

The University of Nottingham

School of Computer Science

Offline printed Arabic character recognition

Ashraf AbdelRaouf

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

May 2012

To my family...

i

Abstract

Optical Character Recognition (OCR) shows great potential for rapid data entry, but

has limited success when applied to the Arabic language. Normal OCR problems are

compounded by the right-to-left nature of Arabic and because the script is largely

connected. This research investigates current approaches to the Arabic character

recognition problem and innovates a new approach.

The main work involves a Haar-Cascade Classifier (HCC) approach modified for the

first time for Arabic character recognition. This technique eliminates the problematic

steps in the pre-processing and recognition phases in additional to the character

segmentation stage. A classifier was produced for each of the 61 Arabic glyphs that

exist after the removal of diacritical marks. These 61 classifiers were trained and

tested on an average of about 2,000 images each.

A Multi-Modal Arabic Corpus (MMAC) has also been developed to support this

work. MMAC makes innovative use of the new concept of connected segments of

Arabic words (PAWs) with and without diacritics marks. These new tokens have

significance for linguistic as well as OCR research and applications and have been

applied here in the post-processing phase.

A complete Arabic OCR application has been developed to manipulate the scanned

images and extract a list of detected words. It consists of the HCC to extract glyphs,

systems for parsing and correcting these glyphs and the MMAC to apply linguistic

constrains. The HCC produces a recognition rate for Arabic glyphs of 87%. MMAC

is based on 6 million words, is published on the web and has been applied and

validated both in research and commercial use.

ii

Acknowledgements

First I would like to thank my main supervisor, Dr. Colin Higgins, for his

participation throughout this research. His ideas and suggestions were of great

benefit to me. I would also like to thank my supervisors, Dr. Tony Pridmore, Dr.

Mahmoud Khalil, and Prof. Dave Elliman. I appreciate their guidance and comments

on this thesis and for their honest support along my research.

Special appreciation to Prof. Graham Kendall whose help was very important at

several times. He is also one of the best friends I got to know during my study time

in Nottingham.

Special thanks to Essam Eliwa who is a very good friend. He made life much easier

for me at Nottingham. It was a pleasure, not only to share the same lab with him over

the last few years, but also to know him.

I would like to thank all my friends and colleagues at my home university, Misr

International University (MIU). Many special thanks to my manager, Mr. Hassan

ElRashidy, for his continues encouragement and support that I appreciate so much.

His support was essential to help me pass many difficult times throughout my PhD

study.

There are no adequate words to express my love and gratitude to my beloved wife,

Meral, who has been by my side throughout the years. Supporting me, encouraging

me and carrying more responsibilities during my study. She made me happy during

difficult times. My sweet kids; Eraj, Nadine, Mona and Mohamed, I would like to

tell you that all I do is for you and for a better future for you.

I am indebted and grateful to my whole family, especially to my father for his

backing and advice that motivated me to study for a Ph.D. degree. I would also like

to thank my mother for her continuous support. They both made me what I am today.

Thank you all, Ashraf AbdelRaouf

iii

Table of Contents

Abstract ... i

Acknowledgements .. ii

Table of Contents .. iii

List of Figures .. vii

List of tables .. ix

Chapter 1. Introduction .. 1

1.1 Background ... 2
1.1.1 Motivation .. 3
1.1.2 Scope .. 4

1.2 Brief Overview .. 9

1.2.1 General aims and objectives... 9
1.2.2 Problems and specific objectives ... 10
1.2.3 Approach .. 11

1.2.4 Contributions .. 13

1.3 Organization of the thesis .. 14

Chapter 2. A review of character recognition .. 17

2.1 Introduction ... 17

2.1.1 Overview .. 17
2.1.2 Different categories of readable information 20
2.1.3 OCR Applications .. 21

2.2 The written Arabic language ... 23
2.2.1 Key features of written Arabic ... 24

2.2.2 Recognizing written Arabic ... 27
2.2.3 PAWs and NPAWs .. 29
2.2.4 Arabic language morphology ... 30

2.3 Pre-processing Phase ... 30

2.3.1 Document layout analysis and decomposition 31
2.3.2 Binarization and noise removal .. 32

2.3.3 Thinning ... 33
2.3.4 Slant / skew detection and correction... 33
2.3.5 Textline / Baseline detection .. 34
2.3.6 Word normalization ... 35

2.4 Feature extraction Phase .. 35

2.4.1 Moments ... 36
2.4.2 Hough transform .. 37
2.4.3 Fourier descriptors ... 37
2.4.4 Linear transforms ... 37
2.4.5 Haar-like feature extraction.. 38

2.5 Character segmentation Phase ... 43
2.5.1 Isolated / pre-segmented characters ... 44

2.5.2 Segmenting a word into characters .. 44

iv

2.5.3 Segmenting a word into primitives .. 44
2.5.4 Integration of recognition and character segmentation 45
2.5.5 Character segmentation-free systems ... 45

2.6 Classification Phase ... 46
2.6.1 Statistical methods ... 46

2.6.2 Structural methods ... 47
2.6.3 Artificial Neural Networks (ANN) .. 48
2.6.4 Support Vector Machine (SVM) .. 48
2.6.5 Classification with multiple classifiers .. 49
2.6.6 Cascade of boosting classifiers .. 49

2.6.7 Integration of feature extraction and classification 50

2.7 Post-processing Phase ... 52

2.7.1 Enhancing recognition using a confusion marix 53
2.7.2 Look-up dictionary ... 54
2.7.3 String correction ... 58
2.7.4 Language correction using corpus ... 59

2.8 Summary ... 64

Chapter 3. A Multi-Modal Arabic Corpus ... 66

3.1 Building a Multi-Modal Arabic Corpus from textual data 68

3.1.1 Coverage and Sources .. 68
3.1.2 Text data collection .. 69

3.1.3 Creating NWords, PAWs and NPAWs .. 70
3.1.4 Creating images from corpus text data... 70

3.1.5 Degrading the computer-generated token images 72
3.1.6 Ground truthing the computer-generated token images 73

3.2 Building a Multi-Modal Corpus: real images .. 74
3.2.1 Paragraph image dataset ... 75
3.2.2 Full page real image dataset ... 76

3.3 Using MMAC in Arabic OCR development ... 77
3.3.1 Computer generated token images ... 78

3.3.2 Computer generated token images with artificial noise 79
3.3.3 Paragraph documents ... 79
3.3.4 Real scanned documents .. 80

3.4 Enhancing MMAC using a lexicon/stemming approach 80

3.4.1 Approach applied in solving the problem .. 81
3.4.2 The proposed light stemmer affixes ... 81
3.4.3 The proposed lexicon / stemmer algorithm .. 82

3.4.4 Implementing the lexicon / stemming approach 84

3.5 Statistical analysis of the MMAC corpus .. 85
3.5.1 Frequency list ... 85
3.5.2 Analysis of words, PAWs and characters .. 85
3.5.3 Discussion .. 88

3.6 Testing the corpus’ validity ... 91
3.6.1 Testing words and PAWs ... 91
3.6.2 Checking corpus accuracy.. 92
3.6.3 Testing lexicon / stemming approach validity 93

3.6.4 Applying the lexicon / stemming approach ... 94

v

3.7 The online MMAC corpus .. 95
3.7.1 MMAC corpus contents ... 95
3.7.2 Transliteration encoding... 96
3.7.3 Buckwalter modified transliteration encoding 98

3.8 Summary ... 99

Chapter 4. Glyph recognition using a Haar Cascade Classifier 100

4.1 Using a Haar Cascade Classifier with Arabic character recognition 100
4.1.1 Arabic character recognition difficulties .. 100
4.1.2 Benefits of using the Haar Cascade Classifier approach 101
4.1.3 Dealing with variations .. 102

4.1.4 How to apply the approach .. 102

4.2 Problem solving approach ... 103

4.2.1 The pilot experiment to detect the isolated letter Ain () 103
4.2.2 The extended experiment to detect 15 different glyphs 104
4.2.3 The auxiliary experiments to improve the training parameters 104
4.2.4 The final experiment to detect naked Arabic glyphs 105

4.3 The pilot experiment ... 105

4.3.1 Planning the experiment ... 105

4.3.2 Data Selection and preparation .. 106
4.3.3 Training the Ain classifier .. 109
4.3.4 Testing the Haar-cascade classifier .. 110

4.3.5 Results and conclusions ... 111

4.4 The extended experiment .. 113

4.4.1 Planning the experiment ... 113
4.4.2 Data preparation ... 115

4.4.3 Data selection ... 119
4.4.4 Training the extended experiment classifiers 121

4.4.5 Testing the extended experiment classifiers 122
4.4.6 Results and conclusions ... 124

4.5 The auxiliary experiments ... 129

4.5.1 Testing the training width and height... 130
4.5.2 Testing the number of splits and minimum hit rate 131
4.5.3 Test the boosting type and number of splits....................................... 133

4.6 The final experiments .. 134

4.6.1 Planning the experiment ... 134

4.6.2 Data preparation ... 136
4.6.3 Training the final experiment classifiers .. 137

4.6.4 Testing the final experiment classifiers.. 139
4.6.5 Results and conclusions ... 140

4.7 Summary ... 143

Chapter 5. HCC tokens recognition ... 144

5.1 Introduction ... 144

5.1.1 HCC tokens recognizer overview .. 145
5.1.2 Preparing the tokens testing dataset ... 146
5.1.3 Document statistical information ... 148

5.2 The single token classifier ... 149
5.2.1 Loading the classifiers list .. 149

vi

5.2.2 Running the classifiers ... 151
5.2.3 Keeping a list of glyphs.. 153

5.3 The HCC tokens recognizer .. 154
5.3.1 Text line extraction .. 155
5.3.2 Parsing the detected glyphs .. 156

5.3.3 Testing the Arabic tokens recognizer ... 159

5.4 Enhancing recognition using a confusion matrix 162
5.4.1 Generating the confusion matrix .. 162
5.4.2 Applying the confusion matrix... 164
5.4.3 Testing the confusion matrix enhancement results 166

5.5 Summary ... 168

Chapter 6. Post-processing HCC tokens .. 169

6.1 Introduction ... 169
6.1.1 Naked words versus naked PAWs ... 170

6.2 Applying a post-processing technique .. 171
6.2.1 Searching using a trie structure .. 171

6.2.2 Token correction using Levenshtein distance 173

6.3 Testing the Post-processing technique .. 173
6.3.1 Testing the NWords dictionary .. 174

6.3.2 Testing NPAWs dictionary .. 175
6.3.3 Post-processing test results .. 176

6.4 Summary ... 178

Chapter 7. Conclusions and Future work .. 179

7.1 Meeting the objectives ... 179

7.2 Future work ... 183

7.2.1 General topics... 183
7.2.2 Arabic corpus ... 184
7.2.3 HCC glyphs recognition ... 185

7.2.4 HCC tokens recognizer .. 185
7.2.5 Post-processing .. 186

7.3 Conclusions ... 187

7.4 Closing remarks ... 189

References .. 190

Appendix: Published papers ... 201

vii

List of Figures

Figure 1.1: The machine recognition categories of readable information 5

Figure 1.2: A general framework for character recognition .. 7

Figure 1.3: The framework of the proposed Arabic OCR approach 8

Figure 2.1: The baseline location of text in English and Arabic 34

Figure 2.2: Upright and 45° rotated rectangle of detection window 40

Figure 2.3: Haar-like features prototype .. 41

Figure 2.4: Supplementary image illustration SAT and RSAT 43

Figure 2.5: Cascade of classifiers with N stages .. 49

Figure 2.6: Trie structure of a simple lexicon of 12 English months 55

Figure 2.7: Tail-end trie of a simple lexicon of 12 months .. 56

Figure 2.8: DAWG graph structure of a simple lexicon of 12 months 57

Figure 2.9: Levenshtein distance between the two words ‘Saturday’ and ‘Sunday’ . 59

Figure 3.1: A word images of () in three different Arabic fonts 71

Figure 3.2: (a) word () image. (b) Skewed image. (c) Noised image.................. 73

Figure 3.3: Ground truth XML file for the word () .. 74

Figure 3.4: Samples of the three categories of paragraph images.............................. 76

Figure 3.5: Two samples of real scanned document images 77

Figure 3.6: The typical process of testing OCR application using MMAC 78

Figure 3.7: The structure of the lexicon / stemming algorithm.................................. 84

Figure 3.8: The relationship between top 10 and top 25 most repeated tokens 89

Figure 3.9: Relationship between distinct tokens and words as samples increases ... 89

Figure 4.1: The different images of the letter () used in the pilot experiment 107

Figure 4.2: Samples of the pilot experiment negative images 107

Figure 4.3: Sample of positive in image pilot experiment and OpenCV 109

Figure 4.4: The pilot experiment testing results and detected Ain () image 112

Figure 4.5: The sensitivity ROC of the pilot experiment of the Ain classifier 112

Figure 4.6: Testing the pilot experiment with a real scanned Arabic document 113

Figure 4.7: Sample of positive and negative image for Heh middle glyph.............. 116

Figure 4.8: Sample of converting a positive image to negative 118

Figure 4.9: Recognition accuracy between HCC and commercial software 128

Figure 4.10: Glyphs definition for the final experiment .. 136

Figure 5.1: Flowchart showing HCC tokens recognition process............................ 145

Figure 5.2: Different samples of Tokens testing dataset .. 148

Figure 5.3: A document image after running ten classifiers over it 152

Figure 5.4: Baseline locations for a document image (shown in red) 155

Figure 5.5: Different cases of relationship between each contiguous glyph............ 159

Figure 6.1: Relationship between look-up dictionaries’ levels and nodes number .. 172

Figure 6.2: Screenshot of the typical output of the HCC OCR application 177

viii

ix

List of tables

Table 2.1: Arabic joining groups and group letters, with their English name 25

Table 2.2: Arabic joining groups and group letters, defined with letters location 26

Table 2.3: Arabic letters and their shapes at different locations within words 26

Table 2.4: Arabic letters with dots distribution .. 27

Table 2.5: A confusion matrix with two class classifier .. 53

Table 3.1: Total Number of images for Words, NWords, PAWs and NPAWs 72

Table 3.2: The average letters per token, width and height in pixels of tokens 72

Table 3.3: Artificially added noise to computer generated documents 79

Table 3.4: Affixes of different light stemming types ... 82

Table 3.5: Statistical summary for Words, NWords, PAWs and NPAWs 86

Table 3.6: The average characters/Word, characters/PAW and PAWs/Word 86

Table 3.7: The number of occurrence of letters in their different locations 87

Table 3.8: The number of occurrence of naked letters in their different locations 88

Table 3.9: Tokens that occurred once in relation to total unique and total tokens 90

Table 3.10: The 25 most repeated tokens. Number and percentage of repetitions 90

Table 3.11: The corpus testing dataset tokens with their unique number 91

Table 3.12: Number & percent of unique found tokens of testing data in MMAC ... 92

Table 3.13: Number & percentage of missed tokens of testing data from MMAC ... 92

Table 3.14: Number and percentage of tokens using trusted and un-trusted lists...... 94

Table 3.15: Total number and percentage of tokens using trusted list....................... 94

Table 3.16: Total number and percentage of tokens using un-trusted list 95

Table 3.17: Buckwalter Transliteration encoding .. 97

Table 3.18: Buckwalter Modified Transliteration encoding 98

Table 4.1: Different image parameters used in testing the pilot experiment 111

Table 4.2: The number of original negative and positive images of each glyph 117

Table 4.3: Proposed glyphs with occurrences, locations and reasons for selection . 120

Table 4.4: The training information for each of the 15 selected glyphs 122

Table 4.5: The testing information for each of the 15 selected glyphs 123

Table 4.6: Percentage testing results of the extended experiment for 15 glyphs 125

Table 4.7: Numbers testing results of glyphs using three types of document 126

Table 4.8: Testing results in percentages defined by glyph location 126

Table 4.9: Testing results between the HCC and commercial software 128

Table 4.10: Testing different training values of widths and heights of glyphs 131

Table 4.11: Testing different values of number of splits and minimum hit rate 133

Table 4.12: Testing different number of splits with different boosting types 134

Table 4.13: The Arabic naked glyphs as used in the final experiment 135

Table 4.14: Number of negative and positive images of glyphs in four locations ... 137

x

Table 4.15: Training information of glyphs in isolated and start location 138

Table 4.16: Training information of glyphs in middle and end location 138

Table 4.17: The testing information for all the glyphs in all locations 139

Table 4.18: Testing results as a percentage for all glyphs in different locations 141

Table 4.19: Testing results in numbers for all glyphs in different locations............ 141

Table 5.1: Tokens testing dataset files description .. 147

Table 5.2: Classifiers list of the HCC approach ... 150

Table 5.3: Sample of applying a Tokens classifier over a document image 154

Table 5.4: Sample of detected glyphs with text lines and letters sorted 156

Table 5.5: Recognition results of commercial software and HCC recognizer 161

Table 5.6: Part of confusion matrix with a sample of six classifiers 163

Table 5.7: Confusion matrix likelihood alternatives glyphs list 165

Table 5.8: Confusion matrix results in comparison to the tokens recognizer 167

Table 6.1: Post-processing test results of naked words.. 174

Table 6.2: Post-processing test results of naked PAWs ... 176

1. Introduction 1

Chapter 1.

Introduction

Computer processing of data has increased dramatically over time, to the extent that

there are now massive demands for the rapid transfer of printed and handwritten

information into computer readable format. Frequently this data must be accurately

typed by human operators, which is time consuming and prone to error. This

operation has recently been ameliorated by the invention of Optical Character

Recognition (OCR) techniques. An OCR application reads written or printed data by

recognizing the text at high speed. OCR applications are still quite limited in their

use and can only recognize small amounts of the available data. Hence, more effort is

needed in order to enable OCR applications to read printed and handwritten

characters more quickly and accurately (Cheriet, Kharma et al. 2007). OCR

applications for non-western characters, particularly partially connected scripts such

as Arabic and Persian, are still relatively weak. The work reported here is concerned

with the OCR of machine printed Arabic text.

Why do we need OCR generally? OCR is an essential technique that enables the

transfer of printed documents to a computer readable form. OCR allows for the

automated archiving and retrieving of old documents, especially old books. OCR has

various applications at this time and still has great potential, as it offers a variety of

applications for mail sorting (Govindan and Shivaprasad 1990), bank cheque

processing (Senior 1992) and reading machines for the blind (Abdelazim 2006)

among other uses. OCR research studies have a great influence on pattern

recognition applications, for example; face recognition, fingerprint recognition and

iris recognition. Such applications are used for some security issues such as criminal

tracking. Recently, some systems have integrated OCR with new research topics

such as automatic translation and voice commands. These systems would play an

important role in developing such new topics (Chang, Chen et al. 2009).

1. Introduction 2

Why do we need Arabic OCR specifically? Arabic OCR lacks research studies when

compared to Latin character OCR. The recognition accuracy of Latin character OCR

is far beyond that of Arabic OCR because the Arabic language is different in its

cursive script and its letter shape, which is context sensitive (Khorsheed 2002). The

population of those using the Arabic language is 350 million speakers (Statistics

2010) and it is the fourth most spoken language in the world after Chinese, English

and Spanish (Education 2009). This indicates the need for more research studies in

Arabic OCR. An improved and more powerful approach for Arabic OCR would be

useful for the continuity of the language and in order to keep its history recorded.

1.1 Background

Pattern recognition classifies data based on knowledge extracted from known

patterns. Pattern recognition is concerned with defined pattern domains (such as:

character, iris, fingerprint, voice, face) and extracts some features from this pattern

(either geometrical or structural) and then applies a classification algorithm in order

to identify the pattern based on previously known features.

Pattern recognition is important in many applications and fields, for example; speech

recognition for customer authentication, voice commands to computers and for

converting speech to text (Cheriet, Kharma et al. 2007); for the role it takes in

understanding and recognising engineering drawings (Elliman 2001); for medical

and bioinformatics applications such as the understanding of the electrocardiogram

(ECG) (Jafari, Noshadi et al. 2006); for human identification, such as face

recognition (Bowyer, Chang et al. 2005; Tan, Chen et al. 2006; Mian, Bennamoun et

al. 2007), iris recognition (Bowyer, Hollingsworth et al. 2008; He, Tan et al. 2009;

Kumar and Passi 2010) and fingerprint recognition (O'Gorman 1998; Maltoni and

Cappelli 2009); for research and industrial use of robotics (Bradski and Kaehler

2008) and for text understanding in character recognition.

Character recognition is the transformation of text images, generally captured by a

scanner, into machine-editable text. This process is known as Optical Character

Recognition (OCR). The objective of OCR is to emulate the human capability of

accurately reading a document but at a higher speed.

1. Introduction 3

OCR is currently very important and has many applications. One of the main uses of

OCR is for office automation and document archiving as some companies tend to

replace paper archiving for electronic archiving (Khorsheed 2002). Normally they

keep two electronic copies of the same old paper document; an image for archiving

and a text document for further use. Another usage of OCR is obvious in banks as

they utilize the offline handwritten recognition applications with cheques in order to

recognize names and values written on the cheques. Also, mail sorters use the same

type of applications in order to recognize the names and addresses from the mail

(Govindan and Shivaprasad 1990).

1.1.1 Motivation

The Arabic language has been used since the fifth century when written forms were

stimulated by Islam. It is the native language of 350 million speakers (Statistics

2010) and it is the fourth most spoken language in the world after Chinese, English

and Spanish (Education 2009). It is one of the six main languages of the United

Nations (beside Chinese, English, French, Russian and Spanish) (Nations 2007). It

has been estimated to be one of the ten most used languages on the Internet

(Statistics 2010) and is the official language of 22 countries located in the

geographical area of the Middle East (UCLA 2006).

The Arabic language is a particularly important language for all Muslims around the

world. There are 1.5 billion Muslims, representing around a quarter of the world’s

population (worldwide 2009). The Arabic language is the original language of the

holy Quran and, although the holy Quran is translated into many other languages,

Muslims use the Arabic language in their religious rituals.

Research studies regarding OCR have been widely developed during the last five

decades in common languages like English, Chinese and Japanese (Cheriet, Kharma

et al. 2007). These research studies concentrated mainly on Latin based languages,

while Arabic based languages tend to be neglected (Harty and Ghaddar 2004;

Cheriet, Kharma et al. 2007; Lorigo and Govindaraju May, 2006). Although there

has been a recognizable increase in Arabic OCR research studies during the last

decade, there is still a need for more (Abdelazim 2006). Specific features of the

Arabic language (shown in section 2.2) create uniqueness in the necessary OCR

1. Introduction 4

applications. It is this uniqueness that increases the demand for more research

regarding Arabic language recognition (Hamada 2007).

Language engineering is the use of computer technologies for the creation, archiving,

processing and retrieval of machine processed language data and is a common

research topic involving computer science and linguistics (Maynard, Tablan et al.

2002). The research studies of language engineering in the Arabic language are very

limited (AbdelRaouf, Higgins et al. 2010). So, for instance, the Arabic language

lacks a robust Arabic corpus. The creation of a well established Arabic corpus

encourages Arabic language research and enhances the development of Arabic OCR

applications. Therefore, it is essential for the corpus to be flexible regarding its

continuous updating of size and contents in such a way as to meet the innovative

needs of research.

1.1.2 Scope

The scope of this research is to introduce an innovative approach for offline printed

Arabic recognition, while the wider scope is the machine recognition of readable

information. Figure 1.1 shows the different categories of machine recognition of

readable information. The two main types of readable information are “offline

(OCR)” or “online”. The online character recognition recognizes the dynamic

handwriting motion during typing which is widely used in tablet PCs, handheld

PDAs, smart phones and tablet devices (Plamondon and Srihari 2000). The online

readable information is not included in this research. The offline readable

information (OCR) is either machine printed or handwritten (Abdelazim 2006).

Handwritten OCR uses a computer application in order to translate scanned paper

documents written by hand into electronic word documents (Lorigo and Govindaraju

May, 2006). Handwritten OCR is outside of the scope of this research.

The machine printed OCR contains different categories (Govindan and Shivaprasad

1990); Firstly, cursive / partially cursive - such as the Arabic OCR - which includes

character segmentation-free recognition, as in the case of this research. It also

includes the recognition of isolated characters only. Moreover, it includes

recognition by segmenting the word into its characters or primitives. It can recognize

the whole word without character segmentation (Khorsheed 2002; Abdelazim 2006).

1. Introduction 5

Secondly, separated characters; for example, in the case of Latin character based

languages, it recognizes alphabets, numerals and symbols. Thirdly, the mathematical

formula recognizes symbols, numerals and so on. Fourthly, the ideogram languages

such as Chinese and Japanese are totally symbolic languages. This type is out of the

scope of this research. Finally, other types which include; for example, the Indian,

Russian and Greek languages (see section 2.1.2).

Machine printed

Offline (OCR)

Handwritten

Cursive/

Partially Cursive

Characters

Mathematical

formula

Alphabets

Isolated

characters

Partially

words

Whole

words

Online

Readable information

Symbols Numerals

SymbolsNumerals

Ideogram

Segmentation

free

Figure 1.1: The machine recognition categories of readable information

The established approach of solving the Arabic OCR problem was investigated in

order to achieve the scope of this research. An OCR application normally consists of

three main parts: pre-processing, recognition and post-processing as shown in Figure

1.2 (Khorsheed 2002; Cheriet, Kharma et al. 2007; Lorigo and Govindaraju May,

2006). The pre-processing part is responsible for preparing the document image for

the recognition part. The more successful the pre-processing algorithms are, the

better the recognition rate of the application. The recognition part handles the

document image after line finding. In turn, the recognition part outputs the machine

readable recognized form of a document image. Finally, the post-processing part

receives the series of recognized letters / words and it indicates which possible words

are best in this situation, based on linguistic or statistical data.

1. Introduction 6

The pre-processing phase cleans the image using image processing techniques. It

converts the image to a more concise representation. The pre-processing part

normally includes the following steps (Senior 1992; Lorigo and Govindaraju May,

2006):

1. Page layout analysis is responsible for analysing the contents of the document

image. It defines the blocks of data inside the image whether text or non-text

(Cheriet, Kharma et al. 2007).

2. Document decomposition separates the document image into its main

components (paragraphs or non-text). This step is considered to be a preliminary

step of dealing with the document image before the pre-processing stages that

enhance the document image (Cheriet, Kharma et al. 2007).

3. Binarization is responsible for receiving the scanned image and converting the

document from a grey-scale image to a binary, black and white image. Noise

removal removes small erroneous regions and pixels from the binarized image.

4. A thinning step is normally used with handwritten input and is sometimes used

with printed input. This step removes the stroke width and leaves a skeleton

stroke with a width of one pixel.

5. Slant and skew detection and correction detect the slant and skew in the

document image and correct them. Slant is the sheer inclining of the word from a

horizontal line as in italic words. Skew is the rotation of the whole document

image which results from the rotation of the document image while scanning.

6. Line finding identifies the baselines of the text lines in the paragraph of text. The

baseline is the horizontal line that passes through the connected primitives of the

line of text (Khorsheed 2002) or just under the non-descending letters for non-

connected text.

The recognition part normally includes the following steps:

1. Lines and words segmentation separate the image of a paragraph of text to its

images of text lines. Separate the line of text to its images of words. It ends up

with the images of separate words inside the paragraph.

1. Introduction 7

2. Word normalization scales the word image to fit a required standard height for

the training process.

3. Feature detection and extraction defines the type of features that can be extracted

from the document images and extracts these features during the training process

of the application.

4. Character segmentation segments the word into its letters or sub-letters

(primitives) contents.

5. Classification & recognition: classifies the letters of the words based on the

features extracted in the previous step. This step ends with defining the letters of

the words or all the words.

Line Finding

Thinning

Feature detection & extraction

Lines & Words Segmentation

Character Segmentation

Validation

Context & Lexical

Corpus Correction

Page Layout Analysis

Slant & Skew Correction

Word Normalization

P
re

-p
ro

c
e

s
s
in

g R
e

c
o

g
n

it
io

n
P

o
s
t-

P
ro

c
e

s
s
in

g

Binarization & Noise Removal

Document Decomposition

Classification & Recognition

Figure 1.2: A general framework for character recognition

1. Introduction 8

The post-processing part includes the following two steps:

1. Validation checks the word resulting from the classification and recognition step

from a statistical, lexicographic or grammatical point of view, deciding whether it

is the best suite word or not.

2. Context and lexical corpus correction step supplies the OCR application with

suggested likelihood alternative words, driven from the corpus context.

Feature detection & extraction

Classification

Text line extraction

Validation

Context & Lexical

Correction Corpus

R
e

c
o

g
n

it
io

n
P

o
s
t-

P
ro

c
e

s
s
in

g

Recognition

Page Layout Analysis

P
re

-p
ro

c
e

s
s
in

g

Document Decomposition

Figure 1.3: The framework of the proposed Arabic OCR approach

Figure 1.3 shows the framework of the proposed approach which defines the scope

of this research. It is clear from the proposed approach that some of the pre-

processing and recognition steps (Binarization & Noise Removal, Thinning, Slant &

Skew Correction, Line Finding, Lines & Words Segmentation and Word

1. Introduction 9

Normalization) are eliminated and the character segmentation stage is also totally

eliminated. This indicates that a lot of steps might not be needed for the recognition

of Arabic OCR.

The scope of this research is wide enough to include other languages that use Arabic

alphabets, for example; Pashto, Persian, Sindhi, and Urdu. All languages that use

Arabic alphabets have common features such as partial cursive script, context

sensitivity of letter shapes and reading direction (Khorsheed 2002). These common

features facilitate the opportunity to share research studies.

1.2 Brief Overview

This section introduces the general aims and objectives of this research with a

detailed definition of the problems and specific objectives. The approach followed in

solving the problem is defined. The contributions of this research are explained

briefly.

1.2.1 General aims and objectives

The aim of this research is to investigate, suggest, design and analyze a set of OCR

techniques in order to significantly increase the recognition accuracy and speed of

offline printed Arabic character recognition. A number of practical questions relating

to Arabic OCR applications set the foundation and objectives for this research:

1. What are the advantages and disadvantages of the established way of solving the

problem of printed Arabic OCR?

2. To what extent are the steps in the pre-processing and recognition stages

essential and can these steps be eliminated totally or partially?

3. Can Arabic printed text be recognized without the character segmentation

phase?

4. If some steps from the pre-processing and recognition stages in additional to

character segmentation are eliminated, then can a complete Arabic OCR

application be developed?

1. Introduction 10

5. Can the connected segments or pieces of Arabic words (PAWs) as well as naked

pieces of Arabic words (NPAWs); PAWs without diacritical marks shown in

section 2.2 (AbdelRaouf, Higgins et al. 2008) be considered as the smallest

Arabic tokens to replace words and naked words in Arabic OCR applications?

6. Are the available Arabic corpora sufficient to cover Arabic OCR research?

These represent the research questions that were tackled during the development of

this research. Acquiring answers to these questions is the final objective of this

research.

1.2.2 Problems and specific objectives

Three major problem areas need to be considered in order to answer the set of

questions presented in section 1.2.1.

The first problem area is concerned with the pre-processing and recognition stages,

which affects the recognition accuracy according to the quality of the document

image (Khorsheed 2002). All the steps of the pre-processing and recognition stages

have many algorithms and different approaches available. Sometimes one approach

achieves good results with a document image and fails with another (Baird 1987).

The variety of approaches in each step sometimes misleads the researchers. These

stages are considered to be one of the reasons for the slowness in the character

recognition time (Cheriet, Kharma et al. 2007). Initially, this research intended to

reduce the pre-processing and recognition steps as much as possible for the sake of

enhancing the recognition accuracy and speed.

The second problem area is concerned with the character segmentation phase. It is

one of the reasons for reducing recognition speed and accuracy. It is clear that the

character segmentation phase is always the major bottle neck in Arabic OCR

research (Abdelazim 2006). Although there are some research studies trying to

achieve character segmentation-free Arabic OCR, this is still limited to a certain

number of words and fonts (Abdelazim 2006). The current research aims to eliminate

the character segmentation phase in the recognition of printed Arabic text. The

character segmentation problem was tackled by attempting a completely new

1. Introduction 11

approach that can detect the glyph image from the document image without any

character segmentation.

The third problem area is concerned with Arabic corpora. A corpus is a large

structured set of texts, electronically sorted and processed. Corpora have become

very important in the study of languages and they are the key to the development of

OCR applications. Excellent corpora have been developed for Latin based languages,

but not for the Arabic language. Access to a corpus of both language and images is

essential during OCR development, particularly while training and testing a

recognition application (AbdelRaouf, Higgins et al. 2010). The aim of constructing

and providing a comprehensive study and analysis of a multi-modal Arabic corpus

was essential for this research and for all the research studies of printed Arabic OCR.

These represent the research problems that were tackled during the development of

this research. Acquiring a solution to these problems is the final target of the

research.

1.2.3 Approach

The previous two sections (1.2.1, 1.2.2) describe the aims and objectives of this

research. In order to achieve these aims, this research investigated a novel approach

that disregarded steps from the pre-processing and recognition stages and recognized

the glyphs without a character segmentation phase as shown in Figure 1.3. This novel

approach achieved at the end a full Arabic OCR application using the proposed

research objectives.

The research studies and applications of Arabic OCR were investigated in order to

identify the advantages and disadvantages of the established way of solving the

Arabic OCR problem as shown in Figure 1.2.

A multi-modal Arabic corpus (MMAC) was constructed in order to facilitate the

generation of Arabic OCR applications. Unlike other corpora, MMAC also includes

tokens such as PAWs and NPAWs that are beneficial to OCR research (AbdelRaouf,

Higgins et al. 2010). A lexicon / stemming algorithm had been developed for

providing a list of alternatives for uncertain words to improve the performance of the

corpus. The lexicon / stemming algorithm also assures the continuous updating of the

1. Introduction 12

size and contents of the corpus, which copes with the innovative needs of Arabic

OCR research.

This research depended on utilising an already existing approach that had been used

and tested regarding face detection applications (Viola and Jones 2001). This

approach is applied on character recognition using a cascade of boosted classifiers

based on Haar-like features. The approach used the rotated Haar-like wavelet feature

extraction algorithm and the cascade of boosted classification algorithm. The feature

extraction algorithm obtains rectangular regions of the image and sums up the pixels

in that region. This summing up is used in order to categorize images. Thus, it could

categorize all images having Haar-like features in a certain range of values as one

category and those deviating out of this range in another category. This procedure

could be recursively carried out by dividing the image clusters (Viola and Jones

2001).

The boosting classification is a powerful machine learning technique. It merges the

performance of many "weak" or base classifiers in order to construct a powerful one

whose performance is significantly better than that of any of its base classifiers

(Bishop 2006). A “weak” or base classifier only needs to perform better than chance,

and thus can be straightforward and computationally inexpensive (Lienhart, Kuranov

et al. 2002). This Haar Cascade Classifier (HCC) approach will be explained later in

Chapter 4. The HCC approach has been selected for the following reasons:

1. It can be used with grey-scale images, so there is no need to apply binarization

and noise removal algorithms that convert a document from a grey-scale to a

black and white image. Nor is there a need to remove noise.

2. It uses a document image without slant and skew corrections as the rotated Haar-

like features accept rotated images up to ±45°.

3. It handles a document image without segmenting each word to its letters or

primitives content; which means that it can pick out any glyph image from inside

the document image without character segmentation. This novel approach

represents a real character segmentation free approach.

1. Introduction 13

4. It manages different font sizes. The approach starts detecting the glyph from the

width and height given in the training parameter up to the size of the whole

document image, hence there is no need for any word normalization.

5. It can be extended to any cursive handwritten language not only the Arabic

language. (Using this approach on handwriting could avoid the thinning step in

the pre-processing stage.)

6. This approach can be applied to create a Portable Document Format (pdf) file

upon extracting the position of the recognized glyph. This could be used with text

from any scanned Arabic document.

A simple approach was applied to implement an HCC classifier and recognizer that

was built based on the classifiers generated from the HCC glyphs classifiers. The

confusion matrix was applied in order to enhance the recognition accuracy of the

HCC approach. A simple post-processing technique was finally applied in order to

enhance the recognition rate of the HCC approach.

1.2.4 Contributions

The main contribution of this research is to develop an Arabic OCR application

completely without character segmentation and pre-processing. This research

contributes to the research area of Arabic OCR in the following aspects:

1. A multi-modal Arabic corpus (MMAC) was collected, generated, verified, tested

and justified. MMAC was tested with a commercial Arabic OCR application and

provided variety of results which proof its usability. The MMAC was used by a

commercial company to make a comparison between different Arabic OCR

applications. The corpus is complemented by a newly developed lexicon /

stemming algorithm in order to improve the performance of MMAC. MMAC has

an application that allows adding and verifying any new lists of words to the

corpus. (see Chapter 3)

2. A new approach to solving the problem of Arabic OCR was followed. This

approach works without steps from the pre-processing and recognition phases to

enhance recognition accuracy and time. (see Chapter 4)

1. Introduction 14

3. Other research studies have attempted to use character segmentation-free

recognition (see section 2.5.5), but these attempts failed either to present a

concrete application or to achieve reasonable results (Abdelazim 2006). This

research followed a new approach in order to achieve true character

segmentation-free recognition depending on Haar-like features, which use the

visual object detection algorithm. This approach led to a true character

segmentation-free recognition application. (see Chapter 4)

4. A complete Arabic OCR application has been successfully created using a Haar

Cascade Classifier (HCC) approach. The application has similar functionality to,

and has been tested against, another Arabic OCR commercial application. (see

Chapter 5 and Chapter 6)

5. The HCC approach is for the first time to be applied with character recognition

and specifically Arabic character recognition. Although this approach was

originally developed for face detection, it is usually used in face detection, eye

detection, pedestrian detection and even in bowls detection (Adolf 2003). (see

Chapter 4)

1.3 Organization of the thesis

This chapter presented the background information, including motivation and scope

of this research. A brief overview was introduced to include general aims and

objectives of this research. It introduced the three main problem areas, sets out the

general objectives, explains the approach and highlights the contributions.

Chapter 2 introduces key concepts in the area of printed character recognition with

the focus on the Arabic language. It presents an overview of OCR history and

research topics related to OCR. It also presents different categories of OCR

applications and OCR commercial applications. It provides an overview of the

written Arabic language and its recognition features. It highlights and considers a

detailed survey study of different phases of established OCR applications. It

demonstrate the survey study of the new approaches applied in this research.

1. Introduction 15

Chapter 3 reports the construction of a Multi-Modal Arabic Corpus (MMAC). The

MMAC is generated from both text and images of existing documents. A ground

truth annotation is offered for corpus images. Statistical analysis and verification of

the corpus has been carried out and is presented. Moreover, the MMAC was tested

using commercial OCR software. A new lexicon / stemming algorithm is proposed in

order to enhance corpus information retrieval. A tool is added to continually improve

the corpus by adding new words and justifying them using the lexicon / stemming

algorithm.

Chapter 4 describes the approach of the Haar-Cascade Classifier (HCC), with an

explanation of how to apply the HCC approach to Arabic character recognition. The

relationship between Arabic glyphs and faces is explained. The usefulness of the

approach to Arabic character recognition is also indicated. It shows the steps and

experiments that were followed in order to justify that the HCC approach is

appropriate for Arabic character recognition applications. An experiment was

introduced to include all the Arabic glyphs in the HCC approach and its testing

results and conclusions are presented.

Chapter 5 presents an HCC tokens recognition. It explains the generation of testing

dataset for testing the next steps. It describes the generation of a single tokens

classifier from the different classifiers that were produced in Chapter 4. The

generation of the tokens recognizer is given with its different components, including

the testing process. It describes the generation and applying of a confusion matrix

with an overview of how it can enhance the recognition rate of the OCR application.

The testing of the HCC approach after applying the confusion matrix was presented

against commercial software.

Chapter 6 describes the application of a post-processing technique to the HCC

approach. A comparison between naked words and naked PAWs is presented.

Applying trie structure in searching inside the look-up dictionaries of the two token

types (Nwords and NPAWs) is presented. Implementing the Levenshtein distance

algorithm in order to enhance the recognition rate of the HCC approach is explained

using the two different token types. Testing the post-processing technique with the

two token types is introduced with the results and conclusion of the testing.

1. Introduction 16

Chapter 7 presents the conclusions and suggestions for future work of the research.

How the objective of the research was met is explained. The future work that can

enhance the final results of the research is introduced and explained for each part of

the thesis. The conclusion of the research is explained briefly. Closing remarks of the

thesis are presented.

2. A review of character recognition 17

Chapter 2.

A review of character recognition

This chapter introduces a survey across OCR research studies in general. The survey

includes OCR applications and related research. It provides an overview of the

written Arabic language and discusses the problems occurring to the developer of an

OCR application. It introduces the main stages involved in developing any OCR

application. The main focus of this research is Arabic printed OCR, therefore a large

proportion of the survey presented was centred on this. A survey regarding

commercial OCR applications is also presented.

OCR is the automatic reading of text which is then saved onto the computer. The text

can be in any format or language. Normally, the OCR application goes through many

phases to generate the overall application where each phase includes different steps.

Each step can usually apply one of many different algorithms. The importance of the

steps differs from one OCR classification type to another. Figure 1.2 shows the

phases and steps of an OCR application. A survey study is introduced in this chapter

containing all the OCR phases with their normal steps.

2.1 Introduction

2.1.1 Overview

The history of OCR demonstrates the progress made in the field from the early

beginnings of this research topic. Moreover it tells the enhancements made in the

recognition rate and algorithms over time. Research topics related to OCR gives

more information regarding the approaches and techniques used. These approaches

may be of benefit to the development of OCR.

2. A review of character recognition 18

2.1.1.1 History of OCR

The history of OCR explains how it was developed throughout early research from

the first OCR device to the current improved OCR applications. Interestingly OCR

began as a hardware device. The problem at that time was finding a way to enable

the computer to scan document images.

The origins of OCR were founded in early 1870 as an aid to the visually

handicapped, and the first successful version was created by the Russian scientist

Tyurin in 1900 (Govindan and Shivaprasad 1990). In 1928, Gustav Tauschek of

Austria had a patent of a basic OCR "reading machine". It was based on using light-

detecting photocells to recognize patterns on paper or card (Woodford 2010).

The photomultiplier machine was invented in the early 1950s. The machine captured

the images of characters and text by mechanical and optical means of rotating disks

and photomultipliers. It was the first real recorded OCR application. The

development of OCR applications started to show real improvement beginning with

the invention of scanner machines (Cheriet, Kharma et al. 2007).

The modern computerized version of OCR appeared in the mid 1950s. Following

this, the flatbed scanner was invented which was capable of high speed scanning.

These important developments accelerated the speed of character recognition,

reduced the cost and allowed a wide variety of forms and documents to be scanned

(Govindan and Shivaprasad 1990). Since then extensive research has been carried

out and a large number of research studies have been published by various

researchers in the area of character recognition (Govindan and Shivaprasad 1990). At

that time, the motive for developing OCR applications was governed by the need to

process an enormous amount of documents such as bank checks, government

records, credit card imprints and for mail sorting (Cheriet, Kharma et al. 2007).

2.1.1.2 Research topics related to OCR

OCR research topics are part of many other broad research areas. This section serves

to explore the relationship between OCR and those areas. These broad research areas

are artificial intelligence, machine learning, computer vision, digital image

processing, pattern recognition and natural language processing.

2. A review of character recognition 19

Artificial intelligence facilitates computers to carry out tasks which are usually done

by people, thus, enabling computers to recognize documents rather than people is

considered to be an artificial intelligence approach (Senior 1992).

Machine learning is concerned with the design and development of algorithms that

allow computers to evolve behaviours based on empirical data, such as databases

(Bishop 2006). The feature detection and extraction phase is considered to be a

machine learning methodology.

Computer vision aims to duplicate the effort of human vision by electronically

perceiving and understanding an image. The machine extracts important information

from the image which enables the solving of some tasks in order to understand the

image (Sonka, Hlavac et al. 1998). The pre-processing stage includes computer

vision algorithms (Abdelazim 2006).

Digital image processing is the processing of digital images by digital computers

(Gonzalez and Woods 2007). The digital image is composed of a fixed number of

elements. Each element is a pixel on the image and has a location and value. Most of

the steps of OCR handle the document image as a digital image and use different

algorithms - usually applied in image processing.

Pattern recognition is concerned with defined pattern domains (such as iris,

fingerprint, voice and face) and extracts some features from this pattern (either

geometrical or structural) and then applies a classification algorithm to identify the

pattern based on previous known examples. OCR is a branch of pattern recognition

and the domain, in the case of OCR, is the text (Khorsheed 2002).

Natural language processing (NLP) is a common research topic involving computer

science and linguistics. It is concerned with the computers’ processing of human

(natural) languages (Bates 1995). This computer processing is generated using

language engineering algorithms (Maynard, Tablan et al. 2002). OCR uses language

engineering in generating and exploiting corpora.

2. A review of character recognition 20

2.1.2 Different categories of readable information

Different categories of readable information explain the main features of machine

recognition as shown in Figure 1.1. Readable information can be categorized based

on either online versus offline (OCR) or on being machine printed versus

handwritten. The latter categorization is based on the type of language used.

2.1.2.1 Online versus offline classifications

Online character recognition is an application that saves input at the time of writing

via direct input from the user stylus. Examples of this application include the tablet

PC, smart phones and tablet devices. This category depends mainly on the direction

of the movement of the stylus during writing in order for the application to recognize

the characters in real time (Plamondon and Srihari 2000; Abdelazim 2006). The

feature extraction and classification phases in this category use some definite

algorithms in text recognition.

Offline character recognition is the transformation of text images, generally captured

by a scanner, into machine-editable text. These inputted text images can be machine

printed or handwritten (Senior 1992; Lorigo and Govindaraju May, 2006).

Handwritten OCR is the most sophisticated category and usually has a low

recognition rate (Abdelazim 2006). Machine printed OCR for non-cursive languages

is the most straightforward category and achieves a high recognition accuracy

(Senior 1992).

2.1.2.2 Machine printed versus handwritten categories

Machine printed OCR operates on characters created using a typewriter or computer

printer. Machine print is usually consistent in the size of the characters and the

recognition rate is extremely high. The shapes of a single character are extremely

limited compared to handwriting. The distance between characters is uniform and the

distance between words is also consistent. The baseline is uniform and can be picked

out easily. Non-cursive languages (e.g. Latin based) need no character segmentation

phase for recognition (Khorsheed 2002; Abdelazim 2006).

Handwritten OCR is more complicated than machine printed. The thinning step in

the pre-processing phase is more important than in the case of machine print. The

shapes of a single character can vary hugely and the application is continually

2. A review of character recognition 21

required to learn these shapes. The inter-distance between letters and words is also

inconsistent and the baseline detection process requires a complicated algorithm. In

addition to this, a complicated character segmentation algorithm is required to

segment the characters from the words. The post-processing phase is extremely

important. Hence, the influence of prediction is higher in this category (Senior 1992;

Lorigo and Govindaraju May, 2006).

2.1.2.3 Language based category

OCR is categorized based on the languages’ alphabets. The Latin based languages

(for example English, French and German) can be included in one category which is

based on the Latin characters’ alphabets. The Far Eastern (Ideogram) languages (for

example Chinese and Japanese) can be included in another category (Govindan and

Shivaprasad 1990). The South Eastern Asian languages (such as Indian, Tamil and

Tai) can also be included in another category (Shanthi and Duraiswamy 2010). The

last category is the Middle Eastern languages which are based on Arabic alphabets,

Hebrew can be included in this category (Govindan and Shivaprasad 1990).

Each language category has its own different properties. Latin based languages is the

simplest category, it needs no character segmentation for recognition. The Far

Eastern category includes around 5,000 characters which is why two levels are used

to classify the characters; one to group them and the second to classify the character

(Govindan and Shivaprasad 1990). The South Eastern Asian category uses also two

levels of classification. The number of characters are less than that for the Far East

category and are cursive characters (Shanthi and Duraiswamy 2010). The Middle

Eastern category has cursive letters and is read from right to left. Normally it uses

character segmentation algorithms for recognition.

2.1.3 OCR Applications

There are many commercial OCR applications on the market with different prices

and degrees of accuracy. These applications are commonly used with the English

language. The character recognition accuracy, page layout reconstruction, support for

languages, support for PDF output, speed and user interface are the main features

that differentiate between OCR applications (Simple Software 2012).

2. A review of character recognition 22

From varies OCR applications on the market, it was settled for ABBYY FineReader

11 (ABBYY 2012), OmniPage Professional 18 (ScanStore 2011) and Readiris Pro 12

(IRIS 2011) to be the best OCR applications on the market (World 2010; Network

2012; Simple Software 2012). NovoVerus from Novo Dynamics (Dynamics 2012)

and OCR from Sakhr software (Software 2011) were first known Arabic OCR

applications.

2.1.3.1 ABBYY FineReader 11 - ABBYY

ABBYY is one of the leader companies in optical character recognition (OCR),

document processing, linguistic and translation technologies. The ABBYY

FineReader 11 application is the latest OCR version produced by the AABBYY

Company (ABBYY 2012).

ABBYY FineReader 11 version enhances the speed and accuracy of recognition. It

creates editable and searchable files from scans. Productivity enhancement include

one-click wizard which enable doing more tasks with fewer steps. Supports multi-

language documents with 189 supported language including Arabic (ABBYY 2012).

2.1.3.2 OmniPage Professional 18 - Nuance

Nuance is one of the leader world companies from speech technologies, to healthcare

solutions, to imaging technologies that convert physical documents into searchable

digital files. The OmniPage Professional 18 application is the latest OCR application

produced by the Nuance Company (ScanStore 2011).

OmniPage 18 is fast and precise application that deals with paper, PDF files, and

digital camera pictures. OmniPage 18 ensures that the converted document is look

like the original with its text, graphics, columns, and tables. It offers many advanced

features, including Digital Camera 3DC technology that automatically corrects any

distortions of images. Automatically detects Asian languages, which suits documents

contain mixed languages, but not include Arabic language (ScanStore 2011).

2.1.3.3 Readiris Pro 12 - IRIS

Readiris Pro is manufactured by a large worldwide global company called I.R.I.S.

started in 1987 and specialized in OCR applications. The company manufactures a

2. A review of character recognition 23

number of other optical character recognition products including pen scanners, card

scanners, mobile scanners and a digital pen (Network 2012).

Readiris Pro 12 is a competitive OCR package with a number of features including

table recognition, handwritten recognition and picture enhancement tools. However,

it is in the middle of the recognition accuracy. Readiris pro12 recognizes more than

120 different languages. Dedicated versions for Asian, Hebrew and Arabic characters

are also available (IRIS 2011).

2.1.3.4 NovoVerus – Novo Dynamics

NovoDynamics had been established since two decades and is specialized in the

OCR applications. It provides fast and accurate 64-bit, multi-core, cross-platform

document capture applications. NovoDynamics delivers intelligent applications that

add clarity and insight to help customers (Dynamics 2012).

NovoVerus automatically detect and extract different languages. In addition, to apply

image enhancement to damaged pages, poor photocopies and low quality documents.

NovoVerus supports Roman, Asian, Cyrillic and Middle Eastern languages.

Convenient user interface features facilitate zone and text editing prior to processing

with machine translation systems, which can easily be integrated (Dynamics 2012).

2.1.3.5 OCR – Sakhr Software

Sakhr was established in 1982 to support Arabic language for information

technology. Sakhr has produced many industry first commercial products and

solutions with outstanding accuracy and performance. U.S. government evaluators

assess Sakhr as the best available Arabic OCR (Software 2011).

Sakhr OCR recognizes scanned Arabic text or handwriting with high accuracy.

Supports Arabic, Farsi, Pashto, Jawi, and Urdu. It supports bilingual documents.

2.2 The written Arabic language

This section provides an overview of the written Arabic language and discusses the

problems occurring to the developer of an OCR application. These problems also

have an impact upon the design of successful corpora. The Unicode naming

2. A review of character recognition 24

convention has been adopted here, though other schemes are in use (Consortium

2003; Unicode 2007).

2.2.1 Key features of written Arabic

Written Arabic is both rich and complex, features of note are:

 The Arabic language consists of 28 Arabic letters (Consortium 2003) and is

written from right to left. Arabic script is cursive even when printed and Arabic

letters are connected by the baseline of the word (see Figure 5.4). The Arabic

language makes no distinction between capital and lower-case letters; it contains

only one case.

 The widths of letters in Arabic are variable (for example and).

 The connecting letter known as Tatweel or Kashida is used to adjust the left and

right alignments; this letter has no meaning in the language, it does not exist at all

in any semantic sense.

 Arabic alphabets depend on dots to differentiate between letters. There are 19

“joining groups” (Unicode 1991-2006). Each joining group contains more than

one similar letter which differs in the number and place of the dots, as for

example () which have the same joining group () but with differences in

the place of dots. Table 2.1 lists the joining groups, their schematic names and

their group letters. The Hamza () is used as a joining group, although it is not

included in Unicode. Table 2.2 shows the same joining groups but the letters are

shown in their location in the word. The character in its different location is

called a glyph.

 The Arabic language incorporates ligatures such as (Lam Alef) which actually

consist of two letters () but when connected produce another glyph. In some

fonts like Traditional Arabic there are ligatures like (يمـ) which come from two

letters ().

2. A review of character recognition 25

Table 2.1: Arabic joining groups and group letters, with their English name

Schematic Name Joining Group Group Letters

ALEF

BEH

HAH

DAL

REH

SEEN

SAD

TAH

AIN

FEH

QAF

KAF

LAM

MEEM

NOON

HEH

WAW

YEH

TEH MARBUTA

HAMZA

 Arabic script can use diacritical marking above and below the letters such as (

) termed Harakat (Consortium 2003) to help in pronouncing the words and in

indicating their meaning (Fahmy and Ali 2001). These diacritical markings are

not considered in this research.

 The three letters Ain, Ghain and Heh () have four different glyph shapes

according to their location in the word, while the rest of the Arabic letters have

two different glyphs in different locations inside the PAW. This is shown in

Table 2.3.

 An Arabic word may consist of one or more sub-words. We have termed these

disconnected sub-words PAWs (Pieces of Arabic Word) (Amin 1997; Lorigo and

Govindaraju May, 2006). For example () is an Arabic word with three

PAWs (). The first and inner PAWs of the word must end with one of

the six letters () as these are not left connected. Hamza is a separate

PAW.

2. A review of character recognition 26

Table 2.2: Arabic joining groups and group letters, defined with letters location

Characters Isolated Start Middle End

Table 2.3: Arabic letters and their shapes at different locations within words

English Name Arabic Letter Isolated Start Middle End

ALEF

BEH

THE

THEH

JEEM

HAH

KHAH

DAL

THAL

REH

ZAIN

SEEN

SHEEN

SAD

DAD

TAH

ZAH

AIN

GHAIN

FEH

QAF

KAF

LAM

MEEM

NOON

HEH

WAW

YEH

2. A review of character recognition 27

 Arabic letters have four different shapes according to their location in the word

(Lorigo and Govindaraju May, 2006); Start, Middle, End and Isolated. For the

six letters () there is no Start or Middle location shape. The letter

following these six letters must be used in its Start or Isolated location shape. In

the joining type defined by the Unicode standard all the Arabic letters are Dual

Joining, except the previous six letters and the Teh Marbota () which is joined

from the right side only. The Hamza () is not a joining letter. Table 2.3 shows

the different shapes Arabic letters adopt in different locations and gives their

English names.

 Fifteen Arabic letters have dots: 12 letters have dots above the baseline; while

three have dots below it. 10 of the fifteen letters use one dot, three use two dots

and two use three dots (Khorsheed 2002). Table 2.4 shows the dots different

distribution among letters.

Table 2.4: Arabic letters with dots distribution

Description Arabic Letters

Letters with dots above baseline

Letters with dots below baseline

One dot Letters

Two dots letters

Three dots letters

2.2.2 Recognizing written Arabic

The Arabic language is not an easy language for automatic recognition. Some of the

particular difficulties that must be faced by the developers of OCR applications are:

 Characters are cursive and not separated, as in the case of Latin script. Hence,

recognition normally requires a sophisticated character segmentation algorithm.

 Characters change shape depending on their location in the word. The distinction

between isolated characters is lost when they appear in the middle of a word.

 Sometimes Arabic writers neglect to include whitespace between words when the

word ends with one of the six letters (). This is known as the connected

words problem (Buckwalter 2004). For example, () should be

2. A review of character recognition 28

(). On the other hand they sometimes separate a single word into two

words when the word is long or is pronounced in two parts; () is actually

() (Buckwalter 2004).

 Repeated characters are sometimes used, even if this breaks Arabic word rules.

This is especially common in online “chat” sites; for example () is

actually ().

 There are two ending letters () which sometimes indicate the same meaning

but are different characters. For example () and () have the same meaning,

the first is correct but the second form is often encountered. The same problem

exists with the character pair ().

 There is often misuse of the letter Alef () in its different shapes ().

 The individual letter () which means "and" in English is often misused. It is a

separate word and should have whitespace before and after it, but most of the

time Arabic writers do not use the whitespace. This is a particularly common

instance of the connected word problem.

 The Arabic language contains a number of similar letters like Alef () and the

number 1 (), and also the full stop (.) and the Arabic number 0 () (Harty and

Ghaddar 2004).

 Arabic font files exist which define character shapes similar to the old form of

Arabic writing. These fonts are totally different from the popular fonts. For

example a statement with an Arabic Transparent font like ()

when written in the old shape font like Andalus becomes (احمد يلعب في الحديقة).

 It is common to find transliterations of English-based words, especially proper

names, medical terms, and Latin-based words.

 The Arabic language is not based on the Latin alphabet and therefore requires

different encoding for computer use. This is a practical problem, and a source of

confusion, as several incompatible alternatives may be used. A code page is a

sequence of bits representing a certain character (Beebe 1990; contributors 2006).

2. A review of character recognition 29

There are three main code pages used: Arabic Windows 1256, Arabic DOS 720,

and ISO 8859-6 Arabic. Upon selecting any files it must first check the code page

used. Most Arabic files use Arabic Windows 1256 encoding. Recently, files have

been encoded using the Unicode UTF-8 code page. The standard code page for

Arabic is Unicode UTF-16 and also the Unicode UTF-32 Standard. The use of

Unicode may be regarded as best current practice.

2.2.3 PAWs and NPAWs

Arabic is an intricate language. It is therefore crucial that an equally rich and

complex corpus is available to support development of Arabic OCR applications. In

particular, the importance of PAWS and NPAWS is such that they must be included

in any realistic text/image corpus. The addition of PAWs and naked PAWs is a novel

extension of the previous word-based approach to Arabic corpora that specifically

facilitates Arabic OCR. PAWs and NPAWs are included to the Multi-Modal Arabic

Corpus (MMAC) shown in Chapter 3 for the following reasons:

 PAWs are the smallest separable token in the Arabic language.

 Each PAW is one glyph, making written Arabic a disconnected sequence of

PAWs. Using PAWs is a reasonable way to overcome the problem of connected

words.

 Removing the dots to leave naked words and naked PAWs reduces the number of

letters that needs to be considered from 28 to 19.

 The total number of PAWs representing the language in MMAC corpus is

66,725, while the total number of NPAWs is comparatively small (32,804).

Using NPAWs reduces the combinatory aspects of the problem.

 PAWs consisting of one and two letters can be extracted first, as if they are

disconnected letters. These small PAWs represent a significant proportion of the

language and are the most commonly used as shown in section 3.5.2 below. Their

recognition can provide a firm foundation for later processes.

2. A review of character recognition 30

2.2.4 Arabic language morphology

The Arabic language depends mainly on the root of a word. The root word can

produce either a verb or a noun for instance () - a root word – can be a noun as in

() or a verb as in ().

Stemmers, in general, tend to extract the root of the word by removing affixes.

English stemmers remove only suffixes whereas Arabic stemmers mainly remove

prefixes and suffixes, some of them also remove infixes.

Lexica on the other hand create a list of alternative words that can be produced by

that root (Al-Shalabi and Evens 1998; Jomma, Ismail et al. 2006).

Arabic words (verbs and nouns) change according to the following variables: (Al-

Shalabi and Evens 1998; Al-Shalabi and Kanaan 2004)

 Gender: Male or female, like ().

 Tense (verbs only): Past, present or future, like ().

 Number: Singular, pair or plural, like ().

 Person: First, second or third, like ().

 Imperative verb: like ().

 Definiteness (nouns only): Definite or indefinite, like ().

The Arabic language, in addition to verbs and nouns, contains some other words like

prepositions, adverbs, pronouns and so on.

2.3 Pre-processing Phase

The pre-processing phase is the first phase of OCR as it receives the scanned image

of the document for pre-processing and prepares the image for the feature extraction

phase as shown in Figure 1.2. Pre-processing is responsible for cleaning the image

with image processing techniques by converting the image to a more concise

representation. The more successful the pre-processing algorithms are, the better the

recognition rate of the application.

The proposed approach in this research focuses upon eliminating some steps from

the pre-processing and recognition phases as shown in the framework of the

2. A review of character recognition 31

proposed Arabic OCR as shown in Figure 1.3. This approach successfully generated

a complete OCR application without these steps. This indicates that some of these

steps are no longer required for this type of research. The following are the steps

normally included in the pre-processing phase.

2.3.1 Document layout analysis and decomposition

Document layout analysis is a technique used to identify the physical structure of the

page. It describes the page as a set of components. These components can be

paragraphs or non-text components. There are two main approaches to document

layout analysis: the top-down and the bottom-up approaches. The top-down approach

seeks to find global information on the page, such as black and white stripes. It splits

the page into columns, then blocks, lines and finally words. The bottom-up approach

starts with local information consisting of black pixels and connected components. It

firstly recognizes the words, then merges words into lines and finally lines into

blocks (Simon, Pret et al. 1997).

Ittner and Baird (D.J.Ittner and Baird 1993) proposed a robust, multi-lingual top-

down method. The method segments pages, after skew- and shear-correction, into

blocks of text. This method locates large elongated white rectangles and pieces them

together to separate the blocks of text. It generates the minimal spanning tree in order

to detect the text line orientation, and finally uses the projection profiles of the blocks

to find the text lines.

O’Gorman (O'Gorman 1993) introduced the document spectrum or ‘docstrum’,

where the relationship of the objects is expressed with polar coordinates (distance

and angle). It is a method used for structural page layout analysis based on bottom-

up, k-nearest neighbour assembling of page components. The method measures

skew, within-line, and between-line spacing and locates text lines and text blocks.

Breuel (Breuel 2002) presented geometric algorithms for solving the two main

problems in page layout analysis. The first is to find a cover of the whitespace

between texts depending on the maximum empty rectangles. The second is to find

the text line of the maximum likelihood of the presence of geometric constrains. He

also introduced an evaluation function that identifies maximal empty rectangles

2. A review of character recognition 32

corresponding to column boundaries. The evaluation function was combined with the

two geometric algorithms to produce an easy-to-implement layout analysis system.

2.3.2 Binarization and noise removal

Binarization is responsible for receiving the scanned image and converting the

document from a grey-scale image to a binary, black and white, image. This process

is sometimes referred to as thresholding. Noise removal removes small erroneous

pixels from the binarized image.

A global grey level threshold which classifies each pixel’s grey level depends on a

global view and not local features (Cheriet, Kharma et al. 2007). Jianzhuang et al.

(Jianzhuang, Wenqing et al. 1991) presented a global grey level threshold histogram

using the Otsu method. His objective was to extend the technique to a 2-dimensional

histogram. The 2-dimensional Otsu method enhances the grey level information of

each pixel and its spatial correlation within the neighbourhood.

An approach for handling problems with the global grey level threshold is to use the

local grey level threshold. This divides the image into sub-images and utilizes a

different threshold for each sub-image. The key here is to estimate the threshold for

each sub-image which in some cases gives a better threshold.(Gonzalez and Woods

2007). Trier and Taxt (Trier and Taxt 1995) presented a comparative study between

eleven different types of binarization methods.

Noise removal is a process to enhance the quality of the image. It deals with what is

called salt-and-pepper - which refers to dots in the image which occur from re-

copying or from ageing. Dilation algorithms are used with broken characters. Erosion

algorithms are used with touching characters. Souza et al. (Souza, Cheriet et al.

2003) presented a method for selecting the best filter to enhance poor documents

using image quality assessment. They introduced five quality measures to get

information about the quality of the images, and morphological filters to improve

their quality.

2. A review of character recognition 33

2.3.3 Thinning

A thinning step is normally used with handwritten input and is also sometimes used

with printed. This step removes the stroke width and leaves a skeleton stroke with a

width of one pixel. The skeleton obtained must be as thin as possible, connected and

centred (Cheriet, Kharma et al. 2007). This thinning step is generally applied after

the binarization step of the pre-processing. A line-based feature extraction algorithm

is normally used when applying the thinning algorithm, which extracts endpoints,

holes, corner points and fork points (Cheriet, Kharma et al. 2007).

Harty and Ghaddar (Harty and Ghaddar 2004) presented a thinning method which

converted the document image into binary representations. A matrix of ones (1’s) for

black pixels and zeros (0’s) for white pixels were used. Thinning an image reduces

character blocks to their skeletons. The thinning transforms characters into arc

segments one pixel thick, preserving connected components and the number of

cavities and holes. Line-based feature extraction was used by Artificial Neural

Networks (ANN) for classification.

2.3.4 Slant / skew detection and correction

Slant is the sheer inclining of the word from a horizontal line as in italic words. The

general purpose of slant correction is to reduce the variation of the script and to

improve the quality of the words which leads to higher recognition accuracy

(Cheriet, Kharma et al. 2007). Skew is the rotation of the whole document image

which results from rotating the document while scanning. Skew can be recognized

visually as a slope of the text lines with respect to the x-axis, and it mainly concerns

the orientation of the text lines (Cheriet, Kharma et al. 2007).

Baird (Baird 1987) presented an algorithm for detecting the skew angle based on the

projection profile of the maximum energy function. The best estimate of skew occurs

at the global maximum of an energy function on sets of projection counts of

character locations. Experiments showed that the algorithm worked well on a wide

variety of page layouts. Both the speed and accuracy of the algorithm reported better

results than had previously been reported.

2. A review of character recognition 34

Hull (Hull 1998) presented a survey study of four broad classes of skew detection

techniques. These included methods that either calculated skew from a horizontal

projection profile, a distribution of feature locations, a Hough transform, or the

distribution of responses from local, directionally sensitive masks. The basic method

used by each class of techniques was presented and individual algorithms within

each class were discussed.

Slavik and Govindaraju (Slavik and Govindaraju 2001) proved the theoretical

equivalence of two different methods for slant and skew corrections. They showed

that skew correction, followed by slant shear transformation in a horizontal direction,

is equivalent to first correcting slant shear transformation in the horizontal direction

and then correcting skew by a shear transformation in the vertical direction of the

other.

2.3.5 Textline / Baseline detection

A text line is a group of words and characters that are adjacent to each other and

through which a straight line can be drawn (O'Gorman 1993). This straight line is the

baseline which passes through all the connected components of an Arabic text line

(Cheriet, Kharma et al. 2007). A text line is defined by the location of its baseline.

The baseline is defined graphically as the line with the maximum value of black

pixels in that text line (Shafait, Adnan-ul-Hasan et al. 2006). The baseline is the

horizontal line that passes through the connected primitives of the line of text

(Khorsheed 2002) or just under the non-descending letters for non-connected text.

Figure 2.1 shows the location of the baseline in both the Arabic and English

languages.

Baseline for the English language

Figure 2.1: The baseline location of text in English and Arabic

Breuel (Breuel 2002) presented a new algorithm to address the identification of both

page rotation and text lines problems. He used a branch-and-bound approach for

2. A review of character recognition 35

finding the optimal global line and modelled baseline and descender line using a

Gaussian error/robust least square model.

O’Gorman (O'Gorman 1993) introduced the document spectrum, or docstrum as

previously discussed. His method yields an accurate computed skew, within-line, and

between-line spacing and locates text lines and text blocks.

2.3.6 Word normalization

Word normalization scales the word image to fit a required standard height for the

classification process. Normally, the character image is mapped onto a standard size

so as to give a unified dimension for classification (Cheriet, Kharma et al. 2007).

Basically there are two different approaches for normalization; moment-based

normalization and nonlinear normalization.

Among the various methods of normalization, moment-based normalizations are

known for enhancing the character recognition rate. Miyoshi et al. (Miyoshi,

Nagasaki et al. 2009) presented moment normalization methods that use the

moments of character contours rather than character images themselves to calculate

the scaling parameters. Their experiments showed that the proposed method is

effective, particularly for printed character recognition.

Maddouri et al. (Maddouri, Amiri et al. 2000) presented a local normalization

method for global recognition of Arabic handwritten scripts. This normalization

method is based on Fourier coefficients of a chain-encoded contour. The method

begins with boundary detection and then generates a Freeman chain code. A Fast

Fourier Transform (FFT) algorithm calculates the Fourier coefficients of a chain-

encoded contour. Finally these coefficients are normalized to cope with the

orientation and size variation of a handwritten character. Experimental tests help to

evaluate distances between the normalized character and its point of reference.

2.4 Feature extraction Phase

The purpose of the feature extraction phase is to calculate the attributes of patterns

that are most suitable for the classification phase. When the input pattern is too large

to be processed as one set and is suspected to be particularly redundant (with a lot of

2. A review of character recognition 36

data, but little information) then the input data must be transformed to a compact

representational set of features. The method of transforming the input data into a set

of features is called feature extraction. Generally, if the features are carefully

selected, it is expected that the relevant information will be extracted from the input

data. Feature extraction methods are designed for different representations of

characters. The feature extraction method is selected based on invariance properties,

re-constructability, expected distortions and variability of the characters (Cheriet,

Kharma et al. 2007).

The feature extraction algorithms can be categorized into geometric; structural and

space transformation features. An example of the geometric features is moments; of

the structural features is Fourier descriptors and for space transformation features an

example would be linear transformation (Cheriet, Kharma et al. 2007). Trier et al.

(Trier, Jain et al. 1996) presented a survey study of feature extraction methods for

off-line recognition of segmented (isolated) characters. Their study included the

feature extraction methods of grey-scale images, binary contour images and vector

representation.

The feature extraction algorithm applied in this research has Haar-like features which

consider as one of the geometric features. The approach is explained with the

following commonly used feature extraction methods.

2.4.1 Moments

Moments and functions of moments as feature extraction methods have been used in

character recognition. These methods extract global geometric properties of the

image such as shape area, centre of mass and moment of inertia (Cheriet, Kharma et

al. 2007).

Teh and Chin (Teh and Chin 1988) presented various types of moments used to

recognize image patterns as features. A number of moments were surveyed and some

issues were addressed, such as image-representation ability, noise sensitivity, and

information redundancy. Moment type evaluations include regular moments,

Legendre moments, Zernike moments, pseudo-Zernike moments, rotational

moments, and complex moments.

2. A review of character recognition 37

2.4.2 Hough transform

The Hough transform is a popular feature extraction method used in digital image

processing. It is able to detect straight lines, curves, or any shape used in parametric

equations. The Hough transform uses the polar parametric form to identify possible

initial centre of a circle, given an edge point and a radius to search over. It maps

figure points from the feature space to parameter space and therefore extracts the

features (Gonzalez and Woods 2007). There are two types of Hough transform;

standard and randomized Hough transform. Touj et al. (Touj, Amara et al. 2003)

presented a generalized Hough transform technique which is known for its ability to

absorb the distortions in the document image as well as noises. They described an

approach proving the efficiency of the Generalized Hough Transform to recognize

Arabic printed characters in their different shapes.

2.4.3 Fourier descriptors

Fourier descriptors (FD) is one of the most popular and efficient feature extraction

methods used in digital image processing. It represents the shape of the object in the

frequency domain. It includes a strong discrimination facility, low noise sensitivity,

easy normalization and information preservation (Cheriet, Kharma et al. 2007;

Gonzalez and Woods 2007). Zhang and Lu (Zhang and Lu 2001) presented a

comparative study on shape retrieval using Fourier descriptors with different shape

signatures. The methods achieved a high level of representation and normalization.

Different shape signatures exploited were of complex coordinates, centroid distance,

curvature signature and cumulative angular functions. They built a Java retrieval

application to compare shape retrieval using Fourier descriptors which resulted from

the use of different signatures. General techniques for shape representation and

normalization were also analyzed.

2.4.4 Linear transforms

Feature space linear transformation methods are used to change the feature

representation of patterns in order to improve the classification performance. Linear

transforms usually reduce the dimension of the features. Linear transforms include

2. A review of character recognition 38

Principal Component Analysis (PCA) and Linear Discriminate Analysis (LDA)

(Gonzalez and Woods 2007).

Principal Component Analysis (PCA) is a statistical technique which belongs to the

category of factor analysis methods. PCA is a mathematical method that uses an

orthogonal transformation to convert a set of correlated observations into a set of

uncorrelated variables called principal components. Zidouri (Zidouri 2007) presented

two level recognition processes for Arabic characters. In his proposed approach,

recognition is applied at two levels with different approaches. The first level is

applied after word segmentation to recognize isolated characters, whilst the second

level is applied to segmented characters. A PCA feature extraction algorithm

reported great results with Arabic character recognition.

Linear Discriminate Analysis (LDA) is a parametric feature extraction method used

to find a linear combination of features which differentiate two or more classes of

objects. The resulting mixture can be used as a linear classifier or, more commonly,

for dimensionality reduction before later classification. Kurt et al. (Kurt, Turkmen et

al. 2009) presented Linear Discriminate Analysis (LDA) based on the Ottoman

Character Recognition system. LDA reduces the size of the data whilst keeping the

variation present in the original dataset. The training set images were normalized to

reduce the variations in illumination and size. The features were extracted by LDA.

Principal Component Analysis (PCA) was applied as an intermediate step. The

described processes were also applied to the unknown test images.

2.4.5 Haar-like feature extraction

Haar-like feature extraction is a simple method depending on the basic visual

features of the objects. It uses grey-scale differences between rectangles in order to

extract the object features (Viola and Jones 2001).

2.4.5.1 Wavelet

The wavelet is a simple data representation algorithm that is used to generate the

Haar-like feature extraction. The wavelet is a mathematical method for decomposing

the data in a hierarchal way and can represent any type of data whether it be an

image, curve or surface. Wavelets were originally applied in signal processing and in

2. A review of character recognition 39

approximation theories. It has recently been applied in computer graphics and image

processing (Stollnitz, DeRose et al. 1995) and provides a powerful method for

representing all levels of details in an image. Wavelet transform is the representation

of the wavelet function by small signals. Wavelet transform has the advantages of

using discontinuities, sharp peaks and accurately deconstructing and reconstructing

finite signals (Gonzalez and Woods 2007).

2.4.5.2 Haar wavelet

The Haar wavelet was first invented by Alfred Haar in 1909 (Haar 1910) and is

considered to be the simplest wavelet function. The Haar wavelet is applied by

calculating the sums and differences of adjacent elements and is equal to its inverse.

The Haar wavelet works with either one or two dimensional data. It is applied first

on adjacent horizontal elements and then on vertical adjacent elements (Stollnitz,

DeRose et al. 1995).

To explain how the Haar wavelet works, we will look at a simple example of a one

dimensional image with four pixels of values (5 9 7 3). The Haar wavelet simplifies

the data by averaging pairs together to create a new lower resolution level (7 5). This

data can then be transformed to an even lower resolution level (6). This method

shows that some information is lost during the transformation and can’t be recovered

from the original data (Stollnitz, DeRose et al. 1995). Recovering the original data

(reconstructing data) requires the preservation of detail coefficients which preserves

the missing information. In the previous example; in the first resolution level, the

first coefficient must be -2 as the first value 5 is less than the average 7 by 2. The

second coefficient is 2. The lower resolution level coefficient is 1 as the first value 7

in the upper level is more than the average 6 by 1. The final wavelet transformation

will be (6 1 -2 2) (Stollnitz, DeRose et al. 1995).

2.4.5.3 Haar-Like Features (wavelets)

Haar-like features are a class of simple local features that are calculated by

subtracting the sum of a sub-window of the feature from the sum of the remaining

window of the feature (Messom and Barczak 2006). The Haar-like features are

computed in short and constant time rather than using a pixel-based system.

2. A review of character recognition 40

According to Lienhart et al. (Lienhart, Kuranov et al. 2002) assume that the Haar-

like features for an object lies within a window of W X H of pixels, which can be

defined in the following equation:

Where is the chosen weighting factor which has a default value of 0.995

(Lienhart, Kuranov et al. 2002). A rectangle is specified by five parameters.

 with

and its pixel sum is denoted by . Two examples of such rectangles are

given in Figure 2.2 for the upright and the 45° rotated rectangles.

W

H

w

w

w

h

h

h

Window

Upright rectangle

45° rotated rectangle

(x,y)

(x,y)

45°

Figure 2.2: Upright and 45° rotated rectangle of detection window

The previous equation generates an almost infinite feature set. It has been reduced

for the practical application of the approach. This reduction generates 15 feature

prototypes shown in Figure 2.3: (1) four edge features, (2) eight line features, (3) two

centre-surround features, and (4) a special diagonal line feature. The generated set of

features was scaled in the horizontal and vertical directions. Note that the line

features can be calculated by only two rectangles. Edge features (a) and (b), line

features (a) and (c) and the special diagonal line features are the features that were

used in the beginning by (Papageorgiou, Oren et al. 1998; Mohan, Papageorgiou et

2. A review of character recognition 41

al. 2001; Viola and Jones 2001). They used the value of a two-rectangle feature

(edge features) as the difference between the sum of the pixels between the two

rectangular regions. The two regions are of the same size and shape and are either

horizontally or vertically adjacent. A three-rectangle feature (line features) subtracts

the sum of the two outside rectangles from the sum of the middle rectangle. A four-

rectangle feature (special diagonal line feature) subtracts the sum of the two diagonal

pairs of rectangles (as in Figure 2.3).

(1) Edge features (2) Line features

(3) Centre-surround features (4) Special diagonal line feature

Figure 2.3: Haar-like features prototype

In the experiments of Lienhart and Maydt (Lienhart and Maydt 2002) rotated

features had been added which significantly enhanced the learning system and

improved the performance of the Haar Cascade Classifier. These rotated features had

a significant enhancement when applied to objects with diagonal shapes. It produces

a remarkable increase in accuracy when used with Arabic character recognition.

The total number of features differs from prototype to prototype. It can be calculated

as explained by Lienhart et al. (Lienhart, Kuranov et al. 2002); as shown in Figure

2.2.

(c) (d)(a) (b)

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b)

2. A review of character recognition 42

 is the maximum scaling factor in x, y directions. The

upright features is equal to

features for an image of size . The 45° rotated features is equal to

 for . As an example

for a window of size , the total number of features is 117,941 (Lienhart,

Kuranov et al. 2002).

2.4.5.4 Integral image

Integral image was first used in feature extraction by Viola and Jones (Viola and

Jones 2001). Lienhart and Maydt (Lienhart and Maydt 2002) developed the

algorithm by adding the rotated integral image. It is also called Summed Area Table

(SAT). This is an algorithm for calculating a single table in which pixel intensity is

replaced by a value representing the sum of the intensities of all pixels contained in

the rectangle. This is defined by the pixel of interest and the upper left corner of the

image (Crow 1984). It can be calculated very quickly and efficiently for an image in

a few operations per pixel. Haar-like features at any scale can be simply calculated in

constant time, whenever the integral image is calculated (Kasinski and Schmidt

2010).

The integral image for the upright rectangle at any location is equal to the sum

of the pixels’ intensities (grey-scale) from the to as shown in Figure 2.4

a. and known is as .

Where is the intensity value at .

The for the upright rectangle as shown in Figure 2.4

(b) is:

2. A review of character recognition 43

The integral image for the 45° rotated rectangle at any location is equal to the

sum of the pixels’ intensities at a 45° rotated rectangle with the bottom most corner

at and extending upward till the boundary of the image as shown in Figure 2.4

(c) and is known as R .

Where is the intensity value at .

The for the upright rectangle as shown in Figure

2.4 (d) is:

(x,y)(x,y)

(x,y)(x,y)

(a) (b)

(c) (d)

+

+ --

+

+ -

-

Figure 2.4: Supplementary image illustration SAT and RSAT

2.5 Character segmentation Phase

Character segmentation refers to the process of splitting a word into its characters,

strokes or primitives (Lorigo and Govindaraju May, 2006). Character segmentation

is an important phase in the case of handwriting and in the cursive languages. It is

very important to mention here that the contribution of this research is towards

handling printed Arabic character recognition totally without character segmentation.

2. A review of character recognition 44

Although there were previous trials to have character segmentation-free systems,

their practical effect was limited (Abdelazim 2006).

2.5.1 Isolated / pre-segmented characters

This type of character segmentation recognizes numerals and isolated characters

only. This type might only be useful for academic purposes and is not practical in

real life OCR applications (Khorsheed 2002; Abdelazim 2006).

Touj et al. (Touj, Amara et al. 2003) presented research on using a Hough Transform

to recognize isolated Arabic characters. The research described the robustness of the

Hough Transform rather than trying to tackle overall Arabic character recognition.

2.5.2 Segmenting a word into characters

This type of character segmentation transfers a word, sub-word or connected

component into characters. These systems dealing with this type of character

segmentation by connect the characters together to construct a sub-word or a word

(Khorsheed 2002).

Sarfraz et al. (Sarfraz, Nawaz et al. 2003) presented a technique for the automatic

recognition of Arabic printed text using artificial neural networks. The technique

segments the text into individual characters. The segmentation process proposed

consists of three main steps: the segmentation of lines of text into different zones,

segmentation of lines of text to different words and the segmentation of words into

individual characters. The segmentation process depends on horizontal and vertical

histograms.

2.5.3 Segmenting a word into primitives

This type of character segmentation transfers a word, sub-word or connected

component into symbols. This symbol may be a character, a stroke, ligature or sub-

word. The systems dealing with this type of character segmentation either connect

the symbols together to construct a character or detect the symbols themselves

(Khorsheed 2002).

2. A review of character recognition 45

Trenkle et al. (Trenkle, Gillies et al. 2001) improved a system that recognizes Arabic

and Farsi text. This module is an oversegmenter, designed to generate atomic image

segments with a size no larger than a single character. Hence, each atomic segment

should come from only a single character of the ideal character segmentation.

Character segmentation can be produced by combining the atomic segments into

suitable groups. The combination must be done in such a way as to keep the spatial

relationships between the atomic segments in the group. A Viterbi algorithm

generates appropriate groups as a by−product of the recognition process.

2.5.4 Integration of recognition and character segmentation

Here, character segmentation is performed after or during recognition. The approach

is to scan the word from right to left. At each step, the process either relates a column

to one of the codebook entries or calculates cumulative moment invariants. The

system is not always able to recognize all characters, which means that the following

characters in the same sub-word would not be processed either (Khorsheed 2002).

Lu et al. (Lu, Bazzi et al. 1999) presented a language-independent optical character

recognition system that is able, in principle, to recognize printed text from different

languages. The system uses a Hidden Markov Model (HMM) developed for

continuous speech recognition in order to model each character. The approach

demonstrated a language-independence for Arabic, English, and Chinese. The

approach depends on automatic training on non-segmented data, and simultaneous

character segmentation and recognition. The training algorithm scans the document

line by line using vertical slices. The features extracted from the vertical slices are

attached with the ground truth information as an input to train the character models.

2.5.5 Character segmentation-free systems

Character segmentation-free systems are motivated by insight in psychological

studies of the human reading process and were originally introduced for speech

recognition. These systems attempt to recognize the whole word without trying to

segment and recognize characters or primitives individually (Khorsheed 2002). In

other words they tend to avoid intra-word recognition. The main reason for this type

2. A review of character recognition 46

of research is that reliable character segmentation is not always possible or easy,

even for machine printed Arabic text (Abdelazim 2006).

Al-Badr and Haralick (Al-Badr and Haralick 1998) Described the design and

implementation of an Arabic word recognition system. The system does not segment

a word into characters to recognize it. It recognizes the input word by detecting a set

of “shape primitives” on the word. It then compares the regions of the word

(represented by the detected primitives) with a set of symbol models. The approach

depended on image processing techniques in order to categorize the symbol models.

They used a single font, and training was on idealized isolated shape samples. These

operators are normally very sensitive to noise (Abdelazim 2006).

2.6 Classification Phase

Classification involved assigning each point in the feature space with a class label

score of the defined (classified) class. This point was originally mapped from the

input pattern onto points in the feature space which was done in the feature

extraction phase (Cheriet, Kharma et al. 2007). The Classification phase is

sometimes embedded within the feature extraction phase or at other times with the

character segmentation phase in one recognition phase.

The classification method applied in this research is a cascade of the Ada-Boosting

classifiers. The proposed approach is explained in this section with a number of

various classification methods that have shown success or have high potential

character recognition.

2.6.1 Statistical methods

Statistical classification methods are based on Bayes decision theory, which aims to

minimize the error of classification using a loss matrix and estimated probabilities

(Cheriet, Kharma et al. 2007). This classifier assumes that different classes and

feature vectors have an underlying joint probability. The probability density function

can be cumulative (Khorsheed 2002). Abandah et al. (Abandah, Younis et al. 2008)

presented an optical character recognition solution for Arabic handwritten scripts.

The principal component analysis (PCA) method is used to select the best subset of

2. A review of character recognition 47

features extracted from a large number of features. Parametric and non-parametric

statistical classifiers were used. They found that a subset of 25 features is needed in

order to get an 84% recognition accuracy using a linear discriminate classifier. They

also found that using more features does not significantly enhance accuracy.

Classifiers that are parameterized achieve better accuracy than non-parameterized

classifiers.

Hidden Markov Models (HMMs) are statistical models considered as the simplest

dynamic Bayesian network which have been found to be extremely efficient for a

wide spectrum of applications. HMM applications are commonly used in pattern

recognition such as speech, handwriting, gesture recognition and bioinformatics. In a

Hidden Markov Model, the state internal is not visible, but output, relates to a visible

state. Each state has a probability distribution across the possible output tokens.

Therefore the series of tokens generated by an HMM gives some information about

the series of states (Khorsheed 2002; Cheriet, Kharma et al. 2007).

Alma’adeed et al. (Alma’adeed, Higgens et al. 2002) presented a complete scheme

for unconstrained Arabic handwritten word recognition based on a HMM. A

complete system of Arabic Handwritten words was first proposed. The system

removes variations in the images that do not influence the handwritten word. Next,

the system codes the word so that key information about the lines in the skeleton is

extracted. Then a classification process based on the HMM approach is used. Finally,

the output produced is a word in the database.

2.6.2 Structural methods

Structural pattern recognition methods are usually used in online character

recognition rather than in offline character recognition. Structural methods represent

a pattern as a structure (string, tree, or graph) of flexible size. Structural methods face

two major problems. These problems are extracting structural primitives (strokes or

line segments) from input patterns and learning patterns from samples (Cheriet,

Kharma et al. 2007).

Bushofa and Spann (Bushofa and Spann 1997) presented an approach that enables

Arabic words to be segmented into characters. Diacritics are removed using the

2. A review of character recognition 48

proposed algorithms. This algorithm reduces the number of classes to 32.

Information about these diacritics, such as their number, position and type is kept and

used in the final recognition stage. Features of the skeletonised character are used for

classification using a decision tree.

2.6.3 Artificial Neural Networks (ANN)

Artificial Neural Networks were initially developed with great expectations to

achieve intelligent perception and cognition machines by simulating the physical

structure of human brain (Cheriet, Kharma et al. 2007). OCR is one of the most

successful applications that have been proposed for neural networks (Khorsheed

2002).

Harty and Ghaddar (Harty and Ghaddar 2004) built two neural networks to classify

the segmented characters of handwritten Arabic text. The two neural networks

correctly recognized 73% of the characters. They stated that character classification,

especially handwritten Arabic characters, depends largely on appropriate

information, not only on topographic features extracted from these characters.

2.6.4 Support Vector Machine (SVM)

A support vector machine (SVM) is a concept for supervised learning algorithm that

analyzes input data and recognizes patterns. It is used for classification and

regression analysis. The standard SVM takes a set of input data and predicts - for

each input - two possible member classes. The approach makes the SVM a non-

probabilistic binary linear classifier. Given a set of training examples, each are

marked as belonging to one of two categories; a SVM training algorithm builds a

model that assigns new examples into one category or another (Cheriet, Kharma et

al. 2007).

Mehran et al. (Mehran, Pirsiavash et al. 2005) presented a front-end OCR for

Persian/Arabic cursive documents, which controls an adaptive layout analysis system

with a combined MLP-SVM recognition process. The implementation results - on an

inclusive database - show a high degree of accuracy which meets the requirements of

commercial use.

2. A review of character recognition 49

2.6.5 Classification with multiple classifiers

Classification with multiple classifiers has been an active research topic since the

1990s. Many combinations of classifier methods have been proposed, and the

applications to practical problems have been proven to be the advantage of grouping

over individual classifiers (Cheriet, Kharma et al. 2007).

Rahman and Fairhurst (Rahman and Fairhurst 2003) presented a review study of the

multi classifiers. They explicitly review the field of multiple classifier decision

combination strategies for character recognition. A new taxonomy for categorizing

approaches is defined and explored to clarify the mechanisms by which multi-

classifier configurations deliver performance enhancements. They illustrate explicitly

how the principles underlying the application of multi-classifier approaches can

easily generalise to a wide variety of different task domains.

2.6.6 Cascade of boosting classifiers

A classifiers cascade is a decision tree algorithm which depends upon the rejection of

non-object regions. A classifier detects the objects of interest and rejects the non-

object patterns (see Figure 2.5). Boosting is a machine learning method that is based

on this observation. Boosting algorithms use a large set of weak classifiers in order to

generate a powerful classifier. Weak classifiers are used in order to discriminate

required objects from the non object in a simple and quick way. Weak classifiers use

only one featured each stage and depend on a binary threshold decision or small

CART for up to four features at a time (Schapire 2002).

stage 1 2 3 N

h h h h h

1-f 1-f 1-f 1-f

input pattern classified as a non-object

Hit rate=h
N

False alarms=f
N

Figure 2.5: Cascade of classifiers with N stages

2. A review of character recognition 50

2.6.6.1 Boosting algorithm

The Boosting algorithm is a machine learning algorithm required for supervised

learning in order to improve the performance of any learning algorithm. It trains an

exact learner, extracts its weak suggestions and combines them, in order to finally

output a strong classifier which boosts the recognition rate (Bishop 2006). Boosting

can be used to reduce the error of any “weak” learning algorithm that consistently

generates classifiers which need to have better than random guessing power.

Boosting works recursively by running a given weak learning algorithm on various

distributions over the training data, and then combining the classifiers produced by

the weak learner into a single composite classifier (Freund and Schapire 1996).

2.6.6.2 Ada-Boosting algorithm

Ada-Boost stands for Adaptive Boosting. Ada-Boost calls up a weak classifier

repetitively serially, each time distributing a weight; these weights increase to

generate the new classifier (Bradski and Kaehler 2008). It is used to significantly

reduce the error margin of any learning algorithm that consistently generates

classifiers whose performance is little better than random guessing (Freund and

Schapire 1996).

A boosting algorithm is a machine learning algorithm for supervised learning in

order to improve the performance of any learning algorithm. Ada-Boost calls up a

weak classifier repetitively a series of times, each time distributing a weight. These

weights increase to generate the new classifier (Bradski and Kaehler 2008). Gentle

Ada-Boost (GAB) reduces the exponential loss function of Ada-Boost. Discrete Ada-

Boost (DAB) uses weak assumptions with outputs restricted to the discrete set of

classes. Real Ada-Boost (RAB) utilizes confidence rated predictions (Bradski and

Kaehler 2008). The default value is Gentle Ada-Boost.

2.6.7 Integration of feature extraction and classification

The integration of feature extraction phase with the classification phase is an

approache for the object recognition. The Haar Cascade Classifier approach (HCC) is

a tool that used the Haar-like feature extraction with the cascade of Ada-boosting

classifiers algorithm in one tool.

2. A review of character recognition 51

The Haar Cascade Classifier (HCC) approach was initially presented in 2001. Viola

and Jones (Viola and Jones 2001) introduced a rapid object detection algorithm using

a boosted cascade of simple features for a face detection application. The Integral

Image method of image representation was introduced and the new learning

algorithm based on Ada-Boost was proposed. Viola and Jones presented a method to

combine more complex classifiers in a cascade. Lienhart and Maydt (Lienhart and

Maydt 2002) extended the Haar-like features by adding rotated Haar-like features

and introduced a post optimization procedure to improve the false alarm rate.

Lienhart et al. (Lienhart, Kuranov et al. 2002) presented an empirical analysis of

different boosting algorithms which provide better detection performance and lower

computational complexity.

The Haar cascade classifier approach was initially created using the Open Computer

Vision (OpenCV) library. OpenCV is an open source library of Computer Vision

programming functions. It is aimed at real time computer vision applications using

C/C++ and Python. OpenCV was founded by the Intel corporation in 1999 (Intel

2001; Bradski and Kaehler 2008). The first release was published in the IEEE

Conference on Machine Vision and Pattern Recognition 2000 (Bradski and

Pisarevsky 2000). OpenCV receives corporate support from Willow Garage which

began from the middle of 2008 (Bradski and Kaehler 2008).

2.6.7.1 Originate of Haar Cascade Classifier approach

The Haar Cascade Classifier (HCC) is a machine learning approach for visual object

detection. It is capable of processing images very fast and in an efficient way. HCC

combines the feature extraction and classification phases in one single approach. The

Haar Cascade Classifier approach was initially presented for face detection (Viola

and Jones 2001; OpenCV 2002; Seo 2008), while (OpenCV 2002) presents a general

object detection method not just for faces. Adolf (Adolf 2003) presented an

experiment using the method in order to detect a bowl. Kasinski and Schmidt

(Kasinski and Schmidt 2010) applied the same approach not only for face detection

but also for eye detection. HCC combines three main basic techniques together in

order to form a good detection approach. These three techniques are (Kasinski and

Schmidt 2010):

2. A review of character recognition 52

1. Haar-Like Features: A broad set of visual features that can be computed very

quickly and in inexpensive computations using the integral image representation.

2. Learning Boosting Algorithm: This selects a small number of essential visual

features from a large set of features and applies an efficient classifier.

3. Cascade Classifiers: Combining more complex classifiers in a cascade results in

a fast and efficient detection method.

2.6.7.2 Advantage of Haar Cascade Classifier approach

The Haar Cascade Classifier (HCC) has the following advantage as a machine

learning approach (Lienhart, Kuranov et al. 2002):

1. Dealing with the visual properties of the images and objects. It is very beneficial

for detecting objects with clear visual properties.

2. Rotation invariant approach that is powerful and fast in handling rotated images

and rotated objects in the images (Lienhart, Kuranov et al. 2002).

3. Scaling invariant approach that detects objects with different scales inside the

same image and needs no normalization algorithm for recognition (Lienhart and

Maydt 2002).

4. The approach combines the feature extraction phase with the classification phase.

These combined phases enable the fast recognition of the objects (Viola and

Jones 2001).

5. Copes with grey-scale images that need no binarization algorithm.

6. Fast and reliable machine learning object detection approach.

2.7 Post-processing Phase

Post processing involves error correction or resolving ambiguity in OCR results by

using appropriate information. The output of OCR is compared to how the system’s

dictionary (corpus) and candidates are generated. According to the difference

between the output of OCR and the output of corpus look-up, the numbers

2. A review of character recognition 53

expressing the belief in the correct classification are modified. The output sequence

of suitable candidates is then ordered and the best candidate is selected.

Post-processing approaches deal with the token after the classification stage in order

to identify if it is the best matching one. Most of these are heuristic approaches that

lead to improvement in the overall recognition accuracy. These approaches contain,

in most cases, a powerful data structure, a fast searching algorithm and a smart string

correction algorithm (Cheriet, Kharma et al. 2007).

2.7.1 Enhancing recognition using a confusion marix

The confusion matrix is a matrix of the predicate and actual classification of the

sample. The size of the matrix is defined by the number of classifications defined in

the sample. Kohavi and Provost (Kohavi and Provost 1998) introduced a glossary of

terms for machine learning. They presented the regular form of the confusion matrix

in terms of a relationship between the predicted and actual classifications. The

confusion matrix is used extensively in the research topics of OCR, speech

recognition, spell checking and natural language processing (Taghva, Borsack et al.

1995). The confusion matrix shown in Table 2.5 is a two class classifier, the

confusion matrix in this research is a 61 class classifier, where the 61 is the total

number of classifiers that are representing the Arabic language.

Table 2.5: A confusion matrix with two class classifier

Predicted

Negative Positive

A
ct

u
al

Negative
A: is the number of correct predictions

that an instance is negative

B: is the number of incorrect

predictions that an instance is positive

Positive
C: is the number of incorrect

predictions that an instance negative

D: is the number of correct predictions

that an instance is positive

K. Marukawa et al. (Marukawa, Hu et al. 1997) used the confusion matrix in an OCR

system in order to process a Japanese document. Their idea was to utilize the

characteristics of recognition errors. Two different methods were used. The first one

was a confusion matrix in order to generate corresponding query strings that must

match incorrectly with the recognized text. The other one searched in a “non-

deterministic text” that included multiple candidates for ambiguous recognition

2. A review of character recognition 54

results. Experiments applied showed that character recognition and retrieval

techniques can be combined effectively.

G. Vamvakas et al. (Vamvakas, Gatos et al. 2010) used the confusion matrix in off-

line handwritten character recognition. The confusion matrix in this case was used in

the classification phase. The features were extracted first at different levels of

granularity for all patterns in the training set. The confusion matrices were

constructed at each step in the training phases. Classes with high values in the

confusion matrix were merged at a certain level and for each group of merged

classes.

2.7.2 Look-up dictionary

Searching within the look-up dictionary requires a powerful data structure because it

includes all the corpus information which usually contains millions of tokens.

Researchers usually use either trees or graphs as data structures with the searching

algorithm in the post-processing stage. These two types of data structure are tailored

to deal with huge datasets like the corpus dataset (Hulden 2009). Since some

ambiguity can remain even after dictionary verification, some investigative research

is being carried out into the use of higher level context in order to reduce the

ambiguity. A dictionary is appended with information about the token which can be

used by the higher level contextual system in order to predict or correct the detected

token (Ford and Higgins 1990).

Now follows a discussion of various data structures and string correction algorithms

that are usually used for the post-processing techniques to enhance the OCR

recognition rate.

2.7.2.1 Dictionary tree structure – Trie structure

The tree is one of the most powerful advanced data structures and consists of nodes

organised in a hieratical sequence. The simplest type of index is a sorted listing of

the key field. This provides a fast lookup that uses a binary search to locate any item

without having to look at each one in turn (Oommen and Badr 2007).

A trie, or prefix tree, is an ordered tree data structure that is used in order to store an

associative array of strings. Each string is stored in nodes, each node includes a

2. A review of character recognition 55

character. When more than one string shares the same prefix it separates them when

a character is changed. All the children nodes of each node have a common parent

from the associated string, and the root is associated with the empty string. Values

are normally not associated with every node, only with leaves and some inner nodes

that match the key of interest (Cheriet, Kharma et al. 2007).

Figure 2.6 shows a sample of a trie structure that includes a simple lexicon of 12

strings of English Gregorian months. The red colour nodes are the nodes with more

than one child node, green colour nodes are the start of nodes with only one child,

blue colour nodes are the nodes with one parent and one child and the yellow colour

nodes are the leaf nodes. The trie contains 9 levels which mean that the maximum

string length in the trie is 9 characters. The middle levels of the trie contain more

nodes than that on the sides; For the reason that the number of nodes starts in the first

level, limited to the number of characters in the language and increase branching

while the levels are increase; then decreasing almost after the middle level when

string lengths are nearly finished.

Figure 2.6: Trie structure of a simple lexicon of 12 English months

A tail-end trie is another type of trie structure and is usually used in order to reduce

the size of the trie data structure. If the end of a word is unique and is not duplicated

Le
ve

l 8

Le
ve

l 7

Le
ve

l 6

Le
ve

l 5

Le
ve

l 4

Le
ve

l 3

Le
ve

l 2

Le
ve

l 1

Le
ve

l 9

ALL

A
p r i l

u g u s t

D e c e m b e r

F e b r u a r y

J
a n u a r y

u
n e

l y

M a
r c h

y

N o v e m b e r

O c t o b e r

S e p t e m b e r

2. A review of character recognition 56

with any other word, then the tail-end trie size can be reduced by constructing a

special end-of-word (leaf) node which contains the rest of the word as a string. This

reduces the need for extra nodes and pointers (Ford and Higgins 1990). Figure 2.7

shows the same sample of Figure 2.6 as a simple lexicon of 12 strings of English

Gregorian months as a tail-end trie. The red colour nodes are the nodes with more

than one child node and the yellow colour nodes are the leaf nodes. The trie contains

only 3 levels which are very small relative to Figure 2.6 and means that the

maximum word length must be more than or equal to 3 characters. The number of

nodes and branching in this type of trie are limited relative to Figure 2.6.

The advantage of a tail-end trie is that it reduces the size of the data structure and

memory size during runtime. It may also increase the speed of search of the trie. The

disadvantage is regarding the modification of the dictionary as it is more complex.

For example, to add an extra word, it is easier to reconstruct the trie from scratch.

Also, searching inside the trie requires different methods with the nodes and leaves

(Ford and Higgins 1990).

Figure 2.7: Tail-end trie of a simple lexicon of 12 months

One advantage of the trie structure is the fast look-up for entry; if an entry is of

length m it takes O (m) time in a worst case scenario to find it. It also takes less space

for saving and for runtime and is also fast because it uses a recursive function

(Cheriet, Kharma et al. 2007).

Le
ve

l 2

Le
ve

l 1

Le
ve

l 3

ALL

A
pril

ugust

December

February

J
anuary

u
ne

ly

M a
rch

y

November

October

September

2. A review of character recognition 57

2.7.2.2 Dictionary Graph structure – directed acyclic word graph

A graph is a mathematical data structure consisting of a set of vertexes (nodes) and a

set of edges. An edge contains a pair of vertexes which are called the edge endpoints.

Graphs are ubiquitous in computer science and are used to model real life

applications. A graph may be formed using either directed or undirected edges. The

directed edge is a one-way connection, and is typically drawn as an arrow. The

undirected edge models a "two-way" or "duplex" connection between its endpoints.

The Directed Acyclic Word Graph (DAWG) is a directed edge graph that represents

a set of strings, and allows for a search operation that tests quickly whether a given

string belongs to the set. In these respects, a DAWG is very similar to the trie, but it

is more space efficient (Inenaga, Hoshino et al. 2005). Using DAWG in forward and

backward searching is easier than in the case of a trie. Figure 2.8 shows the previous

simple lexicon of 12 strings of the English Gregorian months built using a DAWG.

The green colour nodes are the starting nodes and the yellow colour nodes are the

leaf nodes.

A

F

D

J

N

M

S

O

p

e

u

o

a

e

c

r

b

c

n

v

r

p

t

i

r

e

e

c

t

o

l

u

m

l

y

a

b

h

r

e

y

r

u g u s t

a

e

n

Months

Figure 2.8: DAWG graph structure of a simple lexicon of 12 months

2. A review of character recognition 58

2.7.3 String correction

2.7.3.1 String correction – Viterbi algorithm

The Viterbi algorithm is a dynamic programming algorithm designed to find the best

sequence of hidden states, while the Viterbi path is the result of a sequence of

observed events which could be applied to the problem of text recognition. The

Viterbi Algorithm takes the output word from the OCR system and, in applying

statistical methods on the sequence of letters in that language and likely errors from

the OCR system, calculates the most likely input word (Ford and Higgins 1990).

Gillies et al. (Gillies, Erlandson et al. 1999) proposed a complete Arabic OCR

application now available as a commercial application by the Novo-Dynamics

company (Dynamics 2011). It uses the Viterbi algorithm in the post-processing stage.

The Viterbi beam search module uses a dynamic programming algorithm in order to

match the array of segments against a model of Arabic text. The model encodes the

rules of Arabic typography.

2.7.3.2 String correction – Leveneshtien distance algorithm

The Levenshtein distance algorithm is an algorithm used for measuring the

difference between two string sequences. The Levenshtein distance between two

strings is the minimum number of simple edits needed in order to transform one

string to the other, with the edit operations being insertion, deletion, or substitution

of a single character (Levenshtein 1966). This algorithm is used in order to measure

the OCR system’s accuracy (Tanner, Muñoz et al. 2009) and in post-processing

techniques as a string correction algorithm (Schulz and Mihov 2002). The

Levenshtein distance is also widely used in other different types of research fields

such as: computational biology, signal processing, virus and intrusion detection,

image compression, data mining, pattern recognition, file comparison and screen

updating (Navarro 2001).

Levenshtein distance is one of the famous algorithms for string comparison, which is

based on the notion of a primitive edit operation. In the standard Levenshtein

distance, the primitive operations are substitution of one character for another

character, deletion of a character, and insertion of a new character. Let P and W be

two tokens in the alphabet Σ. The Levenshtein distance between P and W, denoted

2. A review of character recognition 59

dL(P,W), is the minimal number of primitive edit operations (substitutions, deletions,

insertions) that are needed in order to transform P into W. The Levenshtein distance

between two tokens P and W can be computed using the following simple dynamic

programming scheme (Levenshtein 1966; Mihov and Schulz 2004):

for and .

Given and .

The previous scheme is applied from the top down and from left to right on the cells

of a (m + 1) × (n + 1) matrix. Figure 2.9 shows an example of the Levenshtein

distance calculation matrix between two English words “Saturday” and “Sunday”

which produced dL(Saturday, Sunday)=3. The yellow colour cells show the equal

characters, green colour cells show the deletion editing and the blue colour cell

shows the substitution editing.

 S a t u r d a y

 0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7

u 2 1 1 2 2 3 4 5 6

n 3 2 2 2 3 3 4 5 6

d 4 3 3 3 3 4 3 4 5

a 5 4 3 4 4 4 4 3 4

y 6 5 4 4 5 5 5 4 3

Figure 2.9: Levenshtein distance between the two words ‘Saturday’ and ‘Sunday’

2.7.4 Language correction using corpus

A corpus is a large, structured collection of text covering a huge number of words

from different domains of a given language. The first modern corpus was the Brown

Corpus. It was collected and compiled in 1967 (Kučera and Francis 1967) and

contains almost 1 million English words from different disciplines. Currently, the

2. A review of character recognition 60

three best known English corpora are: The Corpus of Contemporary American

English, which contains 410+ million words, is available via the internet and was

created during the period (1990 – 2010). It is updated once or twice a year (Davies

1990-present); The British National Corpus, which contains 100 million words, is

also available via the internet, was created during the period (1980 – 1993) and is

still being updated (Corpus 2007); and the Time Archive (1923 - to present) from

Time magazine. The Time Archive was originally created to archive the magazine’s

articles and contains more than 275,000 articles with around 100 million words

(Time 2008).

Corpora are increasingly valuable in computational linguistics, as well as supporting

statistical analysis of languages. They are vital to the development of computational

techniques associated with languages such as OCR, speech recognition and natural

language processing. Corpora used in these areas may include data beyond simple

text, such as audio (speech) or images. These multimodal corpora are also gaining

increased attention in mainstream corpus linguistics (Knight, Bayoumi et al. 2006).

Multimodal corpora are of particular value during the development of OCR

applications. OCR methods must be trained with, and evaluated against, corpora

which capture the structure of the target language, but emphasize its appearance in

image data. As there is no central organization for the Arabic language, no standard

linguistic or image corpus exists (Hamada 2007).

Stemming is a process of determining the morphological root of a word as well as a

tool for data retrieval from a corpus to minimize the mismatching errors (Larkey,

Ballesteros et al. 2002). This is done by removing affixes (prefixes, infixes or

suffixes) from the word. The word may have many forms while retaining the same

meaning, as for example the words (works, working, worker and worked) are all

derived from the root word "work" in English. All languages contain nouns and

verbs, for example in English the nouns (book, books) are derived from the root

word “book” but one is singular and the other is plural. Also verbs like (play, played,

playing) have the same root word “play” but in different tenses. A sophisticated

lexicon need not keep all these alternative forms of words, but may be optimized to

store only the root words and methods to obtain and report the derived words from

them.

2. A review of character recognition 61

The Arabic language also has similar rules as English and other Latin languages.

Arabic has nouns and verbs. Nouns like () are derived from the same

root word () but the first is singular, the second is for a pair and the third is plural.

Verbs like () are also derived from the root word () but in different

tenses.

2.7.4.1 Collected word corpora

The Linguistic Data Consortium (LDC) at the University of Pennsylvania has

produced the “Arabic Gigaword Fourth Edition” (Parker, Graff et al. 2009). This is a

database of 850 million Arabic words collected over several years from news

agencies. Though important, it has a number of drawbacks. First, the corpus is

collected only from news agencies, limiting the linguistic style of the material

captured. Secondly, most of the files come from Lebanese news agencies. The lack

of samples from other Arab countries limits the scope of any OCR application which

relies on them. Finally, the corpus format is based upon paragraphs and not single

words. This makes it less useful for testing and training of OCR methods.

The Institute of Ancient Near Eastern Studies, Charles University Prague (Czech

Republic) has compiled the CLARA Corpus. This is an electronic corpus of Modern

Standard Arabic. It contains 37 million words. Though the project started in 1997

(Zemanek 2001), the corpus lacks variety in the disciplines and geographical areas

sampled. This lack of variety reduces its usefulness to the developers of OCR

applications.

The University of Essex, in collaboration with the Open University, has developed a

corpus of Al-Hayat newspaper articles. It contains 18.5 million words from 42,591

articles, but covers only 7 main subjects (newspaper 2002). The An-Nahar

newspaper has also produced its own an An-Nahar text corpus. This contains 24

million words from 45,000 articles. It was developed between 1995 and 2000

(newspaper 2000). This type of corpus has some drawbacks which limit its value to

OCR and, to a certain extent, corpus linguistics in general. First, they represent the

home country of the newspaper, and not all Arab countries. Secondly, they sample

only a small time period. Finally, they cover only the subjects discussed in a

2. A review of character recognition 62

particular newspaper. Lack of variety in a corpus obviously reduces its usefulness to

the developers of OCR applications.

The DIVA Group from the University of Fribourg (Switzerland) in collaboration

with the REGIM Group from the University of Sfax (Tunisia) and the Software

Engineering Unit of the Business Information System Institute (HES-SO //Wallis -

Switzerland) recently generated the APTI Arabic Printed Text Image Database. This

is a large-scale benchmark of open-vocabulary, multi-font, multi-size and multi-style

text recognition systems in Arabic. Using 113,284 words with 10 different Arabic

fonts, 10 Arabic font sizes and 4 font styles, APTI generated a total of 45 million

words. Its variety of fonts, text sizes and styles; make APTI a valuable resource

when testing Arabic OCR applications, but its sources of data lack variety and its

image generation process relies upon down-sampling, which is not a good simulation

of the real data. APTI can be used with OCR applications that recognize words only,

and offers no support to applications working at the PAWs level (Slimane, Ingold et

al. 2009).

2.7.4.2 Morphological – created word corpora

DIINAR.1 is an Arabic lexical corpus produced by the Euro-Mediterranean project.

It comprises 119,693 lemmas distributed between nouns, verbs and adverbs. It uses

6,546 roots (Abbes, Dichy et al. 2004).

The Xerox Arabic Morphological Analyzer/Generator was developed by Xerox in

2001. This contains 90,000 Arabic stems, which can create a derived corpus of 72

million words (Beesley 1996). This type of corpora partially solves the problem of

not having a definitive Arabic corpus, but it does not include many words used in

everyday life.

2.7.4.3 Lexical / stemming

The Arabic language is rich and has a large variety of grammar rules. Research in

Arabic linguistics is varied and can be categorized into four main types:

2. A review of character recognition 63

2.7.4.3.1 Manually constructed dictionary

A custom Arabic retrieval system is built depending on a list of roots and creates lists

of alternative words depending on those roots. This method is limited to the number

of roots collected (Al-Kharashi and Evens 1994).

2.7.4.3.2 Morphological analysis

This is an important topic in natural language processing. It is mainly concerned with

roots and stemming identification. It is related more to the grammar of the word and

its positioning (Al-Shalabi and Evens 1998; Al-Shalabi and Kanaan 2004; Jomma,

Ismail et al. 2006).

2.7.4.3.3 Statistical stemmer

This does not depend on the language involved but on the similarity of rules among

different languages. A stemmer generator has been developed using a parallel corpus

which is a collection of sentence pairs with the same meaning in different languages

(Rogati, McCarley et al. 2003).

2.7.4.3.4 Light stemmer

This depends on affix removal. An affix is defined here as one or more letters added

to the root word. This type of stemmer needs less knowledge of Arabic grammar

(Aljlayl and Frieder 2002; Larkey, Ballesteros et al. 2002).

2.7.4.4 Requirements and limitations

To adequately represent a given language a corpus must have sufficient capacity of

text collection (Hamada 2007) and include words from a wide variety of sources and

types (Wynne 2005; Alansary, Nagi et al. 2007; Hamada 2007). It is known that a

good corpus should include (Dash and Chaudhuri 2001):

 Language from different disciplines, e.g. engineering, literature, art and

medicine.

 Popular language from everyday life.

 Different morphological features of the language. These features are gender

(male or female), tense (past, present or future), number (singular, pair or plural),

2. A review of character recognition 64

person (first, second or third), imperative verb and definiteness (Al-Shalabi and

Evens 1998).

 Examples created over a long period of time. The Arabic language has been in

use for 1,500 years and very old poems, fairy tales, religion and science books

are available.

 Examples from varying geographical areas. All the different dialects of the

Arabic speaking countries and regions should be covered.

 Images of the contents of the corpus with different image sizes and formats that

can be used with OCR applications.

These features are also required of corpora intended to provide good training / testing

sets for OCR.

Corpora should provide flexible manipulation and retrieval of data. This is eased by

the use of lower level representations; language stored as words, for example, can be

accessed in more ways than that held only in paragraphs or full pages. Again, similar

criteria apply to multi-modal corpora created to support research in OCR.

The corpora discussed above each fail to meet one or more of these criteria.

Moreover, previous Arabic corpora are purely linguistics. A substantial literature

review has failed to locate any freely available corpora of images of printed Arabic.

Note also that existing corpora operate exclusively at the word level. Though words

are clearly important, the structure of the Arabic language and the challenges it

presents to OCR suggest that this is not sufficient basis upon which to build a truly

effect multi-modal Arabic corpus.

2.8 Summary

This chapter introduced a review study of relevant OCR applications. It gave a brief

introduction to the OCR applications history and the research topics related to it. It

explained the different categories of readable information with the description of the

best OCR commercial applications. The established OCR application phases were

also introduced. This review study will be referred to in the other chapters of this

2. A review of character recognition 65

thesis when selecting appropriate algorithms. The topics discussed in this chapter

are:

1. An introduction to OCR with its history. The relationship with other research

topics. Different categorizations of readable information. The categorizations are

based on printing methods, language and being online or offline. The best OCR

commercial applications.

2. An overview of the written Arabic language. The problems occurring when

recognizing Arabic written text. Importance of PAWs and NPAWs to the

recognition of Arabic text. Description of the Arabic language morphology.

3. The pre-processing stage with its inclusive steps. Steps include Document

analysis, binarization, thinning, skew correction, baseline detection and word

normalization.

4. The feature extraction phase with samples of common algorithms. The

algorithms presented are moment, Hough Transform, Fourier descriptor, linear

transform and Haar-like features.

5. The character segmentation phase with the different types of character

segmentation used in the OCR. The types discussed are isolated/pre-segmented

characters, segmenting a word into characters, segmenting a word into primitives,

integration of recognition and character segmentation and finally character

segmentation-free systems.

6. Classification phase with samples of common classification methods. The

methods presented are statistical methods with Hidden Markov Model, structural

methods, Artificial Neural Networks, Support Vector Machine, classification

with multi-classifiers, cascade of boosting classifiers and Integration of feature

extraction and classification.

7. Post-processing phase with its detailed methods. The methods presented are

using confusion matrix, look-up dictionary, string correction and language

correction using corpus.

3. A Multi-Modal Arabic Corpus 66

Chapter 3.

A Multi-Modal Arabic Corpus

A corpus is a large structured set of texts, electronically stored and processed.

Corpora have become very important in the study of languages and have opened new

areas of linguistic research which were unknown. Corpora are also considered as a

key to the development of OCR applications (Hamada 2007). Access to a corpus of

both language and image is essential during OCR development, particularly while

training and testing a recognition application. Excellent corpora have been developed

for Latin based languages, but few for the Arabic language. This limits the

penetration of both corpus linguistics and OCR in Arabic-speaking countries. This

chapter describes the construction, and provides a comprehensive study and analysis,

of a Multi-Modal Arabic Corpus (MMAC) which is suitable for use in both OCR

development and linguistics. MMAC currently contains six million Arabic words

and, unlike previous corpora, also includes connected segments or Pieces of Arabic

Words (PAWs) as well as Naked Pieces of Arabic Words (NPAWs) and Naked

Words (NWords); PAWs and Words without diacritical marks. Multi-modal data is

generated from both text, gathered from a wide variety of sources, and images of

existing documents. Text-based data is complemented by a set of artificially

generated images showing each of the Words, NWords, PAWs and NPAWs

involved. Applications are provided to generate a natural-looking degradation to the

generated images. A ground truth annotation is offered for each image, while natural

images showing small paragraphs and full pages are augmented with representations

of the text they depict. A statistical analysis and verification of the corpus has been

carried out and is presented. MMAC was also tested using commercial OCR

software and is publicly and freely available.

Lexicon and stemming tools are very important in enhancing corpus retrieval and

performance in an OCR context. This chapter also presents a lexicon / stemming

algorithm based on a new algorithm which uses a light stemmer type for developing

3. A Multi-Modal Arabic Corpus 67

the algorithm. This part is considered as a tool for enhancing the development of the

MMAC and not as a part of it. Lexicon and stemming lookup is combined to obtain a

list of alternatives for uncertain words. This list removes affixes (prefixes, infixes or

suffixes) if there are any, if not, adds affixes to the uncertain word. Finally, it tries to

verify every word in the list of alternatives by searching the original corpus. A tool is

added to continually improve the corpus by adding new words and justifying them

using the lexicon / stemming algorithm.

This chapter describes the generation of a corpus containing six million Arabic

words and associated image data. Compared to earlier Arabic corpora, this corpus

has a number of advantages which make it useful in a wider range of applications

areas. The lists and words it contains are in a variety of formats, allowing access and

retrieval in diverse ways. It allows access via PAWs (Amin 1997; Lorigo and

Govindaraju May, 2006) as well as NPAWs and NWords. A set of artificially

generated images showing each of the tokens found in the corpus is provided, with

each token shown in three key Arabic fonts. A set of applications is provided which

add noise, generating degraded images that simulate real images of Arabic text. Each

image is accompanied by annotations in XML format, creating a valuable ground

truth resource. The original images and degraded copies are beneficial when testing

document image analysis applications, and make MMAC a real benchmark for

Arabic OCR projects (AbdelRaouf, Higgins et al. 2008). The corpus also includes

real images of the Arabic documents used in its production, a necessary addition for

OCR usage. These documents are in full page and single paragraph formats. The

three different image formats - single token, paragraph and full page - increase the

usability of MMAC. The corpus’ value as a benchmark dataset is evaluated using

Readiris Pro 10 (IRIS 2004), a well-known commercial software package useful as

an exemplar of Arabic OCR applications. Finally, statistical analysis of the corpus’

contents is also provided. The corpus is freely available from

http://www.ashrafraouf.com/mmac.

This chapter presents a new lexicon/stemming approach based on the idea of the

Viterbi path Algorithm to enhance the corpus retrieval. The approach is based on

applying the lexicon and stemming at the same time. It generates a list of alternative

tokens to the original token. If the token includes an affix it generates a list of

http://www.ashrafraouf.com/mmac

3. A Multi-Modal Arabic Corpus 68

alternative tokens after removing the affix. If the token is a root case, it generates a

list of alternative tokens by adding affixes.

3.1 Building a Multi-Modal Arabic Corpus from textual data

The textual data of the corpus was built in a way to cover the requirements of

building a benchmark corpus. It was built to be sure of the validity of its contents and

generates output that suits many users’ needs.

3.1.1 Coverage and Sources

The Multi-Modal Arabic Corpus contains 6 million Arabic words selected from

various sources covering old Arabic, religious texts, traditional language, modern

language, different specialisations and very modern material from online “chat

rooms”. The total number of words in the corpus was obtained from the studying of

Figure 3.9 which indicates that at 6 million words, the increase of the new unique

words to the corpus becomes trivial. The sources used are:

Topical Arabic websites: These were obtained via an Arabic search engine. The

search engine specifies the web-pages according to topic. Pages allocated to different

topics including literature, women, medicine, business, children, religion, sports,

programming, design, and entertainment were downloaded and incorporated into

MMAC.

Arabic news websites: A set of the most widely used Arabic news websites were

identified and downloaded. These included the websites of Al Jazeera, Al Ahram, Al

Hayat, Al Khaleej, Asharq Al Awsat, Al Arabiya and Al Akhbar. Professional news

websites include language which is qualitatively different from that used in the first

set of websites, which were created by the general public. They also come from a

variety of Arabic countries.

Arabic chatrooms: Some Arabic chatrooms were used for areas such as sports,

culture and social interaction. These chatrooms represent the popular language part

of the corpus.

3. A Multi-Modal Arabic Corpus 69

Arabic-Arabic dictionaries: These dictionaries contain the most common Arabic

words and word roots, along with their definition.

Old Arabic books: These were generally written centuries ago. They include

religious books and books using traditional language.

Arabic research: A PhD thesis in Law was included to sample the research literature.

The Holy Quran: The wording of the Holy Quran was also used.

3.1.2 Text data collection

The following steps were taken to overcome the difficulties discussed previously (see

section 2.2.2), which are mainly due to the use of different code page encodings and

words often containing repeated letters or being formed from connected words. The

steps are:

1. An Arabic search engine (arabo.com 2005) was used to search for Arabic

websites. WebZIP 7.0 software was then used to download these websites (Ltd

2006) by selecting files that contain text, markup and scripting.

2. The code page used for each part of the file was identified. Sometimes more than

one code page is used.

3. A program was developed which removes Latin letters, numbers, and any non-

Arabic letters even if the letters are from the Unicode Arabic alphabets like this

symbol used in Holy Quran (). This program also removes any diacritics.

4. Some common typographical errors were corrected. For example, words

containing (or) inside but not at the end were corrected. Also, words

containing those two letters () at the end were corrected to a single letter ().

5. A text file was created containing one Arabic word per line.

6. A program was written to correct the problem of connected words. It scans the

words and delivers a list of words with size more than 7 letters. The list is

checked manually and corrected. The program rewrites the corrected words in the

list of words.

3. A Multi-Modal Arabic Corpus 70

7. Words containing repeated letters were checked automatically and then

manually. A program was written to list all the words that include any repeated

letters. The list was checked manually and corrected. The program rewrites the

corrected words in the list.

8. A program was written and applied which replaces the final letters () with (),

() with (), and () with () (Larkey, Ballesteros et al. 2002).

3.1.3 Creating NWords, PAWs and NPAWs

The words obtained by the process outlined in section 3.1.2 allow generation of

NWords, PAWs and NPAWs data files. This is achieved as follows:

1. A program to create NWord data files was developed. This reads each word

sequentially and replaces each letter from the group letters with its joining group

letter as shown in Table 2.1, for example it replaces () with ().

2. A program to create PAW data files was developed which reads each word

sequentially from the words data file, checks if the word contains one of the six

letters () in the middle of the word, and if so puts a carriage return after

it. The same is done with the Hamza () but it also put carriage return before it.

The carriage return thus separates this PAW onto a new line. Finally it saves the

new PAWs file.

3. The program used to convert Words to NWords was used to transfer PAWs to

NPAWs. The program is applied to the PAWs data file and generates a NPAWs

data file.

3.1.4 Creating images from corpus text data

The methods described in sections 3.1.2 and 3.1.3 produce a text-based Arabic

corpus. To support the development of Arabic OCR applications, MMAC augments

its textual data with images (Kanungo and Resnik 1999) and ground truth

information for these images (Slimane, Ingold et al. 2009). Each token (Word,

NWord, PAW or NPAW) is shown in the three most common Arabic fonts;

Simplified Arabic, Arabic Transparent, and Traditional Arabic (Chang, Chen et al.

3. A Multi-Modal Arabic Corpus 71

2009). Token images are stored in grey-scale Windows bmp file format, with a

resolution of 300DPI (Kanoun, Alimi et al. 2005). Figure 3.1 gives an example of a

word represented as images showing its appearance in three common Arabic fonts.

Arabic

Transparent

Simplified

Arabic

Traditional

Arabic

Figure 3.1: A word images of () in three different Arabic fonts

The data collection process produced a data file containing the unique Word,

NWord, PAW and NPAW tokens, sorted alphabetically. To produce the image files

each token was transfer from this text file to a Windows bmp image file. A program

was developed to achieve this as follows:

1. The program opens the text file containing the list of unique tokens using the

Windows CP1256 character encoding. It reads the file sequentially and writes

each token to bitmap memory allocation with 300DPI resolution. The font format

is changed to the three most common fonts. The font size is 14 point.

2. The program saves the bitmap memory allocation to disk in Windows bmp grey-

scale format. It names the resultant image with a sequential number, for example

Word0000045Font1.bmp. Each token generates three different image files, one

for each of the three fonts.

3. The program generates a ground truth XML file for each image file from the

previous files containing all the information about the token. The information

saved contains both text and image information.

The final token image dataset consists of files containing the images of the token.

Each token has three font files, Simplified Arabic, Traditional Arabic and Arabic

Transparent. To simplify handling of the huge number of files, the program saves

every 500 tokens files in a separate sub-folder. Table 3.1 shows the total number of

images of the different tokens that are generated from the list of unique tokens.

3. A Multi-Modal Arabic Corpus 72

Table 3.1: Total Number of images for Words, NWords, PAWs and NPAWs

 Number of Unique Tokens Total Number of Images

Words 282,593 847,779

Naked Words 211,072 633,216

PAWs 66,725 200,175

Naked PAWs 32,804 98,412

Table 3.2 shows the average letters per token, average width and average height of

the Words, NWords, PAWs and NPAWs. The information about the token images

shows that the average width of the words and NWords are the same while the height

is different due to the existence of dots. This is also recorded in the case of the PAWs

and NPAWs. The ratio between the average widths of the Words and NWords on one

side and PAWs and NPAWs on the other is almost the same as in the case of the

number of letters per token. The average height of words and NWords is greater than

that of PAWs and NPAWs.

Table 3.2: The average letters per token, width and height in pixels of tokens

Token
Average

Letters / token Width Height

Words 4.7 93.1 48.1

Naked Words 4.7 93.1 47.0

PAWs 2.0 39.5 38.9

Naked PAWs 2.0 39.4 38.0

3.1.5 Degrading the computer-generated token images

The process of degrading the computer generated token images is very important if

they are to simulate the characteristics of real document images during OCR

development. The degradation stage is composed of two parts: in the first part, the

image is skewed to simulate the distortion that may occur during document scanning,

in the second, artificial noise is added to simulate scanned image data.

3.1.5.1 Skewing the image

Rotated images are created from the computer generated image to simulate the

rotation that often occurs while scanning documents. A computer program was

developed to generate any number of rotated samples from the original image with

rotation in both sides. It uses the Box-Muller transform algorithm to convert the

uniform distribution random number to normal distribution random number (Box and

3. A Multi-Modal Arabic Corpus 73

Muller 1958). This algorithm is used to simulate the real life rotation angles of

scanned documents. A nearest neighbour interpolation algorithm applies the rotation

to the images (Sonka, Hlavac et al. 1998). Figure 3.2 (b) shows the skewed token

image.

3.1.5.2 Adding noise

Artificial noise is added to the image to simulate that found in real document images.

Three effects are applied; blurring, filter and additive noise (Hartley and Crumpton

1999). A Gaussian blurring effect is first added to simulate the blur that may be

occurring during scanning. A high pass filter is then applied to simulate change in the

paper colour over time. Gaussian noise is finally added to simulate image acquisition

noise. Figure 3.2 (c) shows a token image after applying the Gaussian blurring and

noise.

(a) (b) (c)

Figure 3.2: (a) word () image. (b) Skewed image. (c) Noised image

3.1.6 Ground truthing the computer-generated token images

In document image analysis and recognition, ground truth refers to various attributes

associated with the text on the image such as the size of tokens, characters, font type,

font size and so on. Ground truth data is crucial to the systematic training and testing

of document image analysis applications (Leea and Kanungob 2003).

Each token image in the MMAC contains ground truth information (Slimane, Ingold

et al. 2009). Figure 3.3 shows the ground truth XML file for the word (). MMAC’s

ground truth XML files contain the following attributes:

1. Content: this contains the token name in Arabic, transliteration of the token text

to English – the transliteration method applied will be shown in section 3.7.3 -

and the number of characters in the token.

3. A Multi-Modal Arabic Corpus 74

2. Internal PAWs: this shows the number of PAWs of the Word or Nword. It

contains, as a sub attribute, the content of the PAWs, these contents are the ID,

Arabic name and number of characters.

3. Font: this contains the name of the font, style and font size in points.

4. Image: this contains the image file name, the file format of the image and the size

of the image in pixels.

5. Diacritics (Dots): this contains the number of letters in the token that have upper

diacritics and that have lower diacritics.

Figure 3.3: Ground truth XML file for the word ()

3.2 Building a Multi-Modal Corpus: real images

The procedures described in section 3.1 produce a multi-modal Arabic corpus from

text data, with images being created artificially from that data. The result is a set of

3. A Multi-Modal Arabic Corpus 75

files containing descriptions of key sections of Arabic text, with corresponding

image files showing their appearance in a number of common fonts. This dataset

provides both a representation of the Arabic language and data needed during

development of OCR applications – sample images of text with associated XML

ground truth information.

The images generated by the method described above are, however, idealised. As

Figure 3.1 showed, the token images are so clear that they can appear as if they were

typed. Though the applications described in the previous section allow common

distortions and noise processes to be simulated, a complete evaluation should include

real images containing the errors, noise and distortions that arise in real life.

To provide the data needed to support OCR, two different datasets are added to

MMAC. The first contains images of small paragraphs of Arabic documents with

text files providing ground truth. The second dataset is created from real scanned

images. These datasets can be used to check the validity of the output of a

developing OCR application. They are also valuable during development of pre-

processes such as skew detection and correction, noise removal, binarization,

thinning and layout analysis.

3.2.1 Paragraph image dataset

MMAC’s paragraph document dataset contains images of 552 paragraphs. It is

generated from 15 full page documents. There are three different categories: real

scanned images, computer generated images and computer generated images with

artificial noise. Each category contains 5 full pages. Each single paragraph image

includes around two lines containing around 10 words. The number of images are

223 real, 141 computer generated and 188 computer generated with noise. Figure 3.4

shows a sample paragraph image from each category. The computer-generated and

computer-generated with noise documents include different Arabic font type, sizes

and styles (regular, italic and bold). This dataset includes around 8,000 words.

The need for this dataset in the OCR development process is to test the application

with a small sample of data which enables tracing any errors. Interestingly, during

3. A Multi-Modal Arabic Corpus 76

the testing of MMAC with commercial software, the recognition accuracy of a

paragraph image is sometimes different from that of the full page image.

(a)

Real image

(b)

Computer

image

(c)

Noise image

Figure 3.4: Samples of the three categories of paragraph images

3.2.2 Full page real image dataset

MMAC’s scanned document dataset contains images of 19 different documents.

These comprise books, work documents, medical scripts, faxes, magazines and

newspapers. The documents were scanned at 300DPI, in 24bit RGB colour mode and

stored in tiff file format. Document quality varies significantly over the dataset,

which includes documents at different orientations and some skewed examples. It

contains different sizes of documents. Some of the documents are watermarked,

others have large page borders. Figure 3.5 shows two examples. The first example is

a newspaper image with some skew and images imposed inside the document. The

second example is a medicine script with some skew and including tables. This

image is rotated 90°. Though the scanned document dataset is currently small

compared to the text-based data, the goal is to include examples of most (commonly)

occurring real documents.

To create associated text files, the contents of each document were manually typed

on Microsoft Word 2003 software. The resulting text files were proofread by two

3. A Multi-Modal Arabic Corpus 77

different groups of people, with the writing group different from each of the two

proofreading groups. The dataset created from real images currently includes around

11,000 Arabic words.

Figure 3.5: Two samples of real scanned document images

3.3 Using MMAC in Arabic OCR development

MMAC was originally generated to support this research in Arabic OCR. The

primary motive was to create a benchmark against which Arabic OCR applications

could be evaluated. Its inclusion of images of different tokens makes MMAC

suitable for training and testing OCR applications that operate in different layers.

Some OCR applications deal with the whole word, while others deal with PAWs

(Najoua and Noureddine 1995; Mehran, Pirsiavash et al. 2005). In the same manner

some applications use diacritics to search for particular words, while others neglect

them (Bushofa and Spann 1997). MMAC was generated to be used to evaluate any

Arabic OCR application using data at four different levels that start from accurate

computer generated images and move to real images of full page scanned documents.

These four different levels represent different degrees of difficulty for an OCR

application. As the application passes each level successfully and moves to the next,

it gains more confidence in the quality of the application.

MMAC was tested with commercial software to check its usefulness in a real world

application. The four different levels were tested using the well-known commercial

software Readiris pro 10 (IRIS 2004). Recognition results from Readiris were

compared to the ground truth documents using the Levenshtein Distance algorithm

3. A Multi-Modal Arabic Corpus 78

(Navarro 2001). The Levenshtein Distance algorithm is an approximate string

matching algorithm which gives a tentative accuracy of recognition (Levenshtein

1966). This accuracy is measured based on the percentage of correct characters

within the volume of characters covered, defined by the majority of the OCR

application vendors (Tanner, Muñoz et al. 2009). Figure 3.6 explains the process

applied to test MMAC with the commercial software. This process can be used to

test any OCR application with MMAC.

It is important to note that MMAC has been downloaded by both commercial

companies and researchers after it was published on the internet. MMAC role was to

select the best OCR application between the different applications tested. The variety

of data in MMAC was used to test the applications. A clear justification for the best

OCR application was produced. MMAC satisfied the needs of the commercial

company in selecting the proper OCR application.

Figure 3.6: The typical process of testing OCR application using MMAC

3.3.1 Computer generated token images

In the first step MMAC’s computer-generated images are used to test recognition

accuracy (Figure 3.2). The challenge of MMAC in this step is to maximize the

number of token images that are covered by the developing application. In addition

to the commonly used PAWs and Words, MMAC can be used to evaluate OCR

applications that deal with NWords or NPAWs. As the token images are very clear, it

is expected that many applications will be capable of high levels of performance. The

importance of this step is to evaluate OCR application with a wide variety of tokens

that represents most of the language. This step gives credibility to the OCR

application.

Get the document image and ground truth
document from MMAC online corpus

Load the document image to OCR engine

Deliver recognized document from OCR engine

Measure OCR engine recognition accuracy using
Levenshtein Distance algorithm

3. A Multi-Modal Arabic Corpus 79

In the experiment reported here the 1,274 most commonly used words were selected.

These words represent approximately half of the corpus words. A recognition

accuracy of 94% was achieved.

3.3.2 Computer generated token images with artificial noise

In the second step degraded images are generated from the clean computer generated

originals as shown in section 3.1.5. When an OCR application achieves high

accuracy at this stage it shows that the OCR application can not only detect most of

the tokens in the language but can also detect them in the presence of realistic noise.

The ability to control the noise added allows detailed analysis of the effect of

different image conditions on any proposed method. Extreme values can also be used

to test a given technique “to destruction”.

In the exemplar experiment, three different levels of rotation and noise were applied

to the document images. They represent images of good document, a medium

document and a bad document. Table 3.3 gives the exact parameters used which

were empirically derived after testing many values. The same 1,274 most common

words from the previous step were examined. Recognition accuracy was 91% for

good documents, 89% for medium documents and 77% for bad documents.

Table 3.3: Artificially added noise to computer generated documents

Good document Medium document Bad document

Rotation angle ±2° ±6° ±10°

Gaussian Blurring 10% 13% 15%

High Pass Filter 35% 45% 50%

Gaussian Noise 40% 65% 75%

Recognition accuracy 91% 89% 77%

3.3.3 Paragraph documents

In the third step, MMAC’s small images of real scanned, computer generated and

computer generated with artificial noise documents are used to test the OCR

application. Figure 3.4 shows examples of the available images. This step represents

a higher level of testing than the previous two. It employs bigger images and

different types of images. The recognition accuracy for this step gives a better

indication of the likely quality of the OCR application given real-world input.

3. A Multi-Modal Arabic Corpus 80

62 documents were selected from the three different types of documents that

represent the majority cases. The recognition accuracy of the real documents ranged

from 100% down to 47%. The recognition accuracy of the computer generated

documents ranged from 93% down to 33%, while that for computer generated with

noise documents ranged from 95% down to 54%. The variety of accuracy values are

based on the status of the document images and font properties. It was found that the

Italic font style gives bad accuracy results. It was also found that Traditional Arabic

font gives comparatively poor accuracy results. MMAC’s breadth allows the effect

of a wide range of text and image features to be assessed.

3.3.4 Real scanned documents

In the final step, MMAC’s images of real scanned documents are used to test the

OCR application. The real scanned images are ground truthed by the documents that

were scanned. These images show a variety of document types from a wide range of

sources. Figure 3.5 shows examples of the available images. Passing this step with

reasonable recognition accuracy gives the final evaluation of the OCR application.

This step tests not only the recognition accuracy but also the overall performance of

the OCR application. It probes the effect of page skew, page layout analysis, page

orientation and so on. This step is considered to be the final step because the

objective of any OCR application is to recognize full page documents with different

aspects.

During testing this step, 9 different documents were selected representing different

clarity and variety of images. The recognition accuracy achieved ranged from 95%

for good documents down to 46% for very poor documents. This wide range of

recognition accuracy indicates the usefulness of the large variety of images,

documents and added noise provided by MMAC in testing OCR applications.

3.4 Enhancing MMAC using a lexicon/stemming approach

The approach prepared to guarantee that the MMAC can be improved using

lexicon/stemming algorithm. This approach helps to facilitate an easy and acceptable

way to continuously update MMAC with new words. The approach adds new words

3. A Multi-Modal Arabic Corpus 81

by presenting the different available linguistics information concerning these words.

For every new word, the approach gives the following information:

 The existence of the new word in MMAC. This means that the word can be

added to the corpus without any problems.

 The existence of an alternative word in MMAC. This is a less accurate word but

it might also be right.

 Finally, the non-existence of neither the word nor its alternatives in MMAC. As a

result, this word must be checked carefully to know if it is a right or not.

The approach offers a tool that allows adding a list of new words to MMAC corpus

and regenerates MMAC content files automatically.

3.4.1 Approach applied in solving the problem

The two main types of stemming are light stemming and morphological stemming.

The light stemmer type was applied for the following reasons:

1. Light stemmers give more accurate results (Aljlayl and Frieder 2002).

2. Morphological stemmers depend on regular language rules. This may be

applicable in the English language because of the relatively small number of

irregular rules, but it is inapplicable in the Arabic language because of the huge

number of irregular rules.

3. Morphological stemmers sometimes depend on diacritics to extract the root.

Diacritics are not included in this research.

4. A light stemmer does not need good knowledge of the language grammar rules.

3.4.2 The proposed light stemmer affixes

In the Arabic language, the root may be prefixed, infixes or suffixed by one or more

letters. These letters have no meaning if written separately. Prefixes are letters added

to the beginning of the word like (). Infixes are letters added to the middle of

3. A Multi-Modal Arabic Corpus 82

the word like (). Suffixes are letters added at the end of the word like (

). Most of the light stemmers remove prefixes and suffixes only.

The proposed light stemmer is based on the list of Light1, Light2, Light3, Light8 and

Light10 (Larkey, Ballesteros et al. 2002) affixes as shown in Table 3.4. Shalabi (Al-

Shalabi and Kanaan 2004) created a morphological lexicon that included some

affixes in the stemming process using the morphological rules. Shalabi affixes that

are not used in other light stemmers are used. During the testing of the proposed

stemmer, it had been found that using these affixes is useful. It was clear that more

affixes were needed to improve its performance. Table 3.4 lists the different types of

light stemmers and Shalabi’s affixes. It also shows all affixes used to enable more

words to be detected by the corpus.

Table 3.4: Affixes of different light stemming types

Stemmer Prefixes Suffixes

Shalabi

Light 1 None

Light 2 None

Light 3

Light 8

Light 10

Proposed Stemmer

3.4.3 The proposed lexicon / stemmer algorithm

The proposed lexicon / stemmer algorithm is based on the light stemmer algorithm. It

creates a list of alternative words instead of the missing word from the corpus. It

searches the corpus for the words from the alternative list. The searching algorithm

for the missing words inside the corpus is a binary search.

Generating an alternative list of words is the important part in the approach. The

alternative list is a list of all the words that might be derived from the original word.

This part of the algorithm deals with the words from the testing dataset which are

missing in the corpus. It applies the following procedures:

1. It checks the first and last letters of a word. It looks for the prefixes and suffixes

letters shown in Table 3.4.

3. A Multi-Modal Arabic Corpus 83

2. It creates a two-dimensional array of characters of size 25*10. 25 characters are

used because it is more than the maximum Arabic word length and 10 characters

because this is the maximum number of affixes that can be used with a word.

3. It creates a one-dimensional array of 25 characters. This array keeps the path to

be followed to generate the alternative word from the other two-dimensional

array.

4. The two dimensional array is used to generate all possible alternatives, by adding

prefixes or suffixes to the word.

5. In the case of affix with value ‘0’, it runs the search without this character. For

example in the sample in Figure 3.7, the first character is (). The algorithm will

add all the paths once with () to the alternative list and once more without it.

This means going through all the paths once with the affix and once more

without it. It will ignore the letter when its value is '0'.

6. It starts getting all the possible paths from the two-dimensional array using the

idea of a Viterbi path algorithm. It stops in any column whenever the '\0'

character is found.

7. It adds each word created in each possible path to the list of alternative words to

the missed word.

Figure 3.7 shows the algorithm used to generate a list of alternative words to a

sample root word (). The three letters in the middle are the root word. The letters

on the right side show all the possible prefixes. The letters on the left side show all

the possible suffixes. The counter check array keeps the location of the path to be

followed to generate the alternative words.

3. A Multi-Modal Arabic Corpus 84

 \0 1 0 0 0 0 0 0 0 0

 Counter check array

 \0 0

 0 0 \0 \0 \0 0 0 0 0 1

 \0 2

 \0 \0 3

 4

 \0 5

 \0 6

 7

 \0 8

 9

Suffixes Root Prefixes

10 9 8 7 6 5 4 3 2 1 0

Figure 3.7: The structure of the lexicon / stemming algorithm

3.4.4 Implementing the lexicon / stemming approach

A program was implemented to apply the previous algorithm to the corpus words

data files. A script programming application was developed using MS DOS batch

scripting to generate the required overall application. The script uses the previous

program that was developed to apply the lexicon/stemming algorithm. The script also

uses the programs developed to generate the corpus data files.

The input here is a list of the new words required to be added to the corpus or to be

checked if they are included in the corpus or not. The program generates two lists of

words, a list of words found in the corpus and a list of words missed from the corpus.

The list of words missed from the corpus is divided into two different lists. The two

lists are a list of trusted words and a list of un-trusted words. The list of trusted words

is the list of words that have an alternative word in the corpus. The list of un-trusted

words is the list of words that have not got alternative words in the corpus.

The user is required to edit the two lists to double check manually with the words

that are going to be added to the corpus. After verifying the list of words to be added

3. A Multi-Modal Arabic Corpus 85

to the corpus the application loads the new list of words into the corpus. The

application regenerates all the files of the corpus with the new lists of words.

3.5 Statistical analysis of the MMAC corpus

Corpus analysis is concerned with the statistical properties of words and other lexical

tokens. In this section an investigation was described into the frequency of these

entities in Arabic.

Previous studies of Arabic corpora only analyzed words. The other tokens are

emphasised also, namely NWords, PAWs and NPAWS. This is achieved by studying

the most and least frequently occurring tokens. The analysis of words was compared

with previous researches to verify corpus results.

3.5.1 Frequency list

A frequency list is a list of number of occurrences of each element (usually word) in

a corpus, and is an important part of any corpus (Buckwalter 2002). It is useful for

information retrieval, text categorisation, and numerous other purposes (Kilgarriff

1997). Frequency lists are very useful to the OCR application developer as they can

be used to validate the accuracy of the recognition phase. Comparison of the

frequency of each word in the corpus and in the system output is an important step

when assessing the accuracy of a recognition process. The Frequency lists in MMAC

are not limited to words, but also include NWords, PAWs, and NPAWs. The variety

in the types of token used here gives flexibility to the developers of OCR

applications, who can use the MMAC to support a wide range of application

evaluations. The file format is a text file; each line contains a word and the number

of occurrence of this word sorted alphabetically. There are 4 separate files in this

format: for words, NWords, PAWs and NPAWs.

3.5.2 Analysis of words, PAWs and characters

Table 3.5 and Table 3.6 show the detailed analysis of the words and PAWs in

MMAC. The most common Words are prepositions while the most common PAWs

are those that consist a single letter. There are 25% fewer unique NWords than

unique Words. The number of NWords that occur once or are repeated twice is less

3. A Multi-Modal Arabic Corpus 86

than in the case of Words, while NWords that are repeated heavily are more common

than in the case of unique Words. The number of unique PAWs is very limited

relative to the total number of PAWs. More PAWs are heavily repeated than Words.

There are 50% fewer unique NPAWs than unique PAWs. The number of NPAWs

that have few repetitions is less than in the case of PAWs, although the average

number of repeated NPAWs is greater than that of PAWs.

Table 3.5: Statistical summary for Words, NWords, PAWs and NPAWs

 Total Number of

Tokens

Number of Unique

Tokens

Average Repetition

of Tokens

Words 6,000,000 282,593 21.23

Naked Words 6,000,000 211,072 28.43

PAWs 14,025,044 66,725 210.19

Naked PAWs 14,025,044 32,804 427.54

Table 3.6: The average characters/Word, characters/PAW and PAWs/Word

 Average

Characters / Word 4.74

Characters / PAW 2.03

PAWs / Word 2.33

The total number of one letter PAWs is 6,275,167 which represents 44.7% of the

total number of PAWs; while there are 3,652,709 two letter PAWs, 26% of the total.

The total number of NPAWs in the corpus is 14,025,044, while the total number of

unique NPAWs is 32,804 with an average repetition of 427.54 for each NPAW.

Table 3.7 and Table 3.8 show the analysis of the corpus data at the level of

characters. The tables show the number of occurrences of each character in the

corpus at each different location in the PAW. Recall that the Arabic letter may have

one of four different locations in the PAW, isolated, start, middle and end. Table 3.7

shows all the Arabic character and also the Lam Alef ligature. Table 3.8 shows the

letters grouped in their joining groups as NPAWs.

3. A Multi-Modal Arabic Corpus 87

Table 3.7: The number of occurrence of letters in their different locations

Character Isolated Start Middle End Total

 2,921,359 0 0 1,771,139 4,692,498

 75,345 485,256 350,554 81,466 992,621

 198,275 340,989 572,644 99,135 1,211,043

 12,012 46,060 80,714 21,463 160,249

 17,306 173,873 176,861 11,391 379,431

 20,697 203,432 276,101 30,110 530,340

 2,689 118,704 101,542 12,071 235,006

 271,891 0 0 555,431 827,322

 65,964 0 0 153,830 219,794

 445,282 0 0 952,398 1,397,680

 66,653 0 0 94,711 161,364

 28,650 296,167 293,789 61,225 679,831

 7,391 101,863 146,214 9,616 265,084

 10,352 96,163 167,961 13,985 288,461

 23,512 72,473 99,236 18,100 213,321

 9,957 77,117 142,982 33,896 263,952

 1,335 11,381 44,247 4,203 61,166

 44,763 382,756 390,729 105,718 923,966

 1,824 48,332 57,907 4,579 112,642

 34,892 391,667 216,485 49,139 692,183

 49,168 240,580 342,488 53,715 685,951

 26,453 266,309 213,981 60,663 567,406

 159,823 1,934,453 519,953 227,527 2,841,756

 115,682 727,719 676,678 196,923 1,717,002

 300,775 357,635 427,163 369,399 1,454,972

 245,657 234,768 269,303 857,477 1,607,205

 835,979 0 0 724,380 1,560,359

 164,639 644,409 955,427 613,885 2,378,360

 110,216 0 0 0 110,216

 1,812 100,543 18,054 7,834 128,243

 4,814 0 0 26,145 30,959

 0 0 0 0 0

 397,210 0 0 131,095 528,305

Total 6,672,377 7,352,649 6,541,013 7,352,649 27,918,688

3. A Multi-Modal Arabic Corpus 88

Table 3.8: The number of occurrence of naked letters in their different locations

Characters Isolated Start Middle End Total

 2,921,359 0 0 1,771,139 4,692,498

 285,632 1,974,892 2,404,556 202,064 4,867,144

 40,692 496,009 554,504 53,572 1,144,777

 337,855 0 0 709,261 1,047,116

 511,935 0 0 1,047,109 1,559,044

 36,041 398,030 440,003 70,841 944,915

 33,864 168,636 267,197 32,085 501,782

 11,292 88,498 187,229 38,099 325,118

 46,587 431,088 448,636 110,297 1,036,608

 34,892 632,247 558,973 49,139 1,275,251

 49,168 0 0 53,715 102,883

 26,453 266,309 213,981 60,663 567,406

 159,823 1,934,453 519,953 227,527 2,841,756

 115,682 727,719 676,678 196,923 1,717,002

 300,775 0 0 369,399 670,174

 245,657 234,768 269,303 857,477 1,607,205

 840,793 0 0 750,525 1,591,318

 166,451 0 0 621,719 788,170

 110,216 0 0 0 110,216

 397,210 0 0 131,095 528,305

Total 6,672,377 7,352,649 6,541,013 7,352,649 27,918,688

3.5.3 Discussion

It is important to measure the frequency of occurrence of the Words, NWords, PAWs

and NPAWs of the Arabic language. Frequency data aids the development of OCR

applications by encouraging the OCR developer to recognize more common

elements first. For example, the PAW () represents more than 20% of the written

Arabic language. As Figure 3.8 shows, this percentage increases dramatically when

measured in NPAWs instead of words. The 25 most repeated NPAWs account for

more than half the words used in practice.

Statistical analysis shows that the number of unique NPAWs in the MMAC is very

limited. The number of unique NWords is almost six times that of NPAWs.

Moreover, this increases rapidly, with no evident asymptote, as new texts are added

to the corpus as shown in Figure 3.9. The number of unique NWords is about 80% of

the number of unique Words and this ratio remains fairly stable once a reasonable-

sized corpus has been established.

3. A Multi-Modal Arabic Corpus 89

Figure 3.8: The relationship between top 10 and top 25 most repeated tokens

Figure 3.9: Relationship between distinct tokens and words as samples increases

Analysis of MMAC also shows the least repeated Words and PAWs in the language.

Table 3.9 shows the relationship between the total number of Words, NWords,

PAWs and NPAWs that occur only once; as percentages of the total number of

distinct words and the total number of words, NWords, PAWs and NPAWs in the

corpus. The twenty five most repeated Words, NWords, PAWs and NPAWs and the

percentage of each of them in the corpus are shown in Table 3.10. The analysis of

words in Table 3.10 gives almost the same results as that found by others (Al-

0

10

20

30

40

50

60

Word Naked Word PAW Naked PAW
P

er
ce

n
ta

g
e

Tokens

Percentage of the top ten Percentage of the top twenty five

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

0

2
0
0
,0

0
0

4
0
0
,0

0
0

6
0
0
,0

0
0

8
0
0
,0

0
0

1
,0

0
0
,0

0
0

1
,2

0
0
,0

0
0

1
,4

0
0
,0

0
0

1
,6

0
0
,0

0
0

1
,8

0
0
,0

0
0

2
,0

0
0
,0

0
0

2
,2

0
0
,0

0
0

2
,4

0
0
,0

0
0

2
,6

0
0
,0

0
0

2
,8

0
0
,0

0
0

3
,0

0
0
,0

0
0

3
,2

0
0
,0

0
0

3
,4

0
0
,0

0
0

3
,6

0
0
,0

0
0

3
,8

0
0
,0

0
0

4
,0

0
0
,0

0
0

4
,2

0
0
,0

0
0

4
,4

0
0
,0

0
0

4
,6

0
0
,0

0
0

4
,8

0
0
,0

0
0

5
,0

0
0
,0

0
0

5
,2

0
0
,0

0
0

5
,4

0
0
,0

0
0

5
,6

0
0
,0

0
0

5
,8

0
0
,0

0
0

6
,0

0
0
,0

0
0

N
u

m
b

er
 o

f
u

n
iq

u
e

to
k

en
s

Number of tokens

Number of Unique Words Number of Unique NWords Number of Unique PAWs Number of Unique NPAWs

3. A Multi-Modal Arabic Corpus 90

Ma'adeed, Elliman et al. 2002; Buckwalter 2002; Pechwitz, Maddouri et al. 2002),

which gives credibility to the analysis of this research. The analysis of NWords,

PAWs and NPAWs in Table 3.10 is very important to the OCR developer in the

sense of giving more emphasis not only to the most repeated words but also the most

repeated NWords, PAWs and NPAWs. Tokens that are repeated most should be

recognized before those that appear only rarely. According to the previous statistics,

advice to OCR developers is to consider recognising the one letter PAWS in their

isolated shape first.

Table 3.9: Tokens that occurred once in relation to total unique and total tokens

Total Number of Tokens

that Occur Once

Percentage to the Total

Number of Unique

Tokens

Percentage to the Total

Number of Tokens

Word 107,771 38.14% 1.796%

Naked Word 69,506 32.93% 1.158%

PAW 20,239 30.27% 0.144%

Naked PAW 8,201 24.92% 0.058%

Table 3.10: The 25 most repeated tokens. Number and percentage of repetitions

S
er

ia
l

N
o

.
o

f

R
ep

et
it

io
n

s

W
o

rd

P
er

ce
n

ta
g

e

N
o

.
o

f

R
ep

et
it

io
n

s

N
ak

ed
 W

o
rd

P
er

ce
n

ta
g

e

N
o

.
o

f

R
ep

et
it

io
n

s

P
A

W

P
er

ce
n

ta
g

e

N
o

.
o

f

R
ep

et
it

io
n

s

N
ak

ed
 P

A
W

P
er

ce
n

ta
g

e

1 164,165 2.73% 164,193 2.73% 2,921,359 20.81% 2,921,359 20.84%

2 139,380 2.32% 139,380 2.32% 835,979 5.96% 840,793 5.99%

3 82,429 1.37% 82,429 1.37% 445,282 3.17% 511,935 3.65%

4 78,417 1.30% 78,427 1.30% 397,210 2.83% 397,210 2.83%

5 40,431 0.67% 40,431 0.67% 300,775 2.14% 337,855 2.41%

6 40,091 0.66% 40,114 0.66% 271,891 1.94% 300,775 2.14%

7 37,830 0.63% 37,830 0.63% 245,657 1.75% 285,629 2.03%

8 34,897 0.58% 34,897 0.58% 198,275 1.41% 245,657 1.75%

9 34,197 0.57% 34,197 0.57% 176,106 1.25% 226,566 1.61%

10 29,896 0.49% 30,315 0.50% 164,317 1.17% 180,173 1.28%

11 29,793 0.49% 29,900 0.49% 159,823 1.14% 166,129 1.18%

12 25,759 0.42% 25,759 0.42% 151,009 1.07% 159,823 1.14%

13 21,363 0.35% 21,413 0.35% 115,682 0.82% 151,009 1.07%

14 20,010 0.33% 20,010 0.33% 115,372 0.82% 149,501 1.06%

15 19,576 0.32% 19,584 0.32% 102,560 0.73% 115,682 0.82%

16 18,566 0.30% 18,566 0.30% 93,731 0.66% 115,436 0.82%

17 16,738 0.27% 16,738 0.27% 81,895 0.58% 102,560 0.73%

18 16,467 0.27% 16,468 0.27% 76,162 0.54% 101,839 0.72%

19 16,317 0.27% 16,317 0.27% 75,344 0.53% 96,635 0.68%

20 14,065 0.23% 15,910 0.26% 69,987 0.49% 93,859 0.67%

21 13,975 0.23% 14,602 0.24% 69,779 0.49% 93,731 0.66%

22 12,944 0.21% 14,081 0.23% 66,653 0.47% 82,003 0.58%

23 12,863 0.21% 12,944 0.21% 65,964 0.47% 74,079 0.52%

24 11,750 0.19% 12,873 0.21% 63,088 0.45% 69,987 0.49%

25 11,688 0.19% 12,023 0.20% 59,907 0.42% 69,791 0.49%

3. A Multi-Modal Arabic Corpus 91

The other important advice to OCR developers is to deal with the two letter PAWs as

if they are isolated letters or new glyphs. These new glyphs present just 612 different

shapes. If the OCR developers recognize these isolated letters and two letters glyphs

they can process 70% of the language.

3.6 Testing the corpus’ validity

Testing the validity and accuracy of the data is a very important issue in creating any

corpus (Mashali, Mahmoud et al. 2005). The testing process started by collecting a

testing dataset from unusual sources consisting of scanned images from faxes,

documents, books, medicine scripts and well known Arabic news websites. This was

done one year after the original MMAC data collection was completed. The testing

dataset was collected from sources that intersected minimally with those of the

corpus. The total number of Words in the testing dataset is 69,158 and the total

number of PAWs is 165,501. Table 3.11 shows the total and the number of distinct

Words, NWords, PAWs and NPAWs of the testing dataset.

The lexicon / stemming approach was also tested in two different ways. The first was

to test the validity of the algorithm when adding or removing affixes. The second

was to test adding the testing dataset to the corpus and to check the new generated

corpus files.

Table 3.11: The corpus testing dataset tokens with their unique number

Corpus Testing Dataset Total

Number of Tokens

Corpus Testing Dataset Unique

Number of Tokens

Word 69,158 17,766

Naked Word 69,158 16,513

PAW 165,518 7,272

Naked PAW 165,518 4,749

3.6.1 Testing words and PAWs

A program was developed to search in the corpus binary data files using a binary

search tree algorithm. The percentage of unique words in the testing dataset found in

the corpus data file is 89.8%. Table 3.12 gives the percentage of tokens found from

the testing dataset in the corpus data files. This analysis deals with the unique data

3. A Multi-Modal Arabic Corpus 92

only. On the other hand, the total testing dataset words missing (that are not unique)

in the corpus data files are 2,457 Words with a percentage of 3.5%. Table 3.13 shows

this ratio in the corpus tokens.

Table 3.12: Number & percent of unique found tokens of testing data in MMAC

Total Number of Unique Tokens

Found

Percentage of Total Unique

Tokens Found

Word 15,967 89.8%

Naked Word 15,163 91.8%

PAW 6,983 96%

Naked PAW 4,629 97.5%

Table 3.13: Number & percentage of missed tokens of testing data from MMAC

 Total Number of Missed Tokens
Percentage of Total Missed

Tokens

Word 2,457 3.5%

Naked Word 1,843 2.66%

PAW 1,600 0.96%

Naked PAW 1,358 0.82%

3.6.2 Checking corpus accuracy

The testing dataset was also used to check the accuracy of the statistics obtained

from the corpus. By extrapolation, it was believed that if the curve between the

number of words and the unique number of words (Figure 3.9) is extended according

to the number of words that exists in the testing dataset, this will result in an increase

in the unique number of words is almost equal to the missing words in the corpus.

The shape of the curve between the total number of words and the unique number of

words is a nonlinear regression model. The CurveExpert 1.3 shareware program was

used (Hyams 2005) and applied its curve finder process. It was found that the best

regression model is the Morgan-Mercer-Flodin (MMF) model, from the Sigmoidal

Family (Gu, Hu et al. 2001).

3. A Multi-Modal Arabic Corpus 93

The best fit curve equation is:

where:

a = -42.558444 b = 40335.007

c = 753420.21 d = 0.64692321

Standard Error: 156.0703663 Correlation Coefficient: 0.9999980

Upon applying the previous equation, it was found that the increase in the number of

words to 6,069,158 will increase the number of distinct words by 1,676, while the

number of missing words is 1,799. This result supports the previous assumption, with

an accuracy of 93%.

3.6.3 Testing lexicon / stemming approach validity

The lexicon / stemming approach was tested against the MMAC corpus data using

the testing dataset mentioned before. The purpose of this testing is to check the

validity of the approach. It checks whether the generated list of alternative words

includes reasonable words or not.

The total number of the unique words in the corpus is 282,593. The total number of

the unique words in the testing dataset is 17,766. The total number of words from the

testing dataset found in the corpus is 15,967 with an accuracy of 89.8%. The total

number of words from testing dataset missed from the corpus is 1,799 with an error

rate of 10.2%.

The total number of words found in the corpus after applying the approach is 17,431

with accuracy of 98.11%. The total number of words missing from the corpus after

applying the approach is 335 words with an error of 1.89%.

The total number of words found in the corpus using the approach only is 1,464

words. These words are either relevant to the missing word which wasn’t found in

the corpus (1,387 words with an accuracy of 94.7%), or irrelevant to the missing

word (77 words with an error of 5.3%).

3. A Multi-Modal Arabic Corpus 94

The previous statistics indicate that lexicon / stemming algorithm reaches a high

level of accuracy in finding the words (98.1%) with a very minor missing words

error factor of 1.89% and also a very minor error in finding irrelevant words of 0.4%.

3.6.4 Applying the lexicon / stemming approach

This part tests using the lexicon / stemming approach to add new words to the

MMAC corpus and show the effect of these additions upon the performance of the

corpus. It also tends to set a rule for the corpus to include more new words regularly.

The testing dataset mentioned before was used as a list of new words to be added to

the corpus. Table 3.14 shows the number of words that are added to the corpus using

the testing dataset. The numbers in Table 3.14 are for both trusted and un-trusted

lists.

Table 3.14: Number and percentage of tokens using trusted and un-trusted lists

Description
Before lexicon /

stemming

After lexicon /

stemming

Percentage

increase

Total number of Words 6,000,000 6,069,158 1.15%

Number of Unique words 282,593 284,392 0.64%

Number of Unique Naked words 211,072 212,422 0.64%

Number of Unique PAWs 66,725 67,010 0.43%

Number of Unique Naked PAWs 32,804 32,925 0.37%

Table 3.15 shows the number of words that are added to the corpus using the trusted

list of the testing dataset.

Table 3.15: Total number and percentage of tokens using trusted list

Description
Before lexicon /

stemming

After lexicon /

stemming

Percentage

increase

Total number of Words 6,000,000 6,069,158 1.15%

Number of Unique words 282,593 284,057 0.52%

Number of Unique Naked words 211,072 212,142 0.51%

Number of Unique PAWs 66,725 66,923 0.30%

Number of Unique Naked PAWs 32,804 32,894 0.27%

Table 3.16 shows the number of words that are added to the corpus using the un-

trusted list of the testing dataset.

3. A Multi-Modal Arabic Corpus 95

Table 3.16: Total number and percentage of tokens using un-trusted list

Description
Before lexicon /

stemming

After lexicon /

stemming

Percentage

increase

Total number of Words 6,000,000 6,069,158 1.15%

Number of Unique words 282,593 282,928 0.12%

Number of Unique Naked words 211,072 211,352 0.13%

Number of Unique PAWs 66,725 66,813 0.13%

Number of Unique Naked PAWs 32,804 32,839 0.11%

The previous tables show that the approach is working properly with the MMAC

corpus. They also showed that the approach can easily increase the total number of

valid words in MMAC corpus. It is also apparent also that the process of adding new

lists of words to the corpus is very easy using this approach. The complicated

procedures that were followed to generate the corpus are no longer needed in the

process of adding new lists of words.

3.7 The online MMAC corpus

The contents of the MMAC are available from http://www.ashrafraouf.com/mmac. It

also includes the method applied to transliterate the tokens text to English tokens

name.

3.7.1 MMAC corpus contents

The contents of the online version of MMAC are:

1. Original Data File: This contains the original sequence of words as collected. It

can be used for defining word frequency pairs, for example.

2. Original Data File After Replacing Alef: This file is the same as above after

substituting Alefs.

3. Sample Raw Data Collected: This contains samples of all types of files that are

used in the corpus. The files are in their original formats.

4. Data Files: This folder contains four sub-folders for the main statistical analysis

of the research. These folders are for Words, NWords, PAWs and NPAWs. Each

of the previous folders (for example the Word folder) includes a randomized

http://www.ashrafraouf.com/mmac

3. A Multi-Modal Arabic Corpus 96

word list file, a Unique sorted Words list, a Word Repetition Counting list, the

Top 50 repeated Words list and a Word Occurred Once list file.

5. MMAC tokens Images: This folder contains four sub-folders for the images of the

four different types of tokens. Each folder contains samples of the images of 50

tokens and their ground truth XML files.

6. Paragraph documents Dataset: This folder contains three sub-folders for the real

images, computer images and noisy images. Each folder contains the images and

the truth text.

7. Real Scanned Dataset: This folder contains two sub-folders for the typed and

scanned documents. Each folder contains 19 documents.

8. Corpus testing data: This folder contains four sub-folders for the computer

tokens tests, noise tokens test, paragraph tests and full page tests.

9. Frequency List: This folder contains the frequency lists of the Words, NWords,

PAWs, NPAWs. The lists are sorted alphabetically. Each line contains a token

with its frequencies in the corpus.

10. Applications: This folder contains all the applications used to support the

generation of the corpus and degrade images.

11. All Statistics.xls: This is an Excel spreadsheet file containing all the data sheets

and charts that have been used in the analysis of the corpus data.

3.7.2 Transliteration encoding

For flexibility and ease of use it is necessary to use Roman character based letters for

the Arabic image text. The Arabic English transliteration encoding is used to name

the Arabic text in English. An explanation of the different types of Arabic English

transliteration encoding available is now given. Transliteration is a mapping between

two different languages, in this case Arabic and English (contributors 2006). There

are many types of transliteration between Arabic and English which can be

summarized into two main categories: Arabic Transliteration (contributors 2006) and

Arabic Chat Alphabets (Palfreyman and Khalil 2003).

3. A Multi-Modal Arabic Corpus 97

Using Arabic transliteration encoding is much better in this case than Arabic Chat

Alphabets - although “chat” is more readable to Arabic natives for the following

reasons:

1. The Arabic Chat Alphabets neglect letters with diacritics like)

(contributors 2006).

2. The Arabic Chat Alphabets sometimes use two characters to transliterate a single

character.

3. The Arabic Chat Alphabets sometimes use special characters to transliterate

(Palfreyman and Khalil 2003).

Table 3.17: Buckwalter Transliteration encoding

T
ra

n
sl

it
er

at
ed

C
h

ar
ac

te
r

A
ra

b
ic

C
h

ar
ac

te
r

T
ra

n
sl

it
er

at
ed

C
h

ar
ac

te
r

A
ra

b
ic

C
h

ar
ac

te
r

T
ra

n
sl

it
er

at
ed

C
h

ar
ac

te
r

A
ra

b
ic

C
h

ar
ac

te
r

T
ra

n
sl

it
er

at
ed

C
h

ar
ac

te
r

A
ra

b
ic

C
h

ar
ac

te
r

' T s f

| V $ q

> J S k

& H D l

< X T m

} D Z n

A * E h

B R g w

P Z - Y

 y

The most famous Arabic Transliteration encoding is the Buckwalter Transliteration

as shown in Table 3.17 (Buckwalter 2002). Buckwalter Transliteration encoding was

used (37 characters) with some modifications for the following reasons:

1. Buckwalter uses a single character for transliteration.

2. Buckwalter includes all written Arabic characters and also some diacritics such

as () (Ananthakrishnan, Bangalore et al. 2005).

3. Buckwalter uses fewer capital letters. (it only uses A, H, S, D, T, Z, E, Y).

3. A Multi-Modal Arabic Corpus 98

3.7.3 Buckwalter modified transliteration encoding

The purpose of transliteration in this case is different from most other transliteration

uses. Transliteration encoding is used for many purposes, including file names;

therefore, all the restrictions of the use and also file name restrictions in the most

common operating systems (Windows, MAC OS and UNIX) must be followed.

These restrictions are:

1. The file name may not be case sensitive: Hence changing the eight letters used in

Buckwalter (A, H, S, D, T, Z, E, Y) by putting the character '#' before them.

2. White space is not allowed: This restriction is not applicable in this case.

3. Some special characters like (|, >, *) are not allowed: So changing the

transliteration for:

 () from '|' to be 'i'.

 () from '>' to be 'a'.

 () from '&' to be '@'.

 () from '<' to be 'e'.

 () from '*' to be '~'.

The Modified Buckwalter Transliteration is almost the same as the original but with

13 of the original 37 characters modified. Table 3.18 shows the characters and their

proposed transliterated characters.

Table 3.18: Buckwalter Modified Transliteration encoding

T
ra

n
sl

it
er

at
ed

C
h

ar
ac

te
r

A
ra

b
ic

C
h

ar
ac

te
r

T
ra

n
sl

it
er

at
ed

C
h

ar
ac

te
r

A
ra

b
ic

C
h

ar
ac

te
r

T
ra

n
sl

it
er

at
ed

C
h

ar
ac

te
r

A
ra

b
ic

C
h

ar
ac

te
r

T
ra

n
sl

it
er

at
ed

C
h

ar
ac

te
r

A
ra

b
ic

C
h

ar
ac

te
r

' t s f

I v $ q

A j #S K

@ #H #D l

E x #T m

} d #Z n

#A ~ #E h

B r g w

P z - #Y

 y

3. A Multi-Modal Arabic Corpus 99

3.8 Summary

This chapter explained the generation of a multi-modal Arabic corpus. It shows the

procedures followed to generate and test it. This chapter ended up with a real Arabic

corpus. This corpus is used in the next three chapters for the applying of the HCC

approach to generate Arabic tokens classifier, generate HCC tokens recognizer and

in the post-processing HCC tokens. Here are the issues that were discussed in this

chapter:

1. An introduction to the corpus and the need to build an Arabic corpus.

2. The contents, collection and preparation of the textual data of the corpus.

3. The contents and organization of the images data of the corpus and how they

were collected and truthed.

4. Developing the OCR application is one of the main benefits of the corpus; this is

explained extensively in the chapter.

5. Developing a lexicon /stemming approach to enhance the corpus. The approach

guarantee the development of the corpus and the continuity of updating it

6. The statistical analysis of the corpus. Different types of the analysis of the

corpus.

7. The corpus information is validated via a testing dataset. The verifications show

how the corpus data were trusted through many types of verifications.

8. Presentation of the corpus on the internet.

4. Glyph recognition using a Haar Cascade Classifier 100

Chapter 4.

Glyph recognition using a Haar Cascade Classifier

This chapter describes the experimental work of applying the Haar Cascade

Classifier approach (HCC). The HCC approach uses the cascade of boosted

classifiers based on Haar-like features in order to recognize Arabic glyphs. An

explanation is given of how the approach was applied to Arabic character

recognition. Moreover the steps and experiments that were followed in order to

justify that the HCC approach is applicable for the Arabic character recognition

application are given. At the end an experiment is introduced to include all the

Arabic naked glyphs using the HCC approach and the results shown. It concludes

with the usefulness of the approach in Arabic character recognition.

The previous chapter discussed the generating and applying of a Multi-Modal Arabic

Corpus (MMAC). This chapter makes use of the MMAC which was mainly used in

the training and testing of classifiers. Rather than training and testing, most of the

content of the MMAC was used in the experiments applied in this chapter in order to

justify the usefulness of the HCC approach in Arabic character recognition.

4.1 Using a Haar Cascade Classifier with Arabic character

recognition

The Haar Cascade Classifier approach is very useful for problems within printed

Arabic character recognition. It can solve many of the traditional problems of Arabic

character recognition. Also, it has been found that there are some similarities

between the detection of faces and the recognition of Arabic glyphs.

4.1.1 Arabic character recognition difficulties

Research studies in Optical Character Recognition (OCR) have common difficulties

that need solving no matter the approach. Arabic character recognition has some

4. Glyph recognition using a Haar Cascade Classifier 101

extra difficulties that are applicable to the Arabic language and languages that use the

Arabic alphabet. The properties of the Arabic language are shown in section 2.2. The

two types of difficulties are summarized as:

1. Common OCR difficulties include the need to use a binarization algorithm in

order to convert the grey-scale image to a binary image (black and white). A

skew detection and correction algorithm is needed in order to correct errors that

occur during the scanning of the document which causes the document image to

become rotated. A normalization algorithm is also required to scale the document

in order to make the glyphs the same size as the trained glyphs.

2. The Arabic language is cursive and the letters are frequently connected inside the

words. This feature of the Arabic language needs a sophisticated character

segmentation algorithm in order to segment the word to its original glyphs. The

character segmentation algorithm is one of the bottlenecks of any Arabic

character recognition research or application (Abdelazim 2006). This research

considers that skipping the character segmentation process will improve Arabic

character recognition success rates.

The previous difficulties that have been encountered serve to make the OCR

application more sophisticated and take more time in applying the algorithms

needed. However, they also reduce the recognition accuracy of Arabic OCR.

4.1.2 Benefits of using the Haar Cascade Classifier approach

The advantages of using the HCC approach are particularly beneficial for Arabic

character recognition. The Haar-like features technique is ideal for Arabic characters

as it copes with the visual properties of an object; and Arabic glyphs have clear

visual properties. Combining the feature extraction with the classification stages in

HCC facilitates the process of training and testing in the proposed application.

Arabic character recognition can benefit from skipping the pre-processing stages. It

benefits from the scaling invariant of the approach in that it removes the need for a

normalization algorithm. It benefits from extended, rotated features in order to ignore

the skew detection and correction. The ability to use grey-scale images removes the

need for a binarization algorithm in order to convert to a binary image.

4. Glyph recognition using a Haar Cascade Classifier 102

The nature of the HCC approach (when used with face detection) depends on

capturing the image of the face from the testing image. This nature can be applied for

Arabic character recognition in order to capture the selected glyph from the

document image. Applying the previous nature leads to an Arabic character

recognition approach without the character segmentation process which is considered

to be the main contribution of this research.

4.1.3 Dealing with variations

Although the HCC approach was originally presented for face detection, in this

research it has been found to be very useful for the recognition of Arabic characters.

There are some similarities with Arabic glyphs:

1. Similar to faces, most of the Arabic glyphs have clear visual features.

2. Arabic characters are connected and it is better to pick out the glyphs from inside

the document image without character segmentation; like picking out the face

from inside the image.

3. Characters may have many font sizes inside the document image and may also be

rotated; this is the similar to faces. Different face sizes may be found inside an

image and also at different rotational angles.

4. The facial image may contain different face styles, this may occur in the Arabic

glyphs with different font style.

4.1.4 How to apply the approach

Although the HCC approach was originally invented for face detection and not

recognition, it can be used for Arabic character recognition. The different Arabic

glyphs represent different objects. Each glyph can be considered as a different object

to be detected, and in this case each glyph has a different classifier. The glyph

classifier will detect its glyphs and ignore all other glyphs; in doing so it becomes a

glyph recognizer rather than a detector.

This approach needs the preparation of two main sets of images. A positive set

contains images which include at least one target object inside every image of the set.

4. Glyph recognition using a Haar Cascade Classifier 103

A negative set contains images which do not include any target object inside the

images of the set. The approach needs to prepare training data which contains both

negative and positive sets. Testing data is then required which contains only a

positive set.

The positive set includes a list file containing the image name and the positions of

the object inside the image. The position of the object is defined by the top-left X-

coordinate, top-left Y-coordinate, width and height. All the units are measured in

pixels.

Applying the HCC approach in order to recognize the Arabic characters requires the

generation of training and testing sets for each glyph. The glyphs in the Arabic

language (as shown in section 2.2) vary for the same letter; the same letter normally

has four different locations in the word (isolated and at the start, middle and end).

Each letter location has a different shape which leads to a different glyph. This

means that almost every letter in the Arabic language has four different glyphs. Thus

a total of 100 datasets and classifiers are needed as shown in Table 2.3.

4.2 Problem solving approach

The problem solving approach consists of applying experiments in order to check the

validity of the approach in Arabic printed character recognition. The aim of the

experiment was to run a simple pilot experiment simply to discover whether the

approach was applicable or not. When the first pilot experiment was passed

successfully, it would move to a more advanced experiment. The extended

experiment was the second step in applying the HCC approach. Passing the extended

experiment with good recognition accuracy led us to the final experiment which dealt

with all the Arabic glyphs. Auxiliary experiments were run in order to get the best

training parameters within Arabic printed character recognition.

4.2.1 The pilot experiment to detect the isolated letter Ain ()

The pilot experiment was applied to test whether the HCC approach is applicable to

Arabic character recognition or not. The plan was to make it as simple as possible to

investigate the HCC approach with new objects like the Arabic glyphs. For the sake

4. Glyph recognition using a Haar Cascade Classifier 104

of simplicity a single letter, Ain (), was used in its isolated location as an object.

The negative and positive images used were that offered from OpenCV. Also, the

training and testing parameters used were the default proposed by OpenCV. Finally

the output of the Ain classifier was tested with a real Arabic document image in

order to make sure that the HCC approach can recognize Arabic characters. The

details of the experiment are shown in section 4.3.

4.2.2 The extended experiment to detect 15 different glyphs

An extended experiment was planned to extend the first pilot experiment after

obtaining good results. The extended experiment was more advanced than the pilot

experiment. The number of objects in this case was 15 glyphs which represent most

of the Arabic glyph cases. Using actual Arabic document images to generate the

positive and negative image datasets, the experiment used different types of images;

real scanned, computer generated and computer generated with artificial noise. At the

end of the experiment, the results were tested with the testing tool offered by

OpenCV and a commercial Arabic OCR application. The details of the experiment

are shown in section 4.4.

4.2.3 The auxiliary experiments to improve the training parameters

Auxiliary experiments were planned in order to obtain the best parameters that can

be used during the training process. These parameters were width, height, number of

splits, minimum hit rate and boosting algorithms. The auxiliary experiments were:

1. To test the influence of the training width and height of the glyph on the final

recognition accuracy;

2. To test the effect of the number of splits and minimum hit rate used during the

training of the glyph on the final recognition accuracy and training duration;

3. To test the influence of using different types of boosting algorithms with a

different number of splits on the final recognition accuracy. These boosting types

are Gentle Ada-Boost (GAB), Discrete Ada-Boost (DAB) and Real Ada-Boost

(RAB).

4. Glyph recognition using a Haar Cascade Classifier 105

The details of the experiments are shown in section 4.5.

4.2.4 The final experiment to detect naked Arabic glyphs

The final experiment was planned after completing the extended experiment with

satisfactory results. The final experiment generated classifiers for all the Arabic

characters in their different locations (isolated and at the start, middle and end). The

experiment deals with the naked shape of the glyphs to facilitate faster detection and

makes use of the results of the auxiliary experiments. The same types of positive and

negative datasets used in the extended experiment were used. At the end of the

experiment the results were tested using only the testing tool offered by OpenCV in

this case, as the testing of the entire system will be discussed later (see Chapter 5 and

Chapter 6). The details of the experiment are shown in section 4.6.

4.3 The pilot experiment

This experiment was the first step in handling the HCC approach. As it was the first

time that the HCC approach has been used with character recognition, particularly

Arabic character recognition, it was important to strictly follow the procedure offered

by OpenCV in order to generate a classifier. There were three main references to

follow in building the classifier (OpenCV 2002; Adolf 2003; Seo 2008). These

references explain in detail how to build a face classifier using the HCC approach.

The same procedures were followed but replaced the object from a face to the Arabic

letter Ain () in its isolated form.

4.3.1 Planning the experiment

The experiment was originally conceived in order to discover the applicability of the

HCC approach to Arabic character recognition. The experiment was planned as

follows:

1. Create a Haar-Cascade Classifier (HCC) for the isolated Arabic letter Ain ().

The letter Ain is in the binary (black and white) format.

2. Use the negative images that are available from the OpenCV library.

4. Glyph recognition using a Haar Cascade Classifier 106

3. Generate positive images using the tool offered by OpenCV and using default

parameters in order to generate these positive images.

4. Train the Ain classifier within the default parameters suggested by the HCC

approach.

5. Test the Ain classifier with two different methods; one with the default testing

tool offered by OpenCV and the other with real Arabic document images.

4.3.2 Data Selection and preparation

The instructions provided by OpenCV in order to create the datasets were strictly

followed. The datasets required for applying the experiment included: different

images of the letter Ain (), a negative dataset and a positive dataset.

4.3.2.1 Reasons of selecting letter Ain (ع)

The letter Ain () is selected in its isolated shape for the following reasons:

1. It is not a simple letter shape and has two curvatures. Also, the top curve ends are

very close to each other.

2. Using a letter in its isolated shape is preferable to it being connected with another

letters.

3. The letter Ain is Arabic letter that looks a little like a face from its visual

features.

4. There is little difference in the shape of the letter among the different font styles.

4.3.2.2 Different images of the letter Ain (ع)

The training set was generated from twelve different examples and was divided into

two equal parts, each with six images. The first part was the computer generated

letters with different fonts, sizes and styles (bold and italic). The other six images

were extracted from scanned images of real documents. These 12 images are shown

in the first three rows of Figure 4.1. The testing set was generated from four images

which are shown in the last row of Figure 4.1. The two sets were extracted from

different sources. The images used of the letter Ain () were in a binary colour tiff

4. Glyph recognition using a Haar Cascade Classifier 107

file format with resolution of 200DPI. The binary colour format is used in order to

simplify the experiment. They were extracted from grey-scale images with a

binarization threshold of 150 out of 255.

Figure 4.1: The different images of the letter () used in the pilot experiment

4.3.2.3 The negative images (background images)

These are a set of images that do not include the object (the Ain image) at all. This

set is comprised of grey-scale images with sizes starting from 240x240 pixels up to

640x480 pixels. The selected negative images were 3,000 images and were imported

from digital libraries of image photos for shareware (http://tutorial-

haartraining.googlecode.com/svn/trunk/data/negatives/). The same procedures

followed in (Seo 2008) were applied. It wasn’t necessary to check whether the letter

Ain was included in any of them as they were images taken from countries that do

not use the Arabic language. Figure 4.2 shows different samples of the negative

images.

Figure 4.2: Samples of the pilot experiment negative images

http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/
http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/

4. Glyph recognition using a Haar Cascade Classifier 108

4.3.2.4 The positive images (foreground images)

These are a set of images that include at least one object (the Ain image) in each. The

images were imported from a shareware image library, as were the images in the

negative dataset. They are images similar to the negative images but use the tool

offered by OpenCV in order to put the object (the letter Ain) in them with variant

scaling and rotation parameters.

Although this method of creating the positive images is not the best way, but was

followed in this experiment because the others who applied the HCC approach

advised and followed (OpenCV 2002; Adolf 2003; Seo 2008). Figure 4.3 (a) shows a

sample of positive images used in the pilot experiment. Figure 4.3 (b) shows a

sample of positive images used for face detection by (Seo 2008).

This set was generated by putting an Ain letter image from the twelve images onto a

background image different from the negative images. Each Ain image was put onto

500 different background images. This gave a total of 6,000 positive images. An

OpenCV function called createsamples was used to generate the positive 6,000

training images and was used with the following parameters:

createsamples -img E1.tif -num 500 -bg negatives.dat -vec samples.vec -

maxxangle 0.6 -maxyangle 0 -maxzangle 0.3 -maxidev 100 -bgcolor 0 -

bgthresh 0 -w 20 -h 20

The important parameters in the previous function defined the maximum skew angles

in the x, y and z axes, in addition to defining the training size of the classifier. Using

the previous function generates 500 different positive images with different skew

angles. The other important parameters in the previous function are the width and

height of the detected object. The recommended size from OpenCV was used.

The positive images are kept in files with a format .vec. This file keeps all the

information of the 500 images inside it. A function called mergevec is used in order

to merge all the .vec files into one file with 6,000 internal images.

4. Glyph recognition using a Haar Cascade Classifier 109

(a)

(b)

Figure 4.3: Sample of positive in image pilot experiment and OpenCV

4.3.3 Training the Ain classifier

The training process uses the previous prepared datasets in order to generate the Ain

classifier. The output of the training process is an xml file that contains the Haar-

Cascade Classifier. The training process takes a long time to complete; around three

days continuously (72 hours) on a machine with Intel processor Core 2 Due and 4

GB of RAM running Windows Vista 32 bits. The good thing about this long time

training process is that it can be resumed if stopped for any reason. An OpenCV

function called haartraining was used for the training process with the following

parameters:

haartraining -data haarcascade -vec positive/E.vec -bg negative/negatives.dat

-nstages 20 -npos 6000 -nneg 3000 -w 20 -h 20 -mem 2000 -mode ALL

Using the previous function it was assumed that the default values of hitrate (0.995),

maxfalsealarm (0.5), weighttrimming (0.95) and boosting type (GAB, “Gentle Ada-

Boost”) are good in most cases (Adolf 2003). The least number of stages (-nstages

20) was used in this experiment as it is believed that the process for Arabic character

recognition is simpler than that of faces. The file E.vec is the file that contains all the

positive images and was generated using the previous createsamples function. The

file negatives.dat is a text file containing the list of negative images. The parameters

(-npos 6000, -nneg 3000) define the number of positive and negative images. The

parameter (-mem 2000) defines the size of memory for the function use and it is

recorded in Mega byte, so 2,000 means around 2G-Bytes. The Haar-like features

used is defined in the parameter (-mode ALL); whether just the basic features or the

basic and extended features which are defined as ALL.

4. Glyph recognition using a Haar Cascade Classifier 110

This stage generates an XML file (-data haarcascade) containing the training data of

the Ain isolated glyph (Ain classifier). This Ain classifier will be used in the next

stage of testing.

4.3.4 Testing the Haar-cascade classifier

The testing process is separated into two different parts: the first part is to follow the

testing procedures as per the OpenCV library (OpenCV 2002; Adolf 2003; Seo 2008)

and the second part is to test real scanned Arabic document images.

4.3.4.1 Testing using the OpenCV performance utility

The data files prepared in section 4.3.2 were used at this stage, as were a set of

positive images. They were generated from a different source of data to that of the

training process. A function called performance was applied to run the testing

process with the following parameters:

performance –data haarcascade.xml –info Testing/Positive/E1.dat –w 20 –h 20

–ni

The function uses the Ain classifier file (–data haarcascade.xml) generated from the

training process. The classifier file tests the list of positive images brought from the

list of positive images from the file (–info Testing/Positive/E1.dat). The last

parameter (–ni) is used in order to suppress the generation of the resulting file from

the detection process.

4.3.4.2 Testing using real scanned Arabic documents

This part of the testing process was carried out in order to test the Ain classifier using

images of real Arabic documents. Table 4.1 shows the different parameters of the

document image used in this testing process, knowing that the same Arabic

document was used but with different parameters. These parameters are colour type,

image scan resolution and binarization threshold.

4. Glyph recognition using a Haar Cascade Classifier 111

Table 4.1: Different image parameters used in testing the pilot experiment

Document image Colour type Image resolution Binarization threshold

Doc01 Grey-scale 300 -

Doc02 Grey-scale 200 -

Doc03 Binary 200 150

Doc04 Binary 200 200

Doc05 Binary 300 150

Doc06 Binary 300 200

4.3.5 Results and conclusions

In the first part of testing, the experiment achieved 886 out of 1000 true positive (TP)

hits, 114 false negative (FN) hits out of 1000 and 32 were false positive (FP) hits.

Figure 4.4 shows a sample of a true positive hit image with the results of the

experiment. Thus the accuracy of recognition of the Ain classifier was 88.6%. The

testing accuracy of the Ain classifier is higher than that recorded by (Seo 2008) for

face detection which was 76%. Figure 4.5 shows the relationship between the true

positive rate and the false positive rate of the Ain classifier. It shows also the

influence of the true positive rate on the false positive rate.

The second part of the testing process was carried out in order to test the Ain

classifier using images of real Arabic documents. The Ain classifier recognized the

binary-colour image with a resolution of 300 DPI and a binarization threshold value

of 150 (Doc05 in Table 4.1) as shown in Figure 4.6 (a). It missed the correct letter

() and detected another incorrect letter () in the case of the binary-colour image,

with a resolution of 300 DPI and a binarization threshold of 200 (Doc06 in Table

4.1) as shown in Figure 4.6 (b). It fails to recognize the grey-scale images and the

binary-colour images with 200 DPI. It was noticed that the second part of the testing

failed with the grey-scale image because the images of letters used in the training

process were binary-colour images. It failed in the resolution of 200 DPI because

some of the training letters were created with a resolution of 300 DPI. Also the false

hitting of letter () and retrieval of letter () instead was because the two letters have

a somewhat similar shape.

4. Glyph recognition using a Haar Cascade Classifier 112

Figure 4.4: The pilot experiment testing results and detected Ain () image

Figure 4.5: The sensitivity ROC of the pilot experiment of the Ain classifier

The results of the two testing parts of the experiment showed that the Haar-cascade

classifier approach can be applied to Arabic character recognition. It gave higher

accuracy than that of (Seo 2008) and showed success in recognizing a real Arabic

document image.

4. Glyph recognition using a Haar Cascade Classifier 113

(a)

The correct hit of letter ()

(b)

The false hit of letter () and hitting ()

instead

Figure 4.6: Testing the pilot experiment with a real scanned Arabic document

4.4 The extended experiment

The previous pilot experiment examined the Haar-cascade classifier approach and

attempted to ascertain whether it is applicable to Arabic character recognition. As

this experiment requires the approach to be applied practically, it used real Arabic

documents with 15 different glyphs which represent almost all of the Arabic glyphs.

The generated classifiers were tested against real commercial software in order to

ensure that the achieved accuracy of the approach is comparable to the commercial

applications.

4.4.1 Planning the experiment

The pilot experiment suggested that the Haar-Cascade Classifier approach may be

suitable for Arabic printed character recognition. Planning this experiment requires

applying this approach practically and achieves high recognition accuracy. The

practical apply of the approach to proof the first assumption regarding the pre-

processing and character segmentation stages; it was assumed that the two stages can

be skipped partially or totally when applying this approach to Arabic character

recognition. This experiment tends to justify this first assumption by applying the

approach in the following ways:

1. The binarization and noise removal step is skipped. The approach handles the

original grey-scale images. For this reason the grey-scale images were used in the

positive and negative document image datasets. Document images used were

with a resolution of 300 DPI. This gave the classifier a better chance of good

recognition accuracy.

4. Glyph recognition using a Haar Cascade Classifier 114

2. The approach deals with the basic and rotated features of the glyphs so there is no

need for the skew detection and correction steps. For this reason an application

was created in order to generate rotated images from that of the negative and

positive images (see section 3.1.5).

3. The text lines detection step is skipped. Each glyph is detected along with its

location in the document image, so extracting the text lines is possible using the

detected glyphs.

4. The normalization step is not needed because the HCC approach is scale

invariant. For that reason, different font sizes are used in the computer generated

document images and in those generated with artificial noise.

5. The character segmentation phase of the connected Arabic words or PAWs can

be omitted when using the HCC approach. Cancelling the character segmentation

step leads to improved recognition accuracy. For this reason the system was

trained and tested using real Arabic document images with words and PAWs

connected.

The HCC approach produces a different classifier for each Glyph. The 15 selected

glyphs generated 15 different classifiers. As the total glyphs that represent the Arabic

language are 112 glyphs (see Table 3.7), 15 glyphs were selected to cover almost all

the cases of the Arabic glyphs from the following aspects:

1. Use glyphs that share the same joining groups and with different dots like Hah

start () and Khah start ().

2. Use glyphs that have almost the same shape like Reh end () and Waw end ().

3. Use some middle shape glyphs for proof of ignoring the character segmentation

phase, like Heh middle ().

4. Use ligature glyphs like Lam Alef in its isolated shape ().

Three different types of document images were used; real scanned images, computer

generated images and computer generated images with artificial noise. The computer

generated types of documents included different font types, sizes and bold and italic

4. Glyph recognition using a Haar Cascade Classifier 115

fonts. The purposes of these different types of document images were to examine

different types of documents, increase the samples of documents and to test the effect

of each document type on the recognition accuracy.

4.4.2 Data preparation

The data files in this extended experiment are real datasets (i.e. images of Arabic

documents). These Arabic document images act as both negative and positive

images. The paragraph images datasets shown in section 3.2.1 were used in order to

generate the negative and positive images. The negative image is the document

image without the tested glyph inside it. The positive image is the document image

with the tested glyph inside it. The task of generating the negative and positive

images was carried out for the 15 different glyphs that were used in the experiment.

The MMAC corpus shown in Chapter 3 was used in running this experiment. The

part of the corpus used in this experiment was the paragraph image dataset shown in

section 3.2.1. This part originated from 15 different Arabic document images. Five of

these documents were from real scanned documents (Real data), Five documents

were computer generated (Computer data), and the last five were computer generated

with artificial noise documents (Noise data). The Computer and Noise data used

different Arabic fonts, sizes, bold and italic. These varieties in the Computer and

Noise data helped in generating robust classifiers.

4.4.2.1 Creating positive and negative images

The data required for each of the 15 selected glyphs in this part of the experiment

are:

1. Positive images (images that do include the tested glyph on it). This part is

separated into two parts; one for the training process and the other for the testing

process. The positive images used for testing made up a quarter of the whole

positive images, while the positive images used for training were three quarters

of the whole positive images (Adolf 2003). Figure 4.7 (a) shows a sample of a

positive image for the Heh middle glyph with four glyphs inside the image.

4. Glyph recognition using a Haar Cascade Classifier 116

2. Negative images (images that do not include the tested glyph). These are used for

the training process of the classifiers. Figure 4.7 (b) shows a sample of a negative

image for the Heh middle glyph.

(a)

A positive image of Heh middle

(b)

A negative image of Heh middle

Figure 4.7: Sample of positive and negative image for Heh middle glyph

A program was written in order to separate the positive from the negative images for

each glyph. The program reads the ground truthed text file of each document image

and determines whether or not the tested glyph exists in this document. If the glyph

is missing from the document, the program copies the document image into the

negative folder of this glyph. If the tested glyph does exist in the document, then the

program copies the document’s image into the positive folder of the glyph. The

previous task is repeated for all 15 glyphs. The program also generates a spreadsheet

in order to report the positive and negative images of all the glyphs. The spreadsheet

also includes the number of occurrences of the tested glyph in the positive images.

The Objectmaker utility offered in OpenCV was used in order to manually define the

places of the glyph in each positive document image. The utility shows each image

separately to allow the user to define the containing rectangle of the glyph and to do

the same for each glyph in the image. It then moves to the next image, and so on

until completing all the positive images of the tested glyph. The utility generates a

text file with a list of each image name, number of occurrences of the glyph, and

containing rectangles. The containing rectangle includes the top left corner

coordinates and the width and height. This process was completed manually by two

different people; one to make the selection of the glyphs in all of the images and the

other to validate that the selection of glyphs and the number of glyphs is correct. This

process was a very laborious process and was very time consuming, but produced an

excellent research resource.

4. Glyph recognition using a Haar Cascade Classifier 117

Table 4.2 shows the total number of positive and negative images for each glyph in

the three different types of documents; the real scanned, computer generated and

computer documents generated with artificial noise.

Table 4.2: The number of original negative and positive images of each glyph

Glyph Name
Glyph

shape

Real data Computer data Noise data

Pos. Neg. Pos. Neg. Pos. Neg.
Alef Iso 198 25 116 25 163 25

Alef End 192 31 115 26 162 26

The Mid 150 73 117 24 152 36

Theh Mid 30 193 24 117 47 141

Hah Iso 4 219 4 137 11 177

Hah Str 61 162 45 96 83 105

Khah Str 46 177 38 103 35 153

Reh End 182 41 131 10 162 26

Seen Mid 107 116 63 78 84 104

Sad Mid 51 172 37 104 59 129

Ain Iso 5 218 14 127 6 182

Lam Str 193 30 116 25 159 29

Heh Mid 103 120 59 82 86 102

Waw End 168 55 111 30 151 37

Lam-Alef Iso 121 102 84 57 100 88

The study of the relationship between the total numbers of positive and negative

images for each glyph shows three different categories of the Arabic glyphs. These

three Arabic glyph categories are:

1. Glyphs that exist in almost all of the images. These glyphs have a very small

number of negative images or sometimes no negative images at all. This problem

was solved by editing the images that contained a small number of the glyphs

(one or two) and removed the glyphs manually by putting the background of the

image over the glyph in the document image. These images were then moved

from the positive to the negative images dataset. These glyphs are Alef isolated

(), Alef end () and Lam start (). Figure 4.8 (a) shows the positive image

containing the glyph Alef end, while Figure 4.8 (b) shows the same document

after removing the Alef end glyph and converting it to a negative image.

4. Glyph recognition using a Haar Cascade Classifier 118

(a)

A positive document image of Alef end

(b)

Converting positive image to negative

Figure 4.8: Sample of converting a positive image to negative

2. Glyphs that rarely appear in the images which have very small number of

positive images. These glyphs were left without any image editing because any

editing carried out in order to add a certain glyph would be very artificial.

However, good results are not expected from their classifiers. These glyphs are

Hah isolated () and Ain isolated ().

3. Most of the glyphs have a reasonable ratio between the negative and positive

images.

The Lam start glyph sometimes has another ligature glyph when followed by certain

letters such as Meem or Jeem, as in some Arabic fonts like Traditional Arabic. For

example () becomes (لمـ) and () becomes (لجـ). The new ligature glyphs were

ignored when using the Lam start glyph as they are considered to be different

ligatures. The glyph () was included while using the glyph Waw end but the Hamza

() was ignored in order to be included during the training process of this glyph.

4.4.2.2 Creating numerous samples of positive and negative images

Running the experiment requires a huge amount of negative and positive images

which are not available for the test data. A computer program was developed in order

to generate the required huge amount of positive and negative document images from

the available test images. The main purpose of this program was to create as many

rotated samples as required from the original image. The inputs are the number of

samples, the number of generated rotated samples and a list of images either negative

or positive. This program was mentioned above in section 3.1.5.1. The program uses

two algorithms; the nearest neighbour interpolation algorithm in order to rotate the

images and the Box-Muller transform algorithm in order to generate a normal

distribution of random numbers from the computer generated uniform distribution of

random numbers.

4. Glyph recognition using a Haar Cascade Classifier 119

The nearest neighbour interpolation algorithm (Sonka, Hlavac et al. 1998) is used to

rotate the image. This algorithm rotates the image in a reserved way. It scans the

destination image pixel by pixel and calculates the value of the equivalent pixel in

the source image. If the rotation proceeded in the standard way, which would be to

scan each pixel in the source image and then calculate the equivalent in the

destination image, then some pixels in the destination image would have no value.

The outer areas in the destination images were set to white pixels.

The Box-Muller transform algorithm (Box and Muller 1958) was used to define the

rotation angle of the document. It converts the random numbers that are generated

from most of the programming language compilers to normally distributed random

numbers. The purpose of using this algorithm is in order to simulate the rotation

angle that might happen in real life when scanning the document page.

The document rotation angles use standard deviation sigma σ = 5 and mu μ = 0. Mu

μ as the mean value and it is considered to be angle 0 as the scanning process may be

skewed in any direction with the same value. Sigma σ is the standard deviation of the

angles and when uses 5, this means that 66.6% falls within ±5°.

The developed program attempted to produce a number of positive and negative

images at the end totalling more than 2,000 images in most cases. This number of

images was recommended by (OpenCV 2002; Adolf 2003; Seo 2008) for the HCC

approach to run properly. The same method of generating numerous positive or

negative images from the limited number of images available was by adding rotated

samples of images as shown in (Lienhart, Kuranov et al. 2002).

4.4.3 Data selection

The selection of glyphs and documents was made in a way that represented a

satisfactory quantity, of different quality and varieties in the sizes and rotations. This

research seeks to discover whether the documents and glyphs will represent the

problem in such a way as to prove or reject the initial assumption.

4.4.3.1 The Selected Glyphs

The glyph selection process was carried out in order to maximize the representation

of all the Arabic glyphs. The selection of the Arabic letters and their locations was

4. Glyph recognition using a Haar Cascade Classifier 120

done in order to represent the variety of glyphs from simple to difficult. Some

samples of glyphs that have similar shapes were also included. It also had glyphs of

identical shape but with different dots. It is concluded from this selection that in most

cases, the Arabic glyphs are covered in order to discover how applicable the HCC

approach would be with the full printed Arabic alphabet. Table 4.3 shows the list of

15 selected glyphs with their names, locations and reasons for selecting them. Table

4.3 also shows the percentage of occurrences of each glyph in the MMAC corpus.

The total percentage of occurrences of the 15 selected glyphs represents more than

one third of the total occurrence of all the Arabic glyphs. The selected glyphs

represent the four glyph locations that exist in the Arabic language. The number of

glyphs at the starting location is three, five at the middle location, three at the end

location and four at an isolated location.

Table 4.3: Proposed glyphs with occurrences, locations and reasons for selection

No
English

Name
Occurrence Glyph Location Reason of selection

1 ALEF 10.46% Isolated Very common letter and simple

2 ALEF 6.34% End opposite shape of No 12

3 TEH 2.05% Middle Same letter as No 4 with different dots

4 THEH 0.29% Middle Same as letter No 3 with different dots

5 HAH 0.07% Isolated Complicated and conflicts No 11

6 HAH 0.73% Start Same as No 7 with different dots

7 KHAH 0.43% Start Same as No 6 with different dots

8 REH 3.41% End Conflicts with No 14

9 SEEN 1.05% Middle Conflicts with No 10

10 SAD 0.60% Middle Conflicts with No 9

11 AIN 0.16% Isolated Complicated and Conflicts with No 5

12 LAM 6.93% Start Opposite shape of No 2

13 HEH 0.96% Middle Very complicated glyph

14 WAW 2.59% End Conflicts with No 8

15 Lam Alef 1.42% Isolated Very common sample of ligature

4.4.3.2 The selected documents

The documents here selected to cover the varying quality of document images in

additional to a variety of font formats. The paragraph type of the MMAC corpus was

used as shown in section 3.2.1 because each document contains 10-20 words. This

small number of words in the document enables the making of lists of negative and

positive document images. If each document is bigger this reduces the existence of

negative images. Figure 3.4 shows different samples of the document images. These

samples are real scanned, computer generated and computer generated documents

with artificial noise.

4. Glyph recognition using a Haar Cascade Classifier 121

4.4.4 Training the extended experiment classifiers

The training process of the extended experiment was a very lengthy process. It takes

a long time to prepare the files and folders for the training process. The training

process itself took a long time to be finished. The process occupied 60 PCs in the

main computer lab of the School of Computer Science at the University of

Nottingham. Each machine has Intel processor Core 2 Due and 2 GB of RAM

running Windows XP 32 bits. The duration of the experiment lasted for around two

weeks of continuous running. Each machine in the lab hosted the training processes

of one of the 15 selected glyphs. Each glyph had four different training processes, for

Real data, for Computer data, for Noise data and for All data. The All data training

process was the collecting together of the other three positive and negative data in

order to generate a bigger dataset.

Defining the training size of the glyph was a very important issue to address. The

size was initially defined as the average width and height of the containing rectangles

of the glyph in all the glyph positive images. That initial value of the width and

height of the training size was changed in order to achieve the best results when

testing the resultant classifier. The trials of the experiment in width and height

showed that the optimum size is between 35 to 50 pixels of the sum of width and

height. The ratio between them is varied upon their average ratio. The same width

and height was set for each glyph and was used in all the datasets (Real, Computer,

Noise and All).

Table 4.4 shows for each of the selected glyphs the trained width and height. It also

shows the total number of negative images, total number of positive images and the

total number of glyphs in the positive images for each glyph in every document type.

The table also shows that the total number of positive images of the 15 selected

glyphs is 63,865 images; the total number of negative images of the 15 selected

glyphs is 91,455 images; the total number of the 15 selected glyphs of all the positive

images is 145,331 and the average number of glyphs in every positive image is 2.27.

4. Glyph recognition using a Haar Cascade Classifier 122

Table 4.4: The training information for each of the 15 selected glyphs

Glyph

Name W
id

th

H
ei

g
h

t Real data Computer data Noise data

Pos.

Img

Neg.

Img

Total

Glyphs

Pos.

Img

Neg.

Img

Total

Glyphs

Pos.

Img

Neg.

Img

Total

Glyphs

Alef Iso 10 23 1639 1775 9592 1392 1775 10528 1353 1775 9482

Alef End 13 29 1584 2201 6270 1392 1846 6752 1342 1846 6259

Teh Mid 11 22 2352 1898 4368 1408 1704 2832 1840 2016 3728

Theh Mid 18 35 1562 2123 1704 1349 1872 1491 1476 2256 1722

Hah Iso 18 23 213 2409 284 213 2192 213 568 1947 568

Hah Str 23 24 2116 1782 2714 1564 2016 1932 1612 2205 2106

Khah Str 23 26 1610 1947 2070 1530 2163 1734 1456 2448 1792

Reh End 10 16 1507 2091 3410 1584 710 3728 1353 1846 3641

Seen Mid 19 17 1701 2436 2121 1457 2028 2046 1638 2184 2262

Sad Mid 21 17 1599 2752 2009 1568 2184 1904 1584 2064 2268

Ain Iso 17 24 284 2398 284 781 2032 781 355 2002 355

Lam Str 13 30 1584 1830 5610 1392 1775 6224 1320 2059 6193

Heh Mid 18 33 1638 2520 2394 1584 2132 2160 1690 2142 2210

Waw End 14 23 1397 1980 2585 1743 1980 3759 1840 2072 3824

Lam-Alef Iso 16 23 1456 2142 2192 1664 2052 2626 1575 1848 2604

4.4.5 Testing the extended experiment classifiers

The testing process of the extended experiment was separated into two different

parts. The first used the performance utility offered in OpenCV. The second tested

the HCC glyphs classifier against real commercial software in order to compare the

results of the selected 15 glyphs classifier.

The main concerns in the testing process were the values of True Positive (TP), False

Negative (FN) and False Positive (FP) ratios in all tests. The True Positive (TP) is

the number or ratio of the glyphs that were detected correctly and is also known as

hits. An example of TP would be when the classifier detects Alef end correctly as

Alef end. False Positive (FP) is when glyphs are detected wrongly and is also known

as false alarm. An example of FP would be when the classifier detects a glyph as

Alef end when it was actually Lam start. Finally, False Negative (FN) is when glyphs

are not detected at all even though they exist in the document, also known as a miss.

When the classifier misses an Alef end glyph even though it exists in the document

image, this would be an example of FN.

4.4.5.1 Testing using the OpenCV performance utility

The process of testing the classifiers using the performance utility is the same as the

testing that was done in the previous pilot experiment. During testing this experiment

tried to investigate the influence of the testing parameters over the classifier

detection accuracy. There are two parameters which have a very big effect on the

4. Glyph recognition using a Haar Cascade Classifier 123

detection accuracy; these two parameters are the scale factor and the minimum

neighbours (Lienhart, Kuranov et al. 2002; Seo 2008; Kasinski and Schmidt 2010).

The scale factor affects the detection. The detection phase starts with a sliding

window the original size of the width and height and enlarges the window size

depending on the scale factor. A scale factor of 1.1 means that the window is

enlarges each time by 10% of its size. An increase of the scale factor reduces the

detection time as the numbers of sliding windows decreases (Lienhart, Kuranov et al.

2002). This experiment showed that a suitable scale factor for Arabic glyph detection

is either 1.01 or 1.02. The minimum neighbour is the number of neighbour regions

that are merged together during detection in order to form only one object (Lienhart,

Kuranov et al. 2002). The increase in the minimum neighbour reduces the ratio of

False Positives (FP). The experiment showed that a suitable minimum neighbour

value usually lies between 1 and 3 inclusive.

Table 4.5 shows for each of the selected glyphs the trained width and height. It also

shows for each glyph the total number of positive images and the total number of

glyphs in the positive images for every document type. The table also shows that the

total number of positive images of the 15 selected glyphs is 20,700 images. The total

number of the 15 selected glyphs in all the positive images is 47,742. The average

number of glyphs in every positive image is 2.30.

Table 4.5: The testing information for each of the 15 selected glyphs

Glyph Name

W
id

th

H
ei

g
h

t Real data Computer data Noise data

Pos.

Img.

Total

Glyphs

Pos.

Img.

Total

Glyphs

Pos.

Img.

Total

Glyphs

Alef Iso 10 23 539 3168 464 3488 440 3190

Alef End 13 29 528 2189 448 2352 440 2178

Teh Mid 11 22 798 1470 464 1024 592 1184

Theh Mid 18 35 568 568 355 426 451 451

Hah Iso 18 23 71 71 71 71 213 213

Hah Str 23 24 690 1058 506 598 546 650

Khah Str 23 26 506 598 408 510 504 560

Reh End 10 16 495 1078 512 1392 429 1133

Seen Mid 19 17 546 651 496 682 546 754

Sad Mid 21 17 492 574 504 504 540 828

Ain Iso 17 24 71 71 213 213 71 71

Lam Str 13 30 539 1848 464 2128 429 1991

Heh Mid 18 33 525 714 540 792 546 754

Waw End 14 23 451 1023 588 1134 576 1104

Lam-Alef Iso 16 23 480 672 520 858 525 756

4. Glyph recognition using a Haar Cascade Classifier 124

4.4.5.2 Testing using a commercial Arabic OCR application

The objective of this testing process is to compare the HCC approach to Arabic OCR

commercial software. This test gives realistic measures of the performance of the

HCC approach when comparing it with commercial software. The testing examines

just the 15 selected glyphs in both the HCC approach and the commercial software.

Well known commercial software was used in order to perform this test; Readiris Pro

10 (IRIS 2004) which was used above in section 3.3. The 62 previously selected

paragraph documents were used which represent a variety of document types that

occur in most real life cases.

A program was developed in order to calculate the number of recognized glyphs in

each of the 62 documents. The commercial software was used in comparison with

the total number of glyphs detected in the ground truthed document. A second

manual check was done in order to validate the outcome of the program. The values

of TP, FN and FP of the glyphs were calculated for each of the selected glyphs with

the 62 document images.

Testing the HCC approach was carried out in the same way as in the previous

section. It used the performance utility in order to test the recognition of each glyph

classifier. The 15 XML classifiers were also brought from the previous part of the

testing in order to use them in this part. The values of TP, FN and FP of the glyphs

were calculated for each of the selected glyphs with the 62 document images (see

section 4.4.6.2).

4.4.6 Results and conclusions

The extended experiment results showed a real success in recognizing the Arabic

documents. Good results were produced in the case of using the OpenCV testing

utility as well as when compared with commercial software. The results were

encouraging but suggested that some auxiliary experiments needed to be carried out

in order to be certain of using the best parameters with the approach before applying

the final experiment using all the Arabic language glyphs. The results of the

experiment were separated into two different parts, one using the OpenCV

performance utility and the other when compared to commercial software.

4. Glyph recognition using a Haar Cascade Classifier 125

4.4.6.1 Results of using the OpenCV performance utility

The extended experiment led to a comparison between three different types of

document images. The three types gave different accuracies with each glyph. Table

4.6 shows the TP, FN and FP ratio of each glyph with the three types of document

images and all the images. The last row shows the average of percentage accuracy of

all the 15 selected glyphs. The FP “percentage” can be greater than 100% as it is

calculated using the formula:

 .

Table 4.6: Percentage testing results of the extended experiment for 15 glyphs

Glyph

Name

Real data Computer data Noise data All data

TP FN FP TP FN FP TP FN FP TP FN FP

Alef Iso 78% 22% 9% 84% 16% 2% 96% 4% 9% 74% 26% 10%

Alef End 87% 13% 16% 76% 24% 4% 89% 11% 24% 51% 49% 22%

Teh Mid 90% 10% 17% 75% 25% 22% 95% 5% 68% 76% 24% 17%

Theh Mid 79% 21% 12% 57% 43% 21% 76% 24% 18% 77% 23% 16%

Hah Iso 45% 55% 0% 68% 32% 24% 100% 0% 112% 99% 1% 2%

Hah Str 86% 14% 6% 95% 5% 7% 91% 9% 14% 92% 8% 13%

Khah Str 96% 4% 8% 61% 39% 17% 84% 16% 6% 87% 13% 12%

Reh End 79% 21% 21% 91% 9% 17% 92% 8% 68% 86% 14% 10%

Seen Mid 90% 10% 8% 83% 17% 15% 70% 30% 15% 82% 18% 14%

Sad Mid 96% 4% 14% 77% 23% 15% 93% 7% 9% 95% 5% 11%

Ain Iso 100% 0% 0% 61% 39% 128% 89% 11% 3% 97% 3% 0%

Lam Str 89% 11% 9% 79% 21% 6% 91% 9% 7% 74% 26% 14%

Heh Mid 94% 6% 7% 98% 2% 2% 99% 1% 10% 97% 3% 7%

Waw End 94% 6% 8% 81% 19% 13% 88% 12% 26% 87% 13% 9%

LamAlef

Iso
98% 2% 2% 99% 1% 4% 93% 7% 11% 98% 2% 2%

Average 87% 13% 9% 79% 21% 20% 90% 10% 27% 85% 15% 11%

Table 4.7 shows the TP, FN and FP values for each glyph with the three types of

document and all images. The last row shows the average accuracy percentage of the

15 selected glyphs calculated according to the total number in each dataset.

Table 4.8 shows the TP, FN and FP ratio for each location of the glyphs with the

three types of document and all images. The last row shows the overall percentage

for all four locations calculated according to the total number in each location. It is

important to note that the overall accuracy in Table 4.7 and Table 4.8 are of the same

values.

4. Glyph recognition using a Haar Cascade Classifier 126

Table 4.7: Numbers testing results of glyphs using three types of document

Glyph

Name

Real data Computer data Noise data All data

TP FN FP TP FN FP TP FN FP TP FN FP

Alef Iso 2478 690 276 2925 563 82 3073 117 276 7264 2582 977

Alef End 1900 289 348 1776 576 90 1947 231 525 3419 3300 1445

Teh Mid 1330 140 255 768 256 226 1121 63 808 2801 877 634

Theh Mid 450 118 66 242 184 89 345 106 82 1119 326 233

Hah Iso 32 39 0 48 23 17 213 0 239 353 2 6

Hah Str 908 150 66 566 32 43 594 56 89 2116 190 299

Khah Str 577 21 48 310 200 87 472 88 34 1450 218 197

Reh End 853 225 224 1267 125 243 1046 87 772 3105 498 372

Seen Mid 586 65 52 567 115 102 530 224 110 1720 367 298

Sad Mid 549 25 82 389 115 76 769 59 75 1816 90 202

Ain Iso 71 0 0 130 83 273 63 8 2 344 11 1

Lam Str 1645 203 167 1689 439 128 1820 171 146 4409 1558 853

Heh Mid 673 41 47 775 17 19 750 4 77 2183 77 150

Waw End 962 61 78 922 212 142 970 134 285 2831 430 298

Lam-Alef

Iso
659 13 11 852 6 33 704 52 82 2235 51 57

Total 13673 2080 1720 13226 2946 1650 14417 1400 3602 37165 10577 6022

Accuracy 87% 13% 11% 82% 18% 10% 91% 9% 23% 78% 22% 13%

Table 4.8: Testing results in percentages defined by glyph location

Location
Real data Computer data Noise data All data

TP FN FP TP FN FP TP FN FP TP FN FP

Isolated 81% 19% 7% 85% 15% 9% 96% 4% 14% 79% 21% 8%

Start 89% 11% 8% 79% 21% 8% 90% 10% 8% 80% 20% 14%

Middle 90% 10% 13% 80% 20% 15% 89% 11% 29% 85% 15% 13%

End 87% 13% 15% 81% 19% 10% 90% 10% 36% 69% 31% 16%

All 87% 13% 11% 82% 18% 10% 91% 9% 23% 78% 22% 13%

From the results of the experiment, the following can be observed:

1. The glyphs with a smaller number of positive or negative samples return

unreasonable results. For example, the case of Hah isolated real (), Ain isolated

computer (), Reh end noise () and Theh middle computer ().

2. The glyphs with a balanced number of positive and negative samples usually

return good results in all types of documents. For example, Hah start (), Seen

middle () and Heh middle ().

3. The glyphs with the same shape but different numbers of dots usually present

better results when the glyph contains fewer rather than more dots. For example,

Teh middle () with Theh middle () and Hah start () with Khah start ().

4. Glyph recognition using a Haar Cascade Classifier 127

4. The glyphs Alef isolated (), Alef end () and Lam start () have almost the same

shape and represent 23.7% of the glyphs in the language as indicated by the

MMAC corpus (see Chapter 3). These glyphs require an extra post-processing

algorithm in order to improve their recognition or an extra algorithm to aid

recognition (AbdelRaouf, Higgins et al. 2010).

5. The higher the number of glyphs samples the better the recognition accuracy.

6. The computer dataset is the least accurate of all the datasets as it includes

different types of fonts and styles (italic, bold). Also when the background of the

document image is very bright the recognition accuracy is reduced.

7. There are no significant differences between the four different locations of the

glyphs in the PAW. The overall accuracy of all of them is almost the same.

4.4.6.2 Results of testing with the commercial OCR application

Comparing the HCC approach to the commercial software leads to almost the same

degree of accuracy. Table 4.9 shows a comparison between the results of the two

approaches. The results show that the HCC gets marginally better recognition

accuracy (TP) of 92% compared to the commercial software’s 91%. The false alarm

rate (FP) for the commercial software at 8% is much better than the HCC approach

which was 12%.

The accuracy of the HCC approach in this test is much better than that of the

OpenCV performance test (see section 4.4.6.1) because the HCC approach contains

only un-rotated documents which sometimes lead to loss in the recognition accuracy.

Figure 4.9 shows the relationship in the percentage accuracy of the 15 selected

glyphs using the two different approaches. The figure also shows that the accuracy of

the two approaches is almost the same except for the glyphs with very small number

of examples like Hah isolated () and Ain isolated ().

4. Glyph recognition using a Haar Cascade Classifier 128

Table 4.9: Testing results between the HCC and commercial software

Glyph name
Total

glyphs

HCC Approach Commercial software

TP FN FP TP FN FP

Alef Iso 380 371 9 38 368 12 47

Alef End 286 270 16 42 267 19 19

Teh Mid 98 86 12 13 77 21 3

Theh Mid 8 7 1 2 6 2 7

Hah Iso 4 4 0 0 2 2 0

Hah Str 26 25 1 9 24 2 5

Khah Str 23 19 4 8 19 4 0

Reh End 134 114 20 18 122 12 14

Seen Mid 37 36 1 0 30 7 3

Sad Mid 18 18 0 4 14 4 1

Ain Iso 3 2 1 0 1 2 0

Lam Str 250 211 39 34 222 28 13

Heh Mid 35 34 1 3 32 3 3

Waw End 96 91 5 8 88 8 3

Lam-Alef Iso 60 59 1 1 57 3 2

Total 1458 1347 111 180 1329 129 120

Accuracy 92% 8% 12% 91% 9% 8%

Figure 4.9: Recognition accuracy between HCC and commercial software

4.4.6.3 Extended experiment Conclusions

The overall conclusions of the extended experiment show that the HCC approach is

very suited to the recognition of printed Arabic characters. The HCC approach

results and the comparison with the commercial software show that it can reach a

level of accuracy competing with commercial software developed, tested and

enhanced over time. When the HCC approach reaches the same accuracy level as the

commercial software without any post-processing stages, it can be considered as a

contribution not only in terms of research but also to the market.

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

P
er

ce
n
tg

e
o

f
ac

cu
ra

cy

Glyphs

Commercial software HCC Approach

4. Glyph recognition using a Haar Cascade Classifier 129

Due to the previous results in the extended experiment, the following

recommendations are concluded for the forthcoming final experiment:

1. There is no need to have different types of datasets (Real, Computer and Noise).

Using only the real dataset is enough and returns good classifiers.

2. Minimize the glyphs with a limited number of negative or positive images. This

can be achieved by getting more samples for these glyphs from the computer and

noise datasets.

3. There is no need to generate different classifiers for the glyphs with the same

joining groups and different dots. It is preferable to generate only one classifier

for the glyphs sharing the same joining group. This leads to naked glyph

classifiers.

4. Increase the precision of the manual work in defining the containing rectangles of

the glyphs when generating the positive datasets.

5. Undertake more trials in defining the best width and length for each glyph in

order to produce results with better recognition accuracy. The other parameters

must also be considered.

It is now very clear that the HCC approach can recognize printed Arabic glyphs

without segmenting them.

4.5 The auxiliary experiments

Auxiliary experiments were planned in order to improve the training process by

choosing the best parameters for the training process. The auxiliary experiments

were planned after completing the extended experiment with satisfactory results.

These experiments were done to prepare for the final experiment by trying to

improve the training process as much as possible in order to achieve better

recognition accuracy.

The parameters that have the most influence on the training process and that will be

studied during these experiments are: number of splits; minimum hit rate; the

4. Glyph recognition using a Haar Cascade Classifier 130

boosting algorithm and the mode of the Haar-like features. The width and height of

the sample are also important parameters.

4.5.1 Testing the training width and height

This experiment was performed in order to obtain the best training values for the

width and height of the glyphs. The training width and height of a glyph represents

the size of the glyph that the classifier will use in order to detect the glyph and are

measured in pixels. Six different glyphs were examined that represent different styles

of glyphs. Five different values were tested for the width and height of each glyph in

order to get the best values.

4.5.1.1 Running the experiment

The experiment used the same procedures of training and testing the glyphs that were

used in the extended experiment. The experiment used the same techniques of data

preparation, training and testing. Six different glyphs were selected that represent

different shapes, sizes and ratios between width and height. The glyphs were Alef

isolated (), Theh middle (), Khah start (), Seen middle (), Heh middle () and

Lam start (). The selected glyphs had already been used in the extended experiment,

so the data was already prepared. Each glyph was trained with the five different

values of widths and heights and then tested. The values of widths and heights were

divided approximately equally starting from the minimum width and height of the

glyph and ending with the maximum width and height of the glyph.

4.5.1.2 Results and conclusions

The results of the experiment indicate that the middle values of the widths and

heights are the best values and produce a classifier with a higher precision. Table

4.10 shows the results of the experiment. Trial 1 is the smallest size of widths and

heights increasing to Trial 5, which provides the maximum size. Each trial includes

width in pixels (W), height in pixels (H), true positive percentage (TP) and false

positive percentage (FP).

The smallest sizes of width and height in Trial 1 generate classifiers that usually

detect incorrect shapes in the glyphs. These classifiers detect part of the glyph and

consider it as being the glyph itself. On the other hand, the large size of widths and

4. Glyph recognition using a Haar Cascade Classifier 131

heights in Trial 5 generates classifiers which can miss detecting the smaller sized

glyphs.

As a final conclusion from this experiment, different sizes of the widths and heights

must be inspected in the training process in order to produce the best classifier. It is

clear from the results of the experiment that the difference in the width and height of

the training produces classifiers with a high variety of accuracy. It is concluded also

that the middle size (Trial 3) usually offers the best values and generates better

recognition classifiers.

Ideally plotting 3D graph to explain the relationship between the width and height is

more convenient; however this will lead to have many trials for every single glyph

and also because of the different ratios between width and height of the glyphs. It

was found that an approximation value based on experience of the enormous

previous trials would be enough to get the optimum width and height.

Table 4.10: Testing different training values of widths and heights of glyphs

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

 W H TP FP W H TP FP W H TP FP W H TP FP W H TP FP

Alef Iso 10 23 64 8 12 28 41 3 15 34 67 8 17 40 33 3 20 46 19 7

Theh Mid 11 22 50 3 15 30 54 7 18 35 71 3 21 40 69 4 24 48 19 2

Khah Str 20 20 1 0 23 26 80 1 26 31 73 1 29 36 85 3 33 44 78 1

Seen Mid 19 17 81 15 24 22 75 8 28 26 80 6 32 30 83 6 38 36 71 6

Heh Mid 12 23 83 10 15 29 86 7 18 33 91 6 22 40 88 10 25 45 76 7

Lam Str 8 18 78 23 10 22 69 25 13 30 77 10 16 37 73 5 19 49 29 5

4.5.2 Testing the number of splits and minimum hit rate

This experiment was performed in order to obtain the best values for the number of

splits and the minimum hit rate of the glyph classifiers. The number of splits used is

one of two values; either 1 for stumps or 2 for the single node CART. The number of

splits and minimum hit rate both fall into the domain of the boosting stage classifier.

Boosting is the basic classifier for the HCC approach. A boosting classifier combines

many weak classifiers in order to produce a powerful classifier (Freund and Schapire

1996). The number of splits defines which weak classifier will be used in the stage

classifier. The Alef isolated character () was used as an example in this experiment

with a width of 10 and height of 23. Four different values were tried for the number

of splits and minimum hit rate (two for each) in order to deduce the best values.

4. Glyph recognition using a Haar Cascade Classifier 132

4.5.2.1 Running the experiment

This experiment is an extension to the previous auxiliary experiment. It uses the

positive results of the training of the width and height of a glyph classifier and

applies a different number of splits and a minimum hit rate.

The number of splits defines which weak classifier will be used in the stage

classifier. If the number of splits used is 1 (stump), this does not allow learning

dependencies between features. A Classification And Regression Tree (CART) is

obtained if the number of splits is more than 1, with the number of nodes smaller

than the number of splits by one. A CART is a machine learning data structure which

generates a prediction model based on the input data (Barros, Basgalupp et al. 2011)

and allows dependencies between features (Lienhart, Kuranov et al. 2002). The

default value of number of splits is 1. Here the number of splits was tested with

values of 1 (stump) and 2 (a single node CART).

In order for the training process to move to the next stage, a minimum value of hit

rate (TP) needs to be obtained (Viola and Jones 2001; Lienhart, Kuranov et al. 2002).

As the minimum hit rate increases it slows down the training process. The default

value is 0.995. Lienhart et al. (Lienhart, Kuranov et al. 2002) reported a value of

0.999 in their experimental work which proved remarkably slow so, the two final

values used in this experiment were 0.995 and 0.997.

Alef isolated () was used for this experiment as its data was already prepared and

was tested with different values of widths and heights. The width and height values

used were those that gave good results in the previous auxiliary experiment.

4.5.2.2 Results and conclusions

The results of the experiment proved that, in the case of Arabic letters, using stumps

in the splits is much better than using the single node CART (Table 4.11). This

means that the Haar-like features of the Arabic characters do not improve with the

dependencies between them. It also means that a single node CART may not be

enough to build a good classifier and may need more nodes.

On the other hand, increasing the minimum hit rate improves the accuracy of the

classifier, although it slows down the time of the training process. It is recommended

4. Glyph recognition using a Haar Cascade Classifier 133

to use higher minimum hit rate only in the case of glyphs that get a low recognition

accuracy.

Table 4.11: Testing different values of number of splits and minimum hit rate

 Trial 1 Trial 2 Trial 3 Trial 4

Number of splits 1 2 1 2

Minimum hit rate 0.995 0.995 0.997 0.997

True Positive (TP) 64% 52% 72% 65%

False Positive (FP) 8% 8% 11% 12%

4.5.3 Test the boosting type and number of splits

This experiment was done in order to get the best values of the boosting type

(algorithm) with the number of splits of the glyph classifiers. Three different

boosting algorithms were tested: Gentle Ada-Boost (GAB), Discrete Ada-Boost

(DAB) and Real Ada-Boost (RAB). Four different values were used for the number

of splits. These four values are 1 for stumps, 2 for a single node CART, 3 for the

double node CART and finally 4 for the triple node CART. The glyph Heh Mid ()

was used in the experiment with a training width and height of 18 and 33

respectively.

4.5.3.1 Running the experiment

This experiment is an extension to the previous auxiliary experiment. It measures the

relationship between the boosting type and the number of splits.

The number of splits defines the type of splitting either from stumps with no relation

between Haar features if it is 1, or a tree with defined nodes and dependencies

between features. The default value is 1.

The main reason for selecting the glyph Heh middle () in this experiment is that the

glyph takes less time in the training process, and it was reported by Lienhart et al.

(Lienhart, Kuranov et al. 2002) that DAB and RAB takes more time in training than

GAB.

4.5.3.2 Results and conclusions

The experiment showed that the GAB boosting type is the best algorithm for Arabic

glyph recognition and is similar to face detection as reported by Lienhart et al.

4. Glyph recognition using a Haar Cascade Classifier 134

(Lienhart, Kuranov et al. 2002). It not only gives the best results but also takes less

training time. Table 4.12 shows that the stumps give a large number of false positive

results when used with DAB or RAB. The best results are achieved when using the

GAB boosting type with the double node CART. The false positive (FP) rate can be

further reduced via, for example post-processing.

Table 4.12: Testing different number of splits with different boosting types

Boosting Type
Gentle Ada-Boost

(GAB)

Discrete Ada-Boost

(DAB)

Real Ada-Boost

(RAB)

No. of Splits 1 2 3 4 1 2 3 4 1 2 3 4

True Positive (TP) 94% 94% 97% 93% 85% 95% 95% 93% 92% 92% 93% 93%

False Positive (FP) 7% 6% 8% 7% 78% 6% 6% 11% 35% 6% 6% 6%

The results of the previous and current auxiliary experiments show that the Haar-like

features of the Arabic characters achieve good results when using the stump and

double node CART which can model second order dependencies and builds a good

classifier.

4.6 The final experiments

The final experiment was performed in order to create the general classifier that will

be used as a tool for Arabic printed character recognition. The previous experiments

justified that the Haar Cascade Classifier (HCC) approach can be confidently used as

a method for Arabic character recognition. The results of auxiliary experiments were

used in order to enhance the performance of the training process and to improve the

recognition accuracy. The final experiment uses all the glyphs in their four locations

(isolated, start, middle and end) and deals only with naked glyphs.

4.6.1 Planning the experiment

The final experiment was planned to generate all classifiers for Arabic printed

character recognition. The HCC approach produces a classifier for each single glyph.

The following aspects were addressed in the experiment:

1. Naked glyphs were used in the experiment in order to reduce the number of

classifiers used in the recognition stage. Reducing the number of classifiers

4. Glyph recognition using a Haar Cascade Classifier 135

minimizes the recognition duration. Also, finding the place and number of dots

above or below the recognized glyph is an easy process (Abdelazim 2006).

2. The data used in the final experiment is the same as used in the extended

experiment but extended further to all the glyphs instead of the original 15

selected glyphs. The Real data is used but when it lacks positive images,

computer data or sometimes computer and noise data is added. Using the real

data for training and testing the classifiers is the most suitable as, in the end, the

application is going to be used to detect real data and not computer generated

data and was shown to be good (see Table 4.7).

3. The total number of naked Arabic letters, as indicated in Unicode are 18

(Unicode 1991-2006), but it was found in this research that adding Hamza () and

Lam Alef () is essential (see section 2.2). Table 4.13 shows all the naked Arabic

glyphs in their different locations that were used in the final experiment. The

total number of glyphs is 61. This means that the total number of classifiers that

will run on each document image will be 61.

Table 4.13: The Arabic naked glyphs as used in the final experiment

Letter

English

name

Arabic

Characters

Isolated

glyphs

Start

glyphs

Middle

glyphs

End

glyphs

ALEF

BEH

HAH

DAL

REH

SEEN

SAD

TAH

AIN

FEH

QAF

KAF

LAM

MEEM

NOON

HEH

WAW

YEH

HAMZA

LAM ALEF

4. Glyph recognition using a Haar Cascade Classifier 136

Planning for the experiment was done in the same way as the extended experiment.

The original assumption regarding the pre-processing and character segmentation

steps are now true and tested. It has been shown that when using the HCC approach

these two stages can be completely skipped when being applied to Arabic character

recognition.

4.6.2 Data preparation

The data files in the final experiment were prepared identically as in the extended

experiment (section 4.4.2). The same procedures were followed in order to generate

the training and testing datasets for each glyph in each location. The same procedures

were also followed in order to generate the positive and negative files. The difference

being the larger number of glyphs prepared for the final experiment, where 61 glyphs

were prepared instead of 15.

Selecting the rectangles that represented the glyphs in the positive files was a little

bit tricky regarding the dots. Using the glyphs without the dots was tried first, as

shown in Figure 4.10 (a), but this method gave bad results because it usually missed

parts of the glyphs when trying to avoid the dots. Finally the dots were included in

selecting the glyphs as in Figure 4.10 (b) which gave better results. Using the glyphs

with dots in the training process let the glyph classifier train in the different shapes of

that naked glyph.

(a)

Glyphs defined without dots

(b)

Glyphs defined with dots

Figure 4.10: Glyphs definition for the final experiment

The total number of original negative and positive images for all the naked glyphs in

their four different locations is shown in Table 4.14. The total number of positive

images is 6,657 while the total number of negative images is 10,941. The way

numerous samples of positive and negative images were generated was the same that

was used before in the extended experiment. The same programs and utilities were

used for generating the samples as shown in section 4.4.2.2.

4. Glyph recognition using a Haar Cascade Classifier 137

Table 4.14: Number of negative and positive images of glyphs in four locations

Glyph Name
Isolated Start Middle End

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
ALEF 198 25 207 16

BEH 178 186 203 20 190 33 91 132

HAH 52 500 133 90 133 90 47 317

DAL 182 182 170 53

REH 242 122 194 29

SEEN 24 340 101 122 132 91 39 325

SAD 26 338 40 183 84 139 25 339

TAH 9 355 61 303 68 155 34 330

AIN 23 341 146 77 131 92 40 183

FEH 29 335 178 45 141 82 34 330

QAF 34 330 19 345

KAF 21 343 88 135 90 133 29 335

LAM 92 272 203 20 137 86 68 155

MEEM 104 260 172 51 114 109 58 165

NOON 145 219 90 133

HEH 152 212 88 135 108 115 188 35

WAW 314 50 170 53

YEH 101 263 187 36

HAMZA 40 324

LAM ALEF 206 158 54 169

4.6.3 Training the final experiment classifiers

The training process of the final experiment was a very lengthy process compared to

the previous extended experiment. It took a long time to prepare the files and folders

for the training process. The training process itself took a long time to be

accomplished which was around a year. This long time was due to the fact that the

single training process takes two days in average; each glyph has 3 different trials on

average and there are 61 glyphs, so this gives around a year of continues work on a

single dedicated computer. Defining the parameters of the training process of the

glyphs was a very important issue to prepare before the experiment. The parameters

used were the width, height, number of splits, minimum hit rate and boosting type.

These parameters were used following the results and conclusions of the auxiliary

experiments. It is clear that the training sizes of a glyph in its different locations are

usually different.

Table 4.15 and Table 4.16 show the glyphs in each of their four different locations,

the trained width and height, the total number of negative images, total number of

positive images and the total number of glyphs in the positive images. The total

number of positive images for all glyphs is 106,324 while the total number of

negative images is 168,241. The total number of all glyphs in all positive images is

181,874. The average number of glyphs in each positive image is 1.71. The average

4. Glyph recognition using a Haar Cascade Classifier 138

width of all glyphs is 18.9 while the average height is 24.9. The average number of

positive images is 1743.0 and for negative 2758.0.

Table 4.15: Training information of glyphs in isolated and start location

Glyph Name

Isolated location glyphs Start location glyphs

W H
Pos.

Img

Neg.

Img

Total

Glyphs
W H

Pos.

Img

Neg.

Img

Total

Glyphs

ALEF 10 23 1639 1775 9592

BEH 23 22 2144 2976 3312 12 29 1683 1420 7678

HAH 22 28 1599 5500 1848 22 30 2100 2340 3507

DAL 14 20 2192 2912 2992

REH 16 23 2002 2562 4004

SEEN 31 25 1278 3740 1420 26 23 1596 2562 2163

SAD 34 27 1420 3718 1420 30 24 1680 2928 1960

TAH 26 30 497 3905 497 20 28 1656 3333 1800

AIN 17 24 1278 3751 1278 14 21 1760 2387 2624

FEH 26 26 1562 3685 1633 14 22 2144 2070 3968

QAF 27 40 1586 3630 1769

KAF 23 27 1136 3773 1278 17 25 1716 2160 2002

LAM 17 30 1794 2992 2028 13 30 1683 1420 5907

MEEM 15 27 1638 2860 1848 14 22 2064 2091 3952

NOON 18 26 1744 2409 2240

HEH 16 24 1824 2332 2368 15 17 1716 2160 2392

WAW 14 21 2596 2300 6193

YEH 22 22 1596 2893 1785

HAMZA 14 16 1680 3564 1904

LAM ALEF 16 23 1705 2528 2662

Table 4.16: Training information of glyphs in middle and end location

Glyph Name

Middle location glyphs End location glyphs

W H
Pos.

Img

Neg.

Img

Total

Glyphs
W H

Pos.

Img

Neg.

Img

Total

Glyphs

ALEF 10 22 1716 1136 7194

BEH 12 33 2288 2178 12512 25 30 1794 2772 2080

HAH 25 20 2100 2340 3129 20 32 1656 3487 1794

DAL 14 20 2048 2173 3792

REH 16 29 2336 2059 5632

SEEN 26 24 2079 2366 2961 27 26 1680 3575 1904

SAD 23 20 1638 2224 2288 31 24 1349 3729 1491

TAH 18 27 1581 2480 1984 20 24 1586 3630 1647

AIN 14 25 2079 2392 3045 18 31 1680 2928 1906

FEH 14 25 1696 2132 2752 20 15 1586 3630 1647

QAF 20 28 1065 3795 1065

KAF 15 25 1768 2793 2418 20 20 1562 3685 1633

LAM 10 26 1648 2236 2544 17 25 1581 2480 1922

MEEM 15 20 1806 2289 2520 15 26 1584 2640 1872

NOON 18 22 1768 2793 2522

HEH 18 33 1701 2415 2352 17 25 2256 2135 5184

WAW 17 28 2048 2173 4064

YEH 22 17 2256 2196 4192

HAMZA

LAM ALEF 18 25 1681 2704 1804

4. Glyph recognition using a Haar Cascade Classifier 139

4.6.4 Testing the final experiment classifiers

The testing process of the final experiment was separated into two different parts.

The first used the performance utility offered in OpenCV. The second tested the

HCC glyphs classifier against real commercial software in order to compare the

results of the Arabic glyphs classifiers.

4.6.4.1 Testing using the OpenCV performance utility

This testing process of the final experiment used the testing utility offered by the

OpenCV. The testing result values of True Positive (TP), False Negative (FN) and

False Positive (FP) ratios were tracked in all tests. The testing process followed the

same procedure that was followed previously in the extended experiment (see section

4.4.5).

Table 4.17 shows the total number of testing positive images and the total number of

glyphs in the positive images for each of the glyphs in every location. The total

number of positive images for all the glyphs is 34,543. The total number of all the

glyphs in all the positive images is 59,498. The average number of glyphs in each

positive image is 1.72; this value is almost the same as the training phase.

Table 4.17: The testing information for all the glyphs in all locations

Glyph Name

Isolated location

glyphs

Start location

glyphs

Middle location

glyphs

End location

glyphs

Pos.

Img

Total

Glyphs

Pos.

Img

Total

Glyphs

Pos.

Img

Total

Glyphs

Pos.

Img

Total

Glyphs

ALEF 539 3168 561 2211

BEH 704 992 550 2376 752 4192 572 780

HAH 533 615 693 1239 693 966 506 284

DAL 720 1120 672 1328

REH 660 1331 768 1648

SEEN 426 497 525 987 693 1155 504 504

SAD 426 426 560 560 546 624 426 426

TAH 142 142 540 648 527 589 488 549

AIN 355 426 576 944 672 861 560 560

FEH 497 497 704 1248 560 896 488 549

QAF 488 488 284 284

KAF 355 355 572 676 572 650 497 497

LAM 598 754 550 1980 544 784 527 744

MEEM 546 546 688 1520 588 882 504 720

NOON 576 720 572 754

HEH 608 832 572 806 567 903 752 1632

WAW 858 2068 672 1280

YEH 525 588 736 1536

HAMZA 560 784

LAM ALEF 561 803 533 574

4. Glyph recognition using a Haar Cascade Classifier 140

4.6.4.2 Testing using a commercial Arabic OCR application

The objective of this testing process is to compare the HCC approach against Arabic

OCR commercial software. This test gives realistic measures of the performance of

the HCC approach when comparing it with commercial software. The testing

examines all the glyphs classifiers of the HCC approach against the commercial

software. Well known commercial software was used in order to perform this test;

Readiris Pro 10 (IRIS 2004) which was used above in section 3.3.

A small sample of Arabic paragraph documents that represents a variety of document

types that occur in most real life cases were selected to apply this testing process.

The sample includes 37 Arabic documents which contain 568 words and 2,798

letters. This sample was not used in the training and testing of the final experiment to

produce the final 61 classifiers.

The Levenshtein distance algorithm explained in section 2.7.3.2 and used previously

in section 3.3 was used to calculate the commercial software accuracy. The accuracy

of the HCC approach was calculated after running the performance tool offered by

OpenCV to detect the glyphs using the 61 generated classifiers. A manual check was

applied to calculate the accuracy of recognition of all the classifiers for all the

documents.

4.6.5 Results and conclusions

The final experiment results showed a real success of the HCC approach in

recognizing the Arabic documents. The results of the auxiliary experiments led to

some changes in the training parameters which enhanced the results of the final

experiment. High accuracy was produced in the case of using the OpenCV testing

utility as well as when compared with commercial software. The results of the

experiment were separated into two different parts, one using the OpenCV

performance utility and the other when compared to commercial software.

4.6.5.1 Results of using the OpenCV performance utility

Testing the final experiment using the performance utility led to a comparison

between four different locations of glyphs in the Arabic document images. The four

types give different accuracy for each glyph. Table 4.18 shows the TP, FN and FP

4. Glyph recognition using a Haar Cascade Classifier 141

values for each glyph in its four different locations. The last row shows the average

percentage of accuracy of all the Arabic glyphs.

Table 4.18: Testing results as a percentage for all glyphs in different locations

Glyph

Name

Isolated location

glyphs

Start location

glyphs

Middle location

glyphs

End location

glyphs

TP FN FP TP FN FP TP FN FP TP FN FP

ALEF 94% 6% 11% 93% 7% 6%

BEH 84% 16% 14% 81% 19% 17% 74% 26% 4% 93% 7% 1%

HAH 76% 24% 0% 94% 6% 2% 86% 14% 18% 100% 0% 0%

DAL 85% 15% 5% 93% 7% 2%

REH 73% 27% 8% 74% 26% 3%

SEEN 85% 15% 1% 92% 8% 4% 93% 7% 6% 82% 18% 12%

SAD 83% 17% 28% 97% 3% 7% 89% 11% 13% 88% 12% 4%

TAH 95% 5% 4% 82% 18% 8% 93% 7% 24% 88% 12% 9%

AIN 100% 0% 2% 92% 8% 0% 92% 8% 2% 99% 1% 0%

FEH 92% 8% 29% 94% 6% 9% 83% 17% 9% 92% 8% 16%

QAF 75% 25% 0% 100% 0% 1%

KAF 97% 3% 4% 95% 5% 3% 93% 7% 6% 93% 7% 8%

LAM 94% 6% 2% 85% 15% 9% 92% 8% 12% 92% 8% 0%

MEEM 92% 8% 5% 91% 9% 13% 97% 3% 7% 90% 10% 4%

NOON 89% 11% 9% 97% 3% 3%

HEH 86% 14% 13% 94% 6% 1% 92% 8% 0% 86% 14% 3%

WAW 83% 17% 16% 98% 2% 4%

YEH 97% 3% 5% 98% 2% 3%

HAMZA 78% 22% 4%

LAM ALEF 98% 2% 3% 96% 4% 1%

Average 88% 12% 8% 91% 9% 7% 89% 11% 9% 92% 8% 4%

Table 4.19: Testing results in numbers for all glyphs in different locations

Glyph

Name

Isolated location

glyphs

Start location

glyphs

Middle location

glyphs

End location

glyphs

TP FN FP TP FN FP TP FN FP TP FN FP

ALEF 2969 199 347 2053 158 126

BEH 836 156 140 1919 457 401 3084 1108 159 726 54 4

HAH 465 150 3 1167 72 27 827 139 174 284 0 0

DAL 949 171 59 1240 88 29

REH 975 356 112 1223 425 54

SEEN 423 74 6 910 77 43 1070 85 70 415 89 58

SAD 354 72 121 542 18 41 558 66 84 375 51 17

TAH 135 7 5 531 117 49 545 44 144 483 66 49

AIN 426 0 7 867 77 3 794 67 15 553 7 1

FEH 459 38 146 1177 71 114 744 152 84 504 45 86

QAF 364 124 0 284 0 4

KAF 345 10 15 640 36 20 603 47 37 460 37 42

LAM 709 45 13 1687 293 177 720 64 92 684 60 0

MEEM 500 46 29 1389 131 195 856 26 61 651 69 26

NOON 644 76 65 733 21 24

HEH 712 120 108 760 46 9 834 69 4 1408 224 57

WAW 1725 343 327 1249 31 46

YEH 570 18 29 1504 32 49

HAMZA 614 170 33

LAM

ALEF
785 18 22 549 25 3

Total 14959 2193 1587 11589 1395 1079 10635 1867 924 15378 1482 675

Accuracy 87% 13% 9% 89% 11% 8% 85% 15% 7% 91% 9% 4%

4. Glyph recognition using a Haar Cascade Classifier 142

Table 4.19 shows the total number of TP, FN and FP objects for each glyph for each

of the four different locations for Arabic glyphs. The last row shows the average

percentage for all glyphs relative to the total number in each dataset.

4.6.5.2 Results of testing with the commercial OCR application

Comparing the HCC approach to the commercial software showed that the HCC

approach achieved a slightly better accuracy than that achieved by the commercial

software. The accuracy of the HCC approach in this test achieved 87% while the

commercial software achieved 85%.

The conclusions of the auxiliary experiments led to a change in the training and

testing parameters used in the final experiment. This was the reason of a slight

enhancement in the results of the final experiment when compared to the extended

experiment.

The results of the final experiment show the following:

1. The HCC approach glyph recognition accuracy is 87%. The accuracy achieved

can be considered as a high level of recognition at this stage and proves the

validity of the approach for the Arabic character recognition.

2. The glyphs with a small number of positive or negative samples return

unreasonable results, for instance most of the isolated location glyphs. This

justifies the use of Real and Computer data or sometimes Noise data for some

glyphs.

3. The glyphs with a balanced number of positive and negative samples usually

return good results, for example Beh end (), Seen start () and Kaf start ().

4. The letters with complicated visual features usually get better recognition

accuracy, for instance Hah (), Sad (), Heh () and Lam Alef ().

5. Using naked glyphs did not reduce the recognition rate but actually improved it

and reduced the number of classifiers that were needed.

6. It is now very clear that the HCC approach can recognize printed Arabic glyphs

without segmenting them.

4. Glyph recognition using a Haar Cascade Classifier 143

4.7 Summary

This chapter presented experimental work using a cascade of boosted classifiers

based on Haar-like features for Arabic printed character recognition. This experiment

made use of the multi-modal Arabic corpus generated and explained above in

Chapter 3. The current chapter ended up with 61 classifiers. These classifiers are

used to generate a general Arabic classifier as explained in Chapter 5. The issues

addressed and conclusions reached in this chapter are:

1. The main research assumption of using the HCC approach with printed Arabic

characters and alter it to avoid some steps of the pre-processing and recognition

stages and the character segmentation phase.

2. How the HCC approach is tackled and applied in order to solve the problem of

printed Arabic character recognition.

3. A preliminary pilot experiment to check the validity of the HCC approach with

printed Arabic characters.

4. An extended experiment, justifying the use of the HCC approach with printed

Arabic characters.

5. Three auxiliary experiments are applied to enhance the use of the parameters of

the training process which led to the enhancement of the recognition accuracy.

6. The final experiment is applied on the Arabic naked glyphs in their locations. It

generated classifiers for every Arabic naked glyph.

5. HCC tokens recognition 144

Chapter 5.

HCC tokens recognition

This chapter explains the generation of an Arabic naked tokens recognizer and tests

its recognition accuracy. The recognizer uses the 61 naked glyphs classifiers that

were previously produced in Chapter 4 in order to generate the single classifier. In

addition to this, the training and testing results of the classifiers will be used. The real

image dataset introduced in section 3.2.2 was used to prepare a new tokens testing

dataset for this recognizer. The work described in this chapter will output the

recognized tokens of the input document image using the single classifier.

The purpose of this chapter is to show that the HCC approach can lead to a full

Arabic recognition system. For that reason, the algorithms followed here are simple

in order to show the credibility of the HCC approach as an OCR approach. It was

clear from the results of the previous chapter that the HCC approach detects glyphs

with an accuracy of 87% which is slightly better than the commercial software 85%,

so it is evident that the glyphs are well detected.

5.1 Introduction

This chapter reports on an Arabic naked tokens recognizer based on the 61

classifiers. The classifiers in Chapter 4 were generated based on the HCC approach.

The generated recognizer in this chapter uses solely the visual features of the glyphs

without acquiring statistical information to this stage.

Figure 5.1 shows the general flowchart of the HCC tokens recognizer application.

Each of the main components on the figure includes the provided sections in this

thesis.

5. HCC tokens recognition 145

5.1.1 HCC tokens recognizer overview

New tokens testing dataset was prepared to test the HCC token recognizer. The

testing dataset is used in order to test the recognizer against the commercial software

that is used in all the phases of this research. The testing procedures test three phases;

one for the recognizer, after applying the confusion matrix (Tanner, Muñoz et al.

2009) and after applying post-processing in Chapter 6.

Start
Document

Image

Glyph

Recognition

Section 4.7

No

Tokens formations

Section 5.3

Yes

End
Extract tokens

Confusion matrix

Section 5.4

Alternative

likelihood glyph

Section 5.3

Tokens correction

Leveneshtein Distance

Section 6.3.2

Find tokens in

look-up dictionary

Section 6.3.1

No

Yes

Single token

classifier

Section 5.2

Figure 5.1: Flowchart showing HCC tokens recognition process

A single tokens classifier is generated by loading the classifiers with their

parameters. The 61 classifiers are then run over the document image in order to

generate the list of detected glyphs. Statistical analysis information of the document

and the detected glyphs are then generated in order to reject wrongly detected glyphs

(see Figure 5.1). The “baselines” of the words in the document are defined using the

centre Y-axis of the detected glyphs within the horizontal histogram of the document.

A tokens recognizer is generated in order to parse the detected glyphs to text. The

detected glyphs are sorted vertically into text lines, then horizontally in Arabic order

(from right to left). The glyphs are then analyzed and arranged in order to generate

Arabic tokens. The detected glyphs information is kept in a list and a file. The

5. HCC tokens recognition 146

generated recognizer is tested using the tokens testing dataset against the previously

used commercial software.

A confusion matrix for the 61 classifiers is generated. For each classifier, the most

likelihood alternative seven glyphs are stored with the original one. A confusion

matrix is used when a glyph is detected by more than one classifier (see Figure 5.1).

It runs over all detected glyphs results from the recognizer and keeps the list of the

best seven glyphs for each detected one. The new list of detected glyphs, after

running the confusion matrix, is also kept in a list and a file. The modified extracted

tokens after applying the confusion matrix are tested against the tokens generated

from the recognizer.

The post processing stage in Chapter 6 is responsible for improving the detected

glyphs by using the statistical information which was collected and arranged in the

MMAC defined in Chapter 3. The statistical algorithms and techniques were used to

enhance the recognitions rate of the tokens (see Figure 5.1). In this chapter, the

missed glyphs are replaced by a () question mark to allow the post processing stage

to suggest the best glyph in place of the one that was missed.

5.1.2 Preparing the tokens testing dataset

A new token testing dataset was prepared in order to test the HCC application. The

procedures followed in generating MMAC (see section 3.2) were followed in order

to prepare this dataset. The contents of this dataset were not used previously in the

final experiment of section 4.6 which led to the generation of the 61 classifiers.

The main reason of generating the tokens testing dataset is to test the remaining three

steps of the HCC application. The tokens testing dataset tests the output of the HCC

recognizer (see section 5.3) which is the first step that output recognized tokens. The

output after applying the confusion matrix is also tested (see section 5.4). Finally it is

used to test the output of the post-processing step (see Chapter 6). In all the testing

steps, the output is compared with the commercial software and with the previous

steps to get the improvement in the application recognition rate using this step.

The main source of the tokens classifier testing dataset was the full page real image

dataset that was generated in section 3.2.2. The contents of the testing dataset used a

5. HCC tokens recognition 147

variety of document types, including office documents, faxes, books, magazines and

newspapers. The documents were ground truthed as text files and were reviewed by

an independent group of people. The ground truth files are presented in the form of

words, naked words, PAWs and naked PAWs.

The tokens testing dataset was generated in order to test the approach presented in

this thesis against well-known commercial software that was used previously in

section 3.3. The documents in this dataset were extracted from full page images,

which contained text paragraphs of the full pages, with no images or graphics inside.

It was prepared in order to test character recognition as page layout analysis is not

included in the testing requirements and included 23 different document image files

with 1,053 words inside them.

Table 5.1 shows the contents of the tokens testing dataset. It shows the type of

documents and number of text lines, words, PAWs and characters of each one. The

documents include a variety of document quality from good to poor. Figure 5.2

shows different samples of the tokens testing dataset which indicates the variety of

document quality.

Table 5.1: Tokens testing dataset files description

Document image file Document Type
No. Of

Text Lines

No. Of

Words

No. Of

PAWs

No. Of

Characters

FinalTest001.bmp Book 5 34 78 216

FinalTest002.bmp Book 5 41 89 254

FinalTest003.bmp Office Document 4 21 53 124

FinalTest004.bmp Office Document 4 24 58 146

FinalTest005.bmp Fax 3 34 68 189

FinalTest006.bmp Fax 3 34 54 161

FinalTest007.bmp Fax 4 18 43 107

FinalTest008.bmp Fax 4 22 54 136

FinalTest009.bmp Magazine 7 68 141 361

FinalTest010.bmp Magazine 7 63 140 357

FinalTest011.bmp Magazine 6 38 79 197

FinalTest012.bmp Magazine 6 29 70 175

FinalTest013.bmp Magazine 7 68 121 331

FinalTest014.bmp Magazine 8 75 147 386

FinalTest015.bmp Magazine 10 79 179 458

FinalTest016.bmp Magazine 4 23 62 139

FinalTest017.bmp Magazine 7 50 108 290

FinalTest018.bmp Magazine 7 69 132 360

FinalTest019.bmp Magazine 6 56 118 320

FinalTest020.bmp News paper 8 58 120 295

FinalTest021.bmp News paper 9 59 136 329

FinalTest022.bmp News paper 8 43 97 250

FinalTest023.bmp News paper 9 47 104 274

Total

141 1053 2251 5855

5. HCC tokens recognition 148

Figure 5.2: Different samples of Tokens testing dataset

5.1.3 Document statistical information

Keeping statistical information regarding the detected document is important in order

to enhance the recognition accuracy of the document. The statistical information

includes information about the document image, text lines, overall detected glyphs

and each detected glyph.

The whole document image provides information about the properties of the

document which includes information about the image quality and image contents.

The width and height of the document is used in all the detection processes. The grey

scale value of each pixel and each row of pixels is also very important in order to

gain information regarding each glyph and text lines as shown in section 5.3.1.

Average grey scaling of the document enables the rejection of the empty glyphs as

shown in section 5.2.3 and gives information about the image; if it is dark or bright.

The average grey scale of the baselines gives information about the brightness of the

glyphs in the document and is mainly used for the parsing of the detected glyphs as

shown in section 5.3.2.

The overall detected glyphs information is important for rejecting wrongly detected

glyphs and also tells us about the averages of the glyphs which are considered a good

comparing base for each detected glyph. The average width, height and area helps in

detecting text lines as shown in section 5.3.1, rejecting big detected glyphs as shown

in section 5.2.3, and in rejecting empty detected glyphs as shown in section 5.2.3.

The average grey scale value is used in order to parse the detected glyphs and to

discover the relationship between every contiguous glyph as shown in section 5.3.2.

5. HCC tokens recognition 149

Each detected glyph holds information about the width, height and area of the glyph

which helps to reject wrongly detected glyphs as shown in section 5.2.3. The average

grey scale of the detected glyph allows for the rejection of wrongly, empty, detected

glyphs as shown in section 5.2.3.

5.2 The single token classifier

This part of the research is responsible for extracting a list of detected glyphs and the

important information from the document image.

5.2.1 Loading the classifiers list

The classifiers list includes information of the 61 classifiers generated previously in

section 4.6 and is used in the testing process of each classifier (see section 4.6.4).

This information is important to be passed as parameters to each classifier when run

over the document image. The classifiers list is kept in a file for further

enhancements through reloading the list at any time with new information. Table 5.2

shows the classifiers list that is used in the research for the 61 classifiers. The

associated information for the classifiers is:

1. The classifier ID; this is used in order to know which classifier to associate with

the detected glyph and is used in further processes.

2. The XML classifier file name is used to load the classifier file. This file is

generated from the training process developed in section 4.6.3.

3. The width and height which were used before in the training and testing

processes. See section 4.6.3 and 4.6.4. The testing parameters that give better

detection accuracy during the previous testing process showed in section 4.6.4.2.

These parameters are scale factor and minimum neighbour.

4. The True Positive (TP) percentage which was achieved when applying the

classifier in the testing process as explained in section 4.6.4.2.

5. Classifier Average Area defines the average area of the classifier relative to the

overall classifiers average area. This value will be used to check whether the

detected glyph is correct or not based on detected area.

5. HCC tokens recognition 150

Table 5.2: Classifiers list of the HCC approach

Classifier

ID
Classifier file

Scale

Factor

Minimum

Neighbour
Width Height TP

Classifier

Average Area
1 xml/_01AlefISO.xml 1.02 3 10 23 0.937 0.478

2 xml/_02AlefEND.xml 1.01 2 10 22 0.929 0.457

3 xml/_03BehISO.xml 1.01 1 23 22 0.843 1.052

4 xml/_04BehSTR.xml 1.01 1 12 29 0.808 0.724

5 xml/_05BehMID.xml 1.01 1 16 36 0.736 1.198

6 xml/_06BehEND.xml 1.01 1 25 30 0.931 1.560

7 xml/_07HahISO.xml 1.02 2 22 28 0.756 1.281

8 xml/_08HahSTR.xml 1.01 1 22 30 0.942 1.372

9 xml/_09HahMID.xml 1.01 1 24 40 0.856 1.996

10 xml/_10HahEND.xml 1.02 3 20 32 1.000 1.331

11 xml/_11DalISO.xml 1.01 1 14 20 0.847 0.582

12 xml/_12DalEND.xml 1.01 1 14 23 0.934 0.670

13 xml/_13RehISO.xml 1.01 1 16 23 0.733 0.765

14 xml/_14RehEND.xml 1.01 1 16 29 0.742 0.965

15 xml/_15SeenISO.xml 1.01 1 31 25 0.851 1.612

16 xml/_16SeenSTR.xml 1.01 1 26 23 0.922 1.243

17 xml/_17SeenMID.xml 1.01 2 26 24 0.926 1.298

18 xml/_18SeenEND.xml 1.01 1 27 26 0.823 1.460

19 xml/_19SadISO.xml 1.01 1 34 27 0.831 1.909

20 xml/_20SadSTR.xml 1.01 2 30 24 0.968 1.497

21 xml/_21SadMID.xml 1.01 5 23 20 0.894 0.957

22 xml/_22SadEND.xml 1.01 1 31 24 0.880 1.547

23 xml/_23TahISO.xml 1.01 1 26 30 0.951 1.622

24 xml/_24TahSTR.xml 1.01 1 20 28 0.819 1.164

25 xml/_25TahMID.xml 1.01 1 18 27 0.925 1.011

26 xml/_26TahEND.xml 1.01 2 20 24 0.880 0.998

27 xml/_27AinISO.xml 1.01 1 17 24 1.000 0.848

28 xml/_28AinSTR.xml 1.01 1 14 21 0.918 0.611

29 xml/_29AinMID.xml 1.01 1 14 25 0.922 0.728

30 xml/_30AinEND.xml 1.02 3 18 31 0.988 1.160

31 xml/_31FehISO.xml 1.01 1 26 26 0.924 1.406

32 xml/_32FehSTR.xml 1.01 1 14 22 0.943 0.640

33 xml/_33FehMID.xml 1.01 1 14 25 0.830 0.728

34 xml/_34FehEND.xml 1.02 1 20 15 0.918 0.624

35 xml/_35QafISO.xml 1.01 1 27 40 0.746 2.246

36 xml/_36QafEND.xml 1.01 3 20 28 1.000 1.164

37 xml/_37KafISO.xml 1.01 1 23 27 0.972 1.291

38 xml/_38KafSTR.xml 1.01 4 17 25 0.947 0.884

39 xml/_39KafMID.xml 1.01 1 15 25 0.928 0.780

40 xml/_40KafEND.xml 1.01 2 20 20 0.926 0.832

41 xml/_41LamISO.xml 1.01 2 17 30 0.940 1.060

42 xml/_42LamSTR.xml 1.02 4 13 30 0.852 0.811

43 xml/_43LamMID.xml 1.01 1 10 26 0.918 0.541

44 xml/_44LamEND.xml 1.01 1 17 25 0.919 0.884

45 xml/_45MeemISO.xml 1.01 2 15 27 0.916 0.842

46 xml/_46MeemSTR.xml 1.01 1 14 22 0.914 0.640

47 xml/_47MeemMID.xml 1.01 1 15 20 0.971 0.624

48 xml/_48MeemEND.xml 1.01 1 15 26 0.904 0.811

49 xml/_49NoonISO.xml 1.01 2 18 26 0.894 0.973

50 xml/_50NoonEND.xml 1.01 3 18 22 0.972 0.823

51 xml/_51HehISO.xml 1.01 1 16 24 0.856 0.798

52 xml/_52HehSTR.xml 1.02 1 15 17 0.943 0.530

53 xml/_53HehMID.xml 1.02 1 18 33 0.924 1.235

54 xml/_54HehEND.xml 1.01 1 17 25 0.863 0.884

55 xml/_55WawISO.xml 1.01 1 14 21 0.834 0.611

56 xml/_56WawEND.xml 1.01 1 17 28 0.976 0.990

57 xml/_57YehISO.xml 1.01 1 22 22 0.969 1.006

58 xml/_58YehEND.xml 1.01 2 22 17 0.979 0.778

59 xml/_59HamzaISO.xml 1.01 1 14 16 0.783 0.466

60 xml/_60LamAlefISO.xml 1.01 2 16 23 0.978 0.765

61 xml/_61LamAlefEND.xml 1.02 3 18 25 0.956 0.936

Average 1.011 1.541 18.951 25.377 0.900 1.011

5. HCC tokens recognition 151

5.2.2 Running the classifiers

This section of the research is responsible for running all the classifiers that were

generated from the training process in section 4.6.3 over the document image and

collecting the detected glyphs. The appropriate parameters loaded in the previous

section 5.2.1 are associated with each classifier when run over the document.

Each classifier returns a list of the detected glyphs in the form of rectangles. Figure

5.3 shows a document image after running ten classifiers over it. Each classifier’s

rectangle is in a different colour. Only ten classifiers were used in Figure 5.3 in order

to show an example of the output, as figure showing all 61 classifiers will be

cluttered and difficult to understand.

The following were observed after running the classifiers over the document images:

1. The classifier usually detects only one glyph at a time rather than a bigger area

that might include more than one glyph. Some classifiers of a larger size can

sometimes detect more than one glyph, for example; Tah start () sometimes

detects Ain start and Lam middle (). This issue is considered when applying

the confusion matrix (see section 5.4).

2. Some classifiers from different letters detect one another, for example; Seen start

() and Sad start ().

3. The extension letter or Tatweel is usually detected by mistake and must be given

special treatment in an OCR application. This issue is considered during parsing

process (see section 5.3.2).

4. The same classifier sometimes, by mistake, detects the same glyph again. It is

ignored in order to be sure that the classifier always detects any glyph just once.

5. Sometimes more than one classifier detects the same glyph; most of these cases

are for classifiers found to be from the same letter but different locations like

Alef end () and Alef isolated (). This issue is considered when applying the

confusion matrix (see section 5.4).

5. HCC tokens recognition 152

6. The space between words is clear in most cases and can be detected, although the

space between PAWs is not that clear.

7. Applying the text lines to the detected glyphs is clear and easy, as there are no

overlaps between lines.

Figure 5.3: A document image after running ten classifiers over it

5. HCC tokens recognition 153

5.2.3 Keeping a list of glyphs

The detected glyphs information from all the classifiers that were run over the

document images in the previous section (5.2.2) are kept in a list and a file. The

following information is kept for each detected glyph:

1. The glyph ID, this is used for further identification of the glyph in the other

processes.

2. The ID of the classifier which detected this glyph.

3. The rectangle which defines the detected glyph that was returned from applying

the classifier.

4. The centre point of the detected glyph. This point is used for defining the text

line and glyphs parsing.

5. The area of the detected glyph. The area is used to decide whether the detected

glyph area is reasonable or not (which means it is wrongly detected).

6. The average grey scale value of the detected glyph. This is used to decide

whether the detected glyph is a physical or empty glyph.

7. The true positive (TP) percentage which resulted when applying the detecting

classifier as shown in section 4.6.4. This value is used to define the best

likelihood of alternative glyphs.

8. The line number which contains the glyph. The letter number of the detected

glyph in the line is also considered in this case. These two parameters are

calculated in the next section.

Table 5.3 shows a sample list of glyphs when running a tokens classifier over a

document image. This list is considered as the main source of data for the next steps

in the creation of the OCR application.

5. HCC tokens recognition 154

Table 5.3: Sample of applying a Tokens classifier over a document image

Glyph

ID

Classifier

ID

Top

left X

Top

left Y
Width Height

Centre

X

Centre

Y
TP

Glyph

Area

Grey

Value

1 1 445 4 14 33 452 20 0.937 462 180

20 2 128 3 13 29 134 17 0.929 377 187

35 4 184 10 12 29 190 24 0.808 348 183

62 5 30 47 17 39 38 66 0.736 663 191

79 6 358 348 28 33 372 364 0.931 924 191

85 11 197 53 17 24 205 65 0.847 408 182

90 12 308 133 18 30 317 148 0.934 540 185

101 13 150 312 18 25 159 324 0.733 450 182

106 14 190 5 21 37 200 23 0.742 777s 192

108 16 185 174 33 29 201 188 0.922 957 193

111 17 150 4 33 31 166 19 0.926 1023 192

113 21 272 260 33 29 288 274 0.894 957 181

115 23 196 84 31 36 211 102 0.951 1116 180

116 25 291 338 24 37 303 356 0.925 888 179

120 28 209 89 21 31 219 104 0.918 651 185

122 29 77 214 18 33 86 230 0.922 594 184

The detected glyphs average area is shown in section 5.1.3, the classifier average

area shown in Table 5.2 and the detected glyph area shown in Table 5.3 are used in

order to decide whether to accept a detected glyph or to reject it. It is rejected when a

detected glyph area is greater than triple the value of the detected glyphs’ average

multiplied by the classifier average area. This value (triple) was obtained while

testing the application and concluded that the glyphs detected with bigger value than

the triple is wrong detection.

The average grey scale of the document image is shown in section 5.1.3 and the

average grey scale of the detected glyph shown in Table 5.3 is also used to decide

whether to accept the detected glyph or to reject it. It is rejected when the grey scale

of a detected glyph is more than the average document grey scale value.

5.3 The HCC tokens recognizer

The tokens recognizer uses the list of detected glyphs generated in section 5.2 in

order to extract the document’s tokens. It separates the detected glyphs into text lines

and then into tokens. The resulted tokens are then tested against the commercial

software using the tokens testing dataset generated in section 5.1.2. The mismatched

glyphs are collected together in order to get the best choice of them through applying

the confusion matrix as shown in section 5.4.

5. HCC tokens recognition 155

5.3.1 Text line extraction

The location of a baseline in this research is obtained from the centre Y-axis of the

detected glyphs and a horizontal histogram. Text line extraction is the first step in

generating a robust tokens recognizer. It is used to define the text line of each

detected glyph from the list of glyphs. The glyphs of each text line are then sorted in

an Arabic order with the start X value as a key. This sorting process defines the letter

number for each detected glyph.

The text line is extracted based on the detected glyphs of the document image. The

detected glyphs are sorted based on the Y-axis of the centre point of the detected

glyph. The text line is defined by calculating the difference between every two

contiguous values, and when the difference exceeds the average height of the

detected glyphs, it considers it as a new text line. The baseline of the text line is

obtained based on the horizontal histogram algorithm and work by calculating the

sum of the grey-scale values of each row of pixels in the document image (O'Gorman

1993). The average Y-axis of the centre points of the detected glyphs that share the

same text line is calculated which represents an approximate value of the baseline. A

range of values in the horizontal histogram above and below the previous calculated

approximate baseline is investigated in order to get the minimum value which

represents the most accurate baseline. The top and bottom line is also defined for

each baseline using the maximum difference algorithm. Figure 5.4 shows the

application of the algorithm in order to define the document image baselines on one

of the tokens testing datasets.

Figure 5.4: Baseline locations for a document image (shown in red)

The previous algorithm was applied to the testing dataset which contains 23 different

document images varying in quality and contains 141 text lines overall. Although

some of the document quality was bad, the results were 100% correct in detecting the

text lines. The algorithm neither failed to detect any text line nor detected any extra

5. HCC tokens recognition 156

text lines. The algorithm also succeeded in obtaining the baselines in all the testing

datasets correctly and precisely as shown in Figure 5.4. The rejection of empty

glyphs and big glyphs shown in section 5.2.3 supported the algorithm in order to

achieve these results in text line detection.

Table 5.4 shows the same information of the document image that was shown in

Table 5.3 after defining the line number of each glyph and letter number. It is clear

from the table that the detected glyphs in each text line have almost the same Y

centre.

Table 5.4: Sample of detected glyphs with text lines and letters sorted

Glyph

ID

Classifier

ID

Top

left X

Top

left Y
Width Height

Start

X

Centre

Y
TP

Grey

Val.

Line

No.

Letter

No.

1 1 445 4 14 33 459 20 0.94 180 1 1

106 14 190 5 21 37 211 23 0.74 192 1 11

35 4 184 10 12 29 196 24 0.81 183 1 12

111 17 150 4 33 31 183 19 0.93 192 1 13

20 2 128 3 13 29 141 17 0.93 187 1 14

85 11 197 53 17 24 214 65 0.85 182 2 12

62 5 30 47 17 39 47 66 0.74 191 2 21

120 28 209 89 21 31 230 104 0.92 185 3 12

115 23 196 84 31 36 227 102 0.95 180 3 14

90 12 308 133 18 30 326 148 0.93 185 4 6

108 16 185 174 33 29 218 188 0.92 193 5 15

122 29 77 214 18 33 95 230 0.92 184 6 26

113 21 272 260 33 29 305 274 0.89 181 7 13

101 13 150 312 18 25 168 324 0.73 182 8 16

79 6 358 348 28 33 386 364 0.93 191 9 4

116 25 291 338 24 37 315 356 0.93 179 9 8

5.3.2 Parsing the detected glyphs

Parsing the detected glyphs is the most important part in generating a tokens

recognizer. It decides the relationship between every two contiguous detected glyphs.

This relationship has many variants, especially in the Arabic language. It also deals

with the vacant spaces between glyphs inside the text lines. The analysis results have

a substantial influence on the recognition accuracy of any OCR application, but are

largely beyond the scope of the current research.

Any two contiguous detected glyphs might be a glyph detected by two classifiers,

two glyphs with white space in between, two glyphs with the extension (Tatweel)

character in-between, two glyphs with an undetected (missed) glyph in-between and

5. HCC tokens recognition 157

finally two actual contiguous glyphs. Studying the relationship between the

contiguous glyphs is not a major aspect of this research, so the algorithm used in

solving this problem is simple simply to show the problem can be solved. Overall

recognition rates could be improved if a more sophisticated algorithm were

developed.

Table 5.4 shows the detected glyphs sorted in each line; which is the ideal situation,

but is not expected to be the case all the time. The reality is that some glyphs are

missed without detection and sometimes more than one classifier detects the same

glyph. For these reasons, a data structure for the glyphs has been developed in order

to accommodate all scenarios. This structure keeps the line number and character

number for each glyph and a list of the classifiers which detected this glyph. Each

classifier also keeps a classifier ID and the TP of this classifier when tested.

The algorithm deals with all the cases concerning the relationship between every

contiguous glyph as shown hereafter.

5.3.2.1 Two classifiers detect the same glyph

This case occurs when two or more classifiers detect the same glyph. Figure 5.5 (a)

shows two samples each of two classifiers detecting the same glyph. In the first

sample Alef isolated glyph () is detected by Alef isolated () and Alef end ()

classifiers. In the second sample Alef end glyph () is detected by Alef isolated ()

and Alef end ().

This case is checked through investigating the shared width of the two glyphs. If

most of their shared width is common then it is assumed they have detected the same

glyph.

In this case, both classifiers are kept as only one detected glyph with two records

inside in the list of classifiers. This case is managed through sorting of the array of

classifiers with the TP percentage. So if the TP of the first classifier is 88% and for

the second one is 90%, it will be sorted. The first is the one with 90% TP and the

second is the one with 88% TP. In the process of extracting that glyph it will extract

the one with higher TP percentage (90%).

5. HCC tokens recognition 158

Using the classifier with higher TP is convenient as it is the only available

information at this stage. This result will be checked again in section 5.4 when

applying a confusion matrix in order to enhance the recognition accuracy. It will be

checked once more in Chapter 6 with a post-processing algorithm.

5.3.2.2 Two classifiers detect two contiguous glyphs

This is the ideal case which occurs when the two classifiers detect two contiguous

glyphs or detect two glyphs with an extension (Tatweel) glyph between them. Figure

5.5 (b) shows two samples of this case. In the first sample, two contiguous glyphs,

Alef isolated () and Lam Alef isolated () are detected correctly. In the second

sample, Ain middle () and Heh middle () are detected with an extension glyph

between them.

This case is checked through investigating the shared width or the space between the

two glyphs. If the space is small relative to the average width of the detected glyphs

or if the space between them has no ink above or below the baseline, they detect two

different glyphs.

In this case, the two classifiers are kept as two detected glyphs with only records

inside each of them in the list of classifiers.

5.3.2.3 Two classifiers detect two glyphs with space between

This case occurs when the two classifiers detect two glyphs with white space

between them. Figure 5.5 (c) shows two samples of this case. In the first sample, two

glyphs; Heh end () and Feh start (), are detected with white space between them.

In the second sample, Heh end () and Meem start () are detected with white space

between them.

This case is checked through investigating the space between the two glyphs. If the

space is large relative to the average width of the detected glyphs and the space

between them has no ink above or below or on the baseline then there is a white

space between the two detected glyphs.

In this case, it keeps the two classifiers as two detected glyphs with only records

inside each of them in the list of classifiers. A new glyph is generated in-between

with a glyph ID of 200 which represents white space.

5. HCC tokens recognition 159

5.3.2.4 Two classifiers detect two glyphs with a missed glyph between

This case occurs when the two classifiers detect two glyphs with a missed glyph(s)

between them. Figure 5.5 (d) shows two samples of this case. In the first sample, two

glyphs; Feh start () and Alef end (), are detected with Feh middle () missed

between them. In the second sample, Alef end () and Ain middle () are detected

with Beh start () missed between them.

This case is checked through investigating the space between the two glyphs. If the

space is large relative to the average width of the detected glyphs and the space

between them has ink above or below the baseline and on the baseline so there is a

missed glyph(s) between the two detected glyphs.

In this case, it keeps the two classifiers as two detected glyphs with only records

inside each of them in the list of classifiers. A new glyph () is generated in-between

with a glyph ID of 300 which represents a missed glyph.

(a) (b) (c) (d)

Figure 5.5: Different cases of relationship between each contiguous glyph

The start and end of the text lines are defined with the first and last detected glyph in

the text line from right to left.

5.3.3 Testing the Arabic tokens recognizer

Testing the Arabic tokens recognizer was done using the tokens testing dataset that

was prepared in section 5.1.2. This dataset contains of 1,053 words, 2,251 PAWs and

5,855 characters. The dataset includes a variety of document types, and was ground

truthed as text files. The ground truth files are in different forms of tokens which

include words, naked words, PAWs and naked PAWs. The HCC tokens recognizer

output is in the form of naked words as the classifiers generated in section 4.6 were

in the form of naked glyphs; that is why the tokens used in this testing process were

in the form of naked words tokens.

5. HCC tokens recognition 160

The Arabic tokens recognizer was tested against the commercial software in order to

check its usefulness as a real OCR application. The well-known commercial software

Readiris pro 10 (IRIS 2004) which was used in section 3.3 was used for testing the

tokens recognizer. Recognition results from the commercial software and the tokens

recognizer were compared to the ground truthed documents using the Levenshtein

Distance algorithm (Navarro 2001). The Levenshtein Distance algorithm is an

approximate string matching algorithm (Levenshtein 1966) which gives a tentative

accuracy of recognition (AbdelRaouf, Higgins et al. 2010). This accuracy is

measured based on the percentage of correct characters within the volume of

characters covered, defined by the majority of OCR application vendors (Tanner,

Muñoz et al. 2009).

Table 5.5 shows the recognition results between the commercial software and the

HCC tokens recognizer using Levenshtein Distance algorithm. The characters error

shows the number of incorrect characters in the whole document used with the total

number of characters in the document in order to calculate the recognition accuracy.

The results of the commercial software showed that the testing dataset had

documents of varying quality, as the recognition rate was variable for each document

and the overall accuracy was 84%. It is important to mention that the characters’

error average is different from that of the recognition rate average. The characters’

error average is calculated as the average of the total errors in characters relative to

the total number of characters in the testing dataset. The recognition rate average is

calculated as the average of the recognition rate of all the documents in the testing

dataset.

Table 5.5 shows the recognition time in seconds for every test file on the commercial

software and the HCC approach. The calculation of the recognition time is tentative

as it is not calculating the accurate duration of recognizing the document images. It is

used to justifying that the recognition time of the HCC approach is reasonable. The

table also explains that some files takes a long time as recognition time depends on

the quality and size of the document. The total time to recognise all the files in the

commercial software are 364 seconds with average of 15.8 seconds for each. The

total time to recognise all the test files in the HCC approach are 339 seconds with

5. HCC tokens recognition 161

average of 14.7 seconds for each. The recognition time for both the applications is

almost the same but slightly less in the case of HCC approach.

Table 5.5: Recognition results of commercial software and HCC recognizer

Document

image file

Original Documents Commercial software HCC Tokens parser

Characters Words
Time

/Sec.

Characters

Error
Accuracy

Time

/Sec

Characters

Error
Accuracy

FinalTest001 216 34 10 16 92.6% 17 55 74.5%

FinalTest002 254 41 11 19 92.5% 17 86 66.1%

FinalTest003 124 21 16 36 71.0% 20 56 54.8%

FinalTest004 146 24 15 33 77.4% 21 61 58.2%

FinalTest005 189 34 37 136 28.0% 48 105 44.4%

FinalTest006 161 34 28 82 49.1% 36 97 39.8%

FinalTest007 107 18 10 49 54.2% 8 48 55.1%

FinalTest008 136 22 12 67 50.7% 11 47 65.4%

FinalTest009 361 68 23 34 90.6% 19 96 73.4%

FinalTest010 357 63 25 46 87.1% 19 89 75.1%

FinalTest011 197 38 15 50 74.6% 9 28 85.8%

FinalTest012 175 29 14 12 93.1% 8 33 81.1%

FinalTest013 331 68 16 35 89.4% 11 102 69.2%

FinalTest014 386 75 21 52 86.5% 13 104 73.1%

FinalTest015 458 79 18 62 86.5% 15 220 52.0%

FinalTest016 139 23 10 10 92.8% 4 56 59.7%

FinalTest017 290 50 13 23 92.1% 9 120 58.6%

FinalTest018 360 69 12 33 90.8% 12 108 70.0%

FinalTest019 320 56 12 37 88.4% 10 87 72.8%

FinalTest020 295 58 9 41 86.1% 8 100 66.1%

FinalTest021 329 59 12 49 85.1% 9 137 58.4%

FinalTest022 250 43 10 2 99.2% 7 49 80.4%

FinalTest023 274 47 15 7 97.4% 8 56 79.6%

Total 5855 1053 364 931

339 1940

 Average 254.6 87.75 15.8 84% 81% 14.7 67% 66%

The results of the HCC tokens recognizer shows that the algorithm that was used in

order to parse the detected glyphs into tokens works and that it extracts tokens with a

good accuracy although that is not the main focus of this research. The results also

show that the algorithm used in the HCC parsing process is not the best as the overall

HCC tokens recognition accuracy is 67% is much less than the HCC glyphs

recognition accuracy of 88% shown in section 4.6. The commercial software

recognition accuracy is 84% which is much more that of the HCC recognizer 67%,

although in other comparison with glyphs recognition results shown in section

4.4.6.2; they get almost the same results.

5. HCC tokens recognition 162

5.4 Enhancing recognition using a confusion matrix

A confusion matrix aims to enhance the recognition accuracy which results from the

tokens recognizer generated in section 5.3 with one of the supervised machine

learning algorithms. The confusion matrix is generated from the data prepared in

section 4.6.2 which is used in order to train and test the 61 classifiers shown in

section 4.6.

A confusion matrix is a matrix showing the actual and predicate classification of the

samples (Kohavi and Provost 1998). The confusion matrix in this research deals with

the 61 classifiers that were generated in section 4.6 and is squared with size L equal

to 61. The confusion matrix is generated for each actual classifier by running all the

61 classifiers over all the glyphs in order to get the number of the glyphs that are

detected by each of the 61 classifiers (Vamvakas, Gatos et al. 2010). The confusion

matrix is built using a list of likelihood alternative classifiers. For example, in order

to build the Beh start classifier alternative list, all classifiers must be run and the

percentage for each classifier calculated in order to detect Beh start and then build

the confusion matrix from the 61 classifiers (Taghva and Stofsky 2001). This task

used the list of positive images that were prepared in section 4.6 in order to train and

test the glyph classifiers.

5.4.1 Generating the confusion matrix

The confusion matrix was applied in order to handle the misrecognized glyphs that

occurred most frequently. The confusion matrix contains an original classifier and its

associated non-original (alternative) classifiers, i.e., classifiers which are likelihood

to misrecognize a glyph as the original classifier (Ohta, Takasu et al. 1997). The

contents of the confusion matrix are the TP (True Positive) of the original classifier

and the FP (False Positive) when applying the non-original classifiers to the original

one. The occurrence of TP is shown in Table 2.5 as D, while occurrence of FP is

shown as B.

The confusion matrix values are saved as a percentage because the number of

samples in the 61 classifiers is varying and not the same. Using the percentage is

considered to be a normal way of comparing the 61 different classifiers (Ohta,

5. HCC tokens recognition 163

Takasu et al. 1997). A separate program was developed in order to generate the

confusion matrix for the continuous enhancement of the confusion matrix in order to

improve the recognition rate of the HCC approach. This method enables anyone to

generate a confusion matrix using this application, for instance when using an

enhanced training and testing set of data.

The application uses the 61 XML files which represent the 61 classifiers generated in

section 4.6. The application also uses the positive training and testing files of each of

the 61 classifiers. The application runs through a loop on each original classifier

sequentially. Inside the loop process, it runs each of the 61 classifiers using the

parameters of the original one. For example it begins with using classifier 1 as the

original classifier then runs the classifiers from 1 to 61 on the positive files of

classifier 1. The application uses the testing parameters of classifier 1 when it runs all

the classifiers from 1 to 61. These parameters are width, height, scale factor and

minimum neighbours. The application stores the number of glyphs detected by each

non-original (alternative) classifier as an original classifier 1. In the case of running

classifier 1 with itself as original classifier, the number is defined as the TP of

classifier 1. In the case of running classifiers from 2 to 61 as non-original classifiers

with classifier 1, it is defined as the FP of classifier 1 with the other classifiers.

Table 5.6: Part of confusion matrix with a sample of six classifiers

Predicted

Alef

isolated
Alef end

Beh

isolated
Beh start

Beh

middle
Beh end

A
ct

u
al

Alef isolated 0.955172 0.006034 0 0 0 0

Alef end 0.016374 0.97193 0 0 0 0

Beh isolated 0 0 0.929368 0.011152 0 0

Beh start 0 0 0.002188 0.847921 0.008753 0

Beh middle 0 0 0.003831 0 0.773946 0

Beh end 0 0 0.163636 0 0 0.945455

The output of the application is a classifier confusion matrix of size 61. The element

of each cell in the matrix is the percentage of occurrence of these two classifiers

together. A text file for the confusion matrix is generated at the end and is separated

by a tab to facilitate easy importing into any suitable application. Table 5.6 shows

part of the generated confusion matrix which includes the first six classifiers as an

example. Each row in the matrix represents the original (testing) classifier that is

5. HCC tokens recognition 164

used with the others non-original classifiers that are on the columns. For example the

first row Alef isolated gets 95% TP. When applying the Alef end classifier with the

Alef isolated files it gets 0.60% FP, and so on.

Applying the confusion matrix showed the following comments:

1. The output values of the confusion matrix are different from that obtained from

testing the 61 classifiers (see section 4.6.4.2) as the files used here are the

positive files that were used in the training and testing process; the rotated

samples are not used.

2. The same letter in different locations frequently being alternatives. For example

Beh isolated () and Beh start ().

3. The letters with unique shapes usually do not have alternatives. For example;

Heh mid () and Lam Alef isolated ().

4. Some symbols are detected randomly. For example (») is sometimes detected as

() and at other times it is detected as ().

5.4.2 Applying the confusion matrix

The confusion matrix in this research was generated in section 5.4.1 from data files

prepared in section 4.6.2 and using the classifiers generated in section 4.6.3. The

accuracy and efficiency of this matrix are totally dependent on the data collected,

trained and tested in this research. How the confusion matrix is used differs from

research to research but in most cases it is used in order to enhance the recognition

accuracy. The confusion matrix in this research is used in order to enhance the

recognition accuracy at the glyphs level, not at the level of PAWs or words (Ohta,

Takasu et al. 1997). Chapter 6 presents another technique to improve the recognition

accuracy in the words and PAWs level.

5. HCC tokens recognition 165

Table 5.7: Confusion matrix likelihood alternatives glyphs list

First (Same) classifier Second Third Fourth Fifth Sixth Seventh

1 AlefISO .955 42 .049 2 .006 0 .000 0 .000 0 .000 0 .000

2 AlefEND .972 1 .016 44 .025 0 .000 0 .000 0 .000 0 .000

3 BehISO .929 4 .011 0 .000 0 .000 0 .000 0 .000 0 .000

4 BehSTR .848 5 .009 49 .008 32 .003 3 .002 20 .002 55 .001

5 BehMID .774 3 .004 9 .002 49 .002 40 .002 0 .000 0 .000

6 BehEND .945 3 .164 34 .010 9 .009 0 .000 0 .000 0 .000

7 HahISO .759 27 .103 51 .034 23 .017 8 .017 37 .017 0 .000

8 HahSTR .947 9 .208 51 .009 23 .004 25 .004 0 .000 0 .000

9 HahMID .867 8 .010 47 .010 0 .000 0 .000 0 .000 0 .000

10 HahEND 1.00 5 .053 0 .000 0 .000 0 .000 0 .000 0 .000

11 DalISO .903 42 .047 4 .016 49 .016 13 .008 40 .008 5 .004

12 DalEND .947 5 .016 13 .013 40 .003 0 .000 0 .000 0 .000

13 RehISO .869 55 .027 50 .019 14 .016 12 .016 54 .013 4 .006

14 RehEND .776 13 .051 15 .011 56 .007 19 .004 50 .002 4 .002

15 SeenISO .815 18 .704 19 .296 22 .037 0 .000 0 .000 0 .000

16 SeenSTR .946 46 .047 17 .027 20 .013 49 .007 0 .000 0 .000

17 SeenMID .959 20 .005 21 .005 18 .005 0 .000 0 .000 0 .000

18 SeenEND .907 58 .116 15 .116 19 .047 17 .023 0 .000 0 .000

19 SadISO .923 22 .308 15 .192 18 .192 58 .115 0 .000 0 .000

20 SadSTR .933 21 .311 8 .044 4 .022 16 .022 0 .000 0 .000

21 SadMID .991 9 .071 20 .018 0 .000 0 .000 0 .000 0 .000

22 SadEND .926 19 .704 18 .370 21 .259 58 .037 0 .000 0 .000

23 TahISO .889 24 .556 26 .333 25 .111 3 .111 51 .041 0 .000

24 TahSTR .824 25 .324 23 .088 43 .029 26 .015 20 .015 0 .000

25 TahMID .843 21 .024 24 .012 43 .012 0 .000 0 .000 0 .000

26 TahEND .929 25 .786 23 .214 0 .000 0 .000 0 .000 0 .000

27 AinISO .917 59 .083 0 .000 0 .000 0 .000 0 .000 0 .000

28 AinSTR .937 59 .117 8 .027 25 .022 23 .013 0 .000 0 .000

29 AinMID .919 46 .022 25 .011 33 .011 31 .005 0 .000 0 .000

30 AinEND .932 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000

31 FehISO .933 34 .633 32 .233 0 .000 0 .000 0 .000 0 .000

32 FehSTR .972 55 .018 31 .015 54 .009 33 .006 45 .003 51 .003

33 FehMID .307 40 .013 54 .004 0 .000 0 .000 0 .000 0 .000

34 FehEND 1.00 31 .167 6 .128 33 .028 0 .000 0 .000 0 .000

35 QafISO .730 55 .270 36 .216 32 .162 11 .135 51 .081 23 .054

36 QafEND .778 56 .444 54 .111 35 .111 0 .000 0 .000 0 .000

37 KafISO .913 40 .304 42 .174 54 .043 0 .000 0 .000 0 .000

38 KafSTR .961 20 .019 55 .010 57 .010 60 .010 0 .000 0 .000

39 KafMID .975 5 .034 38 .017 40 .008 9 .008 0 .000 0 .000

40 KafEND .967 37 .033 12 .033 25 .033 0 .000 0 .000 0 .000

41 LamISO .879 42 .262 43 .037 11 .028 37 .009 35 .009 49 .009

42 LamSTR .938 1 .010 41 .004 43 .001 0 .000 0 .000 0 .000

43 LamMID .923 25 .019 33 .005 12 .005 0 .000 0 .000 0 .000

44 LamEND .953 41 .047 42 .012 23 .012 19 .012 0 .000 0 .000

45 MeemISO .798 48 .263 46 .026 1 .009 0 .000 0 .000 0 .000

46 MeemSTR .924 47 .038 29 .006 20 .006 31 .003 52 .003 14 .003

47 MeemMID 1.00 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000

48 MeemEND .764 45 .125 53 .028 37 .014 9 .014 0 .000 0 .000

49 NoonISO .881 4 .027 50 .022 13 .102 11 .011 32 .005 3 .005

50 NoonEND .929 49 .095 15 .024 19 .016 4 .016 0 .000 0 .000

51 HehISO .875 32 .035 54 .020 23 .020 49 .005 37 .005 24 .005

52 HehSTR .984 46 .056 16 .008 0 .000 0 .000 0 .000 0 .000

53 HehMID .942 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000

54 HehEND .920 51 .023 33 .002 0 .000 0 .000 0 .000 0 .000

55 WawISO .860 35 .432 13 .025 56 .023 54 .003 29 .001 50 .001

56 WawEND .976 14 .210 55 .174 32 .006 36 .003 51 .003 0 .000

57 YehISO .965 58 .062 38 .009 53 .009 37 .009 0 .000 0 .000

58 YehEND .950 4 .008 55 .006 0 .000 0 .000 0 .000 0 .000

59 HamzaISO .604 51 .042 38 .021 0 .000 0 .000 0 .000 0 .000

60 LamAlefISO 1.00 37 .003 35 .003 0 .000 0 .000 0 .000 0 .000

61 LamAlefEND .983 26 .017 0 .000 0 .000 0 .000 0 .000 0 .000

5. HCC tokens recognition 166

The confusion matrix is loaded into the main application of the Arabic tokens

recognition system. For each glyph, the likelihood alternatives glyphs are sorted in

descending order, in order to keep the higher value first. Normally the confusion

matrix is a square matrix but in this case it is not convenient to store the whole of

that square matrix. Studying the matrix showed that the maximum number of

likelihood alternatives glyphs for any original glyph is seven. Percentages other than

the top seven are negligible. Table 5.7 shows the likelihood alternatives glyphs for

each original glyph from the 61 that were generated. This study showed that there are

eleven glyphs that have seven likelihood alternatives glyphs, but only one glyph; Qaf

isolated (), that has a significant value in the seventh position (likelihood alternative

glyph Tah isolated () at 5.4%). For that reason, the application keeps the top seven

likelihood alternatives glyphs for every original glyph and at the top is the original

glyph itself.

The confusion matrix is applied to a glyph that is detected by more than one

classifier. When a glyph is detected by more than one classifier, a new list is

generated in order to keep all the likelihood alternatives glyphs to the original

detected glyph. For example, if a glyph is detected by two different classifiers then a

list including 14 alternatives glyphs is generated (seven for each glyph). When two

or more alternative glyphs are the same then the likelihood is added together and the

list is sorted again with these new values. The glyph with the highest likelihood is

chosen. The confusion matrix has no effect on the white space or missed glyphs, but

deals with them as a separate glyph. In this case, the confusion matrix has the ability

to change the original glyph by a likelihood alternative glyph when is detected by

more than one classifier. The resultant glyph is the one with higher percentage of TP

which can enhance the recognition rate of the HCC approach.

5.4.3 Testing the confusion matrix enhancement results

Testing the confusion matrix used the same dataset that was used before in section

5.3.3 in order to test the tokens recognizer. The testing was done using the tokens

testing dataset that were prepared in section 5.1.2. This dataset contained 1,053

words, 2,251 PAWs and 5,855 characters. The dataset included a variety of

document types, and were ground truthed as text files. The testing process followed

5. HCC tokens recognition 167

was the same process as in section 5.3.3 in order to test the tokens recognizer. The

results of the testing were compared to the results of the tokens recognizer.

The confusion matrix was applied to the glyphs that were detected by more than one

classifier and not all the detected glyphs. This led to a comparison of the

enhancement in the recognition rate, which was relative to the number of likelihood

alternatives glyphs, rather than all the detected glyphs or all the characters in the

dataset.

Table 5.8 shows the results of the confusion matrix enhancements compared to the

results of the commercial software and HCC tokens recognizer. It shows the number

of likelihood alternatives glyphs in each file in the dataset, and also shows the

enhancements in the character errors and shows the percentage of enhancement in

every single file from the testing dataset. The likelihood alternatives glyphs represent

8% of the total characters in the testing dataset which varies according to the

accuracy of the glyph detection and tokens recognizer of the HCC approach.

Table 5.8: Confusion matrix results in comparison to the tokens recognizer

Document image

file

Original Documents Commercial

software

Characters

error

Characters Errors Enhancement results

Characters

likelihood

alternatives

glyphs

HCC

Tokens

recognizer

Confusion

matrix

Characters

Error

Recognition

Rate

FinalTest001.bmp 216 23 16 55 51 4 17.39%

FinalTest002.bmp 254 22 19 86 87 -1 -4.55%

FinalTest003.bmp 124 32 36 56 56 0 0.00%

FinalTest004.bmp 146 34 33 61 56 5 14.71%

FinalTest005.bmp 189 27 136 105 103 2 7.41%

FinalTest006.bmp 161 21 82 97 97 0 0.00%

FinalTest007.bmp 107 16 49 48 49 -1 -6.25%

FinalTest008.bmp 136 17 67 47 46 1 5.88%

FinalTest009.bmp 361 29 34 96 86 10 34.48%

FinalTest010.bmp 357 35 46 89 80 9 25.71%

FinalTest011.bmp 197 14 50 28 27 1 7.14%

FinalTest012.bmp 175 10 12 33 31 2 20.00%

FinalTest013.bmp 331 34 35 102 98 4 11.76%

FinalTest014.bmp 386 24 52 104 108 -4 -16.67%

FinalTest015.bmp 458 17 62 220 217 3 17.65%

FinalTest016.bmp 139 5 10 56 56 0 0.00%

FinalTest017.bmp 290 6 23 120 121 -1 -16.67%

FinalTest018.bmp 360 17 33 108 105 3 17.65%

FinalTest019.bmp 320 20 37 87 81 6 30.00%

FinalTest020.bmp 295 15 41 100 104 -4 -26.67%

FinalTest021.bmp 329 20 49 137 139 -2 -10.00%

FinalTest022.bmp 250 9 2 49 49 0 0.00%

FinalTest023.bmp 274 17 7 56 54 2 11.76%

Total 5855 464 931 1940 1901 39 8.4%

5. HCC tokens recognition 168

The result of the confusion matrix show that the algorithm that was used in order to

enhance the likelihood alternatives glyphs is working well even through this is not

the main focus of this research. The results showed an overall enhancement in the

recognition of likelihood alternatives glyphs of 8.4% which is good. Note that in

some files in the testing dataset the enhancement is negative which indicates a

decrease in the recognition rate.

5.5 Summary

This chapter explains the generation and implementation of the HCC tokens

recognizer. It uses the 61 classifiers that were generated, trained and tested in

Chapter 4 in order to collect them into a single recognition application. This

application includes the detected glyphs based on the 61 classifiers and is enhanced

using the confusion matrix in order to be ready for use in the next chapter. In the next

chapter, statistical post-processing techniques are used to enhance the recognition

accuracy. The issues explained in this chapter included the following:

1. The main topics in this chapter and include preparing the testing dataset and

statistical information from the document image.

2. The creation and use of an Arabic single token classifier. This merges the

previously generated 61 classifiers into one.

3. The generation and implementation of the Arabic tokens recognizer. This extracts

text lines from the detected glyphs, parses the detected glyphs, using the text

lines, into tokens and extracts the detected tokens data. The HCC generated

recognizer is tested against commercial software using the tokens testing dataset.

HCC achieved recognition accuracy of 67%.

4. Applying the confusion matrix to enhance recognition accuracy. It explained how

the confusion matrix is generated, applied to the HCC token recognizer and

showed how a confusion matrix can improve recognition rates. The HCC

application after applying the confusion matrix was tested against the token

recognizer using the tokens testing dataset. The result overall enhancement of

likelihood alternatives glyphs is 8.4%.

6. Post-processing HCC tokens 169

Chapter 6.

Post-processing HCC tokens

This chapter presents a post-processing technique to enhance the HCC Arabic naked

tokens recognizer discussed in Chapter 5 using the multi-modal Arabic corpus from

Chapter 3. The HCC Arabic naked tokens recognizer stems from the single tokens

classifier that was previously produced in section 5.2; was then assembled in order to

generate an HCC tokens recognizer in section 5.3 and finally enhanced its

recognition rate using a confusion matrix applied in section 5.4. The multi-modal

Arabic corpus textual data that was prepared in section 3.1 was used with statistical

information generated in section 3.5 as were naked words and naked PAWs

dictionaries for the post-processing technique.

The post-processing results were tested using the tokens testing dataset generated in

section 5.1.2 and in comparison with the HCC recognizer shown in section 5.3.3.

The results of applying the confusion matrix were then shown in section 5.4.3. The

testing procedures were applied using two different types of look-up dictionaries;

naked words and naked PAWs. The naked PAWs dictionary was used in order to

justify the usability and usefulness of this type of token for the Arabic language and

in order to prove its efficiency over the naked words.

6.1 Introduction

The post-processing stage is responsible for the correction of errors or resolving

ambiguities in OCR results by using contextual information. A dictionary look-up

method is the most commonly used post-processing technique (Hulden 2009). The

output of the OCR is compared to the contents of the look-up dictionary and

appropriate candidates are generated. According to the difference between the output

of OCR and the output of the dictionary look-up, some recognized tokens are

modified based on the string correction algorithm used (Lehal1, Singh et al. 2001).

6. Post-processing HCC tokens 170

If there is an available look-up dictionary that covers all possible input words, a

simple procedure may be used for detecting and correcting errors. The input token is

first checked in order to assess whether the token is in the dictionary. If the token is

missing from the dictionary, the most similar tokens to the input one are suggested as

correction candidates. If necessary, appropriate statistical data can be used for

refinement of a token’s ranking. Similarity between two tokens can be measured in

several ways. Most useful are similarity measures based on variants of the

Levenshtein distance (Schulz and Mihov 2002).

6.1.1 Naked words versus naked PAWs

The look-up dictionary has an important role in the post-processing phase. It is used

to compare the OCR systems detected token with its components and is also used to

extract the best similar token to the one that has been detected (Reffle 2011). The

multi-modal Arabic corpus (MMAC) prepared in Chapter 3 was generated in order to

serve this purpose (among to others) and was justified and verified in order to fulfil

the standard requirements in generating a corpus. MMAC includes 6 million Arabic

words which produced 14 million PAWs, with 211,072 unique NWords and 32,804

unique NPAWs (see section 3.5). MMAC was tested through this research (see

section 3.6) and by external parties from research and industry backgrounds.

The HCC tokens recognizer generated in Chapter 5 detects naked glyphs, which

indicates that it is necessary to use a look-up dictionary with naked tokens as

generated in section 3.1. The HCC recognizer extracts the detected tokens in the

forms of NPAWs and NWords, ready for testing with NPAWs and NWords look-up

dictionaries.

This research places emphasis on the efficiency of the PAW as an important token in

the Arabic language (AbdelRaouf, Higgins et al. 2010). For that reason it was

important to test the post-processing technique once with NPAWs and once more

with the NWords. This testing technique is a good indicator of the importance of the

PAWs as a token in the Arabic language. The PAWs were used before in some

limited research such as (Najoua and Noureddine 1995; Mehran, Pirsiavash et al.

2005) but were not reported as being applied as a look-up dictionary, as is the case in

this research.

6. Post-processing HCC tokens 171

6.2 Applying a post-processing technique

The post-processing technique in this research depends on the examination of each

recognized token from the HCC tokens recognizer after having enhanced its accuracy

by applying a confusion matrix. The examined token is first inspected by the look-up

dictionary that is implemented in the form of a tail-end trie structure. If the examined

token is missing from the look-up dictionary, it uses the Levenshtein distance

algorithm in order to obtain the best similar token to the examined token based on the

number of occurrences of similar sized tokens (Schulz and Mihov 2002).

The trie data structure is used because it takes advantage of the redundancy of

common prefixes which is very common in this research. The storage method allows

fast searches in both acceptance and rejection of the input string (Elliman and

Lancaster 1990). The Levenshtein distance is used because it is a very fast method

for correcting corrupted input strings of unrestricted text using large look-up

dictionary. The Levenshtein distance is very common in use with the character

recognition problems (Schulz and Mihov 2002). Schulz and Mihov (Schulz and

Mihov 2002) applied the two algorithm together for the post-processing with good

results.

6.2.1 Searching using a trie structure

The trie structure is the most frequently used structure for searching through the

look-up dictionaries (Elliman and Lancaster 1990). The trie structure in this research

uses the look-up dictionary from naked words and naked PAWs. The tail-end type of

trie structure is implemented in this research, which is explained in section ‎2.7.2.1,

and is shown graphically in Figure 2.7. The tail-end trie is used because it is fast and

uses less memory in order to find the examined token, although it is rebuilt from the

textual data every runtime.

The trie structure has been implemented using the list of naked words generated in

section ‎3.1 which contains 6,000,000 naked words. It is loaded and generates 12

different levels of trie which means that the longest NWord in the corpus is more

than or equal to 12 characters. The trie structure was loaded once more with the list

of naked PAWs generated in section ‎3.1 which contains 14,025,044 naked PAWs.

6. Post-processing HCC tokens 172

This trie generated 9 levels which means that the longest NPAW’s in the corpus is

more than or equal to 9 characters. Each trie node is kept in a structure containing the

Arabic character(s) of the node, the level of the node and the number of occurrences

of the characters’ sequences at this level.

While running the tail-end trie structure in this research it was noted that, as the look-

up dictionary became bigger, the tail-end trie acted more like the traditional trie type.

The more tokens there were in the dictionary the greater the split of tokens into

characters in the trie and so more trie levels. For example, the NPAWs dictionary

contains 14 million tokens; the trie levels are 9 with the longest NPAW being 11

characters, while NWords dictionary contains 6 million tokens; where the trie levels

are 12 with the longest NWord being 16 characters.

Figure 6.1: Relationship between look-up dictionaries’ levels and nodes number

Figure 6.1 shows the relationship between the look-up dictionary levels and the

number of nodes at each level, as applied to the naked words and naked PAWs. The

most branching level (maximum number of nodes) in the NPAWs trie is at the fifth

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
er

 o
f

n
o

d
es

Look-up dictionary level

NWORD NPAW

6. Post-processing HCC tokens 173

level, while with the NWords trie is at the sixth level. The figure shows that the

NWords trie size is almost 7 times that of the NPAWs trie size which indicates that

the NPAWs trie uses less memory and also indicates that the NPAW look-up

dictionary is much faster.

6.2.2 Token correction using Levenshtein distance

The Levenshtein distance is applied by calculating the distance between the detected

token from the HCC token recognizer that is missing from the look-up dictionary and

every token in the look-up dictionary. Given the input token P and a bound n, the

deterministic finite state automaton A accepts exactly all tokens W where length of P

and W are equal and the Levenshtein distance between P and W does not exceed n. A

is called a Levenshtein automaton for P. The Levenshtein distance bound n in this

research is 2 as reported from (Schulz and Mihov 2002; Mihov and Schulz 2004).

A list of dictionary tokens that are guaranteed to contain all the corrections of the

input token P is generated which include the token and number of occurrences of that

token in the corpus. A fine search is applied for each candidate where the distance to

the input token P is computed, using a fine-graded measure. Candidates are ranked,

first according to this distance, then according to the number of occurrences of

tokens and the best candidate is then suggested as a correction token.

The Levenshtein distance bound n was examined during the application of the

algorithm with the NWords and NPAWs dictionary. The tokens with distance n=1

were used first and if there were no tokens with distance n=1 then selections were

made instead from the tokens with distance n=2. This method gave better results than

only using tokens with distance n=1.

Because at this stage, statistical and image information is not considered dictionary

tokens of the same length as the input token gives better results.

6.3 Testing the Post-processing techniques

The testing process of the post-processing technique is separated into two parts; one

when using the naked words as a look-up dictionary and the other when using the

naked PAWs. Each part of the testing process includes testing the finding of the

6. Post-processing HCC tokens 174

examined token in the trie structure and the other testing the finding of the best

similar token to the examined token using the Levenshtein distance. The NWords

and NPAWs dictionaries testing results and conclusion are shown in section 6.3.3.

6.3.1 Testing the NWords dictionary

The detected tokens are first tested by searching the trie structure of the naked words

look-up dictionary. Testing NWords shows that the trie was loaded from the textual

data file containing the list of 6 million NWords in 18 seconds on a machine with an

Intel processor Core 2 Duo and 4 GB of RAM running Windows Vista 32bit. Table

6.1 shows the number of detected naked words that are missing from the NWords

look-up dictionary and separated in each file in the testing dataset. The number of

detected words that are missing from the NWords look-up dictionary is 347 NWords

which represents 33% of the total detected naked words in the look-up dictionary.

Table 6.1: Post-processing test results of naked words

Document image file
No. Of

Words

Missed

NWords

from

Dictionary

Characters error

Commercial

software

HCC

Recognizer

Confusion

Matrix

Post

Processing Difference

FinalTest001.bmp 34 11 16 55 51 48 3

FinalTest002.bmp 41 15 19 86 87 86 1

FinalTest003.bmp 21 11 36 56 56 53 3

FinalTest004.bmp 24 13 33 61 56 58 -2

FinalTest005.bmp 34 20 136 105 103 100 3

FinalTest006.bmp 34 15 82 97 97 91 6

FinalTest007.bmp 18 8 49 48 49 48 1

FinalTest008.bmp 22 14 67 47 46 45 1

FinalTest009.bmp 68 15 34 96 86 91 -5

FinalTest010.bmp 63 24 46 89 80 93 -13

FinalTest011.bmp 38 8 50 28 27 33 -6

FinalTest012.bmp 29 7 12 33 31 33 -2

FinalTest013.bmp 68 15 35 102 98 100 -2

FinalTest014.bmp 75 20 52 104 108 111 -3

FinalTest015.bmp 79 28 62 220 217 219 -2

FinalTest016.bmp 23 10 10 56 56 56 0

FinalTest017.bmp 50 21 23 120 121 117 4

FinalTest018.bmp 69 19 33 108 105 107 -2

FinalTest019.bmp 56 17 37 87 81 80 1

FinalTest020.bmp 58 16 41 100 104 104 0

FinalTest021.bmp 59 17 49 137 139 143 -4

FinalTest022.bmp 43 12 2 49 49 51 -2

FinalTest023.bmp 47 11 7 56 54 53 1

Total 1053 347 931 1940 1901 1920 -19

The missed NWords from the look-up dictionary, which are 347 NWords, are then

moved to the next step of post-processing. Every missed naked word is examined for

6. Post-processing HCC tokens 175

its Levenshtein distance for every naked word in the look-up dictionary that has the

same word length. The naked words from the look-up dictionary that have a distance

of 1 or 2 from the examined naked word are then saved in a list of similar tokens.

The list of similar tokens is then sorted based on distance and the number of

occurrences of each token in the corpus. The similar naked word with the highest

rank in the list is selected as a substitute for the examined naked word. Table 6.1

presents the testing results of applying the Levenshtein distance to the look-up

dictionary of naked words for each of the tested dataset files.

6.3.2 Testing NPAWs dictionary

The detected tokens are first tested by searching the trie structure of the naked PAWs

look-up dictionary. Testing the NPAWs shows that the trie was loaded from the

textual data file that contains the list of 14 million NPAWs in 24 seconds on the

same machine as in section 6.3.1. Table 6.2 shows the number of detected naked

PAWs that are missing from the NPAWs look-up dictionary separated into each file

in the testing dataset. There are 247 NPAWs missing which represents 11% of the

total detected naked PAWs in the look-up dictionary.

These missed 247 NPAWs are then moved to the next step of post-processing which

is similar to that applied to the NWords as shown in section 6.3.1, but replacing the

NWords tokens and dictionary with the NPAWs tokens and dictionary. Table 6.2

presents the test results of applying the Levenshtein distance to the look-up

dictionary of naked PAWs for each of the testing dataset files.

It was noted that when applying the Levenshtein distance algorithm to the testing

dataset some specific files have worse results than other files, for example

FinalTest009.bmp, FinalTest010.bmp, FinalTest011.bmp, FinalTest020.bmp and

FinalTest021.bmp. The reasons for these bad results vary from having a large

number of missing words in the similar list from the look-up dictionary to sometimes

longer detected tokens which fail to spot the white spaces between two actual tokens.

6. Post-processing HCC tokens 176

Table 6.2: Post-processing test results of naked PAWs

Document image file
No. Of

PAWs

Missed

NPAWs

from

Dictionary

Characters error

Commercial

software

HCC

Recognizer

Confusion

Matrix

Post

Processing Difference

FinalTest001.bmp 78 10 16 55 51 49 2

FinalTest002.bmp 89 8 19 86 87 85 2

FinalTest003.bmp 53 10 36 56 56 53 3

FinalTest004.bmp 58 12 33 61 56 55 1

FinalTest005.bmp 68 16 136 105 103 101 2

FinalTest006.bmp 54 15 82 97 97 89 8

FinalTest007.bmp 43 3 49 48 49 46 3

FinalTest008.bmp 54 11 67 47 46 43 3

FinalTest009.bmp 141 2 34 96 86 86 0

FinalTest010.bmp 140 7 46 89 80 82 -2

FinalTest011.bmp 79 2 50 28 27 30 -3

FinalTest012.bmp 70 1 12 33 31 31 0

FinalTest013.bmp 121 13 35 102 98 97 1

FinalTest014.bmp 147 9 52 104 108 109 -1

FinalTest015.bmp 179 32 62 220 217 214 3

FinalTest016.bmp 62 11 10 56 56 55 1

FinalTest017.bmp 108 19 23 120 121 117 4

FinalTest018.bmp 132 12 33 108 105 100 5

FinalTest019.bmp 118 10 37 87 81 76 5

FinalTest020.bmp 120 19 41 100 104 104 0

FinalTest021.bmp 136 15 49 137 139 142 -3

FinalTest022.bmp 97 2 2 49 49 51 -2

FinalTest023.bmp 104 8 7 56 54 54 0

Total 2251 247 931 1940 1901 1869 32

6.3.3 Post-processing test results

The results of applying the post-processing techniques is considered to be the second

proof of the assumption in this research regarding the importance of Piece of Arabic

Word (PAW) that was firstly explained in section 2.2.3 and tested in section 3.6.1.

PAWs are important tokens for the Arabic language and can be a better alternative to

using words. The naked token is also an important type of token in the Arabic

language, as it shrinks the number of letters from 28 to only 18 (see section 2.2.3).

Figure 6.2 shows the final screen shot of the HCC application result with a document

from the testing dataset. The right side shows the output tokens of the HCC

application as naked tokens after running the post-processing technique on the

detected NPAWs using the NPAWs look-up dictionary.

6. Post-processing HCC tokens 177

Figure 6.2: Screenshot of the typical output of the HCC OCR application

The following remarks on applying the post-processing technique support the

assumption of the importance of naked PAWs to the Arabic language:

1. The NWords look-up dictionary is faster in loading the trie structure into memory

because it is smaller than the NPAWs look-up dictionary. This delay of loading

the NPAWs look-up dictionary has little influence on the OCR application as it is

loaded once on the start of loading the application.

2. The NWords trie structure size is almost seven times that of the NPAWs trie

structure. This guarantees that the NPAWs look up dictionary is more convenient

as it occupies less memory and accordingly generates a faster OCR application.

3. The percentage of detected NWords missed from the NWords testing dataset is

33%, while the percentage of detected NPAWs missed from the NPAWs testing

dataset is 11%. This means that correcting the tokens recognition error is much

smaller in the case of NPAWs rather than that of the NWords.

4. Recognition enhancement using NPAWs is higher than that of NWords. If more

advanced post-processing techniques are used, this will justify that NPAWs (as a

reference token) are better than NWords.

6. Post-processing HCC tokens 178

5. The post-processing stage duration when applying NWords is almost double the

time than when applying NPAWs.

6.4 Summary

This chapter explains the application of a post-processing technique on recognized

tokens. It uses the recognized token and enhances it by applying the confusion matrix

in Chapter 5 in order to use them to apply the post-processing technique. The work

presented in this chapter also uses the multi-modal Arabic corpus presented in

Chapter 3 as a look-up dictionary for the use of post-processing. The testing dataset

generated in section 5.1.2 was used in order to test the performance of the post-

processing. The main issues explained in this chapter are given below:

1. The use of the naked words and the naked PAWs look-up dictionary with an

explanation of why they were used.

2. A full description of the application of the selected post-processing technique.

Applying the tail-end trie structure to both the NWords and the NPAWs look-up

dictionaries. Use the Levenshtein distance algorithm for string correction with the

NWords and NPAWs in order to enhance the recognition rate.

3. Testing the post-processing techniques. Testing the NWords, the NPAWs tokens

and look-up dictionaries. The results of testing the NWords, NPAWs and the

final findings which indicate that using the NPAWs look-up dictionary enhances

the recognition of missed NPAWs by 13%.

7. Conclusions and Future work 179

Chapter 7.

Conclusions and Future work

This chapter explains how the objectives of the research were met and the methods

followed in order to meet these objectives. Future work and enhancement of the

research is explained in detail for each of the main topics of the research. The

conclusions of this research are explained. Closing remarks are introduced in order to

summarize the overall contributions of this research.

The objectives and contributions of the research were introduced and explained

briefly in Chapter 1 with a definition of how they were applied and met. The multi-

modal Arabic corpus generated in Chapter 3 is used to show what improvements and

maintenance are needed in order to continually support research studies in the Arabic

language. Chapter 4 includes the experimental work of the HCC approach and forms

the main contribution of this research. An explanation was provided on how the HCC

approach can be further enhanced and improved in order to generate better

classifiers. The HCC tokens recognizer in Chapter 5 shows how future enhancements

can be made to enhance the accuracy of any Arabic OCR application. The post-

processing technique applied in Chapter 6 was discussed regarding its durability and

usability for further improving this type of research.

7.1 Meeting the objectives

The main concern of this research is printed Arabic character recognition. The aims

and objectives of this research were introduced briefly in section 1.2.1 and were

defined specifically in section 1.2.2. These aims and objectives were investigated and

achieved during the progress of this research. The objectives were presented in the

form of research questions. The following are the objectives with an explanation of

how they were met:

7. Conclusions and Future work 180

1. What are the advantages and disadvantages of the established way of solving the

problem of printed Arabic OCR?

The established way of solving the problem of Arabic character recognition has

many advantages and disadvantages as shown in Chapter 2. The main advantages are

being able to follow almost the same procedures of solving the OCR problem as for

any other language but with some modifications to fit the case of the Arabic

language.

The main disadvantage is that the Arabic language has some features that are

different from other languages (see section 2.2) which make it different in having a

connected script. The relative uniqueness of the language makes the character

segmentation algorithm (see section 2.5) almost mandatory, which reduces the

recognition time and accuracy (Abdelazim 2006). Also, one of the disadvantages is

the low recognition rate compared to Latin alphabet languages. Improving the

recognition rate of the Arabic OCR application is a must and can be achieved by

increasing the research studies in all topics related to Arabic OCR and to try new

non-traditional methods in order to solve it.

The testing results when comparing the proposed HCC approach application against

commercial software show that the HCC achieved a glyph recognition accuracy of

87% and the commercial software 85%. Moreover, the average recognition time for

HCC is 14.7 Seconds while is 15.8 in the commercial software.

The results of this research reached a conclusion regarding the established way of

solving the Arabic OCR problem, which indicates that it is possible to develop a full

Arabic OCR application without some steps in the pre-processing and recognition

phases, and also without character segmentation stages. This application is slightly

more accurate and faster than that used the established way which also indicates that

the established way of solving the Arabic OCR problem might not be the optimum

one.

7. Conclusions and Future work 181

2. To what extent are the steps in the pre-processing and recognition stages

essential and can these steps be eliminated totally or partially?

The pre-processing and recognition stages are usually mandatory stages in any OCR

application or research, for each step from the preparation of the document image to

feature extraction stage. No Arabic OCR application or research method has been

previously developed without these steps of the pre-processing and recognition

stages (Binarization & Noise Removal, Thinning, Slant & Skew Correction, Line

Finding, Lines & Words Segmentation and Word Normalization). Interestingly no

OCR application for any other language has been developed without the previously

mentioned steps (Cheriet, Kharma et al. 2007).

During this research, a complete Arabic OCR application was generated without the

needs of the previously mentioned steps i.e. the HCC approach in this research

totally eliminates steps from the pre-processing and recognition stages. The

explanation was given in section 4.2. Importantly these stages are key to increasing

or decreasing the recognition accuracy of the OCR application and to affecting the

performance of the OCR application, especially when complicated algorithms are

used. Note, the HCC approach can be applied to any other language than Arabic and

will also eliminate the pre-processing stage.

3. Can Arabic printed text be recognized without the character segmentation

phase?

The character segmentation phase is usually considered to be a mandatory phase in

any Arabic OCR application or research although there are some recorded trials that

have reported to have character segmentation free recognition as shown in section

2.5.5. However, these are still limited to a limited number of words and fonts

(Abdelazim 2006). No Arabic OCR application has been developed without a

character segmentation phase (Abdelazim 2006) until now.

The character segmentation phase also has different approaches available and it

usually requires a significant effort from researchers or developers to select or invent

the appropriate approaches. Importantly this phase is “bottle neck” for the

7. Conclusions and Future work 182

recognition accuracy of Arabic OCR applications in addition to slowing down the

performance of the OCR application.

Along with this research, a complete Arabic OCR application was generated without

the need for the character segmentation stage as shown in Chapter 5. The HCC

approach is trained to pick out the glyph image from the document image which is

considered to be a true character segmentation-free approach. The explanation of

how this was applied without the character segmentation was shown in section 4.2.

4. If some steps from the pre-processing and recognition stages in additional to

character segmentation are eliminated, then can a complete Arabic OCR

application be developed?

This objective was achieved during this research and proved that it is both applicable

and doable. The HCC approach applied in this research generated glyph classifiers as

shown in section 4.6. The approaches applied in section 5.2 and section 5.3 used the

classifiers generated in section 4.6 to generate a full HCC Arabic recognizer with a

confusion matrix enhancement as shown in section 5.4. A post-processing technique

was applied in Chapter 6 to enhance the recognition accuracy of the HCC recognizer.

This indicates that the HCC approach can generate a full Arabic OCR application

without either steps from pre-processing and recognition phases or a character

segmentation stage.

5. Can PAWs and NPAWs be considered as the smallest Arabic tokens to replace

words and naked words in Arabic OCR applications?

The PAW is considered to be the smallest token in the Arabic language as it is the

smallest connected token in the language (AbdelRaouf, Higgins et al. 2010). The

statistical analysis information shown in section 3.5 and testing of the corpus shown

in section 3.6 shows that the PAW is a convincing token that can be used in many

cases instead of the normal small token, which is the word.

The post-processing technique shown in Chapter 6 and the test results in applying

that technique shown in section 6.3, confirm that the PAW is better than the word.

The reasons for this are, first, the size of the naked word look-up dictionary is almost

seven times the size of the naked PAW look-up dictionary. Secondly, the elapsed

7. Conclusions and Future work 183

time in applying the post-processing stage with naked words is almost double that of

naked PAWs. Finally, the results of using a naked PAW look-up dictionary is better

that that of a naked word look-up dictionary. This proves that the PAW is a much

better token to be used with the Arabic language than the word.

6. Are the available Arabic corpora sufficient to cover Arabic OCR research?

The available Arabic corpora are still very limited (Hamada 2007) and do not cover

the growing need for research studies related to the Arabic language. The available

corpora tend not to be continually updated and enhanced by adding new lists of

words or more tokens analysis as shown in section 2.7.4. The available corpora are

limited to only one type of token which is words.

The MMAC contains 6 million words and is complemented by an application that is

kept updated and maintained by adding new words. The MMAC also contains four

different types of tokens with their full statistical analysis and validity testing. During

and after this research and since the MMAC corpus was published it has been used

by many researchers in their research and was also in many commercial companies.

This indicates the efficiency of MMAC as a robust Arabic corpus that facilitates the

research and commercial requirements.

7.2 Future work

Arabic character recognition still needs improvement. During this research many

future enhancements were identified which also improved the research results. These

future enhancements are separated into two parts; one is general, which included new

topics that needed to be covered in order to enhance this research. The other was

enhancements related to each of the sections covered in this research. The future

enhancements are listed and explained in the following list:

7.2.1 General topics

The following topic is required to be included in future enhancements in order to

improve the results of this research.

7. Conclusions and Future work 184

Page layout analysis is a document processing technique used to determine the

format of a page. The document spectrum approach (O’Gorman 1993), or docstrum

method can be adapted to use the list of the detected glyphs in order to calculate the

layout structure of the document image. Areas that have very low glyph detection

could be considered a neglected area, for example graphics or other languages. The

output of this method can define document image areas for the paragraphs, lines,

words and PAWs.

7.2.2 Arabic corpus

The MMAC future enhancements should be unlimited and the corpus must be kept

up-to-date. It is important for the MMAC to be a bench mark corpus for testing all

OCR research studies and applications. MMAC can be enhanced in the following

ways:

 Continually adding lists of words to the corpus to increase its size and variety.

These lists must be truthed first as shown in section 3.4. The other tokens

(PAWs, NPAWs and NWords) are generated from the list of words using the

application provided. The provided application then modifies the analysis and

size of the tokens.

 Including morphological information of the words to their corpus information

(section 2.7.4.4). The ground truth XML file shown in section 3.1.6 must also

include this morphological information.

 It is important to increase the number of real scanned images in the corpus that

were presented in section 3.3.4; increasing these document images will give a

greater variety to the corpus.

 A new type of statistical analysis (see section 3.5) is recommended; the word

frequency pairs. The word frequency pairs store, for each token, the list of the

next tokens that usually occur with this token along with frequency data. This

type of analysis is used in the post-processing techniques.

7. Conclusions and Future work 185

7.2.3 HCC glyphs recognition

Future enhancements for the glyphs recognition using Haar Cascade Classifier can be

made by keeping the glyphs classifiers continually updated and enhanced by use

more glyphs training dataset which will lead to an increase in the recognition rate.

Glyphs recognition can be enhanced by using the following sequence:

 Improve the application of the HCC approach that was generated by OpenCV

and is an open source application. This enhancement makes it best fit the

character recognition or to have a new version of the application for the character

recognition. It was very clear from the theoretical background of the approach

shown in section 2.6.7 that it can be modified to better suit character recognition.

 Enhance the training of the glyphs that have a small number of positive or

negative images by adding new document images in order to increase this small

number. This enhancement of a selective number of glyphs will influence the

overall recognition accuracy of the HCC approach.

 Generate classifiers for both the Hindu and Arabic numerals for example ()

and (1 2 3) and for the Arabic special characters such as (). These glyphs

are usually used in most of the Arabic documents.

7.2.4 HCC tokens recognizer

The HCC tokens recognition future enhancements are numerous as the algorithms

used in this part of the research are very simple and serve only to confirm the

approach is viable. Enhancements here can significantly improve the recognition rate

of the HCC tokens recognizer.

 Although the HCC glyphs classifier can detect skewed glyph images, these were

not met in the tokens testing dataset shown in section 5.1.2. Document skew

angle can be detected using the same method as for extracting text lines which

can be defined with the skew angle and calculates the horizontal histogram based

on the skew angle.

 The tokens recognition can be significantly enhanced through analyzing the

baseline of the text line in order to define the locations of tokens in the text line

7. Conclusions and Future work 186

which enables the enhancement of parsing the text lines’ contents into tokens.

The gap detector described in (Gillies, Erlandson et al. 1999) is a better algorithm

for gap analysis in order to better parse the detected glyphs into tokens and uses

an artificial intelligence technique. This approach serves to extract the gaps from

the document images. These gaps can be white spaces or gaps between lines. The

gap detector depends upon analyzing the list of detected glyphs from the glyph

detector.

 Repeated enhancement of the confusion matrix. This enhancement can be

achieved by regenerating the confusion matrix with any and every modification

occurrence to MMAC.

 Apply the confusion matrix technique at the level of NPAWs. The overall

number of NPAWs in MMAC is 32,804. This requires heavy manual work in

defining the rectangles containing the NPAWs, but when this part of work is

completed it can significantly enhance the recognition accuracy of the HCC

approach.

7.2.5 Post-processing

Although a big effort was made to prepare the corpus, the post-processing algorithms

were not a major area of research for this work so they are simple and limited. Many

improvements could be made.

 The look-up dictionary could be applied in a more intelligent way to reject the

extracted tokens that rarely occur in the corpus.

 NPAWs frequency pairs could be applied as another measure to enhance the

selection of the proper “similar” tokens to the examined tokens shown in section

2.7.3.2. The NPAWs’ frequency pairs study the relation between the NPAWs as

explains how often the two contiguous NPAWs occur. It can also study the

position of the NPAW in the word. The definition of this position is whether the

NPAW is at the start, middle or end of the word.

 Levenshtein distance algorithm can be enhanced by including a merge and split

editing feature (Schulz and Mihov 2002). Recognized tokens that are long, which

7. Conclusions and Future work 187

may be two tokens concatenated during parsing the detected tokens will benefit

from this enhancement.

7.3 Conclusions

The main conclusion of this research is that the Haar Cascade Classifier (HCC)

approach is applicable to Arabic printed character recognition. This approach

eliminates steps of the pre-processing and recognition stages in additional to

character segmentation phase. It can generate a full Arabic OCR application that is

fast when compared to commercial software, as the average recognition time for

HCC is 14.7 Seconds while is 15.8 in the commercial software.

The languages that use Arabic alphabets but not the Arabic language, such as Pashto,

can also use this approach for printed character recognition. These languages can, not

only apply the approach, but can also benefit from this research, especially the glyph

classifiers generated in section 4.6. The HCC approach could also be applied to

cursive, handwritten characters. Although the glyphs training process of the HCC

approach for handwritten characters is difficult, but it may bring an improvement to

the handwritten recognition accuracy.

The ideogram languages such as Chinese and Japanese, which are totally symbolic

languages could also benefit from the HCC approach. In this case it might be the

only approach for the detection, or a supplementary approach for first level of

classification of the characters. The HCC approach could be applied to non-cursive

languages such as English. The same methodology is applied by focusing on the

features of a definite glyph and then detecting that glyph. The HCC approach is

beneficial in this case for the sake of eliminating steps of the pre-processing and

recognition stages.

MMAC is beneficial for researchers and developers in the field of Arabic character

recognition. It includes a guide for Arabic OCR development (see section 3.3) to be

followed by researchers and developers during the testing of any Arabic OCR

application. MMAC is supported by an application that guarantees that this corpus

will be continually updated by adding new lists of words. MMAC makes innovative

use of new tokens (PAW, NPAW and NWord) that have rarely been used before and

7. Conclusions and Future work 188

whose importance was not recognized. These new tokens have significance for

linguistics as well as OCR research and applications.

The main focus of the research was the HCC work at the beginning. That is

processing the document images so that steps of the pre-processing and recognition

stages in additional to the character segmentation stage were eliminated. The other

main interest was the linguistic research at the end. The system which connects these

two aspects for extracting PAWs and words from the text was not a major part of the

work so was done simply to give a complete system. The percentage recognition of

individual glyphs is 87% while the commercial software percentage recognition is

85%. This recognition rate was achieved by simple optimisation the parameters of

the system. A move through optimization which would require no additional insight,

only time and effort might enhance the system. The post-processing which would

require some thought to apply the linguistics rules better could easily achieve more

improvement. The connecting work which actually gives a reduction in recognition

rate at the moment, (as it introduces errors where we get the PAWs spacing and

words spacing wrong and so on) could be vastly improved so possibly give up

accuracy gain compared to a current 15% loss. This could give a new Arabic OCR

application with higher accuracy when compared with the commercial software.

7. Conclusions and Future work 189

7.4 Closing remarks

Character recognition is a wide research field which includes an extensive variety of

important topics. Although character recognition began five decades ago, there is still

much work to be done in this area and there are always new approaches and

algorithms that can used in order to enhance character recognition accuracy. Arabic

character recognition started many years after the beginnings of Latin alphabet

character recognition and, therefore, much more effort needs to be invested in

investigating better techniques. More research to be carried out in the area of Arabic

character recognition in order to achieve better accuracy.

This thesis is the outcome of a research study in Arabic printed character recognition.

The research applies a novel approach (HCC) to Arabic character recognition which

has not been used before in any character recognition, and especially in the Arabic

language. The proposed HCC approach implements a full Arabic OCR application

without the retarding steps in the pre-processing and recognition stages or the

character segmentation phase. A novel corpus was presented which included new

types of tokens which provided evidence of significant usefulness when applied in

conjunction with post-processing techniques.

References 190

References

Abandah, G. A., K. S. Younis, et al. (2008). Handwritten Arabic character

recognition using multiple classifiers based on letter form. the Fifth IASTED

International Conference on Signal Processing, Pattern Recognition & Applications

(SPPRA 2008), Innsbruck, Austria.

Abbes, R., J. Dichy, et al. (2004). The Architecture of a Standard Arabic Lexical

Database. Some Figures, Ratios and Categories from the DIINAR.1 Source Program.

Workshop of Computational Approaches to Arabic Script-based Languages, Geneva,

Switzerland, COLING.

ABBYY. (2012). "ABBYY FineReader 11." Retrieved 4/05/2012, from

http://finereader.abbyy.com/key_features/#-Section_2;-Section_3;Section_9;.

Abdelazim, H. Y. (2006). Recent Trends in Arabic Character Recognition. The sixth

Conference on Language Engineering, Cairo - Egypt, The Egyptian Society of

Language Engineering.

AbdelRaouf, A., C. Higgins, et al. (2008). A Database for Arabic printed character

recognition. The International Conference on Image Analysis and Recognition-

ICIAR2008, Póvoa de Varzim, Portugal, Springer Lecture Notes in Computer

Science (LNCS) series.

AbdelRaouf, A., C. Higgins, et al. (2010). "Building a Multi-Modal Arabic Corpus

(MMAC)." The International Journal of Document Analysis and Recognition

(IJDAR) 13(4): 285-302.

Adolf, F. (2003) "How-to build a cascade of boosted classifiers based on Haar-like

features." Volume, DOI:

Al-Badr, B. and R. M. Haralick (1998). "A segmentation-free approach to text

recognition with application to Arabic text." International Journal on Document

Analysis and Recognition 1(3): 147-166.

Al-Kharashi, I. A. and M. W. Evens (1994). "Comparing words, stems, and roots as

index terms in an Arabic Information Retrieval System." Journal of the American

Society for Information Science 45(8): 548 - 560.

Al-Ma'adeed, S., D. Elliman, et al. (2002). A data base for Arabic handwritten text

recognition research. Eighth International Workshop on Frontiers in Handwriting

Recognition, Ontario, Canada.

Al-Shalabi, R. and M. Evens (1998). A Computational Morphology System for

Arabic. Workshop on Computational Approaches to Semitic Languages COLING-

ACL98, Montreal.

Al-Shalabi, R. and G. Kanaan (2004). "Constructing An Automatic Lexicon for

Arabic Language." International Journal of Computing & Information Sciences 2(2):

114-128.

http://finereader.abbyy.com/key_features/#-Section_2;-Section_3;Section_9;

References 191

Alansary, S., M. Nagi, et al. (2007). Building an International Corpus of Arabic

(ICA): Progress of Compilation Stage. The Seventh Conference on Language

Engineering, Cairo - Egypt, The Egyptian Society of Language Engineering.

Aljlayl, M. and O. Frieder (2002). On Arabic search: improving the retrieval

effectiveness via a light stemming approach. The Eleventh International Conference

on Information and knowledge Management, McLean, Virginia, USA, Conference

on Information and Knowledge Management archive.

Alma’adeed, S., C. Higgens, et al. (2002). Recognition of Off-Line Handwritten

Arabic Words Using Hidden Markov Model Approach. the 16 th International

Conference on Pattern Recognition (ICPR’02), Quebec, Canada.

Amin, A. (1997). Off line Arabic character recognition - a survey. the Fourth

International Conference on Document Analysis and Recognition, Ulm, Germany.

Ananthakrishnan, S., S. Bangalore, et al. (2005). Automatic diacritization of arabic

transcripts for automatic speech recognition. International Conference On Natural

Language Processing, Kanpur, India.

arabo.com. (2005). "Arabo Arab Search Engine & Dictionary." Retrieved 12-01-07,

2006, from http://www.arabo.com/.

Baird, H. S. (1987). The skew angle of printed documents. Conference of the Society

of Photographic Scientists and Engineers.

Barros, R. C., M. a. P. Basgalupp, et al. (2011). "A Survey of Evolutionary

Algorithms for Decision-Tree Induction." IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews pp(99): 1-22.

Bates, M. (1995). "Models of natural language understanding." PNAS 92(22): 9977-

9982.

Beebe, N. H. F. (1990). "Character Set Encoding." TUGboat 11(2): 171-175.

Beesley, K. R. (1996). Arabic Finite-State Morphological Analysis and Generation.

16th International Conference on Computational Linguistics COLING, Copenhagen.

Bishop, C. M. (2006). Pattern recognition and machine learning, New York :

Springer, 2006.

Bowyer, K. W., K. Chang, et al. (2005). "A survey of approaches and challenges in

3D and multi-modal 3D + 2D face recognition." Computer Vision and Image

Understanding 101(1): 1-15.

Bowyer, K. W., K. Hollingsworth, et al. (2008). "Image understanding for iris

biometrics: A survey." Computer Vision and Image Understanding 110(2): 281–307.

Box, G. E. P. and M. E. Muller (1958). "A Note on the Generation of Random

Normal Deviates." The Annals of Mathematical Statistics 29(2): 610-611.

http://www.arabo.com/

References 192

Bradski, G. and A. Kaehler (2008). Learning OpenCV: Computer Vision with the

OpenCV Library, O'Reilly Media, Inc.

Bradski, G. R. and V. Pisarevsky (2000). Intel's Computer Vision Library:

Applications in Calibration, Stereo, Segmentation, Tracking, Gesture, Face and

Object Recognition. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR'00), SC USA.

Breuel, T. M. (2002). Robust Least Square Baseline Finding using a Branch and

Bound Algorithm. Document Recognition and Retrieval VIII, SPIE.

Breuel, T. M. (2002). Two Geometric Algorithms for Layout Analysis. In Workshop

on Document Analysis Systems.

Buckwalter, T. (2002). "Arabic Word Frequency Counts." from

http://www.qamus.org/wordlist.htm.

Buckwalter, T. (2002). "Buckwalter Arabic Transliteration." Retrieved 28 January

2007, 2007, from http://www.qamus.org/transliteration.htm.

Buckwalter, T. (2004). Issues in Arabic Orthography and Morphology Analysis. The

20th International Conference on Computational Linguistics, COLING 2004,

Geneva, Switzerland.

Bushofa, B. and M. Spann (1997). "Segmentation and recognition of Arabic

characters by structural classification " Image and Vision Computing 15(3): 167-179.

Chang, Y., D. Chen, et al. (2009). "An image-based automatic Arabic translation

system." Pattern Recognition 42(9): 2127-2134.

Cheriet, M., N. Kharma, et al. (2007). Character Recognition Systems: A Guide for

Students and Practitioners, Wiley.

Consortium, T. U. (2003). The Unicode Consortium. The Unicode Standard, Version

4.1.0, Boston, MA, Addison-Wesley: 195-206.

contributors, W. (2006, 20 December 2006). "Arabic chat alphabet. From Wikipedia,

the free encyclopedia." Retrieved 27 January 2007, 2007, from

http://en.wikipedia.org/wiki/Arabic_Chat_Alphabet.

contributors, W. (2006, 11 November 2006 20:02 UTC). "Code page. From

Wikipedia, the free encyclopedia." Retrieved 22 January 2007 17:45 UTC 2007,

from http://en.wikipedia.org/w/index.php?title=Code_page&oldid=87192444.

contributors, W. (2006, 23 January 2007). "Romanization of Arabic. From

Wikipedia, the free encyclopedia." Retrieved 27 January 2007, 2007, from

http://en.wikipedia.org/wiki/Arabic_transliteration.

Corpus, T. B. N. (2007). The British National Corpus (XML Edition).

Crow, F. C. (1984). "Summed-Area Tables for Texture Mapping." SIGGRAPH

Computer Graphics 18(3): 207-212.

http://www.qamus.org/wordlist.htm
http://www.qamus.org/transliteration.htm
http://en.wikipedia.org/wiki/Arabic_Chat_Alphabet
http://en.wikipedia.org/w/index.php?title=Code_page&oldid=87192444
http://en.wikipedia.org/wiki/Arabic_transliteration

References 193

D.J.Ittner and H. S. Baird (1993). Language-free layout analysis. The Second

International Conference on Document Analysis and Recognition (ICDAR’93).

Dash, N. S. and B. B. Chaudhuri (2001). Why Do We Need To Develop Corpora In

Indian Languages? International Working Conference on Sharing Capability in

Localisation and Human Language Technologies (SCALLA-2001), Bangalore.

Davies, M. (1990-present). "The Corpus Of Contemporary American English

(COCA), 410+ million words." from http://www.americancorpus.org.

Dynamics, N. (2011). "VERUS™ Professional." Retrieved 27/07/2011, from

http://www.novodynamics.com/verus_pro.htm.

Dynamics, N. (2012). "NovoVerus." Retrieved 04/05/2012, from

http://www.novodynamics.com/novoverus/.

Education, P. (2009). "Most Popular Language in the world by Number of

Speakers." Retrieved 14/08/2011, from

http://www.infoplease.com/ipa/A0775272.html.

Elliman, D. (2001). TIF2VEC, An Algorithm for Arc Segmentation in Engineering

Drawings. Fourth International Workshop on Graphics Recognition Algorithms and

Applications (GREC '01).

Elliman, D. and I. Lancaster (1990). "A review of segmentation and contextual

analysis techniques for text recognition." Pattern Recognition 23(3-4): 337-346.

Fahmy, M. M. M. and S. A. Ali (2001). "Automatic Recognition Of Handwritten

Arabic Characters Using Their Geometrical Features." Journal of Studies in

Informatics and Control with Emphasis on Useful Applications of Advanced

Technology 10(2): 81-98.

Ford, D. M. and C. A. Higgins (1990). "A tree-based dictionary search technique and

comparison with N-GRAM letter graph reduction." Computer Processing of

Handwriting: 291-312.

Freund, Y. and R. E. Schapire (1996). Experiments with a New Boosting Algorithm.

The thirteenth International Conference on Machine Learning, San Francisco, USA.

Gillies, A., E. Erlandson, et al. (1999). Arabic Text Recognition System. Proceedings

of the Symposium on Document Image Understanding Technology.

Gonzalez, R. C. and R. E. Woods (2007). Digital Image Processing, Prentice Hall.

Govindan, V. K. and A. P. Shivaprasad (1990). "Character Recognition - A Review."

Pattern Recognition 23(7): 671-683.

Gu, B., F. Hu, et al. (2001). Modelling Classification Performance for Large Data

Sets, An Empirical Study. Advances in Web-Age Information Management: Second

International Conference, WAIM 2001, Xi'an, China.

http://www.americancorpus.org/
http://www.novodynamics.com/verus_pro.htm
http://www.novodynamics.com/novoverus/
http://www.infoplease.com/ipa/A0775272.html

References 194

Haar, A. (1910). "Zur Theorie der orthogonalen Funktionensysteme." Mathematische

Annalen 69 (3): 331-371.

Hamada, S. (2007). نحو منهج مقترح لصناعه المدونات اللغويه. The Seventh Conference on

Language Engineering, Cairo - Egypt, The Egyptian Society of Language

Engineering.

Hartley, R. T. and K. Crumpton (1999). Quality of OCR for degraded text images.

The fourth ACM conference on Digital libraries, California, United States.

Harty, R. and C. Ghaddar (2004). "Arabic Text Recognition." The International Arab

Journal of Information Technology 1(2): 156-163.

He, Z., T. Tan, et al. (2009). "Toward Accurate and Fast Iris Segmentation for Iris

Biometrics." IEEE Transactions on Pattern Analysis and Machine Intelligence 31(9):

1670 - 1684.

Hulden, M. (2009). "Fast approximate string matching with finite automata."

Procesamiento del Lenguaje Natural 43: 57-64.

Hull, J. J. (1998). Document image skew detection: Survey and annotated

bibliography. Document Analysis Systems II. Word Scientific: 40-64.

Hyams, D. G. (2005). CurveExpert 1.3, A comprehensive curve fitting system for

Windows.

Inenaga, S., H. Hoshino, et al. (2005). "On-line construction of compact directed

acyclic word graphs." Discrete Applied Mathematics 146: 156 – 179.

Intel (2001). Open Source Computer Vision Library - OpenCV.

IRIS (2004). Readiris Pro 10.

IRIS. (2011). "Readiris 12 Pro." Retrieved 27/07.2011, from

http://www.irislink.com/c2-1684-225/Readiris-12-for-Windows.aspx.

Jafari, R., H. Noshadi, et al. (2006). "Adaptive Electrocardiogram Feature Extraction

on Distributed Embedded Systems." IEEE Transactions on Parallel and Distributed

Systems 17(8): 797-807.

Jianzhuang, L., L. Wenqing, et al. (1991). Automatic thresholding of gray-level

pictures using two-dimension Otsu method. International Conference on Circuits and

Systems, China.

Jomma, H. D., M. A. Ismail, et al. (2006). An Efficient Arabic Morphology Analysis

Algorithm. The Sixth Conference on Language Engineering, Cairo, Egypt, The

Egyptian Society of Language Engineering.

Kanoun, S., A. M. Alimi, et al. (2005). Affixal Approach for Arabic Decomposable

Vocabulary Recognition: A Validation on Printed Word in Only One Font. The Eight

International Conference on Document Analysis and Recognition (ICDAR’05),

Seoul, Korea.

http://www.irislink.com/c2-1684-225/Readiris-12-for-Windows.aspx

References 195

Kanungo, T. and P. Resnik (1999). The Bible, Truth, and Multilingual OCR

Evaluation. SPIE Conference on Document Recognition and Retrieval VI, San Jose,

CA.

Kasinski, A. and A. Schmidt (2010). "The architecture and performance of the face

and eyes detection system based on the Haar cascade classifiers." Pattern Analysis

and Applications 13(2): 197-211.

Khorsheed, M. S. (2002). "Off-Line Arabic Character Recognition – A Review."

Pattern Analysis & Applications 5(1): 31-45.

Kilgarriff, A. (1997). Using word frequency lists to measure corpus homogeneity and

similarity between corpora. 5th ACL workshop on very large corpora, Beijing and

Hong Kong.

Knight, D., S. Bayoumi, et al. (2006). Beyond the text: building and analysing multi-

modal corpora. 2nd International Conference on E-Social Science, Manchester, UK.

Kohavi, R. and F. Provost (1998). "Glossary of Terms. Special Issue on Applications

of Machine Learning and the Knowledge Discovery Process." Machine Learning 30:

271-274.

Kučera, H. and W. N. Francis (1967). "Computational Analysis of Present-Day

American English." International Journal of American Linguistics 35(1): 71-75.

Kumar, A. and A. Passi (2010). "Comparison and combination of iris matchers for

reliable personal authentication." Pattern Recognition 43(3): 1016-1026.

Kurt, Z., H. I. Turkmen, et al. (2009). Linear Discriminant Analysis in Ottoman

Alphabet Character Recognition. The European Computing Conference, Tbilisi,

Georgia.

Larkey, L. S., L. Ballesteros, et al. (2002). Improving stemming for Arabic

information retrieval: Light stemming and co-occurrence analysis. 25th International

Conference on Research and Development in Information Retrieval (SIGIR).

Leea, C. H. and T. Kanungob (2003). "The architecture of TrueViz: a

groundTRUth=metadata editing and VIsualiZing ToolKit." Pattern Recognition

36(3): 811 – 825.

Lehal1, G. S., C. Singh, et al. (2001). A shape based post processor for Gurmukhi

OCR. the Sixth International Conference on Document Analysis and Recognition

(ICDAR’01), Seattle, WA , USA.

Levenshtein, V. I. (1966). "Binary codes capable of correcting deletions, insertions,

and reversals." Soviet Physics Doklady 10(8): 707-710.

Lienhart, R., A. Kuranov, et al. (2002). Empirical Analysis of Detection Cascades of

Boosted Classifiers for Rapid Object Detection. 25th Pattern Recognition

Symposium (DAGM03), Madgeburg, Germany.

References 196

Lienhart, R. and J. Maydt (2002). An Extended Set of Haar-like Features for Rapid

Object Detection. IEEE International Conference of Image Processing (ICIP 2002),

New York, USA.

Lorigo, L. M. and V. Govindaraju (May, 2006). "Offline Arabic Handwriting

Recognition: A Survey." IEEE Transactions on Pattern Analysis and Machine

Intelligence 28(5): 712-724.

Ltd, S. P. (2006). WebZIP 7.0.

Lu, Z., I. Bazzi, et al. (1999). A Robust, Language-Independent OCR System. 27th

AIPR Workshop: Advances in Computer-Assisted Recognition (SPIE 3584),

Washington DC, USA.

Maddouri, S. S., H. Amiri, et al. (2000). Local Normalization Towards Global

Recognition of Arabic Handwritten Script. DAS 2000.

Maltoni, D. and R. Cappelli (2009). "Advances in fingerprint modeling." Image and

Vision Computing 27(3): 258-268.

Marukawa, K., T. Hu, et al. (1997). "Document retrieval tolerating character

recognition errors—evaluation and application." Pattern Recognition 30(8): 1361-

1371.

Mashali, S., A. Mahmoud, et al. (2005). Arabic OCR Database Development. The

Fifth Conference on Language Engineering, Cairo, Egypt.

Maynard, D., V. Tablan, et al. (2002). "Architectural Elements of Language

Engineering Robustness." Journal of Natural Language Engineering – Special Issue

on Robust Methods in Analysis of Natural Language Data: 1-20.

Mehran, R., H. Pirsiavash, et al. (2005). A Front-end OCR for Omni-font

Persian/Arabic Cursive Printed Documents. Digital Image Computing: Techniques

and Applications (DICTA'05), Cairns, Australia.

Messom, C. and A. Barczak (2006). Fast and Efficient Rotated Haar-like Features

using Rotated Integral Images. Australian Conference on Robotics and Automation

(ACRA2006).

Mian, A. S., M. Bennamoun, et al. (2007). "An Efficient Multimodal 2D-3D Hybrid

Approach to Automatic Face Recognition." IEEE Transactions on Pattern Analysis

and Machine Intelligence 29(11): 1927 - 1943.

Mihov, S. and K. U. Schulz (2004). "Fast Approximate Search in Large

Dictionaries." Computational Linguistics journal 30(4): 451-477.

Miyoshi, T., T. Nagasaki, et al. (2009). Character Normalization Methods Using

Moments of Gradient Features and Normalization Cooperated Feature Extraction.

Chinese Conference on Pattern Recognition, 2009 (CCPR 2009) Nanjing.

References 197

Mohan, b. A., C. Papageorgiou, et al. (2001). "Example-Based Object Detection in

Images by Components." IEEE Transactions on Pattern Analysis and Machine

Intelligence 23(4): 349-361.

Najoua, B. A. and E. Noureddine (1995). A Robust Approach for Arabic Printed

Character Segmentation. Third International Conference on Document Analysis and

Recognition (ICDAR'95), Montreal, Canada

Nations, U. (2007). "INDEXES : United Nations Documentation." 2007, from

http://www.un.org/Depts/dhl/resguide/itp.htm.

Navarro, G. (2001). "A Guided Tour to Approximate String Matching." ACM

Computing Surveys (CSUR) 33(1): 31-88.

Network, T. M. (2012). "2012 Best OCR Software Comparisons and Reviews." from

http://ocr-software-review.toptenreviews.com/.

newspaper, A.-H. (2002). Al-Hayat Arabic data set, Al-Hayat newspaper, University

of Essex, in collaboration with the Open University.

newspaper, A.-N. (2000). An-Nahar text corpus, An-Nahar newspaper.

O'Gorman, L. (1993). "The Document Spectrum for Page Layout Analysis." IEEE

Transactions on Pattern Analysis and Machine Intelligence 15(11): 1162-1173.

O'Gorman, L. (1998). "An overview of fingerprint verification technologies."

Information Security Technical Report 3(1): 21-32.

O’Gorman, L. (1993). "The Document Spectrum for Page Layout Analysis." IEEE

TRANSACTIONS ON PA’ITERN ANALYSIS AND MACHINE INTELLIGENCE

15(11): 1162-1173.

Ohta, M., A. Takasu, et al. (1997). Retrieval Methods for English-Text with

Missrecognized OCR Characters. Fourth International Conference on Document

Analysis and Recognition.

Oommen, B. J. and G. Badr (2007). "Breadth-first search strategies for trie-based

syntactic pattern recognition." Pattern Analysis & Applications 10(1): 1-13.

OpenCV (2002) "Rapid Object Detection With A Cascade of Boosted Classifiers

Based on Haar-like Features." OpenCV haartraining Tutorial Volume, DOI:

Palfreyman, D. and M. a. Khalil (2003). ""A Funky Language for Teenzz to Use":

Representing Gulf Arabic in Instant Messaging " Journal of Computer-Mediated

Communication 9(1).

Papageorgiou, C. P., M. Oren, et al. (1998). A General Framework for Object

Detection. International Conference on Computer Vision.

Parker, R., D. Graff, et al. (2009). Arabic Gigaword Fourth Edition. Philadelphia,

Linguistic Data Consortium, University of Pennsylvania.

http://www.un.org/Depts/dhl/resguide/itp.htm
http://ocr-software-review.toptenreviews.com/

References 198

Pechwitz, M., S. S. Maddouri, et al. (2002). IFN/ENIT - Database of handwritten

Arabic words. the 7th Colloque International Francophone sur l'Ecrit et le Document,

CIFED 2002, Hammamet, Tunisia.

Plamondon, R. and S. N. Srihari (2000). "On-Line and Off-Line Handwriting

Recognition: A Comprehensive Survey." IEEE Transactions on Pattern Analysis and

Machine Intelligence 22(1): 63-84.

Rahman, A. F. R. and M. C. Fairhurst (2003). "Multiple classifier decision

combination strategies for character recognition: A review." International Journal on

Document Analysis and Recognition 5(4): 166–194.

Reffle, U. (2011). "Efficiently generating correction suggestions for garbled tokens

of historical language." Natural Language Engineering 17(2): 265–282.

Rogati, M., S. McCarley, et al. (2003). Unsupervised learning of Arabic stemming

using a parallel corpus. The 41st Annual Meeting of the Association for

Computational Linguistics (ACL), Sapporo, Japan.

Sarfraz, M., S. N. Nawaz, et al. (2003). Offline Arabic text recognition system.

International Conference on Geometric Modeling and Graphics (GMAG’03).

ScanStore, N.-. (2011). "OmniPage Professional 18." Retrieved 27/07/2011, from

http://www.scanstore.com/Scanning_Software/default.asp?ITEM_ID=16239.

Schapire, R. E. (2002). The Boosting Approach to Machine Learning, An Overview.

MSRI Workshop on Nonlinear Estimation and Classification, 2002, Berkeley, CA,

USA.

Schulz, K. U. and S. Mihov (2002). "Fast string correction with Levenshtein

automata." International Journal on Document Analysis and Recognition 5(1): 67-85.

Senior, A. (1992). Off-line handwriting recognition: A review and experiments,

Cambridge University, Engineering Department.

Seo, N. (2008) "Tutorial: OpenCV haartraining (Rapid Object Detection With A

Cascade of Boosted Classifiers Based on Haar-like Features)." Volume, DOI:

Shafait, F., Adnan-ul-Hasan, et al. (2006). Layout Analysis of Urdu Document

Images. 10th IEEE Int. Multi-topic Conference, INMIC’06, Islamabad, Pakistan.

Shanthi, N. and K. Duraiswamy (2010). "A novel SVM-based handwritten Tamil

character recognition system." Pattern Analysis & Applications 13(2): 173–180.

Simon, A., J.-C. Pret, et al. (1997). "A fast algorithm for bottom-up document layout

analysis." IEEE Transactions on Pattern Analysis and Machine Intelligence 19(3):

273-277.

Simple Software, s. s. f. d. m. (2012). "OCR Software Guide." from

http://www.simpleocr.com/OCR_Software_Guide.asp.

http://www.scanstore.com/Scanning_Software/default.asp?ITEM_ID=16239
http://www.simpleocr.com/OCR_Software_Guide.asp

References 199

Slavik, P. and V. Govindaraju (2001). "Equivalence of Different Methods for Slant

and Skew Corrections in Word Recognition Applications." IEEE Transactions on

Pattern Analysis and Machine Intelligence 23(3).

Slimane, F., R. Ingold, et al. (2009). A New Arabic Printed Text Image Database and

Evaluation Protocols. 10th International Conference on Document Analysis and

Recognition, Barcelona, Spain.

Software, S. (2011). "OCR." Retrieved 27/07/2011, from

http://www.sakhr.com/ocr.aspx.

Sonka, M., V. Hlavac, et al. (1998). Image Processing: Analysis and Machine

Vision, Thomson Learning Vocational.

Souza, A., M. Cheriet, et al. (2003). Automatic Filter Selection Using Image Quality

Assessment. the Seventh International Conference on Document Analysis and

Recognition (ICDAR’03), Edinburgh, Scotland.

Statistics, I. W. (2010). "INTERNET WORLD USERS BY LANGUAGE, Top Ten

Languages Used in the Web." from http://www.internetworldstats.com/stats7.htm

http://www.internetworldstats.com/stats19.htm.

Stollnitz, E. J., T. D. DeRose, et al. (1995). "Wavelets for Computer Graphics: A

Primer Part 1." IEEE Computer Graphics and Applications 15(3): 76–84.

Taghva, K., J. Borsack, et al. (1995). "Post-Editing through Approximation and

Global Correction." International Journal of Pattern Recognition and Artificial

Intelligence 9(6): 911–924.

Taghva, K. and E. Stofsky (2001). "OCRSpell: an interactive spelling correction

system for OCR errors in text." International Journal on Document Analysis and

Recognition 3: 125-137.

Tan, X., S. Chen, et al. (2006). "Face Recognition from a Single Image per Person: A

Survey." Pattern Recognition 39(9): 1725-1745.

Tanner, S., T. Muñoz, et al. (2009). "Measuring Mass Text Digitization Quality and

Usefulness." D-Lib Magazine 15(7/8).

Teh, C.-H. and R. T. Chin (1988). "On Image Analysis by the Methods of Moments."

IEEE Transactions on Pattern Analysis and Machine Intelligence 10(4): 496 - 513.

Time. (2008). "Time Archive 1923 to present." from

http://www.time.com/time/archive/.

Touj, S., N. E. B. Amara, et al. (2003). Generalized Hough Transform for Arabic

Optical Character Recognition. Seventh International Conference on Document

Analysis and Recognition (ICDAR 2003), Edinburgh, Scotland.

Trenkle, J., A. Gillies, et al. (2001). Advances In Arabic Text Recognition.

Symposium on Document Image Understanding Technology, Maryland, USA.

http://www.sakhr.com/ocr.aspx
http://www.internetworldstats.com/stats7.htm
http://www.internetworldstats.com/stats19.htm
http://www.time.com/time/archive/

References 200

Trier, Ø. D., A. K. Jain, et al. (1996). "Feature Extraction Methods For Character

Recognition - A Survey." Pattern Recognition 29(4): 641-662.

Trier, O. D. and T. Taxt (1995). "Evaluation of binarization methods for document

images." IEEE Transactions on Pattern Analysis and Machine Intelligence 17(3): 312

- 315.

UCLA, T. U. o. C., Los Angeles. (2006). "Arabic." 2007, from

http://www.lmp.ucla.edu/Profile.aspx?LangID=210&menu=004.

Unicode (1991-2006) "Arabic Shaping " Unicode 5.0.0 Volume, DOI:

Unicode (2007). "Arabic, Range: 0600-06FF." The Unicode Standard, Version 5.

Vamvakas, G., B. Gatos, et al. (2010). "Handwritten character recognition through

two-stage foreground sub-sampling." Pattern Recognition 43: 2807–2816.

Viola, P. and M. Jones (2001). Rapid Object Detection using a Boosted Cascade of

Simple Features. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR01), Kauai, Hawaii.

Woodford, C. (2010, 02/12/2010). "OCR (Optical character recognition)."

Retrieved 23/07/2011

from http://www.explainthatstuff.com/how-ocr-works.html.

World, O. (2010). "Top OCR software." from http://ocrworld.com/software/5-in-

depth/149-top-ocr-software.html.

worldwide, M. p. (2009). "World Muslim Population." from

http://www.islamicpopulation.com/world_general.html.

Wynne, M. (2005). Corpus and Text — Basic Principles. Developing Linguistic

Corpora: a Guide to Good Practice. Oxford, Oxbow Books.

Zemanek, P. (2001). CLARA (Corpus Linguae Arabicae), Charles University,

Prague.

Zhang, D. and G. Lu (2001). A comparative study on shape retrieval using Fourier

descriptors with different shape signatures. Proceedings of the International

Conference on Multimedia and Distance Education, Fargo, ND, USA.

Zidouri, A. (2007). PCA-based Arabic Character feature extraction. 9th International

Symposium on Signal Processing and Its Applications (ISSPA 2007), Sharjah,

United Arab Emirates.

http://www.lmp.ucla.edu/Profile.aspx?LangID=210&menu=004
http://www.explainthatstuff.com/how-ocr-works.html
http://ocrworld.com/software/5-in-depth/149-top-ocr-software.html
http://ocrworld.com/software/5-in-depth/149-top-ocr-software.html
http://www.islamicpopulation.com/world_general.html

Appendix: Published papers 201

Appendix: Published papers

AbdelRaouf, A., C. Higgins, et al. (2008). A Database for Arabic printed character

recognition. The International Conference on Image Analysis and Recognition-

ICIAR2008, Póvoa de Varzim, Portugal, Springer Lecture Notes in Computer

Science (LNCS) series.

AbdelRaouf, A., C. Higgins, et al. (2010). "Building a Multi-Modal Arabic Corpus

(MMAC)." The International Journal of Document Analysis and Recognition

(IJDAR) 13(4): 285-302.

Appendix: Published papers 202

Appendix: Published papers 203

Appendix: Published papers 204

Appendix: Published papers 205

Appendix: Published papers 206

Appendix: Published papers 207

Appendix: Published papers 208

Appendix: Published papers 209

Appendix: Published papers 210

Appendix: Published papers 211

Appendix: Published papers 212

Appendix: Published papers 213

Appendix: Published papers 214

Appendix: Published papers 215

Appendix: Published papers 216

Appendix: Published papers 217

Appendix: Published papers 218

Appendix: Published papers 219

Appendix: Published papers 220

Appendix: Published papers 221

Appendix: Published papers 222

Appendix: Published papers 223

Appendix: Published papers 224

Appendix: Published papers 225

Appendix: Published papers 226

Appendix: Published papers 227

Appendix: Published papers 228

Appendix: Published papers 229

Appendix: Published papers 230

Appendix: Published papers 231

