how, solu-

tions can be found to them. Generally these require significant controlled searching algorithms

with heuristics – see Hurst[36] and di Iorio[15] for examples.

An important and useful class however is when the constraints are linear and continuous over

their variables – either with equalities or inequalities in the defining equations. These are import-

ant for two reasons: firstly many interesting constructs involve particular types of linear con-

straints between sets of pieces and secondly there are very efficient solution implementations,

exploiting dynamic programming, capable of handling tens of thousands of constraints arranged

effectively in sparse matrices. As an example a table can often be described as a network of

constraints between the row/column boundaries and the cell contents – this can be especially

useful when the cell contents have a large range of possible sizes with their own constraints,

such as a picture, where the ratio of height to width is defined but size is not defined tightly.

Internal cell-content constraints can be added to the general one defining the table geometry,

to produce an overall set of constraints for the complete table which are then solved completely.

This class was sufficiently useful to warrant defining a generalised linear inequality constraint

layout. As before the declaration is a node (ddfl:layout function="linearConstrained") which

contains both presentational children and the constraints between them. These constraints could

be declared in several ways – by explicit reserved children (ddfl:constraints), on attributes

(@ddfl:constraint) and with other properties on the node ‘call’.

We have to describe a graph of geometric relations between pieces, so each piece must be named

in some manner. We use a @name attribute on each component which is unique within the

local scope – after they have been evaluated (laid out) the resulting SVG element will retain

that local identification. Then the self-constraints (width, height) can be determined by inspec-

tion and used to create suitable constraint expressions, e.g. piece_right - piece_left = 45.

The Cassowary[4] constraint solver was used – advantageously, it handles linear inequalit-

ies, provides a set of different strengths and is implemented in Java. The layout agent for this

solver builds the ‘edges’ of the constraint graph from the declared relationships and the impli-

cit sizes (e.g. ajacent(left,+10) between bullet and para becomes bullet_right + 10 < para_left;

strength:medium, images have implicit aspect-ratios: image1_top - image1_bottom = 0.754

* (image1_right - image1_left); strength:strong).

Hurst, N. and Marriott, K.
Approximating text by its area

Di Iorio, A. et al.
Higher Level Layout through Topological Abstraction

Badros, G., Borning, A. and Stuckey, P.
The Cassowary linear arithmetic constraint solving algorithm

 1096.4 Layout in DDF |

Once the XLST code has built all the constraints, they are passed to the Java API which then

solves for the values. The return values (bullet_right = 234.5) are then decoded and appro-

priate properties (@x,@y,@width,@height) written onto the relevant component children.

By appropriate use of such constraints it is possible to describe inward-facing layouts, such

as packers, where components are defined to lie within and take size resource from their enclos-

ing parents in a recursive manner. An experimental packing layout was implemented which

used a mixed strategy of computing all acyclically determined aspects and invoked constraint

solution for the remainder. The most significant problem was that of text-paragraphs where

the non-linear nature of the height-width relationship limited the widespread effectiveness of

the approach.

Post-presentational global effects

In a practical system there are some effects that are global in scope and act after the main

generation of presentation. The simplest examples revolve around page numbering and ref-

erencing, though the techniques involved are not specifically tied to the act of pagination, which

is described in the next section. The basic requirements are:

Interpolate the number of the current page into some text – usually this is in some fixed

position (i.e. defined in a page template) and may be subject to various styles of numer-

ic formatting. For example this text is sitting on page 109 or cix if you are Roman.

Interpolate the (textual) number of the page on which some other part of the document lies

– a cross-reference such as to the section on acyclic-dependency, which is on page 103.

It is clear that in-place and backward page references could be interpolated as pagination pro-

ceeds, but forward cannot. It is also the case that on the very detailed scale the problem is

indeterminate. The character length of a number varies dependent upon its order of magnitude,

and real corner cases could exist where the number lies at a critically sensitive layout pos-

ition, such as a line-end with page-breaking consequences. However if we ignore those rare

corner cases, and the numerically-variable ‘size’ of the references is small, then we can look

at the problem as a straightforward post-process of a presentation, where there is a simple canon-

ical representation of points that are i) reference targets and ii) page-number interpolants.

Using our general approach, this can be invoked by a specialist (though simple) layout func-

tion number-pages, placed above the definition of the set of pages, that rebuilds the tree, look-

 1106.5 Layout in DDF |

ing for (laid-out) text fragments marked @ddf:page-ref. The value of this property can determ-

ine what to do – a string pattern is assumed to be some id of another part of the layout – it

is searched for and the number of the page it is found in is used. The default would be the

number of the current page. Simple expressions (e.g. offsets) and numeric formats can be added

as additional properties. The resulting number as a string then replaces the text fragment, which

has been set to some suitably sized placeholder such as XX.

This approach leaves some additional whitespace or risks overlap, but a simple two-pass pro-

cedure could be used to avoid this, albeit at the cost of repeating the entire layout, and still

with some minor risk of result indeterminacy14. A trial layout is performed, the page refer-

ences of all points determined, the page reference source elements replaced with the appro-

priate textual representation and then the whole layout repeated, without further page num-

ber interpolation15.

This may appear to be somewhat limited, but the existence of this feature late in presentation,

coupled with suitable document-borne functionality in the structural and presentational spaces

means a lot of page-number related features are now fully-supportable. Tables of contents are

often needed. Much of the decision on what to table in the contents is a logical structure issue

(‘how important is this part of the document?’) , but we still need to interpolate the page num-

bers. The mechanism to do this is simple – it is just a large set of cross-references at the start

of the document16. A similar search-and-substitute mechanism is used in this thesis to inter-

polate the running footer (Layout in DDF).

6.5 Pagination

Most of the layouts described previously can be considered to be generally ‘linear’ functions

over their children – concepts of superposition have reasonable meaning. But there can be

layouts that are distinctly non-linear: the most common and important example of this is pagin-

ation. In its simplest case, pagination is an order-preserving one-dimensional bin-packing prob-

lem, which reduces to partitioning a sequence of pieces into groups each of which has the largest

‘length’ less than or equal to some target. (This does not mean pagination is just about text

14Other document systems, such as Scribe and Lout face the same problem and tackle it in a similar manner
15This might be warranted for a final pass on an important document, such as a PhD thesis.
16Minor enhancements could make this capable of handling multiple page-number sequences in a single document
(i-xxiv, 1-234 etc)

 1116.5 Layout in DDF |

– any types of content can be included.) Practical pagination is not quite as simple, adding

a variety of increasingly complex features: paragraph splitting across pages, multiple columns,

footnotes, floats, headers-and-footers, page-variable templates, widows-and-orphans etc, etc.

We can declare basic requirements for a pagination very simply – deciding the semantics and

constructing an implementation is not quite so straightforward. There are two general types

of argument: ‘containers’ to be filled, presumably in some sort of sequence, and ‘filling pieces’,

whose order should generally be maintained.

paginate

containers contents

Figure 36. Simple pagination

In the simplest case (Figure 36) the containers are really one-dimensional holes (with a height)

and the heights of the filling pieces are used to determine whether each piece will fit in the

remainder. Remaining general we assume that the pieces could be either primitives or com-

pounds composed of other pieces or compounds – a compound would be evaluated to a sized

group (or set of groups)17 and then all processed in document order. The implementation is

a tail-recursive function18 that takes as arguments:

filled: containers that are filled ‘completely’

current: pieces that are already ‘in’ the current container

containers: sequence of containers – the head of which is being filled

depth: current place to pack the current container

pieces: parts awaiting placement

17A compound could even be another ‘pagination’ to give a close-packed variable data effect – implementations
are fully recursive so this is distinctly possible.
18Lout[50] uses a tree-transforming implementation to do the same thing, moving evaluated content pieces from
the ‘source’ subtree into container subtrees, generating new empty containers as required – the effect is the same.

Kingston, J.
The design and implementation of the Lout document formatting language

 1126.6 Layout in DDF |

Once this basic framework is working then we can start to add the ‘bells and whistles’ that

are needed for a reasonable paginator. The key is in the central test of the implementation:

(element()) next=
Þ $pieces[1]

choose
when:$depth + $next/@height lt $containers[1]/@height

paginate($filled, ($current,$next), $containers, $depth + $next/@height, rest($pieces)
otherwise

this-filled=encapsulate(($current-contents, $next))
paginate(($filled,$this-filled), (), rest($containers), 0, $pieces)

Basically the next piece is evaluated and then subjected to a series of tests. In the case shown

either i) the piece fits, in which case it is added to the current bin and then recursion focusses

on the next piece with a new depth, or ii) it does not, so the current bin is closed and the part

is tried in the next container. Some end cases needed to be added (no more parts, no more

containers) and infinite guards implemented (e.g. dealing with a piece larger than any remain-

ing container). How this approach can be extended to produce a large-scale practical pagin-

ator (the sort that prepared this thesis) is described in more detail in Appendix B.

6.6 Conclusion

Lector, si exemplum requiris, circumspice.

This chapter has described the syntax, semantics and implementation of a extremely extens-

ible layout system which can support a wide variety of layouts, as well as constructed acyc-

lic layout forms that can be generated within variable documents themselves. Part C discusses

what the layout system looks like in terms of functions and functional behaviour together with

how it can be extended to support evaluation in the face of partial data binding.

 1137 Example Document - a Travel Brochure |

Chapter 7

Example Document - a Travel Brochure

To complete the discussion on DDF as a ‘simple’ variable-data document frame-

work, this chapter presents a larger-scale document, which uses many of the tech-

niques discussed previously. This example is a multiple-page travel brochure gen-

erated from a personal ‘customer profile’ acting as the variable data. The design

of the document, its various features and how it is processed are outlined. We also

show how, by suitable choice of intermediate canonical forms, the document can

be re-used for other purposes.

The brochure1 contains a mixture of different types of data variability and layout. This doc-

ument has a lot of computational power and is probably too complex to be created through

a WYSIWG editing system, but will illustrate a variety of the techniques that can be employed.

Most of the document ‘code’ and data structures will be shown in tree form to re-emphasise

the tree-based nature of the documents involved and also show how the use of elements in

multiple non-interfering namespaces can be powerful.

Figure 37 shows a single instance of the brochure for a particular customer; more detail will

be shown in later sections and larger versions can be found in in Figures 114 and 115 of

Appendix A. As can be seen there is a common page background, some salutation, a legal

(Terms & Conditions) constituent, resort descriptions built as groups, some generic pictori-

1A simpler version of this document was used in earlier papers [61, 63]

Lumley, J.
Pre-evaluation of Invariant Layout in Functional Variable-Data Documents

Lumley, J., Gimson, R. and Rees, O.
Configurable Editing of XML-based Variable-Data Documents

 1147.1 Example Document - a Travel Brochure |

al pages, some maps and a form for subsequent inquiries etc. Figure 38 show another instance

for a different customer and company binding, which now has 8 pages and some additional

filler material.

Honest John's
Helitours

Page 1Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Specially selected for Otis B. Driftwood

Stewart-Cassiar
The helicopter blades have turned and the
first fresh tracks have been carved to kick
off the 2008 season. If you have yet to
heliski during the early season, consider it
a must. As temps remain cooler at this time
of year, conditions at lower elevations
provide us with excellent tree skiing in
poorer weather conditions.

All-inclusive: £1234

Chamonix
Very little is known about how and where
they live. The one certainty is that they are
fearsome opponents. Nam libero tempore,
cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime
placeat facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
Temporibus autem quibusdam et aut officiis
debitis aut rerum necessitatibus saepe
eveniet ut et voluptates repudiandae sint et
molestiae non recusandae.

All-inclusive: £1035

Honest John's
Helitours

Page 2Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Alta Special
Offer!

Nam libero tempore, cum soluta nobis est eligendi optio
cumque nihil impedit quo minus id quod maxime placeat
facere possimus, omnis voluptas assumenda est, omnis dolor
repellendus. He had sunken cheeks, a yellow complexion, a
straight back, an ascetic aspect, and, with his arms dropped,
the palms of hands outwards, resembled an idol. The director,
satisfied the anchor had good hold, made his way aft and sat
down amongst us. We exchanged a few words lazily.
Afterwards there was silence on board the yacht.

All-inclusive: £997

Honest John's
Helitours

Page 3Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where these bargains are!!

Stewart-Cassiar Alta

Chamonix

Honest John's
Helitours

Page 4Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

For further details, please tick the appropriate box:
Customer:Otis B. Driftwood
Reference:1234

Stewart-Cassiar
£1234

Chamonix £1035

Alta £997
SPECIAL OFFER!

How to book in a hurry:
Please contact us via our representatives at any high-street stationer, where cheques

drawn on a Cayman Island or States of Jersey bank will be accepted with alacrity, or
alternatively turn up with cash in hand at Paddington station and ask for Harry.

Figure 37. Example instance of travel brochure

Travel Heliskiing

Page 1Travel Heliskiing Registered office: 19 High Holborn, LONDON W1 4NB
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Specially selected for George W. Bush

Val D'Isere
Very little is known
about how and where
they live. The one
certainty is that they
are fearsome
opponents. Nam

libero tempore, cum soluta nobis est
eligendi optio cumque nihil impedit quo
minus id quod maxime placeat facere
possimus, omnis voluptas assumenda est,
omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut
rerum necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae
non recusandae.

All-inclusive: £1405

Grindelwald
Very little is known about how and where
they live. The one certainty is that they are
fearsome opponents. Nam libero tempore,
cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime
placeat facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
Temporibus autem quibusdam et aut officiis
debitis aut rerum necessitatibus saepe
eveniet ut et voluptates repudiandae sint et
molestiae non recusandae.

All-inclusive: £2005

Travel Heliskiing

Page 2Travel Heliskiing Registered office: 19 High Holborn, LONDON W1 4NB
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

St. Anton
Very little is known
about how and where
they live. The one
certainty is that they
are fearsome
opponents. Nam

libero tempore, cum soluta nobis est
eligendi optio cumque nihil impedit quo
minus id quod maxime placeat facere
possimus, omnis voluptas assumenda est,
omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut
rerum necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae
non recusandae.

All-inclusive: £1405

Steamboat
Nam libero tempore, cum
soluta nobis est eligendi
optio cumque nihil impedit
quo minus id quod maxime
placeat facere possimus,
omnis voluptas assumenda

est, omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut
rerum necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae
non recusandae.

All-inclusive: £997

Travel Heliskiing

Page 3Travel Heliskiing Registered office: 19 High Holborn, LONDON W1 4NB
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Whistler
Nam libero tempore, cum
soluta nobis est eligendi
optio cumque nihil impedit
quo minus id quod maxime
placeat facere possimus,
omnis voluptas assumenda

est, omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut
rerum necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae
non recusandae.

All-inclusive: £997

Terrace Special
Offer!

Nam libero tempore,
cum soluta nobis est
eligendi optio cumque
nihil impedit quo minus
id quod maxime placeat
facere possimus, omnis

voluptas assumenda est, omnis dolor
repellendus. Temporibus autem quibusdam
et aut officiis debitis aut rerum
necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae
non recusandae.

All-inclusive: £997

Travel Heliskiing

Page 4Travel Heliskiing Registered office: 19 High Holborn, LONDON W1 4NB
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Vail Special
Offer!

Nam libero tempore, cum soluta nobis est eligendi optio
cumque nihil impedit quo minus id quod maxime placeat
facere possimus, omnis voluptas assumenda est, omnis dolor
repellendus. Temporibus autem quibusdam et aut officiis
debitis aut rerum necessitatibus saepe eveniet ut et voluptates
repudiandae sint et molestiae non recusandae.

All-inclusive: £997

Travel Heliskiing

Page 5Travel Heliskiing Registered office: 19 High Holborn, LONDON W1 4NB
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where these bargains are!!

Terrace

Whistler

Steamboat

Vail

Val D'Isere Grindelwald

St. Anton

Travel Heliskiing

Page 6Travel Heliskiing Registered office: 19 High Holborn, LONDON W1 4NB
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Travel Heliskiing

Page 7Travel Heliskiing Registered office: 19 High Holborn, LONDON W1 4NB
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Travel Heliskiing

Page 8Travel Heliskiing Registered office: 19 High Holborn, LONDON W1 4NB
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

For further details, please tick the appropriate box:
Customer:George W. Bush
Reference:4567

Val D'Isere £1405 Grindelwald £2005

St. Anton £1405 Steamboat £997

Whistler £997 Terrace £997
SPECIAL OFFER!

Vail £997
SPECIAL OFFER!

How to book in a hurry:
Please contact directly via phone or email.

Figure 38. A second instance of the travel brochure

7.1 Input data

The brochure is designed to produce a publication for a customer, who is represented by a

data record, shown in Figure 39. Given that there is a lot of common data between different

customers (e.g. resorts), much of the data is included from other sources, in this case XML

files via xi:include directives. In this example the company details (which include some filler

material), map resources and each of the selected resorts (Figures 40 and 41) are added via

inclusions. Details for the resorts vary: some have special properties and most refer to image

resources.

 1157.1 Example Document - a Travel Brochure |

<brochure>
 <xi:include href="HonestJohn.xml"/>
 <xi:include href="resorts/maps.xml"/>
 <customer>
 <name>Otis B. Driftwood</name>
 <ref>1234</ref>
 </customer>
 <xi:include href="resorts/StewartCassiar.xml"/>
 <xi:include href="resorts/Chamonix.xml"/>
 <xi:include href="resorts/Alta.xml"/>
</brochure>

Figure 39. An example customer record

company

name
Honest Joh

icon
cref://ima

terms
Welcome to

disclaimer
All data a

booking
P

contact
Email:hone

office
12 Wassers

filler
cref://ima

.. <filler> x2

resort

name
Alta

description
Nam libero

picture
cref://ima

.. <picture>

price
997

location

lat
40°35'19.

long
111°38'16.

maps

map

image
cref://ima

nw

lat
58°59'52.

long
137°31'10.

se

lat
31°26'28.

long
100°20'45... <map> x2

Figure 40. Example company, resort and map details

The map data could come from a database, and geographic locations for a resort might be

retrieved from some service, but the essentials of the information we need are given in the

two files. With all the data collected for this instance of the document (which will appear in

the data section of the main DDF document) we can proceed to process it.

 1167.2 Example Document - a Travel Brochure |

7.2 Processing the input data

While this document does not use a standardised logical structural layer, the mapping from

data to struct spaces can still perform useful work, constructing a canonical representation

from which the presentation layer can be built, and thus increasing potential reuse. We focus

on producing saleItem groups, each with title, description, picture and price elements, as

well as some diagram sections.

The inclusions (xi:include) are interpolated automatically by the DDF model during the input

phase (they are invisible within data, save for an attribute recording the source location). The

data is then processed by several push-mode templates – one each for maps and resort ele-

ments. The resort is converted to a saleItem (with location deleted for neatness), but we can

choose only the maps we actually need and convert them to diagrams in the process (Fig-

ure 41). Note that it would be possible to sort sections of the input (for example according

to customer preference in price order), but this is more a business-logic issue and belongs fur-

ther upstream – in general we preserve the order between similar items from the original data.

match:maps

places=../resort

maps=map[some $p in $places satisfies
ddf:withinLatLong($p/location,nw,se)]

diagrams " $maps :

map=·

mapLocs=$places[ddf:withinLatLong
(location,$map/nw,$map/se)]

diagram
image

" $mapLocs :

fract=ddf:fractLatLong
(location,$map/nw,$map/se)

point

label val(name)

x val($fract[2])

y val($fract[1])

xsl:

Figure 41. Pre-processing maps

We take each of the maps provided (already decorated with bounding latitudes and longitudes)

and predicate them against surrounding any of the resorts. For each of those maps required

we represent it as a diagram, to which are added each of the enclosed resorts with its frac-

tional position within that map encoded as a point with label, x and y children. This processing

is assisted by a few functions (ddf:fractLatLong() which converts deg°min'sec" to numer-

ic degrees, ddf:withinLatLong() which determines if a location is within an area) which would

conventionally be contained within a library for supporting geographic operations – the point

 1177.3 Example Document - a Travel Brochure |

is that this can be contained within a document that is simply imported for use. By choos-

ing this approach we decouple the presentation from any knowledge of geography and open

the possible reuse of the presentation in other forms of brochure. Doing this on the first example

produces an intermediate data structure shown in Figure 42.

brochure

company

name

icon

terms

disclaimer

booking

contact

office

filler

.. <filler> x2

diagrams
diagram

image

point

label

x

y

.. <point>
.. <diagram>

customer
name

a

saleItem

name

description

picture

price

.. <saleItem> x2

Figure 42. Canonical form for brochure data

With the data now written in terms of customer, company, saleItem and diagram items we

can turn to the generation of a suitable presentation.

7.3 General layout model

Apart from the overall appearance and styling, the main design choices for the brochure present-

ation revolve around two aspects. Firstly, is the document going to be a fixed or variable num-

ber of pages in length and secondly, what sub-parts of the data are being displayed and how?

The use of a canonical form within the document's struct space suggests that all the elements

there should be presented if possible – any deletion of content on semantic grounds should

have been carried out previously – this section decides how all the data will be presented.

As the number of saleItems is likely to be variable, it was decided to use a variable num-

ber of pages – from four upwards. There are two choices on how to generate the pages. The

 1187.3 Example Document - a Travel Brochure |

most general and highly suitable if the content is organised as a flow, is to use a presenta-

tional paginator (section 6.5). But pagination is computationally expensive. In this case where

each item may be considered to be similar in size, and the number of items is known at ‘run-

time’ we can use an XSLT iteration to generate a sequence of pages, each containing layout

for the appropriate content subsequence. This also makes it easier to insert filler material if

we wish to ensure that the brochure has a multiple of four pages, which is greatly preferable

for printing.

Document background and common sections

Good practice suggests maximising common sections, for both authoring and processing effi-

ciency. The document background and the company icon are obvious candidates. Some (com-

pany dependent) parts of the background and the icon are data-variable which requires pri-

or processing of layout to yield an invariant section that can be interpolated into each page.

By assigning this to a presentational variable (Figure 43), which is interpolated into the start

(i.e. the draw-order background) of each page, rather than an XSLT variable to be interpol-

ated, we ensure that the generation is carried out only once per document instance. This also

opens the possibility of positioning further items in places that depend upon the background.

The background uses a constrained layout (section 6.4) to position the necessary items – a

rect (page) acts as the background and provides the page dimensions. Two text blocks (com-

pany and office) display the company name and contact details and are constrained relative

to the top right (align(top,offset=10) align(right,offset=10)) and bottom left of page respect-

ively. A rect (icon) will act as a ‘hole’ to accept icons at a later stage and is similarly con-

strained relative to the top left of page, as well has having the same height as, and abutting

to the left of, company. A small text block (pageNo) aligns to the bottom right of page. This

block contains an fo:inline element with a ddf:page-ref="." attribute – this will be carried

through to the resulting layout (as an svg:tspan) with the attribute still attached and the lay-

out function number-pages (which is an ancestor of this element in the eventual layout tree)

will interpolate the final page number into such elements.

Finally a rect (blank) is constrained to lie between the top and bottom elements. This will be

used eventually as a place to position further elements within the blank space in the page – this

will adapt as the size of the header and footer elements alter. This technique makes it pos-

sible to generate quite complex systems for page template elements which are held in an impor-

 1197.3 Example Document - a Travel Brochure |

ted ‘document’ rather than having to be buried in some system resource such as a paginator.

layout(linear-constrained)

rect name="page"

block name="company" val(company/name)

constraints:align(top,+10) align(right,+10)
for:company page

rect name="icon"

constraints:align(top,+10) align(left,-10)
for:icon page

constraints:same(height) abut(left)
for:icon company

block name="pageNo" inline

constraints:align(bottom,-20) align(right,+10)
for:pageNo page

block name="office"
inline

inline val(company/name)

inline val(company/office)

block val(company/disclaimer)

constraints:align(bottom,-10) align(left,-10)
for:office page

rect name="blank"

constraints:align(right,+10) align(left,-10)
for:blank page

constraints:adjacent(above,-10)
for:company blank pageNo

ddfl: svg: fo: xsl:

Figure 43. Brochure page background

Construction of pages

There are four types of page in the document: i) those containing descriptions of saleItems

(Figure 44) which includes the first page, ii) a set of labelled diagrams, used here for maps,

iii) some optional ‘fillers’ and iv) a conclusion/order form.

 1207.3 Example Document - a Travel Brochure |

Honest John's
Helitours

Page 1Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Specially selected for Otis B. Driftwood

Stewart-Cassiar
The helicopter blades have turned and the
first fresh tracks have been carved to kick
off the 2008 season. If you have yet to
heliski during the early season, consider it
a must. As temps remain cooler at this time
of year, conditions at lower elevations
provide us with excellent tree skiing in
poorer weather conditions.

All-inclusive: £1234

Chamonix
Very little is known about how and where
they live. The one certainty is that they are
fearsome opponents. Nam libero tempore,
cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime
placeat facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
Temporibus autem quibusdam et aut officiis
debitis aut rerum necessitatibus saepe
eveniet ut et voluptates repudiandae sint et
molestiae non recusandae.

All-inclusive: £1035

Figure 44. First page

customer= block inline val(customer/name)

group:saleItem
by:(position() - 1) idiv 2 page

layout(encapsulate)

copy-of($background)

choose

when:current-grouping-key() eq
0 copy-of($icon)

when:current-group()
/@special-offer

ddfl:center-image('$icon-
space','cref://images/special.

png')

otherwise copy-of($icon)

layout(flow)

copy-of($background//*
[@name='blank']/(@x,@y))

if:current-grouping-key() eq 0 $customer

layout(flow) Þ current-group() param(width)=if(count(current-
group()) eq 1) then 170 else 80

xsl: fo: svg: ddfl:

Figure 45. Main brochure pages for salesItems

The saleItem pages are generated by an XSLT grouping construct, grouping them in pairs by

taking the position of the saleItem modulo 2 and generating a new page for each subset. That

page encapsulates the background and some icon – either the default or where there is a spe-

cial offer on an item, the special.png image. For the first page (when the grouping ‘key’ is

0), the default icon is always used. Then a flow is placed on top of the blank rectangle of

the background, by interpolating the x/y co-ordinates within the resolution of the layout. In

this flow is a customer greeting for the first page only (using a pull operation), followed by

a horizontal flow filled with appropriate presentations for the saleItem components of this

group. These are generated by push processing, providing a width parameter that varies depend-

 1217.3 Example Document - a Travel Brochure |

ent upon how many items there are. (More properly in this case the width should be propag-

ated during presentational processing – this can be done, but is more cumbersome to illustrate.)

Honest John's
Helitours

Page 3Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where these bargains are!!

Stewart-Cassiar Alta

Chamonix

Honest John's
Helitours

Page 3Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where these bargains are!!

Stewart-Cassiar Alta

Chamonix

a) Result

page
rect

layout(encapsulate)

copy-of($background,$icon)

layout(distribute-height)

copy-of($background//*[@name='blank']/(@x,
@y,@height))

block
Where thes

Þ diagrams/diagram
param(colour)=

cyan

param(pin)= image

ddfl: svg: fo: xsl:

b) Definition

Figure 46. Diagram page

The page containing labelled diagrams couples the background and icon with a set of diagrams

distributed vertically across the blank space using the layout function distribute-height. The

diagrams are generated through push-processing with two arguments – the colour to use for

labels and lines and an image of a pin to use as a marker, in place of the default coloured

circle2. What the diagrams are is determined by a fairly complex template supplied by the

library-images document, which sizes and places the image, and for each of the points (which

have x and y fractional positions and label texts) places a named marker at the calculated point

over the image. The labels are divided into left and right groups, sorted in vertical order, formed

as named text blocks and distributed across the height of the image. Finally connecting lines

 1227.3 Example Document - a Travel Brochure |

are drawn on top by determining placed positions of corresponding markers and labels. This

involves considerable use of presentational variables.

When documents are formed of quanta, e.g. fixed sized pages or as here, quadruple pages,

there is always the issue of managing the shortfall or overflow between the presented mater-

ial and the presentational space actually available – large areas of unintentional blank space

often detract from style. Sometimes with minor shortfall or overflow adjusting whitespace or

other stylistic tricks such as changing the size of fonts or images can be adequate. In more

extreme cases material must be trimmed or added. For this simple brochure adding filler pages

to round-up the document size to a multiple of 4 pages was the design decision. It would be

possible to add this as a higher-level layout process (using some marker in an already pagin-

ated layout where filler content can be placed) but in this design all the filler pages are inser-

ted at once and then, during the XSLT phase, the number actually required is computed from

the material provided in the data, altering the @visibility property (visible | hidden) of the

filler pages to reveal just enough3:

n-pages=((count(saleItem) - 1) idiv 2) + 3
n-fillers=if(($n-pages mod 4) eq 0) then 0 else (4 - ($n-pages

mod 4))

" company/filler :
(xs:integer*) pos=position()

page

@visibility=if($pos le $n-fillers) then 'visible' else 'hidden'

copy-of($background,$icon)

ddfl:center-image('$background//*[@name="blank"]',.)

xsl: svg: ddfl:

The final page is a rudimentary form for requesting further details. Construction uses some

flows and a grid layout to arrange each of the saleItems, with a simple template in a separ-

ate mode providing the presentation for each.

2The choice of a pin is suitable for a map – so perhaps this should have been decided in the structural mapping?
3This approach, exploiting a property of SVG, is suitable for use in partial evaluation, described in section 10.1

 1237.3 Example Document - a Travel Brochure |

Honest John's
Helitours

Page 4Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

For further details, please tick the appropriate box:
Customer:Otis B. Driftwood
Reference:1234

Stewart-Cassiar
£1234

Chamonix £1035

Alta £997
SPECIAL OFFER!

How to book in a hurry:
Please contact us via our representatives at any high-street stationer, where cheques

drawn on a Cayman Island or States of Jersey bank will be accepted with alacrity, or
alternatively turn up with cash in hand at Paddington station and ask for Harry.

a) Result

page layout(encapsulate)

copy-of($background,$icon)

layout(flow)

copy-of($background//*
[@name='blank']/(@x,@y))

layout(flow)

block

@width=$background//*
[@name='blank']/@width

block
inline val(customer/name)

block inline val(customer/ref)

layout(grid)

copy-of($background//*
[@name='blank']/@width)

Þ saleItem
block

inline

block val(company/booking)

match:saleItem layout(flow) layout(align)
rect

block

val(name)

inline val(price)

if:@special-offer block

svg: ddfl: fo: xsl:

b) Definition

Figure 47. Customer response page

Providing graphics for a saleItem

The main presentations for the saleItems including description, pictures and price (Figure 48)

are built from several templates which introduce variation for special offer and multiple-picture

cases:

 1247.3 Example Document - a Travel Brochure |

These templates rely on higher priorities for greater specialisation – a common technique with-

in XSLT but perhaps one that will be difficult to employ in directly-edited documents. The

templates all work inpush mode so, for example, special offers alter the order of elements in

the flow (picture before description) and then rely on other templates to provide the actu-

al details. The name for a special offer is processed in two XSLT stages – intercepted first

by a specific template matching a special-offered parent (name[../@special-offer]) which forms

a constrained layout around a rotated ‘special-offer’ text block and whatever the name would

produce without the special offer. This is achieved using xsl:next-match, which invokes the

next-highest priority template matching this node – here the result is interpolated directly, but

it could be assigned to a variable and examined.

match:saleItem[count(picture) gt 1]

param:width=80 layout(flow)

Þ name block

float

Þ picture[1]

param(width)=$width * 0.3

val(description[1])

Þ description[2],picture[2],price

xsl: ddfl: fo: svg:

match:saleItem layout(flow) Þ name,description,picture,price

match:saleItem[@special-offer] layout(flow) Þ name,picture,description,price

match:picture
param:width=80

image

match:description
param:width=80

block val(·)

match:name
param:width=80

block val(·)

match:name[../@special-offer] layout(linear-constrained)
xsl:next-match

block

match:price
param:width=80

block val(·)

Figure 48. Presentations for a saleItem

Where there is more than one picture for the saleItem, the first picture and first description

are combined by placing the picture into an fo:float with the text of the description. In this

process we pass on a width parameter to the picture generator that is a fraction of the cur-

rent width so the picture will then be sized appropriately. The use of tunnelled variables makes

this ‘cascading and modification’ of information comparatively easy4.

4See section 2.2 on page 37

 1257.4 Example Document - a Travel Brochure |

7.4 Brochure conclusion

The design of this variable document has been discussed in some considerable detail, to illus-

trate what sort of computational complexity is possible with a framework like DDF. The use

of push mode processing means that specialist cases can be added cumulatively and increases

the possibility of reuse5. Having a canonical form for the brochure in terms of saleItems means

we can contemplate reusing the variable document in another field entirely as can be seen in

Figure 49.

U. Nottingham
Computer

Science

Page 1U. Nottingham Computer Science Registered office: University Park Nottingham, NG7 2RD
All data and information provided is for informational purposes only. U. Nottingham makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Specially selected for Prospective Student

Mixed Reality Lab Special
Offer!

The Mixed Reality Lab (MRL) at the
University of Nottingham is a dedicated
studio facility where computer scientists,
psychologists, sociologists, engineers,
architects and artists collaborate to explore
the potential of ubiquitous, mobile and
mixed reality technologies to shape
everyday life.

All-inclusive: £997

Algorithmic Problem
Solving
Algorithmic problems are problems where
the solution involves —possibly implicitly—
the design of an algorithm. Algorithmic
problem solving is about the formulation
and solution of such problems.

All-inclusive: £1405

U. Nottingham
Computer

Science

Page 2U. Nottingham Computer Science Registered office: University Park Nottingham, NG7 2RD
All data and information provided is for informational purposes only. U. Nottingham makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Functional Programming
Lab
Functional programming is based upon the
idea of programs being functions from
arguments to results, rather than operations
that modify stored values. But it is much
more than just another programming
paradigm, creating a bridge between
abstract reasoning and concrete
programming, and providing the necessary
mathematical tools to put software
engineering on solid foundations, with the
aim of repeating the success of
mathematical methods in conventional
engineering.

All-inclusive: £1035

Automated Scheduling
The Automated Scheduling, Optimisation
and Planning (ASAP) research group
carries out research into models, heuristics
and algorithms for automatically producing
high-quality solutions to a variety of real-
world applications and optimisation
problems, including scheduling, timetabling,
manufacturing, logistics, space allocation,
stock cutting, anomaly detection,
bioinformatics and co-operative decision
support.

All-inclusive: £1405

U. Nottingham
Computer

Science

Page 3U. Nottingham Computer Science Registered office: University Park Nottingham, NG7 2RD
All data and information provided is for informational purposes only. U. Nottingham makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Intelligent Modelling and
Analysis
Over the last five years, the IMA group has
established itself as a unique brand in the
UK for end-to-end data modelling and
analysis. We are a highly inter-disciplinary
research group focusing on the
development of models and techniques for
real-world and multifaceted problems in
data analysis.

We encompass researchers from a variety
of backgrounds including computer
science, the biomedical sciences,
operational research, mathematics,
statistics and complexity science.

All-inclusive: £1365

Document Engineering
Welcome to the Document
Engineering Lab website
(formerly Electronic Publishing
Research Group). Our group,
based on the Jubilee Campus of
the University of Nottingham,

has been at the forefront of new
developments in digital publishing for more
than 20 years.

This group is also home to some of the
finest PhD students every seen north of the
Trent. A noteable achievement has been a
PhD thesis that is entirely constructed by
itself. The ultimate in self-bootstrapping
research.

All-inclusive: £3720

U. Nottingham
Computer

Science

Page 4U. Nottingham Computer Science Registered office: University Park Nottingham, NG7 2RD
All data and information provided is for informational purposes only. U. Nottingham makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where these bargains are!!

Algorithmic
Problem Solving

Mixed Reality Lab

Functional
Programming Lab

Automated
Scheduling

Intelligent
Modelling and
Analysis

Document
Engineering

U. Nottingham
Computer

Science

Page 5U. Nottingham Computer Science Registered office: University Park Nottingham, NG7 2RD
All data and information provided is for informational purposes only. U. Nottingham makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

U. Nottingham
Computer

Science

Page 6U. Nottingham Computer Science Registered office: University Park Nottingham, NG7 2RD
All data and information provided is for informational purposes only. U. Nottingham makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

U. Nottingham
Computer

Science

Page 7U. Nottingham Computer Science Registered office: University Park Nottingham, NG7 2RD
All data and information provided is for informational purposes only. U. Nottingham makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

U. Nottingham
Computer

Science

Page 8U. Nottingham Computer Science Registered office: University Park Nottingham, NG7 2RD
All data and information provided is for informational purposes only. U. Nottingham makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

For further details, please tick the appropriate box:
Customer:Prospective Student
Reference:9736

Mixed Reality Lab
£997
SPECIAL OFFER!

Algorithmic Problem
Solving £1405

Functional
Programming Lab
£1035

Automated
Scheduling £1405

Intelligent Modelling
and Analysis £1365

Document
Engineering £3720

How to book in a hurry:
Please go to the univeristy portal at http://www.nottingham.ac.uk to start your journey
in life

Figure 49. The brochure reused in a different field

In this case some of the styling (background colour) has been optionally defined by some data-

dependent element ((//style/color,'royalblue')[1]) – similar light-touch styling can be added

without altering the layout topology and resulting geometry.

A variable document of such complexity (and considerably more) can be developed by doc-

ument engineers. But as section 4.3 showed, the extent that documents of this general form

can be created and edited through using intuitive and generally familiar graphical tools is a

little more restricted.

5Albeit at the cost of making debugging trickier

 126

PART C

DOCUMENTS AS FUNCTIONS

 1278 Documents as Functions |

Chapter 8

Documents as Functions

Previous chapters have described the prior art of DDF. Part C discusses using DDF

documents more extensively as functions, leading to suggestions for a novel doc-

ument architectural model based on findings and ideas described here. This chapter

outlines the semantics of the response to data variation through mappings to struc-

tural and layout intent, as well as documents treating other documents as pass-

ive arguments. The following chapters investigate the functional nature of the

extensible document layout model and its implementation (showing extensions to

produce ‘higher-order’ capabilities, supporting continually variable behaviour),

possibilities of optimisation, variable documents as arguments and an extended

example, finishing with a general discussion and conclusion.

Through Part C there will be a developing emphasis on a small number of key findings that

make complex functional behaviour a possibility for variable documents. These are:

Programs and tools should behave as good XML citizens, transferring unknown informa-

tion in their XML source material to approximate tree-isomorphic positions in their results1.

Approximate tree isomorphism should be a goal for major evaluation steps if possible – this

is especially true in the resolution of layout declaration to final grounded graphical form.

1Definitions of this term and that in the next item are presented in section 8.1

 1288.1 Documents as Functions |

Declarative intent for layout can be added as attributive decoration to a grounded graph-

ical result, leading to a degree of idempotency in layout. Previous results can be reprocessed

and produce the same output, or when partially modified, can lead to successful and cor-

rect re-layout without recourse to an independent definition.

Interspersing of elements in differing namespaces within the overall XML tree supports act-

ive modification of a previously bound document, both when simple properties (such as sizes)

are altered and when substantial topological changes (elements deleted or added) are made.

Hybrid actions between differing semantic spaces (especially XSLT and the DDF layout

model) can support significant robust and continuous modification of documents.

The use of a compiler to generate an executable which implements the semantics of the doc-

ument, enables suitable retention of programmatic intent in variable documents, through par-

tial and multiple bindings.

These new features will require different workflows (e.g. multiple stages of binding – the work-

flow processor just needs to be supplied with a different configuration) and some alterations

to the toolchain (Figure 5) used for the work described in Part B. But the modifications are

relatively modest and additions rather than replacements:

New layout agents added to the layout processor as reactive XSL templates (in mode ddfl:

layout) and a few supporting functions.

An additional module in the DDF compiler supporting code propagation, which contains

a dozen or so reactive templates operating in mode ddf:modal, and acting pre-emptively

alongside the templates shown in Figure 21.

Much of this will be illustrated on a large scale with the example document of Chapter 12.

In the final conclusion the implications of these findings will be discussed, illustrating a pos-

sibly cleaner and simpler document form than DDF, based mainly on SVG, XSLT and the

declarative combinator layout model of DDF.

8.1 Definitions

There are a few terms that will be used frequently in Part C that warrant specific (if inform-

al) definition, as they are crucial to the extended capabilities described herein.

 1298.1 Documents as Functions |

Higher-order documents

Two types of higher-order document behaviour are explored, roughly corresponding to sim-

ilar forms encountered in functional programming. The first, and more important for this thes-

is, is where the binding and evaluation of a variable document produces another variable doc-

ument as result. This relies in part on treating program as data within a document and extend-

ing the semantics of the document to support such behaviour, which is of a higher order than

normal. In the second a variable document takes one or more other variable documents as argu-

ments for use within some subsequent binding2.

Approximate tree isomorphism

A tool that transforms one XML to another preserves approximate tree isomorphism if the

input and output trees can be put into approximate correspondence with each other such that:

1. If some element A on the input tree generates a result element Ao in the output, and a child

element of A, B also generated an element Bo in the result, then Bo is either a direct child

of Ao, or a direct descendant through ancestors who have no siblings.

2. The document order of elements in the input is preserved in the generated elements in the

result, such that relationships along the document order and sibling axes are maintained.

The intention is to retain hierarchical relationships through processes, especially in ancestry.

If x in the input has an ancestor y and y projects to yo in the output, then yo should have some

ancestor xo which was generated from x. Figure 50 shows two transformations of a tree where

the upper case result elements are generated from their corresponding lower case equivalents:

b) is approximately isomorphic – c) is not.

a

b c d

e

A

B D

E

F

E

F

A

D

B E

F

E

F

a) Original b) Approx. isomorphic c) Not isomorphic

Figure 50. Approximate tree isomorphisms

2Corresponding to the higher-order behaviour of functions such as map in FP (Chapter 11).

 1308.2 Documents as Functions |

Good XML citizen

A tool that processes XML structures behaves, to its own semantics, as a good XML citizen if it:

1. Does not object to the existence of information from other semantic spaces in the input XML

tree. Such information may exist as extra attributes, which may be in no or a foreign

namespace, or elements that are in foreign namespaces, and

2. When producing an XML result, which is approximately tree-isomorphic to the input, this

additional information has been written into equivalent positions (attributes, elements) on

the result as that had in the input. In particular attribute ®element and child ®parent rela-

tionships are maintained for the additional information.

This behaviour permits information to be added to a tree such that hybrid actions involving

processes in different semantic spaces can be supported, without having to modify tools to acco-

modate such extra specific information. Figure 51 shows two transformations of a tree: the

tool producing b) was a good citizen; that generating c) was not.

<a>
 <b n:name="fred"/>
 <n:c />
 <d>
 <n:e />
 </d>

<A>
 <B n:name="fred"/>
 <n:c />
 <D>
 <n:e />
 </D>

<A>

 <D/>

a) Original b) Good c) Bad

Figure 51. Good XML citizen transformations

8.2 Variable-data functional semantics

DDF was designed from the outset to support high-flexibility automatically-generated variable

documents. As Chapters 4 and 6 have shown, the design has two major parts – a cascaded

XSLT model to describe variation of ‘presentational intent’ with bound data, and an extens-

ible layout system capable of describing a very wide variety of document graphical forms. This

section discusses in greater depth the types of data variation that DDF can handle through sev-

eral paradigms. This will form a basis for a more advanced ‘functional’ interaction between

the data and layout which is explored in Chapter 9 and leads to ‘higher-order’ documents.

 1318.2 Documents as Functions |

The survey of prior art (Chapter 3) has discussed three general models for data-variability for

documents: simple queries into database records, used for systems like mail-merge; sets of

named variables which are bound through generally simple one-to-one mappings from data,

usually on a record-by-record basis, and which can be interpolated by name into the document;

and fully-programmatic mechanisms. Clearly DDF has the latter capability, through the use

of XSLT. But there are also paradigms that can easily and readily simulate the other forms.

Sometimes this can exploit the document logical structure layer to provide canonical repres-

entation, but these forms can be simple enough not to need such additional complexity.

A simple ‘database’ query as typified by mail-merge is a suitable starting point:

 Dear <title> <lastName>,
 Account: <accountNo>
 We have a great offer for you.....

Assuming that the data record is a flat XML tree with names similar to the interpolating ele-

ments in the document, then the mapping is pretty trivial3:

<fo:block >
 <fo:block>Dear <xsl:value-of select="title"/>
 <xsl:value-of select="lastName"/>, </fo:block>
 <fo:block>Account: <xsl:value-of select="accountNo"/>
 </fo:block>
 <fo:block>We have a great offer for you....</fo:block>
</fo:block>

The semantics of the xsl:value-of will yield an empty string in the absence of a value, so the

default behaviour is as would be desired. If an editing system similar to [63] is used, then the

xsl:value-of select="var" elements could be projected through as <fo:inline><var>..

with suitable trace pointers, so the authoring document can use simpler reduced variable indic-

ators. Similarly an editor can support the insertion of a variable value through user interface

interaction that adds the appropriate XSLT structure to the source and which then gets reflec-

ted in the visual form4.

When the data is not arranged so conveniently, then some simple data mapper might suffice.

A common example is the use of the comma-separated variable (.csv) format. In this case we

can either arrange that the structural layer is used as a buffer, creating an XML structure with

3fo:block structures within an fo:block denote sub-paragraphs or line breaks.
4The editor described could easily show variables with differing appearance (colour, font, surround) without dis-
turbing the inherent style of the eventual text.

Lumley, J., Gimson, R. and Rees, O.
Configurable Editing of XML-based Variable-Data Documents

 1328.2 Documents as Functions |

suitable names, or the interpolating xsl:value-of elements will use indexing statements (token-

ize(.,',')[3]). A better solution is to use a model-based representation for the named field map-

ping, such as shown in Figure 52:

<NamedFields type="CSV">
 <lastName/>
 <firstName/>
 <unused/>
 <title/>
 <unused/>
 <accountNo/>
</NamedFields>

match:NamedFields[@type='CSV']
param:$data
record

parts=tokenize($data,’, ’)
" * :

pos=position()
if:not(self::unused)

copy
val($parts[$pos])

a) Field model b) Mapping code

Figure 52. Named field mapping

Obviously this model could either be interpreted at each document instance or compiled into

the document by partial evaluation (Figure 53):

<record>
 <lastName>Driftwood</lastName>
 <firstName>Otis</firstName>
 <title>Mr</title>
 <accountNo>12345</accountNo>
</record>

record
parts=tokenize($data,’, ’)
lastName

val($parts[1])
firstName

val($parts[2])
title

val($parts[4])
accountNo

val($parts[6])

a) Mapped on instance b) Partially evaluated in document

Figure 53. Model projected on data or document

Supporting an extensible set of named variables (e.g. as used in Dialogue[103]) has two pos-

sibilities, depending upon whether the document can be compiled against a model or not. There

obviously has to be some list of the variables, their types and their source mapping. In our

small example this could be something like:

 firstName: type=string source=CSV[2]
 lastName: type=string source=CSV[1]
 title: type=enumeration("Mr.|Mrs.|Miss|Ms|Dr.|Prof.") source=CSV[4]
 accountNo: type=database("accounts")
 query=(last=lastName,first=firstName; => number)

HPExstream
Dialogue

 1338.3 Documents as Functions |

With a reasonably small set of such variable types, user interfaces for creating and modify-

ing them are possible. Given such a model we could represent variable interpolations with-

in the document itself either as reserved words such as $title or preferably XSLT structures

that link to the variable model and give a suitable visual appearance as discussed above. A

preferred option compiles the model into the document, making the variables first-class xsl:

variables and then interpolating them in the normal manner. This has several advantages:

Variables have suitable scoping – local variables can be supported within a subtree or sub-

section, while global ones can still operate.

Types can be identified and checked both at compile-time and run-time.

Expressions of several variables can be supported easily, including variables created as func-

tions of other variables.

For our example the following series of variables might be generated:

<xsl:for-each select="$lines">
 <xsl:variable name="firstName" as="xs:string" select="f:csv(.,1)"/>
 <xsl:variable name="lastName" as="xs:string" select="f:csv(.,2)"/>
 <xsl:variable name="title.Enum" as="xs:string*" select="'Mr.','Mrs.','Miss','Ms','Dr.','Prof.'"/>
 <xsl:variable name="title" as="xs:string" select="$title.Enum[number(f:csv(.,4))]"/>
 <xsl:variable name="accountNo" as="xs:string" select="f:database('accounts', ('last',$last-
Name,'first',$firstName))/number"/>
 </xsl:for-each>

8.3 Documents as passive arguments

There is an interesting subclass of variable documents that treats other documents as data.

Chapter 11 discusses where these argument documents are considered to be active, i.e. some

of their variability is subsumed into the document that consumes them, but here they are treated

as passive data sources. In essence they are only more complex forms of data, and assuming

they are represented in XML this poses few problems, other than perhaps those of scale5.

A simple case is generating an external outline or table of contents for a given document. There

has, of course, to be some knowledge of what type of construct is used to describe a head-

ing or section and where the useful data is located in and around that construct. If the doc-

ument has a logical structure written in XHTML, then //section/h will get all the headings,

5Consuming PDF is an entirely different order of complexity.

 1348.3 Documents as Functions |

and a template-based tree descent which copies only section | h and their descendants will

form up a correct nesting without full content. If however result page numbers are needed,

then the final paginated presentation needs to be accessed. We need to know how a heading

appears in the result for this type of document (assuming it can somehow be distinguished

from other text) and how one extracts both the heading and the ordinal position of the page

element within which it sits.

Cases such as a précis involve some of the content (figures, paragraphs) of one or more doc-

uments being extracted and generated into another document. Here there is an additional issue:

collecting any required resources or properties to complete a correct presentation of the extrac-

ted portion as it appears in the source document, as opposed to where only the information

is used, as in making an outline. The issues are similar to those investigated by Bagley[8],

having to collect relevant style state that appears elsewhere in the document to make the extrac-

ted components be self-contained, though complete tracing of external resources, such as

images, may involve some complexity.

Of interest to the computer scientist is using this approach for documentation of a set of pro-

grams, or indeed variable documents. Here having everything described in XML is more than

a distinct advantage – primary parsing is automatic and XPath makes collection declarative.

Here are a few examples of how simple this can be:

An index of all the XSLT functions can be formed by using //xsl:function to select each

of the function definitions. A matching template can then collect its name (@name), any

type (@as) and all the parameters (xsl:param/(@name,@type)) to build up a set of res-

ult structures that can then be sorted and/or grouped and used as presentation. (XHTML

is good as it makes building Web-documentation easy.) Similar methods can be used for

xsl:template.

Library resources imported by documents or programs from other files can be tracked by

following the inclusion statements (xsl:import href="file") recursively opening the docu-

ment pointed at. Relative source locations can be resolved and loop recursions can be avoided

easily. Building an index of ‘in which file is this resource defined’ is trivial.

Bagley, S., Brailsford, D. and Ollis, J.
Extracting reusable document components for variable data printing

 1358.3 Documents as Functions |

All function calls are contained in XPath expressions (pic:pic-width(..)), so unless such pat-

terns appear in embedded strings, regular expressions (\i\c*:\i\c*\() can find these references

and make call-maps for sections of code – automatic generation of hyper-links around the

map is straightforward.

These all look remarkably like documentation programs, but the point is that they can be con-

tained in the variable documents: binding and evaluating the documenting document over the

source of interest produces the desired documentation:

<xsl:function name="f:parse-svg-path" as="element()*"
 doc:doc="Parse an SVG path definition into its instructions. The result is a sequence of
elements, the name of which is the instruction (e.g. L, m, z, C), and the text value is the arguments
for that instruction.">
 <xsl:param name="path" as="xs:string"
 doc:doc="Typically the @d attribute from an svg:path"/>
 <xsl:for-each select="tokenize(replace(normalize-space($p),'(.)([A-Za-z])','$1|$2'),'\|')">
 <xsl:element name="{substring(.,1,1)}">
 <xsl:value-of select="normalize-space(replace(substring(.,2),',',' '))"/>
 </xsl:element>
 </xsl:for-each>
</xsl:function>

element()* f:parse-svg-path(path as xs:string)

(xs:string)
path

Typically the @d attribute
from an svg:path

Parse an SVG path definition
into its instructions. The result
is a sequence of elements, the
name of which is the instruc-
tion (e.g. L, m, z, C), and the
text value is the arguments for
that instruction.

Figure 54. Simple auto-documentation

Very modest documentation paradigms can make this more valuable. Using a reserved

namespace for documentation attributes and elements (doc:) encourages in-file documenta-

tion almost in a literate programming style[97], without needing the ‘tangle’ operation – the

step described here is effectively the ‘weave’. Any XSLT element could be decorated with

a @doc:doc attribute with some simple textual description6 – this can be used for argument

descriptions (xsl:param/@doc:doc). Top level doc:doc elements could contain extensive

(HTML) structured documentation sections; with a protocol where they immediately precede

the entity they describe, retrieval is through a selector preceding-sibling::*[1][self::doc:doc].

6XSLT ignores foreign namespace attributes and top-level elements – this is crucial for some of the higher-order
effects described in Chapter 9.

Walsh, N.
Literate Programming in XML

 1369 Variable Layout as a Higher-Order Function |

Chapter 9

Variable Layout as a Higher-Order Function

A consistent model for evaluating a document layout that still contains variable

elements is examined in this chapter, providing a foundation for continually act-

ive, or partially bound, variable documents. We show how layouts can be declared

in ways where they can be idempotent under layout resolution, re-satisfied when

information within them changes, and contain elements that support controllable

topological modification, i.e. subcomponents being added, deleted or modified as

a document in progressively bound to a sequence of data.

The previous chapters have shown a document acting as a simple function of its variable data,

generating a ‘fixed’ value for a specific data instance. This mapping can be quite complex,

especially in layout, which is designed for smooth extensibility. But functions can exhibit fur-

ther complexity, as manifested in functional programming, including two behaviours charac-

teristic of the evaluation of higher-order functions:

They can produce a function as output.

They can accept and process one or more functions as input.

This chapter examines the possibilities of the first of these: a variable DDF document being

evaluated over some data and resulting in another variable DDF document, which may have

viewable presentation. This opens the possibility of creating ‘continual documents’ that modi-

 1379.1 Variable Layout as a Higher-Order Function |

fy themselves under strict document-declared control as data is bound to them progressively,

whilst still providing viewable and meaningful presentations at each stage. Such behaviour

would be almost impossible to implement in conventional document systems. Documents that

take other documents as input are discussed in Chapter 11.

The key is that by arranging that document variability is expressed as a program embedded

within the document and held in the same XML syntax as the rest of the document, for some

purposes the program can be treated as data. This means that program can be altered to

accomodate extended semantics (such as continual activity through multiple bindings) and then

embedded in the resulting document. Hence the document (or document and processor) are

behaving in a fashion that is of higher-order than that of a simple variable document.

Adding three concepts to the layout model (attributive layout directives, foreign elements and

their correct handling, and meta-layout operators) and defining semantics for retaining frag-

ments of XSLT within presentational layout trees, is sufficient to support this ‘variable doc-

ument as output’ functionality. Small scale examples will appear here; Chapter 12 will illus-

trate application-scale use and will explore some design paradigms for such a document. This

is the key set of ideas of this thesis.

9.1 Layout and approximate tree-isomorphism

The model for layout required by a document described so far is strictly the invocation of a

deeply nested function call, with the addition of XSLT-like semantics for single-assignment

variables, iteration and choice. Ignoring the additional semantics, a call is of the form:

fi(fj(xa,xb,...),fk(xc,...),...)

where fi are the layout functions, each with properties, and xa are leaf primitives. (In this case

SVG elements that contain no further embedded layout functions – SVG elements that do con-

tain such functions can be considered to be identity copies.) There are two important points:

Being considered a nested invocation of functions, free of side-effects and which produce

unique single ‘values’ for the same arguments, regardless of external context, means that

operations such as partial evaluation are possible.

 1389.2 Variable Layout as a Higher-Order Function |

If the functions construct an output tree that reflects their own calling structure, i.e. pro-

ducing a result gi(gj(xa,xb,...),gk(xc,...),...) where the brackets denote tree structure and gi is

an SVG node with properties that are canonical for the result (i.e. a rectangular posi-

tion/extent) and contain any additional information left over from the fi invocation (i.e.

unknown properties), then higher level functional operations can operate on arbitrary con-

structs below.

Retaining the parent-child relationships of the functional declaration into the result has proved

critical. Whilst all the children of some layout could be flattened, the svg and g constructs

of SVG can mark result groupings1, and they constitute a node on which to attach group prop-

erties. Such properties can thus be exploited by ancestor layouts – the most powerful example

shown so far is the convention of using @name to identify pieces, making it possible to describe

relationships between named subcomponents and to extract post-layout properties (usually pos-

ition) for such. Such isomorphism also allows us to support a degree of idempotency in vari-

able document layout as the next sections will show.

9.2 Layout with embedded function

Generation of grounded layouts from declarations of intent has already been discussed, where

the layouts were either built from document variability or which were statically invariant in

the original document. Documents of interest might also need further variability contained in

their presentational output, for later binding of data or generation of a more specialist doc-

ument. Examples include:

Specialising a generic template by binding partial information. For example a generic set

of ‘invoice’ templates could be bound to data for a particular company, generating a set

of appropriate document templates for use in their variable document workflows. Some parts

of this (e.g. company name and address fields) can be laid out completely. Others, such

as customer name, still require that interpolative statements be left in the layout.

A document that has ‘continual life’ – where data is added by stages that could be widely

separated in time, but the document is still ‘presentable’ at any point. A medical record is

an example, which will feature later in the thesis.

1They map easily into PDF for example.

 1399.3 Variable Layout as a Higher-Order Function |

These new possibilities raise, in turn, three separate issues. Firstly new interpolative statements

(xsl elements) may be generated or left within (svg) layout results; secondly, layout con-

sequences must be evaluated correctly around such elements and thirdly, layout intents must

be retained on results to support subsequent re-satisfaction.

9.3 Attributive layout and embedded program

Chapter 6 described required layouts as reserved tree nodes with children beneath, acting as

a canonical form for any localised layout. But some types of layout are essentially localised

geometric transformations of a single piece, and could be considered additional properties of

a node. An example is rotation, which could be declared in two ways:

Som
e t

ex
t th

at
is

ab
ou

t to
 be

 ro
tat

ed

rotate(45)

encapsulate

Some text that is
about to be rotated

Some text that is

about to be rotated

encapsulate, @ddfl:rotate(-45)

Some text that is
about to be rotated

Figure 55. Simple rotational layouts & source declaration

In the second form we attach the attribute @ddfl:rotate to the ‘encapsulating’ node. Giving

such declarations higher precedence than the node itself, (caught by *[@ddfl:rotate]) causes

the result to be post-processed by a layout agent – in this case to rotate the result.This is a

more natural declaration for a single piece: it can be considered an extended property of the

element, and can avoid the need to make the tree another node deeper. Multiple use of this

approach (e.g. for actions such as scale, mirror, rotate and anchor) requires a priority order

to be established for non-commutative actions.

Using this approach for more general declarations of layout intent opens interesting possibil-

ities, especially for describing and evaluating partial and multi-stage layouts. A flow would

usually be defined as in Figure 56a:

 1409.3 Variable Layout as a Higher-Order Function |

<ddfl:layout function="flow">
 <svg:rect fill="blue" width="8" height="8"/>
 <ddfl:layout function="flow" direction="x">
 <svg:rect fill="red" width="12" height="7"/>
 <svg:rect fill="green" width="15" height="12"/>
 </ddfl:layout>
</ddfl:layout>

<svg:svg ddfl:layout="flow">
 <svg:rect fill="blue" height="8" width="8"/>
 <svg:svg ddfl:layout="flow" direction="x">
 <svg:rect fill="red" height="7" width="12"/>
 <svg:rect fill="green" height="12" width="15"/>
 </svg:svg>
</svg:svg>

a) Element combinators b) Attribute declaration

Figure 56. Element & attribute defined flow layout

But if the layout processor recognized an attribute @ddfl:layout="flow" as a synonym (Fig-

ure 56b) then we could attach that to svg:svg elements yielding a layout result:

<svg:svg ddfl:layout="flow" height="20" width="27" x="0" y="0">
 <svg:rect fill="blue" height="8" width="8" x="0" y="0"/>
 <svg:svg ddfl:layout="flow" direction="x" height="12" width="27" x="0" y="8">
 <svg:rect fill="red" height="7" width="12" x="0" y="0"/>
 <svg:rect fill="green" height="12" width="15" x="12" y="0"/>
 </svg:svg>
</svg:svg>

Figure 57. Simple attributive flow layout – resulting graphics

Why is this important? To put it simply, the resulting SVG tree still contains all the inform-

ation necessary to re-evaluate the flow if something inside changes. If we took the result

of Figure 57 and passed it through the layout processor again, we would get exactly the same

result. If somehow we alter the size of one of the rectangles within that result or add some-

thing new inside the flow, then we can reprocess the presentable SVG for layout to get the

correct new arrangement.

KEY: Layout intent as attributes. Layout intent can be added as attributive decor-

ation to a grounded SVG graphical result, leading to idempotency in layout. Previ-

ous or modified results can be reprocessed yielding the intended output without

recourse to an independent definition.

Suppose that somehow a ‘foreign’ object which happens to be a section of XSLT had been

inserted in the middle of the inner flow and had not been evaluated:

 1419.3 Variable Layout as a Higher-Order Function |

svg layout="flow"
rect fill="blue" width="8" height="8"
svg layout="flow" direction="x"

rect fill="red" width="12" height="7"
" */star : retain="indefinite"

circle fill="yellow" stroke="black" cx="3" cy="3" r="3"
rect fill="green" width="15" height="12"

svg

svg

" */star :

svg: ddfl: xsl: ddf:

Figure 58. Attribute defined flow layout

If this flow is evaluated by the layout processing agent for flows, and provided that agent is

a good XML citizen, i.e. not only does it not signal an error at the included XSLT structure

but deep-copies it, unmodified, into the same place in document order in the result and ignores

it when calculating positions for all ‘proper’ svg:* children, the result will be:

svg layout="flow" height="20" width="27" x="0" y="0"
rect fill="blue" height="8" width="8" x="0" y="0"
svg layout="flow" direction="x" height="12" width="27" x="0" y="8"

rect fill="red" height="7" width="12" x="0" y="0"
" */star : retain="indefinite"

circle cx="3" cy="3" fill="yellow" r="3" stroke="black"
rect fill="green" height="12" width="15" x="12" y="0"

svg: ddfl: xsl: ddf:

Figure 59. Simple attributive flow layout – constant result

The flow has been evaluated for layout as if the XSLT wasn't making any difference, but the

placeholder still remains. Furthermore the result still contains flow declaration information. If

the final SVG imager (renderer or PDF generator) ignores the XSLT completely then the res-

ult is correctly presentable. And the resulting structure is nearly identical to the input. Fur-

ther re-evaluation as layout will continue to produce the same result, hence idempotency.

KEYS: Good XML citizens and tree-isomorphism. Non-layout elements and

declarations can be accommodated and retained within layout trees, preserving pos-

ition within the tree, provided layout is tree-isomorphic and layout agents behave as

good XML citizens.

If subsequently this SVG tree is evaluated on XSLT semantics, the placeholder may gener-

ate new content, which on layout will ‘expand the flow’:

 1429.3 Variable Layout as a Higher-Order Function |

svg layout="flow" height="20" width="39" x="0" y="0"
rect fill="blue" height="8" width="8" x="0" y="0"
svg layout="flow" direction="x" height="12" width="39" x="0" y="8"

rect fill="red" height="7" width="12" x="0" y="0"
circle cx="15" cy="3" fill="yellow" r="3" stroke="black"
circle cx="21" cy="3" fill="yellow" r="3" stroke="black"
" */star : retain="indefinite"

circle cx="3" cy="3" fill="yellow" r="3" stroke="black"
rect fill="green" height="12" width="15" x="24" y="0"

svg: ddfl: xsl: ddf:

Figure 60. Simple attributive flow layout – data-modified graphics

There were evidently two ‘stars’ in the data, which the XSLT fragment iterated over to pro-

duce the two circles.The generating XLST fragment remains – the directive @ddf:retain="

indefinite" caused a self-propagating construct to be added. How this is done is described later,

but it can be coherent and is crucial to producing continually active documents.

KEY: XSLT defines variability. As the data-processing ‘program’ is defined com-

pletely in an XML syntax, it can be embedded in other XML structures and manip-

ulated by XSLT in a similar way, even to the point of generating self-propagating code.

Figure 61 shows diagrammatically what is going on in a different simple layout with two places

interpolating data – the first conditionally into a text block, and the second as the colour of

a rectangle, both being within flows.

layout(flow) x="0" y="0" direction="x"
layout(flow)

rect fill="red" width="50" height="20"
if:test2 retain="until-triggered" evaluate="false"

block width="50" font-family="Helvetica" font-size="6"
val(test2/data)

rect fill="blue" width="50" height="20"
layout(flow) direction="x"

rect fill="green" width="30" height="30" x="0" y="0"
rect fill="white" stroke="black" width="30" height="20"

@fill=(*/@colour,'white’) [1]
rect fill="yellow" width="30" height="30" x="0" y="0"

ddfl: svg: xsl: ddf: fo:

Figure 61. Layout with two sections of variability

Binding and laying-out this out, to two distinct data records in progression, yields Figure 62.

A tree representation (Figure 63) shows what happens most clearly. The nodes are coloured

to represent the namespaces of elements involved, with two special forms for svg:svg ele-

 1439.3 Variable Layout as a Higher-Order Function |

ments: those that are expansions of fo:block elements have an fo: coloured border, and those

that are decorated with @ddfl:layout properties are similarly bordered with the ddfl: colour

and presented as a circle.

test1 colour="green"
data

Data 1

test2 colour="red"
data

Data from test2 that might
get bound into a docu-
ment

Data from test2
that might get
bound into a
document

Figure 62. Two different data bindings for Figure 61 & resulting graphics

svg: ddfl: xsl: fo: ddfl:Þ svg: fo:Þ svg:

a) After XSLT(test1) & layout b) After XSLT(test2) & layout

Figure 63. XSLT & layout evaluations for binding test1 followed by test2

Figure 63a shows the layout after binding the XSLT to the first data instance and resolving

its layout; the result has then been further evaluated over the second instance in Figure 63b.

The fo:block is unexpanded during the first pass as the condition (xsl:if test="test2") is unsat-

isfied at this point and the construct is marked to be retained – in this case the subtree passes

through unchanged, without disturbing the flow. The xsl:attribute that sets the rectangle col-

our has triggered but, again, is marked to be retained. On the second binding the condition-

al fo:block can trigger and interpolate its value, resulting in an expanded text block, that i)

does influence the flow within which it lies and ii) is now no longer variable – the parent

and child XSLT (xsl:if, xsl:value-of) have been interpolated and removed.

 1449.4 Variable Layout as a Higher-Order Function |

Later sections will show how adding a hybrid system of XSLT and specialist meta-layout declar-

ations can support topological modification of graphical presentations. But this is only pos-

sible due to these key ideas, which will be examined in more detail:

SVG trees can be decorated with attributive declarations to describe intended relationships

between subparts of the trees.

Elements and attributes in foreign namespaces can exist within SVG trees and support vari-

able graphical behaviour provided that all tools act as good XML citizens.

XSLT program fragments, being entirely described in XML, can exist within, and be manip-

ulated along with, other XML structures.

9.4 One-to-many mappings

We have seen how a layout that is a one-to-one mapping in tree terms could be declared purely

with an attribute – the input tree produces a single tree as output which is topologically sim-

ilar to the input. A tree node with n children produces an output tree, also with n children,

probably in the same document order.

For constructs like flows this is adequate, but not all layouts are one-to-one in form. A pagin-

ator was described in Chapter 6, which is a one-to-many mapping. The defining layout tree

has a node declaring pagination with parameters2 and a set of n children that should be packed

in sequence into containers. The result of this is not a single tree but a sequence of trees each

filled with the relevant children. In graphical terms we have:

paginate (40,30,40) svg:svg svg:svg

a) Before layout b) Layout result

Figure 64. One-to-many pagination layout

2This argument assumes that the containers are described as parameters not children – when they are ‘reserved
children’ a modified approach applies, described in the next section.

 1459.4 Variable Layout as a Higher-Order Function |

Now if we wish to declare the ‘pagination’ constraints across the result, where should they

be placed and how should the collection be gathered for resatisfaction? One possibility, in the

spirit of ‘parental responsibility’, would be for parent layouts to check for one-to-many res-

ult groupings in their children, before evaluation. However this requires every layout to do

so. Another possibility exploits the common paradigm within layout agents that they evalu-

ate all children in a uniform manner by the action apply-templates select="*" mode="ddfl:

layout" and then operate on the resulting laid-out children.

We assume that all the results from a one-to-many mapping are consecutive siblings of each

other in the resulting tree (thus preserving approximate tree isomorphism). We arrange for just

one of the siblings to be reponsible for gathering all the components from itself and its sib-

lings and ensuring that all the other siblings return a null result. A suitable test is empty

(preceding-sibling::*[@ddfl:layout=$function]) where $function is the name of the layout

– this will be true for the first element of the mapping result, and false for all the rest.

The test can be refined further by identifying members of each one-to-many mapping with

some marker, such as @ddfl:as="element()*" and giving each group a unique @ddfl:id, so

that several similar mappings can act independently, even when results are contiguous siblings.

Figure 65 shows a suitable meta-layout agent for collecting and evaluating these groupings.

match:svg:svg[@ddfl:layout][@ddfl:as='element()*'] mode="ddfl:layout" priority="2.5"
function=@ddfl:layout
id=@ddfl:id
if:empty(preceding-sibling::svg:svg[@ddfl:layout=$function][@ddfl:id=$id])

(element()) temp=
layout({@ddfl:layout})

copy-of(@* except (@ddfl:layout,@width,@height),*|text())
copy-of(following-sibling::svg:svg[@ddfl:layout=$function][@ddfl:id=$id]/((*|text()) except *
[@ddfl:artifact]))

Þ $temp mode="#current"

param(attributes)=@ddfl:layout,@ddfl:as,@ddfl:id,@spacing|@direction

Figure 65. One-to-many layout resatisfaction code

Figure 66 shows the source of two independent paginations in sequence, both of which con-

tain additional element generators. In Figure 67 the addition of circles into the set of children

forces later, ‘older’, siblings to move into the next container and in one case forces creation

of an extra page.

 1469.5 Variable Layout as a Higher-Order Function |

layout(paginate)

if:*/on

circle

@fill=(*/@colour,'white')[1]

layout(paginate)

if:*/on

circle

@stroke=(*/@colour,'black')
[1]

ddfl: svg: xsl:

Figure 66. One-to-many pagination with continuous alteration.

Figure 67. Three successive bindings to the paginations of Figure 66

9.5 Foreign namespaces within layout

The previous examples are simple cases where a layout can be resolved when some of the

child elements are not graphical or layout constructs. To do this consistently and correctly,

and for layouts more complex than a simple flow, certain protocols must be followed. The

aim is to describe generic methods that absolutely minimise the changes needed in layout agents

and maximise the cases in which resatisfaction can occur correctly.

Once again it is imperative that tools behave as good XML citizens. This means that:

The presence of unknown attributes on an element (regardless of namespace) or child ele-

ments in foreign namespaces does not cause an error3.

Unless there are specific reasons not to, transformational tools generating XML results from

such input, which have approximate XML isomorphism in their mapping, should copy over

such unknown information (attributes and elements) to equivalent positions in their results.

Whether such copies are deep or shallow may depend upon semantics. Information that may

be used at ‘higher level’ (acyclic interdependencies, editing) is thus retained. In this chapter

it supports extended functionality.

In the DDF framework two specific areas must obey these strictures. Layout agents must do

this as a matter of course and how they do this consistently is the bulk of this section. But

3Systems with strict schema awareness will come unstuck here – it is my opinion that schemas are best employed
for input data verification, rather than deep runtime analysis

 1479.5 Variable Layout as a Higher-Order Function |

any visual observer of a DDF document is similarly bound – the ‘no error’ condition is rel-

atively simple4, but foreign elements must be ignored in something like a PDF generator. Usu-

ally such ignorance should be deep: it is difficult to envisage a situation in an observer where

it should be shallow (i.e. ignore the element but descend into the children), though a suitable

case might occur during layout invariant optimisation.

The process of handling foreign attributes during layout is fairly straightforward. Most agents

when constructing the output element, copy across all attributes appearing on their input ele-

ment except the ones that define their known parameters. (Resatisfaction now makes it import-

ant to retain even those.) But handling foreign elements is not quite so simple.

As we have seen, an XSLT element should be considered to have no geometric extent but still

be copied into place in something like a flow. But not all layouts are that simple and the effect

of the XSLT element may not be simply confined to its geometric influence. Figure 28 in sec-

tion 6.1 described a square arrangement, which counted the number of children to determine

an appropriate number of columns and rows. Buried XSLT subtrees within that set will make

that count too high – such elements should be excluded from the set of ‘proper children’.

Similarly any activity that effectively iterates across part or all of the child set needs to be

‘foreign aware’. Some statements like sum(preceding-sibling::*/@height) or min(*/@x) may

work correctly assuming foreign elements do not have such properties, but if(position() mod

2 = 0) then 'lightblue' else 'white' will err on producing alternating background colours with

foreign elements present. In effect some of the common XSLT and XPath constructs that will

be present within layout agents will need replacement. Figure 68 shows a few examples and

some supporting canonicalising functions.

ddfl:foreign() is a predicate function identifying ‘foreign’ elements – elements of SVG that

are decorated with the property @ddfl:foreign are considered to be in this class, regardless

of any other semantics. ddfl:position() and ddfl:last() provide ‘foreign safe’ equivalents to

position() and last(), though they do have to have a node argument.

Some sections of result SVG are part of the group appearance – examples include background

fills and partial borders. Sometimes these can be quite extensive, as in ‘folder’ encapsulation.

Whilst these elements are held within the parent svg:svg in the result (they must be to cor-

4Using the Batik SVG renderer would cause a problem – unknown attributes cause error termination.

 1489.5 Variable Layout as a Higher-Order Function |

rectly translate or scale with the whole group as well as display), they are not true children

of the original layout. They must be identified as such (@ddfl:artifact is used) and are excluded

from any re-evaluation of the layout – indeed they will be deleted and rebuilt if demanded.

The ddfl:foreign() function detects such elements.

" * :

BODY

" * :

choose
when:f:foreign(.)

·

otherwise
BODY

a) Construct. b) Foreign aware equivalent.

function name="ddfl:foreign" (xs:boolean)
(element()) param:node
exists($node/self::xsl:*) or exists($node/self::fo:*) or $node/@ddfl:artifact or
$node/@visibility='hidden’ or (exists($node/@ddfl:foreign) and boolean
($node/@ddfl:foreign))

function name="ddfl:position"
param:node
count($node/preceding-sibling::*[not(ddfl:foreign(.))]) + 1

function name="ddfl:last"
param:node
count($node/parent::*/*[not(ddfl:foreign(.))]) + 1

c)Support functions.

Figure 68. Foreign element aware constructs

Simple one-to-many mappings can be supported by the layout agents marking the result chil-

dren appropriately and then using generic ‘collect all my siblings’ actions. But for some lay-

outs more is required, such as practical paginators which have reserved children describing

the containers in which to flow or templates that include background content and flow con-

tainers (e.g. ddfl:container, svg:rect[@ddfl:container], ddfl:template[*[@ddfl:container]]).

For these to be resatisfiable, their information must be transferred to the result, often as ele-

ment structures. This requires the layout agent to follow additional protocols.

These reserved definition children should only be copied once into the result set, and described

as foreign (@ddfl:foreign) – this is most easily accomplished by copying in only with the

first of the result children (if(position() = 1) then $reserved else ()). If the true result chil-

dren are encapsulated with other background material from one of these definitions (as would

 1499.5 Variable Layout as a Higher-Order Function |

be the case with a template) then the situation is somewhat more complex but there is a suit-

able protocol involving labelling such material as artifactual, ensuring removal and possible

regeneration at a subsequent evaluation (Figure 69).

layout(paginate)

template
Te

m
pl

at
e

1
template

Te
m

pl
at

e
2

if:*/on

circle

@fill=(*/@colour,'white')[1]
ddfl: svg: fo: xsl:

a) Source document.

Te
m

pl
at

e
1

Te
m

pl
at

e
2

Te
m

pl
at

e
1

Te
m

pl
at

e
2

Te
m

pl
at

e
1

Te
m

pl
at

e
2

Te
m

pl
at

e
2

b) Paginations over successive bindings.

Figure 69. Resatisfying pagination with background templates

All these examples actually exploit one significant factor – the re-processing of the children

themselves is independent of the parents. This is usually true, but one important case does not

satisfy that condition – text flow within containers with varied widths. As we show in

Appendix B the technique here is to use a presentational variable of fixed name (text-column-

width) set by the paginating layout agent to the width of the current container, and to refer-

ence that width in an fo:block before expansion – to resatisfy such systems we will need to

retain and then resatisfy the defining block.

For several reasons preclude supporting continued embedded program statements within the

layout of, or re-satisfaction of layout over, fo:block text paragraphs: i) the line-wrap code is

sufficiently complex already, ii) features such as hyphenation add to the complexity of resat-

isfaction and iii) paragraphs are often evaluated within a parent-derived context (e.g. contain-

er width in paginated flows). The approach taken is to replace such blocks in toto using the

mechanisms described later, rather than partial layout.

This method allows SVG trees to be processed and re-processed to satisfy attached layout declar-

 1509.6 Variable Layout as a Higher-Order Function |

ations – to exploit this for practical extended functional purposes we need a mechanism that

permits alteration to these trees, preferably through embedded fragments of additional code.

9.6 Modification of the SVG tree

The example above has shown addition to the SVG tree by dint of the execution of a frag-

ment of XSLT embedded within the tree, leaving extra SVG material that may influence the

overall layout. (Whether some XSLT remains within the tree after execution is immaterial here,

but becomes important in the life of a continual document.)

But information within the tree also needs deletion and replacement. One of the critical prop-

erties of XSLT, in common with all functional programming, is that there is no ‘delete’ oper-

ation – all actions either leave the result tree unchanged or add to it at their point of oper-

ation. Removal of parts of a tree by XSLT can only be accomplished by not copying those

sections to a entirely new tree.

Updating an attribute property (but not removing the attribute itself) can exploit the ability

of xsl:attribute to overwrite an attribute on the result tree parent, as in the previous example

where the colour of a rectangle was updated from the bound data. A general solution for modi-

fying or deleting elements however requires some external agent, operating at a stage separ-

ated from the XSLT execution. One possibility is to do this during the resolution of layout,

with some meta-layout function surrounding content and XSLT code to generate replacements:

evaluation of the function by the layout processor makes a suitable choice between children,

somewhat similar to the only-child function described in section 6.3.

Whilst a number of types of such function could be imagined, what is a mimimal set that would

allow document layouts to alter in the ways required: replacement, deletion and removal of

further variability? Four functions have been explored – hideSVG, removeSVG, null and last-

SVG. As will be shown it is important that which of these functions is to operate on a partic-

ular part of the layout tree can be changed – section 9.8 explains the mechanism.

An SVG subtree can be hidden by hideSVG. The result of layout evaluation of this function

is an svg:svg with no properties (decorated @ddfl:foreign), all its children remaining une-

valuated. Until the parent function (i.e. hideSVG) is altered to something else, they will nev-

er exert any influence on, or see the light of day without, their parent layouts5.

 1519.6 Variable Layout as a Higher-Order Function |

removeSVG deletes any contained child SVG subtrees. Its evaluation results in an svg:svg

(again decorated @ddfl:foreign) with no dimensional properties and containing only ‘foreign’

subtrees – i.e. all proper SVG is deleted. Foreign children may generate new SVG subtrees

later, but these will always be removed until the function (i.e. removeSVG) is altered.

A subtree can be deleted permanently by the layout function null, which always yields an empty

sequence. After execution, it and its entire subtree disappear completely and have no influ-

ence on any parent both now and for the rest of eternity. This is obviously a ‘final’ rather than

an initial operation during a series of document layouts.

The most useful operation is modifying or replacing an element by surrounding it and some

replacement generator, and possibly other elements in foreign namespaces, with the function

lastSVG. The result of the function is an svg:svg group with the (dimensional) properties of

the last svg:svg from evaluating all the children. This group contains, as result children, all

other foreign elements and only that last svg:svg, arranged strictly in document order. The

result is not ‘foreign’ and therefore may contribute to, and be visible in, its parent layout. Fig-

ure 70 shows the implementation code (hideSVG and removeSVG are simpler versions).

match:ddfl:layout[@function='lastSVG'] mode="ddfl:layout"
(element()*) children=

Þ * mode="#current"

transfer=@transfer
last=($children[not(ddfl:foreign(.))])[last()]
svg

$last/(@width,@height),@transfer,@x,@y
if:$transfer = ‘position’

$last/(@x,@y)[not(. = 0)]
@ddfl:layout=@function
" $children :

choose
when:not(self::svg:*)

·

when:. is $last
copy

@*
if:$transfer='position’

@x=0
@y=0

*|text()

Figure 70. Layout function to support tree replacement

5Systematic use of SVG's @display property is an alternative and discussed in section 13.3

 1529.6 Variable Layout as a Higher-Order Function |

The meta-layout function lastSVG is used for replacement in the following way, illustrated

through an simple example shown in Figures 71, 72 and 73. A piece P that may be replaced

is grouped under lastSVG with some retained generating construct (XSLT) that may build a

replacement under suitable conditions – the generator is placed after P. Assume that during

some XSLT phase the new constructor does not fire, remaining dormant. The evaluated lay-

out is an svg:svg group with layout(P) and the generating construct as children, and the dimen-

sional properties of layout(P). For its parent layout it presents the same extent as the visible

piece. Nothing will change while the XSLT remains dormant.

layout(flow) x="0" y="0"
rect fill="red" width="50" height="30"
layout(lastSVG)

block width="50" font-family="Helvetica" font-size="6"
This is an fo:block that might get replaced eventually.

if:test2 retain="until-triggered" evaluate="false"
block width="50" font-family="Helvetica" font-size="6" font-weight="bold"

val(test2/data)
rect fill="blue" width="50" height="30"

ddfl: svg: fo: xsl: ddf: text

Figure 71. Original document

svg layout="flow" height="87.58" width="50" x="0" y="0"
rect fill="red" height="30" width="50" x="0" y="0"
svg layout="lastSVG" height="27.58" width="50" x="0" y="30"

svg element-type="text-block" font-family="Helvetica" font-
size="6" height="27.58" width="50"

svg
...This is an fo: block

svg
...that might get

svg
...replaced

svg
...eventually.

if:test2 retain="until-triggered" evaluate="false"
block font-family="Helvetica" font-size="6" font-weight="
bold" width="50"

val(test2/data)
rect fill="blue" height="30" width="50" x="0" y="57.58"

This is an fo:block
that might get
replaced
eventually.

svg: ddfl: xsl: ddf: fo: text

Figure 72. First stage binding and layout

When the XSLT eventually triggers it produces a new element (the replacement fo:block with

a data value interpolated for its text in the example of Figure 73) which is then evaluated as

 1539.7 Variable Layout as a Higher-Order Function |

a layout instruction. Now the result of evaluating lastSVG focusses on the new piece of SVG

(the evaluated text block) which appears after the original in document order and consequently

the old section is discarded and the dimensional properties of the new-to-parent layout are pro-

jected onto the result. Whether the XSLT fragment is retained after first triggering is a mat-

ter for its properties – in this case it disappears after execution.

svg layout="flow" height="87.58" width="50" x="0" y="0"
rect fill="red" height="30" width="50" x="0" y="0"
svg layout="lastSVG" height="27.58" width="50" x="0" y="30"

svg element-type="text-block" font-family="Helvetica" font-
size="6" font-weight="bold" height="27.58" width="50"

svg
...Data from test2

svg
...that might get

svg
...bound into a

svg
...document

rect fill="blue" height="30" width="50" x="0" y="57.58"

Data from test2
that might get
bound into a
document

svg: ddfl: text

Figure 73. Replacement of text at second binding and layout

Thus far it appears that these four meta-layout functions are sufficient to support programmat-

ic alteration of the SVG tree from embedded instructions, provided we can switch between

them. For example, to display some graphic when a data-condition is true we need to use last-

SVG; when not present hideSVG will mask the element. How this is done in a consistent and

continued manner is the subject of the next section.

9.7 Retained XSLT

We need to be able to execute and retain sections of XSLT within these layout trees. Three

different embedded XSLT constructs have been shown in the examples above. There are oth-

er forms to be considered and as many of the standard ‘pull’ constructs as possible should

be supported. The major problem is to ensure that we can control when pieces of XSLT both

might possibly execute during the XSLT evaluation phase and also appear in some form with-

in the output of that phase. Normally the ‘retained’ form is unmodified (and therefore cap-

able of repeat performance during a subsequent XSLT evaluation), but there are circumstances

where the form of the XSLT fragment might be altered.

 1549.7 Variable Layout as a Higher-Order Function |

Systems where program generates program are complex. We often need program fragments

to both generate output as well as copies of themselves. The DDF framework has a compiler

that converts the document into an executable XSLT program, so code modification can be

carried out by that tool, controlled by directives attached to fragments6. The code required is

principally a small set of additional templates, operating in mode ddf:modal, pre-empting those

shown in Figure 21.

The first directive describes the mode of retention – whether and under what conditions a

section of code should appear in the output as well as having been possibly invoked during

processing. There are at least five different simple forms:

unretained – execute once during any first XSLT pass, interpolate and disappear. The usu-

al XSLT behaviour.

retain while condition (continue-while) – execute the construct. Leave a continued form

of the construct whilst some condition holds.

retain indefinitely (indefinite) – interpolate if possible and remain under all circumstances

– probably positioned just after any interpolation in document order, though order might

be controllable7.

retain until positively triggered (until-triggered) – the construct remains dormant until

a positive test or selection occurs – then interpolation occurs and the construct disappears.

retain until negatively triggered (while-triggered) – interpolation occurs and the con-

struct is retained at each evaluation while a condition holds true. The construct disappears

(and is not executed) as soon as the condition fails.

The condition to be tested can either be described directly (as an XPath expression in @ddf:

test) or, for some XSLT instructions (xsl:if, xsl:*[@select]), it can default to the XPath inter-

polation involved in the absence of such a test. The test conditions must be accessible from

the context node being examined at the time of XSLT evaluation. An example occurs in

Chapter 12 where program elements are retained while the data contains a ‘to be continued’

marker.

6Attributes in foreign namespaces can be attached to XSLT elements without interference to XSLT evaluation.
7Equivalent to continue-while with a true() condition, but sufficiently common to treat specially.

 1559.8 Variable Layout as a Higher-Order Function |

To make these effective XSLT operations we need to convert them to compound constructs

that involve generating XSLT in the output of an XSLT pass. For example xsl:if test="expres-

sion" ddf:retain="until-triggered" would convert to:

choose
when:expression

body
otherwise

XSLT:if test="expression" retain="until-triggered"
body-warpedXSL

where XSLT: will be generated as xsl: in the output and body-warpedXSL is the body of the

if ‘warped forward’ so that all XSLT elements contained are generated in the output rather

than evaluated in place. This ‘warping’ operation is a sufficiently common requirement in the

compiler that a specific push mode (warpXSL) performs this action. A moment's thought will

show that if the test is triggered only the consequence remains. If not then an equivalent xsl:

if structure will appear in the output. On a subsequent binding pass, provided the document

is again recompiled, similar behaviour will ensue8. In the absence of triggering the construct

is idempotent. The compiler can perform this conversion using the following template:

match:xsl:*[@ddf:retain='until-triggered'] mode="ddf:modal"
XSLT:choose

XSLT:when test="{(@ddf:test,@test,@select)[1]}"
·

XSLT:otherwise
Þ · mode="warpXSL"

9.8 Hybrid XSLT/meta-layout action

Using a hybrid approach between retained XSLT and meta-layout agents to achieve the struc-

tural changes to the tree is best illustrated by an example where a graphic construct appears

and disappears depending upon the bound data.With four stages of data binding, the second

and fourth of which contain an element <on/>, the results look like Figure 74.

The graphic is constant so all that is necessary to do is to alter the ‘visibility’ to the layout

system depending upon satisfying the ‘display’ condition. However this is where we meet an

8A DDF document is not an XSLT stylesheet, so some form of conversion is always required before execution
of XSLT semantics and ‘constant’ structure within the DDF document is desirable.

 1569.8 Variable Layout as a Higher-Order Function |

issue with the XLST processing model of generating a result tree with functional dependency

on an input tree. An element once written into the result tree cannot be altered by any instruc-

tions buried within its defining tree – child elements can be added to the empty ‘shell’ but

the element itself cannot be changed.

<on/> <on/>

Figure 74. Four successive bindings of a document

The attribute properties written onto the element (before children) cannot be deleted but for-

tunately their values can be overwritten – as we will see this is a key feature, but the means

of overwriting is strictly limited. Such modifications must happen before any child elements

or text nodes are added; any variability can depend only upon the input tree, not the element

and its properties just written. For example it is not possible to read and modify a property,

e.g. attribute name="font-size" select="@font-size + 4" within an fo:block will not read

the font-size already defined, but rather look for some property on the input data, if any9.

However the ability in XSLT to overwrite an attribute value is just sufficient for our needs,

letting us change the name of the required layout function between hideSVG & lastSVG and

setting and unsetting the ‘foreign’ status:

This is a hybrid action: the XSLT phase can only add to the tree within which the XSLT frag-

ment is embedded, but it can add information such that a subsequent process (i.e. the layout)

will not copy parts or modify such parts during the copy, according to those instructions. But

this signal can only be varied based on the input data, not the direct state of the tree itself

– hence we cannot build a flip-flop: the graphic presentation does not have a state that is read-

able by XSLT embedded within it.

KEY: Hybrid action. Modification of processed layout is performed by the XSLT

phase adding new components or changing signals in the layout tree, and the lay-

out phase when evaluating meta-layout functions, choosing not to copy some com-

ponents based on those signals.

9This is not strictly correct – there are methods to read the defining XSLT stylesheet (doc('')) which might per-
mit a convoluted mechanism to do this in some strictly static circumstances, but this not at all general.

 1579.8 Variable Layout as a Higher-Order Function |

Conditional revelation of a variable element (i.e. the graphic is not constant) uses the same

general approach (Figure 76) but with removeSVG and lastSVG controlling the surrounding

layout and a guarded generator for the graphic:

layout(flow) x="0" y="0"
rect fill="red" stroke="black" width="50" height="15"
svg layout="hideSVG" foreign="true"

choose retain="indefinite"
when:*/on

@ddfl:layout=
lastSVG

@ddfl:foreign=
false

otherwise
@ddfl:layout=

hideSVG
@ddfl:foreign=

true
block padding="1" width="50" text-align="center" font-family="
Helvetica" font-size="10"

<on/>
rect fill="blue" stroke="black" width="50" height="15"

ddfl: svg: xsl: ddf: fo: text

Figure 75. Programmatic hiding and revelation of graphical content

The order of the constructs is critical – anything that alters attributes must follow the par-

ent element head immediately – it is an execution error if any attribute is written after the

construction of a child element or text node10. These constructs must therefore be written with

exceptional care, or preferably generated from some ‘higher-level’ directive, either through

a macro package or with a specialist module attached to the compiler.

These compound hybrid forms have been described as additional ddfl: instructions, but ones

that are recognised by the DDF compiler through a plug-in module. (This is the only point

thus far where the DDF compiler has any knowledge of the existence of the layout processor

– even to the namespace for ddfl:.)

The paradigm shown in this example is supported by the <ddfl:revealSVG test="show">

instruction which the compiler will expand to the necessary form. The expansion is smart

enough to determine whether the graphics involved are data-invariant (i.e. empty(*//(xsl:* | @*

10This is to support indefinite serialisation in demand-driven processing – when an element or text constructor
is encountered, the opening parent head node can be closed permanently. This restriction also means that multiple
retained xsl:attribute elements must be handled as a complete group, ensuring that the interpolations all appear
before any retention statements. Code ‘robustness’ is discussed in section 13.1.

 1589.9 Variable Layout as a Higher-Order Function |

[contains(.,'{')])) and uses the most efficient construct. The ddfl:revealSVG instructions can

be nested.

layout(flow) x="0" y="0"
rect fill="red" stroke="black" width="50" height="15"
svg layout="removeSVG"

choose retain="indefinite"
when:*/on

@ddfl:layout=
lastSVG

@ddfl:foreign=
false

otherwise
@ddfl:layout=

removeSVG
@ddfl:foreign=

true
if:*/on retain="indefinite"

block padding="1" width="50" text-align="center" font-family="Helvetica" font-size="10"
@fill=(*/@colour,'white’) [1]
<on/> in
val(*/@colour)

rect fill="blue" stroke="black" width="50" height="15"

ddfl: svg: xsl: ddf: fo: text

<on/> in
red

<on/> in
green

Figure 76. Four successive bindings with a data-variable graphic component

9.9 Conclusion

There are parallels in the methods described in this chapter with the decorated SVG approaches

of Marriot et al[3, 74] – they permit SVG attribute properties (position and size mostly) to

be replaced by acyclic expressions or ‘attached’ to edges of constraint graphs that are then

solved dynamically to satisfy the layout intentions. Thompson, King & Schmitz[49, 93] sim-

ilarly add additional declarative structures in SVG to describe event-based adaptation. Both

of these involve constant tree topology.

Here we decorate a canonical form of SVG with layout properties in a foreign namespace, such

that the SVG can be modified appropriately to re-satisfy those intentions in the presence of

alterations. Such alterations could be confined to changes in property, but the most interest-

Badros, G. et al.
A constraint extension to scalable vector graphics

McCormack, C., Marriott, K. and Meyer, B.
Adaptive layout using one-way constraints in SVG

King, P., Schmitz, P. and Thompson, S.
Behavioral reactivity and real time programming in XML: functional programming meets SMIL animation

Thompson, S., King, P. and Schmitz, P.
Declarative extensions of XML languages

 1599.9 Variable Layout as a Higher-Order Function |

ing are due to modifications in topology caused by embedded information or operations in

other spaces, such as evaluations in XSLT.

The model developed here is a two-pass hybrid one – a programmatic phase using XSLT and

a layout resolution that turns declarative layout intent into grounded graphical constructions.

There are five important points:

Information for both phases is in the form of XML tree components that may be, and usu-

ally are, totally interspersed.

Both phases tolerate the existence of information for the other phase, behaving as good XML

citizens.

Both phases may leave information in their results for later resatisfaction or re-evaluation,

either as attributes or as elements.

Re-evaluation information is constructed either by a compiler building ‘self-propagating’

code or by layout processing agents adding information during result computation.

Modification of processed layout is performed by the XSLT phase adding new compon-

ents or changing signals in the layout tree, and the layout phase choosing not to copy some

components based on those signals.

As the implementation of both of the phases is entirely functional, consisting of tree construc-

tion with no in-place modification or reassignment, then there is a degree of robustness about

the approach. It may be possible to develop a limited calculus for determining the consequences

of this method, that may have parallels with systems of analysing XML deltas[95].

The ideas presented in this chapter are the key ones from this thesis. In the next three chapters

they will be used to explore partial evaluation, ‘higher order’ documents taking other variable

documents as arguments and an extended example of a ‘continual life’ document.

Vion-Dury, J.
A generic calculus of XML editing deltas

 16010.1 Partial Evaluation and Constant Folding |

Chapter 10

Partial Evaluation and Constant Folding

This chapter examines some of the ways documents can be evaluated partially,

either because data is incompletely bound, or as an optimisation step to perform

as much work as possible before data is bound. Two specific approaches are presen-

ted: i) arranging that a document can respond correctly to incomplete binding, by

suitable declaration of guard conditions and ii) folding constant (invariant) sec-

tions of the layout tree, by identifying such and evaluating to grounded graphics.

DDF documents may have very large and heterogeneous trees defining layout constructions.

At late stages of binding the medical record example that we shall meet in Chapter 12 has

some 1700 elements defining its layout. At another extreme, the presentation declaration for

this thesis has around 33,000 elements with more than 100,000 attributes. When there are very

large datasets being processed, it may be prudent to find if significant amounts of work can

be performed ahead of time.

10.1 Partial data binding

A possible variable document is a generic template that can be specialised through one or more

intermediate stages before final production of large numbers of variants. Some of these can

be through simple ‘theme’ bindings, often straightforward styles, but of more interest is when

 16110.1 Partial Evaluation and Constant Folding |

some, but not all, of the data is bound. For example the travel brochure example can be con-

sidered to have two distinct data sections – that related to the company, and that related to

the customer and their specific offers. We could imagine a two-stage process of binding: first

with the company data to give a new ‘template’ and then across a vector of customers at some

later date.

Whilst we could construct a template that deliberately built another, it would be preferable

to support such partial data binding automatically, or, at the least, with a small number of embed-

ded directives attached to the document to indicate areas of possible partial binding. Some dir-

ectives to control retention of programmatic constructs were introduced in section 9.7 – these,

along with a few other modifications supported by the document compiler, can produce the

required effects and lead to more fully-automated systems. The first experiment uses embed-

ded directives supported by a ‘compiler-driven’ approach that operates automatically.

Again the travel brochure is used as the example and it is assumed that the company data is

bound first. All variability ultimately arises from XSLT fragments – in this document there

are three distinct top-level types: xsl:template, xsl:function and xsl:attribute-set and a series

of embedded interpolating or choice statements inside the result XML trees (xsl:value-of, xsl:

for-each etc.) To successfully bind the ‘company’ information during the first phase, we can

just let the normal evaluation proceed.

But we also need to arrange that ‘not company’ statements are not executed, and retained for

some future occasion. (As most document interpolations are ‘positive’, not involving negat-

ive tests, if we let them proceed we usually get null-sequence results – this doesn't break the

document, but removes any further interpolation.)

Figure 77 shows a correct result through the two stages: in a) the eventual leading pages (which

contain the customer name and various resorts over a number of pages) have not been gen-

erated. The first page shown is the background for the ‘maps’; the last is for ‘further interest’,

populated with static data and a layout that will subsequently contain customer details and resort

check-boxes. As the document is required to be a multiple of 4 pages in length, two fillers

have been added during the first binding. Figure 77b shows the completed document after a

customer and offers have been bound – the addition of two pages has made the fillers unne-

cessary and they have thus been ‘removed’. Note that the page number for the ‘maps’ dis-

play has altered, as its ordinal position in the document has now changed.

 16210.1 Partial Evaluation and Constant Folding |

Honest John's
Helitours

Page 1Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where they are!!

Honest John's
Helitours

Page 1Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where they are!!

Honest John's
Helitours

Page 2Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Honest John's
Helitours

Page 3Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Honest John's
Helitours

Page 4Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

For further details, please tick the appropriate box:

How to book in a hurry:
Please contact us via our representatives at any high-street stationer, where cheques
drawn on a Cayman Island or States of Jersey bank will be accepted with alacrity, or
alternatively turn up with cash in hand at Paddington station and ask for Harry.

a) First to company...

Honest John's
Helitours

Page 1Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Specially selected for Otis B. Driftwood

Stewart-Cassiar

The helicopter blades have turned and the
first fresh tracks have been carved to kick
off the 2008 season. If you have yet to
heliski during the early season, consider it
a must. As temps remain cooler at this time
of year, conditions at lower elevations
provide us with excellent tree skiing in
poorer weather conditions.

All-inclusive: £1234

Chamonix

Very little is known about how and where
they live. The one certainty is that they are
fearsome opponents. Nam libero tempore,
cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime
placeat facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
Temporibus autem quibusdam et aut officiis
debitis aut rerum necessitatibus saepe
eveniet ut et voluptates repudiandae sint et
molestiae non recusandae.

All-inclusive: £1035

Honest John's
Helitours

Page 2Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Alta Special Offer!

Nam libero tempore, cum soluta nobis est eligendi optio
cumque nihil impedit quo minus id quod maxime placeat
facere possimus, omnis voluptas assumenda est, omnis
dolor repellendus. He had sunken cheeks, a yellow
complexion, a straight back, an ascetic aspect, and, with
his arms dropped, the palms of hands outwards,
resembled an idol. The director, satisfied the anchor had
good hold, made his way aft and sat down amongst us.
We exchanged a few words lazily. Afterwards there was
silence on board the yacht.

All-inclusive: £997

Honest John's
Helitours

Page 3Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where they are!!

Stewart-Cassiar Alta

Chamonix

Honest John's
Helitours

Page 3Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Where they are!!

Stewart-Cassiar Alta

Chamonix

Honest John's
Helitours

Page 4Honest John's Helitours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

For further details, please tick the appropriate box:

Customer:Otis B. Driftwood
Reference:1234

Stewart-Cassiar £1234 Chamonix £1035

Alta £997
SPECIAL OFFER!

How to book in a hurry:
Please contact us via our representatives at any high-street stationer, where cheques
drawn on a Cayman Island or States of Jersey bank will be accepted with alacrity, or
alternatively turn up with cash in hand at Paddington station and ask for Harry.

b) ... then to customer

Figure 77. Two-stage binding of a variable brochure

Our data model splits into two halves – company and (customer | resort), so interpolations

concerning the second group can be ‘guarded’ as outlined in section 9.7. Declarations of the

form ddf:retain="until-triggered" ddf:test="exists(brochure/customer)" are suitable. The

‘top-level’ constructs (templates, functions..) are retained forward by declaring ddf:retain-

pattern="..." for those forms needed – they have no effect unless ‘called’ from result trees,

so will not harm the document if not required. Figure 78 shows the points that contain such

directives.

 16310.1 Partial Evaluation and Constant Folding |

Retained xsl*

Retained fo:*

ddfl: ddf: xsl: svg: fo:

Figure 78. Retention declarations for main page generators

In most cases an xsl:* element is being guarded – the test is that executing the @select XPath

produces a non-null result. But one of the text blocks contains interpolants over customer data:

block retain="until-triggered" font-family="Helvetica" font-size="20pt" margin="2" padding="2" text-
align="left"

@width=$background//*[@name='blank']/@width
block

Customer:
inline fill="red" font-weight="bold"

val(brochure/customer/name)
block

Reference:
inline fill="black" font-weight="bold"

val(brochure/customer/ref)

Partial evaluation of line-wrapping text blocks will be difficult and of little value – everything

after a retained variable will need to be re-satisfied1. Assuming that every interpolant is expec-

ted to produce a value, then the condition for evaluation of such a block is that all the inter-

polants yield non-null results. Thus for our example, a suitable form is:

1And with an optimising line-wrap, such as Knuth-Plass, the entire block would have to be re-evaluated.

 16410.1 Partial Evaluation and Constant Folding |

if:exists(brochure/customer/name) and exists(brochure/customer/ref) retain="until-triggered"
block font-family="Helvetica" font-size="7.056" margin="2" padding="2" text-align="left" width="
190"

block
Customer:
inline fill="red" font-weight="bold"

val(brochure/customer/name)
block

Reference:
inline fill="black" font-weight="bold"

val(brochure/customer/ref)

xsl: ddf: fo: ddfl: text

That transformation can be carried out by the document compiler, matching cases of fo:block

[@ddf:retain]. Supporting these directives gives a result, after evaluating over company data,

as shown in Figure 79.

Resort page generator

Map generator

Customer
details

Checkboxes

ddfl: svg: xsl: fo:

Figure 79. Retained variability after company binding

The layout agents involved (flow, grid, encapsulate) can all tolerate embedded xsl:* fragments

so they will adapt correctly during subsequent data bindings. The brochure may contain a num-

ber of ‘filler’ pages to round the total page-count up to a multiple of four. The document design

makes the number of fillers required be determinable through XSLT operating on the data bind-

ing. On binding to the company only, an additional two fillers are needed – none are required

subsequently for the particular customer shown. This optionality could be supported by some

page-level layout function that generated or removed the filler pages; however using SVG's

@display property on complete svg:page elements is an easier method. The page number-

ing function, which interpolates page references, is a one-to-many mapping: re-satisfaction is

supported as described for pagination in section 9.4 and demonstrated in Figure 77.

 16510.1 Partial Evaluation and Constant Folding |

We have now shown that a series of appropriate directives added to a document can control

some partial binding of data. The rest of this section explores how these can be derived auto-

matically. But there is a fundamental issue about inferring the intent of constructs in the doc-

ument that requires information from some external oracle to resolve ambiguity.

Consider the interpolant brochure/customer/title when used within a text block. In partial bind-

ing, what can we infer from the absence of title for a customer – that there will never be a

title for this person or it is just not bound yet? This cannot be determined from the docu-

ment code itself, unless it has been decorated with hints during its design. Similarly large pro-

grammatic sections processing a saleItem would merely yield a null result in the absence of

any saleItem during first binding.

One possibility is to use a model of the data, such as a schema, which describes ancestral rela-

tions between named elements, text nodes and (attribute) properties, and optionality in the struc-

ture – whether and how many child elements of a given type are required. However a single

schema doesn't usually describe partial binding – the use of multiple schemas is needed for

that, though they will have probable overlap. Figure 80 is a very simplistic model for the struc-

tural level of the brochure at two stages of binding2:

brochure
company

name
icon
terms
disclaimer
booking
contact
office
filler cardinality="zeroOrMore"

brochure
diagrams

diagram cardinality="oneOrMore"
image
point cardinality="oneOrMore"

label
x
y

customer
name
ref

saleItem cardinality="oneOrMore"
name
description cardinality="oneOrMore"
picture cardinality="oneOrMore"
price

a) Company phase b) Customer phase

Figure 80. Simple schemas for brochure data

2Using a standard schema language, such as RelaxNG, would have been too cumbersome for this illustration. Focus
has been on the structural layer since most variability is in the presentation, which derives from information held
in ddf:struct.

 16610.1 Partial Evaluation and Constant Folding |

Using these schemas and work-flow knowledge that data for the company is bound first, fol-

lowed by customer, we can infer that any interpolating statement (XPath expression) that

involves a descendant axis of company can be left to bind to conclusion on first phase; those

descending from customer | diagram | saleItem will need guarding. But if the schemas are

not as separable (i.e. customer and company schemas provided separately), such inferences

become much more difficult. Such schema-driven approaches are not pursued in this thesis.

An alternative oracle could be for the designer to provide high-level hints, strategies or heur-

istics, probably placed on the document. As an example, most documents are built around ‘pos-

itive’ and ‘one-off’ interpolations – the presence of data causes content to be generated and

then not altered thereafter – this data may be invariant (e.g. a ‘terms & conditions’ block when

TandC) or variable (xsl:value-of select="customer/ref"). If we assume that all the interpolants

must generate content, the following cases will need ‘until-triggered’ guards:

fo:block[.//xsl:*]. Text blocks with embedded variability. The test is, as described above,

that every embedded XPath interpolant produces a non-null result. The test needs only be

carried out at the uppermost fo:block.

xsl:for-each(-group) | xsl:apply-templates. The tests for these are their @select XPath

expressions. If we assume their bodies (or invoked templates) only take information from

the selected subtree (i.e. do not investigate high ancestry, and are unaffected by ‘cousin’

subtrees) then guards are not needed at lower levels, nor need they be ‘promoted’.

Using these simple tactics we can transform the presentation section of our (undecorated) bro-

chure document to that shown in Figure 81, where the added guards are identified. Running

this modified document through the two successive phases of data binding yields the same res-

ults as shown earlier. Tests can be refined to support document-borne hints (e.g. @select="

brochure/customer/title" @ddf:as="text()?", which declares that the title is effectively

optional).

 16710.2 Partial Evaluation and Constant Folding |

Retained xsl*

Retained fo:*

ddfl: ddf: xsl: svg: fo:

Figure 81. Automatically generated retention declarations

Heuristic approaches are also possible. A large tree existing under xsl:for-each select="

saleItem" implies that we are expecting to produce something for a saleItem, whereas the

interpolation of @special-offer in:

<fo:block >
 <xsl:if test="@special-offer">
 <xsl:attribute name="background-colour">red</xsl:attribute>
 <xsl:attribute name="fill">white</xsl:attribute>
 </xsl:if>
 <xsl:value-of select="description"/>
</fo:block>

appears to be highlighting the appearance of the text under special conditions and thus can

be inferred as an optional statement.

10.2 Constant folding of invariant layout

When the set of document instances to be produced is very large, and the variation between

instances modest, then it may help to pre-evaluate as much as possible of the layout in some

pre-processing or compilation stage, or at some equivalent point during a multi-stage bind-

ing. How effective this can be depends upon the type of document, the size of anticipated

instance sets and the susceptibility to such pre-evaluation of both the document's presentation

model and the implementation technology that generates the final presentation.

To extract the maximum evaluation possible requires a detailed knowledge of the semantics

of the layout combination. For example a uni-directional ‘flow’ of a sequence of parts can

 16810.2 Partial Evaluation and Constant Folding |

(by associativity) be replaced by a flow of partial flows3; completely bound flows can be eval-

uated and treated subsequently as an atomic piece. Macdonald [70] describes some of the prob-

lems involved in geometric layout of partially bound assemblies, focussing on exploiting invari-

ances such as this.

But something as simple as a self-sizing table cannot be broken down completely into inde-

pendent sub-tables, as the size of cells can depend upon the size of new-cells ‘yet to be bound’.

So in these cases we may have to resort to speculative evaluation, providing test choices to

determine whether pre-evaluated or re-evaluated alternatives should be used. These speculat-

ive possibilities are not explored in this thesis, though the general mechanisms to support this

could be built relatively easily given the current framework.

However it is possible to identify, relatively simply, some parts of a variable document's lay-

out that can be pre-evaluated correctly, by focussing on invariance. In compiler technologies

this is constant folding – evaluation of partial terms that are constant with respect to any vari-

ability a program may have. Again the travel brochure is the example, though the specific doc-

ument is slightly simpler and has more inherent layout invariance4. Variable data is interpol-

ated in two places: the customer name into part of the header and resort/holiday descriptions

into the (finite) flows of the containers.

Figure 82 shows two parts of the presentation of this document: the page ‘background’, which

has been assigned to a variable, and the second page, which uses this background and inter-

polates the layout for the third (and fourth) ‘resorts’ over that background.

3Though this violates the goal of tree-isomorphism, by introducing additional layers – sibling relationships may
now become cousin or uncle/aunt.
4This section is a mild reworking of the DocEng2010 paper[61].

Macdonald, A., Brailsford, D. and Lumley, J.
Evaluating Invariances in Document Layout Functions

Lumley, J.
Pre-evaluation of Invariant Layout in Functional Variable-Data Documents

 16910.2 Partial Evaluation and Constant Folding |

background=
svg height="297" width="210"

rect fill="royalblue" height="297" ...
block fill="white" font-family="helvetica" ...

Honest John's HeliTours
block fill="white" font-family="Helvetica" ...

Honest John's HeliTours ... Registered office:...
page

layout(encapsulate)
copy-of($background)
image xlink:href="cref://inputrun-CLI-step.w188aaa.d193e73.d281e12/special.png" height="
40" ...
block background-color="royalblue" border-style="solid" ...

inline font-weight="bold"
How to book:

block
Please contact us via our representatives....

layout(flow) background-color="wheat" direction="x" ...
Þ brochure/resort[position() gt 2]

ddfl: svg: fo: unknown: xsl: text

Figure 82. Presentation for the brochure background and second page

The computational cost of a layout depends on the complexity and the number of items to be

processed. In practice however the cost of normal document layout is dominated by line wrap

in text paragraphs – the numbers of characters dwarfs all other entities in the document and

every character must be treated, at least to determine character width.

The presentational model is a mixture of elements directly in layout and geometric spaces (

svg:,fo:,ddfl:) and in ‘programmatic’ spaces (xsl:). The effect of data variation within this mod-

el only manifests itself through interpretation of those programmatic (xsl:) elements. Figure

83 shows code declaring a simple flow with some elements repeating for each customer, with

the name variable for each customer :

 17010.2 Partial Evaluation and Constant Folding |

<ddfl:layout function="flow">
 <svg:svg name="A">....</svg:svg>
 <xsl:for-each select="customer">
 <ddfl:layout function="flow" direction="horizontal">
 <fo:block name="C">Most valued customer:</fo:block>
 <svg:rect name="D" width="2" height="40"/>
 </ddfl:layout>
 <fo:block name="E">
 <xsl:value-of select="name"/>
 </fo:block>
 </xsl:for-each>
 <fo:block name="B">The company assumes no responsibilty</fo:block>
</ddfl:layout>

Figure 83. Interspersed layout and program

For this flow, the elements A and B are completely constant, the text block E is variable and

whilst the number of elements C and D is variable, they each contain invariant parts. A and

C, the svg:* elements, are in final grounded forms, but the fo:* blocks still require layout and

thus those that are invariant can be processed irrespective of any data values. Moreover the

horizontal flow above C and D is thus independent of data, so it too could be evaluated.

These invariances identified are independent of the semantics of the layout – if the parent

of C and D were some other layout function it would still be invariant and thus evaluable.

KEY: Invariant sections can be identified without any detailed knowledge of what

the layout functions actually are.

It is sufficient to be able to identify ‘variable-containing’ regions and cross-tree linkages to

such regions. This leads us to a tentative conservative tactic:

If a ‘geometry’ node has no xsl: descendants or properties, or descendants with such

properties, then its layout is invariant to data, and may be evaluated and replaced

by the grounded form.

Influence from the xsl: namespace can occur in three separate places:

Descendant nodes: xsl:*

Attribute value templates (name="{XPath}"), which similarly interpolate a variable value

to the property.

 17110.2 Partial Evaluation and Constant Folding |

Use of attribute sets (xsl:use-attribute-sets), which add attribute properties to a node from

defined named sets of attributes. The values of such attributes can be static or XPath expres-

sions and functions of data context, though the latter use is uncommon.

The first two conditions can be detected succinctly by XPath predicates of the general form

empty(descendant::xsl:* | descendant::*/@*[contains(.,'{')]). Practice is not so simple: there

are more complex issues that need attention:

The use of a descendant::xsl:* test can be expensive (O(d*n) where n is the number of

nodes in the whole tree and d is the average tree depth).

Some elements (e.g. fo:block) cannot be evaluated by parts easily (partial line-wrap is very

difficult) and so must be processed in their entirety or not at all.

Blanket detection and exclusion of xsl:use-attribute-sets is too conservative – most use

of attribute sets involves static values, independent of data. Limited analysis and interpol-

ation of attribute set values may be needed.

The DDF layout model includes single-assignment presentational variables. Whilst their val-

ues may be invariant, their interpolations must be identified and analysed.

The last two issues are examples of cross-tree influence – where an element refers to inform-

ation stored elsewhere in the tree, normally through a name or other form of identification.

(The svg:use construct is similar.) Knowledge of such cases is needed to make this technique

conservatively successful.

The implementation chosen was to employ a bottom-up pre-traversal of the tree, which iden-

tifies invariance (absence of attribute value templates, no xsl: children and all children being

invariant, any referential element pointing to invariant definitions) and in the same pass inter-

polates the values of attribute sets. Then the main invariance processing pass is performed,

top-down, whilst interpolating presentational variables: invariant sections are evaluated; vari-

able ones are copied and then processed recursively.

Processing attribute sets

Interpolating xsl:use-attribute-sets directives will need evaluation of some part of the XSL

model. If we assume that attributes in sets have simple static values, such as <xsl:attribute

name="foo">bar</xsl:attribute/> then interpolation is relatively straightforward. We collect

 17210.2 Partial Evaluation and Constant Folding |

all applicable attribute sets, every attribute of which is guaranteed static, and then process ref-

erences, interpolating attribute values and removing the attribute-set references only if every

required set is available in the static collection5. The code is comparatively simple:

required-sets=tokenize(@xsl:use-attribute-sets,'\s+’)
if:every $r in $required-sets satisfies $r = $static-attribute-sets/@name

copy
" $required-sets :

thisSet=$static-attribute-sets[@name=current()]
" $thisSet/xsl:attribute :

@{@name}=·

copy-of((@* except @xsl:use-attribute-sets), *|text())

Presentational variables

Single-assignment presentational variables can be very effective in building coherent docu-

ments: in our example the page background is defined as such and reused. But such a vari-

able could contain data-dependent properties or components making its layout variant. Thus

any interpolation of that variable's value, in some other layout, denies that layout invariance

too.

Rather than excluding any case of presentational variable interpolation, a more reasonable

approach is to analyse the invariance of each instance and then examine all variable use. If

any variable use within a layout refers to a variant presentation variable, then invariance is

denied to that element and thus it will not be evaluated. A simple implementation focusses

only on direct interpolations of single variables ($background rather than $blank/@width),

recording the values of invariant variables during recursive tree descent. Invariant variable

declarations are removed from the result and ddfl:copy-of directives that refer to invariant vari-

ables are interpolated directly. This actual interpolation is inexpensive; the real value is to per-

mit larger dependent layouts to become invariant and thus pre-evaluated.

Results

Figure 84 shows the elements of the main example document displayed as a tree, where sec-

tions identified as being invariant are highlighted in pink.

5A minor modification can remove invariant attribute set references from a mixed collection e.g. "dynamic1 stat-
ic dynamic2" ®" dynamic1 dynamic2"

 17310.2 Partial Evaluation and Constant Folding |

svg:svgsvg:svg

ddfl:variable

svg:svg

svg:rect fo:block fo:block

fo:inline

fo:inline fo:inline

fo:block

svg:pageSet

svg:page

ddfl:layout

ddfl:copy-of svg:image fo:block

fo:inline

xsl:value-of

ddfl:layout

xsl:apply-templates

svg:page

ddfl:layout

ddfl:copy-of svg:image fo:block

fo:inline fo:block

ddfl:layout

xsl:apply-templates

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Customer
greeting &
variable
name

svg:svgsvg:svg

ddfl:variable

svg:svg

svg:rect fo:block fo:block

fo:inline

fo:inline fo:inline

fo:block

svg:pageSet

svg:page

ddfl:layout

ddfl:copy-of svg:image fo:block

fo:inline

xsl:value-of

ddfl:layout

xsl:apply-templates

svg:page

ddfl:layout

ddfl:copy-of svg:image fo:block

fo:inline fo:block

ddfl:layout

xsl:apply-templates

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Customer
greeting &
variable
name

Figure 84. Document template with invariant sections identified

svg:pageSet
svg:page

ddfl:layout

Honest John's
HeliTours

Honest John's HeliTours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

fo:block
fo:inline

xsl:value-of

ddfl:layout
xsl:apply-templates

svg:page

Honest John's
HeliTours

Honest John's HeliTours Registered office: 12 Wasserstraße 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

How to book:
Please contact us via our representatives at any high-street stationer,
where cheques drawn on a Cayman Island or States of Jersey bank
will be accepted with alacrity, or alternatively turn up with cash in hand
at Paddington station and ask for Harry.

ddfl:layout
xsl:apply-templates

a) Variable customer greeting

svg:pageSet
svg:page

Honest John's
HeliTours

Honest John's HeliTours Registered office: 12 WasserstraÃŸe 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

Specially selected for Esteemed Customer

ddfl:layout
xsl:apply-templates

svg:page

Honest John's
HeliTours

Honest John's HeliTours Registered office: 12 WasserstraÃŸe 7, LI345 Lichtenstein
All data and information provided is for informational purposes only. Honest John makes no representations as to accuracy, completeness, currentness,
suitability, or validity of any information and will not be liable for any errors, omissions, or delays in this information or any losses, injuries, or damages
arising from its display or use.

How to book:
Please contact us via our representatives at any high-street stationer,
where cheques drawn on a Cayman Island or States of Jersey bank
will be accepted with alacrity, or alternatively turn up with cash in hand
at Paddington station and ask for Harry.

ddfl:layout
xsl:apply-templates

b) Static salutation

Figure 85. Main document template after invariant processing

The technique has identified the background variable and its use on the first page as invari-

ant and the entirety of the first layout on page 2 as similarly invariant. The ‘customer greet-

ing’ (Specially selected for Otis B Driftwood) is a variable fo:block element on the first

 17410.2 Partial Evaluation and Constant Folding |

page, which has been labelled in Figure 84. Figure 85a shows the result of processing all invari-

ant parts available – clearly the customer greeting cannot be evaluated. If however it were

static (e.g. Specially prepared for a Valued Customer), then that section becomes invari-

ant and hence its parent layout as well. The result is shown in Figure 85b – the effect here

is rather minor, but there could be consequential propagation of invariance – this technique

would find it automatically.

This section has outlined a basic and very conservative approach to identifying invariance.

Deeper analysis of XSLT and XPath semantics, and the (XPath) semantics of using present-

ational variables, could present further opportunities to extract and evaluate layout invariance,

still without having knowledge of the semantics of layout functions themselves.

This technique could be used in other XML-based layout models provided there is a canon-

ical rendered form that can be consumed subsequently by the layout without further substan-

tial processing. (In this case SVG is both the final output form and consumable as laid-out

input, subject perhaps only to translation, or some other operation that does not require the

inner-tree to be processed.)

To determine whether this approach is worthwhile requires performance measurement on a

large number of sample documents. This would need i) identification of the extent of invari-

ance within them, ii) determining the computational cost saved by pre-evaluating those sec-

tions against the additional storage size of those rendered results and iii) measuring the cost

of the pre-evaluation (which would only be important if production runs are relatively short).

 17511 Active Documents as Variable Data |

Chapter 11

Active Documents as Variable Data

This chapter examines variable DDF documents consuming other DDF documents

as active arguments, analogous to the usual meaning of ‘higher-order’ functions

in functional programming. Examples in simple combination and applications such

as imposition are discussed. It is concluded that the complexity involved makes

such an approach so complex and special-purpose, that specific XSLT programs

are a better choice.

A function behaves in a higher-order when it takes takes another function as an argument, and

manipulates it (normally by evaluation) within some context. For functional programming lan-

guages this is a key capability, supporting concepts such as maps and folds which can be used

to generate much larger robust complex functions.

Can something similar be achieved in documents? Can a variable document be written to con-

sume other variable documents as ‘data’ and still be a variable document? This chapter illus-

trates that documents as active arguments1 could be supported and discusses the necessary

types of syntax, semantics and implementation alteration. Most of the discussion centres around

the phase of XSLT semantic interpolation rather than layout evaluation.

Whilst higher-order functions in FP are usually very generic, exploiting highly regular rep-

1As opposed to passive arguments, such as in auto-documentation where program elements in the argument doc-
uments are not carried forward as program.

 17611.1 Active Documents as Variable Data |

resentational models of the functions they consume (such as the Curry representation of multi-

argument functions by ‘nesting’ single argument ones), within documents this is likely not to

be so: as a consequence the forms described here will be limited in generality. The conclu-

sion will argue that these limitations are such as to make this approach probably not worth-

while and special-purpose XSLT programs are a better choice.

(It has been suggested that some of the work is in this chapter is closer to a highly-typed sys-

tem than a generic approach to higher-order. There is some truth in this, as the higher-order

documents considered here have very clear models of the argument documents they consume.)

Another difference is that higher-order functions in FP hold and execute (possibly partially)

their argument functions during execution within the context of the execution of the higher-

order function itself. In this work the document arguments are not normally executed, but rather

manipulated and restructured by the higher-order document to produce a ‘source-form’ res-

ult document that can be executed at some subsequent time. Thus the ‘higher-order’ analogy

might be tenuous, but the approach has some parallels.

Three types of manipulation are described: simple combinators, compound ‘expressions’ and

an example of document imposition.

11.1 Simple combinators

One of the simplest examples of a higher-order function is a binary combinator – taking two

arguments each of which is a function and producing a function that in turn will generate a

single structural result. In Haskell this might be as simple as:

type Simple = (Int ® Int)

binary :: Simple ® Simple ® (Int ® [Int])

binary p1 p2 = lx ® [(p1 x), (p2 x)]

double x = x + x
triple x = x + x + x

binary double triple 4
Þ [8,12]

An analogous situation for a document is a function that would combine two other documents

each as a separate page, but which performs this combination before any data binding occurs:

 17711.1 Active Documents as Variable Data |

data Page =
 Page {contents::String} | EmptyPage
 deriving (Eq, Show)
type Doc = String ® [Page]

twoDocs :: Doc ® Doc ® (String ® [Page])

(twoDocs d1 d2) = ls ® (d1 s) ++ (d2 s)

doc1 s = [Page ("some process on:"++s)]
doc2 s = [Page ("another process on:"++s)]

twoDocs doc1 doc2 "variable text"
Þ [Page {contents = "some process on:vari-

able text"},
 Page {contents = "another process on:vari-
able text"}]

We can produce a similar effect with a DDF document using some of the technical additions

that were developed for continual documents in Chapter 9 and a series of tricks and some special-

purpose data structures. Figure 86 shows three single documents each of which produces an

SVG page set2. Each operates on elements of the same variable data schema (company inform-

ation, customer details and resort/holiday descriptions), so in theory we should be able to com-

bine these parts to make meaningful composite, but still variable, documents.

Sp
ec

ia
l O

ff
er

: A
lta Nam libero tempore, cum soluta

nobis est eligendi optio cumque
nihil impedit quo minus id quod
maxime placeat facere
possimus, omnis voluptas
assumenda est, omnis dolor
repellendus. He had sunken
cheeks, a yellow complexion, a
straight back, an ascetic aspect,
and, with his arms dropped, the
palms of hands outwards,
resembled an idol. The director,
satisfied the anchor had good
hold, made his way aft and sat
down amongst us. We
exchanged a few words lazily.
Afterwards there was silence on
board the yacht.

Special Offer: Alta

Nam libero tempore, cum soluta nobis est eligendi
optio cumque nihil impedit quo minus id quod
maxime placeat facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus. He had
sunken cheeks, a yellow complexion, a straight
back, an ascetic aspect, and, with his arms
dropped, the palms of hands outwards, resembled
an idol. The director, satisfied the anchor had good
hold, made his way aft and sat down amongst us.
We exchanged a few words lazily. Afterwards there
was silence on board the yacht.

Honest John's

Helitours Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Figure 86. Three separate variable documents

Combining a pair of these documents with a similar ‘binary’ combinator will need to imple-

ment the information flow shown in Figure 87, where the appropriate sections of XSLT code

are combined into the corresponding sections in the final result.

The immediate problem is that the usual ‘information flow’ within a DDF document starts at

the data section, and passes through the logical structure to the presentation.Now data will

contain the argument documents – we have to project and process the struct code from both

of those into the struct in the result. Given the XML nature of the argument documents and

suitable XPath selectors this is relatively simple, when the code combination is pure concat-

enation. The actual source of the binary combinator is shown in Figure 88. The struct com-

ponent primarily creates an implicit root matching template which will contain the children

of the struct root templates of the argument documents (the purpose of the TP child is described

shortly).

2These are simplifications of the larger common brochure example.

 17811.1 Active Documents as Variable Data |

doc1doc1

da
ta

pr
es

st
ru
ct

doc2doc2

da
ta

pr
es

st
ru
ct

XSLT
s

XSLT
p

XSLT
p

XSLT
s

binary doc1 doc2binary doc1 doc2

da
ta

pr
es

st
ru
ct

binarybinary

da
ta

pr
es

st
ru
ct

XSLT
s

doc1doc1

da
ta

pr
es

st
ru
ct XSLT

s

XSLT
p

doc2doc2

da
ta

pr
es

st
ru
ct

XSLT
p

XSLT
s

XSLT
s

ddf:struct/xsl:*

<TP>
 ddf:pres/xsl:*

pres/xsl:*
XSLT

p
XSLT

p

XSLT
p

XSLT
p






pres()

* ()

XSLT
s

XSLT
s

XSLT
p

XSLT
p

post-
processing
modes

Figure 87. DDF ‘higher-order’ information flow

doc
data

match:* mode="ddf:data-data"
struct

match:/
copy-of(.//ddf:struct/xsl:template[@match='/']/*) retain="indirect"
TP

copy-of(.//ddf:pres/xsl:template[@match='/']/*)
match:TP mode="ddf:struct-struct"

pres
match:/

svg
pageSet

copy-of(TP//svg:page)

ddf: xsl: svg:

Figure 88. DDF combinator document

If we wanted to differentiate between the two documents (perhaps reversing the order) then

a slightly more complex XPath will suffice (e.g. for $d in (.//doc2,.//doc1) return $d/ddf:

struct/xsl:template[@match='/']/*).

The pres code in the argument documents has eventually to reach the pres section of the res-

ult – but the source for projection into presentation is in the struct section. Hence without

modification to the DDF document, we have to both pick up new presentation code from the

structure and then remove it from the structure. The TP structure is used as a placeholder

into which the presentation root templates are stored temporarily. If we did not finally remove

this structure then the two codes would interfere in the compound document. A post-processing

 17911.1 Active Documents as Variable Data |

mode (ddf:struct-struct etc) needed for the continual document, can contain suitable remov-

al code. In a related way we also need to remove the data documents from the data section,

otherwise they would be considered data in any eventual evaluation – simple code in the ddf:

data-data post-processing mode can do this too. The attribute declaration ddf:retain="indir-

ect" ensures that the XSLT elements collected are retained in the final document output – this

feature was required for continual document support.

doc1doc1

da
ta

pr
es

st
ru
ct XSLT

s

XSLT
p

doc2doc2

da
ta

pr
es

st
ru
ct

XSLT
p

XSLT
s

binary doc1 doc2binary doc1 doc2

da
ta

pr
es

st
ru
ct XSLT

s
XSLT

s

XSLT
p

XSLT
p

DATA

XSLT
s
(DATA)

XSLT
p
(

 XSLT
s
(DATA))

XSLT
s
(DATA)

XSLT
p
(

 XSLT
s
(DATA))

XSLT
s
XSLT

s
(DATA)

XSLT
p
XSLT

p
(

 XSLT
s
XSLT

s
(DATA))

DATA

DATA

DATA

Figure 89. Document evaluations

What we now get is a document that will respond to data binding in similar ways to its con-

stituents, as shown in Figure 89, where the Å symbol represents the effect of code concaten-

ation. Figure 90 shows the result of projecting such a compound document on data.

Honest John's

Helitours

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Special Offer: Alta

Nam libero tempore, cum soluta nobis est eligendi
optio cumque nihil impedit quo minus id quod
maxime placeat facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus. He had
sunken cheeks, a yellow complexion, a straight
back, an ascetic aspect, and, with his arms
dropped, the palms of hands outwards, resembled
an idol. The director, satisfied the anchor had good
hold, made his way aft and sat down amongst us.
We exchanged a few words lazily. Afterwards there
was silence on board the yacht.

Figure 90. A combined document

This approach works for the current example, but is clumsy and will certainly break with more

 18011.2 Active Documents as Variable Data |

complex document arguments. (The evaluation of ‘binary’ is confined to the compile-run phase

within evaluation of a DDF document – no layout is performed – technically it should be

subjected to the same treatment as processing layout invariance.) There are a number of issues:

Structures introduced as programmatic tricks should be unnecessary for simple cases.

Combinations are likely to be more complex than simple program concatenation, even though

with ‘push-driven’ XSLT code (template matching), much of the code is order insensitive

and ‘top-level’.

Programs can interfere through clashes in naming3 or in priorities of push templates.

Documents as arguments can carry referential contexts – item ‘pointers’ (e.g. images) or

imported libraries. How should these be resolved or imported? What happens when they

are completely common, e.g. two documents both reference the same library?

All these suggest that the DDF document will need some limited additional semantics to deal

with these issues. Several of these are similar to those outlined in Chapter 9.

11.2 Higher-order syntax for DDF

Any syntax and semantics chosen should simplify the easy case we have encountered in our

first example and build foundations for more complexity. This section will show the types of

construct that will be needed, and that whilst ‘higher-order’ documents may need compiler-

like abilities to analyse their argument documents fully, a small number of standard constructs

and functions can help produce some reasonably simple forms.

Pulling presentation code through the structure is awkward and unnecessary. We could indic-

ate that a particular code section in pres, or even the whole of that section, should treat data

as its source space, rather than the default struct. A simple attribute annotation (ddf:source="

data") will suffice for now, where top-level program merging is involved. This requires a minor

modification to the DDF compiler, to add a new possible capture mode (ddf:data-pres) and

an additional interpolation of the result of this push-processing into the presentation result:

3Similar issues could arise in any FP system – modules or packages are one of the solutions, restricting clashes
to package names.

 18111.2 Active Documents as Variable Data |

<xsl:variable name="ddf:pres">
 <xsl:apply-templates select="$ddf:struct" mode="ddf:struct-pres"/>
 <xsl:apply-templates select="$ddf:data" mode="ddf:data-pres"/>
</xsl:variable>

This assumes that any instructions to pull from data space will concatenate after those from

structure space. In practice I suspect both source spaces will be used together rarely and, for

such circumstances, ordering between the spaces is inconsequential. The post-processing ‘clear-

ance’ of the data space could be indicated similarly by a simple declaration (ddf:clear="*"),

coupled with minor additions to the compiler. A more general solution treats the clearance dir-

ective as an XPath pattern, so selective deletion is supported. Now the combinator document

simplifies:

doc
data clear="*"
struct

match:/
copy-of(.//ddf:struct/xsl:template[@match='/']/*)

pres
match:/ source="data"

copy-of(.//ddf:pres//xsl:attribute-set)
svg

pageSet
copy-of(.//ddf:pres//svg:page)

Honest John's

Helitours

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Special Offer: Alta

Nam libero tempore, cum soluta nobis est eligendi
optio cumque nihil impedit quo minus id quod
maxime placeat facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus. He had
sunken cheeks, a yellow complexion, a straight
back, an ascetic aspect, and, with his arms
dropped, the palms of hands outwards, resembled
an idol. The director, satisfied the anchor had good
hold, made his way aft and sat down amongst us.
We exchanged a few words lazily. Afterwards there
was silence on board the yacht.

ddf: xsl: svg:

Figure 91. Simplified DDF combinator & bound result

We now are implementing an information flow within the document that is a rather more com-

plex graph (Figure 92). As well as the conventional routes data ® struct ® pres there are

also two additional transfer modes, input-data that can be used for preprocessing, and of interest

here, data-pres, which allows presentation elements to be made directly from data. In this case

it is used to transfer XSLT programmatic fragments from the pres spaces of the input argu-

ment documents to the pres section of the result, without the need for assisting structure. In

addition there are a set of ‘working’ and ‘result’ spaces which allow ‘after-read’ actions. In

these examples they are used to remove data (such as the argument documents themselves)

from the result after necessary information has been extracted. This is achieved by not copy-

ing controlled by ddf:clean="pattern" directives that the compiler understands4:

4Templates can also be written directly in these modes if desired, but compiler directives are more coherent.

 18211.3 Active Documents as Variable Data |

Figure 92. Information flows within ‘higher-order’

11.3 Resource name conflicts

More interesting argument documents will contain global resources and features such as attrib-

ute sets and functions, which are accessed through embedded references within the tree. We

can transmit such elements by conventional XSLT statements in the higher-order document:

doc
data clear="*"
struct

match:/
copy-of(.//ddf:struct/xsl:template[@match='/']/*)

pres
match:/ source="data"

copy-of(.//doc1//ddf:pres//xsl:attribute-set)
copy-of(.//doc2//ddf:pres//xsl:attribute-set)
svg

pageSet
copy-of(.//doc1//ddf:pres//svg:page)
copy-of(.//doc2//ddf:pres//svg:page)

ddf: xsl: svg:

Figure 93. Combination with (styling) attribute sets

The relationship between these resources and their exploitation points is not that of ancest-

or/descendant but through a referential name. When combining argument documents there may

be clashes between resource names used in each. Suppose two documents both use a stylist-

ic attribute-set called ‘para’, differently bound in each. Processing outlined so far would place

both styles in the combined document. In XSLT multiple attribute sets can have the same name

– the effect is that of merging their attributes. Thus our example evaluation would not break

but also would not be as intended5:

 18311.3 Active Documents as Variable Data |

Honest John's

Helitours

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Special Offer: Alta

Nam libero tempore, cum soluta nobis
est eligendi optio cumque nihil impedit
quo minus id quod maxime placeat
facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
He had sunken cheeks, a yellow
complexion, a straight back, an ascetic
aspect, and, with his arms dropped, the
palms of hands outwards, resembled an
idol. The director, satisfied the anchor
had good hold, made his way aft and sat
down amongst us. We exchanged a few
words lazily. Afterwards there was
silence on board the yacht.

Honest John's

Helitours

 Terms & Conditions
Welcome to our website. If you continue to browse and use this website,
you are agreeing to comply with and be bound by the following terms
and conditions of use, which together with our privacy policy govern
[business name]'s relationship with you in relation to this website. If
you disagree with any part of these terms and conditions, please do not
use our website. The term '[business name]' or 'us' or 'we' refers to the
owner of the website whose registered office is [address]. Our company
registration number is [company registration number and place of
registration]. The term 'you' refers to the user or viewer of our website.

Special Offer: Alta

Nam libero tempore, cum soluta nobis
est eligendi optio cumque nihil impedit
quo minus id quod maxime placeat
facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
He had sunken cheeks, a yellow
complexion, a straight back, an ascetic
aspect, and, with his arms dropped, the
palms of hands outwards, resembled an
idol. The director, satisfied the anchor
had good hold, made his way aft and sat
down amongst us. We exchanged a few
words lazily. Afterwards there was
silence on board the yacht.

a) Documents with same-name styles b) Style clash in combination

Figure 94. Style conflict in document combination

To process this properly we need to i) identify name conflicts and ii) resolve them, presum-

ably by renaming the set and its references in one, or both of them. The first can be tested

through document-embedded statements (any $n in distinct-values(xsl:attribute-set/@name)

satisfies count(xsl:attribute-set[@name=$n]) gt 1), but the second needs tree rewriting code,

best added as a semantic feature. It is easier to implement blanket renaming of such intern-

al references (including functions) under a directive request. This is not trivial – both name

and reference must be altered: references can be buried in other forms of expressions6.

doc
import href="../HigherOrder/ho-library.ddf"
data clear="*"
struct

match:/
XSLT2:template /

copy-of(.//ddf:struct/(xsl:template[@match='/']/* | *[not(self::xsl:template)]))
pres

match:/ source="data"
copy-of(.//doc1//ddf:pres//xsl:attribute-set) rename-prefix="doc1"
copy-of(.//doc2//ddf:pres//xsl:attribute-set) rename-prefix="doc2"
XSLT2:template /

svg
pageSet

copy-of(.//doc1//ddf:pres//svg:page) rename-prefix="doc1"
copy-of(.//doc2//ddf:pres//svg:page) rename-prefix="doc2"

ddf: xsl: unknown: svg:

Figure 95. Directed resource renaming

5Cases where one imported style overrides another can be satisfied by suitable XSLT/XPath programming.
6References to attribute sets are in whitespace-separated lists, functional references are in XPath expressions.

 18411.4 Active Documents as Variable Data |

This works but the renaming has to be declared twice – once on the element that includes

the attribute set, the other over the scope of application of those attributes. A more complete

method might be to permit declarations of renaming spaces such as <ddf:rename-scope

path=".//doc1" rename-prefix="doc1"/> which could be compiled into suitable templates.

Honest John's

Helitours

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Special Offer: Alta

Nam libero tempore, cum soluta nobis
est eligendi optio cumque nihil impedit
quo minus id quod maxime placeat
facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
He had sunken cheeks, a yellow
complexion, a straight back, an ascetic
aspect, and, with his arms dropped, the
palms of hands outwards, resembled an
idol. The director, satisfied the anchor
had good hold, made his way aft and sat
down amongst us. We exchanged a few
words lazily. Afterwards there was
silence on board the yacht.

Figure 96. Combined document with style renaming

11.4 Compound documents

One of the powerful features of higher-order functions is the ability to build compound func-

tions. How a binary page-level combinator document can be defined has already been shown.

If this is correct we should be able to apply the process repeatedly somewhat like:

doc3 s = [Page ("a 3rd process on:"++s)]
(twoDocs (twoDocs doc1 doc2) doc3) "variable text"
Þ [Page {contents = "some process on:variable text"},

 Page {contents = "another process on:variable text"},
 Page {contents = "a 3rd process on:variable text"}]

If we do that we get Figure 97.

Honest John's

Helitours

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Special Offer: Alta

Nam libero tempore, cum soluta nobis
est eligendi optio cumque nihil impedit
quo minus id quod maxime placeat
facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
He had sunken cheeks, a yellow
complexion, a straight back, an ascetic
aspect, and, with his arms dropped, the
palms of hands outwards, resembled an
idol. The director, satisfied the anchor
had good hold, made his way aft and sat
down amongst us. We exchanged a few
words lazily. Afterwards there was
silence on board the yacht.

Special Offer: Alta

Nam libero tempore, cum soluta nobis
est eligendi optio cumque nihil impedit
quo minus id quod maxime placeat
facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
He had sunken cheeks, a yellow
complexion, a straight back, an ascetic
aspect, and, with his arms dropped, the
palms of hands outwards, resembled an
idol. The director, satisfied the anchor
had good hold, made his way aft and sat
down amongst us. We exchanged a few
words lazily. Afterwards there was
silence on board the yacht.

Sp
ec

ia
l O

ff
er

: A
lta Nam libero tempore, cum soluta

nobis est eligendi optio cumque
nihil impedit quo minus id quod
maxime placeat facere
possimus, omnis voluptas
assumenda est, omnis dolor
repellendus. He had sunken
cheeks, a yellow complexion, a
straight back, an ascetic aspect,
and, with his arms dropped, the
palms of hands outwards,
resembled an idol. The director,
satisfied the anchor had good
hold, made his way aft and sat
down amongst us. We
exchanged a few words lazily.
Afterwards there was silence on
board the yacht.

Sp
ec

ia
l O

ff
er

: A
lta Nam libero tempore, cum soluta

nobis est eligendi optio cumque
nihil impedit quo minus id quod
maxime placeat facere
possimus, omnis voluptas
assumenda est, omnis dolor
repellendus. He had sunken
cheeks, a yellow complexion, a
straight back, an ascetic aspect,
and, with his arms dropped, the
palms of hands outwards,
resembled an idol. The director,
satisfied the anchor had good
hold, made his way aft and sat
down amongst us. We
exchanged a few words lazily.
Afterwards there was silence on
board the yacht.

Figure 97. Compound application

 18511.4 Active Documents as Variable Data |

Whilst the presentation is correct, there is a duplication of the resort. Two of the argument

documents contain identical code to pull in the resort data item (<xsl:copy-of select=".//resort

[@special-offer]"/>). In the combined document the resort-gathering code is included twice

in the struct space:

struct
match:/

copy-of(.//company,.//customer)
copy-of(.//resort[@special-offer])
copy-of(.//resort[@special-offer])

There is now duplication of ‘function’, whose resolution needs deeper knowledge of the doc-

ument semantics. (Attribute set clashes were corrected by a strategy of global resource renam-

ing.) We must first assume that duplication of structure is not required – this is reasonable

but may be subject to declaration. We must then eliminate duplicate programmatic construc-

tions in the two document program inclusion statements. But this has to be performed dur-

ing execution of the higher-level action:

match:/
XSLT2:template /

copy-of(.//ddf:struct/(xsl:template[@match='/']/* | *[not(self::xsl:template)]))

Here we are amalgamating all the ‘top-level’ trees within struct space, or children of a ‘root’

template therein, to form a new root template. We need to eliminate identical trees from that

collection. A suitable function (ddf:distinct-trees()) can be written and included in a ‘higher-

order’ library document:

match:/
XSLT2:template /

copy-of(ddf:distinct-trees(.//ddf:struct/(xsl:template[@match='/']/* | *[not(self::xsl:template)]))
)

Invoking it removes the duplicates and produces the anticipated result:

For this type of simple document combinator we should expect associativity7, which we can

check through testing that binary(d1,binary(d2,d3)) = binary(binary(d1,d2),d3). This is indeed

the case.

7This would not be so if the binary combinator added some additional components, such as a title page.

 18611.4 Active Documents as Variable Data |

Honest John's

Helitours

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Special Offer: Alta

Nam libero tempore, cum soluta nobis
est eligendi optio cumque nihil impedit
quo minus id quod maxime placeat
facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
He had sunken cheeks, a yellow
complexion, a straight back, an ascetic
aspect, and, with his arms dropped, the
palms of hands outwards, resembled an
idol. The director, satisfied the anchor
had good hold, made his way aft and sat
down amongst us. We exchanged a few
words lazily. Afterwards there was
silence on board the yacht.

Sp
ec

ia
l O

ff
er

: A
lta Nam libero tempore, cum soluta

nobis est eligendi optio cumque
nihil impedit quo minus id quod
maxime placeat facere
possimus, omnis voluptas
assumenda est, omnis dolor
repellendus. He had sunken
cheeks, a yellow complexion, a
straight back, an ascetic aspect,
and, with his arms dropped, the
palms of hands outwards,
resembled an idol. The director,
satisfied the anchor had good
hold, made his way aft and sat
down amongst us. We
exchanged a few words lazily.
Afterwards there was silence on
board the yacht.

Figure 98. Compound application with duplication removed

Compound inclusion - document 'imposition'

Imposition is a common process in printing which places groups of pages onto larger sheets

for eventual printing on a press. This process can include a number of other actions, such as

adding guide marks for the printing process, superimposition of watermarks or similar and page

rotation and order re-arrangement for eventual collation of the finished work by folding and

cutting before binding.

Can a document be created which carries out this impositiont for a sequence of variable doc-

uments, operating on the same data – i.e. imposition(doc[])(data)? The imposed document

set is variable and can be evaluated in one action on bound data to produce the ready-for-print

result.

The main issue is whether the set of argument documents each define a fixed or variable num-

ber of pages. If all are fixed, the approach is comparatively easy – complete combination can

be carried out before any processing of the constituent documents, i.e. during the evaluation

of the ‘imposition’ document and no ‘imposing’ code remains in the resulting unbound doc-

ument. If some documents have a data-dependent number of pages then the imposition must

be carried out during the evaluation of the imposed document set, sometimes even after lay-

out of the constituent parts.

We first examine saddle-stitch binding for a set of fixed-page documents, often referred to as

‘booklet-making’. Pages must be in multiples of four, so the imposing code (Figure 99) adds

extra blank pages as necessary. The set is then reordered to group into sheets, both front and

reverse8. Each sheet is then composed by positioning pages. The final result when bound to

some data is shown in Figure 100, where ‘deliberately blank’ has been added to those extra

pages and page numbers have been imposed.

 18711.4 Active Documents as Variable Data |

XSLT2:template /
svg

pageSet
pages=

" .//docs/* :

copy-of(.//ddf:pres//svg:page) rename-prefix="{name(.)}"
pages4=

$pages/*
n=4 * ((count($pages/*)+3) idiv 4)
" (count($pages/*)+1) to $n :

page width="210" height="297"
group:$pages4/* by:min(((position() – 1) idiv 2, (last()-position()) idiv 2))

group:ddf:rotateRight(current-group()) by:(position() – 1) idiv 2
page width="420" height="297"

svg x="0" y="0"
current-group()[1]/(@width,@height,*)

svg x="210" y="0"
current-group()[2]/(@width,@height,*)

line x1="210" y1="0" x2="210" y2="297" stroke="black" stroke-width="1"

unknown: svg: xsl: ddf:

Figure 99. Imposition code

Deliberately Blank

8

Honest John's

Helitours

1

 Contact:
Email:honestJohn@heliski.ca

2

Deliberately Blank

7

Deliberately Blank

6

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

3

Special Offer: Alta

Nam libero tempore, cum soluta nobis
est eligendi optio cumque nihil impedit
quo minus id quod maxime placeat
facere possimus, omnis voluptas
assumenda est, omnis dolor repellendus.
He had sunken cheeks, a yellow
complexion, a straight back, an ascetic
aspect, and, with his arms dropped, the
palms of hands outwards, resembled an
idol. The director, satisfied the anchor
had good hold, made his way aft and sat
down amongst us. We exchanged a few
words lazily. Afterwards there was
silence on board the yacht.

4

Sp
ec

ia
l O

ff
er

: A
lta Nam libero tempore, cum soluta

nobis est eligendi optio cumque
nihil impedit quo minus id quod
maxime placeat facere
possimus, omnis voluptas
assumenda est, omnis dolor
repellendus. He had sunken
cheeks, a yellow complexion, a
straight back, an ascetic aspect,
and, with his arms dropped, the
palms of hands outwards,
resembled an idol. The director,
satisfied the anchor had good
hold, made his way aft and sat
down amongst us. We
exchanged a few words lazily.
Afterwards there was silence on
board the yacht.

5

Figure 100. Imposition for saddle-stitch binding with fixed-page argument documents

8The integer function min((n-1)/2,(last-n)/2), when last mod 8 = 0, yields a value which is the same for all pages
on the same sheet and is used as the grouping discriminant. ddf:rotateRight() ‘barrel shifts’ a sequence of items
on place right.

 18811.4 Active Documents as Variable Data |

When the number of pages is variable the code in the imposition document becomes more com-

plex. Firstly we must recognise situations that generate a variable number of pages: there are

two broad kinds. An XSLT construct can produce a data-dependent sequence of pages (e.g.

<xsl:for-each select="resort"><svg:page>...). To find such cases we must examine the

XSLT ancestry of code pages, or in the worst cases examine the execution flow. A layout func-

tion can also produce pages – most commonly a paginator. The imposing document must have

sufficient knowledge of layout syntax to identify candidate constructs.

Having found variable page generators we must place them (and any static pages in proper

sequence position) under a suitable imposition computation. When the variability is a con-

sequence of layout (e.g. pagination) then that imposition must be performed late in the lay-

out phase. If however all variability is caused by XSLT, then the imposition can be determ-

ined before final layout phase. Using push mode templates, iterators such as match the pat-

tern xsl:for-each[svg:page] can be copied in in toto, whereas other isolated svg:page ele-

ments can be copied in sequence. Figure 101 show two different data bindings which result

in a variable number of pages in an 8-up imposition (which requires page rotations) – here

the argument documents being imposed together all have page variability defined in XSLT.

Honest John's

Helitours

Special O
ffer: Stew

art-C
assiarThe helicopter blades have turned and the

first fresh tracks have been carved to kick
off the 2008 season. If you have yet to heliski
during the early season, consider it a must.
As temps remain cooler at this time of year,
conditions at lower elevations provide us with
excellent tree skiing in poorer weather
conditions.

Special O
ffer: C

ham
onixVery little is known about how and where

they live. The one certainty is that they are
fearsome opponents. Nam libero tempore,
cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime placeat
facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut
rerum necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae non
recusandae.

 Contact:
Email:honestJohn@heliski.ca

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Special O
ffer: A

ltaNam libero tempore, cum soluta nobis est
eligendi optio cumque nihil impedit quo minus
id quod maxime placeat facere possimus,
omnis voluptas assumenda est, omnis dolor
repellendus. He had sunken cheeks, a yellow
complexion, a straight back, an ascetic aspect,
and, with his arms dropped, the palms of
hands outwards, resembled an idol. The
director, satisfied the anchor had good hold,
made his way aft and sat down amongst us.
We exchanged a few words lazily. Afterwards
there was silence on board the yacht.

Honest John's

Helitours

Special O
ffer: B

ugaboos

Nam libero tempore, cum soluta nobis est
eligendi optio cumque nihil impedit quo minus
id quod maxime, omnis voluptas assumenda
est, omnis dolor repellendus. As temps remain
cooler at this time of year, conditions at lower
elevations provide us with excellent tree skiing
in poorer weather conditions.

Special O
ffer: C

ham
onixVery little is known about how and where

they live. The one certainty is that they are
fearsome opponents. Nam libero tempore,
cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime placeat
facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut
rerum necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae non
recusandae.

Sp
ec

ia
l O

ff
er

: A
lta Nam libero tempore, cum soluta nobis est

eligendi optio cumque nihil impedit quo minus
id quod maxime placeat facere possimus,
omnis voluptas assumenda est, omnis dolor
repellendus. He had sunken cheeks, a yellow
complexion, a straight back, an ascetic aspect,
and, with his arms dropped, the palms of
hands outwards, resembled an idol. The
director, satisfied the anchor had good hold,
made his way aft and sat down amongst us.
We exchanged a few words lazily. Afterwards
there was silence on board the yacht.

 Contact:
Email:honestJohn@heliski.ca

 Terms & Conditions
Welcome to our website. If you continue
to browse and use this website, you are
agreeing to comply with and be bound by
the following terms and conditions of use,
which together with our privacy policy
govern [business name]'s relationship
with you in relation to this website. If you
disagree with any part of these terms and
conditions, please do not use our website.
The term '[business name]' or 'us' or 'we'
refers to the owner of the website whose
registered office is [address]. Our
company registration number is [company
registration number and place of
registration]. The term 'you' refers to the
user or viewer of our website.

Special O
ffer: V

al D
'IsereVery little is known about how and where

they live. The one certainty is that they are
fearsome opponents. Nam libero tempore,
cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime placeat
facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut
rerum necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae non
recusandae.

Sp
ec

ia
l O

ff
er

: G
ri

nd
el

w
al

d Very little is known about how and where
they live. The one certainty is that they are
fearsome opponents. Nam libero tempore,
cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime placeat
facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut
rerum necessitatibus saepe eveniet ut et
voluptates repudiandae sint et molestiae non
recusandae. Sp

ec
ia

l O
ff

er
: S

te
w

ar
t-

C
as

si
ar The helicopter blades have turned and the

first fresh tracks have been carved to kick
off the 2008 season. If you have yet to heliski
during the early season, consider it a must.
As temps remain cooler at this time of year,
conditions at lower elevations provide us with
excellent tree skiing in poorer weather
conditions.

Figure 101. An 8-up imposition with variable-page documents

 18911.5 Active Documents as Variable Data |

11.5 Conclusion

The examples in this chapter have been relatively simple higher-order tasks, focussed on page

combination of the results of projection of argument documents. But there has to be some care-

ful programming, along with specialist support functions and directives that the compiler will

exploit. More complex examples could include a document that consumes another variable doc-

ument to produce a new version that will generate an outline or some form of précis of the

content that the argument document would produce.

But it should be clear that these ‘higher-order’ documents need either i) to have an intimate

knowledge of the ‘type’ of the documents they are consuming or ii) relatively simple canon-

ical forms for those argument documents. In the examples shown the canonical form, for present-

ation, is the svg:page and the semantics of processing structural and presentational mappings

are at best concatenation, with some appropriate measures to avoid clashing of named resources

and removal of duplicated function.

The implementation of ‘higher-order’ semantics being explored here was for the higher-order

document to consume sections of the argument documents through its embedded XSLT and

generate new sections of potentially modified, and perhaps partially evaluated, XSLT in the

result. For any usefully complex argument documents this becomes principally a programming

exercise, not a simple property of some typical document component. The only other approach

is strictly to hold ‘encapsulated’ documents within the consumer for later evaluation and extrac-

tion of results – as such a good description of work-flow may be more suitable.

The conclusion from this chapter is that documents of the complexity of DDF consuming act-

ive variable documents in a higher-order sense are possible in some limited circumstances, but

are not especially practical. Writing specific XSLT programs for the small number of cases

anticipated (such as imposition) will be much simpler for the document engineer. Higher-order

behaviour in the sense of producing variable document results, as discussed in Chapter 9, is

much more promising as we shall see in the example of Chapter 12.

 19012 Example Document - a Medical Record |

Chapter 12

Example Document - a Medical Record

To illustrate a ‘highly functional’ document this chapter presents a larger example

of a simple medical record, treating it as a ‘continual’ document: one that may

continue to accept data, grow and change as new information is added progress-

ively, but for which it is meaningful, and useful, to observe its presentation con-

tent at stages during its binding ‘life’. The general idea was discussed in a pre-

vious chapter. The medical source data and the record's appearance at several stages

of binding are discussed first, followed by details of the implementation in terms

of the document design document and the use of various of the ‘higher-order’ fea-

tures described earlier. A number of different design/code paradigms are illustrated

that demonstrate the utility of some of these features.

The example is a multi-part, multiple page medical record for a single patient1. As new data

is added, from a variety of sources, content is added at several parts of the document. For

example a new temperature reading may add to a chart and a table. Laboratory tests might

add both a complete new page and an additional entry in an earlier summary table, as well

as to the all-important accounting page. The overall design for the document is:

1The same basic example, using a more ad hoc approach, based only on additive operations, was presented at
DocEng07 though the paper used a simpler diary example[64].

Lumley, J., Gimson, R. and Rees, O.
Endless Documents: A Publication as a Continual Function

 19112.1 Example Document - a Medical Record |

A title/summary page, containing simple patient details coupled with a summary for each

day in the subsequent record.

A page containing two data/time graphs (for blood pressure and temperature). New samples

will be added to this graph as they are bound.

A page for each completed day, containing relevant information from tests and such like.

A page detailing patient account charges.

Some parts of these pages will have additional material added, modified or removed at vari-

ous stages in the document's life.

12.1 Data and the document life

The variable data to be bound is a simple XML structure (medical-record) containing sev-

eral days with simple descriptions as shown in Figure 102.

<medical-record patient="Solomon Grundy">
 <patient>
 <name>Solomon Grundy</name>
 <date-of-birth>2011-09-11</date-of-birth>
 <next-of-kin>Tom Thumb</next-of-kin>
 <finance>
 <credit-card>12345678901234</credit-card>
 </finance>
 <admitted>2011-09-12</admitted>
 </patient>
 <contd/>
</medical-record>

<medical-record patient="Solomon Grundy">
 <day date="2011-09-12" day-no="0">
 <reading type="temperature" time="06:00:00" charge="23.45">36.4</reading>
 <reading type="temperature" time="08:00:00">36.9</reading>
 <reading type="bloodP" time="08:00:00">90/65</reading>
 <test type="reflex">Reflexes normal</test>
 <test type="catscan" image="catscan8cg.jpg" charge="123.45">Cross-section of his skull, show-
ing a brain present</test>
 <notes>The patient appeared grumpy and threw his mobile phone at the consultant</notes>
 </day>
 <contd/>
</medical-record>

Figure 102. Sample patient details and medical data

 19212.1 Example Document - a Medical Record |

There are a number of main design decisions. Firstly we assume that there is a positive mark-

er for ‘continuation’ in the data2 – in the presence of such a marker the document will be in

a form such that new data can continue to be bound to it. In its absence, the document ‘final-

ises’. The specific marker chosen is contd, and is assumed to be the last child of a new data

binding. (Later on the reverse process, i.e. continue until told to stop, is explored.)

Here is the document at each of four stages of progressive data binding. (A larger version of

the final document can be found in Figures 116 and 117 of Appendix A.)

DDF
Healthcare

Medical-record for
Solomon Grundy
Admitted: Mon 12th September
2011
DoB: 2011-09-11
Next of kin: Tom Thumb

Summary status
...to be continued.....

DDF
Healthcare

Solomon Grundy -
Patient Charts

MonTueWedThu Fri Sat SunMon

/°
C

30

40
Temperature

MonTueWedThu Fri Sat SunMon

/m
m

H
g

60
70
80
90

100
110
120
130
140

Blood
Pressure

DDF
Healthcare

Solomon Grundy -
Charges on Account
credit-card:12345678901234

Total Account: 0.00

Figure 103. Medical record after binding patient details

The very first binding, in Figure 103, establishes the patient details and as the input was marked

to be continued, indicative markers appear in the appropriate positions in the output as well

as programmatic continuing instructions in four places3 for the next binding. After the second

binding we have content for Monday and Tuesday appearing in all four sections with a present-

ation shown in Figure 104.

2Not the continuation of functional programming, but it is a suitable word for this context.
3At the foot of the summary, in the graphs, between ‘day’ pages and just before the account total on the charges
page. A visible marker appears in the summary where the continuation point is displayed as an indicator.

 19312.1 Example Document - a Medical Record |

DDF
Healthcare

Medical-record for
Solomon Grundy
Admitted: Mon 12th September
2011

DoB: 2011-09-11
Next of kin: Tom Thumb

Summary status
Mon:
12th

36.9°C
36.4°C The patient appeared grumpy and

threw his mobile phone at the
consultant

Tue:
13th

37.9°C
37.1°C The patient was interviewed by the

local constabulary
...to be continued.....

Warning
Low Blood Pressure

DDF
Healthcare

Solomon Grundy -
Patient Charts

MonTueWedThu Fri Sat SunMon

/°
C

30

40

37.4
@19:00

Temperature

MonTueWedThu Fri Sat SunMon

/m
m

H
g

60
70
80
90

100
110
120
130
140

98/72
@17:00

Blood
Pressure

DDF
HealthcarePatient notes for Mon 12th

Tests & Reports

T 36.4 @ 6:00

T 36.9 @ 8:00

B
P 90/65 @ 8:00

B
P 94/67 @ 12:00

B
P 92/67 @ 18:00

re
fle

x Reflexes normal

ca
ts

ca
n Cross-section of his skull,

showing a brain present

General Notes
The patient appeared grumpy and threw his
mobile phone at the consultant

DDF
HealthcarePatient notes for Tue 13th

Tests & Reports

T 37.1 @ 10:00

T 37.9 @ 13:00

T 37.8 @ 16:00

T 37.4 @ 19:00

B
P 95/67 @ 9:00

B
P 94/67 @ 12:00

B
P 98/72 @ 17:00

re
fle

x Reflexes normal

General Notes
The patient was interviewed by the local
constabulary

DDF
Healthcare

Solomon Grundy -
Charges on Account
credit-card:12345678901234

Mon:
12th

reading temperature @ 6:00 23.45
test catscan 123.45

Tue:
13th

reading temperature @ 10:00 10.00
reading temperature @ 13:00 10.00
reading temperature @ 16:00 10.00
reading temperature @ 19:00 10.00

Total Account: 186.90

Figure 104. Pages of the medical record after binding two days’ data

We can now proceed to bind data for the second part of the week: these retained and embed-

ded program sections now operate, generating material for Wednesday, Thuesday and Friday

(but not Monday and Tuesday as that presentation already exists in the document at this stage).

Since we claimed the week still continued in the new data this processing again leaves addi-

tional continuation program points, as shown in Figure 105.

 19412.1 Example Document - a Medical Record |

DDF
Healthcare

Medical-record for
Solomon Grundy
Admitted: Mon 12th September
2011

DoB: 2011-09-11
Next of kin: Tom Thumb

Summary status
Mon:
12th

36.9°C
36.4°C The patient appeared grumpy and

threw his mobile phone at the
consultant

Tue:
13th

37.9°C
37.1°C The patient was interviewed by the

local constabulary
Wed:
14th

36.8°C
36.1°C Signs of sunburn and incipient

bruising
Thu:
15th

35.8°C
35.1°C The patient took ill, and was

unwilling to watch daytime TV
Fri:
16th

37.9°C
35.4°C The patient appeared somewhat

worse, and worried about the events
of the weekend

...to be continued.....

DDF
Healthcare

Solomon Grundy -
Patient Charts

MonTueWedThu Fri Sat SunMon

/°
C

30

40

37.9
@09:00

Temperature

MonTueWedThu Fri Sat SunMon

/m
m

H
g

60
70
80
90

100
110
120
130
140

120/95
@18:00

Blood
Pressure

DDF
HealthcarePatient notes for Mon 12th

Tests & Reports

T 36.4 @ 6:00

T 36.9 @ 8:00

B
P 90/65 @ 8:00

B
P 94/67 @ 12:00

B
P 92/67 @ 18:00

re
fle

x Reflexes normal

ca
ts

ca
n Cross-section of his skull,

showing a brain present

General Notes
The patient appeared grumpy and threw his
mobile phone at the consultant

DDF
HealthcarePatient notes for Tue 13th

Tests & Reports

T 37.1 @ 10:00

T 37.9 @ 13:00

T 37.8 @ 16:00

T 37.4 @ 19:00

B
P 95/67 @ 9:00

B
P 94/67 @ 12:00

B
P 98/72 @ 17:00

re
fle

x Reflexes normal

General Notes
The patient was interviewed by the local
constabulary

DDF
HealthcarePatient notes for Wed 14th

Tests & Reports

T 36.1 @ 7:00

T 36.8 @ 12:00

B
P 99/71 @ 7:00

B
P 101/80 @ 13:00

B
P 103/82 @ 18:00

re
fle

x Reflexes slow

General Notes
Signs of sunburn and incipient bruising

DDF
HealthcarePatient notes for Thu 15th

Tests & Reports

T 35.1 @ 6:00

T 35.8 @ 11:00

B
P 105/83 @ 8:00

B
P 110/85 @ 12:00

B
P 112/89 @ 18:00

he
ar

in
g 5.3 dB dropoff @ 5kHz

bl
oo

d Plenty of it

ca
ts

ca
n Of his skull

General Notes
The patient took ill, and was unwilling to watch
daytime TV

DDF
HealthcarePatient notes for Fri 16th

General Notes
The patient appeared somewhat worse, and
worried about the events of the weekend

DDF
Healthcare

Solomon Grundy -
Charges on Account

credit-card:12345678901234

Mon:
12th

reading temperature @ 6:00 23.45
test catscan 123.45

Tue:
13th

reading temperature @ 10:00 10.00
reading temperature @ 13:00 10.00
reading temperature @ 16:00 10.00
reading temperature @ 19:00 10.00

Thu:
15th

test hearing 10.00
test blood 37.00
test catscan 75.00

Total Account: 308.90

Figure 105. Record pages after further binding

The third stage completes it with the weekend's data (this time without a continuation mark-

er), giving a final result shown in Figure 106. This has no remaining program and will not

alter with the addition of any further data.

 19512.2 Example Document - a Medical Record |

DDF
Healthcare

Medical-record for
Solomon Grundy
Admitted: Mon 12th September
2011

DoB: 2011-09-11
Next of kin: Tom Thumb

Summary status
Mon:
12th

36.9°C
36.4°C The patient appeared grumpy and

threw his mobile phone at the
consultant

Tue:
13th

37.9°C
37.1°C The patient was interviewed by the

local constabulary
Wed:
14th

36.8°C
36.1°C Signs of sunburn and incipient

bruising
Thu:
15th

35.8°C
35.1°C The patient took ill, and was

unwilling to watch daytime TV
Fri:
16th

37.9°C
35.4°C The patient appeared somewhat

worse, and worried about the events
of the weekend

Sat:
17th

38.9°C
38.4°C The patient took a distinct turn for the

worse, and appears terminal
Sun:
18th

Demise of patient

CASE

CLOSED

Warning
Low Blood Pressure
High Temperature:

38.4°C

DDF
Healthcare

Solomon Grundy -
Patient Charts

MonTueWedThu Fri Sat SunMon

/°
C

30

40
38.9
@08:00

Temperature

MonTueWedThu Fri Sat SunMon

/m
m

H
g

60
70
80
90

100
110
120
130
140

70/55
@20:00

Blood
Pressure

DDF
HealthcarePatient notes for Mon 12th

Tests & Reports

T 36.4 @ 6:00

T 36.9 @ 8:00

B
P 90/65 @ 8:00

B
P 94/67 @ 12:00

B
P 92/67 @ 18:00

re
fle

x Reflexes normal

ca
ts

ca
n Cross-section of his skull,

showing a brain present

General Notes
The patient appeared grumpy and threw his
mobile phone at the consultant

DDF
HealthcarePatient notes for Tue 13th

Tests & Reports

T 37.1 @ 10:00

T 37.9 @ 13:00

T 37.8 @ 16:00

T 37.4 @ 19:00

B
P 95/67 @ 9:00

B
P 94/67 @ 12:00

B
P 98/72 @ 17:00

re
fle

x Reflexes normal

General Notes
The patient was interviewed by the local
constabulary

DDF
HealthcarePatient notes for Wed 14th

Tests & Reports

T 36.1 @ 7:00

T 36.8 @ 12:00

B
P 99/71 @ 7:00

B
P 101/80 @ 13:00

B
P 103/82 @ 18:00

re
fle

x Reflexes slow

General Notes
Signs of sunburn and incipient bruising

DDF
HealthcarePatient notes for Thu 15th

Tests & Reports

T 35.1 @ 6:00

T 35.8 @ 11:00

B
P 105/83 @ 8:00

B
P 110/85 @ 12:00

B
P 112/89 @ 18:00

he
ar

in
g 5.3 dB dropoff @ 5kHz

bl
oo

d Plenty of it

ca
ts

ca
n Of his skull

General Notes
The patient took ill, and was unwilling to watch
daytime TV

DDF
HealthcarePatient notes for Fri 16th

General Notes
The patient appeared somewhat worse, and
worried about the events of the weekend

DDF
HealthcarePatient notes for Sat 17th

Tests & Reports

T 38.4 @ 6:00

T 38.9 @ 8:00

B
P 120/95 @ 8:00

B
P 110/90 @ 12:00

B
P 90/80 @ 18:00

B
P 70/55 @ 20:00

re
fle

x Reflexes normal

ca
ts

ca
n Of his skull

General Notes
The patient took a distinct turn for the worse, and
appears terminal

DDF
HealthcarePatient notes for Sun 18th

Tests & Reports

re
fle

x No reflex response

Flat traces

de
at

h
ce

rt
ifi

ca
te Patient free for burial.

General Notes
Demise of patient

DDF
Healthcare

Solomon Grundy -
Charges on Account

credit-card:12345678901234

Mon:
12th

reading temperature @ 6:00 23.45
test catscan 123.45

Tue:
13th

reading temperature @ 10:00 10.00
reading temperature @ 13:00 10.00
reading temperature @ 16:00 10.00
reading temperature @ 19:00 10.00

Thu:
15th

test hearing 10.00
test blood 37.00
test catscan 75.00

Sat:
17th

reading temperature @ 6:00 23.45
test catscan 123.45

Sun:
18th

reading ecg 13.45
report death certificate 23.45

Final Account: 492.70
Payment from card 12345678901234 -492.70

Closing Balance: 0.00

Figure 106. Record pages after final binding

In a sense this document is performing in a manner somewhat similar to being bound into a

scanl1() higher-level function:

scanl1 (+) [1,2,3,4,5]
Þ [1,3,6,10,15]

However the result of each stage should be a function that should be applied to the ‘next’ argu-

ment. Expressing it accurately in Haskell may not be possible, needing a recursive function-

al type i.e. Type FN = (a ®FN).

12.2 Implementation

The features and constructs described in Chapter 9 are used heavily. To start, appropriate pro-

 19612.2 Example Document - a Medical Record |

cessing of the input data is arranged. Firstly the document accumulates all the original data

for the record so, at some later stage, information bound earlier in the record's life can be inter-

polated. However doing this requires some mechanism to identify new data that has just appeared

in the current binding. If not then repeated sections are likely to appear in the presentation.

The method chosen is to inject a marker new4 in the ddf:data section in front of the data from

the most recent binding. A predicate [preceding::new] will then be true only for all new inform-

ation.

Secondly some embedded XSLT fragments must be retained after execution when there is a

contd marker in the data. Since this condition may be used often, the test is bound to a vari-

able continueData = exists(*/contd|contd) that will be interpolated. To indicate the reten-

tion the @ddf:retain="continue-while" ddf:test="$continueData" construct is attached to

such pieces – the effect is for them to execute and then, provided the test is satisfied, remain

embedded in the same form for a subsequent execution.

These ancillary markers (new,contd) appear in the data for purposes of being read for the

presentational XSLT projection but they need to be removed before the next data binding, oth-

erwise old data will be wrongly read as new, or continuation will be misconstrued. These can

be removed mostly cleanly in a data-finalising pass controlled by a directive pattern @ddf:

clear="new|contd" attached to the data section.

Figure 107 shows the result of the first binding of data (the patient details), which contains

the two markers (before their subsequent removal) and the retained sections of XSLT code.

The first is the binding to the continueData variable, which will eventually yield false when

contd no longer appears; the second is the retained interpolator which adds new data, pre-

ceded by the new marker, and ‘self-propagates’ the interpolation. This approach can be a gen-

eral paradigm for ‘marked continued’ data streams bound part by part.

Now the data is appearing in the correct fashion, attention can turn to generating the present-

ation. Usually a DDF document would employ the ddf:struct intermediate space to build a

logical (and canonical) structure – often for purposes of reuse. In this case it is ignored – it

complicates the explanation and the exploratory programming and there is little to be gained

in this simple example from using such a canonical layer. By marking the ddf:pres section

4Which of course should not occur in the data – a namespaced marker is perhaps more robust. contd is an agreed
marker within the context of the application.

 19712.2 Example Document - a Medical Record |

with the directive @ddf:source="ddf:data" presentation will be generated directly from vari-

ability in the data.

medical-record
continueData= evaluated="yes" retain="true"

exists(*/contd|contd)
new
patient

name
Solomon Grundy

date-of-birth
2011-09-11

next-of-kin
Tom Thumb

finance
credit-card

12345678901234
admitted

2011-09-12
contd
" · : retain="continue-while" test="$continueData"

new
" * :

·

Markers

Figure 107. Record with contained data & implementation markers

The presentation generator is written as a mixture of pull and push mode operations. Some

graphic entities are ‘self-contained’, such as the ‘day pages’, and producing these and other

parts defined completely by simple small subtrees (e.g. notes) are most easily done with XSLT

templates. To retain these templates in the output for use in later bindings they can be marked

@ddf:retain="true" – the compiler will arrange that a copy appears in the output.

The major structure is most built in ‘pull’ mode – a set of svg:page parts each containing

reference to a common background (the presentational variable $background) and some lay-

out functions (mostly flows) for grouping parts. Within the layouts of these pages are inter-

spersed sections of XSLT that will generate additional or replacement material. The new ‘per-

day’ pages are inserted by a simple template-invoking operation:

Þ medical-record/day[preceding::new] mode="day" retain="continue-while" test="$continue"

This statement is decorated with a ‘remain’ condition that is true when the medical record con-

tinues ($continue). Once that no longer appears this invocation will be removed thereafter

and at no further binding will new pages appear. Within the cover page the per-page materi-

al is similarly placed within a vertical flow, using a similar embedded invocation but this time

in summary mode, with a corresponding and retained template.

 19812.2 Example Document - a Medical Record |

On this page there are two special additional parts – warnings and a closed indicator5. The

‘CASE CLOSED’ banner that appears in the final instance is an xsl:if section at the end of

the page whose continued existence is guarded by the until-triggered condition on a test of

not($continue). Once the case is closed the banner appears and as this surrounding XSLT dis-

appears, the case can never subsequently be ‘unclosed'!

The warning section in the top RH corner appears only when a condition is detected in the

new data – thus it needs to be able to switch on and off. The complicated arrangement of

altering the layout function (between hideSVG, lastSVG and removeSVG depending on vis-

ibility condition and the invariance of the graphics), shown in Figure 75 in section 9.8, is used

to do this, exploiting the ddfl:revealSVG compound instruction to arrange them correctly. This

can be nested as here, so we generate the warning graphics as follows:

readings=medical-record/day[preceding::new]/reading retain="continue-while" test="$continue"
svg layout="flow" x="155" y="40" id="warning"

revealSVG test="med:warn($readings,'bloodP’) | med:warn($readings,'temperature’) "
svg layout="flow" padding="1" encapsulate="border-color:red;border-style:solid;border-
width:1"

block fill="red" font-size="16pt" use-attribute-sets="warning"
Warning

revealSVG test="med:warn($readings,'bloodP’) "
block fill="blue" use-attribute-sets="warning"

Low Blood Pressure
revealSVG test="med:warn($readings,'temperature’) "

block fill="red" use-attribute-sets="warning"
High Temperature:
val(med:warn($readings,'temperature’) [1])
°C

xsl: ddf: svg: ddfl: fo: text

Figure 108. Conditionally revealed warnings

The outermost is guarded by either warning condition (blood pressure low, temperature high

– the function med:warn() checks the records returning any readings that are ‘of concern’)

and generates the group with warning label when required. The first of the inner warnings has

static content so merely hides or reveals. The second needs to generate variable content (one

of the errant temperatures) so has to perform replacement – this requirement is detected auto-

matically by the compiler in expanding ddfl:revealSVG.

5The ‘to be continued markers’ shown in the documents are generated by similar methods, but are not central to
the document design – they are merely conveniences for the reader.

 19912.2 Example Document - a Medical Record |

DDF
Healthcare

Medical-record for
Solomon Grundy
Admitted: Mon 12th September
2011

DoB: 2011-09-11
Next of kin: Tom Thumb

Summary status
Mon:
12th

36.9°C
36.4°C The patient appeared grumpy and

threw his mobile phone at the
consultant

Tue:
13th

37.9°C
37.1°C The patient was interviewed by the

local constabulary
...to be continued.....

Warning
Low Blood Pressure

DDF
Healthcare

Medical-record for
Solomon Grundy
Admitted: Mon 12th September
2011

DoB: 2011-09-11
Next of kin: Tom Thumb

Summary status
Mon:
12th

36.9°C
36.4°C The patient appeared grumpy and

threw his mobile phone at the
consultant

Tue:
13th

37.9°C
37.1°C The patient was interviewed by the

local constabulary
Wed:
14th

36.8°C
36.1°C Signs of sunburn and incipient

bruising
Thu:
15th

35.8°C
35.1°C The patient took ill, and was

unwilling to watch daytime TV
Fri:
16th

37.9°C
35.4°C The patient appeared somewhat

worse, and worried about the events
of the weekend

...to be continued.....

DDF
Healthcare

Medical-record for
Solomon Grundy
Admitted: Mon 12th September
2011

DoB: 2011-09-11
Next of kin: Tom Thumb

Summary status
Mon:
12th

36.9°C
36.4°C The patient appeared grumpy and

threw his mobile phone at the
consultant

Tue:
13th

37.9°C
37.1°C The patient was interviewed by the

local constabulary
Wed:
14th

36.8°C
36.1°C Signs of sunburn and incipient

bruising
Thu:
15th

35.8°C
35.1°C The patient took ill, and was

unwilling to watch daytime TV
Fri:
16th

37.9°C
35.4°C The patient appeared somewhat

worse, and worried about the events
of the weekend

Sat:
17th

38.9°C
38.4°C The patient took a distinct turn for the

worse, and appears terminal
Sun:
18th

Demise of patient

CASE

CLOSED

Warning
Low Blood Pressure
High Temperature:

38.4°C

Figure 109. Conditionally altered graphics over three stages of binding

The page showing the blood pressure and temperature traces uses a graph-generator that after

initial invocation will contain a section of retained XSLT that continues to plot the addition-

al data points for the given trace. There are two possible means of construction. Firstly we

could design a specialist layout agent (graph) that mapped data[],XSLT ® graphics, but a

more generic method uses an XSLT generator data[],XSLT ®DDFL,XSLT. This is employed

here: a named XSLT template generates background, any extant data points and appropriate

embedded program to continue drawing the traces.

This template has two sorts of parameters: the usual graph properties (scales, axes, colour, cap-

tion etc.) and four XPath parameters:

i) When to continue, to be used for retention tests. For this case we use the same pattern

exists(*/contd|contd) that was used to calculate $continue.

ii) A path to collect new data readings (@readingsPath), e.g. medical-record/day[preced-

ing::new]/reading[@type='bloodP'].

iii) A path that will generate an X and Y pair for a reading (@xyPath). This is executed rel-

ative to each reading and is expected to produce a sequence pair of xs:double, where

the units are the graph units – scaling into the eventual scaled SVG co-ordinates is handled

by an affine transform precomputed from the graph properties. In this case the X part

of this computes a number of days by finding the duration between the original patient

admission and the parent day for the reading (days-from-duration(xs:date(../@date) -

xs:date(preceding::patient/admitted))) and then adding time as a fractional day.

iv) An optional path that will produce a sequence of lines of text for the final ‘point label’,

e.g. string(.),concat('@',replace(@time,':\d\d$',''))

The last three XPaths are associated with an individual line trace, so multiple lines can be drawn,

 20012.2 Example Document - a Medical Record |

as is the case for blood pressure where systolic and diastolic pressures (conventionally written

120/92) are plotted separately.

The graph backgrounds (axes, labels, grids) are written once in the initial binding, leaving an

XSLT group embedded in each of the graphs, that will act as a self-repeating generator for

the data points and line. Figure 112 shows diagrammatically what is happening in the SVG

tree for the temperature graph after each of the bindings. There are no readings for the first

so the generator remains dormant. After the third binding there are 12 readings (the generat-

or has produced 12 line-point pairs) and since there is possibility of continuation the gener-

ator remains in situ. After the final binding this disappears along with most of the other XSLT

constructors.

At top level, within the SVG tree containing the graph and just inside each of the graph line

groups, are a small number of XLST variables that have been initially evaluated and retained

as values as shown in Figure 110.

continueXPath=$continueX eval="true"
(xs:double*) transform=$h-scale,0,0,-$v-scale,0, $g-height + ($v-scale * $min-y) eval="true" retain="
continue-while" test="$continue"
readingPath=@readingPath eval="true" retain="continue-while" test="$continue"
xyPath=@xyPath eval="true" retain="continue-while" test="$continue"
labelPath=@labelPath eval="true" retain="continue-while" test="$continue"

a) Variables before evaluation

continueXPath= evaluated="yes" retain="true"
exists(*/contd|contd)

(xs:double*) transform=20,0,0,-6,0,270 evaluated="yes" retain="continue-while" test="$continue"
readingPath= evaluated="yes" retain="continue-while" test="$continue"

medical-record/day[preceding::new]/reading[@type='temperature']
xyPath= evaluated="yes" retain="continue-while" test="$continue"

days-from-duration(xs:date(../@date) – xs:date(preceding::patient/admitted)) + (hours-from-time(xs:
time(@time)) div 24),.

labelPath= evaluated="yes" retain="continue-while" test="$continue"
string(.),concat(‘@’, replace(@time,’: \d\d$’, ‘’))

b) ‘Fixed’ values

Figure 110. Embedded before and after evaluated variables

The outer two are the continuation XPath expression and an affine transform whose value is

required in later stages to correctly position the points depending upon the initial ranges and

size of the graph requested at the first document evaluation – the transform is calculated dur-

 20112.2 Example Document - a Medical Record |

ing that evaluation. The other three are the data-gathering XPath expressions described above

and bound within the relevant trace. It could be possible to interpolate these values as scal-

ars into XPath expressions that use them, but this requires complete analysis and partial eval-

uation of such expressions – other parts of such expressions are the data values themselves

and therefore not bound to a single value. This expediency of marking values that are needed,

and will be evaluated and retained as static bindings, overcomes this problem. As they are ‘for-

eign’ to SVG they sit happily within the trees.

Since graphs with continuous lines are preferred, i.e. the first of the next set of readings con-

nects to the last of the previous, we need some way of recording what the last point was. Recall

from Chapter 9 that XSLT code cannot access the (result) tree within which it operates – this

rules out searching for the previous svg:circle. However an XSLT variable with a known name

(e.g. $last) could be read within the XSLT execution. A suitable mechanism is:

Initialise an empty xsl:variable name="last" in front of the first constructor.

Read the value of $last and if it is non-null, use this value as the beginning of the first

‘joining line’.

Record the last reading (x,y) as the sequence value of an xsl:variable name="last" that

will be written into the final output (using the automatically ‘warped’ XSLT:variable mech-

anism.) This will then be a preceding sibling of the next graph line constructor. It will dis-

appear after interpolation during the next subsequent binding and evaluation (i.e. after $last

is read as described in the previous bullet point).

This method works as can be seen in the figures (it works within tree nesting scope hence

each of the two traces in the blood pressure graph are ‘separate’) and can be used with appro-

priate care as a paradigm to record, within the tree, some graphically-related information that

will change at each iteration, such as tracking a maximum value.

The final accounts page, whilst perhaps a little unrealistic (would auditors sign off on accounts

being generated entirely in documents?) is quite straightforward – new account charges are

added on a daily basis, and the account total is recalculated from the entirety of the data by

code shown in Figure 111. (This is a case where retaining all the data is helpful.)

 20212.2 Example Document - a Medical Record |

layout(lastSVG) role="total"
" medical-record : retain="continue-while" test="$continue"

total-account=sum(day/*/@charge)
layout(flow) x="0" y="0" direction="x" spacing="4" padding-top="5"

block use-attribute-sets="charge-amount" width="144"
val(if($continue) then ‘Total’ else ‘Final’)
Account:

block use-attribute-sets="charge-amount" width="40"
val(format-number($total-account,'#0.00’))

ddfl: xsl: ddf: fo: text

Figure 111. Constructing the accounts charges page

At the start of this chapter a design decision was made that the document would operate in

a ‘positive continuation’ manner – unless a specific condition is satisfied in the input data

(using contd as the marker) the document will no longer be ‘active’. But the inverse might

also be possible – continue unless told to stop (‘case-closed’). Figure 113 shows the doc-

ument in reduced tree form, with all the (10) points that contain reference to continuation (

$continue) marked, as well as the defining points for the variable6.

Is it possible to merely negate these conditions to get the effect we wish? If the condition exists

(*/contd|contd) is changed to empty(*/case-closed|case-closed) and a different set of data

with such positive closure is presented, then indeed it does perform as expected – the ‘con-

tinuation condition pattern’ could be a parameter of the document.

6The graph generator was designed such that it takes the continuation condition as a parameter, so the only ref-
erence to this condition is in the main document.

 20312.2 Example Document - a Medical Record |

Tr
ac

e
ge

ne
ra

to
r

G
rid

 tr
ee

(c
ol

la
ps

ed
)

G
ra

ph
 P

oi
nt

s
&

 L
in

es

La
st

 v
al

ue
 u

pd
at

er

La
st

 v
al

ue
 v

ar
ia

bl
e

dd
fl:

sv

g:

xs
l:

un
kn

ow
n:

fo

:

a)
 B

ou
nd

 to
 p

at
ie

nt
b)

 B
ou

nd
 to

 M
on

-T
ue

s &
 W

ed
-F

ri

c)
 B

ou
nd

 to
 e

nt
ir

e
w

ee
k,

 n
o

co
nt

in
ua

tio
n

Fi
gu

re
 1

12
. G

ra
ph

 g
en

er
at

or
 a

t t
hr

ee
 st

ag
es

 d
ur

in
g

pr
og

re
ss

iv
e

bi
nd

in
g

 20412.2 Example Document - a Medical Record |

R
ef

er
en

ce
s

to
 $

co
nt

in
ue

C
on

tin
ua

tio
n

de
cl

ar
at

io
n

dd
fl:

dd

f:
xs

l:
un

kn
ow

n:

sv
g:

fo

:

Fi
gu

re
 1

13
. C

on
tin

ua
tio

n
po

in
ts

 w
ith

in
 th

e
do

cu
m

en
t

 20512.3 Example Document - a Medical Record |

12.3 Conclusion

This example has shown that it is possible to define and process certain types of continually

active document within DDF with a coherent model of interspersed sections of SVG, XSLT

and DDFL layout declarations. By contrast with the DocEng07 paper [64], which worked by

operating in ‘push mode’ and overlaying graphics on top in some places, this example uses

‘pull mode’ semantics extensively, and adequately supports deletion and replacement of graph-

ical content from local positions within the tree.

Most of the techniques described in Chapter 9 have been employed, albeit in some rather com-

plex arrangements. Some areas, such as arranging suitable retention of program components

and arranging for superfluous program sections to be deleted when no longer required are some-

what fragile and would need a more systematic analysis to be uniformly practical.

The techniques outlined could be used as paradigm and code-generation tactics for smarter

document compilers. Some of these possibilities are discussed briefly in Chapter 13. This

example re-emphasises the four key findings:

SVG trees can be decorated with attributive declarations to describe relationships between

subparts of the trees, leading to a degree of idempotency in layout.

Elements and attributes in foreign namespaces can exist in SVG trees and execute to sup-

port extended variable graphical behaviour provided that all tools act as good XML citizens.

XSLT program fragments, being entirely described in XML, can exist within and be manip-

ulated along with other XML structures.

Constructs for embedded XSLT behaviour in SVG can be generated and processed consist-

ently within such a framework and support extended functional behaviour with a hybrid sys-

tem of a small set of specialist meta-layout constructs and the use of a transformational com-

piler to modify the embedded XSLT according to appropriate directives.

Lumley, J., Gimson, R. and Rees, O.
Endless Documents: A Publication as a Continual Function

 20613 Discussion and Conclusion |

Chapter 13

Discussion and Conclusion

To conclude, we summarise the work reported thus far in the thesis, discuss some

general features of the framework and its use, re-iterate the key findings of the

research, outline ideas for any redesign of the architecture, suggest further tech-

nical work that might be of significant interest and present lessons, both posit-

ive and negative, learned within the entire DDF story.

The previous chapters have described the context of variable data documents, relevant prior

art in document engineering and an experimental XML-based architecture (DDF) for defin-

ing flexible and extensible forms of such documents. The basis of DDF as a single-document

combination of XSLT, SVG and a declarative description of hierarchical layout intent, togeth-

er with partitions for holding data bindings and logical structural models, has been explored

and illustrated in some detail. Implementation techniques in terms of document compilation

and an extensible pattern-driven layout processor, almost exclusively using XSLT technology,

have been explained and their effectiveness demonstrated through example and the produc-

tion of this thesis itself, using the very technologies that it describes.

Much of Part B is equally relevant to static documents, but the thesis title “Documents as Func-

tions” being re-used for Part C reflects the research focus of this work: exploring possibilit-

ies that such an architecture brings to variable data documents by treating them more overtly

 20713 Discussion and Conclusion |

as functions. Such use would either be as contributory parts to the construction of other vari-

able documents, or as documents that can be partially, or repeatedly, bound to data. Most of

the focus has been on the latter point – partial binding and eager evaluation of documents

– either because only partial data is available, but a visual result is still required, or to optim-

ise latency in final document production by pre-evaluation of invariant and repeating details.

Chapter 9 showed how the original design of DDF in a wholly-XML format, together with

good XML citizen behaviours in processing tools (some of which manipulate programmat-

ic elements embedded in DDF documents), could accommodate mechanisms to support idem-

potency and resatisfaction in document layout, retention and modification of data-sensitive pro-

grammatic generators, and in-tree modification of presentation.

These mechanisms were used in section 10.1 to describe a document that could be evaluated

by parts over its anticipated data, with a complete visible presentation at each binding. Find-

ing invariant sections within the layout of DDF documents was examined in section 10.2. Both

of these are relevant to optimisation of large-scale variable data document production by

employing re-use architectures, such as PPML's reusable_objects, where pre-computed and pre-

rasterised results can be incorporated, directly within the press, as parts of documents with

other variable components generated on a per-instance basis.

Building variable documents that construct more complex or larger variable documents by

‘higher-order’ techniques was examined in Chapter 11, specifically looking at how some simple

‘function as argument’ ideas from functional programming might be implemented using DDF

documents and the techniques presented in Part C. The basic finding was that whilst some page-

level combinations were possible, the documents involved were too complex for this approach

to be preferable to purpose-built document-transforming programs.

That the techniques are promising is shown in Chapter 12, which builds a self-contained

continually-active variable document, which modifies its presentation in a controlled and robust

manner as data is bound to it, in a possibly infinite sequence of steps. This is an example of

a highly flexible variable data document, which current commercial tools would be incapable

of supporting without a ‘rebuild the document from scratch every time’ strategy, from data

stored in some repository1. Here the document is the focus of design – it alone holds the data

and is the sole generator of the step-varying presentation, and it may lead to novel designs

for active documents.

 20813.1 Discussion and Conclusion |

13.1 General discussion

Robustness and resilience

DDF was in part given functional foundations to increase the robustness of the documents and

the ability to extend their functionality in a predictable manner. Generally this has been the

case, especially in adding new layout capabilities or building ‘library’ documents. There are

many times when simply adding a few XSLT templates within a DDF document has built the

required new functionality – a good example was adding a ‘macro’ facility so that compound

constructs, such as the complete tree/image/XML pictures shown in the thesis, can be defined

in the input data stream. The interpolation of calls on these macros is handled by code that

is defined in a library document (ddf-struct-macros.ddf) which expands macros between the

data and struct spaces. Of course there are some cases where there is somewhat less robust-

ness, or more accurately resilience, than might be desirable:

The use of push-driven template processing in document authoring requires some discipline

in deciding on resolution priorities and, when matching cases are spread across several doc-

uments (e.g. in overloading), conflict can be difficult to control or even recognise. Disciplined

use of modes can assist, but in document templates as large as that for this thesis, a few such

problems are inevitable.

As far as GUI-based authoring is concerned, the editor discussed briefly in section 4.3 had

few problems of reliability. Assuming documents being edited were ones that were authored

‘from scratch’ on the tool, then the types of layout that could be created or modified were strictly

defined by the ‘editablity’ configuration and, apart from issues of variables giving a null res-

ult on a specific data instance (see Figure 31 for a possible solution), document editing rarely

failed. And the editor also had the possibility of providing a direct (graphical) view of the doc-

ument XML structure to provide structural feedback to the author.

Failures in the processing of documents in the framework appear in three forms. In some, rare,

cases the failure is ‘silent’ and possibly a smooth degradation. Several paradigms can be

employed to support this, such as providing default values for a paragraph width from the lay-

out agent processing text (and raising a warning). Within constrained layout (section 6.4) a

set of constraints can be written that are legal but have conflict under certain circumstances

1This is the approach taken by DialogueLive.

 20913.1 Discussion and Conclusion |

– the constraint solver always produces a ‘minimum error cost’ solution but this can some-

times lead to very strange layouts. Other failures can be caught by type and syntax checking

by the XSLT processor (Saxon provides line number identification which could be intercep-

ted and traced back to the offending original DDF source document).

Finally failures can occur at runtime (in the intermediate XSLT or the layout processor), nor-

mally associated with either a type exception or an error in XSLT construction ordering, such

as writing attributes after children. The latter is rather difficult to track down in large docu-

ments and processors, even by the author. There are a small number of checks built into the

layout processor ‘runtime’, such as reference to non-existent presentational variables or requests

for unknown forms of layout combinator. But in general there has not been a systematic

approach to failure detection and amelioration in the current experimental software suite.

In a system as large as the DDF implementation toolset, there are of course some sections where

coding has to be very accurate – minor changes in recursive data structures can cause col-

lapse of the intended functionality, or make debugging very difficult. In part this can be caused

by the lack of a strong typing system in XSLT – an example is the use of XML trees to describe

edge properties of SVG graphic trees for the tree-layout described in section 6.3 where strong

typing may well have helped. Similarly the support for presentation variables (section 6.4)

required more difficult coding than would have been the case if XSLT supported ‘sequences’

of ‘sequences’.

Document code that is complex because it declares interaction between processes in two dif-

ferent semantic spaces needs some care. The hybrid XSLT/layout models of section 9.8 show

such capabilities but are very sensitive to the correct ordering of XSLT instructions. Defin-

ing compound instructions (such as ddfl:revealSVG) which are compiled into suitable con-

structs decreases errors in document construction.

In other cases the domain problem just grew. The ‘deep quoting’ of documents that this thes-

is contains, put much strain on trying to keep track of relatively-referenced resources (i.e.

images), despite the context-mapping system described in section 5.1. Everywhere some sec-

tion of a variable document instance was quoted, not only did that section have to be collec-

ted, but the context map for that document collected and merged with current context, with

tag clashing being inevitable. An alternative approach is postulated in section 13.3.

 21013.2 Discussion and Conclusion |

Efficiency

The research described was aimed primarily at building smoothly extensible functionality into

a variable document architecture, rather than pure execution performance. Given the gener-

ality, it should be slower in execution than a specific-purpose document format and associ-

ated support processor, such as XSL-FO processed by Apache FOP.

One data point of interest is that this thesis, some 260 pages long, with a source of ~ 60k words,

~120 figures (being a roughly equal mixture of images, SVG/XML graphics, many of which

are examples computed during the construction, and PDF pages), takes just over 6 minutes

to generate to final PDF2 – most of this time is taken up resolving the layout tree, which is

upto 32 levels deep, has ~27k elements and ~95k attributes. Anecdotally this about an order

of magnitude slower than TeX or FOP would process a report document of this size.

In terms of the necessary information processing, by extracting all the text paragraphs and eval-

uating them separately en masse, we can show that some 2 minutes is taken up purely with

text expansion, regardless of any compounded layout. In practice many of the layouts involve

repeated expansions of text – this is an area where there is considerable possibility of tun-

ing the layout agent code to ensure that intermediate results are preserved. In particular the

interpolation of presentational variables (used to correctly provide a width for a paragraph in

pagination, Appendix B) currently involves some potentially redundant re-computation. There

is plenty of scope for tuning the supporting code and exploiting ‘already evaluated’ markers

on results.

13.2 Key findings

Several key ideas have been raised through Parts B and C which have proved crucial to the

flexibility of the document designs discussed. Collectively they are:

Universal use of XML. All structures: data, program, layout intent and grounded graph-

ics are described in XML syntaxes. The use of a common-tree-based syntax automatically

provides features for containment, scoping and meta-level behaviour.

2See Appendix E for more details.

 21113.2 Discussion and Conclusion |

XSLT defines variability. Using a ‘functional’ programming language whose main data

type is an XML tree and which is also written in XML, supports the description of extens-

ive document variability directly within a document as executable code fragments. These

can be embedded in other XML structures and manipulated by XSLT in a similar fashion,

thereby providing a route for extending the XSLT model into self-propagating code and par-

tial evaluation, controlled by directives.

Layout as hierarchical combinators. By describing a document's presentational layout as

a tree with element nodes that declare relationships between the presentations of their child

sub-trees we can support an extensible and rich repertoire of layout and encourage the use

of locality and scoping. Single assignment presentational variables can support tree-based

acyclic layout dependencies; global effects can be defined by high-level declarations.

Interspersed namespaces. Document sections and behaviours operating in different phases

and with differing intents can be interspersed within document tree representations, using

namespaces to preserve separation of concerns.

Good XML citizens. Programs and tools should behave as good XML citizens by i) toler-

ating and allowing for unknown information (elements and attributes) within their XML

source material and ii) transferring such unknown information into approximate tree-

isomorphic positions in their results. If this is so, ‘higher-level’ operations can transmit

information through intermediate processing steps.

Approximate tree-isomorphism. If possible the major evaluation steps should generate

similar-topology tree structures in their results matching those found in their input. This is

especially true in the resolution of layout declaration to final grounded graphical form. By

so doing, preserved ancestry and grouping in results can support ‘higher-level’ operations.

Layout intent as attributes. Layout intent can be added as attributive decoration to a groun-

ded SVG graphical result, leading to idempotency in layout. Possibly modified results can

be reprocessed, yielding the intended output without recourse to an independent definition.

 21213.2 Discussion and Conclusion |

Hybrid action. Hybrid actions between sections in differing semantic spaces (XSLT and

layout) interspersed within the overall XML tree, support active and robust modification

of a previously bound document. This can range from alteration of simple properties (e.g.

sizes) to substantial topological changes when entire sub-trees are added, deleted or replaced.

Modification of processed layout is performed by the XSLT phase adding new compon-

ents or changing signals in the layout tree, and the subsequent layout phase when evalu-

ating meta-layout functions, choosing not to copy some components based on those signals.

Compiler support. Using an XSLT-based compiler which generates an executable to imple-

ment the semantics of the document is very powerful. It enables extensions to the docu-

ment model (e.g. tracking external resources) to be supported, but most importantly enables

retention of programmatic intent in variable documents, through partial and multiple bind-

ings. Such retention can be indicated by extended declarations in the document sources.

Indirect XPath evaluation. Much document flexibility can be described with the use of

embedded XPath expressions to examine, select from and compute over many points in the

document: data, logical structure and presentation. Useful and robust models can be built

provided that such expressions can be extracted and evaluated at runtime. In XSLT3.0 this

will be possible as standard; in XSLT2.0 a fully-featured extension function suffices.

Some of these points are worth more discussion here, namely, universal use of XML, inter-

spersed namespaces, XSLT as the programming language and compiler support.

Universal XML

Having almost everything described in XML syntaxes is probably the most important feature

of all in this work. Firstly it means that everything, ranging from data through to program and

document is provided to programs in a primarily-parsed form, and that a uniform search mech-

anism, XPath, can be employed whenever structures need to be accessed. These facilities are

not confined just to data access, but also to examination and modification of program code.

Arguments about the size and verbosity of the serialised forms of XML are not relevant for

the in-memory structures over which the main computation takes place.

Secondly the tree nature of XML provides a natural mechanism for locality, scoping and group-

ing that works well with the generally localised and partitioned nature of most documents and

presentations. This is best demonstrated by SVG, where deeply grouped sub-trees (svg:svg,

 21313.2 Discussion and Conclusion |

svg:g) provide mechanisms for retaining grouping in presentation by acting as a focus for com-

mon geometric transforms and styling coupled with inheritance down the tree. But more import-

antly for this work it also provides attachment points for group-related properties that can be

used for compound layouts (such as naming groups) and higher order effects, most notably

recording layout intent for later re-satisfaction.

Interspersed namespaces

Combining different semantic models within a single XML tree, by interspersing elements and

attributes in differing namespaces has also turned out to be vital for this work. Firstly it means

that the actions of one namespace can take effect at the correct places in a tree of another

namespace. Obviously the use of embedded XSLT fragments within SVG and DDFL means

that presentation can alter as a result of variability in exactly the way intended – there is no

need for some other system of declaring where a computational result will be placed. (XSLT's

‘push’ mode processing is merely a pattern-directed model – the actual result effect only appears

where the xsl:apply-templates statement was located.)

Moreover, processes may examine the situation from which they are invoked and allow for,

or even modify, structures in other namespaces. The obvious examples are the interpreted res-

olution of DDFL layout, where ‘foreign’ elements are tolerated and preserved, and embedded

XSLT being able to write signals into the DDFL structure within which it is embedded.

XSLT as the programming model

Apart from being written in XML and therefore embeddable within and around other XML

structures, XSLT's functional nature is critical. Having a program that is free from side-effects,

and with a well-defined scope for action and naming, means that transformations can be per-

formed on program fragments correctly and relatively simply. This is especially important in

adding self-propagation to code sections, via compiler-recognised declarations.

Document compilers

Many necessary features for a practical document system are not defined by default in a stand-

ard programming language, or fragments thereof that might be buried in variable documents.

The clearest examples are i) following data-contained source indirection pointers, ii) tracking

data elements that by inference will point to possibly position-relative resources, mostly images,

 21413.3 Discussion and Conclusion |

and iii) higher-order code-propagation semantics.

A document designer could add suitable code to implement these three things, or add calls

to functions in some system library. But it is more coherent to extend the model with clear

semantics and control, with a declarative syntax, and to use a transforming compiler to gen-

erate appropriate executables. In the first example XInclude semantics can be requested for

data input: the compiler adds templates to the executable for intercepting and processing such

requests in the input stream3. In the second case patterns can be declared to match input that

names a resource: templates during execution will check for relative paths therein and either

make them absolute, or track location via a context map mechanism. Writing code that propag-

ates itself – a facility needed within higher-order operation – is aided considerably by a com-

piler that can correctly transform code against declarative intent.

13.3 Redesign

From the start DDF was considered to be a research tool, exploring possible features and mech-

anisms for extensible variable document formats and architectures. Some aspects (security,

human interactivity with a document) were considered to be possibly orthogonal to the cent-

ral concerns of structure, variability and layout, and were excluded from the research. What

might feature in any new design in the light of the experience described in this thesis?

SVG as presentation and layout

Firstly we might consider describing all presentation in SVG, with layout intent attached as

attributes or specialist elements in separated namespaces. That is to replace ddfl:layout com-

binator nodes with svg:svg elements, decorated suitably. It should be possible to make the

presentation legal SVG by exploiting the svg:metadata element as a container for foreign sub-

trees, provided that some compiling operation can ‘promote’ the consequences of, say, an XSLT

fragment, through the metadata wrapper. The @display attribute in SVG can control visib-

ility and geometric effect, and has not been used thus far – it might act as a suitable ‘guard’.

One feature of SVG has not been used – svg:use for calling re-usable components. These

can be any drawable element, though svg:symbol is recommended for groups; a guideline

is that re-usable components are contained within svg:defs elements that are direct children

3Later versions of Saxon supported this as a direct option.

 21513.3 Discussion and Conclusion |

of ancestors of referencing svg:use elements. A drawback is that such elements are called

using global (IRI) references: these are not tree-local. This construct might be suitable to rep-

resent the presentational variable system (ddfl:variable), though the post-presentational pro-

gram capability (ddfl:for-each ...) may need something different. The model of Thompson,

King & Schmitz[93] using template and instance variants is worth considering.

Proposals are being considered for SVG 2.0 that may be helpful. The most important of these

is text flow which should be explored to determine how it can be used in variable and mut-

able situations. There will definitely need to be some representation for pages – until the SVG

Print sub-standard produces a recommendation, those in the SVG 1.2 proposal (svg:page-

Set/svg:page) and used already, must suffice.

Hold data and structure within presentation

Consider placing equivalents of the ddf:data and ddf:struct spaces within the presentation

(e.g. within svg:metadata children). In this way the document is inherently a presentation

– program is buried within it to respond to variability. Make the use of a structural level option-

al, or better still we might permit any number of named ‘layers’ between data and present-

ation result.

For some documents (especially reports and papers) the logical structural space plays a use-

ful role, providing a canonical layer for reuse. For others, such as the brochure examples, and

higher-order documents, such a layer serves little purpose, save providing a ‘space’ for some

intermediate computation (e.g. converting maps with labels into labelled images).

Use higher-order XSLT and additional compilation

Exploit all the higher-order features of XSLT3.0, not just ‘indirect’ XPath evaluation, but also

functions being treatable as first-class objects, higher-order functions such as fold and map

and support for lambda functions in XPath. The use in Saxon of compiling and executing trans-

forms at run-time could also be exceptionally powerful.

The layout processor is a very large XSLT-based interpreter that roams over a document's

presentational tree definition while building up the eventual presentation tree from in a bottom-

up manner. For layout of large documents, such as this thesis, it may be advantageous to build

a compiler that converts the layout definition into an XSLT program (incorporating extens-

Thompson, S., King, P. and Schmitz, P.
Declarative extensions of XML languages

 21613.3 Discussion and Conclusion |

ive support libraries for the layout stubs) that will execute significantly faster than the inter-

preter. As an example, the presentational variables are used extensively, not least for propagat-

ing an appropriate text column width to paragraphs. Values of these variables are interpolated

by searching by name (with XPath) through a stack frame. Converting their operation to use

XSLT variables interspersed through sections of layout resolution could enhance performance

greatly, as well as perhaps avoiding some of the complexities of implementing the interpret-

er. An interesting research problem would be to try partial evaluation of the interpreter (without

executing its necessary extension functions) on a layout to generate an intermediate XSLT for

final execution.

An additional possibility is that the layout processor starts by invoking XSLT semantics with-

in the document presented to it (if it contains such) – i.e. the layout processor is actually a

compiler for the entire document, generating the resulting layout-computing program parts as

well as the more usual data processing and structure building code4.

Simplify external resource tracking

Tracking relative external resources, even using the context map system that was described

in section 5.1 has proved to be both very useful and yet problematic, especially in quoting

material from the results of other variable documents5. When importing part of an example

not only does that fragment have to be interpolated, but any relevant entries in context maps

that its resources may use must also be collected and added to the set of locations to be tracked,

so that, subsequently, the correct resource can be consulted or embedded. Name clashes are

inevitable, requiring some renaming mechanism.

In retrospect, if a single evaluation session takes place on a single machine, an easier altern-

ative might be to convert to absolute locations unilaterally on start of processing and, at com-

pletion, consider reversing to some relative arrangement, possibly collecting resources using

an archival form such as ZIP. However, if processing is scattered all over Nejelokokkugia then

some more fundamental distributed reference system will be needed6.

4Most presentational variables in DDF documents thus far are statically named and thus should be amenable to
direct conversion through such a compiler. However the pointers between resorts labels and pins in the maps of
the travel brochure (Chapter 7) use presentational variables whose names are generated at run time.
5Such as a PhD thesis on Documents as Functions
6See Aristophanes’ The Birds.

 21713.4 Discussion and Conclusion |

13.4 Other further work

Apart from a redesign of the architecture already discussed, several interesting research top-

ics arise from this work. The first concerns how a designer can be assisted understanding how

a variable document might perform and what sort of feedback can be given to users. The second

comes from large-scale document work-flows: what methods should be used to represent and

reason about a variable document's type? This has two aspects: what is a variable document's

argument signature, i.e. what does it expect to consume, and how can it interact safely with

other documents, to support effective document reuse.

The third is from editing variable documents through instance-view graphical user interfaces

(section 4.3). It can be arranged that indirections from the presentation can effect edits on the

source variable document but resultant changes to the presentation require the entire document

instance to be recomputed. For documents of any appreciable size this takes far too long. Can

some form of correct incremental change to the instance presentation be inferred and com-

puted cheaply?

User feedback

The DDF framework currently presents little feedback to the designer from the document itself.

Syntactic errors in XSLT will manifest themselves as errors in execution, but ‘silent’ errors,

such as an XPath unexpectedly yielding a null result, are not detected. A system of assertions

(attached as attributes, e.g. @ddf:assert="count(title) le 1") could be exploited by the com-

piler to add run-time checking, which could manifest itself in raising error conditions or provid-

ing a run-time report – this can even be added visually to the graphics. These assertions could

be created and managed through the visual graphics editor described elsewhere in this thesis.

A similar approach could describe response to partial binding (section 10.1), where hints can

be edited just like any other property and sections of code (e.g. the @special-offer condition-

al) can be identified as possible ‘optional’ sections. Alternatively schema attachment or edit-

ing could be handled in a similar fashion – if one of the XML-based descriptions (RelaxNG,

XML Schema) were used, they can be manipulated by the same tools.

Users are often unaware of, or have difficulty understanding, the hierarchy inherent in the lay-

out. With the approach to editing used it is distinctly possible to provide multiple co-ordinated

views of a document, one of which is a graphical view of the layout tree, so clues can be provided

 21813.4 Discussion and Conclusion |

– selection highlighting is synchronised between all views of the same document. All these

areas hold much promise for future research.

Document type

A significant area for future work is in a theory of type for such documents. Much work in

conventional XML processing involves the use of schema-like descriptions (Document Type

Definition[116], XML Schema[124], RelaxNG[112]7) of permitted XML syntactic composi-

tions for a given application. These descriptions are primarily used to verify that input XML

data is acceptable to the application, aiding robustness. In some cases, such as the Saxon XSLT

processor, typing of interior XML structures, definable in XSLT via the as="type" attribute

where type can be a schema term, can be used for run-time checking as well.

The DDF document obviously consumes input data in XML form and we could have built

a system for supporting schema checking – it would have been of most use in reducing ‘break-

ing’ type clashes (e.g. encountering a general string where a string representation of an integer

was expected.) Such a system would be needed for full commercialisation.

Of more interest is using schema systems to represent type in such a way that document beha-

viour can be reasoned about, in particular when documents are combined, whether as peer-

siblings or as imported libraries. A good example would be where one document is used to

convert data to some logical structure, and another set of documents generates different present-

ations from such a structure. If the logical structure was described via a schema (which could

be so for a standard such as XHTML) then that schema can be both added as type signature

to the appropriate functional parts of the documents and also perhaps checked dynamically

or statically against the inherent programmatic semantics.

Editing documents and incremental change

There are some drawbacks in the overall approach to editing described earlier which would

warrant further research:

Editing can only be carried out on causality nodes that actually appear in the document

instance being viewed. A node in the template whose projection is conditional may not appear

in the result for a specific instance and thus lack any means of selection by ‘pointing’.

7The last two are written in XML and thus easily parsed and manipulated via XSLT – DTD is not.

W3C, World Wide Web Consortium
Document Type Definition

W3C, World Wide Web Consortium
XML Schema Part 0: Primer Second Edition

OASIS
RELAX NG Specification

 21913.4 Discussion and Conclusion |

Users have difficulty editing deep layout structures and understanding what is possible. It

should be possible to define appropriate macro-forms (e.g. a flow above an alignment) that

whilst for the implementation is a multi-level-deep tree, is considered by the editor, and

displayed for the user, as a single entity.

To build a practical system there are a number of engineering issues, such as adding mod-

els for more interactive editing (e.g. mouse-based manipulation – drag-n-drop, rubber-band)

which will make stringent demands on minimising necessary re-work.

But most seriously, any change in the function could have repercussions all over the res-

ult document, so the safest approach is to regenerate the document instance after each change.

For a large document this can be expensive and results in slow response to edits. Support

for ‘partial rebuilding’ of documents to decrease editing response time would be exception-

ally beneficial. (This was a stimulus for Ollis’ PhD[80].)

All of the document projections discussed so far have involved complete or partial evaluation

of a document and its inherent presentation from a ‘null’ start. We have data argument x and

document function f and we then proceed to evaluate the result f(x). More complex arrange-

ments make x a possibly infinite sequence of steps (x0, x1...) which f can accommodate, pro-

ducing a series of outputs: f(x0), f(x0)(x1)...

We have also described finding invariant sections that can be pre-evaluated in a document,

so that for long sequences of data bindings, invariant(f) Þ F followed by F(x0), F(x1)... is sig-

nificantly cheaper than f(x0), f(x1)... However, as we have seen in editing, when minor changes

are made to a document, the whole document is then re-evaluated. For tasks such as character-

by-character interactive editing this is unacceptable.

The interesting technical challenge is document differentiation: if we have a (multi-

dimensioned) data point x and the result f(x), what can we say about f(x+e), where the change

to the data argument is small, such as an additional word? Or alternatively what can we say

about (f+e)(x) where the change to the function is small, such as altering the width of a single

text-box? Can we build the rough equivalents of Taylor-series expansions? Can we calculate

a derivate function (program) so that f(x+e) = f(x) + df/dx(x)(e) where df/dx() is a significantly

cheaper computation than f()?

Obviously this will not be a trivial undertaking – the functional domain and range, as we have

Ollis, J., Brailsford, D. and Bagley, S.
Optimized reprocessing of documents using stored processor state

 22013.5 Discussion and Conclusion |

seen, are highly multidimensional and in tree form; the functions can be discontinuous, non-

monotonic, non-linear and discrete.

Ollis[80] has explored recalculation of an XSLT computation from a stored intermediate state,

but work in this direction will need a more theoretical examination of the document function-

ality itself. Important issues will include deciding limits of ‘monotonicity’ (where positive

change starts to make ‘negative’ alterations elsewhere in the document) and ‘linearity’ – i.

e. regions where the behaviour is additive and principles of superposition can be exploited.

But it is clear that such things can be considered and, with careful design, can be added to

the implementation machinery. For example when a paragraph has been set there is normally

a partially-filled line at the end. So, as part of the return from that operation, the remaining

‘space’ on that last line can be recorded. If the text binding for that paragraph then changes

only by addition of characters or words at the end then we have a cheaply-computed super-

positional solution – using font metrics we can calculate the horizontal extent of the addi-

tion. Provided it is less than that remaining, the new text can be superposed without any oth-

er alteration to the entire document8. After that point other parts of the document may have

to be rebuilt, until the ‘spare line’ is available again.

In a similar manner some changes to the function definition itself may be highly localised in

effect – change in wrap-width of a paragraph may have little or no ramifications beyond the

paragraph until the number of lines changes. These types of operation can build on some of

the work of Macdonald[67] on partial evaluation in layout.

13.5 Lessons

Research in document engineering, at this level of both generality and detail, inevitably teaches

one many lessons and leads to several conclusions. This section outlines some of those, both

positive and negative, and some of the suggestions for those fortunate enough to be follow-

ing similar paths.

XML and XSLT

The research is entirely based on using XML as the data type for almost everything – doc-

8Higher-level features such as automated index generation would invalidate this – but such features could be repaired
in some final generation.

Ollis, J., Brailsford, D. and Bagley, S.
Optimized reprocessing of documents using stored processor state

Macdonald, A. University of Nottingham
Progressive Document Evaluation

 22113.5 Discussion and Conclusion |

ument, data, presentation, programming toolsand languages, intermediate and ancillary data

forms and other descriptions of many forms: work flows, editability, maps for colours in the

thesis and so forth. And the XML is accessed by just one mechanism – XPath, and created

almost exclusively by programs in just one programming language – XSLT.

In many other cases as a research software engineer I have employed several languages in a

hybrid manner within a project, each focussed on what it was best at – Perl for text alter-

ation, Mathematica for symbolic manipulation, make for building large-scale software suites,

etc. But for this research, and this style of document engineering where flexibility is a goal,

the wholesale use of XML is appropriate, for the following reasons:

Documents are essentially trees. Most of the relationships that are important within docu-

ments are associated with locality, sequence and hierarchy, both in structure and in present-

ation. (As we have seen there is often strong isomorphism between the two.) These relation-

ships can be represented naturally within trees. Other relationships that are not castable as trees

exist of course, but for most regular document forms they are either constraints on similar-

ity (which can be expressed as isomorphisms across a larger tree, such as using xsl:attribute-

set) or are minor in number and importance and may be represented as ancillary structures

describing graph edges placed on top of the main tree. Using a data type that is a tree means

that these important relationships are represented inherently.

XML is sufficient and expressive enough to define document trees. As a tree-based meta-

syntax with a model for namespaces, it can represent different aspects of a document's semantics

as interspersed subtrees. Element nodes can have scalar properties (possibly in differing

namespaces to reflect differing semantics) through extensible sets of attributes9. Textual val-

ues can be attached throughout a document tree and have well-defined systems for character

encoding. Subtrees (such as XSLT) can be placed where they are expected to act, or within

suitable scopes within which they will have effect. Type declaration standards for specific XML

syntaxes can be defined. Serialisation standards exist for generic XML trees, as well as abstract

APIs for manipulation. In-memory models for XML, used in many tools, can support the pro-

cessing of XML trees with very large (>107) numbers of nodes.

A uniform method of access – XPath. The XPath language provides a uniform, declarat-

ive and highly expressive means of access and search within all such tree structures. Many

9Using LISP would require a strict protocol for representation of properties, text and elements within S-expressions.

 22213.5 Discussion and Conclusion |

of the common requirements within processing documents (‘is all the text in this paragraph

in the same font and size?’) can be expressed as XPath statements (count(distinct-values

(descendant-or-self::*/@font-family)) le 1 and...). When used in XSLT processing of a doc-

ument it becomes even more powerful.

Sources and results are XML trees. If processing tool chains behave, as a matter of course,

as good XML citizens and generally preserve tree isomorphism between source and result,

higher level processes and operations can be built in a robust manner, often through tools that

have no knowledge of these operations. The most extensive example is in the experimental

‘editing on a document instance’ (section 4.3 and [63]) where large channels of editing data

flow from source DDF documents to SVG result elements because of these protocols.

XSLT consumes XML, generates XML and is defined in XML. If a variable data docu-

ment is to have any possibility of behaving as ‘continual function’, then such a document must

be able to contain the description of its own variablity and any modifications to such. In

any non-trivial case of variable response (i.e. not just simple interpolation of data, but with

conditionality, choice, iteration and so forth) then this description must be programmatic and

capable of generating sections of XML within a document. XSLT satisfies both conditions:

it is perfectly capable of supporting very high complexity (including self-propagation) and can

be carried in an XML document without special syntactic treatment.

This uniform use of XML combined with XSLT has made many parts of the implementations

comparatively straightforward, sometimes even trivial. The layout processor has many

examples, one of the best of which is changing the size of font in a text block to make it fit

a given rectangular container (see section 6.2) which requires only seven actions:

1. Paragraphs that can be treated so are marked with the additional attribute @mutable-font

(a trivial extension of the syntax);

2. during layout such cases are recognized by a higher-precedence agent matching fo:block

[@mutable-font][@width][@height] which takes control (XSLT's ‘push’ processing mod-

el and XPath-based patterns);

3. a trial layout with the font-size originally anticipated is performed through xsl:next-match

(‘push’ processing again)10;

Lumley, J., Gimson, R. and Rees, O.
Configurable Editing of XML-based Variable-Data Documents

 22313.5 Discussion and Conclusion |

4. the result of the trial can be examined with the expression $test/@height (uniform access

through XPath);

5. a new font size can be determined using a clear arithmetic XPath expression;

6. the paragraph can be created by copying the original, whilst removing the mutability declar-

ation and writing a new font size property (XSLT's model of copying and modifying trees);

7. the final result is generated by the layout processor evaluating this modified paragraph with

xsl:apply-templates select="$new" (XSLT push again)

Such uniform use of XML/XSLT becomes engrained: in the workflow processor (a Java-based

suite that examines document dependencies, determine necessary regenerations based on modi-

fication times and launches processing threads) it was sometimes easier, and much more robust,

to generate a suitable XSLT transform and then compile and run it on an contained XML struc-

ture rather than write Java code to modify the tree directly.

Correct choices

Apart from the XML/XSLT choice just described, many of the other high-level choices seem

correct from practical experience:

SVG has been very suitable for defining the resulting graphics: i) the suite of graphical and

textual primitives is sufficient, ii) a general paradigm of using svg:svg to describe a trans-

latable group with rectangular extent has been exceptionally useful, iii) models for affine

geometries, colours and other resources have fitted in smoothly and iv) the similarity of

its graphical model with PDF makes generation of final printable documents easy. As it

is XML-based, the later addition of declarative layout intent, central to Chapter 9, disturbed

none of the existing support tools11.

10The layout agent has no knowledge of how the fo:block is evaluated – only that the result is expected to return
as a canonical svg:svg structure, whose area is an approximately quadratic function of @font-size on the paragaph.
If some other effect (e.g. rotation) is defined, that will be intercepted by another agent before or after that deal-
ing with font-warping, depending upon precedence, and both effects should still be honoured.
11But documents might still be affected! The author was surprised when the ‘constant-folded’ brochure samples
(Figure 77), which previously had appeared as anticipated in the thesis, started to display wrongly. Of course, dur-
ing the work on Chapter 9, they began to contain sections of SVG that correctly declare their own layout intent
(flows, page numbering, interpolation of column width) and were now being re-satisfied during layout of the thes-
is, displaying incorrectly by execution in the wrong environment. The importation needed to be ‘smart’ and remove
such decorations, including embedded page-numbering declarations.

 22413.5 Discussion and Conclusion |

Using the syntax and semantics of the block from XSL-FO with a few additional proper-

ties, has provided a model for text that has met all major needs thus far.

The combinatorial model for layout has been highly successful, especially in the extensib-

ility of layout as hopefully this thesis has demonstrated12. One of the best illustrations of

this is in Figure 35 where, with the exception of adding a layout function to ‘add a clip

path’, all the rest of the effects (trees, execution of the layout ‘program’, links between zoom

and source) are defined by document-borne macros using layout primitives that were already

present in the default processor.

Choosing to construct a DDF compiler provided a platform for the manipulation of pro-

gram. Originally this was intended just for collecting all the programmatic sections of a DDF

document together to generate a program that would sucessfully execute the variable intent

of the DDF document. But later this became the point where declarations of higher-order

behaviour could be converted into appropriate code, including those of self-propagation.

Difficulty, error and disappointment

Not all designs and implementations were quite straightforward. Some features have worked

very well, but needed exceptionally careful implementation. Two in particular feature strongly

in this thesis:

Firstly, whilst defining and designing the model for presentational variables was not dif-

ficult (euehka! – the xsl:variable model had the necessary semantics), implementing and

testing was much more delicate (including modifying interpolating XPath expressions to

access such variables). The code supporting the presentational variables is still considered

‘touch only when stone-cold sober’ 13. In addition, detecting and analysing the presence of

presentational variables within the XPath-based interpolations was carried out using reg-

ular expressions. Really degenerate cases (e.g. strings embedded within such expressions

that contain $var) would cause breakdown, though this has been avoided thus far. The best

solution would have been to acquire a proper parser for XPath into an XML representa-

tion and handle the transformation of the expression properly14.

12On more than one occasion the author thought “If I add a small section of pre-emptive template to X, I can achieve
Y”, only to find that years before, he had written such code, which had lain there unused and forgotten...
13A useful feature was to reserve the variable name ddfl:variables, so that its interpolation returns all the vari-
ables currently in scope defined as a sequence – this can be used for certain types of in-graphics debugging.

 22513.5 Discussion and Conclusion |

The second was the layout for a condensed tree, used widely in illustrating examples both

in this thesis and other papers and sometimes as an aid to debugging15. Naturally its argu-

ment is the sequence of XML trees that are its children: there are many variations of what

illustration should be used for a given node in the tree – all defined declaratively. But determ-

ining the condensed layout for a tree is a doubly recursive implementation, using an XML

tree to represent the graphical tree properties of a contained XML tree. Fools rush in

Some areas proved both difficult and not completely successful. Amongst these we can cite

very accurate pagination, automated handling of external resource reference and ‘packing lay-

out’:

Detailed pagination of a report, like this thesis, has several ‘corner cases’ that may need

to be recognised and handled specially. Some issues are inherently indeterminate, such as

footnotes appearing near a page end migrating to the following page, and are just tolerated.

Others do require attention, most notably breaking paragraphs at column end, where the

paginator needs to know more about the representation of text paragraphs (as opposed to

generic subcomponents) and how wrapped lines are represented (including artifactual

hyphens) than we would wish, and it does not perform completely satisfactorily. This is a

definite case where an implementation for a very specific flow model, such as XSL-FO,

would perform more effectively but less generally.

Inclusion of content that itself has external reference (e.g. to image resources) has been

described several times so far, with the use of context maps as a potential solution. How-

ever for a document such as this thesis which itself quotes from sample variable documents

that themselves have gathered indirect resources from data, the problem compounds

immensely and the author sometimes had to resort to patching to generate the intended effect.

14Whilst of course an XSLT compiler must contain such a parser, curiously the Saxon implementation does not
have an XML output form of such a tree, at least not in 2006.
15Such as spotting an alien namespace element in a large structure.

 22613.5 Discussion and Conclusion |

Designing a series of sample documents, one of the team wanted a layout that was essen-

tially ‘pack from the outside in’, with children packing against nominated sides of their par-

ent container and either defining their own sizes or sharing the available free-space with

other siblings, all naturally in a recursive manner16. The design processed these by a hybrid

approach of calculating dimensions where possible and propagating such consequences, and

converting other cyclic dependencies into a series of constraints that could be solved in the

usual manner. This would work for some cases, but the non-linear and discrete nature of

unbounded text made the packer too fragile to be used by the uninitiated.

Other areas were explored and either failed to work, or were far too complex:

It is always tempting to use existing documents (prepared by skilled human designers) to

provide samples from which a document's inherent structure and styling can be extracted

and reused for other purposes, not least of which is making it variable. Some PDF doc-

uments were converted successfully into reasonably coherent SVG and thence DDF17, but,

in common with the work of Bagley et al, much heuristic consolidation was needed to recov-

er complete text paragraphs and possible styles18. Further work described the relationships

between major components as a constraint network, which made the document's layout geo-

metry (but not topology) variable. By labelling some components as variable, i.e. select-

ing a paragraph and permitting its text value to be altered, a variable document could be

generated. Sometimes it worked, but results were very well short of being robust.

Text blocks with variable dimensions were supported by using Lin's approximation of a set

of linear inequality constraints[57] but it soon became apparent that in general this tech-

nique was both too expensive and far too fragile to use to solve most problems with free text.

Perhaps the area of greatest disappointment, but not for technical reasons, was the variable

document editor. The implementation was a tour de force in the use of XSLT to take a declar-

ation of intent (document elements that were to be editable and how they might be edited)

and to generate from them an entire suite of XSLT transforms: to inject editing trace attrib-

utes on source documents; to build modified SVG views that highlighted, and responded to,

editable sections in graphic results; to construct suitable populated dialogues for those edits

16Similar to widget packing in GUIs.
17Using PDFBox[99], a Java-based library that is particularly good at traversing the PDF drawing stream.
18One test document appeared to use more than 104 different fonts. More detailed examination revealed that the
font varied on a syllable-by-syllable basis by less than 0.001pt – I suspect this was a steganographic watermark.

Lin, X.
Active layout engine: Algorithms and applications in variable data printing

Apache Software Foundation
Apache PDFBox - Java PDF Library

 22713.6 Discussion and Conclusion |

and to perform the requested alteration at the appropriate point on the correct source document.

The provided workflow was also modified automatically to add all these features during an

editing session which was run on an actual instance of a truly variable data document. This

was published and demonstrated at ACM DocEng 2008[63] and later some user trials of a Web-

deployed version were run. But two issues arose: i) having to rebuild the entire document com-

pletely after each editing step made in-text typing interaction impractical (a motivation for Ollis's

PhD studentship[78]) and ii) a human editor operating in WYSIWYG mode generally only

sees surface level features and the deeper (combinatorial layout) structures which DDF encour-

ages and supports very well, are understood poorly, if at all. This latter point perhaps hints

that any deep (layout) structure in a document is destined to remain with those are comfort-

able with the abstract, e.g. the document engineer, and that variable documents developed by

human authors are restricted to shallow models of variability.

13.6 Conclusion

A variable document architecture that is highly extensible, will generate fully professional res-

ults, is not restricted to one generic class of document and is capable of operating with some

‘higher-order’ semantics, can be built using almost exclusively XML technologies and an XML-

based functional programming language.

The key enablers for achieving this are i) using a hierarchical final-form graphical represent-

ation (SVG) to provide grouping, locality and scoping, ii) interspersing information in other

namespaces within such trees, especially generative programs in XSLT, iii) describing layout

intent declaratively within such a tree and using a recursive descent set of processing agents

to resolve the required layout, iv) having all tools behave as good XML citizens and v) using

transforming compilers to support ‘document management’ and ‘higher-order’ semantics,

including code propagation.

FIN

Lumley, J., Gimson, R. and Rees, O.
Configurable Editing of XML-based Variable-Data Documents

Ollis, J. University of Nottingham
Optimised Editing of Variable Data Documents via Partial Re-Evaluation

 228

APPENDICES

 229A Detailed views of main examples |

Appendix A

Detailed Views of Main Examples

These are larger versions of the examples used in Chapters 7 and 12.

 230A Detailed views of main examples |

Tr
av

el
 H

el
is

ki
in

g

Pa
ge

 1
Tr

av
el

 H
el

is
ki

in
g

R
eg

is
te

re
d

of
fic

e:
 1

9
H

ig
h

H
ol

bo
rn

, L
O

N
D

O
N

 W
1

4N
B

A
ll

da
ta

 a
nd

 in
fo

rm
at

io
n

pr
ov

id
ed

 is
 fo

r i
nf

or
m

at
io

na
l p

ur
po

se
s

on
ly

. H
on

es
t J

oh
n

m
ak

es
 n

o
re

pr
es

en
ta

tio
ns

 a
s

to
 a

cc
ur

ac
y,

 c
om

pl
et

en
es

s,
 c

ur
re

nt
ne

ss
,

su
ita

bi
lit

y,
 o

r v
al

id
ity

 o
f a

ny
 in

fo
rm

at
io

n
an

d
w

ill
 n

ot
 b

e
lia

bl
e

fo
r a

ny
 e

rr
or

s,
 o

m
is

si
on

s,
 o

r d
el

ay
s

in
 th

is
 in

fo
rm

at
io

n
or

 a
ny

 lo
ss

es
, i

nj
ur

ie
s,

 o
r d

am
ag

es

ar
is

in
g

fro
m

 it
s

di
sp

la
y

or
 u

se
.S
pe

ci
al

ly
 s

el
ec

te
d

fo
r G

eo
rg

e
W

. B
us

h

Va
l D

'Is
er

e
V

er
y

lit
tle

is

kn

ow
n

ab
ou

t h
ow

 a
nd

 w
he

re

th
ey

liv

e.

Th
e

on
e

ce
rta

in
ty

 i
s

th
at

 t
he

y
ar

e
fe

ar
so

m
e

op
po

ne
nt

s.

N
am

lib

er
o

te
m

po
re

,
cu

m

so
lu

ta

no
bi

s
es

t
el

ig
en

di
 o

pt
io

 c
um

qu
e

ni
hi

l
im

pe
di

t
qu

o
m

in
us

id

qu

od

m
ax

im
e

pl
ac

ea
t

fa
ce

re

po
ss

im
us

, o
m

ni
s

vo
lu

pt
as

 a
ss

um
en

da
 e

st
,

om
ni

s
do

lo
r

re
pe

lle
nd

us
.

Te
m

po
rib

us

au
te

m
 q

ui
bu

sd
am

 e
t a

ut
 o

ffi
ci

is
 d

eb
iti

s
au

t
re

ru
m

 n
ec

es
si

ta
tib

us
 s

ae
pe

 e
ve

ni
et

 u
t

et

vo
lu

pt
at

es
 r

ep
ud

ia
nd

ae
 s

in
t

et
 m

ol
es

tia
e

no
n

re
cu

sa
nd

ae
.

A
ll-

in
cl

us
iv

e:
 £

14
05

G
rin

de
lw

al
d

V
er

y
lit

tle
 is

 k
no

w
n

ab
ou

t
ho

w
 a

nd
 w

he
re

th

ey
 li

ve
. T

he
 o

ne
 c

er
ta

in
ty

 is
 th

at
 th

ey
 a

re

fe
ar

so
m

e
op

po
ne

nt
s.

 N
am

 li
be

ro
 te

m
po

re
,

cu
m

 s
ol

ut
a

no
bi

s
es

t e
lig

en
di

 o
pt

io
 c

um
qu

e
ni

hi
l

im
pe

di
t

qu
o

m
in

us
 i

d
qu

od
 m

ax
im

e
pl

ac
ea

t
fa

ce
re

 p
os

si
m

us
,

om
ni

s
vo

lu
pt

as

as
su

m
en

da
 e

st
,

om
ni

s
do

lo
r

re
pe

lle
nd

us
.

Te
m

po
rib

us
 a

ut
em

 q
ui

bu
sd

am
 e

t a
ut

 o
ffi

ci
is

de

bi
tis

au

t
re

ru
m

ne

ce
ss

ita
tib

us

sa
ep

e
ev

en
ie

t u
t e

t v
ol

up
ta

te
s

re
pu

di
an

da
e

si
nt

 e
t

m
ol

es
tia

e
no

n
re

cu
sa

nd
ae

.

A
ll-

in
cl

us
iv

e:
 £

20
05

Tr
av

el
 H

el
is

ki
in

g

Pa
ge

 3
Tr

av
el

 H
el

is
ki

in
g

R
eg

is
te

re
d

of
fic

e:
 1

9
H

ig
h

H
ol

bo
rn

, L
O

N
D

O
N

 W
1

4N
B

A
ll

da
ta

 a
nd

 in
fo

rm
at

io
n

pr
ov

id
ed

 is
 fo

r i
nf

or
m

at
io

na
l p

ur
po

se
s

on
ly

. H
on

es
t J

oh
n

m
ak

es
 n

o
re

pr
es

en
ta

tio
ns

 a
s

to
 a

cc
ur

ac
y,

 c
om

pl
et

en
es

s,
 c

ur
re

nt
ne

ss
,

su
ita

bi
lit

y,
 o

r v
al

id
ity

 o
f a

ny
 in

fo
rm

at
io

n
an

d
w

ill
 n

ot
 b

e
lia

bl
e

fo
r a

ny
 e

rr
or

s,
 o

m
is

si
on

s,
 o

r d
el

ay
s

in
 th

is
 in

fo
rm

at
io

n
or

 a
ny

 lo
ss

es
, i

nj
ur

ie
s,

 o
r d

am
ag

es

ar
is

in
g

fro
m

 it
s

di
sp

la
y

or
 u

se
.

W
hi

st
le

r
N

am

lib
er

o
te

m
po

re
,

cu
m

so

lu
ta

no

bi
s

es
t

el
ig

en
di

op

tio
 c

um
qu

e
ni

hi
l

im
pe

di
t

qu
o

m
in

us
 id

 q
uo

d
m

ax
im

e
pl

ac
ea

t
fa

ce
re

po

ss
im

us
,

om
ni

s
vo

lu
pt

as
 a

ss
um

en
da

es

t,
om

ni
s

do
lo

r
re

pe
lle

nd
us

.
Te

m
po

rib
us

au

te
m

 q
ui

bu
sd

am
 e

t a
ut

 o
ffi

ci
is

 d
eb

iti
s

au
t

re
ru

m
 n

ec
es

si
ta

tib
us

 s
ae

pe
 e

ve
ni

et
 u

t
et

vo

lu
pt

at
es

 r
ep

ud
ia

nd
ae

 s
in

t
et

 m
ol

es
tia

e
no

n
re

cu
sa

nd
ae

.

A
ll-

in
cl

us
iv

e:
 £

99
7

Te
rr

ac
e

Sp
ec

ia
l

O
ffe

r!

N
am

lib

er
o

te
m

po
re

,
cu

m

so
lu

ta

no
bi

s
es

t
el

ig
en

di

op
tio

cu

m
qu

e
ni

hi
l

im
pe

di
t

qu
o

m
in

us

id
 q

uo
d

m
ax

im
e

pl
ac

ea
t

fa
ce

re
 p

os
si

m
us

, o
m

ni
s

vo
lu

pt
as

as

su
m

en
da

es

t,
om

ni
s

do
lo

r
re

pe
lle

nd
us

. T
em

po
rib

us
 a

ut
em

 q
ui

bu
sd

am

et

au
t

of
fic

iis

de
bi

tis

au
t

re
ru

m

ne
ce

ss
ita

tib
us

sa

ep
e

ev
en

ie
t

ut

et

vo
lu

pt
at

es
 r

ep
ud

ia
nd

ae
 s

in
t

et
 m

ol
es

tia
e

no
n

re
cu

sa
nd

ae
.

A
ll-

in
cl

us
iv

e:
 £

99
7

Fi
gu

re
 1

14
. S

ki
in

g
br

oc
hu

re
 –

 p
ag

es
 1

 a
nd

 3

 231A Detailed views of main examples |

Tr
av

el
 H

el
is

ki
in

g

Pa
ge

 5
Tr

av
el

 H
el

is
ki

in
g

R
eg

is
te

re
d

of
fic

e:
 1

9
H

ig
h

H
ol

bo
rn

, L
O

N
D

O
N

 W
1

4N
B

A
ll

da
ta

 a
nd

 in
fo

rm
at

io
n

pr
ov

id
ed

 is
 fo

r i
nf

or
m

at
io

na
l p

ur
po

se
s

on
ly

. H
on

es
t J

oh
n

m
ak

es
 n

o
re

pr
es

en
ta

tio
ns

 a
s

to
 a

cc
ur

ac
y,

 c
om

pl
et

en
es

s,
 c

ur
re

nt
ne

ss
,

su
ita

bi
lit

y,
 o

r v
al

id
ity

 o
f a

ny
 in

fo
rm

at
io

n
an

d
w

ill
 n

ot
 b

e
lia

bl
e

fo
r a

ny
 e

rr
or

s,
 o

m
is

si
on

s,
 o

r d
el

ay
s

in
 th

is
 in

fo
rm

at
io

n
or

 a
ny

 lo
ss

es
, i

nj
ur

ie
s,

 o
r d

am
ag

es

ar
is

in
g

fro
m

 it
s

di
sp

la
y

or
 u

se
.

W
he

re
 th

es
e

ba
rg

ai
ns

 a
re

!!

Te
rr

ac
e

W
hi

st
le

r

St
ea

m
bo

at

Va
il

Va
l D

'Is
er

e
G

rin
de

lw
al

d

St
. A

nt
on

Tr
av

el
 H

el
is

ki
in

g

Pa
ge

 8
Tr

av
el

 H
el

is
ki

in
g

R
eg

is
te

re
d

of
fic

e:
 1

9
H

ig
h

H
ol

bo
rn

, L
O

N
D

O
N

 W
1

4N
B

A
ll

da
ta

 a
nd

 in
fo

rm
at

io
n

pr
ov

id
ed

 is
 fo

r i
nf

or
m

at
io

na
l p

ur
po

se
s

on
ly

. H
on

es
t J

oh
n

m
ak

es
 n

o
re

pr
es

en
ta

tio
ns

 a
s

to
 a

cc
ur

ac
y,

 c
om

pl
et

en
es

s,
 c

ur
re

nt
ne

ss
,

su
ita

bi
lit

y,
 o

r v
al

id
ity

 o
f a

ny
 in

fo
rm

at
io

n
an

d
w

ill
 n

ot
 b

e
lia

bl
e

fo
r a

ny
 e

rr
or

s,
 o

m
is

si
on

s,
 o

r d
el

ay
s

in
 th

is
 in

fo
rm

at
io

n
or

 a
ny

 lo
ss

es
, i

nj
ur

ie
s,

 o
r d

am
ag

es

ar
is

in
g

fro
m

 it
s

di
sp

la
y

or
 u

se
.

Fo
r f

ur
th

er
 d

et
ai

ls
, p

le
as

e
tic

k
th

e
ap

pr
op

ria
te

 b
ox

:
C

us
to

m
er

:G
eo

rg
e

W
. B

us
h

R
ef

er
en

ce
:4

56
7

V
al

 D
'Is

er
e

£1
40

5
G

rin
de

lw
al

d
£2

00
5

S
t.

A
nt

on
£1

40
5

S
te

am
bo

at
£9

97

W
hi

st
le

r£
99

7
Te

rr
ac

e
£9

97
SP

EC
IA

L
O

FF
ER

!

V
ai

l£
99

7
SP

EC
IA

L
O

FF
ER

!

H
ow

 to
 b

oo
k

in
 a

 h
ur

ry
:

P
le

as
e

co
nt

ac
t d

ire
ct

ly
 v

ia
 p

ho
ne

 o
r e

m
ai

l.

Fi
gu

re
 1

15
. S

ki
in

g
br

oc
hu

re
 –

 p
ag

es
 5

 a
nd

 8

 232A Detailed views of main examples |

D
D

F
H

ea
lth

ca
re

M
ed

ic
al

-r
ec

or
d

fo
r

So
lo

m
on

G
ru

nd
y

A
dm

itt
ed

:M
on

12
th

Se
pt

em
be

r
20

11 D
oB

:2
01

1-
09

-1
1

N
ex

to
fk

in
:T

om
T

hu
m

b
Su

m
m

ar
y

st
at

us
M

on
:

12
th

36
.9

°C
36

.4
°C

Th
e

pa
tie

nt
ap

pe
ar

ed
gr

um
py

an
d

th
re

w
hi

sm
ob

ile
ph

on
e

at
th

e
co

ns
ul

ta
nt

T
ue

:
13

th

37
.9

°C
37

.1
°C

Th
e

pa
tie

nt
w

as
in

te
rv

ie
w

ed
by

th
e

lo
ca

lc
on

st
ab

ul
ar

y
W

ed
:

14
th

36
.8

°C
36

.1
°C

Si
gn

so
fs

un
bu

rn
an

d
in

ci
pi

en
t

br
ui

si
ng

T
hu

:
15

th

35
.8

°C
35

.1
°C

Th
e

pa
tie

nt
to

ok
ill

,a
nd

w
as

un
w

ill
in

g
to

w
at

ch
da

yt
im

e
TV

Fr
i:

16
th

37
.9

°C
35

.4
°C

Th
e

pa
tie

nt
ap

pe
ar

ed
so

m
ew

ha
t

w
or

se
,a

nd
w

or
rie

d
ab

ou
tt

he
ev

en
ts

of
th

e
w

ee
ke

nd
Sa

t:
17

th

38
.9

°C
38

.4
°C

Th
ep

at
ie

nt
to

ok
ad

is
tin

ct
tu

rn
fo

rt
he

w
or

se
,a

nd
ap

pe
ar

st
er

m
in

al
Su

n:
18

th
D

em
is

e
of

pa
tie

nt

CA
SE CL
OS

ED

W
ar

ni
ng

Lo
w

B
lo

od
Pr

es
su

re
H

ig
h

Te
m

pe
ra

tu
re

:
38

.4
°C

D
D

F
H

ea
lth

ca
re

So
lo

m
on

G
ru

nd
y

-
Pa

tie
nt

C
ha

rt
s

M
on

Tu
eW

ed
Th

u
Fr

i
Sa

tS
un

M
on

/°C 3040
38

.9
@

08
:0

0

Te
m

pe
ra

tu
re

M
on

Tu
eW

ed
Th

u
Fr

i
Sa

tS
un

M
on

/mmHg 6070809010
0

11
0

12
0

13
0

14
0

70
/5

5
@

20
:0

0

B
lo

od
P

re
ss

ur
e

Fi
gu

re
 1

16
. M

ed
ic

al
 r

ec
or

d
–

 p
ag

es
 1

 a
nd

 2

 233A Detailed views of main examples |

D
D

F
H

ea
lth

ca
re

Pa
tie

nt
no

te
s

fo
rT

hu
15

th
Te

st
s

&
R

ep
or

ts

T

35
.1

@
6:

00

T

35
.8

@
11

:0
0

BP

10
5/

83
@

8:
00

BP

11
0/

85
@

12
:0

0

BP

11
2/

89
@

18
:0

0

hearing

5.
3

dB
dr

op
of

f@
5k

H
z

blood

Pl
en

ty
of

it

catscan

O
fh

is
sk

ul
l

G
en

er
al

N
ot

es
Th

e
pa

tie
nt

to
ok

ill
,a

nd
w

as
un

w
ill

in
g

to
w

at
ch

da
yt

im
e

TV

D
D

F
H

ea
lth

ca
re

So
lo

m
on

G
ru

nd
y

-
C

ha
rg

es
on

A
cc

ou
nt

cr
ed

it-
ca

rd
:1

23
45

67
89

01
23

4

M
on

:
12

th
re

ad
in

g
te

m
pe

ra
tu

re
@

6:
00

23
.4

5
te

st
ca

ts
ca

n
12

3.
45

T
ue

:
13

th
re

ad
in

g
te

m
pe

ra
tu

re
@

10
:0

0
10

.0
0

re
ad

in
g

te
m

pe
ra

tu
re

@
13

:0
0

10
.0

0
re

ad
in

g
te

m
pe

ra
tu

re
@

16
:0

0
10

.0
0

re
ad

in
g

te
m

pe
ra

tu
re

@
19

:0
0

10
.0

0
T

hu
:

15
th

te
st

he
ar

in
g

10
.0

0
te

st
bl

oo
d

37
.0

0
te

st
ca

ts
ca

n
75

.0
0

Sa
t:

17
th

re
ad

in
g

te
m

pe
ra

tu
re

@
6:

00
23

.4
5

te
st

ca
ts

ca
n

12
3.

45
Su

n:
18

th
re

ad
in

g
ec

g
13

.4
5

re
po

rt
de

at
h

ce
rti

fic
at

e
23

.4
5

Fi
na

lA
cc

ou
nt

:
49

2.
70

Pa
ym

en
tf

ro
m

ca
rd

12
34

56
78

90
12

34
-4

92
.7

0
C

lo
si

ng
B

al
an

ce
:

0.
00

Fi
gu

re
 1

17
. M

ed
ic

al
 r

ec
or

d
–

 p
ag

es
 6

 a
nd

 1
0

 234B Advanced Pagination |

Appendix B

Advanced Pagination

A basic pagination system was described in Chapter 6, whose heart was a test of whether the

next piece to be considered would fit into the remaining space in the container currently being

filled. This appendix shows how additional measures can be added to convert this into a prac-

tical paginator – the sort that is, for example, capable of organising the main flow for a PhD

thesis.

Extending the intrinsic functionality mostly involves adding extra cases to the main test in a

suitable order of priority. For example ‘new-page’ is represented by a reserved element (ddfl:

new-page or ddfl:new-column when within a multi-column page) which is detected before

the ‘height’ tests, closes the current container and recurses onto the next.

A ‘float’ piece (indicated by the attribute @ddfl:can-float) is detected after the ‘will fit’ test

and if so, the piece is swapped with the next in order and then the whole operation is recalled

(if it does fit then there is no need to float, so that test is not encountered; the swap semantics

might be indicated by the value of that attribute – indicating whether for example floaters

may swap position). Similarly separating ‘space’ between paragraphs that is unnecessary at

the head of a column can be indicated by marking blank svg:rect separators with @ddfl:drop-

column-start and dropping them when about to be added to an empty container1.

An important case for text-based paginations is the paragraph which will not fit in entirely

but which can be split into parts. This is supported by testing (again after the ‘will-fit’ test)

for the @ddfl:can-break property. A piece that will not fit, but has this property, can be broken

up into a sequence of pieces (lines are the most common but other breakup schemes could

1The astute reader will observe that such ‘meta-layout’ pieces could take many forms – pieces marked with the
inverse @ddfl:only-column-start, which only appear at a column head could be used for a ’. .. continued’ mark-
er between two components where possible splitting between columns needs to be visually indicated.

 235B Advanced Pagination |

be considered) and that sequence tacked on to the beginning of the set of parts and the whole

procedure recalled. In this manner a paragraph can be broken across container boundaries.

These are all basically simple operations on a one-dimensional sequence of bins and parts. How-

ever text paragraphs flow into two dimensional ‘holes’ provided by the containers, and it is

very possible that containers have different widths. It therefore follows that the evaluation of

a part may now depend on the container into which it is targetted. So how do we achieve

that for an effective paginator, whilst still preserving generality? The key is to combine slight

modification to the ‘evaluation’ stage for parts in the paginator with the system of acyclic

presentational variables. Parts that want to respond to variable width attach to a reserved present-

ational variable2:

<fo:block font-family="Helvetica" font-size="8pt"
text-align="justify">
 <ddfl:attribute name="width" select="(?$text-
column-width,30)[1]"/>This paragraph wants to
flow into an externally defined width, if
 one is available, else it will use 30 as its
default. In this case it is <ddfl:value-of select="
(?$text-column-width,30)[1]"/>
 wide</fo:block>

This paragraph wants to flow into an
externally defined width, if one is
available, else it will use 30 as its default.
In this case it is 50 wide

This paragraph wants to flow into an externally defined
width, if one is available, else it will use 30 as its default.
In this case it is 71.25 wide

Figure 118. A variable width component

Since variable references are interpolated before evaluation, the job of the paginator is to recog-

nise such ‘requests for width’ and arrange a suitable local binding for the variable to the width

of the current container. This can be carried out with the evaluation by:

<xsl:variable name="piece">
 <xsl:choose>
 <xsl:when test="ddfl:attribute[@name='width']">
 <ddfl:layout function="identity">
 <ddfl:variable name="text-column-width">30</ddfl:variable>
 <xsl:sequence select="$part"/>
 </ddfl:layout>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="$part"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:variable>
<xsl:apply-templates select="$piece"/>

2Paragraphs are not the only piece that need such treatment – figures that distribute their content horizontally or
scale to fit, such as those in this thesis, require a target width. The same mechanism is used.

 236B Advanced Pagination |

This technique, basically synthesising small-scale composite computations, either in the doc-

uments themselves, or in the implementation, or a combination, has proved to be very power-

ful. With deeper structures, such as indented lists (ul/li) the width can be redefined, within

a nested scope:

<xsl:template match="ol/li">
 <ddfl:layout function="flow" direction="x" spacing="10">
 <svg:circle cx="4" cy="4" r="4"/>
 <ddfl:variable name="text-column-width" select="$text-column-width - 18"/>
 <xsl:next-match/>
 </ddfl:layout>
</xsl:template>

There are three other features worth demonstrating how they can be incorporated fairly eas-

ily: content-bearing ‘template’ containers, keep-with-next sections and footnotes.

So far the paginator actually produces a sequence of filled bins – the ‘encapsulate’ action

makes a filled component from the pieces selected – what happens to those parts later is unspe-

cified. If we add another level of container ‘argument’ templates to the paginator we can accom-

modate real-life pages3. Templates contain fixed content and to-be-filled containers – when

all the containers in the current template are filled, they are inserted into the appropriate pos-

ition in the template and a finalised page is now emitted. The templates can be considered

and marked as a finite sequence (suitable for a fixed-length document) or lazy generators of

sequences of pages. Minor modifications to the paginator will accomplish this, and contain-

ers are merely parts of a template that are marked for such a role – either by reserved ele-

ments (ddfl:container) or attribute (@ddfl:container) – they are assumed to present a (width

and height) extent. These containers will be employed in ‘document order’, so it is certainly

possible to have very odd orders of filling and, as discussed above, they need not all be the

same width.

But the templates can be extended to include conditionality – declaring circumstances under

which they can be employed, by adding guard conditions (as XPath-like statements that oper-

ate within the evaluation environment with some reserved ‘variables’, or some specially recog-

nised common forms). For example:

3These are not similar to XSLT templates operating in push mode – perhaps an unfortunate choice of nomenclature.

 237B Advanced Pagination |

layout(paginate)
template page-range="# eq 1"

container
rect x="10" y="10" width="190" height="277"

template
container

rect x="10" y="10" width="90" height="277"
container

rect x="110" y="10" width="90" height="277"
content

Figure 119. Conditional page templates

Here there are two templates – the first page has a single column, all remaining pages have

two columns. This idea can be extended to even and odd pages or having named pages that

are requested by a property on a defined break. What is much more tricky to acheive, and does

not have guaranteed deterministic solutions, is content-based template selection, i.e. use tem-

plate A if content aaaaa will appear in it.

Keeps (as in @keep-with-next) require to be stored up, considered as a group and not emit-

ted until an ‘unkept’ part is encountered. This is done by adding another argument (keeps)

to the function. (@keep-with-previous is best preprocessed to reverse to a canonical use of

@keep-with-next – this can be achieved simply in a document-borne logical-presentation map-

ping.)

It is tempting to examine whether entities such as footnotes can be handled by the use of present-

ational variables, as then it could be a document-borne feature sitting above a pagination. Unfor-

tunately they have a direct and immediate effect on the layout, i.e. they reduce available space

in the container, so have to be accounted for. That means the pagination function needs anoth-

er argument – footnotes, to which new notes are added as encountered (such will be marked

by attribute @ddfl:footnote) and whose total height is accounted for in examining ‘space-

remaining’. These are flushed out at the change of container, being added to the base. But the

form of the footnote is not decided by the paginator – they can be anything that was created

within the presentation description and marked @ddfl:footnote.

An unconventional piece that has
migrated to the footnote section

 238C Compressed display of XML, XSLT and DDF |

Appendix C

Compressed Display of XML, XSLT and DDF

The serialization of XML into a human-readable, indented form can result in rather lengthy

blocks of text. XSLT, being usually written in such syntax, is often accused of being a verb-

ose language – this may be so, but overlooks the fact that XSLT programs are well-formed

XML and therefore consumable and can be created by XSLT. However, the format takes valu-

able thesis real-estate and can be difficult to read. A common complaint is “I can't see the code

for the angle-brackets”.

Hence, where there is no ambiguity, three different types of compressed representation of sec-

tions of XML are used, which include XSLT, DDF and layout programs. The first is a purely

textual one with the following main features:

As everything is well-formed XML, depth in the tree is indicated by strict indentation. As

such showing closing tags is unnecessary.

Elements and attributes in some selected namespaces (e.g. XSLT, SVG, DDF) will be shown

in a keyed colour without the prefix – the key is consistent throughout the thesis and often

displayed where several namespaces are used.

xsl: and ddfl: variables and in-element attribute constructors (xsl:attribute,ddl:attribute)

will be shortened to name = and @name = respectively and coloured appropriately. If the

value constructor is an XPath expression (i.e. @select) it will be italicized – if it is a sequence

of children it will be written indented, like any other child-parent relationship.

 239C Compressed display of XML, XSLT and DDF |

The select attribute, used on many XSLT elements, the match attribute, used on XSLT tem-

plates, and the test attribute used on choice elements, all being treated as XPath expressions,

will be presented as their value italicized. When the last element of the XPath is ‘dot’, the

shorthand for current() (more usually the entire expression is just ‘dot’) , it is rendered with

the symbol · to increase visibility.

The indirect XPath evaluation saxon:evaluate(), which occurs frequently, is abbreviated

to S:E() within XPath expressions, to save space.

Type declarations (e.g. as="xs:string") are prefixed to the variable or template definition

as type casts (e.g. (xs:string)).

Text nodes are displayed in grey.

Large numbers of attributes can be elided and text nodes shortened. This will be indicated

by ellipses.

<ddf:layout function="F"/> constructs are shortened to layout(F) and coloured appropri-

ately.

<xsl:template match="A" mode="m">
 <xsl:variable name="var" select="1234"/>
 <xsl:variable name="parts">
 <xsl:apply-templates select="C | D" mode="
#current"/>
 </xsl:variable>
 <xsl:for-each select="E">
 <xsl:choose>
 <xsl:when test="count(*) gt 23">
 <fo:block >
 <xsl:value-of select=".,@repeat"/>
 </fo:block>
 </xsl:when>
 <xsl:otherwise>
 <f/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
</xsl:template>

match:A mode="m"
var=1234
parts=

Þ C | D mode="#current"

" E :

choose
when:count(*) gt 23

block
val(.,@repeat)

otherwise
f

xsl: fo:

Figure 120. Full and compressed XSLT

Figures 121 and 122 show a more extensive example with several namespaces.

 240C Compressed display of XML, XSLT and DDF |

<ddf:doc >
 <ddf:struct>
 <xsl:template match="/">
 <xsl:sequence select="."/>
 </xsl:template>
 </ddf:struct>
 <ddf:pres>
 <ddfl:layout function="flow" direction="x" spacing="4" overflow="visible">
 <ddfl:variable name="main">
 <svg:svg ddfl:layout="flow" encapsulate="background-color:white;stroke:red;shadow:2"
overflow="visible">
 <fo:block font-family="Helvetica" font-size="4" width="50">This is a flow of text and
pieces, some elements of which might be
 variable and hence could change in size</fo:block>
 <svg:ellipse name="ellipse" cx="25" cy="10" rx="25" ry="5" fill="yellow" stroke="black"/>
 <fo:block font-family="Helvetica" font-size="4" width="50">Several pieces are here
and the number could change as a result of
 programmatic selection of variable input data.</fo:block>
 <fo:block name="marginal" font-family="Helvetica" font-size="4" width="50" border-
style="solid" border-width="0.4">But for this piece we want a marginal note.</fo:block>
 <svg:svg ddfl:element-type="text-line" font-family="Helvetica" font-size="4" width="
50">And this is some more content that in
 this case follows the targetted block.</svg:svg>
 </svg:svg>
 </ddfl:variable>
 <fo:block font-family="Helvetica" font-size="6" width="50" fill="white" background-color="blue"
border-style="solid" border-width="0.4">
 <ddfl:attribute name="y" select="$main/*/*[@name='ellipse']/@cy"/>This text should track
the ellipse.</fo:block>
 <ddfl:copy-of select="$main"/>
 <fo:block font-family="Helvetica" font-size="6" font-weight="bold" width="80" background-
color="red" fill="white" border-style="solid" border-width="0.4">
 <ddfl:copy-of select="$main/*/*[@name='marginal']/@y" as="attribute()"/>This is the
 marginal note, which follows the start of the source.</fo:block>
 </ddfl:layout>
 </ddf:pres>
</ddf:doc>

ddf: xsl: ddfl: svg: fo:

Figure 121. Full DDF

 241C Compressed display of XML, XSLT and DDF |

doc
struct

match:/
·

pres
layout(flow) direction="x" spacing="4" overflow="visible"

main=
svg layout="flow" encapsulate="background-color:white;stroke:red;shadow:2" over-
flow="visible"

block font-family="Helvetica" font-size="4" width="50"
This is a flow of text and pieces, some elements of which mi...

ellipse name="ellipse" cx="25" ...
block font-family="Helvetica" font-size="4" width="50"

Several pieces are here and the number could change as a res...
block name="marginal" font-family="Helvetica" ...

But for this piece we want a marginal note.
svg element-type="text-line" font-family="Helvetica" font-size="4" ...

And this is some more content that in this c...
block font-family="Helvetica" font-size="6" width="50" ...

@y=$main/*/*[@name='ellipse']/@cy
This text should track the ellipse.

copy-of($main)
block font-family="Helvetica" font-size="6" font-weight="bold" ...

copy-of($main/*/*[@name='marginal']/@y)
This is the marginal note, which follows the sta...

ddf: xsl: ddfl: svg: fo: text

Figure 122. Compressed display of Figure 121

The second and third are graphical tree forms, based on the tree layout and using a sequence

of substitutive captions or simple shapes. It is employed primarily to emphasise the structure

of the entities being discussed. The tree may be oriented either vertically or horizontally. The

colour scheme employed is identical to that used for the compressed textual form (it comes

from the same code within a template).

doc
struct match:/ ·

pres layout(flow)

main= svg

block

ellipse

block

block

svg

block @y=$main/*/*[@name='ellipse']/@cy

copy-of($main)

block copy-of($main/*/*[@name='marginal']/@y)

ddf: xsl: ddfl: svg: fo:

Figure 123. Horizontal tree display of Figure 121

 242C Compressed display of XML, XSLT and DDF |

doc

struct

match:/

·

pres

layout(flow)

main=

svg

block ellipse block block svg

block

@y=$main/*/*[@name='ellipse']/@cy

copy-of($main) block

copy-of($main/*/*[@name='marginal']/@y)

ddf: xsl: ddfl: svg: fo:

Figure 124. Vertical tree display of Figure 121

In one form many of the same contractions (variables and attribute assignment) are used. In

the most compressed form, a simple small coloured shape indicates the presence of an ele-

ment in a particular namespace – this is used for display of the structure of very large trees.

As this is sometimes used to illustrate final presentations, text blocks svg:svg[@ddfl:element-

type='text-block'], which are subtrees with potentially a very large number of descendants,

are collapsed to a single shape.

ddf: ddfl: svg: xsl: fo: ddfl:Þ svg: fo:Þ svg:

Figure 125. Highly-compressed tree display of Figure 121

There are a few graphical substitutions for common cases to increase understanding. An svg:

svg element which is decorated with @ddfl:layout and an svg:svg that was generated from

an fo:block are both shown as two-color circles.

The full details of the substitutions are shown in the following table:

 243C Compressed display of XML, XSLT and DDF |

<ddfl:layout function="layout-type"/> layout(layout-type)

<ddfl:copy-of select="expression"/> copy-of(expression)

<ddfl:attribute name="name" select="expression"/> @name=expression

<ddfl:variable name="name" select="expression"/> name=expression

<ddfl:for-each select="expression"/> ":expression

<ddfl:constraints layout="constraints" parts="parts"/> constraints:constraints for:
parts

<xsl:variable as="type" name="name" select="expression"/> (type) name=expression

<xsl:param as="type" name="name" select="expression"/> (type) param:name=expres-
sion

<xsl:for-each select="expression"/> " expression :

<xsl:for-each-group select="expression" group-by="discrimin-
ant"/>

group:expression by:discrimin-
ant

<xsl:for-each-group select="expression" group-adjacent="dis-
criminant"/>

group:expression adjacent:
discriminant

<xsl:for-each-group select="expression" starting-with="discrim-
inant"/>

group:expression starting-with:
discriminant

<xsl:for-each-group select="expression" ending-with="discrim-
inant"/>

group:expression ending-with:
discriminant

<xsl:attribute name="name" select="expression"/> @name=expression

<xsl:sequence select="expression"/> expression

<xsl:value-of select="expression"/> val(expression)

<xsl:copy-of select="expression"/> copy-of(expression)

<xsl:template match="pattern"/> match:pattern

<xsl:apply-templates select="expression"/> Þ expression

<xsl:with-param name="name" select="expression"/> param(name)=expression

<xsl:if test="expression"/> if:expression

<xsl:choose /> choose

<xsl:when test="expression"/> when:expression

<xsl:otherwise /> otherwise

Figure 126. Substitutions for condensed XML

 244D Employment of namespaces |

Appendix D

Employment of Namespaces

Much of the flexibility of DDF comes from the use of several different programmatic mod-

els combined into large trees through interspersed namespaces. The major namespaces used

in the framework are described here – several are unique to DDF, others indicate the use of

syntax and semantics of XML-based standards.

DDF namespaces

cmap: http://hpl.hp.com/vda/2006/doc

Context map elements for tracing external references.

ddf: http://hpl.hp.com/ddf/2005/doc

Main DDF namespace, describing major document structures and additional (compiler) dir-

ectives.

ddfl: http://hpl.hp.com/ddf/2005/layout

DDF Layout descriptions. Combinator nodes and other parameters.

doc: http://hpl.hp.com/vda/2006/doc

Documentation elements and attributes.

tree: http://mytree

Intermediate data structures in calculating complex tree layouts.

XSL: MyXSL

XSLT code to be ‘quoted’ within other XSLT executable structures.

XSLT: output.xsl

Compiler quoted XSL – to create basic XSLT (xsl:) in the output of the complier.

 245D Employment of namespaces |

XSLT2: output2.xsl XSLT3: output3.xsl

Second and third-stage quoted XSL in the compiler. To build quoted XSLT (XSLT:) dur-

ing sucessively removed executions.Needed in partial binding and evaluation.

Standard namespaces

fn: http://www.w3.org/2005/02/xpath-functions

Basic XPath functions – usually implicit for functions within XPath expressions, i.e. count()

is equivalent to fn:count().

fo: http://www.w3.org/1999/XSL/Format

Formatting Objects. Text block formatting.

math: http://exslt.org/math

Mathematical functions.

svg: http://www.w3.org/2000/svg

Scalable Vector Graphics. Presentational graphical results.

xi: http://www.w3.org/2001/XInclude

Inclusion of XML content from within other XML trees, via URL reference

xlink: http://www.w3.org/1999/xlink

Xlink – resource pointers, either local or as URL.

xs: http://www.w3.org/2001/XMLSchema

Data structure schemas used to indicate type information (as="xs:double") on variables and

constructors. The current implementation only uses this for the base and atomic types (e.

g. xs:string*,xs:anyURI).

xsl: http://www.w3.org/1999/XSL/Transform

XSL Transforms.

Proprietary namespaces

saxon: http://saxon.sf.net/

The Saxon XLST implementation engine. Used to attach to a small number of extension

functions: saxon:serialize() and saxon:evaluate(xpath) (The latter is used extensively to

implement presentational variables, selections within embedded inclusions and tree displays,

when dynamic XPath expressions have to be evaluated.)

 246E Construction of the Thesis |

Appendix E

Construction of the Thesis

This thesis is, of course, built from the technology described therein, as a specific binding of

some data to a variable data document. In this case the variable document is a ‘thesis tem-

plate’, that anticipates a source document described principally in XHTML, with some exten-

sions for figures, embedded layouts, citations and so forth. Much of the functionality of this

document is supplied by included libraries, such as a generic conversion from XHTML to ddfl:,

fo: and svg: elements – this library has been used for all publications for DDF such as those

for the ACM.

The thesis source is a set of XHTML section chapters and appendices plus an XML-based

reference collection. Headings (h) within sections can be identified (e.g. h ddf:id="thesisCon-

struction") and used as targets for cross-references (<ref>priorArt..) – these elements are

expanded as much as possible during the generation of the document structural layer (section

numbering...) and cast as hyper-links using the <a href="#.." form around the structural ele-

ment. Page references are resolved in a late layout pass. Similar methods are used for cita-

tions (<cite>Lumley2010..).

Meta-document elements (contents, list of figures) are built along with and inserted into the

document structure and thereafter become indistinguishable from other cross-references. A doc-

ument outline tree is also built and copied into the eventual layout (as an svg:desc element)

where its references will be resolved during PDF generation.

Figures within are described as figure elements, which usually have caption properties and

directives for arrangement of their contents (columns, spacing, size, scaling etc.) – the chil-

dren can take many forms, such as embedded images, DDF document quotations, PDF pages,

displayed XML trees and layout declarations that should be evaluated. Some of these figure

 247E.1 Construction of the Thesis |

constructs (such as the ‘zoom in’) are supported by macro libraries which exploit presenta-

tional variables extensively. The more extensive figures (e.g. the large examples) are graph-

ical embeddings of the resulting SVG or PDF of evaluated test documents1. If in doubt, the

figure was computed during the thesis construction – especially if it is in tree form.

Document layout occurs in a two-pass form, as hinted at in Chapter 6, to enable textual page

references to be sized correctly.

The generation of the final PDF format is a balance between processing with XSLT transforms

and Java code. The presentational SVG in the DDF is ‘regularized’ with several XSLT passes

(ensuring that text elements have complete fonting, converting all dimensions into canonic-

al form, removing foreign elements...) and then passed with additional arguments (a list of

required fonts, the outline tree...) to a fast Java-based process that uses the iText library[59].

This not only builds the correct ‘drawing stream’ but includes all necessary external resources

(images, PDF pages and fonts, which are embedded) as well as placing appropriate hyper-links

(with hovers) on the pages and adding the document outline to the PDF.

The thesis structural XML tree, when fully expanded on 26th May 2012 @ 14:56, has 19382

elements, 42796 attributes and 63735 words. The processing of the entire document takes about

6 minutes on a 3GHz quad-core Windows7 machine. The vast majority of this time (5:46 mins)

is taken up with resolving the layout; other approximate times are 2 seconds for document

compilation, 10 seconds for XLST execution and 20 seconds for PDF.

E.1 Code base statistics

It is possible to examine and contrast the implementation code base for the technologies

described in this thesis. For XSLT and similar XML-based software, a suitable measure of

the complexity is the number and distribution of element and attribute nodes in the program-

defining structures2. Here are some figures for three important components:

The DDF compiler.

1Using PDF obviates the problem of internal image reference, but no longer can XPath searching be used to find
appropriate nodes for illustrative purposes.
2Interestingly the number of source lines is roughly similar to the sum of element and attribute numbers – this
is explained by a filled element needing two lines (opening and closing tags) and assumptions of ~ 1 attribute per
element and very little ‘naked’ text.

Lowagie, B.
iText in Action

 248E.1 Construction of the Thesis |

The layout processor. Statistics cover all the agents currently implemented, many of which

are experimental3.

The DDF thesis template that is actually used to process this document you are reading.

This includes imports from 11 other files.

Measure DDF Compiler Layout Processor Thesis Template

Files 10 36 12

Match Templates 92 366 189

Functions & Named

Templates

31 216 25

Elements 902 6535 1378

Attributes 1417 11208 2378

3E.g. the TALL experiment on topologically abstract layout from U. Bologna[15]

Di Iorio, A. et al.
Higher Level Layout through Topological Abstraction

 249References |

REFERENCES

Papers, Books and Journals

[1] Ager, M., Danvy, O. and Rohde, H. Fast partial evaluation of pattern matching in strings.
In Proceedings of the 2003 ACM SIGPLAN workshop on Partial evaluation and semantics-
based program manipulation, pages 3–9, ACM, 2003.

[2] André, J., Furuta, R. and Quint, V. Structured Documents. Cambridge University Press,
1989.

[3] Badros, G. et al. A constraint extension to scalable vector graphics. In Proc. 10th World
Wide Web Conference, Hong Kong, 2001.

[4] Badros, G., Borning, A. and Stuckey, P. The Cassowary linear arithmetic constraint
solving algorithm. In ACM Transactions on Computer-Human Interaction (TOCHI)
, Vol8 (4), pages 267–306, 2001.

[5] Bagley, S. COG Extractor. In Proceedings of the 2006 ACM symposium on Doc-
ument engineering, pages 31–31, ACM, 2006.

[6] Bagley, S. and Brailsford, D. Page composition using PPML as a link-editing script.
In Proceedings of the 2004 ACM symposium on Document engineering, pages 134–
136, ACM, 2004.

[7] Bagley, S., Brailsford, D. and Hardy, M. Creating reusable well-structured PDF as a
sequence of component object graphic (COG) elements. In DocEng ‘03: Proceedings
of the 2003 ACM symposium on Document engineering, pages 58–67, ACM, 2003.

[8] Bagley, S., Brailsford, D. and Ollis, J. Extracting reusable document components for
variable data printing. In Proceedings of the 2007 ACM symposium on Document engin-
eering, pages 44–52, ACM, 2007.

[9] Balinsky, H. and Pilu, M. Evaluating interface aesthetics: a measure of symmetry. In
Digital Publishing, Proc. of SPIE-IS&T Electronic Imaging, Vol 6076, 2006. http:
//www.hpl.hp.com/techreports/2006/HPL-2006-29.html

http://www.hpl.hp.com/techreports/2006/HPL-2006-29.html
http://www.hpl.hp.com/techreports/2006/HPL-2006-29.html

 250References |

[10] Burchett, K., Cooper, G. and Krishnamurthi, S. Lowering: a static optimization tech-
nique for transparent functional reactivity. In Proceedings of the 2007 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipulation, pages
71–80, ACM, 2007.

[11] Chao, H., Gabbur, P. and Wiley, A. Preserving the aesthetics during non-fixed aspect
ratio scaling of the digital border. In Proceedings of the 2007 ACM symposium on
Document engineering, pages 144–146, ACM, 2007.

[12] Chao, H., Zhang, X. and Tretter, D. Structured layout for resizable background art. In
Proceedings of the 1st international workshop on Interactive multimedia for con-
sumer electronics, pages 67–72, ACM, 2009.

[13] Damera-Venkata, N., Bento, J. and O'Brien-Strain, E. Probabilistic document model
for automated document composition. In Proceedings of the 11th ACM symposium on
Document engineering, pages 3–12, ACM, 2011.

[14] Dhamdhere, D. E-path_PRE: partial redundancy elimination made easy. In SIGPLAN
Not., Vol37, no8, pages 53–65, ACM, 2002.

[15] Di Iorio, A. et al. Higher Level Layout through Topological Abstraction. In Proceed-
ings of the 2008 ACM symposium on Document engineering, 2008.

[16] Dong, C. and Bailey, J. Static analysis of XSLT programs. In Proceedings of the 15th
Australasian database conference, Vol27, pages 151–160, 2004.

[17] Feiner, K. A grid-based approach to automating display layout. In Proceedings on
Graphics interface ‘88, pages 192–197, Canadian Information Processing Society, 1988.

[18] Findler, R. and Flatt, M. Slideshow: functional presentations. In J. Funct. Program.
, Vol16, pages 583–619, Cambridge University Press, 2006.

[19] Flesca, S., Furfaro, F. and Masciari, E. On the minimization of XPath queries. In J. ACM
, Vol55, pages 2:1–2:46, ACM, 2008.

[20] Furuta, R. Important papers in the history of document preparation systems: basic
sources. In Electronic Publishing, Vol5, pages 19–44, 1992 .

[21] Gallesio, E. and Serrano, M. Skribe: a functional authoring language. In J. Funct. Pro-
gram., Vol15, pages 751–770, Cambridge University Press, 2005.

[22] Gange, G. et al. Optimal automatic table layout. In Proceedings of the 11th ACM sym-
posium on Document engineering, pages 23–32, ACM, 2011.

[23] Giannetti, F. A Multi-format Variable Data Template Wrapper extending PODi's PPML-
T Standard. In Proceedings of the 2007 ACM symposium on Document engineering
, 2007.

[24] Giannetti, F. Paginate dynamic and web content. In Proceedings of the 11th ACM sym-
posium on Document engineering, pages 143–152, ACM, 2011.

 251References |

[25] Giannetti, F. XSL-FO 2.0: automated publishing for graphic documents. In DocEng ‘09:
Proceedings of the 9th ACM symposium on Document engineering, pages 245–246,
ACM, 2009.

[26] Giannetti, F. et al. High performance XSL-FO rendering for variable data printing. In
SAC ‘06: Proceedings of the 2006 ACM symposium on Applied computing, pages
811–817, ACM, 2006.

[27] Glushko, R. and McGrath, T. Document Engineering: Analyzing and Designing Doc-
uments for Business Informatics and Web Services. The MIT Press, 2005 .

[28] Goldenberg, E. Automatic layout of variable-content print data. HP Laboratories Tech-
nical Report, 2002. http://www.hpl.hp.com/techreports/2002/HPL-2002-286.pdf

[29] Gottlob, G., Koch, C. and Pichler, R. Efficient algorithms for processing XPath quer-
ies. In ACM Trans. Database Syst., Vol30, pages 444–491, ACM, 2005.

[30] Graf, H., Neurohr, S. and Goebel, R. YPPS–A constraint-based tool for the pagina-
tion of yellow-page directories. In Proceedings of the KI-96 Workshop on Declar-
ative Constraint Programming, pages 87–97, 1996.

[31] Hansen, B. A function-based formatting model. In Electronic Publishing, Vol3 (1),
pages 3–28, 1990.

[32] Harrington, S. et al. Aesthetic measures for automated document layout. In DocEng ‘04:
Proceedings of the 2004 ACM symposium on Document engineering, pages 109–
111, ACM, 2004.

[33] Harrington, S. et al. Expression of document structure in automatic layout. In Digit-
al Publishing, Proc. of SPIE-IS&T Electronic Imaging, Vol 6076, 2006.

[34] Heydon, A. and Nelson, G. The Juno-2 constraint-based drawing editor. DEC SRC
Technical Report 131a, 1994.

[35] Hughes, J. The Design of a Pretty-printing Library. In Advanced Functional Program-
ming, pages 53–96, Springer, 1995.

[36] Hurst, N. and Marriott, K. Approximating text by its area. In DocEng ‘07: Proceed-
ings of the 2007 ACM symposium on Document engineering, pages 147–150, ACM,
2007.

[37] Hurst, N. and Marriott, K. Satisficing scrolls: a shortcut to satisfactory layout. In DocEng
‘08: Proceeding of the eighth ACM symposium on Document engineering, pages
131–140, ACM, 2008.

[38] Hurst, N., Li, W. and Mariott, K. Review of Automatic Document Formatting. In Pro-
ceedings of the 2009 ACM symposium on Document engineering, 2009.

http://www.hpl.hp.com/techreports/2002/HPL-2002-286.pdf

 252References |

[39] Hurst, N., Marriott, K. and Moulder, P. Dynamic approximation of complex graphic-
al constraints by linear constraints. In Proceedings of the 15th annual ACM sym-
posium on User interface software and technology, pages 191–200, ACM Press, 2002.

[40] Hurst, N., Marriott, K. and Moulder, P. Minimum sized text containment shapes. In
DocEng ‘06: Proceedings of the 2006 ACM symposium on Document engineering
, pages 3–12, ACM, 2006.

[41] Hurst, N., Marriott, K. and Moulder, P. Toward tighter tables. In DocEng ‘05: Pro-
ceedings of the 2005 ACM symposium on Document engineering, pages 74–83, ACM,
2005.

[42] Jacobs, C. et al. Adaptive Grid-Based Document Layout. Vol22, pages 838 – 847,
In ACM Transactions on Graphics, 2003.

[43] Jones, N. An introduction to partial evaluation. In ACM Comput. Surv., Vol28, pages
480–503, ACM, 1996.

[44] Kahl, W. Beyond Pretty-Printing: Galley Concepts in Document Formatting Combin-
ators. In Proceedings of the First International Workshop on Practical Aspects of
Declarative Languages, pages 76–90, Springer-Verlag, 1998.

[45] Kay, M. XSLT 2.0 and XPath 2.0, 4th Edition. Wiley, Indianapolis, IN, 2008.

[46] Kay, M. XSLT in the Browser. In Proceedings of XML Prague 2011, pages 125 –
134, 2011. http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf

[47] Kenji, M. and Hiroyuki, S. Static optimization of XSLT stylesheets: template instan-
tiation optimization and lazy XML parsing. In Proceedings of the 2005 ACM sym-
posium on Document engineering, pages 55–57, ACM, 2005.

[48] Kernighan, B. A TROFF Tutorial, Unix Version 7 manual. 1978.

[49] King, P., Schmitz, P. and Thompson, S. Behavioral reactivity and real time program-
ming in XML: functional programming meets SMIL animation. In Proceedings of the
2004 ACM symposium on Document engineering, pages 57–66, ACM, 2004.

[50] Kingston, J. The design and implementation of the Lout document formatting language.
In Softw. Pract. Exper., Vol23, pages 1001–1041, John Wiley & Sons, Inc., 1993.

[51] Knuth, D. TeX – the program. Addison-Wesley Pub. Co., 1986.

[52] Knuth, D. and Plass, M. Breaking paragraphs into lines. In Software---Practice and
Experience, 11(11), pages 1119–1184, 1982.

[53] Kong, J., Zhang, K. and Zeng, X. Spatial graph grammars for graphical user interfaces.
In ACM Trans. Comput.-Hum. Interact., Vol13, pages 268–307, ACM, 2006.

http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf

 253References |

[54] Krakovsky, M. All the News That's Fit for You. Vol54, no6, pages 20–21, In Com-
munications of the ACM, 2011.

[55] Lamport, L. LaTeX: A Document Preparation System (2nd Edition). Addison-Wesley
Professional, 1994.

[56] Launchbury, J. A Strongly-Typed Self-Applicable Partial Evaluator. In Proceedings of
the 5th ACM Conference on Functional Programming Languages and Computer Archi-
tecture, pages 145–164, Springer-Verlag, 1991.

[57] Lin, X. Active layout engine: Algorithms and applications in variable data printing. In
Comput. Aided Des., Vol38, pages 444–456, Butterworth-Heinemann, 2006.

[58] Lok, S., Feiner, S. and Ngai, G. Evaluation of visual balance for automated layout. In
Proceedings of the 9th international conference on Intelligent user interfaces, pages
101–108, ACM, 2004.

[59] Lowagie, B. iText in Action. Manning Publications, 2007.

[60] Lumley, J. Automated Extensible XML Tree Diagrams. In Proceedings of the 2009 ACM
symposium on Document engineering, 2009. http://www.hpl.hp.
com/techreports/2009/HPL-2009-137.pdf

[61] Lumley, J. Pre-evaluation of Invariant Layout in Functional Variable-Data Documents.
In Proceedings of the 2010 ACM symposium on Document engineering, 2010.

[62] Lumley, J., Gimson, R. and Rees, O. A Framework for Structure, Layout & Function
in Documents. In Proceedings of the 2005 ACM symposium on Document engineer-
ing, 2005. http://www.hpl.hp.com/techreports/2005/HPL-2005-95R1.pdf

[63] Lumley, J., Gimson, R. and Rees, O. Configurable Editing of XML-based Variable-
Data Documents. In Proceedings of the 2008 ACM symposium on Document engin-
eering, 2008. http://www.hpl.hp.com/techreports/2008/HPL-2008-53.pdf

[64] Lumley, J., Gimson, R. and Rees, O. Endless Documents: A Publication as a Continu-
al Function. In Proceedings of the 2007 ACM symposium on Document engineering
, 2007. http://www.hpl.hp.com/techreports/2007/HPL-2007-111R1.pdf

[65] Lumley, J., Gimson, R. and Rees, O. Extensible Layout in Functional Documents. In
Digital Publishing, Proc. of SPIE-IS&T Electronic Imaging, Vol 6076, 2006. http:
//www.hpl.hp.com/techreports/2005/HPL-2005-223.pdf

[66] Lumley, J., Gimson, R. and Rees, O. Resolving Layout Interdependency with Present-
ational Variables. In Proceedings of the 2006 ACM symposium on Document engin-
eering, 2006. http://www.hpl.hp.com/techreports/2006/HPL-2006-107.pdf

[67] Macdonald, A. Progressive Document Evaluation. PhD Thesis, University of Notting-
ham, 2008.

http://www.hpl.hp.com/techreports/2009/HPL-2009-137.pdf
http://www.hpl.hp.com/techreports/2009/HPL-2009-137.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-95R1.pdf
http://www.hpl.hp.com/techreports/2008/HPL-2008-53.pdf
http://www.hpl.hp.com/techreports/2007/HPL-2007-111R1.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-223.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-223.pdf
http://www.hpl.hp.com/techreports/2006/HPL-2006-107.pdf

 254References |

[68] Macdonald, A. et al. Speculative document evaluation. In DocEng ‘07: Proceedings of
the 2007 ACM symposium on Document engineering, pages 56–58, ACM, 2007.

[69] Macdonald, A., Brailsford, D. and Bagley, S. Encapsulating and manipulating com-
ponent object graphics (COGs) using SVG. In Proceedings of the 2005 ACM sym-
posium on Document engineering, pages 61–63, ACM, 2005.

[70] Macdonald, A., Brailsford, D. and Lumley, J. Evaluating Invariances in Document Lay-
out Functions. In Proceedings of the 2006 ACM symposium on Document engineer-
ing, 2006.

[71] Marlet, R., Thibault, S. and Consel, C. Efficient Implementations of Software Archi-
tectures via Partial Evaluation. In Automated Software Engg., Vol6, pages 411–440,
Kluwer Academic Publishers, 1999.

[72] Marriott, K., Moulder, P. and Hurst, N. Automatic float placement in multi-column
documents. In DocEng ‘07: Proceedings of the 2007 ACM symposium on Docu-
ment engineering, pages 125–134, ACM, 2007.

[73] McCarthy, J. Recursive functions of symbolic expressions and their computation by
machine, Part I. In Commun. ACM, Vol3, pages 184–195, ACM, 1960.

[74] McCormack, C., Marriott, K. and Meyer, B. Adaptive layout using one-way constraints
in SVG. 2004. http://www.svgopen.org/2004/papers/ConstraintSVG/

[75] Nebeling, M. et al. Adaptive layout template for effective web content presentation in
large-screen contexts. In Proceedings of the 11th ACM symposium on Document engin-
eering, pages 219–228, ACM, 2011.

[76] Noga, M., Schott, S. and Löwe, W. Lazy XML processing. In DocEng ‘02: Proceed-
ings of the 2002 ACM symposium on Document engineering, pages 88–94, ACM, 2002.

[77] Novatchev, D. Higher-Order Functional Programming with XSLT 2.0 and FXSL. In
Extreme Markup Languages Conference, Montreal, , 2006.

[78] Ollis, J. Optimised Editing of Variable Data Documents via Partial Re-Evaluation.
PhD Thesis, University of Nottingham, 2011.

[79] Ollis, J., Bagley, S. and Brailsford, D. Tracking sub-page components in document
workflows. In Proceeding of the eighth ACM symposium on Document engineering
, pages 86–89, ACM, 2008.

[80] Ollis, J., Brailsford, D. and Bagley, S. Optimized reprocessing of documents using
stored processor state. In Proceedings of the 10th ACM symposium on Document engin-
eering, pages 135–138, ACM, 2010.

[81] Peroni, S. and Vitali, F. Annotations with EARMARK for arbitrary, overlapping and
out-of order markup. In Proceedings of the 9th ACM symposium on Document engin-
eering, pages 171–180, ACM, 2009.

http://www.svgopen.org/2004/papers/ConstraintSVG/

 255References |

[82] Piccoli, R. et al. A novel physics-based interaction model for free document layout.
In Proceedings of the 11th ACM symposium on Document engineering, pages 153–
162, ACM, 2011.

[83] Pinkney, A., Bagley, S. and Brailsford, D. Reflowable Documents Composed from Pre-
rendered Atomic Components. In Proceedings of the 2011 ACM symposium on Doc-
ument engineering, pages 163–166, 2011.

[84] Purvis, L. et al. Document formatting: Creating personalized documents: an optimiz-
ation approach. In Proceedings of the 2003 ACM symposium on Document engin-
eering, 2003.

[85] Quint, V. and Vatton, I. Editing with Style. In Proceedings of the 2007 ACM sym-
posium on Document engineering, 2007.

[86] Quint, V. and Vatton, I. Techniques for authoring complex XML documents. In DocEng
‘04: Proceedings of the 2004 ACM symposium on Document engineering, pages
115–123, ACM, 2004.

[87] Reid, B. Scribe: A Document Specification Language and its Compiler. PhD Thes-
is, Carnegie-Mellon University, Pittsburgh PA, 1981.

[88] Roisin, C. and Vatton, I. Merging logical and physical structures in documents. In Elec-
tronic Publishing, Vol6 (4), pages 327–337, 1993.

[89] Rutledge, L. et al. Generating presentation constraints from rhetorical structure. In Pro-
ceedings of the eleventh ACM on Hypertext and hypermedia, pages 19–28, ACM, 2000.

[90] Schott, S. and Noga, M. Lazy XSL transformations. In DocEng ‘03: Proceedings of
the 2003 ACM symposium on Document engineering, pages 9–18, ACM, 2003.

[91] Silva, A. et al. Support for arbitrary regions in XSL-FO. In DocEng ‘05: Proceed-
ings of the 2005 ACM symposium on Document engineering, pages 64–73, ACM, 2005.

[92] Stayton, B. DocBook XSL: The Complete Guide. Sagehill Enterprises, 2007.

[93] Thompson, S., King, P. and Schmitz, P. Declarative extensions of XML languages. In
Proceedings of the 2007 ACM symposium on Document engineering, pages 89–91,
ACM, 2007.

[94] Villard, L. and Layaïda, N. An Incremental XSLT Transformation Processor for XML
Document Manipulation. In Proc. 11th World Wide Web Conference, Honolulu, 2002.

[95] Vion-Dury, J. A generic calculus of XML editing deltas. In Proceedings of the 11th
ACM symposium on Document engineering, pages 113–120, ACM, 2011.

[96] Wadler, P. A prettier printer. In The Fun of Programming, pages 223 – 244, Palgrave
Macmillan, 2003.

 256References |

[97] Walsh, N. Literate Programming in XML. 2002. http://nwalsh.com/docs/art-
icles/xml2002/lp/paper.html

Software

[98] Adobe Adobe InDesign. 2011. http://www.adobe.com/products/indesign.html

[99] Apache Software Foundation Apache PDFBox – Java PDF Library. 1999. http:
//pdfbox.apache.org

[100] Apache XML Graphics Project Apache FOP (Formatting Objects Processor). 1999.
 http://xmlgraphics.apache.org/fop/

[101] Bitstream Inc. Pageflex. 2008. http://www.pageflex.com/

[102] CatBase CatBase database publishing. 2011. http://www.catbase.com/

[103] HPExstream Dialogue. 2010. http://welcome.hp.com/country/uk/en/prodserv/soft-
ware/eda/products/dialogue.html

[104] HPExstream DialogueLive. 2008. http://welcome.hp.com/country/uk/en/prodserv/soft-
ware/eda/products/dialogue-live.html

[105] Kay, M. Saxonica: XSLT and XQuery Processing. 2005. http://www.saxonica.com/

[106] Novatchev, D. FXSL – the Functional Programming Library for XSLT. 2006. http:
//fxsl.sourceforge.net/

[107] Quark QuarkXPress. 2011. http://www.quark.com/Products/QuarkXPress/

Standards

[108] Adobe Systems Incorporated PDF Reference version 1.6, 5th Edition. Adobe Press,
2004.

[109] Adobe Systems Incorporated. PostScript language tutorial and cookbook. Addison Wes-
ley, 1985.

[110] ISO, International Standards Organisation Open Document Architecture. 1994. http:
//www.iso.org/

[111] International Digital Publishing Forum EPUB Content Documents 3.0. 2008. http:
//idpf.org/epub/30/spec/epub30-contentdocs.html

http://nwalsh.com/docs/articles/xml2002/lp/paper.html
http://nwalsh.com/docs/articles/xml2002/lp/paper.html
http://www.adobe.com/products/indesign.html
http://pdfbox.apache.org
http://pdfbox.apache.org
http://xmlgraphics.apache.org/fop/
http://www.pageflex.com/
http://www.catbase.com/
http://welcome.hp.com/country/uk/en/prodserv/software/eda/products/dialogue.html
http://welcome.hp.com/country/uk/en/prodserv/software/eda/products/dialogue.html
http://welcome.hp.com/country/uk/en/prodserv/software/eda/products/dialogue-live.html
http://welcome.hp.com/country/uk/en/prodserv/software/eda/products/dialogue-live.html
http://www.saxonica.com/
http://fxsl.sourceforge.net/
http://fxsl.sourceforge.net/
http://www.quark.com/Products/QuarkXPress/
http://www.iso.org/
http://www.iso.org/
http://idpf.org/epub/30/spec/epub30-contentdocs.html
http://idpf.org/epub/30/spec/epub30-contentdocs.html

 257References |

[112] OASIS RELAX NG Specification. 2001. http://relaxng.org/spec-20011203.html

[113] PODi, Print On Demand Initiative Personalized Print Markup Language (PPML) Ver-
sion 2.0. 2002. http://www.podi.org

[114] W3C, World Wide Web Consortium CSS Template Layout Module. 1999. http://www.
w3.org/TR/css3-layout

[115] W3C, World Wide Web Consortium Cascading Style Sheets, Level 1. 1999. http:
//www.w3.org/TR/CSS1

[116] W3C, World Wide Web Consortium Document Type Definition. 2008. http://www.
w3.org/TR/REC-xml/#dt-doctype

[117] W3C, World Wide Web Consortium Extensible Stylesheet Language (XSL). 2001. http:
//www.w3.org/TR/xsl/

[118] W3C, World Wide Web Consortium HTML 4.01 Specification. 1999. http://www.
w3.org/TR/1999/REC-html401-19991224/

[119] W3C, World Wide Web Consortium Scalable Vector Graphics (SVG) 1.1 Specific-
ation. 2003. http://www.w3.org/TR/SVG/

[120] W3C, World Wide Web Consortium The Secret Origin of SVG. 2003. http://www.
w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG

[121] W3C, World Wide Web Consortium XHTML™ 2.0. 2006. http://www.w3.org/TR/xin-
clude/

[122] W3C, World Wide Web Consortium XML Inclusions (XInclude) Version 1.0 (Second
Edition). 2006. http://www.w3.org/TR/xhtml2//

[123] W3C, World Wide Web Consortium XML Path Language (XPath) 2.0. 2007. http:
//www.w3.org/TR/xpath20/

[124] W3C, World Wide Web Consortium XML Schema Part 0: Primer Second Edition. 2004.
 http://www.w3.org/TR/xmlschema-0/

[125] W3C, World Wide Web Consortium XProc: An XML Pipeline Language. 2010. http:
//www.w3.org/TR/xproc/

[126] W3C, World Wide Web Consortium XQuery 1.0: An XML Query Language (Second
Edition). 2010. http://www.w3.org/TR/xquery/

[127] W3C, World Wide Web Consortium XQuery 3.0: An XML Query Language. 2011.
 http://www.w3.org/TR/xquery-30/

[128] W3C, World Wide Web Consortium XSL Transformations (XSLT) Version 2.0. 2007.
 http://www.w3.org/TR/xslt20/

http://relaxng.org/spec-20011203.html
http://www.podi.org
http://www.w3.org/TR/css3-layout
http://www.w3.org/TR/css3-layout
http://www.w3.org/TR/CSS1
http://www.w3.org/TR/CSS1
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/SVG/
http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xhtml2//
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xslt20/

 258References |

[129] W3C, World Wide Web Consortium XSL Transformations (XSLT) Version 2.1. 2010.
 http://www.w3.org/TR/xslt-21/

[130] Walsh, N. and Muellner, L. DocBook: The Definitive Guide. O'Reilly & Associates,
1999.

http://www.w3.org/TR/xslt-21/

	Abstract
	Relevant papers

	Acknowledgements
	Contents
	List of figures
	Part A – Introduction, Context and Prior Art
	Chapter 1: Introduction
	1.1 Motivation
	1.2 Variable documents and document engineering
	1.3 The context of DDF
	Tools

	1.4 Contributions
	1.5 Thesis outline
	1.6 Conventions within this thesis
	1.7 Provenance

	Chapter 2: Prerequisites
	2.1 XML
	2.2 XSLT 2.0
	2.3 Scalable Vector Graphics (SVG)
	2.4 XPath
	2.5 Miscellaneous

	Chapter 3: Prior Art
	3.1 Document processors, editors and processes
	3.2 Separating data and presentation; logical structure
	DocBook
	XHTML

	3.3 Document layout
	Layout models and solution methods
	Representations

	3.4 Variable documents
	3.5 XSL, XSL-FO and XSLT
	3.6 Variable document editing
	3.7 Other functional approaches
	3.8 Partial evaluation and constant folding

	Part B – Prior Art in DDF
	Chapter 4: Document Description Framework
	4.1 The 'life' of a DDF document
	4.2 The basic structure of a DDF document
	4.3 Authoring and editing from the document's range

	Chapter 5: Functional Implementation
	5.1 Evaluating the (XSLT) functionality
	The DDF document 'compiler'
	Compiler design

	External references

	5.2 Document workflow

	Chapter 6: Layout in DDF
	6.1 Extensible layout
	6.2 Text layout
	6.3 Advanced layouts
	6.4 Non-local effects
	Acyclic dependency and single-assignment presentational variables
	Cyclic dependencies
	Post-presentational global effects

	6.5 Pagination
	6.6 Conclusion

	Chapter 7: Example Document - a Travel Brochure
	7.1 Input data
	7.2 Processing the input data
	7.3 General layout model
	Document background and common sections
	Construction of pages
	Providing graphics for a saleItem

	7.4 Brochure conclusion

	Part C – Documents as Functions
	Chapter 8: Documents as Functions
	8.1 Definitions
	Higher-order documents
	Approximate tree isomorphism
	Good XML citizen

	8.2 Variable-data functional semantics
	8.3 Documents as passive arguments

	Chapter 9: Variable Layout as a Higher-Order Function
	9.1 Layout and approximate tree-isomorphism
	9.2 Layout with embedded function
	9.3 Attributive layout and embedded program
	9.4 One-to-many mappings
	9.5 Foreign namespaces within layout
	9.6 Modification of the SVG tree
	9.7 Retained XSLT
	9.8 Hybrid XSLT/meta-layout action
	9.9 Conclusion

	Chapter 10: Partial Evaluation and Constant Folding
	10.1 Partial data binding
	10.2 Constant folding of invariant layout
	Processing attribute sets
	Presentational variables
	Results

	Chapter 11: Active Documents as Variable Data
	11.1 Simple combinators
	11.2 Higher-order syntax for DDF
	11.3 Resource name conflicts
	11.4 Compound documents
	Compound inclusion - document 'imposition'

	11.5 Conclusion

	Chapter 12: Example Document - a Medical Record
	12.1 Data and the document life
	12.2 Implementation
	12.3 Conclusion

	Chapter 13: Discussion and Conclusion
	13.1 General discussion
	Robustness and resilience
	Efficiency

	13.2 Key findings
	Universal XML
	Interspersed namespaces
	XSLT as the programming model
	Document compilers

	13.3 Redesign
	SVG as presentation and layout
	Hold data and structure within presentation
	Use higher-order XSLT and additional compilation
	Simplify external resource tracking

	13.4 Other further work
	User feedback
	Document type
	Editing documents and incremental change

	13.5 Lessons
	XML and XSLT
	Correct choices
	Difficulty, error and disappointment

	13.6 Conclusion

	Appendices
	Appendix A: Detailed views of main examples
	Appendix B: Advanced Pagination
	Appendix C: Compressed display of XML, XSLT and DDF
	Appendix D: Employment of namespaces
	Appendix E: Construction of the Thesis
	E.1 Code base statistics

	References
	Papers, Books and Journals
	Software
	Standards

