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ABSTRACT 

This study explores the usage of linear programming (LP) as a tool to optimise the parameters of 

time series forecasting models. LP is the most well-known tool in the field of operational research 

and it has been used for a wide range of optimisation problems. Nonetheless, there are very few 

applications in forecasting and all of them are limited to causal modelling. The rationale behind this 

study is that time series forecasting problems can be treated as optimisation problems, where the 

objective is to minimise the forecasting error. 

The research topic is very interesting from a theoretical and mathematical prospective. LP is a very 

strong tool but simple to use; hence, an LP-based approach will give to forecasters the opportunity 

to do accurate forecasts quickly and easily. In addition, the flexibility of LP can help analysts to deal 

with situations that other methods cannot deal with. 

The study consists of five parts where the parameters of forecasting models are estimated by using 

LP to minimise one or more accuracy (error) indices (sum of absolute deviations – SAD, sum of 

absolute percentage errors – SAPE, maximum absolute deviation – MaxAD, absolute differences 

between deviations – ADBD and absolute differences between percentage deviations – ADBPD). In 

order to test the accuracy of the approaches two samples of series from the M3 competition are 

used and the results are compared with traditional techniques that are found in the literature.  

In the first part simple LP is used to estimate the parameters of autoregressive based forecasting 

models by minimising one error index and they are compared with the method of the ordinary least 

squares (OLS minimises the sum of squared errors, SSE). The experiments show that the decision 

maker has to choose the best optimisation objective according to the characteristic of the series.  In 

the second part, goal programming (GP) formulations are applied to similar models by minimising a 

combination of two accuracy indices.  The experiments show that goal programming improves the 

performance of the single objective approaches. 

In the third part, several constraints to the initial simple LP and GP formulations are added to 

improve their performance on series with high randomness and their accuracy is compared with 

techniques that perform well on these series. The additional constraints improve the results and 

outperform all the other techniques. In the fourth part, simple LP and GP are used to combine 

forecasts. Eight simple individual techniques are combined and LP is compared with five traditional 

combination methods. The LP combinations outperform the other methods according to several 
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performance indices. Finally, LP is used to estimate the parameters of autoregressive based models 

with optimisation objectives to minimise forecasting cost and it is compared them with the OLS. The 

experiments show that LP approaches perform better in terms of cost. 

The research shows that LP is a very useful tool that can be used to make accurate time series 

forecasts, which can outperform the traditional approaches that are found in forecasting literature 

and in practise. 
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1 INTRODUCTION 

Linear programming (LP) is the most well-known tool in the field of operational research. Since the 

formulation of the first LP problems by Leonid Kantorovich in 1939 (Kantorovich, 1960) and the 

development of the simplex algorithm by George B. Dantzig in 1947 (Dantzig, 2002), linear 

programming has been used in a wide range of optimisation problems that are found in business and 

management, such as transportation routing, project planning, production planning, supply chain 

management and portfolio optimisation. 

Forecasting is a vital managerial activity as it is the first stage of every planning procedure. This 

research focuses on applying linear programming to solve forecasting problems. The main idea 

behind the study is that forecasting problems can be treated as optimisation problems, where the 

objective is to minimise the forecasting error. 

1.1 RESEARCH SCOPE AND OBJECTIVES 

The aim of the study is to examine the application of linear programming as a tool to estimate the 

parameters of time series forecasting models. The research compares the performance of the LP-

based approaches with the traditional statistical tools that are found in the literature, specifies the 

advantages and the disadvantages of the former and concludes the cases, where they should be 

preferred. 

The rationale for this topic is that it is very interesting from a theoretical and mathematical 

prospective. The topic rather focuses on the advancement of scientific knowledge about forecasting 

and it is not an actual forecasting application for business. However, LP is a very strong tool but 

simple to understand and to use; thus, if LP-based approaches are shown to be more or as accurate 

as the traditional methods it will give to forecasters the opportunity to do accurate forecasts quickly 

and easily. 

The purpose of the research is explorative, because it tests the implementation of an idea that 

already exists. There is important research on the use of linear programming and optimisation as a 

tool for solving statistical problems, with a wide area of applications (e.g. descriminant analysis). 

However, applications of the former for optimising forecasts have not been investigated in detail 

and they are limited to causal forecasting applications (Trapp, 1986, Soliman et al. 1997). In addition, 
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the performance of LP-based approaches has neither been tested nor compared with traditional 

methods. Linear programming is a flexible tool that can exceed many limitations of the latter. This 

research aims to test the performance of LP-based approaches as an alternative and also to use it for 

solving problems that traditional statistical tools cannot deal with. The objectives of the study are to 

answer the following five questions and as a result to develop insights into the main aim: 

I. How does linear programming perform in estimating the parameters of autoregressive based 

forecasting models? The traditional tool for the estimation of an autoregressive equation is 

the ordinary least squares method, which minimises the Sum of Squared Errors (SSE). LP gives 

the opportunity to minimise different accuracy indices, such as the Sum of Absolute Errors 

(SAD) and the Sum of Absolute Percentage Errors (SAPE). Thus, an LP approach will show how 

other indices perform compared with the SSE and in what situations they should be preferred. 

II.  “The performance of a technique may differ according to different accuracy measures” 

(Makridakis et al. 1984). Traditional tools aim to optimise one accuracy index (e.g. the least 

squares method minimises only the SSE). LP, in contrast with other techniques, can be applied 

for multi-objective optimisation (e.g. goal programming). Can linear goal programming be used 

to minimise two or more accuracy indices (e.g. SAD, Maximum Absolute Deviation - MaxAD) 

instead of only one? The study will show its performance and compare multi-objective and 

single objective LP optimisation methods. 

III. One of the outcomes of past research (e.g Makridakis et. al, 1984) was that simple techniques, 

like moving average and exponential smoothing outperform more sophisticated techniques in 

series with high randomness. Can the flexibility of the linear programming approaches be 

exploited to improve the performance on series with high randomness? If yes, how does it 

perform compared with simpler techniques? 

IV. Linear programming was suggested as a combination forecasting technique (Reeves and 

Lawrence 1982). Nevertheless, comparison with other methods to develop a good 

combination of forecasts (e.g. simple average, inverse proportion) is not available in the 

literature. How does linear programming perform as a tool for combining forecasts? LP 

guarantees the optimal combination between all the available forecasts, according to a 

preselected optimisation criterion (e.g. SAD). The study will show how LP models for combined 

forecasting perform compared with individual as well as traditional combination methods. 
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V. “Situations where the cost of overestimation differs from this of underestimation are very 

common” (Newbold and Bos, 1994). Can linear programming be used to minimise the total 

forecasting cost (instead of error) in case the costs of overestimation and underestimation are 

different? The results will demonstrate how a cost minimisation model performs compared 

with the more traditional accuracy optimisation models and a sensitivity analysis will show in 

which cases (differences between underestimation and overestimation cost) the results are 

significantly different. 

The first, the second and the fourth questions aim to test the applicability of linear programming for 

estimating the parameters of forecasting models, while the other two focus on exploiting the 

flexibility of linear programming to overcome some of the limitations of traditional statistical 

methods. 

The study belongs in the scientific field of operational research/management science. Reisman and 

Kirschnick (1994, 1995) classify studies in this field in three categories, according to the research 

strategy and aim: 

a. The first category includes studies of “meta-research” and research on the philosophy and 

history of OR. 

b. Second is the “untested theory” that includes studies, which focus on theoretical OR topics, 

for example research on new OR tools, and are not real-world applications. 

c. Third are the real-world applications that deal with real-world problems. 

This study belongs to the second category, since it is neither research on the philosophy and history 

of OR, nor a real world managerial application. It is a pure theoretical OR study that focuses on a 

new LP-based methodology for estimating the parameters of well-known forecasting models. 

1.2 RESEARCH OUTLINE 

The thesis’ outline is as follows: There is a review of the related literature of the area, then the 

methodology of the study follows; I continue with the mathematical models and the results of the 

experiments and I finish with several conclusions. The structure of the thesis is the following. 

Chapter 2 presents what is known in the field so far and it consists of seven parts. First is an 

introduction to forecasting, followed by a general review of the types of forecasting techniques. The 
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third part talks about the forecasting error. As the study is on time series forecasting the fourth part 

is more specific on time series analysis and forecasting techniques. Part five focuses on the field of 

combining forecasts. Part six is a review of the mathematical programming approaches for 

forecasting. The last part talks about seven forecasting competitions (M Competitions and NN 

Competitions) with objective to investigate how different techniques differ from each other and how 

forecasters can be able to make practical choices (Makridakis et al. 1984) and the future of 

forecasting research. 

The methodology of the research can be found in Chapter 3. First is the development where I talk 

about the linear programming formulations. Second is the data, where I talk about the selection of 

the series for testing the techniques, the statistical analysis of them and their decomposition. The 

last part is the methodology of testing the forecasts, the comparison with traditional techniques 

found in the literature and the evaluation of the whole process. 

The next five chapters aim to answer the five research questions respectively. In Chapter 4 simple LP 

is used to develop and optimise autoregressive based forecasting models. I estimate the coefficients 

of simple autoregressive models (AR) and autoregressive models with additive seasonality (ARS) by 

minimising SAD, SAPE, MaxAD, the Absolute Difference between Deviations (ADBD), and the 

Absolute Percentage Difference between Deviations (ADBPD). The accuracy of the LP based 

approaches is compared with the Ordinary Least Squares (OLS) method (minimising the Sum of 

Squared Errors). The study is mainly focused on this specific ARIMA (d,0,0) models due to the 

limitations of the LP. Only autoregressive models can be formulated as linear programs and the 

above minimisation objectives can follow a linear structure.  

In Chapter 5 Linear Goal Programming formulations are applied to estimate the parameters of the 

same models. MinSum and MinMax pre-emptive and weighted goal programming is used (the latter 

is a relaxation of the former) to minimise both the SAD and the MaxAD. The results are compared 

with the OLS and the single objective approaches from Chapter 4. 

Chapter 6 presents how the flexibility of LP can be exploited to improve the accuracy of 

autoregressive based forecasts on time series with high level variability and low predictability. I use 

all the simple LP and weighted goal programming models from Chapters 4 and 5 and I run 

experiments with additional constraints on a data set of series with high variability. The accuracy of 

the new approaches is compared with five traditional techniques, where the literature shows that 

they perform well in these cases. 
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In Chapter 7 I explore the use of LP as a tool to combine forecasts. I use simple LP and weighted goal 

programming. The former estimates the weights of several models by minimising the SAD, the SAPE 

and the MaxAD, whereas the latter minimises both the SAD and the MaxAD. The models combine 

eight individual forecasting techniques and we compare their accuracy with five other traditional 

combination methods. 

Finally, in Chapter 8 I explore cases where the cost of the underestimation forecasting error differs 

from the overestimation cost. I apply simple LP methods to minimise the forecasting cost, instead of 

the error, or I use the simple LP methods from Chapter 4 adding the cost relationship of the 

underestimation and overestimation errors as a constraint. Experiments for five different cost 

relations are run and the approaches are compared with the OLS in terms of accuracy and cost. The 

approaches are limited on cases where the cost is a linear function to the forecasting error due to 

the LP limitations. The thesis finishes with several conclusions and recommendations for further 

research. 
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2 CURRENT RESEARCH STATUS 

This chapter is a discussion of what is already known in the field. There is a general introduction to 

forecasting, where the distinctions between qualitative and quantitative forecasting and between 

causal and time series methods are presented. An analysis on the forecasting error (measurement 

methods and cost) follows. The next section focuses on time series analysis. There is a discussion 

about time series decomposition, the most common time series forecasting techniques and the Box-

Jenkins methodology. Furthermore, there is a review of the area of combined forecasting. 

Subsequently, the chapter focuses on mathematical programming applications for forecasting. I 

present what has been done so far and I identify the research gaps that this study aims to cover. The 

chapter closes with a review of the forecasting competitions and the future of forecasting research. 

2.1 INTRODUCTION TO FORECASTING 

According to Armstrong (2001) forecasting is defined as the prediction of an actual value in a future 

time period. Makridakis et al. (1998) state that forecasting supplies information of what may occur 

in the future. Thus, it is used to estimate when an event is probable to happen so that proper action 

can be taken. 

Forecasting in business practice is the basis every planning process; hence, it affects decisions and 

activities throughout an organisation. Examples of using forecasts in different areas of business 

practice are: 

Accounting: Estimation of new product cost and cash flow management. 

Finance: Time and amount of funding needs, budgeting, investment selection, credit scoring, 

credit risk management. 

Human resources: recruitment needs, layoff planning. 

Marketing: Pricing, placing and promotion, market entrance, competition strategies, direct 

marketing. 

Operations: Inventory planning, capacity planning, supply-chain planning, work scheduling, 

production planning. 
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Information systems: systems revision. 

R&D and design: New products and services introduction, technological progress. 

Strategic management: Competition, economic conditions, new markets, goals planning. 

According to Stevenson (2005) there are two applications of business forecasting. The first is to help 

the decision maker to plan the system and the second to plan the use of the system. Planning the 

system normally involves long-range plans such as product design, facilities layout, procurement of 

new equipment and location. On the other hand, planning the use of the system has to do with short 

and intermediate-range planning, such as inventory and workforce planning, work scheduling and 

budgeting. 

In order to develop a forecast, the decision maker has to follow several steps. The number of steps 

varies, but, most researchers (e.g. Armstrong, 2001, Stevenson, 2005) agree on the following six: 

1. Determination of the purpose of the forecast: That is the use and the objectives of the 

forecast. This will indicate the necessary accuracy level, the amount of resources that should 

be committed (people, computer time, money) and the cost of the forecasting error. 

2. Specify the time horizon: A forecast may be long-range, intermediate-range or short-range, 

according to the forecasting purpose. 

3. Method selection. 

4. Data gathering and analysis: The data sources may be internal records (e.g. sales, demand, 

costs, stock control data, accounting data), external records (e.g. online data, government 

sources, periodicals and journals). Some data may not be available. 

5. Make the forecast. 

6. Monitor the forecast: Monitoring determines the performance of the forecast. If the forecast 

is not satisfactory, the decision maker has to re-examine the method, the data, the time 

horizon or even the purpose of the forecast. Then, (s)he has to start the process again from 

the corresponding step. 

It is clear that forecasting is the starting point for various business decisions. The better an 

organisation’s forecasts are, the more it is ready to utilize potential prospects and decrease 

prospective risks. Thus, forecasters should be very keen in selecting the most appropriate techniques 
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and maintain their information sources up to date in order to keep the accuracy of their forecasts 

high. 

2.2 FORECASTING TECHNIQUES 

Forecasting techniques are classified in two categories: quantitative and qualitative (Makridakis et 

al., 1998 and Armstrong, 2001). They can also be found in the literature as objective and subjective, 

respectively (Nahmias, 2005). According to Makridakis et al. (1998) quantitative forecasting can be 

applied under three conditions: 

1. Quantitative information availability about the past 

2. This information can be expressed in numerical data. 

3. Assumption of continuity, which is the statement that characteristics of the past patterns 

will continue in the future. 

On the other hand, qualitative forecasting is applied in case of lack of quantitative information, but 

sufficient qualitative knowledge and experience exists. Finally, when neither quantitative 

information nor qualitative knowledge is available a satisfactory forecast cannot be performed. 

Both quantitative and qualitative techniques differ extensively in accuracy, cost and complexity. 

Qualitative techniques, in general, are applied for longer term forecasting. Nonetheless, it is 

common for both methods to be combined. In practice, Sanders and Manrodt (2003) found 

significant differences in accuracy between companies that focus on only one of the above methods: 

organisations focusing on quantitative techniques tend to obtain better forecasts. However, the 

authors conclude that judgmental forecasting focused firms operate in more uncertain 

environments, which may explain the higher forecasting error. 

2.2.1 Quantitative forecasting 

Quantitative techniques are divided in two categories: explanatory (causal) models and time series 

models. The first category investigates the cause and effect relationship between the forecasted 

variable and one or more independent variables. Time series models predict the future value of a 

variable based upon its past values without attempting to estimate the external factors that affect 

this behaviour. 
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Specifically, explanatory forecasting is based on models in which the predicted value is related to 

various explanatory variables based on a specified theory (Armstrong, 2001). “The purpose of 

explanatory models is to discover the form of the relationship and use it to forecast future values of 

the forecast variable” (Makridakis et al., 1998). 

The most common causal forecasting techniques are variations of linear and non-linear (e.g. logistic) 

simple and multiple regression models, where the dependent variable is the forecasted value and 

the independent variables are exogenous to this value. If Y is the dependent variable and X1, X2, 

X3,……, XN are the N independent variables, then: 

 ( )NXXXXfY ,....,,, 321=

 

(2. 1) 

Econometric models are defined as a special category of regression models in which the relationship 

between dependent and independent variables is linear. The most common ways for the estimation 

of the parameters of regression based models are the least squares and the maximum likelihood 

method (Makridakis et al., 1998). Nevertheless, in case of more complicated non-linear 

relationships, more sophisticated estimation techniques can be used, like Bayesian networks or 

artificial neural networks. 

On the other hand, time series forecasting is set from the theory that the history of incidences over 

time can be used to forecast the future. Thus, time series forecasting techniques are based on the 

concept of recognising a pattern that exists in a series. This study is focused on time series 

forecasting; hence, an extended review on time series analysis and techniques will follow. 

2.2.2 Qualitative Forecasting 

As it was mentioned above, qualitative techniques do not require numerical information, but their 

outcomes are based on the judgment and accumulated knowledge of “specially trained people” 

(Makridakis et al., 1998). Even if the forecasting research and practice has proved that quantitative 

forecasting is more accurate, qualitative forecasting is widely applied in business practice, especially 

in situations where no past information is available, or it cannot be quantified. The most common 

qualitative methods are presented in the following table. 
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Table 2. 1 Qualitative forecasting techniques 
Technique Description 

Grass Roots 

Forecasters gather information from the executives and personnel 

(e.g. workers) who are at the lowest place of the hierarchy and usually 

closer to the forecasting problem. They use that information as a basis 

for judgmental forecasting. 

Market Research 

It is mainly used for long term market forecasting. The input is 

collected data from many ways, such as surveys, interviews and 

salesmen opinions. 

Panel Consensus 
Free open discussion of an idea at meetings. All participants have the 

right to express their ideas about the future (Galbraith et al. 2010). 

Historical Analogy 
It is based on finding analogies with similar situations of the past and 

identifying historical patterns (Dortmans and Eiffe, 2004). 

Delphi Method 

Group of experts responds to a questionnaire individually. Then a 

mediator gathers the results and formulates a new questionnaire that 

is resubmitted to the same group and the process is repeated. The 

repetition goes on until a forecast emerges (e.g. Kaynak et al., 1994, 

Lilja et al., 2011, Liu et al., 2010). 

Sales Force Composite 
Sales executives forecast according to their daily interaction with 

customers (Peterson, 1989 and 1993). 

Unaided Judgment 

This is a fast and inexpensive method, where a team of experts predict 

the result of current situations not aided by a formal forecasting 

technique and based only on their experience and possible data 

availability (Green, 2002). It has been proved very useful in cases 

where the expert has got good feedback about her/his forecasting 

accuracy. It is widely applied in the area of betting on sports. 

Customer Surveys 
They are usually used to signal preferences and opinions about new 

products and services. 
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Cross – Impact Analysis 

Forecasters submit their opinions about what is likely to influence the 

area of interest. It is common to be used in combination with Delphi 

method (Banuls and Turoff, 2011). 

Scenario Writing 

This technique is widely used for long term planning and strategic 

analysis. It is based on developing the most possible and probable 

scenarios about the future (e.g. Bunn and Salo, 1993, Kanama, 2010).  

Economic Indicators 

These are tracked across a time series. The economic description of 

the behaviour of the series identifies the situation and helps experts to 

develop judgmental forecasts (e.g. Fite et al., 2002, Ozyildirim et al. 

2010). 

Source: Armstrong (2001), Chase et al. (2006), Nahmias (2005) and Newbold and Bos (1994) 

2.2.3 Other forecasting techniques 

Academic research and business practice have produced several forecasting methods that are not 

classified according to the traditional quantitative – qualitative and time series – causal clustering. 

The majority of these techniques tend to follow a mixed quantitative/qualitative methodology and 

they aim to “balance data and judgment” (Bunn, 1996), without this being the rule. The most 

common are the following. 

Simulation: Simulation is common to be used when an analyst is asked to forecast the behaviour of 

a complex system over time. Simulation programs are designed to reflect the key aspects of a real 

situation (Pidd, 1998). The simulation method that is used depends on the characteristics of the 

system and the data availability. It usually combines both quantitative and qualitative elements and 

the balance between them differs according to the specific simulation method that is used. In 

business practice we can find applications of Monte Carlo (Pflaumer, 1988, Billio and Casarin, 2010), 

Discrete Event (Cheng and Duran, 2004), System Dynamics (Higuchi and Troutt, 2004, Wu et al., 

2010), Role Playing (Green, 2002 and 2005) simulation and others. By running the simulation 

program under different starting conditions, a forecast for different situations is created (Nahmias, 

2005). 



CHAPTER 2  CURRENT RESEARCH STATUS 

12 
 

Focus forecasting: The method is a rule based forecasting technique, where the analyst creates a 

simulation program under these rules. The program uses past data to measure how well the issued 

rules are performed (Chase et al., 2006). 

Technical analysis: This method is also known as Chartism (Lo et al., 2000) and it has been part of 

the business and financial forecasting practice for many decades. Nevertheless, most academics 

recognise it as a highly subjective method and it does not receive the same acceptance as the 

traditional forecasting approaches. The theory behind technical analysis is that the recognition of a 

time series pattern can be achieved by looking how the time series charts have changed in the past 

(Kirkpatrick and Dahlquist, 2010). This will lead to predictions of future changes (Holden et al., 1990).  

Game theory: While this technique is a fundamental tool for supporting strategic decisions under 

conflict, many researchers (e.g. Green, 2002, Goodwin, 2002, Bolton, 2002) have investigated its 

usage for making forecasts. This idea is also supported by Dixit and Skeath (1999), who state that the 

second use of game theory is in prediction. When decision makers have to deal with multiple 

interacting decisions, game theory can be used to predict the undertaken actions together with their 

results. In practice, game theory’s usage for forecasting is very common. An example is this of 

Decisions Insights Inc. (a consultancy corporation in New York). They state on their website that they 

develop game theory models to forecast events that affect the business activity (www.diiusa.com). 

Rule based forecasting: This is an expert systems application for prediction and it is the most 

characteristic example of an approach that incorporates judgment into the extrapolation process 

(Collopy and Armstrong, 1992, Armstrong, 2001). The forecaster develops an expert system that 

uses the experts’ judgements as the rules to identify the quantitative forecasting technique that fits 

best on a time series. 

Conjoint analysis: Conjoint analysis is characterised as a set of techniques for measuring buyers’ 

tradeoffs among multi-attribute products and services (Green and Srinivasan, 1990, Halme and 

Kallio, 2011). Regression-like analyses are then used to predict the most desirable design 

(Armstrong, 2001). 

Forecasting support systems (FSS): FFS are decision support systems focused on forecasting 

decisions and consist of a combination of qualitative and quantitative forecasting. According to 

Armstrong, (2001) a FSS “allows the analyst to easily access, organise and analyse a variety of 

information. It might also enable the analyst to incorporate judgment and monitor forecast 

accuracy”. FSS have found a wide area of application. They are very common in manufacturing and 

http://www.diiusa.com/
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retail as part of an ERP system (Fildes et al., 2006, van Bruggen et al. 2010) but they are not rare in 

services (Croce and Wober, 2011). The importance of FSS is that managers can add non-time series 

information (especially event information) to their forecasts to increase their accuracy (Webby et al. 

2005). 

Armstrong (2001) presents a chart with the most common forecasting techniques, in which relations 

and interactions between them are indicated: 

 

Figure 2. 1 The most common forecasting techniques and their interactions 

Source: Principles of Forecasting website, Armstrong (2001) 

2.2.4 Judgmental adjustments of quantitative forecasts 

The above examples indicate that qualitative forecasting is rather supplementary than alternative to 

quantitative forecasting. In business practice it is quite common to judgementally adjust statistical 

based forecasts. The study of Sanders and Manrodt (1994) shows that about 45% of 96 US 

companies always judgmentally adjust quantitative forecasts, while only 9% never do. There is a 

large conversation about if judgmental adjustments improve quantitative forecasts. The survey of 

Fields and Goodwin (2007) concludes that judgmental adjustments tend to decrease the accuracy of 

statistical forecasts. Forecasters in practice rely a lot on judgment and use statistical forecasts 

inefficiently. Moreover, forecasts are adjusted by senior managers usually with no discussion and 

due to political motivation.  In addition, they state that about half of respondents of their survey did 
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not examine if their judgmental adjustments improved accuracy and almost a third did not record 

the cause for these adjustments. 

The current research has underlined two main reasons why judgmental adjustments may harm 

forecasting accuracy. The first is that forecasters often make unnecessary adjustments to statistical 

forecasts and use statistical forecasts inefficiently (Lawrence et al., 2006). In order to avoid 

unnecessary adjustments, Goodwin (2000) has tested and suggested three simple methods to 

improve the use of statistical forecasts in business practice: “(a) making the statistical forecast the 

default and requiring to make an explicit request to change this forecast, (b) requiring the judge to 

record a reason for changing the statistical forecast and (c) eliciting adjustments to the statistical 

forecast, rather than revised forecasts.”  The study shows that the first two methods significantly 

improve the use and accuracy of statistical forecasts, while in the third the improvement is rather 

small. 

According to Eroglu and Croxton (2010) the second reason is that judgmental adjustments may 

introduce three types of bias: 1) optimism bias, 2) anchoring bias, and 3) overreaction bias. These 

biases are positively or negatively affected by the forecaster’s personality (conscientiousness, 

openness to experience, neuroticism and extraversion), motivational orientation (seeking of 

compensation, recognition, enjoyment and/or challenge) and work locus of control (internal or 

external). These types of bias are the reason why forecasters tend to see false patterns in random 

movements (Goodwin and Fildes, 1999).  

Forecasting practice shows that if the qualitative adjustment is necessary and not biased, then it 

marginally improves the accuracy of the statistical forecast. Fildes et al. (2009) suggest that the most 

reliable method for adjustment is bootstrapping. There are three well known bootstrapping 

methods: 

• Blattberg – Hoch (50-50): This is heuristic method where the adjusted forecast consists of 

50% the statistical forecast and 50% the qualitative forecast (Blattberg and Hoch, 1990). 

• Judgmental bootstrapping: Where the decision maker selects the optimal combination 

between the statistical forecast and the adjustment. 

• Error bootstrapping: This is a more sophisticated technique, which models the relationship 

between the judgmental forecast and the statistical forecasts (Fildes et al. 2009). 



CHAPTER 2  CURRENT RESEARCH STATUS 

15 
 

Nonetheless, Fildes et al. (2009) state that if the judgment is biased, bootstrapping cannot be 

optimum. 

As we can see, the practice shows that qualitative adjustment usually decreases the forecasting 

accuracy; however, if it is performed properly it may improve the performance of a statistical 

forecast, especially when new information is available, which is not already reflected in the pattern 

of the time series. Nonetheless, the decision maker should be sure that the statistical forecast is 

utilised, the adjustment is necessary and the judgment is not biased, in order to avoid harming the 

performance of the statistical approach. 

2.3 FORECASTING ERROR 

The accuracy level of a forecast is vital for an organisation. An analyst must not only make a good 

forecast, but also know what the expected error is and how flexible the operating system should be 

in order to meet the expected differences between forecast and reality. 

2.3.1 Measuring forecasting error 

The forecasting accuracy should be tested according to different perspectives. First is the goodness 

of fit, which shows how well the model is able to reproduce the actual known data. On the other 

hand, the out of sample perspective shows the predictive accuracy to unknown data. In order to 

measure the out of sample accuracy, the full amount of data is separated into a training and test set. 

The training set is used for the estimate the parameters of the forecasting model. Firstly the model is 

formulated, then the data of the training set are initialised and the parameters of the model are 

optimised by the most appropriate method (depending on the model) and according to the values of 

the data. Then, the model is ready to generate forecasts for the test set data. The out of sample 

forecast accuracy is then determined by comparing the forecasts with the actual data, which have 

not been used for the model development (Makridakis et al., 1998). 

The forecasting error can be calculated as: 

 
ttt FYe −=

 

(2. 2) 

With et is the forecasting error, Yt the actual value and Ft the forecast for period t. 
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Hyndman and Koehler (2006) classify five types of statistical indices that measures forecasting 

accuracy. These are: 

Scale dependent indices:  They are useful for comparing the accuracy of different forecasting 

techniques on the same data set, but useless for comparison of different data sets or sets with 

different scales. These are: 

Mean error:

 

∑
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(2. 3) 

Mean error is mainly used to find if the forecast is biased. If mean error is zero, the forecast is 

unbiased because the total underestimation error is equal to the total overestimation error. If the 

mean error is positive, there is underestimation bias because the forecasts tend to be smaller than 

the actual values (2. 2). On the other hand, if it is negative, there is overestimation bias.  
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Root mean squared error: ∑
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Mean absolute error: 
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Median absolute error: temedianMdAE =
 (2. 7) 

Percentage errors: They are scale-independent and they can be applied for comparing different 

series:  

Mean absolute percentage error: 
∑
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Median absolute percentage error: 
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Root mean squared percentage error: ∑
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Root median squared percentage error: 
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(2. 11) 

Despite their widespread use, percentage errors have several disadvantages. One disadvantage is 

that they are infinity for Yt = 0 and they have an extremely skewed distribution when any value of Yt 

is close to zero (Hyndman and Koehler, 2006). In adition, According to many authors stated that the 

biggest disadvantage of percentage errors is that they are asymmetric. Makridakis (1993) stated that 

“equal errors above the actual value result in a greater MAPE (or MdAPE) than those below the 

actual value”. Makridakis presented the asymmetry of percentage errors with the following 

example: for Yt = 100 and Ft = 150, the absolute et = 50 and the absolute percentage error is 50%, 

while for Yt = 150 and Ft = 100 the absolute et will still be 50, but the absolute percentage error will 

be 33.33%. In addition, Armstrong and Collopy (1992) argued that “the MAPE puts a heavier penalty 

on forecasts that exceed the actual than those that are less than the actual.”In case of 

underestimation, the maximum possible MAPE is 100%, whereas, in case of overestimation it can be 

infinity. 

Symmetric errors: These indices are suggested to overcome the disadvantages of the percentage 

errors:  

Symmetric mean absolute percentage error: ( )∑
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Symmetric median absolute percentage error: ( ) 200×
+

=
tt
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e

mediansMdAPE
 (2. 13) 

Indeed, the symmetric absolute percentage error of the above example will be 40% for both cases. 

However, Goodwin and Lawton (1999) underline three main problems of these measurements: 

1. There is a new type of asymmetry between the positive and negative errors. For example, if 

Yt = 100 and et = 10 the symmetric absolute percentage error will be 9.52%, but if et = - 10, 
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the symmetric absolute percentage error will be 10.53%. However, in both cases the simple 

absolute percentage error will be 10%. 

2. If the forecasts and actual values are of opposite sign, the symmetric MAPE will be very 

large. Especially, if the absolute values of the forecast and the actual value are equal, but 

they are of opposite signs, the symmetric MAPE is undefined. 

3. If | et | > 2| Yt | then the | et | will be reverse proportionate to the symmetric MAPE of 

period t. 

For the above reasons, Goodwin and Lawton (1999) support that the use of symmetric percentage 

errors should be avoided in favor the simple percentage errors. 

Both simple and symmetric percentage errors have several advantages and disadvantages; hence, 

they should be selected as accuracy measures according to the characteristics of the forecasting 

problem. If the forecasting error is relatively small, a simple percentage error measure should be 

preferred, because, there is no problem in measuring small errors, and symmetric errors tend to be 

asymmetric too. On the other hand, if the error is expected to be relatively big, the symmetric 

percentage errors should be preferred (with the exception when the absolute error is two times 

bigger than the actual observation, or when the forecast is negative). Nonetheless, there are no 

benchmarks; thus, it is up to the experience of the forecaster to select the most appropriate 

measurement. 

Relative errors: This is an alternative to the above. If et* is the forecast error from a benchmark 

forecasting technique (usually a simple random walk), then the relative error is et/et* (Hyndman and 

Koehler, 2006). The available indices are: 

Mean relative absolute percentage error: 
∑
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Median relative absolute percentage error: 
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(2. 15) 

The relative errors overcome the disadvantages of the percentage errors. Nevertheless, their main 

disadvantage is that they tend to be infinite if et* is close to 0. 
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Scaled errors: Hyndman and Koehler (2006) state that scaled error indices are widely applicable and 

are always defined and finite, in contrast with the relative errors. The proposed indices are: 

Mean absolute scaled error: 
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Theil’s U-statistic: ∑
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The explanation of a scaled error index is the following: 

• If it is equal to 1 then, the accuracy of the model is the same as with the naïve Ft = Yt-1 

method 

• If it is smaller than 1, then the model being tested gives better results than the naïve 

method and the smaller the index, the better the model is. 

• If it is greater than 1, then naïve method produces better results. 

Both the relative and scaled errors are good accuracy measures for comparing forecasts, but they do 

not compare the error with the actual observation; thus, they do not make clear of how good or bad 

a forecast is independently. For this reason, they should be considered rather supplementary instead 

of alternative to percentage errors. 

It may be difficult to select the most accurate forecasting method based on several accuracy 

measures. The reason is that models may perform dissimilar on different evaluation indices. Thus 
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the analyst should specify a cost function before selecting of the most suitable forecasting model 

(Swanson and White, 1997). 

The level of accuracy is usually the main criterion for the selection of the best forecasting method. 

Nevertheless, Yokum and Armstrong (1995) state that, in addition to the accuracy, there are other 

criteria that analysts should take into account when they choose the most suitable method. 

Additional criteria may be interpretation, functionality, flexibility or required data availability. In 

practice, models have a tendency to do better on some criteria and worse on other. The number and 

the hierarchy of the selection criteria always depend on the judgment of the analyst. 

2.3.2 Cost of forecasting error 

The error of a forecast results in a cost for the organisation. The cost of the forecasting error is given 

by the function:  

 ( )eCC =

 

(2. 21) 

Where e if the error in a forecast and C the associated cost. 

According to Newbold and Bos (1994), the forecasting error equation has the following 

characteristics: 

1. If the error is zero, then the cost is zero; thus: ( ) 00 =C  

2. There is a positive relationship between the cost and the absolute value of the error; 

thus, the greater the error, the greater the associated cost. Hence, for 21 ee > , 

( ) ( )21 eCeC >   

3. The cost of error equation is often symmetric; hence the cost of a positive error is often 

equal to this of a negative error: ( ) ( )eCeC −=  

The first two characteristics are always applicable; nevertheless, situations where the cost of 

overestimation differs from this of underestimation are very common. For example, the cost of 

undersupply usually differs from cost of the oversupply. From a microeconomic perspective the cost 

of over supply is often greater; whereas from a marketing perspective uncovered demand tends to 

cost more than unexploited reserves.  
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The most common symmetric cost functions are: 

I. Quadratic error cost function. The error cost is directly proportional to the squared error: 

( ) 2~ eeC  

II. Absolute cost error function. The error cost is assumed to be proportional to the absolute 

error: ( ) eeC ~  

There are additional factors that affect the cost of errors. Sanders and Graman (2006), in their effort 

to quantify the cost of forecasting error and the impact in the warehouse, found that forecast bias is 

significantly more detrimental to cost compared to the standard deviation of forecasts. Standard 

deviations of forecasts result from poor forecasting, whereas forecast bias is typically managerially 

introduced. 

2.4 TIME SERIES ANALYSIS 

There are two types of time series analysis: time series decomposition and forecasting. 

2.4.1 Decomposition 

A time series pattern can be usually decomposed into sub-patterns that represent different elements 

of the time series. In economic and business series, patterns are usually decomposed in three parts, 

trend-cycle, seasonality and randomness. The trend-cycle represents long term changes in the level 

of the series, whereas the seasonality presents periodic variation of regular length (like the 

variations of the temperature during a year). On the other hand, randomness represents the error or 

difference between the combined effect of the previous patterns of the series and the actual data 

(Makridakis et al., 1998). Thus, according to Makridakis et al. (1998), time series are made up as: 

Data = pattern + error 

= f (trend-cycle, seasonality, error) 

Decomposition, does not aim directly to forecasting, but to analysing the time series and identifying 

its characteristics. Its general mathematical representation is: 
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 ),,( tttt ESTfY =

 

(2. 22) 

Where Yt is the data value, St and Tt are the seasonal and trend sub-patterns and Et the irregular 

pattern for time t. 

The decomposition equation usually follows an additive or a multiplicative formulation, which are: 

a) Additive: tttt ESTY ++=

 

(2. 23) 

b) Multiplicative: tttt ESTY ××=  (2. 24) 

In addition, Newbold and Bos (1994) suggest the unobserved decomposition model, in which sub-

patterns are not observed. Forecasting practice has shown that this model is very applicable on most 

time series regardless of their characteristics (Newbold and Bos, 1994):  The formulation is the 

following: 

c) Unobserved: tttt SETY ×+= )(

 

(2. 25) 

A way to estimate the trend component is by smoothing the series to reduce the random variation. 

There are several smoothing methods, such as the simple moving average, double moving average, 

weighted moving average and regression smoothing (Makridakis et al., 1998). For more complicated 

series, more sophisticated techniques have been developed, such as the Census Bureau (X-11, X-12 

and X-12-Arima). 

In addition, decomposition can also be done graphically; by separating the series into three plots 

(trend-cycle, seasonal and random plot, Makridakis et al., 1998). Diagrams with most common time 

series patterns are presented in Figure 2.2. 

Decomposition can be used for forecasting, by projecting the separate plots into the future and re-

merging them to develop the forecast. The difficulty of the method lies in the accuracy of the 

components’ forecasts (Makridakis et al., 1998). 
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Figure 2. 2 Time series patterns 

Decomposition is mainly a method of understanding rather than forecasting a time series. It 

represents the behaviour of the series, which helps the analyst to understand better the forecast 

problem. Decomposition is useful as a preliminary step before selecting and applying a forecasting 

method (Makridakis et al., 1998). 

2.4.2 Time series forecasting techniques 

Most researchers (Anderson et al. 1998, Armstrong 2001, Hand et al. 2001, Makridakis et al. 1998) 

classify time series in four categories. These, together with the most common forecasting 

techniques, are the following: 

Simple methods 

These are the simplest forecasting techniques, which can be applied for any type of series; however, 

they do not give very accurate results for series with strong trend or/and seasonal pattern: 
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Naïve: The simplest, but widely used forecasting approach. The forecast is simply the last value of 

the time series (Aaker and Jacobson, 1987). 

Simple moving average: The forecast of is the average of a number of previous period values 

(Johnston et al. 1999) 

Cumulative moving average (total average): It is similar to the simple moving average; the forecast 

is the average of all the previous periods. This technique is very applicable for forecasting stationary 

series (series of data that is generated by a process which is in equilibrium around a constant value 

and where the variance around the mean remains constant over time, Makridakis et al., 1998). 

Weighted moving average: An extension of the simple moving average, where the values of the 

previous periods are weighted differently (Perry, 2010). 

Simple exponential smoothing: The forecast is based on two factors, the last period’s forecast and 

the last period’s actual value (Hyndman et al., 2008). 

Adaptive response rate exponential smoothing: An extension of simple exponential smoothing 

where the importance of the last period’s forecast and actual value change during the forecasting 

process (Trigg and Leach, 1967). 

Methods for series with trend 

Simple forecasting techniques are less effective on series that display a very strong trend. The 

following techniques can produce more accurate forecasts for series with a strong trend. 

Holt’s linear method: This is an extension of single exponential smoothing to linear exponential 

smoothing. In this case, there are two smoothing equations, where the first estimates the level of 

the series and the second the trend at a specific time (Hyndman et al., 2008). 

Damped exponential smoothing: This technique is an extension of Holt’s linear method and it is 

used when the time series trend is not linear, but there is a local slope to a future level of the data 

(Hyndman et al., 2008). 

Regression analysis: Measures the linear or non-linear relationship between the predicted variable 

(dependent) and the time (independent variable). It is very useful for the estimation of the trend of a 

time series. 
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Trend projections: A simple method that identifies the trend of the time series and projects it into 

the future (Dugdale, 1971). 

Methods for series with trend and seasonality 

In more complicated time series an additional pattern of seasonality can be observed. In this case, 

only techniques that consider the seasonality factor can produce accurate forecasts. 

Holt-Winters: Winter improved Holt’s linear method by adding a third smoothing equation that 

estimates seasonality. Thus, this technique allows both seasonal and trend influences to be 

incorporated into the forecast (Hyndman et al., 2008). 

Advanced forecasting methods 

For more complicated time series, the usage of more sophisticated techniques is required. The most 

common are the following. 

Box-Jenkins: This method was introduced by Box and Jenkins in 1970. It estimates the possible 

dependencies between the values of the times series from period to period. A more detailed 

presentation of this method will follow. 

Shiskin time series (X-11): This method separates the time series into seasonal, trend and error 

parts. It is very effective, but it requires a large amount of past data points (at least 36 data points of 

history). 

Data mining: The method uses statistical analysis and machine learning tools on large amounts of 

data in order to determine patterns of the time series that will aid forecasting (Morales and Wang, 

2010, Delen et al., 2011). 

Bayesian forecasting: These are forecasting techniques based on Bayesian statistics. In these 

methods, the forecasts are based on parametric modelling. The parameters of the model are 

estimated according to the priori probability distribution of the observation of the series. The 

advantage of Bayesian forecasting is that it presents the probability distribution of the forecast that 

reflects the uncertainty due to the parameter estimation (Hoogerheide and van Dijk, 2011, Yelland, 

2010, Smith and Freeman, 2010, Chen et al. 2011). 
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Computational intelligence: Instead of statistical methods, quantitative forecasting can be based on 

computational intelligence tools. These approaches are favourable for forecasting long series with 

complex, nonlinear patterns. Computational intelligence based techniques are common to be black-

box forecasting because the relationship between the time and the values remain hidden from the 

practitioner. Such methods are artificial neural networks (Wong et al., 2010, Shah and Guez, 2009), 

fuzzy predictions (Luna and Ballini, 2011), evolutionary and genetic algorithms (Jursa and Rohring, 

2008, Venkatesan and Kumar, 2002) or hybrid.  According to Simpson (1992), the removal of the 

undesirable noise (error) of a pattern is one of the most common operations that computational 

intelligence approaches perform. 

2.4.3 The Box-Jenkins methodology for ARIMA models 

The main objective of this research is to explore the usage of mathematical programming and linear 

programming in particular to optimise autoregressive based forecasting models. Thus, this part of 

the literature review focuses on a more detailed review of ARIMA models (Autoregressive-

Integrated-Moving Average). ARIMA models were introduced by George Box and Gwilym Jenkins in 

the early 70s. This methodology utilises dependencies among values of the series during discrete 

times. The ARIMA models are combinations of autoregressive, moving average and random walk 

(integrated) models to produce forecasts for both stationary and non-stationary time series. Thus, 

the name of the methodology is Autoregressive (AR) Integrated (I) Moving Average (MA) models. 

The three parts are as follows: 

1. Autoregressive models: 

 
tptpttt eYbYbYbbY +++++= −−− ...22110

 

(2. 26) 

This is a regression equation, where the independent variables are time-lagged values of the 

predicted variable Yt,, b0 is the constant coefficient, bi (i ∈ [1, p]) are the parameters and et is the 

white noise (error) for period t. 

2. Moving averages are described by the following equation: 
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(2. 27) 

In this case, the independent variables of the regression are the past errors of the forecasts. This 

equation produces the moving average of the error series et for period t, while c0 is the constant 

coefficient and ci (i ∈ [1, q]) are the parameters of the model. 

3. Integrated models reduce the difference level of the series that takes place in order to transform a 

non-stationary series into stationary ones. The difference is defined as the difference between two 

observations in the series. Thus: 
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(2. 28) 

This equation produces a first-order difference. According to Makridakis et al. (1998), stationarity is 

usually achieved by taking the first-order difference. Nevertheless, if it is necessary for additional 

differencing, the second-order difference is: 

 
211 2 −−− +−=′−′=′′ tttttt YYYYYY

 

(2. 29) 

In case of series with seasonality, seasonal stationarity is required. The seasonal difference is the 

difference between an observed value and the corresponding observation from a previous period. 

For example, for monthly data with annual seasonality, the first order difference will be: 

 
12−−=′ ttt YYY

 

(2. 30) 

For a non-stationary time series the integrated model can be also written as: 

 
ttt eYY =− −1

 

(2. 31) 
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Where et is the white noise (Makridakis et al. 1998). This can be rewritten as: 

 
ttt eYY += −1

 

(2. 32) 

This is widely used for non-stationary data and is known as a random walk model (Box and Jenkins, 

1970). 

There are several ways to test the stationarity of a time series. The most common are the plot of the 

autocorrelation function (ACF), the plot of the partial autocorrelation function (PACF), the Ljung – 

Box test and Portmanteau tests (Makridakis et al., 1998). 

According to Newbold and Bos (1994), the ARIMA methodology is limited to time series with the 

following two characteristics: 

1. There is a linear correlation between the forecasts and the actual values of the series. 

2. The objective is to develop efficiently parameterised models, which are models that 

present a satisfactory explanation of the characteristics of a time series with the 

minimum possible parameters. 

The general model of the Box-Jenkins methodology is presented as ARIMA (p, d, q), where: 

p: order of the AR part (number of the explanatory variables of the autoregressive model). 

d: difference order of the Integrated part. 

q: order of the MA part (number of coefficients of the moving average model). 

The optimal order p and q for an ARIMA model is estimated with the use of the time plot of ACF and 

the PACF. For the AR the optimal order p is indicated by the lag where the PACF drop to or near to 

zero. In the same way, for the MA the optimal order q is the lag where the ACF drops to or near to 

zero. The ACF and PACF plots are an indication on the identification of the optimal order of pure AR 

or MA models. The order of mixed ARMA or ARIMA models is more difficult to identify. Hence, the 

decision maker should begin with a pure AR or MA model and consider extending it to ARMA or 

ARIMA. 
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There may be more than one optimal value for the order m (= p + q) of an ARIMA model. The way to 

select the best alternative is by using the Akaike’s Information Criterion (AIC, Akaike 1974). If L is the 

likelihood for a model of order m to be the optimal then: 

 mLAIC 2log2 +−=

 

(2. 33) 

The optimal order is the one with the smallest AIC. If the decision maker does not have the means to 

estimate the actual AIC, an approximation is given as: 

 2log))2log(1(log2 σπ nnL ++≈−

 

(2. 34) 

Hence: mnnAIC 2log))2log(1( 2 +++≈ σπ

 

(2. 35) 

Where n is the number of the observations of the series and σ2 is the variance of the residuals. 

In the literature, there can be found many variations of the AIC, such as the Bayesian Information 

Criterion (BIC, Schwarz, 1978) or the Final Prediction Error (FPE, Akaike, 1969). A completed review 

can found in Konishi and Kitagawa (2008). 

The main characteristic of an ARIMA model is that it covers a variety of models. Makridakis et al. 

(1998) presents a stepwise procedure to assist in the identification of the parameters of the model 

(p,d,q). After the estimation of the orders, the coefficients of the different parts should be 

estimated. Makridakis et al. (1998) suggest that the most common methods are these of the least-

squares and the maximum likelihood estimation. 

Box and Jenkins (1970) have summarised their ARIMA methodology in three phases, using the 

following diagram: 
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Postulate General Class 
of Models

Identify Model to be 
tentatively Entertained

Estimate Parameters in 
Tentatively Entertained 

Models

Diagnostic Checking (is 
the model adequate?)

Use the Model for 
Forecasting or Control

If No

If Yes

 

Figure 2. 3 The Box-Jenkins ARIMA methodology 

Source: Box-Jenkins (1970) 

2.4.4 ARIMA extensions 

The general ARIMA model has been the basis for extended, more complicated forecasting models, in 

order to deal with issues, such as missing data in the time series, and or also considering external 

information (mixed time series – causal models). Some of the most well-known extensions are the 

following:  

• Autoregressive conditional heteroskedasticity (ARCH, Engle, 1982, 1987) and generalised 

autoregressive conditional heteroskedasticity (GARCH, Bollerslev. 1986) for financial 

time series with time-varying volatility. 

• Regression with ARIMA errors. 

• Dynamic analysis models (Winker, 2006 and Fan and Söderström, 1997) for continuous 

time representation (e.g. dynamic inventory control systems). 
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• Auto-regressive auto-regressive moving averages (ARARMA) models (Parzen, 1982). 

• Multivariate autoregressive (VARIMA) models. 

• Robust trend models (Grambsch and Stahel, 1990). 

• State space models. 

• Non-linear ARIMA models (e.g. coefficient estimations with artificial neural networks). 

• The X – 12 – ARIMA model (Pierce, 1980) for seasonal adjustment that combines the 

Census X – 11 technique with the ARIMA methodology. 

2.5 COMBINED FORECASTING 

Combinations of forecasts were introduced by Bates and Granger (1969) and it is a very common 

way to improve the forecasting accuracy. The forecasts that are combined can be based on different 

data or different techniques. The main idea of combining forecasts lies in the fact that different 

forecasting methods contain useful and independent information. According to Armstrong (2001) 

the areas of expert forecasting and econometric forecasting have proved good evidence about the 

improvement of forecasting accuracy through combining individual forecasts. Moreover, combining 

forecasts has been very useful when it is difficult to select the most accurate forecasting method. It 

has been shown a good way of hedging the risk in situations of very expensive forecasting errors 

(Armstrong, 2001). Makridakis (1989) states that the accuracy of an individual forecast is sensitive to 

several factors that may affect the accuracy. Combined forecasting works because it distributes the 

risk of such errors using several individual techniques. On the other hand, Andrawis et al. (2011) 

state that the benefit of combining forecasts is the prospect to combine short-term and long-term 

forecasting. 

Combining can be expressed mathematically as follows: 
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and 10 ≤≤ iw
 

(2. 41) 

Where there are k forecasts that are combined. Fct is the combined forecast at time t, Fit is the result 

of forecast i (1 ≤ i ≤ k) and wi is the weight of forecast i. 

Researchers (e.g. Newbold and Bos, 1994, Russel and Adam, 1987 and de Menezez et al., 2000) 

agree that the most common methods to estimate the values of the combing weights are: 

Simple average – equal weights case: The simplest way to combine individual forecasts is to assign 

them equal weights. Hence: 
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(2. 42) 

thus k
wi

1
=  (2. 43) 

An alternative to the simple average is the median. 

Inversely proportional weights: This is a more sophisticated method that was introduced by Bates 

and Granger (1969). The forecasts are combined according to their individual performance. 

Specifically, the weight of a forecast is estimated according to the accuracy of the forecast compared 

with the sum. Newbold and Bos (1994) state that there are two factors, which should be considered 

for the estimation of the weights. The first is that the methods that perform better should have 

higher weights. Secondly the weighting procedure may need to be adapted in order to take into 

account the possibility that the performances of a forecasting method may change over time. The 

weights are estimated according to the inverse proportion of an accuracy index of an individual 

technique, divided by the sum of the inverse proportion of the accuracy index of all the techniques. 

The formula for assigning the weights using the inverse proportion of the mean squared error is: 
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(2. 44) 
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Where MSEi is the mean squared error of forecast i. The inverse proportion to other accuracy indices 

(mean absolute error and mean absolute percentage error) is formulated in a similar way. 

Regression-based weights: When there are two forecasts to be combined, an alternative approach 

of assigning weights to forecast in to use a simple linear regression model. Suppose that there are 

two forecasts with weights w1 and w2 respectively, then, it is assumed that w2 = 1 – w1. Thus, the 

equation of the combination is: 

 
ctttt eFwFwY +−+= 2111 )1(

 

(2. 45) 

Where Yt is the actual value and ect is the combined forecasting error. The above equation is 

rewritten as: 

 
cttttt eFFwFY +−=− )()( 2112

 

(2. 46) 

According to Newbold and Bos (1994) the regression based method is not preferable compared with 

the other two methods. 

Weights based on the absolute error: The weights are assigned according to the number of times a 

technique gives the minimum absolute error in a series. The formula of the combination is: 
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(2. 47) 

 

With δ the Kronecker delta and ADit is the absolute error by individual technique i at time t. Hence: 
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(2. 48) 

A further extension is to introduce judgmental forecasts in the forecasting combination. Sanders and 

Ritzman (1990) proved that the accuracy of quantitative techniques is improved when they are 
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combined with judgmental forecasting. Especially in time series with a high level of unpredictability 

and uncertainty the introduction of the judgmental element may increase the accuracy of the 

results. 

Russell and Adam (1987) present an empirical evaluation of the performance of various techniques 

for combined forecasts. They used a data set of 31 randomly selected series from the M competition 

and ten simple individual techniques. They evaluate the performance of ten different combination 

methods, including the simple average, the inverse proportion to MAD, MSE, MAPE on selected 

series, the average of the three, the average of the best five techniques according to their 

performance on the MSE, the inverse proportion to the MSE for all the techniques, the selective 

weights according to the performance based on the absolute error and the selective weights 

according to the performance based on the absolute error with indicator values. The last is an 

extension of the simple selective weights based on the absolute error method, where it applies 

hierarchical weights (indicator value) to the individual techniques in reverse analogy to their 

performance based on the absolute error. The least accurate technique is weighted with 1, the 

second least with two and so on and at the end each weight is divided are with the sum of the 

weights. The results show that the inverse proportion, average inverse proportion and the selective 

weights based on the absolute error with indicator values were the most accurate. 

Hibon and Evgeniou (2005), in their study of the accuracy of forecasting combinations, reached the 

following three conclusions: 1. The accuracy of the best individual forecasting techniques that are 

tested on the a time series is the same with the best combinations, however, the worst forecasting 

techniques perform significant worse than the worst combinations. 2. The accuracy of forecasting 

combinations may drop significantly when more and more individual forecasts are added. 3. Finally, 

choosing an individual forecast from a set of available methods is more risky than choosing a 

combination. Thus, a chosen individual method may have significantly worse performance in 

practice than a chosen combination (according to the authors this is the most important result of the 

study). 

Finally, Kolassa (2011) presented a method, where the optimal combination is selected according to 

the AIC and BIC. In his study he combined different exponential smoothing forecasts and tested his 

method in a sample of series from the M and M3 completions. He combined his method with simple 

combination techniques (average and median) and the best individual technique according to the 

AIC and BIC.  The experiment show that the AIC and BIC based combinations outperform best 

individual forecasts overall. On the other hand, simple combinations and AIC and BIC based 

combinations tend to perform similarly, while simple combinations sometimes are outperformed 
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than the best single forecasts. Even if the results of the paper were promising, the comparison was 

only between the AIC and BIC based combinations and not other more advanced combination 

techniques (e.g. Inverse proportion). 

The main disadvantage of the above combination techniques is that they distribute the weights 

between all the individual forecasts that are used. The less accurate forecasts will are having smaller 

weights compared with the more accurate (with only exemption the simple average, where the 

weights are distributed equally). However, adding less accurate forecasts to a combination may 

affect the total accuracy of the combination. Hence, the decision maker should select and combine 

the most accurate forecasts, or the forecasts that are expected to be more accurate, instead of using 

all the alternatives. 

2.6 MATHEMATICAL PROGRAMMING FOR FORECASTING 

Linear optimisation has been presented several times as an alternative to the least squares and 

maximum likelihood methods for estimating the parameters of a linear regression. Nevertheless, 

while linear programming has been used in many areas were a regression technique is applicable 

(e.g. discriminant analysis), the literature in the area of forecasting is very limited. 

2.6.1 Mathematical programming in statistics 

The first time when linear optimisation was identified as a tool for estimating the coefficients of a 

linear regression was by Wagner (1959). In his study he states that while the traditional least squares 

method produces the Minimum Squared Error of a regression analysis, the simplex method can 

produce two additional best-fit criteria, the Minimum Absolute Deviation (MinAD) and the Minimum 

Maximum Absolute Deviation (MinMaxAD). A linear program is used in order to calculate the 

parameters of the regression equation that minimise the MinAD and MinMaxAD respectively; the 

objective function is one of these best-fit criteria (MinAD or MinMaxD) and the constraints are the 

linear equations for each of the observations. If xij is the independent variable, yi the dependent 

variable, bj (1 ≤ j ≤ k) the coefficient of xij and ei the regression error, i (1 ≤ i ≤ k) is the index of the 

observation and j (1≤ j ≤ n) the index of the coefficient then the equation of the regression is1: 

                                                            
1 The author has excluded the constant coefficient b0 to simplify the example. 
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The linear programming formulation for the estimation of the MinAD of a linear regression is the 

following: 

Objective function: 
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This can be rewritten as: 
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(2. 51) 

Where e1i is the under-estimation and e2i the over-estimation error; thus, the total estimation error is 

ei = e1i – e2i. According to this, the constraints of the model are: 
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For 

i =1, 2, ….., k 

bj unrestricted in sign for each j 

e1i, e2i non-negative. 

In the same way, the formulation for the estimation of the MinMaxD is: 
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(2. 53) 

Which can be rewritten as: 

 ( )eMin

 

(2. 54) 

Were e is the maximum absolute deviation. Thus the constraints of the program are: 
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i = 1, 2, ….. , k 

bj unrestricted in sign for each j 

e, non-negative. 

Kiountouzis (1973) uses Monte Carlo simulation to evaluate the use of the MinAD regression in 

comparison with the least squares method (that minimises SSE). He conducted the simulation using 

four different error distributions, uniform, normal, Laplace and Cauchy. The experiments 

demonstrated that the linear programming was a better estimator of the parameters of the linear 

regression when the errors were given in a Laplace or Cauchy probability distribution. Nevertheless, 

the study illustrates that it may introduce a small bias even in symmetrical error distributions. 

Arthanari and Dodge (1981) present two additional best-fit criteria, the Minimum Absolute 

Difference between Deviations (ADBD) and the Minimum Absolute Difference between Absolute 

Deviations (ADBAD). Similarly to the MinAD and MinMaxAD models, a linear program is used in 

order to calculate the parameters of the regression equation that minimises the ADBD and ADBAD 

coefficient of xij and ei the regression error, i (1 ≤ i ≤ k) is the index of the observation and j 
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respectively. If xij is the independent variable, yi the dependent variable, bj the (1≤ j ≤ n) the index of 

the coefficient then the linear programming formulation for the estimation of the ADBD of a linear 

regression is the following: 

MinADBD  

Objective function: 

 ∑
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(2. 57) 

for e1il and e2il the absolute positive and negative differences between the errors ei and el, this can be 

written as: 
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(2. 58) 

Subject to the following constraints: 

 lieeee ililli <∀=+−− 021

 

(2. 59) 
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For 

i =1, 2, ….., k and l [i, k] 

e1il, e2il non-negative and ei and bj unrestricted in sign. 

Similar will be the formulation of the program that minimises the ADBAD is as follows. 

MinADBAD  
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This can be written as: 
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(2. 62) 

For e1il and e2il the absolute positive and negative differences between the errors ei and el,. 

Subject to the following constraints: 

 lieeeeee ililllii <∀=+−−−+ 0212121

 

(2. 63) 

Where e1i is the under-estimation and e2i the over-estimation errors of period i 

And  (2. 52) 

For 

i =1, 2, ….., k and l [i, k] 

e1i, e2i , e1il, e2il non-negative and bj unrestricted in sign. 

One of the most studied applications of linear programming for solving typically statistical problems 

is the area of classification and specially discriminant analysis. Discriminant analysis is an “approach 

to conveniently identify significant subsets of individual observations by exploring common and 

contrasting features” (Freed and Glover, 1981). Freed and Glover (1981) present how LP can be used 

to solve a simple two groups classification problem. Similar to regression, the objective function of 

the discriminant analysis problem is to minimise the sum of the classification errors, where the 

constraints are the equations of each observation. The program has to specify the parameters of the 

equations that minimise the objective function. 

Further research on the field has shown that LP models can exceed the limitations of traditional 

statistic tools and, in turn, deal with more complex problems. Examples are Freed and Glover (1981) 

who develop a Linear Goal Programming model for classifying observations into more than two 
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groups. Moreover, a hybrid LP model that integrates the simple LP with the previous goal 

programming has been presented in Glover (1990). In addition, non-linear extensions of the LP 

model, which deal with higher complexity, can found in the literature (e.g. Glen, 2003 and 2006). 

In the field of time series analysis, Feigin and Resnik (1992, 1994, 1995, 1997 and 1999) and Feigin et 

al. (1996) suggested a linear programming based method for estimating the parameters of a 

stationary autoregressive function with heavy tailed error distributions (e.g. Pareto distribution and 

Levy distribution). For the autoregressive processes: 
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(2. 63) 

Where Yi is the predicted variable, Yi-j are the explanatory variables, bj is the coefficient of Yi-j, ei is 

the forecasting error, i (1 ≤ i ≤ n) is the index of the forecasting period and j (1 ≤ j ≤ k) is the order. 

The formulation of the linear program is: 
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Subject to: 
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bj unrestricted in sign. 

2.6.2 Mathematical programming for estimating the parameters of forecasting models 

While mathematical programming has been shown to be a strong tool for solving statistical 

problems, the research in the area of forecasting applications is limited. There are a few studies 

about the usage of optimisation as a supplementary tool for forecasting. Examples are this of 

Mosheiov and Raven (1997) who apply simple linear programming to estimate the trend of a time 

series. Dhahri and Chabchoub (2007) have presented a non-linear goal programming model as a tool 

to estimate the optimal order of ARIMA models. 
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One of the studies on the estimation of the parameters of a forecasting model using optimisation is 

this of Segura and Vercher (2001). They examined the effectiveness of using spreadsheets for 

optimising a Holt-Winters forecasting model. They use the spreadsheet’s solver to develop a simple 

non-linear program that estimates the optimal parameters of the forecasting model. In addition, 

Bermudez et al. (2006) applied the approach of Segura and Vercher (2001) for demand forecasting. 

They used the Holt-Winters formulation in both additive and multiplicative seasonal forms.  

A second study on optimisation for the estimation of the parameters of a forecasting model comes 

from Amin and Emrouznejad (2007). In their study they used the theory of inverse optimization 

(Tarantola, 1987, Zhang and Liu, 1996). According to Ahuja and Orlin (2001), an inverse linear 

programming problem (ILPP) is an alternative solution method for a linear program. Their theory 

indicates that the ILPP is the formulation of a new linear problem “the solution of it (which is similar 

to the original problem and the associated dual solutions) can be used to solve the inverse problem” 

(Amin and Emrouznejad, 2007). The relationship between the original problem and the 

corresponding ILPP is that the decision variables of the first are used as given parameters to the 

second, and vice versa. The optimal solution of the original problem is the feasible solution that will 

give zero as optimal solution to the ILPP. 

In their study, Amin and Emrouznejad (2007) have applied inverse linear programming to estimate 

the parameters of a causal forecasting model. Specifically, they apply inverse linear programming to 

minimise the MAD of a linear regression. The accuracy of their model is validated by its application 

on a small sample of actual data. 

Trapp (1986) uses linear programming to estimate the parameters of a wheat econometric 

forecasting/decision model. The forecasting part of the model predicts the storage profit and loss, 

while the decision part considers the alternatives of either to store or not. The model consist of a 

multiple linear regression where the dependent variable is the rate of return to storing and the 

independent variables are the available quantity of wheat production and the changes of wheat 

stocks during a year. The linear program estimates the parameters of this equation that maximise 

the profits of the two alternative decisions. The results are compared with an ordinary least squares 

(OLS) based econometric model on a twenty four years period data set. The comparison shows that 

the LP formulation results in higher profits compared with the OLS formulations, while the latter is 

superior in terms of accuracy. 

Soliman et al. (1997) use linear programming to minimise the absolute error and the OLS method 

(minimises MSE) for the applications of short term electricity load forecasting. The models consist of 
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a multiple linear regression, a harmonic decomposition and a hybrid application and they are tested 

on a contaminated data set with 20% gross error load measurements and an uncontaminated data 

set without error measurements. The results show that if the data are coming from a contaminated 

source, both techniques perform very similarly; while, if the source is uncontaminated, linear 

programming formulations were more accurate. 

Mohammadi et al. (2006) used non-linear goal programming to estimate the parameters of an 

ARMA model for river flow forecasting. The formulation is very similar to the linear program for 

linear regression model. The first objective is to minimise the absolute deviation in the whole series 

and the second in a specific periods in the series. The results were compared with the maximum 

likelihood method. The comparison showed that the second approach was more accurate and better 

in terms of computational time. 

2.6.3 Mathematical programming for combining forecasts 

Mathematical programming has been used as a method to combine forecasts. The initial linear 

programming formulation is similar to the linear regression formulation where: 

Objective function: 
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(2. 71) 

for e1t, e2t non negative 

were there are k forecasts that are combined. Fct is the combining forecast and Yt the actual value at 

time t, Fit is the result of forecast i (1 ≤ i ≤ k), wi is the weight of forecast i and e1t and e2t the 

underestimation and overestimation errors of the combined forecasts respectively. 

The first time that linear programming was used to combine forecasts was by Reeves and Lawrence 

(1982). In their study they developed two multi-objective linear programming models to combine 

three simple forecasting techniques in a series of thirty periods. The first linear program minimises 

the sum of absolute errors in the whole series, the sum of the positive errors in the whole series and 

the sum of the absolute errors in the most recent data points of the series; the second minimises 

both the sum of the absolute errors and the maximum absolute error in the whole series. The 

authors present different combinations that come from alternative possible solutions of both 

models and give the decision maker the opportunity to select the most favorable. The authors state 

that while their methodology generates efficient combinations, the presented example cannot be 

used to draw general conclusions about the applicability of the method. 

Reeves et al. (1988) apply the first model of the above paper in a case study to combine the 

forecasts of the earnings of six major corporations. The results show that the combined forecast 

utilises all the individuals and it outperforms their accuracy in general. 

Similar to the above, Zhou et al. (1999) present a multi-criteria multi-constraint (MC2) linear 

programming formulation for combining forecasts. The multi-criteria part reflects the difference in 

importance of different periods in the series, while the multi-constraint part presents the opinions of 

different forecasting experts. The authors applied their model to forecast the development rate of 

the telecommunications industry in south China for five years. They used three different techniques 

and they considered the opinions of three experts of different backgrounds. The analysis shows that 



CHAPTER 2  CURRENT RESEARCH STATUS 

44 
 

the combined forecast outperforms the individual techniques that have been used; however, the 

results are not compared with different combination methods. 

Lam et al. (2001) present two models that minimise the sum of the absolute percentage errors and 

the maximum absolute percentage error. They apply their model on the data and the techniques 

used by Reeves and Lawrence (1982) and they compare their results with three other combination 

techniques, average, variance – covariance (Kang, 1986) and odds matrix (Clemen and Winkler, 

1986, Gupta and Wilton, 1987). The results show that the LP models generally outperformed the 

other three combination techniques. 

Reeves and Lawrence (1991) present a multi-objective linear integer programming model and a 

multi-objective linear programming model, which is a relaxed version of the former. The models 

minimise the sum of the absolute errors and the number of periods in which the forecasted 

direction of change is incorrect. The models are tested on the data by Reeves and Lawrence (1982) 

and an additional data set. The results show that the combined forecast was better than the 

individuals in terms of accuracy. 

Leung et al. (2001) use non-linear preemptive goal programming to combine three individual 

forecasts according to their performance on investment returns. The objectives are to minimise the 

mean (expected) return, the variance (risk) and the skewness of the investment respectively. They 

tested their model on a period of sixty observations of three stock market indices (S&P 500, FTSE 

100 and Nikkei 250) and they compare the accuracy with the individual forecasts and four other 

combination techniques (simple average, inverse proportion to MAD and MSE and weights based on 

the absolute error performance). The results indicated that the proposed model outperforms the 

individual forecasts and the other combination techniques, and its superiority becomes clear when 

the market displays significant volatility and instability. 

Finally, Lawrence et al. (2010) have formulate a preemptive GP model for combining forecasts, 

where the first objective is to minimise the sum of the absolute deviations on the sum on all the 

series, the second is to minimise the sum of the underestimation deviations and the third to 

minimise the sum absolute deviations in the last five periods of the series. The authors try to 

improve the initial formulation with two alternatives. The first is by fuzzifying the constraints of the 

program with give tolerance values (Fuzzy Approach Using Soft Constraints, FAUSC). The second is by 

transforming the preemptive GP model into a weighted additive GP model, where the objective is to 

optimise a simple additive fuzzy objective function (Fuzzy Approach Weighted Additive Model, 
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FAWAM). The objective function consists of multiplying each membership of the fuzzy goal with the 

weight of importance and adding them together. 

The models are tested on the data by Reeves and Lawrence (1991). The analysis shows that the 

initial preemptive GB model improves the results of the individual forecasts. However, FAUSC and 

FAWAM significantly improve the results further. The differences between the two are relatively 

small. 

2.6.4 Discussion 

As we can see, the research in the field is very limited. However, the studies indicate that an LP 

based approach may performs better than the counterpart OLS in some cases. Specifically, in the 

area of statistical analysis, the study of Kiountouzis (1973) shows that LP is a better estimator when 

the error are follow specific types of probability distributions (Laplace or Cauchy) and Feigin and 

Resnik (1992) show that LP is a good method to estimate the parameters of an autoregressive model 

for a stationary series with positive innovations. Nevertheless, these studies are rather in the field of 

theoretical statistics than forecasting. 

In the field of forecasting, Soliman et al. (1997) shows that LP works better than the OLS on their 

application and Trapp (1986 shows that LP based forecasts have lower cost of forecasting error than 

the OLS) in his case study. However, both studies are the area of causal forecasting and they are 

rather real life applications than research in forecasting theory. The limited studies in the field (there 

is no study in time series forecasting) and the sign that LP may give good results indicate that this is a 

promising area for further research. 

On the other hand, there are many studies in the area of LP for combined forecasting. The studies 

show that the LP based combinations produce good results, but their performance has never been 

compared with different combination methods. In addition, LP does not have the main disadvantage 

of the traditional combination techniques because it does not have to give a weight to every 

individual technique that is used, but it can easily distribute the combination weights between the 

most accurate individual forecasts according to the optimisation criterion. Thus, the comparison of 

LP based combinations with traditional combination methods is also an interesting area for further 

research. 
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2.7 THE FORECASTING COMPETITIONS AND THE FUTURE OF FORECASTING RESEARCH 

2.7.1 The M-Competitions 

The M-Competition was established by Makridakis in 1982 in a paper which studied the post-sample 

accuracy of several time series forecasting methods (Makridakis et al. 1982). The participants tested 

the accuracy of 24 methods on 1001 series with various horizons. The objective of the competition 

was to investigate how different techniques differ from each other and how information can be 

provided so that forecasters can be able to make practical choices under different circumstances 

(Makridakis et al. 1984). According to Makridakis et al. (1984) the most significant conclusions of the 

competition were the following: 

• The performance of a technique may differ according to different accuracy measures. 

Differences among methods were influenced by differences in the type of series used 

and the length of the forecasting horizon. 

• The nature of the series, such as the period (e.g. monthly, yearly) and data types (e.g. 

financial, demand) affects the forecasting accuracy of different techniques. 

• Seasonality, trend and randomness are the main factors that affect accuracy. 

• Sophisticated methods do not perform better than simpler techniques in patterns with 

considerable randomness. 

•  Both simple and sophisticated methods perform equally in patterns with a strong 

element of seasonality. 

• Combined forecasting reduces the forecasting error significantly. 

A major criticism of M-Competition was that the performance of statistical models was tested only, 

while in real situations forecasters use additional qualitative information to improve forecasts 

(Makridakis et al., 1993). This criticism resulted in a second M-Competition (the M2-Competition) in 

1987 that aimed to investigate forecasting under real situations. Five forecasting experts were 

required to produce forecasts for a number of companies using a combination of qualitative and 

quantitative models. In addition, traditional quantitative techniques were applied to the same data. 

In addition to the conclusions of the first M-Competition, the conclusions of the M2-Competion are 

summarized as follows: 
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• Exponential smoothing methods (simple and damped) were the most accurate. 

• Experts’ forecasts proved to be poor. 

• Combinations of different exponential smoothing methods produce good results, but 

are not better than individual. 

• Combinations of the experts’ forecasts proved better than individual. 

In 2000 Makridakis et al. launched a third competition. The aims of the M3-Competition were to 

clear up the accuracy issues of several forecasting techniques and to extend the results of the 

previous competition. The extension involved the use of additional techniques (mainly from the area 

of artificial intelligence), more practitioners and more series (3003). The findings of the M3 

confirmed the conclusions of the previous competitions. Particularly:  

• Sophisticated techniques are slightly better than simpler techniques for time series with 

limited variability. 

• The performance of a forecasting method differs according to the used accuracy 

measure. 

• The accuracy of combined forecasting is usually as good as or better than the accuracy 

of the individual methods that were combined as well as than the accuracy of other 

methods. 

• The best method for a series depends on the forecasting horizon. 

The three competitions have played a very important role in the forecasting research the last three 

decades and their results provided as basis for future forecasting research. 

In September 2010 Makridakis et al. launched a fourth competition. According to the competition 

team, the purpose of the M4 – Competition is to further study the accuracy and the utility of several 

forecasting techniques. For this reason, the number of the series, the categories and the forecasting 

techniques are increased. The results of the competition have not been published yet. 
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2.7.2 The NN Competitions 

The NN completions are “replications of the M competitions with an extension towards neural 

networks (NN) and computational intelligence (CI) methods” (Crone et al. 2011). The first 

competition (NN3) took place in 2006 and it was focused on monthly time series forecasting. The 

practitioners tested forecasting techniques based on neural networks and computational 

intelligence on a data sample of either 111 or 11 monthly series from the M3 competition. The 

NN/CI methods were compared with 17 benchmark techniques base on statistics. The results of the 

competitions drive further conclusions that mainly confirm these of the M competitions. 

Nonetheless, in contrast with the latter, the analysis shows that more sophisticated techniques 

based on NN/CI tend to outperform simples forecasting techniques. 

The next competition (NN5) took place in 2008 and was focused on extending the NN3 competition 

on daily time series. The practitioners tested their methods on a data sample of either 111 or 11 

daily series from the M3 competition, similarly to the NN3 competition. The results were compared 

with 12 benchmark statistical techniques and 12 benchmark NN/CI based techniques. The 

conclusions of this competition have not been published yet. 

Finally on 2010 Crone et al. announced a new competition (NNGC1). The aim of this competition is 

to extent the earlier NN3 and NN5 competitions on a new set of series of multiple frequencies. In 

this competition the techniques are tested on at least one of six datasets, containing 11 series each. 

The frequency of the series ranges from yearly to hourly. The results of the competition have not 

been published yet. 

2.7.3 The future of forecasting research 

As we can see, forecasting research and practice have improved during the last three decades, and 

the main reasons are the improved statistical and analytical models and the development of more 

mature approaches for estimation and evaluation. In addition, the importance of the rising power of 

computers and the increased information availability are recognised. Their proposals can be 

summarised in the following ten forecasting research suggestions (De Gooijer and Hyndman, 2006, 

Ramnath et al., 2008): 

1. Improvement of current statistical techniques. 

2. Focused research in non-linear forecasting techniques. 
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3. Development of multivariate techniques that will focus on their practical application. 

4. Further study on non-Gaussian methods. 

5. Specification of the objectives of the forecasts and development of forecasting systems 

that address these objectives. 

6. Development of quality assessment methods of the information that are used for 

prediction. 

7. Development of model selection techniques that will incorporate effective use of both 

data and experts knowledge. 

8. Further research in density forecasting (density forecasting is an alternative 

methodology that focuses on prediction of the probability density of future values rather 

than the average). 

9. Improvement of combining forecasts and understanding of the reason why combining 

works better in some cases than in some others. 

10. Improvement of forecast interval. 

On the other hand, Fildes et al. (2008) identify four business application areas that have proved 

fertile to new ideas: 

o Forecasting intermittent demand (Syntetos et al., 2009, Syntetos and Boylan, 2010). 

o Sales response modeling and direct marketing (Chun, 2012). 

o Credit scoring and credit risk management (Malik et al. 2010, Thomas et al. 2011). 

o Dealing with the bullwhip effect in a supply chain (Barlas and Gunduz, 2011). 

However, about the progress of forecasting research during the last years I endorse the opinion of 

Keith Ord in Daws et al. (1995), who states that: 

“we cannot expect to model change (of forecasting research) perfectly, or even to be 
very good at anticipating it. The best we can hope for is to recognize situations where 
the potential for change exists. We may then guide policy decisions in the light of that 
potential, examining the consequences of such changes, if they were to take place.” 
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According to Ord, it is not very likely to specify how the current forecasting methods will be 

improved in the future. Nevertheless, the opinion of academics and business experts is a good guide 

to estimate the trends of the research in this area for the next years. 

2.8 CONCLUSION 

The relevant literature of the field was presented in this chapter. As we can see, there is potential to 

explore LP applications for forecasting. Past studies show that LP is very applicable to theoretical 

statistics and there are many cases where LP works better when compared with the OLS (e.g. 

Kiountouzis, 1973, Feigin et al., 1996). Nonetheless, studies on LP applications on forecasting are 

very limited. All the applications are in the field of causal forecasting and there is no research on 

time series forecasting. In addition, the review indicates that LP application on combining forecasts 

could be explored further. After the literature review, the methodology of the study follows. 
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3 RESEARCH METHODOLOGY 

This study belongs to the scientific field of OR. Thus, the methodology is based on the OR model 

building procedure. In the first section I analyse the development of the linear programs. The second 

section focuses on the selection of the series, which the LP approaches are tested on. The selection 

method, decomposition and the statistical analysis of the series are presented. The third section 

presents the accuracy testing methodology, the comparison methodology of the LP-based 

approaches against traditional techniques that are found in the literature and the evaluation of the 

whole process. 

3.1 DEVELOPMENT 

All the techniques are based on linear programming formulations. The initial basis for them is the 

proposed LP formulation for regression analysis, as it was presented by Wagner (1959). However, in 

this study the objective function and the constraints differ according to the objectives of each 

model. All the AR models are of Order 6 and 12 regardless of the approach. It is possible to conduct 

identification test to determine the optimal order, using the PACF, AIC, BIC or FPE, as I described in 

the previous chapter. However, I did not estimate the optimal order of the AR models because the 

research focuses on the comparison of methods for estimating the parameters of known models 

rather than finding the optimal model for a series.  

3.2 DATA SELECTION AND ANALYSIS 

Two data samples were used, one of 60 series and one of 25 series from the 3003 series of the M3 

Competition2. The reason that I selected a sample of the total 3003 series of the M3 competition is 

the same reason for the limitation of the series of the NN3 competition. Crone et al. (2011) state 

that:  

“To determine the degree of automation or manual tuning required, and to address 
prevailing concerns on the computational demands of predicting a large number of time 
series with CIs, we allowed participants to choose between two (disguised) datasets of 
different sizes. The contestants were asked to predict either a reduced dataset of 11 time 
series or the complete set of 111 series (which included the reduced set) as accurately as 
possible. As a fully automated methodology could be applied to large datasets just as 

                                                            
2 The M3 competition data are available at the Principles of Forecasting website 
http://www.forecastingprinciples.com. 
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easily as smaller sets, more submissions for the reduced dataset would indicate the 
limitations of the automation through need for manual of extremely computational 
intensive approaches, and indicate the need for further research into methodologies.” 

For the above reason, the series of the competition were limited, and most of the practitioners took 

the option to use only the small dataset of 11 series. Similarly with the CI forecasting, there are not 

any statistical/forecasting packages with the option to estimate the parameters of forecasting 

models using linear programming. Thus, due to the absence of automation, I had to automate a 

significant part of the process myself. However, manual tuning was still required. In addition, 458 

linear programs were formulated for this study, 422 where applied on the 60 series sample and 36 

on 35 series (the 25 series of the second sample and 10 series from the first). Hence, in total 26,580 

LPs were solved and investigated. If I had used all the 3003 series, I would have to do 1,375,374 LPs, 

and spend much more time on automation, which was not possible due to the time limitation of a 

doctoral study. 

The initial data sample consists of 60 randomly selected monthly time series and consists of: 

• 12 Microeconomic series  

• 12 Macroeconomic series 

• 12 Series of monthly demand 

• 12 Financial series 

• 6 Series related to Demographic data 

• 6 Series under the category “Other” 

The descriptive statistics of the series are presented in Table 3.1. In the first line of the table shows 

the number of the series as stated in the M3 Competition section of the Principles of Forecasting 

website. 

Table 3. 1 Descriptive statistics - Initial sample 

  1 2 3 4 5 6 7 8 
Series Number N2719 N2524 N2475 N2209 N2718 N2736 N2737 N2572 
Mean 7837.1 2836.87 4756.6 3163.96 9577 3226.24 5287.79 4566.62 
Standard Error 40.48 92.52 44.03 36.52 49.87 70.23 111.98 125.19 
Median 8059 2914.89 4900 3175 9808 3002 5053 4234.47 
Mode 8177 - 5300 2950 - 2690 4084 3888.3 
Standard 
Deviation 468.59 1110.2 528.36 438.27 577.29 813.03 1296.23 1449.16 
Sample 219579 1232547 279169 192084 333269 661014 1680221 2100051 
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Variance 

Kurtosis -0.41 -1.56 0.64 -0.31 -0.68 2.01 1.35 0.13 
Skewness -0.81 -0.25 -1.09 0.13 -0.7 1.29 1.04 0.84 
Range 1802 3142.22 2550 2160 2159 4190 6756 6397.5 
Minimum 6658 1098.11 3000 2250 8208.5 2032 3160 2025.3 
Maximum 8460 4240.33 5550 4410 10367.5 6222 9916 8422.8 
Sum 1050172 408509.6 684950 455610 1283318 432316 708564 611927.1 
Count 134 144 144 144 134 134 134 134 
Largest 8460 4240.33 5550 4410 10367.5 6222 9916 8422.8 

Smallest 6658 1098.11 3000 2250 8208.5 2032 3160 2025.3 

           9 10 11 12 13 14 15 16 
Series Number N2743 N2738 N2079 N2080 N2056 N2075 N2278 N2284 
Mean 7064.46 7377.39 4684.65 3925.21 5697.49 4139.24 4754.07 5247.8 
Standard Error 84.01 195.65 49.34 45.33 65.07 22.87 31.67 58.3 
Median 6851.75 6997.5 4590 4015 5643 4173 4842.5 5490 
Mode 6311.5 7925 4460 3870 - 4178 4795 5550 
Standard 
Deviation 972.45 2264.81 592.05 543.99 780.81 274.44 366.64 674.83 
Sample 
Variance 945667 5129385 350520 295922 609668 75317 134422 455395 
Kurtosis -0.61 -0.15 2.32 -0.76 -0.66 0.44 -0.03 -0.26 
Skewness 0.56 0.77 1.26 -0.42 0.16 -0.61 -0.79 -0.03 
Range 3522.5 9620 3280 2270 3454.3 1412 1575 3105 
Minimum 5657.5 3920 3590 2780 4062.2 3286 3710 3700 
Maximum 9180 13540 6870 5050 7516.5 4698 5285 6805 
Sum 946637 988570 674590 565230 820438.1 596050 637045 703205 
Count 134 134 144 144 144 144 134 134 
Largest 9180 13540 6870 5050 7516.5 4698 5285 6805 

Smallest 5657.5 3920 3590 2780 4062.2 3286 3710 3700 

           17 18 19 20 21 22 23 24 
Series Number N2545 N2617 N2739 N2740 N2081 N2477 N2525 N2741 
Mean 8579.62 5121.14 5065.91 7499.57 4465.49 4701.74 6483.97 5052.54 
Standard Error 142.21 97.86 111.01 87.45 29.78 72.28 297.09 94.87 
Median 8934.11 5281.4 4812.75 7289 4475 4725 5946.8 4820 
Mode - 5721.2 4761.5 7145.5 4110 4300 - 4660 
Standard 
Deviation 1646.24 1132.85 1285.08 1012.3 357.41 867.39 3565.04 1098.16 
Sample 
Variance 2710112 1283353 1651442 1024745 127744 752357 12709495 1205965 
Kurtosis -0.84 -1.22 1.16 -1.36 -0.7 0.89 -1.59 -0.68 
Skewness -0.63 -0.29 0.96 0.19 -0.05 -0.85 0.03 0.56 
Range 5522.9 4191 6907 3232 1650 4150 10284.25 4520 
Minimum 5197.29 3020.6 2787 6043.5 3560 2150 1533.3 3380 
Maximum 10720.19 7211.6 9694 9275.5 5210 6300 11817.55 7900 
Sum 1149669 686232.4 678832.5 1004943 643030 677050 933691.1 677040 
Count 134 134 134 134 144 144 144 134 
Largest 10720.19 7211.6 9694 9275.5 5210 6300 11817.55 7900 

Smallest 5197.29 3020.6 2787 6043.5 3560 2150 1533.3 3380 

           25 26 27 28 29 30 31 32 
Series Number N2347 N2393 N2523 N2527 N2742 N1420 N1421 N1422 
Mean 5651.28 5275.59 3825 4940.66 4942.76 3778.26 4860.14 6085.51 
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Standard Error 63.9 42.98 122.64 156.92 93.75 159.59 195.92 324.03 
Median 5815.425 5208.2 3759.445 4290.65 4800 3550 4600 5500 
Mode - 4942.4 - - 4180 4000 3950 8900 
Standard 
Deviation 739.69 497.54 1471.69 1883.03 1085.25 1325.64 1627.44 2691.56 
Sample 
Variance 547144 247541 2165857 3545818 1177762 1757315 2648572 7244493 
Kurtosis -0.37 -1.54 -1.57 -1.45 -0.59 0.55 2.95 -0.61 
Skewness -0.16 0.23 -0.16 0.14 0.52 0.71 1.2 0.54 
Range 3358 1611.4 4085.35 5825.05 4465 6150 9300 11100 
Minimum 3951.1 4522.2 1623.3 2121.1 3115 1300 1900 2100 
Maximum 7309.1 6133.6 5708.65 7946.15 7580 7450 11200 13200 
Sum 757271.9 706928.6 550800.2 711455 662330 260700 335350 419900 
Count 134 134 144 144 134 69 69 69 
Largest 7309.1 6133.6 5708.65 7946.15 7580 7450 11200 13200 

Smallest 3951.1 4522.2 1623.3 2121.1 3115 1300 1900 2100 

           33 34 35 36 37 38 39 40 
Series Number N1423 N2095 N2245 N2402 N2600 N2606 N1424 N2745 
Mean 5059.42 5216.68 5215.3 5726.29 4874.61 4961.34 3437.9 3462.39 
Standard Error 367.88 43.34 51.68 57.1 283.63 157.13 108.46 225.38 
Median 4700 5131.4 5297.5 5488.65 3464.75 5059 3150 2280 
Mode 1700 4838.2 4420 5246.8 - 6152 3090 2080 
Standard 
Deviation 3055.87 520.06 598.25 660.95 3403.52 1818.96 900.94 2609.01 
Sample 
Variance 9338329 270462 357907 436858 11583959 3308614 811684 6806930 
Kurtosis 0.74 0.25 -1.33 -1.49 0.63 -1.3 1.69 1.4 
Skewness 0.89 0.52 0 0.22 1.25 -0.08 1.07 1.67 
Range 14800 2952.4 1910 2138.3 14800.5 6592.4 4845 10420 
Minimum 600 3989.6 4295 4692.5 1139 2241.6 1890 1340 
Maximum 15400 6942 6205 6830.8 15939.5 8834 6735 11760 
Sum 349100 751201.6 698850 767322.8 701944 664820.2 237215 463960 
Count 69 144 134 134 144 134 69 134 
Largest 15400 6942 6205 6830.8 15939.5 8834 6735 11760 

Smallest 600 3989.6 4295 4692.5 1139 2241.6 1890 1340 

           41 42 43 44 45 46 47 48 
Series Number N2478 N2084 N1426 N2744 N1428 N2285 N2549 N2551 
Mean 4672.57 7964.44 3512.99 2700.07 3718.55 4898.96 4623.3 4596.36 
Standard Error 69.4 37.27 79.65 133.87 126.26 47.92 76.6 183.2 
Median 4725 8020 3468 1990 3580 5055 4868.14 3936.825 
Mode 4350 8040 3090 2020 2480 4890 - - 
Standard 
Deviation 832.82 447.29 661.58 1549.62 1048.79 554.71 886.76 2120.7 
Sample 
Variance 693595 200070 437690 2401315 1099957 307700 786351 4497381 
Kurtosis 0.9 0.09 -0.33 0.88 -0.78 0.54 -0.24 -0.63 
Skewness -0.85 -0.36 0.41 1.48 0.42 -1.07 -0.81 0.76 
Range 4050 2480 2918 5760 3900 2455 3514.12 7051.71 
Minimum 2250 6640 2466 1250 2100 3280 2610.72 2025.93 
Maximum 6300 9120 5384 7010 6000 5735 6124.84 9077.64 
Sum 672850 1146880 242396 361810 256580 656460 619521.8 615912.8 
Count 144 144 69 134 69 134 134 134 
Largest 6300 9120 5384 7010 6000 5735 6124.84 9077.64 
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Smallest 2250 6640 2466 1250 2100 3280 2610.72 2025.93 

           49 50 51 52 53 54 55 56 
Series Number N1429 N1430 N2481 N2493 N1959 N1961 N2304 N2305 
Mean 4137.68 6981.88 4815.97 14204.58 4361.34 7357.24 6838.51 4998.88 
Standard Error 173.61 302.94 66.03 532.69 73.53 77.54 103.97 84.5 
Median 3820 7100 4875 10920 4180 7292.5 6870.925 5210.45 
Mode 4900 7350 4100 10600 5300 8110 - - 
Standard 
Deviation 1442.15 2516.43 792.37 6392.28 851.17 897.57 1203.52 978.19 
Sample 
Variance 2079783 6332424 627855 40861250 724494 805637 1448471 956865 
Kurtosis 0.25 1.28 -0.48 -0.66 -0.68 -0.59 -1.12 -0.6 
Skewness 0.8 0.06 -0.13 0.7 0.22 0.19 -0.08 -0.16 
Range 6600 14300 3700 26740 3720 4070 4476.35 4175.1 
Minimum 1800 200 2700 3410 2660 5245 4576.05 2933.7 
Maximum 8400 14500 6400 30150 6380 9315 9052.4 7108.8 
Sum 285500 481750 693500 2045460 584420 985870 916359.8 669850.3 
Count 69 69 144 144 134 134 134 134 
Largest 8400 14500 6400 30150 6380 9315 9052.4 7108.8 

Smallest 1800 200 2700 3410 2660 5245 4576.05 2933.7 

           57 58 59 60 
    Series Number N2568 N2569 N2722 N1431 

    Mean 7611.03 4677.44 5294.87 7750.72 
    Standard Error 208.65 83.55 12.82 387.76 
    Median 7057.45 4461.9 5332.9 7900 
    Mode 6480.5 5367.75 5497.2 12100 
    Standard 

Deviation 2415.26 967.13 148.39 3221.01 
    Sample 

Variance 5833476 935348 22020 10374889 
    Kurtosis 0.13 -0.56 -1.46 -0.28 
    Skewness 0.84 0.34 -0.24 -0.02 
    Range 10662.5 5069.95 478.8 14800 
    Minimum 3375.5 2561.7 5062 600 
    Maximum 14038 7631.65 5540.8 15400 
    Sum 1019879 626777.2 709512 534800 
    Count 134 134 134 69 
    Largest 14038 7631.65 5540.8 15400 
    Smallest 3375.5 2561.7 5062 600 
    

The first step of the analysis of the series is to calculate the ACF, given by the formula: 
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with lag k (i.e. the correlation between data which are time-spaced by k time periods) with x the 

mean of all observations xi for i [1, n]. The analysis shows that 18 series have a clear seasonal pattern 
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because their autocorreleogram plot of the R(k) values as a function of k shows a peak (maximum) 

for some value of k. Hence, the value of k determines the level of seasonality (Makridakis, 1998). In 

figures 3.1 and 3.2 we can see a graph of one of these 18 series and the autocorrelogram of the 

series. As we can see, the autocorrelation function shows a significant peak for lag 12; hence, we 

determine 12 periods in a season. The seasonality is clear in the graph of the series. 

 

Figure 3. 1 Series with seasonality 

 
Figure 3. 2 Autocorrelation graph: Series with seasonality 

Table 3.2 shows the results of the significance test of the seasonality for these 18 series. Colum R(k) 

shows the autocorrelation coefficient of lag k, where seasonality is observed, and the other two 

columns show the t-statistic and P-value. In order to accept the H0 hypothesis (there is statistical 
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significant seasonality of period k) and reject the H1 hypothesis (there is not statistical significant 

seasonality) the P-value should be less than 0.01 for 99% confidence level. 

Table 3. 2 Seasonality - Statistical significance test 

Seasonality - Statistical significance test 

Series R(k) t Stat P-value Series R(k) t Stat P-value 
3 0.843 17.87 8.2E-37 22 0.841 17.72 1.78E-36 
4 0.871 20.18 7.05E-42 24 0.793 14.27 1.26E-27 
6 0.802 14.72 1.2E-28 29 0.750 12.41 2.95E-23 
7 0.670 9.89 3.12E-17 34 0.648 9.70 4.64E-17 
8 0.971 44.14 4.87E-76 41 0.799 15.17 1.48E-30 

10 0.754 12.56 1.32E-23 51 0.926 27.90 9.84E-57 
13 0.929 28.61 6.05E-58 53 0.803 14.76 9.64E-29 
14 0.860 19.20 8.99E-40 57 0.971 44.14 4.87E-76 
19 0.652 9.43 3.89E-16 58 0.816 15.45 2.56E-30 

As we can see, for all of the 18 series R(k) is close to 1 and P-value is significant lower than 0.01; 

thus, the seasonal pattern of the series is statistically significant. 

On the other hand, for 32 of the series the R(k) is monotoneously decreasing; hence this is a 

indication of strong trend. In Figures 3.3 and 3.4 we can see a graph of a series with significant trend 

and the autocorrelogram of the series. Here, the values of the autocorrelation are monotonously 

decreasing with increasing lag; hence we conclude no strong seasonality, but a significant trend. 

 

Figure 3. 3 Series with strong trend 
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Figure 3. 4 Autocorrelation graph: Series with trend 

Finally, for the last 10 series the autocorrelation graph is neither monotonously decreasing nor 

showing a strong seasonality. This indicates mainly randomness. (All these series have a high degree 

of variability as shown later in this chapter). Figures 3.5 and 3.6 show the graph and 

autocorrelogram for one of these series. 

 

Figure 3. 5 Series with indication of high variability 
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Figure 3. 6 Autocorrelation graph: Series with indication of high variability 

The second step is the trend analysis. In order to estimate the trend (or cycle) pattern of the series I 

smooth the series using a double moving average of order 4 × 4 (Makridakis, 1998). Figure 3.7 shows 

the graph of one of the series and its smoothed trend. 

 

Figure 3. 7 Series with smoothed trend 

Next, I estimate the correlation between the smoothed series and time t. Table 3.3 shows the 

correlation (R) between trend and time for all the series of the sample (seasonal series are in green). 

As we can see, most of the series show a significant correlation between the smoothed series and 

time, indicating a significant trend. Five series show low correlation and P-value more than 0.01, 

three of them are seasonal (series 6 with R = - 0.012 and P = 0.895, series 7 with R = 0.135 and P = 
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0.126, series 19 with R = 0.144 and P = 0.102) and two non seasonal (series 42 with R = 0.143 and P = 

0.104, series 54 with R = 0.004 and P = 0.963). 

Table 3. 3 Trend - Statistical significance test - Initial sample 

Trend - Statistical significance test 
Series R t Stat P-value Series R t Stat P-value 

1 0.918 26.26 2.16E-53 31 -0.886 -15.14 1.14E-22 
2 0.978 53.34 2.72E-89 32 -0.874 -14.27 2.12E-21 
3 -0.58 -8.06 4.55E-13 33 -0.782 -9.96 1.48E-14 

4 0.827 16.65 8.11E-34 34 0.709 11.36 4.12E-21 
5 0.941 31.49 3.91E-62 35 0.992 86.36 2.4E-115 
6 -0.012 -0.13 0.895 36 0.947 33.23 8.53E-65 

7 0.135 1.54 0.126 37 0.824 16.47 2.01E-33 
8 0.973 47.58 3.04E-83 38 0.881 21.07 1.92E-43 
9 0.967 43.12 4.34E-78 39 -0.831 -11.86 1.05E-17 

10 0.606 8.62 2.11E-14 40 0.633 9.26 6.31E-16 

11 -0.5 -6.53 1.4E-09 41 0.76 13.23 1.05E-25 
12 0.913 25.25 1.51E-51 42 0.143 1.64 0.104 
13 0.918 26.10 4.23E-53 43 -0.527 -4.05 0.00014 
14 0.779 14.07 9.49E-28 44 0.562 7.68 3.64E-12 

15 0.762 13.30 6.87E-26 45 -0.772 -9.66 4.83E-14 
16 0.958 37.95 1.68E-71 46 0.786 14.40 1.53E-28 
17 0.943 32.14 3.8E-63 47 0.926 27.74 5.67E-56 
18 0.925 27.58 1.03E-55 48 0.958 38.01 1.38E-71 
19 0.144 1.65 0.102 49 -0.86 -13.35 4.94E-20 
20 0.991 83.27 2.4E-113 50 0.523 3.12 0.00027 
21 0.681 10.52 5.03E-19 51 0.954 35.90 1.09E-68 
22 0.79 14.60 5.06E-29 52 0.738 12.36 1.36E-23 
23 0.988 71.20 8E-105 53 -0.454 -5.76 5.91E-08 

24 0.593 8.33 1.09E-13 54 0.004 0.05 0.963 
25 0.955 36.61 1.14E-69 55 0.995 118.10 1.6E-132 

26 0.964 40.77 3.45E-75 56 0.971 45.59 5.3E-81 
27 0.979 54.68 1.28E-90 57 0.973 47.58 3.04E-83 
28 0.951 34.95 2.48E-67 58 0.984 62.50 8.81E-98 
29 0.485 6.27 5.11E-09 59 -0.961 -39.56 1.22E-73 
30 -0.698 -7.74 1.01E-10 60 0.727 8.41 6.77E-12 

The last step is the analysis of variability. The ACF shows that there is an indication that ten of the 

series have randomness only. First of all, the trend and seasonal components need to be removed. 

The element of randomness of a series can be estimated with the decomposition of the series for a 

period i [1, n]. For the decomposition of the series, I chose the unobserved decomposition model, 

because forecasting practice has shown that this model is very applicable on most time series 

regardless of their characteristics (Newbold and Bos, 1994): 
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(3. 3) 

Where Ei is the random pattern of period i, Yi the actual observation, Ti the trend pattern that is the 

double moving average of period i, and Si is seasonal pattern. For a seasonality of k periods there are 

k different seasonal indices that are repeated every k periods. The value of Si is given as the average 

value of a k long period of trend adjusted (Yi – Ti) observations (Makridakis, 1998). For series with 

without seasonality (k = 0) there are no seasonal indices. The series Ei is random noise with average 

0. 

In order to estimate the variability of the series the initial series has to be readjusted in a stationary 

series with stable mean and variance through time. This can be done by simply adding the mean of 

the initial series to the Ei series. Figures 3.8 and 3.9 present a series of the sample with the 

counterpart readjusted series (with the trend and seasonality removed) respectively. 

 

Figure 3. 8 Series before the trend and seasonal adjustment 
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Figure 3. 9 Seasonal and trend adjusted series 

The level of variability can be measured by the Index of Dispersion (IoD, variance over mean) of the 

readjusted series. The index of dispersion of all the series is presented in table 3.4. 

Table 3. 4 Index of dispersion - Initial sample 

Index of dispersion 
Series IoD Series IoD Series IoD Series IoD 

1 0.051 16 0.125 31 243.315 46 0.654 
2 0.289 17 0.544 32 369.107 47 2.112 
3 4.936 18 2.764 33 736.334 48 1.117 
4 5.302 19 14.333 34 7.940 49 179.632 
5 0.052 20 0.150 35 0.717 50 438.151 
6 7.014 21 3.519 36 0.095 51 1.428 
7 2.984 22 5.114 37 26.007 52 59.736 
8 30.745 23 3.687 38 2.523 53 12.609 
9 0.474 24 4.008 39 119.608 54 5.467 

10 21.738 25 0.924 40 21.876 55 0.434 
11 8.699 26 0.115 41 6.382 56 1.926 
12 6.345 27 0.255 42 7.166 57 25.753 
13 2.549 28 3.351 43 101.773 58 26.649 
14 0.947 29 14.580 44 6.300 59 0.063 

15 0.369 30 221.866 45 129.740 60 537.361 

As we can see, the ten series (for which the autocorrelation graph indicated high variability), have a 

very high IoD (always more than 100) in comparison with the other series (where the highest IoD is 

59.73). We can conclude that these are series of high variability. All the series with high variability 

are series with trend, because they show significant correlation between their trend pattern and 

time (Table 3.3). 
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According to the above analysis the series of the first sample can be classified in three main 

categories. 

• 32 smooth series 

• 18 series with strong seasonal pattern 

• 10 series with high variability (hard series) 

For Chapter 6, I selected an additional data sample of 25 series from the M3-Competition with high 

variability with selection criteria the autocorrelation graph (indication of no seasonality and no 

strong trend) and the IoD of the readjusted series (over 100). All these series have 69 data points. 

The sample that was used in Chapter 6 is the “hard series” group, which consists of the 10 series 

with high variability of the first data sample and the 25 series of the additional sample. 

The descriptive statistics of the additional sample are presented in Table 3.5. 

Table 3. 5 Descriptive statistics - Second sample 

  1 2 3 4 5 6 7 8 
Series Number N1437 N2506 N1678 N1676 N1672 N1661 N1659 N1655 
Mean 5549.28 15465.87 3597.83 4219.57 5090.58 2469.28 4901.45 3592.75 
Standard Error 221.63 464.24 183.54 184.42 296.9 186.83 243.96 157.39 
Median 5400 15330 3500 3950 4750 2180 4700 3550 
Mode 5550 11695 3500 3000 4800 2800 3250 3400 
Standard 
Deviation 1840.97 3856.3 1524.64 1531.94 2466.26 1551.96 2026.46 1307.4 
Sample 
Variance 3389154 14871088 2324517 2346854 6082447 2408583 4106542 1709285 
Kurtosis 0.39 -1.11 1.67 -0.12 1.24 3.96 -0.35 0.48 
Skewness 0.66 -0.03 0.7 0.61 0.98 1.68 0.47 0.66 
Range 8800 14930 7700 7050 11900 8240 9350 6250 
Minimum 2350 7595 800 1400 1300 400 850 1300 
Maximum 11150 22525 8500 8450 13200 8640 10200 7550 
Sum 382900 1067145 248250 291150 351250 170380 338200 247900 
Count 69 69 69 69 69 69 69 69 
Largest 11150 22525 8500 8450 13200 8640 10200 7550 

Smallest 2350 7595 800 1400 1300 400 850 1300 

           9 10 11 12 13 14 15 16 
Series Number N1645 N1642 N1639 N1637 N1629 N1622 N1617 N1616 
Mean 3843.48 7439.13 3192.75 4939.13 7214.49 3025.22 4984.78 4848.84 
Standard Error 141.23 405.52 182.73 243.82 349.38 120.37 294.1 130.02 
Median 3700 7800 2880 5100 6900 3000 4800 4680 
Mode 5150 8700 2880 3600 6300 2820 5400 4440 
Standard 
Deviation 1173.13 3368.51 1517.84 2025.3 2902.18 999.89 2442.97 1080.06 
Sample 
Variance 1376244 11346829 2303847 4101829 8422655 999784 5968111 1166522 
Kurtosis 0 -0.78 1.58 0.36 -0.42 0.25 -0.14 -0.15 
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Skewness 0.63 0.04 1.06 0.57 0.32 0.27 0.42 0.01 
Range 5150 13500 7800 9600 12250 4920 11400 5040 
Minimum 1900 900 360 1200 1850 1020 600 2100 
Maximum 7050 14400 8160 10800 14100 5940 12000 7140 
Sum 265200 513300 220300 340800 497800 208740 343950 334570 
Count 69 69 69 69 69 69 69 69 
Largest 7050 14400 8160 10800 14100 5940 12000 7140 

Smallest 1900 900 360 1200 1850 1020 600 2100 

           17 18 19 20 21 22 23 24 
Series Number N1611 N1604 N1569 N1551 N1540 N1537 N1519 N1508 
Mean 4741.45 3073.33 3476.09 5489.86 4045.51 4065.51 4834.06 5406.52 
Standard Error 215.68 178.63 104.18 110.95 99.12 123.08 111.14 114.57 
Median 4680 2760 3450 5350 4120 4050 4900 5350 
Mode 4920 2280 2850 5100 3760 3660 5050 5350 
Standard 
Deviation 1791.57 1483.81 865.37 921.66 823.34 1022.34 923.21 951.7 
Sample 
Variance 3209721 2201678 748868 849454 677881 1045181 852316 905729 
Kurtosis 0.61 -0.42 -0.02 0.82 -0.29 -0.09 0.28 0.31 
Skewness 0.47 0.71 0.18 0.64 -0.33 0.14 0.19 0.64 
Range 8760 5500 4350 4650 3460 4620 4300 4450 
Minimum 720 980 1650 3750 2000 1770 2850 3850 
Maximum 9480 6480 6000 8400 5460 6390 7150 8300 
Sum 327160 212060 239850 378800 279140 280520 333550 373050 
Count 69 69 69 69 69 69 69 69 
Largest 9480 6480 6000 8400 5460 6390 7150 8300 

Smallest 720 980 1650 3750 2000 1770 2850 3850 

           25 
       Series Number N1480 

       Mean 4041.74 
       Standard Error 99.73 
       Median 4000 
       Mode 3380 
       Standard 

Deviation 828.41 
       Sample 

Variance 686256 
       Kurtosis 0.49 
       Skewness 0.57 
       Range 4040 
       Minimum 2360 
       Maximum 6400 
       Sum 278880 
       Count 69 
       Largest 6400 
       Smallest 2360 
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The correlation between time and the smoothed series (trend) can be found in Table 3.6. 

Table 3. 6 Trend - Statistical significance test - Second sample 

Trend – Statistical significance test 

Series R t Stat P-value Series R t Stat P-value 

1 -0.578 -5.62 4.672E-07 14 0.546 4.08 0.00013 
2 0.702 7.82 7.455E-11 15 -0.495 -3.76 0.00045 
3 -0.827 -11.70 1.943E-17 16 -0.569 -3.15 0.00246 

4 -0.505 -4.64 1.815E-05 17 -0.557 -5.33 1.42E-06 
5 -0.542 -5.12 3.082E-06 18 -0.843 -12.42 1.37E-18 

6 -0.503 -2.82 0.0004155 19 0.641 6.63 8.77E-09 
7 -0.639 -6.59 1.022E-08 20 -0.518 -0.95 0.347666 
8 -0.594 -2.45 0.0172506 21 0.629 6.43 1.95E-08 
9 -0.573 -5.55 6.097E-07 22 0.648 3.98 0.00018 

10 -0.729 -8.46 5.595E-12 23 -0.676 -7.28 6.5E-10 
11 0.616 6.21 4.637E-08 24 -0.688 -7.53 2.4E-10 

12 0.546 3.37 7.154E-05 25 0.506 3.50 0.00062 
13 -0.514 -3.93 0.00022         

As we can see all the additional series have a statistically significant trend pattern (all the R values 

are significant and all the P-values are smaller than 0.01). 

The IoD can be found in Table 3.6 and shows that the new sample consist of series with high 

variability, since it is more than 100 for all the series. 

Table 3. 7 Index of dispersion - Second sample 

Index of dispersion 
Series IoD Series IoD Series IoD 

1 359.276 11 581.117 21 103.969 
2 127.913 12 608.203 22 112.468 
3 328.912 13 609.194 23 151.285 
4 327.696 14 244.120 24 104.868 
5 600.741 15 748.488 25 104.035 
6 785.349 16 191.661   
7 296.150 17 488.783   
8 317.867 18 196.242   
9 197.637 19 132.905   

10 875.098 20 102.685     
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3.3 TESTING, COMPARISON AND EVALUATION 

3.3.1 Testing 

In order to test the forecast I considered using statistical significance testing. However, Armstrong 

(2007) strongly supports that significance tests are not only unnecessary even when properly done, 

but also harm progress in forecasting. Armstrong states that significance tests harm the 

development of science in many ways. One reason is that there is a bias against publishing studies 

that fail to reject the null hypothesis, even if they might contain important findings. In addition, 

there is the fact that the null hypothesis is generally selected because its simplicity and not for its 

truth and importance. The author concludes that researchers should avoid tests of statistical 

significance when reporting their findings and journals should discourage them. 

Schmit and Hunter (1997) state that reliance on significance test is indefensible and makes it difficult 

for the researchers to develop knowledge. They conclude that “Statistical significance testing retards 

the growth of scientific knowledge; it never makes a scientific contribution.” These opinions about 

significance testing are appreciated by many researchers (e.g. Goodwin, 2007). 

Because of the conclusions of the above papers I have not used statistical significance testing. I test 

the performance of the forecasts with the M3-Competition “out of sample accuracy check” 

procedure as it is found in the M3-Competition. This procedure follows five steps: 

1. Selection of a series. 

2. The selected series is separated into a training data set and test data set. 

3. The training set is used to estimate the parameters of the model. 

4. After the estimation, a number of forecasts are produced for the test set period. 

5. These forecasts are compared with the actual data of the test set to measure the 

performance of the model. 

The training data set comprises the first n-18 data points, where n is the total number of the data 

points of each series; the test set is made up of the remaining 18 data points. The models are tested 

for short-term forecasting (one step ahead), intermediate-term forecasting (six steps ahead), and 

long-term forecasting (twelve steps ahead). The multiple periods ahead forecasts are single point 

forecasts. 
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A graph of a time series with both the training and test sets and the forecasts is shown in Figure 

3.10. 

 

Figure 3. 10 The out of sample accuracy check 

For the computational tests, the linear programming software Lingo is used.  

3.3.2 Comparison and evaluation 

All the LP-based forecasts are compared with traditional techniques that are found in the literature. 

All the techniques are applied on the same series and are tested in the same way (out of sample 

accuracy check). The models are compared in terms of accuracy, convenience to use and forecasting 

cost. For the comparison of the simple forecasts (Chapters 4, 5 and 6) the MAPE and sMAPE are 

used. I decided to use both, because there is an open conversation about which of the two types of 

accuracy measurements should be preferred. In addition I decided to use the MASE because 

according to Hyndman and Koehler (2006) are widely applicable and are always defined and finite. 

All the three accuracy measures can be found in Chapter 2 For the combined forecasts (Chapter 7) I 

have used three additional accuracy measures, the percentage difference between the combined 

forecast and the best individual, the percentage difference between the combined forecast and the 

worst individual and the percentage difference between the combined forecast and the average 

individual (they are presented in detail in Chapter 7). This is because while the initial three measure 

the forecasting accuracy independently, the latter measure the accuracy of the combinations in 
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comparison with the individual techniques that are combined. For the cost minimisation (Chapter 8) 

I use the cost according to its underestimation and overestimation asymmetry and the MAPE. The 

reason that I use only one accuracy measure is that the analysis in  chapter 7 is not focused on the 

accuracy of the forecasts, but on their performance according to the cost of the forecasting error. 

Hence, the use of one accuracy measure as an indicator is sufficient. 

The approaches for the first, the second and the fifth research question are compared with the 

counterpart approaches based on the OLS method (minimising SSE). The approaches for the third 

research question are compared with the OLS and the following: 

• Simple moving average (MA, Order 4, 11 and 12) 

• Weighted moving average (WMA, Order 7, 8 and 12) 

• Simple exponential smoothing (SES, 0.6, 0.7 and 0.8) 

• Holt’s exponential smoothing (Holt, 0.1-0.1, 0.2-0.1 and 0.1-0.2) 

I want to ensure that LP-based forecasts are compared with the most accurate formulations of the 

other techniques. Thus, I do not simply optimise the parameters of the models, order of the moving 

average and the smoothing parameters, using the grid search of a statistical package. I explored 

different parameter values and I selected the three alternatives that were on average the most 

accurate on the test set of the thirty five series. 

In the experiments for the fourth question eight individual techniques are used: 

• Naive 1 

• Simple moving average (Order 4) 

• Simple exponential smoothing (0.8) 

• Holt’s exponential smoothing (0.2-0.1) 

• Holt – Winters (0.2-0.1-0.8) 

• Adaptive exponential smoothing 

• Autoregressive (Order 6) 
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• Seasonal autoregressive (Order 6) 

To estimate the coefficients of the simple and seasonal autoregressive models I used the method of 

the OLS and not the counterpart LP approach because I wanted to use a more mainstream approach, 

since the objective of the chapter is to test LP as a tool to compare forecasts. I neither select the 

most appropriate techniques for each of the series nor optimising their parameters because these 

forecasts would gave good results of similar accuracy; hence the accuracy of the combination would 

be similar and the comparison between the alternative combinations would be difficult. On the 

other hand, over a random selection of techniques, the accuracy of the results varies and 

conclusions of the comparison of the combinations are much clearer. Nonetheless, the objective of 

this part of the study is not to do the most accurate forecast for each series but the best 

combination of a number of forecasts. 

In addition, the performance of the models is tested and compared with five traditional 

combinations methods (the can be found in Chapter 2): 

• Simple Average 

• Inverse Proportion of the MAD 

• Inverse Proportion of the MAPE 

• Inverse Proportion of the MSE 

• Average Inverse Proportion of the MAD, MAPE and MSE 

• Weighting based on the absolute error 

The OLS approaches are developed in STATA while the other techniques were implemented in 

spreadsheets (Excel). For the individual forecasting techniques that are mentioned above I used the 

following formulation. Let Yt be the actual value, Ft the forecast and et the forecasting error of period 

t (1 ≤ t ≤ T), then (all the formulations are for one step ahead forecasts): 

Naïve 1:  

 
1−= tt YF

 

(3. 4) 
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Simple Moving Average of Order n (1 ≤ i ≤ n): 
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Weighted Moving Average of Order n (1 ≤ i ≤ n): 
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Simple Exponential Smoothing with smoothing factor α [0, 1]: 

For t = 2: 1−= tt YF  (3. 10) 

For t > 2: 11)1( −− +−= ttt FYF αα

 

(3. 11) 

 )( 111 −−− −+= tttt YFYF α

 

(3. 12) 
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11 −− += ttt eYF α

 

(3. 13) 

Holt’s Exponential Smoothing with smoothing factors α [0, 1] and β [0, 1]: 

 
ttt GSF +=+1

 

(3. 14) 

For t = 2: base: 1−= tt YS  (3. 15) 

For t > 2: base: ))(1( 11 −− +−+= tttt GSYS αα  (3. 16) 

For t = 2: trend: 0=tG
 

(3. 17) 

For t > 2 trend: 11 )1()( −− −+−= tttt GSSG ββ  (3. 18) 

Holt – Winters with smoothing factors α [0, 1], β [0, 1] and γ [0, 1] and k the seasonality level: 

 ( ) tttt WGSF ×+=+1

 

(3. 19) 

For t = 12: base: 1−= tt YS
 

(3. 20) 

For t > 12: base: ( ) ))(1( 11 −−− +−+= ttkttt GSWYS αα  (3. 21) 

For t = 12: trend: 0=tG
 

(3. 22) 

For t > 12 trend: 11 )1()( −− −+−= tttt GSSG ββ  (3. 23) 
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For t = 12: 
seasonality: 
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For t > 12 seasonality: ( ) ktttt WSYW −−+= )1( γγ  (3. 25) 

Adaptive Exponential Smoothing with smoothing factor α [0, 1]: 

For t = 2: 1−= tt YF  (3. 26) 

For t > 2: 
t

t

t
tt e

ESMAD
ESME

FF +=+1

 

(3. 27) 

Exponential Smoothing of the Mean Error:  

 
11 )1( −− −+= ttt ADESMEESME αα

 

(3. 28) 

Exponential Smoothing of the Mean Absolute Deviation:  

 
11 )1( −− −+= ttt ADESMADESMAD αα

 

(3. 29) 

let ADt be the absolute error for period t. 

The last step is the evaluation of the forecasts according to its performance. This step is the 

feedback of the whole process; hence, if the forecast is shown to be inapplicable or very inaccurate, 

we go back to the first step and try to improve it. Finally, general conclusions about the performance 

of the techniques are made. 
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3.4 CONCLUSION 

In this chapter, the methodology of the study was presented. Several LP-based approaches for 

estimating the parameters of time series forecasting models have been developed. These 

approaches are tested on two time series samples from the data set of the M3 Competition. The first 

sample consists of 60 series that are classified in three categories (smooth, seasonal and hard) and 

the second consists of 25 series that are all of them are classified as hard. The out of sample 

accuracy check is used for testing, and the accuracy is measured according to several error indices. 

The performance of the LP approaches are compared with the OLS and other techniques that are 

found in the literature (single and combined forecasting techniques) and they are evaluated 

according to the comparison. 
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4 OPTIMISING AUTOREGRESSIVE BASED FORECASTS

In this chapter I apply single objective LP to estimate the parameters of autoregressive and seasonal 

autoregressive forecasting models. In the initial formulation the objectives are: minimise the sum of 

absolute deviations, minimise the sum of absolute percentage errors and minimise the maximum 

absolute deviation. The first two objectives are common forecast accuracy measures; the third 

objective was tried as an attempt to avoid large errors. Then, in order to further improve results, and 

more specifically, in order to avoid or remove bias, I test the same linear programs with the 

additional constraint where the sum of the errors is equal to zero or the sum of the percentage 

errors is equal to zero. At this stage I also introduce two other, less common, objectives: minimising 

the absolute differences between deviations and minimising the absolute differences between 

percentage deviations. The rationale for testing these objectives is to avoid ‘large swings’ between 

positive and/or negative errors or, in other words, to obtain ‘smoother’ (and hopefully better) 

forecasts. 

The linear programs are tested on the 60 series of the initial sample for order 6 and 12 models. 

Performance is evaluated through the out of sample MAPE, sMAPE and MASE over the 60 series and 

also by comparison with the OLS approach (minimising SSE). I report results for one, six and twelve 

step ahead forecasts. 

4.1 SIMPLE OBJECTIVE MODELS: INITIAL FORMULATION 

The first LP formulations minimise SAD, SAPE or MaxAD for simple autoregressive (AR) and 

autoregressive models with an additional, additive seasonal coefficients (ARS). The latter is applied 

to series with seasonal pattern, both autoregressive models without constant term b0. The well-

known equation for an autoregressive model of order m is: 

 
imimiii eYbYbYbY ++++= −−− ....2211

 

(4. 1) 

or 
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 i

m

j
jiji eYbY +=∑

=
−

1

 

(4. 2) 

Where Yi is the predicted variable, Yi-j are the explanatory variables, bj is the coefficient of Yi-j, ei is 

the forecasting error, i (1 ≤ i ≤ n) is the index of the forecasting period and j (1 ≤ j ≤ m) is the order. 

The above formulation produces one period ahead forecasts. For longer term forecasts the 

formulation is (s steps ahead): 

 i

m

j
jsiji eYbY += ∑

=
−−

1

 

(4. 3) 

The formulation of the program for minimising the SAD for one period ahead is (assuming that Yi-j is 

not defined for j > i): 

MinSAD  

 

{ }

∑ ∑
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=
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n

i
i

im

j
jij YYbMin
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1,min

1

 

(4. 4) 

 ∑
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i
ieMin

2  
(4. 5) 

If e1i is the underestimation and e2i is the overestimation error: 

 ∑∑
==

+
n

i
i

n

i
i eeMin

2
2

2
1

 

(4. 6) 

Subject to the following constraints: 

 
{ }

iii

im

j
jij YeeYb =−+∑

−

=
− 21

1,min

1
 i = 2, … , n

 

(4. 7) 

e1i, e2i non-negative and bj unrestricted in sign. 

An alternative formulation of the above program is 
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(4. 8) 

Where ei is the absolute error of period i. Subject to the constraints: 
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(4. 10) 

ei non-negative and bj unrestricted in sign. 

In the same way, the formulation for minimising SAPE is (assuming that Yi-j is not defined for j > i): 

MinSAPE  
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(4. 11) 
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(4. 12) 

Subject to the following constraints: 

(4. 7) 

e1i, e2i non-negative and bj unrestricted in sign. 

And the alternative formulation is 

 ∑
=

n

i
ieMin

2

 

(4. 13) 

Where ei is the absolute percentage error of period i. Subject to the constraints: 



CHAPTER 4  OPTIMISING AUTOREGRESSIVE BASED FORECASTS 

77 
 

 
( ){ }

1
1,min

1
≥+∑

−

=

−
i

im

j i

jij e
Y
Yb

  
i = 2, … , n 

(4. 14) 

 
( ){ }

1
1,min

1
≤−∑

−

=

−
i

im

j i

jij e
Y
Yb

  i = 2, … , n 
(4. 15) 

ei non-negative and bj unrestricted in sign. 

The formulation of the programme that minimises MaxAD is 

MinMaxAD  

 ∑
=

n

i
eMin

2

 

(4. 16) 

Where e is the maximum absolute deviation. Subject to the constraints 
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(4. 17) 
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(4. 18) 

e non-negative and bj unrestricted in sign. 

And the alternative formulation is 

(4. 16) 

Subject to:  

(4. 7) 
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 021 ≥−− ii eee
 
 i = 2, … , n

 

(4. 19) 

e, e1i, e2i non-negative and bj unrestricted in sign. 

Seasonal autoregressive models are simple autoregressive models for series with the addition of 

coefficients that represents the seasonality of the series. Additive seasonal coefficients are fixed 

amounts that are added or subtracted according to the seasonal pattern of the series (e.g. in a 

monthly series with annual seasonality, the seasonal coefficients repeat every 12 periods). 

Moreover, they should be zero in case there is no clear seasonal pattern. The equation for the 

seasonal autoregressive model is: 

 
iikikiii eSYbYbYbY +++++= −−− ....2211

 

(4. 20) 

or 
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(4. 21) 

with Si is the seasonal coefficient of period i. 

The seasonality level of the series is determined using the ACF, as explained in chapter 3. In analogy 

with the simple autoregressive model, LP can be applied to minimise the SAD, SAPE and MaxAD. 

The linear program for minimising the SAD is (assuming that Yi-j is not defined for j > i): 

MinSAD  
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(4. 22) 

(4. 5), (4. 6) 

If e1i is the underestimation and e2i is the overestimation errors, subject to: 
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(4. 23) 

 
kii SS +=   i = 2, … , n (4. 24) 

e1i, e2i non-negative and bj and Si unrestricted in sign. 

In the same way, the formulation for minimising MAPE is (assuming that Yi-j is not defined for j > i): 

MinSAPE  
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(4. 25) 

 (4. 11) 

subject to: 

(4. 23), (4. 24)

 

e1i, e2i non-negative and bj and Si unrestricted in sign. 

And the formulation of the programme that minimises MaxAD is 

MinMaxAD  

(4. 16) 

subject to: 

(4. 23), (4. 24), (4. 19)

 

e, e1i, e2i non-negative and bj and Si unrestricted in sign. 
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4.2 FIRST RESULTS 

As it is mentioned in the research methodology, to facilitate the analysis, I divided the sample in 

three main groups: 

• 32 series with low variability (smooth series, predictable) 

• 18 series with strong seasonal pattern 

• 10 series with high variability (hard series, difficult to predict) 

Table 4.1 shows the results of the initial AR and ARS models for one period ahead forecasts for order 

6 and 12. The table shows the average out of sample MAPE of all 60 series as well as the average 

MAPE for the smooth (white), hard (red) and seasonal (green) series. The LP results (minimising SAD, 

SAPE and MaxAD) are compared with these of the OLS (minimising MSE). 

Table 4. 1 Initial results - MAPE 

MAPE (%) LP 
OLS 

1 step ahead MinSAD MinSAPE MinMaxAD 

AR 6     

All 8.94 8.95 44.10 8.94 

Smooth 3.22 3.02 24.61 3.19 

Hard 25.11 25.89 116.25 25.01 

Seasonal 10.13 10.08 36.56 10.24 

AR 12     

All 8.47 8.69 26.57 8.29 

Smooth 3.16 3.05 17.47 3.23 

Hard 26.9 29.07 53.11 25.01 

Seasonal 7.67 7.37 28.56 8 

ARS 6     

All 7.57 7.67 36.48 7.66 

Smooth 3.22 3.02 24.61 3.19 

Hard 25.11 25.89 116.25 25.01 

Seasonal 5.56 5.83 11.91 5.97 

ARS 12     

All 7.75 8.11 21.56 7.54 

Smooth 3.16 3.05 17.47 3.23 

Hard 26.9 29.07 53.11 25.01 

Seasonal 5.26 5.45 10.69 5.5 
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When comparing the LP approaches, MinSAD outperforms MinSAPE and MinMaxAD in general; 

however, MinSAPE performs slightly better on the smooth series and on the seasonal series. MinSAD 

performs better on the hard series for the AR/ARS 12 models, and slightly better on the hard series 

for the AR/ARS 6 models and on the seasonal series for the ARS models. In addition, the AR/ARS 12 

models perform overall better than the AR/ARS 6; but the AR/ARS 6 models work better on the hard 

series. 

Finally, the seasonal model improves the results on the seasonal series significantly. I note that I 

applied the seasonal model to the seasonal series only; hence only the results on the seasonal series 

are affected. The results on the non seasonal series are the same with the simple model, because no 

seasonality is observed in any lag; thus, no seasonal coefficient is added. MinMaxAD is the worst 

approach and performs significantly worse on all of the series. 

Table 4. 2 Initial results - sMAPE 

sMAPE (%) LP 
OLS 

1 step ahead MinSAD MinSAPE MinMaxAD 

AR 6     

All 8.57 9.28 24.83 8.66 

Smooth 3.08 2.93 11.32 3.09 

Hard 24.58 28.86 60.31 23.89 

Seasonal 9.43 9.69 29.16 10.10 

AR 12     

All 8.56 9.40 23.01 8.13 

Smooth 3.00 2.93 10.74 3.08 

Hard 28.69 34.42 56.57 24.35 

Seasonal 7.25 7.01 26.20 8.11 

ARS 6     

All 7.41 8.09 19.30 7.42 

Smooth 3.08 2.93 11.32 3.09 

Hard 24.58 28.86 60.31 23.89 

Seasonal 5.57 5.72 10.70 5.97 

ARS 12     

All 7.86 8.77 18.40 7.35 

Smooth 3.00 2.93 10.74 3.08 

Hard 28.69 34.42 56.57 24.35 

Seasonal 4.94 4.90 10.83 5.48 

Comparing the LP approaches with the OLS method, it is obvious that the second gives slightly better 

results, except of the MinSAD ARS 6 model. The OLS performs better on the hard series, while LP 
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(only MinSAD and MinSAPE) performs better on the smooth and seasonal series for most of the 

models. Nevertheless, the differences between all the approaches are relatively small (except for the 

MinMaxAD which produces the highest MAPE overall). 

Table 4.2 shows the average sMAPE on the test set of the 60 series (AR and ARS, Order 6 and 12). 

The performance of the methods according to sMAPE is similar to the comparison according MAPE. 

MinSAD outperforms MinSAPE overall but this is mainly due to better performance on the hard 

series. MinSAPE is the best performing approach on the smooth series. MinMaxAD is again the worst 

technique overall and for each group separately. In comparison with the OLS, LP performs better for 

order 6 models (MinSAD) while the OLS outperforms the LPs for order 12 models. LP performs better 

on the smooth and seasonal series and OLS performs better on the hard series. 

Table 4. 3 Initial results - MASE 

MASE LP 
OLS 

1 step ahead MinSAD MinSAPE MinMaxAD 

AR 6     

All 0.93 0.94 4.14 0.93 

Smooth 0.96 0.95 4.09 0.97 

Hard 0.91 0.99 5.36 0.89 

Seasonal 0.88 0.89 3.54 0.90 

AR 12     

All 0.90 0.91 4.64 0.91 

Smooth 0.95 0.95 3.82 0.95 

Hard 1.04 1.16 9.94 0.92 

Seasonal 0.74 0.71 3.14 0.81 

ARS 6     

All 0.82 0.84 3.41 0.83 

Smooth 0.95 0.94 4.09 0.97 

Hard 0.91 1.01 5.36 0.89 

Seasonal 0.55 0.55 1.13 0.56 

ARS 12     

All 0.83 0.85 4.03 0.82 

Smooth 0.95 0.95 3.82 0.95 

Hard 0.98 1.11 9.94 0.92 

Seasonal 0.52 0.52 1.13 0.54 

Table 4.3 shows the comparison of the results according MASE. When the average MASE is 1, the 

performance of the technique is similar to the Naive 1 model. If it is smaller than 1 the technique 

performs better than the Naive 1 method and if it is bigger than 1, it performs worse. 
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The comparison of the approaches according to MASE is along the same lines as with sMAPE. 

MinSAD outperforms MinSAPE overall, but mainly due to better performance on the hard series. 

MinSAPE performs very well on the smooth and seasonal series. MinMaxAD is again the worst 

technique overall and for each group separately. In comparison with the OLS, LP (MinSAD and 

MinSAPE) perform better on the smooth and seasonal series, whereas the OLS performs better on 

the hard series. All the techniques perform better than Naive 1 (MASE < 1) except MinMaxAD, and 

MinSAPE on the hard series. 

4.3 INGNORING THE FIRST s+m-1 DATA POINTS IN THE OBJECTIVE FUNCTION 

One of the first things that were observed through the initial experiments was that the models may 

give very large errors for the first data points in the training set (Figure 5.9). For the first m periods of 

the set – assuming a one step ahead forecast – there are not sufficient data to produce an 

autoregressive based forecast of order m. Hence, there is only a partial model for the first m periods 

and this may impact on the accuracy of the model. Therefore, I decided to run the experiments again 

ignoring the first m points of the training set in the objective function. Similarly, for an s – step ahead 

forecast with an order m model, we ignore the first s+m-1 data points in the objective function. 

 
Figure 4. 1 Performance of an approach with the first s+m-1 point in the objective function 
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The new formulation of the linear program, minimising SAD, for the AR one step ahead model is 

(assuming that Yi-j is not defined for j > i): 

MinSAD  

 ∑ ∑
+= =

− −
n

mi
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m

j
jij YYbMin

1 1
 

(4. 24) 
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if e1i is the underestimation and e2i  is the overestimation error: 
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subject to: 
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(4. 27) 

e1i, e2i non-negative and bj unrestricted in sign. 

In the same way, the formulation of the program for the ARS models are minimising the SAD is 

(assuming that Yi-j is not defined for j > i): 

MinSAD  
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(4. 28) 

 (4. 25), (4. 26) 

subject to: 
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(4. 29) 

 
kii SS +=   i = m+1, … , n (4. 30) 

e1i, e2i non-negative and bj and Si unrestricted in sign. 

The linear programs that minimise SAPE and MaxAD are formulated in the same way. 

4.4 RESULTS: IGNORING THE FIRST s+m-1 DATA POINTS 

Table 4.4 shows the results of the same models, ignoring the first s+m-1 data points of the training 

set. The first s+m-1 data points are also ignored in the OLS model (minimising SSE). In brackets there 

is the difference between the new results and the previous results (Table 4.1). The results of the ARS 

on the hard and smooth series are the same with the AR; hence, I do not present these. 

Table 4. 4 Results ignoring the first s+1-m data points - MAPE 

MAPE (%) LP 
OLS 

1 step ahead MinSAD MinSAPE MinMaxAD 

AR 6         

All 9.02 (0.08) 9.06 (0.11) 27.58 (-16.52) 8.69 (-0.25) 

Smooth 3.19 (-0.03) 2.98 (-0.04) 21.43 (-3.18) 3.14 (-0.05) 

Hard 24.96 (-0.15) 26.44 (0.55) 47.10 (-69.14) 24.47 (-0.54) 

Seasonal 10.54 (0.41) 10.22 (0.14) 27.69 (-8.87) 9.79 (-0.45) 

AR 12         

All 8.25 (-0.22) 8.57 (-0.12) 21.33 (-5.25) 8.01 (-0.28) 

Smooth 3.17 (0.01) 3.06 (0.01) 18.77 (1.3) 3.22 (-0.01) 

Hard 25.36 (-1.54) 27.88 (-1.19) 30.19 (-22.92) 23.69 (-1.32) 

Seasonal 7.75 (0.08) 7.64 (0.27) 20.79 (-7.77) 7.80 (-0.2) 

ARS 6         

All 7.54 (-0.03) 7.71 (0.04) 22.68 (-13.8) 7.39 (-0.27) 

Seasonal 5.60 (0.04) 5.73 (-0.1) 10.68 (-1.23) 5.45 (-0.52) 

ARS 12         

All 7.43 (-0.32) 7.78 (-0.33) 18.55 (-3) 7.22 (-0.32) 

Seasonal 5.03 (-0.23) 5 (-0.45) 11.29 (0.6) 5.19 (-0.31) 
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By ignoring the first s+m-1 periods of the training set the results are generally improved. The OLS 

give better results, having on average 0.2% to 0.3% lower MAPE compared with table 4.1. LPs are 

improved in the AR/ARS 12, but they are slightly worse in the AR 6. The results of the LP approaches 

are generally improved on the hard series. Among the LP models MinSAD performs best on the hard 

series and MinSAPE performs best on the smooth series. MinMaxAD performs significantly worse 

compared with the other methods. 

Table 4.5 presents the average out of sample sMAPE. According to sMAPE, the comparison of the 

methods is similar to the comparison according to MAPE (Table 4.4). Comparing LP approaches, 

MinMaxAD has the worst performance. MinSAD is overall the best LP approach and also on the hard 

series, while MinSAPE is the best on the smooth series. 

Table 4. 5 Results ignoring the first s+1-m data points - sMAPE 

sMAPE (%) LP 
OLS 

1 step ahead MinSAD MinSAPE MinMaxAD 

AR 6         

All 8.64 (0.07) 9.40 (0.12) 19.41 (-5.43) 8.48 (-0.18) 

Smooth 3.05 (-0.03) 2.89 (-0.04) 10.47 (-0.85) 3.03 (-0.05) 

Hard 24.43 (-0.15) 29.47 (0.61) 42.66 (-17.65) 24.01 (0.12) 

Seasonal 9.81 (0.38) 9.83 (0.14) 22.38 (-6.78) 9.54 (-0.57) 

AR 12         

All 8.31 (-0.25) 9.25 (-0.15) 15.75 (-7.27) 7.81 (-0.32) 

Smooth 3.01 (0.01) 2.94 (0.01) 9.72 (-1.01) 3.07 (-0.01) 

Hard 27.05 (-1.64) 33.01 (-1.41) 32.89 (-23.67) 23.74 (-0.61) 

Seasonal 7.33 (0.08) 7.26 (0.25) 16.93 (-9.27) 7.40 (-0.71) 

ARS 6         

All 7.35 (-0.06) 8.17 (0.08) 15.61 (-3.69) 7.24 (-0.18) 

Seasonal 5.51 (-0.05) 5.72 (2.79) 9.72 (-0.98) 5.39 (-0.57) 

ARS 12         

All 7.59 (-0.27) 8.54 (-0.23) 13.71 (-4.69) 7.12 (-0.22) 

Seasonal 4.94 (0.01) 4.90 (0) 10.15 (-0.68) 5.10 (-0.38) 

Comparing OLS with LP, the differences are relatively low. LP performs better on smooth and 

seasonal series, and OLS performs better on the hard series. 

Table 4.6 shows performance of the methods according to MASE. The comparison of the results is 

similar with the other two accuracy measures. The overall differences are low. LP is better than the 

OLS on the smooth and seasonal series and OLS is better on the hard series. MinSAD and MinSAPE 

perform similar on the seasonal series, MinSAD performs better on the hard series (MinSAPE 
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performs worse than naive, MASE > 1) and MinSAPE performs better on the smooth. MinMaxAD is 

the worst and it is the only method that has an overall MASE larger than 1. 

Table 4. 6 Results ignoring the 1st s+1-m data points - MASE 

MASE LP 
OLS 

1 step ahead MinSAD MinSAPE MinMaxAD 

AR 6         

All 0.93 (0) 0.94 (0) 3.15 (-0.99) 0.92 (-0.02) 

Smooth 0.95 (-0.01) 0.94 (-0.01) 3.75 (-0.34) 0.95 (-0.02) 

Hard 0.91 (-0.01) 1.01 (0.02) 2.40 (-2.96) 0.88 (-0.01) 

Seasonal 0.92 (0.04) 0.91 (0.02) 2.50 (-1.04) 0.88 (-0.02) 

AR 12         

All 0.90 (-0.01) 0.92 (0.01) 2.64 (-2) 0.88 (-0.03) 

Smooth 0.95 (0) 0.95 (0) 3.39 (-0.44) 0.95 (0) 

Hard 0.98 (-0.06) 1.11 (-0.05) 1.68 (-8.26) 0.88 (-0.05) 

Seasonal 0.75 (0.01) 0.74 (0.03) 1.85 (-1.29) 0.75 (-0.06) 

ARS 6         

All 0.82 (0) 0.84 (0) 2.71 (-0.7) 0.81 (-0.02) 

Seasonal 0.54 (0) 0.55 (0) 1.05 (-0.08) 0.52 (-0.03) 

ARS 12         

All 0.83 (0) 0.85 (0) 2.43 (-1.6) 0.81 (-0.02) 

Seasonal 0.52 (0) 0.52 (0) 1.15 (0.02) 0.52 (-0.02) 

4.5 SUM OF ERRORS EQUAL TO ZERO 

One of the characteristics of the OLS regression is that the sum of the errors is always equal to zero. 

This removes overestimation or underestimation bias in the regression models. The sum of errors 

equal to zero is not guaranteed in initial LP formulations. This is also mentioned by Kiountouzis 

(1973) where linear programming based regression introduces a small bias even in symmetrical error 

distributions. Thus, I decide to run the experiments again adding this constraint to the linear 

program (Σe = 0) in order to have a better comparison of the LP and OLS approaches. In the same 

way, I add a constraint where the sum of the k seasonal coefficients of the ARS model are equal to 

zero (ΣS = 0) in order to remove possible seasonal bias from the models. The new formulation of the 

program for both AR and ARS models are: 
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The linear program for the AR model minimising the SAD is (assuming that Yi-j is not defined for j > i): 

MinSAD  

(4. 24), (4. 25), (4. 26) 

subject to: 

(4. 27)

 

 ( ) 0
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(4. 31) 

e1i, e2i non-negative and bj unrestricted in sign. 

The linear program for the ARS model is: 

MinSAD  

(4. 28), (4. 25), (4. 26) 

subject to: 

(4. 29), (4. 30), (4. 31) 
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(4. 32) 

e1i, e2i non-negative and bj and Si unrestricted in sign. 

The linear programs that minimise SAPE and MaxAD are formulated in the same way. 

I also test LPs with two other objective functions: minimising the Absolute Differences Between the 

Deviations minimising the Absolute Difference Between Percentage Deviations. These objectives 

were identified at a later stage in the study and the rationale for testing these is to avoid ‘large 

swings’ between positive and/or negative errors or, in other words, to obtain ‘smoother’ (and 

hopefully better) forecasts. 
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The formulation of the AR model for minimising the ADBD for one period ahead forecast is 

(assuming that Yi-j is not defined for j > i): 

MinADBD  

 ∑ ∑
−

+= +=

−
1

1 1

n

mi

n

il
li eeMin

 

(4. 33) 

if e1il and e2il are the absolute positive and negative differences between the errors ei and el, then 

this can be rewritten as: 
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(4. 34) 

subject to: 

 
021 =+−− ililli eeee   i = m+1, … , n-1 and l =i+1, … , n 

(4. 35) 
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(4. 36) 
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(4. 37) 

e1il, e2il non-negative and ei and bj unrestricted in sign. 

In the same way, the formulation of the ARS model that minimises the ADBD for one period ahead 

forecast is (assuming that Yi-j is not defined for j > i): 

MinADBD  

(4. 33), (4. 34) 

subject to: 

(4. 35) 
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 iii

m

j
jij YeSYb =++∑

=
−

1  
 i = m+1, … , n 

(4. 38) 

(4. 30), (4. 32), (4. 37) 

e1il, e2il non-negative and ei and bj unrestricted in sign. 

The LP formulation of the AR model that minimises the Absolute Difference Between Percentage 
Errors is as follows. 

MinADBPE  
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(4. 39) 

if e1il and e2il are the absolute positive and negative differences between the percentage errors ei/Yi 

and el/Yl, this can be rewritten as: 

(4. 34) 

subject to: 

 021 =+−− ilil
l

l

i

i ee
Y
e

Y
e

  i = m+1, … , n-1 and l = i+1, … , n (4. 40) 

(4. 36), (4. 37) 

e1il, e2il non-negative and ei and bj unrestricted in sign. 

The formulation of the ARS MinADBPE model is similar. 

4.6 RESULTS: SUM OF ERRORS EQUAL TO ZERO 

Table 4.7 shows the average out of sample MAPE for the models with the additional two constraints: 

sum of the errors and sum of the seasonal coefficients equal to zero. The OLS results remain the 

same as in the table 4.4. 

Adding the constraints improves the results and especially on the smooth and seasonal series. On 

the hard series the results are less conclusive. The best performing LP approaches on the smooth 
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and seasonal series are MinADBD and MinADBPD. The best performing approach for the hard series 

is the OLS. The order 12 models perform generally better than the order 6 models (except for the 

hard series) and the models with seasonal coefficients perform much better than those without.  

MinMaxAD is again the worst technique; however, its performance improved considerably 

compared with the earlier results (Table 4.4). 

Table 4. 7 Sum of errors equal to zero - MAPE - 1 step ahead 

MAPE LP 
OLS 

1 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σe = 0            

AR 6            

All 8.64 (-0.13) 8.70 (-0.34) 9.27 (-1.82) 8.76 (-0.03) 8.78 (-0.01) 8.69 

Smooth 3.02 (-0.15) 3.05 (-0.15) 3.98 (0) 2.99 (-0.19) 2.99 (-0.21) 3.14 

Hard 24.94 (0.14) 25.20 (-1.06) 25.14 (-6.05) 25.71 (0.94) 26.09 (1.12) 24.47 

Seasonal 9.58 (-0.22) 9.57 (-0.28) 9.85 (-2.7) 9.59 (-0.29) 9.46 (-0.27) 9.79 

AR 12            

All 8.36 (-0.01) 8.50 (-0.29) 8.89 (-0.47) 8.16 (0.08) 8.42 (-0.15) 8.01 

Smooth 2.98 (-0.18) 3.09 (-0.07) 4.19 (-0.04) 2.91 (-0.27) 2.89 (-0.19) 3.22 

Hard 26.83 (1.05) 27.42 (-1.09) 25.81 (0.66) 26.08 (1.7) 27.79 (0.06) 23.69 

Seasonal 7.68 (-0.29) 7.60 (-0.25) 7.85 (-1.89) 7.55 (-0.18) 7.48 (-0.19) 7.80 

ARS 6            

All 7.41 (-0.07) 7.47 (-0.27) 7.96 (-1.7) 7.52 (0.05) 7.59 (0.06) 7.39 

Seasonal 5.46 (-0.05) 5.47 (-0.04) 5.51 (-2.29) 5.46 (-0.03) 5.49 (-0.05) 5.45 

ARS 12            

All 7.52 (0.07) 7.67 (-0.22) 7.99 (-0.78) 7.36 (0.13) 7.61 (-0.1) 7.22 

Seasonal 4.86 (-0.03) 4.85 (0) 4.85 (-2.89) 4.86 (-0.04) 4.78 (-0.05) 5.19 

Table 4.8 shows the average out of sample sMAPE. According to this accuracy index, the best 

approaches on the smooth and seasonal series are the LPs with objective MinADBD and MinADBPD. 

MinMaxAD is again the worst technique. 

 As before, in comparison with the LP approaches, the OLS approach yields slightly better results, 

mainly due to its good performance on the hard series. The LP models (except MinMaxAD) typically 

perform better than the OLS on the smooth and seasonal series. For smooth and seasonal series the 

order 12 models are better than order 6, and the ARS models are better than the AR counterparts on 

the seasonal series.  
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Table 4. 8  Sum of errors equal to zero - sMAPE - 1 step ahead 

sMAPE LP 
OLS 

1 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σe = 0            
AR 6            

All 8.88 (0.41) 8.98 (0.23) 9.04 (-2.05) 8.69 (0.22) 8.72 (0.07) 8.48 

Smooth 2.94 (-0.09) 2.94 (-0.1) 3.90 (-0.09) 2.93 (-0.12) 2.91 (-0.14) 3.03 

Hard 26.38 (2.64) 26.99 (1.73) 24.24 (-6.94) 25.71 (1.87) 26.09 (1.12) 24.01 

Seasonal 9.71 (0.05) 9.71 (-0.02) 9.73 (-2.84) 9.47 (-0.11) 9.40 (-0.12) 9.54 

AR 12            

All 8.45 (0.24) 8.59 (-0.24) 8.60 (-0.91) 8.01 (0.17) 8.26 (-0.1) 7.81 

Smooth 2.87 (-0.12) 2.97 (-0.03) 4.10 (-0.21) 2.83 (-0.18) 2.79 (-0.13) 3.07 

Hard 28.37 (2.26) 29.05 (-0.94) 25.11 (-1.26) 26.08 (1.87) 27.79 (0.06) 23.74 

Seasonal 7.31 (-0.23) 7.23 (-0.21) 7.43 (-1.98) 7.19 (-0.13) 7.12 (-0.14) 7.40 

ARS 6            

All 7.58 (0.38) 7.68 (0.23) 7.74 (-1.86) 7.46 (0.24) 7.52 (0.1) 7.24 

Seasonal 5.38 (-0.04) 5.38 (-0.03) 5.41 (-2.18) 5.39 (-0.02) 5.41 (-0.04) 5.39 

ARS 12            

All 7.69 (0.31) 7.85 (-0.17) 7.80 (-1.16) 7.29 (0.21) 7.53 (-0.07) 7.12 

Seasonal 4.78 (-0.01) 4.76 (0.01) 4.75 (-2.8) 4.77 (-0.03) 4.69 (-0.04) 5.10 
 

Table 4. 9 Sum of errors equal to zero - MASE - 1 step ahead 

MASE LP 
OLS 

1 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σe = 0            

AR 6            

All 0.92 (0.01) 0.93 (0) 1.04 (-0.16) 0.91 (0) 0.91 (0) 0.92 

Smooth 0.94 (0) 0.94 (0) 1.18 (-0.09) 0.93 (-0.01) 0.94 (-0.01) 0.95 

Hard 0.94 (0.06) 0.95 (0.03) 0.88 (-0.23) 0.92 (0.04) 0.92 (0.02) 0.88 

Seasonal 0.89 (-0.01) 0.88 (-0.01) 0.89 (-0.23) 0.88 (-0.01) 0.87 (-0.01) 0.88 

AR 12            

All 0.90 (0) 0.91 (0) 1.07 (-0.06) 0.87 (0) 0.88 (-0.01) 0.88 

Smooth 0.95 (0) 0.96 (0) 1.29 (0.01) 0.93 (-0.01) 0.93 (-0.01) 0.95 

Hard 1.02 (0.06) 1.05 (0.03) 0.91 (-0.07) 0.94 (0.04) 0.97 (0.01) 0.88 

Seasonal 0.75 (-0.02) 0.74 (-0.02) 0.76 (-0.18) 0.73 (-0.01) 0.73 (-0.01) 0.75 

ARS 6            

All 0.81 (0.01) 0.82 (0) 0.93 (-0.17) 0.81 (0) 0.81 (0) 0.81 

Seasonal 0.53 (0) 0.52 (0) 0.53 (-0.26) 0.52 (0) 0.52 (0) 0.52 

ARS 12            

All 0.83 (0.01) 0.84 (0.01) 0.99 (-0.07) 0.80 (0) 0.80 (0) 0.81 

Seasonal 0.51 (0) 0.51 (0) 0.50 (-0.22) 0.50 (0) 0.49 (0) 0.52 
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Table 4.9 shows the average MASE. The differences between all the methods are very small and 

most approaches perform much better than the Naive 1 forecast method. The exceptions are the 

MinMaxAD formulation on the smooth series and the AR12 models with MinSAD and MinSAPE on 

the hard series. 

The general conclusion of the analysis of the initial results is that LP is very useful for the 

development and optimisation of (seasonal) autoregressive models in case the series behave well 

(smooth or seasonal); the weak point of LP approach is the performance on the series with high 

variability. The addition of the two constraints improved the performance of the LP models. 

I decided to run the experiments for six (medium term) and twelve periods ahead (long term) 

forecasting. Table 4.10 shows the average MAPE of the LP approaches, as well as OLS, for six steps 

ahead forecasts. Here, both AR 6 and AR 12 models give very similar results in general. On the other 

hand, ARS 6 models perform better than the ARS 12 models. ARS models are still better than simple 

AR, except the OLS ARS 12 which performs slightly worse than the corresponding AR 12. 

Table 4. 10 Sum of errors equal to zero - MAPE - 6 steps ahead 

MAPE LP 
OLS 

6 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σe = 0       

AR 6       

All 11.99 12.03 14.33 11.55 11.68 11.41 

Smooth 7.34 7.39 8.36 7.26 7.54 7.09 

Hard 26.64 26.84 27.53 24.24 24.35 24.03 

Seasonal 12.12 12.04 17.60 12.12 12.01 12.08 

AR 12       

All 11.94 12.13 14.14 11.20 11.69 11.17 

Smooth 7.87 7.91 7.76 7.83 7.93 7.76 

Hard 29.08 30.20 30.40 25.12 27.81 25.35 

Seasonal 9.64 9.60 16.46 9.44 9.42 9.34 

ARS 6       

All 10.84 10.84 12.09 10.27 10.57 10.96 

Seasonal 8.29 8.09 10.12 7.87 8.29 10.59 

ARS 12       

All 11.49 11.69 12.15 10.71 11.61 11.27 

Seasonal 8.14 8.13 9.84 7.83 9.15 9.67 

OLS outperforms LP overall, except for the ARS 6 models. MinADBD is the best LP model. OLS 

performs better on the hard series; however, LP performs better on the seasonal series for the ARS 
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models. Similarly as for the 1 step ahead methods, MinMaxAD is the worst method compared with 

the other LP approaches and the OLS. 

Table 4.11 shows the average sMAPE for 6 steps ahead forecasts. The performance of order 6 

models is typically better than order 12 models. The best performing LP approaches are again those 

with objective MinADBD and MinADBPD. However, the MinADBPD model of order 12 performs 

rather poorly on the hard series. Detailed investigation revealed that this was due to poor 

performance on one of the series, where the forecasts were negative (making the denominator of 

the sMAPE very small, and hence resulting in a large error). 

Table 4. 11 Sum of errors equal to zero - sMAPE - 6 steps ahead 

sMAPE LP 
OLS 

6 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σe = 0       

AR 6       

All 11.40 11.42 14.14 10.97 11.03 10.88 

Smooth 6.63 6.68 7.76 6.55 6.80 6.42 

Hard 27.23 27.29 30.40 24.86 24.64 24.80 

Seasonal 11.08 11.02 16.46 11.10 11.00 11.08 

AR 12       

All 11.65 14.45 13.37 10.79 17.99 11.32 

Smooth 6.87 6.92 8.87 6.86 6.94 6.84 

Hard 31.75 48.50 32.26 27.02 69.99 30.32 

Seasonal 8.99 8.94 10.86 8.78 8.77 8.73 

ARS 6       

All 10.44 10.41 12.15 9.89 9.92 10.58 

Seasonal 7.87 7.68 9.84 7.51 7.28 10.08 

ARS 12       

All 11.27 14.08 13.20 10.38 19.02 11.45 

Seasonal 7.70 7.68 10.29 7.39 12.17 9.17 

Comparing LP with OLS, the former performs better for ARS and AR 6 and the latter performs better 

for AR 12. LP performs significantly better on the seasonal series of ARS and OLS performs slightly 

better on the hard series. 

Table 4.12 shows the average MASE for 6 periods ahead forecasts. Here, the performance of the LP 

and OLS approaches is compared with Naive 6. The results are in line with the previous observations. 

The best performing LP methods are MinADBD and MinADBPD. The worst LP approach is 

MinMaxAD, which performs occasionally worse than the forecast. The OLS is the better technique 
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for the hard series but the LP approaches (except MinMaxAD) do better on the seasonal series (ARS 

models). 

Table 4. 12 Sum of errors equal to zero - MASE - 6 steps ahead 

MASE LP 
OLS 

6 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σe = 0       

AR 6       

All 0.88 0.89 1.05 0.86 0.87 0.85 

Smooth 0.97 0.98 1.10 0.95 0.98 0.93 

Hard 0.87 0.88 0.89 0.80 0.79 0.79 

Seasonal 0.72 0.72 1.06 0.73 0.72 0.72 

AR 12       

All 0.87 0.87 1.03 0.83 0.86 0.83 

Smooth 0.98 0.99 1.21 0.95 0.98 0.96 

Hard 0.95 0.96 0.98 0.87 0.93 0.84 

Seasonal 0.62 0.62 0.74 0.61 0.61 0.60 

ARS 6       

All 0.83 0.83 0.93 0.80 0.81 0.84 

Seasonal 0.54 0.52 0.66 0.52 0.51 0.69 

ARS 12       

All 0.84 0.85 1.02 0.81 0.92 0.84 

Seasonal 0.55 0.55 0.70 0.53 0.81 0.64 

After 6 steps ahead, the 12 steps ahead analysis follows. Table 4.13 shows the application of the LP, 

as well as OLS, for 12 periods ahead forecasts (average MAPE). Both AR and ARS models give very 

similar results; thus, the seasonal coefficient does not improve the accuracy of the forecast for long 

term forecasting. Additionally, order 6 models do better than order 12 models. MinADBD gives the 

best results; MinSAD comes second and MinADBPD third, while MinMaxAD is the worst technique; 

however, the difference between the  LP approaches (ignoring MinMaxAD) is  smaller compared 

with the 6 and 1 step ahead forecasts. OLS performs in general a bit better than LP. 

Tables 4.14 and 4.15 show the average sMAPE and MASE (comparison with Naive 12) for 12 steps 

ahead respectively. The conclusion of the comparison between LP and OLS approaches is similar as  

with the comparison according to the MAPE. Most approaches perform worse than the naive 

method (Table 4.15). 
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Table 4. 13 Sum of errors equal to zero - MAPE - 12 steps ahead 

MAPE LP 
OLS 

12 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σe = 0       
AR 6       

All 13.08 13.31 15.28 12.85 13.24 12.55 

Smooth 10.56 10.72 11.82 10.53 10.81 10.04 

Hard 25.72 26.73 32.03 24.76 26.31 25.07 

Seasonal 10.52 10.47 12.13 10.37 10.29 10.06 

AR 12       

All 14.22 15.05 21.47 14.19 14.78 13.85 

Smooth 11.34 11.51 22.17 11.42 11.54 11.04 

Hard 28.99 33.74 34.38 29.10 32.68 28.97 

Seasonal 11.13 10.98 13.07 10.83 10.59 10.44 

ARS 6       

All 13.16 13.37 15.46 12.87 13.24 12.58 

Seasonal 10.81 10.66 12.73 10.43 10.29 10.14 

ARS 12       

All 14.13 14.94 21.90 14.15 14.79 13.61 

Seasonal 10.84 10.59 14.49 10.70 10.63 9.65 
 

Table 4. 14 Sum of errors equal to zero - sMAPE - 12 steps ahead 

sMAPE LP 
OLS 

12 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σe = 0       
AR 6       

All 12.49 12.86 14.93 12.31 12.80 12.18 

Smooth 9.52 9.54 10.58 9.62 9.77 9.25 

Hard 27.03 29.28 35.78 25.95 28.55 26.85 

Seasonal 9.69 9.63 11.07 9.53 9.45 9.26 

AR 12       

All 13.92 14.18 17.94 13.96 13.08 13.48 

Smooth 10.22 10.21 14.60 10.27 10.36 10.17 

Hard 32.44 34.30 39.26 33.07 27.82 31.03 

Seasonal 10.19 10.06 12.03 9.92 9.70 9.61 

ARS 6       

All 12.57 12.92 15.12 12.33 12.79 12.42 

Seasonal 9.96 9.83 11.71 9.59 9.40 10.05 

ARS 12       

All 13.85 14.08 18.22 13.93 13.08 13.44 

Seasonal 9.98 9.74 12.95 9.80 9.71 9.49 
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Table 4. 15 Sum of errors equal to zero - MASE - 12 steps ahead 

MASE LP 
OLS 

12 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σe = 0       
AR 6       

All 1.03 1.05 1.19 1.02 1.05 0.98 

Smooth 1.07 1.10 1.20 1.06 1.12 1.00 

Hard 0.91 0.92 1.06 0.87 0.90 0.90 

Seasonal 1.04 1.04 1.25 1.02 1.02 1.00 

AR 12       

All 1.10 1.13 1.41 1.08 1.13 1.07 

Smooth 1.14 1.18 1.52 1.12 1.20 1.10 

Hard 0.99 1.08 1.17 1.00 1.08 1.04 

Seasonal 1.08 1.08 1.34 1.06 1.04 1.04 

ARS 6       

All 1.06 1.07 1.22 1.03 1.06 0.98 

Seasonal 1.11 1.09 1.34 1.06 1.05 1.00 

ARS 12       

All 1.11 1.13 1.44 1.08 1.14 1.06 

Seasonal 1.11 1.09 1.46 1.08 1.08 1.00 

In summary, the conclusion is that the significance of the seasonal coefficients decreases as we 

move from short-term forecasting to longer-term. In the same way, additional variables in the 

autoregressive part become less meaningful (order 6 models perform better than order 12). Hence, 

it seems that simpler models tend to perform better when the forecasting horizon is longer. LP is 

shown to be a good tool for short-term forecasting (and especially for smooth and seasonal series) 

but the value of optimisation for longer term forecasts is less clear. The differences between LP and 

OLS are small. 

4.7 SUM OF PERCENTAGE ERRORS EQUAL TO ZERO 

Finally, I decided to run the experiments again changing the constraint that removes the 

underestimation and overestimation bias. I change the constraint sum of errors equal to zero (Σe = 

0) to sum of percentage errors equal to zero (Σe/Y = 0). I apply this constraint to all five LP 

formulations and compare by the results with the OLS approach. The sum of percentage errors equal 

to zero constraint may not completely remove the bias; it is a milder condition than the sum of 

errors equal to zero constraint and can be seen as some kind of relaxation. 
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Tables 4.16, 4.17 and 4.18 show the results for one period ahead forecasts (average MAPE, sMAPE 

and MASE respectively); the OLS results remain the same. As we can see, the new constraint 

improves the results in many cases and specifically,  on smooth and seasonal series for all the 

models, and on the hard series for  MinSAPE (order 6 and 12)and MinMaxAD (order 6). On the other 

hand, it gives worse results on the hard series for the other LP approaches.  MinMaxAD remains the 

worst method, yet in comparison with the other LP approaches, the performance of MinMaxAD 

improved a lot.  

In comparison with the OLS, the relationship remains the same. LP performs better on the smooth 

and seasonal series, while OLS performs better on the hard series. OLS outperforms LP according to 

MAPE and sMAPE (except forthe AR/ARS 6 model with objective MinSAD). MinADBD and ADBPD 

outperform OLS according to the MASE accuracy measure. 

Table 4. 16 Sum of percentage errors equal to zero - MAPE - 1 step ahead 

MAPE LP 
OLS 

1 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σ%e = 0            

AR 6            

All 8.64 (-0.13) 8.70 (-0.34) 9.27 (-1.82) 8.76 (-0.03) 8.78 (-0.01) 8.69 

Smooth 3.02 (-0.15) 3.05 (-0.15) 3.98 (0) 2.99 (-0.19) 2.99 (-0.21) 3.14 

Hard 24.94 (0.14) 25.20 (-1.06) 25.14 (-6.05) 25.71 (0.94) 26.09 (1.12) 24.47 

Seasonal 9.58 (-0.22) 9.57 (-0.28) 9.85 (-2.7) 9.59 (-0.29) 9.46 (-0.27) 9.79 

AR 12            

All 8.36 (-0.01) 8.50 (-0.29) 8.89 (-0.47) 8.16 (0.08) 8.42 (-0.15) 8.01 

Smooth 2.98 (-0.18) 3.09 (-0.07) 4.19 (-0.04) 2.91 (-0.27) 2.89 (-0.19) 3.22 

Hard 26.83 (1.05) 27.42 (-1.09) 25.81 (0.66) 26.08 (1.7) 27.79 (0.06) 23.69 

Seasonal 7.68 (-0.29) 7.60 (-0.25) 7.85 (-1.89) 7.55 (-0.18) 7.48 (-0.19) 7.80 

ARS 6            

All 7.41 (-0.07) 7.47 (-0.27) 7.96 (-1.7) 7.52 (0.05) 7.59 (0.06) 7.39 

Seasonal 5.46 (-0.05) 5.47 (-0.04) 5.51 (-2.29) 5.46 (-0.03) 5.49 (-0.05) 5.45 

ARS 12            

All 7.52 (0.07) 7.67 (-0.22) 7.99 (-0.78) 7.36 (0.13) 7.61 (-0.1) 7.22 

Seasonal 4.86 (-0.03) 4.85 (0) 4.85 (-2.89) 4.86 (-0.04) 4.78 (-0.05) 5.19 
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Table 4. 17 Sum of percentage errors equal to zero - sMAPE - 1 step ahead 

sMAPE LP 
OLS 

1 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σ%e = 0            
AR 6            

All 8.88 (0.41) 8.98 (0.23) 9.04 (-2.05) 8.69 (0.22) 8.72 (0.07) 8.48 

Smooth 2.94 (-0.09) 2.94 (-0.1) 3.90 (-0.09) 2.93 (-0.12) 2.91 (-0.14) 3.03 

Hard 26.38 (2.64) 26.99 (1.73) 24.24 (-6.94) 25.71 (1.87) 26.09 (1.12) 24.01 

Seasonal 9.71 (0.05) 9.71 (-0.02) 9.73 (-2.84) 9.47 (-0.11) 9.40 (-0.12) 9.54 

AR 12            

All 8.45 (0.24) 8.59 (-0.24) 8.60 (-0.91) 8.01 (0.17) 8.26 (-0.1) 7.81 

Smooth 2.87 (-0.12) 2.97 (-0.03) 4.10 (-0.21) 2.83 (-0.18) 2.79 (-0.13) 3.07 

Hard 28.37 (2.26) 29.05 (-0.94) 25.11 (-1.26) 26.08 (1.87) 27.79 (0.06) 23.74 

Seasonal 7.31 (-0.23) 7.23 (-0.21) 7.43 (-1.98) 7.19 (-0.13) 7.12 (-0.14) 7.40 

ARS 6            

All 7.58 (0.38) 7.68 (0.23) 7.74 (-1.86) 7.46 (0.24) 7.52 (0.1) 7.24 

Seasonal 5.38 (-0.04) 5.38 (-0.03) 5.41 (-2.18) 5.39 (-0.02) 5.41 (-0.04) 5.39 

ARS 12            

All 7.69 (0.31) 7.85 (-0.17) 7.80 (-1.16) 7.29 (0.21) 7.53 (-0.07) 7.12 

Seasonal 4.78 (-0.01) 4.76 (0.01) 4.75 (-2.8) 4.77 (-0.03) 4.69 (-0.04) 5.10 
 

Table 4. 18 Sum of percentage errors equal to zero - MASE - 1 step ahead 

MASE LP 
OLS 

1 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

Σ%e = 0            

AR 6            

All 0.92 (0.01) 0.93 (0) 1.04 (-0.16) 0.91 (0) 0.91 (0) 0.92 

Smooth 0.94 (0) 0.94 (0) 1.18 (-0.09) 0.93 (-0.01) 0.94 (-0.01) 0.95 

Hard 0.94 (0.06) 0.95 (0.03) 0.88 (-0.23) 0.92 (0.04) 0.92 (0.02) 0.88 

Seasonal 0.89 (-0.01) 0.88 (-0.01) 0.89 (-0.23) 0.88 (-0.01) 0.87 (-0.01) 0.88 

AR 12            

All 0.90 (0) 0.91 (0) 1.07 (-0.06) 0.87 (0) 0.88 (-0.01) 0.88 

Smooth 0.95 (0) 0.96 (0) 1.29 (0.01) 0.93 (-0.01) 0.93 (-0.01) 0.95 

Hard 1.02 (0.06) 1.05 (0.03) 0.91 (-0.07) 0.94 (0.04) 0.97 (0.01) 0.88 

Seasonal 0.75 (-0.02) 0.74 (-0.02) 0.76 (-0.18) 0.73 (-0.01) 0.73 (-0.01) 0.75 

ARS 6            

All 0.81 (0.01) 0.82 (0) 0.93 (-0.17) 0.81 (0) 0.81 (0) 0.81 

Seasonal 0.53 (0) 0.52 (0) 0.53 (-0.26) 0.52 (0) 0.52 (0) 0.52 

ARS 12            

All 0.83 (0.01) 0.84 (0.01) 0.99 (-0.07) 0.80 (0) 0.80 (0) 0.81 

Seasonal 0.51 (0) 0.51 (0) 0.50 (-0.22) 0.50 (0) 0.49 (0) 0.52 
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I also ran the experiments for six and twelve steps ahead forecasts. Table 4.19, 4.20 and 4.21 show 

the results of the LP, as well as OLS, for six steps ahead forecasts. Adding the new constraint 

improves the LP results on the smooth and seasonal series. The results on the hard series are less 

conclusive. MinADBPD is significantly worse than the other approaches according to sMAPE due to a 

negative forecast for one of the hard series. As before, the OLS performs well on the hard series, 

while the LP models perform better on the seasonal and smooth series. The performance of the 

order 6 models tends to be better than the order 12 models. 

 

 

Table 4. 19 Sum of percentage errorrs equal to zero - MAPE - 6 steps ahead 

MAPE LP 
OLS 

6 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σ%e = 0            

AR 6            

All 11.29 (-0.7) 11.24 (-0.79) 14.42 (0.09) 10.97 (-0.58) 11.10 (-0.58) 11.41 

Smooth 6.53 (-0.81) 6.72 (-0.67) 7.89 (-0.47) 6.44 (-0.82) 6.77 (-0.77) 7.09 

Hard 26.41 (-0.23) 25.79 (-1.05) 31.49 (3.96) 25.11 (0.87) 24.99 (0.64) 24.03 

Seasonal 11.36 (-0.76) 11.19 (-0.85) 16.55 (-1.05) 11.18 (-0.94) 11.09 (-0.92) 12.08 

AR 12            

All 11.06 (-0.88) 11.13 (-1) 13.57 (-0.57) 10.84 (-0.36) 11.09 (-0.6) 11.17 

Smooth 6.96 (-0.91) 7.08 (-0.83) 9.85 (2.09) 6.84 (-0.99) 7.28 (-0.65) 7.76 

Hard 27.58 (-1.5) 27.57 (-2.63) 29.21 (-1.19) 26.75 (1.63) 26.85 (-0.96) 25.35 

Seasonal 9.16 (-0.48) 9.18 (-0.42) 11.48 (-4.98) 9.09 (-0.35) 9.11 (-0.31) 9.34 

ARS 6            

All 10.28 (-0.56) 10.24 (-0.6) 12.47 (0.38) 9.92 (-0.35) 10.06 (-0.51) 10.96 

Seasonal 7.99 (-0.3) 7.85 (-0.24) 10.05 (-0.07) 7.67 (-0.2) 7.61 (-0.68) 10.59 

ARS 12            

All 10.72 (-0.77) 10.76 (-0.93) 13.34 (1.19) 10.38 (-0.33) 10.63 (-0.98) 11.27 

Seasonal 8.03 (-0.11) 7.95 (-0.18) 10.71 (0.87) 7.58 (-0.25) 7.59 (-1.56) 9.67 
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Table 4. 20 Sum of percentage errors equal to zero - sMAPE - 6 steps ahead 

sMAPE LP 
OLS 

6 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σ%e = 0            

AR 6            

All 11.41 (0.01) 11.31 (-0.11) 12.67 (-1.47) 11.14 (0.17) 11.19 (0.16) 10.88 

Smooth 6.18 (-0.45) 6.36 (-0.32) 7.60 (-0.16) 6.11 (-0.44) 6.44 (-0.36) 6.42 

Hard 29.60 (2.37) 28.70 (1.41) 23.43 (-6.97) 28.49 (3.63) 27.94 (3.3) 24.80 

Seasonal 10.61 (-0.47) 10.43 (-0.59) 15.71 (-0.75) 10.43 (-0.67) 10.35 (-0.65) 11.08 

AR 12            

All 11.49 (-0.16) 11.90 (-2.55) 13.37 (0) 11.21 (0.42) 16.01 (-1.98) 11.32 

Smooth 6.39 (-0.48) 6.62 (-0.3) 8.87 (0) 6.29 (-0.57) 8.09 (1.15) 6.84 

Hard 33.01 (1.26) 34.72 (-13.78) 32.26 (0) 31.80 (4.78) 41.50 (-28.49) 30.32 

Seasonal 8.60 (-0.39) 8.61 (-0.33) 10.86 (0) 8.51 (-0.27) 15.93 (7.16) 8.73 

ARS 6            

All 10.52 (0.08) 10.43 (0.02) 10.89 (-1.26) 10.21 (0.32) 10.27 (0.35) 10.58 

Seasonal 7.63 (-0.24) 7.50 (-0.18) 9.78 (-0.06) 7.34 (-0.17) 7.28 (0) 10.08 

ARS 12            

All 11.20 (-0.07) 11.58 (-2.5) 13.20 (0) 10.81 (0.43) 13.39 (-5.63) 11.45 

Seasonal 7.62 (-0.08) 7.55 (-0.13) 10.29 (0) 7.18 (-0.21) 7.21 (-4.96) 9.17 
 

Table 4. 21 Sum of percentage errors equal to zero - MASE - 6 steps ahead 

MASE LP 
OLS 

6 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σ%e = 0            

AR 6            

All 0.87 (-0.01) 0.88 (-0.01) 1.05 (0) 0.85 (-0.01) 0.87 (0) 0.85 

Smooth 0.96 (-0.01) 0.98 (0) 1.10 (0) 0.94 (-0.01) 0.98 (0) 0.93 

Hard 0.91 (0.04) 0.89 (0.01) 0.97 (0.08) 0.87 (0.07) 0.86 (0.07) 0.79 

Seasonal 0.69 (-0.03) 0.68 (-0.04) 1.01 (-0.05) 0.69 (-0.04) 0.68 (-0.04) 0.72 

AR 12            

All 0.85 (-0.02) 0.87 (0) 1.03 (0) 0.83 (0) 1.31 (0.45) 0.83 

Smooth 0.96 (-0.02) 1.00 (0.01) 1.21 (0) 0.93 (-0.02) 1.55 (0.57) 0.96 

Hard 0.97 (0.02) 0.95 (-0.01) 0.98 (0) 0.94 (0.07) 1.08 (0.15) 0.84 

Seasonal 0.60 (-0.02) 0.60 (-0.02) 0.74 (0) 0.59 (-0.02) 1.00 (0.39) 0.60 

ARS 6            

All 0.82 (-0.01) 0.83 (0) 0.95 (0.02) 0.80 (0) 0.82 (0.01) 0.84 

Seasonal 0.52 (-0.02) 0.51 (-0.01) 0.67 (0.01) 0.50 (-0.02) 0.50 (-0.01) 0.69 

ARS 12            

All 0.84 (0) 0.85 (0) 1.02 (0) 0.81 (0) 1.16 (0.24) 0.84 

Seasonal 0.54 (-0.01) 0.54 (-0.01) 0.70 (0) 0.51 (-0.02) 0.51 (-0.3) 0.64 



CHAPTER 4  OPTIMISING AUTOREGRESSIVE BASED FORECASTS 

102 
 

Finally Tables 4.22, 4.23 and 4.24 show the results, for 12 steps ahead forecasting. Similarly, the 

results are improved on the smooth and seasonal series. The only results that are worse are the 

performance on the hard series. In comparison with the OLS, all the LP models are generally better 

according to MAPE, and the OLS is better according to sMAPE and MASE. LP performs better on the 

smooth series and OLS on the hard series. 

 

 

Table 4. 22 Sum of percentage errors equal to zero - MAPE - 12 steps ahead 

MAPE LP 
OLS 

12 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σ%e = 0            

AR 6            

All 12.48 (-0.59) 12.42 (-0.9) 15.28 (0) 12.32 (-0.53) 12.40 (-0.83) 12.55 

Smooth 9.26 (-1.29) 9.49 (-1.23) 11.82 (0) 9.17 (-1.36) 9.53 (-1.28) 10.04 

Hard 27.36 (1.64) 26.24 (-0.49) 32.03 (0) 26.84 (2.09) 26.19 (-0.12) 25.07 

Seasonal 9.94 (-0.59) 9.94 (-0.53) 12.13 (0) 9.86 (-0.51) 9.86 (-0.43) 10.06 

AR 12            

All 13.66 (-0.56) 14.07 (-0.98) 21.47 (0) 13.31 (-0.88) 13.83 (-0.95) 13.85 

Smooth 10.24 (-1.1) 10.58 (-0.93) 22.17 (0) 9.86 (-1.56) 10.32 (-1.22) 11.04 

Hard 30.35 (1.36) 31.74 (-2) 34.38 (0) 29.76 (0.66) 31.64 (-1.05) 28.97 

Seasonal 10.44 (-0.69) 10.47 (-0.5) 13.07 (0) 10.31 (-0.52) 10.18 (-0.41) 10.44 

ARS 6            

All 12.61 (-0.55) 12.53 (-0.85) 15.33 (-0.13) 12.37 (-0.5) 12.45 (-0.79) 12.58 

Seasonal 10.35 (-0.46) 10.30 (-0.36) 12.28 (-0.45) 10.04 (-0.4) 10.01 (-0.28) 10.14 

ARS 12            

All 13.64 (-0.49) 14.03 (-0.91) 21.88 (-0.02) 13.29 (-0.86) 13.78 (-1.01) 13.61 

Seasonal 10.38 (-0.46) 10.33 (-0.26) 14.42 (-0.07) 10.22 (-0.48) 10.02 (-0.62) 9.65 
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Table 4. 23 Sum of percentage errors equal to zero - sMAPE - 12 steps ahead 

sMAPE LP 
OLS 

12 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σ%e = 0            

AR 6            

All 13.03 (0.54) 12.83 (-0.02) 14.93 (0) 12.73 (0.42) 12.75 (-0.05) 12.18 

Smooth 9.11 (-0.4) 9.19 (-0.34) 10.58 (0) 9.07 (-0.55) 9.26 (-0.51) 9.25 

Hard 32.40 (5.37) 30.99 (1.71) 35.78 (0) 30.93 (4.97) 30.45 (1.91) 26.85 

Seasonal 9.22 (-0.47) 9.21 (-0.42) 11.07 (0) 9.13 (-0.4) 9.11 (-0.33) 9.26 

AR 12            

All 14.99 (1.07) 12.29 (-1.88) 17.94 (0) 14.21 (0.25) 14.21 (1.14) 13.48 

Smooth 9.77 (-0.45) 10.00 (-0.2) 14.60 (0) 9.64 (-0.63) 9.64 (-0.72) 10.17 

Hard 41.30 (8.86) 24.33 (-9.96) 39.26 (0) 37.29 (4.22) 37.29 (9.47) 31.03 

Seasonal 9.64 (-0.55) 9.68 (-0.38) 12.03 (0) 9.51 (-0.4) 9.51 (-0.19) 9.61 

ARS 6            

All 13.25 (0.68) 13.02 (0.1) 18.98 (3.86) 12.78 (0.44) 14.30 (1.52) 12.42 

Seasonal 9.96 (0) 9.83 (0) 24.57 (12.86) 9.29 (-0.3) 9.26 (-0.14) 10.05 

ARS 12            

All 15.09 (1.24) 12.31 (-1.77) 22.98 (4.77) 14.19 (0.26) 16.23 (3.15) 13.44 

Seasonal 9.98 (0) 9.74 (0) 28.84 (15.89) 9.43 (-0.37) 9.26 (-0.45) 9.49 
 

Table 4. 24 Sum of percentage errors equal to zero - MASE - 12 steps ahead 

MASE LP 
OLS 

12 STEP  MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 
Σ%e = 0            

AR 6            

All 1.05 (0.01) 1.07 (0.02) 1.19 (0) 1.02 (0.01) 1.06 (0.01) 0.98 

Smooth 1.10 (0.03) 1.14 (0.04) 1.20 (0) 1.06 (0) 1.14 (0.02) 1.00 

Hard 0.97 (0.06) 0.96 (0.04) 1.06 (0) 0.97 (0.09) 0.95 (0.05) 0.90 

Seasonal 1.00 (-0.04) 1.00 (-0.04) 1.25 (0) 0.99 (-0.04) 0.99 (-0.03) 1.00 

AR 12            

All 1.11 (0.01) 1.17 (0.04) 1.41 (0) 1.07 (-0.01) 1.07 (-0.06) 1.07 

Smooth 1.17 (0.03) 1.27 (0.1) 1.52 (0) 1.11 (-0.01) 1.11 (-0.09) 1.10 

Hard 1.06 (0.07) 1.08 (0) 1.17 (0) 1.05 (0.05) 1.05 (-0.03) 1.04 

Seasonal 1.04 (-0.05) 1.04 (-0.03) 1.34 (0) 1.02 (-0.04) 1.02 (-0.02) 1.04 

ARS 6            

All 1.08 (0.02) 1.10 (0.03) 1.20 (-0.02) 1.04 (0.01) 1.09 (0.03) 0.98 

Seasonal 1.11 (0) 1.09 (0) 1.28 (-0.07) 1.03 (-0.03) 1.03 (-0.02) 1.00 

ARS 12            

All 1.13 (0.03) 1.19 (0.05) 1.44 (0) 1.08 (-0.01) 1.09 (-0.05) 1.06 

Seasonal 1.11 (0) 1.09 (0) 1.45 (-0.01) 1.04 (-0.03) 1.02 (-0.06) 1.00 
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As we can see, the new constraint improves the overall performance (MAPE) of the LP models and 

brings the level of accuracy to the same or better level as the OLS. The improvement is mainly 

observed in the smooth and seasonal series. 

4.8 CONCLUSIONS 

The objective of the chapter was to explore if linear programming can be used as a tool for 

optimising the parameters of autoregressive forecasting models. LP has been suggested as an 

alternative method to estimate the parameters of a linear regression in the past, but it was never 

tested on forecasting or compared with OLS. The analysis shows that LP can be used to optimise 

time series forecast and that it performs as good as the OLS. The additional constraints (sum of 

errors equal to zero and sum of percentage errors equal to zero) have helped to overcome the 

problem of biased forecasts. The formulation of a linear program is quite easy and the 

computational time for the calculation of the solution is less than a second. Hence, it should be easy 

for decision makers to implement and use these approaches. The findings of this chapter are 

summarised as follows: 

• LP is a good alternative to the OLS for optimising autoregressive based forecasts. 

• LP performs better than the OLS on series with low variability (smooth and seasonal), while 

it is worse on series with high variability (hard). 

• The addition of constraints that remove bias improve the results in the test set (for seasonal 

and smooth series). 

• The constraint that the sum of the percentage errors should be zero gives better result 

compared with the constraint where the sum of errors is zero on the smooth and seasonal 

series. 

• ARS models are much better than AR models for short term forecasts in seasonal series. For 

long term forecasting it seems that the addition of a seasonal coefficient in the seasonal 

series does not improve the forecast. 

• The best performing LP approaches are MinADBD and MinADBPD, but depending on the 

characteristics of the series, the decision maker may need to focus on different optimisation 

objectives, such as MinSAD, MinSAPE, MinADBD, MinADBPD (LP) and MinSSE (OLS). 
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However, MinMaxAD seems to be a bad choice as an objective because it always performs 

worse compared with the others. 

• The differences between all the models are rather small. 

In this chapter we show that simple linear programming can be used to estimate the parameters of 

autoregressive forecasting models. The objectives of the linear programs are to minimise one 

accuracy measure. The next step is to use linear goal programming, where the objective would be to 

minimise two accuracy measures. 
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5 GOAL PROGRAMMING FOR TIME SERIES FORECASTING 

According to Makridakis et al. (1984) “The performance of a technique may differ according to 

different accuracy measures”. Traditional tools aim to optimise one accuracy index (e.g. the least 

squares method minimises the SSE). LP, in contrast with other techniques, can be applied for multi-

objective optimisation. I tested two types of goal programming formulations: Pre-emptive Goal 

Programming and Weighted (non pre-emptive) Goal Programming., The objective is to minimise 

both SAD and MaxAD (MinSum-MinMax). The first part of the chapter presents the pre-emptive goal 

programming formulation followed by the results (average MAPE, sMAPE and MASE on the test set) 

and comparison with OLS and the single objective approaches (MinSAD and MinMaxAD). The same 

programme is reformulated in a weighted goal programming form. The approaches are tested for 

one, six and twelve steps ahead forecasting and the results are compared with OLS and single 

objective LPs. 

5.1 PRE-EMPTIVE GOAL PROGRAMMING 

The first formulation is a MinMax-MinSum pre-emptive goal program (GP), which minimises MaxAD 

as a first objective and SAD as a second. The GP is applied to optimise the parameters of simple 

autoregressive (4. 2) and seasonal autoregressive (4. 21) models of both order 6 and 12. The GP 

formulations are similar to the final single objective LP formulations of the previous chapter, 

ignoring the first s + m – 1 data points and with the constraints sum of errors equal to zero or sum of 

percentage errors equal to zero. 

For the simple autoregressive model (without base) for one period ahead forecast, the linear goal 

program for minimising MaxAD and SAD is (assuming that Yi-j is not defined for j > i): 

 ( ) ( )++ + 2211 dPdPMin

 

(5. 1) 

subject to: 
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 011 =−+ +− dde

 

(5. 3) 
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where d1
+, d1

-, d2
+ and d2

- are the deviational variables, e1i is the underestimation error, e2i the 

overestimation error in period i and e the MaxAD. 

(4. 27), (4. 19)

 

With  (4. 31) for sum of errors equal to zero or 
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(5. 5) 

 
For sum or percentage errors equal to zero 

0,,,,,, 221121 ≥−+−+ ddddeee ii  

and  

bj unrestricted in sign. 

In the same way, for the seasonal autoregressive model, the linear goal program for minimising 

MaxAD and SAD is (assuming that Yi-j is not defined for j > i): 

 ( ) ( )++ + 2211 dPdPMin

 

(5. 6) 

subject to: 

(5. 3), (5. 4), (4. 29), (4. 19), (4. 32) 

With  (4. 31) for sum of errors equal to zero or (5. 5) for sum of percentage errors equal to zero. 
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Initial experiments showed that setting the optimal solution of the first goal as a hard constraint 

does not leave much room for optimising the second goal, and typically results in the same solution 

as obtained by single objective optimisation. To increase the flexibility of the GP the experiments are 

ran again whilst relaxing the optimal value of the first goal. A relaxation coefficient is used equal to 

1.1, 1.2, 1.3 and 1.4. If opt_value_1 denotes the optimal solution value of the first optimisation (Min 

d1
+); then in the second optimisation we change the objective function to Min d2

+ and add a 

constraint d1
+ ≤ relaxation coefficient × opt_value_1. 

5.2 RESULTS: PREEMPTIVE GOAL PROGRAMMING 

Table 5.1 shows the average MAPE of the Pre-emptive Goal Programming approach on the test set, 

which minimises MaxAD as a first objective and SAD as a second objective for one period ahead 

forecasts for sum of errors equal to zero and for the four relaxation factors. 

Table 5. 1 Pre-emptive goal programming - sum of errors equal to zero - MAPE 

MAPE LP Single Objective LP 
OLS 1 STEP  MinMax-MinSAD 

MinSAD MinMaxAD 
Relaxation factor 1.1 1.2 1.3 1.4 

Σe = 0        
AR 6        

All 9.13 8.91 8.91 8.98 8.64 9.27 8.69 

Smooth 3.33 3.19 3.17 3.18 3.02 3.98 3.14 

Hard 25.14 24.40 24.44 24.83 24.94 25.14 24.47 
Seasonal 10.55 10.46 10.51 10.49 9.58 9.85 9.79 

AR 12        

All 8.60 8.40 8.24 8.28 8.36 8.89 8.01 

Smooth 3.65 3.61 3.51 3.43 2.98 4.19 3.22 

Hard 24.47 23.73 23.51 24.11 26.83 25.81 23.69 
Seasonal 8.59 8.39 8.16 8.12 7.68 7.85 7.80 

ARS 6        

All 7.73 7.47 7.45 7.53 7.41 7.96 7.39 

Seasonal 5.86 5.67 5.61 5.66 5.46 5.51 5.45 

ARS 12        

All 8.02 7.69 7.61 7.50 7.52 7.99 7.22 

Seasonal 6.65 6.04 5.74 5.52 4.86 4.85 5.19 

Factor 1.2 gives the best results for the AR 6 model, 1.3 for the AR 12 and ARS 6 and 1.4 for the ARS 

12; however, in the last case, the best results on the hard series are given by the factor 1.3. 
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If we compare this GP with the single objective LP models, we can see that the GP improves the 

results on the hard series for the AR/ARS 6 models with factors 1.2 and 1.3 and for the AR/ARS 12 

models. 

On the other hand, OLS performs generally better than this GP; however, the latter performs better 

on the hard series for the AR/ARS 6 models with factors 1.2 and 1.3 and for the AR/ARS 12 with 

factor 1.3. 

Table 5.2 shows the average sMAPE for sum of errors equal to zero and one step ahead forecasts. 

Table 5. 2 Pre-emptive goal programming - sum of errors equal to zero - sMAPE 

sMAPE LP Single Objective LP 
OLS 1 STEP  MinMax-MinSAD 

MinSAD MinMaxAD 
Relaxation factor 1.1 1.2 1.3 1.4 

Σe = 0        
AR 6        

All 8.85 8.48 8.41 8.48 8.88 9.04 8.48 

Smooth 3.26 3.10 3.05 3.06 2.94 3.9 3.03 

Hard 24.83 23.43 23.34 23.79 26.38 24.24 24.01 
Seasonal 9.91 9.74 9.63 9.62 9.71 9.73 9.54 

AR 12        

All 8.45 8.21 8.12 8.16 8.45 8.6 7.81 

Smooth 3.53 3.49 3.38 3.33 2.87 4.1 3.07 

Hard 24.64 23.94 23.94 24.45 28.37 25.11 23.74 
Seasonal 8.19 7.86 7.75 7.70 7.31 7.43 7.40 

ARS 6        

All 7.58 7.21 7.15 7.23 7.58 7.74 7.24 

Seasonal 5.67 5.50 5.44 5.45 5.38 5.41 5.39 

ARS 12        

All 7.78 7.42 7.37 7.36 7.69 7.8 7.12 

Seasonal 5.97 5.24 5.25 5.05 4.78 4.75 5.10 

In contrast with the comparison according to the MAPE, factor 1.3 gives the most accurate results 

overall and on the smooth and hard series. The relaxation factor 1.4 is the most accurate on the 

seasonal series. 

In comparison with the single objective techniques, GP improves the results overall. Similarly as in 

the comparison according to the MAPE, the main improvement can be found on the hard series, 

while MinSAD performs better on smooth and seasonal series. 
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OLS performs better for order 12, whereas GP performs better for order 6.  

Table 5.3 shows the average MASE for sum of errors equal to zero. Similarly as in the MAPE and 

sMAPE tables, the best GP approaches are these with relaxation factor 1.3 and 1.4. GP performs 

better than simple LP and OLS on the hard series, but worse on the smooth and seasonal series. 

However, the differences between all the approaches are small. 

Table 5. 3 Pre-emptive goal programming - sum of errors equal to zero - MASE 

MASE LP Single Objective LP 
OLS 1 STEP  MinMax-MinSAD 

MinSAD MinMaxAD 
Relaxation factor 1.1 1.2 1.3 1.4 

Σe = 0        
AR 6        

All 0.97 0.93 0.92 0.92 0.92 1.04 0.92 

Smooth 1.00 0.97 0.95 0.95 0.94 1.18 0.95 

Hard 0.92 0.87 0.86 0.88 0.94 0.88 0.88 
Seasonal 0.93 0.90 0.89 0.89 0.89 0.89 0.88 

AR 12        

All 0.99 0.96 0.93 0.93 0.9 1.07 0.88 

Smooth 1.11 1.07 1.03 1.03 0.95 1.29 0.95 

Hard 0.92 0.87 0.86 0.88 1.02 0.91 0.88 
Seasonal 0.82 0.80 0.78 0.78 0.75 0.76 0.75 

ARS 6        

All 0.86 0.82 0.81 0.81 0.81 0.93 0.81 

Seasonal 0.55 0.53 0.52 0.53 0.53 0.53 0.52 

ARS 12        

All 0.92 0.88 0.86 0.85 0.83 0.99 0.81 

Seasonal 0.59 0.54 0.54 0.52 0.51 0.5 0.52 

The next three tables (5.4, 5.5 and 5.6) show the performance of the approaches with the constraint 

of sum of percentage errors equal to zero according to MAPE, sMAPE and MASE respectively. The 

results are compared with the single objective LPs with sum of percentage errors equal to zero and 

OLS. The results are also compared with those in Table 5.1 (GP with sum of errors equal to zero 

constraint). The number in brackets shows the difference in MAPE (negative for an improvement 

and positive for a worse result). 

Similarly as for the single objective approaches (Chapter 4), adding the sum of percentage errors 

equal to zero constraint, improves the results on the smooth and seasonal series but worsens the 

results on the hard series (except for relaxation factor 1.4).GP with relaxation factor 1.4 is the best 

formulation overall and for each type of series separately. GP outperforms simple LP overall and OLS 



CHAPTER 5 GOAL PROGRAMMING FOR TIME SERIES FORECASTING 

111 
 

for order 6. The former performs better on smooth and seasonal series, while the latter performs 

better on the hard series. 

Table 5. 4 Pre-emptive goal programming - sum of percentage errors equal to zero - MAPE 

MAPE LP Single Objective LP 
OLS 1 STEP  MinMax-MinSAD 

MinSAD MinMaxAD 
R. F. 1.1 1.2 1.3 1.4 

Σ%e = 0            
AR 6            

All 9.32 (0.19) 8.85 (-0.06) 8.66 (-0.25) 8.57 (-0.41) 8.64 9.27 8.69 

Smooth 3.19 (-0.14) 3.06 (-0.13) 3.00 (-0.17) 2.98 (-0.2) 3.02 3.98 3.14 

Hard 27.85 (2.71) 25.88 (1.48) 24.99 (0.55) 24.71 (-0.12) 24.94 25.14 24.47 
Seasonal 9.92 (-0.63) 9.69 (-0.77) 9.65 (-0.86) 9.56 (-0.93) 9.58 9.85 9.79 

AR 12            

All 8.82 (0.22) 8.36 (-0.04) 8.08 (-0.16) 8.06 (-0.22) 8.36 8.89 8.01 

Smooth 3.58 (-0.07) 3.42 (-0.19) 3.35 (-0.16) 3.26 (-0.17) 2.98 4.19 3.22 

Hard 26.45 (1.98) 25.11 (1.38) 23.92 (0.41) 24.13 (0.02) 26.83 25.81 23.69 
Seasonal 8.36 (-0.23) 7.83 (-0.56) 7.70 (-0.46) 7.67 (-0.45) 7.68 7.85 7.80 

ARS 6            

All 8.09 (0.36) 7.62 (0.15) 7.41 (-0.04) 7.34 (-0.19) 7.41 7.96 7.39 

Seasonal 5.82 (-0.04) 5.59 (-0.08) 5.49 (-0.12) 5.46 (-0.2) 5.46 5.51 5.45 

ARS 12            

All 8.13 (0.11) 7.67 (-0.02) 7.38 (-0.23) 7.29 (-0.21) 7.52 7.99 7.22 

Seasonal 6.04 (-0.61) 5.52 (-0.52) 5.35 (-0.39) 5.11 (-0.41) 4.86 4.85 5.19 

The results are similar comparing the approaches according to sMAPE (Table 5.5). The best GP is 

with factor 1.4 with only exception AR 12, where the best is the approach with factor 1.3. GP 

outperforms simple LP overall (smooth, hard and seasonal) and performs better than the OLS on the 

smooth and hard series.  

Table 5.6 shows the comparison of the techniques according to MASE. The differences with the sum 

of errors equal to zero constraint are relatively small. However, a small improvement is observed on 

the smooth and seasonal series, but it is worse on the hard series. On the other hand, it seems that 

GP performs worse overall compared with the simple LP and OLS. 
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Table 5. 5 Pre-emptive goal programming - sum of percentage errors equal to zero - sMAPE 

sMAPE LP Single Objective LP 
OLS 1 STEP  MinMax-MinSAD 

MinSAD MinMaxAD 
R. F. 1.1 1.2 1.3 1.4 

Σ%e = 0            
AR 6            

All 9.58 (0.73) 9.03 (0.55) 8.85 (0.45) 8.78 (0.3) 8.88 9.04 8.48 

Smooth 3.16 (-0.1) 3.02 (-0.08) 2.96 (-0.09) 2.92 (-0.14) 2.94 3.90 3.03 

Hard 29.66 (4.84) 27.09 (3.66) 26.23 (2.89) 26.01 (2.21) 26.38 24.24 24.01 
Seasonal 9.85 (-0.07) 9.68 (-0.06) 9.68 (0.05) 9.62 (0) 9.71 9.73 9.54 

AR 12            

All 9.20 (0.75) 8.68 (0.47) 8.29 (0.17) 8.33 (0.17) 8.45 8.60 7.81 

Smooth 3.52 (-0.01) 3.37 (-0.13) 3.29 (-0.09) 3.19 (-0.13) 2.87 4.10 3.07 

Hard 29.44 (4.8) 27.71 (3.78) 25.93 (1.99) 26.53 (2.09) 28.37 25.11 23.74 
Seasonal 8.04 (-0.15) 7.54 (-0.32) 7.39 (-0.36) 7.35 (-0.35) 7.31 7.43 7.40 

ARS 6            

All 8.34 (0.77) 7.77 (0.57) 7.57 (0.42) 7.51 (0.27) 7.58 7.74 7.24 

Seasonal 5.71 (0.04) 5.49 (-0.01) 5.39 (-0.05) 5.37 (-0.08) 5.38 5.41 5.39 

ARS 12            

All 8.56 (0.78) 8.04 (0.61) 7.65 (0.28) 7.63 (0.26) 7.69 7.80 7.12 

Seasonal 5.93 (-0.03) 5.41 (0.17) 5.25 (0) 5.01 (-0.04) 4.78 4.75 5.10 
 

Table 5. 6 Pre-emptive goal programming - sum of percentage errors equal to zero - MASE 

MASE LP Single Objective LP 
OLS 1 STEP  MinMax-MinSAD 

MinSAD MinMaxAD 
R. F. 1.1 1.2 1.3 1.4 

Σ%e = 0            
AR 6            

All 0.98 (0.01) 0.94 (0.01) 0.93 (0.01) 0.92 (0) 0.92 1.04 0.92 

Smooth 1.00 (0) 0.96 (0) 0.95 (-0.01) 0.94 (-0.01) 0.94 1.18 0.95 

Hard 1.01 (0.09) 0.94 (0.08) 0.92 (0.06) 0.92 (0.04) 0.94 0.88 0.88 
Seasonal 0.93 (0) 0.90 (0) 0.89 (0) 0.88 (0) 0.89 0.89 0.88 

AR 12            

All 1.00 (0.01) 0.95 (0) 0.93 (0) 0.92 (-0.01) 0.90 1.07 0.88 

Smooth 1.11 (0) 1.06 (-0.01) 1.03 (0) 1.01 (-0.01) 0.95 1.29 0.95 

Hard 0.99 (0.08) 0.95 (0.08) 0.92 (0.06) 0.92 (0.04) 1.02 0.91 0.88 
Seasonal 0.80 (-0.02) 0.77 (-0.03) 0.75 (-0.03) 0.75 (-0.03) 0.75 0.76 0.75 

ARS 6            

All 0.87 (0.01) 0.83 (0.01) 0.82 (0.01) 0.81 (0) 0.81 0.93 0.81 

Seasonal 0.56 (0) 0.53 (0) 0.52 (0) 0.52 (0) 0.53 0.53 0.52 

ARS 12            

All 0.93 (0.01) 0.89 (0.01) 0.86 (0.01) 0.85 (0) 0.83 0.99 0.81 

Seasonal 0.59 (0) 0.54 (0.01) 0.54 (0) 0.52 (0) 0.51 0.50 0.52 
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Pre-emptive goal programming gives good results on the hard series (in Table 5.1 MinMaxAD&MAD 

give the best results on the hard series). It seems that according to the characteristic of the series, 

we may have to focus on different optimisation objectives. 

5.3 WEIGHTED GOAL PROGRAMMING 

An alternative way to relax the first goal of the linear goal program is by applying an approach 

similar to Lagangian relaxation. In pre-emptive GP the decision maker optimises the initial goal first 

and then the second goal, given the optimal value of the first goal as a constraint. Thus, the 

formulation of the above program that optimise the second goal is (assuming that Yi-j is not defined 

for j > i): 

 +
2dMin
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where d1
+, d1

-, d2
+ and d2

- are the deviational variables, e1i is the underestimation error, e2i the 

overestimation error in period i and e the MaxAD and e’ is the minimum maximum absolute 

deviation obtained from the first optimisation. 

Subject to: 

(4. 29), (4. 19) 
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With  (4. 31) for sum of errors equal to zero or (5. 5) for sum of percentage errors equal to zero. 

Bringing constraint (5.8) into the objective function with weight w1 yields: 

 ( )'112 edwdMin −+ ++

 

(5. 9) 

The objective function is penalised if the constraint (5. 8) is violated. The weight is selected by the 

decision maker. In addition, e’ is a pre-calculated constant number. It can be removed from the 

objective function without affecting the results. Hence, the linear program is reformulated as: 

 ++ + 2211 dwdwMin

 

(5. 10) 

Subject to: 

(5. 3), (5. 4), (4. 29), (4. 19) 

With  (4. 31) for sum of errors equal to zero or (5. 5) for sum of percentage errors equal to zero. 

Because the minimal maximum absolute deviation (e’) is removed from the formulation of the linear 

program, there is no need for calculating it as an initial objective. Thus, the pre-emptive goal 

programming is reformulated as a weighted goal programming model, where the objective is to 

minimise SAD and MaxAD with weights w1 and w2 = 1). I perform experiments for w1 = 1, 2, 3 and 4.
 The formulation of the counterpart ARS models is similar.

 

5.4 WGP RESULTS: SUM OF ERRORS EQUAL TO ZERO 

Table 5.7 shows the results of the weighted goal programming models for one period ahead 

forecasts with weights w1 =  1, 2, 3 and 4. The last column shows the single objective results of the 

OLS that minimises the MSE. The weighted GP improves the performance of the simple LP overall. 

Specifically weighted GP performs better than the simple LP in every group of series except on the 

seasonal series for the AR 6 and AR/ARS 12. The biggest improvement is observed on the hard series, 

while the differences in the other groups are small. 
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If we compare the WGP models with the OLS, then OLS performs better for AR/ARS 6 and AR 12, 

while WGP works better for ARS 12. Specifically, OLS works better on the hard series. On the other 

hand, weighted GP works better on the smooth series and the seasonal series for the ARS models. 

Nevertheless, the differences are low. 

Table 5. 7 Weighted goal programming - sum of errors equal to zero - MAPE - 1 step ahead 

MAPE WGP Single Objective LP 
OLS 1 STEP  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 8.76 8.80 8.76 8.87 8.64 9.27 8.69 

Smooth 3.15 3.15 3.14 3.14 3.02 3.98 3.14 

Hard 24.78 25.03 24.84 25.44 24.94 25.14 24.47 
Seasonal 9.84 9.82 9.82 9.85 9.58 9.85 9.79 

AR 12        

All 8.09 8.22 8.05 8.05 8.36 8.89 8.01 

Smooth 3.15 3.17 3.17 3.15 2.98 4.19 3.22 

Hard 24.25 24.96 23.93 23.94 26.83 25.81 23.69 
Seasonal 7.89 7.91 7.91 7.94 7.68 7.85 7.80 

ARS 6        

All 7.44 7.47 7.46 7.56 7.41 7.96 7.39 

Seasonal 5.43 5.40 5.48 5.47 5.46 5.51 5.45 

ARS 12        

All 7.18 7.33 7.17 7.17 7.52 7.99 7.22 

Seasonal 4.86 4.93 4.96 5.00 4.86 4.85 5.19 

The results are similar comparing the approaches according to sMAPE (Table 5.8). The approach with 

w1 = 3 performs in general very well. However, the differences between the approaches are small. 

WGP outperforms simple LP and OLS overall, except on the hard series with AR 12, where WGP is 

outperformed by OLS. 

Finally, table 5.9 shows the comparison of the approaches according to MASE. The results of all the 

approaches are very similar and the differences rather small (apart from MinMaxAD which performs 

worse). 
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Table 5. 8 Weighted goal programming - sum of errors equal to zero - sMAPE - 1 step ahead 

sMAPE WGP Single Objective LP 
OLS 1 STEP  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 8.49 8.53 8.48 8.59 8.88 9.04 8.48 

Smooth 3.02 3.03 3.02 3.02 2.94 3.9 3.03 

Hard 23.80 24.07 23.86 24.43 26.38 24.24 24.01 
Seasonal 9.69 9.66 9.65 9.68 9.71 9.73 9.54 

AR 12        

All 7.90 8.08 7.87 7.88 8.45 8.6 7.81 

Smooth 2.99 3.01 3.02 3.01 2.87 4.1 3.07 

Hard 24.40 25.39 24.06 24.14 28.37 25.11 23.74 
Seasonal 7.46 7.49 7.49 7.53 7.31 7.43 7.40 

ARS 6        

All 7.18 7.22 7.20 7.30 7.58 7.74 7.24 

Seasonal 5.34 5.31 5.38 5.37 5.38 5.41 5.39 

ARS 12        

All 7.09 7.28 7.08 7.10 7.69 7.8 7.12 

Seasonal 4.77 4.83 4.87 4.90 4.78 4.75 5.10 
 

Table 5. 9 Weighted goal programming - sum of errors equal to zero - MASE - 1 step ahead 

MASE WGP Single Objective LP 
OLS 1 STEP  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 0.92 0.92 0.92 0.92 0.92 1.04 0.92 

Smooth 0.94 0.94 0.95 0.95 0.94 1.18 0.95 

Hard 0.88 0.89 0.88 0.90 0.94 0.88 0.88 
Seasonal 0.89 0.89 0.89 0.89 0.89 0.89 0.88 

AR 12        

All 0.89 0.90 0.89 0.90 0.9 1.07 0.88 

Smooth 0.96 0.96 0.97 0.97 0.95 1.29 0.95 

Hard 0.90 0.92 0.87 0.88 1.02 0.91 0.88 
Seasonal 0.76 0.77 0.77 0.77 0.75 0.76 0.75 

ARS 6        

All 0.80 0.81 0.81 0.81 0.81 0.93 0.81 

Seasonal 0.52 0.52 0.52 0.52 0.53 0.53 0.52 

ARS 12        

All 0.81 0.82 0.81 0.82 0.83 0.99 0.81 

Seasonal 0.51 0.50 0.51 0.51 0.51 0.5 0.52 
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Table 5.10 shows the results of the WGP models for 6 periods ahead forecasting. Weight 4 performs 

better for all the models on most of the series. In addition, the comparison with the single objective 

LP is very similar to the one step ahead models. Specifically, WGP performs better in general, except 

on the seasonal series (where WGP outperforms the simple LP for the ARS 12 model only). In 

comparison with the OLS, the OLS performs better for AR6 and AR12 models, whereas the WGP does 

better on the ARS6 and ARS12 models. The WGP performs significantly better on the seasonal series 

with the ARS models. 

Table 5. 10 Weighted goal programming - sum of errors equal to zero - MAPE - 6 steps ahead 

MAPE WGP Single Objective LP 
OLS 6 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 11.86 11.82 11.76 11.70 11.99 14.33 11.41 

Smooth 7.31 7.31 7.30 7.29 7.34 8.36 7.09 

Hard 25.89 25.67 25.38 24.96 26.64 27.53 24.03 
Seasonal 12.15 12.14 12.12 12.17 12.12 17.60 12.08 

AR 12        

All 11.83 11.88 11.77 11.77 11.94 14.14 11.17 

Smooth 7.87 7.87 7.90 7.90 7.87 7.76 7.76 

Hard 28.43 28.74 28.08 28.08 29.08 30.40 25.35 
Seasonal 9.63 9.64 9.60 9.60 9.64 16.46 9.34 

ARS 6        

All 10.71 10.65 10.60 10.53 10.84 12.09 10.96 

Seasonal 8.32 8.26 8.28 8.29 8.29 10.12 10.59 

ARS 12        

All 11.34 11.36 11.27 11.28 11.49 12.15 11.27 

Seasonal 8.02 7.92 7.95 7.96 8.14 9.84 9.67 

The comparison according sMAPE (Table 5.11) and MASE (Table 5.12) shows very similar results. 

WGP does well on the seasonal series (ARS models); OLS performs better on the hard series. 
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Table 5. 11 Weighted goal programming - sum of errors equal to zero - sMAPE - 6 steps ahead 

sMAPE WGP Single Objective LP 
OLS 6 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 11.29 11.26 11.19 11.13 11.40 14.14 10.88 

Smooth 6.62 6.61 6.59 6.59 6.63 7.76 6.42 

Hard 26.56 26.43 26.10 25.69 27.23 30.40 24.80 
Seasonal 11.11 11.10 11.08 11.12 11.08 16.46 11.08 

AR 12        

All 11.35 11.43 11.50 11.50 11.65 13.37 11.32 

Smooth 7.02 7.02 6.90 6.89 6.87 8.87 6.84 

Hard 29.36 29.81 30.83 30.83 31.75 32.26 30.32 
Seasonal 9.04 9.05 8.95 8.95 8.99 10.86 8.73 

ARS 6        

All 10.33 10.29 10.23 10.16 10.44 12.15 10.58 

Seasonal 7.91 7.86 7.87 7.88 7.87 9.84 10.08 

ARS 12        

All 10.92 10.97 11.07 11.07 11.27 13.20 11.45 

Seasonal 7.61 7.52 7.51 7.52 7.70 10.29 9.17 
 

Table 5. 12 Weighted goal programming - sum of errors equal to zero - MASE - 6 steps ahead 

MASE WGP Single Objective LP 
OLS 6 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 0.88 0.87 0.87 0.87 0.88 1.05 0.85 

Smooth 0.97 0.97 0.96 0.96 0.97 1.10 0.93 

Hard 0.86 0.85 0.83 0.82 0.87 0.89 0.79 
Seasonal 0.72 0.72 0.72 0.72 0.72 1.06 0.72 

AR 12        

All 0.86 0.86 0.86 0.86 0.87 1.03 0.83 

Smooth 0.97 0.97 0.97 0.97 0.98 1.21 0.96 

Hard 0.96 0.95 0.94 0.94 0.95 0.98 0.84 
Seasonal 0.62 0.62 0.62 0.62 0.62 0.74 0.60 

ARS 6        

All 0.82 0.82 0.81 0.81 0.83 0.93 0.84 

Seasonal 0.54 0.54 0.54 0.54 0.54 0.66 0.69 

ARS 12        

All 0.84 0.84 0.83 0.83 0.84 1.02 0.84 

Seasonal 0.54 0.53 0.53 0.53 0.55 0.70 0.64 
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Tables 5.13, 5.14, 5.15 show the results of the WGP models for 12 periods ahead forecasts (average 

MAPE, sMAPE and MASE respectively). The w1 = 1 approach typically performs better. 

Table 5. 13 Weighted goal programming - sum of errors equal to zero - MAPE - 12 steps ahead 

MAPE WGP Single Objective LP 
OLS 12 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 13.08 13.21 13.13 13.14 13.08 15.28 12.55 

Smooth 10.55 10.60 10.57 10.49 10.56 11.82 10.04 

Hard 25.83 26.45 26.00 26.30 25.72 32.03 25.07 
Seasonal 10.51 10.51 10.51 10.53 10.52 12.13 10.06 

AR 12        

All 14.10 14.30 14.30 14.44 14.22 21.47 13.85 

Smooth 11.25 11.27 11.33 11.15 11.34 22.17 11.04 

Hard 28.60 29.82 29.65 30.90 28.99 34.38 28.97 
Seasonal 11.11 11.07 11.05 11.13 11.13 13.07 10.44 

ARS 6        

All 13.15 13.29 13.15 13.15 13.16 15.46 12.58 

Seasonal 10.73 10.78 10.59 10.57 10.81 12.73 10.14 

ARS 12        

All 14.02 14.25 14.27 14.39 14.13 21.90 13.61 

Seasonal 10.86 10.90 10.96 10.99 10.84 14.49 9.65 

Comparing it with the simple LP, it performs slightly better for the AR 12 and ARS models and slightly 

worse with the AR 6 model; however, the differences are small. The performance of order 6 models 

is better than order 12 models for longer term forecasts. The best performing WGP the OLS is the 

best performing approach. The best performing WGP approach is this with weight w1 = 1, and its 

performance is a little bit better than the single objective LP models. 
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Table 5. 14 Weighted goal programming - sum of errors equal to zero - sMAPE - 12 steps ahead 

sMAPE WGP Single Objective LP 
OLS 12 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 12.46 12.62 12.58 12.57 12.49 14.93 12.18 

Smooth 9.43 9.45 9.48 9.40 9.52 10.58 9.25 

Hard 27.16 28.04 27.77 27.90 27.03 35.78 26.85 
Seasonal 9.67 9.67 9.67 9.69 9.69 11.07 9.26 

AR 12        

All 13.76 13.97 13.95 14.26 13.92 17.94 13.48 

Smooth 10.18 10.13 10.13 10.11 10.22 14.60 10.17 

Hard 31.65 33.13 33.04 34.81 32.44 39.26 31.03 
Seasonal 10.18 10.15 10.13 10.21 10.19 12.03 9.61 

ARS 6        

All 12.52 12.69 12.60 12.58 12.57 15.12 12.42 

Seasonal 9.88 9.93 9.74 9.72 9.96 11.71 10.05 

ARS 12        

All 13.70 13.93 13.93 14.22 13.85 18.22 13.44 

Seasonal 9.99 10.03 10.08 10.09 9.98 12.95 9.49 
 

Table 5. 15 Weighted goal programming - sum of errors equal to zero - MASE - 12 steps ahead 

MASE WGP Single Objective LP 
OLS 12 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σe = 0        
AR 6        

All 1.03 1.04 1.04 1.03 1.03 1.19 0.98 

Smooth 1.06 1.07 1.07 1.06 1.07 1.20 1.00 

Hard 0.91 0.92 0.92 0.92 0.91 1.06 0.90 
Seasonal 1.04 1.04 1.04 1.04 1.04 1.25 1.00 

AR 12        

All 1.10 1.10 1.10 1.10 1.10 1.41 1.07 

Smooth 1.13 1.14 1.13 1.11 1.14 1.52 1.10 

Hard 1.01 1.03 1.03 1.06 0.99 1.17 1.04 
Seasonal 1.08 1.08 1.08 1.09 1.08 1.34 1.04 

ARS 6        

All 1.05 1.05 1.05 1.04 1.06 1.22 0.98 

Seasonal 1.09 1.10 1.08 1.07 1.11 1.34 1.00 

ARS 12        

All 1.10 1.11 1.11 1.10 1.11 1.44 1.06 

Seasonal 1.10 1.11 1.12 1.11 1.11 1.46 1.00 
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5.5 WGP RESULTS: SUM OF PERCENTAGE ERRORS EQUAL TO ZERO 

Table 5.16 shows the results of the weighted goal programming approaches, compared with the 

simple LP and OLS for one period ahead forecasts according to the MAPE. 

Table 5. 16 Weighted goal programming - sum of percentage errors equal to zero - 1 step ahead 

MAPE WGP Single Objective LP 
OLS 1 STEP  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 8.60 (-0.16) 8.68 (-0.12) 8.74 (-0.02) 8.79 (-0.08) 8.64 9.27 8.69 

Smooth 3.01 (-0.14) 2.95 (-0.2) 2.93 (-0.2) 2.95 (-0.19) 3.02 3.98 3.14 

Hard 24.73 (-0.05) 25.33 (0.3) 25.82 (0.99) 25.94 (0.5) 24.94 25.14 24.47 
Seasonal 9.59 (-0.25) 9.61 (-0.21) 9.56 (-0.26) 9.64 (-0.21) 9.58 9.85 9.79 

AR 12            

All 7.99 (-0.1) 8.01 (-0.21) 7.87 (-0.18) 7.91 (-0.14) 8.36 8.89 8.01 

Smooth 2.95 (-0.2) 3.00 (-0.17) 3.03 (-0.14) 3.03 (-0.12) 2.98 4.19 3.22 

Hard 24.71 (0.46) 24.66 (-0.3) 23.79 (-0.14) 23.95 (0.02) 26.83 25.81 23.69 
Seasonal 7.66 (-0.23) 7.66 (-0.25) 7.64 (-0.27) 7.67 (-0.27) 7.68 7.85 7.80 

ARS 6            

All 7.34 (-0.1) 7.43 (-0.05) 7.50 (0.04) 7.61 (0.06) 7.41 7.96 7.39 

Seasonal 5.37 (-0.06) 5.44 (0.04) 5.44 (-0.04) 5.72 (0.25) 5.46 5.51 5.45 

ARS 12            

All 7.14 (-0.03) 7.17 (-0.15) 7.06 (-0.1) 7.23 (0.06) 7.52 7.99 7.22 

Seasonal 4.84 (-0.02) 4.88 (-0.05) 4.95 (-0.01) 5.41 (0.41) 4.86 4.85 5.19 

In brackets I show the improvement in MAPE over the approaches with sum of errors equal to zero 

constraint. As before a negative value corresponds to a decrease in MAPE; a positive value indicates 

an increase. 

The improvement over the approaches with sum of errors equal to zero constraint is obvious. 

Specifically, all the approaches give better results with the only exception the ARS 6 with w1 = 3 and 

4. Similar as for the single objective LPs, the improvement is mainly observed on the smooth and 

seasonal series.  

In comparison with the single objective LP with sum of percentage errors equal to zero, the WGP 

gives better results than the best single objective model. Similarly to the models with sum of errors 

equal to zero, the improvement is observed on the hard series.  
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In comparison with the OLS, the WGP gives better results, mainly due to better results on the 

smooth and seasonal series. It is difficult to draw conclusions about the impacts of the weights. 

Table 5.17 shows the comparison of the WGP with the simple LP and OLS according to sMAPE. The 

best WGP approaches are with w1 = 1 for order 6 and w1 = 3 for order 12. The results are generally 

improved on the smooth and seasonal series, but they are worse on the hard series. WGP 

outperforms simple LP and performs better than the OLS on the smooth and seasonal series. 

Table 5. 17 Weighted goal programming - sum of percentage errors equal to zero - sMAPE - 1 step ahead 

sMAPE WGP Single Objective LP 
OLS 1 STEP  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 8.84 (0.35) 8.91 (0.38) 8.95 (0.47) 9.01 (0.42) 8.88 9.04 8.48 

Smooth 2.93 (-0.1) 2.89 (-0.14) 2.89 (-0.13) 2.92 (-0.1) 2.94 3.90 3.03 

Hard 26.18 (2.37) 26.70 (2.62) 27.03 (3.17) 27.15 (2.72) 26.38 24.24 24.01 
Seasonal 9.71 (0.02) 9.73 (0.06) 9.68 (0.03) 9.74 (0.06) 9.71 9.73 9.54 

AR 12            

All 8.18 (0.28) 8.23 (0.14) 8.04 (0.17) 8.10 (0.21) 8.45 8.60 7.81 

Smooth 2.85 (-0.14) 2.91 (-0.1) 2.95 (-0.07) 2.95 (-0.05) 2.87 4.10 3.07 

Hard 26.83 (2.43) 26.92 (1.53) 25.72 (1.66) 25.98 (1.83) 28.37 25.11 23.74 
Seasonal 7.29 (-0.18) 7.29 (-0.2) 7.28 (-0.21) 7.32 (-0.21) 7.31 7.43 7.40 

ARS 6            

All 7.51 (0.33) 7.60 (0.38) 7.66 (0.45) 7.77 (0.47) 7.58 7.74 7.24 

Seasonal 5.29 (-0.05) 5.35 (0.05) 5.36 (-0.02) 5.63 (0.25) 5.38 5.41 5.39 

ARS 12            

All 7.42 (0.33) 7.48 (0.19) 7.32 (0.24) 7.50 (0.4) 7.69 7.80 7.12 

Seasonal 4.76 (-0.01) 4.79 (-0.04) 4.87 (0) 5.31 (0.42) 4.78 4.75 5.10 
 

Table 5.18 shows the comparison of the approaches according to MASE. Similar as for the sum of 

errors equal to zero constraint, the differences are relatively small. There is an improvement on the 

smooth and seasonal series. WGP improves the results of simple LP, with only exception MinMaxAD 

on the hard series and it performs as good as the OLS. 
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Table 5. 18 Weighted goal programming - sum of percentage errors equal to zero - MASE - 1 step ahead 

MASE WGP Single Objective LP 
OLS 1 STEP  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 0.92 (0) 0.92 (0) 0.92 (0.01) 0.93 (0) 0.92 1.04 0.92 

Smooth 0.93 (-0.01) 0.93 (-0.01) 0.94 (-0.01) 0.94 (-0.01) 0.94 1.18 0.95 

Hard 0.93 (0.05) 0.94 (0.05) 0.95 (0.06) 0.95 (0.05) 0.94 0.88 0.88 
Seasonal 0.89 (-0.01) 0.89 (0) 0.88 (-0.01) 0.89 (0) 0.89 0.89 0.88 

AR 12            

All 0.89 (0) 0.89 (0) 0.89 (0) 0.89 (0) 0.90 1.07 0.88 

Smooth 0.95 (-0.01) 0.96 (-0.01) 0.96 (-0.01) 0.96 (-0.01) 0.95 1.29 0.95 

Hard 0.95 (0.04) 0.96 (0.04) 0.92 (0.05) 0.93 (0.05) 1.02 0.91 0.88 
Seasonal 0.75 (-0.02) 0.75 (-0.02) 0.75 (-0.02) 0.75 (-0.02) 0.75 0.76 0.75 

ARS 6            

All 0.81 (0) 0.81 (0.01) 0.82 (0.01) 0.82 (0.01) 0.81 0.93 0.81 

Seasonal 0.52 (-0.01) 0.52 (0.01) 0.52 (0) 0.55 (0.03) 0.53 0.53 0.52 

ARS 12            

All 0.82 (0) 0.82 (0) 0.82 (0) 0.83 (0.02) 0.83 0.99 0.81 

Seasonal 0.50 (0) 0.50 (0) 0.51 (0) 0.55 (0.04) 0.51 0.50 0.52 

Table 5.19 shows the results (MAPE) for six steps ahead forecasts. In comparison with the LPs with 

sum of errors equal to zero constraint, the results are better. WGP outperforms simple LP overall, 

mainly because of the better performance on the smooth and hard series. WGP outperforms OLS 

overall and on the smooth and seasonal series. OLS performs better on the hard series. 

The comparison of the approaches according to sMAPE (table 5.20) shows that WGP outperforms 

simple LP overall; however, the differences are very small. OLS outperforms WGP on the hard series; 

however, the WGP performs significantly better on the smooth and seasonal series. 
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Table 5. 19 Weighted goal programming - sum of percentage errors equal to zero - MAPE - 6 steps ahead 

MAPE LP Single Objective LP 
OLS 6 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 11.17 (-0.69) 11.07 (-0.74) 11.02 (-0.73) 11.07 (-0.63) 11.29 14.42 11.41 

Smooth 6.49 (-0.82) 6.47 (-0.83) 6.40 (-0.89) 6.42 (-0.87) 6.53 7.89 7.09 

Hard 25.88 (-0.02) 25.35 (-0.32) 25.24 (-0.14) 25.42 (0.46) 26.41 31.49 24.03 
Seasonal 11.33 (-0.83) 11.32 (-0.82) 11.34 (-0.78) 11.36 (-0.81) 11.36 16.55 12.08 

AR 12            

All 10.97 (-0.85) 11.00 (-0.88) 11.09 (-0.68) 11.17 (-0.6) 11.06 13.57 11.17 

Smooth 7.01 (-0.87) 7.00 (-0.87) 7.04 (-0.86) 7.04 (-0.86) 6.96 9.85 7.76 

Hard 26.94 (-1.49) 27.03 (-1.71) 27.60 (-0.48) 28.04 (-0.04) 27.58 29.21 25.35 
Seasonal 9.15 (-0.48) 9.21 (-0.44) 9.13 (-0.47) 9.16 (-0.44) 9.16 11.48 9.34 

ARS 6            

All 10.18 (-0.53) 10.11 (-0.54) 10.07 (-0.53) 10.10 (-0.43) 10.28 12.47 10.96 

Seasonal 8.01 (-0.31) 8.11 (-0.15) 8.16 (-0.12) 8.15 (-0.14) 7.99 10.05 10.59 

ARS 12            

All 10.62 (-0.72) 10.59 (-0.77) 10.70 (-0.57) 10.77 (-0.51) 10.72 13.34 11.27 

Seasonal 7.99 (-0.03) 7.84 (-0.08) 7.83 (-0.11) 7.82 (-0.14) 8.03 10.71 9.67 
 

Table 5. 20 Weighted goal programming - sum of percentage errors equal to zero - sMAPE - 6 steps ahead 

sMAPE LP Single Objective LP 
OLS 6 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 11.30 (0.01) 11.21 (-0.04) 11.16 (-0.03) 11.20 (0.06) 11.41 12.67 10.88 

Smooth 6.15 (-0.46) 6.14 (-0.47) 6.07 (-0.53) 6.07 (-0.51) 6.18 7.60 6.42 

Hard 29.06 (2.5) 28.59 (2.16) 28.49 (2.39) 28.65 (2.96) 29.60 23.43 24.80 
Seasonal 10.58 (-0.54) 10.58 (-0.52) 10.59 (-0.49) 10.61 (-0.52) 10.61 15.71 11.08 

AR 12            

All 11.43 (0.08) 11.43 (0) 11.55 (0.05) 11.68 (0.18) 11.49 13.37 11.32 

Smooth 6.43 (-0.59) 6.42 (-0.6) 6.46 (-0.44) 6.45 (-0.44) 6.39 8.87 6.84 

Hard 32.53 (3.18) 32.45 (2.65) 33.19 (2.36) 33.95 (3.12) 33.01 32.26 30.32 
Seasonal 8.59 (-0.44) 8.65 (-0.4) 8.58 (-0.37) 8.60 (-0.35) 8.60 10.86 8.73 

ARS 6            

All 10.42 (0.09) 10.36 (0.08) 10.32 (0.09) 10.35 (0.19) 10.52 10.89 10.58 

Seasonal 7.65 (-0.26) 7.74 (-0.12) 7.79 (-0.08) 7.79 (-0.09) 7.63 9.78 10.08 

ARS 12            

All 11.13 (0.2) 11.07 (0.1) 11.21 (0.14) 11.32 (0.26) 11.20 13.20 11.45 

Seasonal 7.59 (-0.03) 7.44 (-0.09) 7.43 (-0.08) 7.41 (-0.1) 7.62 10.29 9.17 
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The comparison according to the MASE (table 5.21) shows that the differences are very small. OLS 

performs better on the hard series, and WGP performs significantly better on the seasonal series for 

ARS. 

Table 5. 21 Weighted goal programming - sum of percentage errors equal to zero - MASE - 6 steps ahead 

MASE LP Single Objective LP 
OLS 6 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 0.86 (-0.01) 0.86 (-0.01) 0.86 (-0.01) 0.86 (-0.01) 0.87 1.05 0.85 

Smooth 0.95 (-0.01) 0.95 (-0.02) 0.94 (-0.02) 0.94 (-0.02) 0.96 1.10 0.93 

Hard 0.89 (0.04) 0.88 (0.03) 0.87 (0.04) 0.87 (0.06) 0.91 0.97 0.79 
Seasonal 0.69 (-0.03) 0.69 (-0.03) 0.69 (-0.03) 0.69 (-0.03) 0.69 1.01 0.72 

AR 12            

All 0.85 (-0.02) 0.84 (-0.02) 0.85 (-0.01) 0.85 (-0.01) 0.85 1.03 0.83 

Smooth 0.96 (-0.01) 0.95 (-0.02) 0.95 (-0.02) 0.95 (-0.02) 0.96 1.21 0.96 

Hard 0.95 (-0.01) 0.95 (-0.01) 0.97 (0.04) 0.99 (0.05) 0.97 0.98 0.84 
Seasonal 0.60 (-0.03) 0.60 (-0.02) 0.59 (-0.03) 0.60 (-0.02) 0.60 0.74 0.60 

ARS 6            

All 0.81 (-0.01) 0.81 (-0.01) 0.81 (-0.01) 0.81 (0) 0.82 0.95 0.84 

Seasonal 0.52 (-0.02) 0.53 (-0.01) 0.53 (-0.01) 0.53 (-0.01) 0.52 0.67 0.69 

ARS 12            

All 0.83 (-0.01) 0.82 (-0.01) 0.83 (-0.01) 0.83 (-0.01) 0.84 1.02 0.84 

Seasonal 0.54 (0) 0.53 (0) 0.53 (-0.01) 0.53 (-0.01) 0.54 0.70 0.64 

Finally Tables 5.22, 5.23 and 5.24 show the results of the WGP for 12 periods ahead forecasts. The 

improvement in the 12 step ahead models is similar. The results are improved on the smooth and 

seasonal series, but they are worse on the hard series. The single objective LPs, tend to perform a bit 

better on the hard series. OLS performs better on the hard and seasonal series but worse on the 

smooth. As before, for longer term forecasts the order 6 models do better than the order 12 models. 
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Table 5. 22 Weighted goal programming - sum of percentage errors equal to zero - MAPE - 12 steps ahead 

MAPE LP Single Objective LP 
OLS 12 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 12.47 (-0.61) 12.46 (-0.75) 12.52 (-0.61) 12.54 (-0.6) 12.48 15.28 12.55 

Smooth 9.28 (-1.27) 9.31 (-1.28) 9.29 (-1.28) 9.28 (-1.21) 9.26 11.82 10.04 

Hard 27.26 (1.43) 27.08 (0.64) 27.43 (1.42) 27.55 (1.25) 27.36 32.03 25.07 
Seasonal 9.93 (-0.58) 9.94 (-0.57) 9.98 (-0.54) 10.00 (-0.53) 9.94 12.13 10.06 

AR 12            

All 13.79 (-0.31) 13.72 (-0.58) 13.87 (-0.43) 13.91 (-0.53) 13.66 21.47 13.85 

Smooth 10.30 (-0.95) 10.20 (-1.07) 10.15 (-1.18) 10.17 (-0.98) 10.24 22.17 11.04 

Hard 31.00 (2.4) 30.83 (1) 31.83 (2.18) 31.86 (0.96) 30.35 34.38 28.97 
Seasonal 10.45 (-0.67) 10.47 (-0.6) 10.51 (-0.54) 10.58 (-0.55) 10.44 13.07 10.44 

ARS 6            

All 12.59 (-0.55) 12.60 (-0.69) 12.64 (-0.51) 12.66 (-0.49) 12.61 15.33 12.58 

Seasonal 10.34 (-0.39) 10.41 (-0.38) 10.38 (-0.21) 10.40 (-0.17) 10.35 12.28 10.14 

ARS 12            

All 13.74 (-0.28) 13.69 (-0.56) 13.87 (-0.4) 13.91 (-0.48) 13.64 21.88 13.61 

Seasonal 10.28 (-0.58) 10.37 (-0.53) 10.50 (-0.46) 10.58 (-0.41) 10.38 14.42 9.65 
 

Table 5. 23Weighted goal programming - sum of percentage errors equal to zero - sMAPE - 12 steps ahead 

sMAPE LP Single Objective LP 
OLS 12 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 12.96 (0.51) 12.95 (0.33) 13.02 (0.44) 13.08 (0.51) 13.03 14.93 12.18 

Smooth 9.07 (-0.35) 9.12 (-0.33) 9.10 (-0.37) 9.09 (-0.31) 9.11 10.58 9.25 

Hard 32.15 (4.99) 31.92 (3.88) 32.37 (4.6) 32.70 (4.8) 32.40 35.78 26.85 
Seasonal 9.21 (-0.46) 9.21 (-0.46) 9.25 (-0.43) 9.27 (-0.42) 9.22 11.07 9.26 

AR 12            

All 14.68 (0.93) 14.30 (0.33) 14.56 (0.61) 14.62 (0.37) 14.99 17.94 13.48 

Smooth 9.81 (-0.36) 9.71 (-0.42) 9.68 (-0.45) 9.69 (-0.42) 9.77 14.60 10.17 

Hard 39.33 (7.68) 37.29 (4.16) 38.89 (5.86) 39.11 (4.3) 41.30 39.26 31.03 
Seasonal 9.64 (-0.54) 9.67 (-0.47) 9.71 (-0.42) 9.78 (-0.43) 9.64 12.03 9.61 

ARS 6            

All 13.07 (0.56) 13.08 (0.39) 13.14 (0.54) 13.19 (0.61) 13.25 18.98 12.42 

Seasonal 9.59 (-0.29) 9.66 (-0.27) 9.62 (-0.11) 9.66 (-0.06) 9.96 24.57 10.05 

ARS 12            

All 14.65 (0.95) 14.28 (0.34) 14.57 (0.63) 14.62 (0.4) 15.09 22.98 13.44 

Seasonal 9.53 (-0.46) 9.61 (-0.42) 9.73 (-0.35) 9.78 (-0.31) 9.98 28.84 9.49 
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Table 5. 24 Weighted goal programming - sum of percentage errors equal to zero - MASE - 12 steps 

MASE LP Single Objective LP 
OLS 12 STEPS  MinSum-MinMaxAD 

MinSAD MinMaxAD 
w1 1 2 3 4 

Σ%e = 0            
AR 6            

All 1.04 (0.01) 1.05 (0.01) 1.04 (0) 1.04 (0.01) 1.05 1.19 0.98 

Smooth 1.09 (0.03) 1.09 (0.02) 1.09 (0.01) 1.08 (0.02) 1.10 1.20 1.00 

Hard 0.97 (0.06) 0.97 (0.05) 0.97 (0.06) 0.97 (0.06) 0.97 1.06 0.90 
Seasonal 1.00 (-0.04) 1.00 (-0.04) 1.00 (-0.04) 1.01 (-0.04) 1.00 1.25 1.00 

AR 12            

All 1.12 (0.02) 1.10 (0) 1.11 (0.01) 1.11 (0.01) 1.11 1.41 1.07 

Smooth 1.17 (0.04) 1.15 (0.01) 1.14 (0.01) 1.14 (0.03) 1.17 1.52 1.10 

Hard 1.08 (0.08) 1.08 (0.05) 1.11 (0.08) 1.11 (0.05) 1.06 1.17 1.04 
Seasonal 1.04 (-0.04) 1.04 (-0.04) 1.05 (-0.03) 1.06 (-0.04) 1.04 1.34 1.04 

ARS 6            

All 1.06 (0.02) 1.07 (0.01) 1.06 (0.01) 1.06 (0.02) 1.08 1.20 0.98 

Seasonal 1.07 (-0.03) 1.07 (-0.03) 1.07 (-0.01) 1.07 (-0.01) 1.11 1.28 1.00 

ARS 12            

All 1.12 (0.02) 1.11 (0) 1.12 (0.01) 1.11 (0.01) 1.13 1.44 1.06 

Seasonal 1.06 (-0.04) 1.07 (-0.04) 1.08 (-0.04) 1.06 (-0.06) 1.11 1.45 1.00 

5.6 CONCLUSIONS 

The objective of the chapter is to expand the simple LP formulations of chapter 4 into GP 

formulations. The initial formulation is a pre-emptive GP that minimises MaxAD as a first objective 

and SAD as a second. The program is tested for the AR and ARS approaches, order 6 and 12, one step 

ahead forecasts. The MinMaxAD-MinSAD pre-emptive GP approach improves the results of the 

single objective LP approaches and performs better or similar than OLS on the hard series. The initial 

pre-emptive GP approach is reformulated as a weighted GP and it is tested for one, six and twelve 

steps ahead forecasts. The results show that WGP improves simple LP overall and occasionally 

outperforms the OLS. The advantages of the WGP are that it is a very simple formulation, consisting 

of one linear program. In contrast, pre-emptive GP required solving two LPs. The different 

approaches give the decision maker the option to select the most appropriate approach according to 

the characteristics of the problem. The conclusions of this chapter are summarised as follows: 

• Goal programming can improve the results of the single objective linear programming. The 

pre-emptive goal programming model improved the results on the hard series. The weighted 
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goal programming approaches (with sum of percentage errors equal to zero constraint) 

performed very well on the seasonal and smooth series (and do typically better than the OLS 

for short and medium term forecasts). For the hard series, the OLS gives the best results in 

general. For longer term forecasts, order 6 models do better than order 12 models, and the 

benefit from goal programming is less clear. 

• Similar to the single objective LP models, the constraint that the sum of the percentage 

errors should be zero gives better result compared with the constraint where the sum of 

errors is zero (they perform better on the smooth and seasonal series, but the perform 

worse on the hard series). 

• Single objective MinMaxAD is the worst model overall, but setting MinMaxAD as an 

additional GP goal improves the results of the single objective LP models. 

• It is difficult to draw conclusions about the impact of the relaxation factors and the weights 

on the performance of the GP models. 

• According to the characteristics of the series and the forecasting horizon (one step ahead 

and multiple steps ahead) we may need to use different methods (single objective LP, pre-

emptive GP, WGP and OLS) and different optimisation objectives. 

A general conclusion of chapters 4 and 5 is that LP based approaches (simple and GP) perform better 

on series with low variability, while the OLS performs better on series with high variability. The next 

step is to examine if the flexibility of LP can improve the performance of the LP based approaches on 

series with high variability. 
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6 LINEAR PROGRAMMING FOR FORECASTING SERIES WITH HIGH 

VARIABILITY 

In this chapter the objective of the study is to improve the performance of the LP approaches of the 

previous two chapters (single objective LPs and WGP, for one step ahead forecasting) on series with 

high variability. For this reason, extra constraints are added in the initial linear programming 

formulation. The results are compared with the OLS and six other simple forecasting techniques, 

which are shown to perform well on series with high variability. 

6.1 APPROACHES 

The weak point of the LP based approaches developed so far was their performance on the hard 

series. AR in general seems to result in very big errors on series with high levels of randomness. The 

main reason is that the autocorrelation between observations in these series is low (Chapter 3); 

hence, the explanatory value of the model based on the training data set is low. 

 

Figure 6. 1 Performance of an approach on a hard series on the training set and test set 
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Figure 6.1 shows a characteristic example of the performance of a MinSAPE on a series with high 

variability. The MAPE based on the training set is 20.62%, while the MAPE on the test set data is 

almost double (39.04%). 

The M-Competition showed that in cases with high randomness the decision maker should prefer 

simpler techniques, like moving averages and exponential smoothing. In this chapter I show that the 

flexibility of the LP approaches can be exploited to do also well on series with high randomness. I 

used the techniques that are presented in the previous chapters with additional constraints. These 

new approaches may sacrifice some of the accuracy of the training set, in favour of a better accuracy 

on the test set. The results are compared with those obtained by simple techniques including 

exponential smoothing and moving averages . 

I tested the simple AR for one period ahead forecast, order 6 and 12, with the sum of errors equal to 

zero constraint or the sum of the percentage errors equal to zero constraint. I add one or two 

additional constraints. The first is that all the weights must be positive: bj ≥0. The second is to put a 

hierarchy on the weights: bj ≥ bj-1. 

6.2 TESTS 

The new approaches are tested on two data sets. The first consists of the ten hard series in the initial 

dataset that I used in the previous chapters. The second consists of twenty five additional monthly 

series with high variability from the dataset of the M3 Competition. The selection and statistical 

analysis of the series can be found in chapter 3. I tested both the initial and the new approaches 

with the additional constraints. 

The results are compared with the results by OLS (minimising MSE), and four other forecasting 

techniques: Simple Moving Average (MA), Weighted Moving Average (WMA), Simple Exponential 

Smoothing (SES) and Holt’s Exponential Smoothing (Holt).3 I want to compare the new LP 

approaches with the most accurate technique. Thus, for the selection of the order of the moving 

average and the smoothing parameters, I explored different parameter values and I selected the 

three alternatives that were on average the most accurate on the test set of the thirty five series. 

                                                            
3 The formulae for these approaches can be found in Chapter 3. 
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Figure 6. 2 Performance of MA of order 1 - 12 

The MA accuracy is shown in Figure 6.2. All the alternatives are calculated for order 1 to 12. 

According to the average percentage error, the most accurate were orders 4, 11 and 12. However, 

the average MAPE is not very sensitive to the change in the order, for an order equal to or bigger 

than 4. 

 

Figure 6. 3 Performance of WMA of order 1 - 12 

Similarly, the WMA accuracy graph shows that the most accurate are for order 7, 8 and 12. However, 

the differences are very low (for an order equal to or bigger than 4). 
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Figure 6. 4 Performance of SES with factor 0 - 1 

For the smoothing parameter of the SES we evaluate all the alternatives between 0 and 1 with step 

size 0.1. According to the graph (Figure 6.4), the smoothing parameters 0.8, 0.7 and 0.6 are the three 

most accurate. Compared with MA and WMA, the performance of the SES is more sensitive to 

changes in α. 

 

Figure 6. 5 Performance of Holt's with factors 0 - 1, 0 - 1 

0
10
20
30
40
50
60
70
80
90

100

0 0.2 0.4 0.6 0.8 1 1.2

alpha

SES

MAPE

0
0.1

0.2
0.3

0.4
0.5

0.60.70.80.9
1

0
10

20
30

40

50

60

70

80

90

0

0.2

0.4

0.6
0.8
1

alpha

beta

Holt Accuracy

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10



CHAPTER 6 LINEAR PROGRAMMING FOR FORECASTING SERIES WITH HIGH VARIABILITY 

133 
 

Similarly, all the alternative combinations of the two smoothing parameters are evaluated (alpha: 

base, beta: trend) for Holt’s method (values between 0 and 1 with step size 0.1). The surface graph 

in Figure 6.5 presents the average MAPE over all the series. The three best smoothing factor 

combinations are 0.1-0.1, 0.2-0.1 and 0.1-0.2. 

Table 6.1 shows the results (MAPE) of the OLS, the moving average and the exponential smoothing 

techniques. The first line of the results shows the average MAPE on the test set in all the series, the 

second the average MAPE in the old set of series (hard series of the initial set) and the third the 

average MAPE on the new series. 

OLS is the least accurate technique both for AR 6 and AR 12. Exponential smoothing is slightly better 

than moving average. Holt is the most accurate technique but only slightly better than SES. 

Specifically, Holt (0.1-0.2) is the best model, Holt (0.1-0.1) is the second and Holt (0.2-0.1) is the 

third. SES is the second most accurate (0.7, 0.8, 0.6 in order of accuracy). WMA is the most accurate 

of the moving average techniques and the difference between the order levels is insignificant. MA is 

least accurate of the four with MA 4, MA 11 and MA 12 in order of accuracy. 

Table 6. 1 Traditional techniques - MAPE 

 Moving Average 
 MA WMA 

Order 4 11 12 7 8 12 

All 34.94 35.22 35.24 34.84 34.85 34.85 

Old 24.06 24.16 24.26 23.98 24.13 24.06 

New 39.30 39.64 39.63 39.18 39.14 39.17 

       

 Exponential Smoothing 

 SES Holt 

S. F. 0.8 0.7 0.6 0.1 - 0.1 0.2 - 0.1 0.1 - 0.2 

All 34.64 34.59 34.93 33.43 33.67 33.17 

Old 23.75 23.81 24.03 22.18 22.92 23.12 

New 39.00 38.90 39.28 37.93 37.97 37.19 

       
 OLS     

Order 6 12     

All 35.06 36.84     

Old 24.47 23.69     

New 39.29 42.09     
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Table 6.2 shows the results of the traditional techniques according to the sMAPE. Here, OLS remains 

the least accurate technique. The other four techniques produce very similar results and the 

differences are very small. The most accurate is SES 0.8, second and third are MA 12 and 11, then 

WMA 12 and Holt 0.1 – 0.1. On the other hand, the worst techniques are MA 4 and SES 0.6. The 

differences between the moving average and smoothing are too small to make clear conclusions; 

however, all of them perform significantly better than the OLS. 

Table 6. 2 Traditional techniques - sMAPE 

 Moving Average 
 MA WMA 

Order 4 11 12 7 8 12 

All 28.34 27.15 27.13 27.94 27.80 27.29 

Old 23.04 22.72 22.74 22.96 23.09 22.83 

New 30.46 28.92 28.88 29.93 29.68 29.07 

       

 Exponential Smoothing 

 SES Holt 

S. F 0.8 0.7 0.6 0.1 - 0.1 0.2 - 0.1 0.1 - 0.2 

All 27.09 27.53 28.08 27.77 27.83 28.03 

Old 22.37 22.64 22.86 24.54 23.50 24.85 

New 28.98 29.49 30.17 29.06 29.56 29.29 

       
 OLS     

Order 6 12     

All 29.07 29.71     

Old 24.01 23.74     

New 31.10 32.09     

Table 6.3 shows the comparison of the traditional techniques according to the MASE. Similarly with 

sMAPE, the differences between the moving average and exponential smoothing techniques are 

rather small. All of them mainly perform between 0.82 and 0.84 with only exception MA 4 that 

performs 0.86; hence, and it is hard to draw firm conclusions. However, all of them perform 

significantly better than the OLS, which performs 0.88 and 0.89 for order 6 and 12 respectively.  
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Table 6. 3 Traditional techniques - MASE 

 Moving Average 
 MA WMA 

Order 4 11 12 7 8 12 

All 0.86 0.83 0.82 0.84 0.84 0.83 

Old 0.86 0.83 0.83 0.84 0.84 0.83 

New 0.86 0.83 0.82 0.84 0.84 0.82 

       

 Exponential Smoothing 

 SES Holt 

S. F 0.8 0.7 0.6 0.1 - 0.1 0.2 - 0.1 0.1 - 0.2 

All 0.82 0.82 0.83 0.84 0.83 0.84 

Old 0.82 0.83 0.84 0.87 0.85 0.88 

New 0.81 0.82 0.83 0.82 0.83 0.83 

       
 OLS     

Order 6 12     

All 0.88 0.89     

Old 0.88 0.88     

New 0.88 0.90     

6.3 RESULTS: SUM OF ERRORS EQUAL TO ZERO 

The results of the single objective LP with the sum of errors equal to zero constraint are presented in 

Table 6.4. The first group of rows is for the original approaches, the second is with the additional 

constraint of positive weights and the third for the approaches with two additional constraints 

(positive weights and progressively decreasing, i.e. the oldest observations have lowest weights). 

First of all, it is obvious that the first additional constraint improves the initial approaches and gives 

results of similar accuracy as with the OLS. The second additional constraint improves the results 

further and gives results slightly better than the OLS and the simple MA. The performance of all the 

approaches is similar. 

As we can see, similar to the performance of the WGP in the previous chapter, the weights 3 and 4 

give the best results in general. Like in the single objective formulations, the additional constraints 

improve the results of the initial approaches. The results of the WGP are better than the counterpart 

single objective LPs. The non negative weight LPs give similar results as the MA, slightly better than 
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the OLS and slightly worse than the exponential smoothing methods. Moreover, the order 12 of the 

progressive approaches slightly outperforms SES and is only slightly worse than Holt. 

Table 6. 4 Single objective - sum of errors equal to zero - MAPE 

MAPE LP 
e = 0 MinMAD MinMAPE MinMaxAD MinADBD MinADBPD 

Order 6 12 6 12 6 12 6 12 6 12 

           
All 37.31 40.24 39.48 46.60 41.57 42.48 36.32 38.16 38.12 43.09 

Old 24.81 25.78 26.26 28.52 28.94 24.95 24.77 24.38 24.97 27.73 

New 42.31 46.03 44.77 53.84 46.12 48.79 40.94 43.67 43.38 49.23 

           
NON NEG 

          
All 36.48 35.42 36.83 36.98 36.73 36.11 36.02 35.10 36.83 36.68 

Old 25.42 22.62 25.71 23.74 24.92 21.98 24.84 22.34 25.32 23.42 

New 40.90 40.54 41.27 42.27 41.45 41.77 40.49 40.21 41.44 41.99 

           
PROGRES 

          
All 35.18 34.27 35.37 34.37 34.99 34.71 35.11 34.34 35.39 34.54 

Old 23.84 22.48 23.96 22.95 23.86 23.61 23.58 22.91 23.76 23.28 

New 39.72 38.98 39.93 38.94 39.44 39.15 39.73 38.91 40.04 39.05 

Table 6.5 shows the results of the WGP with the sum of errors equal to zero constraint. 

Table 6. 5 Weighted goal programming - sum of errors equal to zero - MAPE 

MAPE MinMAD&MaxAD 
e = 0 1 2 3 4 

 
6 12 6 12 6 12 6 12 

         
All 37.15 40.01 37.04 39.36 36.64 39.20 37.01 39.06 

Old 24.78 24.39 25.03 24.04 24.84 23.93 25.44 23.94 

New 42.10 46.26 41.85 45.49 41.36 45.31 41.64 45.10 

         
NON NEG 

        
All 36.04 35.36 35.77 35.26 35.70 35.06 35.45 34.57 

Old 24.91 22.52 24.99 22.32 24.79 21.93 24.78 21.91 

New 40.49 40.49 40.08 40.44 40.07 40.31 39.72 39.63 

         
PROGRES 

        
All 35.19 34.02 35.03 34.07 34.93 33.96 34.97 33.95 

Old 23.81 22.55 23.80 22.72 23.67 22.70 23.71 22.66 

New 39.75 38.61 39.53 38.61 39.43 38.47 39.47 38.46 
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Table 6.6 shows the performance of the simple LP with sum of errors equal to zero according to the 

sMAPE. Similar to the comparison according to the MAPE, the first additional constraint improves 

the initial approaches and outperforms OLS and Holt. It performs slightly worse than WMA. The 

second additional constraint improves the results further and the LP with progressive weights 

outperforms the best (SES 0.8) of the traditional techniques. 

Table 6. 6 Single objective - sum of errors equal to zero - sMAPE 

sMAPE LP 
e = 0 MinMAD MinMAPE MinMaxAD MinADBD MinADBPD 

Order 6 12 6 12 6 12 6 12 6 12 

           
All 29.96 31.63 31.44 44.91 35.41 34.87 29.25 30.12 30.77 36.25 

Old 23.74 26.11 25.26 29.98 29.15 26.31 23.84 24.22 24.97 27.73 

New 32.45 33.84 33.90 50.88 37.66 37.95 31.41 32.48 33.09 39.66 

           
NON NEG 

          
All 29.15 27.37 28.64 30.96 29.82 28.91 29.15 27.37 29.60 28.60 

Old 24.26 22.36 24.24 25.11 24.71 22.45 24.26 22.36 24.88 23.48 

New 31.11 29.37 30.40 33.29 31.86 31.50 31.11 29.37 31.50 30.64 

           
PROGRES 

          
All 28.52 27.02 28.69 27.28 28.77 27.81 28.45 27.17 28.66 27.46 

Old 23.22 22.26 23.33 22.50 23.26 23.15 23.05 22.63 23.22 22.86 

New 30.64 28.92 30.84 29.19 30.98 29.67 30.62 28.98 30.84 29.30 

Table 6.7 presents the performance of the WGP according to the sMAPE. The results are very similar. 

WGP seems not to improve the performance of the simple LP approaches, comparing them 

according to the sMAPE and the results of the two approaches are very similar. However, WGP still 

performs better than the OLS and the other four traditional techniques. 
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Table 6. 7 Weighted goal programming - sum of errors equal to zero - sMAPE 

sMAPE MinMAD&MaxAD 
e = 0 1 2 3 4 

 
6 12 6 12 6 12 6 12 

         
All 30.21 31.72 29.71 31.00 29.37 31.12 29.69 32.06 

Old 24.83 24.64 23.43 23.94 23.34 23.94 23.79 24.45 

New 32.37 34.55 32.22 33.83 31.78 33.99 32.05 35.10 

         
NON NEG 

        
All 29.16 27.78 28.99 27.81 28.93 27.59 28.74 27.46 

Old 24.29 22.55 24.38 22.48 24.16 22.19 24.16 22.17 

New 31.11 29.88 30.83 29.94 30.83 29.75 30.57 29.58 

         
PROGRES 

        
All 28.75 27.02 28.62 27.08 28.55 27.09 28.61 27.10 

Old 23.24 22.23 23.23 22.43 23.15 22.41 23.17 22.34 

New 30.95 28.93 30.78 28.94 30.70 28.96 30.79 29.01 

 

Tables 6.8 and 6.9 show the performance of the approaches according to MASE. Similar to the 

comparison according to MAPE and sMAPE, the additional constraint on the simple LP approaches 

improves the results and outperforms the OLS. The second additional constraint improves the 

results further and performs as good as the best of the traditional techniques (0.82). The 

counterpart WGP approaches improve the results further and performs better (0.8) than the most 

accurate traditional technique. 
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Table 6. 8 Single objective - sum of errors equal to zero - MASE 

MASE LP 
e = 0 MinMAD MinMAPE MinMaxAD MinADBD MinADBPD 

Order 6 12 6 12 6 12 6 12 6 12 

           
All 0.91 0.96 0.95 1.07 1.06 1.05 0.89 0.92 0.93 1.00 

Old 0.88 0.95 0.92 1.02 1.09 1.01 0.88 0.90 0.91 0.96 

New 0.93 0.97 0.96 1.09 1.04 1.07 0.90 0.93 0.94 1.01 

           
NON NEG 

          
All 0.88 0.84 0.85 0.91 0.92 0.88 0.88 0.84 0.90 0.87 

Old 0.88 0.84 0.88 0.91 0.92 0.86 0.88 0.84 0.89 0.86 

New 0.88 0.85 0.84 0.92 0.92 0.89 0.88 0.85 0.90 0.88 

           
PROGRES 

          
All 0.86 0.82 0.86 0.83 0.86 0.83 0.86 0.83 0.86 0.83 

Old 0.85 0.81 0.86 0.82 0.86 0.85 0.84 0.83 0.85 0.84 

New 0.86 0.82 0.87 0.83 0.86 0.82 0.86 0.83 0.87 0.83 
 

Table 6. 9 Weighted goal programming - sum of errors equal to zero - MASE 

MASE MinMAD&MaxAD 
e = 0 1 2 3 4 

 
6 12 6 12 6 12 6 12 

         
All 0.91 0.94 0.89 0.92 0.88 0.92 0.89 0.92 

Old 0.92 0.92 0.87 0.87 0.86 0.86 0.88 0.88 

New 0.91 0.95 0.90 0.94 0.89 0.94 0.89 0.94 

         
NON NEG 

        
All 0.88 0.86 0.88 0.86 0.88 0.85 0.87 0.85 

Old 0.88 0.84 0.89 0.84 0.88 0.83 0.88 0.83 

New 0.88 0.87 0.87 0.86 0.88 0.86 0.87 0.85 

         
PROGRES 

        
All 0.85 0.80 0.84 0.80 0.84 0.80 0.84 0.80 

Old 0.85 0.82 0.85 0.83 0.85 0.83 0.85 0.83 

New 0.84 0.79 0.84 0.79 0.84 0.79 0.84 0.79 
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6.4 RESULTS: SUM OF PERCENTAGE ERRORS EQUAL TO ZERO 

Table 6.10 presents the results of the single objective approaches with sum of percentage errors 

equal to zero constraint. 

Table 6. 10 Single objective - sum of percentage errors equal to zero - MAPE 

MAPE LP 

%e = 0 MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

SIMPLE 
          Order 6 
          All 34.33 (-2.98) 33.83 (-5.65) 39.89 (-1.69) 33.17 (-3.14) 34.29 (-3.84) 

Old 24.94 (0.14) 25.20 (-1.06) 25.14 (-3.8) 25.71 (0.94) 26.09 (1.12) 

New 38.08 (-4.23) 37.28 (-7.49) 45.78 (-0.33) 36.16 (-4.78) 37.56 (-5.82) 

Order 12 
          All 38.91 (-1.34) 41.87 (-4.73) 43.34 (0.87) 36.20 (-1.95) 36.69 (-6.4) 

Old 26.83 (1.05) 27.42 (-1.09) 25.81 (0.85) 26.08 (1.7) 27.79 (0.06) 

New 43.74 (-2.29) 47.65 (-6.19) 50.36 (1.58) 40.25 (-3.42) 40.25 (-8.98) 

NON NEG 
          Order 6 
          All 33.07 (-3.41) 33.55 (-3.28) 32.71 (-4.02) 32.08 (-3.93) 32.60 (-4.23) 

Old 24.22 (-1.2) 24.22 (-1.5) 25.43 (0.51) 23.51 (-1.32) 23.69 (-1.62) 

New 36.61 (-4.29) 37.28 (-4) 35.62 (-5.83) 35.51 (-4.98) 36.16 (-5.27) 

Order 12 
          All 32.66 (-2.76) 32.00 (-4.98) 34.71 (-1.41) 31.80 (-3.3) 32.09 (-4.59) 

Old 23.29 (0.67) 22.92 (-0.82) 23.61 (1.62) 22.13 (-0.21) 22.28 (-1.14) 

New 36.40 (-4.13) 35.63 (-6.64) 39.15 (-2.62) 35.67 (-4.54) 36.01 (-5.97) 

PROGRES 
          Order 6 
          All 31.19 (-3.99) 31.35 (-4.02) 31.26 (-3.72) 31.01 (-4.11) 31.31 (-4.07) 

Old 22.74 (-1.1) 22.73 (-1.23) 23.61 (-0.25) 22.59 (-0.99) 22.72 (-1.04) 

New 34.57 (-5.15) 34.80 (-5.13) 34.33 (-5.11) 34.37 (-5.35) 34.75 (-5.29) 

Order 12 
          All 30.54 (-3.73) 30.48 (-3.89) 30.95 (-3.75) 30.38 (-3.96) 30.61 (-3.93) 

Old 22.43 (-0.05) 22.17 (-0.78) 23.12 (-0.48) 22.17 (-0.74) 22.33 (-0.95) 

New 33.79 (-5.2) 33.81 (-5.13) 34.09 (-5.06) 33.67 (-5.24) 33.92 (-5.12) 

As in the previous chapter, the approaches with the sum of the percentage errors equal to zero 

constraint, give betters results (MAPE) compared with the sum of errors equally to zero constraint. 

Here, the non negative weight approaches outperform all the other techniques. All the non negative 

approaches weight give very similar results; however, MinADBD is slightly better and MinMaxAD 
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slightly worse. The constraint of progressive weights improves the results further. Here all the 

approaches give almost the same results, the average MAPE close to 31% for order 6 and close to 

30% for order 12. The average improvement over the OLS is significant (reduction of MAPE by 4% - 

6%), and so is the average improvement over Holt (reduction of MAPE by 3%). 

Table 6.11 presents the results of the WGP with sum of percentage errors equal to zero constraint. 

The results are improved compared with the WGP with sum of errors equal to zero constraint. 

However, the accuracy of both the non negative and progressive approaches is comparable with the 

accuracy of the single objective LP in the previous table. 

Table 6. 11 Weighted goal programming - sum of percentage errors equal to zero - MAPE 

MAPE MinSAD&MaxAD 

%e = 0 1 2 3 4 

SIMPLE 
        Order 6 
        All 34.14 (-3.01) 34.02 (-3.02) 33.99 (-2.65) 33.76 (-3.25) 

Old 24.73 (-0.05) 25.33 (0.3) 25.82 (0.99) 25.94 (0.5) 

New 37.90 (-4.2) 37.50 (-4.34) 37.26 (-4.1) 36.89 (-4.75) 

Order 12 
        All 38.79 (-1.23) 38.60 (-0.76) 38.40 (-0.79) 36.81 (-2.24) 

Old 24.71 (0.31) 24.66 (0.62) 23.79 (-0.14) 23.95 (0.02) 

New 44.42 (-1.84) 44.17 (-1.32) 44.25 (-1.06) 41.96 (-3.15) 

NON NEG 
        Order 6 
        All 33.14 (-2.9) 32.96 (-2.81) 32.22 (-3.49) 31.99 (-3.46) 

Old 24.18 (-0.74) 23.95 (-1.05) 23.93 (-0.86) 24.13 (-0.65) 

New 36.73 (-3.77) 36.57 (-3.52) 35.53 (-4.54) 35.13 (-4.59) 

Order 12 
        All 32.59 (-2.77) 32.58 (-2.68) 31.82 (-3.25) 31.73 (-2.83) 

Old 22.94 (0.42) 22.74 (0.42) 22.38 (0.44) 22.44 (0.53) 

New 36.45 (-4.04) 36.52 (-3.92) 35.59 (-4.72) 35.45 (-4.18) 

PROGRES 
        Order 6 
        All 31.11 (-4.09) 31.00 (-4.03) 31.14 (-3.78) 31.06 (-3.91) 

Old 22.86 (-0.95) 22.74 (-1.06) 22.77 (-0.91) 22.71 (-1) 

New 34.41 (-5.34) 34.31 (-5.22) 34.50 (-4.93) 34.40 (-5.08) 

Order 12 
        All 30.51 (-3.51) 30.35 (-3.71) 30.34 (-3.63) 30.43 (-3.51) 

Old 22.42 (-0.13) 22.32 (-0.4) 22.46 (-0.24) 22.46 (-0.2) 

New 33.75 (-4.86) 33.57 (-5.04) 33.49 (-4.98) 33.62 (-4.84) 



CHAPTER 6 LINEAR PROGRAMMING FOR FORECASTING SERIES WITH HIGH VARIABILITY 

142 
 

Tables 6.12 and 6.13 show the average sMAPE of the approaches on the test set. In contrast with the 

comparison according to the MAPE, the performance of these approaches worsens comparing the 

sMAPE. The result are similar to the approaches presented in the previous chapters, since the 

constraint where the sum of errors should be equal to zero improves the results overall, but the 

improvement is mainly observed on the smooth and seasonal series, where they worsen on the hard 

series. Nevertheless, both simple LP and WGP outperform the OLS, but not the other four traditional 

techniques. 

Table 6. 12 Single objective - sum of percentage errors equal to zero - sMAPE 

sMAPE LP 

%e = 0 MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

SIMPLE 
          Order 6 
          All 31.60 (1.63) 32.13 (0.69) 38.65 (3.24) 30.16 (0.91) 30.96 (0.19) 

Old 26.38 (2.64) 26.99 (1.73) 24.24 (-4.91) 25.71 (1.87) 26.09 (1.12) 

New 33.69 (1.23) 34.18 (0.28) 44.41 (6.75) 31.94 (0.53) 32.90 (-0.19) 

Order 12 
          All 47.26 (15.63) 41.84 (-3.07) 83.43 (48.56) 32.04 (1.92) 36.72 (0.46) 

Old 28.37 (2.26) 29.05 (-0.94) 25.11 (-1.2) 26.08 (1.87) 27.79 (0.06) 

New 54.82 (20.98) 46.96 (-3.92) 106.76 (68.81) 34.42 (1.94) 40.29 (0.63) 

NON NEG 
          Order 6 
          All 30.54 (1.39) 30.88 (2.24) 30.83 (1.01) 29.74 (0.59) 30.03 (0.43) 

Old 26.05 (1.79) 26.09 (1.85) 27.62 (2.9) 25.38 (1.13) 25.67 (0.79) 

New 32.33 (1.22) 32.80 (2.4) 32.11 (0.25) 31.49 (0.38) 31.78 (0.28) 

Order 12 
          All 29.00 (1.63) 28.69 (-2.27) 30.87 (1.95) 28.52 (1.16) 28.60 0.00 

Old 25.16 (2.79) 24.97 (-0.14) 25.44 (2.99) 24.08 (1.71) 24.37 (0.9) 

New 30.54 (1.17) 30.18 (-3.12) 33.04 (1.54) 30.30 (0.93) 30.28 (-0.36) 

PROGRES 
          Order 6 
          All 28.91 (0.39) 29.34 (0.65) 29.69 (0.92) 29.00 (0.54) 29.24 (0.57) 

Old 23.60 (0.39) 24.59 (1.26) 25.33 (2.08) 24.42 (1.37) 24.56 (1.34) 

New 31.03 (0.38) 31.24 (0.4) 31.44 (0.46) 30.83 (0.21) 31.11 (0.27) 

Order 12 
          All 28.22 (1.21) 28.16 (0.89) 28.82 (1.02) 28.02 (0.85) 28.33 (0.87) 

Old 24.18 (1.92) 23.97 (1.47) 24.81 (1.66) 23.96 (1.33) 24.13 (1.27) 

New 29.84 (0.92) 29.84 (0.65) 30.43 (0.76) 29.65 (0.66) 30.00 (0.71) 
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Table 6. 13 Weighted goal programming - sum of percentage errors equal to zero sMAPE 

sMAPE MinSAD&MaxAD 

%e = 0 1 2 3 4 

SIMPLE 
        Order 6 
        All 32.56 (2.35) 31.68 (1.98) 31.50 (2.13) 31.41 (1.72) 

Old 29.66 (4.84) 27.09 (3.66) 26.23 (2.89) 26.01 (2.21) 

New 33.72 (1.35) 33.52 (1.3) 33.61 (1.83) 33.57 (1.52) 

Order 12 
        All 36.49 (4.77) 35.78 (4.78) 35.60 (4.48) 34.75 (2.69) 

Old 29.44 (4.8) 27.71 (3.78) 25.93 (1.99) 26.53 (2.09) 

New 39.31 (4.76) 39.01 (5.18) 39.47 (5.48) 38.04 (2.94) 

NON NEG 
        Order 6 
        All 30.83 (1.66) 30.60 (1.61) 30.17 (1.24) 30.10 (1.36) 

Old 26.00 (1.71) 25.63 (1.24) 25.59 (1.43) 25.79 (1.63) 

New 32.76 (1.65) 32.59 (1.76) 32.00 (1.17) 31.82 (1.25) 

Order 12 
        All 29.27 (1.49) 29.21 (1.4) 28.82 (1.23) 29.00 (1.54) 

Old 24.84 (2.29) 24.63 (2.15) 24.25 (2.07) 24.34 (2.16) 

New 31.04 (1.16) 31.05 (1.11) 30.65 (0.9) 30.86 (1.29) 

PROGRES 
        Order 6 
        All 30.83 (2.08) 30.60 (1.98) 30.17 (1.62) 30.10 (1.48) 

Old 26.00 (2.75) 25.63 (2.39) 25.59 (2.44) 25.79 (2.62) 

New 32.76 (1.81) 32.59 (1.81) 32.00 (1.3) 31.82 (1.03) 

Order 12 
        All 29.27 (2.25) 29.21 (2.13) 28.82 (1.73) 29.00 (1.9) 

Old 24.84 (2.61) 24.63 (2.2) 24.25 (1.84) 24.34 (2) 

New 31.04 (2.11) 31.05 (2.11) 30.65 (1.68) 30.86 (1.86) 

Finally, Tables 6.14 and 6.15 present the performance of the simple LP and WGP according the 

MASE. Similar to the comparison according to MASE, it seems that the results are slightly worse.  

However, the differences between the approaches are very small. 
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Table 6. 14 Single objective - sum of percentage errors equal to zero - MASE 

MASE LP 

%e = 0 MinSAD MinSAPE MinMaxAD MinADBD MinADBPD 

SIMPLE 
          Order 6 
          All 0.93 (0.01) 0.93 (-0.02) 1.02 (-0.03) 0.89 (0) 0.91 (-0.02) 

Old 0.94 (0.06) 0.95 (0.03) 0.88 (-0.22) 0.92 (0.04) 0.92 (0.02) 

New 0.92 (0) 0.92 (-0.04) 1.08 (0.04) 0.88 (-0.01) 0.90 (-0.04) 

Order 12 
          All 0.99 (0.03) 1.04 (-0.02) 1.07 (0.02) 0.92 (0) 0.95 (-0.05) 

Old 1.02 (0.06) 1.05 (0.03) 0.91 (-0.09) 0.94 (0.04) 0.97 (0.01) 

New 0.98 (0.01) 1.04 (-0.05) 1.13 (0.06) 0.91 (-0.02) 0.94 (-0.07) 

NON NEG 
          Order 6 
          All 0.90 (0.01) 0.90 (0.05) 0.92 (0) 0.88 (0) 0.88 (-0.01) 

Old 0.93 (0.05) 0.93 (0.05) 1.00 (0.08) 0.91 (0.03) 0.91 (0.01) 

New 0.89 (0) 0.89 (0.05) 0.89 (-0.03) 0.87 (-0.02) 0.87 (-0.02) 

Order 12 
          All 0.87 (0.02) 0.86 (-0.05) 0.90 (0.02) 0.85 (0.01) 0.85 (-0.03) 

Old 0.93 (0.09) 0.92 (0.01) 0.95 (0.09) 0.89 (0.05) 0.89 (0.03) 

New 0.84 (0) 0.84 (-0.08) 0.88 (-0.01) 0.83 (-0.01) 0.83 (-0.05) 

PROGRES 
          Order 6 
          All 0.85 (0) 0.86 (0) 0.86 (0) 0.85 (0) 0.86 (0) 

Old 0.87 (0.02) 0.88 (0.03) 0.90 (0.05) 0.88 (0.03) 0.88 (0.03) 

New 0.84 (-0.01) 0.85 (-0.02) 0.84 (-0.02) 0.84 (-0.02) 0.85 (-0.02) 

Order 12 
          All 0.83 (0.01) 0.83 (0) 0.84 (0.01) 0.83 (0) 0.84 (0) 

Old 0.88 (0.07) 0.87 (0.05) 0.90 (0.05) 0.87 (0.05) 0.88 (0.04) 

New 0.82 (-0.01) 0.81 (-0.02) 0.81 (-0.01) 0.81 (-0.02) 0.82 (-0.02) 
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Table 6. 15 Weighted goal programming - sum of percentage errors equal to zero - MASE 

MASE MinSAD&MaxAD 

%e = 0 1 2 3 4 

SIMPLE 
        Order 6 
        All 0.93 (0) 0.91 (0) 0.91 (0) 0.91 (0) 

Old 1.01 (0.01) 0.94 (0.04) 0.92 (0.04) 0.92 (0.03) 

New 0.91 (0.1) 0.90 (0.04) 0.90 (0.03) 0.90 (0.03) 

Order 12 
        All 0.97 (0) 0.96 (0) 0.96 (0) 0.94 (0) 

Old 0.99 (0.06) 0.95 (0.09) 0.92 (0.09) 0.92 (0.06) 

New 0.97 (0.04) 0.97 (0.01) 0.97 (-0.02) 0.95 (-0.02) 

NON NEG 
        Order 6 
        All 0.89 (0) 0.89 (0) 0.88 (0) 0.88 (0) 

Old 0.93 (0.01) 0.92 (0) 0.92 (0) 0.93 (0) 

New 0.88 (0.04) 0.88 (0.05) 0.86 (0.04) 0.86 (0.06) 

Order 12 
        All 0.86 (0) 0.86 (0) 0.85 (0) 0.85 (0) 

Old 0.92 (0.02) 0.91 (0.01) 0.90 (0.02) 0.91 (0.02) 

New 0.84 (0.05) 0.83 (0.05) 0.83 (0.04) 0.83 (0.05) 

PROGRES 
        Order 6 
        All 0.85 (0) 0.85 (0) 0.85 (0) 0.85 (0) 

Old 0.89 (0) 0.88 (-0.01) 0.88 (0) 0.88 (0) 

New 0.84 (0.05) 0.83 (0.05) 0.84 (0.05) 0.83 (0.04) 

Order 12 
        All 0.83 (0) 0.83 (0) 0.82 (0) 0.82 (0) 

Old 0.88 (0.01) 0.88 (0) 0.89 (0) 0.88 (0) 

New 0.81 (0.09) 0.80 (0.09) 0.80 (0.09) 0.80 (0.09) 
 

6.5 CONCLUSION 

I exploited the flexibility of linear programming to improve the results of the initial approaches for 

series with special characteristics, specifically high level of randomness. In linear programming it is 

very easy to add additional constraints and this is one of the main virtues of this technique, 

compared with OLS or other methods. The analysis shows that the additional constraints improve 

the performance of the approaches and outperform OLS and the other traditional techniques that 

are compared. The conclusions of this chapter are summarized as follows: 
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1. The non negative weight approaches outperform the initial LP formulations; however, the 

progressive weight approaches outperform the non negative weight approaches. 

2. WGP perform slightly better than the simple LP; however, the differences are small. 

3. The sum of percentage error equal to zero constraint gives a lower MAPE than the sum of 

errors equal to zero constraint, but the latter giver lower sMAPE and MASE. 

4. The approaches with sum of errors equal to zero outperform all the traditional techniques 

according to sMAPE and MASE. 

5. The approaches with sum of percentage errors equal to zero constraint outperform all the 

other techniques according to MAPE. 

LP has been proved a very good tool for optimising autoregressive based time series forecasts. The 

next step is to test the applicability of LP as an approach for combining forecasts. 
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7 LINEAR PROGRAMMING FOR COMBINED FORECASTING 

In this chapter, linear programming is applied to combine forecasts. I use linear programming to 

minimise one error index (SAD, SAPE and MaxAD) and the average of the three. In addition, I apply 

weighted goal programming to minimise two error indices (MaxAD and SAD, similar to chapter 5). 

The approaches combine eight simple individual techniques and the results are compared with six 

traditional combination techniques that are found in the literature. 

7.1 SINGLE OBJECTIVE AND AVERAGE LINEAR PROGRAMMING 

The first LP formulations minimise SAD, SAPE, MaxAD for combined forecasting models. Let Fc be the 

combined forecast, Fi the forecast by method i (1 ≤ i ≤ k), wi the weight of forecast i, Yt the actual 

observation at time t, e1t is the error of underestimation and e2t the error of overestimation and t (1 

≤ t ≤ T) is the time. The mathematical expression is: 
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subject to: 
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e1, e2 non-negative and wi unrestricted in sign. 

In the same way, the linear program for minimising the MAPE is: 

Objective function: 
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subject to: 

(7. 5), (7. 6), (7. 7) 

Finally the LP model that minimises the MaxAD is: 

 eMin

 

(7. 11) 

Where e is the MaxAD, 

subject to: 
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Where et is the forecasting error for period t 

 tee t ∀≥− 0

 

(7. 13) 

 tee t ∀≤−− 0
 

(7. 14) 

 (7. 6), (7. 7) 

If Fc1, Fc2 and Fc3 are the forecasts of the MinSAD, MinSAPE and MinMaxAD models respectively, then 

the average forecast Fca of the three model can be calculated: 
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(7. 15) 

Finally, we ran the experiments again by adding the Σe = 0 and Σ%e = 0 constraints to the linear 

program for all the three models in order to remove underestimation or overestimation bias from 

our forecast; however the models became over-constrained and it was not possible to obtain an 

optimal solution for many of the series in the data sets. 

7.2 TESTS 

As presented in the methodology chapter, I used 8 different forecasting techniques for the 

experiment: 

• Naïve 1 

• Moving Average (Order 4) 

• Simple Exponential Smoothing (0.2) 

• Holt linear (0.2, 0.1) 
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• Holt Winters (0.2, 0.1, 0.8) 

• Adaptive Exponential Smoothing (0.9) 

• Autoregressive (Order 6) 

• Seasonal Autoregressive (Order 6) 

I applied them on the initial data set that was used in chapter 5. In addition, the performance of the 

models is tested in comparison with five traditional combined forecasting methods (The 

combination methods are described in detail in Chapter 2): 

• Simple Average 

• Inverse Proportion of the SAD 

• Inverse Proportion of the MAPE 

• Inverse Proportion of the MSE 

• Average Inverse Proportion of the MAD, MAPE and MSE 

• Weighting based upon the absolute error 

To estimate the coefficients of the simple and seasonal autoregressive models we used the method 

of the ordinary least squares (calculated in STATA), and we implemented the other techniques in 

Excel. I run experiments by combining all forecasts of the eight individual forecasting techniques. In 

addition I have rerun the experiments using only the first seven. The reason is that the ARS model 

was a dominant technique for the series with strong seasonal pattern. The results of the second 

analysis can be found in APENDIX A.  The dataset that I used for the experiments consists of the 60 

randomly selected monthly time series that were used in the previous models. 

7.3 FIRST RESULTS 

The first table shows the results of all the eight individual techniques. I report the average MAPE 

over all the series and the average MAPE on the series in each subgroup. The AR and ARS models 

give the best results in general. Specifically, they are better on the smooth and seasonal series.  ARS 
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is significant by better than all other techniques. On the other hand, HOLT is the best technique on 

the hard series; however, SES and MA give good results too. 

Table 7. 1 Performance of individual forecasts - MAPE 

 
MAPE 

TECHNIQUES NAIVE MA SES HOLT H-W AES AR ARS 
All 10.19 10.02 10.26 10.3 11.22 10.17 8.69 7.39 

Smooth 3.17 3.94 4.82 4.97 4.53 3.17 3.14 3.14 
Hard 28.04 24.06 23.75 22.92 28.7 27.89 24.47 24.47 

Seasonal 12.77 13.02 12.44 12.74 13.42 12.77 9.79 5.45 

The comparison of the performance of the individual techniques according to sMAPE (Table 7.2) is 

similar. However, the best technique on the hard series is SES, second comes the MA and third the 

Holt. 

Table 7. 2 Performance of individual forecasts - sMAPE 

 
sMAPE 

TECHNIQUES NAIVE MA SES HOLT H-W AES AR ARS 
All 9.81 9.70 9.82 10.12 10.77 9.79 8.54 7.24 

Smooth 3.11 3.86 4.72 4.75 4.36 3.11 3.03 3.03 
Hard 26.62 23.04 22.37 23.50 27.40 26.48 24.01 24.01 

Seasonal 12.37 12.68 11.90 12.22 12.94 12.37 9.75 5.41 

Finally Table 7.3 shows the comparison of the techniques according to MASE. 

Table 7. 3 Performance of individual forecasts - MASE 

 
MASE 

TECHNIQUES NAIVE MA SES HOLT H-W AES AR ARS 
All 1.00 1.21 1.42 1.27 1.22 1.00 0.92 0.81 

Smooth 1.00 1.36 1.81 1.51 1.34 1.00 0.95 0.95 
Hard 1.00 0.86 0.82 0.85 1.05 0.99 0.88 0.88 

Seasonal 1.00 1.13 1.06 1.08 1.10 1.00 0.88 0.52 

Similarly to the comparison according to MAPE and sMAPE, AR and ARS are the best approaches 

overall and on the smooth and seasonal series. On the hard series, the best is SES followed by Holt 

and MA. Obviously, Naive has MASE equal to 1, because it is compared with itself. The above 

comparison does not aim to identify the most accurate technique. The order of MA, AR and ARS and 

the parameters of the smoothing techniques have not been optimised. It is an observation of the 

performance of the techniques that will be useful in the analysis of performance of the combined 

forecast. 
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Figure 7. 1 Number of times each individual technique gives the best results 

Figure 7.1 shows the number of times each individual forecasting method gives the best results. As 

we can see, AR and ARS approaches give the best results, much more often than the other 

techniques. ARS is the only technique that gives the best results on the seasonal series. 

Figure 7.2 shows the number of times each individual forecasting method gives the worst result. 

 

Figure 7. 2 Number of times each individual technique gives the worst results 

As we can see, the AES, AR and ARS approaches do not perform worst on any of the series. SES is the 

technique that performs worst most times.  
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In the next 2 tables (7.4 and 7.5) we can see the results of the of the LP models for combined 

forecasting compared with the traditional combined forecasting methods. The first table shows the 

average MAPE of all the series in the test set as well as for each subgroup separately. 

Table 7. 4 Traditional and single objective LP combinations - MAPE 

 
PERFORMANCE OF COMBINED FORECASTS 

MAPE SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 8.99 8.31 8.30 7.63 8.07 7.53 7.28 7.30 7.51 7.20 

Smooth 3.52 3.34 3.35 3.21 3.29 3.16 3.14 3.06 3.35 3.12 

Hard 23.96 23.70 23.65 23.52 23.62 23.86 23.92 24.28 23.12 23.42 

Seasonal 10.40 8.60 8.59 6.67 7.92 6.25 5.40 5.41 6.24 5.43 

To begin with, the weighting based on the absolute deviation gives the best results compared with 

the other traditional techniques. This method is the best overall as well as for the smooth and 

seasonal series. On the other hand, the inverse proportion to MSE gives the best results compared 

with the other inverse proportion formulations. The inverse proportion to MAD and MAPE and the 

average inverse proportion method give very similar results. The Simple Average method gives the 

worst results in general. 

We can see that the LP models give better results than the traditional combination techniques. The 

MinSAD model gives the best results of the three simple LP models as well as the best results on the 

seasonal series. The MinSAPE model gives slightly worse results than the MinSAD; however, it gives 

the best results on the smooth series. Both MinSAD and MinSAPE models perform slightly worse 

than the inverse proportion models on the hard series. The MinMaxAD model performs worse than 

the other two LP models; however, it is the technique that performs better on the hard series. The 

average LP model is the best combined forecasting method. It performs better than any other 

method overall and it gives very good results (slightly worse than the best technique for each group) 

for each of the subgroups separately. Finally, in Table 7.1 we can see that the best individual 

technique is the ARS with average MAPE 7.39. If we compare this with the combined forecasting 

models, we can see that only the LP models (with exception the MinMaxAD) outperform the best 

individual technique overall, as well as its performance in each subgroup. Thus, it seems that 

combined forecasting based on LP does not only minimise the probability of a bad forecast, but also 

improves the accuracy of a good forecast. 

Table 7.5 shows the average sMAPE of all the series in the test set as well as for each subgroup 

separately. 
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Table 7. 5 Traditional and single objective LP combinations - sMAPE 

 PERFORMANCE OF COMBINED FORECASTS 

sMAPE SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 8.70 8.07 8.07 7.44 7.85 7.31 7.12 7.12 7.42 7.04 

Smooth 3.42 3.24 3.25 3.12 3.20 3.07 3.05 2.97 3.24 3.02 

Hard 23.20 23.00 22.96 22.85 22.94 22.99 23.34 23.59 23.24 22.90 

Seasonal 10.05 8.37 8.36 6.55 7.73 6.13 5.34 5.36 6.05 5.35 

The results are very similar as in the comparison according to the MAPE. The only difference is that 

the traditional techniques outperform simple LP on the hard series, except the average LP, which 

gives the best results. 

Table 7. 6 Traditional and single objective LP combinations - MASE 

 PERFORMANCE OF COMBINED FORECASTS 

MASE SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 0.98 0.91 0.91 0.85 0.88 0.84 0.81 0.81 0.89 0.82 

Smooth 1.10 1.02 1.03 0.99 1.01 0.99 0.95 0.96 1.07 0.97 

Hard 0.86 0.85 0.85 0.84 0.85 0.85 0.86 0.87 0.84 0.85 

Seasonal 0.85 0.73 0.73 0.60 0.68 0.57 0.52 0.52 0.58 0.52 

Table 7. 6 shows the average MASE of all the series in the test set as well as for each subgroup 

separately. LP outperforms the traditional techniques overall and on each group separately. 

Specifically MinSAD, MinSAPE and the average LP outperform all the traditional techniques on the 

smooth and seasonal and MinMaxAD performs as good as the best traditional technique on the hard 

series (the Inverse Proportion according to the MSE). 

An additional way to measure the performance of a combination method is to test how it performs 

in comparison with the best individual technique. In order to do this we can calculate the percentage 

difference between the MAD of the combination and the MAD of the best technique. That is: 
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(7. 16) 

m (= 1, … , M) is the series in our sample, MADFC the MAD of the combined forecast on the test set 

and minMADim the MAD of the best individual technique i on the specific series m. This index shows 

the amount (in percent) by which is the MAD of the combination method improves the MAD of the 
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best individual forecasting method. If the percentage difference is negative, then the index shows 

that the MAD of the combined forecast is actually smaller than this of the best individual method. 

Table 7.7 shows the percentage difference between the MAD of a combined forecasting technique 

and the MAD of the best individual forecast for each series. As we can see, the average percentage 

difference between the MAD of the LP combination models is significantly smaller than this of the 

other combined forecasting techniques, except for the MinMaxAD model. According to this index 

the best LP combination model is MinSAD. In addition, both MinSAD and MinSAPE outperform the 

average LP combination approach. The good performance is mainly observed on the smooth series 

and especially on the seasonal series, where the average difference between the MAD is negative. 

On the other hand, the performance on the hard series is similar for all the combined forecasting 

techniques (where the average inverse proportion is the best and the MinSAPE is the worst). 

Table 7. 7 Traditional and single objective LP combinations - Difference between the best 

 
PERFORMANCE OF COMBINED FORECASTS 

%BEST SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 38.86 24.88 24.91 12.60 20.46 11.15 4.96 5.18 15.74 5.84 

Smooth 23.46 14.98 15.13 10.29 13.24 11.46 6.53 6.25 20.24 8.31 

Hard 11.77 10.32 10.15 9.33 9.93 10.12 11.00 12.80 10.01 10.08 

Seasonal 81.29 50.55 50.47 18.50 39.13 11.17 -1.18 -0.97 10.92 -0.93 

One of the main reasons why we use combined forecasting is to minimise the risk of selecting a 

forecasting method that is inaccurate or inappropriate for the application that is selected for. Thus, 

the combinations help us to hedge this risk between several different techniques. Hence, the next 

table shows the percentage difference between the MAD of the worst individual forecasting 

technique and the MAD of the combined forecasting technique for each series. That is: 

 ∑
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(7. 17) 

m (= 1, … , M) is the series in our sample, MADFC the MAD of the combined forecast on the test set 

and maxMADim the MAD of the worst individual technique i on the specific series m. This index 

indicates the amount (in percent) by which the MAD of the combined forecasting technique 

improves on the performance of the worst individual technique. 
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As we can see in Table 7.8, the results are similar to those for the previous index. MinSAD, MinSAPE 

and the average LP have greater average percentage differences compared to the other methods, 

and MinMaxAD has a smaller percentage difference compared with the weights based on absolute 

error and inverse proportion to the MSE method. LP models in general perform better on the 

smooth series and significantly better on the seasonal series. They perform slightly worse on the 

hard series. Nevertheless, the differences are not as significant as in the percentage difference in 

relation the best individual technique. 

Table 7. 8 traditional and single objective LP combinations - Difference between the worse 

 
PERFORMANCE OF COMBINED FORECASTS 

%WORST SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 32.43 37.15 37.18 41.24 38.64 41.92 43.58 43.42 38.64 43.27 

Smooth 37.40 40.32 40.28 41.78 40.89 41.69 42.70 42.94 36.11 42.00 

Hard 22.10 22.75 22.89 23.32 22.99 22.64 21.87 20.43 22.92 22.57 

Seasonal 29.34 39.52 39.59 50.23 43.35 53.04 57.19 57.04 51.88 57.03 

Finally, if we assume that the decision maker has no knowledge about which is the best individual 

forecasting technique on a specific series and the technique is selected randomly, the expected MAD 

of the forecast is the average MAD of all the individual techniques. An additional way to test the 

performance of a combined forecast is to compare it with the expected (average) MAD of all the 

individual techniques. Hence, the next table shows the percentage difference between the average 

MAD and the MAD of the combined forecasting technique for each series. That is: 

 ∑
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m (= 1, … , M) is the series in our sample, MADFC the MAD of the combined forecast on the test set 

and MMADm the average MAD of the all the individual techniques on the specific series m. This index 

indicates the amount (in percent) by which the MAD of the combined forecasting technique 

improves on the performance of the “average” technique. 

The results (Table 7.9) are similar to the percentage differences between the MAD of the worst 

technique and this of the combined forecasts. MinSAD, MinSAPE and the average LP have greater 

average percentage differences compared to the other methods, and MinMaxAD has a smaller 

percentage difference compared with the weights based on absolute error and inverse proportion to 

the MSE method. LP models in general perform better on the smooth series and significantly better 
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on the seasonal series. They perform slightly worse on the hard series. Nevertheless, the differences 

are not as significant as in the percentage difference in relation the best individual technique. 

Table 7. 9 Traditional and single objective LP combinations - Difference between the average 

 
PERFORMANCE OF COMBINED FORECASTS 

%AVERAGE SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 10.51 17.23 17.23 22.81 19.26 19.26 26.22 26.04 19.29 25.69 

Smooth 11.16 16.11 16.03 18.68 17.08 17.08 20.59 20.84 10.94 19.46 

Hard 6.15 7.25 7.40 8.05 7.57 7.57 6.64 5.06 7.50 7.38 

Seasonal 11.76 24.76 24.83 38.36 29.62 29.62 47.11 46.92 40.69 46.94 

A general conclusion about the application of LP to combined forecasting is that LP based 

approaches, with the only exception of MinMaxAD, outperform the traditional combined forecasting 

techniques on the one hand, and that they also improve on the performance of the individual 

techniques on the other hand. MinMaxAD is the best combined forecasting method for series with 

high variability. The next step is to examine whether single objective LP models can be improved 

with a multi-objective Weighted Goal Programming approach. 

7.4 WEIGHTED GOAL PROGRAMMING 

Similar to the single LP the WGP formulation that minimises both SAD and MaxAD is the following: 

 ++ + 2211 dadaMin

 

(7. 19) 
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where e1t is the underestimation error, e2t the overestimation error and e the MaxAD. 
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(7. 22) 

(7. 6), (7. 7) 

0,,,,,, 221121 ≥−+−+ ddddeee  

Similar to the WGP for optimising the parameters of autoregressive models, I run experiments for a1 

= 1 and a2 = 1, 2, 3, 4, 5 and additionally a2 = 6. 

7.5 RESULTS 

In Table 7.10 I show the performance of the WGP combined forecasting models. I explore the 

combinations of all eight individual forecasting methods and report the overall average MAPE and 

the average MAPE on different types of time series. 

Table 7. 10 Weighted goal programming combinations - MAPE 

 
PERFORMANCE OF COMBINED FORECASTS 

MAPE WEIGHTED GOAL PROGRAMMING 

a2 1 2 3 4 5 6 

All 7.27 7.30 7.28 7.23 7.25 7.25 

Smooth 3.13 3.14 3.13 3.13 3.14 3.15 

Hard 23.85 24.03 23.87 23.55 23.56 23.48 
Seasonal 5.41 5.42 5.44 5.45 5.49 5.52 

As we can see, the WGP model results are very similar to the single objective LP (Table 7.4). We can 

observe a small improvement for weights 4, 5 and 6 with the best results weight 4. The only 

approach that outperforms WGP is the average LP combination technique, nevertheless, WGP is a 

bit simpler because we need to solve only one linear program compared to the latter where we need 

to solve three (MinSAD, MinSAPE and MinMaxAD) and calculate the average of them. However, the 

differences are very small. 

Table 7.11 shows the performance of the WGP according to the sMAPE. The results are similar. The 

best approaches are with weight 4, 6 and 5. Weight 6 is the best on the hard series, weights 1, 2, 3 

and 4 are the best on the smooth series and weights 1 and 2 on the seasonal series. WGP 

outperforms simple LP overall, but the latter is better on the smooth and seasonal series. However, 

the differences are small. 
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Table 7. 11 Weighted goal programming combinations - sMAPE 

 
PERFORMANCE OF COMBINED FORECASTS 

sMAPE WEIGHTED GOAL PROGRAMMING 

a2 1 2 3 4 5 6 

All 7.08 7.11 7.09 7.03 7.05 7.03 

Smooth 3.03 3.03 3.03 3.03 3.04 3.05 

Hard 23.16 23.31 23.13 22.76 22.79 22.59 
Seasonal 5.36 5.36 5.38 5.39 5.44 5.46 

The performance according to MASE is found in Table 7.12. All the alternative weights perform the 

same overall and on the smooth series. On the seasonal series the best are weights 1, 2,3 and 4 and 

on the hard series weights 4, 5 and 6. WGP outperforms simple LP overall and performs as good as 

MinMaxAD on the hard series and as good as MinSAD and MinSAPE on the seasonal series. On the 

other hand, it performs slightly worse than MinSAD on the smooth series. 

Table 7. 12 Weighted goal programming combinations - MASE 

 
PERFORMANCE OF COMBINED FORECASTS 

MASE WEIGHTED GOAL PROGRAMMING 

a2 1 2 3 4 5 6 

All 0.81 0.81 0.81 0.81 0.81 0.81 

Smooth 0.96 0.96 0.96 0.96 0.96 0.96 

Hard 0.85 0.86 0.86 0.84 0.84 0.84 
Seasonal 0.52 0.52 0.52 0.52 0.53 0.53 

In Table 7.13 we can see the percentage difference between the MAD of the combined forecasting 

technique and this of the best individual technique. 

Table 7. 13 Weighted goal programming combinations - Difference between the best 

 
PERFORMANCE OF COMBINED FORECASTS 

%BEST WEIGHTED GOAL PROGRAMMING 
a2 1 2 3 4 5 6 

All 4.91 5.31 5.42 5.20 5.54 5.64 

Smooth 6.40 6.72 6.90 6.95 7.14 7.34 

Hard 10.48 11.54 10.89 9.24 9.54 8.95 
Seasonal -0.84 -0.65 -0.24 -0.15 0.46 0.78 

The results are very similar to the single objective LP models (Table 7.7). Weight 1 gives the smallest 

average percentage difference between MAD; weights 6 and 4 give the smallest average percentage 

difference on the hard series. 

Table 7.14 shows the percentage difference between the MAD of the worst technique on each series 

and this of the WGP combinations. 
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Table 7. 14 Weighted goal programming combinations - Difference between the worst 
All Techniques PERFROMANCE OF COMBINED FORECASTS 

%WORST WEIGHTED GOAL PROGRAMMING 
a2 1 2 3 4 5 6 

All 43.60 43.33 43.29 43.47 43.30 43.26 

Smooth 42.72 42.50 42.39 42.35 42.20 42.05 

Hard 22.23 21.49 22.01 23.29 23.08 23.49 
Seasonal 57.01 56.92 56.72 56.67 56.48 56.40 

By comparison with Table 7.8, the difference between the WGP approach and the single objective 

MinSAD, MinSAPE and average LP are insignificant. 

Table 7. 15 Weighted goal programming combinations - Difference between the average 
All Techniques PERFORMANCE OF COMBINED FORECASTS 

%AVERAGE WEIGHTED GOAL PROGRAMMING 
a2 1 2 3 4 5 6 

All 26.27 25.94 25.89 26.09 25.88 25.84 

Smooth 20.67 20.40 20.27 20.22 20.06 19.88 

Hard 7.06 6.17 6.73 8.14 7.88 8.36 
Seasonal 46.89 46.78 46.53 46.48 46.24 46.14 

Table 7.15 shows the percentage difference between the average MAD of all the individual 

techniques on each of the series and the MAD of the WGP combinations. The results are similar with 

Table 7.13. There WGP approaches perform as good as the single objective LP and the differences 

are small. 

A general conclusion about the WGP approaches is that they slightly improve the overall results of 

the three LP approaches as well as for each subgroup of the series separately. WGP performs slightly 

worse than the average LP model according to the MAPE, but it is better according to the other 

accuracy indices. In addition, the first approach requires solving one program only. WGP seem to be 

stable and have the same good performance according to all the performance measurement indices. 

Nevertheless, the differences between all the LP approaches are small. 

7.6 CONCLUSION 

The aim of the chapter was to examine the applicability of LP as a tool to combine forecasts. For this 

reason four simple linear programs and one weighted goal program was formulated (the latter was 

tested with alternative weights). The performance of these approaches was compared with 

traditional combination approaches that are found in the literature. The analysis shows that linear 
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programming is a very good tool for combined forecasting. The simple LP methods outperform the 

traditional combined forecasting techniques that are found in the literature. On the other hand, the 

WGP methods outperform the former. Moreover, it seems that the distribution of the more and less 

accurate individual forecasts does affect the accuracy of traditional combination techniques, but not 

this of the LP based combinations. This is because while traditional techniques tend to distribute the 

weights over all the individual forecasts, LP approaches tend to select only the most accurate 

approaches. 

The conclusions of this chapter are summarised as follows: 

1. LP models outperform the traditional combination techniques in general. 

2. LP is the only method for combination that outperforms all the individual techniques. 

3. The inverse proportion to MSE and the weights based on the absolute error are the most 

accurate traditional combination techniques. 

4. WGP performs slightly better than single objective LP. 

5. All LP models, except MinMaxAD, are better than the traditional techniques on the smooth 

and seasonal series, but they give similar results on the hard series. 

6. MinMaxAD gives the best results on the hard series. 

LP is a very good method for combing forecast. The last step of the study is to test LP as a tool to 

minimise forecasting cost. 
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8 MINIMISING FORECASTING COST 

The aim of the chapter is to create forecasts for situations with asymmetries in the cost of the 

underestimation error and the cost of the overestimation error. Such situations have been 

presented in detail by Kahn (2003) in his study about how to measure the impact of forecasting cost 

on an enterprise. In this study the forecasting cost is separated into over-forecasting cost and under-

forecasting course. The over-forecasting cost consists of excess in inventory, inventory holding cost, 

transhipment cost, obsolescence and reduced margin. The under-forecasting cost consists of order 

expediting cost, higher product cost, lost sales cost, lost companion product sales and reduced 

customer satisfaction (Kahn, 2003). In his study, Kahn presents the example of an unnamed 

company where the potential excess inventory cost due to 1% over-forecasts is $86,613, and the 

potential lost profit due to 1% under-forecast is $85,473. On the other hand, the cost asymmetries in 

forecasting the demand of a blood bank or a hospital inventory are much bigger, because uncover 

demand for blood or drugs may cost the loss of human lives (Pereira, 2004, Drackley et al., 2011). 

In addition to inventory management, asymmetries between underestimation and overestimation 

cost is very important in fiscal policy forecasting. Specifically, underestimation cost tends to be much 

more serious than overestimation, especial for conservative, stability-oriented governments 

(Bretschneider et al., 1989, Keereman, 1999, Jonung and Larch 2006). For this reason, Auerbach 

(1999) argues that the sum of forecasting errors should be very close to zero (no symmetric bias) 

only when the cost of forecasting errors is symmetric. 

In order to deal with cost asymmetry situations I have develop two alternative approaches. The first 

are simple LP formulations with the cost relationship in the objective function. The second are 

simple LP formulations that minimise SAD, SAPE and ADBD with an additional cost constraint. We 

run the experiments for autoregressive models of order 6 and 12. The aim of this chapter is to 

examine the sensitivity of the cost of the forecasting error as the difference between the 

overestimation and underestimation cost grows larger. Thus, in the experiments I explore cases 

where the underestimation cost is bigger than the overestimation cost by factor 1.5, 2, 4, 7 and 10. 

8.1 COST RELATIONSHIP IN THE OBJECTIVE FUNCTION 

The first LP formulations minimise the total cost and relative cost for simple autoregressive models 

(AR) and autoregressive models with an additional, additive seasonal coefficients (ARS).  
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Let Yi be the predicted variable, Yi-j the explanatory variables, bj the coefficient of Yi-j, ei the 

forecasting error, i (1 ≤ i ≤ n) the index of the forecasting period, j (1 ≤ j ≤ m) the order, e1i the 

underestimation error and e2i the overestimation error and Si the seasonal coefficient. The 

formulation of the program for minimising the total cost for one period ahead forecasts is (assuming 

that Yi-j is not defined for j ≥ i): 
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Where a1 and a2 are the coefficients of the underestimation and overestimation error respectively. 

subject to: 

(4.27) for the simple AR 

and 

(4.29), (4.30) and (4.32) for the ARS 

e1i, e2i non-negative and bi and Si unrestricted in sign. 

The formulation of the program for minimising the relative cost for one period ahead forecasts is 

(assuming that Yi-j is not defined for j ≥ i): 
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subject to: 

(4.27) for the simple AR 

and 

(4.29), (4.30) and (4.32) for the ARS 

e1i, e2i non-negative and bi and Si unrestricted in sign. 
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I run experiments for a1 = 1.5, 2, 4, 7 and 10 assuming that a2 is always 1. 

8.2 COST RELATIONSHIP IN THE CONSTRAINTS 

These LP formulations minimise SAD, SAPE and ADBD for simple autoregressive model (AR) and 

autoregressive models with an additive seasonal coefficient (ARS). The cost relationship is expressed 

in the constraints.  

Let Yi be the predicted variable, Yi-j the explanatory variables, bj the coefficient of Yi-j, ei the 

forecasting error, i (1 ≤ i ≤ n) the index of the forecasting period, j (1 ≤ j ≤ m) is the order, e1i the 

underestimation error and e2i the overestimation error, a1 and a2 the coefficients of the 

underestimation and overestimation cost, and Si the seasonal coefficient. The formulation of the 

program for minimising SAD for one period ahead forecasts is (assuming that Yi-j is not defined for j ≥ 

i): 

MinSAD  

(4. 24), (4. 25), (4. 26) 

subject to: 

(4. 27)
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(8. 3) 

e1i, e2i non-negative and bj unrestricted in sign. 

The formulation for the ARS model is:  

MinSAD  

(4. 28), (4. 25), (4. 26) 

subject to: 

(4. 29), (4. 30), (4. 32), (8. 3) 
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e1i, e2i non-negative and bj and Si unrestricted in sign. 

The formulation for minimising SAPE is similar. 

Finally, the formulation of the AR minimising the ADBD for one period ahead forecasts is (assuming 

that Yi-j is not defined for j ≥ i): 

MinADBD  

(4. 33), (4. 34) 

subject to: 

(4. 35), (4. 36) 

 
ioiui eee =+

 
 i = m+1, … , n-1

 

(8. 4) 

Where eui and eoi are the underestimation and overestimation errors for period i 

(8. 3) 

e1il, e2il, eui, eoi non-negative and bj unrestricted in sign. 

In the same way, the formulation of the ARS that minimises the ADBD for one period ahead 

forecasts is (assuming that Yi-j is not defined for j ≥ i): 

MinADBD  

(4. 33), (4. 34) 

subject to: 

(4. 35), (4. 38), (4. 30), (4. 32), (8. 3), (8. 4) 

e1il, e2il, eui, eoi non-negative and bj unrestricted in sign. 
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8.3 RESULTS 

I used the same data set (60 series) that was used in the previous chapters. I compare the results of 

the above models in terms of accuracy (MAPE) and cost. The cost is the sum of the underestimation 

and overestimation errors multiplied by the cost coefficients a1 and a2. The results are compared 

with these of the OLS approach. Cost coefficients cannot be adapted using the OLS method; thus, 

the results remain the same in terms of accuracy, but the cost changes according to the change in 

the underestimation cost coefficient. 

Table 8.1 present the result of all the models (AR 6, AR 12, ARS 6, ARS 12) for underestimation cost 

coefficient equal to 1.5. 

Table 8. 1 Under/overestimation cost ratio 1.5 
1.5 

OLS 
LP Objective Function LP Constraints 

 MinSAD MinSAPE MinSAD MinSAPE MinADBD 

AR 6 MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST 

All 8.69 630777.03 9.51 627583.84 9.06 650564.32 9.24 620726.13 8.81 681513.93 9.26 621496.36 

Smooth 3.14 185639.33 3.45 188007.82 3.24 179856.27 3.40 187257.80 3.10 191442.26 3.39 187292.85 

Hard 24.47 231799.41 26.99 224994.56 25.58 250433.02 26.01 221371.25 25.84 258953.93 26.01 221915.53 

Seasonal 9.79 213338.29 10.57 214581.46 10.24 220275.03 10.31 212097.08 9.50 231117.74 10.39 212287.98 

AR 12             

All 8.01 632503.71 9.11 571621.39 8.86 585215.21 8.83 565442.66 9.05 572009.33 9.23 582056.64 

Smooth 3.22 187366.00 3.38 184030.47 3.21 179339.51 3.39 185867.13 3.30 183569.01 3.45 187732.96 

Hard 23.69 231799.41 28.62 233372.19 28.17 253939.72 27.27 227064.19 28.97 235244.94 25.09 210360.59 

Seasonal 7.80 213338.29 8.43 154218.73 8.16 151935.99 8.26 152511.34 8.21 153195.38 10.69 183963.10 

ARS 6             

All 7.39 540101.24 8.08 532343.91 7.76 551706.25 7.82 525100.07 7.64 567942.90 7.85 530367.42 

Seasonal 5.45 122662.50 5.80 119341.53 5.89 121416.96 5.56 116471.02 5.61 117546.71 5.69 121159.04 

ARS 12             

All 7.22 530239.74 8.17 521380.66 8.00 537381.74 7.88 513803.40 8.11 520285.07 7.55 498749.42 

Seasonal 5.19 111074.33 5.32 103978.00 5.32 104102.51 5.07 100872.08 5.06 101471.11 5.09 100655.88 

As we can see, the differences in both cost and accuracy are relative small. Typically, the ARS 12 

outperform the ARS 6 both in accuracy and cost, whereas, ARS 12 performs better than the AR 12 

model and the ARS 6 performs better than the AR 6. 

OLS is the best in accuracy. However, in most cases, the cost obtained through the LP model is lower 

than the cost obtained through the OLS approach. The MinSAPE with the cost relation in the 

objective function performs well on the smooth series; while the MinADBD with the cost in the 

constraints performs well on the hard series. 

The overall best performing models, in terms of cost, are the LP approaches with MinSAD objective 

and cost constraint (for AR 6, AR 12 and ARS 6) and the LP approach with MinADBD with cost 
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constraint (for ARS 12). We can conclude that cost and accuracy differences between all the models 

for underestimation cost weight 1.5 are small; this was expected because the difference in 

overestimation and underestimation cost weights is small (0.5). 

Table 8. 2 Under/overestimation cost ratio 2 
2 

OLS 
LP Objective Function LP Constraints 

 MinSAD MinSAPE MinSAD MinSAPE MinADBD 

AR 6 MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST 

All 8.69 758333.09 10.59 728623.44 9.53 738842.82 9.78 723059.35 9.84 721617.92 9.73 716334.72 

Smooth 3.14 218265.43 3.73 217087.49 3.47 207025.56 3.58 213587.25 3.52 212743.87 3.57 213190.22 

Hard 24.47 285836.87 29.67 261049.21 26.32 282822.14 27.52 261250.55 28.17 262320.96 27.26 258932.82 

Seasonal 9.79 254230.79 12.18 250486.74 10.96 248995.13 10.97 248221.55 10.89 246553.09 10.93 244211.68 

AR 12             

All 8.01 661821.13 9.65 657875.73 9.12 669074.48 9.13 649048.85 9.34 657832.19 9.43 649402.56 

Smooth 3.22 218692.40 3.76 216493.77 3.44 206476.63 3.56 211126.57 3.42 207128.57 3.61 212521.64 

Hard 23.69 275121.16 29.72 268901.78 28.17 293978.27 27.98 270135.45 29.71 280660.96 25.48 242557.83 

Seasonal 7.80 168007.57 8.98 172480.18 8.63 168619.59 8.54 167786.83 8.54 170042.66 10.86 194323.08 

ARS 6             

All 7.39 649743.85 8.81 617640.37 8.11 628252.26 8.25 607990.00 8.34 610858.74 8.21 609811.43 

Seasonal 5.45 145641.55 6.26 139503.68 6.23 138404.56 5.85 133152.21 5.89 135793.91 5.87 137688.39 

ARS 12             

All 7.22 624019.59 8.71 605370.90 8.23 618339.63 8.17 597515.16 8.39 605251.32 7.74 567245.37 

Seasonal 5.19 130206.02 5.85 119975.35 5.65 117884.74 5.35 116253.14 5.36 117461.79 5.25 112165.90 

Table 8.2 present the results for underestimation cost coefficient equal to 2. As expected, the 

accuracy of the LP approaches decreases; while, the cost differences of between OLS and LP 

approaches is more significant. Specifically, the forecasting cost with the LP approaches is for all but 

one case smaller than with the counterpart OLS. 

Table 8. 3 Under/overestimation cost ratio 4 
4 

OLS 
LP Objective Function LP Constraints 

 MinSAD MinSAPE MinSAD MinSAPE MinADBD 

AR 6 MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST 

All 8.69 1268557.32 13.21 996174.33 11.67 986388.94 11.23 996727.94 11.32 1001286.44 11.26 981725.78 

Smooth 3.14 348769.83 4.76 305377.45 4.49 291542.02 4.16 294001.88 4.06 289020.94 4.24 292225.08 

Hard 24.47 501986.73 38.13 387071.50 31.13 392084.54 32.07 378819.73 32.97 387689.57 31.35 362413.22 

Seasonal 9.79 417800.76 14.39 303725.38 13.62 302762.38 12.23 323906.32 12.21 324575.93 12.58 327087.48 

AR 12             

All 8.01 1073051.41 11.59 903676.39 10.73 942650.62 9.97 899740.91 10.14 924038.68 10.37 855617.25 

Smooth 3.22 343998.01 4.76 306872.26 4.37 294329.35 4.10 296335.79 3.93 282612.15 4.23 288552.03 

Hard 23.69 489947.23 34.31 374851.66 31.30 435159.30 29.42 392837.63 30.89 427179.46 27.56 343452.50 

Seasonal 7.80 239106.17 11.11 221952.48 10.61 213161.98 9.60 210567.49 9.65 214247.08 11.74 223612.72 

ARS 6             

All 7.39 1088314.33 11.27 884641.56 9.88 874152.83 9.55 864940.20 9.62 866289.88 9.41 837291.57 

Seasonal 5.45 237557.77 7.91 192192.61 7.65 190526.27 6.61 192118.58 6.52 189579.37 6.42 182653.27 

ARS 12             

All 7.22 1040678.05 10.50 847943.26 9.61 883961.77 8.88 845677.77 11.14 1070042.30 8.60 776667.77 

Seasonal 5.19 206732.82 7.47 166219.34 6.87 154473.12 5.96 156504.35 12.97 360250.69 5.83 144663.24 
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The best overall performing (in terms of cost) LP approaches are the LP models with objectives 

MinSAD or MinADBD and cost constraint. As before, the MinADBD performs well on the hard series, 

and the MinSAPE model with cost in the objective function performs well on the smooth series. 

In Table 8.3 we can see the results for underestimation cost coefficient equal to 4. The accuracy of 

the LP approach decreases further, while the cost difference between the LPs and the OLS grows 

larger. MinADBD gives the best results overall. It is the best approach on the hard series and 

seasonal series and gives good results on the smooth series. MinSAPE with cost in the constraints 

gives the lower cost on the smooth series; however, it gives the worst results overall. 

Table 8.4 show the situations where the underestimation cost is seven times bigger than the 

overestimation cost. The cost difference between OLS and LP is very big. In addition, the cost 

differences between the LP models are rather small. MinADBD typically outperforms the other 

models in cost and accuracy. 

Table 8. 4 Under/overestimation cost ratio 7 
7 

OLS 
LP Objective Function LP Constraints 

 MinSAD MinSAPE MinSAD MinSAPE MinADBD 

AR 6 MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST 

All 8.69 2033893.66 16.01 1235475.48 14.03 1230026.72 12.67 1279857.02 12.69 1279484.79 12.85 1239668.18 

Smooth 3.14 544526.42 5.89 389445.72 5.49 364682.09 4.79 380745.85 4.65 376620.38 4.96 378084.13 

Hard 24.47 826211.51 46.58 507572.50 38.37 513604.29 36.60 519960.04 37.04 519353.38 35.74 472732.79 

Seasonal 9.79 663155.73 17.04 338457.25 15.68 351740.34 13.39 379151.13 13.44 383511.03 14.17 388851.25 

AR 12             

All 8.01 1689896.82 13.47 1138631.15 12.77 1213079.02 11.00 1182363.34 11.58 1247161.66 11.51 1079780.56 

Smooth 3.22 531956.42 5.76 409217.43 5.53 395259.52 5.37 407190.61 5.23 389100.98 4.92 368244.73 

Hard 23.69 812186.32 38.99 471452.90 36.26 555923.99 29.68 520384.64 33.49 604418.35 30.26 459974.50 

Seasonal 7.80 345754.07 12.99 257960.82 12.60 261895.51 10.63 254788.09 10.68 253642.34 12.80 251561.32 

ARS 6             

All 7.39 1746170.04 13.42 1121177.56 11.87 1111083.44 10.83 1153831.27 10.83 1150203.84 10.70 1075320.26 

Seasonal 5.45 375432.10 8.38 224159.34 8.49 232797.06 7.24 253125.38 7.24 254230.09 7.01 224503.33 

ARS 12             

All 7.22 1665665.75 12.12 1093851.19 11.50 1157120.67 9.77 1129843.81 10.33 1199090.18 9.77 1052722.56 

Seasonal 5.19 321523.00 8.49 213180.86 8.36 205937.15 6.53 202268.56 6.51 205570.85 7.01 224503.33 

Finally, when the underestimation cost is ten times bigger than the overestimation, the cost 

differences between OLS and LP are very large. In addition, the cost differences between all the LP 

models are small. The models with the cost function in the constraints give significantly smaller 

MAPE. 

Figures 8.1, 8.2, 8.3 and 8.4 show the relationship between the cost of the forecasting error and the 

cost coefficient relationship on all the series (Figure 8.1) and for each series subgroup (Figures 8.2, 
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8.3 and 8.4). The figures show the performance of the ARS model, however, the performance of the 

other three models is similar.  

Table 8. 5 Under/overestimation cost ratio 10 
10 

OLS 
LP Objective Function LP Constraints 

 MinSAD MinSAPE MinSAD MinSAPE MinADBD 

AR 6 MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST MAPE COST 

All 8.69 2799230.00 17.78 1404878.71 16.09 1408891.93 13.81 1524002.96 13.89 1532374.21 14.03 1434313.62 

Smooth 3.14 740283.02 6.51 465802.40 6.33 427863.99 5.20 455662.48 5.13 452174.14 5.50 446975.07 

Hard 24.47 1150436.29 52.44 574613.60 44.29 620558.13 40.47 644572.61 41.05 652598.73 39.05 563616.25 

Seasonal 9.79 908510.69 18.54 364462.71 17.77 360469.81 14.31 423767.87 14.37 427601.35 15.31 423722.30 

AR 12             

All 8.01 2306742.23 14.94 1374863.76 13.87 1378491.82 11.58 1413213.11 12.21 1483649.54 10.38 1424162.47 

Smooth 3.22 719914.83 6.69 497435.46 6.34 473995.12 5.81 491870.52 5.72 463540.58 4.25 463512.14 

Hard 23.69 1134425.42 42.99 599196.12 38.83 611942.41 30.55 638144.05 34.46 734216.11 27.56 671839.02 

Seasonal 7.80 452401.97 14.04 278232.18 13.38 292554.28 11.29 283198.54 11.40 285892.85 11.74 288811.31 

ARS 6             

All 7.39 2404025.74 15.26 1275442.95 13.60 1306102.28 11.83 1408096.97 11.83 1406873.29 11.68 1262918.95 

Seasonal 5.45 513306.43 10.15 235026.95 9.47 257680.16 7.69 307861.88 7.49 302100.43 7.46 252327.63 

ARS 12             

All 7.22 2290653.45 13.58 1337325.29 12.66 1314417.17 10.28 1365791.14 10.84 1426254.61 8.61 1368696.70 

Seasonal 5.19 436313.19 9.49 240693.70 9.34 228479.63 6.98 235776.57 6.84 228497.91 5.83 233345.55 

 

 

Figure 8. 1 Cost performance (all series) 
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Figure 8. 2 Cost performance (smooth series) 

 

Figure 8. 3 Cost performance (hard series) 
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Figure 8. 4 Cost performance (seasonal series) 

As we can see, the cost grows larger as the under/overestimation cost coefficient ratio grows bigger. 

This relationship is linear for the OLS and damped for the LP models, and the bigger the cost ratio is, 

the greater the difference between the cost performance of the OLS and the LP models. MinADBD 

seems to be the best model overall and on the hard series. MinSAPE with cost in the objective 

function performs better on the smooth series. On the seasonal series, MinADBD performs better 

for smaller cost coefficient ratio, while MinSAD with cost in the objective function performs better 

for bigger cost coefficient ratio. 

8.4 CONCLUSIONS 

The aim of the chapter was to develop linear programs that estimate the parameters of 
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There are two alternative formulations. The first minimise has the cost asymmetry relationship in 

the objective function (cost minimisation), whereas in the second it is expressed as a constraint. The 
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bigger than the overestimation cost. The performance of the LP approaches is compared with the 

OLS in terms of cost and accuracy. 
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In summary, we can say that LP is a good tool for making forecasts with cost asymmetries.  The 

differences between the OLS and LP approaches are small, when the cost asymmetry is low; 

however, the differences are bigger when the cost asymmetry is more important. In addition, it 

seems that models with the cost relationship in the constraints perform better than those with the 

cost relationship in the objective function, both in cost and accuracy. The MinADBD tends to give 

better results compared with the other LP formulations. 
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9 CONCLUSION 

9.1 SUMMARY 

In this research I explored the usage of linear programming as a tool to optimise time series 

forecasting models. The performance of LP is validated by examining five potential applications. 

First of all, I compared the accuracy of single objective linear programming for optimising the 

parameters of autoregressive models. The comparison shows that LP is a very good alternative to 

the OLS. Specifically, LP performs better than the OLS on series with low variability and seasonal 

series, while OLS performs better on series with high variability. However, the accuracy of the LP 

approaches can be improved by adding constraints where the sum of the errors should be zero, or 

the sum of the percentage errors should be zero, in order to remove the bias. The second approach 

seems to improve the results more, especially on smooth and seasonal series; however, the first 

seemed to work better on the hard series. The general conclusion of this comparison is that 

according to the characteristics of the series, the decision maker may have to focus on different 

optimisation objectives. Nevertheless, the differences between all the models are small. 

Secondly, I examined the performance of goal programming based approaches, comparing them 

with the single objective LP and the OLS. The experiments show that goal programming improves the 

performance of the single objective approaches. Specifically, weighted goal programming 

formulations seems to improve the performance of simple LP overall, while, pre-emptive goal 

programming can improve the results on series with specific characteristics. The additional 

constraints (sum errors or sum percentage errors equal to zero) improve the results in the same way 

as in the simple LP models. In general, the decision maker should select the most appropriate 

method (simple LP, GP or OLS) according to the characteristics of the series and the forecasting 

horizon. 

One of the main conclusions so far is that LP performed worse than the OLS on hard series. This was 

expected because OLS minimises the sum of squared errors; hence it gives more weight to bigger 

errors, while LP requires linear errors measures. For this reason, the next step was to explore 

whether or not the flexibility of LP can improve the performance on series with high variability. I 

tried to improve the single objective and goal programming approaches with one or two additional 

constraints. Firstly, by setting all the coefficients of the LPs as positive and secondly by adding a 

hierarchy relation. I compare the accuracy of the new models with the OLS, as well as with four 
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other techniques that traditionally perform well on these series. The experiments show that the 

additional constraints significantly improve the performance of the initial models and outperform all 

the other techniques. Specifically, the best LP-based model performs better (reduction in MAPE by 

3%) than the best model of all the other traditional techniques. 

After testing the performance of LP as a tool for developing individual forecasts, I examined LP for 

combined forecasting. I developed single objective models (minimising SAP, SAPE and MaxAD) and 

WGP models (minimising both SAP and MaxAD) and I compared them with five traditional 

combination techniques. The results show that the LP approaches outperform all the traditional 

combination methods as well as the best individual technique. In more detail, the conclusion is that 

WGP performs better than the simple LP models (except the average LP approach); the approach 

that minimises SAPE performs better on the smooth series, the approach that minimises SAP is the 

best on the seasonal series and the one that minimises MaxAD is the best on the hard series. 

Finally, LP is tested as a tool to minimise forecasting cost, instead of forecasting error. I applied the 

initial autoregressive forecasts, adding the cost relationship in the objective function or as a 

constraint and I compared the results with the OLS. The experiments show that the LP approaches 

perform significantly better, in terms of cost, than the latter. Moreover, it seems that the 

approaches with the cost relationship in the constraints outperform these with the cost relationship 

in the objective function, both in cost and accuracy. 

The general conclusion is that LP is a very useful tool that can be used to develop accurate time 

series forecasts. Moreover, LP approaches are easy and in many cases perform better than the 

traditional approaches that are found in forecasting literature and practise. In addition, this study 

gave more general conclusions on the field of forecasting. Firstly, multi-objective approaches seem 

to outperform the counterpart single objective models. In addition, it seems that the performance of 

a quantitative forecast can be improved on the test set if sum of percentage errors is set the equal 

to zero on the training set. Finally, according to the specific characteristics of the forecasting 

problem, we may have to focus on models with different objectives. 

9.2 IMPLICATIONS FOR FORECASTING THEORY 

As it is mention in the first chapter, this research is rather a theoretical study than a real world 

application. Hence, the topic is interesting from a theoretical and mathematical perspective. It is the 

first time that linear programming was used to estimate the parameters of an autoregressive model 



CHAPTER 9 CONCLUSION 

175 
 

and the analysis showed that it can be used for this purpose and that it is a good alternative to the 

methods that were used so far. 

LP can help decision makers when they want to estimate the parameters of simple autoregressive 

models. The approaches presented in Chapters 4 and 5 should be preferred for series with low 

variability and these presented in Chapter 6 for series with high variability. In addition, LP was shown 

to be a very good tool for adding seasonal coefficients for forecasting series with strong seasonality. 

The analysis shows that in these situations the LP approaches perform better than the OLS or the 

other techniques that are found in the literature. 

There is also a significant contribution to the field of combined forecasting. The LP based approaches 

for combined forecasts have a simple formulation and require short computational time (less than a 

second using any LP optimisation software). Thus, they can be easily implemented by decision 

makers. In addition, LP outperformed all the traditional combination techniques that are found in 

the literature. 

There are three general implications for the field of forecasting (which are neither limited to LP 

models nor to estimating the parameters of autoregressive models and combining forecasts). First is 

the addition of logical constraints to the forecasts. The analysis shows that adding constraints, which 

sacrifice the performance on the training set, may improve the performance of the test set. 

Specifically, adding the constraint where the sum of percentage errors is equal to zero, improves the 

accuracy on series with low variability; on the other hand, setting non-negative and adding a 

hierarchy on the coefficients of the model improves the accuracy on series with high variability. 

Second is the application of multi-objective forecasting. The analysis shows that a MinSum-MinMax 

approach for forecasting tends to outperform a single objective approach. Finally, there is the 

implementation of biased forecasts, when the decision maker prefers underestimation to 

overestimation or vice versa. Linear programming was shown to be a powerful technique for dealing 

with asymmetries in the forecast error costs. It would be interesting to further verify these 

findings/issues in future research. 

9.3 LIMITATIONS 

The main limitation of LP for time series forecasting is the need of linearity. LP approaches cannot be 

used to estimate the parameters of models that are not linear. LP can be used only for linear 

regression based forecasts, either autoregressive, or causal. These LP approaches cannot be 

extended to estimate the parameters of ARMA or ARIMA forecasting models. Similarly, they cannot 
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be extended to estimate the parameters of seasonal autoregressive models with multiplicative 

instead of additive seasonal coefficients. In addition, LP cannot be used to estimate the parameters 

of other forecasting techniques that do not have a linear mathematical formulation, such as the 

smoothing parameters of exponential smoothing models (SES, Holt, Holt-Winters etc.). 

In addition, the minimisation objectives should be linear. LP cannot be applied for quadratic or non-

linear accuracy measures, such as the Sum of Squared Errors, the Root of the Sum Squared Errors 

and the Root of the Sum of Squared Percentage Errors. Similarly, the approaches that deal with 

situation with asymmetry in the cost of the forecasting error cannot be applied to cases where the 

cost is quadratic or non-linear. 

9.4 RECOMMENDATIONS FOR FURTHER RESEARCH 

During this study several areas that deserve further investigation are identified. The potential topics 

for further research can be classified into two main categories. These are the 

extensions/improvements of the current models and the application of the existing approaches to 

different areas of forecasting. 

About the first part, there are several potential ways that could improve the LP-based approaches. 

To begin with, LP formulations, due to their flexibility, could be extended by incorporating the 

knowledge of experts in additional constraints. In this way, a qualitative forecasting element can be 

added to the initial autoregressive approaches, which could further improve the forecasts. On the 

other hand, goal programming models that minimise only the SAP and the MaxAD have been 

developed. Many different combinations of objectives can be examined, using accuracy indices such 

as the ADBD and the MaxADBD.  

Another promising area is the LP approach for combination. It was shown that in most situations 

adding the constraint where the sum of errors or the sum of percentage errors is equal to zero 

improves the accuracy of the models significantly. However, as it was mentioned in Chapter 7, the LP 

models for combined forecasting with these extra constraints were over-constrained and had in 

most cases no feasible solution. Hence, the possibility to relax these constraints can be examined. 

A very interesting area is the development of non-linear programming approaches. It was shown 

that linear programming performs well for time series forecasting. The next step could be to try to 

exceed some of the LP limitations by using non-linear modelling. Non-linear programming will give 

the opportunity to extend the autoregressive models to ARMA or ARIMA formulations and compare 
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their accuracy with the Maximum Likelihood Estimation and several other methods that are found in 

the literature. In addition, non-linear formulations will give the chance to develop multi-objective 

approaches where the weights of the goals are not selected by the decision maker, but they are 

determined by the programs. This could improve the accuracy of the WGP approaches further. 

Moreover, with non-linear programming cost minimisation models with quadratic cost functions can 

be explored. 

About the second part, linear programming is used only for estimating the parameters of 

autoregressive models and for combining forecasts. The same LP approach could be used for causal 

modelling as well as for time series decomposition. In addition, an LP-based method could be useful 

for model selection. 

Another interesting area for further research is the applications of multi-objective modelling for 

forecasting. This study shows that multi-objective approaches tend to be more accurate than single 

objective models. It seems very promising to explore the field of multi-objective optimisation in 

more depth, using more sophisticated techniques, such as artificial neural networks and genetic 

algorithms. 
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10 APPENDIX 

As mentioned in Chapter 7, it is observed that the ARS method always gave the best results on the 

seasonal series and that it was significantly better than the other techniques. In order to remove the 

impact of the ARS model, I ran the experiments again ignoring the ARS method. 

Figure A.1 shows the number of times each individual forecasting method gives the best results, but 

ignoring the ARS model. 

 

Figure 10. 1 Number of times each individual technique gives the best results (no ARS) 

As we can see, AR gives the best results most of the times and on the smooth and seasonal series. 

On the other hand, SES gives most of the times the best results on the hard series. The number the 

individual forecast give the worst results can be found in Figure 7.2. AES and AR approaches do not 

perform worst on any of the series. SES is the technique that performs worst most times. 

10.1 SIMPLE LP 

Table 10.1 shows the average MAPE of the single objective LP combined forecasting models 

compared with the other five traditional methods. 

As we can see, the performance of all the combined forecasting techniques and the differences 

between the LP and the other techniques remain similar. The Average LP remains the technique with 
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the lowest MAPE. Significant differences are that all the LP models (and MinMaxAD) give better 

results than the other methods, as well as better than the best individual (that is the simple AR). In 

addition, the average inverse proportion to MSE method is the most accurate compared with the 

other traditional techniques. 

Table 10. 1 Traditional and single objective LP combinations - MAPE 
no ARS PERFORMANCE OF COMBINED FORECASTS 

MAPE SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 9.40 9.15 9.14 8.95 9.08 9.04 8.55 8.55 8.65 8.47 

Smooth 3.62 3.44 3.45 3.28 3.39 3.46 3.14 3.06 3.35 3.12 

Hard 24.12 23.79 23.74 23.57 23.70 24.02 23.95 24.28 23.12 23.43 

Seasonal 11.48 11.17 11.16 10.90 11.07 10.63 9.60 9.58 10.02 9.66 

Table 10.2 shows the performance of the combination techniques according to the sMAPE. 

Table 10. 2 Traditional and single objective LP combinations - sMAPE 
no ARS PERFORMANCE OF COMBINED FORECASTS 

sMAPE SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED ON 

AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 9.08 8.86 8.86 8.67 8.80 8.75 8.35 8.38 8.41 8.27 

Smooth 3.52 3.35 3.36 3.19 3.30 3.36 3.04 2.97 3.27 3.03 

Hard 23.30 23.04 23.00 22.84 22.96 23.16 23.36 23.76 22.36 22.83 

Seasonal 11.07 10.80 10.79 10.54 10.71 10.32 9.45 9.45 9.81 9.49 

As we can see, the results are similar as in the comparison according to MAPE. LP formulations 

outperform the traditional techniques. Average LP gives the best results overall, MinSAPE performs 

best on the smooth series, MinMaxAD on the hard and MinSAD and MinSAPE on the seasonal. 

Table 10. 3 Traditional and single objective LP combinations - MASE 
no ARS PERFORMANCE OF COMBINED FORECASTS 

MASE SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 1.03 0.99 0.99 0.96 0.98 0.98 0.91 0.91 0.99 0.92 

Smooth 1.14 1.06 1.07 1.02 1.05 1.07 0.96 0.96 1.07 0.97 

Hard 0.86 0.85 0.85 0.84 0.85 0.86 0.86 0.87 0.84 0.85 

Seasonal 0.94 0.92 0.92 0.91 0.92 0.90 0.86 0.86 0.92 0.87 

Table 10.3 shows the performance of the techniques according to MASE. LP outperforms the 

traditional techniques, except the MinMaxAD which is outperformed by inverse proportion to MSE, 

the average inverse proportion and the weighted according to the absolute deviations. MinMaxAD 
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gives the best results on the hard series. MinSAD and MinSAPE give the best results overall, and on 

the smooth and seasonal series. 

In Table 10.4 we can see the percentage difference between the MAD of the combined forecasting 

method and the MAD of the best individual. 

Table 10. 4 traditional and single objective LP combinations - Difference between the best 
no ARS PERFORMANCE OF COMBINED FORECASTS 

%BEST SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 21.94 16.20 16.24 12.20 14.84 15.08 5.60 5.68 14.64 6.65 

Smooth 28.53 19.86 20.02 14.06 17.92 19.86 6.53 6.25 20.24 8.31 

Hard 12.53 10.66 10.50 9.39 10.16 11.64 11.13 12.80 10.01 10.13 

Seasonal 15.44 12.77 12.71 10.47 11.95 8.49 0.87 0.70 7.25 1.77 

The results of the table are slightly different compared with those in Table A.1 MinSAD, MinSAPE 

and average LP give the lowest average percentage difference and perform significantly better on 

the smooth and seasonal series; however, the differences on the hard series remain the same. A 

general observation is that while the total average percentage difference in the LP models is slightly 

bigger, it is significantly smaller compared with the other methods of combination. More specifically, 

this difference is observed in the subgroup of the seasonal series. 

Hence, it seems that when there is a dominant individual forecasting technique (ARS on the seasonal 

series) the traditional models of combination result in significantly bigger errors compared with the 

best technique; whereas, when the best forecast is distributed over different individual forecasting 

methods, the percentage deviation over the best technique is smaller. When there is a dominant 

individual forecasting technique, the LP models tend to have smaller (or negative) percentage 

differences over the best individual technique compared with the case when the best forecast is 

distributed over different individual techniques. 

Table 10.5 show the percentage differences between the MAD of the worst technique and this of 

the combined forecasts. Similar as in the previous table, the results of the last table are slightly 

different compared with those of Table A.4: MinSAD, MinSAPE and average LP perform better; 

however, the difference between the LP models and the other techniques are slightly smaller. This 

difference is again observed on the seasonal series. Thus, it seems that the absence of a dominant 

individual technique tends to increase the performance of the LP combinations methods a bit. The 

average percentage difference between the worst technique and the combined forecasts remains 

bigger for the LP models compared to the traditional techniques. 
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Table 10. 5 Traditional and single objective LP combinations - Difference between the worst 
no ARS PERFORMANCE OF COMBINED FORECASTS 

%WORST SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 29.19 31.37 31.38 32.86 31.89 31.90 35.16 35.11 30.45 34.72 

Smooth 35.48 38.50 38.47 40.40 39.15 38.64 42.70 42.94 36.11 42.00 

Hard 21.75 22.63 22.76 23.37 22.93 22.07 21.78 20.43 22.92 22.55 

Seasonal 22.14 23.54 23.56 24.72 23.96 25.38 29.17 29.36 24.59 28.54 

Table 10.6 shows the percentage differences between the average MAD of the individual forecasting 

techniques on a series and this of the combined forecasts. 

Table 10. 6 Traditional and single objective LP combinations - Difference between the average 
no ARS PERFORMANCE OF COMBINED FORECASTS 

%AVERAGE SIMPLE 
AVERAGE 

INVERSE PROPORTION WEIGHTS 
BASED 
ON AD 

SIMPLE LP 

SERIES MAD MAPE MSE AVERAGE MinSAD MinSAPE MinMaxAD AVERAGE 

All 9.39 12.75 12.73 15.00 11.68 13.41 18.52 18.47 12.12 13.52 

Smooth 10.71 15.59 15.51 18.67 14.01 15.72 22.62 22.87 13.29 16.62 

Hard 6.20 7.60 7.74 8.60 7.23 6.84 7.04 5.57 8.10 7.99 

Seasonal 8.82 10.56 10.59 12.04 10.01 12.94 17.62 17.82 12.28 11.09 

The results are slightly different to the percentage differences between the MAD of the worst 

technique and this of the combined forecasts. MinSAD and MinSAPE perform better than the other 

combination techniques; however the average LP method is outperformed by the inverse proportion 

to MSE and the MinMaxAD is outperformed by all the traditional combination techniques except the 

simple average method. The MinSAD and MinSAPE LP models perform significantly better than the 

traditional techniques. 

A general conclusion about the application of LP to combined forecasting is that LP based models, 

except MinMaxAD, outperform the traditional combined forecasting techniques, and that they also 

improve on the performance of the individual techniques. MinMaxAD is the best combined 

forecasting method for series with high variability. The next step is to examine whether single 

objective LP models can be improved with a multi-objective Weighted Goal Programming approach. 

10.2 WEIGHTED GOAL PROGRAMMING 

Similar as for the single objective LP models, I ran the experiments ignoring the ARS technique. The 

following table shows the average MAPE of the WGP models. As we can see, all the WGP 
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approaches, except this with weight 2, outperform the MinSAD, MinSAPE and MinMaxAD. In 

addition, the model with weight 6 performs better than the average LP approach. 

Table 10. 7 Weighted goal programming - MAPE 
no ARS PERFORMANCE OF COMBINED FORECASTS 
MAPE WEIGHTED GOAL PROGRAMMING 

a2 1 2 3 4 5 6 

All 8.53 8.56 8.54 8.48 8.48 8.45 

Smooth 3.13 3.14 3.13 3.13 3.14 3.18 

Hard 23.85 24.03 23.87 23.55 23.56 23.48 
Seasonal 9.61 9.62 9.63 9.60 9.62 9.48 

Table 10.8 shows the performance of WGP according to sMAPE. Here, WGP outperforms simple LP 

overall. However, MinMaxAD performs better on the hard series and MinSAPE on the smooth series, 

WGP with weight 6 performs better on the seasonal series and it is the best overall. 

Table 10. 8 Weighted goal programming - sMAPE 
no ARS PERFORMANCE OF COMBINED FORECASTS 
sMAPE WEIGHTED GOAL PROGRAMMING 

a2 1 2 3 4 5 6 

All 8.31 8.34 8.31 8.24 8.25 8.17 

Smooth 3.03 3.03 3.03 3.03 3.04 3.10 

Hard 23.16 23.31 23.13 22.76 22.79 22.59 
Seasonal 9.45 9.46 9.46 9.43 9.45 9.17 

Table 10.9 shows the performance of WGP according to MASE. WGP slightly outperforms simple LP. 

It performs as good as simple LP on the smooth and hard series, but significantly better on the 

seasonal series (weight 6). 

Table 10. 9 Weighted goal programming - MASE 
no ARS PERFORMANCE OF COMBINED FORECASTS 
MASE WEIGHTED GOAL PROGRAMMING 

a2 1 2 3 4 5 6 

All 0.91 0.91 0.91 0.91 0.91 0.90 

Smooth 0.96 0.96 0.96 0.96 0.96 1.01 

Hard 0.85 0.86 0.86 0.84 0.84 0.84 
Seasonal 0.86 0.86 0.86 0.86 0.86 0.76 

The next table presents the percentage difference between the MAD of the combined forecasting 

models and the MAD of the best individual technique. 
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Table 10. 10 Weighted goal programming - Difference between the best 
no ARS PERFRMANCE OF COMBINED FORECASTS 
%BEST WEIGHTED GOAL PROGRAMMING 

a2 1 2 3 4 5 6 

All 5.45 5.85 5.86 5.55 5.76 7.45 

Smooth 6.40 6.72 6.90 6.95 7.14 14.13 

Hard 10.48 11.54 10.89 9.24 9.54 8.95 
Seasonal 0.97 1.15 1.21 1.01 1.21 -5.27 

The performance of the WGP approach is similar to the performance of the best single objective 

approach. The model with weight 1 gives the smallest average percentage difference; the models 

with weight 4 and 6 give the smallest average percentage difference on the hard series. 

Table 10.11 shows the percentage difference between the MAD of the worst individual forecasting 

method and the MAD of the combined forecasts. 

Table 10. 11 Weighted goal programming - Difference between the worst 
no ARS PERFORMANCE OF COMBINED FORECASTS 

%WORST WEIGHTED GOAL PROGRAMMING 
a2 1 2 3 4 5 6 

All 35.23 34.94 34.96 35.18 35.02 36.80 

Smooth 42.72 42.50 42.39 42.35 42.20 41.05 

Hard 22.23 21.49 22.01 23.29 23.08 23.49 
Seasonal 29.11 28.98 28.94 29.03 28.89 36.64 

Similarly as when making combinations of eight techniques, the differences between the 

performance of the WGP approach and the MinSAD, MinSAPE and average LP models are small. 

Table 10. 12 Weighted goal programming - Difference between the average 
no ARS PERFORMANCE OF COMBINED FORECASTS 

%AVERAGE WEIGHTED GOAL PROGRAMMING 
SERIES 1 2 3 4 5 6 

All 18.63 18.29 18.30 18.54 18.37 19.42 

Smooth 22.69 22.43 22.29 22.25 22.09 19.20 

Hard 7.58 6.70 7.26 8.67 8.42 8.90 
Seasonal 17.54 17.38 17.33 17.43 17.27 25.67 

Finally, Table 10.12 shows the percentage difference between the average MAD of all the individual 

techniques on each of the series and the MAD of the WGP combination models ignoring the ARS 

model. The WGP models slightly improve the results of single objective LP models. Nevertheless, the 

differences remain small. 
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As in Chapter 7, WGP approaches slightly improve the results of the three LP approaches and the 

average LP, as well as for each subgroup of the series separately. WGP seems to be stable and have 

the same good performance according to all the performance measurement indices. Nevertheless, 

the differences between all the LP models are small. 

10.3 CONCLUSION 

The conclusion of the Appendix is similar to this of Chapter 7. LP approaches for combination 

outperform the traditional techniques, even when there is not a dominant individual technique. 

MinSAD and MinSAPE perform better on the smooth and seasonal series, MinMaxAD performs 

better on the hard series and WGP performs better overall. The only difference in comparison with 

the results of Chapter 7 is that when there is not a dominant technique on a specific type of series 

(such as ARS on the seasonal series), LP formulations do not improve the results of the best 

technique, since the percentage difference between the combination and the best individual 

technique is not negative. 
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