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Abstract

The field of physical modelling and simulation plays a vital role in advancing numerous

scientific and engineering disciplines. To cope with the increasing size and complex-

ity of physical models, a number of modelling and simulation languages have been

developed. These languages can be divided into two broad categories: causal and

noncausal. Causal languages express a system model in terms of directed equations.

In contrast, a noncausal model is formulated in terms of undirected equations. The

fact that the causality can be left implicit makes noncausal languages more declarative

and noncausal models more reusable. These are considered to be crucial advantages

in many physical domains.

Current, mainstream noncausal languages do not treat equational models as first-

class values; that is, a model cannot be parametrised on other models or generated at

simulation runtime. This results in very limited higher-order and structurally dynamic

modelling capabilities, and limits the expressiveness and applicability of noncausal

languages.

This thesis is about a novel approach to the design and implementation of noncausal

languages with first-class models supporting higher-order and structurally dynamic

modelling. In particular, the thesis presents a language that enables: (1) higher-order

modelling capabilities by embedding noncausal models as first-class entities into a

functional programming language and (2) efficient simulation of noncausal models that

are generated at simulation runtime by runtime symbolic processing and just-in-time

compilation. These language design and implementation approaches can be applied to

other noncausal languages. This thesis provides a self-contained reference for such an

undertaking by defining the language semantics formally and providing an in-depth

description of the implementation. The language provides noncausal modelling and

simulation capabilities that go beyond the state of the art, as backed up by a range of

examples presented in the thesis, and represents a significant progress in the field of

physical modelling and simulation.
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“Unprovided with original learning, unformed in the habits of thinking,

unskilled in the arts of composition, I resolved to write a book.”

Edward Gibbon
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Chapter 1

Introduction

The field of physical modelling and simulation plays a vital role in the design, im-

plementation and analysis of systems in numerous areas of science and engineering.

Examples include electronics, mechanics, thermodynamics, chemical reaction kinetics,

population dynamics and neural networks [Cellier, 1991]. To cope with the increasing

size and complexity of physical models, a number of modelling and simulation lan-

guages have been developed. The modelling and simulation languages can be divided

into two broad categories: causal and noncausal.

A causal model is formulated in terms of explicit equations, for example, ordinary

differential equations (ODEs) in explicit form; that is, the cause-effect relationship is

explicitly specified by the modeller [Cellier and Kofman, 2006]. In other words, the

equations are directed: only unknown variables can appear on the left hand side of

the equals sign, and only known variables on the other side. Since the equations are

directed, it is relatively straightforward to translate a causal model into low-level sim-

ulation code (e.g., into a sequence of assignment statements) and simulate it. Simulink

is a prominent representative of causal modelling languages [Simulink, 2008].

A noncausal model is formulated in terms of implicit equations, for example, dif-

ferential algebraic equations (DAEs) in implicit form. In other words, the equations

are undirected: both known and unknown variables may appear on both sides of the

equals sign [Cellier and Kofman, 2006]. The translation of noncausal models into simu-

lation code involves additional symbolic processing and numerical simulation methods

that are not required for causal modelling and simulation. Examples include symbolic

transformations that try to causalise noncausal models and, if this is not possible,

numerical solvers for (nonlinear) implicit equations. Modelica is a prominent, state-

of-the-art representative of noncausal modelling languages [Modelica, 2010].
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Noncausal modelling has a number of advantages over causal modelling. The most

important ones are outlined in the following list.

• In many physical domains models are more naturally represented using noncausal

equations, and in some physical domains models cannot be represented using only

causal equations [Cellier, 1991, Brenan et al., 1996].

• Noncausal languages are declarative and approach modelling problems from a

higher level of abstraction by focusing on what to model rather than how to

model to enable simulation [Cellier, 1991, 1996, Nilsson et al., 2003].

• Noncausal models are more reusable, as equations can be used in a number of

different ways depending on their context of usage (i.e., effectively causalised in

a number of different ways) [Cellier, 1991, 1996, Cellier and Kofman, 2006].

Although causal modelling remains a dominant paradigm, interest in noncausal

modelling has grown recently as evidenced by the wide adoption of the Modelica

language both in industry and academia, and by release of noncausal modelling and

simulation tools by prominent vendors such as Maple (MapleSim) and MathWorks

(Simscape).

1.1 First-class Models

A language entity is first-class if it can be (1) passed as a parameter to functions,

(2) returned as a result from functions, (3) constructed at runtime and (4) placed in

data structures [Scott, 2009]. To my knowledge, this notion was first introduced by

Christopher Strachey [Burstall, 2000] in the context of functions being first-class values

in higher-order, functional programming languages. Current, mainstream noncausal

languages do not treat models as first-class values [Nilsson et al., 2003]. This limits

their expressiveness for higher-order and structurally dynamic modelling.

1.1.1 Higher-order Modelling

Higher-order modelling allows parametrisation of models on other models [Nilsson

et al., 2003]. For instance, a car model can be parametrised on the list of tyres it

is using, and an electrical transmission line model can be parametrised on the list of

electrical components on the line. Mainstream, noncausal languages provide limited

12



support for this style of modelling. Tool specific and external scripting languages

are often used to generate noncausal models for particular instances of higher-order

models [Broman and Fritzson, 2008]. This is practical for some applications, but

the aforementioned advantages of noncausal languages can be better realised with a

coherent language supporting noncausal as well as higher-order modelling.

This thesis formally defines a language that supports higher-order modelling by

treating noncausal models as first-class values in a purely functional programming

language and describes its implementation. In this setting, a function from model

(or from collections of models placed in a suitable data structure) to model can be

seen as a higher-order model and an application of this function can be seen as an

instantiation of the higher-order model.

The idea of treating noncausal models as first-class values in a functional program-

ming language is introduced by Nilsson et al. [2003] in the context of a framework

called Functional Hybrid Modelling (FHM) for designing and implementing noncausal

modelling languages. However, the paper postpones the concrete language definition

and implementation for future work. In addition, the FHM framework proposes to

exploit the first-class nature of noncausal models for modelling hybrid systems (i.e.,

systems that exhibit both continuous and discrete behaviour); this is relevant in the

following section.

Broman [2007] defined and implemented a noncausal language that supports para-

metrisation of models on other models and allows for a form of higher-order modelling.

However, construction of noncausal models at simulation runtime and manipulation

of collections of models placed in data structures were not considered.

1.1.2 Structurally Dynamic Modelling

Major changes in system behaviour are often modelled by changing the equations that

describe the system [Mosterman, 1997]. A model where the equational description

changes over time is called structurally dynamic. Each structural configuration of the

model is known as a mode of operation. Cellier and Kofman [2006] refer to structurally

dynamic systems as variable-structure systems. Structurally dynamic systems are an

example of the more general notion of hybrid systems [Nilsson et al., 2003]. The

term structurally dynamic emphasises only one discrete aspect, that is, the change of

equations at discrete points in time.
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Cyber-physical systems [Lee, 2008], where digital computers interact with continu-

ous physical systems, can also be seen as instances of hybrid systems. In this context,

structurally dynamic modelling is relevant; as modelling of a cyber-physical system

where the digital part’s influence causes major changes in the physical part may require

changing the equations that describe the behaviour of the continuous part. Recently,

the US National Science Foundation identified cyber-physical systems as one of its key

research areas [NSF, 2008].

Currently, noncausal languages offer limited support for modelling structurally dy-

namic systems [Mosterman, 1997, 1999, Zauner et al., 2007, Zimmer, 2008]. There are

a number of reasons for this. However, this thesis concentrates on one particular reason

related to the design and implementation of modelling and simulation languages: the

prevalent assumption that most or all processing to put a model into a form suitable

for simulation will take place prior to simulation [Nilsson et al., 2007, Zimmer, 2007].

By enforcing this assumption in the design of a modelling language, its implementation

can be simplified as there is no need for simulation-time support for handling struc-

tural changes. For instance, a compiler can typically generate static simulation code

(often just a sequence of assignment statements) with little or no need for dynamic

memory or code management. This results in good performance, but such language

design and implementation approaches restrict the number of modes to be modest as,

in general, separate code must be generated for each mode. This rules out supporting

structurally dynamic systems where the number of modes is a priori unbounded. We

refer to this kind of system as unbounded structurally dynamic. Systems with a priori

bounded number of modes are referred as bounded structurally dynamic.

There are a number of efforts to design and implement modelling and simulation

languages with improved support for structural dynamism. Examples include: HYBR-

SIM [Mosterman et al., 1998], MOSILAB [Nytsch-Geusen et al., 2005], Sol [Zimmer,

2008] and Acumen [Zhu et al., 2010]. However, thus far, implementations have either

been interpreted (HYBRSIM and Sol) and thus sacrificing efficiency, or the languages

have been restricted so as to limit the number of modes to make it feasible to compile

code for all modes prior to simulation (MOSILAB and Acumen).
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1.2 Contributions to the Field of Noncausal Mod-

elling and Simulation

This dissertation presents a novel approach to the design and implementation of non-

causal modelling and simulation languages with first-class models supporting higher-

order and structurally dynamic modelling. The thesis formally defines a noncausal

modelling language called Hydra and describes its implementation in detail. Hydra

provides noncausal modelling and simulation capabilities that go beyond the state of

the art and represents significant progress in the field of design and implementation

of declarative modelling and simulation languages. The following list summarises the

contributions to the field of noncausal modelling and simulation.

• The thesis shows how to enable higher-order modelling capabilities by embedding

noncausal models as first-class entities into a purely functional programming lan-

guage. To my knowledge, Hydra is the first noncausal language that faithfully

treats equational models as first-class values (i.e., supports all four points out-

lined in the beginning of Section 1.1). See Section 2.6, Section 2.7, Chapter 3

and Chapter 4 for details.

• The thesis shows how to use runtime symbolic processing and just-in-time (JIT)

compilation to enable efficient simulation of noncausal models that are generated

at simulation runtime. To my knowledge, Hydra is the first noncausal language

that enables support both for modelling and simulation of unbounded struc-

turally dynamic systems and for compilation of simulation code for efficiency.

See Chapter 6 for details.

• The thesis formally defines the Hydra language. To my knowledge, Hydra is the

first noncausal language that features a formal specification capturing both con-

tinuous and discrete aspects of unbounded structural dynamism. See Chapter 5

for details.

In addition to presenting the language definition and implementation, the afore-

mentioned claims are also backed up by a range of example physical systems that

cannot be modelled and simulated in current, noncausal languages. The examples are

carefully chosen to showcase those language features of Hydra that are lacking in other

noncausal modelling languages.
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The language design choices and implementation approaches presented here can be

used to enhance existing noncausal modelling and simulation languages, as well as to

design and implement new modelling languages. This thesis provides a self-contained

reference for such an undertaking by defining the language semantics formally and

providing an in-depth description of the implementation.

Many language features of Hydra follow closely those proposed by Nilsson et al.

[2003] in the context of the FHM framework and can be seen as the first concrete

language definition and implementation that is based on the FHM framework. How-

ever, as already mentioned, at this stage Hydra supports only one aspect of hybrid

modelling, namely, structural dynamism. Other discrete aspects that do not lead to

structural reconfigurations (e.g., impulses [Nilsson et al., 2003, Nilsson, 2003]) are not

considered in this thesis, but, in principle, can be incorporated in the Hydra language.

This work can be seen as an application of successful ideas developed in functional

programming languages research to declarative modelling and simulation languages.

I hope that this work will aid to further cross-fertilisation and the exchange of ideas

between these research communities.

1.3 Embedding

Hydra is a Haskell-embedded domain-specific language (DSL). Here, the domain is

noncausal modelling and simulation using implicitly formulated DAEs. Haskell is a

purely functional, higher-order, statically typed programming language [Peyton Jones,

2003], which is widely used for embedded DSL development [Stewart, 2009].

Embedding is a powerful and popular way to implement DSLs [Hudak, 1998]. Com-

pared with implementing a language from scratch, extending a suitable general-purpose

programming language, the host language, with notions addressing a particular appli-

cation or problem domain tends to save a lot of design and implementation effort.

The motivation behind using an embedding approach for Hydra is to concentrate the

language design and implementation effort on noncausal modelling notions that are

domain specific and absent in the host language, and to reuse the rest from the host

language.

Having said that, the concept of first-class models, and the runtime symbolic pro-

cessing and JIT compilation approaches implemented in Hydra, are not predicated

on embedded implementation. These language design and implementation approaches

can be used in other noncausal modelling languages, embedded or otherwise.
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There are two basic approaches to language embeddings: shallow and deep. In

a shallow embedding, domain-specific notions are expressed directly in host-language

terms. A shallow embedding is commonly realised as a higher-order combinator library.

This is a light-weight approach for leveraging the facilities of the host language [Hudak,

1998]. In contrast, a deep embedding is about building embedded language terms as

data in a suitable representation. These terms are given meaning by interpretation

or compilation [Hudak, 1998]. This is a more heavy-weight approach, but also more

flexible one. Indeed, it is often necessary to inspect the embedded language terms

for optimisation or compilation. To benefit from the advantages of both shallow and

deep embeddings, a combined approach called mixed-level embedding can be used

[Giorgidze and Nilsson, 2010]. The aforementioned embedding approaches are not

specific to Haskell. They can be realised in other higher-order programming languages

(e.g., languages in ML and Lisp families).

As mentioned in Section 1.1, Hydra supports runtime generation and JIT compi-

lation of noncausal models. Specifically, in response to events occurring at discrete

points in time, the simulation is stopped and, depending on the simulation results thus

far, new equations are generated for further simulation [Giorgidze and Nilsson, 2009].

In this thesis and in Giorgidze and Nilsson [2010] this kind of DSLs are referred to as

iteratively staged, emphasising that the domain is characterised by repeated program

generation, compilation and execution. An iteratively-staged language is a special

kind of a multi-staged language [Taha, 2004] with the aforementioned characteristics.

Because performance is a primary concern in the domain, the numerical simulation

code for each mode of the model has to be compiled. As this code is determined dy-

namically, this necessitates JIT compilation. For the numerical part of the language

Hydra employs deep embedding techniques, along with the Low Level Virtual Machine

(LLVM) compiler infrastructure [Lattner, 2002], a language-independent, portable,

optimising, compiler backend with JIT support. In contrast, shallow embedding tech-

niques are used for the parts of Hydra that are concerned with high-level, symbolic

computations [Giorgidze and Nilsson, 2010].

An alternative might have been to use a multi-staged host language like MetaO-

Caml [Taha, 2004]. The built-in runtime code generation capabilities of the host

language then would have been used instead of relying on an external code generation

framework such as LLVM. This approach has not been pursued, as tight control over

the dynamically generated numerical code is essential in this application domain.
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1.4 Contributions to the Field of DSL Embedding

Compilation of embedded DSLs is today a standard tool in the DSL-implementer’s

tool box. The seminal example is the work by Elliott et al. on compiling embedded

languages, specifically the image synthesis and manipulation language Pan [Elliott

et al., 2000]. Pan, like Hydra, provides for program generation by leveraging the host

language combined with compilation to speed up the resulting performance-critical

computations. However, the program to be compiled is generated once and for all,

meaning the host language acts as a powerful, but fundamentally conventional macro

language: program generation, compilation, and execution is a process with a fixed

number of stages.

Hydra is iteratively staged and the host language is part of the dynamic semantics of

the embedded language through the shallow parts of the embedding (instead of acting

merely as a meta language that is out of the picture once the generated program is

ready for execution). We thus add further tools to the DSL tool box for embedding

a class of languages that thus far has not been studied much from an embedding and

staged programming perspective.

While embedded DSL development methodology is not the main focus of this

work, I nevertheless think that the thesis should be of interest to embedded DSL im-

plementers, as it presents an application of a new embedding technique. The following

list summarises the contributions to the field of DSL embedding.

• The thesis presents a case study of mixed-level embedding of an iteratively staged

DSL in a host language that does not provide built-in multi-stage programming

capabilities. See Chapter 3 and Chapter 4 for details.

• The thesis describes how to use JIT compilation to implement an iteratively

staged embedded DSL efficiently. See Chapter 6 for details.

1.5 Overview of Peer-reviewed Publications

The content of this thesis is partly based on the peer-reviewed publications that are

listed in this section. I wrote the papers in collaboration with my coauthors. This

thesis was written by myself and presents my own contributions. I have implemented
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the Hydra language described in this dissertation and in the following papers. The

software is available on my webpage1 under the open source BSD3 license.

The following four papers describe various aspects of the design and implementation

of Hydra, as well as a number of its applications.

• George Giorgidze and Henrik Nilsson. Embedding a Functional Hybrid Mod-

elling language in Haskell. In Revised selected papers of the 20th international

symposium on Implementation and Application of Functional Languages, Hat-

field, England, volume 5836 of Lecture Notes in Computer Science. Springer,

2008.

• George Giorgidze and Henrik Nilsson. Higher-order non-causal modelling and

simulation of structurally dynamic systems. In Proceedings of the 7th Interna-

tional Modelica Conference, Como, Italy. Linköping University Electronic Press,

2009.

• George Giorgidze and Henrik Nilsson. Mixed-level embedding and JIT compila-

tion for an iteratively staged DSL. In Revised selected papers of the 19th inter-

national workshop on Functional and (Constraint) Logic Programming, Madrid,

Spain, volume 6559 of Lecture Notes in Computer Science. Springer, 2010.

• Henrik Nilsson and George Giorgidze. Exploiting structural dynamism in Func-

tional Hybrid Modelling for simulation of ideal diodes. In Proceedings of the

7th EUROSIM Congress on Modelling and Simulation, Prague, Czech Republic.

Czech Technical University Publishing House, 2010.

The following two papers are about unbounded structurally dynamic, causal mod-

elling and simulation using Yampa, a Haskell-embedded Functional Reactive Program-

ming (FRP) language [Hudak et al., 2003]. The combinator that allows switching of

equations during simulation runtime in Hydra draws its inspiration from switching

combinators featured in Yampa [Nilsson et al., 2002, Courtney et al., 2003].

• George Giorgidze and Henrik Nilsson. Demo outline: Switched-on Yampa. In

Proceedings of the ACM SIGPLAN Haskell workshop, Freiburg, Germany. ACM,

2007.

1http://www.cs.nott.ac.uk/~ggg/
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• George Giorgidze and Henrik Nilsson. Switched-on Yampa: declarative pro-

gramming of modular synthesizers. In Proceedings of the 10th international

symposium on Practical Aspects of Declarative Languages, San Francisco, CA,

USA, volume 4902 of Lecture Notes in Computer Science. Springer, 2008.

Some of the embedding techniques described in this thesis are also used in the

following two papers.

• George Giorgidze, Torsten Grust, Tom Schreiber, and Jeroen Weijers. Haskell

boards the Ferry: Database-supported program execution for Haskell. In Re-

vised selected papers of the 22nd international symposium on Implementation and

Application of Functional Languages, Alphen aan den Rijn, Netherlands, volume

6647 of Lecture Notes in Computer Science. Springer, 2010. Peter Landin Prize

for the best paper at IFL 2010.

• George Giorgidze, Torsten Grust, Nils Schweinsberg, and Jeroen Weijers. Bring-

ing back monad comprehensions. In Proceedings of the ACM SIGPLAN Haskell

symposium, Tokyo, Japan. ACM, 2011.

1.6 Prerequisites

Some parts of the thesis assume that the reader is familiar with Haskell, predicate logic,

and BNF notation. Haskell is used for defining Hydra, as well as for implementing it.

BNF notation is used for specifying the concrete syntax of Hydra. Predicate logic is

used for explaining the language concepts and to give the ideal semantics of Hydra.

Readers unfamiliar with Haskell may refer to the language report by Peyton Jones

[2003] or one of the following books: Thompson [1999], Hutton [2007], Hudak [1999]

or O’Sullivan et al. [2008]. Having said that, readers familiar with other higher-order,

typed functional programming languages, such as Standard ML [Milner et al., 1997],

should also be able to follow the thesis in its entirety.

It is worthwhile to mention that only small subset of the Haskell features are needed

to model and simulate physical systems in Hydra. The modeller should know:

• how to define a function by providing its name, arguments and result,

• how to apply a function to arguments,
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• how to write a function type signature involving arbitrarily nested pairs of basic

types,

• how to write functions that operate on lists (this is only needed for higher-order

modelling with collections of models),

• and how to use functions as first class values.

Other features of Haskell, most notably laziness and type classes, are not needed

to model in Hydra. The aforementioned two features are not used in the language

implementation either. The implementation of Hydra makes use of the following two

Haskell extensions available in Glasgow Haskell Compiler (GHC)2: quasiquoting [Main-

land, 2007] and generalised algebraic data types (GADTs) [Peyton Jones et al., 2006].

1.7 Outline

The rest of the dissertation is organised as follows.

• Chapter 2 overviews the field of physical modelling, and the state-of-the-art

causal and noncausal modelling languages.

• Chapter 3 introduces the central concepts of the Hydra language and its design.

• Chapter 4 explains how to model physical systems in Hydra by means of instruc-

tive examples. The examples were carefully chosen to showcase those language

features that are absent in other noncausal modelling languages.

• Chapter 5 formally defines Hydra’s concrete syntax, abstract syntax, type system

and ideal semantics. The chapter formally defines the equational part of Hydra.

The reader is referred to Peyton Jones [2003] for the semi-formal definition of

the host functional language.

• Chapter 6 describes how Hydra is implemented.

• Chapter 7 overviews the related work.

• Chapter 8 concludes the thesis.

2http://www.haskell.org/ghc
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Chapter 2

Background

Hydra is a domain-specific language. The domain of the language is equational mod-

elling and simulation of physical systems. In order to make the thesis self contained,

this chapter gives background information on the language domain.

The three essential steps involved in the process of modelling and simulation of a

physical system are given in the following list.

• Mathematical modelling of the system behaviour

• Translation of the mathematical representation into a computer program

• Simulation of the system by compiling and executing the computer program

This chapter illustrates the aforementioned three steps by using simple and instruc-

tive examples. We start by conducting these steps manually. We then demonstrate

how causal and noncausal modelling languages and tools can be used to automate this

process, and discuss advantages and disadvantages of current, mainstream modelling

languages.

In addition, by modelling and simulating the example physical systems, basic con-

cepts of modelling and simulation are introduced. Where necessary, the presentation

abstracts from the concrete examples and defines the basic concepts generally.

2.1 Equational Modelling

Figure 2.1 depicts a simple electrical circuit. The circuit is grounded and consists of

four two-pin electrical components: a voltage source, a resistor, an inductor and a

capacitor. The following system of equations is an equational model of the circuit.
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Figure 2.1: Simple electrical circuit.

uS = sin(2πt) (2.1a)

uR = R · i1 (2.1b)

i1 = C · duC
dt

(2.1c)

uL = L · di2
dt

(2.1d)

i1 + i2 = i (2.1e)

uR + uC = uS (2.1f)

uS = uL (2.1g)

The first four equations describe the component behaviours. The last three equa-

tions describe the circuit topology. The system of equations consists of undirected

algebraic and differential equations1. This mathematical representation is a system

of implicit differential algebraic equations (DAEs) [Cellier and Kofman, 2006]. More

generally, a system of implicit DAEs can be written in the following form:

1Cellier [1991] provides wealth of information on how to derive equational models for physical
systems.
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f(
d~x

dt
, ~x, ~y, t) = 0 (2.2)

Here, ~x is a vector of differential variables (i.e., their derivatives with respect to time

appear in the equations), ~y is a vector of algebraic variables (i.e., their derivatives

with respect to time do not appear in the equations) and t is an independent scalar

variable. In physical modelling t denotes time. Differential variables are also referred

as state variables.

Numerical integration is a widely used approach for deriving approximate solutions

of systems of DAEs. This is partly because, in general, exact symbolic methods do not

suffice for solving systems of DAEs [Brenan et al., 1996]. There are a number of meth-

ods for numerical integration of an implicit DAE. For example, there are numerical

solvers that directly operate on the implicit representation (e.g., the IDA solver from

the SUNDIALS numerical suite [Hindmarsh et al., 2005]), however, in some cases it

is possible to translate a DAE into a system of explicit ordinary differential equations

(ODEs), which makes it possible to simulate the system using an ODE solver (e.g.,

the CVODE solver from the SUNDIALS numerical suite [Hindmarsh et al., 2005]). In

the following we illustrate the latter approach, as ODE solvers are much simpler to

implement. For an equational model that can be transformed to an ODE it is prefer-

able to use an ODE solver for numerical integration, because ODE solvers are usually

more efficient than DAE solvers.

2.2 Causalisation

In order to transform the implicit DAE describing the simple electrical circuit into an

explicit one, we perform the following steps. Firstly, we identify known and unknown

variables. Secondly, we decide which unknown variable should be solved in which

equation. Thirdly, we sort the equations in such a way that no unknown variable is

used before it is solved.

Time t and the differential variables uc and i2 are assumed to be known, the rest

of the variables are unknowns, including the derivatives (duc

dt
and di2

dt
). The equations

that contain only one unknown are solved for it. After that, the solved variables are

assumed to be known and rest of the variables are solved. In this case this technique

suffices and we get the following explicit DAE:
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uS = sin(2πt) (2.3a)

uL = uS (2.3b)

uR = uS − uC (2.3c)

i1 =
uR
R

(2.3d)

i = i1 + i2 (2.3e)

duC
dt

=
i1
C

(2.3f)

di2
dt

=
uL
L

(2.3g)

This symbolic manipulation process is called causalisation2. Now the direction of

equations is explicitly specified which was not the case for the implicit DAE.

Let us substitute the variables defined in the first five equations into the last two

equations. This effectively eliminates the algebraic equations from the system.

duC
dt

=
sin(2πt)− uC

R · C (2.4a)

di2
dt

=
sin(2πt)

L
(2.4b)

This representation is a system of explicit ODEs and can be passed to a numerical

ODE solver. This representation is also called state-space model. More generally, a

system of explicit ODEs can be written in the following form:

d~x

dt
= f(~x, t) (2.5)

Here, ~x is a vector of differential variables and t is time.

2.3 Numerical Integration

Let us give an illustration of the process of numerical integration through a concrete

method. In the following the forward Euler method, which is the simplest numerical

2In general, the process of causalisation can be more involved than one described in this section.
Cellier and Kofman [2006] give a good survey of partial and complete causalisation methods.
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integration method for ODEs, is explained. The key idea is to replace the derivatives

with the following approximation:

d~x

dt
≈ ~x(t+ h)− ~x(t)

h
(2.6)

Here, h is a sufficiently small positive scalar which is referred to as the step size of

the numerical integration.

Let us make use of Equation 2.5 and substitute the derivative.

~x(t+ h) ≈ ~x(t) + h · f(~x, t) (2.7)

Let us also fix the step size h and construct the following discrete sequences:

t0 = 0, t1 = t0 + h, t2 = t1 + h, ..., tn = tn−1 + h, ... (2.8)

~x0 = ~x(t0), ..., ~xn+1 = ~xn + h · f(~xn, tn), ... (2.9)

Here, ~xn is a numerical approximation of ~x(tn).

More accurate and efficient numerical integration methods are available based on

different approximations and integration algorithms. A comprehensive presentation of

this and other more sophisticated methods can be found in the book by Cellier and

Kofman [2006].

2.4 Simulation

Once an initial condition (i.e., a value of the differential vector at time zero) is given

it is possible to numerically integrate the ODE. The Haskell code that is given in

Figure 2.2 numerically integrates the ODE given in Equation 2.4 using the forward

Euler method.

Given the numerical integration time step and the circuit parameters, this function

computes the approximate solution and delivers the values of the differential vector at

the discrete points of time given in Equation 2.9 as a list.

In the case of the simple electrical circuit model, the algebraic variables can be

solved by adding more directed equations in the function that numerically integrates

the system of equations. The Haskell code given in Figure 2.3 refines the integration

function by adding the directed equation that solves the algebraic variable i1. Fig-
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integrateSimpleCircuit :: Double → Double → Double → Double
→ [(Double,Double,Double)]

integrateSimpleCircuit dt r c l = go 0 0 0
where
go t uc i2 = let di2 = (sin (2 ∗ π ∗ t) / l) ∗ dt

duc = ((sin (2 ∗ π ∗ t)− uc) / (r ∗ c)) ∗ dt
in (t , i2 , uc) : go (t + dt) (uc + duc) (i2 + di2 )

Figure 2.2: Function that numerically integrates the ODE given in Equation 2.4 using
the forward Euler method.

integrateSimpleCircuit :: Double → Double → Double → Double
→ [(Double,Double,Double,Double)]

integrateSimpleCircuit dt r c l = go 0 0 0
where
go t uc i2 = let di2 = (sin (2 ∗ π ∗ t) / l) ∗ dt

duc = ((sin (2 ∗ π ∗ t)− uc) / (r ∗ c)) ∗ dt
i1 = (sin (2 ∗ π ∗ t)− uc) / r

in (t , i2 , uc, i1) : go (t + dt) (uc + duc) (i2 + di2 )

Figure 2.3: Function that adds one directed equation to the function given in Fig-
ure 2.2.

ure 2.4 shows a partial simulation result obtained by evaluating the function with the

additional directed equation.

The simple electrical circuit example highlights the three essential steps involved

in the process of modelling and simulation outlined in the introduction of this chapter.

As we have already seen, for some systems, it is feasible to conduct this process

manually. Indeed translation of systems of equations into code in general purpose pro-

gramming languages like Fortran, C, Java or Haskell is a common practice. However,

manual translation becomes tedious and error prone with growing complexity. Imag-

ine conducting the process presented in this section for a physical system described

with hundreds of thousands of equations. Modelling languages and simulation tools

can help with all three phases mentioned above as discussed in the following sections

of this chapter.
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Figure 2.4: Plot showing how variables i1 and i2 change over time.

2.5 Causal Modelling

The block diagram depicted in Figure 2.5 is a model of the simple electrical circuit

from Figure 2.1. Note that the diagram uses causal blocks (with inputs and outputs)

for multiplication, summation and integration. The block diagram is a graphical rep-

resentation of Equation 2.3. In order to make this correspondence clear, the block

outputs for the variables US, i1, i2 and i are labelled with the corresponding variable

name.

Block diagrams in causal languages correspond to systems of ODEs in explicit form.

The construction of a block diagram is closely related to the process of causalisation.

The causal model given in Figure 2.5 can be simulated by graphical block diagramming

tools such as Simulink. Derivation of simulation code from a block diagram is done

much in the same way as described earlier, but using more sophisticated numerical

methods.

Structurally, the block diagram in Figure 2.5 is quite far removed from the circuit

it models. Because of this, construction of block diagrams is generally regarded as a

difficult and somewhat involved task [Nilsson et al., 2007]. Moreover, a slight change in
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Figure 2.5: Block diagram modelling electrical circuit depicted in Figure 2.1.

a modelled system might require drastic changes in the corresponding block diagram.

This is because causal models limit reuse [Cellier, 1996]. For example, a resistor

behaviour is usually modelled using Ohm’s law which can be written as i = u
R

or

u = R · i. Unfortunately, no single causal block can capture the resistor behaviour.

If we need to compute the current from the voltage, we should use the block that

corresponds to the first equation. If we need to compute the voltage from the current,

we should use the block that corresponds to the second equation.

To demonstrate the aforementioned reuse problem, we modify the simple electrical

circuit by adding one more resistor, as shown in Figure 2.6, and then causally model

it as shown in Figure 2.7. Note that we were unable to reuse the resistor model from

the original circuit diagram. Furthermore, a simple addition to the physical system

caused changes to the causal model that are hardly obvious.

The block diagramming tool Simulink can be used to model bounded structurally

dynamic systems: special blocks are used to switch between block diagrams as a re-

sponse to discrete events. This makes Simulink very useful for modelling of bounded

structurally dynamic systems. However, the number of modes (i.e., structural con-

figurations) must be finite and all modes must be predetermined before simulation.

Thus Simulink does not enable modelling and simulation of unbounded structurally

dynamic systems. In addition, Simulink block diagrams are first order, thus Simulink

does not support higher-order causal modelling.
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Figure 2.6: Simple electrical circuit with two resistors.
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Figure 2.7: Block diagram modelling electrical circuit depicted in Figure 2.6.
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connector Pin
flow Real i ;
Real v ;

end Pin;

Figure 2.8: Connector record defined in Modelica.

2.6 Noncausal Modelling Illustrated through Mod-

elica

Modelica is a declarative language for noncausal modelling and simulation of physical

systems. Modelica models are given using implicit DAEs. Modelica features a class

system similar to what can be found in many object-oriented programming languages

for structuring equations and for supporting model reuse.

This section presents a Modelica model of the simple electrical circuit depicted in

Figure 2.1 to illustrate basic features of the language.

The Modelica code that is given in Figure 2.8 declares the connector record for

representing electrical connectors. The connector record introduces the variable i and

the variable v representing the current flowing into the connector and the voltage at

the connector respectively. In Modelica, connector records do not introduce equations.

The meaning of the flow annotation is explained later on when connect equations are

introduced.

The Modelica code that is given in Figure 2.9 defines the model that captures

common properties of electrical components with two connectors. The variables p and

n represent the positive and negative pins of an electrical component. The variable u

represents the voltage drop across the component. The variable i represents the current

flowing into the positive pin. The TwoPin model defines the noncausal equations that

these variables satisfy.

By extending the TwoPin model with component-specific equations Figure 2.10

defines the models representing a resistor, a capacitor, an inductor and a voltage

source. Figure 2.10 also defines the model that represents the ground pin. Note the

use of the concept of inheritance known from object-oriented programming languages

for reusing the equations from the TwoPin model.

Variables qualified as parameter or as constant remain unchanged during simu-

lation. The value of a constant is defined once and for all in the source code, while a
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model TwoPin
Pin p, n;
Real u, i ;

equation
u = p.v − n.v ;
0 = p.i + n.i ;
i = p.i ;

end TwoPin;

Figure 2.9: Modelica model for two-pin electrical components.

parameter can be set when an object of the class is instantiated. In this example all

parameters are provided with default values allowing for instantiations with the de-

fault parameter values. All other variables represent dynamic, time-varying entities.

Note that the expressions der (u) and der (i) denote time derivatives of the variables

u and i respectively.

The Modelica model that is given in Figure 2.11 uses the circuit component models

to define the simple electrical circuit model by “connecting” appropriate pins according

to Figure 2.1.

Connect statements are analysed and appropriate connection equations are gen-

erated by the Modelica compiler as follows. Connected flow variables generate sum-

to-zero equations. In this case, as the domain is electrical circuits, the sum-to-zero

equations correspond to Kirchhoff’s current law. For the SimpleCircuit model the

Modelica compiler generates the following three sum-to-zero equations:

AC .n.i + C .n.i + L.n.i + G .p.i = 0;

R.n.i + C .p.i = 0;

AC .p.i + R.p.i + L.p.i = 0;

Connected potential variables generate equality constraints stating that all con-

nected potential variables are equal at any point in time. For the SimpleCircuit model

the Modelica compiler generates the following six equations:
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model Resistor
extends TwoPin;
parameter Real R = 1;

equation
R ∗ i = u;

end Resistor ;

model Capacitor
extends TwoPin;
parameter Real C = 1;

equation
C ∗ der (u) = i ;

end Capacitor ;

model Inductor
extends TwoPin;
parameter Real L = 1;

equation
u = L ∗ der (i);

end Inductor ;

model VSourceAC
extends TwoPin;
parameter Real VA = 1;
parameter Real FreqHz = 1;
constant Real PI = 3.14159;

equation
u = VA ∗ sin (2 ∗ PI ∗ FreqHz ∗ time);

end VSourceAC ;

model Ground
Pin p;

equation
p.v = 0;

end Ground ;

Figure 2.10: Modelica models with component-specific equations.
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model SimpleCircuit
Resistor R;
Capacitor C ;
Inductor L;
VSourceAC AC ;
Ground G ;

equation
connect (AC .p, R.p);
connect (AC .p, L.p);
connect (R.n, C .p);
connect (AC .n,C .n);
connect (AC .n,L.n);
connect (AC .n,G .p);

end SimpleCircuit ;

Figure 2.11: Modelica model for the circuit given in Figure 2.1.

AC .n.v = C .n.v ;

C .n.v = L.n.v ;

L.n.v = G .p.v ;

R.n.v = C .p.v ;

AC .p.v = R.p.v ;

R.p.v = L.p.v ;

Connect statements can be used in any physical domain where flow variables (i.e.,

variables generating sum-to-zero equations at the connection points) and potential

variables (i.e, variables generating equality constrains at the connection points) can be

identified. The Modelica standard library includes examples of their usage in electrical,

hydraulic, and mechanical domains.

Modelica compilers generate executable simulation code from hierarchical systems

of equations structured using object-oriented programming constructs by utilising

state-of-the-art symbolic and numerical methods.

As we have seen, noncausal languages allow us to model physical systems at a

high level of abstraction. The structure of the models resemble the modelled systems.

Consequently, it is easy to reuse or modify existing models. For example, it is now

trivial to add one more resistor to the Modelica model as shown in Figure 2.12.
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model SimpleCircuit
Resistor R1 ;
Resistor R2 ;
Capacitor C ;
Inductor L;
VSourceAC AC ;
Ground G ;

equation
connect (AC .p, R1 .p);
connect (AC .p, R2 .p);
connect (R1 .n, C .p);
connect (R2 .n, L.p);
connect (AC .n,C .n);
connect (AC .n,L.n);
connect (AC .n,G .p);

end SimpleCircuit ;

Figure 2.12: Modelica model for the circuit given in Figure 2.6.

2.7 Noncausal Modelling of Structurally Dynamic

Systems

A structurally dynamic system is usually modelled using a combination of continuous

equations and switching statements that specify discontinuous changes in the system.

This section is about structurally dynamic modelling in noncausal languages. Current

limitations are illustrated using a Modelica model of a simple structurally dynamic

system. In particular, this section highlights the lack of expressiveness of the Modelica

language when it comes to dynamic addition and removal of time-varying variables

and continuous equations, and lack of runtime symbolic processing and code generation

facilities in Modelica implementations.

Let us model a system whose structural configuration changes abruptly during sim-

ulation: a simple pendulum that can break at a specified point in time; see Figure 2.13.

The pendulum is modelled as a body represented by a point mass m at the end of a

rigid, mass-less rod, subject to gravity m~g. If the rod breaks, the body will fall freely.

The code that is given in Figure 2.14 is an attempt to model this system in Modelica

that on the surface appears to solve the problem. Unfortunately the code fails to

compile. The reason is that the latest version of the Modelica standard [Modelica,
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Figure 2.13: Pendulum subject to gravity.

2010] asserts that number of equations in both branches of an if statement must be

equal when the conditional expression contains a time-varying variable. If considered

separately, the equations in both branches do solve the publicly available variables

successfully. In an attempt to fix the model, the modeller might try to add a dummy

equation for the variable not needed in the second mode (i.e., the variable φ, which

represents the angle of deviation of the pendulum before it is broken). This version

compiles, but the generated code fails to simulate the system. This example was tried

using the OpenModelica [Fritzson et al., 2006] and Dymola [Dymmola, 2008] compilers.

One of the difficulties of this example is that causality changes during the switch

between the two modes. In the first mode the position is calculated from the differ-

ential variable φ, which is not the case after the switch. This makes the job of the

simulation code generator a lot harder and, as it turns out, the Modelica tools are

not able to handle it. Specifically, the tools commit to a certain causality before they

generate the simulation code. This and related issues are covered in greater detail

in [Modelica Tutorial, 2000]. The suggested Modelica solution is more involved and

requires reformulation of the model by making it causal. The need for manual refor-

mulation to conform to a certain causality eliminates the advantages of working in a

noncausal modelling language.
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model BreakingPendulum
parameter Real l = 1, φ0 = π / 4, t = 10;
Real x , y , vx , vy ;
protected Real φ (start = π / 2);

equation
vx = der x
vy = der y
if (time < t) then

x = l ∗ sin φ
y = − l ∗ cos φ
0 = der (der φ) + (g / l) ∗ sin φ

else
der vx = 0
der vy = − g

end if ;
end BreakingPendulum;

Figure 2.14: Attempt to model a breaking pendulum in Modelica.

Currently, the Modelica language lacks the expressiveness to describe structural

changes. The breaking pendulum example demonstrates the problems that arise when

the number of variables in the system changes. In addition, the Modelica compilers

carry out the symbolic processing and generate the simulation code all at once, prior

to simulation, which introduces further limitations.

There are a number of efforts to improve support for structural dynamism in Mod-

elica. The works by Nytsch-Geusen et al. [2005] and Zimmer [2008] are the most recent

examples.

Nytsch-Geusen et al. [2005] designed and implemented a language extension to

Modelica called MOSILAB. The language is extended with constructs allowing for

description of statecharts specifying the discrete switches between Modelica objects.

The statechart approach enables modelling of structurally dynamic systems. However,

MOSILAB does not support unbounded structural dynamism because statecharts are

required to be static and can not be extended at simulation runtime.

MOSILAB features a sophisticated compiled implementation producing efficient

numerical simulation code for all modes of operation prior to simulation. This imple-

mentation approach works well for small number of modes. Simulation of bounded

structurally dynamic systems with large number of modes is problematic.
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Zimmer [2008] designed and implemented a Modelica-like language called Sol. The

language introduces constructs allowing for description of noncausal models where

equations and variables can be added and removed at runtime. Sol language solves

many of the problems with the Modelica language outlined in this section. However,

the increase in the language expressiveness comes at a cost of its efficiency. Currently,

Sol only features an interpreted implementation. Compilation-based implementation

approaches for Sol have not yet been explored. The ultimate goal of the work on Sol

is to introduce its language features for structurally dynamic noncausal modelling in

future versions of Modelica.

There are also a number of efforts to design and implement new structurally dy-

namic noncausal modelling languages. The works on HYBRSIM [Mosterman et al.,

1998] and Acumen [Zhu et al., 2010] deserve a particular mention. Both languages

take a very different language design approach from languages that are based on Mod-

elica. However, when it comes to structurally dynamic modelling and simulation the

expressive power of HYBRSIM and its interpreted implementation is comparable to

that of Sol, while the expressive power of Acumen and its compiled implementation is

comparable to that of MOSILAB.

To my knowledge none of the previous language design and implementation ap-

proaches support both unbounded structural dynamism and compilation for efficiency.
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Chapter 3

FHM Concepts and Design of

Hydra

This chapter introduces the three central concepts of the FHM framework that the

Hydra language is based on, namely: signal, signal function and signal relation. These

concepts facilitate development of and reasoning about Hydra models, and are used

both in informal (see Chapter 4) and formal (see Chapter 5) presentations of the lan-

guage. This chapter only covers conceptual definitions; how the concepts of Hydra are

implemented is covered in Chapter 6. This chapter also discusses how Hydra’s design

facilitates the embedding of the aforementioned concepts into a functional program-

ming language.

3.1 FHM and FRP

The idea of treating noncausal models as first-class values in a functional programming

language is due to Nilsson et al. [2003]. The authors propose the FHM framework for

designing and implementing noncausal modelling languages. The FHM framework

borrows the notion of signal denoting time-varying values from the FRP languages

and generalises the notion of signal function (featured in a number of variants of FRP,

most notably Yampa [Nilsson et al., 2002, Hudak et al., 2003]) to signal relation.

Intuitively, a signal function can be understood as a block with inputs and outputs

featured in causal modelling languages, while a signal relation can be understood as

a noncausal model without explicitly specified inputs and outputs. In other words,

FRP extends a functional programming language with causal modelling capabilities,
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while FHM extends a functional programming language with noncausal modelling

capabilities.

Signal functions are first-class entities in most variants of FRP and this property

also carries over to signal relations in FHM. As we will see later in this chapter and

also in Chapter 4, the first-class nature of signal relations is crucial for higher-order

and structurally-dynamic modelling in Hydra. To my knowledge, Hydra is the first

language that features the FHM’s notion of signal relation as a first-class entity.

3.2 Signal

Conceptually, a signal is a time-varying value, that is, a function from time to value:

Time ≈ R
Signal α ≈ Time → α

Time is continuous and is represented as a real number. The type parameter α

specifies the type of values carried by the signal; for example, a signal of type Signal R
may represent a change to the total amount of current flowing in a certain electrical

circuit over time, or a signal of type Signal (R,R) may represent a change in position

of a certain object in a two dimensional space over time.

Hydra features signals of reals (i.e., Signal R) and signals of arbitrarily nested

pairs of reals. Signals of nested pairs are useful for grouping of related signals. As

an example of a signal that carries nested pairs of reals, consider a signal of type

Signal ((R,R), (R,R)). This signal can represent current and voltage pairs at the

positive and negative pins of a two-pin electrical component, for example.

In a concrete implementation, R would typically be represented by a suitable float-

ing point type, such as Double. Indeed, Double is used in Hydra. However, R is used

in most places of the presentation as we conceptually are dealing with real numbers.

The aforementioned treatment of signals as continues can be seen as an abstrac-

tion over the underling discretely sampled implementation. It is cumbersome and error

prone to directly work with the discrete representation for entities that conceptually

exhibit continuous dynamics. For example, explicit handling of fixed and variable

sampling rates, composition of models using different sampling rates, and explicit ac-

counting for numerical errors are problematic. This is not to say that being aware

of the underling discretely sampled implementation is not important. In some cases
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(e.g., when the numerical simulation fails or when the simulation performance is un-

acceptably slow) it is necessary to adjust the discrete simulation time step or change

other simulation parameters. However, in most cases, assuming that the continuous

model is correct, those adjustments can be made without changes to the model.

Although modelling with discrete streams for conceptually discrete systems (such

as digital controllers) is out of the scope of this thesis, it would be interesting to explore

a discrete variant of Hydra featuring noncausal equations on discrete streams.

3.3 Signal Function

Conceptually, a signal function is a function from signal to signal:

SF α β ≈ Signal α→ Signal β

A signal function of type SF α β can be applied to an input signal of type Signal α;

it produces an output signal of type Signal β.

Because a pair of signals, say (Signal α, Signal β), is isomorphic to a signal of the

pair of the signal types, in this case Signal (α, β), unary signal functions suffice for

handling signal functions of any arity; for example, the binary signal function add that

takes two signals and computes the sum of their values at each point in time can be

given the following type and conceptual definition:

add :: SF (R,R) R
add s ≈ λt → fst (s t) + snd (s t)

Hydra provides a number of primitive signal functions that lift common mathe-

matical operations (e.g., +, ∗, sin and cos) to the signal level. Hydra also provides

the der signal function of type SF R R. This signal function differentiates the given

signal. Later we will see that the use of the der signal function in noncausal equations

allows for the definition of differential equations.

It is worthwhile to note that except for the der signal function all primitive and user

definable signal functions in Hydra are stateless ; that is, their output only depends on

their input at current point in time. The der signal function’s output depends on its

input signal’s current rate of change.
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3.4 Signal Relation

Conceptually, a signal relation is a relation on signals. Stating that some signals are

in a particular relation to each other imposes constraints on those signals. Assuming

these constraints can be satisfied, this allows some of the signals to be determined in

terms of the others depending on which signals are known and unknown in a given

context; that is, signal relations are noncausal, unlike signal functions where the inputs

and outputs are given a priori.

An ordinary relation can be seen as a predicate that specifies whether some given

values are related or not. The same is true for signal relations:

SR α ≈ Time → Time → Signal α→ Prop

Given two points in time and a signal, a signal relation defines a proposition con-

straining the signal starting from the first point in time and ending with the second

point in time. Here, Prop is a type for propositions defined in second-order logic.

Solving a relation for a given period of time thus means finding a signal that satisfies

the predicate. We say that in this period of time the signal relation instance is active.

Just like for signal functions, unary signal relations suffice for handling signal rela-

tions of any arity; for example, the following pseudo code conceptually defines a binary

signal relation:

equal :: SR (R,R)

equal t1 t2 s ≈ ∀ t ∈ R. t1 6 t ∧ t 6 t2 ⇒ fst (s t) ≡ snd (s t)

This signal relation asserts that the first and second components of the signal s are

equal from t1 to t2.

Let us consider a slightly more elaborate example of a signal relation. The follow-

ing conceptual definition gives a signal relation imposing constraints characteristic to

electrical components with two connectors (see Figure 3.1).

twoPin :: SR (((R,R), (R,R)),R)

twoPin t1 t2 s ≈
∀ t ∈ R. t1 6 t ∧ t 6 t2 ⇒ twoPinProp (s t)

where

twoPinProp (((pi , pv), (ni , nv)), u) ≈ pv − nv = u

∧ pi + ni = 0
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pv − nv = u
pi + ni = 0

u

pvpi

+

nv ni

−

Figure 3.1: Electrical component with two connectors.

Here, pi , pv , ni , nv and u are the components of the tuple carried by the signal s .

The tuple components pi and pv represent the current into the positive pin and the

voltage at the positive pin, respectively. The tuple components ni and nv represent

the current into the negative pin and the voltage at the negative pin, respectively. The

tuple component u represents the voltage drop across the electrical component.

By applying signal relations to signals (in the sense of predicate application) it is

possible to reuse the equational constraints. Signal relation application also allows for

definition of hierarchically structured systems of equations. The following conceptual

definition gives a signal relation imposing constrains characteristic to a resistor (with

resistance r).

resistor :: R→ SR (((R,R), (R,R)),R)

resistor r t1 t2 s ≈
∀ t ∈ R. t1 6 t ∧ t 6 t2 ⇒ ∃u ∈ SignalR. twoPin t1 t2 (pairS s u)

∧ resistorProp (s t) (u t)

where

pairS s u t ′ ≈ (s t ′, u t ′)

resistorProp ((pi , pv), (ni , nv)) u ≈ r ∗ pi = u

Note how the signal relation resistor is defined in terms of the signal relation

application of twoPin and one additional equation. As we will see in the next section

and in Chapter 4, Hydra provides a convenient syntax for defining and applying signal

relations.

3.5 Design of Hydra

Hydra is a two-level language. It features the functional level and the signal level.

The functional level allows for the definition of ordinary functions operating on time-

invariant values. The signal level allows for the definition of signal relations and signal

functions on time-varying values.
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Signal relations and signal functions are first-class entities at the functional level. In

contrast, signals are not first-class entities at the functional level. However, crucially,

instantaneous values of signals can be passed to the functional level, allowing for the

generation of new signal relations that depend on signal values at discrete points in

time.

A definition at the signal level may freely refer to entities defined at the functional

level as the latter are time-invariant, known parameters as far as solving the signal-

level equations are concerned. However, the opposite is not allowed; that is, a time-

varying entity is confined to the signal level. The signal-level notions that exist at

the functional level are signal relation and signal function. These notions are time-

invariant. Concrete examples of signal-level and functional-level definitions as well as

definitions where these two levels interact with each other are given in Chapter 4.

Hydra is implemented as a Haskell-embedded DSL using quasiquoting, a Haskell

extension implemented in GHC, for providing a convenient surface syntax1. As a

result, Haskell provides the functional level for free through shallow embedding. In

contrast, the signal level is realised through deep embedding; that is, signal relations

expressed in terms of Hydra-specific syntax are, through the quasiquoting machinery,

turned into an internal representation, an abstract syntax tree (AST), that then is

used for compilation into simulation code (see Chapter 6 for details). Note that,

although Hydra is embedded in Haskell, the two-level language design outlined earlier

in this section and the notion of first-class signal relations are not predicated on the

embedding approach.

The Haskell-embedded implementation of Hydra adopts the following syntax for

defining signal relations:

[rel | pattern → equations | ]

The symbol [rel | is the opening quasiquote and the symbol | ] is the closing

quasiquote. The pattern binds signal variables that scope over the equations that

follow. An equation can be an equality constraint or a signal relation application

(stated by using the operator �). Signal relation application is how the constraints

embodied by a signal relation are imposed on particular signals. In addition to the sig-

nal variables bound in the pattern, equations may also introduce local signal variables.

Concrete examples of signal relations are given in Chapter 4.

1Quasiquoting is not unique to Haskell. It has been available in other languages (most notably in
the Lisp family of languages).
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The equations are required to be well typed. For example, consider the signal

relation application sr � s . Here, if sr has the type SR α then s must have the type

Signal α.

Hydra provides a conventional syntax for specifying equality constraints. For ex-

ample, the equation x ∗ y = 0 is an equality constraint. Here, 0 is a constant signal, ∗
is a primitive signal function, and x and y are signal variables.

In addition to user-defined signal relations, Hydra provides for user-defined signal

functions. Hydra uses the following syntax for defining signal functions.

[fun | pattern → expression | ]

Just like for signal relations, quasiquoting is used for defining signal functions.

The pattern binds signal variables that scope over the expression that follows. Signal

functions can be applied to signals by juxtaposing them together:

sf s

Signal function applications are required to be well typed. In this example, if sf

has the type SF α β then s must have the type Signal α. The type of the resulting

signal is Signal β.

The quasiquotes, in addition to serving as an embedded DSL implementation tool,

can be seen as clear syntactic markers separating the signal level from the functional

level. These markers are useful when reading Hydra code listings. The separation is

also enforced at the type level of the host language by the SR and SF type constructors.

Because signals are not first-class entities at the functional level, it is not possible

to construct a value of type Signal α directly at the functional level. Signals only exist

indirectly through the signal level definitions of signal relations and signal functions.

Equality constrains can be used to describe flat systems of equations and the signal

relation application operator (i.e., �) provides for hierarchically structured systems of

equations. Let us introduce a built-in (higher-order) signal relation that allows for

description of structurally dynamic signal relations.

switch :: SR a → SF a R→ (a → SR a)→ SR a

The switch combinator forms a signal relation by temporal composition. The

combinator takes three arguments and returns the composite signal relation (of type

SR a). The first argument (of type SR a) is a signal relation that is initially active.
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The second argument is a signal function (of type SF a R). Starting from the first

point in time when the signal (of type Signal R) that is computed by applying the

signal function to the signal constrained by the composite signal relation is about

to cross zero (i.e., when it is zero and its left derivative is nonzero), the composite

behaviour is defined by the signal relation that is computed by applying the third

argument (a function of type a → SR a) to the instantaneous value of the constrained

signal at that point in time. A formally defined meaning of the switch combinator is

given in Chapter 5.

The switch combinator allows for definition of a signal relation whose equational

description changes over time. In addition, the switch combinator allows for state

transfer from the old mode and initialisation of the new mode using the function that

computes the new mode from an instantaneous value of the constrained signal.

In the signal relation notation described earlier, the list of equations that follows

the pattern is not necessarily a static one as the equations may contain a signal relation

application of a structurally dynamic signal relation. We show how to use the switch

combinator for modelling and simulation unbounded structurally dynamic systems in

Chapter 4.

The two-level nature of Hydra also manifests itself in its implementation as a

mixed-level embedding. The functional level and the signal-level notions that exist

at the functional level are realised by the shallow part of the embedding. The no-

tions that exist only at the signal level are realised by the deep part of the embedding.

Specifically, we use shallow embedding techniques to represent signal relations (includ-

ing higher-order signal relations), signal functions, signal relation applications, signal

function applications, hierarchical compositions of signal relations and temporal com-

positions of signal relations; and we use deep embedding techniques to represent signal

expressions and equality constraints on signal expressions. Note that in Section 6.1 we

used more general terminology referring to the parts of Hydra realised through shallow

and deep embeddings as high-level, symbolic and low-level, numerical, respectively.

The aforementioned combination of the two embedding techniques allowed us to

maximise the reuse of the host language features and, as a result, to simplify the lan-

guage implementation. As performance is a primary concern in the domain of physical

modelling and simulation, the numerical simulation code for each mode of the model

has to be compiled. As we will see in Chapter 6, a mode of operation is represented

as equality constraints on signal expressions and zero-crossing signal expressions. The

aforementioned need for compilation into efficient numerical simulation code neces-
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sitates the use of deep embedding techniques for representing signal expressions and

equality constraints on signal expressions. For the rest of the language we use the

shallow embedding for maximum leverage of the host language.

Hydra’s two-level design can also be realised as a deep embedding or as a standalone

implementation. The particular combination of the embedding techniques used in this

work reflects the fact that advanced symbolic processing of hierarchical systems of

equations, beyond producing a flat list of equations for each mode of operation (for

which shallow embedding techniques suffice), is not the main focus of this work. Sol

[Zimmer, 2008] and Acumen [Zhu et al., 2010] are examples of noncausal languages

that feature implementations with more involved symbolic processing of hierarchical

systems of equations in order to solve problems that are orthogonal to those treated

in this thesis (see Chapter 7 for details).
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Chapter 4

Modelling and Simulation in Hydra

This chapter presents the Hydra language informally, by means of instructive exam-

ples. The examples are carefully chosen to back up the contributions of the thesis by

illustrating higher-order and structurally dynamic modelling and simulation in Hydra.

4.1 Models with Static Structure

Let us illustrate the Hydra language by modelling the circuit that is depicted in Fig-

ure 2.1. Let us first define the twoPin signal relation that captures the common

behaviour of electrical components with two connectors (see Figure 3.1):

type Pin = (R,R)

twoPin :: SR ((Pin,Pin),R)

twoPin = [rel | (((pi , pv), (ni , nv)), u)→
pv − nv = u

pi + ni = 0

| ]

The signal variables pi and pv , which are bound in the pattern, represent the

current into the positive pin and the voltage at the positive pin, respectively. The

signal variables ni and nv , which are also bound in the pattern, represent the current

into the negative pin and the voltage at the negative pin, respectively. The signal

variable u represents the voltage drop across the electrical component.

We can now use the twoPin signal relation to define a signal relation that models

a resistor:
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resistor :: R→ SR (Pin,Pin)

resistor r = [rel | ((pi , pv), (ni , nv))→
local u

$ twoPin $ �(((pi , pv), (ni , nv)), u)

$ r $ ∗pi = u

| ]

Note that a parametrised signal relation is an ordinary function returning a signal

relation. In the resistor signal relation, the signal variable u is declared as a local

signal variable; that is, it is not exposed in the pattern of the signal relation. As a

consequence, u can only be constrained in this signal relation, unlike the rest of the

variables in the pattern, which can be constrained further.

As we have already mentioned, Hydra uses two kinds of variables: the functional-

level ones representing time-invariant entities, and the signal-level ones, representing

time-varying entities, the signals. Functional-level fragments, such as variable refer-

ences, are spliced into the signal level by enclosing them between antiquotes, $. On the

other hand time-varying entities are not allowed to escape to the functional level; that

is, signal-variables are not in scope between antiquotes and outside the quasiquotes.

Note that, as discussed in Section 3.5, a signal relation is a time-invariant entity and

thus can be spliced into the signal level.

The resistor signal relation uses antiquoting to splice in a copy of the twoPin signal

relation; that is, its equations are reused in the context of the resistor model. Readers

familiar with object-oriented, noncausal languages like Modelica, can view this as a

definition of the resistor model by extending the twoPin model with an equation that

characterises the specific concrete electrical component, in this case Ohm’s law.

To clearly see how twoPin contributes to the definition of the resistor signal re-

lation, let us consider what happens when the resistor model is flattened as part of

flattening of a complete model, a transformation that is described in detail in Chap-

ter 6. Intuitively, flattening can be understood as inlining of applied signal relations to

reduce the signal relation into a flat list of equations (i.e., a flat DAE). In the process

of flattening, the arguments of a signal relation application are substituted into the

body of the applied signal relation, and the entire application is then replaced by the

instantiated signal relation body, renaming local variables as necessary to avoid name

clashes. In our case, the result of flattening the signal relation resistor 42 is:
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[rel | ((pi , pv), (ni , nv))→
local u

pv − nv = u

pi + ni = 0

42 ∗ pi = u

| ]

Models for an inductor, a capacitor, a voltage source and a ground reference are

defined in Figure 4.1. Note that the inductor and the capacitor signal relations contain

init equations. An init equation is enforced only at the point in time when the signal

relation becomes active. In this example, the init equations are used to initialise the

differential variables involved in the inductor and the capacitor signal relations.

By default, Modelica implicitly initialises differential variables to zero. That is

why initialisation equations were not considered in the corresponding Modelica mod-

els given in Chapter 2. Hydra does not allow for implicit initialisation; that is, all

initialisation equations must be specified explicitly.

4.2 Noncausal Connections

In Giorgidze and Nilsson [2008] we describe syntactic sugar for specifying noncausal

connections. In this thesis we implement the same approach using higher-order mod-

elling combinators. In both cases we are able to describe noncausal connections with-

out a special semantic language construct. In this aspect, Hydra is simpler than other

noncausal modelling languages such as Modelica, MKL [Broman, 2007], and Chi [Beek

et al., 2008], as these languages feature special language constructs for specifying non-

causal connections. It is worthwhile mentioning that although the aforementioned

approaches to noncausal connections serve the same purpose, they are very different

from each other, both in their syntax and in their semantics. Detailed comparison of

approaches to noncausal connections still lies ahead, including devising of a minimal

set of higher-order combinators expressive enough to capture all possible noncausal

interconnections.

Because signal relations are first-class entities, it is possible to implement higher-

order combinators that facilitate connection of noncausal models. To model the simple

electrical circuit as an interconnection of the already modelled components let us
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iInductor :: R→ R→ SR (Pin,Pin)
inductor pi0 l = [rel | ((pi , pv), (ni , nv))→

local u
init pi = pi0
$ twoPin $ �(((pi , pv), (ni , nv)), u)
$ l $ ∗der pi = u
| ]

iCapacitor :: R→ R→ SR (Pin,Pin)
iCapacitor u0 c = [rel | ((pi , pv), (ni , nv))→

local u
init u = u0

$ twoPin $ �(((pi , pv), (ni , nv)), u)
$ c $ ∗der u = pi

| ]

vSourceAC :: R→ R→ SR (Pin,Pin)
vSourceAC v f = [rel | ((pi , pv), (ni , nv))→

local u
$ twoPin $ �(((pi , pv), (ni , nv)), u)
u = $v $ ∗sin (2 ∗ $π $ ∗ $ f $ ∗time)
| ]

ground :: SR (Pin)
ground = [rel | (pi , pv) where

pv = 0
| ]

Figure 4.1: Hydra models for inductor, capacitor, voltage source and ground reference.
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(p2i, p2v)(n1i, n1v) (ni, nv)

sr2sr1

serial sr1 sr2

(pi, pv)

Figure 4.2: Serial connection of two electrical components.

define three higher-order signal relations facilitating noncausal connection of two-pin

electrical components.

Firstly, we define a higher-order signal relation that takes two signal relations

modelling two-pin electrical components and returns the signal relation that models

the serial connection of the two electrical components. The graphical representation

of the signal relation is given in Figure 4.2.

serial :: SR (Pin,Pin)→ SR (Pin,Pin)→ SR (Pin,Pin)

serial sr1 sr2 = [rel | ((pi , pv), (ni , nv))→
local p1 i ; local p1 v ; local n1 i ; local n1 v ;

$ sr1 $ � ((p1 i , p1 v), (n1 i , n1 v))

local p2 i ; local p2 v ; local n2 i ; local n2 v ;

$ sr2 $ � ((p2 i , p2 v), (n2 i , n2 v))

(−pi) + p1 i = 0

pv = p1 v

n1 i + p2 i = 0

n1 v = p2 v

n2 i + (−ni) = 0

n2 v = nv

| ]

Secondly, we define a higher-order signal relation that takes two signal relations

modelling two-pin electrical components and returns the signal relation that models

the parallel connection of the two electrical components. The graphical representation

of the signal relation is given in Figure 4.3.
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parallel sr1 sr2
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(n2i, n2v)

(n1i, n1v)

sr1

(p1i, p1v)

(pi, pv) (ni, nv)

Figure 4.3: Parallel connection of two electrical components.

parallel :: SR (Pin,Pin)→ SR (Pin,Pin)→ SR (Pin,Pin)

parallel sr1 sr2 = [rel | ((pi , pv), (ni , nv))→
local p1 i ; local p1 v ; local n1 i ; local n1 v ;

$ sr1 $ � ((p1 i , p1 v), (n1 i , n1 v))

local p2 i ; local p2 v ; local n2 i ; local n2 v ;

$ sr2 $ � ((p2 i , p2 v), (n2 i , n2 v))

(−pi) + p1 i + p2 i = 0

pv = p1 v

p1 v = p2 v

(−ni) + n1 i + n2 i = 0

nv = n1 v

n1 v = n2 v

| ]

Finally, we define a higher-order signal relation that takes two signal relations

modelling two-pin electrical components and returns the signal relation that models the

grounded circuit involving the two electrical components. The graphical representation

of the signal relation is given in Figure 4.4.
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groundedCircuit sr1 sr2

(n1i, n1v)

sr1

(p1i, p1v)

(p2i, p2v)

sr2

(n2i, n2v)

(gpi, gpv)

Figure 4.4: Grounded circuit involving two electrical components.

groundedCircuit :: SR (Pin,Pin)→ SR (Pin,Pin)→ SR ()

groundedCircuit sr1 sr2 = [rel | ()→
local p1 i ; local p1 v ; local n1 i ; local n1 v ;

$ sr1 $ � ((p1 i , p1 v), (n1 i , n1 v))

local p2 i ; local p2 v ; local n2 i ; local n2 v ;

$ sr2 $ � ((p2 i , p2 v), (n2 i , n2 v))

local gpi ; local gpv ;

$ ground $ �(gpi , gpv)

p1 i + p2 i = 0

p1 v + p2 v = 0

n1 i + n2 i + gpi = 0

n1 v = n2 v

n2 v = gpv

| ]

Now we can assemble the models of the electrical components into the simple

electrical circuit as follows.
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simpleCircuit :: SR ()

simpleCircuit =

groundedCircuit (vSourceAC 1 1)

(parallel (serial (resistor 1) (iCapacitor 0 1))

(iInductor 0 1))

Here the state variables are initially set to zero and all other parameters are set to

one. Note that the above code is a direct textual representation of how the components

are connected in the circuit. Unlike the Modelica model that specifies the noncausal

connections in terms of connections of time-varying variables, Hydra allows for defini-

tion of higher-order combinators that are capable of specifying noncausal connections

by connecting noncausal models directly.

It is trivial in Hydra to reuse the circuit components and model the modified circuit

that is depicted in Figure 2.6:

simpleCircuit2 :: SR ()

simpleCircuit2 =

groundedCircuit (vSourceAC 1 1)

(parallel (serial (resistor 1) (iCapacitor 0 1))

(serial (resistor 1) (iInductor 0 1)))

4.3 Higher-order Modelling with Collections of Mod-

els

We have already seen several higher-order models; for example, the serial , parallel and

groundedCircuit signal relations. This section considers more higher-order modelling

examples, but this time concentrating on signal relations that are parametrised on

collections of signal relations. In addition, this section puts an emphasis on how the

host, higher-order functional language can provide expressive facilities for higher-order,

noncausal modelling.

Let us define a higher-order signal relation that takes as an argument a list of signal

relations modelling two-pin electrical components and returns the signal relation that

models serial connection of the given electrical components. This would be useful to

model electronic transmission lines, for example.

55



Figure 4.5: Serial connection of electrical components.

serialise :: [SR (Pin,Pin)]→ SR (Pin,Pin)

serialise = foldr serial wire

The definition of the serialise signal relation begs for detailed explanation. The

foldr function is defined in the standard Haskell prelude and has the following type

signature and definition.

foldr :: (a → b → b)→ b → [a ]→ b

foldr z [ ] = z

foldr f z (x : xs) = f x (foldr f z xs)

The function takes as arguments a binary operator, a starting value that is typically

the right-identity of the binary operator, and a list. The foldr function folds the list

using the binary operator, from right to left:

foldr serial wire [sr1 , sr2 , ..., srn ] =

sr1 ‘serial ‘ (sr2 ‘serial ‘ ...(srn ‘serial ‘ wire)...)

Here the higher-order signal relation serial is in the role of a binary operator and

the wire signal relation is in the role of a starting value which is a right identity of the

binary operator. Figure 4.5 graphically demonstrates the result of this application of

the foldr function.

The wire signal relation models an electrical wire and is defined as follows.

wire :: SR (Pin,Pin)

wire = [rel | ((pi , pv), (ni , nv))→
$ twoPin $ �((pi , pv), (ni , nv), u)

u = 0

| ]

Just like other two-pin electrical components, the wire signal relation is modelled

by extending the twoPin signal relation with a suitable equation.

The wire signal relation is both left and right identity of the serial higher-order

signal relation as stated by the following equation and illustrated in Figure 4.6.
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= =sr srsr

Figure 4.6: The wire signal relation as a left and right identity of the serial higher-
order signal relation.

wire ‘serial ‘ sr = sr ‘serial ‘ wire = sr

The serial signal relation is associative:

sr1 ‘serial ‘ (sr2 ‘serial ‘ sr3 ) = (sr1 ‘serial ‘ sr2 ) ‘serial ‘ sr3

Here by the equality of the signal relations we mean that the signal relations

introduce equivalent constraints (i.e., one constraint implies the other and vice versa),

and not necessarily the same equations. Because the wire signal relation is both

left and right identity of the serial binary function and the serial signal relation is

associative, in the definition of the serialise signal relation we could also use the left

fold instead of the right fold.

Somewhat similarly to the serialise signal relation the higher-order signal relation

parallelise that takes as an argument a list of signal relations modelling two-pin elec-

trical components and returns the signal relation that models parallel connection of

the given electrical components can be defined as follows.

parallelise :: [SR (Pin,Pin)]→ SR (Pin,Pin)

parallelise = foldr parallel noWire

The noWire signal relation is defined as follows.

noWire :: SR (Pin,Pin)

noWire = [rel | ((pi , pv), (ni , nv))→
$ twoPin $ �((pi , pv), (ni , nv), u)

pi = 0

| ]

The noWire signal relation is both left and right identity of the parallel higher-order

signal relation as stated by the following equation and illustrated in Figure 4.7.

noWire ‘parallel ‘ sr = sr ‘parallel ‘ noWire = sr
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Figure 4.7: The noWire signal relation as a left and right identity of the parallel
higher-order signal relation.

The parallel signal relation is associative:

sr1 ‘parallel ‘ (sr2 ‘parallel ‘ sr3 ) = (sr1 ‘parallel ‘ sr2 ) ‘parallel ‘ sr3

Because the noWire signal relation is both left and right identity of the parallel

binary function and the parallel signal relation is associative, in the definition of the

parallelise signal relation we could also use the left fold instead of the right fold.

4.4 Structurally Dynamic Modelling

For a concrete example of structurally dynamic modelling in Hydra, let us model the

breaking-pendulum system described in Section 2.7. The system system has two modes

of operation. The differences between the two modes are sufficiently large that, for

example, Modelica does not support noncausal modelling of this system, as discussed

in Section 2.7.

The code that is given in Figure 4.8 shows how to model the two modes of the

pendulum in Hydra. The type Body denotes the state of the pendulum body; that is,

its position and velocity, where position and velocity both are 2-dimensional vectors

represented by pairs of reals. Each model is represented by a function that maps

the parameters of the model to a relation on signals. In the unbroken mode, the

parameters are the length of the rod l and the initial angle of deviation phi0 . In the

broken mode, the signal relation is parametrised on the initial state of the body. Once

again, note that the equations that are marked by the keyword init are initialisation

equations used to specify initial conditions.

To model a pendulum that breaks at some point, we need to create a composite

signal relation where the signal relation that models the dynamic behaviour of the

unbroken pendulum is replaced, at the point when it breaks, by the signal relation

modelling a free falling body. These two submodels must be suitably joined to ensure

the continuity of both the position and velocity of the body of the pendulum.
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type Pos = (R,R)
type Vel = (R,R)
type Body = (Pos ,Vel)

g :: R
g = 9.81

freeFall :: Body → SR Body
freeFall ((x0 , y0 ), (vx0 , vy0 )) = [rel | ((x , y), (vx , vy))→

init (x , y) = ($x0 $, $y0 $)
init (vx , vy) = ($vx0 $, $vy0 $)
(der x , der y) = (vx , vy)
(der vx , der vy) = (0,−$g$)
| ]

pendulum :: R→ R→ SR Body
pendulum l φ0 = [rel | ((x , y), (vx , vy))→

local φ

init φ = $ φ0 $
init der φ = 0
init vx = 0
init vy = 0

x = $ l $ ∗ sin φ
y = − $ l $ ∗ cos φ
(vx , vy) = (der x , der y)
der (der φ) + ($g / l$) ∗ sin φ = 0
| ]

Figure 4.8: Signal relations modelling the two modes of the pendulum.
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Figure 4.9: Plot showing how x and y coordinates of the body on the breaking
pendulum change over time.

To this end, the switch combinator is used:

breakingPendulum :: R→ R→ R→ SR Body

breakingPendulum t l phi0 =

switch (pendulum l phi0 ) [fun | λ → time − $t$ | ] (λb → freeFall b)

In this signal relation, the switch happens at an a priori specified point in time, but

a switching condition can be derived from an arbitrary time-varying entity. Note how

the succeeding signal relation (i.e., freeFall) is initialised so as to ensure the continuity

of the position and velocity as discussed above. The simulation results obtained by

the simulate function can be seen in Figure 4.9

In the breaking pendulum example the switch combinator was used to dynamically

add and remove signal variables and noncausal equations from the model. The switch

combinator can also be used when the number of equations and variables remain

unchanged during the simulation. The book by Cellier and Kofman [2006] gives one

such example: the half-wave rectifier circuit with an ideal diode and an in-line inductor

that is depicted in Figure 4.10.
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Figure 4.10: Half-wave rectifier circuit with an ideal diode and an in-line inductor.

The half-wave rectifier circuit can be modelled easily in languages like Modelica.

However, any attempt to simulate this model assuming fixed causality, as current

mainstream noncausal language implementations tend to, will fail as the causalised

model will lead to a division by zero when the switch is open: there simply is no one

fixed causality model that is valid both when the switch is open and closed.

One common solution to the division-by-zero problem is to avoid the ideal model

and opt for a leaky diode model instead. This works, but often leads to very stiff

equations. Thus, if an ideal model would suffice for the purpose at hand, that would

be preferable [Cellier and Kofman, 2006].

Let us model the half-wave rectifier circuit in Hydra. The following two signal rela-

tions model initially opened (ioDiode) and initially closed (icDiode) ideal diodes. Note

the use of the host language feature of mutual recursion in the following definitions

allowing for signal relations to switch into each other.

ioDiode :: SR (Pin,Pin)

ioDiode = switch nowire [fun | (( , pv), ( , nv))→ pv − nv | ] (λ → icDiode)

icDiode :: SR (Pin,Pin)

icDiode = switch wire [fun | ((pi , ), ( , )) → pi | ] (λ → ioDiode)
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Figure 4.11: Voltage across the capacitor in the half-wave rectifier circuit with in-line
inductor.

The switches are controlled by the polarity of the voltage and the current through

the component. Now we can assemble the half-wave rectified circuit into a single signal

relation using the higher-order connection combinators defined earlier in this chapter.

halfWaveRectifier :: SR ()

halfWaveRectifier =

groundedCircuit (vSourceAC 1 1)

(serialise [iInductor 0 1

, resistor 1

, icDiode

, parallel (iCapacitor 0 1) (resistor 1)

]

)

Partial simulation results of the halfWaveRectifier signal relation obtained by using

the simulate function are presented in Figure 4.11 and in Figure 4.12

Simulation of the full-wave rectifier circuit given in Figure 4.13 is more challenging

than simulating the half-wave rectifier [Nilsson and Giorgidze, 2010]. A key difficulty
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Figure 4.12: Current through the inductor in the half-wave rectifier circuit with
in-line inductor.

63



C

G

RS

D1

D2

D4

D3

Figure 4.13: Full-wave rectifier circuit with ideal diodes.

is that the circuit breaks down into two isolated halves when all diodes are open. The

lack of a ground reference for the left part means the system becomes under-determined

and it cannot be simulated.

However, a more detailed analysis reveals that this is as it should be as the model

is incomplete: for the model to make sense, there is further tacit modelling knowledge

that needs to be stated explicitly in the form of additional equations. If the diodes

are truly ideal, this means that they are also identical, which in turn implies that the

voltage drops over them are always going to be pairwise equal, even when they are

open. The model for the full circuit can be described along the lines we saw in the

previous section, except that two extra equations, stating the pairwise equality of the

voltages across the diodes, are needed. That is:

(dpv1 − dnv1) = (dpv3 − dnv3) (4.1)

(dpv2 − dnv2) = (dpv4 − dnv4) (4.2)
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However, adding Equation (4.1) and Equation (4.2) results in additional compli-

cations for simulation as the system now seemingly becomes over-determined when

some diodes are closed. It turns out, though, that the system is only trivially over-

determined; that is, the extra equations are equivalent to other equations in the system.

This is easy to see: when a diode is closed, there is an equation provided by the model

of the diode itself that states that the voltage across it is 0. If, for example, D1 and

D3 are closed, we have:

(dpv1 − dnv1) = 0 (4.3)

(dpv3 − dnv3) = 0 (4.4)

But, additionally, (dpv1 − dnv1) and (dpv3 − dnv3) are related by Equation 4.1 that

is provided by model of the overall circuit.

In this case, a simple symbolic simplification pass involving substitution of alge-

braic variables and constant folding suffices to eliminate the redundant equations in

the modes where the diodes are pairwise closed. Using Equation 4.3 and Equation 4.4,

Equation 4.1 can be simplified to the trivially satisfied equation 0 = 0 that then can

be eliminated. After this the model can be simulated without further issues. Note

that dynamic generation of equations followed by symbolic processing, as provided by

Hydra, is crucial to this approach to simulating ideal diodes. Studies to precisely char-

acterise in which circumstances can over determined systems of equations simplified

by eliminating the redundant equations still lie ahead.

The implementation of Hydra provides an extensible and configurable symbolic

processor. The symbolic processor that simplifies trivially over-determined equations

is provided with the implementation of Hydra and can be activated through the ex-

periment description passed to the simulate function (see Section 4.6 and Section 6.2

for details).

It should be pointed out that changes caused by an instance of a switch only

concern equations originating from that switch instance. All other equations remain

as they were. Thus, even though, in the case of ideal diodes, a circuit with n diodes

has up to 2n distinct structural configurations or modes, it is always entirely clear

which mode to move to after a switch; there is no need to search among the up to 2n

possibilities for a consistent successor mode.
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As a result, we have obtained a model of an ideal full-wave rectifier that is con-

structed in a modular way from individual, reusable components. The proper be-

haviour emerges from simply assembling the components, with just some minor addi-

tional guidance from the modeller in the form of a couple of extra equations. There

is no need for any heavyweight, auxiliary mechanisms, such as an explicit finite state

machine, to control how the model moves between structural configurations.

4.5 Unbounded Structurally Dynamic Modelling

The breaking pendulum, half-wave rectifier and full-wave rectifier examples feature

a priori bounded number modes of operation. In principle (with a suitable language

design and implementation) it is feasible to generate code for these modes of operation

prior to simulation. However, despite their simplicity, these are examples with which

mainstream noncausal languages such as Modelica struggle, as mentioned earlier.

In general, it is not possible to compile Hydra models prior to simulation. For

example, given a parametrised signal relation sr ′ :: R → SR R and a signal function

sf :: SF R R one can recursively define a signal relation sr that describes an overall

behaviour by “stringing together” the behaviours described by sr ′:

sr :: R→ SR R
sr x = switch (sr ′ x ) sf sr

In this case, because the number of instantiations of sr ′ in general cannot be

determined statically and because each instantiation can depend on the parameter in

arbitrarily complex ways, there is no way to generate all code prior to simulation.

Perhaps the example involving the sr signal relation is a bit abstract. In the

following we emphasise the same point by using a variation on the familiar bouncing-

ball example. Assuming elastic collision with the floor, the bouncing ball system can

be modelled in Hydra as follows.

bouncingBall :: Body → SR Body

bouncingBall b = switch (freeFall b)

[fun | (( , y), )→ y | ]
(λ(p, (vx , vy))→ bouncingBall (p, (vx ,−vy))

This example involves stringing of the bouncingBall signal relation. But even here,

in principle, it is possible to generate the code prior to simulation, because the active

equations always remain the same; that is, only the initial condition is changing.
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The following code models a variation of the bouncing ball example where the ball

breaks at every collision with the floor.

bouncingBall ′ :: Body → SR Body

bouncingBall ′ b = switch (freeFall b)

[fun | (( , y), )→ y | ]
(λ(p, v)→ divide (p, v))

divide :: Body → SR Body

divide ((x0 , y0 ), (vx0 , vy0 )) = [rel | ((x , y), (vx , vy))→
$ bouncingBall ′ ((x0 , y0 ), ( vx0 / 2, − vy0 / 2)) $ � ((x , y), (vx , vy))

local x ′ y ′ vx ′ vy ′

$ bouncingBall ′ ((x0 , y0 ), (−vx0 / 2, − vy0 / 2)) $ � ((x ′, y ′), (vx ′, vy ′))

| ]

The model assumes that the kinetic energy is not lost and the balls divide the initial

kinetic energy by bouncing in opposite directions. This is an example of an unbounded

structurally dynamic system where the number of modes cannot be determined prior

to simulation.

4.6 Simulation

We conclude this chapter with a brief description of how to simulate Hydra models,

including the ones that are described in this chapter. The Haskell-embedded imple-

mentation of Hydra features the following function:

simulate :: SR ()→ Experiment → IO ()

The simulate function takes two arguments. The first argument is the signal re-

lation that needs to be simulated. The second argument describes the experiment,

essentially a description of what needs to happen during the simulation. Using the

second argument the modeller can set the simulation starting and ending times, desired

time step, symbolic processor, numerical solver, or how to visualise the trajectories of

the constrained signals. The definition of the Experiment data type and the default

experiment description are given in Chapter 6.

For example, the simple circuit model can be simulated using the default experi-

ment description as follows.
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simulate simpleCircuit defaultExperiment

With the defaultExperiment parameter the simpleCircuit signal relation is simu-

lated for 10 seconds of simulation time starting from the time point of zero. The time

step is set to 0.001 and the trajectories of the constrained signals are printed to the

standard output in the gnuplot1 compatible format. The default numerical solver is

SUNDIALS [Hindmarsh et al., 2005], but users are allowed to provide their own sym-

bolic processors and numerical solvers. This and other implementation aspects are

described in detail in Chapter 6.

1http://www.gnuplot.info/
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Chapter 5

Definition of Hydra

This is a technical chapter giving a formal definition of the Hydra language. Note that

this chapter defines Hydra’s signal-level sublanguage. The functional-level sublanguage

is provided by Haskell. The definition of Haskell is given in the book by Peyton Jones

[2003].

The language definition is given in four steps. Firstly, we define Hydra’s lexical

structure and concrete syntax by using regular expression and BNF notations, re-

spectively. Secondly, we give Hydra’s untyped abstract syntax as a Haskell algebraic

data type (ADT) definition. Thirdly, we define Hydra’s typed abstract syntax as a

Haskell generalised algebraic data type (GADT) [Peyton Jones et al., 2006] definition

and give a translation from the untyped abstract syntax to the typed abstract syn-

tax. The typed representation fully embodies Hydra’s type system and can be seen

as a definition of Hydra’s type system in terms of the Haskell type system. In other

words, Hydra’s type system is embedded into Haskell’s type system. Finally, we give

ideal semantics of Hydra by giving meaning to the typed abstract syntax in terms of

second-order logic.

Note that the first three steps are concerned with the quasiquoted part of Hydra

(i.e., quasiquoted definitions of signal functions and signal relations). The fourth step,

which gives the ideal semantics, treats the full signal level of Hydra including the

switch combinator. This is because structurally dynamic signal relations are defined

using the switch combinator and not the quasiquotes.
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5.1 Concrete Syntax

The syntactic structure of Hydra is given in Figure 5.1, which uses BNF notation.

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production), | (union)

and ε (empty rule) belong to BNF notation. All other symbols are terminals1.

Identifiers 〈Ident 〉 are unquoted strings beginning with a letter, followed by any

combination of letters, digits, and the characters and ’, reserved words excluded.

The reserved words used in Hydra are init and local.

Integer literals 〈Int 〉 are nonempty sequences of digits. Double-precision float liter-

als 〈Double 〉 have the structure indicated by the regular expression 〈digit 〉+‘.’〈digit 〉+
(‘e’‘-’?〈digit 〉+)?; that is, two sequences of digits separated by a decimal point, op-

tionally followed by an unsigned or negative exponent.

HsExpr literals represent antiquoted Haskell expressions and are recognised by the

regular expression ‘$’(〈anychar 〉 − ‘$’) ∗ ‘$’

The symbols used in Hydra are given in Figure 5.2. In Hydra, single-line comments

begin with −− and multiple-line comments are enclosed with {− and −}.

5.2 Abstract Syntax

Hydra’s abstract syntax is given in Figure 5.3. The ADT definition is derived from

the concrete syntax defined in previous section. The representation is untyped; that

is, it allows for terms that are syntactically correct but not necessarily type correct.

The data type Ident is used to represent identifiers, specifically, signal variable

and built-in signal function identifiers. The data type HsExpr is used to represent

antiquoted Haskell expressions.

The data type SigRel is used to represent signal relations. The data type has a sin-

gle constructor. Given a pattern and a list of equations it constructs the corresponding

signal relation.

The data type SigFun is used to represent signal functions. The data type has a

single constructor. Given a pattern and a signal expression it constructs the corre-

sponding signal function.

The data type Pattern is used to represent patterns that bind signal variables.

There are four ways to construct a pattern. The constructor PatWild constructs the

1Note that in Chapter 3, Chapter 4 and Chapter 6 the terminal symbols −> and <> are typeset
as → and � respectively.
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〈SigRel 〉 ::= 〈Pattern 〉 −> { 〈ListEquation 〉 }

〈SigFun 〉 ::= 〈Pattern 〉 −> { 〈Expr 〉 }

〈Pattern 〉 ::=
| 〈Ident 〉
| ()

| ( 〈Pattern 〉 , 〈Pattern 〉 )
〈Equation 〉 ::= 〈Expr 〉 = 〈Expr 〉

| init 〈Expr 〉 = 〈Expr 〉
| local 〈Ident 〉
| 〈HsExpr 〉 <> 〈Expr 〉

〈Expr1 〉 ::= 〈Expr1 〉 + 〈Expr2 〉
| 〈Expr1 〉 − 〈Expr2 〉
| 〈Expr2 〉

〈Expr2 〉 ::= 〈Expr2 〉 / 〈Expr3 〉
| 〈Expr2 〉 * 〈Expr3 〉
| 〈Expr3 〉

〈Expr3 〉 ::= 〈Expr3 〉 ^ 〈Expr4 〉
| − 〈Expr4 〉
| 〈Expr4 〉

〈Expr4 〉 ::= 〈Expr4 〉 〈Expr5 〉
| 〈Expr5 〉

〈Expr5 〉 ::= 〈Ident 〉
| 〈HsExpr 〉
| 〈Integer 〉
| 〈Double 〉
| ()

| ( 〈Expr 〉 , 〈Expr 〉 )
| ( 〈Expr 〉 )

〈Expr 〉 ::= 〈Expr1 〉

〈ListEquation 〉 ::= ε
| 〈Equation 〉
| 〈Equation 〉 ; 〈ListEquation 〉

Figure 5.1: Syntactic structure of Hydra.
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Figure 5.2: Symbols used in Hydra.

data Ident = Ident String
data HsExpr = HsExpr String

data SigRel = SigRel Pattern [Equation ]
data SigFun = SigFun Pattern Expr

data Pattern = PatWild
| PatVar Ident
| PatUnit
| PatPair Pattern Pattern

data Equation = EquEqual Expr Expr
| EquInit Expr Expr
| EquLocal Ident
| EquSigRelApp HsExpr Expr

data Expr = ExprAdd Expr Expr
| ExprSub Expr Expr
| ExprDiv Expr Expr
| ExprMul Expr Expr
| ExprPow Expr Expr
| ExprNeg Expr
| ExprApp Expr Expr
| ExprVar Ident
| ExprAnti HsExpr
| ExprInteger Integer
| ExprDouble Double
| ExprUnit
| ExprPair Expr Expr

Figure 5.3: Abstract syntax of the quasi-quoted fragment of Hydra.
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wild card pattern. Given an identifier the constructor PatVar constructs a pattern that

binds the corresponding single signal variable. The constructor PatUnit constructs the

pattern that only matches unit signals. The constructor PatPair constructs a pattern

that matches the components of a signal carrying pairs or, due to the the isomorphism

between a signal of products and a product of signals, a pair of signals.

The data type Equation is used to represent noncausal equations and local signal

variable declarations. The constructor EquEqual constructs an equation that asserts

equality of two signal expressions. The constructor EquInit constructs an initialisation

equation that asserts equality of two signal expressions. The constructor EquLocal

constructs a local variable declaration. The constructor EquSigRelApp constructs a

signal relation application that applies the signal relation that is computed by the

antiquoted Haskell expression to the given signal expression.

The data type Expr is used to represent signal expressions. Common mathematical

operations, identifiers, antiquoted Haskell expressions, integer and real constants, unit

signals, and pairs of signals can be used to construct signal expressions (see Figure 5.3

for details).

5.3 Desugaring

Before we turn our attention to the translation of the untyped abstract syntax into

typed abstract syntax, we describe a translation that desugars all equations that assert

equality of signal pairs into equations asserting equality of scalar signals. This trans-

lation allows for a simpler typed representation as we show in the following section.

The translation is given in Figure 5.4 as a Haskell function working with the untyped

abstract syntax of Hydra.

5.4 Typed Abstract Syntax

The typed abstract syntax that embodies the type system of Hydra is given in Fig-

ure 5.5 as a GADT definition. The types Signal α and PrimSF α β are genuine

GADTs, while the data types SR α, SF α β and Equation are ADTs that use the

GADT notation for consistency. Note that the typed abstract syntax uses a technique

called higher-order abstract syntax (HOAS) [Pfenning and Elliot, 1988]. Specifically,

through the use of function-valued fields we use Haskell’s variable binding mechanism

to represent signal variable bindings in Hydra.
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J · K :: SigRel → SigRel
JSigRel pat eqsK = SigRel pat (concat [JeqKeq | eq ← eqs ])

J · Keq :: Equation → [Equation ]

JEquEqual (Pair e1 e2) (Pair e3 e4 )Keq =

JEquEqual e1 e3 Keq ++ JEquEqual e2 e4 Keq
JEquInit (Pair e1 e2) (Pair e3 e4 )Keq =

JEquInit e1 e3 Keq ++ JEquInit e2 e4 Keq
JeqKeq = [eq ]

Figure 5.4: Desugaring translation of Hydra.

5.5 From Untyped to Typed Abstract Syntax

The translation rules that transform a model in the untyped representation into the

corresponding model in the typed representation are given in Figure 5.6 and Figure 5.7.

These rules translate an untyped term into Haskell code that builds the corresponding

typed term. The pattern matching semantics in the left-hand side of the translation

rules are that of Haskell.

You may have noticed that there are no translation rules that generate the Switch

constructor. The functional-level combinator switch, which was introduced in Chap-

ter 4, generates the Switch constructor of the typed abstract syntax. Specifically, the

switch combinator is defined as follows.

switch :: SR a → SF a R→ (a → SR a)→ SR a

switch = Switch

The typed abstract syntax embodies Hydra’s type system features that were only

informally introduced in earlier sections of the thesis. Let us outline several key fea-

tures. The type of a signal relation is determined by its pattern. A type of a struc-

turally dynamic signal relation remains unchanged despite the structural changes.

Equality constraints, and signal relation and signal function applications must be well

typed.

Note that the type system says nothing about the solvability of signal relations.

It is possible to define a type correct signal relation that does not have a solution or

has more than one solution. It is the responsibility of the modeller to define a signal
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data SR α where
SR :: (Signal α→ [Equation ])→ SR α
Switch :: SR α→ SF α R→ (α→ SR α)→ SR α

data SF α β where
SF :: (Signal α→ Signal β)→ SF α β

data Equation where
Local :: (Signal R→ [Equation ])→ Equation
Equal :: Signal R→ Signal R→ Equation
Init :: Signal R→ Signal R→ Equation
App :: SR α→ Signal α→ Equation

data Signal α where
Unit :: Signal ()
Time :: Signal R
Const :: R→ Signal R
Pair :: Signal α→ Signal β → Signal (α, β)
PrimApp :: PrimSF α β → Signal α→ Signal β
Signal :: (R→ α)→ Signal α

data PrimSF α β where
Der :: PrimSF R R
Exp :: PrimSF R R
Sqrt :: PrimSF R R
Log :: PrimSF R R
Sin :: PrimSF R R
Tan :: PrimSF R R
Cos :: PrimSF R R
Asin :: PrimSF R R
Atan :: PrimSF R R
Acos :: PrimSF R R
Sinh :: PrimSF R R
Tanh :: PrimSF R R
Cosh :: PrimSF R R
Asinh :: PrimSF R R
Atanh :: PrimSF R R
Acosh :: PrimSF R R
Add :: PrimSF (R,R) R
Mul :: PrimSF (R,R) R
Div :: PrimSF (R,R) R
Pow :: PrimSF (R,R) R

Figure 5.5: Typed intermediate representation of Hydra.
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JSigRel pattern equationsKsr = SR (λJpatternKpat → JequationsKeqs)
JSigFun pattern expressionKsf = SF (λJpatternKpat → JexpressionKexp)

JPatWildKpat =

JPatVar (Ident s)Kpat = JsKhs
JPatUnitKpat = Unit

JPatPair pat1 pat2Kpat = Pair Jpat1Kpat Jpat2Kpat

J[ ]Keqs = [ ]

J(EquSigRelApp (HsExpr s) e) : eqsKeqs = (App JsKhs JeKexp) : JeqsKeqs
J(EquEqual e1 e2) : eqsKeqs = (Equal Je1Kexp Je2Kexp) : JeqsKeqs
J(EquInit e1 e2) : eqsKeqs = (Init Je1Kexp Je2Kexp) : JeqsKeqs
J(EquLocal (Ident s)) : eqsKeqs = [Local (λJsKhs → JeqsKeqs)]

Figure 5.6: Translation of untyped signal functions and signal relations into typed
signal functions and signal relations. The translation rule J · Khs takes a string in the
concrete syntax of Haskell and generates the corresponding Haskell expression. The
translation rules J · Kexp and J · Kident are given in Figure 5.7.

relation that has an unique solution. Recent work in the context of the FHM framework

has made progress in the direction of more expressive type systems incorporating

the solvability aspect of noncausal models [Nilsson, 2008, Capper and Nilsson, 2010].

Incorporation of the aforementioned work in Hydra is a subject of future research.

5.6 Ideal Semantics

A formal language definition has a number of advantages over an informal presen-

tation. A formal semantics does not leave room for ambiguity and allows different

implementers to implement the same language. In addition, a formally defined seman-

tics paves the way for proving useful statements about the language.

For conventional programming languages, the aim of the dynamic semantics is

typically to characterise the meaning of programs expressed in the language exactly;

for example, as a final result, a trace, or a set of possible results or traces. The

situation for languages for physical modelling is quite different: the model has a precise

mathematical meaning, but when trying to find out what this meaning is through
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JExprAnti (HsExpr s1)Kexp = Const Js1Khs
JExprVar (Ident s1)Kexp = Js1Kident
JExprAdd e1 e2Kexp = PrimApp Add (Pair Je1Kexp Je1Kexp)

JExprSub e1 e2Kexp = PrimApp Sub (Pair Je1Kexp Je1Kexp)

JExprDiv e1 e2Kexp = PrimApp Div (Pair Je1Kexp Je1Kexp)

JExprMul e1 e2Kexp = PrimApp Mul (Pair Je1Kexp Je1Kexp)

JExprPow e1 e2Kexp = PrimApp Pow (Pair Je1Kexp Je1Kexp)

JExprNeg e1Kexp = PrimApp Neg Je1Kexp
JExprApp (ExprAnti (HsExpr s)) eKexp = (case JsKhs of SF f → f ) JeKexp
JExprApp e1 e2Kexp = Je1Kexp Je2Kexp
JExprInteger i1Kexp = Const (fromIntegral i1)

JExprDouble d1Kexp = Const d1

JExprUnitKexp = Unit

JExprPair e1 e2Kexp = Pair Je1Kexp Je2Kexp

JIdent "time"Kident = Time
JIdent "der"Kident = PrimApp Der
JIdent "exp"Kident = PrimApp Exp
JIdent "sqrt"Kident = PrimApp Sqrt
JIdent "log"Kident = PrimApp Log
JIdent "sin"Kident = PrimApp Sin
JIdent "tan"Kident = PrimApp Tan
JIdent "cos"Kident = PrimApp Cos
JIdent "asin"Kident = PrimApp Asin
JIdent "atan"Kident = PrimApp Atan
JIdent "acos"Kident = PrimApp Acos
JIdent "sinh"Kident = PrimApp Sinh
JIdent "tanh"Kident = PrimApp Tanh
JIdent "cosh"Kident = PrimApp Cosh
JIdent "asinh"Kident = PrimApp Asinh
JIdent "atanh"Kident = PrimApp Atanh
JIdent "acosh"Kident = PrimApp Acosh
JIdent sKident = JsKhs

Figure 5.7: Translation of untyped signal expressions into typed signal expressions.
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numerical simulation, we can only ever hope to find an approximation to this meaning

up to some desired precision.

For example, consider the system of equations modelling the simple electrical circuit

given in Chapter 2. In the process of deriving the simulation code we introduced a

number of approximations. The continuous real numbers were approximated using

the double-precision machine floating-point numbers and the system of equations was

approximated using the Haskell code implementing the forward Euler method.

Implementations of noncausal modelling languages typically allow modellers to

choose floating-point representations (e.g., single or double precision), symbolic pro-

cessing methods and numerical simulation methods to be used during the simulation.

This amounts to allowing modellers to choose a combination of approximations prior

to simulation.

The fact that the implementations are only expected to approximate noncausal

models needs to be taken into account when defining a formal semantics for a non-

causal language. For example, definition of operational semantics [Plotkin, 2004] is

problematic as it is hard to account for the myriad of approximation combinations

that were outlined earlier. One option is to parameterise the operational semantics on

approximations. This is feasible, but leaves the bulk of operational details unspecified

defeating the purpose of an operational semantics.

For the reasons outlined above, and because the concept of first-class models, which

allows for higher-order and structurally dynamic modelling, is not predicated on partic-

ular approximations used during simulation, we opted to use ideal semantics obtained

by translating noncausal models into second-order logic predicates for formally defin-

ing the Hydra language. By referring to the semantics as ideal, we emphasise that

concrete implementations are only expected to approximate the semantics.

The primary goal of the semantics that is given in this section is to precisely

and concisely communicate Hydra’s definition to modelling language designers and

implementers, in order to facilitate incorporation of Hydra’s key features in other

noncausal modelling languages.

Although not considered in this thesis, the ideal semantics of Hydra can also be

used to verify concrete implementations of Hydra with certain approximations. In

addition, the ideal semantics can be used to check whether concrete simulation results

correspond to the source-level noncausal model, again under certain approximation;

for example, by using the absolute error tolerance of the numerical simulation. These

two applications of the ideal semantics are subjects of future work.
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The ideal semantics of Hydra are given in Figure 5.8 and in Figure 5.9. Note that

the translation targets are the same as the conceptual definitions of signals, signal

functions, and signal relations given in Chapter 4. Specifically, signal relations are

mapped to functions from starting time, stopping time and signal to second-order

logic propositions, signal functions are mapped to functions from signal to signal, and

signals are mapped to function from time to value. Time is represented by the real

number.

A signal relation translation may involve existentially quantified function symbols

(i.e., signals). This is what makes the target predicates second-order logic predicates

(i.e., not expressible in first-order logic). In other words, solving of a signal relation

can be understood as proving of existence of signals that satisfy the given constraints

(see Figure 5.8 for details). Thus the simulator can be seen as a constraint solver that

tries to solve the translations of Hydra models.

It is interesting to note that for a model of an unbounded structurally dynamic

system the semantics gives rise to the predicate in infinitary second-order logic [Karp,

1964]. The typed abstract syntax representation of such model would be infinite

because of the switches that generate unbounded number of modes, and consequently

the ideal semantics would map such infinite representation to the predicate with infinite

chain of disjunctions. This is not to say that it is not possible to solve such constraints.

Quite the opposite, in Section 4.5 we modelled and simulated one such system. If in

a finite period of time the model switches finite number of times it is possible to

simulate it, assuming of course that individual modes of operations can be solved in

the given period. Interestingly, in the context of ideal semantics of FRP languages,

similar requirements have been proposed by Wan and Hudak [2000] and Sculthorpe

and Nilsson [2011] for characterising when an unbounded structurally dynamic causal

model can be simulated.

To my knowledge, Hydra is the first language that features a formal specification

capturing both continuous and discrete aspects of a noncausal language that supports

unbounded structural dynamism. Although detailed studies of the ideal semantics and

its properties still lie ahead, we think that the semantics given in this section provides

a good starting point for such an undertaking.
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JSR f Ksr = λt1 t2 s → Jf Kf1 t1 t2 s

JSwitch sr sf f Ksr = λt1 t2 s →
(JsrKsr t1 t2 s) ∧ (∀ t ∈ R. t1 < t 6 t2 ⇒ ¬ (Jsf Kzc s t))
∨

(∃ te ∈ R. (t1 < te 6 t2)
∧

(JsrKsr t1 te s)
∧

(Jsf Kzc s te)
∧

(∀ t ∈ R. t1 < t < te ⇒ ¬ (Jsf Kzc s t))
∧

(Jf Kf2 te t2 s))

JSF sf Ksf = sf

J , , , [ ]Keqs = >
Ji , t1, t2, (Local f ) : eqsKeqs = (∃ si ∈ R→ R. Jf Kf3 i t1 t2 si eqs)

Ji , t1, t2, (App sr s) : eqsKeqs = (JsrKsr t1 t2 JsKsig) ∧ Ji , t1, t2, eqsKeqs
Ji , t1, t2, (Equal s1 s2) : eqsKeqs =

(∀ t ∈ R. (t > t1 ∧ t 6 t2)⇒ Js1Ksig t ≡ Js2Ksig t) ∧ Ji , t1, t2, eqsKeqs
Ji , t1, t2, (Init s1 s2) : eqsKeqs =

(∀ t ∈ R. (t ≡ t1) ⇒ Js1Ksig t ≡ Js2Ksig t) ∧ Ji , t1, t2, eqsKeqs

Jsf Kzc = λs t → J(Jsf Ksf (Signal s))Ksig t ≡ 0 ∧ d−
dt

J(Jsf Ksf (Signal s))Ksig t 6≡ 0

Jf Kf1 = λ t1 t2 s → J(0, t1, t2, f (Signal s))Keqs
Jf Kf2 = λ t1 t2 s → Jf (s t1)Ksr
Jf Kf3 = λi t1 t2 s eqs → Ji + 1, t1, t2, f (Signal s) ++ eqsKeqs

Figure 5.8: Translation of signal relations, signal functions and equations. Note that,
d−
dt

denotes left derivative.
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JUnitKsig = λ → ()

JTimeKsig = λt → t

JConst dKsig = λ → d

JPair s1 s2Ksig = λt → (Js1Ksig t , Js2Ksig t)

JPrimApp Der sKsig = λt → d
dt

JsKsig t

JPrimApp Exp sKsig = λt → exp (JsKsig t)

JPrimApp Sqrt sKsig = λt → sqrt (JsKsig t)

JPrimApp Log sKsig = λt → log (JsKsig t)

JPrimApp Sin sKsig = λt → sin (JsKsig t)

JPrimApp Tan sKsig = λt → tan (JsKsig t)

JPrimApp Cos sKsig = λt → cos (JsKsig t)

JPrimApp Asin sKsig = λt → asin (JsKsig t)

JPrimApp Atan sKsig = λt → atan (JsKsig t)

JPrimApp Acos sKsig = λt → acos (JsKsig t)

JPrimApp Sinh sKsig = λt → sinh (JsKsig t)

JPrimApp Tanh sKsig = λt → tanh (JsKsig t)

JPrimApp Cosh sKsig = λt → cosh (JsKsig t)

JPrimApp Asinh sKsig = λt → asinh (JsKsig t)

JPrimApp Atanh sKsig = λt → atanh (JsKsig t)

JPrimApp Acosh sKsig = λt → acosh (JsKsig t)

JPrimApp Add (Pair s1 s2)Ksig = λt → (Js1Ksig t) + (Js2Ksig t)

JPrimApp Mul (Pair s1 s2)Ksig = λt → (Js1Ksig t) ∗ (Js2Ksig t)

JPrimApp Div (Pair s1 s2)Ksig = λt → (Js1Ksig t) / (Js2Ksig t)

JPrimApp Pow (Pair s1 s2)Ksig = λt → (Js1Ksig t) ↑ (Js2Ksig t)

JSignal sKsig = s

Figure 5.9: Translation of signals.
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Chapter 6

Implementation of Hydra

This chapter describes how Hydra is embedded in Haskell and how embedded non-

causal models are simulated. Performance of the simulator is evaluated by focussing

on the implementation aspects that are absent from mainstream noncausal modelling

language implementations (i.e., runtime symbolic processing and JIT compilation).

6.1 Embedding

Hydra is implemented as a Haskell embedded DSL. In this section we give a detailed

description of how Hydra is embedded in the host language Haskell.

We use quasiquoting, a recent Haskell extension implemented in GHC [Mainland,

2007], to provide a convenient surface (i.e., concrete) syntax for Hydra. The imple-

mentation uses quasiquoting to generate the typed representation of Hydra models

from strings in the concrete syntax. An opening quasiquote specifies a function (a

so-called quasiquoter) that performs the aforementioned transformation. In GHC, a

quasiquoter generates Haskell code using Template Haskell [Sheard and Peyton Jones,

2002], a compile-time meta-programming facility implemented in GHC.

GHC executes quasiquoters at Haskell compile time, before type checking. As the

typed abstract syntax of Hydra fully embodies the type system of Hydra, we effectively

delegate the task of type checking to the host language type checker. This approach

reduces the language specification and implementation effort by reusing the host lan-

guage type system and the host language type checker. However, the disadvantage of

this approach is the fact that type-related error messages are not phrased in domain-

specific terms, but rather in terms of the Haskell encoding of the domain-specific types.
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As we have seen in Chapter 5, the type system of Hydra provides the following

guarantees: a type of a structurally dynamic signal relation remains unchanged despite

the structural changes; arithmetic expressions, equations, signal relation applications

and signal function applications are well typed. A type checked Hydra program may

still fail at runtime for kinds of errors that are not checked by the type system. Specif-

ically, a runtime error will be raised in the following three circumstances: the symbolic

processor discovers that the number of equations and the number of variables for the

active mode are not equal, the numerical solver can not solve the system of equations,

and the numerical solver triggers a numerical exception such as division by zero.

The implementation of Hydra provides two quasiquoters: the rel quasiquoter for

generating typed signal relations, and the fun quasiquoter for generating typed signal

functions. The implementation of the quasiquoters is broken down into three stages:

parsing, desugaring, and translation into the typed abstract syntax.

Firstly, the string in the concrete syntax of Hydra is parsed and the correspond-

ing untyped representation is generated as an abstract syntax tree (AST). The BNF

Converter (BNFC), a compiler front-end generator from a labelled BNF grammar [Pel-

lauer et al., 2004], is used to generate the parser and the AST data type. The labelled

BNF grammar of Hydra is given in Figure 6.1. The generated AST data type and the

syntax that the generated parser implements are exactly the same as given in the lan-

guage definition in Chapter 5. In addition, we use BNFC to generate Hydra’s layout

resolver allowing for a list of equations in rel quasiquotes to be constructed without

curly braces and semicolons. The layout rules are the same as for Haskell.

Secondly, the untyped representation is desugared exactly as it is presented in the

language definition (see Chapter 5).

Finally, the desugared untyped representation is translated into the typed represen-

tation. This step implements the corresponding translation rules given in Chapter 5.

Note that the translation rules generate Haskell code. This is implemented by using

the Template Haskell facility of GHC.

We illustrate the quasiquoting process by using a signal relation that models a

parametrised van der Pol oscillator. The oscillator model is given in Figure 6.2. After

the parsing stage the quasiquoted signal relation is turned into the AST that is given

in Figure 6.3. After the desugaring stage we get the AST that is given in Figure 6.4.

After translation into the typed representation we get the typed AST that is given in

Figure 6.5.
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entrypoints SigRel, SigFun;

SigRel. SigRel ::= Pattern "->" "{" [Equation] "}" ;

SigFun. SigFun ::= Pattern "->" "{" Expr "}" ;

PatWild. Pattern ::= "_" ;

PatVar. Pattern ::= Ident ;

PatUnit. Pattern ::= "()" ;

PatPair. Pattern ::= "(" Pattern "," Pattern ")" ;

EquEqual. Equation ::= Expr "=" Expr ;

EquInit. Equation ::= "init" Expr "=" Expr ;

EquLocal. Equation ::= "local" Ident;

EquSigRelApp. Equation ::= HsExpr "<>" Expr ;

ExprAdd. Expr1 ::= Expr1 "+" Expr2 ;

ExprSub. Expr1 ::= Expr1 "-" Expr2 ;

ExprDiv. Expr2 ::= Expr2 "/" Expr3 ;

ExprMul. Expr2 ::= Expr2 "*" Expr3 ;

ExprPow. Expr3 ::= Expr3 "^" Expr4 ;

ExprNeg. Expr3 ::= "-" Expr4 ;

ExprApp. Expr4 ::= Expr4 Expr5 ;

ExprVar. Expr5 ::= Ident ;

ExprAnti. Expr5 ::= HsExpr ;

ExprInteger. Expr5 ::= Integer ;

ExprDouble. Expr5 ::= Double ;

ExprUnit. Expr5 ::= "()" ;

ExprPair. Expr5 ::= "(" Expr "," Expr ")" ;

_. Expr ::= Expr1 ;

_. Expr1 ::= Expr2 ;

_. Expr2 ::= Expr3 ;

_. Expr3 ::= Expr4 ;

_. Expr4 ::= Expr5 ;

_. Expr5 ::= "(" Expr ")" ;

separator Equation ";" ;

comment "--" ;

comment "{-" "-}" ;

token HsExpr (’$’ (char - ’$’)* ’$’) ;

layout "->" ;

Figure 6.1: Labelled BNF grammar of Hydra. This labelled BNF grammar is used
to generate Hydra’s parser, untyped abstract syntax and layout resolver.
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vanDerPol :: R→ SR ()
vanDerPol µ = [rel | ()→

local x y
init (x , y) = (1, 1)
der x = y
der y = − x + $µ $ ∗(1− x ∗ x ) ∗ y
| ]

Figure 6.2: Signal relation modelling parametrised van der Pol oscillator.

SigRel PatUnit
[EquLocal (Ident "x") [Ident "y" ]
,EquInit (ExprPair (ExprVar (Ident "x")) (ExprVar (Ident "y")))

(ExprPair (ExprInteger 1) (ExprInteger 1))
,EquEqual (ExprApp (ExprVar (Ident "der")) (ExprVar (Ident "x")))

(ExprVar (Ident "y"))
,EquEqual (ExprApp (ExprVar (Ident "der")) (ExprVar (Ident "y")))

(ExprAdd (ExprNeg (ExprVar (Ident "x")))
(ExprMul (ExprMul (ExprAnti (HsExpr "$mu$"))

(ExprSub (ExprInteger 1)
(ExprMul
(ExprVar (Ident "x"))
(ExprVar (Ident "x")))))

(ExprVar (Ident "x"))))
]

Figure 6.3: Untyped abstract syntax tree representing the vanDerPol signal relation.
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SigRel PatUnit
[EquLocal (Ident "x") [ ]
,EquLocal (Ident "y") [ ]
,EquInit (ExprVar (Ident "x")) (ExprInteger 1)
,EquInit (ExprVar (Ident "y")) (ExprInteger 1)
,EquEqual (ExprApp (ExprVar (Ident "der")) (ExprVar (Ident "x")))

(ExprVar (Ident "y"))
,EquEqual (ExprApp (ExprVar (Ident "der")) (ExprVar (Ident "y")))

(ExprAdd (ExprNeg (ExprVar (Ident "x")))
(ExprMul (ExprMul (ExprAnti (HsExpr "$mu$"))

(ExprSub (ExprInteger 1)
(ExprMul
(ExprVar (Ident "x"))
(ExprVar (Ident "x")))))

(ExprVar (Ident "x"))))

]

Figure 6.4: Desugared, untyped abstract syntax tree representing the vanDerPol
signal relation.

SR (λ()→
[Local (λx →

[Local (λy →
[ Init x (Const 1.0)
, Init y (Const 1.0)
,Equal (PrimApp Der x ) y
,Equal (PrimApp Der y)

(PrimApp
Add
(Pair (PrimApp Neg x )

(PrimApp
Mul
(Pair (PrimApp

Mul
(Pair (Const µ)

(PrimApp
Sub
(Pair (Const 1.0)

(PrimApp Mul (Pair x x )))))))
y)))

])])])

Figure 6.5: Typed abstract syntax tree representing the vanDerPol signal relation.
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Let us briefly overview the typed abstract syntax used in the implementation of

Hydra. This is to highlight a minor difference from the typed abstract syntax pre-

sented in the language definition and to draw the reader’s attention to the mixed-level

embedding techniques used in the implementation.

The typed abstract syntax allows for two ways to form a signal relation: either

from equations that constrain a given signal, or by temporal composition of two signal

relations:

data SR a where

SR :: (Signal a → [Equation ])→ SR a

Switch :: SR a → SF a R→ (a → SR a)→ SR a

The constructor SR forms a signal relation from a function that takes a signal

and returns a list of equations constraining the given signal. This list of equations

constitutes a system of DAEs that defines the signal relation by expressing constraints

on the signal. The system of equations is not necessarily a static one as the equations

may refer to signal relations that contain switches.

The switch combinator, which was introduced in Chapter 4, forms a signal relation

by temporal composition of two signal relations. Internally, in the implementation of

Hydra, such a temporal composition is represented by a signal relation formed by the

Switch constructor:

switch :: SR a → SF a R→ (a → SR a)→ SR a

switch = Switch

Recall that (see Section 3.2), in the implementation of Hydra, the type R is a

type synonym of Double, which is a standard double-precision floating-point type of

Haskell.

There are four kinds of equations:

data Equation where

Local :: (Signal R→ [Equation ])→ Equation

Equal :: Signal R→ Signal R→ Equation

Init :: Signal R→ Signal R→ Equation

App :: SR a → Signal a → Equation

The Local constructor forms equations that merely introduce local signals. As it is

evident from the language definition (see Section 5.6), such signals can be constrained
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only by the equations that are returned by the function that is the first argument of the

Local constructor. In contrast, equation generating functions in the SR constructor

are allowed to be passed a signal that is constrained elsewhere. As we will see later in

this chapter, this distinction is enforced by the language implementation.

Initialisation equations, formed by the Init constructor, state initial conditions.

They are only in force when a signal relation instance first becomes active.

Equations formed by the Equal constructor are basic equations imposing the con-

straint that the valuations of the two signals have to be equal for as long as the signal

relation instance that contains the equation is active.

The fourth kind of equation is signal relation application, App; that is, an equation

such as sr � (x , y + 2). The application constrains the given signals by the equations

defined by the signal relation.

The following code defines the typed representation of signals used in the imple-

mentation of Hydra:

data Signal a where

Unit :: Signal ()

Time :: Signal R
Const :: R→ Signal R
Pair :: Signal a → Signal b → Signal (a, b)

PrimApp :: PrimSF a b → Signal a → Signal b

Var :: Integer → Signal R

As you can see, this data type definition replaces the Signal constructor featured

in the language definition (see Chapter 5) with the Var constructor. In the imple-

mentation, instead of representing signals that need to be solved as functions from

time to values we represent them as signal variables whose approximated values will

be determined by the numerical solver.

The Var constructor is not used at the stage of quasiquoting. Instead, the con-

structor is used later at the stage of runtime symbolic processing to instantiate each

local signal variable to a distinct signal variable by using the constructor’s Integer

field. This is similar to the usage of the Signal constructor in the language definition

in Chapter 5. There, the Signal constructor is not used in the first three steps of the

definition. It is only used in the ideal semantics.
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The implementation of Hydra supports the same set of primitive functions as de-

fined in the language definition. Hence, in the implementation we use the same PrimSF

data type as given in the language definition.

The implementation of Hydra uses a mixture of shallow and deep techniques of

embedding. The function-valued fields in the SR, Switch, Local and App constructors

correspond to the shallow part of the embedding. The rest of the data constructors,

namely, Equal , Init , and all constructors of the Signal data type correspond to the

deep part of the embedding, providing an explicit representation of language terms

for further symbolic processing and ultimately compilation. As we will see in more

detail later in this chapter, the continuous behaviour of each mode of operation can be

described as a flat list of equations where each equation is constructed, either, by the

Init constructor or by the Equal constructor. It is this representation that allows for

generation of efficient simulation code. This combination of the two embedding tech-

niques allowed us to leverage shallow embedding for high-level aspects of the embedded

language, such as equation generation and temporal composition, and deep embedding

for low-level aspects of the embedded language, such as generation of simulation code

for efficiency.

6.2 Simulation

In this section we describe how iteratively staged Hydra models are simulated. The

process is conceptually divided into three stages as illustrated in Figure 6.6. In the

first stage, a signal relation is flattened and subsequently transformed into a math-

ematical representation suitable for numerical simulation. In the second stage, this

representation is JIT compiled into efficient machine code. In the third stage, the

compiled code is passed to a numerical solver that simulates the system until the end

of simulation or an event occurrence. In the case of an event occurrence, the process

is repeated from the first stage by starting the new iteration.

Before we describe the three stages of the simulation in detail, let us briefly overview

a function that performs these three stages. The simulator performs the aforemen-

tioned three stages iteratively at each structural change. A function that performs

simulation has the following type signature:

simulate :: SR ()→ Experiment → IO ()
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Figure 6.6: Execution model of Hydra.

The function takes a signal relation and an experiment description and simulates

the system. The Experiment data type is defined in Figure 6.7. The timeStart field

specifies the simulation starting time. The timeStop field specifies the simulation stop-

ping time. The timeStep field specifies the simulation time step. The symbolicProcessor

field specifies the simulator’s runtime symbolic processor. The numericalSolver field

specifies the simulator’s numerical solver. The trajectoryVisualiser field specifies how

to visualise the simulation results (i.e., change of signal values over time). The data

type definitions for ActiveModel, NumericalSover and TrajectoryVisualiser are given

later in this chapter.

The implementation of Hydra provides the default experiment configuration that

is given in Figure 6.8. Note that the last three fields of the experiment description

record are expected to be modified by expert users willing to provide their own runtime

symbolic processors, numerical solvers, or trajectory visualisers. The behaviour of the

defaultSymbolicProcessor , defaultNumericalSolver and defaultTrajectoryVisualiser are

described in detail later in this chapter.
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data Experiment = Experiment {
timeStart :: R
, timeStop :: R
, timeStep :: R
, symbolicProcessor :: ActiveModel → ActiveModel
, numericalSolver :: NumericalSolver
, trajectoryVisualiser :: TrajectoryVisualiser
}

Figure 6.7: Data type for experiment description.

defaultExperiment :: Experiment
defaultExperiment = Experiment {

timeStart = 0
, timeStop = 10
, timeStep = 0.001
, symbolicProcessor = defaultSymbolicProcessor
, numericalSolver = defaultNumericalSolver
, trajectoryVisualiser = defaultTrajectoryVisualiser
}

Figure 6.8: Default experiment description.
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6.3 Symbolic Processing

In this section we describe the first stage performed by the simulator: symbolic pro-

cessing. A symbolic processor is a function from an active model to an active model.

The active model data type that is used in the implementation of Hydra is given in

Figure 6.9. The active model record has five fields.

The model field stores the currently active top-level signal relation. At the start

of the simulation, the simulate function binds this field to the result of applying its

signal relation argument of type SR () to the Unit signal. In other words, the model

field contains currently active system of hierarchical equations that contains equality

constrains, signal relation applications and temporal compositions.

The equations field is for a flat list of equations that describe an active mode

of operation. By flat we mean that the list of equations only contain Init and Equal

equations. A detailed description of the flattening process is given later in this section.

At the start of the simulation, the simulate function places an empty list in this field.

The events field is for a list of zero-crossing signal expressions defining the event

occurrences. Recall the type signature of the switch combinator given in Section 6.1.

A signal function that detects events returns a real valued zero-crossing signal.

At the start of the simulation, the simulate function places an empty list in the

events field. After the first iteration of symbolic processing, the simulator places the

list of zero-crossing signals defined in the first mode of operation in the events field of

the active model. Once the numerical solver, during the simulation of the first mode,

detects that one or more signals have crossed zero the simulator deletes those signals

from the events field that have not crossed zero. The updated events field is then

used by the event handler to identify which events have occurred and to perform cor-

responding structural reconfigurations computing the next mode of operation. Before

the simulation continues, the events field is populated with the zero-crossing signals

that are active in the new mode of operation.

The time field is for current time. Initially the simulator places the starting time

given in the experiment description in this field. The time field is modified at each

structural change with the time of an event occurrence.

The instants field is for storing instantaneous values of signals. The simulator stores

instantaneous values of active signals at each structural change. The instantaneous

real values are stored as an array of pairs of reals. The first field is for storing the
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data ActiveModel = ActiveModel {
model :: [Equation ]
, equations :: [Equation ]
, events :: [Signal R ]
, time :: R
, instants :: Array Integer (R,R)
}

Figure 6.9: Data type for active models.

instantaneous signal values, while the second field is for storing the instantaneous

values of signal differentials.

The task of the symbolic processor is to handle events by modifying the model field

of the active model, to generate a flat list of events that may occur in the active mode

of operation by updating the events field of the active model, and to generate the flat

list of equations describing the active mode of operation by updating the equations

field of the active model. The implementation of Hydra provides the default symbolic

processor that is defined as follows.

defaultSymbolicProcessor :: ActiveModel → ActiveModel

defaultSymbolicProcessor = flattenEquations ◦ flattenEvents ◦ handleEvents

The default symbolic processor is defined as a composition of three symbolic pro-

cessing steps. The first step handles occurred events by modifying the model field of

the active model. The event handler is defined in Figure 6.10. The second step gen-

erates a list of signal expressions representing the list of possible events in the active

mode of operation as defined in Figure 6.11. Note that this step involves evaluation of

the instantaneous signal values by using the J · Ksig function. The J · Ksig function is de-

fined in Figure 6.12. The third step flattens the hierarchical system of equations placed

in the model field of the active model into the equations field of the active model. The

flat list only contains Init and Equal equations. The Equal equations define the DAE

that describes the active mode of operation. The Init equations describe the initial

conditions for the DAE. The flattening transformation is given in Figure 6.13.

Each of the three steps of the default symbolic processor has a compact definition,

especially, the flattenEquations function. To my knowledge, this is the shortest formal

and executable definition of the flattening process for a noncausal modelling language.
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handleEvents :: ActiveModel → ActiveModel
handleEvents st = st {model = J(st , events st ,model st)Keqs }

J · Keqs :: (ActiveModel , [Signal R ], [Equation ])→ [Equation ]

J( , , [ ])Keqs = [ ]

J(st , evs , (Equal ) : eqs)Keqs = eq : J(st , evs , eqs)Keqs
J(st , evs , (Init ) : eqs)Keqs = J(st , evs , eqs)Keqs
J(st , evs , (Local f ) : eqs)Keqs =

Local (λs → J(st , evs , f s)Keqs) : J(st , evs , eqs)Keqs
J(st , evs , (App (SR sr) s1 f ) : eqs)Keqs =

App (SR (λs2 → J(st , evs , f s2)Keqs)) s1 : J(st , evs , eqs)Keqs
J(st , evs , (App (Switch sr (SF sf ) f ) s) : eqs)Keqs =

if elem (sf s) evs
then App (f J(time st , instants st , s)Ksig) s : J(st , evs , eqs)Keqs
else App (Switch (SR (λ → J(st , evs , [App sr s ])Keqs)) (SF sf ) f ) s

: J(st , evs , eqs)Keqs

Figure 6.10: Function that handles events.

flattenEvents :: ActiveModel → ActiveModel
flattenEvents st = st {events = J(0, st {events = [ ]},model st)Keqs }

J · Keqs :: (Integer ,ActiveModel , [Equation ])→ ActiveModel

J( , st , [ ])Keqs = st

J(i , st , (Local f ) : eqs)Keqs = J(i + 1, st , f (Var i) ++ eqs)Keqs
J(i , st , (Equal ) : eqs)Keqs = J(i , st , eqs)Keqs
J(i , st , (Init ) : eqs)Keqs = J(i , st , eqs)Keqs
J(i , st , (App (SR sr) s) : eqs)Keqs = J(i , st , sr s ++ eqs)Keqs
J(i , st , (App (Switch sr (SF sf ) ) s) : eqs)Keqs =

J(i , st {events = (sf s) : (events st)}, (App sr s) : eqs)Keqs

Figure 6.11: Function that generates the flat list of events that may occur in the
active mode of operation.
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J · Ksig :: (R,Array Integer (R,R), Signal a)→ a

J( , ,Unit)Ksig = ()

J(t , ,Time)Ksig = t

J( , ,Const c)Ksig = c

J( , v ,Var i)Ksig = fst (v ! i)

J(t , v ,Pair e1 e2)Ksig = (J(t , v , e1)Ksig , J(t , v , e2)Ksig)

J( , v ,PrimApp Der (Var i))Ksig = snd (v ! i)

J(t , v ,PrimApp sf e)Ksig = Jsf Ksf J(t , v , e)Ksig

J · Ksf :: PrimSF a b → (a → b)

JExpKsf = exp

JSqrtKsf = sqrt

JLogKsf = log

JSinKsf = sin

JTanKsf = tan

JCosKsf = cos

JAsinKsf = asin

JAtanKsf = atan

JAcosKsf = acos

JSinhKsf = sinh

JTanhKsf = tanh

JCoshKsf = cosh

JAsinhKsf = asinh

JAtanhKsf = atanh

JAcoshKsf = acosh

JAddKsf = uncurry (+)

JMulKsf = uncurry (∗)
JDivKsf = uncurry (/)

JPowKsf = uncurry (∗∗)

Figure 6.12: Functions that evaluate instantaneous signal values.
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flattenEquations :: ActiveModel → ActiveModel
flattenEquations st = st {equations = J(0,model st)Keqs }

J · Keqs :: (Integer , [Equation ])→ [Equation ]

J( , [ ])Keqs = [ ]

J(i , (App (SR sr) s) : eqs)Keqs = J(i , sr s ++ eqs)Keqs
J(i , (App (Switch sr ) s) : eqs)Keqs = J(i , (App sr s) : eqs)Keqs
J(i , (Local f ) : eqs)Keqs = J(i + 1, f (Var i) ++ eqs)Keqs
J(i , (Equal s1 s2) : eqs)Keqs = (Equal s1 s2) : J(i , eqs)Keqs
J(i , (Init s1 s2) : eqs)Keqs = (Init s1 s2) : J(i , eqs)Keqs

Figure 6.13: Functions that flatten hierarchical systems of equations.

This is partly due to the simple abstract syntax and utilisation of shallow embedding

techniques, specifically, embedded functions in the SR and Switch constructors.

The default symbolic processor that is described in this section can be extended

by modellers. This extensibility is especially useful for providing further symbolic

processing steps that operate on flat systems of equations. For example, the default

symbolic processor does not implement an index reduction transformation [Cellier

and Kofman, 2006]. Index reduction transformations minimise algebraic dependencies

between equations involved in flat systems of DAEs. This allows numerical solvers to

more efficiently simulate DAEs [Brenan et al., 1996]. An overview of index reduction

algorithms is given in the book by Cellier and Kofman [2006]. One of those algorithms

can be used to extend the default symbolic processor by introducing an index reduction

step after the flattenEquations step.

As an example of a symbolic processor extension the implementation of Hydra

provides a processor that handles higher-order derivatives and derivatives of complex

signal expressions (i.e., not just signal variables). Equations that involve higher-order

derivatives are translated into equivalent set of equations involving only first-order

derivatives. Derivatives of complex signal expressions are simplified using symbolic

differentiation.
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6.4 Just-in-time Compilation

Mathematically the end result of the stage of symbolic processing is the following list

of equations:

i(
d~x

dt
, ~x, ~y, t) = ~ri (6.1)

f(
d~x

dt
, ~x, ~y, t) = ~rf (6.2)

e(
d~x

dt
, ~x, ~y, t) = ~re (6.3)

Here, ~x is a vector of differential variables, ~y is a vector of algebraic variables, t

is time, ~ri is a residual vector of initialisation equations, ~rf is a residual vector of

differential algebraic equations, and ~re is a vector of zero-crossing signal values. The

aforementioned vectors are signals; that is, time-varying vectors.

Equation 6.1 corresponds to the Init equations that are placed in the equations

field of the active model and determines the initial conditions for Equation 6.2; that

is, the values of d~x
dt

,~x and ~y at the starting time of the active mode of operation.

Equation 6.2 corresponds to the Equal equations that are placed in the equations field

of the active model, and thus is the main DAE of the system that is integrated over

time starting from the initial conditions. Equation 6.3 corresponds to the zero-crossing

signals placed in the events field of the active model and specifies event conditions.

The task of a DAE solver is to find time varying valuations of ~x and ~y such that

the residual vectors are zero. In addition, a DAE solver is required to detect points in

time when the vector ~re changes and report it as an event occurrence.

Because it is not always possible to turn implicit equations into causal explicit ones,

that is, to completely causalise them [Brenan et al., 1996], we make no assumption that

any such causalisation happened, leaving causalisation when possible as future work.

The generated equations are thus implicitly formulated ones. Consequently, a system

of implicit equations needs to be solved at the start of the simulation of each mode

of operation and at every integration step. For example, a numerical solution of the

implicitly formulated DAE given in Equation 6.2 involves evaluation of the function

f a number of times (sometimes hundreds or more at each integration step), with

varying arguments, until it converges to zero. The number of executions of f depends
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on various factors including the required precision, the initial guess, the degree of

nonlinearity of the DAE and so on.

As the functions i, f and e are evaluated from within inner loops of the solver,

they have to be compiled into machine code for efficiency. Any interpretive overhead

here would be considered intolerable by practitioners for most applications. However,

as Hydra allows the equations to be changed in arbitrary ways during simulation,

the equations have to be compiled whenever they change, as opposed to only prior

to simulation. As an optimisation, the code compiled for equations might be cached

for future, possible reuse (see Chapter 8). The implementation of Hydra employs JIT

machine code generation using the compiler infrastructure provided by LLVM. The

functions i, f and e are compiled into LLVM instructions that in turn are compiled by

the LLVM JIT compiler into native machine code. Function pointers to the generated

machine code are then passed to the numerical solver.

The function pointers for i, f and e have the following Haskell type:

data Void

type Residual = FunPtr ( R
→ Ptr R
→ Ptr R
→ Ptr R
→ IO Void)

The first function argument is time. The second argument is a vector of instan-

taneous values of real valued signal. The third argument is a vector of instantaneous

values of differentials of real-valued signals. The forth argument is a vector of residual

results, or, in the case of the event specification, a vector of zero-crossing signal values.

The residual functions read the first three arguments and write the residual values in

the fourth argument. As these functions are passed to numerical solvers it is critical to

allow for fast positional access of vector elements and in-place vector updates. Hence

the use of C-style arrays.

Figure 6.14 gives the unoptimised LLVM code that is generated for the parametrised

van der Pol oscillator. The corresponding optimised LLVM is given in Figure 6.15.
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define void @hydra_residual_main(double, double*, double*, double*) {

entry:

%4 = getelementptr double* %2, i32 1

%5 = load double* %4

%6 = getelementptr double* %1, i32 0

%7 = load double* %6

%8 = fmul double -1.000000e+00, %7

%9 = getelementptr double* %1, i32 0

%10 = load double* %9

%11 = getelementptr double* %1, i32 0

%12 = load double* %11

%13 = fmul double %10, %12

%14 = fmul double -1.000000e+00, %13

%15 = fadd double 1.000000e+00, %14

%16 = fmul double 3.000000e+00, %15

%17 = getelementptr double* %1, i32 1

%18 = load double* %17

%19 = fmul double %16, %18

%20 = fadd double %8, %19

%21 = fmul double -1.000000e+00, %20

%22 = fadd double %5, %21

%23 = getelementptr double* %3, i32 0

store double %22, double* %23

br label %BB_0

BB_0:

%24 = getelementptr double* %1, i32 1

%25 = load double* %24

%26 = getelementptr double* %2, i32 0

%27 = load double* %26

%28 = fmul double -1.000000e+00, %27

%29 = fadd double %25, %28

%30 = getelementptr double* %3, i32 1

store double %29, double* %30

br label %BB_1

BB_1:

ret void

}

Figure 6.14: Unoptimised LLVM code for the parametrised van der Pol oscillator.
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define void @hydra_residual_main(double, double*, double*, double*) {

entry:

%4 = getelementptr double* %2, i32 1

%5 = load double* %4

%6 = load double* %1

%7 = fmul double %6, -1.000000e+00

%8 = fmul double %6, %6

%9 = fmul double %8, -1.000000e+00

%10 = fadd double %9, 1.000000e+00

%11 = fmul double %10, 3.000000e+00

%12 = getelementptr double* %1, i32 1

%13 = load double* %12

%14 = fmul double %11, %13

%15 = fadd double %7, %14

%16 = fmul double %15, -1.000000e+00

%17 = fadd double %5, %16

store double %17, double* %3

%18 = load double* %12

%19 = load double* %2

%20 = fmul double %19, -1.000000e+00

%21 = fadd double %18, %20

%22 = getelementptr double* %3, i32 1

store double %21, double* %22

ret void

}

Figure 6.15: Optimised LLVM code for the parametrised van der Pol oscillator.
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6.5 Numerical Simulation

The default numerical solver used in the current implementation of Hydra is SUNDI-

ALS [Hindmarsh et al., 2005]. The solver components we use are KINSOL, a nonlinear

algebraic equation systems solver, and IDA, a differential algebraic equation systems

solver. The code for the function i is passed to KINSOL that numerically solves the

system and returns initial values (at time t0) of d~x
dt

,~x and ~y. These vectors together

with the code for the functions f and e are passed to IDA that proceeds to solve the

DAE by numerical integration. This continues until either the simulation is complete

or until one of the events defined by the function e occurs. Event detection facilities

are provided by IDA.

Modellers are allowed to replace the default numerical solver. In fact, any solver

that implements the interface that is given in Figure 6.16 can be used. The default

numerical solver implements this interface by providing Haskell bindings to the SUN-

DIALS library (which is written in C) using Haskell’s foreign function interface.

After each integration step that calculates a numerical approximation of a vector

of active signal variables the simulator calls the defaultTrajectoryVisualiser function

that writes the simulation results to standard output. Hydra users can provide their

own signal trajectory visualiser of the following type:

type TrajectoryVisualiser = R -- Time

→ Int -- Variable number

→ Ptr R -- Variables

→ IO ()

For example, the user can animate the trajectories using a suitable graphical pro-

gramming library.

6.6 Performance

In this section we provide a performance evaluation of the implementation of Hydra.

The aim of the evaluation is to communicate to noncausal modelling language designers

and implementers performance overheads of Hydra’s language constructs and imple-

mentation techniques that are absent from mainstream noncausal languages. Specifi-

cally, we are mainly concerned with the overheads of mode switching (computing new

structural configurations at events, runtime symbolic processing of the equations, and
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type SolverHandle = Ptr Void

data NumericalSolver = NumericalSolver {
createSolver :: R -- Starting time

→ R -- Stopping time
→ Ptr R -- Current time
→ R -- Absolute tolerance
→ R -- Relative tolerance
→ Int -- Number of variables
→ Ptr R -- Variables
→ Ptr R -- Differentials
→ Ptr Int -- Constrained differentials
→ Int -- Number of events
→ Ptr Int -- Events
→ Residual -- Initialisation equations
→ Residual -- Main equations
→ Residual -- Event Equations
→ IO SolverHandle

, destroySolver :: SolverHandle → IO ()
, solve :: SolverHandle → IO CInt

-- Return value 0: Soulution has been obtained succesfully
-- Return value 1: Event occurence
-- Return value 2: Stopping time has been reached

}

Figure 6.16: Numerical solver interface.
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JIT compilation) and how this scales when the size of the models grow in order to

establish the feasibility of our approach.

The time spent on numerical simulation is of less interest as we are using standard

numerical solvers, and as our model equations are compiled down to native code with

efficiency on par with statically generated code, this aspect of the overall performance

should be roughly similar to what can be obtained from other compilation-based mod-

elling and simulation language implementations. For this reason, and because other

compilation-based, noncausal modelling and simulation language implementations do

not carry out dynamic mode switching, we do not compare the performance to other

simulation software. The results would not be very meaningful.

The implementation of Hydra provides for user-defined symbolic processors and

numerical solvers. It does not provide for a user-defined JIT compiler. In the following

we evaluate the performance of the default symbolic processor, the default numerical

solver and the built-in LLVM-based JIT compiler.

The evaluation setup is as follows. The numerical simulator integrates the sys-

tem using variable-step, variable-order BDF (Backward Differentiation Formula) solver

[Brenan et al., 1996]. Absolute and relative tolerances for numerical solution are set

to 10−6 and trajectories are printed out at every point where t = 10−3 ∗ k, k ε N.

For static compilation Haskell-embedded models and JIT compilation we use GHC

6.10.4 and LLVM 2.5, respectively. Simulations are performed on a 2.0 GHz x86-64

Intel R© CoreTM2 CPU. However, presently, we do not exploit any parallelism, running

everything on a single core.

To evaluate how the performance of the implementation scales with an increasing

number of equations, we constructed a structurally dynamic model of an RLC circuit

(i.e., a circuit consisting of resistors, inductors and capacitors) with dynamic structure.

In the initial mode of operation the circuit contains 200 components, described by 1000

equations in total (5 equations for each component). Every time t = 10 ∗ k, where

k ε N, the number of circuit components is increased by 200 (and thus the number of

equations by 1000) by switching the additional components into the circuit.

Tables 6.1 and 6.2 show the amount of time spent in each mode of the system and

in each conceptual stage of simulation of the structurally dynamic RLC circuit. In

absolute terms, it is evident that the extra time spent on the mode switches becomes

significant as the system grows. However, in relative terms, the overheads of our

dynamic code generation approach remains low at about 10 % or less of the overall

simulation time.
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200 Components 400 Components 600 Components
1000 Equations 2000 Equations 3000 Equations

t ε [0, 10) t ε [10, 20) t ε [20, 30)

CPU Time CPU Time CPU Time

s % s % s %

Symbolic Processing 0.067 0.6 0.153 0.6 0.244 0.5

JIT Compilation 1.057 10.2 2.120 8.3 3.213 6.6

Numerical Simulation 9.273 89.2 23.228 91.1 45.140 92.9

Total 10.397 100.0 25.501 100.0 48.598 100.0

Table 6.1: Time profile of structurally dynamic RLC circuit simulation (part I).

800 Components 1000 Components 1200 Components
4000 Equations 5000 Equations 6000 Equations
t ε [30, 40) t ε [40, 50) t ε [50, 60]

CPU Time CPU Time CPU Time

s % s % s %

Symbolic Processing 0.339 0.4 0.454 0.4 0.534 0.3

JIT Compilation 4.506 4.9 5.660 5.1 6.840 4.3

Numerical Simulation 86.471 94.7 105.066 94.5 152.250 95.4

Total 91.317 100.0 111.179 100.0 159.624 100.0

Table 6.2: Time profile of structurally dynamic RLC circuit simulation (part II).

While JIT compilation remains the dominating part of the time spent at mode

switches, Figure 6.17 demonstrates that the performance of the JIT compiler scales

well. In particular, compilation time increases roughly linearly in the number of

equations. The time spent on symbolic processing and event handling remains en-

couragingly modest (both in relative and absolute terms) and grows slowly as model

complexity increases.

In the current implementation of Hydra, a new flat system of equations is generated

at each mode switch without reusing the equations of the previous mode. It may

be useful to identify exactly what has changed at each mode switch, thus enabling

the reuse of unchanged equations and associated code from the previous mode. In

particular, information about the equations that remain unchanged during the mode

switches provides opportunities for the JIT compiler to reuse the machine code from

the previous mode, thus reducing the burden on the JIT compiler and consequently

the compilation time during mode switches. We think it is worthwhile to investigate

reusable code generation aspects in the context of noncausal modelling and simulation

of structurally dynamic systems, and the suitability of the proposed execution model
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Figure 6.17: Plot demonstrating how CPU time spent on mode switches grows as
number of equations increase in structurally dynamic RLC circuit simulation.

for (soft) real-time simulation. Currently, for large structurally dynamic systems,

the implementation is only suitable for offline simulation. This is also true for other

implementations of unbounded structurally dynamic languages, such as Sol.

The implementation of Hydra offers new functionality in that it allows modelling

and simulation of structurally dynamic systems that simply cannot be handled by

static approaches. Thus, when evaluating the inherent overheads of our approach, one

should weigh them against the limitation and inconvenience of not being able to model

and simulate such systems at all.
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Chapter 7

Related Work

7.1 Embedded Domain Specific Languages

The deep-embedding techniques used in the Hydra implementation for domain-specific

optimisations and efficient code generation draws from the extensive work on compiling

embedded, staged DSLs. Examples include Elliott et al. [2000] and Mainland et al.

[2008]. However, these works are concerned with compiling programs all at once,

meaning the host language is used only for meta-programming, not for running the

actual programs. Hydra combines the aforementioned deep-embedding techniques

with shallow embedding techniques in order to allow the host language to participate

in runtime generation, optimisation, compilation and execution of embedded programs.

The use of quasiquoting in the implementation of Hydra draws its inspiration

from Flask, a domain-specific embedded language for programming sensor networks

[Mainland et al., 2008]. However, we had to use a different approach to type check-

ing. A Flask program is type checked by a domain-specific type checker after being

generated, just before the subsequent compilation into the code to be deployed on

the sensor network nodes. This happens at host-language runtime. Because Hydra

is iteratively staged, we cannot use this approach: we need to move type checking

back to host-language compile-time. The Hydra implementation thus translates em-

bedded programs into typed combinators at the stage of quasiquoting, charging the

host-language type checker with checking the embedded terms. This also ensures that

only well-typed programs are generated at runtime.

As discussed in Chapter 1, many language features of Hydra follow closely those

proposed by Nilsson et al. [2003], in the context of the FHM framework. The FHM
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framework itself was originally inspired by Functional Reactive Programming (FRP)

[Elliott and Hudak, 1997], particularly Yampa [Nilsson et al., 2002]. A key difference

between FHM and FRP is that FRP provides functions on signals whereas FHM

generalises this to relations on signals. FRP can thus be seen as a framework for causal

modelling, while FHM is a framework for noncausal modelling. Signal functions are

first class entities in most incarnations of FRP, and new ones can be computed and

integrated into a running system dynamically. As we have seen, this capability has also

been carried over to Hydra. This means that these FRP versions, including Yampa, are

also examples of iteratively staged languages. However, as all FRP versions supporting

unbounded structural dynamism so far have been interpreted, the program generation

aspect is much less pronounced than what is the case for Hydra. That said, in Yampa,

program fragments are generated and then optimised dynamically [Nilsson, 2005]. It

would be interesting to try to apply the implementation approaches described in this

thesis (i.e., runtime symbolic processing and JIT compilation) to a version of FRP,

especially in the context of the recently proposed optimisations by Liu et al. [2009]

and Sculthorpe [2011].

7.2 Noncausal Modelling and Simulation Languages

7.2.1 Modelling Kernel Language

Broman [Broman, 2007, Broman and Fritzson, 2008] developed Modelling Kernel Lan-

guage (MKL). The language is intended to be a core language for noncausal modelling

languages such as Modelica. Broman takes a functional approach to noncausal mod-

elling, similar to the FHM approach proposed by Nilsson et al. [2003].

MKL is based on an untyped, effectful λ-calculus. The effectful part of the under-

ling λ-calculus is used for specification of noncausal connections. Similarly to Hydra,

MKL provides a λ-abstraction for defining functions and an abstraction similar to rel

for defining noncausal models. Both functions and noncausal models are first-class

entities in MKL, enabling higher-order, noncausal modelling. The similarity of the

basic abstractions in Hydra and MKL leads to a similar style of modelling in both

languages.

The work on MKL has not considered support for structural dynamics, meaning

that its expressive power in that respect is similar to current mainstream, noncausal

modelling and simulation languages like Modelica. However, given the similarities
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between MKL and Hydra, MKL should be a good setting for exploring support for

structural dynamics, which ultimately could carry over to better support for structural

dynamics for any higher-level language that has a semantics defined by translation into

MKL. The language design and implementation approaches (especially those related

to structural dynamism) discussed in this paper should be of interest in the MKL

setting.

7.2.2 Sol

Sol is a Modelica-like language [Zimmer, 2007, 2008]. It introduces language constructs

that enable the description of systems where objects are dynamically created and

deleted, thus supporting modelling of unbounded structurally dynamic systems. The

work on Sol is complementary to ours in a number of respects outlined in the following.

Sol explores how structurally dynamic systems can be modelled in an object-

oriented, noncausal language. Hydra extends a purely functional programming lan-

guage with constructs for structurally dynamic, noncausal modelling.

The implementation of Sol makes use of symbolic methods that for each structural

change aim to identify the smallest number of equations that need to be modified or

added in order to model the structural change. It would be interesting to combine

these symbolic methods with the runtime code generation approach used in Hydra in

order to reduce the JIT compilation overheads by only compiling the modified and

added equations for each structural change.

Sol features only an interpreted implementation. The dynamic compilation tech-

niques featured in the implementation of Hydra would be of interest in the context of

Sol to enable it to target high-end simulation tasks.

7.2.3 MOSILAB

MOSILAB is an extension of the Modelica language that supports the description

of structural changes using object-oriented statecharts [Nytsch-Geusen et al., 2005].

This enables modelling of structurally dynamic systems. The language extension has

a compiled implementation. However, the statechart approach implies that all struc-

tural modes must be explicitly specified in advance, meaning that MOSILAB does

not support unbounded structural dynamism. Even so, if the number of possible con-

figurations is large (perhaps generated mechanically by meta-modelling), higher-order
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and structurally dynamic modelling techniques and their implementations investigated

here might be of interest also in the implementation of MOSILAB.

7.2.4 Acumen

Acumen is a language for modelling and simulation of cyber-physical systems [Zhu

et al., 2010]. In Acumen, a digital component can be modelled using a variant of FRP

called Event-driven FRP [Wan et al., 2002], while a continuous component can be

modelled using a combination of DAEs and partial differential equations (PDEs). The

implementation of Acumen features advanced symbolic processing methods that re-

duce a combination of DAEs and PDEs to the corresponding system of ODEs whenever

possible. Acumen supports bounded structural dynamism, but unbounded structural

dynamism is not supported.

The symbolic processing methods developed for Acumen and its tight integration

with an FRP variant would benefit Hydra, while Hydra’s support for unbounded

structural dynamism would benefit Acumen. Such a combination is feasible. Currently,

the development of a new version of Acumen is underway1. This new version aims to

support modelling and simulation of unbounded structurally dynamic systems. New

language constructs for dynamic addition and removal of equational constraints, at

discrete points in time, have already been introduced (see the work-in-progress report

by Taha et al. [2011] for details). In this new version of Acumen, a model is simulated

through interpretation. Because, in Acumen, a noncausal model is converted into a

flat list of differential equations for numerical simulation purposes, it is feasible to

integrate the JIT compilation approach described in this thesis in the implementation

of Acumen.

7.3 Semantics

Proposed by Henzinger [1996], a hybrid automaton is a formal model for a hybrid

system. The formalism allows a hybrid system to be specified in terms of a finite set

of continuous, time-varying variables and a graph with DAEs constraining the vari-

ables at the graph nodes and switching conditions at the graph edges. Noncausal,

hybrid languages can be given semantics by translation into the formalism. The mod-

elling and simulation language Chi [Beek et al., 2008] takes this approach. Because,

1The development is being documented on the www.acumen-language.org website.
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a hybrid automaton can only describe a bounded structurally dynamic system and

does not allow new equations to be computed at switches (i.e., does not feature equa-

tional constrains as first-class entities) we did not use the hybrid automata as a target

formalism when defining the ideal semantics of Hydra.

A formal semantics for the MKL language was defined by Broman [2007]. A

(higher-order) model is given semantics by translation into a flat system of equa-

tions. The support for structural dynamism and its formal specification has not been

considered in the setting of MKL.

Wan and Hudak [2000] define an ideal semantics for a simple FRP language. In

addition to the ideal semantics, they provide an operational semantics that makes use

of discrete sampling. They show that the operational semantics converges to the ideal

semantics when the discrete sampling rate tends to zero. Applying a similar approach

to an FHM language implementation, in order to prove its correctness, is a subject of

future work.
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Chapter 8

Directions for Future Work and

Conclusions

In this thesis, we described a new approach to the design and implementation of non-

causal modelling and simulation languages. From the language design point of view,

the key idea was to embed equational models as first-class entities into a functional

programming language. We provided a range of examples demonstrating how the no-

tion of first-class models can be used for higher-order and (unbounded) structurally

dynamic modelling, and thus going beyond to what is expressible in current noncausal

modelling languages. From the language implementation point of view, the key idea

was to enable efficient simulation of noncausal models that are generated at simulation

runtime by runtime symbolic processing and just-in-time compilation. We defined a

formal semantics for the language developed in this thesis and provided an in-depth

description of its implementation. We hope that this work will facilitate adoption

of the aforementioned approaches by designers and implementers of modelling and

simulation languages.

Throughout the thesis we have identified a number of directions for future work.

Let us conclude the thesis by consolidating these directions in the list given below.

• Introduce the notion of first-class models in mainstream noncausal modelling

languages such as Modelica. This would allow for improved higher-order and

structurally dynamic modelling capabilities, as demonstrated in this thesis. Sol

[Zimmer, 2008], which is a Modelica-like language, already supports language

constructs for dynamic addition and removal of equational constraints. Coupling

the Modelica language extensions suggested by Zimmer with the just-in-time
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compilation techniques described in this thesis would be a good starting point

for extending Modelica and its implementations.

In addition to enabling the introduction of the aforementioned new language

constructs to Modelica, the just-in-time compilation techniques described in this

thesis allow for some restrictions on existing language constructs to be lifted.

Such restrictions include the requirements on conditional equations described

in Section 2.7. Lifting the restrictions on conditional equations would enable

bounded structurally dynamic modelling. The new language constructs pro-

posed by Zimmer [2008] would still be needed for unbounded structurally dy-

namic modelling. Zimmer [2007] gives a list of restrictions on Modelica language

constructs that can be lifted with a more dynamic treatment of equational con-

straints. Devising of a comprehensive list of such restrictions is a subject of

future work.

Although the notion of first-class models and the aforementioned just-in-time

compilation techniques would benefit Modelica, full realisation of Hydra’s two-

level design, which extends a purely functional programming language with non-

causal modelling capabilities, in the Modelica setting is difficult. This is be-

cause Modelica’s syntax and semantics are deeply rooted in the object-oriented

paradigm. Integration of Hydra’s design into Modelica is an instance of a more

general problem of integration of purely functional and object-oriented program-

ming paradigms. This is something that we have not yet considered.

• Make use of the ideal semantics for verification of simulation results. In partic-

ular, based on the ideal semantics, it should be possible to develop a tool for

automatic verification of simulation results.

• Investigate properties of the ideal semantics developed in this thesis and apply

them to the problem of verification of the language implementation. Although

challenging, it would be interesting to investigate possibilities of producing for-

mally verified symbolic processors and numerical simulators for noncausal lan-

guages like Hydra.

• Develop symbolic methods for reducing mode switching overheads, especially

those overheads that are associated to just-in-time compilation. Merging of

Hydra’s implementation approach to that of Sol would be a good starting point.
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• Entirely avoid recompilation for discrete changes that are not structural changes.

Introduction of the notion of impulses in Hydra would be a good starting point.

• Combine FHM and FRP frameworks in a single coherent language. The first step

into this direction would be to introduce support for stateful signal functions in

Hydra.
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