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Abstract

To each pair of characters (χ, ψ) on a Fuchsian group of the first kind we associate a

space of functions generalizing the space of second–order cusp forms. We determine

the dimensions of these spaces and construct explicit bases. We separate two cases

according to the weight. The first case deals with weight higher than 2 whilst the

second deals with the more complicated case of weight 2.

An application of these results to Percolation Theory is provided in the last section.
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1 Introduction

Automorphic forms are an important area of modern number theory, particularly in

the setting of modular forms which describe some of the most interesting and deep

problems of the day. One such case is Andrew Wiles’ proof of Fermat’s Last Theorem,

a question posed so simply that a ten–year old can comprehend it, and yet over 350

years later, the answer was solved in no small part by the use of modular forms.

Automorphic forms are a natural generalization of periodic functions and were

first studied and developed by Henri Poincaré in his doctoral thesis during the early

1880’s (calling them Fuchsian functions at the time, after Lazarus Fuchs). Felix Klein

developed the theory of automorphic functions (he gave them the name in 1890) in

his 1884 book on the icosahedron, which connected the fields of algebra and geometry.

The characteristic property of automorphic functions is that they satisfy a trans-

formation law given by

f(γz) = f(z)

for some transformations γ acting on the upper half plane. More generally, we can

define modular forms of weight k and character χ: If k is an even integer, Γ a Fuchsian

group of the first kind and χ a character on Γ, then we call a holomorphic function

f on the upper half plane H a modular form of weight k if it satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)χ(γ)

and if it is “of moderate growth at the cusps” (a condition which will be explained

in more detail in the next section).

The theory of second–order automorphic forms has emerged in various guises over

the last decade especially. Some of the first contexts in which it appeared were prob-

lems in the theory of classical modular forms and in Percolation Theory, a subject in

physics which studies the movement of an object inside porous materials (both nat-

ural and manmade) and in mathematics which models the action by describing the

behaviour of connected clusters in a random graph. The original question of second–

order forms of even weight was posed by Don Zagier, regarding their exact dimensions.
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A large part of the research on second–order automorphic forms has been founda-

tional. For instance, N. Diamantis and C. O’Sullivan ([DO]) proved formulae about

the dimensions of spaces of second–order modular and cusp forms of even weight

(denoted M2
k (Γ) and S2

k(Γ) respectively) and that was later extended to all orders

([DS]). In conjunction with this, bases have been found and an analogue of the

classical Eichler–Shimura isomorphism (also helping to potentially provide a natural

geometric interpretation). The method for achieving the results has been by consid-

ering certain Poincaré series Pam(z, L)k.

However, the dimension results of [DO] and [DS] cannot be applied directly in the

context of Percolation Theory because the second–order automorphic forms appear-

ing in [KZ] use characters. This motivates the introduction and study of an extended

space of second–order automorphic forms. We show that in the case with non–trivial

characters, the dimensions attain their a priori maximum. This contrasts with the

case without characters where the dimension of second–order forms of weight > 2 is

equal to the natural upper bound as given in [CDO] whilst the weight 2 case differs

from this bound by 1.

In Chapter 2, we begin by giving the basic definitions and ideas that will be

needed. We recall the definition of a modular and a cusp form of weight k and extend

the definitions to include a character. We set out the foundations of parabolic coho-

mology as applied to our setting and proceed to define the modular symbol which is

crucial to the study of our work. Finally, we define and establish the basic properties

of the twisted Poincaré series.

The material in Chapters 3 and 4 is original work and draws from the joint paper

([BD]) with N. Diamantis. Chapter 3 centres on finding the dimensions of S2
k(Γ;χ, ψ)

and M2
k (Γ;χ, ψ) when k > 4 is an even integer. We desire to create explicit bases for

these spaces and do so by considering certain Poincaré series Pam(z, L, χ).

In Chapter 4, we wish to attain the same outcomes for k = 2, namely bases

and dimensions of S2
2(Γ;χ, ψ) and M2

2 (Γ;χ, ψ). We cannot employ the same tech-

nique in this case because the function Pam(z, L, χ)2 are no longer absolutely conver-

gent, so instead we consider the series Zm(z, s; f, χ) which is a linear combination of
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two separate non–holomorphic functions Um(z, s, k;χ) and Gm(z, s; f, χ). We have

to perform some analysis in order to analytically continue it to our desired region

of absolute convergence and once we have proved these theorems which bound our

functions, we construct the basis functions from Zm(z, s; f, χ). We are then able

to specify a set of linear combinations of these Zm(z, s; f, χ) which is a basis for

S2
2(Γ;χ, ψ)/(S2(Γ;χ) + S2(Γ;ψ)) and hence we can determine the dimension.

Chapter 5 outlines a potential application to Percolation Theory in the form of

crossing probabilities, in which we consider a rectangle and model the probability that

one cluster connects the left and right vertical edges of the rectangle. This probability

is shown to be a second–order modular form with character, as is the probability that

a cluster connects the left and right edges whilst the top and bottom edges remain

unconnected.

3



2 Background definitions

In this chapter, we give some background definitions and material which we will sub-

sequently build up and study in the following chapters.

First, we recall the Fuchsian group Γ and the subgroup Γa for a cusp point a,

with a quick thought on the generators. We then introduce the character χ belonging

to the group Γ which will be used throughout the study. Next, we define the slash

operator |k,χ which acts on a function f .

Secondly, we set out the formal definitions of both the modular and cusp forms

of weight k. These are then developed into second–order modular and cusp forms of

weight k and type (χ, ψ), whose spaces we are interested in finding the dimensions of

(we denote them M2
k (Γ;χ, ψ) and S2

k(Γ;χ, ψ) respectively). We then give a definition

on the Poincaré series.

Finally, we shall discuss the cohomology of the spaces M2
k (Γ;χ, ψ) and S2

k(Γ;χ, ψ)

which leads on to a proposition that shall simplify matters when we calculate a

basis for the weight 2 second–order cusp space at the culmination of the study. It

will be necessary when evaluating the functions which construct our basis functions

to consider certain integrals, and we define those integrals here along with some

useful properties. The chapter ends with a bound on the dimensions of the spaces

M2
k (Γ;χ, ψ) and S2

k(Γ;χ, ψ).
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2.1 The group Γ and subgroup Γa

We start with a few definitions and some notation associated with the primary

Poincaré series which we consider.

Let Γ ⊂ PSL2(R) be a Fuchsian group of the first kind acting on the upper half

plane H = {z = x+ iy| y > 0} in the usual way, with the non–compact quotient Γ\H.

V is the volume of Γ\H. Let a, b be representatives of inequivalent cusp points of

a fundamental domain F and let σa, σb ∈ SL2(R) be their associated scaling matrices.

Γa is the subgroup of all elements of Γ fixing the cusp a, and

σ−1
a Γaσa = Γ∞ =

{
±

(
1 mh

0 1

)∣∣∣∣∣m ∈ Z

}

for some h ∈ R and specifically with σa(∞) = a.

We let γa denote a generator of Γa and define the matrix T to be T :=

(
1 1

0 1

)
.

We will want to know the generators of the group Γ; if we suppose that Γ\H has

genus g with r elliptic fixed points and p cusp points, then Γ is generated by:

• 2g hyperbolic elements γi, 1 6 i 6 2g;

• r elliptic elements εi, 1 6 i 6 r; and

• p parabolic elements πi, 1 6 i 6 p

satisfying the r + 1 relations

[γ1, γg+1] . . . [γg, γ2g]ε1 . . . εrπ1 . . . πp = 1, ε
ej
j = 1 (1)

for 1 6 j 6 r and ej > 2 integers. [a, b] denotes the commutator aba−1b−1 of a,b, as

described by [HK], (10).

It is useful here to define formally a character of Γ and a few associated properties.

Definition 2.1. Let χ be a character of Γ. Suppose that χ(γa) = e2πiya for some

0 6 ya < 1. Then a is singular if ya = 0 and non–singular otherwise. Similarly, we

say that the character χ is singular if χ(γa) = 1; otherwise it is non–singular.
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Definition 2.2. Let χ be a character of Γ, χ its conjugate and k be an even integer.

We define the slash operator |k,χ on a function f : H→ C by

(f |k,χ γ)(z) = f(γz)(cz + d)−kχ(γ)

where γ =

(
a b

c d

)
∈ PSL2(R).

We extend the action to C[PSL2(R)] by linearity.

For convenience, set j(γ, z) = cz + d so that we can re–write

(f |k,χ γ)(z) = f(γz)j(γ, z)−kχ(γ).

When χ is the trivial character 1, we set |k for |k,1. We call k the weight.

Similarly, we can extend the definition of the slash operator to include two char-

acters, so that if we let χ, ψ be two characters of Γ, and let |k,ψ act on f followed by

|k,χ acting on the result, we get:

((f |k,χ γ)|k,ψ δ)(z) = (f |k,χ γ)(δz)j(δ, z)−kψ(δ)

= f(γδz)j(γ, δz)−kχ(γ) ψ(δ)

where γ, δ ∈ PSL2(R).

Remark: We set for use later the notation

ε(γ, z) =
j(γ, z)

|j(γ, z)|
. (2)

It is useful here to note for further reference an identity of |j(γ, z)|2, (see [Iw1],

(1.11)): For γ ∈ Γ, we have

|j(γ, z)|2 =
Im(z)

Im(γz)
. (3)

Note that since z = x + iy, Im(z) = Im(x + iy) = y so this simplifies to |j(γ, z)|2 =

y/ Im(γz).

We will use the Poincaré series (see [Iw2]) in the analysis of the weight k = 2 case

and modified versions of it in the case k > 4, so we give a formal definition now:

Definition 2.3. Let k be an integer, m a non–negative integer and a a cusp. Then

we define the Poincaré series Pam(z) to be

Pam(z) = Pam(z)k =
∑

γ∈Γa\Γ

j(σ−1
a γ, z)−k e2πimσ−1

a γz.
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2.2 Modular forms of orders one and two

Ultimately, we would like to find a basis for M2
k (Γ;χ), the space of second–order

modular forms of weight k with character χ for Γ, and S2
k(Γ;χ), the space of holo-

morphic second–order cusp forms, and then to determine their dimensions. We set

out a formal definition of the spaces of orders one and two before proceeding.

Let z = x + iy. We say that “f is holomorphic at the cusps” if, for each cusp

a, (f |k σa)(z) � yc as y → ∞ uniformly in x for some constant c. We will say “f

vanishes at the cusps” if, for each cusp a, (f |k σa)(z)� yc as y →∞ uniformly in x

for every constant c.

Definition 2.4. Let k be an even integer, χ ∈ Γ be a character and let f : H → C
be a holomorphic function. f is called a modular (resp. cusp) form of weight k with

character χ if:

i) f |k,χ(γ − 1) = 0 ∀ γ ∈ Γ; and

ii) f is holomorphic (resp. vanishes) at the cusps.

Their space is denoted by Mk(Γ;χ) (resp. Sk(Γ;χ)).

Definition 2.5. Let k be an even integer, χ,ψ ∈ Γ be two characters and let f : H→
C be a holomorphic function. f is called a second–order modular form of weight k

and type (χ, ψ) if:

i) f |k,χ(γ − 1) ∈Mk(Γ;ψ) ∀ γ ∈ Γ; and

ii) There is an f0 ∈ Mk(Γ;ψ) such that for all parabolic π ∈ Γ, f |k,χ(π − 1) =

((ψχ)(π)− 1) aπf0 for some aπ ∈ C; and

iii) f is holomorphic at the cusps.

Their space is denoted by M2
k (Γ;χ, ψ).

Condition ii) means that f |k,χ(π − 1) = 0 whenever χ(π) = ψ(π) and, otherwise,

f |k,χ(π − 1) = cπf0 for some f0 independent of π and a cπ ∈ C\{0}.

Definition 2.6. Let k be an even integer, χ,ψ ∈ Γ be two characters and let f : H→
C be a holomorphic function. f is called a second–order cusp form of weight k and

type (χ, ψ) if:
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i) f |k,χ(γ − 1) ∈ Sk(Γ;ψ) ∀ γ ∈ Γ; and

ii) There is an f0 ∈ Mk(Γ;ψ) such that for all parabolic π ∈ Γ, f |k,χ(π − 1) =

((ψχ)(π)− 1)aπf0 for some aπ ∈ C; and

iii) f vanishes at the cusps.

Their space is denoted by S2
k(Γ;χ, ψ).

Remark: The percolation crossing formulas πb, πb̄ and n studied in [DK] are

almost in the space M2
0 (Γ(2); 1, ψ), where ψ is the character of η(z)4 and η is the

Dedekind eta function. The reason that they are not in the space is because they fail

to be holomorphic at all the cusps. This justifies the comment made in the Introduc-

tion about the need to extend the study of second–order forms to the case of poles

at the cusps.

A basis of Sk(Γ;χ) is formed by {Pm1 , ..., Pms} for unique, different integers

m1, ...,ms. A reference for this fact for trivial χ is [Iw1] and for general characters is

[Ra].

2.3 Cohomology associated to S2
k(Γ;χ, ψ) and M 2

k (Γ;χ, ψ)

Now, we shall state the definition of parabolic cohomology as applied to our case (see

[Sh1], P. 223). We use a notation that makes the dependence on the character and

other invariants explicit.

Definition 2.7. Let χ be a character of Γ. For γ ∈ Γ, consider a representation ρχ

of Γ such that

ρχ(γ)(v) = χ(γ) v ∀ v ∈ C.

Then we set

Z1
par(Γ, ρχ) := {f : Γ→ C|f(γ1γ2) = ρχ(γ1)(f(γ2)) + f(γ1),∀ γ1, γ2 ∈ Γ,

f(πi) = (ρχ(πi)− 1)(ai) (i = 1, . . . , p) for some ai ∈ C}

B1
par(Γ, ρχ) := B1(Γ, ρχ) := {f : Γ→ C|∃ a ∈ C|∀ γ ∈ Γ, f(γ) = (ρχ(γ)− 1)a}.

Then

H1
par(Γ, ρχ) := Z1

par(Γ, ρχ)/B1
par(Γ, ρχ).
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In order to simplify the notation, we write H1
par(Γ, χ) instead of H1

par(Γ, ρχ).

Now, for characters χ, ψ of Γ, we fix a basis of Mk(Γ;ψ) to be {fi}di=1 where

d := dim(Mk(Γ;ψ)). Let f ∈M2
k (Γ;χ, ψ). Then

f |k,χ(γ − 1) =
d∑
i=1

ci(γ
−1)fi (4)

for some ci(γ
−1) ∈ C. We take γ−1 because we want the induced cocycle to be in

terms of a left action. f ∈M2
k (Γ;χ, ψ) implies that

f |k,χ(γ − 1) = f |k,χ(γ − 1)|k,ψδ = f |k,χ((γ − 1)δ)ψ(δ)χ(δ)

= (f |k,χ(γδ − 1)− f |k,χ(δ − 1))ψ(δ)χ(δ).

So, for i = 1, . . . , d, we have ci(γ
−1) = (ci(δ

−1γ−1)− ci(δ−1))ψ(δ)χ(δ).

Using the transformations γ−1 7−→ γ and δ−1 7−→ δ, we can write this as

ci(δγ) = ψ(δ)χ(δ) ci(γ) + ci(δ).

By condition ii) of Definition 2.5, ci(πi) ∈ (ρψ.χ(πi) − 1)(C) where i = 1, . . . , p, and

so ci induces an element [ci] of H1
par(Γ;ψ · χ). So, we have a linear map

φ : M2
k (Γ;χ, ψ)→ H1

par(Γ;ψ · χ)⊗Mk(Γ;ψ)

φ : f 7−→
d∑
i=1

[ci]⊗ fi.

Analogously, we have the map

φ′ : S2
k(Γ;χ, ψ)→ H1

par(Γ;ψ · χ)⊗ Sk(Γ;ψ).

Proposition 2.8. The kernel of the map φ (resp. φ′) is isomorphic to the image

of Mk(Γ;χ) + Mk(Γ;ψ) (resp. Sk(Γ;χ) + Sk(Γ;ψ)) under the natural injection into

M2
k (Γ;χ, ψ) (resp. S2

k(Γ;χ, ψ)).

Proof. We can easily see that Mk(Γ;χ)+Mk(Γ;ψ) ⊂ ker(φ). In the opposite direction,

suppose that f ∈ ker(φ). Then we have ci ∈ B1(Γ;ψ · χ) or ci = ai(ψ(γ) · χ(γ) − 1)

for some constants ai ∈ C. Then (4) implies

f |k,χ(γ − 1) =

(
d∑
i=1

aifi

)
(ψ(γ) · χ(γ)− 1).

Since F :=
∑d

i=1 aifi ∈ Mk(Γ;ψ), the righthand side is equal to χ(γ)F |kγ − F =

F |k,χ(γ − 1). Therefore, f − F ∈Mk(Γ;χ) which implies the assertion. The proof of

the statement of the cuspidal case is performed similarly.
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In preparation for our next definition and in order to estimate the dimension of

H1
par(Γ, χ), we define the following map:

Definition 2.9. Let χ be a character of Γ. We associate to each F = (f, g) ∈
S2(Γ;χ)

⊕
S2(Γ;χ) and a ∈ H ∪ Cusps(Γ) a map LF (a, ·) : Γ→ C given by

LF (a, γ) =

∫ γa

a

f(w)dw +

∫ γa

a

g(w)dw. (5)

Definition 2.10. For f ∈ S2(Γ), an arbitrary z ∈ H ∪ Cusps(Γ) and a a cusp, we

define

Λf (a, z) :=

∫ z

a

f(w)dw where f ∈ S2(Γ;χ). (6)

We now set out two lemmas which we will need in the next chapter in order to

evaluate our main results. Firstly, we consider the integral between ∞ and γ∞ of a

function f ∈ S2(Γ) and relate it to Λf (a, z):

Lemma 2.11. For f ∈ S2(Γ), z ∈ H ∪ Cusps and a cusp a, we have∫ γ∞

∞
f(w)dw = Λf (a, γz)− Λf (a, z) (7)

Proof. ∫ γ∞

∞
f(w)dw =

∫ z

∞
f(w)dw +

∫ γz

z

f(w)dw +

∫ γ∞

γz

f(w)dw

=

∫ z

∞
f(w)dw +

∫ γz

z

f(w)dw +

∫ ∞
z

f(γw)d(γw)

[using a change of variables]

=

∫ z

∞
f(w)dw +

∫ γz

z

f(w)dw +

∫ ∞
z

f(w)dw

[since f is a weight 2 form]

=

∫ γz

z

f(w)dw

=

∫ a

z

f(w)dw +

∫ γz

a

f(w)dw

= −
∫ z

a

f(w)dw +

∫ γz

a

f(w)dw

= −Λf (a, z) + Λf (a, γz).

We replicate the previous theorem with f ∈ S2(Γ;χ):
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Lemma 2.12. For f ∈ S2(Γ;χ), z ∈ H ∪ Cusps and a cusp a,we have∫ γ∞

∞
f(w)dw = (1− χ(γ)) Λf (∞, z) + Λf (a, γz)− Λf (a, z). (8)

Proof. ∫ γz

z

f(w)dw =

∫ ∞
z

f(w)dw +

∫ γ∞

∞
f(w)dw +

∫ γz

γ∞
f(w)dw

=

∫ ∞
z

f(w)dw +

∫ γ∞

∞
f(w)dw +

∫ z

∞
f(γw)d(γw)

=

∫ ∞
z

f(w)dw +

∫ γ∞

∞
f(w)dw − χ(γ)

∫ ∞
z

f(w)dw

= (χ(γ)− 1)

∫ z

∞
f(w)dw +

∫ γ∞

∞
f(w)dw

⇒
∫ γ∞

∞
f(w)dw = (1− χ(γ))

∫ z

∞
f(w)dw +

∫ γz

z

f(w)dw.

But by the previous Lemma 2.11,
∫ γz
z
f(w)dw = Λf (a, γz)− Λf (a, z) and since ∞ is

a cusp,
∫ z
∞ f(w)dw = Λf (∞, z) by definition and so we have the desired result

∫ γ∞

∞
f(w)dw = (1− χ(γ)) Λf (∞, z) + Λf (a, γz)− Λf (a, z).

Using Lemma 2.12, we have∫ γz1

z1

f(w)dw =

∫ γz2

z2

f(w)dw+(1−χ(γ))

∫ z2

z1

f(w)dw ∀ z1, z2 ∈ H∪Cusps(Γ) (9)

which shows that LF (a, ·) ∈ Z1
par(Γ, χ) and that it depends on a only up to cobound-

aries. Using a special case of the Eichler–Shimura isomorphism (cf. [CDO], Ch 8),

the map

S2(Γ;χ)
⊕

S2(Γ;χ)→ H1
par(Γ, χ)

which sends F to the cohomology class [LF ] of LF (a, ·) is an isomorphism. Conse-

quently, along with Proposition 2.8, we deduce that

dim M2
k (Γ;χ, ψ) 6 d0 dim Mk(Γ;ψ) + dim (Mk(Γ;χ) +Mk(Γ;ψ)) (10)

where d0 := dim S2(Γ;ψ · χ) + dim S2(Γ;χ · ψ). In particular, M2
k (Γ;χ, ψ) is finite

dimensional.

11



Similarly,

dim S2
k(Γ;χ, ψ) 6 d0 dim Sk(Γ;ψ) + dim (Sk(Γ;χ) + Sk(Γ;ψ)). (11)

We wish to fix a basis of H1
par(Γ;χ). Suppose that fi with i = 1, . . . , dim S2(Γ;χ)

is a basis of S2(Γ;χ) and that fj+dim S2(Γ;χ) with j = 1, . . . , dim S2(Γ;χ) is a basis

of S2(Γ;χ). Consider the basis of the space S2(Γ;χ)
⊕

S2(Γ;χ) formed by Fi :=

(fi, 0) (i = 1, . . . , dim S2(Γ;χ)) and Fj+dim S2(Γ;χ) := (0, f j+dim S2(Γ;χ))

(j = 1, . . . , dim S2(Γ;χ)). Then the set

{[Li]; i = 1, . . . , dim S2(Γ;χ) + dim S2(Γ;χ)}

with

Li := LFi
(ai, ·) (12)

for a choice of ai ∈ H ∪ Cusps(Γ) is a basis of H1
par(Γ, χ).

Lemma 2.13. Let F = (f, ḡ) ∈ S2(Γ;χ)
⊕

S2(Γ;χ) and LF (a, γ) =
∫ γa
a
f(w)dw +∫ γa

a
g(w)dw with a ∈ H∪Cusps(Γ) be as above. Then for each z ∈ H∪Cusps(Γ) and

γ ∈ Γ we have

LF (a, γ) = Λf (a, γz) + Λg(a, γz)− χ(γ)
(

Λf (a, z) + Λg(a, z)
)
.

Proof. Let z ∈ H ∪ Cusps(Γ). Then for f ∈ S2(Γ;χ) we have∫ γa

a

f(w)dw =

∫ γz

a

f(w)dw +

∫ γa

γz

f(w)dw

and similarly for g ∈ S2(Γ;χ). Upon a change of variables, the second integral equals∫ a

z

f(γw)d(γw) = −χ(γ)

∫ z

a

f(w)dw

and hence we deduce the result.
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3 Bases of S2
k(Γ;χ, ψ) and M 2

k (Γ;χ, ψ) for k > 4

We shall concentrate initially on the case when the even integer k > 4. We begin by

defining the Poincaré series with character Pam(z, χ)k which spans the space Sk(Γ;χ).

If there are p∗ inequivalent cusps, then the space Mk(Γ;χ) is spanned by Pam(z, χ)k

(where m is a positive integer) and the p∗ linearly independent series Pa0(z, χ)k. We

shall extend the definition of the Poincaré series to include a homomorphism L (we

define the series as Pam(z, L, χ)k). In order to prove that this is absolutely convergent

and holomorphic, we bound L. Finally, we give a proposition to prove which spaces

Pam(z, L, χ)k and Pa0(z, L, χ)k live in and the chapter culminates in a proof of the

dimensions of S2
k(Γ;χ, ψ) and M2

k (Γ;χ, ψ).

13



3.1 The Poincaré series with character – Pam(z, L, χ)k

Let k > 4 be an even integer, p > 0, a a cusp of Γ and χ a character in Γ. Let p∗

denote the number of inequivalent cusps which are singular in χ.

Definition 3.1. Let k be an integer, m a positive integer and χ a character of Γ.

Then we define the following Poincaré series for a cusp a:

Pam(z, χ)k =
∑

γ∈Γa\Γ

e2πi(m+ya)γz j(γ, z)−k χ(γ) (13)

where χ(γa) = e2πiya for some ya ∈ [0, 1).

For each fixed cusp a, the space Sk(Γ;χ) is spanned by the Poincaré series Pam(z, χ)k

as m ranges over the positive integers (see [Ra], Theorem 5.2.4 or [HK], Section 2).

A basis for the space Mk(Γ;χ) when k > 4 is comprised of the above Poincaré series

Pam(z, χ)k together with the p∗ linearly independent Pa0(z, χ)k as a varies over p∗

inequivalent singular cusps.

When m = 0 and a is non–singular in χ, the series (13) are called holomorphic

Eisenstein series. If we let Ek(Γ;χ) denote the space spanned by these Eisenstein

series of weight k, then we have the direct sum

Mk(Γ;χ) = Ek(Γ;χ)
⊕

Sk(Γ;χ). (14)

To prove that the dimensions of S2
k(Γ;χ, ψ) and M2

k (Γ;χ, ψ) attain the upper

bounds (10) and (11) we consider the Poincaré series with homomorphism as defined

thus:

Definition 3.2. Let k be an integer, m a non–negative integer, a a cusp and χ a

character of Γ. We define

Pam(z, L, χ)k =
∑

γ∈Γa\Γ

L(a, γ) e2πi(m+xa)σ−1
a γz j(σ−1

a γ, z)−k χ(γ) (15)

where L ∈ Z1
par(Γ;χ · ψ) is a cocycle associated with the cusp a and χ(γa) = e2πixa.

To show that these series are absolutely convergent and holomorphic for k > 4 we

need to bound L. To this end we prove:

Lemma 3.3. Let χ be a character of Γ. For any f ∈ S2(Γ;χ), z0 ∈ H ∪ Cusps(Γ),

all z ∈ H and any cusp a, we have∫ z

z0

f(w)dw � Im(σ−1
a z)ε + Im(σ−1

a z)−ε + 1

14



uniformly in x, with the implied constant depending on f,F, a and ε but independent

of z.

Proof. By a change of variables, we have∫ σaz

∞
f(w)dw =

∫ z

σ−1
a ∞

(f |2σa)(w)dw.

However, f |2σa ∈ S2(σ−1
a Γσa;χ

′) for some character χ′ (by [Ra], Theorem 4.9.3).

Further, for every Fuchsian group of the first kind G, a character χ on G, f ∈ S2(G;χ)

and z ∈ H, we have |yf(z)| � 1. Indeed, this holds, by compactness, in the closure of

a fundamental domain of G\H. On the other hand, | Im(γz)f(γz)| = |yf(z)| ∀ γ ∈ G
and thus, the bound holds on the entire H. Therefore, (f |2σa)(w)� Im(w)−1 ∀ w ∈
H. This implies that∫ z

σ−1
a ∞

(f |2σa)(w)dw =

∫ ∞
σ−1
a ∞

(f |2σa)(w)dw +

∫ z

∞
(f |2σa)(w)dw

=

∫ ∞
σ−1
a ∞

(f |2σa)(w)dw +

∫ n+x+iy

∞
(f |2σa)(w)dw

where we write z = n + x + iy with 0 6 x < 1 and n ∈ Z. The last integral is equal

to ∫ x+iy

∞
(f |2σaT n)(w)dw = e2πinya

∫ x+iy

∞
(f |2σa)(w)dw

for some ya ∈ R since f |2σa ∈ S2(σ−1
a Γσa;χ

′). This implies that∫ z

σ−1
a ∞

(f |2σaT n)(w)dw =

∫ ∞
σ−1
a ∞

(f |2σaT n)(w)dw

+e2πinxa

(∫ 1

∞
(f |2σa)(x+ it)dt+

∫ y

1

(f |2σa)(x+ it)dt

)
� 1 +

∫ y

1

∣∣∣(f |2σa)(x+ it)
∣∣∣dt

� 1 +

∫ y

1

1

t
dt = 1 + log y

uniformly in x, with the implied constant depending on a, f and F. Since, for all ε,

log(yε) < yε + y−ε ∀ y > 0, we deduce that∫ σaz

∞
f(w)dw � 1 + yε + y−ε

with the implied constant further depending on ε. Upon the transformation

z 7−→ σ−1
a z, the result follows immediately.
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We now determine which holomorphic space the series Pam(z, Li(a, ·), χ)k lives in.

Proposition 3.4. Let k > 4 be an even integer and characters χ, ψ ∈ Γ. For

each a ∈ Cusps(Γ) and Li(a, ·) ∈ Z1
par(Γ;χ · ψ) as in (12), with i = 1, . . . , d0 and

d0 = dim(S2(Γ;χ · ψ)) + dim(S2(Γ;ψ · χ)), we have:

Pa0(z, Li(a, ·), χ)k ∈ M2
k (Γ;χ, ψ) if a is singular in ψ;

Pam(z, Li(a, ·), χ)k ∈ S2
k(Γ;χ, ψ) if m > 0.

Proof. We first show that each term of the series is independent of the representative

in Γa\Γ. The cocycle condition of Li(a, ·) implies that Li(a, γaγ) = χ(γa)ψ(γa)Li(a, γ)

because clearly Li(a, γa) = 0. Using the identity σ−1
a γa = Tσ−1

a , where we recall that

T is the matrix

(
1 1

0 1

)
, we deduce that

Li(a, γaγ) j(σ−1
a γaγ, z)−k e2πi(m+xa)σ−1

a γaγz χ(γaγ)

= Li(a, γ)χ(γa)ψ(γa) j(Tσ
−1
a γ, z)−k e2πi(m+xa)Tσ−1

a γz χ(γaγ)

= Li(a, γ) j(σ−1
a γ, z)−k e2πi(m+xa)σ−1

a γz χ(γ).

To prove the convergence, we first note that, by Lemma 3.3 and Lemma 2.13,

Li(a, γ)� Im(σ−1
a γz)ε + Im(σ−1

a γz)−ε + Im(σ−1
a z)ε + Im(σ−1

a z)−ε + 1

for i = 1, . . . , d0. Therefore

Pam(z, Li(a, ·), χ)k

�
∑

γ∈Γa\Γ

(Im(σ−1
a γz)ε + Im(σ−1

a γz)−ε + Im(σ−1
a z)ε + Im(σ−1

a z)−ε + 1)

×|j(σ−1
a γ, z)|−k (16)

= y−k/2
∑

γ∈Γa\Γ

(Im(σ−1
a γz)k/2+ε + Im(σ−1

a γz)k/2−ε)

+y−k/2(Im(σ−1
a z)ε + Im(σ−1

a z)−ε + 1)
∑

γ∈Γa\Γ

Im(σ−1
a γz)k/2

for any ε > 0 and the implied constant depending on ε. Since the non–holomorphic

Eisenstein series

Ea(z, s) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)s (17)
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is absolutely convergent for s with Re(s) > 1, the equation (16) implies the abso-

lute and uniform (for z in compact sets in H – see (3.11) of [Iw1]) convergence of

Pam(z, Li, χ)k for k/2− ε > 1 and hence for k > 4.

Next, we determine the growth at the cusps. We recall from [Iw1] the functions

φab(s) = π1/2 Γ(s− 1/2)

Γ(s)

∑
c

c−2sSab(0, 0; c)

and the Kloosterman sum (see section 2.5 of [Iw1] for specific details)

Sab(0, 0; c) = #

{
d(mod c) :

(
∗ ∗
c d

)
∈ σ−1

a Γσb

}

and Ws(z) the usual Whittaker function defined as

Ws(z) = 2y1/2Ks−1/2(2πy)ex,

with Kν(z) the Bessel K-function

Kν(z) =
π

2

1

sin(πν)

(
∞∑
k=0

1

k!Γ(k + 1− ν)

(z
2

)−ν+2k

−
∞∑
k=0

1

k!Γ(k + 1 + ν)

(z
2

)ν+2k
)
.

Then we recall that Ea(z, s) has the Fourier expansion at the cusp b

Ea(σbz, s) = δaby
s + φab(s)y

1−s +
∑
m6=0

φab(m, s)Ws(mz) (18)

= δaby
s + φab(s)y

1−s + O(e−2πy)

as y →∞ with an implied constant depending only on s and Γ (see (6.20) of [Iw1]).

This is valid for all s ∈ C. This and the fact that Li(a, I) = 0 where I is the identity

element of Γ, yields

j(σb, z)
−kPam(σb, Li(a, ·), χ)k

=
∑

γ∈Γa\Γ

Li(a, γ)j(σ−1
a γσb, z)

−ke2πi(m+xa)σ−1
a γσbz

� y−k/2
∑

γ∈Γa\Γ
γ 6=Γa

|Li(a, γ)| Im(σ−1
a γσbz)k/2

� y−k/2
(
|Ea(σbz, k/2− ε)− δabyk/2−ε|

+(Im(σ−1
a σbz)ε + Im(σ−1

a σbz)−ε + 1)|Ea(σbz, k/2)− δabyk/2|
)
.
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Since Im(gz) � y−1 for g ∈ SL2(R)\{I}, this is � y−k/2 × y1−(k/2−ε) = y1−k+ε as

y →∞ uniformly in x. Therefore, Pam(z, Li(a, ·), χ)k vanishes at the cusps for m > 0

as well as m = 0.

To verify the transformation law, we re–write Pam(z, Li(a, ·), χ)k in the form

Pam(z, Li(a, ·), χ)k =
∑

γ∈Γa\Γ

Li(a, γ)e2πi(m+xa)·|kσ−1
a γχ(γ)

and thus we have

Pam(z, Li(a, ·), χ)k|k,χδ =
∑

γ∈Γa\Γ

Li(a, γ)e2πi(m+xa)·|kσ−1
a γδχ(γδ)

=
∑

γ∈Γa\Γ

Li(a, γδ
−1)e2πi(m+xa)·|kσ−1

a γχ(γ).

This and the cocycle condition of Li(a, ·) imply that

Pam(·, Li(a, ·), χ)k|k,χ(δ − 1) =
∑

γ∈Γa\Γ

Li(a, δ
−1)e2πi(m+xa)·|kσ−1

a γχ(γ)ψ(γ) χ(γδ)

= Li(a, δ
−1)Pam(·, ψ). (19)

Therefore, condition i) of the definition of S2
k(Γ;χ, ψ), (2.6) (resp. M2

k (Γ;χ, ψ), (2.5))

holds for the series Pam(z, Li(a, ·), χ), if m > 0 (resp. Pa0(z, Li(a, ·), χ), if a is singular

in ψ).

Equation (19) also shows condition ii) of the definition of second–order forms:

By (9) applied with γ = π parabolic, z1 = a and z2 = a fixed point of π, we

deduce that Li(a, π) = (χ(π)ψ(π) − 1)aπ for some constant aπ ∈ C. Since the cocy-

cle condition of Li(a, ·) implies that Li(a, π
1) = −ψ(π)χ(π)Li(a, π), we deduce that

Pam(·, Li(a, ·), χ)k|k,χ(π − 1) has the form stipulated by condition ii) of the defini-

tion.

3.2 The dimensions of S2
k(Γ;χ, ψ) and M 2

k (Γ;χ, ψ) for k > 4 an

even integer

We are now in a position to finish the chapter with our main aim, to determine the

dimensions of the two spaces S2
k(Γ;χ, ψ) and M2

k (Γ;χ, ψ) (for k > 4 an even integer).
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Theorem 3.5. For k > 4 an even integer and d0 := dim
(
S2(Γ;χ · ψ) + S2(Γ;ψ · χ)

)
,

we have

dimS2
k(Γ;χ, ψ) = d0 dimSk(Γ;ψ) + dim (S2(Γ;χ) + S2(Γ;ψ)) (20)

dimM2
k (Γ;χ, ψ) = d0 dimMk(Γ;ψ) + dim (M2(Γ;χ) +M2(Γ;ψ)) . (21)

Proof. To obtain a basis for S2
k(Γ;χ, ψ), we first consider the set A of series

P∞j(z, Li(∞, ·), χ), as j runs over integers yielding a basis P∞j(z, ψ) for Sk(Γ;χ) and

as i runs over integers in {1, . . . , d0} inducing a basis [Li] of H1
par(Γ;χ · ψ). With

(19), these series are all linearly independent because the linear independence of

Li implies the linear independence of Li(∞, ·). We further consider a basis B of

Sk(Γ;χ) + Sk(Γ;ψ). As such a basis, we may choose the union of bases of Sk(Γ;χ)

and Sk(Γ;ψ), if ψ 6≡ χ, or, otherwise, a basis of Sk(Γ;χ). Because of (19) and the fact

that the Li’s (resp. j’s) are chosen to induce a basis of H1
par(Γ;χ ·ψ) (resp. Sk(Γ;χ)),

the set A ∪ B is linearly independent and, in particular, the set A ∩ B = ∅. The

cardinality of A∪B equals the upper bound in (10), so A∪B is a basis of S2
k(Γ;χ, ψ).

This proves (20).

A similar argument, using the fact that Pa0(z, ψ)k with a running over the in-

equivalent cusps of Γ\H which are singular in terms of ψ form a basis of Ek(Γ;ψ),

yields (21).

Remark: The dimensions appearing in Theorem 3.5 can be evaluated explicitly

using the formulae for the dimensions of modular forms for k > 0 as presented, for

instance, in [HK]: If χ is a character in Γ, then, with the notation used in (1),

set q = p +
∑r

j=1(1 − 1/ef ), χ(πi) = e(xi) and χ(εi) = ((k + aj)/(2ej)) for some

xi ∈ [0, 1), ej ∈ [0, ej − 1]. Then we have

dimMk(Γ;χ) = k(g − 1 + q/2)−
p∑
i=1

xi −
r∑
j=1

aj/ej − g + 1

and

dimSk(Γ;χ) = k(g − 1 + q/2)−
p∑
i=1

xi −
r∑
j=1

aj/ej − g + 1− p∗ + δ

where δ = 0 unless k = 2 and χ ≡ 1.
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4 The basis of S2
2(Γ;χ, ψ)

As mentioned in the introduction, the case k = 2 requires a different treatment.

Before we formulate and prove the main theorem, we introduce some important func-

tions which we will need, and we will prove some auxiliary propositions which are of

independent interest.

We begin with definitions of three functions: Uam(z, s, k;χ), Qam(z, s, n; f, χ) and

Gam(z, s; f, χ). These sets of functions will provide the analysis required to provide

the basis elements at the end of the chapter. We provide the necessary bounds on

the functions.

Next, the requisite Spectral Theory is laid out for later use and we introduce the

Maass raising and lowering operators. Some useful identities and formulae are also

calculated.

The last of the “big” analytical functions Zm(z, s; f, χ) is presented before we are

ready to tackle our main objective: The basis elements and dimension of S2
2(Γ;χ, ψ).

This is achieved in three stages. First, we adjust the function Zm(z, s; f, χ) until it

is in our required form. Then, we use these amended functions to create our basis

elements. Finally, we can determine the dimension of the space S2
2(Γ;χ, ψ).
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4.1 Preliminary results and definitions

As in the previous chapter, we consider a Fuchsian group of the first kind Γ with non–

compact quotient. In addition, we assume that ∞ is a cusp for Γ. We fix characters

χ, ψ on Γ such that χ(T ) = e2πimy∞ and ψ(T ) = e2πimx∞ where 0 6 y∞, x∞ < 1 and

m is an integer. We begin by defining the Poincaré series with character:

Definition 4.1. For m a non–negative integer, z ∈ H, s ∈ Z with Re(s) > 1, a

a cusp, γ ∈ Γ, and χ a character in Γ, we define the non–holomorphic, weight k

Poincaré series with character χ

Uam(z, s, k;χ) :=
∑

γ∈Γa\Γ

Im(σ−1
a γz)s e2πi(m+ya)σ−1

a γz ε(σ−1
a γ, z)−kχ(γ).

For simplicity, we use the following shorthand functions:

• Uam(z, s;χ) := Uam(z, s, 0;χ);

• Um(z, s, k;χ) := U∞m(z, s, k;χ); and

• Um(z, s, k) := U∞m(z, s, k; 1) where 1 represents the trivial character.

For this next function, we fix f(z) ∈ S2(Γ;χ · ψ) and set

Ian(zn) =

f
(−n)
a (zn) if n < 0∫ zn
i∞ . . .

∫ z2
i∞

∫ z1
i∞ fa(z0)dz0dz1 . . . dzn−1 if n > 0

for fa(z) = f(σaz)/j(σa, z)
2. Thus, we have d

dz
Ian(z) = Ia(n−1)(z) and we can use this

to extend the definition of Ian to all integers n. Thus:

Ia1(σ−1
a z) = Λf (a, z) =

∫ z

a

f(z)dw; and (22)

Ia0(σ−1
a z) = f(z) j(σ−1

a , z)−2.

We now define a function Qam(z, s, n; f, χ):

Definition 4.2. For f ∈ S2(Γ;χ), z ∈ H, a a cusp, n an integer, γ ∈ Γ, and χ a

character in Γ, we have

Qam(z, s, n; f, χ) :=
∑

γ∈Γa\Γ

Ian(σ−1
a γz) Im(σ−1

a γz)s e2πi(m+xa)σ−1
a γz χ(γ).
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We can show that, for all l ∈ Z, I∞n(z + l) = e2πil(y∞−x∞)In(z). Therefore, our

function Qam(z, s, n; f, χ) is well–defined (for s in a right halfplane which is to be

determined in Theorem 4.4).

We also set the definition of Gam(z, s; f, χ):

Definition 4.3. For f ∈ S2(Γ;χ), a a cusp, γ ∈ Γ, and χ a character in Γ, we have

Gam(z, s; f, χ) :=
∑

γ∈Γa\Γ

Λf (a, γz)

j(σ−1
a γ, z)2

Im(σ−1
a γz)s e2πi(m+xa)σ−1

a γz χ(γ).

The next theorem describes the original regions of convergence of the above series

and their bounds. To state it, we recall the notation of [Iw1], (2.42) for the invariant

height:

yΓ(z) = max
a

(max
γ∈Γ

(Im(σ−1
a γz))).

If ψ (or |ψ|) is smooth with weight 0, then

ψ(z)� yΓ(z)A

if and only if ψ(σaz)� yA for each cusp a as y →∞. We also use the notation

yF(z) = max
a

(Im(σ−1
a z))

for z ∈ F.

4.2 Bounding Uam(z, s, k;χ), Qam(z, s, 1; f, χ) and Gam(z, s−1; f, χ)

We are now ready to describe the behaviour of the series Uam(z, s, k;χ), Qam(z, s, 1; f, χ),

the derivative of Qam(z, s, 1; f, χ), and Gam(z, s − 1; f, χ) in the region of absolute

convergence.

Theorem 4.4. Let k be an even integer, σ = Re(s) > 1, and χ, ψ characters on Γ

with χ(γa) = e2πiya and ψ(γa) = e2πixa. For f ∈ S2(Γ;χ ·ψ), the series Uam(z, s, k;χ),

Qam(z, s, 1; f, χ), Q′am(z, s, 1; f, χ) and Gam(z, s−1; f, χ) converge absolutely and uni-

formly on compact sets to analytic functions of s. For these s we have:

i) Ua0(z, s, k;χ)� yΓ(z)σ

ii) Uam(z, s, k;χ)� 1, m > 0

iii) Qam(z, s, 1; f, χ)� yΓ(z)1/2−σ/2, m > 0
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iv) yQ′am(z, s, 1; f, χ)� (|m|+ 1)yΓ(z)1/2−σ/2, m > 0

v) yGam(z, s− 1; f, χ)� yΓ(z)1/2−σ/2, m > 0

where the implied constants depend on s, k, f, χ, ψ and Γ but not on m.

Proof. We will prove the five statements separately and in order.

i) Begin with the Eisenstein series (17). For each cusp a and taking m = 0, we

have

Ua0(z, s, k;χ) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)s χ(γ)� Ea(z, s)χ

by definition of Uam. Since by (18), Ea(z, s) is absolutely convergent for Re(s) >

1 and satisfies

Ea(σbz, s) = δaby
s + φab(s)y

1−s +O(e−2πy)

as y →∞ (see [Iw1]), we deduce that

Ua0(z, s, k;χ)� Ea(z, σ)χ� yΓ(z)σ

as y →∞.

ii) We first note that, for m > 0, |e2πi(m+ya)σ−1
a γz| 6 1. This implies that

Uam(σaz, s, k;χ) � yσe−2π(m+ya)y +
∑

γ∈Γa\Γ
γ 6∈Γa

Im(σ−1
a γσaz)σ

� yσe−2π(m+ya)y + |Ea(σaz, σ)− yσ| � 1.

Consider now another cusp b 6= a – then

Uam(σbz, s, k;χ)� Ea(σbz, σ)� φab(s)y
1−σ � 1. (23)

Therefore, for all cusps b, Uam(σbz, s, k;χ)� 1 as y →∞.

iii) We separate again into two cases:

b 6= a: Lemma 3.3 implies that for any ε > 0, we have

Λf (a, γσbz) = Λf (a, aa
−1γσbz)� Im(σ−1

a γσbz)ε + Im(σ−1
a γσbz)−ε + 1 (24)

23



for any cusp b and any z ∈ H. The implied constant is only dependent on ε, f

and Γ. Therefore, for σ > 1 + ε

Qam(σaz, s, 1; f, χ)� Ea(σbz, σ+ε)+Ea(σbz, σ−ε)+Ea(σbz, σ)� y1−σ+ε (25)

as y →∞ by (18).

a = b: We first observe that (with Lemma 3.3)

Qam(σaz, s, 1; f, χ)

=
∑

γ∈Γa\Γ

Fa(σaz) Im(σ−1
a γσaz)s e2πi(m+α)σ−1

a γσaz χ(γ)

�
∑

γ∈Γa\Γ

|Λf (a, γσaz)| Im(σ−1
a γσaz)σ

� |Λf (a, σaz)|

+
∑

γ∈Γa\Γ
γ 6∈Γa

(
Im(σ−1

a γσaz)σ+ε + Im(σ−1
a γσaz)σ−ε + Im(σ−1

a γσaz)σ
)
(26)

as y →∞. Since, with a change of variables w 7−→ σaw,

Λf (a, σaz) =

∫ z

∞
f(w)dw

we deduce that

Λf (a, σaz)� e−2πy (27)

as y →∞. Therefore, with (26), Qam(σaz, s, 1; f, χ)� y1−σ+ε for σ > 1 + ε as

y →∞.

Setting (in both cases) ε = (σ − 1)/2, we deduce iii).
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iv) Differentiating for γ ∈ PSL2(R), we have

2iy
d

dz

(
Λf (a, σaγz) Im(γz)s e2πi(m+xa)σaγz χ(γ)

)

= 2iyΛf (a, σaγz)
d

dz
(Im(γz)s) e2πi(m+xa)σaγz χ(γ)

+2iyΛf (a, σaγz) Im(γz)s
d

dz

(
e2πi(m+xa)σaγz

)
χ(γ)

= 2iyΛf (a, σaγz)
s

2i

Im(γz)s−1

j(γ, z)2
e2πi(m+xa)σaγz χ(γ)

+2iyΛf (a, σaγz) Im(γz)
2πi(m+ x∞)

j(γ, z)2
e2πi(m+xa)σaγz χ(γ)

= syΛf (a, σaγz) Im(γz)s
|j(γ, z)|2

yj(γ, z)2
e2πi(m+xa)σaγz χ(γ)

−4π(m+ x∞)yΛf (a, σaγz) Im(γz)s+1 |j(γ, z)|2

yj(γ, z)2
e2πi(m+xa)σaγz χ(γ)

= sΛf (a, σaγz) Im(γz)s e2πi(m+xa)σaγz ε(γ, z)−2 χ(γ)

−4π(m+ x∞) Λf (a, σaγz) Im(γz)s+1 e2πi(m+xa)σaγz ε(γ, z)−2 χ(γ)

Then

yQ′am(z, s, 1; f, χ) � |s|
∑

γ∈Γa\Γ

|Λf (a, γz)| Im(σ−1
a γz)

σ

+|m+ x∞|
∑

γ∈Γa\Γ

|Λf (a, γz)| Im(σ−1
a γz)

σ+1

� (|m|+ 1) yΓ(z)1−σ+ε.

Take ε = σ−1
2

to get the desired result.

v) Since

yGam(z, s; f, χ) =
∑

γ∈Γa\Γ

Λf (a, γz) Im(σ−1
a γz)

s+1
e2πi(m+x∞)σ−1

a γz ε(σ−1
a γ, z)−2 χ(γ)

working as in the proof of iii), we deduce v).
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4.3 Analytic continuations

Now that we have established the original domain of convergence and bounds for the

series which we will need for the construction, we can proceed with their meromorphic

continuation to the region we will require. We start be recalling some necessary known

results from Spectral Theory.

Definition 4.5. For f, g ∈ Sk(Γ), the Petersson Inner Product is defined by

〈f, g〉 =

∫
Γ\H

f(z)g(z) yk dµz.

The weight k of the inner product used throughout the chapter is weight 2.

Let

∆ = −4y2 d

dz

d

dz̄

be the hyperbolic Laplacian and, for χ a character of Γ, let

L2(Γ\H, χ) = {f : H→ C is smooth, square integrable andf(γz) = χ(γ)f(z) ∀γ ∈ Γ}.

Any f ∈ L2(Γ\H) may be decomposed into constituent parts from the discrete

and continuous spectrum of ∆. The Roelcke–Selberg decomposition amounts to the

identity

ξ(z) =
∞∑
j=0

〈ξ, ηj(z)〉+
1

4

∑
b

′
∫ ∞
−∞
〈ξ, Ea(·, 1/2 + ir;χ)〉Eb(z, 1/2 + ir;χ)dr (28)

where ηj denotes a complete orthonormal basis of Maass forms, with corresponding

eigenvalues λj = sj(1− sj) and where the sum
∑′ ranges over all inequivalent cusps

in terms of which χ is singular (see [He], Sections 1 and 2 of Chapter 7). We write

sj = σj + itj, with σj > 1/2 and tj > 0. The eigenvalues, counted with multiplicity,

are ordered as 0 = λ0 < λ1 6 λ2 6 . . ..

Recall that the Weyl–Selberg formula (Equation 7.8 of [Ve]) implies that

#{j| |λj| 6 T} � T. (29)

The decomposition (28) is absolutely convergent for each fixed z and uniform on com-

pact subsets of H, provided that ξ and ∆ξ are smooth and bounded.
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For each j, the Fourier expansion of ηj is

ηj(σaz) = ρaj(0, χ)y1−sj +
∑
m6=0

ρaj(m,χ)Wsj((m+ y∞)z). (30)

For all but finitely many of the j, we have λj > 1/4; that is, σj = 1/2 and ρaj(0, χ) = 0.

For those j with λj < 1/4, we have ρaj(0, χ) = 0 if χ is non–singular at a ([Pr], sec-

tion 3). The constant δΓ which we use throughout is chosen so that 1−δΓ > σ1 > 1/2.

We will first prove some bounds for ηj and the coefficients. We use the bound

(8.11) from [JO]

Ws(nz)� |s|2k + 1

(|n|y)2k−1+σ
|Γ(s)| (31)

which is valid for k > 0 and σ = Re(s) > 1/2 − k, and the implied constant is

dependent on σ and k. We will also make use of James Stirling’s classical formula for

the Gamma function

|Γ(σ + it)| ∼
√

2π|t|σ−1/2e−π|t|/2 as |t | → ∞. (32)

Since there are at most finitely many j with ρaj(0, χ) 6= 0, we have

ρaj(0, χ)� 1. (33)

Further, with the Bruggeman–Kuznetsov formula (see [Pr], for instance),

ρaj(m,χ)� |tj|√
|m+ ya|

eπ|tj |/2, m 6= 0. (34)

In both of the inequalities, the implied constant depends only on Γ and χ.

We can now further bound ηj(z): If we substitute (31), (32), (33) and (34) into

(30), we deduce that

ηj(z)� yΓ(z)1/2 + (|tj|7/2 + 1)yΓ(z)−3/2 (35)

where the implied constant depends on Γ and χ. Now we finally recall similar esti-

mates for the Fourier coefficients of Ea(z, s, χ) following from [Pr]. They will be used

in the continuous element of the spectral decomposition.

|φab(1/2 + ir;χ)| � 1. (36)∫ T+1

T

|φab(m, 1/2 + ir;χ)|2dr � T 2

|m+ ya|
eπT . (37)

φab(m, 1/2 + ir;χ)� |m+ y∞|2 for r ∈ [T, T + 1]. (38)
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4.4 Maass raising and lowering operators

We now give the required theory and applications of Maass raising and lowering op-

erators, as found in [DO].

Let C∞(Γ\H, k;χ) denote the space of smooth functions φ on H which transform

as

φ(γz) = ε(γ, z)kφ(z)χ(γ)

for γ ∈ Γ. Notice that the weight defined by this formula differs from the one

previously defined.

Define the Maass raising and lowering operators thus:

• Rk = 2iy d
dz

+ k
2

• Lk = −2iy d
dz
− k

2
.

They satisfy

(Rkf)|k+2 γ = Rk(f |k γ) and (Lkf)|k−2 γ = Lk(f |k γ)

and so we have the pair of maps

• Rk : C∞(Γ\H, k;χ) −→ C∞(Γ\H, k + 2;χ)

• Lk : C∞(Γ\H, k) −→ C∞(Γ\H, k + 2).

For n > 0, we can write

• Rn := Rk+2n−2 . . . Rk+2Rk and

• Ln := Lk−2n+2 . . . Rk−2Rk.

We also set R0 and L0 for the identity operator.

Next, for each τ ∈ PSL2(R), we define the operator θτ,k : C∞(H) −→ C∞(H)

given by

θτ,kφ(z) =
φ(τz)

ε(τ, z)k
. (39)

Using the elementary identities

θτ,k+2Rk = Rkθτ,k and (40)

θτ,k−2Lk = Lkθτ,k (41)

28



we can derive the relation for fa(z) = f(σaz)/j(σa, z)
2

Lr
(
yfa(z)

)
= Lrθσa,−2

(
yf(z)

)
(42)

= θσa,−2r−2L
r
(
yf(z)

)
(43)

= Lr
(
yf(z)

) ∣∣∣
σaz
ε(σa, z)

2r+2. (44)

Lemma 9.2 of [JO] implies that

RkUam(z, s, k;χ) = (s+ k/2)Uam(z, s, k + 2;χ) (45)

−4π(m+ y∞)Uam(z, s+ 1, k + 2;χ)

LkUam(z, s, k;χ) = (s− k/2)Uam(z, s, k − 2;χ). (46)

In [DO] ((8.18) and Lemma 4.3) it is essentially proved that:

Lemma 4.6. i) For any s with 1/2 6 Re(s) 6 1 − δ with δ > 0 and l > 0, we

have

Rn (Ws((m+ y∞)z)) � (|m+ y∞|y)n−2l−3/2 (|s|2l+2+n + 1) |Γ(s)|

Ln (Ws((m+ y∞)z)) � (|m+ y∞|y)n−2l−3/2 (|s|2l+2+n + 1) |Γ(s)|

as y →∞. The implied constant depends on n, l and δ.

ii) For n > 0, we have

Rn (ηj(z)) , Ln (ηj(z))� (|tj|n + 1)y
1/2
Γ + (|tj|2n+5 + 1)y

−3/2
Γ (47)

with the implied constant depending on n and Γ alone.

iii) For n > 0, we have∫ T+1

T

|RnEa(z, 1/2 + ir)|2dr,
∫ T+1

T

|LnEa(z, 1/2 + ir)|2dr � T 4n+12yΓ(z). (48)

4.5 Bounding the Poincaré series Uam(z, s, k;χ) for m > 0

Theorem 4.7. Let k be an even integer, m > 0 and χ be a character in terms of which

∞ is singular. Then the Poincaré series Uam(z, s, k;χ) has an analytic continuation

for all s with Re(s) > 1− δΓ and

Uam(z, s, k;χ)� yΓ(z)1/2

for those s, where the implied constant depends on s,m, k and Γ only.
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Proof. First, we prove the result for k = 0 and then extend it based on weight raising

and lowering operators.

Equation (44) (as seen in [Pr]) gives explicitly the spectral decomposition of

Uam(z, s, 0):

Um(z, s, 0)22s−1πs−1(m+ y∞)s−1/2Γ(s) =
∞∑
j=1

Γ(s− sj) Γ(s− 1 + sj) ρ∞j(m)ηj(z)

+
1

4π

∑
b

′
∫ ∞
−∞

Γ(s− 1/2− ir) Γ(s− 1/2 + ir)φ∞b(m, 1/2 + ir;χ)Eb(z, 1/2 + ir;χ)dr

where ρ∞j(m) are the Fourier coefficients of Maass forms ηj and

Eb(z, s, χ) = δa∞y
s + δ0y∞φ∞b(s)y

1−s +
∑
l 6=0

φ∞b(l, s, χ)Ws((l + y∞)z).

(Recall that the eigenvalues of ηj satisfy λi = sj(1− sj)).

Definition 4.8. In the spectral decomposition of Um(z, s, 0), we define the discrete

spectral component to be

Um(z, s, 0)D =
∞∑
j=1

Γ(s− sj) Γ(s− 1 + sj) ρ∞j(m) ηj(z)

and the continuous spectral component to be

Um(z, s, 0)C =

1

4π

∑
b

′
∫ ∞
−∞

Γ(s− 1/2− ir) Γ(s− 1/2 + ir)φ∞b(m, 1/2 + ir;χ)Eb(z, 1/2 + ir;χ)dr.

We first observe that the discrete part has the required properties and that these

are preserved by the Maass operators. Now, note that, with (34) and (32), we have

Γ(s− sj)Γ(s− 1 + sj)ρ∞j(m)� |tj|2σ−1/2

√
m+ y∞

e−π|tj |/2. (49)

This inequality, together with Lemma 4.6 and (29), imply that, for fixed s, the series

∞∑
j=1

Γ(s− sj)Γ(s− 1 + sj)ρ∞j(m)Rn(ηj(z))

converges uniformly for z in any compact set and is bounded by |m+y∞|−1/2yΓ(z)1/2.

It further converges uniformly for s in compact sets with Re(s) > 1 − δΓ giving an

analytic function of s.
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Since, upon interchanging summation and differentiation, we get

Rn

(
∞∑
j=1

Γ(s− sj) Γ(s− 1 + sj) ρ∞j(m) ηj(z)

)

=
∞∑
j=1

Γ(s− sj) Γ(s− 1 + sj) ρ∞j(m)Rn (ηj(z))

we deduce that

Rn

(
∞∑
j=1

Γ(s− sj) Γ(s− 1 + sj) ρ∞j(m) ηj(z)

)
is analytic for Re(s) > 1− δΓ. Furthermore, for these s, this function satisfies

Rn

(
∞∑
j=1

Γ(s− sj) Γ(s− 1 + sj) ρ∞j(m) ηj(z)

)
�
√

yΓ

|m+ y∞|

where the implied constant depends on s, n and Γ.

The same statement holds for similar calculations for Ln.

For the analysis of the continuous spectrum component, we need an auxiliary

lemma which slightly generalizes Lemma 4.11 of [DO]:

Lemma 4.9. For ψ(r) smooth on [T, T + 1] and a singular in terms of χ, we have

d

dz

∫ T+1

T

ψ(r)Ea(z, 1/2 + ir;χ)dr =

∫ T+1

T

ψ(r)

(
d

dz
Ea(z, 1/2 + ir;χ)

)
dr.

Proof. With the Fourier expansion of (18), we have

Ea(z, 1/2 + ir;χ) = δa∞ y
1/2+ir + δy∞0 φa∞(1/2 + ir;χ) y1/2−ir (50)

+
∑
m 6=0

φa∞(m, 1/2 + ir;χ)W1/2+ir((m+ y∞)z).

Combine (31), (36) and (38) to see that∫ T+1

T

(
δa∞

∣∣y1/2+ir
∣∣+ δy∞0

∣∣φa∞(1/2 + ir;χ) y1/2−ir∣∣
+
∑
m6=0

∣∣φa∞(m, 1/2 + ir;χ)W1/2+ir((m+ y∞)z)
∣∣)dr <∞

and hence, by Corollary 8.6 of [DO]∫ T+1

T

ψ(r)Ea(z, 1/2 + ir;χ)dr

=

∫ T+1

T

ψ(r)

(
δa∞

∣∣y1/2+ir
∣∣+ δy∞0

∣∣φa∞(1/2 + ir;χ) y1/2−ir∣∣
+
∑
m 6=0

∣∣φa∞(m, 1/2 + ir;χ)W1/2+ir((m+ y∞)z)
∣∣)dr
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and hence we can interchange the summation and integration to get∫ T+1

T

ψ(r)Ea(z, 1/2 + ir;χ)dr (51)

=

∫ T+1

T

ψ(r)
(
δa∞ y

1/2+ir + δy∞0 φa∞(1/2 + ir;χ) y1/2−ir) dr
+
∑
m6=0

∫ T+1

T

ψ(r)φa∞(m, 1/2 + ir;χ)W1/2+ir((m+ y∞)z).

Using Lemma 4.6, we can deduce a similar expression for the derivative of

Ea(z, 1/2 + ir;χ):∫ T+1

T

ψ(r)

(
d

dz
Ea(z, 1/2 + ir;χ)

)
dr = (52)∫ T+1

T

ψ(r)

(
δa∞

d(y1/2+ir)

dz
+ δy∞0 φa∞(1/2 + ir;χ)

d(y1/2+ir)

dz

)
dr

+
∑
m6=0

∫ T+1

T

ψ(r)
(
φa∞(m, 1/2 + ir;χ)W1/2+ir((m+ y∞)z

)
dr

Since the derivative of each term in the righthand side of (51) equals the corresponding

term of (52) this completes the proof.

The arguments of the proof of this lemma can be iterated to give∫ T+1

T

ψ(r)Ea(σbz, 1/2 + ir;χ)dr =

∫ T+1

T

ψ(r) (RnEa(σbz, 1/2 + ir;χ))dr (53)∫ T+1

T

ψ(r)Ea(σbz, 1/2 + ir;χ)dr =

∫ T+1

T

ψ(r) (LnEa(σbz, 1/2 + ir;χ))dr. (54)

Based on these identities, we can now analytically continue and bound

RnUm(z, s, 0;χ):∑
b

′
∫ ∞
−∞

Γ(s− 1/2− ir) Γ(s− 1/2 + ir)φ∞b(m, 1/2 + ir;χ)Eb(z, 1/2 + ir;χ)dr. (55)

Specifically,

∑
b

′
Rn

∫ T+1

T

Γ(s− 1/2− ir) Γ(s− 1/2 + ir)φ∞b(m, 1/2 + ir;χ)Eb(z, 1/2 + ir)dr

�
∑
b

′
∫ T+1

T

Γ(s− 1/2− ir) Γ(s− 1/2 + ir)φ∞b(m, 1/2 + ir;χ)RnEb(z, 1/2 + ir)dr.
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With the Cauchy–Schwarz inequality and Stirling’s estimate this is

� |T |e−π|T |
√∫ T+1

T

|φ∞b(m, 1/2 + ir;χ)|2dr

√∫ T+1

T

|RnEb(m, 1/2 + ir;χ)|2dr.

Finally, with Lemma 4.6 iii) and (37), we deduce that this is

� |T |2n+8 e−π|T |/2 |m+ y∞|−1/2 yΓ(z)1/2. (56)

Adding over all T ∈ Z, we deduce that

Rn(Uam(z, s, 0)C), Ln(Uam(z, s, 0)C)� |m|−1/2 yΓ(z)1/2

is analytic in Re(s) > 1− δΓ and is bounded by |m+ y∞|−1/2 yΓ(z)1/2.

The same statement and bound holds for the function of s obtained after appli-

cation of Ln.

We may now finish the proof of Theorem 4.7. With (45) we see that

R0Uam(z, s, 0) = sUam(z, s, 2)− 4πmUam(z, s+ 1, 2) and

R2R0Uam(z, s, 0) = s(s+ 1)Uam(z, s, 4)− 4πm(2s+ 2)Uam(z, s+ 1, 4)

+ (4πm)2 Uam(z, s+ 2, 4).

In general, for k > 0

Uam(z, s, 2k) =
1

s(s+ 1) . . . (s+ k − 1)

(
RkUam(z, s, 0) (57)

+p1(m, s)Uam(z, s+ 1, 2k) + . . .+ pk(m, s)Uam(z, s+ k, 2k)
)

where the polynomials pi, i = 1, . . . , k are in variables m and s. Therefore, using

Lemmas 4.6, 4.9 and Theorem 4.4 ii), the righthand side of (57) is analytic for Re(s) >

1− δΓ and bounded by yΓ(z)1/2. Similarly for k < 0 and we deduce the theorem.

Before we continue, we choose, once and for all, a constant δΓ depending on Γ

with 0 < δΓ < 1/2. It is chosen so that poles appearing from the discrete spectrum

have real part less that 1− δΓ.

4.6 The twisted Poincaré series Qam(z, s, 1; f, χ)

The purpose of this subsection is to establish the meromorphic continuation of the

functions Qam(z, s, 1; f, χ) and its differential, transforming by χ. Again, it has both

independent interest and it is necessary for the construction of our basis functions.

To prove the continuation, we will first need an auxiliary theorem:
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Theorem 4.10. For m > 0, −n 6 0, characters χ,ψ of Γ and f ∈ S2(Γ;χ · ψ), the

series Qm(z, s+ n+ 1,−n; f, χ) is analytic for s for Re(s) > 1− δΓ. For these s

• Qm(z, s+ n+ 1,−n; f, χ)� e−πyΓ(z)

• R0Qm(z, s+ n+ 1,−n; f, χ)� e−πyΓ(z)

with the implied constant depending on m, n, f , s, χ and Γ only.

Proof. We first prove the formula:

f (n)(γz) = (−2i)−n Im(γz)−(n+1)

n∑
r=0

(−1)n−r ε(γ, z)−2(r+1)

(
n

r

)
(n+ 1)!

(r + 1)!
Lr(yf(z))χ(γ)

for f ∈ S2(Γ) and γ ∈ Γ. We proceed with induction on n:

Now, when n = 0, our formula gives

f (0)(γz) = f(γz) = Im(γz)−1 ε(γ, z)−2 yf(z) χ(γ).

The righthand side equals:

y−1

|j(γ, z)|−2

j(γ, z)−2

|j(γ, z)|−2
yf(z) χ(γ)

[Using (2) and (3)]

=
j(γ, z)−2

|j(γ, z)|−4
f(z) χ(γ)

[Since |j (γ, z )| = |j (γ, z )|]

=
j(γ, z)−2

j(γ, z)−2 j(γ, z)−2
f(z) χ(γ)

= j(γ, z)2f(z) χ(γ)

= j(γ, z)
2
f(z) χ(γ).

This equals the lefthand side by Definition 2.2 as required. So it certainly works for

n = 0.

Suppose now that the identity holds for n – we prove that it holds for n+ 1:
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First, we use a change of variables z 7−→ γ−1z. Then

f (n+1)(z)

=
d

dz̄

(
(−2i)−n Im(z)−(n+1)

n∑
r=0

(−1)n−rε(γ−1, z)2(r+1)

×
(
n

r

)
(n+ 1)!

(r + 1)!
Lr(yf(·))|γ−1z χ(γ)

)

= (−2i)−n
−(n+ 1)

−2i
Im(z)−(n+1)−1 ×

n∑
r=0

(−1)n−rε(γ−1, z)2(r+1)

(
n

r

)
(n+ 1)!

(r + 1)!
Lr(yf(·))|γ−1z χ(γ)

+(−2i)−n Im(z)−(n+1)

n∑
r=0

(−1)n−r
d

dz̄

(
θγ−1,−2(r+1)(L

r(yf(·)))|γ−1z

)
χ(γ)

= (−2i)−(n+1) Im(z)−((n+1)+1)(n+ 1)×
n∑
r=0

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n

r

)
(n+ 1)!

(r + 1)!
Lr(yf(·))|γ−1z χ(γ)

+(−2i)−(n+1) Im(z)−((n+1)+1)

n∑
r=0

(
(−1)n−rε(γ−1, z)2(r+1)(Lr(yf(·)))|γ−1z

×((L−2(r+1)(yf(·)))|γ−1z + (r + 1))

)
χ(γ)

[
Since

d

dz̄

(
θγ−1,−2(r+1)(L

r(yf(·)))|γ−1z

)
= − 1

2iy
θγ−1,−2(r+1)(L

r(yf(·)))|γ−1z((L−2(r+1)(yf(·)))|γ−1z + (r + 1))

]
= (−2i)−(n+1) Im(z)−((n+1)+1) ×{ n∑

r=0

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n

r

)
(n+ 1)!

(r + 1)!
(n+ 1)Lr(yf(·))|γ−1z χ(γ)

+
n∑
r=0

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n

r

)
(n+ 1)!

(r + 1)!
(r + 1)Lr(yf(·))|γ−1z χ(γ)

+
n∑
r=0

(−1)n−rε(γ−1, z)2((r+1)+1)

(
n

r

)
(n+ 1)!

(r + 1)!
Lr+1(yf(·))|γ−1z χ(γ)

}

[Using (41), ie. θτ,k−2Lk = Lkθτ,k]

Now, use a change of variable on the third summation r + 1 7−→ r :
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= (−2i)−(n+1) Im(z)−((n+1)+1) ×{ n∑
r=0

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n

r

)
(n+ 1)!

(r + 1)!
(n+ 1)Lr(yf(·))|γ−1z χ(γ)

+
n∑
r=0

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n

r

)
(n+ 1)!

(r + 1)!
(r + 1)Lr(yf(·))|γ−1z χ(γ)

+
n+1∑
r=1

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n

r

)
(n+ 1)!

(r + 1)!
Lr+1(yf(·))|γ−1z χ(γ)

}

= (−2i)−(n+1) Im(z)−((n+1)+1) ×{
(−1)(n+1)ε(γ−1, z)2L0(yf(·))|γ−1z

(
n

0

)
(n+ 1)!(n+ 1)χ(γ)

+ε(γ−1, z)2((n+1)+1)Ln+1(yf(·))|γ−1z χ(γ)

+(−1)(n+1)ε(γ−1, z)2L0(yf(·))|γ−1z

(
n

0

)
(n+ 1)!χ(γ)

+
n∑
r=1

(−1)(n+1)−rε(γ−1, z)2(r+1)Lr(yf(·))|γ−1z χ(γ)×{(
n

r

)
(n+ 1)!

(r + 1)!
(n+ 1) +

(
n

r − 1

)
(n+ 1)!

r!
+

(
n

r

)
(n+ 1)!

(r + 1)!
(r + 1)

}}

Dealing separately with the binomial coefficients for the time being, we have(
n

r

)
(n+ 1)!

(r + 1)!
(n+ 1) =

n!

r!(n− r)!
(n+ 1)!

(r + 1)!
(n+ 1)

=
(n+ 1)!

r!(n− r)!
(n+ 1)!

(r + 1)!
=

(n+ 1)!

r!((n+ 1)− r)!
(n+ 1)!

r)!

((n+ 1)− r)
(r + 1)

=

(
n+ 1

r

)
(n+ 1)!

r)!

((n+ 1)− r)
(r + 1)

and also using Pascal’s Triangle,

(
n

r − 1

)
+

(
n

r

)
=

(
n+ 1

r

)
, then

(
n

r

)
(n+ 1)!

(r + 1)!
(n+ 1) +

(
n

r − 1

)
(n+ 1)!

r!
+

(
n

r

)
(n+ 1)!

(r + 1)!
(r + 1)

=

(
n+ 1

r

)
(n+ 1)!

r!

((n+ 1)− r)
(r + 1)

+

(
n

r − 1

)
(n+ 1)!

r!
+

(
n

r

)
(n+ 1)!

(r + 1)!
(r + 1)

=

(
n+ 1

r

)
(n+ 1)!

r!

((n+ 1)− r)
(r + 1)

+

(
n+ 1

r

)
(n+ 1)!

r!
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=

(
n+ 1

r

)
(n+ 1)!

r!

(
((n+ 1)− r)

(r + 1)
+ 1

)

=

(
n+ 1

r

)
(n+ 1)!

r!

(
((n+ 1)− r) + r + 1

(r + 1)

)

=

(
n+ 1

r

)
(n+ 1)!

r!

((n+ 1) + 1)

(r + 1)
=

(
n+ 1

r

)
((n+ 1) + 1)!

(r + 1)!

Returning to our equation with this, we have:

f (n+1)(z)

= (−2i)−(n+1) Im(z)−((n+1)+1) ×{
(−1)(n+1)ε(γ−1, z)2L0(yf(·))|γ−1z

(
n

0

)
(n+ 1)!((n+ 1) + 1)χ(γ)

+ε(γ−1, z)2((n+1)+1)Ln+1(yf(·))|γ−1z χ(γ)

+
n∑
r=1

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n+ 1

r

)
((n+ 1) + 1)!

(r + 1)!
Lr(yf(·))|γ−1z χ(γ)

}

= (−2i)−(n+1) Im(z)−((n+1)+1) ×{ 0∑
r=0

(−1)(n+1)−rε(γ−1, z)2(r+1)Lr(yf(·))|γ−1z

(
n

r

)
((n+ 1) + 1)!

(r + 1)!
χ(γ)

+
n+1∑
r=n+1

(−1)(n+1)−rε(γ−1, z)2(r+1)Lr(yf(·))|γ−1z χ(γ)

+
n∑
r=1

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n+ 1

r

)
((n+ 1) + 1)!

(r + 1)!
Lr(yf(·))|γ−1z χ(γ)

}

= (−2i)−(n+1) Im(z)−((n+1)+1) ×
n∑
r=1

(−1)(n+1)−rε(γ−1, z)2(r+1)

(
n+ 1

r

)
((n+ 1) + 1)!

(r + 1)!
Lr(yf(·))|γ−1z χ(γ)

Take z 7−→ γz and we have the formula as required.

Now, for n > 0 and taking a to equal ∞, we have

Qm(z, s,−n; f, χ) =
∑

γ′∈Γ∞\Γ

f
(n)
∞ (σ−1

∞ γz) Im(σ−1
∞ γz)se2πi(m+α)σ−1

a γzχ(γ). (58)
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So, if we name Γ′ = σ−1
∞ Γγ∞ and note that σ−1

∞ Γ∞γ∞ = Γ∞, we find

Qm(σ∞z, s,−n; f, χ) =
∑

γ′∈Γ∞\Γ′
f

(n)
∞ (γ′z) Im(γ′z)e2πi(m+α)γ′zχ(γ)

= (−2i)−n
n∑
r=0

(−1)n−r
(
n

r

)
(n+ 1)!

(r + 1)!
Lr(yfa(z))

×
∑

γ′∈Γ∞\Γ′
Im(γ′z)s−(n+1)e2πi(m+α)γ′zε(γ′, z)−2(r+1)χ(γ)

= (−2i)−n
n∑
r=0

(−1)n−r
(
n

r

)
(n+ 1)!

(r + 1)!
Lr(yf∞(z))ε(σ∞, z)

−2(r+1)

×Um(σ∞z, s− (n+ 1), 2(r + 1);χ).

Using the commutativity relations (40) and (41) implies that

Lr(yf∞(z)) = Lr(yf(z))|σ∞z ε(σ∞, z)2(r+1) (59)

and then

Qm(z, s,−n; f, χ) (60)

= (−2i)−n
n∑
r=0

(−1)n−r
(
n

r

)
(n+ 1)!

(r + 1)!
Lr(yf(z))Um(z, s− (n+ 1), 2(r + 1);χ).

Together with Theorem 4.7, this gives an analytic continuation of

Qm(z, s,−n; f, χ) to Re(s) > 2 + n− δΓ.

To complete the proof, it remains to prove the bound. First, with (41), we observe

that Lr
(
yf(z)

)
has exponential decay at every cusp b because

θσb,−2(r+1)L
r
(
yf(z)

)
= Lr

(
θσb,−2yf(z)

)
= Lr

(
yj(γ, σbz)−2 f(σbz)

)
= Lr

(
y
∞∑
n=1

ab(n) e2πinz

)
.

Therefore

Lr
(
yf(z)

)
� yΓ(z)r+1e−2πyΓ(z)

for an implied constant depending on r, f and Γ. An application of this and Theorem

4.7 to (60) gives

Qm(z, s+ n+ 1,−n; f, χ)� eπyΓ(z) (61)
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for Re(s) > 1− δΓ.

By repeating the proof mutatis mutandis, it can be shown the same result for

R0Qm(z, s+ n+ 1,−n; f, χ). However, it is quicker to just apply R0 to both sides of

(60) and then use the easily verifiable (with (45)) identity

R0

(
Lr
(
yf(z)

)
Um(z, s− n− 1, 2(r + 1);χ)

)
=
(
R−2(r+1) L

r
(
yf(z)

))
Um(z, s− n− 1, 2(r + 1);χ)

+ Lr yf(z)R2(r+1) Um(z, s− n− 1, 2(r + 1);χ)

= R−2(r+1) L
r
(
yf(z)

)
Um(z, s− n− 1, 2(r + 1);χ)

+ Lr
(
yf(z)

)(
(s− n+ 1)Um(z, s− n− 1, 2(r + 2);χ)

− 4πmUm(z, s− n, 2(r + 2);χ)
)
.

Using this theorem, we can now prove:

Theorem 4.11. For m > 0, the cusp a taken to be ∞, χ, ψ characters on Γ and

f ∈ S2(Γ;χ · ψ), both of the series

• (s− 1)Qam(z, s, 1; f, χ)

• Q′am(z, s, 1; f, χ)

have continuations to meromorphic functions of s when Re(s) > 1 − δΓ, and when

this is satisfied

• (s− 1)Qam(z, s, 1; f, χ)� yΓ(z)1/2

• Q′am(z, s, 1; f, χ)� yΓ(z)1/2

with the implied constants depending on s,m, f,Γ and χ. If χ 6≡ 1, then Qam(z, s, 1; f, χ)

is analytic in this region; otherwise, it has a simple pole at s = 1 with residue

2i〈f, Pam(·)2〉 where 〈·, ·〉 denotes the Petersson Inner Product.

Proof. The function Qam(z, s, 1; f, χ) satisfies

〈Qam(·, s, 1; f, χ), Qam(·, s, 1; f, χ)〉 <∞ (62)

for Re(s) > 1 because of Theorem 4.4 iii). The spectral decomposition then implies

Qam(z, s, 1; f, χ) =
∞∑
j=0

′

〈Qam(·, s, 1; f, χ), ηj〉 ηj(z) (63)

+
1

4π

∑
b

∫ ∞
−∞
〈Qam(·, s, 1; f, χ), Eb(·, 1/2 + ir, χ)〉Eb(·, 1/2 + ir, χ)dr
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The computation of the inner products appearing in this formula is more subtle than

that of the corresponding products for Um and we will need the following lemma

proved in Section 9 of [JO]. Although the proof there referred to trivial characters,

the identical argument applies to the general case because the character appears only

in the Petersson scalar product.

For the study of this decomposition, we employ the following lemma:

Lemma 4.12. Let ξ1, ξ2 and ψ be any smooth functions such that ξi(γz) = χ(γ)ξi(z)

and ψ(γz) = χ(γ)ψ(z). If (∆− λ)ξ1 = ξ2, (∆− λ′)ψ = 0 and

ξ1, R0ξ1,∆ξ1 � yΓ(z)A,

ψ, R0ψ � yΓ(z)B,

for A+B < 0 and R0 = 2iy d
dz

the raising operator, then

〈ξ1, ψ〉 =
1

λ′ − λ
〈ξ2, ψ〉.

Proof. See [JO], Section 9. Although the proof there referred to the trivial character,

the identical argument applies generally because the character only appears in the

definition of the Petersson scalar product.

Now, for all n ∈ Z, we have

(∆− s(1− s))Qm(z, s, n; f, χ) =− 8πi(m+ xa)Qm(z, s+ 2, n− 1; f, χ)

+ 4πs(m+ xa)Qm(z, s+ 1, n; f, χ)

+ 2isQm(z, s+ 1, n− 1; f, χ).

We apply Lemma 4.12 to ξ1 = Qm(z, s, n; f, χ) and ψ = ηj, and recall that

(∆ − sj(1 − sj)ηj) = 0. To check the growth conditions, we will need the following

result: Now, we have ηj(z), R0ηj(z)� yΓ(z)1/2 by Lemma 4.6 and

Qm(z, s, n; f, χ)� yΓ(z)1/2−σ/2

R0Qm(z, s, n; f, χ)� yΓ(z)1/2−σ/2

∆Qm(z, s, n; f, χ)� yΓ(z)1/2−σ/2

for σ = Re(s) > 1 by Theorem 4.4 iii) and iv) and Theorem 4.10. So we may use

Lemma 4.12 to get, for Re(s) > 2,

〈Qm(·, s, 1; f, χ), ηj〉 =
1

(sj − s)(1− sj − s)

(
− 8πim〈Qm(·, s+ 2, 0; f, χ), ηj〉

+ 4πms〈Qm(·, s+ 1, 1; f, χ), ηj〉+ 2is〈Qm(·, s+ 1, 0; f, χ), ηj〉
)
.
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Iterating M times, we deduce that for Re(s) > 2,

〈Qm(·, s, 1; f, χ), ηj〉 =
∑
l

Pl(m, s)

Rl(m, s)
〈Qm(·, s+M + cl, 1− dl; f, χ), ηj〉 (64)

with integers cl, dl satisfying 0 6 cl, dl 6M , dl 6M + cl and Pl(m, s) is a polynomial

in m and s alone of degree M in m and of degree M in s. Further,

Rl(sj, s) =
∏
b

(sj − b− s)(1− sj − b− s) (65)

where, for each l, the product is over some subset of integers b in {0, 1, . . . , 2M} of

cardinality M .

Now, for s with Re(s) > 1− δΓ, we have:

Case I: dl = 0. Then, with Theorem 4.4 iii), Qm(·, s+M + cl, 1; f, χ) is analytic and,

for M > 1, it satisfies

Qm(z, s+M + cl, 1; f, χ)� yΓ(z)1/4−M/2. (66)

Therefore, with Cauchy–Schwarz,

〈Qm(·, s+M + cl, 1; f, χ), ηj〉 �
√
||yΓ(z)−1/4|| · ||ηj|| =

√
||yΓ(z)−1/4|| � 1.

Case II: 0 < dl 6M . Then, by Theorem 4.10, we have

Qm(·, s+M + cl, 1− dl; f, χ)� e−πyΓ(z). (67)

Hence, with Cauchy–Schwarz,

〈Qm(z, s+M + cl, 1− dl; f, χ), ηj〉 � 1.

Therefore, and taking into account (65), in both cases, the righthand side of (64) is

analytic for s with Re(s) > 1− δΓ. Furthermore,

〈Qm(·, s, 1; f, χ), ηj〉 � |sj|−2M � |λj|−M

with implied constants depending on s,m,M, f, χ and Γ only. If, in addition, we use

(29) and (35), we deduce, for each j > 0, that∑
T6|λj |<T+1

〈Qm(·, s, 1; f, χ), ηj〉ηj(z)� T 1−MyΓ(z)1/2 + T 11/4−MyΓ(z)−3/2.
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Fix an M > 4. Then, adding over all T ∈ Z>0, we get∑
j=1

〈Qam(·, s, 1; f, χ), ηj〉ηj(z)� yΓ(z)1/2

for all s with Re(s) > 1− δΓ and an implied constant which depends solely on s,m, f

and Γ.

The index j = 0 plays a role only for the trivial character χ because otherwise

η0 = 0. Then, we have the constant eigenfunction η0 = V −1/2. Unfolding gives:

〈Qm(·, s, 1; f, χ), η0〉η0 =
−aa(m)Γ(s− 1)

2πim(4πm)s−1

=
−aa(m)Γ(s− 1)

2πim

(
1

s− 1
+O(1)

)
=2i〈f, Pm(·)2〉

(
1

s− 1
+O(1)

)
as s→ 1 since 〈f, Pm(·)2〉 = a(m)

4πm
. Here, a(m) is the m-th Fourier coefficient of f(z).

We next consider the contribution of the continuous part. We first note that the

Fourier expansion of Ea(z, s;χ) at any cusp together with (31), (36) and (38) implies

that

Ea(z, 1/2 + ir;χ)� yΓ(z)1/2 (68)

for r ∈ [T, T + 1]. This allows us to use Lemma 4.12 to get, for Re(s) > 2,

〈Qm(·, s, 1; f, χ), Eb(·, 1/2 + ir;χ)〉 = (69)∑
l

Pl(m, s)

Rl(1/2 + ir, s)
〈Qm(·, s+M + cl, 1− dl; f, χ), Eb(·, 1/2 + ir;χ)〉.

The quantities Pl, Rl, cl, dl and the summation range are the same as in (64).

Applying (66), (67) and (68) to (69), we deduce that for M > 1, the righthand

side of (69) converges. This gives the analytic continuation of the lefthand side for

Re(s) > 1− δΓ. Furthermore, (69) implies that, for z0 ∈ H, we have

∫ T+1

T

〈Qm(·, s, 1; f, χ), Eb(·, 1/2 + ir)〉Eb(·, 1/2 + ir)dr (70)

=
∑
l

Pl(m, s)

∫ T+1

T

〈Qm(·, s+M + cl, 1− dl; f, χ), Eb(·, 1/2 + ir)〉
Rl(1/2 + ir, s)

×Eb(z0, 1/2 + ir)dr

=
∑
l

Pl(m, s)

∫ T+1

T

∫
F

Qm(z, s+M + cl, 1− dl; f, χ)

Rl(1/2 + ir, s)

×Eb(z, 1/2 + ir)Eb(z0, 1/2 + ir)dµz dr. (71)
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By (65), (66), (67) and (68), the integrand satisfies

Qm(z, s+M + cl, 1− dl; f, χ)

Rl(1/2 + ir, s)
Eb(z, 1/2 + ir)Eb(z0, 1/2 + ir)

� |r|−2MyΓ(z)1/4−M/2yΓ(z)1/2yΓ(z0)1/2

and therefore the last integral in (71) is absolutely and uniformly convergent. We can

thus interchange the limits of integration to obtain∑
l

Pl(m, s)

∫
F

Qm(z, s+M + cl, 1− dl; f, χ) (72)

×
∫ T+1

T

Eb(z, 1/2 + ir;χ)

Rl(1/2 + ir, s)
Eb(z0, 1/2 + ir;χ)dr dµz.

Since, by Cauchy–Schwarz,∫ T+1

T

Eb(z, 1/2 + ir;χ)

Rl(1/2 + ir, s)
Eb(z0, 1/2 + ir;χ)dr

� T−2M

√∫ T+1

T

|Eb(z, 1/2 + ir;χ)|2dr ·
∫ T+1

T

|Eb(z0, 1/2 + irχ)|2dr,

a special case of Lemma 4.6 iii) implies that the sum in (72) is

�
∑
l

|Pl(m, s)|
∫
F

|Qm(z, s+M + cl, 1− dl; f, χ)|

×T−2M yΓ(z)1/2 T 6 yΓ(z0)1/2 T 6dµz dr

�
∑
l

yΓ(z0)1/2|Pl(m, s)|T 12−2M

∫
F

yΓ(z)3/4−M/2dµz.

Hence, for M chosen large enough,∫ ∞
−∞
〈Qm(·, s, 1; f, χ), Eb(·, 1/2 + ir;χ)〉Eb(z, 1/2 + irχ)dr � yΓ(z)1/2. (73)

This completes the proof of the meromorphic continuation for Re(s) > 1− δΓ and the

bound ofQm(z, s, 1; f, χ). The analytic continuation and bound forR0Qm(z, s, 1; f, χ)

are proved in an entirely analogous manner, once we apply R0 to both sides of (63).

In fact, the only essential difference is that, when χ is the trivial character, there is

no pole because R0 eliminates it.

4.7 Zm(z, s; f, χ) and an identity on Gm(z, s; f, χ)

We are now ready to construct the functions which will give the basis elements we

are seeking.

43



Definition 4.13. For f ∈ S2(Γ;χ · ψ) and Re(s) > 0 set

Zm(z, s; f, χ) :=
∑

γ∈Γa\Γ

Lf (∞, γ)
Im(γz)s

j(γ, z)2
e2πi(m+x∞)χ(γ). (74)

By Lemma 2.12, for all z ∈ H,

Lf (∞, γ) = Λf (∞, γz)− χ(γ)ψ(γ) Λf (∞, γ)

and thus

Zm(z, s; f, χ) = Gm(z, s; f, χ)− Λf (∞, z)y−1Uam(z, s+ 1, 2;χ). (75)

This expression together with Theorem 4.4 implies that Zm(z, s; f, χ) converges ab-

solutely for Re(s) > 0.

Before proceeding on to the main theorem of the section, we first prove the fol-

lowing proposition:

Proposition 4.14. Let m be a non–negative integer, f ∈ S2(Γ;χ, ψ) such that either

χ is singular or else χ is non–singular but ψ is singular, and a a cusp. Zam(z, s; f, χ)

has an analytic continuation to Re(s) > −δΓ and

d

dz
Qm(z, s, 1; f, χ) = 2πi(m+ x∞)Gm(z, s; f, χ)− is

2
Gm(z, s− 1; f, χ) (76)

or, equivalently

Gm(z, s; f, χ) =
4π(m+ x∞)

s+ 1
Gm(z, s− 1; f, χ) +

2i

s+ 1
Q′m(z, s, 1; f, χ). (77)

Proof.

d

dz
Qam(z, s, 1; f, χ) =

d

dz

 ∑
γ∈Γa\Γ

∫ γz

a

f(w)dw Im(σ−1
a γz)s e2πi(m+α)σ−1

a γz χ(γ)


=

∑
γ∈Γa\Γ

∫ γz

a

f(w)dw Im(σ−1
a γz)s

d

dz

(
e2πi(m+α)σ−1

a γzχ(γ)
)

+
∑

γ∈Γa\Γ

∫ γz

a

f(w)dw
d

dz

(
Im(σ−1

a γz)s
)
e2πi(m+α)σ−1

a γz χ(γ)

+
∑

γ∈Γa\Γ

(
d

dz

∫ z

a

f(w)dw

)
Im(σ−1

a γz)s e2πi(m+α)σ−1
a γz χ(γ)

We use the results:
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• d
dz

(e2πi(m+α)σ−1
a γz) = 2πi(m+ α) d

dz
(σ−1

a γz) e2πi(m+α)σ−1
a γz;

• d
dz

(σ−1
a γz) = j(σ−1

a γ, z)−2;

• d
dz

(Im(σ−1
a γz)s) = s Im(σ−1

a γz)s−1 d
dz

(Im(σ−1
a γz));

• d
dz

(Im(σ−1
a γz)) = d

dz

(
(σ−1

a γz)−(σ−1
a γz)

2i

)
= 1

2i
d
dz

(
σ−1
a γz − σ−1

a γz
)

= 1
2i

( d
dz

(σ−1
a γz)− d

dz
(σ−1

a γz)) = 1
2i
j(σ−1

a γ, z)−2; and

• d
dz

∫ z
a
f(w)dw = 0.

Putting these together, we have

d

dz
Qam(z, s, 1; f, χ)

=
∑

γ∈Γa\Γ

∫ γz

a

f(w)dw Im(σ−1
a γz)s

(
2πi(m+ α) j(σ−1

a γ, z)−2 e2πi(m+α)σ−1
a γz χ(γ)

)
+
∑

γ∈Γa\Γ

∫ γz

a

f(w)dw

(
s Im(σ−1

a γz)s−1.
1

2i

)
e2πi(m+α)σ−1

a γz χ(γ) + 0

= 2πi(m+ α)
∑

γ∈Γa\Γ

∫ γz

a

f(w)dw
Im(σ−1

a γz)s

j(σ−1
a γ, z)2

e2πi(m+α)σ−1
a γz χ(γ)

−si
2

∑
γ∈Γa\Γ

∫ γz

a

f(w)dw Im(σ−1
a γz)s−1 e2πi(m+α)σ−1

a γz χ(γ)

= 2πi(m+ α)Gam(z, s; f, χ)− si

2
Gam(z, s− 1; f, χ).

Rearrange and use the substitution s 7−→ s+ 1 to get

Gam(z, s; f, χ) =
4π(m+ α)

s+ 1
Gam(z, s+ 1; f, χ) +

2i

s+ 1
Q′am(z, s+ 1, 1; f, χ).

Theorem 4.11 gives Gam(z, s; f, χ) an analytic continuation to Re(s) > −δΓ and com-

bining with Theorem 4.7, both terms on the righthand side of (75) have analytic

continuations to Re(s) > −δΓ, proving that Zam(z, s; f, χ) has an analytic continua-

tion.

4.8 The basis element functions

Theorem 4.15. Let m be a non–negative integer, χ, ψ characters in Γ and f ∈
S2(Γ;χ ·ψ). Then Zm(z, s; f, χ) admits a meromorphic continuation to Re(s) > −δΓ.
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It satisfies:

i) Zm(γz, 0; f, χ) j(γ, z)−2χ(γ) = Zm(z, 0; f, χ)

+ Lf (∞, γ−1)χ(γ)ψ(γ) y−1 Um(z, 1, 2;ψ);

ii) yZm(γz, 0; f)� yF(z)1/2; and

iii)
d

dz
Zm(γz, 0; f) = −δ(ψ)y−2 〈f, Pm(·)2〉.

where the implied constant in ii) is independent of z and δ(ψ) := 1 if ψ ≡ 1 and 0

otherwise.

Proof. Beginning with equation (77), Theorems 4.4 v) and 4.11 then imply that

Gm(z, s; f, χ) is absolutely convergent for σ = Re(s) > 0. In combination with

Proposition 4.7, this gives the assertation of the theorem because of (75).

i) For Re(s) large, we have

Zm(γz, s; f, χ) j(γ, z)−2 χ(γ) = Zm(z, s; f, χ)−Lf (∞, γ) χ(γ)ψ(γ) y−1 Um(z, s+1, 2;ψ)

or

Zm(γz, s; f, χ)j(γ, z)−2χ(γ) = Zm(z, s; f, χ)+Lf (∞, γ−1) ψ(γ)χ(γ)y−1Um(z, s+1, 2;ψ).

i) follows on from the analytic continuation we have just proved.

ii) Recall that Theorem 4.4 v) and Theorem 4.11 imply:

yGm(z, 1; f, χ)� yΓ(z)1/2; and

yQ′m(z, 1, 1; f, χ)� yΓ(z)1/2.

Furthermore, for m > 0, we have Um(z, 1, 2;ψ) � yΓ(z)1/2 by Theorem 4.7. Since,

with (27), for all cusps a, b

Λf (a, σaz)� e−2πy

Λf (a, σbz) =

∫ b

∞
f(z)dz + Λf (b, σbz)� 1, a 6= b

as y →∞, we deduce that Λf (∞, z)Um(z, 1, 2;ψ)� yΓ(z)1/2.

On the other hand, equations (75) and (77) give

yZm(z, 0; f, χ) = 4π(m+ x∞)y Gm(z, 1; f, χ)

+ 2iy Q′m(z, 1, 1; f, χ)

− Λf (∞, z)y−1 Um(z, 1, 2;ψ).
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An application of the bounds proved above to this identity gives the desired result.

iii) Finally, for Re(s) large, we have

d

dz
Zm(z, s; f, χ) =

is

2y2

(
Qm(z, s+ 1, 1; f, χ)− Λf (∞, z)Um(z, s+ 1;ψ)

)
.

Combining this with Theorems 4.7 and 4.11, we have iii).

4.9 The basis elements

We are now in a position by using Theorem 4.15 to identify a basis of S2
2(Γ;χ, ψ).

First, let (λ, µ) be a pair in S2(Γ;χ · ψ)× S2(Γ;ψ). Since the set

{y−1Um(z, 1, 2;ψ)| m > 0} spans S2(Γ;ψ) (see [Ra]), there is a linear combination of

y−1Um(z, 1, 2;ψ) which equals µ. If we apply the same linear combination in Theorem

4.15, we obtain a linear combination Zλ,µ of Zm(z, 0;λ, χ) (with m > 0) such that,

for all γ ∈ Γ, we have:

Zλ,µ|2,χ(γ − 1) = 〈γ, λ〉µ; (78)

yZλ,µ � yF(z)1/2; and (79)

y2 d

dz
Zλ,µ = δ(ψ) 〈f, Pm(·)2〉 i.e. Zλ,µ is holomorphic unless ψ 6≡ 1. (80)

Theorem 4.16. Let {f1, . . . , fd1} be an orthonormal basis for S2(Γ;ψ), let {g1, . . . , gd2}
be an orthonormal basis of S2(Γ;χ · ψ) and let {h1, . . . , hd3} be an orthonormal basis

of S2(Γ;ψ · χ). If ψ 6≡ 1, then the set

S = {Zgj ,fi}16i6d1,16j6d2 ∪ {fiΛhj(∞, ·)}16i6d1,16j6d3 (81)

is a basis of

S2
2(Γ;χ, ψ)/(S2(Γ;χ) + S2(Γ;ψ)). (82)

If ψ ≡ 1 then a basis is

T = {Zfi,fj}16i 6=j6d1 ∪ {Zfi,fi − Zf1,f1}1<i6d1 ∪ {fiΛhj(∞, ·)}16i6d1,16j6d2 . (83)

Proof. Using Theorem 4.15, all of the functions (in both cases) belong to S2
2(Γ;χ, ψ).

Now, using Proposition 2.8 and equation (11), the proof in the case of χ 6≡ 1 reduces

to proving that the (projections of the) elements of the set S are linearly independent.

Suppose that for some constants kij, lij,mi, ni ∈ C, we have∑
i,j

kijZgi,fj +
∑
i,j

lijfiΛhj(∞, ·) ∈ S2(Γ;χ) + S2(Γ;ψ).
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With γ ∈ Γ, let γ − 1 act on both sides of the equation via |2,χ. Then∑
i,j

kijLfi(∞, γ)fj +
∑
i,j

lijLfi(∞, γ)fj ∈ (1− χ(γ)ψ(γ))S2(Γ;ψ).

Therefore, for each j, the sum∑
i

(
kijLfi(∞, γ) + lijLfi(∞, γ)

)
is an Eichler coboundary and therefore, by injectivity of the Eichler–Shimura isomor-

phism, this implies that ∑
i

kijfi =
∑
i

lijfi = 0.

The linear independence of fi implies that all kij and lij vanish.

The modifications required in the case χ ≡ 1 are now clear: Proposition 5.2 of [DO]

implies that, if g ∈ S2(Γ;χ) is non–zero, then there is no cuspidal f such that

f |2(γ − 1) = Lg(∞, γ)g.

Therefore, the projections of the elements of T suffice to generate S2
2(Γ;χ, ψ)/(S2(Γ;χ)+

S2(Γ;ψ)). Since, as before, they are also linearly independent, that implies the theo-

rem.

Corollary 4.17. Let Γ be a Fuchsian group of the first kind with non–compact quo-

tient and such that dim(S2(Γ;ψ)) 6= 0. Then:

i) if χ 6≡ 1, the dimension of S2
2(Γ;χ, ψ)/(S2(Γ;χ) + S2(Γ;ψ)) is

dim(S2(Γ;ψ))
(
dim(S2(Γ;ψ · χ)) + dim(S2(Γ;χ · ψ))

)
;

ii) if χ ≡ 1, the dimension of S2
2(Γ;χ, ψ)/(S2(Γ;χ) + S2(Γ;ψ)) is

dim(S2(Γ;ψ))
(
dim(S2(Γ;ψ)) + dim(S2(Γ;ψ))

)
− 1.
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5 Applications in Percolation Theory

One possible application of the study into holomorphic second–order automorphic

forms with characters is in the field of Percolation Theory. This has been particularly

studied in the collaborative paper between N. Diamantis and P. Kleban ([DK]). The

motivation for this is detailed in [KZ] – for instance, if we take a rectangle with hori-

zontal to vertical ratio r, we can consider the “horizontal” crossing probability Πh(r),

i.e. the probability that we can find a “path” connecting the left and right vertical

edges of the rectangle. We can explicitly calculate Πh(r) ([Ca]), and similarly the

probability Πhv̄(r) that we cross “horizontally but not vertically” (namely that the

left and right edges of the rectangle are connected whilst the top and bottom edges

remain unconnected) ([Wa], [Du]).

To describe the connection between second–order cusp forms with characters and

Percolation Theory, we begin with these crossing probabilities which are characterized

as second–order forms but with exponential growth at some cusps. This exponential

growth is what distinguishes this type of function from the forms already studied. In

fact, in [DK] it is shown that, in some sense, these crossing probabilities are deter-

mined by the “principle parts” of their Fourier expansions. It is therefore natural to

ask how much freedom we are allowed once we fix those principle parts.

If we consider the transformations S : z 7−→ −1/z (taking z = ir) and T : z 7−→
z + 1, we can associate to them behavioural changes – the transformation S arises

due to physical symmetries of the crossing problem, and the transformation T can be

associated to the structure of the probability formulae themselves, namely a “confor-

mal block” (see [KZ] for further details). We should not expect modular behaviour

on a rectangle because it does not possess the appropriate symmetry and yet the

differential on the horizontal crossing probability, Π′h(r), is a modular form. Further-

more, the differential Π′hv̄(r) has unusual modular behaviour which gives rise to the

definition of the n-th – order modular form, which were defined independently in an-

other context by Chinta, Diamantis and O’Sullivan ([CDO]). Second–order modular

forms arise in Percolation Theory via the difference in sign under S of
∏′

h and
∏′

hv,

where Π′hv(r) is the probability of finding a path which crosses both horizontally and

vertically (mathematically, Πhv(r) = Πh(r)− Πhv̄(r)).
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I aim to reproduce the appropriate information from N. Diamantis and P. Kleban’s

paper [DK] and to show how my research into second–order cusp forms may be of

some relevance.
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5.1 Crossing Probabilities

First, we set the matrices T :=

(
1 1

0 1

)
and S :=

(
0 −1

1 0

)
and let Γ(2) be the group

of matrices in SL2(Z) congruent mod 2 to I2. The generators of Γ(2) are g1 := T 2

and g2 := ST 2S−1 =

(
1 0

2 1

)
. We have the standard Dedekind eta function

η(z) = q1/24

∞∏
n=1

(1− qn)

where q := e2πiz and let the classical modular function for Γ(2) be

λ(z) := 16
η(z/2)8η(2z)16

η(z)24
= 1− η(z/2)16η(2z)8

η(z)24
.

We set χ for the character of the function η4.

For z = ir, λ(z) is the cross–ratio of the four points to which the corners of the

rectangle are mapped. We write

C :=
21/3π2

3Γ(1/3)3

and then Πh(λ(ir)) satisfies

d

dr
(Πh(λ(ir))) = −4

√
3Cη(ir)4.

Similarly, Πhv̄(λ(ir)) satisfies

d

dr
(Πhv̄(λ(ir))) = −8

√
3f2(ir)

where

f2(z) :=
2πi

3
η(z)4

∫ z

∞

η(w/2)8η(2w)8

η(w)12
dw.

η(z) is a weight 1
2

cusp form on SL2(Z) with character, and we will denote the

character of η(z)4 by χ. f2(z) is a second–order modular form.

Let

φ(z) :=
f2(z)

η(z)4
=
C

2

Π′hv̄(z)

Π′h(z)
.

It can be shown ([DK]) that
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φ(z) =
1

28/3
λ(z)2/3

2F1

(
1

3
,
2

3
;
5

3
;λ(z)

)
where 2F1 (a, b; c;λ(z)) is the Gauss hypergeometric function and the three crossing

probabilities we are interested in are given by, for 0 < α < 1 and 1 < β:

Πb
h(α, β) =

(β + α) 2F1(1, 4
3
; 5

3
; 1− α

β
)− 2β

4
√

3πβ2(β − α)
;

Πb̄
h(α, β) =

(β + α) 2F1(1, 4
3
; 5

3
; α
β
) + 2β

4
√

3πβ2(β − α)
;

νh(α, β) =
(β2 + 2αβ − (β2 − α2)) 2F1(1, 4

3
; 5

3
; α
β
)

4
√

3πβ2(β − α)2
.

Replacing α with λ(z) and β with 1 we follow the notation:

pb̄(z) := Πb̄
h(λ(z), 1);

pb(z) := Πb
h(λ(z), 1);

n(z) := νh(λ(z), 1).

We are now in a position to consider our second–order automorphic form f ∈
S2
k(Γ;χ, ψ). First we formulate a definition on f :

Definition 5.1. For a set of characters {χ1, . . . , χn} on Γ, a weakly holomorphic

n-th –order modular form on Γ of weight k and type (χ1, . . . , χn) is a holomorphic

function f on the upper half plane H, meromorphic at the cusps and such that at each

element γi ∈ Γ, f satisfies

f |k,χ1(γ1 − 1)|k,χ2(γ2 − 1) . . . |k,χn(γn − 1) = 0.

Then clearly, by definition, f ∈ S2
2(Γ;χ, ψ) is a second–order modular form of

weight 2 and type (χ, ψ). If we take χ(γ) = 1 for all γ ∈ Γ(2), then the function f2(z)

is a second–order, weight 2 form of type (1, ψ) and we can use this to prove that the

three crossing probabilities pb̄(z), pb(z) and n(z) are (weakly holomorphic) second–

order modular forms on Γ(2) of weight 0, type (1, ψ). Before commencing, note that

Γ(2) has three inequivalent cusps at ∞, 0 and at 1, and their three corresponding

scaling matrices are I, U :=

(
0 −1

1 1

)
= ST and U2 =

(
−1 −1

1 0

)
.

The classification theorem of [DK] then asserts:
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Theorem 5.2. As functions of z, pb̄(z), pb(z) and n(z) are weakly holomorphic

second–order modular forms on Γ(2) of weight 0, type (1, ψ), i.e. holomorphic func-

tions f such that, for each cusp a,

f |0(σa(x+ iy)) = O(eay) (a ∈ R), as y →∞, uniformly in x

and, for each γ ∈ Γ(2), f |0(γ − 1) transforms as a weight 0 form with character χ.

All these functions have Fourier expansions at the cusps. The first power of q ap-

pearing in the expansion of pb̄ at ∞ (resp. 0, -1) is 1 (resp. q−5/6, q2/3). The

corresponding first powers for pb and n are q−1/3, 1, q2/3 and q1/2, q−1, q2/3.

Proof. See [DK], Theorem 3.1.

As in [KZ], the derivatives of such probabilities are often more interesting than

the actual probabilities themselves. With the use of the identity

(f |0γ)′(z) = (f(γz))′ = (f |2γ)(z)

we deduce that the derivatives of pb̄, pb and n are weight two ‘weakly holomorphic

forms of type (1, χ)’. A natural question then is how many weight two ‘weakly holo-

morphic second–order forms of type (1, χ)’ of given principal parts there are. For our

purposes, ‘principal part’ at a cusp a will be the part of the Fourier expansion at a

consisting of non–negative powers of q.

The results of the last section provide a way to answer this question. Suppose that

the dimension of S2
2(Γ(2); 1, χ) is d. Then, if f1, f2 are weakly holomorphic forms of

weight 2 and type (1, χ) with the same principal part at each cusp, their difference

f1−f2 belongs to S2
2(Γ(2); 1, χ). Condition i) of the definition of S2

2(Γ(2); 1, χ) follows

from the definition of weakly holomorphic forms and condition iii) from the fact that

f1 and f2 have the same principal parts at the cusp. Condition ii) follows from

equation (3.3) of [DK]:

pb̄|0(γ − 1) = dγG

for some dγ ∈ C and a G transforming as a weight 0 form with character χ, as well

as the analogous equations for pb and n.

Therefore, two ‘weakly holomorphic second–order forms of type (1, χ)’ with the

same principal part at each cusp can only differ by a function ranging in vector space
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with dimension

dim(S2(Γ(2), χ)) (dim(S2(Γ(2), χ)) + dim(S2(Γ(2), χ)))− 1.
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