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Abstract 

 

Viewing fine features of object with optical instruments have become increasingly 

ensions of many features of interest have become smaller than the difficult as the dim

traditional optical resolution limit. Examples of these features can be found in 

semiconductor components and biological tissues. This has caused a move to non-

optical methods such as scanning electron and atomic force microscopy techniques, 

or optical methods combined with signal processing techniques to provide clearer 

images of samples. This thesis presents a method to increase the resolution of an 

optical system. This is achieved by using principal component analysis (PCA). Once 

the PCA measured the object image parameters, the new clearer image can be 

reconstructed based on these parameters. This process works extremely well. Various 

aspects of samples measured by the PCA have been investigated, such as the shift of 

sample, the sample with different sizes, the orientation of sample and the impact of 

noise. These studies show that the technique is extremely robust, and has huge 

potential for general usage. The thesis also contains the detail of the Hough 

Transform technique which was used to provide the initial parameters to the PCA.  

From the analysis of the technique, it is concluded that the accurate measurement of 

the technique can be achieved by providing adequate templates of the object image 

for the system.  
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Chapter 1  

 
1  Introduction 
 
 
1.1 Introduction  
 
 
The simple optical microscope was first developed in 1674 [1] when the Dutchmen 

Hans and Zacharias Jansenn used a single lens to look at tree trunks and insects. This 

is considered to be the pioneer of microscopy. Finally people could see minute 

features or small objects that were beyond the ability of naked human eyes. There 

followed a period of improvement in lens design and making. This led to the 

reduction of aberration associated with images obtained from the earlier systems and 

in turn significant improvement in the image quality [2]. In 1830 J. Jackson 

discovered that the combination of several weaker lenses instead of using a single 

strong lens reduced chromatic aberration and provided good magnification without 

blurring of the images and so the compound microscope was born [3][4].    By 1872 

Ernst Abbe [5] formulated his ‘Abbe sine condition’ providing the mathematical 

basis to describe the maximum resolution of a particular microscope. In 1897 Lord 

Rayleigh [6] proposed a criterion for image resolution of optical system based on the 

separation of diffraction limited images of point sources. The first high power 

objective was made by H Powell around 1896 [7]. It corrected for three wavelengths 

and used oil immersion in the object space to obtain a lens with numerical aperture 

of approximately 1.50, thus enabling objects smaller than a micron to be observed.            
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The ability to resolve fine features is fundamental to microscopes. As technology 

progresses the demand to resolve ultra fine features has also increased such as in 

medical, biological and nanotechnology research. However, optical microscopes 

have a finite resolution due to the nature of light. Limitations of standard optical 

microscope rely upon diffraction and the resolution cannot exceed half of an optical 

wavelength. Features that are smaller than half of a wavelength will result in non-

propagating evanescent wave which decay exponentially and cannot be detected in 

the far field. Information associated with those features is therefore lost and will not 

be represented in the image.   

 
 
1.2  Imaging techniques and recent developments 
 

Over the years, there have been many microscopy techniques developed for different 

applications, some may even have resolution finer than the conventional optical 

microscope. They will be considered described briefly here.  

 

• Bright Field: Bright field microscopy is the simplest of all the microscopy 

techniques. The sample is illuminated by white light, either from one side of 

the sample and observed at the other side (transmission mode), or illuminated 

and observed from the same side (reflection mode). Limitations of the 

technique include low image contrast. Also, for semi-transparent samples, the 

image is often masked by out of focus features. However bright field 

operation requires minimal sample preparation and along with the simplicity 

of the system setup these are the significant advantages. 
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• Dark field: The contrast of an image can be improved dramatically by using 

dark field illumination. The technique uses a carefully aligned arrangement to 

effect an oblique illumination of light at the sample. The imaging optics is in 

turn designed to minimise the quantity of directly transmitted or reflected 

light entering the image plane. Therefore only light scattered by the sample 

will be collected and contribute to the image, with the background light 

heavily suppressed, thus the term dark field or dark background.  Dark field 

microscopy is a very simple yet effective technique and well suited for uses 

involving live and unstained biological samples, such as a smear from a 

tissue culture or individual water-borne single-celled organisms [8]. The 

quality of images obtained from this technique is very impressive. However 

the technique does suffer from low light intensity in the final image and is 

also affected by features that locate outside of the focus.  

 

• Phase contrast: Phase contrast microscopy is a widely used technique that 

shows differences in refractive index of the sample as difference in contrast 

of the intensity image. It was invented by Frits Zernike [9][10]. It relies on 

changing the relative phase shift between the diffracted and the directly 

transmitted light, allowing then to interfere at the image plane. The contrast 

of the resulting image can be up to 100x better than that achieved from using 

bright field operation. Phase contrast is used extensively in the study of 

biological samples.  One disadvantage of the technique is the formation of 

halo around the features, which can obscure finer details.  
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• Nomarski microscope: Another imaging technique that is sensitive to the 

phase structure of the sample is the differential interference contrast 

microscope invented by Georges Nomarski [11]. The system consists of a 

special prism known as the Nomarski prism, which is a modified version of 

the Wollaston prism. In the reflection mode, the prism splits the incoming 

beam into two, and also recombines them to form an interference image.  The 

system is sensitive primarily to changes in the phase structures of the sample, 

hence the term differential. The contrast of the image produced by the 

microscope is very good and it is mainly used to study solid samples. 

 

• Confocal microscope: The technique uses a scanning point of light instead of 

full sample illumination. The reflected light is focused and detected using a 

point detector. The point source and point detector combine to give a slightly 

higher lateral resolution, but a significant improvement in sectioning of the 

sample. The main advantage of the confocal microscope is its ability to 

reduce the depth of field, thus allowing serial optical sectioning of thick 

specimens and leading to 3D imaging of the sample. Another advantage is 

that the point detector would reduce or eliminate stray light from the system 

which would improve the image contrast. Although the confocal microscope 

is used mainly in biological study, it is also used in the semiconductor 

industry. 

 

The above microscopy techniques are designed mainly for improving the sensitivity 

of the systems to minute changes in the sample structure, and to produce high 

contrast images. Their lateral resolutions, apart from the confocal microscope, do not 
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exceed that of a conventional bright field microscope. The systems introduced 

below, not confining to optical, all have resolution beyond the conventional 

microscope. They either rely on coding the sample information in a special way so 

that high frequency information can arrive at the image plane, or make use of very 

short wavelength irradiation. For many of these systems, the ultimate limit in 

resolution is governed by the signal to noise ratio of the system. Some of them will 

be discussed here. 

 

• Structured illumination microscope (SIM) [12]: this technique was developed 

roughly ten years ago. In the simplest configuration, the system employs a 

sinusoidal intensity pattern to illuminate the sample. The zero illumination 

order acts similarly to that in a conventional microscope. However, the 

higher illumination orders would down convert the high spatial frequency 

components of the object into the aperture of the microscope. There is, 

therefore, an increased range of spatial frequency arriving at the image plane. 

These components are detected, separated and rearranged to produce a high 

resolution image. Systems of this kind can produce images of resolution two 

times better than the conventional ones. Recently, a new configuration has 

been proposed, making used of a proximity grating. In theory this system can 

have up to a four-fold resolution improvement over the conventional 

microscope. The technique is relatively new and is used mainly in the study 

of cellular nanostructures stained with a fluorescent marker.  

 

• PALM and STORM: Eric Betzig [13][14] developed the photo-activated 

localization microscopy (PALM) [15] and Xiaowei Zhang [16] used a similar 
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technique to form what is called the stochastic optical reconstruction 

microscopy (STROM) [17][18]. Both techniques fill the sample with many 

fluorophores that can be photoactivated into a fluorescing state by flash of 

light. The light intensity is set very low so that, for each illumination, only a 

few fluorophores will be activated. The image captured will therefore consist 

of bright spots randomly dotted across the image. The locations and 

brightness of these spots are determined and stored as sample information for 

this particular exposure. This process is repeated many times until the 

photoactivated fluorophores cover the entire area of interest. The stored 

information is then used to build up an image. Since the locations of the 

bright spots can be determined with much higher precision than the lateral 

resolution of the optical system, the image thus formed would have a much 

better resolution.  One major drawback of the technique is that, because of 

the many exposures required, it takes on the order of hours to collect the data.  

 

• Wide-field structured-illumination(SI) [19] [20]. The main concept of SI is to 

illuminate a sample with patterned light and increase the resolution by 

measuring the fringes in the Moire’  pattern. SI enhances spatial resolution by 

collecting information from frequency space outside the observation region. 

With several frames with the illumination shifted by some phase, it is 

possible to computationally separate and reconstruct the Fourier Transform 

(FT) image which has much more resolution information. The inverse FT 

returns the reconstructed image. This technique enhances the resolution by 

the factor of 2.  
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Two alternative, non-optical techniques that have extremely high imaging resolution 

will be described below, and they are: 

 

• Electron microscope: electron beam with a very short wavelength is used in 

electron microscopy. The scanning electron microscope (SEM) focuses a 

high-energy beam of electrons onto the sample surface, and an image is 

formed by scanning the e-beam in a raster scan pattern. Using high 

acceleration voltage, the resolution of electron microscope can reach sub-

nanometer levels. Electron microscopes are used in biological sciences and 

semiconductor industry, among others. Although the techniques yield 

excellent resolution, they have a number of drawbacks. For example, the 

systems are expensive to buy compare to optical microscope, and require 

high maintenance. The high electron beam power can cause damage to the 

sample unless great care is taken. Another major disadvantage is that the 

microscope operates only in vacuum. The specimens also require extensive 

preparation [21] for them to be suitable for inspection.  

 

• Scanning probe microscope (SPM)[61][62]:  Scanning probe microscopy is 

another high resolution non-optical technique. There are many types of SPM 

and they all employ a fine solid probe in the vicinity (near field) of the object. 

The system output is governed by the interaction between the probe and the 

sample, and scanning the sample, an image if formed. Examples of the SPM 

include the atomic force microscope (AFM) [63], the scanning tunnelling 

microscope (STM) and the photonic force microscope. The atomic force 

microscope relies on the changes in the atomic force existed between the tip 
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of the probe and the sample surface. When scanned, the AFM provides a true 

three-dimensional surface profile, with a lateral resolution in the nanometer 

scale. Moreover, samples examined by AFM do not require special 

treatments such as metal or carbon coating. Most AFM modes can works 

perfectly well in air or even liquid environment. This makes it possible to 

study biology and even living organisms. The selection of the scanning tip is 

important, as an inappropriate choice may lead to image artefacts. AFM is 

also relative slow, requiring typically several minutes for form an image. 

This may lead to thermal drift during the image formation making AFM less 

suited for measuring accurate distances between topographical features in an 

image. 

 

The typical values for the resolution of the above microscopy methods are 
summarised in Table 1. 
 
Table 1 Microscopy Methods and resolution  
 

Method Resolution (nm) 

Dark field, Bright field, Phase contrast 

Differential interference contrast microscope 

∼ 230 (lateral) [67] 

∼ 10 (vertical) 

∼ 180 (lateral) [67] 

∼ 500 (vertical) 
Confocal microscope 

Structured light microscope (SIM) ∼ 120 (lateral) [67] 

Photo-activated localization microscopy (PALM) 

Stochastic optical reconstruction microscopy (STORM) 
< 20 (lateral) [67] 

Scanning electron microscope (SEM) ∼ 10 (lateral) [68] 

∼ 10 (lateral) [69] 

∼ 5 (vertical)  
Scanning probe microscope (SPM) 
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As it is becoming more demanding to keep up with the technological advances in 

industry and research, a method to efficiently measure small features of object below 

the optical resolution limitation is necessary. There have been numerous approaches 

[22][23][24][25] to address this problem. Many of them tackle the problem by 

returning to the underlying mathematics that is used to model the relationship 

between the object and the image formation mechanism. They attempt to reverse the 

effect of the optical system imposed onto the sample and retrieve the information 

lost in the imaging process. An example is based on the application principle of 

analytic continuation, and that the spectrum of a bounded object is an analytic 

function [22]. By applying appropriate algorithm, the spectral components originally 

outside the bandwidth of the microscope are recovered, thus leading to an image that 

has higher resolution than that can be obtained directly from the microscope. This 

allows the construction of a super-resolved image and enables much smaller object 

features to be observed than with a conventional microscope. This process works to 

some extent for samples that are simple and well behaved, and that the optical 

system is near perfect and does not suffer from aberrations. Furthermore, the signal 

generated should be noiseless. When dealing with a real system, however, none of 

these conditions can be satisfied, and a small amount of noise would render the 

approach totally ineffectual.  

 

Recently there has been research in this area which uses a very different approach. 

Instead of obtaining images of very high resolution, they aim to measure the 

dimensions of some selected features accurately. The information thus obtained in 

used to make up a high resolution image. The rationale behind such an approach is 

based on the theory of information content, that the total information associated with 
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an image is fixed. Any attempt to improve the resolution of the entire image cannot 

be achieved. On the other hand, using the information available from the entire 

image to improve the resolution of selected features or smaller regions does not 

violate principle of information content, and is therefore mathematically sounded. 

One technique that has been used for this application is the artificial neural networks 

(ANN) [26][27]. It has been shown that, by using appropriate ANNs, linewidths of 

narrow tracks 30x smaller than the resolution limit of the optical microscope could 

be measured with repeatability in the region of 1nm.   

 

Although ANNs have been shown to be extremely powerful in terms of dimensional 

measurement, they have their shortcomings. Each ANN is trained to perform a 

certain operation. If used inappropriately, one would obtain wrong results. Hence the 

aim of this project to classify types of features, so that correct ANNs can be used. 

Some brief mention of the one used inappropriately techniques used as classifiers 

will be made. 

  

We have chosen to take a different approach to this problem by attempting to 

directly measure parameters of objects below the classical resolution limit without 

trying to increase the system bandwidth. This technique is not providing an increase 

in resolution as the images obtained by the system are still diffraction limited. 

However the measurement range is increased to include the parameters of objects 

that are well below the conventional limits of the optical system thus providing a 

way to measure very small  structure parameters optically. Various signal processing 

techniques, including principal component analysis (PCA) and Hough Transform 

(HT) will be used to extract and classify key object features. The dimensions of these 
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features are then measured, thus allowing object image of much greater details to be 

reconstructed. These features have various parameters associated with them such as 

width, length, height, separation and orientations. The flow chart of the whole 

system of the thesis is shown in Figure 1. 

 

Optical 
System 

   HT 
Object 

  PCA 

Coarse Features

   Fine features 
(Widths, Lengths,  
and Orientations) 

Image 
 

 

 

 

 

 

 

 

 

 
High Resolution 
Reconstructed 

Image 
 

 

 

Figure 1.1 – The system process 

    

From Figure 1 the image from the optical system is used as input to Hough transform 

(HT). The HT will classify and measure the main parameters of image such as 

number of lines, orientations, widths and lengths. At this process we obtain the 

coarse features structure of the whole image. Then individual feature will be passed 
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to perform the fine measurement by using PCA. After that the new image can be 

reconstructed with higher resolution based on the measured features.         

 

1.3 Layout of thesis 
 

This thesis is organised as described below: 

 

Chapter 1 contained an introduction of the research project. Then we introduced a 

number of modern microscopy techniques that can achieve super resolution and the 

recent developments of microscopy were described in this chapter. 

 

In chapter 2, we will begin with discussing the common resolution criteria and 

diffraction limit of a conventional light microscope. After that, prior research that 

aimed to increase the effective bandwidth of the system, or to extract high precision 

dimensional measurements, will be discussed. These techniques are software based 

and aim to extract information that is originally outside the system bandwidth from 

the image or profile of the sample. We will describe the mathematical basis that 

allows these techniques to work. We will also describe the measured profiles in term 

of their information contents, which will provide an upper value as to the ultimate 

resolution that can be achieved. 

 

In chapter 3, we will describe the original HT and give some application examples. 

The modification and the application to our project will be described in the next 

chapter. We also introduce the basic mathematical concept of PCA and some 

example of its general applications. 
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 In chapter 4, the modification and the application of Hough Transform to our project 

will be explained first. The details of the modified algorithm for detection of line 

segments in grey scale images directly will be discussed.   The capability of the 

modified algorithm will be demonstrated through simulations.  This will be followed 

by detailed description of the application of principal component analysis to our 

project.  

 

In chapter 5, we will describe the extension of the PCA to two-dimension line 

segment images. Thus features of line segment such as lengths and shapes, which 

could not be measured using the line profiles, can now be determined. The use of 

PCA to measure these parameters from the line segment images will be described 

first. After that we will discuss the use of Hough transform. The purposes of HT are 

to provide initial information, mainly relating to location, orientation, shape, and 

rough dimensions of object, before applying 2D PCA to extract more accurate 

measurements. 

 

Chapter 6 shows the experimental results to demonstrate the practical ability of the 

technique. The details of the experiment are carried out step-by-step.  

 

In the last chapter, the general conclusions are presented. Future development and 

applications of PCA will be proposed. 



Chapter 2 

2  Literature review  

 
The research project addressed in this thesis concerns the determination of 

dimensions of features that are too small for conventional optical techniques to 

measure precisely. The approach we take is, based on the profiles of the features, to 

determine the types of feature under examination (classification). Once this task is 

accomplished, signal processing techniques such as Hough transform (HT), principal 

component analysis (PCA) will be applied to the profiles in order to extract the 

dimension of this part. In this section, we will begin with discussing the common 

resolution criteria and diffraction limit of a conventional light microscope. After that, 

a number of prior researches that aim to increase the effective bandwidth of the 

system, or to extract high precision dimensional measurements, will be discussed. 

These techniques are software based and aim to extracting information that is 

originally outside the system bandwidth from the image or profile of the sample. We 

will describe the mathematical basis that allows these techniques to work. We will 

also describe the measured profiles in term of their information contents, which will 

provide an upper value as to the ultimate resolution that can be achieved. 

 

Finally, a commercial microscope will be described. The reason for discussing such 

a system is that it can be used to provide highly reliable and repeatable data, both in 

amplitude and phase, for our technique. Such an instrument is essential if the 

technique described in this thesis is to be realised in practice. 
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2.1 Resolution Limit 

 

The ability to resolve fine features is fundamental to a microscope. As technology 

progresses the demand to resolve ultra fine features has also increased. The 

application areas include medical science, biological science and nanotechnology 

industry. However, the optical microscopes have a finite resolution due to the nature 

of light. Waves diffract as they propagate. The light source, the medium and any 

obstacles in the beam path will affect the diffraction pattern. For example, if a plane 

wavefront is incident on a circular aperture, the intensity pattern observed in the 

optical far field is that of an Airy disc [28], given by  

 

2
1 )(

⎥⎦
⎤

⎢⎣
⎡=

kNAr
kNArJII o                                                               (2-1) 

 

Where I  is the intensity distribution 

   is the first order Bessel function of the first kind 1J

  is the numerical aperture of the system NA

 r  is radial coordinate of the image plane and 

 
λ
π2

=k  . 

The numerical aperture of the system, NA, is defined as the ratio of the aperture 

radius to the distance between the aperture and the observation plane. Eq. (2-1) is 

sometime referred to as diffraction limited, in the sense that it is the smallest 

distribution that can be achieved under the stated arrangement, and with the 

assumptions that it is free from any aberrations. In an imaging system, the Airy disc 
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is also the image distribution for a point object, which is known as the point spread 

function (psf). Its non-zero size is due to the finite bandwidth of the optical system. 

To understand how it affects the system resolution, we consider imaging two point 

objects. If they are well separated, so would the corresponding images.  As the two 

point objects move towards each other, the two Airy discs will start to overlap. The 

sum of the two peaks will appear as one and it will be difficult to tell whether one or 

two objects are responsible for the image.  

 

Figure 2.1 shows the two individual images of the point sources and the actual image 

of the two point objects (dotted line). In this case the two point objects have not been 

resolved as only one peak is present in the image.   

 

 

 

 

 

 

 

 

 

              Figure 2.1.  two point objects and corresponding image 

 

Resolution criteria are subjective and the two used most commonly are proposed by 

Rayleigh and Sparrow. 
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                      Figure 2.2. Rayleigh Criteria 

 

The Rayleigh [29] criteria states that two point sources are regarded as just resolved 

when the principal diffraction maximum (the mainlobe) of one image coincides with 

the first minimum of the other as shown in Figure 2.2.  

 

The mathematical expression for the optical system can be expressed by: 

 

NAR
λ61.0

=Δ                                                                      (2-2) 

Where  is the object separation. RΔ
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 Figure 2.3. Sparrow criteria 

 

The Sparrow [30] criteria define the resolution as the separation when the combined 

image no longer has a dip in the mid point between them as shown in Figure 2.3. 

This can be written in equation as: 

 

NAS
λ47.0

=Δ                                           (2-3)                           

 

These values for the resolution of the system are possible assuming that the optical 

system is perfect in everyway, meaning that it should be free from aberrations. 

Practically, the resolution of the optical system also depends on the quality of the 

optical components used such as the light source, the signal to noise ratio and the 

detector in the imaging system. 
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It should be pointed out that the Sparrow criterion does not provide better resolution 

than Rayleigh, as both are definitions. From the above equations the resolution of the 

optical system can be increased if shorter wavelength is used or if the numerical 

aperture is increased. However, as the NA of the system is given by sin(θ) where θ is 

the half acceptance angle of the objective lens, the system NA is limited to a 

maximum of 1 when operating in air. The practical range of usable wavelength for 

optical imaging is restricted to the visible spectrum. These limitations of 

conventional microscope give its resolution to be around 250 nm. This resolution is 

not satisfactory for many modern applications nowadays such as in biological 

research and nanotechnology research. 

 

2.2 Spectral extension and information theory 

 

In 1955 Toraldo di Francia published a paper showing that under some conditions 

two different objects would produce identical images[31] . This has implications for 

super resolving algorithms as without a priori information the correct object cannot 

be reconstructed. Harris[22] went on to relate the ambiguous image to its spectral 

components saying:  

 

‘… objects can be distinguished one from another as long as the spatial frequency 

spectra of the two objects are not everywhere identical in the pass band of the 

optical system’.  

 

He proposed that the fundamental limit due to diffraction on resolution must be 

because two or more objects could produce identical images. Harris then showed 
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that, providing certain conditions are satisfied, two different objects will never 

produce the same image. This condition is that the objects must be bounded, which 

in practise is usually the case for most imaging systems. This means that the 

limitation shown by Toraldo di Francia does not apply to imaging systems where the 

object is bounded. Harris’ theory is underpinned by the fact that the Fourier 

transform of a bounded structure is an analytic function. Utilising the uniqueness 

theory and analytic continuation he showed that in theory arbitrary resolution is 

possible in a noiseless system. 

 

2.2.1 Analytic continuation and the uniqueness theory. 

 

An analytic function is a function that may be complex and that is infinitely 

differentiable. These functions have a special property [32][33], usually referred to 

as analytic continuation, which states that 

 

a function of a complex variable is determined throughout the entire z-plane from a 

knowledge of its properties within an arbitrary small region of analyticity  

 

The uniqueness theorem states that  

 

any two functions of a complex variable whose values coincide over an arbitrarily 

small region of analyticity must have identical values throughout their common 

region of analyticity and hence be identical. 
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These properties of analytic functions imply that if any part of an analytic function is 

known, then the entire function can also be determined as the known values can only 

belong to one specific function. It is therefore possible to reconstruct the spatial 

frequencies outside of the pass band of the optical system, based on the spectrum 

inside. An extension on an analytic function will always produce the same answer; 

the extensions are not ambiguous. 

 

The influence of the bounded object on pass band of the optical system is discussed 

here. The example below shows a grating structure whose frequency is outside of the 

pass band of the optical system. If the object is infinite in extent as in Figure 2.4a, 

the spectrum is two delta functions at the grating frequency. If the frequency cut-off 

of the aperture of the system (shown in dashed line in Figure 2.4b) is below that of 

the object, no information will be in the pass band and as a consequence, no 

spectrum extension can take place. This demonstrates for an infinite object, the 

Fourier transform is not analytic. 
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               Figure 2.4 Grating structure (a) and spectrum (b) 

 

If the object is now bounded as in Figure 2.5 then the spectrum of the grating is 

convolved with the spectrum of the truncating window. Instead of having two delta-

functions, we now have two sinc functions centred at the locations of the original 

delta-functions. Although the peak of each of the sinc function is still outside the 

aperture of the system, certain information is leaked into the aperture, and it is this 

information that provides the basis for the eventual spectrum extension. 

A sinc function can be expressed as a power series and by definition, is infinitely 

differentiable, hence analytic. Thus the information inside the pass band can be used 

to calculate the part of the spectrum outside by invoking the principle of analytic 

continuation.  
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Figure 2.5 Grating structure of truncated object (top) and spectrum (bottom) 

 

2.2.2 Information theory 

 

The super resolution problem has also been considered from an information theory 

point of view. This is an attempt to establish the theoretical limits on extension and 

understand the influence of noise on different extension techniques. In 1966 Lukosz 

[34][35] and Toraldo di Francia [36] suggested an invariance theorem, which states 

that for an optical system the number of degrees of freedom is fixed. After that Cox 

and Sheppard [37][38] went on to develop this idea and took into account random 
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noise in the system and its effect on the resolution improvement that was possible. 

The information capacity equation developed is shown in Equation 2-4. 

 

(2 1)(2 1)(2 1)(2 1) log(1 / )z z y y x x TN L B L B L B TB s n= + + + + +    (2-4) 

 

Where N is the degrees of freedom, x y zL L L  are the extent of the field of view in 

the x,y,z directions, x y zB B B  are the spatial bandwidths in the x,y,z directions, is 

the temporal bandwidth, T is the observation time, s is the signal level and n is the 

noise level.  

TB

 

This is a very useful equation as for any optical system it can be used to calculate the 

information capacity of the system and how this varies with signal to noise ratio. It 

should be pointed out that N is the theoretical maximum information capacity 

available from the system and so in practice the total information carried by the 

system may be much less. For example, the object being measured by the system 

may not vary in time, although the system maybe able to carry time information no 

actual object information is delivered by the system. This does however mean that if 

the object is known a priori to be restricted in anyway, additional information may 

be encoded onto the independent and unused parameters of the system. 

 

Another way to understand this invariance theory is that, once an image is taken with 

a system, the total information content is fixed. By using mathematical or signal 

processing techniques, one can redistribute the weights among the different 

parameters, but the value N cannot be exceeded. Therefore if the spatial bandwidth 
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xB is to be increased, there will be a corresponding decrease in the other terms in the 

equation to keep N fixed. 

 

Super resolution in optical microscopy was considered by Cox and Sheppard 

[37][38]. They showed that the SNR of the super resolution image decreased as the 

spectrum was extended, if all other parameters were left the same. Using the above 

equations, one can calculate the SNR of the final image with an extended bandwidth. 

Because of the logarithm relationship in Eq. (2-4) , the noise in the extended image 

increases dramatically and unless the original image has an extremely high SNR then 

the extension yields either very poor extension or very poor SNR in the final image. 

 

2.2.3 Analytic continuation by Taylor expansion 

 

The function ( )f x  can be extended outside of its known range by, for example, a 

Taylor series expansion, assuming that the function is known precisely over some 

arbitrary region centred at 0x , the remaining function can be calculated as: 

2
0 0 ( )

0 0 0 0
( ) ( )( ) ( ) ( ) '( ) ''( ) ... ( )

2! !

n
nx x x x

0f x f x x x f x f x f x
n

− −
= + − + + +    

(2-5). 

 

The function ( )f x  is now known and if enough orders are used then this function is 

valid for all x  and can be used to obtain sufficient values of ( )f x  outside the known 

extent of the signal.  

The success or otherwise of the extension depends on how well the starting function 

is known. If there is any noise involved then the extension will become less and less 
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accurate. This noise can come from inaccuracies in the measurement system but also 

from digitisation of the function, as using discrete levels introduces uncertainties in 

the actual value for each specific point. The differentiation in the Taylor expansion 

will also amplify noise. This will in practice greatly reduce the ability to perform an 

extension.  

 

2.3 Applications of spectrum extension theory 

 

2.3.1 Auto-Regressive Models 

 

An Auto-Regressive (AR) model is a random process which is often used to model 

and predict various types of natural phenomena. It is also known as the maximum 

entropy model (MEM) in physics applications. This kind of model is one of a group 

of linear prediction formulas that attempt to predict an output of system based on the 

previous output, and is particularly suitable if the function concerned is oscillatory. It 

can be used to reconstruct the lost spectral components if some part of the spectrum 

is known. Thus the values of spectrum are outside of the bandwidth can be obtained 

point by point. This will always yield the extension (as the function is analytic and 

oscillatory) if there is no noise present in the system. 

 

Definition: 

The notation AR(N) indicates autoregressive model of order N. The AR(N) model is 

defined as 

 



 27

 
1

N

t i t i
i

X c X tε−
=

= ∑ +       2-6 

 

where  is the series under investigation,  are autoregressive coefficients and tX ic tε  

is white noise. Clearly, Xt-i denotes past values of the function. 

 

In the absence of noise, Eq.(2-6) can be donated in the matrix form 

 

 .       2-7 Xc x=

 

Where  is the previous value and X x  is the current value of the function. 

   

The AR coefficients are therefore given by 

 

        2-8 1c X x−=

 

if  exists. 1X −

 

The difficulty of this method is that to determine the AR coefficients. The most 

common technique for deriving the coefficients is done by using Yule-Walker 

equations. Multiplying Eq.(2-7) by  and then taking the expectation yield.  tX

 

       2-9 ( ) (tE X X c E X x= ).t
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where E represents the expectation. By using the auto-covariance matrix  and 

vector , Eq.(2-9) can be expressed as  

R

r

 

         2-10 Rc r=

 

The solution is given by 

 

        2-11 1c R r−=

 

This is the least-squares solution of Eq.(2-7). 

 

The model can be applied to the spectral expansion by dividing the known portion of 

spectrum into two sets. The first one is for , hence the previous values are known. 

The second set is the actual current values of known points used for 

X

x . This allows 

the AR coefficients to be calculated. When all of the coefficients for the known 

spectrum are obtained, we can use these to calculate the spectrum outside the pass 

band point by point. The model will be updated after each new point of x  is 

incorporated to the model and its coefficient is calculated.  

 

The model looks simply in theory but the problem becomes more demanding in 

practice. This is because the way to determine coefficients of the model. Performing 

the inverse matrix in Eq.(2-8) is difficult as it is usually ill conditioned. In many 

practical cases the matrix 1X −  is singular and its inverse does not exist. In addition 

the problem with performing inverse is that when round off and noise are involved. 

The small amounts of error in the elements lead to the large errors in the inverse. 
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This means calculating the inverse cannot be perform in the usual method. The 

technique used instead is the generalized inverse which is often calculated by the 

singular value decomposition (SVD). Performing SVD reduces effect of noise and 

allows and inverse to be calculated efficiently. 

  

The success in using an autoregressive model with singular value decomposition was 

shown in a paper by Minami et al [39]. They applied it to derive super resolution 

spectra of Fourier Transform Infrared (FT-IR) absorption data of benzene and 

cyclohexane. The result from their work showed an increase in spectral extension in 

the order of 8 times. However, this impressive extension is due to the fact that the 

function under consideration consisted of several sinusoidal oscillations of different 

frequencies. For a more complicated function, the method again yields very limited 

extension even when the presence of noise is small. 

 

2.3.2 Sampling theorem in frequency domains [22] 

 

In the frequency domain the sampling theorem states that an object function of width 

 which is in a range  has a spectrum that is exactly determined for all 

frequencies by specifying the value of the spectrum at discrete frequencies separated 

by the interval 1/ , this series extends throughout the entire frequency domain. If 

we have an object that is bounded in  by 

W / 2W±

W

X / 2X± , it can be described in the 

bounded region by the Fourier Transform pairs as :  

      2-12 (( ) exp[ 2 / ]nN x G i nx Xπ
+∞

−∞

= −∑ )

and 
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2

2

1 ( )exp[ 2 ( / )]
X

n
X

G N x i nx
X

π
−

= ∫ X         2-13   

 

From the sampling theorem the relationship between spectrum ( )xG f  and the series 

coefficients  can be obtained directly by substitution of Eq.(2-12) for  into 

Eq.(2-13) and then performing integration yields: 

nG ( )N x

 

 
sin

( )
x

x n

x

n f X
xG f X G

n f X
x

π

π

∞

−∞

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣=
⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ⎦      2-14 

 

This equation shows specifically the mathematical nature of the spectrum ( )xG f . 

With this approximation the summation in Eq.(2-14) becomes a finite series. It can 

be used as a basis for reconstructing the detail in diffraction image.  

 

Applying the method to spectrum extension can be done by selecting a number of xf  

equal to the number of unknown  and a set of simultaneous equation can be 

formed which can be solved for the  values. Once the  values are known, the 

object allows to be constructed by utilising Eq.(2-12).        

'nG s

nG nG

 

The equation can be solved as follow. The Eq.(2-14) can be written in the matrix 

form as 

 

        2-15 kG SG=
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Where is the (2N+1) column vector of known frequency components. is the 

(2M+1) column vector of unknown coefficients of the .  is the 

(2N+1)x(2M+1) sinc function matrix. 

kG G

'nG s S

 

The unknown coefficients contain information beyond the cut-off of system can be 

obtained from the known spectrum and sinc function matrix , thus the Eq.(2-15) 

can be rearranged as 

S

 

        2-16 1
kG S G−=

 

Harris demonstrated this technique by applying it to an object consisting of two 

incoherent point sources and showed a large increase in resolution. However this 

approach is only reliable in the absence of noise. Once a system has noise involved 

the uniqueness theorem no longer applies, as the spectrum of function with random 

noise is not necessarily analytic. Therefore the extension limitation of the technique 

relies on the noise level of the system. Moreover, the precision requirement of the 

technique is that the interval  must completely encompass the object and have to 

be minimised by making the interval as small as possible.        

X

 

2.4 Artificial Neural Networks 

 

An artificial neural network (ANN) is a mathematical model or computational unit, 

which is inspired by the structure and/or functional aspect of biological neural 
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networks. In an artificial neural network, simple artificial nodes or units are 

connected together to form a network of nodes mimicking the biological neural 

network, hence the term “ artificial neural network”. As its biological predecessor, 

thus an ANN is an adaptive system. By adaptive, it means that each parameter is 

changed during its operation and it is deployed for solving the problem in matter. 

This process is called training phase. An ANN is developed with systematic step-by-

step procedure which optimises a criterion commonly known as the learning rule. 

The system is a structure which receives input data, processes the data and provides 

output. Commonly, the input consists of data array which can be any kind of data 

and can be represented in array such as data from image files and wave sound. Once 

an input data presents to the ANN, and corresponding desired or target response is 

set at the output, an error is calculated from the difference of the target and the real 

system output. The error is then fed back to system which makes all adjustments to 

parameters in systematic fashion (known as learning rule). This process is repeated 

until the desired output is met. It is important to notice that the performance of the 

system hinges heavily on data, hence this is why the input data should pre-process 

with the third party algorithms such as digital signal processing (DSP) or Fourier 

Transform (FT) before presented to the network.          

 

2.4.1 The ANN model 

 

Artificial neural networks came about after McCulloc and Pitts introduced a set of 

simplified neurons in 1943. These neurons were represented as models of biological 

networks into conceptual components for circuits that could perform computational 

tasks. The basic model of the artificial neuron is founded upon the functionality of 
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the biological neuron. By definition, “Neurons are basic signalling units of the 

nervous system of a living being in which each neuron is a discrete cell whose 

several processes are from its cell body”. 

Once modelling an artificial functional model from the biological neuron, we must 

take into account three basic components. First off all, the synapses of the biological 

neuron are modelled as weights . These weights are multiplied by the input 

data . The synapse is the one which interconnects the neural network and gives 

the strength of the connection. The following components of the model represent the 

cell body which is modelled by the sum and activation function . The node 

calculates the weighted sum of its input. The output from the node is determined by 

the activation function. This will be discussed some more detail in the next section. 

Finally, the output  represents axon of the neuron. This simple artificial model 

shows in Figure 2.6. 
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                              Fig. 2.6  An artificial neuron model 
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2.4.2 Activation Functions 

 

The activation functions are the function used to calculate output and control the 

amplitude of the output level of the node based on the values from the sum of 

weighted input to that node. They play important role in the training/learning 

processes. For example if a linear activation function were used, the network can 

only work with the linear system. This is because the linear combination of linear 

function is still a linear function. If a nonlinear activation function were used, any 

nonlinear function can be approximated. In addition they act as a squashing function, 

such that the output of a node in an artificial neural network is between certain 

values (usually 0 and 1, or -1 and 1). Activation function with discontinuities are 

usually not used as it is then difficult to train the network, as the most common 

training methods rely on a continuous derivative of activation function such as delta 

rule. In general, there are many types of activation functions used. Some of them are 

shown in Figure 2.7. 
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                             Figure 2.7. Activation function 

 

2.4.3 Network topographies and applications 

 

An artificial neural network consists of combinations of many neurons to form a 

network. The topography of the network, pattern of connections between the units 

and the propagation of data, determines its suitability for different applications. 

There are several categories of networks classified by their topography, these are: 

 

• Feed-forward neural networks- where the data flow from input to 

output units is strictly feedforward. The data processing can extend over 

multiple units (layers) but no feedback connections are present. Each 

successive layer is connected to the next either partly or completely. An 

example diagram of network is shown in Figure 2.8. Examples of feed-

forward neural networks are the Perceptron and Adaline. These types of 

network are normally applied to data classification, pattern recognition or 

functional interpolation. 
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Figure 2.8 Fully connected feed-forward network with one hidden layer  

      and one output layer 

• Recurrent neural networks- networks have feedback loops between the 

layers. Figure 2.9 shows a three-layer network with the addition of a set 

of “context units”. There are connections from the hidden layer to these 

context units fixed with a weight of one [70]. Contrary to feed-forward 

networks, the dynamical properties of the network are important. In some 

cases, the activation values of the units undergo a relaxation process such 

that the neural network will evolve to a stable state in which these 

activations do not change anymore. In other applications, the changes of 

the activation values of the output neurons are significant, such that the 

dynamical behaviour constitutes the output of the neural network. They 

are typically used for associative memory, noise filtering and content 

addressable memory [40]. 
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Figure 2.9 Simple recurrent network 

 

• Competitive neural networks – these tend to be self-organising and are 

used for analysis of topological features and cluster template formation 

[41]. Competitive learning is implemented with network that contains a 

hidden layer which is commonly called “competitive layer” [71]. For 

every input vector, the competitive neurons competes each other for the 

winner neuron. The winner neural m set its output to one and all the other 

competitive neurons set their output to zero. The network diagram is 

shown in Figure 2.10.  
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Figure 2.10 Competitive network architecture 

 

2.4.4 Training network 

 
This process is required to generate the weight values for the network to perform the 

desired task. The way is to train the neural network by feeding it with teaching 

patterns and letting it changes its weights according to some learning rule. Training 

the network can be either supervised or unsupervised depending on the network type. 

 

• Supervised learning or Associative learning in which the network is trained 

by providing it with input and matching output (target) patterns. The network 

then calculates its output and adjusts the weights to reduce the overall error 

after each training pattern pass through it. This process iterates until some 

predefined stopping criteria is reached.  
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• Unsupervised learning or Self-organisation in which an output unit, no 

target given, is trained to respond to clusters of pattern within the input. In 

this paradigm the system is supposed to discover statistically salient features 

of the input data and it must develop its own representation of the input 

stimuli. After the training process is completed the weights are usually fixed 

for normal operation and network stops learning.   

 

2.4.5 Application to optical measurement 

 

The application of ANN to super-resolution, measuring line width below optical 

resolution limit, is shown in papers by Smith et al [26][27]. They used ANN to 

extract parameters, track width and track separation, from profiles of chrome and 

silicon images sample. The ANN used in their work was feed-forward network with 

eight input values, five hidden nodes and one output node. The network was trained 

by supervised learning with backpropagration algorithm. An activation function was 

tansigmoid function. In this case the output of the network is either track width or 

track separation. Their experiment used 0.3 NA objective lens and laser wavelength 

of 633 nm, this makes the PSF ,at the sample surface, in the order of 2.6 mμ .The 

input data, surface profiles, were obtained from an ultra stable common path 

scanning optical interferometer. This data is pre-processed before it can be used as 

the ANN input such that the profiles are differentiated and then discrete Fourier 

transform is applied to yield the spectrum of the differentiated profiles. The spectrum 

amplitude is then sampled at eight equally spaced locations inside the spectrum 

bandwidth. The eight sampled values are used as the input to the ANN. The result 
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demonstrates that the technique can measure track width down to 60 nm with 

repeatability better than 2 nm. This means their system could measure the track 

width less than 40 times of the PSF. The technique had been also applied to classify 

samples of various dimensions. The system showed perfect classification although 

the samples are very similar to each other. For example, it could distinguish a double 

track of width 500 nm (each track) and separation of 50 nm, to a single track of 1050 

nm width.     

 

Although the technique has been demonstrated to have a great potential to measure 

and classify the features of objects below the conventional diffraction limit of 

conventional optical microscope, one network is only valid and reliable for a certain 

range of trained set of input data. The system will produce enormous error for out of 

range data. It is not easy to determine range coverage. This means more than one 

network will be required in order to cover the measurement. As a result the methods 

to select a suitable range and network are necessary. 

 

2.5 Commercial microscope 

 

A commercial microscope that could be used to provide line image segments will 

now be discussed. 

 

ZYGO NewviewTM 700s [42] 

 
 The Newview 700 is a commercial microscope provided by Zygo for the 

applications of measurement, three-dimensions and scanning profiles etc. Like most 
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optical microscopes it provides fast, non-contact measurements. It uses integrated 

long life white light LED with computer controlled light level as the light source. 

The interferometer works as a Mirau or Michelson type and uses objective lenses 

with an internal beam splitter and reference path that matches the optical path length. 

The system provides sub-nanometre z resolution <0.1nm with sample step heights up 

to 0.15mm. The lateral resolution and field of view is dependent upon which 

objective is used from the objective turret. The best lateral resolution is quoted as 

360nm. The step height accuracy is quoted as ≤ 75% and the repeatability is better 

than 0.1%. The system comes with a software package ZYGO Metro running under 

Microsoft Windows XP. This system is capable of providing many different types of 

measurements on various types of surface and samples.  

 

Olympus – Confocal Laser Scanning Microscope – LEXT [43] 

 
LEXT is a commercial optical system suitable for many imaging applications. It has 

several different operation modes such as confocal, darkfield and DIC Nomarski all 

as scanning modes using laser illumination. It can also provide colour images by 

illumination by a white light halogen source for wide field images. The system has a 

large sample area and like most microscopes it does not require special sample 

preparation. The repeatability is important if the system is to be used for linewidth 

measurements, depth measurement and surface roughness etc. The repeatability of 

the system is quoted as 0.002Lμm (L=measurement length). The light source used 

has a wavelength of 408nm. The lateral resolution of the microscope is quoted as 

0.12 mμ . The reliability of the measured data is traceable to international standards 

set out by Physikalisch-Technische Bundesanstalt (PTB), Japan Quality Assurance 
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organization and the United Kingdom Accreditation Service (National Physical 

Laboratory). 

 



Chapter 3  

 
3  Hough Transform and PCA 

 
In this project, two methods are used for processing of the data, and they are the 

Hough Transform (HT) and Principal Components Analysis (PCA). The HT is used 

extensively to detect position and orientation of straight line segments in an image 

area of interest. It is a transformation from image space to another parameter space, 

sometime known as the Hough space. The intention is to reduce a feature to a point in 

parameter space which eases the processing for detection purpose. Its main 

application is for detecting the edge pixels in a binary image. For a gray scale image, 

therefore, it must be pre-processed using an edge detection technique. In our project, 

we modify the original Hough transform and apply the new algorithm to detect the 

positions and orientations of line segments in grey scale images. These line segments 

may be in the form of isolated segments, or multiple segments not in contact with 

each other, or multiple segments that intersect each other.  Figure 3.1 shows examples 

of the three types of features. 

 

 

 

 

       (a)                                          (b)                                                             (c) 

 Figure 3.1 The form of line segments: a) single line segment  b) multiple segments 

not in contact each other and c) multiple segments intersect each other    
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 The PCA is a mathematical procedure that uses an orthogonal transformation to 

convert a set of observations of possibly correlated data into a set of values of 

uncorrelated variables called principal components. It is a way of identifying pattern 

in data and expressing the data in such a way as to highlight their similarities and 

differences. We adopt this technique to identify features in an image, by comparing 

them with templates generated with known objects. For our application, will apply 

the Hough transform first to determine the orientation and location of the features, 

which is then followed by the PCA to classify the features. 

 

In this chapter, we will describe the original HT and give some application examples. 

The modification and the application to our project will be described in next chapter. 

We also introduce the basic mathematical concept of PCA and some of its general 

applications. Its application to our project will be detailed in the next chapter.  

 

3.1 Hough Transform    

 

The Hough Transform is a technique to detect features of a particular shape that can 

be parameterised such as straight line segments and circles in binary images. It was 

proposed by Paul Hough in 1962 [44]. The method provides a robust technique to 

identify the parameters of straight line edges in an image space. The technique 

converts the original problem of finding a straight line that passes through as many 

points as possible to one of computing points of intersection in the parameter space. 

The idea is to map data, object pixels in image space, into parameter space by a 

voting procedure, from which object candidates are obtained as local maxima in a so-

called accumulator that is explicitly constructed by the algorithm for computing the 
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Hough transform. It can be applied to many computer vision, image analysis and 

digital signal processing applications as most images contain features boundaries 

which can be described by regular curves, although in the classical Hough transform 

it is restricted to line detection in binary image. 

 

However, the original paper had lain dormant until 1972, when Dura and Hart [45] 

proposed an innovative approach to detect lines. The concept of Hough transform was 

used in their technique for straight lines and curves detection. The procedure involved 

grouping of geometric parameters of a sector of collinear edge pixels. For each edge 

pixel in an image space, the parameters of the corresponding normal 

parameterisations are mapped to Hough space. The technique was an extended 

version of Hough transform that can be applied to identify arbitrary shapes, 

commonly circles and ellipse. 

 

Ballard [46] developed a method that deals with curves by using Hough transform. 

The technique exploits the duality between the points on the curve and the parameters 

of that curve. The method can detect the arbitrary shapes in both analytic and non-

analytic curves. Since this technique has been presented through the journal article 

titled “Generalizing the Hough transform to detect arbitrary shapes”, this transform 

has been a popular technique in the computer vision community. 

 

John Princen et al [47] have proposed a hierarchical technique to line detection based 

on Hough transform. The technique is an efficient method for finding lines and edge 

maps. The proposed algorithm is based on a pyramid structure. For each layer of 

pyramid, the whole image is divided into a number of sub-images. At the bottom 

http://en.wikipedia.org/wiki/Generalised_Hough_Transform
http://en.wikipedia.org/wiki/Computer_vision
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level of the pyramid, line segments are detected by applying Hough transform to the 

sub-images. This hierarchical approach is a well known technique for extracting lines 

from mechanical parts and engineering drawings. 

 

Soo Chang Pei and Ji-Hwei Horng [64] have proposed a new method for detecting 

circular arcs. The technique uses Hough transform to detect circular arcs by using the 

centre locations and the radius as parameters. The peak value in parameter space of 

Hough transform indicates the existence of a circular arc of particular parameters in 

the image, whose values are given by the coordinates of the peak. The arc points are 

separated from the remaining edge points of the images, thus the arc length and the 

mid-point can be determined by analysing the data in the region near the peak 

location in the Hough space. The proposed algorithm can be used to detect the 

existence of multiple circular arcs in a noisy image.     

 

3.2 Representation of lines into Parameter Space 

 

The simplest case of the Hough transform is the linear transform for detecting straight 

lines. In the Hough transform, the idea is to consider the characteristics of straight 

line not as image points in x-y space, but in terms of its parameters (hence the term 

parameter space) here the gradient m of the line and its y- intercept c. Each line is 

mapped from the image space to the parameter space. The intention is to reduce the 

each line to a point in the parameter space which eases the processing for detection 

purpose. By doing this each pixel in the line contributes to a transformation process 

by “voting” for the lines. This results in an accumulation of votes in the parameter 

space. After the transformation, we search for the pixel that has the peak value, or the 
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highest number of vote. The locations of this pixel thus represent a line, in terms of 

its gradient and intercept, in the image space. A line in the image plane is therefore 

reduced to one point in the parameter space. 

   

In the image space (x-y plane), a line has a unique value of slope (m) and intercept 

(c). The equation of a straight line is given in Equation (3-1) and can be graphically 

plotted for each ordered pair of image points (x,y).    

 

 cmxy +=         (3-1)   

 

The two parameters, m and c, are used in the parameter space to represent the straight 

line. Therefore each set of collinear points are represented by (m,c) in the parameter 

space, or conversely each straight line in the image space contributes to a unique 

(m,c) value. For example the two lines in figure 3.2 will result in two distinct sets of 

(m, c) values, and each will be represented by a point in the parameter space. In the 

parameter space, c and m are linked using equation 

 

         (3-2)  c y mx= −
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                               Figure 3.2. Lines through a point in x-y plane  

 

Unfortunately, both the slope m and the intercept c are unbounded and cannot 

represent vertical lines. This is a severe drawback of the technique. This problem can 

be solved by using different parameters instead of slope and intercept. A suitable set 

of parameters are the normal distance ρ  from the line to the origin and the angle θ  

which is defined as the angle of the normal of the line passing through the origin. 

These two parameters are shown in Figure 3.3. With the new parameters, a vertical 

line is given by (ρ, θ) = (d, 0o) where d is the distance. The transformation is 

described by eq. (3.3) and is shown in figure 3.3.  

 

 θθρ sincos yx +=        (3-3) 
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 Figure 3.3 Representation of a line using parameter ρ  and θ  

 

The parameter space for straight lines has two dimensions, ])90,90[( −∈θθ  and 

)( R∈ρρ  where R is some real number. A line is represented by a single point in the 

parameter space, corresponding to a unique set of parameters ),( ρθ .     

 

To perform the transformation, we consider the straight line in figure 3.4 (a). A point 

P on the line is transformed into a sinusoidal curve in the parameter space, according 

to eq 3-3, and is shown in figure 3.4 (b).  
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     (a) Point P  in image space      (b) All possible lines through P represented  

                                                  in Hough space  

Figure 3.4 Transformation of point P  to the line in the Hough space. The line in 

Hough space represents all possible lines pass through P  

 

A different point on the straight line will result in a different sinusoidal curve. Indeed 

every point on the line will produce a different curve, but crucially they intersect at 

one point only. The coordinates of this point of intersection at the parameter space 

correspond to slope and intersect of the straight line in the x-y plane. The line-to-

point mapping is illustrated in Figure 3.5. The simulation of the whole line 

transforming to parameter space will be described in the next section. 

 

                           (a) (b) 

                                                                         y ρ  

 

 

                                                x       θ                                       

Mapping Line

Common Point

           Figure 3.5. Mapping of a unique line in image space to the Hough space  
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3.3 Classical Hough Transform Algorithm for line detection 

 

Following the discussion above, we now can describe the algorithm for detecting 

lines in image space. The steps are as follows: 

 

1. Create the parameter ( ),ρ θ  space as a two-dimensional matrix (figure 

3.5b). This matrix is known as the Accumulator Array (AA). The 

quantisation levels along the two dimensions are user specified. 

 

2. Apply a suitable edge detection method to the input image. 

 

3. Initialise the matrix AA to zero. 

 

4. Each edge point in the image space is used to create a sinusoidal curve, as 

described in eq. 3.3, in the parameter space (figure 3.4). The elements in 

the matrix AA, underneath the curve, will have their values updated by 1 

as given by eq 3.4: 

 

( ) ( ), ,HT HTρ θ ρ θ 1= +     3.4 

 

5. Repeating step 4 for all the edge points would result in a vote matrix, 

showing the frequencies of the edge points for various ( ),ρ θ  values.  
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6. Interpretation of matrix AA would yield the line segments. The 

interpretation is done by thresholding and possibly other constraints where 

only elements with votes greater than a certain value are taken. These 

elements correspond to lines in the original image and the value of the 

element provides a measure of the number of points, or the length of the 

line. 

 

Figure 3.6 shows a simulation of the Hough transform for lines detection. The 

original images are a single line (a) and two lines (b). The results of this transform 

were stored in a matrix AA. The value contained in each element represents the 

number of curves through that particular point. High element values are rendered red, 

as shown in Figure 3.6 (c) and (d). In Figure 3.6 (d), the two distinct red spots signify 

two lines in the original image. From the positions of these spots, the slopes and 

intersects of the two lines in the image space can be determined. 

 

x

y

50 100 150 200 250

50

100

150

200

250

x

y

50 100 150 200 250

50

100

150

200

250

 

 

 

 

 

 

(a) (b)  

 

 

 



 53

 

θ

ρ

-80 -60 -40 -20 0 20 40 60 80

-300

-200

-100

0

100

200

300

 

 

 

 

 

 

 

 

 

                                   (c)    
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           (d)  

 

Figure 3.6 Lines detection using Hough transform: a) single line image b) double 

lines image c) Hough space correspond to (a) and d) Hough space correspond to (b) 
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The classical Hough transform can detect the presence of lines, returning the 

parameters ρ and θ . For our applications, lines would appear in the image space 

with finite lengths, different locations, non-zero widths, and possibly varying 

intensities along the lengths. The classical HT is not capable of measuring these 

different parameters. In the next chapter, we will describe algorithms we have 

generated. When combined with the classical HT, we can extract relevant parameters 

that can better describe images of real features. 

 

3.4 Principal Component Analysis 

 

Principal Component Analysis (PCA) is probably the most well known multivariate 

statistical technique and is used in almost all scientific disciplines. It is also likely to 

be the oldest multivariate technique. It was invented in 1901 by Pearson [48] but its 

modern formulation was due to Hotelling [49] who also coined the term principal 

component. The PCA is a mathematical procedure that is used to analyses a data set 

representing observations described by several dependent variables which are, in 

general, inter-correlated. Its goal is to extract the important information from the data 

and to express this information as a set of new orthogonal variables called principal 

components. It also represents the pattern of similarity and difference between two 

groups of data, and display them as points in maps [50][51][52].  This last point is the 

aspect of PCA that is used in our research. The PCA is a classical technique which 

can apply to linear domain thus data obtained from linear systems, such as signal 

processing, image processing, system and control theory, may be subjected to 

principal component analysis [53]. Furthermore, PCA is used to reduce the 

dimensionality of the data space (observed variables) to smaller intrinsic 
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dimensionality of feature space (independent variables), which are needed to describe 

the data economically. This is the case when there is a strong correlation between 

observed variables. 

 

The following are some of the applications of the PCA. The Principal Component 

Analysis is one of the most successful techniques that have been used in image 

recognition and feature extraction.  

 

Turk and Pentland [54] used PCA technique for face recognition. Their technique was 

to transform face images into a small set of characteristic feature images. The main 

idea of the principal component analysis in their approach is to find the vectors which 

best account for the distribution of face images within the entire image space. These 

vectors define the subspace of the face images and are called face space.  The original 

image and its projection onto face space is shown in Figure 3.7.  

 

 

 

 

 

 

Figure 3.7 An original face image and its projection onto the face space defined by 

the eigenfaces [54].  
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Each vector is of length N2, represents an NxN image, and is a linear combination of 

the original face images. These vectors are also the eigenvectors of the covariance 

matrix corresponding to the original face images, and are often referred to as the 

eigenfaces. Each face image in the original image space can be represented exactly in 

terms of a linear combination of the eigenfaces. The steps for face recognition can be 

summarised as follow: 

1. Populate the image space by acquiring an initial set of face images, 

thus forming the training set. 

2. Apply PCA to the training set to yield the eigenfaces, keep only M 

images which have the highest eigenvalues. These M images define 

the face space. 

3. When a new face image is presented to the system, calculate a set of 

weights based on the input image and the M eigenfaces by projecting 

the input image onto each of the eigenfaces. 

4. Determine if the input image belongs to the image space by checking 

the values of the projected weights from 3) above. 

5. If the input face belongs to the image space, it will be classified further 

by comparing it with individual face images in order to determine if it 

is a known person.         

The experiment of this system achieved approximately 96% correct classification and 

recognition. The eigenface approach provides a practical solution that is suitable for 

the problem of face recognition. It is fast, relatively simple and has been shown to 

work well in a constrained environment.  However, the performance of the system 
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degrades with the light condition and the orientation variation of head. Moreover, the 

performance accuracy decreases dramatically with the change of head size.  

 

Wei Qu et al [55] have proposed a robust segmentation approach for noisy medical 

images, X-ray and ultrasound images, using PCA model based particle filtering. The 

technique exploits the prior clinical knowledge of the desired object’s shape 

information through the PCA model. They used the two nodes of the PCA to 

represent the principle component vectors for object region and background 

surrounding that object. Their experiment showed that the approach can achieve very 

robust segmentation and extraction results, even though the images may have much 

background noise, clutter, shadow and low contrast.   

 

Mishra and Mulgrew [56] presented the use of PCA on radar images for automatic 

target recognition (ATR). The PCA is firstly applied to the training data set to reduce 

the number of observed variables, extract data as features, and then use as the 

classifier. Their approach was validated by using the synthetic aperture radar (SAR) 

images. The technique showed great promise for classification. Moreover, it is also a 

strong candidate for any real time ATR system, given its performance and computing 

speed.            

 

Bajwa et al [57] used the principal component analysis to classify different types of 

single-layered and multi-layered cloud images for forecasting weather applications. 

The system reads features of gray-scale images to create an image space, training 

images. This image space is then used for classification of cloud types (clear sky, 

low-level, mid-level and high-level clouds). In testing process, a new cloud image is 
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classified by comparing it with the specified image space using the PCA algorithm. 

By using this technique, they could achieve high accuracy classification up to 90%.  

 

3.5 Mathematics of PCA 

 
Mathematically, PCA depends upon the eigen-decomposition of positive semi-

definite matrices formed by the input data set. If the latter is ill conditioned or not 

square, singular value decomposition (SVD) is used to find the eigenvalues [58]. This 

section describes some background mathematical that will explain the process of 

Principal Components Analysis. The topics cover matrix algebra such as eigenvectors 

and eigenvalues which are the important properties of matrices and are fundamental 

to PCA. After that the steps needed to perform principal component analysis on a set 

of data will be explained. 

 

3.5.1 Covariance Matrix 

 
The covariance is a statistical analysis which is used to measure the relationship 

between data along different dimensions in a data set. For example, it is used to find 

how much the dimensions vary from the mean with respect to each other. Covariance 

is always measured between two dimensions. If a covariance is calculated from one 

dimension and itself, it is a variance of that data set. If we have a data set with more 

than two dimensions, say a n-dimensional data, there is more than one covariance 

measurement that can be calculated. For a n-dimensional data set, the number of 

different covariance values can be determined by 
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( )

!. .
2 ! 2
nNo Dif Cov

n
=

− ×
      (3-4). 

 

For a two-dimension data set (X and Y), the covariance value can be calculated as in 

Equation 3-5. 

  

 ( )
( )( )

( )
1cov ,

1

n

i i
i

X X Y Y
X Y

n
=

− −
=

−

∑
     (3-5)      

 

Where X  is the mean value of data  and X Y  is the mean value of data Y . 

 

If we have n-dimensional data set, it is useful to manage all the possible covariance 

values between all the different dimensions by arranged them into a matrix, n rows 

and n columns matrix. Each entry in the matrix is the result of calculating the 

covariance between any two dimensions, including the variances of the data 

contained within the individual dimensions.  

 

Therefore the covariance matrix for a set of data with n dimensions is:  

   

 

1 1 1 2 1

2 1 2 2 2

1 2

cov( , ) cov( , ) . . cov( , )
cov( , ) cov( , ) . . cov( , )

. . . . .

. . . . .
cov( , ) cov( , ) . . cov( , )

n

n

n n n n n

D D D D D D
D D D D D D

C

D D D D D Dn ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (3-6). 

 

Where iD  is the i th dimension.  
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Note that the covariance values along the main diagonal of the matrix are the 

variances of the data along different dimensions. The other point is that 

 since multiplication is commutative. cov( , ) cov( , )i j j iD D D D=

  

3.5.2 Eigenvectors and Eigenvalues   

 
Eigenvectors and eigenvalues are quantities associated with square matrices, and can 

be obtained by using eigen-decomposition of the matrix. Even though eigen-

decomposition may not be applied to all matrices, for example matrices that are non-

square or contain singularities, it can always be applied to the correlation, covariance, 

or cross-product matrices formed using the original data. The eigen-decompositions 

of these matrices are important as they provide useful information such as the 

maximum (or minimum) variance among the original data. Specifically PCA is 

obtained by applying the eigen-decomposition to the covariance matrix of the input 

data. 

 

There are several ways to define eigenvectors and eigenvalues, the most common 

approach defines an eigenvector of the matrix  as a vector u  that satisfies the 

following equation: 

A

 

λ=Au u          (3-7) 

 

where λ  is a scalar called the eigenvalue of  corresponding to the eigenvector u . 

The Equation (3-7) is called eigenvalue equation or eigenvalue problem. 

A
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The vector u  has the property that its direction is not changed by any linear 

transformation of  but is only scaled by a factor of A λ , corresponding to a change in 

its magnitude. Most vectors will not satisfy Equation (3-7), a typical vector will 

change direction when it is multiplied by , so that  is not a scalar multiple of u . 

This means that only certain special vectors  are eigenvectors, and only certain 

special scalars 

A Au

u

λ  are eigenvalues of . A

 

To compute the eigenvectors of a matrix, it first computes its eigenvalues. When the 

eigenvalues are known, it is relatively easy to compute the corresponding 

eigenvectors. Equation (3-7) can be rewritten as 

 

( )λ− =A I u 0         (3-8) 

 

where is the identity matrix. I

If the quantity inside the brackets has an inverse, then both sides of Equation (3-8) 

can be left multiplied by the inverse to obtain the trivial solution: . Thus we 

require there to be no inverse, and from linear algebra the determinant should be 

equal to zero:  

=u 0

 

 ( )det 0λ− =A I         (3-9) 

 

This equation is called the characteristic equation of . This characteristic equation 

will have 

A

Nλ  distinct solution, eigenvalues, where 1 N Nλ≤ ≤  and  is the number 

of dimensions of vector space which u  contained.    

N
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Based on the eigenvalues, the corresponding eigenvectors  can be obtained by 

solving Equation (3-7) for each eigenvalue 

iu

iλ . 

 

Usually, the eigenvectors of  are arranged in a matrix (denoted U ). Each column of 

 is an eigenvector of . The eigenvalues are stored in a diagonal matrix (denoted 

), where the diagonal elements give the eigenvalues (and all the other values are 

zeros). Therefore Equation (3-7) can be rewritten as: 

A

U A

Λ

 

         (3-10) 1−= ΛA U U

 

Since the eigenvectors  are orthogonal, the matrix  is an orthogonal matrix 

[ref.3-16]. This implies the following equality: 

U U

 

         (3-11) − =1U UT

 

Therefore when we substitute Equation (3-11) for Equation (3-10), it becomes  

 

         (3-12) T= ΛA U U

 

From Equation (3-12) it can be seen that together the eigenvectors and eigenvalues of 

a matrix constitute the eigen-decomposition of this matrix.      
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3.6 Computing PCA 

 
The following is a detailed description of how to obtain the PCA if a data set is given. 

  
Step 1: Data set 

Organize a data set as a single matrix  of dimensions m×n. The data set 

comprises an observation of m variables and n dimensions, or n observations 

each with m variables.     

X

 

Step 2: Subtract the mean 

The mean subtraction is performed along each dimension. This produces a 

data set whose mean is zero. 

• Calculate mean value of each dimension and store in matrix  of 

dimension 1xn. 

Z

1

1( ) ( , )
M

m
n

M =

= ∑Z X m n      (3-13) 

• Subtract the mean matrix  from each column of data matrix  and 

then store in the mxn matrix . 

Z X

B

 

= −B X kZ       (3-14) 

    

Where k  is mx1 column matrix of all 1s. 

 

Step 3: Calculate the covariance matrix  of from step (2). This is done C B

in the same way as described in section 3.5.1. This yields the covariance 

matrix of nxn dimensions.  C
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Step 4: Compute the eigenvectors  and eigenvalues U Λ  of the covariance  matrix . C

• The n eigenvectors of along with their eigenvalues. C

• The eigenvectors have to be normalised to unit length such that 

1=U . 

 
Step 5: Rearrange the eigenvectors and eigenvalues 

• Rearrange the eigenvectors  and eigenvalues  in order of 

decreasing eigenvalue, maintain the correct pairings between the 

eigenvectors and eigenvalues. 

U Λ

 

( 1 2 3 ... neig eig eig eig=V )     (3-15) 

 

Where  is ith  eigenvector ordered from highest to lowest ieig

 eigenvalue. 

• This gives the components in order of significance, the eigenvector 

with the highest eigenvalue is the principal component of the data set. 

 
Step 6: Project the data set onto the new basis 

 

    = T TY V B

 

Where  is the chosen eigenvectors from step (5) and is   the mean 

subtracted data from step (2).  

V B
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• The  matrix is the final data set with the items in columns and 

dimensions along rows. Now we have changed the original data from 

being in term of normal axes, such as x and y, into vectors axes. This 

will give the original data in term of the eigenvectors. These 

eigenvectors are always perpendicular to each other.  

Y

 

When the data set have been transformed, the values of the data points tell us exactly 

where (i.e. above/below, distance) the trend lines the data point stands. In the case of 

the transformation using p eigenvectors, we have simply altered the data so that it is 

in terms of those eigenvectors instead of the usual axes.  

 

If we choose only the first p eigenvectors according to the highest p eigenvalues in 

step (5), then the final data set has only p dimensions. This means that the original 

data set can be compressed and reduced in dimension.  

 

3.7 An Example of PCA 

 
This example demonstrates the processes of PCA as explained above through the 

made up data, original data. The data comprises two sets of data, D1 and D2, which 

are shown in Table 3.1 along with their mean subtracted.  
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Table 3.1 The original data and its mean subtracted 

 Original data Mean subtracted data 

 D1 D2 1D  2D  

 8.2 8.8 2.57 3.18 

 6.4 7.1 0.77 1.48 

 8.1 9 2.47 3.38 

 6.6 5.6 0.97 -0.02 

 3.4 3.6 -2.22 -2.02 

 2.8 3 -2.82 -2.62 

 3.4 2.3 -2.22 -3.32 

 5.3 4.5 -0.32 -1.12 

 7.2 8.2 1.57 2.58 

 3 2.8 -2.62 -2.82 

 8.3 8.6 2.67 2.98 

 5.6 5.6 -0.02 -0.02 

 3.7 3 -1.92 -2.62 

 7 6.4 1.37 0.78 

 5.4 5.8 -0.22 0.18 

Mean 5.626 5.62   

 

Step 1: 

The matrix , mxn dimensions with m=15 and n=2, can be formed from the 

original data as: 

X

 

 [ 1 2]D D=X         
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Step 2: 

The mean subtracted data for each dimension can be calculated as explained 

above in step (2). The mean subtracted data are shown in Table 3.1. The 

matrix  can be formed: B

  

 1 2D D⎡ ⎤= ⎣ ⎦B   

 

Step 3: 

Since the mean subtracted matrix B  has two dimensions, the covariance 

matrix will be 2x2 matrix. This is done as explained in section 3.5.1 and its 

result is       

 

 . 
3.8907 4.4887
4.4887 5.5674
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

C

 

Step 4 and 5: 

From the covariance matrix , the eigenvalues and eigenvectors can be 

calculated. Then rearrange the eigenvectors and eigenvalues in order of 

decreasing eigenvalue to form eigenvector . The first column of 

eigenvector  corresponds to the largest eigenvalue 

C

V

V Λ , and so on. The first 

vector, first column, and second vector in are the first and second principal 

component of the data set, respectively. The graph of mean subtracted data 

overlaid with eigenvectors  is shown in Figure 3.8. This provides 

information relating to the pattern in the data. The eigenvectors show how 

V

V
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these two data sets are related along that line. The data points follow the main 

line, PC1, but are off the side of the line by some amount.       

  

  
9.2954 0

0 0.1627
⎛ ⎞

Λ = ⎜ ⎟
⎝ ⎠

 

  
0.6389 0.7692
0.7692 0.6389

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠
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Figure 3.8 A graph of mean subtracted data with the eigenvectors overlaid on top: 

first principal component (PC1) and second component (PC2)  

 

Step 6: 

In this step the new data set  is formed and its result is shown in Table 3.2. 

This new data was transformed into the eigenvectors axes. The graph of the 

Y
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new data shows in Figure 3.9. This graph is basically the original data rotated 

and it is plotted by using the eigenvectors as axes.  
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  Figure 3.9 Graph shows the new data  
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Table 3.2: The new data obtained from applying the PCA using all eigenvectors 

Y  

PC1 PC2 

4.090 0.052 

1.632 0.350 

4.180 0.256 

0.606 -0.761 

-2.976 0.422 

-3.821 0.500 

-3.976 -0.408 

-1.070 -0.464 

2.989 0.438 

-3.847 0.218 

4.000 -0.152 

-0.032 0.007 

-3.246 -0.191 

1.477 -0.558 

-0.006 0.289 

 

 

When the data set have been transformed, the values of the data points tell us exactly 

where (i.e. above/below, distance) the trend lines the data point stands. This is clearly 

shown in Figure 3.9.  
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If we choose only the first p eigenvectors according to the highest p eigenvalues in 

step (5), then the transformed data set has only p dimensions. This means that the 

original data set can be compressed and reduced its dimensions. In our example, if we 

choose only the first eigenvector, we will simply have the new data set  of one 

dimension, PC1, as shown in Table 3.2.     

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

 
4  Application of Hough Transform and PCA 

 
The basic operations of both the Hough transform and the PCA have been described 

in the last Chapter. As discussed, they were able to perform the functions as 

originally designed. However, in order to be applicable to the tasks required for this 

project, certain modifications are required. In this Chapter, the modification and the 

application of Hough Transform to our project will be explained first. The details of 

the modified algorithm for detection of line segments in grey scale images directly 

will be discussed.   The capability of the modified algorithm will be demonstrated 

through simulations.  This will be followed by detailed description of the subsequent 

application of principal component analysis to our project.  

 

4.1  Lines detection in grey scale image using  

       Hough Transform 

 

The Standard Hough Transform is originally used to detect lines in binary images 

(binary edge images). For a grey scale image, therefore, it must be pre-processed 

using an edge detection technique. In our project, we modify the original Hough 

transform and apply the new algorithm to detect the positions and orientations of line 

segments in grey scale images directly. In our modified algorithm, we also can 

measure the line widths and any varying intensities along the lines.  These line 

segments may be in the form of isolated segments, or multiple segments not in 
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contact with each other, or multiple segments that intersect each other as have been 

shown in Figure 3.1.  

 

The use of Hough transform to detect line(s) in grey scale images will be explained 

with the procedures below. 

 

1. Create the two parameters ( ),ρ θ  space as two-dimensional matrix. 

These matrices are known as the Accumulator Array 1 & 2 ( 1Acc  and 

2Acc ). In the original transform, only one is used. The quantisation 

levels along the ( ),ρ θ  dimensions are user specified. 

2. Remove background by thresholding and possibly other constraints if 

necessary. 

3. Initial the matrices  and  to zero. 1Acc 2Acc

4. Mapping of points in image space to the parameter space ),( ρθ , as 

described in Eq. 3-3, and storage in Accumulators. Of the two 

accumulators, one performs the same function as the accumulator 

described in Chapter 3, and is therefore used to represent the number of 

points along the length and width of any line segment.  The other 

accumulator, however, is used to store information relating to the 

magnitudes, or intensities, of the image points. The elements in the 

matrices will have their values updated: 

 

4.1  Accumulator 1 : store magnitudes of image points,  

              ; adding magnitude of image ∑
=

=
n

j
jIAcc

1
1
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        where  is the magnitude at pixel . jI j

4.2   Accumulator 2 : store number of points 

              ; adding number of points ∑
=

=
n

j
Acc

1
12

 

5. Repeating step 4 for all the image points would result in the vote 

matrices, showing the frequencies of the image points for various ( ),ρ θ  

values. 

6. Interpretation of accumulators  1Acc  and 2Acc  to yield the line 

segments. The interpretation is done by thresholding and possibly other 

constraints where only areas with votes greater than a certain value are 

taken. These areas correspond to lines in the original image and the value 

of the area provides a measure of the number of points, or the length of 

the line, and the width of line. 

7. Conversion of each peak area to a thin line (option).  

 

4.2 Transformation to Hough space 

 

The Hough transform takes a grey scale image as input. Every image pixel is 

transformed to all possible lines that could pass through that pixel. Figure 4.1 

illustrates this for a single line image. When a pixel is transformed, bins in both 

accumulators are increased for all lines that could pass through that pixel. Consider 

two points P1 and P2 on the line segment with magnitudes of 1 and 0.5 respectively. 

P1 will produce a sine wave C1 according to Eq. 3-3, and P2 another sine wave C2. 

These two sine waves are shown in Figure 4.1 (b). For accumulator 1Acc , C1 has 
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the value of 1 and C2 is 0.5. The cumulated value at the intersection J is therefore 

1.5 plus any previous value. This means that the increase in the bins of the 

accumulator 1Acc  each time is the value of each sine wave at the intersection point. 

In the accumulator , both sine waves C1 and C2 will have values of 1, thus the 

cumulated value at the intersection J will be 2. 

2Acc

 

Figure 4.3 (a) is obtained by taking the transforms of all the image pixels in figure 

4.1 (a). In this case, the brightness of each sine wave is made proportion to the 

intensity of the pixel concerned. Thus figure 4.3 (a) corresponds to the accumulator 

. Figure 4.3 (e) is also resulted from the transformation of the original image in 

figure 4.1 (a), but with the brightness of the sine wave having value of 1. This results 

in the accumulator 

1Acc

2Acc  to be generated.  

 

Now that the accumulations of 1Acc  and 2Acc  are completed, they are used to 

determined the characteristics of the original line segment. As have been mentioned 

before, the two accumulators  and  serve different functions.  is 

used to determine the location, or 

1Acc 2Acc 1Acc

( ),ρ θ  of the line segment, whereas 2Acc  is used 

to measure the width and length of line segment. Detailed applications of the two 

accumulators will be discussed in sections 4.3 and 4.4. The remaining of this section 

will be devoted to discussing the characteristics of the outputs of the two 

accumulators.  

 

 

 

   



 76

 

P1 

P2 

x

y

 

 

50 100 150 200 250

50

100

150

200

250

 

P2 

P1 

 

 

 

 

 

 

 

  Figure 4.1 (a) Line image : the angle is  (vertical line) 0
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Figure 4.1 (b) Hough space: Two sine waves are transformed from points 
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Figure 4.2 (a) A small line segment, (b) Enlarged thin line segments of (a) (one pixel 

wide) 
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Figure 4.2 (c) Magnified Hough space obtains from transforming of (b) 
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Now consider figure 4.2 (a) which shows a small line segment. In Matlab, this is 

represented by an array of values. Therefore, at the enlarged figure (b), each vertical 

line segment will correspond to a dashed line in (a), or one column of data in Matlab. 

As shown, there are five vertical lines from V1 to V5. Considering line V1 first, it 

has an angle of zero, and a certain distance ρ from the origin. It will therefore be 

transformed to PV1 at the transform space. Similarly, the other four lines V2 to V5 

will result in PV2 to PV5. Together they form a straight line (in green) in the 

transform space at θ = 0o. On the other hand Hough transform will consider any two 

points within the matrix capable for forming a straight line. For example, L1 in (b), 

which is formed by the two end points of V4 and V5, will result in PL1 in the 

transform space. PL2 and PL3 thus formed similarly. Indeed, any combinations of 

points in (b) will feature in the transform space. The crucial point is that, only the V 

lines will form features in the transform space along the angle direction (or other 

directions according to the original line segment), features due to the L lines will 

spread around the green line in the transform space, and the cumulated values for the 

two accumulators will have their maximum on the green line. It is this aspect of the 

Hough transform that we exploit to determine the orientation and location of lines in 

the original image.  

0

 

4.2.1 Accumulator 1 : ACC1 

Consider the brightest area (region that is of the highest cumulated values) of 

accumulator , which is indicated inside the rectangular box in figure 4.3 (a), 

and a magnified version is shown in figure 4.3 (b). Figure 4.3 (c) is derived from (b). 

Considering the curve in black first, it represents the profile of the 

1Acc

1Acc  output at 

angle = 0o. In order words, it is the cumulated values along the green line in figure 
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4.3 (b). The other curves in (c) are similarly extracted from (b), but for angles 

between  to . The graph therefore plots the magnitudes of 6− 6 1Acc  output as a 

function of the distances of the line segment. It should be noted that the original line 

segment in figure 4.1 (a) has an angle of 0 , and this angle is translated directly to 

figure 4.3 (b & c). Therefore, by determining the curve in (c) that contains the 

maximum value, we have determined the angle of the original line segment. The 

distance ρ  of the line segment can now be determined which is simply the location 

of the peak along the black curve. In this example, the maximum magnitude is 125 

and this occurs at distance ρ  of 127.  

 

Figure 4.3 (d) also shows the profiles of accumulators  at the same area as in 

figure 4.3 (c), but these profiles are taken from the angle  to 10  and shifted to 

middle. The graph shows clearly that the magnitude of each profile gradually 

decreases when the angle of the selected profiles deviates from the correct angle 

( ). This further demonstrates that the maximum point in the brightest area is the 

location of a line segment.    

1Acc
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0

 

 

 

 

 

 

 

 

Figure 4.3 (a) The entire Hough space: Adding magnitude of image ( 1
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 HT: Adding Magnitude of Image
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 Figure 4.3 (b) The area zooms in on rectangular red box from (a)  

 

 

 

 

 

 

 

 

 

 

 

 

90 100 110 120 130 140 150 160

0

20

40

60

80

100

120

Distance (arb. units)

M
ag

ni
tu

de
 (a

rb
. u

ni
ts

)

 

 

-6 deg.
-5 deg.
-4 deg.
-3 deg.
-2 deg.
-1 deg.
0 deg.
1 deg.
2 deg.
3 deg.
4 deg.
5 deg.
6 deg.

Angle 

Figure 4.3 (c) The profiles taken from the Hough space between M1 and                     

M2 in (b) 
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     Figure 4.3 (d)  Comparing profiles for each angle (0-10 deg.) of 1Acc  

 

4.2.2 Accumulator 2 : ACC2 

 
The function of 2Acc  is to produce information relating to the width and length of 

the line segment. Consider the brightest area of accumulator 2Acc . Figures 4.3 (e - 

h) are the equivalents of (a - d) for . The difference between the two cases is 

illustrated in (g) and (c). From figure 4.3 (g), it can be seen that the top of each 

profile is flat and the maximum magnitude is approximately the same. However, the 

widths at the top of these profiles are different. Figure 4.3 (h) is the evidence of this. 

The graph clearly shows that the width at the top of each profile gradually decreases 

when the angle shifts away from its actual angle ( ). This means that the profile at 

the actual angle will be wider than others. Thus the width of this profile considered 

to be the width of line segment.   

1Acc

0
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  HT: Adding Number of Points

 

 

 

 

 

 

        

Figure 4.3 (e) The entire Hough space: Adding number of points ( 2)Acc  

 

 

 

 

 

 

 

 

 

 

    

    Figure 4.3 (f) The area zooms in on rectangular red box from (e) 
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Figure 4.3 (g) The profiles taken from the Hough space between M1 and 

                     M2 in (f) 
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   Figure 4.3 (h) Comparing profiles for each angle (0-10 deg.) of 2Acc  
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The following example demonstrates relationship between the width of original line 

segments in figure 4.4 (a) and its corresponding transform in accumulator 2Acc . 

The solid curves in figure 4.4 (b) are derived from (a) and the dash-dot curves are 

obtained from the output accumulator . Considering both curves in blue first, 

the solid one represents the profile of L1 along the red line. Obviously, it is the 

intensities or signals strength across the width of the line segment. The blue dash-dot 

curve denotes profile of the transform of L1 in accumulator  taking at the 

correct angle, . The other curves in (b) are similarly extracted from (a) and their 

transform, but for L2 to L4 from inner to outer. It can be seen that the width at the 

base of each solid curve and the one of dash-dot curve, with the same colour, are 

exactly equal. Therefore, by determining the width of dash-dot curve in (b) at the 

correct angle, we have determined the width of the original line segment. 

2Acc

2Acc

0

 

 

x-position

y-
po

si
tio

n

100 150

60

80

100

120

140

160

180

200

x-position

y-
po

si
tio

n

100 150

60

80

100

120

140

160

180

200

x-position

y-
po

si
tio

n

100 150

60

80

100

120

140

160

180

200

x-position

y-
po

si
tio

n

100 150

60

80

100

120

140

160

180

200

L1 L2 L3 L4 

 

 

 

 

 

 

 

 

Figure 4.4 (a) original line segments  

 

 



 85

 

   

-20 -15 -10 -5 0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x-axis

m
ag

ni
tu

de
 (a

rb
. u

ni
ts

)

 

 

 

 

 

 

 

 

 

Figure 4.4 (b) profiles of original line segments (solid lines) and of accumulator 

2Acc  (dash-dot lines) 

 

4.3 Location of Lines in Accumulator 

 
We have illustrated the procedure for determining the present of isolated single line 

in the last section. The procedure for determining multiple lines is similar except that 

the areas of localised maxima will need to be separated first. This section will 

discuss aspects relating to this case. The following example uses two line segments 

to demonstrate the processes. The original image in Figure 4.5 (a) contains two lines 

segments L1 and L2 with different positions and angles. They may be of different 

widths and lengths as well. The transformation of the image yield the Hough space 

(parameter space) shows in Figure 4.5 (b). It can be seen that there are two bright 

areas indicated by A1 and A2, the regions with the most intersected points. To 
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isolate the two regions, we firstly look for a global maximum. A region surrounding 

this maximum is formed by applying a threshold in the neighbourhood. A value of 

80% is used for the thresholding although other values can be used depending on 

application. Once this area is determined, it is transferred to 4.5 (c) and the process is 

repeated for the next maximum. As there are two lines in the original picture, figure 

4.5 (c) contains two isolated regions.  These two areas are processed separately using 

the method described in the last section, in order to determine their locations and 

orientations. For example used, the angles and distances are calculated to be 

 and  respectively.  (15 ,50) (0 ,128)
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    Figure 4.5 (a) Original Image 
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Figure 4.5 (b) Hough space: Adding magnitude of image ( 1)Acc  
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Figure 4.5 (c) Local peak areas 

Figure 4.5 The detected lines are shown in the white areas: A1 and A2 represent L1 

and L2, respectively  
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Procedure to locate line segments can be summarised as follow: 

 

1. Searching for the global maximum point(s) in accumulator 1Acc - keep this 

to be a maximum reference.  

2. Locate maximum area by applying a threshold in the neighbourhood of 

global maximum point in (1) – keep only the values greater than 80% of max. 

3. Determine distance and angle as have been described in section 4.2.1 

4. Set the region in (2) to zeros 

5. Repeat step (1)  

6. Stop the process if the peak value of remaining area is less than 20% of the 

maximum reference.        

 

4.4 Length and width of lines 

 
The length and width of line segments can be obtained from the accumulator 2Acc  

as has been mentioned earlier. Variations in the length of a line affects magnitude of 

accumulator 2Acc , whereas the line width changes the width of the bright area at the 

angle of the line segment, as illustrated in figure 4.6. Figure 4.6(a) shows the 

accumulator  of the original line segments in figure 4.5(a). Once the locations 

and angles of the two segments are determined using data from

2Acc

1Acc , profiles along 

the peaks of each region can be drawn. Figure 4.6(b) shows the profile of 2Acc  

along the peak of region A1, at the angle 00. From the profile, it can be determined 

that the corresponding line segment has a length of 127 pixels and a width of 24 

pixels. Applying the same procedure to region A2 will yield another profile. As the 
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two original line segments have the same lengths and widths, the profile for A2 will 

be identical to that of A1 but shifted to angle 150.  
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Figure 4.6 (a) Hough space: Adding   number of points 2Acc  
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                                      Figure 4.6 (b) Profile at 0     

Figure 4.6 The accumulator 2Acc  in Hough space and its profile at 0 , Original 

image Figure 4.5 (a) 
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4.5 Adjacent lines Detection 

 
In some cases the image is formed with two or more line segments situated very 

close to each other so that the optical system is not capable of resolving them. Figure 

4.7 (a) shows one such image formed with two line segments, and (b) is the 

corresponding profile. Looking at the image, it appears that only one line segment is 

involved. However, in this section, we will investigate the Hough transform to see if 

it can provide further information, allowing us to distinguish lines that are closely 

spaced. In the simulations below, we have included the effects of photon shot noise, 

which is the dominant noise source with the type of optical imaging system we deal 

with here. 

 

The simulations are based on the following optical parameters: 

 

• System NA=0.4 

• 0.6328 mλ μ=  

• CCD pixel size = 5µm 

• System magnification = 130  

 

The equivalent pixel width at the sample is therefore is 38.6nm. Figure 4.7 (a) is the 

image obtained from using a scalar diffraction program, based on the Fresnel 

approximation, of two closely spaced line segments. After the formation of the 

image, suitable amount of noise is added to the image. We have only modelled the 

effects of photon shot noise as its magnitude is much greater than other noise sources 



 91

such as dark noise and read-out noise associated with a CCD camera. Different 

levels of noise, typical of those present in an optical microscope, have been included. 
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Figure 4.7 (a) Image of two line segments that are very close to each other. Width of 

picture = 10µm 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 (b) profile of (a) along red line 
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The procedure for examining lines can be divided into the following steps: 

 

1) Perform HT on the picture obtained (figure 4.7 (a)) 

2) Locate the maximum point at the peak area in the transformation space  

3) Take profile from the accumulator 1Acc  at maximum point along angle θ   

4) Filter the profile from step (2) 

5) Differentiate the filtered profile obtained from step (3) 

6) Determine the global maximum and minimum points of the result in step (4)  

7) Examine the changes of the signs between maximum and minimum points 

obtained from step (5). If the changes, from positive to negative or vice 

versa, occur twice that means it has two lines and so on.       

 

The entire process is shown in Figure 4.8. From Figure 4.8 (a), the angle of the 

maximum point is determined, which is  for this case. A profile is then drawn 

along  as represented by the green line in Figure 4.8 (b), which is shown in 

Figure 4.8 (c). 4.8 (d) is the magnified version of the peak of the profile. As can be 

seen there are some ripples on the top of the graph, showing the presence of noise. 

Depending on the noise level, it will be difficult to determine the number of lines by 

using this profile directly. Crucially, the top of the graph is used to determine the 

number of lines. A 1x3 moving average filter is therefore applied to the profile. It 

results in the smooth traces as shown in Figure 4.8 (e & f). After the filtering process 

the profile is differentiated, resulting in Figure 4.8 (g). The crucial point in 

determining the number of lines is the alternation of the sign, positive and/or 

negative, in graph between the global maximum and minimum points. Consider 

Figure 4.8 (g) first, from the graph the global maximum and minimum points can be 

0

0θ =
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obtained which are represented by M1 and M5 respectively. Then consider Figure 

4.8 (g) together with (h), magnified version of (g) in red box, we will have the 

changes of the signs, M1 to M2 (+), M2 to M3 (-), M3 to M4 (+) and M4 to M5 (-). 

There are two changes in sign (count in pairs) therefore it has two lines in the area. It 

should be note that the graph does not oscillate between any two points, for instance, 

M2 and M3. In the situation when large amount of noise is present in the signal, the 

identification of multiple lines would fail. The minimum SNR for that to occur will 

be discussed in the next section. 
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Figure 4.8 (a) The peak area of the HT of a line segment 
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      Figure 4.8 (b)  The Hough space 1Acc , original image Figure 4.7 (a) 
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             Figure 4.8 (c) Profile takes at , green line in (b) 0
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Figure 4.8 (d) Enlarged profile of (c) in red square box 

 

 

20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7

8

9

10

x 105

Distance (arb. units)

M
ag

ni
tu

de
 (a

rb
. u

ni
ts

)

 

 

 

 

 

 

 

 

 

 

Figure 4.8 (e) Filtered profile of (c) 
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Figure 4.8 (f) Enlarged profile of (e) in red square box 
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Figure 4.8 (g) Differentiation of filtered profile in (e)  
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       Figure 4.8 (h) Enlarged profile of (g) in red square box 

Figure 4.8 Determining if two lines are very close in an image, Original image 

Figure 4.7 
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Figure 4.9 Differentiation of filtered profile with SNR=50, 

line distances = 19 pixels  
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From Figure 4.9, the graph derives from the original image, figure 4.7 (a), with 

signal to noise ratio (SNR) equals 50. It can be seen that there is some fluctuation 

along the graph thus we cannot determine number of lines in this case. The Table 4.1 

shows the performance of the technique in term of signal to noise ratio. The 

technique can distinguish two lines with the separation down to 19 pixels and the 

SNR=100.  

 

Table 4.1 performance of the technique  

 
Line Distances 

 

 

 

 

 

(pixels) 

Number of 

Photons 

SNR 

(x100 averages) Distinct 

19 2500 50 × 

19 6400 80 × 

19 10000 100 √ 

19 14400 120 √ 

19 22500 150 √ 

 

 

It should be noted that although we can determine the number of line segments, in 

case they are very close to each other, the width of individual line segment cannot be 

measured. The Principal component analysis (PCA) therefore will be used to do this.  

 

4.5.1 System noise sources 

 

Photon shot noise 

 
The level of photon shot noise is calculated in terms of the saturation electron level 

of the CCD camera. The procedure is simple: the simulated detector output is first 
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normalised with respect to the pixel of the maximum output, and the normalised 

output is then scaled up by N, where N is the saturation electron level per pixel of the 

CCD array. The output is therefore expressed as number of photons (or electrons) 

each pixel. Photon shot noise is then added to detector output according to    

equation 4-1. 

 

 nI I I randn= + ×       4-1 

  

The Matlab command randn generates a set of normally distributed random numbers 

with zero mean and a standard deviation of one. Multiplying it by √ I will change the 

standard deviation to the square root of the number of photons detected each pixel, 

which is of course the characteristic of photon shot noise.   

 

Readout noise

 
Readout noise is the form of electronic noise described in terms of the number of 

electrons per pixel. The noise is produced during the transfer of charges in a 

pixelated detector. Due to the imperfection of the charge transfer process, not all the 

electrons are transferred from one pixel to the next. Some electrons may remain 

trapped in the pixel, others may recombine with holes. Modern CCDs have charge 

transfer efficiency in the range of 99.999% [66]. This means that fewer than one out 

of 100000 electrons will be left behind. It can be seen that this level of noise is much 

smaller than that of the photon shot noise, and can be ignored in our application. 
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Dark noise

With a CCD detector, dark noise is expressed in terms of electrons per unit time at a 

given temperature. In the photoelectric effect electrons generated by the thermal 

energy in the environment cannot be distinguished from the electrons generated by 

photons (signal). Therefore, there is some number of electrons stored in the pixel that 

are not the result of photons go into the detector. These electrons are generated 

independent to the light level hitting the detector. Typical value of dark noise at 

room temperature is 10e- over 0.1 ms integration time. The dark noise can be 

reduced by cooling the detector to a lower temperature [66].   

 

Vibrations  

The levels of vibration that affect an optical imaging system depend on 

environmental condition (for example doors opening/closing) and the movement of 

its mechanical components during scanning such as objective, camera and sample 

stage, and bench top design of the system. The vibration can be expressed in the 

image shift as a percentage of a pixel [65]. The SNR is calculated as the mean value 

of photons detected for the original point spread function (PSF) divided by the 

difference in the shifted value and the original value. A vibration level of 0.05% of a 

pixel gives a SNR of 1 in 500 (the PSF has a maximum value of 50000 photons). 

 

The expected levels of photon shot noise are added to the simulated image to show 

the capability of the technique. We have only modelled the effects of photon shot 

noise as its magnitude, maximum number of photons per pixel, is much greater than 

other noise sources such as dark noise and readout noise associated with a CCD 

camera. Different levels of noise, typical of those present in an optical microscope, 

have been included. Table 4.2 shows the signal to noise ratio according to the 
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maximum number of photons per pixel of CCD camera.  For commercial camera, the 

typical saturation electron level is around 50000 per pixel [59][60] a requirement 

easily satisfied in Table 4.1. 

 

Table 4.2 Photon shot noise  

 
Number of 

Photons/pixel SNR 

2500 50 

10000 100 

40000 200 

 

 

 

 

 

 

4.6 Principal Component Analysis 

 
One of the most important characteristics of PCA as described in chapter 3 is its 

ability to measure the similarity of two or more sets of data. In the following sections 

we will describe how we can exploit this capability to meet the requirements of the 

project. 

 

4.6.1 Measuring the Similarity using PCA 

 
Measuring similarity by using the PCA, we consider the relationship between the 

eigenvectors and eigenvalues of the data sets. For simplicity we will restrict the 

consideration to two data sets first, although the argument can be extended readily to 

multi-dimensions problem. The two data sets are D1, a known data set which serves 

as the template; and D2, an unknown data set whose characteristics we want to 
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measure. Figures 4.10 and 4.11 show examples of D1 and D2. For illustration 

purpose, D2 is obtained by adding a small amount of noise onto D1, and the 

difference of the two is shown in Figure 4.12. It should be noted that D1 is a profile 

extracted from a line segment image. We will use them initially to illustrate the PCA 

process, and then how to extract the relevant information for the project. 
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 Figure 4.10 Example of D1  
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 Figure 4.11 Example of D2 



 103

 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Position (arb. units)

M
ag

ni
tu

de
 (a

rb
. u

ni
ts

)

 

 

 

 

 

 

 

 

 

 

Figure 4.12 The difference of profiles D1 and D2 

 

The procedures of obtaining the eigenvalues and eigenvectors of the system have 

been described in Chapter 3. Briefly to remind ourselves  

1. Calculate mean subtracted for each data 

 

1 1 ( 1)D D mean D= −  

2 2 ( 2)D D mean D= −  

 

2. Calculate the covariance matrix C of 1D  and 2D  

3. Determine eigenvector and eigenvalue from  C

 

⎥
⎦

⎤
⎢
⎣

⎡
=

22

12

21

11

V
V

V
V

V  ; Eigenvector 
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11 12

21 22

Λ Λ⎡
Λ = ⎢Λ Λ⎣ ⎦

⎤
⎥  ; Eigenvalue. 

 

Eigenvalues are the diagonal elements of matrix Λ . The  and  are the 

minimum and maximum eigenvalues respectively. The eigenvalues show the 

degree of correlation between the two sets of data. However, their actual 

values depend on factors such as the number of data points involved, and it is 

often a better indication by taking the ratio of the two eigenvalues. The 

calculation of the eigenvalues can be found in Appendix A. For eigenvectors, 

the first vector, with principal axes  and , corresponds to column of the 

maximum eigenvalue 

11Λ 22Λ

12V 22V

22Λ . The second vector,  and , corresponds to 

column of minimum eigenvalue 

11V 21V

11Λ .   

 

 

The angle θ  for the first eigenvector is measured against the x-axis, and is given by: 

 

 1 22
1

12

tan V
V

θ − ⎛ ⎞
= ⎜

⎝ ⎠
⎟        (4-1) 

And for the second eigenvector 

 1 21
2

11

tan V
V

θ − ⎛ ⎞
= ⎜

⎝ ⎠
⎟        (4-2) 

Clearly we have . The maximum eigenvalue together with the first 

eigenvector define the principal component (PC1).  

2 1 90θ θ= +
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Case 1: D1 and D2 are identical 

 
Figure 4.13 shows the direction of PC1, and the associated second, orthogonal 

eigenvector, for the special case when D1 = D2. From Figure 4.13, it can be seen 

that all data points lie on PC1. In addition, the angle 1θ  is , and one of the 

eigenvalues is zero and the eigenvalue 

45

22Λ  reaches maximum. All these are 

attributes for the two vectors being identical. Table 4.3 summarises the output 

parameters from performing PCA of D1 and D2.  
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Figure 4.13 A principal component (PC1) and second component (PC2) 

 

Table 4.3 Result of PCA 

12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ  

0.7071 0.7071 1977.1 0 45 1 0 
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Case 2: D2 shifted by  Δ
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Figure 4.14 D1, blue, and D2, red, shifted by Δ    

 

In this case D1 and D2 are identical but D2 is shifted laterally by an amount of Δ . 

Figure 4.15 shows the data plot and the eigenvectors. As can be seen, the angle 1θ  

remains  although the data points are spreading away from the eigenvector. This 

point indicates that the minimum eigenvalue is not zero. Indeed changing the shift 

45

Δ  

will only change the eigenvalues but not the directions of the eigenvectors. Table 4.4 

shows the resulting parameters as Δ  is increased. Note that the last column in the 

table, , is related to the shift 11 22/Λ Λ Δ  in a parabolic fashion. 
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           Figure 4.15 Data points on the PCA axis 

 

Table 4.4 Result of PCA 

Δ  

(pixels) 2212 /VV 11 22/ 12V 22V 22  Λ  11Λ  Λ1θ  Λ  

0 0.7071 0.7071 1977.1 0 45 1 0 

1 0.7071 0.7071 1975.9 1.23 45 1 6.26E-4 

2 0.7071 0.7071 1972.1 4.94 45 1 2.50E-3 

3 0.7071 0.7071 1966.0 11.09 45 1 5.64E-3 

4 0.7071 0.7071 1957.4 19.64 45 1 1.00E-2 

5 0.7071 0.7071 1946.6 30.53 45 1 1.56E-2 

10 0.7071 0.7071 1859.9 117.14 45 1 6.29E-2 
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Figure 4.16 Graph of distance d1 

 

Referring back to figure 4.15, we use d1 to represent the distances of the data points 

from the eigenvector, and in figure 4.16, we plot d1 as a function of the locations of 

the data points, showing the positive half (d1+) first followed by the negative half  

(d-).  As can be seen the positive and the negative parts are symmetrical about the 

eigenvector. If we calculate the standard deviation of d1 over the positive half (or 

negative), and tabulate the results against the shift Δ , Table 4.5 results. As can be 

seen the values of the STD(d1) relate closely to those of Δ . 
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Table 4.5 Standard deviation (STD) of d1+ (d1-) 

Shifted  (pixels) Δ STD of d1+ (d1-) Difference 

0 0 0 

1 0.96 0.04 

2 1.92 0.08 

3 2.87 0.13 

4 3.83 0.17 

5 4.76 0.24 

6 5.70 0.30 

7 6.61 0.39 

8 7.53 0.47 

9 8.40 0.60 

10 9.30 0.70 

 

The STD(d1) can serve as a check of the closeness between D1 and D2.  If we 

measure a STD(d1) = a, we can use it to shift the data set D2 by a distance a, and 

then performing the PCA on D1 and the shifted version of D2 a second time. A more 

accurate comparison between the two can be obtained. The shifting of D2 is 

accomplished by using the shift property of the Fourier Transform, which is shown 

Equation 4-3 and 4-4. 

    

{( ) ( )G }f g t= ℑ       (4-3) 

 

{ } 2( ) (i fag t a e G fπ−ℑ − = )     (4-4) 
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The examples of performing PCA before and after shifting D2 are shown in Figure 

4.17 and 4.18 respectively.   
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   (a)       (b) 

Figure 4.17 Data before shift D2; (a) data points on the PCA axis, (b) D1 (blue) D2 

(red)     
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Figure 4.18  Data after shift D2 by 4.76Δ = ; (a) data points on the PCA axis, (b) D1 

(blue) and shifted D2 (red)   
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Case 3: The width of D1 and D2 are different  
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Figure 4.19 Graph D1, blue, and D2, red 
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Figure 4.20 The distribution of data points on the PCA axis 

 

In this case the width of D2 is smaller than D1 (see figure 4.19), the width of D1 and 

D2 were measured by full width at half max (FWHM) method. Figure 4.20 shows 
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the distribution of data points from performing PCA. The data points are single value 

function and do not lie on PC1.  

 

Table 4.6 Result of PCA 

Width 

Ratio 

D1/D2 

2212 /VV 11 22/ 12V 22V 22  Λ  11Λ  Λ1θ  Λ  

0.619 0.6206 0.7841 1586.2 42.208 51.6 0.79 2.66E-2 

0.714 0.6537 0.7567 1717.4 18.403 49.2 0.86 1.07E-2 

0.762 0.6626 0.7489 1757.2 13.285 48.5 0.88 7.56E-3 

0.857 0.6807 0.7324 1843.4 5.110 47.1 0.93 2.77E-3 

0.905 0.6897 0.7240 1889.1 2.334 46.4 0.95 1.23E-3 

0.952 0.6985 0.7155 1935.8 0.597 45.7 0.97 3.08E-4 

1:1 0.7071 0.7071 1982.9 0 45 1 0 

1.050 0.7155 0.6985 1935.8 0.597 44.3 1.02 3.08E-4 

1.105 0.7240 0.6897 1889.1 2.334 43.6 1.05 1.23E-3 

1.235 0.7324 0.6807 1843.4 5.110 42.9 1.07 2.77E-3 

1.312 0.7489 0.6626 1757.2 13.285 41.5 1.13 7.56E-3 

1.400 0.7567 0.6537 1717.4 18.403 40.8 1.16 1.07E-2 

1.616 0.7841 0.6206 1586.2 42.208 38.4 1.26 2.66E-2 

 

 

From Table 4.6 it can be seen that all parameters of PCA are changed when the 

width of D2 changes. However the angle 1θ  tell us that the width of D1 is wider or 
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narrower than D2. If 1θ  is greater than , the width of D1 is smaller than D2. In 

contrast if 

45

1θ  is less than , the width of D1 is bigger than D2. 45

 

Table 4.7 shows the tabulated values of the width ratio (D1/D2) against the 

eigenvectors components ratio ( ). Based on the measured eigenvector ratio 

and table 4.7, a different template (D1) can be selected to perform PCA a second 

time, in order to produce a better matching of the two profiles. 

2212 /VV

 

Table 4.7 Ratio of D1/D2 and  2212 /VV

D1/D2 2212 /VV  Difference 

0.619 0.79 0.171 

0.714 0.86 0.146 

0.762 0.88 0.118 

0.810 0.93 0.120 

0.905 0.95 0.045 

0.952 0.97 0.018 

1 1 0 

1.050 1.02 0.030 

1.105 1.05 0.055 

1.235 1.07 0.097 

1.312 1.13 0.183 

1.400 1.16 0.240 

1.616 1.26 0.356 
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Case 4:   D2 multiplied by factor a  
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Figure 4.21 Graph of D1,blue, and a*D2, red and green 

 

In this case the data D2 is multiplied by factor a (see figure 4.21). Figure 4.22 shows 

the distribution of data points from performing PCA. It can be seen that data points 

lie on PC1.  
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Figure 4.22 Data points on the PCA axis 

 
Table 4.8 Result of PCA 

Factor a 12V  22V  22Λ  11Λ  1θ  22 12/V V  11 22/Λ Λ  

0.2 0.9805 0.1961 1031.1 0 11.31 0.2 0 

0.3333 0.9487 0.3162 1101.6 0 18.43 0.333 0 

0.4 0.9285 0.3714 1150.1 0 21.80 0.4 0 

0.5 0.8944 0.4472 1239.3 0 26.56 0.5 0 

0.6666 0.8320 0.5547 1432.1 0 33.69 0.666 0 

1 0.7071 0.7071 1982.9 0 45 1 0 

1.5 0.5547 0.8320 3222.1 0 56.31 1.5 0 

2 0.4472 0.8944 4957.1 0 63.43 2 0 

2.5 0.3714 0.9285 7187.9 0 68.20 2.5 0 

3 0.3162 0.9487 9914.3 0 71.56 3 0 

5 0.1961 0.9805 25777 0 78.70 5 0 
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The Table 4.8 shows that maximum eigenvalue 22Λ  and angle 1θ  vary according to 

a. However, the minimum eigenvalue 11Λ  of all factors of a are still zero. In 

conclusion, if eigenvalues  of PCA is zero and angle 11Λ 1θ  is not , it means data 

set D2 is multiplied by factor a.  

45

The factor a can be simply calculated from the ratio of eigenvectors. 

  

 
12

22

V
Va =         (4-5) 

 

It should be note that this section is for completion only, in reality the signals are 

normalised. 

 

The distribution of data points plot on PCA axis for each case and its characteristics 

are shown in Table 4.9. 
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Table 4.9 Performing PCA for each case of data set using profiles of images 

Case/Characteristics Graph of data 
(image profiles) 

Distribution of data points 
on PCA axis 

1. Data set D1 =D2 
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3. The width of   
   D1(blue) and  
   D2(red) are different 
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The flow chart below shows the whole measurement procedure. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The meaning of each superscript in the flow chart is described as following. 

 
1Data set D1 and D2 are the same size  

2Data set D1 and D2 are different (magnitude/width) 

3Data set D2 is not shifted (D1=D2) 

4Data set D2 is shifted 

Normalise D2 
D2new=D2/a 

Yes6 

1 45θ = ? 

PCA{D1,D2} 

D2 

D1 

11

22
0Λ =Λ  ? 11

22
0Λ =Λ  ?

No2 Yes1 

No4 

Using FT : 
Shift D2 by a 

(D2new) 

PCA{D1,D2new} 

D1=D2new 

Yes3 No5 

2
1

choose new 
template (D1) 

2

1

Is D1 available? 

Select the Template 
which has the nearest 

2212 /VV  
  

Yes7 

No8 
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5Data set D1 and D2 are not the same width 

6Data set D1 and D2 are the same width but different in magnitude 

7Template D1 is available 

8Template D1 is not available 
 

 

For each time when performing PCA, if the two data sets are not perfect match, 

 and 1 45θ ≠ 11 22/ 0Λ Λ ≠ , we can correct the data set by using the suitable technique 

for each case as described above. After that repeat performing PCA until the system 

obtains the perfect match.       

 

4.6.2 Add noise to system  

 
The following example illustrates the effect of noise to system when the different 

noise levels are added. We will first use a small amount of data points to examine the 

change of the PCA parameters. The data set D1 has 15 data points. Data set D2 is 

formed by adding different percentages of normally distributed random noise to D1. 

Both data sets are in Table 4.10.   
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Table 4.10 Data set D1 and D2  

D2 with noise (%) 
D1 0 1 2 3 5 7 10 13 16 20 

0.9 0.9 0.90 0.91 0.94 0.90 0.74 0.89 0.97 0.75 0.69 

1 1 1.00 1.02 0.94 1.01 1.08 1.20 1.08 1.07 0.61 

-1 -1 -1.01 -1.03 -0.99 -1.03 -1.13 -1.19 -0.92 -0.99 -0.89 

2 2 2.01 1.96 1.88 2.07 1.96 1.93 1.88 2.13 1.52 

0.5 0.5 0.50 0.50 0.49 0.50 0.54 0.52 0.49 0.61 0.54 

1.6 1.6 1.59 1.63 1.60 1.66 1.60 1.77 1.93 1.08 1.67 

-11 -11 -11.1 -11.6 -11.1 -10.9 -11.5 -11.1 -13.0 -9.7 -10.4 

13 13 12.87 12.51 12.74 12.57 12.07 11.58 14.14 15.45 10.45 

-6 -6 -6.03 -6.11 -5.82 -5.64 -6.26 -6.15 -4.67 -5.78 -6.84 

-1.7 -1.7 -1.68 -1.68 -1.80 -1.68 -1.78 -1.67 -1.49 -1.40 -1.85 

13 13 13.13 12.79 13.17 12.24 12.10 13.36 11.12 12.64 14.01 

8 8 7.91 7.66 8.21 8.04 8.17 7.23 7.34 7.60 6.39 

28 28 27.69 28.07 29.19 27.79 27.76 32.11 27.69 29.50 27.23 

15 15 14.93 14.77 15.76 15.59 13.91 15.26 18.75 10.17 12.41 

4 4 4.01 3.96 3.83 4.09 4.29 3.70 3.75 3.88 3.97 
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Figure 4.23 The distribution of data points on the PCA axis with noise =10% 

 

From Figure 4.23, the distribution of data points is spread about PC1. They will be 

spread further when the noise level is increased. 

  

Table 4.11 Result of PCA each row is the average of 100 simulations, each with a 

different noise pattern 

 
noise 
(%) 12 22 22V  V  Λ  11Λ  1θ  2212 11 22/VV  /Λ Λ  

0 0.7071 0.7071 184.94 0 45.00 1.0000 0 

1 0.7071 0.7071 184.95 4.2E-03 45.00 1.0000 2.3E-05 

2 0.7072 0.7070 184.89 1.7E-02 44.99 1.0004 9.1E-05 

3 0.7070 0.7071 184.98 3.7E-02 45.00 1.0000 2.0E-04 

5 0.7070 0.7071 185.03 9.6E-02 45.00 1.0000 5.2E-04 

7 0.7069 0.7071 185.03 1.9E-01 45.01 1.0003 1.0E-03 

10 0.7071 0.7067 184.85 3.8E-01 44.99 1.0016 2.1E-03 

13 0.7067 0.7065 185.27 6.5E-01 44.99 1.0031 3.6E-03 

16 0.7059 0.7070 185.73 8.6E-01 45.04 1.0021 4.7E-03 

20 0.7057 0.7060 186.07 1.50 44.98 0.9995 8.7E-03 
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From Table 4.11 it can be seen that the angle 1θ  is about . The ratio of 

eigenvalues, the last column of Table, increases exponentially with respect to the 

noise levels.     

45

 

Now we will use profiles of the images as data sets. This means the number of data 

points is now increased to 256. A profile without noise (Figure 4.24) serves as data 

set D1. Then data set D2 is formed by adding normally distributed random shot noise 

to D1. Figure 4.25 shows graph of data set D2 with the SNR=100. 
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  Figure 4.24 Profile of image without noises; D1  
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Figure 4.25 Profile of an image with noise; D2  
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Figure 4.26 Data points on the PCA axis with SNR =100 

 

 



 124

Table 4.12 Result of PCA 

SNR 12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ  

10 0.7048 0.7093 1.89E3 8.63 45.18 0.993 4.34E-3 

20 0.7063 0.7078 3.2E4 35.10 45.06 0.998 1.10E-3 

30 0.7069 0.7072 1.6E5 77.98 45.013 0.999 4.85E-4 

50 0.7069 0.7073 1.24E6 210.27 45.016 0.999 1.69E-4 

80 0.7072 0.7069 8.12E6 541.39 44.988 0.999 6.66E-5 

100 0.7071 0.7071 1.98E7 852.67 45 1 4.30E-5 

150 0.7071 0.7071 1.00E8 1950.9 45 1 1.94E-5 

200 0.7071 0.7071 3.17E8 3470.1 45 1 1.09E-5 

223 0.7071 0.7071 4.95E8 4155.6 45 1 8.38E-6 

316 0.7071 0.7071 1.98E9 8859.6 45 1 4.46E-6 

 

 

From Table 4.12 it can be seen that adding noises to the system changes the 

eigenvalues, with the ratio 11 22/Λ Λ  decreases as SNR increases. Noise will also 

affect the angle 1θ  of the PC1, but only by very small amount.  

 

Referring back to Table 4.4 where the effects of shifting D2 relative to D1 were 

tabulated in the absence of noise, shifting D2 by one pixel would change the 

eigenvalues ratio  by approximately 6.26E-4. Comparing this value to those 

in Table 4.12, we can conclude that a SNR of around 60 would result in an 

uncertainty in the shift of the two profiles of about 1 pixel.         

11 22/Λ Λ
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We further demonstrate in the case where the data set D2 would contain noises and 

is also shifted by . An example of D1 and D2 shows in Figure 4.27. The results of 

performing PCA, with =10 pixels and different SNR, are shown in Table 4.13. 

From Table 4.13 we can see again the effect of noise on the angle 

Δ

Δ

1θ  is very small. 

However, the change in the eigenvalues ratio is non-linearly related to the amount of 

shift, even for the sample values of SNR. As is obvious, when both D1 and D2 are 

noisy, the net effect is given by the summation, incoherently, of the two noise 

profiles.   
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Figure 4.27 Data D1 (blue) and D2 (red) with Δ=10 pixels and SNR=50.  
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Table 4.13 Result of PCA 

SNR 12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ  

10 0.7062 0.7079 2.01E+03 1.86E+01 45.066 0.998 9.29E-03 

20 0.7069 0.7073 3.17E+04 8.90E+01 45.017 0.999 2.80E-03 

30 0.7070 0.7072 1.61E+05 2.58E+02 45.012 1.000 1.60E-03 

50 0.7071 0.7071 1.24E+06 1.21E+03 45.002 1.000 9.75E-04 

80 0.7072 0.7070 8.12E+06 6.10E+03 44.988 1.000 7.51E-04 

100 0.7071 0.7071 1.98E+07 1.40E+04 45.003 1.000 7.08E-04 

150 0.7071 0.7071 1.00E+08 6.60E+04 44.999 1.000 6.58E-04 

200 0.7072 0.7070 3.17E+08 2.03E+05 44.994 1.000 6.40E-04 

 

 

Thus, in conclusion, adding noise to the system only changes the eigenvalues ratio 

, it does not affect the angle 11 22/Λ Λ 1θ significantly. This means that when 

performing PCA, if the results obtained are and eigenvalues , 

this implies no matching between the two. In this case a different template (D1) 

should be used until we obtain the PCA result of . This would give two 

profiles of equal width. Techniques such as described in case 2 can then be used to 

minimise the eigenvalues ratio 

1 45θ ≠ 11 22/ 0Λ Λ ≠

1 45θ =

11 22/Λ Λ , which would make D2 approach D1.        

 

 

 

 

 



Chapter 5 

5  Two-Dimension PCA 

In this chapter we will extend the PCA described before to two-dimension line 

segment images. Thus features of line segment such as lengths and shapes, which 

could not be measured using the line profiles, can now be determined. The use of 

PCA to measure these parameters from the line segment images will be described 

first. After that we will discuss the use of Hough transform. The purposes of HT are 

to provide initial information, mainly relating to location, orientation, shape, and 

rough dimensions of object, before applying 2D PCA to extract more accurate 

measurements.      

 

5.1 Convert Line Image to Vector 

 

In order to perform PCA of an image, the image firstly is converted into a column 

vector. A column vector can be constructed by concatenating each row with the 

previous row in sequence. As in Figure 5.1, a NxM image is converted into a single 

column NMx1 vector, the row R1 correspond to C1, R2 correspond to C2 and so on. 

Thus an image of 256x256 pixels is converted into a column vector of length 65536 

x 1. Figure 5.2 shows an image with the associated vector in Figure 5.3a (shown as 

row for convenience). Figure 5.3b is a magnified version of (a) in red box, showing 

each small segment is in fact a profile along the length of the image. 
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               Figure 5.1 Convert image to column vector 
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          Figure 5.2 Figure of image 
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         Figure 5.3a Graph of vector 
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   Figure 5.3b Magnified graph of vector in Figure 5.3a 
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5.2 Measuring line segment images 

 

For simplicity we will consider the sample being a straight line segment, although 

the argument can be extended readily to other type of line images. I2 is used to 

represent a known image which serves as the template; and I1, an unknown image 

obtained from the straight line segment whose characteristics we want to measure. 

Figure 5.4 and 5.5 show examples of I1 and I2. We will examine the outcomes of 

performing PCA with different templates I1.  
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   Figure 5.4 Line segment image I1 (Line object: width= 500nm,       

                     Length=4 mμ ) 
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                   Figure 5.5 Line segment image I2  

 

Case 1: I1 and I2 are identical 

 
Figure 5.6 shows the direction of the principal component PC1, and the associated 

second, orthogonal component, for the special case when I1 = I2. From Figure 5.6, it 

can be seen that all data points lie on PC1. In addition, the angle 1θ  is , and one 

of the eigenvalues is zero and the eigenvalue 

45

22Λ  reaches maximum. All these are 

attributes for the two images being identical. Table 5.1 summarises the output 

parameters from performing PCA of I1 and I2.  
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Figure 5.6 A principal component (PC1) and second component (PC2) 

 

Table 5.1 Result of PCA 

12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ  

0.7071 0.7071 433.02 0 45.00 1.00 0 
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Case 2: I2 shifted by xΔ  and/or yΔ  
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       Figure 5.7 Image I2 shifted by 10xΔ =  pixels and 10yΔ = −  pixels  

 

In this case I1 and I2 are identical but I2 is shifted laterally by an amount of xΔ  

and/or , see Figure 5.7. Figure 5.8 shows the data plot and the eigenvectors. As 

can be seen, the angle 

yΔ

1θ  remains  although the data points are spreading away 

from the eigenvector. This point indicates that the minimum eigenvalue is not zero. 

Indeed changing the shift  will only change the eigenvalues, as shown in the last 

column of Table 5.2, but not the directions of the eigenvectors. Table 5.2 shows the 

resulting parameters as 

45

Δ

xΔ  is increased, 1yΔ =  pixels. In Figure 5.9, we plot the 

eigenvalues ratio as a function of the shift xΔ . Each graph represents a different shift 

. It can be seen the change of each graph follows the same fashion but the values 

of eigenvalues increase according to the amount of shift 

yΔ

yΔ . 
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Table 5.2 Result of PCA ;  pixels 1yΔ =

xΔ  

(pixels) 12V 22V 22  Λ  11Λ  1θ  2212 /VV 11 22/Λ Λ  

0 0.7071 0.7071 432.93 0.08 45.00 1.00 1.93E-04 

1 0.7071 0.7071 432.26 0.75 45.00 1.00 1.74E-03 

2 0.7071 0.7071 430.26 2.75 45.00 1.00 6.40E-03 

3 0.7071 0.7071 426.97 6.05 45.00 1.00 1.42E-02 

4 0.7071 0.7071 422.44 10.57 45.00 1.00 2.50E-02 

5 0.7071 0.7071 416.76 16.26 45.00 1.00 3.90E-02 

6 0.7071 0.7071 410.02 23.00 45.00 1.00 5.61E-02 

7 0.7071 0.7071 402.34 30.68 45.00 1.00 7.62E-02 

8 0.7071 0.7071 393.84 39.17 45.00 1.00 9.95E-02 

9 0.7071 0.7071 384.67 48.34 45.00 1.00 1.26E-01 

10 0.7071 0.7071 374.97 58.04 45.00 1.00 1.55E-01 
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          Figure 5.8 Data points on the PCA axis 
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Figure 5.9 Eigenvalues ratio 11 22/Λ Λ  

 

From Figure 5.8, we use d1 to represent the distance of the data points from the 

eigenvector, and in Figure 5.10, we plot d1 as a function of the locations of the data 

points, showing the positive and negative sides.  As can be seen the positive and the 

negative parts are symmetrical about the eigenvector. Based on figures 5.8 and 5.10, 

we can shift the template in x-y directions until the value d1 is negligible. 
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           Figure 5.10 Graph of distance d1 with 5xΔ = pixels and  pixel 1yΔ =

 

Case 3: I2 rotated by an angle θ  
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                       Figure 5.11   I2 rotated by  10θ =
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Table 5.3 Result of PCA  

I2 

Rotate 

θ  12V 22V 22  Λ  11Λ  1θ  2212 /VV 11 22/Λ Λ  

1 0.7071 0.7070 432.71 0.18 45.00 1.00 4.23E-04 

2 0.7070 0.7071 432.78 0.56 45.00 1.00 1.29E-03 

3 0.7070 0.7071 432.32 1.23 45.00 1.00 2.84E-03 

4 0.7070 0.7071 431.30 2.14 45.00 1.00 4.96E-03 

5 0.7071 0.7070 429.33 3.37 45.00 1.00 7.85E-03 

7 0.7071 0.7071 426.44 6.54 45.00 1.00 1.53E-02 

10 0.7071 0.7070 420.01 12.90 45.00 1.00 3.06E-02 

 

 

In this case I1 and I2 are identical but I2 is rotated laterally by an amount of angle θ  

as shown in Figure 5.11. Figure 5.12 shows the data plot and the eigenvectors. As 

can be seen, the angle 1θ  remains  although the data points are spreading away 

from the eigenvector. Indeed changing the angle 

45

θ  will only change the eigenvalues 

but not the directions of the eigenvectors. It should be note that the change of 

parameters is the same fashion as the shift, in case 2. Table 5.3 shows the resulting 

parameters as θ  is changed.  
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Figure 5.12 Data points on the PCA axis ;  10θ =
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              Figure 5.13 Graph of distance d1 with  10θ =

 

In Figure 5.13, we plot distance d1, see Figure 5.12, as a function of the locations of 

the data points. In contract to figure 5.10, we now have a butterfly shape with a zero 
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at the centre and the positive and the negative parts being symmetrical about the 

eigenvector.    

 

Comparing Table 5.2 to Table 5.3, both have the eigenvectors = 45 degrees, although 

the eigenvalues ratios change differently, it is not apparent what information one can 

derive to distinguish between the two. Thus to classify both cases further we will use 

the 1D PCA again and examine the profiles of image. The procedures are described 

as following. 

 

Step 1: Take profiles of template and sample image  

 
An image of the template and its profile taking along line P0, about the centre, are 

shown in Figure 5.14 and 5.15. For the sample image, several profiles, Ps0 to PsN, 

are taken with distance D from the centre profile Ps0, distance D is shown in Figure 

5.16. Example of the sample images and associated profiles for each case are shown 

in Figure 5.16, 5.17, 5.18 and 5.19.  
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  Figure 5.14  An example of template image 
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Figure 5.15 An example profile of template image takes along line P0  
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Figure 5.16 Shifted sample image 

 

From Figure 5.16, the sample image is shifted by Δ . Profiles, Ps0 to PsN, are taken 

along the length of the image with different distance D. In this case every profiles 

have the same shifted Δ . An example of the profile is shown in Figure 5.17.     
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      Figure 5.17 An example profile of shifted image 
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Figure 5.18 Rotated sample image 

 

From Figure 5.18, the sample image is rotated by θ . Profiles are taken the same way 

as in the shift case. The graphs of the profiles are shown in Figure 5.19. As can be 

seen each profile is shifted from the centre according to the distance D. 
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     Figure 5.19 Example profiles of rotated image 

 

Step 2: Perform PCA between profiles of template P0 and samples 

  
PCA{P0,Psm}     5-1 

 
Where m=0 to N. 

 

2.1 In case sample is shifted 

  
Performing PCA of the template P0 and the sample Psm will yield the same 

parameters. Table 5.4 summarises the parameters resulted from performing 

PCA with shift  pixels as the distance D of the profile increases. It 

should be noted that the eigenvalues ratio, the last column, are not zero 

although the eigenvectors remain 45 degrees. This means that there is a shift 

between the template and the sample. Thus we can use the shifting property 

5Δ =
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of FFT as have been described in Chapter 4, section 4.6.1, to shift the image 

accurately.  

   

   Table 5.4 Result of PCA  

Distance 
D 

pixels 
12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ

3 0.7071 0.7071 1073.59 45.38 45.00 1.00 4.23E-02

5 0.7071 0.7071 1073.59 45.38 45.00 1.00 4.23E-02

7 0.7071 0.7071 1073.59 45.38 45.00 1.00 4.23E-02

10 0.7071 0.7071 1073.59 45.38 45.00 1.00 4.23E-02

13 0.7071 0.7071 1073.59 45.38 45.00 1.00 4.23E-02

15 0.7071 0.7071 1073.59 45.38 45.00 1.00 4.23E-02

 

 

 2.2 Sample is rotated by 5 degrees 

 
Performing PCA on the profiles and tabulating the parameters result in Table 

5.5. It can be seen that the eigenvalues ratio change according to the increase 

of profile distances D although the eigenvectors remain 45 degrees. This 

means the sample is rotated with some amount of θ . 
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   Table 5.5 Result of PCA for 5 degrees rotation 

Distance 

D 

pixels 
12V 22V 22  Λ  11Λ  1θ  2212 /VV 11 22/Λ Λ 

3 0.7071 0.7071 1120.66 0.0047 45.00 1.00 4.15E-06

5 0.7071 0.7071 1120.85 0.0876 45.00 1.00 7.81E-05

7 0.7071 0.7071 1121.36 0.2875 45.00 1.00 2.56E-04

10 0.7071 0.7071 1121.84 0.8033 45.00 1.00 7.17E-04

13 0.7071 0.7071 1119.57 1.5678 45.00 1.00 1.40E-03

15 0.7071 0.7071 1118.99 2.2112 45.00 1.00 1.98E-03

 

Figure 5.20 shows the data plot and the eigenvectors for D = 9 pixels. A 10 

degrees rotation has been used in order to show clearly the spreading of the 

data points from the eigenvector. We represent distances of each data point 

from the eigenvector with d1, show in the Figure 5.20, and then plot d1 as a 

function of its position in Figure 5.21.  
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Figure 5.20 Data points on the PCA axis ;  10θ =
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Figure 5.21 Graph of distance d1 with  10θ =

 

We calculate the standard deviation of d1 for different angle θ  and distances 

of profiles D. The results are tabulated in Table 5.6 and then plot graphs of 

STD(d1) as a function of distances D shown in Figure 5.22. It can be seen 

that each graph, different angle θ , increases linearly according to D. It 

should be noted that as long as the distances D are less than 40 percents of 

images length, the graphs remain linear.  
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Table 5.6 Standard deviation of d1 with different angles and distances D 

Angle θ  Distance 

D 

(pixels) 
1o 2o 3o 4o 5o 6o 7o 8o 9o 10o

0 0.0116 0.0235 0.0367 0.0518 0.0696 0.0905 0.1147 0.1425 0.1740 0.2093

1 0.0356 0.0708 0.1061 0.1417 0.1780 0.2153 0.2539 0.2941 0.3362 0.3804

3 0.0837 0.1670 0.2501 0.3331 0.4161 0.4994 0.5831 0.6673 0.7520 0.8374

5 0.1319 0.2633 0.3946 0.5257 0.6569 0.7878 0.9187 1.0497 1.1810 1.3127

7 0.1801 0.3594 0.5387 0.7178 0.8965 1.0749 1.2531 1.4314 1.6103 1.7899

9 0.2282 0.4549 0.6820 0.9083 1.1342 1.3597 1.5854 1.8118 2.0390 2.2651

11 0.2758 0.5498 0.8239 1.0973 1.3699 1.6427 1.9165 2.1899 2.4623 2.7349

13 0.3230 0.6442 0.9650 1.2849 1.6044 1.9251 2.2450 2.5637 2.8827 3.2030

15 0.3698 0.7381 1.1055 1.4718 1.8390 2.2060 2.5712 2.9364 3.3035 3.6683

17 0.4168 0.8321 1.2461 1.6595 2.0744 2.4864 2.8980 3.3115 3.7221 4.1317

19 0.4644 0.9269 1.3879 1.8493 2.3101 2.7686 3.2284 3.6864 4.1421 4.6001

21 0.5133 1.0233 1.5317 2.0419 2.5485 3.0547 3.5616 4.0640 4.5683 5.0690

23 0.5640 1.1214 1.6781 2.2358 2.7899 3.3458 3.8966 4.4472 4.9964 5.5411

25 0.6162 1.2210 1.8266 2.4319 3.0345 3.6372 4.2348 4.8340 5.4251 6.0193

 

 

 

 

 

 

 

 

 

 

 



 147

 

0 5 10 15 20 25
0

1

2

3

4

5

6

Distance 'D' (pixels)

S
TD

(d
1)

        1θ =    
        3θ =  
        5θ =  
        7θ =  
        9θ =  

 

 

 

 

 

 

 

 

 

Figure 5.22 Graph of standard deviation of d1 with different θ  

 

Base on the Table 5.6 or graphs in Figure 5.22 where we can select the 

distance D to perform PCA and then calculate standard deviation of d1 to 

determine a rotation angle of the sample. Repeating this process with the aim 

of minimising the error signal (which can be defined as the absolute sum of 

the area of the graph in figure 5.21, or its standard deviation), accurate 

rotation of the original image can be achieved. 

 

Case 4: I2 is rotated by θ  and shifted byΔ  

 
The line segments I1 and I2 are identical, but I2 is rotated by an angle  and 

shifted by  pixels. The sizes of the line segment used in the simulation are 

length = 101 pixels and width = 13 pixels. Table 5.7 is tabulated with 

5θ =

5yΔ =

xΔ = 0 to 6 

pixels. From the result it can be seen the angle 1θ  of the principal vector remains 
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45  although I2 has been shifted and rotated. Thus at this point we can conclude that 

changing the position and orientation of I2 will only change the eigenvalues but not 

the directions of the eigenvectors. This means we can determine the size of I2, I1=I2, 

by only checking the angle 1θ  of the eigenvector being .   45

 

Table 5.7 Result of PCA  

I2 shifted 

xΔ  

(pixels) 
12V 22V 22  Λ  11Λ  1θ  2212 /VV 11 22/Λ Λ 

0 0.7071 0.7070 427.29 5.40 45.00 1.00 1.26E-02

1 0.7071 0.7070 426.95 5.75 45.00 1.00 1.35E-02

2 0.7071 0.7070 425.35 7.35 45.00 1.00 1.73E-02

3 0.7071 0.7070 422.51 10.18 45.00 1.00 2.41E-02

4 0.7071 0.7070 418.50 14.20 45.00 1.00 3.39E-02

5 0.7071 0.7070 413.37 19.32 45.00 1.00 4.67E-02

6 0.7071 0.7070 407.21 25.48 45.00 1.00 6.26E-02

 

To determine the correct position and orientation of the sample images in this case, 

the orientation will be determined first and then the position by using the processes 

described in case 3. 

     

Case 5: I1 and I2 are different in sizes (Width and/or Length) 

 
Firstly we will examine the case where the lengths of I1 and I2 are the same. I2 will 

have different values in width whilst that of I1 is constant. The lengths of I1 and I2 

are 101 pixels and the width of I1 is 13 pixels. Table 5.8 shows the resulting 

parameters when performing PCA of I1 and I2.  As can be seen, if the width of I2 is 
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smaller than I1, the angle 1θ  is smaller than . In contrast when the width of I2 is 

greater than I1, the angle 

45

1θ  becomes bigger than . Another point is that the ratio 

of eigenvalues  is non-zero according to the differences of the width of I1 

and I2.  

45

11 22/Λ Λ

 

Table 5.8 Result of PCA  

 

Object 

(I2) 

width 

(pixels) 

Object 

widths 

Ratio 

Profile 

Widths 

image 

Ratio 

2212 /VV 11 22/ 
12V 22V 22  Λ  11Λ  1θ  Λ Λ  

3 0.23 0.92 0.7196 0.6944 417.73 0.44 43.98 1.04 1.06E-03 

5 0.38 0.93 0.7184 0.6957 419.22 0.36 44.08 1.03 8.57E-04 

7 0.54 0.94 0.7165 0.6975 421.46 0.25 44.23 1.03 5.90E-04 

9 0.69 0.95 0.7141 0.7001 424.49 0.13 44.43 1.02 3.14E-04 

11 0.85 0.97 0.7109 0.7033 428.33 0.04 44.69 1.01 9.20E-05 

13 1 1 0.7071 0.7071 433.02 0.00 45.00 1.00 0 

15 1.15 1.03 0.7026 0.7116 438.60 0.05 45.37 0.99 1.20E-04 

17 1.31 1.06 0.6972 0.7168 445.11 0.24 45.79 0.97 5.38E-04 

19 1.46 1.10 0.6911 0.7227 452.60 0.61 46.28 0.96 1.34E-03 

21 1.62 1.14 0.6842 0.7293 461.12 1.20 46.83 0.94 2.59E-03 

23 1.77 1.19 0.6765 0.7365 470.70 2.06 47.43 0.92 4.37E-03 

 

Note: 1 pixel = 38.6 nm 

 

In the case when the widths of I1 and I2 are equal, the length of I2 is changed whilst 

I1 is constant. The widths of I1 and I2 are both 13 pixels and the length of I1 is 101 

pixels. Table 5.9 shows the resulting parameters when performing PCA of I1 and I2.  
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From Table 5.9, it can be seen the change of parameters are the same fashion as in 

the case varying I2 width.  

 

Table 5.9 Result of PCA  

Object 

(I2) 

Length 

(pixels) 

12V 22V 22  Λ  11Λ  1θ  2212 /VV 11 22/Λ Λ  

91 0.7262 0.6875 409.08 1.67 43.43 1.06 4.08E-03 

93 0.7221 0.6918 414.22 1.08 43.77 1.04 2.61E-03 

95 0.7182 0.6958 419.15 0.61 44.09 1.03 1.46E-03 

97 0.7144 0.6997 423.90 0.27 44.40 1.02 6.45E-04 

99 0.7108 0.7034 428.52 0.07 44.70 1.01 1.60E-04 

101 0.7071 0.7071 433.02 0.00 45.00 1.00 0 

103 0.7035 0.7107 437.39 0.07 45.29 0.99 1.58E-04 

105 0.6999 0.7142 441.65 0.28 45.58 0.98 6.24E-04 

107 0.6964 0.7177 445.79 0.62 45.86 0.97 1.39E-03 

109 0.6929 0.7211 449.81 1.10 46.14 0.96 2.44E-03 

110 0.6894 0.7243 453.60 1.71 46.41 0.95 3.76E-03 

 

 

We can conclude the result of performing PCA in term of angle 1θ  in two cases, T1 

and T2. We will use flow charts to demonstrate, when the angle is not 45 degrees, 

the procedures of selecting different templates for the purpose of PCA. It should be 

emphasised that the initial selection of a new template is not important, apart from 

the fact that it is easier to program the algorithm if we select a different length first. 

 

For convenience, we use W1 and L1 to represent the width and length of I1 and W2 

and L2 for I2, respectively.  
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 Case T1:  1 45θ >

T1.1  (W1=W2) and (L1<L2) 

T1.2  (W1<W2) and (L1=L2) 

T1.3  (W1<W2) and (L1<L2) 

T1.4  (W1<W2) and (L1>L2) 

 
The following flow charts show the procedure to select new template for this case.  

 

2. Select new I1 
    L1new>L1old

3. PCA{I1new,I2} 

1. Start

4. new oldΛ < Λ  

5. Perform:  
  - Case T1.1 
  - Case T1.3 

6. Perform:  
  - Case T1.2 
 - Case T1.4 

Yes No

 

 

 

 

 

 

 

 

 

Flow chart 5.1 Procedure for selecting new template in case    1 45θ >

 
The meaning of each box in the Flow chart 5.1 can be explained as following. 

  
1. After an initial PCA, with result  45θ >

2. Select new I1 of longer length 

3. Perform PCA{I1new,I2} 

4. Test eigenvalues ratio, newΛ  and oldΛ  then goto 5 or 6  

- Yes : length of I1 is shorter than I2 
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- No : length of I1 is longer than I2 

5. or 6. Perform PCA of individual cases with new templates  

The procedure in boxes 5 and 6 can be described by Flow chart 5.1.1 and 5.1.2 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         Flow chart 5.1.1  

Perform:  
  - Case T1.1 
 - Case T1.3 

Select new L1 
L1new>L1old

PCA{I1new,I2} 

1 45θ =  

Yes2 

No3

Yes4 

L1=L2 
W1=W2 

Keep L1old=L1 
Select new W1 
W1new>W1old  

PCA{I1new,I2} 

new oldΛ ≤ Λ

new oldΛ ≤ Λ  

1 45θ =  

No1

No7

Yes8

Yes6

Keep W1 
which has the 
smallest Λ as 
image width 

No5 
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The meaning of each superscript in the Flow chart 5.1.1 is described as following. 

 
1The length of Image I1 is longer than I2; keep the old length of I1 

2 A new length of Image I1 is shorter than I2 or the length of I1=I2 

3 Size of Image I1 and I2 is different 

4 Size of Image I1 and I2 is match (I1=I2) 

5 Image I1 is wider than I2; keep the old width of I1 

6A new width of I1 is smaller than I2 

7 Size of Image I1 and I2 is different 

8 Size of Image I1 and I2 is match (I1=I2) 
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Perform:  
  - Case T1.2
  - Case T1.4

Select new L1 
L1new<L1old

PCA{I1new,I2}

1 45θ =

Yes2

No3 

Yes4

L1=L2 
W1=W2 

Keep L1old=L1 
Select new W1 
W1new>W1old  

PCA{I1new,I2} 

new oldΛ ≤ Λ

new oldΛ ≤ Λ  

No1

No7

Yes8 

Yes6 

Keep W1 
which has the 
smallest Λ as 
image width 

No5

1 45θ =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Flow chart 5.1.2 
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The meaning of each superscript in the Flow chart 5.1.2 is described as following. 

 
1The length Image I1 is shorter than I2; keep the old length of I1 

2 A new length of Image I1 is longer than I2 or the length of I1=I2 

3 Size of Image I1 and I2 is different 

4 Size of Image I1 and I2 is match (I1=I2) 

5 Image I1 is wider than I2; keep the old width of I1 

6A new width of I1 is smaller than I2 or the width of I1=I2 

7 Size of Image I1 and I2 is different 

8 Size of Image I1 and I2 is match (I1=I2) 
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Case T2:   1 45θ <

T2.1  (W1=W2) and (L1>L2) 

T2.2  (W1>W2) and (L1=L2) 

T2.3  (W1>W2) and (L1>L2) 

T2.4  (W1>W2) and (L1<L2) 

 
The following flow charts show the procedure to select new template for this case.  

 

2. Select new I1 
    L1new<L1old

3. PCA{I1new,I2} 

1. Start

4. new oldΛ < Λ

5. Perform:  
  - Case T2.1 
  - Case T2.3 

6. Perform:  
  - Case T2.2
 - Case T2.4

Yes No

 

 

 

 

 

 

 

 

 

                               Flow chart 5.2  

The meaning of each box in the Flow chart 5.2 can be explained as following. 

 
1. After an initial PCA, with result  45θ <

2. Select new I1 of shorter length 

3. Perform PCA{I1new,I2} 

4. Test eigenvalues ratio, newΛ  and oldΛ  then goto 5 or 6  

- Yes : length of I1 is longer than I2 

-  No : length of I1 is shorter than I2 
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5. or 6. Perform PCA of individual cases with new templates  

 
The procedure in boxes 5 and 6 can be described by Flow chart 5.2.1 and 5.2.2 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

                            Flow chart 5.2.1  

Perform:  
  - Case T2.1
  - Case T2.3

Select new L1 
L1new<L1old

PCA{I1new,I2}

1 45θ =  

Yes2 

No3 

Yes4 

L1=L2 
W1=W2 

Keep L1old=L1 
Select new W1 
W1new<W1old  

PCA{I1new,I2} 

new oldΛ ≤ Λ

new oldΛ ≤ Λ  

1 45θ =  

No1

No7

Yes8

Yes6

Keep W1 
which has the 
smallest Λ  as 
image width

No5 
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The meaning of each superscript in the Flow chart 5.2.1 is described as following. 

 
1The length Image I1 is shorter than I2; keep the old length of I1 

2 A new length of Image I1 is longer than I2 or the length of I1=I2 

3 Size of Image I1 and I2 is different 

4 Size of Image I1 and I2 is match (I1=I2) 

5 The width of image I1 is smaller than I2; keep the old width of I1 

6A new width of I1 is wider than I2 or the width of I1=I2 

7 Size of Image I1 and I2 is different 

8 Size of Image I1 and I2 is match (I1=I2) 
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Perform:  
  - Case T2.2 
 - Case T2.4 

Select new L1 
L1new>L1old

PCA{I1new,I2} 

1 45θ =  

Yes2 

No3 

Yes4 

L1=L2 
W1=W2 

Keep L1old=L1 
Select new W1 
W1new<W1old

PCA{I1new,I2} 

new oldΛ ≤ Λ  

new oldΛ ≤ Λ  

1 45θ =

No1

No7

Yes8

Yes6

Keep W1 
which has the 
smallest Λ as 
image width 

No5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     Flow chart 5.2.2 
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The meaning of each superscript in the Flow chart 5.2.2 is described as following. 

 
1The length Image I1 is longer than I2; keep the old length of I1 

2 A new length of Image I1 is shorter than I2 or the length of I1=I2 

3 Size of Image I1 and I2 is different 

4 Size of Image I1 and I2 is match (I1=I2) 

5 The width of image I1 is smaller than I2; keep the old width of I1 

6A new width of I1 is wider than I2 or the width of I1=I2 

7 Size of Image I1 and I2 is different 

8 Size of Image I1 and I2 is match (I1=I2) 
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The distribution of data points plot on PCA axis for each case and its characteristics 

are summarised in Table 5.10. 

 
Table 5.10 Characteristics and distributions of data points on PCA axis 

Case/Characteristics Line segment images – I2 Distribution of data points 
on PCA axis 

- I1 = I2 
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5.3 Non-straight line images 
 

In this section we will demonstrate the capability of the technique to other shapes of 

objects. An example of the image is shown in Figure 5.23.   
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Figure 5.23 Non-straight line image 

 

The images I1 and I2 are identical as shown in Figure 5.23, but with I2 rotated by an 

angle  and shifted by 5θ = 5yΔ =  pixels. Table 5.11 is tabulated the result of 

performing PCA with xΔ = 0 to 10 pixels. From the result, it can be seen the angle 

1θ  of the principal vector remains  although I2 is shifted and rotated. Thus at this 

point we can conclude that the shape of image does not affect the eigenvectors. This 

means we can determine the size of I2, I1=I2, by only checking the angle 

45

1θ  of the 

eigenvector being 45 . Figure 5.24 shows the data plot and the eigenvectors. As can 

be seen, the spread of data points are not symmetrical about the eigenvector. For this 

reason, it is because of the shape of images. 
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Table 5.11 Result of PCA  

I2 shifted 

xΔ  

(pixels) 12V 22V 22  Λ  11Λ  1θ  2212 /VV 11 22/Λ Λ 

0 0.7071 0.7071 920.26 17.68 45.00 1.00 1.92E-02

1 0.7071 0.7071 919.85 18.88 45.00 1.00 2.05E-02

2 0.7071 0.7071 918.35 19.38 45.00 1.00 2.11E-02

3 0.7071 0.7071 917.71 20.01 45.00 1.00 2.18E-02

4 0.7071 0.7071 914.92 22.80 45.00 1.00 2.49E-02

5 0.7071 0.7071 910.00 27.71 45.00 1.00 3.05E-02

6 0.7071 0.7071 903.00 34.71 45.00 1.00 3.84E-02

7 0.7071 0.7071 894.00 43.70 45.00 1.00 4.89E-02

8 0.7071 0.7071 883.11 54.59 45.00 1.00 6.18E-02

9 0.7071 0.7071 870.46 67.24 45.00 1.00 7.72E-02

10 0.7071 0.7071 856.20 81.49 45.00 1.00 9.52E-02
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Figure 5.24 Data points on the PCA axis ; 5θ = , 5xΔ =  pixels and pixels 5yΔ =
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5.4 Coarse Measurement using Hough Transform  

 

This section describes the use of Hough Transform to provide initial information of 

object for PCA. This information relate to location, orientation, shape and rough 

dimensions. It should be noted that this information only provide the initial 

parameters for PCA to select a proper template. For convenience, the image of an 

object in Figure 5.25 is used although the technique can be extended to other shape 

of objects.     
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       Figure 5.25  Example image of object  

     

The Hough Transform space of the image shows in Figure 5.26 and 5.27. Figure 5.26 

represents the accumulator Acc1 of HT space. The values of each array pixel in the 

space are the sum of magnitudes of image pixels of the same distance and angle. 
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Figure 5.27 is the accumulator Acc2 of HT space. The values of array pixel in this 

accumulator are the sum of number of image pixels of the same distance and angle. 

After that the maximum areas in the Acc1 can be determined (the details have been 

described in chapter 4, section 4.3). The detected maximum areas A1 and A2 are 

shown in Figure 5.28.          
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  Figure 5.26 Acc1 of HT space  
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Figure 5.27 Acc2 of HT space 
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Figure 5.28 Maximum Areas from Acc1 
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Each area, A1 and A2, in Figure 5.28 represents a line segment in the figure. We can 

analyse individual area to determine parameters of the line segment such as the angle 

θ , distance ρ , width and length. Considering the area A1 first, we can determine an 

angular range of -38o to -44o, between the two red lines in Figure 5.28. Once the 

angles are established, the distances ρ  of the line for each angle can be determined. 

The distance for each line segment is obtained by taking the location of the 

maximum point of the profile for each angle. Figure 5.29 shows the profiles taken 

from Figure 5.26 at these angles within the range -38o to -44o, and are plotted as a 

function of distance ρ . For example, considering the dotted blue graph in Figure 

5.29, angle is -41o, the peak is determined to locate at ρ  = 18 pixels, as indicated by 

the dashed line. The negative sign of distance ρ  indicates that it is measured from 

the origin perpendicular to a line with negative angle. As has been discussed in 

Chapter 4, more precise measurement can be obtained by performing curve fitting 

near the peaks of the profiles. The next step is to determine the width and the length 

of the line segment. The widths and lengths of the line can be obtained by measuring 

the widths and heights of the profiles. The profile is taken at the same angle as used 

to determine the distance but this time taken from the HT space Acc2.  Graphs of 

profile for each angle are shown in Figure 5.30. From Figure 5.30, consider the 

dotted blue graph which is associated with the same line segment as the dot blue 

graph in Figure 5.29. The width W of the line can be determined by measuring the 

width of the profile at 50% of its maximum magnitude. For the length L of the line 

segment is the mean value of the profile magnitude greater than 50% of its maximum 

magnitude. Thus we obtain the width of 35 pixels and length of 140 pixels. For the 

remaining profiles, each of them will have its own parameters. For area A2, we can 

analyse in the same way as for area A1. For example, one of the profile gives 
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parameters of a line segment image, angle 0θ = , distance 100ρ =  pixels, width 

W=35 pixels and length L=157 pixels.  
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                 Figure 5.29  Profiles are taken from -38o to -44o  in Acc1     
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Figure 5.30 Profiles are taken from -38o to -44o from Acc2 
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Based on the parameters, θ , ρ and L of each line image segment and by tracing back 

to the original image with the distance ρ as the middle of the line image segment, 

the skeletal line for each line image segment is obtained as shown in Figure 5.31. 

From Figure 5.31, it should be noted that the origin of the image plane is on the top 

left. With these skeletal lines the intersection P of the lines can be determined, if it 

exists. Thus the shape of image is known. As the width W of each line is known, we 

can widen the line according to its width. The roughly whole image is therefore 

reconstructed as shown in Figure 5.32. Thus the template for PCA should be chosen 

properly by using this image as the initial values. 
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           Figure 5.31 Detected skeletal line segments (black lines) 
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Figure 5.32 Determined whole image of object 

 

The parameters of each line segment image obtained from area A1 or A2 in Figure 

5.28. It also can be used as the initial information for PCA to measure individual line 

segment image without combining to each other.  

 

 

 

 

 

 

 

 

 



Chapter 6 

6  Experimental Results  

 
Our technique has been illustrated using simulated data described in the previous 

chapter. In this chapter, the experimental results will be presented. The detailed step-

by-step example of the processing steps is given. Firstly, the results from the Hough 

Transform are presented. This will be followed by result obtained from PCA.  

 

6.1 Sample 

 
The sample used is the resolving power test target USAF-1951[72]. The details of 

the sample are:  

• Group 4/1 - 16 lines/pairs per millimetre 

• Period = 62.5 mμ  

• Bar width = 31.25 mμ  

• Bar length = 156.25 mμ  

 

An image of sample was taken by optical microscope with a x10 Zeiss objective, 

0.25 NA. The image of sample is shown in Figure 6.1.  

 

The image in Figure 6.1 was then filtered by using a 25x25 average filter. This 

makes the original sample image becomes a low resolution image. This image is 

used to test where the system works for low resolutions images. The filtered image 

of the sample, low resolution sample image, is shown in Figure 6.2.     
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Figure 6.1 Original sample image 
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Figure 6.2 Low resolution sample image, original image from Figure 6.1  

 

6.2 Hough Transform 

 
After the sample image (filtered image in Figure 6.2) was obtained, the HT was 

performed. The following is a step-by-step example of process to obtain parameters 

from performing HT. The results from performing HT are shown in Figure 6.3 for 

Acc1 and Figure 6.4 for Acc2.   
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Figure 6.3 Hough Transform space of Acc1  
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Figure 6.4 Hough Transform space of Acc2 
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Determine Peak Areas 

 
The peak areas are obtained by searching the Hough space Acc1 in Figure 6.3. 
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Figure 6.5 Peak areas of Acc1 

From Figure 6.5, we derive parameters as following: 

1. Angle;   0θ =

Distances ρ  for each line from top to bottom are 64, 129 and 194 pixels. 

 2.   Angle;       90θ =

      Distances ρ  for each line from top to bottom are 80, 144 and 207 pixels. 

It should be noted that the exact orientations of the two groups of line segments are 

not 0o and 90o. However, for ease of explanation, we will use these two values as 

indication from now on. From these parameters a profile of line for each angle θ can 

be drawn. For example, the profile at angle 0θ =  of Acc1 is shown in Figure 6.6.  It 

should be noted that this profile is considered only in surrounding area for the 
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distances ρ of interest, see inside red box in Figure 6.6. The profile at  can be 

considered in the same way. 

90θ =
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Figure 6.6 Profile taken from Acc1 at 0θ =  

 

Determine number of line segments 

 
Number of lines are derived by differentiating the profile in Figure 6.6 and then 

consider the changes of sign, from positive to negative, in differentiated profile. The 

differentiated profile is shown in Figure 6.7. Consider Figure 6.7 it can be seen there 

are three times changes this means there are three line segments in the image at 

.       0θ =
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Figure 6.7 Differentiated profile from Figure 6 in red box 

 

The Width and Length of Line 

 
The width and length of a line segment are determined by using Acc2. Figure 6.8 

shows a profile of Acc2 (Figure 6.4) taken at the angle 0θ = . From the section 

entitled “Determine Peak Areas” above, it is clear that the part of profile that is of 

interested is within the range  ρ = 0 to 250. The overall width W of the lines is 

approximately 199 pixels. The lengths of line segments, L1 to L3, are given by the 

values of the peaks, which are 197, 196 and 196 pixels respectively. The same 

procedure can be applied to the horizontal line segments in figure 6.2 if desired.  
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Figure 6.8 Profile taken from Acc2 at 0θ =  

 

The parameters from HT are summarised in table 6.1. The units of ρ , width and 

length are in pixel. 

 

Table 6.1 Parameters of image 

Angle  0θ = Angle  90θ =

1ρ  2ρ  3ρ  Width 1ρ  2ρ  3ρ  Width 

64 129 194 199 80 144 207 200 

Length Length 

L1 L2 L3 L1 L2 L3 

197 196 196 197 198 197 

Number of line segments = 3 Number of line segments = 3 

 

By performing HT, the approximate parameters of the features of interested are 

obtained. The width of the individual line segments, however, cannot be determined. 

The widths W in Table 6.1 are the width for groups of closely spaced line segments, 

and in the sample used, two groups of such line segments exist. They are the group 
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of line segments at the angle 0θ =  and , each group has three line segments. 

The parameters of each group are known, thus each group can be separated and 

considered individually. Figure 6.9 shows the separated group of line segments at the 

angle . This image is then used to be initial image for PCA. Its parameters 

either from profile or the whole image can be used. The profile is used to measure 

the width and separation (in case of multiple lines) of the line segments whilst the 

whole image can be used to measure the length, width and separation.  

90θ =

0θ =

 

 

 

 

 

 

 

 

 

                             

Figure 6.9 Group of line segment at angle 0θ =  

 

6.3 Principal Component Analysis 

 
After information was obtained from HT, an appropriate template, based on the 

parameters in Table 6.1 for the line segments at angle 0θ = , can be selected from 

the reference data base. Here the template for PCA is a sample of known dimensions. 

The optical profile of the selected template is shown in Figure 6.10.  It should be 
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noted that the profile is obtained from an image, taken from the same sample used 

for figure 6.1 but at a different time.      
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Figure 6.10  Optical profile of the selected template 

 

From the initial image (showing the section at angle 0θ = ) in Figure 6.9, the profile 

of the sample was taken about the centre of the sample image. The sample profile is 

shown in Figure 6.11. 
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   Figure 6.11   Profile of sample 
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Once profiles of template and sample are obtained, the PCA of these two is 

performed. The results are tabulated in Table 6.2. The data points plot on PCA axis 

is shown in Figure 12. 
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                 Figure 6.12 Data points on the PCA axis 

Table 6.2 PCA result   

12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ  

0.7071 0.7071 0.1737 5.068E-7 45.00 1.00 2.91E-6 

 

 

From Table 6.2 it can be seen that the angle  this means we obtained the 

match between the template and sample in all particulars including widths and 

separations. Note that the ratio of the two eigenvalues is not zero. This is due to the 

noise associated with the two images. As can be seen in Figure 6.12, all the data 

points are on the PC1. This means that the template and sample are not shifted.    

1 45.00θ =

 

Performing PCA by using profiles can only measure the width and separation of the 

line segments in the sample image. Thus in order to measure the lengths of line 

0

0.2

0.4

 

PC1 0.6
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segments, the image is used. The sample image is shown in Figure 6.9.  A template 

is selected according to the parameters in Table 6.1, from the reference data base. 

The sample and template images are then converted to column vectors as described 

in Chapter 5. These vectors are shown in Figure 6.13 for the sample image and 6.14 

for the template image.  
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  Figure 6.13 The vector of sample image 
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   Figure 6.14 The vector of template image 

 
Table 6.3 shows results from performing PCA between the sample and template 

vectors. From Table 6.3, it can be seen that we have the match with no shifting 

between the two.  
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Table 6.3 PCA result   

12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ  

0.7071 0.7071 0.1694 5.929E-6 45.00 1.00 3.501E-5 
 

 

The data points plot on PCA axis is shown in Figure 6.15. It can be seen that data 

points lie on the principal axis. This confirms that the sample and template are 

matched and there is no shift between sample and template.  
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Figure 6.15 Data points on the PCA axis 

 

In summary, the process of identifying and measuring a particular sample has been 

illustrated in this Chapter. It has been shown that Hough transform can be used to 

firstly provide an initial identification and measurement of the sample. Based on this 

information, appropriate templates can be selected, which will serve as the reference 

for the application of the PCA. The effects of noise on the images can also be seen 

from the eigenvalues produced from the process.    



Chapter 7 

7  Conclusion and Future Work 

 
7.1 Conclusion 

 
The main purpose of this research is to reconstruct an object based on a low 

resolution image of the object with possible applications in semiconductor industry 

or images of biological samples obtained from special optical techniques, for 

example, stochastic optical reconstruction microscopy (STORM).  

 

As have been explained in chapter 1, optical systems have limited resolution because 

of their bandwidths, the nature of diffraction and the wavelength of the illumination 

sources used. The limited resolution means that objects smaller than approximately 

200 nm cannot be resolved optically. Thus being able to extend the resolution range 

of the optical systems will be very useful for many applications. 

 

Different techniques have been developed to improve the resolution of optical 

microscopy to beyond the diffraction limit and offer lateral resolution in the 

nanometers range. These include confocal fluorescence microscopy (CFM), 

structured illumination microscopy (SIM) and stochastic optical reconstruction 

microscopy (STORM). In theory, the applications of spectrum extension theory and 

information theory have been used on the resolution improvement utilising the 

sampling theorem in the frequency domain and the Auto-regressive model to extend 

the spectrum of the image beyond the system bandwidth.    
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Our approach has moved away from the work previously attempted by others where 

a super-resolved recorded image of the object was the ultimate goal. Our approach is 

based on the fact that an object image obtained from the optical system has adequate 

information although the system bandwidth is finite. Therefore the key features of 

minute object in submicron can be extracted and classified. This approach has 

become feasible in the recent years due to the rapid advance in the computing power 

and the availabilities of various signal processing techniques, including principal 

component analysis, Hough transform and artificial neural networks. We propose to 

perform classification and extraction of object features. The key parameters or 

dimensions of these features are then measured, thus allowing object image of much 

higher resolution to be reconstructed. 

 

Signal Processing 

 
Artificial neural networks 

 

ANN is a powerful signal processing technique which can be trained to perform 

specific tasks. The strength of ANN in measurement is that it is accurate and robust 

to noises. However, the ANN demands the large amount of input data and time to 

train the network.  Furthermore, in complex measurement system, many numbers of 

networks are needed. This means more and more input data and time for training will 

dramatically increase. Fortunately, by the power of computer the training process 

becomes effortless. The ANN can be trained easily. Another potential problem with 

ANN is the selection of the right network for the measurement task required.  By the 

nature of ANN each network is trained so that it is suitable for a narrow range of task 
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only. Matching the trained ANN with the measurement task is therefore essential for 

the operation of the system. Both PCA and the Hough transform are used for this 

purpose.        

  

Hough Transform and Principal component analysis 

 

The Hough Transform and Principal component analysis are used in our project. The 

system was divided into two stages, coarse and fine selection by using Hough 

Transform and principal component analysis respectively.  

 

Hough Transform 

The HT serves as line segments detector and roughly determines the line image 

segment parameters.  It transforms the image plane into two HT spaces, accumulator 

Acc1 and Acc2.  The difference of the Acc1 and Acc2 is that the values of each pixel 

in the accumulator Acc1 are the sum of magnitudes of image pixels whereas the Acc2 

are the sum of the number of image pixels of the same distance and angle. By 

analysing and processing the Acc1, numbers of line segments, locations and 

orientation of individual line image segments are obtained. The Acc2 is a novel 

accumulator designed for this project.  It is used to measure dimensions, widths and 

lengths, of the line image segments. Individual lines can be combined to form an 

image since the parameters of each line image segment is known. This means the 

shape of the image is known. It must be noted that the HT only provides the initial 

parameters for the PCA.  
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Principal component analysis 

Based on the initial parameters measured with HT, a proper template is selected for 

the PCA to perform finer  measurement. Various aspects of samples measured by the 

PCA have been investigated, such as shift of the sample, samples with different 

sizes, orientation of the sample and the impact of noises.  

The main parameters of PCA to be considered when performing PCA between 

templates and samples are the angle of the eigenvector 1θ  and the ratio of the 

eigenvalue .   11 22/Λ Λ

 

The main result from performing PCA in the case where a template is identical to the 

sample is presented in Table 7.1.  

Table 7.1 Performing PCA result 

12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ  

0.7071 0.7071 1977.1 0 45 1 0 

 

 

The angle 1θ  of the principal eigenvector is , and the eigenvalue ratio  is 

zero, corresponding to the eigenvalue 

45 11 22/Λ Λ

11Λ being zero and the other  reaches 

maximum. 

22Λ

 

 

 

 

 



 187

 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

 

PC1 

PC2 

θ1

 

 

 

 

 

 

 

 

 

Figure 7.1 A principal component (PC1) and second component (PC2) 

 

Figure 7.1 shows the direction of PC1, and the associated second, orthogonal 

eigenvector. From the Figure 7.1, it can be seen that all data points lie on PC1. 

 

Performing PCA in cases where the samples are shifted or rotated. The angle 1θ  of 

the principal vector remains  but the eigenvalues ratio45 11 22/Λ Λ  becomes non-

zero according to the shift and rotation. This means we can determine the size of 

template equal to sample, by only checking the angle 1θ  of the eigenvector being 

. The correct position of the sample can be determine by using the techniques (for 

each case: shift or rotation) as described in chapter 4 or 5.   

45

 

In cases where the sizes of the template and sample are different. The PCA can be 

performed repeatedly, with the size of the template adjusted each time. The targets of 



 188

the iteration are the angle 1θ  to approach 45 degrees and also minimising the 

eigenvalues ratio . 11 22/Λ Λ

 

In cases where the system data contains noise. The main result of performing PCA 

presented in repeated in Table 7.2. From the Table it can be seen that adding noise to 

the system changes the eigenvalues, with the ratio 11 22/Λ Λ  decreases as the SNR 

increases. Noise will also affect the angle 1θ  of the PC1, but only by very small 

amount. Precisely, the system should have a SNR greater than 80. It should be noted 

that, for an optical imaging system, a SNR of greater than 250 is readily achieved. 

Figure 7.2 shows the direction of PC1, and the associated second, orthogonal 

eigenvector with the SNR=100. From the Figure 7.2, it can be seen that all data 

points almost perfectly lie on PC1. This is because of the effect of noise.   

 

Table 7.2 Result of PCA 

SNR 12V  22V  22Λ  11Λ  1θ  2212 /VV  11 22/Λ Λ  

10 0.7048 0.7093 1.89E3 8.63 45.18 0.993 4.34E-3 

20 0.7063 0.7078 3.2E4 35.10 45.06 0.998 1.10E-3 

30 0.7069 0.7072 1.6E5 77.98 45.013 0.999 4.85E-4 

50 0.7069 0.7073 1.24E6 210.27 45.016 0.999 1.69E-4 

80 0.7072 0.7069 8.12E6 541.39 44.988 0.999 6.66E-5 

100 0.7071 0.7071 1.98E7 852.67 45.00 1.00 4.30E-5 

150 0.7071 0.7071 1.00E8 1950.9 45.00 1.00 1.94E-5 

200 0.7071 0.7071 3.17E8 3470.1 45.00 1.00 1.09E-5 

223 0.7071 0.7071 4.95E8 4155.6 45.00 1.00 8.38E-6 

316 0.7071 0.7071 1.98E9 8859.6 45.00 1.00 4.46E-6 
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Figure 7.2 Data points on the PCA axis with SNR =100 

 

 

7.2 Suggestion for Future Work 

 

7.2.1 Multi-Dimension PCA 

 
One interesting future work is to perform multi-dimensional PCA, where a number 

of templates will be used at any one time. By examining the directions of the 

eigenvectors and the relative eigenvalues, it is possible to home into the appropriate 

template more rapidly. 
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7.2.2 3D Classification 
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            Figure 7.3 Convert 3D image to column vector  

 

With referent to the section 5.1(Convert Line Image to Vector), the 3D image is 

possible to convert to vector. From the 3D image in Figure 7.3, the image can be 

converted to many vectors as the length of vector is XY and the number of vector is 

Z. Each vector of image can be performed PCA one by one as the normal performing 

PCA. Thus extraction and classification of 3D image features is possible if an optical 

system provided the 3D image.     
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7.2.3 Our Vision 
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           Figure 7.4 The whole computer based model system   

 

By using the power of computer, it is possible to model and reconstruct the whole 

image of an object from a certain optical system if the features of image of object can 

be extracted and classified. And then these features are measured to be parameters 

for the computer system.  From Figure 7.4, it can be seen that the computer can be 

used for extracting and classifying the features of an image. Based on these 

parameters of the image, a new image can be formed and then compared to the 

original image. By minimising the error between the reconstructed and original 

image, the new image can be obtained. This research is only a part of the whole 

system which tries to extract, classify and measure parameters of low resolution 
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recorded image from an optical system and then reconstruct the new image with 

higher resolution.         

 



Appendix A - Eigenvalues Calculation  

 

The eigenvalues can be calculated directly from the distances of data points which are 

measured perpendicular to PCA axis, PC1 or PC2. The distances d1 are measured 

perpendicular to PC1 and d2 are measured perpendicular to PC2 as shown in Figure A-1.    
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Figure A-1 First Principle Component, PC1, second component, PC2 and 

data points.    

The distances d1 and d2 can be calculated from the following equations. 

 

( ) ( ) ( )1 1
1

sin
tan
Y yd X x θ

θ

⎡ ⎤⎛ ⎞−
= − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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( ) ( ) ( )2 2
2

sin
tan
Y yd X x θ

θ

⎡ ⎤⎛ ⎞−
= − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 

Where x  and y  is the mean value of X  and Y ,respectively.  The angle 1θ  is angle of 

PC1 and angle 2θ is the angle of PC2. Angles ( )θ  of vector are simply calculated from 

eigenvector: 

 

 
1 22

1
21

tan V
V

θ − ⎛ ⎞
= ⎜

⎝ ⎠
⎟  and 

 

 
1 21

2
11

tan V
V

θ − ⎛ ⎞
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⎝ ⎠
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 or . 2 1 90θ θ= +

 

The maximum and minimum eigenvalues can be calculated.     

Minimum eigenvalue: 

( )
2

1
11min 1

1 ∑
=

−
−

=
n

i
i dd

n
Eval    

 

where 1d  is mean value of  1d
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Maximum eigenvalue: 

( )
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1
22max 1
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n
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i dd
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Eval  

 

where 2d  is mean value of  2d
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