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Abstract 

Abstract 

Photocatalytic NO decomposition and reduction reactions, using CO as a 

reducing gas, have been investigated over Ti02, Ag-Ti02 and Rh-Ti02 photocatalysts, 

using a purpose built continuous flow photoreactor. The transition metal modified 

Ti02 photocatalysts were prepared using wet impregnation techniques, and the effect 

of thermal processing parameters on their photocatalytic behaviour was studied. 

Prepared photocatalysts were characterised using a number of complementary 

techniques, including XRD, TEM, DSC, and XPS. The findings from these 

techniques were used to explain the observed photocatalytic properties. 

The activity and selectivity of the photocatalysts were found to be dependant 

on a number of factors; thermal pretreatment temperature, type and amount of the 

modifying element, chemical nature of the modifying element and the reaction 

conditions used. It was found, for Ti02 photocatalysts, that increasing the 

pretreatment calcination temperature resulted in lower NO conversion rates, due to 

removal of surface bound hydroxyl groups. A similar trend was observed for Ag-P25 

photocatalysts, but the reduction in activity was greater due to the presence of larger 

silver clusters, which acted as recombination centres for photogenerated electron-hole 

pairs. The activity of the Ag-P25 photocatalysts decreased as the silver loadings 

increased, whilst the activity of the Rh-P25 photocatalysts remained largely 

unaffected by the metal concentration. 

Over Ti02 and Ag-Ti02 systems, the NO conversion rate was lower for the 

reduction reactions compared to decomposition reactions. This was attributed to the 

preferential adsorption of the CO molecules, blocking NO adsorption sites. 

Contrasting behaviour was observed over Rh-P25 systems and NO conversions as 

high as 87 % were recorded in the presence of CO. 
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Abstract 

Silver modified catalysts were highly selective for N2 formation (90 %) whilst 

rhodium modified catalysts were more selective for N20 formation. These results are 

discussed with respect to the possible surface reactions and the chemical 

intermediates that may be formed. 
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Chapter 1- Introduction 

I Introduction 

1.1 Air pollution 

In 1967 the European Council provided the following definition of air 

pollution. ' 

"Air pollution occurs when the presence of a foreign substance or large variation in 

the proportion of its components is liable to cause a harmful effect according to the 

scientific knowledge of the time, or to create a discomfort. " 

Although this definition allows for the inclusion of irritants such as noise as 

well as the more obvious harmful effects from chemical compounds, it is a very 

general definition that also encompasses the fact that air pollution can be responsible 

for detrimental effects to plants, animals, and human life. It can also cause accelerated 

rates of corrosion to buildings. Within the boundaries of this definition is pollution 

from natural sources such as volcanic eruptions that can propel tons of gases and ash 

into the atmosphere, which can subsequently be carried long distances by wind. 

Trees, plants and rotting vegetation are other sources of natural pollution since they 

release hydrocarbon gases into the atmosphere. However, a more serious type of air 

pollution in urban areas is anthropogenic pollution. Common sources of such air 

pollution include the combustion of fossil fuels, e. g. from industrial processes and 

emissions from road transport vehicles. The pollutants of main concern include 

carbon monoxide, nitrogen oxides (NO. ) and hydrocarbons. 

1 



Chapter 1- Introduction 

1.2 Environmental impact of NO. emissions 

The oxides of nitrogen, collectively termed NOR, consist of nitrogen dioxide 

(NO2) and nitrogen monoxide (nitric oxide, NO). These gases form at high 

temperatures in air during fuel combustion, and are produced primarily by road 

transport and the energy production industry. Although industries and automobile 

manufacturers have to conform to increasingly more stringent regulations which limit 

harmful emissions, air pollution levels are still very high around industrial sites and 

areas of high traffic use. The map of NOX levels in the UK, shown in figure 1.1, quite 

clearly illustrates that pollution levels are highest around industrial regions and areas 

of high traffic use, as all the major cities and motorways can be identified from high 

NOX levels. 

NOX gases present serious environmental and health hazards. They are a cause 

of acid rain, which forms when NO. is oxidised in air to produce nitric acid (HNO3). 

Acid rain can disrupt plant growth, destroy aquatic environments, cause damage to 

buildings and other structures, and affect human health. NO,, emissions also 

contribute to ground-level ozone, or smog, resulting from the reaction between NO,, 

and volatile organic compounds (VOCs) in the presence of sunlight. 

Ground-level ozone can lead to serious respiratory problems in humans. 

NO. emissions are a complex global problem. They are primarily produced in 

industrialised and developing nations, particularly those with high road transport 

levels. Once emitted, NO. becomes a transboundary pollutant, capable of causing 

widespread damage. For example, forests in Scandinavia have been damaged due to 

acid rain from pollutants emitted in the United Kingdom and other parts of Europe. 

2 
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Figure 1.1. Map of the UK showing the levels of atmospheric NO,, pollution. 
Reproduced from Dore. 3 
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1.3 Control of NOX emissions 

The worldwide effects of NO,, on health and the environment have been 

recognised and extensively studied over a number of years, resulting in the 

introduction of industrial controls and legislation to reduce emissions of this harmful 

pollutant. Figure 1.2 shows the volume of NO,, emitted annually from sources in the 

United Kingdom over a thirty-one year period. 
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Figure 1.2. UK NOz emissions fr om 1970-2001. Reproduced from Dore. ' 

Although, significant improvements have been made over the past 10 years 

(figure 1.2) the NO, levels are still a long way off the 2010 target of 1.181 Mt, set by 

the 1988 UNECE Gothenburg protocol. 4 The development and mandatory 

installation of catalytic converters in all vehicles in Europe since 1993 have reduced 

emissions due to road transport, and measures have also been taken in industry with a 

variety of emission controls, such as fuel additives and selective catalytic reduction, to 

meet required target levels. Despite the introduction of progressively stricter 
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Chapter 1- Introduction 

legislation, increased industrial activity and transport worldwide mean that NOX 

emissions remain a serious problem. There is, therefore, considerable interest in the 

development of new methods to remove NO. from the atmosphere. 

1.4 Selective catalytic reduction of NOX 

1.4.1 Thermally activated catalytic reactions 

Current technologies for the removal of NO, from the atmosphere involve 

selective catalytic reduction (SCR) to nitrogen with carbon monoxide, hydrocarbons 

or ammonia used as reducing agents, in the presence of oxygen. Three-way catalysts, 

which reduce NO and oxidise CO and hydrocarbon emissions according to equation 

1.1, are currently used for controlling car exhaust emissions. Typical catalysts used 

are supported noble metals such as Rh, Pt and Pd. 

NO + zCO + CXH2y 
Rh, Pt, Pd 

0º 
'N2 + (x+y)C02 + yH2O (1.1) 

2 

For the removal of NO. from industrial emissions the SCR of NO. over 

supported Rh, Pt and Pd catalysts with ammonia as the reducing gas is commonly 

used. A problem with this system is that un-reacted ammonia needs to be removed as 

this is also a regulated pollutant. Studies of SCR of NO over Rh based catalysts have 

found that NO adsorbed on Rh sites is susceptible to reduction because the Rh pushes 

electron density into the antibonding orbital of adsorbed NO. 5 A further problem with 

thermal SCR of atmospheric NO. is that the reactions only proceed at temperatures 

significantly higher than room temperature. 

5 



Chapter 1- Introduction 

1.4.2 Photocatalytic reactions 

Most of the primary light absorbers used in photocatalytic reactions are 

semiconductors, with the most commonly reported being Ti02. This is because it is 

photostable, non-toxic, inexpensive and electrons can be excited into the conduction 

band of Ti02 via the absorption of UV light. The electron-hole pair created in the 

Ti02 can be used to catalyse reduction or oxidation reactions of adsorbed species. 

Photoactive Ti02 materials have been used to promote a variety of reactions, but 

most applications are for the complete oxidation of organic pollutants. 6-8 The 

band-gap of anatase phase Ti02 is 3.2eV and the oxidation and reduction potentials of 

the valance and conduction bands are +2.95 V and -0.25 V, respectively. Hence, both 

photooxidation and photoreduction of NO are feasible reactions as NO reduction and 

oxidation potentials are +3.36 V and -0.934 V, respectively. 

Recently, there have been a number of commercial photocatalytic products 

introduced onto the UK market. Pilkington ActivTM, which is marketed as a 

self-cleaning glass, has a Ti02 coating that photocatalytically oxidises organic dirt 

deposits. Rain water then washes the loosened dirt away due to the hydrophilic nature 

of the TiO2 coating in the presence of sunlight. In February 2004 patents were filed 

for Ecopaint (developed my Millennium Chemicals, Grimsby, UK. ). It is designed to 

reduce atmospheric levels of nitrogen oxides, by utilising Ti02 photocatalysis. Ti02 

particles (4 = 30 nm) are embedded into a polysiloxane based paint. Calcium 

carbonate is also added to neutralise HNO3 that is produced during photooxidation of 

NO. Also, a European consortium of private enterprises, research institutions and the 

European commission's joint research centre (JRC) are currently involved in the 

PICADA project (photocatalytic innovative coverings applications for depollution 

6 



Chapter 1- Introduction 

assessment, 2002-2005). The aim is to develop and test "smart" construction 

materials and coatings, containing Ti02, that are active for the elimination of NO.. 

As discussed above, current photocatalytic technology for air pollution control 

uses Ti02 photocatalysts to oxidise the pollutants according to reaction 1.2. NO. is 

converted to HN03, which blocks the active sites and thus deactivates the catalyst 9, '0 

The catalyst can be regenerated by washing with water to remove the acid, however 

this adds an extra complication to the process and creates a waste product which will 

require disposal. It would clearly be more desirable to have a catalyst system which, 

whilst oxidising carbon monoxide and hydrocarbons, selectively reduced NO,, to 

nitrogen gas (as occurs over the Rh, Pd, Pt thermal catalysts, reaction 1.1), thus 

avoiding deactivation of the catalyst by HN03, which can take place when reaction 

1.2 occurs. 

NO + zCO + CXH2y 
Ti02,02 

HN03 + (x + z)C02 +yH2O (1.2) 
by 

Reduction of NO,, to nitrogen and oxygen has been achieved 

photocatalytically over copper(I) and silver(I) ion-exchanged zeolites. 1"13 It was 

found that the mechanism of reduction over both types of catalyst was via electron 

transfer from the photoexcited state of the metal ion to an antibonding orbital of 

adsorbed NO. ' 1,14 This is a similar mechanism to that found for rhodium based 

thermal catalysts. A drawback for both the copper and silver systems is that they 

have a large band gap energy and therefore require short wavelength UV radiation 

for excitation, thus prohibiting the use of solar energy. 

7 



Chapter 1- Introduction 

1.5 Aims of the research 

It is thought that by combining the knowledge of photo and thermal catalysis it 

would be possible to develop novel photocatalysts that will be a significant 

improvement on current NOX SCR photocatalysts in terms of selectivity, cost, reduced 

maintenance and longer lifetimes. 

Noble metals (e. g. platinum) have been impregnated onto Ti02 photocatalysts 

before, however, the only purpose was to improve the efficiency of the photocatalyst 

through enhancing charge transfer, and not to alter the overall reaction. 7'15 It was 

envisaged that silver and rhodium clusters supported on Ti02 will not only enhance 

charge transfer to adsorbed molecules but also the metal centres will promote 

reduction of NON, because of electron transfer into the antibonding orbital of NO. 

Thus, the selectivity of the titania-based photocatalysts will be modified, producing 

NO, SCR photocatalysts. 

Two types of NO elimination reactions are reported in this thesis; 

decomposition of NO in the absence of 02 and the reduction of NO with CO as the 

reducing gas. The reaction variables that were investigated include, varying the NO 

concentration from 455 ppm to 1818 ppm, both in the presence and absence of CO. 

For the reduction reactions, the effect of changing the CO concentration, whilst 

maintaining a constant concentration of NO, was also investigated. For all of the 

different reaction parameters, the photocatalytic behaviour of three photocatalyst 

systems (TiO2, Ag-Ti02 and Rh-Ti02) was determined using a continuous flow type 

photoreactor. 
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Chapter 1- Introduction 

1.6 Thesis overview 

Chapter 2-A critical review of the literature relevant to the work presented in this 

thesis is presented. The main focus is gas-phase photocatalytic oxidation 

and reduction reactions of NO over Ti02 photocatalysts. 

Chapter 3- Details the experimental procedures used in the work reported in this 

thesis. 

Chapter 4- Characterisation of the photocatalysts prepared. The results from XRD, 

TEM, XPS and DSC experiments, used to characterise P25, Ag-P25 and 

Rh-P25 photocatalysts, are presented. The results from each of the 

techniques are discussed and brought together to give a clearer 

understanding as to the nature of the materials. 

Chapter 5- Results from NO decomposition and reduction reactions over 

unmodified P25 photocatalysts are presented and discussed with respect 

to the characterisation results. Parameters investigated include effect of 

pretreatment temperature and gas compositions. 

Chapter 6- Results from NO decomposition and reduction reactions over Ag-P25 

photocatalysts are presented and discussed with respect to the 

characterisation results. Parameters investigated include effect of 

pretreatment temperature and gas compositions. 

Chapter 7- Results from NO decomposition and reduction reactions over Rh-P25 

photocatalysts are presented and discussed with respect to the 

characterisation results. Parameters investigated include effect of 

preparation methodology and gas compositions. 

Chapter 8- Conclusions drawn from the results presented in chapters 4-7 are 

presented. 
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Chapter 2- Literature review 

2 Literature Review 

2.1 Introduction 

This chapter presents a focussed review of the literature, for which the subject 

matter is of relevance to the photocatalytic reactions reported in this thesis. For this 

reason, only reports concerning gas-phase oxidation and reduction reactions are 

covered. 

Since the introduction of the term "photocatalysis", in the early 20th century, 

to represent the field of chemistry that focussed on catalytic reactions occurring under 

the action of light, there have been many attempts to give an unambiguous definition. 

However, the term is still often misused and misinterpreted; hence this review starts 

by attempting to make clear the appropriate use of the terms "photocatalysis" and 

"photocatalyst" by presenting a critical review of the suggested definitions (and 

sub-definitions of the terms, sections 2.2.1-2.2.3) 

Section 2.3 briefly describes the fundamental theory of semiconductor 

photocatalysis, whilst sections 2.4 and 2.5 provide a more detailed review of titanium 

dioxide based photocatalysts. Environmental applications of semiconductor 

photocatalysis are presented in section 2.6, with an emphasis on gas phase oxidation 

and reduction reactions. A review of photocatalytic oxidation reactions of alkanes, 

alkenes and alcohols is included in section 2.6.1 as the fundamental mechanistic 

details are similar to those observed for photocatalytic reactions of NO. The literature 

concerning the photocatalytic elimination of NO (2.6.2) is categorised into three types 

of reactions; oxidation (2.6.2.2), decomposition (2.6.2.3) and reduction (2.6.2.4). A 

summary of the literature, highlighting where the research opportunities lie, is 

presented in 2.7. 

11 



Chapter 2- Literature review 

2.2 Terms and definitions in catalysis and photocatalysis 

2.2.1 Thermal catalysis' 

In order to understand what is meant by the term "photocatalysis" it is first 

necessary to define the term catalysis, and explain the effect a catalyst may have on a 

chemical reaction. 

A catalyst can be described as "a substance that increases the rate at which a 

chemical system approaches equilibrium, without itself being consumed in the 

process. " During the course of a reaction, the catalyst is likely to be chemically 

altered by interactions with the reactants. However, once the reaction is complete the 

catalyst returns to its original chemical state, hence there is no net change. 

A reaction between molecules can only occur once the potential energy barrier 

has been overcome. The height of the potential barrier is termed the activation energy 

or enthalpy of activation for the reaction. The function of a catalyst is to lower the 

activation energy by providing an alternative lower energy route for the reaction to 

follow. Therefore, when taking into account reaction rate theory, the above definition 

of a catalyst can be modified into: "a substance that lowers the free enthalpy of 

activation of a reaction. " Figure 2.1 and equations 2.1-2.3 (where R is a reactant, C is 

the catalyst and P is a product) exemplify the difference between an uncatalysed 

(equation 2.1) and a catalytic thermal reaction (equations 2.2 and 2.3) in terms of the 

potential energy profiles for the two reactions. E is the activation energy for the 

uncatalysed reaction and is the lower activation energy for the reaction in the 

presence of a catalyst. The new reaction path in the presence of a catalyst may (and 

often does) include the formation of a catalyst-substrate intermediate complex 

12 
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Figure 2.1. Potential energy profile for a catalysed and uncatalysed reaction 

Rºp (2.1) 

R+ C (R.... C) (2.2) 

(R.... C) ºP+C (2.3) 

(equation 2.2), as indicated by the minimum (I in figure 2.1) in the energy profile of 

the catalysed reaction. 

It should be noted that the change in free energy (AG) is the same for both the 

catalysed and uncatalysed reactions and only the activation energies differ. Hence the 

catalyst accelerates both the forward and reverse reactions to the same extent, such 

that only the kinetics and not the thermodynamics of the reactions are affected. 

13 



Chapter 2- Literature review 

A value that is often used to describe catalytic reactions is "turnover number" 

(TON) which is defined as "the number of moles of product formed (or reactants 

used) per mole of catalyst. " For a reaction to be deemed to be catalytic TON must be 

greater than unity. When calculating TON values for heterogeneous catalysts, the 

concentration of the catalyst has to be replaced by the number of moles of active sites 

on the catalyst surface. 

2.2.2 Photocatalysis 

It is possible that the term "photocatalysis" may be misconstrued, as it could 

reasonably be interpreted to mean the use of photons as the catalysts for a reaction. 

This concept is fundamentally incorrect, as photons can only act as reactants and are 

thus consumed in the chemical process. For this reason, the use and definition of the 

term "photocatalysis" is a subject under constant debate, although the term is widely 

used in the literature to describe a variety of reactions that are accelerated by the 

presence of light and a catalyst. There have been many attempts to give definitive 

meaning to the word photocatalysis and the one provided by one of the IUPAC 

commissions is: 

"A catalytic reaction involving light absorption by a catalyst or a substrate, " 

where a "catalytic reaction" takes the same definition as discussed previously. This 

definition may be used to describe the action of a photocatalyst without undue 

constraint as to the often unknown mechanistic details of the chemical process. The 

statement makes no attempt to describe the role of the photons in the reaction and as 

such includes the process of "photosensitisation", which is defined as; 2 

"a process whereby a photochemical change occurs in one molecular entity as a 

result of initial photon absorption by another molecular species, known as the 

photosensitiser" 

14 
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2.2.3 Heterogeneous photocatalysis 

Heterogeneous photocatalysis involves photoreactions occurring at the surface 

of a catalyst and the mechanism of such reactions may take one of two general 

pathways. If the initial photon is absorbed by an adsorbate molecule, resulting in a 

photoexcited state for that molecule which then interacts with the ground state of the 

catalyst, the process is referred to as a "catalysed photoreaction". However, if the 

initial photoexcitation occurs in the catalyst substrate and the photoexcited catalyst 

then interacts with the ground state of an adsorbed molecule, the process is referred to 

as a "sensitised photoreaction" and the catalyst may be deemed to be a photocatalyst. 

Most cases of heterogeneous photocatalysis reported in the literature are in fact 

referring to semiconductor photocatalysis (i. e. semiconductor-sensitised 

photoreactions) and it is reactions of this type that are reported in this thesis. 

As discussed previously, in order for a chemical process to be classed as a 

catalysed reaction, it has to be demonstrated that the TON for the process it greater 

than unity. TON values greater than unity are rarely reported for most examples of 

heterogeneous photocatalytic reactions, due to the complexity in accurately 

determining the number of photogenerated active sites (see below). However, 

reactions of this type are still believed to be catalytic if it can be demonstrated that 

they proceed at steady rate, in the presence of photons and reactants, over extended 

periods of time. 

It has been shown that when semiconducting metal oxides such as TiO2 and 

Zn02 are used as sensitisers for photoreactions (as is often the case due to their 

moderate band-gap energies), OH groups bound to the surface often act as active sites 

(this concept will be discussed further below). Therefore, for the basis of calculation 

of TON, the number of active sites is often assumed to be the product of the surface 
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density of OH groups (typically 1012-1015 cm 2 for a Ti02 surface) and the specific 

surface area. However, BET surface areas are measured using bulk powders, while in 

reality the catalyst is often deposited as a film or dispersed in solution, in which case 

the actual surface area depends on the degree of aggregation. For both these cases 

specific surface area measurements overestimate the available surface area, thus 

leading to an underestimate for TON. In addition, it does not follow that all surface 

OH groups will necessarily act as active sites for the reaction. This again would have 

the effect of yielding a TON value that is lower than the actual value. For these 

reasons, it is assumed that most studies of semiconductor-assisted photoreactions are 

actually examples of photocatalysis, especially if it can be shown that there is no loss 

in photoactivity with extended use. 

It should also be noted that semiconductor-assisted photoreactions are 

sometimes confusingly categorised as either "photocatalytic" or "photosynthetic" 

processes, according to whether the AG° value for the reaction is negative or positive, 

respectively. According to the above distinction a photocatalytic reaction is one that, 

in the absence of a semiconductor and photons of energy greater than or equal to the 

band-gap energy, AG° for the reaction is negative (i. e. a thermodynamically feasible 

reaction). 3 Alternatively, if OG° for the reaction is positive (i. e. a 

thermodynamically unfeasible reaction occurring only in the presence of a 

suitable semiconductor and photons of appropriate energy), the 

semiconductor-sensitised photoreaction is an example of a photosynthetic 

process. 3 Table 2.1 lists some reported examples of the two processes. According 

to the definition of a catalyst, the rates of both the forward and reverse reactions are 

accelerated equally and therefore, any semiconductor-assisted photoreaction may be 

deemed to be both photosynthetic and photocatalytic, depending on whether the 
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forward or reverse reaction is being described. It is, therefore, felt that these further 

sub-definitions are not required (and should not be used) as they do not help in 

clarifying the definition of photocatalysis, but rather, introduce more ambiguity. 

Reaction OG° / kJ mol'i Reference 

Photosynthesis 

H2O + H20-+ 2H2 + 02 475 4 

2CO2 + 4H20-* 2CH3OH + 3H20 1401 5 
2N2 + 6H2O-- 4NH3 + 302 1355 6 

Photocatalysis 

302 + 2CH3OH-)44H20 + 2CO2 -1401 7,8 
2NO-*N2+02 -180 9 
6H20 + C6H12O6-)' 12H2 + 6CO2 -535 10,11 

Table Z. 1. Examples of semiconductor-sensitised photosynthetic and photocatalytic 
processes. 

2.3 Theory of semiconductor photocatalysis 

2.3.1 Basic principles 

In the literature, the most commonly reported sensitisers used in 

heterogeneous photocatalysis are n-type semiconducting materials due to their 

favourable combination of electronic structure, light absorption properties, charge 

transfer characteristics and relatively long lifetimes of the photoexcited states. 

Common examples are Ti02, ZnO, CdS and ZnS. In this part of the review, the basic 

theory of semiconductor photocatalysis will be presented along with a brief discussion 

of possible electron-hole pair trapping mechanisms. 

Unlike metals which have a continuum of electronic states, the electronic 

structure of semiconductors can be characterised by a region void of energy levels, 
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known as the band gap, which extends from the top of the filled valence band to the 

bottom of the vacant conduction band. When illuminated by radiation of energy (hv) 

greater than or equal to the band gap, electrons (-) are promoted to the conduction 

band, leaving positive holes (+) in the valence band. As shown in figure 2.2, several 

pathways are available for the generated electrons and holes. They can either 

recombine in the bulk material or migrate to the semiconductor surface before 

recombination, in both cases releasing the absorbed energy as heat. More importantly, 

the electrons and holes may migrate to the surface of the photocatalyst and undergo 

redox reactions with adsorbed molecules. Negative electrons may reduce electron 

acceptors (A) and positive holes may oxidise electron donors (D). 

Conduction 

Surface 
band 

Recombination by by 

GG 

+ Valence 
band 

D+ 

A0 Volume 
Recombination D 

A 

Figure 2.2. Schematic of photogeneration of electron-hole pairs in a semiconductor 
along with possible relaxation processes. A- electron acceptor, D- electron donor 
(adapted from Linsebigler'2) 

The time scale for recombination to occur is in the order of a few 

nanoseconds, whilst interfacial charge transfer reactions may take hundreds of 

nanoseconds. 13,14 Recombination of the photoexcited electron-hole pairs will prevent 
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a photocatalytic reaction and therefore needs to be retarded for efficient charge 

transfer processes to occur on the surface of the photocatalyst. 

In the preparation of semiconductor materials, ideal crystal lattices are rarely 

formed, but rather surface and bulk irregularities are naturally present in the materials. 

The surface irregularities result in localised regions of electron states (metastable 

surface states) that differ from the bulk materials. These can serve as charge carrier 

traps, thus increasing the lifetime of separated electrons and holes and ultimately 

result in more efficient photoreactions. Another mechanism for suppressing 

electron-hole recombination reactions is surface modification of the photocatalyst by 

addition of metals, which can also act as trapping sites for photogenerated electrons 

(discussed in more detail below). 

Knowledge of the energy positions of the valence and conduction bands is 

useful in photocatalysis as they govern the ability of the semiconductor to engage in 

photoinduced electron transfer with given adsorbed species. For charge transfer to 

occur, an electron acceptor must have a more positive reduction potential than the 

semiconductor conduction band, and an electron donor must have a more negative 

reduction potential than the valence band of the semiconductor. As shown in 

figure 2.3, the band edge energies and band gap energies are characteristic for a given 

semiconductor and therefore, different semiconductors will be effective for catalysing 

different surface photoreactions, depending upon the redox potentials of the reactants. 

For example, the photooxidation of water in the presence of WO3 is a 

thermodynamically feasible reaction, but the same reaction is not possible in the 

presence of CdSe. The photo-reduction of water, instead, could occur more easily in 

the presence of CdSe, due to the position of its conduction band. 
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Figure 2.3. Band edge positions, relative to the normal hydrogen electrode, for some 
semiconductors in contact with an aqueous electrolyte. (Adapted from Schiavello'5). 

2.3.2 Band bending and the formation of a Schottky barrier 

When a semiconductor is in contact with another phase (i. e. liquid, gas or 

metal), which is always the case for a semiconductor photocatalyst, a redistribution of 

electronic charges occurs along with the formation of an electronic double layer or a 

space charge layer. As discussed above, surface states of semiconductors can serve as 

trapping sites for the mobile charge carriers and hence the surface may become 

positively or negatively charged depending on the number and type of trapping sites. 

For positively charged n-type semiconductors, electron transfer occurs from surface to 

the bulk and positive holes are confined on the surface (depletion layer), causing a 

change in the electrostatic potential and a bending of the bands upward towards the 

surface. For a negatively charged surface, the reverse occurs and electrons 

accumulate on the surface (and bands bend downward towards the surface) forming 

an accumulation layer. The opposite situation arises for p-type semiconductors. 
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Figure 2.4 illustrates the space charge layers produced from the mobility of charge 

carriers across a n-type semiconductor-solution interface along with the flat band 

potential diagram in the absence of a space charge layer (figure 2.4 (A)). 

Flat Accumulation Depletion 
band layer layer 

CB 
Ef 

VB 

SE 

- (- 
(A) 

SE 

(B) 

SE 

(C) 
Figure 2.4. Space charge layer formation at an n-type semiconductor-solution 

'l interface. (adapted ftom Linsebigler). 

The space charge layer that is formed at semiconductor-metal interfaces 

(known specifically as a Schottky barrier) can be of particular importance in 

semiconductor photocatalysis as it can serve as an efficient trapping site for 

photoexcited electrons (or photogenerated holes, depending on the nature of the two 

materials in contact). Figure 2.5 illustrates the formation of a Schottky barrier for an 

n-type semiconductor in contact with a metal of higher work function (()m > 4s). 

When separated, the positions of Fermi levels for the metal and the n-type 

semiconductor are different; when they are in electrical contact, electrons migrate 

from the semiconductor to the metal of higher work function until the two Fermi 

levels align, causing a depletion of electrons and excess positive charge at the 

21 



Chapter 2- Literature review 

semiconductor surface. The valence and conduction bands of the semiconductor bend 

upwards in energy towards the interface to maintain electrical neutrality, and the layer 

is said to be depleted. Although it is possible that the formation of a Schottky barrier 

can result in more efficient electron-hole separation, yielding increased lifetimes of 

the photoexcited states and ultimately increasing the number of possible surface redox 

reactions, the barrier formed may also act as an electron-hole recombination centre 

due to the excess charge in the interface region attracting oppositely charged 

photoexcited states, thus reducing the number of possible redox reactions. The nature 

of the Schottky barrier formed is dependant on the type and concentration of the 

modifying species. 16,17 

Ed- -- 

0m 
E 

E'7/ /7 /7/7 

Metal 

3 

Figure 2.5. Schematic of a Schottky barrier formed at the interface of a 
semiconductor-metal system. (adapted from Linsebigler'2). 
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2.4 Titanium dioxide photocatalysis 

2.4.1 Properties of titanium dioxide 

The most common semiconductor photocatalyst compound used in both 

research and commercial applications of photocatalysis is titanium dioxide (TiO2). 

The Ti02 used usually exists in one of two common crystalline phases, anatase or 

rutile, although another metastable phase called brookite also exists. Both the anatase 

and rutile structures are based on tetragonal unit cells, and are built up of octahedra of 

oxygen ions (02) with titanium ions (Ti4+) at the centre of each octahedron. In the 

anatase phase each octahedron has 8 neighbours (4 edge sharing and 4 corner sharing, 

figure 2.6) whilst in rutile phase each octahedron has 10 neighbours (2 edge sharing 

and 8 comer sharing, figure 2.7). Brookite has a more complicated crystal structure, 

in which the unit cell is orthorhombic. The band gap energies of the anatase and 

rutile phases are 3.2 eV and 3.0 eV respectively. 
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Figure 2.6. (a) General arrangement of anatase viewed down the (111) zone axis 
(Green balls= titanium; Red balls= oxygen). (b) Anatase structure showing the 
corner sharing octahedra. 
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Figure 2.7. (a) General arrangement of rutile viewed down the (111) zone axis (Green 
balls= titanium; Red balls= oxygen). (b) Rutile structure showing the edge sharing 

octahedra. 

Of the three morphological forms of Ti02, rutile is the most 

thermodynamically stable and both anatase and brookite transform irreversibly to the 

rutile phase between 500-800 T. Generally, the precise temperature and rate at which 

the phase transition occurs depends markedly upon several factors, including the 

method of preparation, the level of impurities and the surface area of the sample. It is 

thought that small particles, and consequently large surface areas, favour the 

transformation process, which is accelerated by the presence of oxygen vacancies. ' 8 
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The effect of cationic metal dopants on the Ti02 phase transformation temperature 

varies depending on the metal cation used. For example it has been reported that 

additions of Nb19, Cr19, Sil9, Fe19, Ag'8, Cu20 and Ni20 accelerate the anatase-to-rutile 

transformation, whilst additions of La20, Mo21, Co21 and W22 inhibit TiO2 phase 

transformations. These variables account for the wide range of transition 

temperatures reported in the literature. 

It has widely been observed that the anatase form of Ti02 shows a higher 

photocatalytic activity than the rutile phase. 3 Although the reasons for this are not 

fully understood a number of explanations have been proposed, including the different 

mass densities and band structures caused by the differences in lattice structure of the 

two forms, and also the larger band gap energy of the anatase phase, which helps 

suppress electron-hole pair recombination. 15,24 

For a semiconductor to act as a good sensitiser of a photoreaction, and 

therefore be considered for commercial use, it should satisfy the following criteria: 

(a) photoactive, 

(b) chemically inert, 

(c) photostable (i. e. not liable to photoanodic corrosion), 

(d) non-toxic, 

(e) inexpensive, 

(f) able to utilise visible and / or near-UV light. 

Ti02 is the one of the few semiconductors that fulfils the above requirements, 

therefore making it the most widely studied semiconductor photocatalyst. Of 

particular importance for environmental applications is the ability of Ti02 to utilise 

visible and/or near-UV irradiation, thus avoiding the use of bio-hazardous UV 

(< 254 nm) wavelengths and allowing the use of solar as well as artificial sources. 
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A commercial Ti02 photocatalyst (Degussa P25), is used in many laboratories 

either in the as received form, as a precursor material (as is the case for the 

experiments reported in this thesis), or as a reference material. Degussa P25 is 

produced via high temperature (> 1200 °C) flame hydrolysis of TiCl4 in the presence 

of hydrogen and oxygen. The by-product of HCl is removed from the Ti02 in a steam 

treatment. Both the anatase and rutile Ti02 phases are formed (anatase : rutile ratio, 

80 : 20) with a overall Ti02 purity of 99.5 %. The particles formed are aggregates of 

non-porous cubic shaped (with rounded edges) primary particles with an average 

diameter of 21 nm and an aggregate size of 0.1 µm. 25'26 The BET surface area of P25 

powder is 50 ± 15 m2 g4.25 The sol-gel route (both inorganic and alkoxide routes) is 

also commonly reported to yield highly photocatalytically active TiO2 compounds, 

and there are many reports stating the sol-gel titanias have a higher activity than 

Degussa P2527-29 

2.4.2 Supported Ti02 photocatalysts- Effect of film thickness 

It has been shown by Jacoby et a1.30 that as the photocatalyst loading (film 

thickness) increases, the rate of the photoreaction increased linearly with loading until 

an optimum thickness was reached (ca. 30 µm) when the rate is reported in units of 

moles of reactant converted per second per cm2 of catalyst film. Increasing the 

loading further had no effect on the reaction rate. From these results it was concluded 

that if the catalyst coating is greater than the critical thickness then it is more accurate 

to report photoreaction rates using units of µmol h71 cm 2 rather than the more 

traditional unit of pmol h"1 g"1 as not all the photocatalyst participates in the reaction. 
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2.5 Effect of transition metal modification on photocatalytic 

behaviour 

As mentioned previously, modification of semiconductor materials with 

transition metals (or metal ions) is of importance in the field of heterogeneous 

photocatalysis, as it can help in suppressing the energy wasting electron-hole pair 

recombination reactions and in some cases can beneficially alter the band-gap energy 

of the semiconductor (see below). Because of the significance in photocatalysis, there 

have been many reports concerning the effects of deposited transition metals on 

semiconductors, especially TiO2. In most cases though, the role of the additive is 

purely in increasing the efficiency of photoreactions by the enhanced charge 

separation properties of the modified photocatalyst, although the transition metals 

themselves may also be catalytically active and offer alternative active sites on which 

reactions may proceed, thus opening new reaction pathways. 

The types of metals and metal ions that have been deposited on Ti02 include 

Cu, Fe, Ag, Cr, Pt, Pd and Rh (a more comprehensive list can be obtained by the 

reviews by Litter31 and Howe32). The resulting efficiency of the modified 

photocatalyst depends on the preparation method and on the physicochemical 

properties of the materials. The most commonly reported methods for semiconductor 

modification are impregnation with a metal salt followed by thermal decomposition 33 

or hydrogen reduction34,35 or photodeposition. 10,36,37 Photodeposition involves the 

reduction of metal ions by photogenerated electrons, and in most studies oxidisable 

additives (e. g. alcohols38) are used as hole scavengers, with the aim of increasing the 

deposition rate. 

Throughout the numerous studies there is widespread conflict as to whether 

certain transition metals have a positive or negative effect on the activity of reactions. 
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For example it has been reported that the presence of Cr3+ ions are detrimental for the 

photoreduction of N2 with H2O producing NH339 (a gas-solid system), whilst they 

have no effect on phenol degradation (a liquid-solid system) 40 However, when Cr3+ 

ions are present on Ti02 the sustainability for the photodissociation of water was 

improved compared to unmodified Ti02 (a liquid-solid system) 41 These differences 

in the photocatalytic reactivities of the above reactions has been attributed by the 

authors to the inherent differences in the gas-liquid and liquid-solid interfaces, rather 

than to differences induced by the metal doping. 4° In contrast to these results, the 

presence of Fe3+ ions on Ti02 enhanced the photoreduction of N2 (a gas-solid 

system). 2 This latter result shows that the effect of transition metal addition on 

photocatalyst activity is not solely dependant on the nature of the system (e. g. 

gas-solid vs. liquid-solid), but also depends on the type of modifying metal (or metal 

ions used) and the individual reaction being photocatalysed. 

In a study of the oxidation of benzene in air over Ti02 (Degussa P25 type) and 

a Rh/TiO2 photocatalyst, using a flow style reactor, it was found that the presence of 

rhodium not only altered the activity of the reaction, but also the deactivation 

properties of the photocatalyst 43 The authors reported that under stationary 

conversion conditions the Rh/Ti02 catalyst was about three time more active, 

compared to unmodified TiO2 (ca. 40 % conversion for Rh/Ti02 compared to 13 % 

conversion for Ti02). The selectivity for CO2 formation was similar for both the Ti02 

and Rh/Ti02 photocatalysts, at ca. 90 %. 44 

Deactivation studies by the same authors43 showed that over Ti02, the initial 

benzene conversion (70 %) rapidly decreased with reaction time, and reached steady 

state conditions with a 13 % conversion after only 180 min. The time period for 

steady state conditions (at 40 % conversion) to be achieved over the Rh/TiO2 
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photocatalyst was ca. 10 h. The deactivation was ascribed to the formation of carbon 

deposits on the Ti02 surface, which changed from white to a brownish colour during 

the course of the reaction. The initial activity (and white colour) of the catalysts could 

be restored by illumination in humid air without benzene; with the carbon deposits 

being oxidised to CO2 and CO. It was estimated that the mass of carbon deposited 

was approximately 0.5 times less for the Rh containing catalyst. It was concluded that 

the presence of Rh inhibited the formation of carbon deposits and accelerated their 

decomposition, thus improving the lifetime of the Ti02 catalyst for the photocatalytic 

oxidation of benzene. 

Yamashita et al. 45,46 prepared Cr /TiO2 photocatalysts using an ion-implanter 

consisting of a metal ion source, high voltage ion accelerator (150 keV) and a vacuum 

pump. It was found that these materials were able to absorb visible light. Figure 2.8 

shows the shift in the absorption edge for samples implanted with increasing 

concentrations of Cr ions. It was thus expected that photocatalytic reactions would be 

observed under visible light. Under UV illumination, the photocatalytic activity of 

the ion implanted catalysts for NO decomposition was similar to the Ti02 

photocatalyst, therefore indicating that the implanted ions did not act as electron-hole 

recombination centres. When the same reactions were performed using a visible light 

source only the ion-implanted catalyst showed any activity, the NO being 

decomposed into N2,02 and N2O. Hence it was concluded that the implantation of the 

ions was the determining factor in the ability to utilise a visible light source. 
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Figure 2.8. UV-VIS spectra of a) Ti02 and the TiO2 implanted with Cr ions (b-d). 
Amount of Cr ion implanted. (in mol g"'(TiO2)) b) 2.2 x 10', c) 66x 10", d) 1.3 x10"6. 

46 (Adapted from Yamashita) 

The concentration of the dopant is another factor that can affect the activity of 

transition metal modified photocatalysts. 17,47 Chao et al. '7 investigated the 

photocatalytic degradation of methylene blue over sol-gel prepared Ti02 doped with 

varying amounts of silver, and it was found when 2-4 mol. % Ag (2.7 - 5.4 wt. %) 

was used the photocatalytic activity was nearly double that of unmodified Ti02. 

However, increasing the silver content to 6 mol. % (8.1 wt. %) yielded a photocatalyst 

with an activity similar to that of Ti02. Increasing the amount of silver used resulted 

in further reductions in photocatalytic activity. 

The enhanced activity at low Ag loadings was attributed to two separate 

effects. Firstly the presence of small amounts of silver inhibited grain growth, thereby 

yielding photocatalysts with increased surface areas. Secondly, the small metallic 

silver particles helped in suppressing the energy wasting electron-hole recombination 

reactions. Jointly these two effects resulted in an overall increase in the rate of Ti02 

photocatalysis in the presence of a low concentration of silver. 
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The detrimental effect on activity at higher silver loadings was also attributed 

to two effects. Firstly, Ti02 grain growth was no longer inhibited, but rather grain 

growth was observed due the higher density of defects and anion vacancies at the 

surface of the Ti02 grains which promote grain growth. '8 As a result, photocatalysts 

which had lower specific surface areas and hence fewer active adsorption sites were 

produced. Also, larger Ag clusters were formed, which served as efficient electron- 

hole recombination centres rather than suppressing electron-hole recombination. 

From these results it is apparent that there is no hard and fast rule for 

predicting what effects transition metal modification of semiconductor photocatalysts 

will have upon the behaviour of a catalysed photoreaction. The overall effect depends 

on several factors including; reaction type, preparation method, nature and 

concentration of the additive. 

2.6 Environmental applications of semiconductor 

photocatalysis 

2.6.1 Photocatalytic degradation of organic pollutants 

The first systematic studies on the implementation of Ti02 photocatalysis for 

the destruction of organic pollutants were conducted by Ollis and coworkers48°49 when 

they demonstrated the photomineralisation of various chlorinated hydrocarbons 

dissolved in aqueous solution (e. g. trichloroethylene, dichloromethane, chloroform 

and carbon tetra chloride). Initially it was thought that this method for the removal of 

organic pollutants could only be applied to non-aromatic compounds, however this 

was proved to be incorrect when in 1985 Okamoto demonstrated the 

photomineralisation of dissolved phenol using Ti02 as a photocatalyst. 50 The process 
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of oxidation of organic pollutants via Ti02 photocatalysis can be summarised by the 

general reaction equation 

Ti02 
Organic pollutant + 02 

by 
º CO2 + H2O + mineral acids 

Since the initial studies, the photocatalytic oxidation of many different organic 

compounds (over 200 to date) has been demonstrated. Examples of the types of 

classes of compounds studied include; simple alkanes and alkenes, halogenated 

alkanes and alkenes, alcohols, carboxylic acids, aromatic compounds (including 

halogenated compounds), polymers, organic surfactants and dyes such as methylene 

blue. As the focus of this literature review is not reactions at liquid-solid interfaces 

(but rather reactions at gas-solid interfaces) the reader is directed to the review article 

by Hoffmann et al. 51 for a more exhaustive list. 

Gas-phase heterogeneous photooxidation of organics over Ti02 surfaces was 

first reported by Teichner and Djeghri in 198052 in their studies of the oxidation of 

2-methylbutane. The reaction was an unselective partial oxidation producing a 

mixture of ketones (58 %), aldehydes (26 %), carbon dioxide (15 %) and some other 

minor products, with only a 2-methylbutane conversion of 2 %. It wasn't until the 

1990's that studies of the gas-phase photooxidation of organic compounds over 

illuminated Ti02 surfaces began in earnest, and it has now been demonstrated that 

Ti02 based photocatalysts have the ability to mineralise many different types of 

organic compounds. 53 The different types of organic compounds studied in the field 

of gas-phase Ti02 photocatalysis can be classified in one of the following groups: 

1. oxidation of alkanes and alkenes 

2. oxidation of alcohols and ketones and aldehydes 
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3. oxidation of aromatics 

4. organic acid decarboxylation (photo-Kolbe reaction) 

5. oxidation of heteratom (e. g. N, S) organic compounds 

6. oxidation of trichloroethylene (TCE) 

The oxidation of TCE is grouped separately from the oxidation of alkenes due 

to the numerous studies involving this species following the initial discovery by 

Dibble and Raupp of the ability to Ti02 to photocatalytically degrade TCE to C02, 

H2O and HC1.54,55 Only the oxidation of alkanes, alkenes and alcohols, all of which 

are closely related (see below), will be reviewed here because the fundamental 

mechanisms for these semiconductor-assisted photocatalytic reactions are similar to 

those for the NO decomposition and reduction reactions reported in this thesis. 

Calculations of the formal quantum efficiencies (FQE) have shown that the 

values are generally more than an order of magnitude higher for the 

photomineralisation of organics in gas-solid systems, compared to the 

photodestruction of the same organic compounds dissolved in aqueous medium. 56-58 

For example the reported FQE values for TCE photomineralisation in aqueous 

solution and the gas phase are 0.01 and 0.5-0.9 respectively. The discovery of these 

high efficiencies for gaseous photooxidation reactions has resulted in a dramatic 

increase in the number of studies of Ti02 photocatalysis as a method for purifying air 

in the last 10 years. Potential commercial applications of such systems are: 26 

1. remediation of contaminated soils and water through air stripping, coupled 

with a semiconductor photocatalytic air purification process 

2. purification of industrial gaseous emissions 

3. purification of indoor or closed air systems 

4. reduction of atmospheric pollution levels 
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The latter two applications potentially open up a very important market, as the general 

public are becoming increasingly concerned about the effect of the quality of air on 

their general health. 

2.6.1.1 Water and oxygen adsorption on Ti02 surfaces 

For all 6 groups of organic compounds listed previously it is agreed that both 

UV induced surface bound activated oxygen (atomic and molecular) and hydroxyl 

radical (OH') species play an important role in the oxidation process, although 

questions still remain as to the precise mechanisms of the reactions. 51.59 The 

adsorption of oxygen and water (resulting in the formation of surface OH groups6o) 

are therefore fundamentally important processes. 

Bickley61 found that in the presence of UV irradiation, the 02 photoadsorption 

rate followed a parabolic form (i. e. a plot Of 02 photoadsorption vs. time 1/2 was 

linear). In the same study, it was also shown that no 02 photoadsorption occurred on 

Ti02 powders that had been dehydroxylated by heating at 800 °C under vacuum. 

After exposure of the dry powder to water vapour, the activity for 02 adsorption was 

partially restored. There have been numerous studies on the adsorption of H2O on 

Ti02 surfaces, and it is agreed that the resulting surfaces contain molecular water, 

hydrogen bonded OH groups and free OH groups 62,63 The OH groups may be formed 

by reaction of H2O molecules with bridging 0 atoms 60 Suda62 and Tanaka63 have 

both reported that adsorbed molecular water is removed from the surface of Ti02 

powders by heating to 150 °C and that the concentration of surface bound OH groups 

decrease linearly with increasing outgassing temperature. 

In the FTIR studies by Suda62 it was reported that four absorption bands were 

observed at 3660,3520, -3400, and 1625cm 1 for titanias that had been exposed to 
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water vapour at room temperature and then degassed at 25°C. The bands were 

assigned to the OH stretching vibrations of free OH groups, hydrogen-bonded OH 

groups, surface adsorbed molecular water and to the bending vibration of the 

molecular water respectively. After increasing the degassing temperature to 100°C the 

bands due to molecular water were still present, but somewhat reduced in intensity. 

Whilst at 150°C the band at 1625cm 1 disappeared completely indicating the removal 

of molecular water from the rutile surface. With increasing temperature the intensity 

of the band at 3400cm-1 decreased at the same rate as the band at 1625cm-1, although 

a weak absorption band at 3370cm' was seen aller degassing at temperatures above 

150°C. This band was assigned to the presence of the hydrogen bonded OH groups. 

The intensity of the band at 3660cm" did not decrease until degassing at temperatures 

above 150°C. Increasing the treatment temperature caused a further reduction in the 

intensity of the band, until reaching 600°C, where no absorption bands were seen for 

any surface bound hydroxyls or molecular water species. 

Surface bound OH groups can act as trapping sites for the photogenerated 

holes, forming hydroxyl radicals (OH'), thus leaving the photoexcited electron to 

interact with weakly held molecular oxygen. Decreasing the density of surface OH 

groups via outgassing at higher temperatures resulted in lower 02 photoadsorption 

rates. These results have been confirmed in the work of Munera et al., 6"6 in which it 

was shown that 02 photoadsorption was favoured on highly hydroxylated Ti02 

surfaces and that the presence of H2O vapour helped sustain the process. 

In a simultaneous study of photoconductivity and photocatalytic activity of 

Ti02 for isobutene oxidation, it was found that none of the carbonaceous compounds 

taking part in the reaction (either as reactants or products), influenced the 

photoconductivity of the Ti02 67 Hence, interaction between the photogenerated holes 
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and the reaction compounds was not the rate determining step, so the origin of the 

activity for photocatalytic oxidation must have arisen from the 02-TiO2-UV system, 

i. e. activated oxygen species or surface bound OH radicals. 

The following reactions may be used to describe the formation of the activated 

surface species: 68,69 

+ hh --> OH' (2.1) 

O2(ads) +e -3 02 -(ads) (2.2) 

OH' + 02-(ads) -* HO2 + 0-(ads) (2.3) 

02- gat) + hh --> O' (2.4) 

O'+h+ -> 0 (2.5) 

O'(ads) + hh -> 0 (2.6) 

where the subscript (ads) represents that the species is adsorbed on the surface and 

O2"pack represents lattice oxygen species. It is well documented that the dissociated 

atomic species formed via reactions 2.5 and 2.6 are able to attack the chemical bonds 

of organic compounds adsorbed onto the surface of TiO2, and that the OH' radicals 

are powerful oxidising agents capable of mineralising most organic pollutants. 70 

2.6.1.2 Oxidation of alkanes and alkenes 

One of the first systematic studies of the gas-phase photooxidation of both 

alkanes and alkenes containing up to 8 carbon atoms over a non-porous TiO2 

photocatalyst were conducted by Teichner and colleagues. 52,71-74 The studies involved 

the oxidation of both linear and branched molecules in a fixed bed flow reactor using 

a total flow rate of 20 sccm, which corresponded to a contact time of 0.6 s. The 

composition of the gas mixture was usually 37.5 % 02,37.5 % hydrocarbon and 25 % 
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helium, although other compositions were investigated. It was found that small 

alkanes (methane and ethane) and alkenes containing 4 or less carbons were 

mineralised, forming CO2 and H2O. Longer chain alkanes and alkenes were only 

partially oxidised unselectively forming a mixture of ketones, aldehydes and CO2 (see 

table 2.2). The amount of total oxidation that occurred varied only slightly for the 

different compounds, with on average 20 % of the converted compound (which was 

usually less than 10 % of the initial amount of compound) forming CO2 and H2O. 

Alkane Ketones 
Product Selectivity /% 

Aldehydes Carbon Dioxide 
Methane 0 0 100 
Ethane 0 18 82 
Propane 57 11 32 
Butane 49 19 32 
2-Methylpropane 61 7 32 
Pentane 54 22 24 
2-Methylbutane 54 26 20 
2,2-Dimethylpropane 42 8 50 
Hexane 73 14 13 
2-Methylpentane 53 29 18 
3-Methylpentane 53 20 27 
2,2-Dimethylpentane 44 19 37 
2,3-Dimethylpentane 78 12 10 
Heptane 49 33 18 
2-Methylhexane 65 17 18 
Octane 52 22 26 

Table 2.2. Table of selectivities for the photocatalytic oxidation of various alkanes. 
Gas composition was 37.5 % 02,37.5 % hydrocarbon and 25 % helium. Data was 
obtained from the work of Teichner. 73 

Figure 2.9 shows a simple schematic of the oxidation products for alkanes 

containing primary, secondary, tertiary and quaternary carbon atoms. It should be 

noted that although it would be possible for primary alcohols, formed in the oxidation 

of a primary carbon atom, to undergo a dehydration reaction, thus forming alkenes 

and then ketones, no evidence for this was reported by the authors. It was proposed 
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that the aldehydes and ketones formed were intermediates in the complete oxidation 

process, and hence it was oxidation of the intermediates that resulted in the small 

amounts of CO2 and H2O produced. From the intermediate compounds that were 

formed, it was shown that the carbon atom with the highest probability of being 

initially attacked by oxygen was the one with the highest electron density and the 

lowest steric hindrance, although any of the carbon atoms may be attacked, hence the 

reactions were all unselective. In general, the reactivity of the different types of 

carbons atoms followed the order Ctert > Cquat > Csec > Cprim. 

Primary C 
02 

Primary alcohol 
02 

Aldehyde 

Secondary C 
02 

Secondary alcohol 
02 

Ketones 
J 

-H20 02 
Aldehydes 

Alkene + 
Ketones 

Tertiary C 
02 

' Tertiary alcohol 
or 

-H20 Quaternary C Aldehyde 

Alken 
02 

+ 
Ketone 

Figure 2.9. Schematic of the oxidation products of alkanes as a function of their 
structure. 26 

The same authors proposed an oxidation mechanism that involved single 

oxygen atoms rather than 02 molecules, thus forming an alcohol intermediate that was 

then oxidised further to a ketone or an aldehyde. When secondary and tertiary carbon 

atoms are attacked by oxygen, it is thought that the alcohol intermediate formed may 

be firstly dehydrated to an alkene, which is finally oxidised directly to an aldehyde, 

39 



Chapter 2- Literature review 

ketone or CO2 and H2O. For example, the proposed general reaction schemes for the 

oxidation of 2-methylbutane to its various products is: 52 
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In experiments conducted by the same authors with varying gas compositions, 

it was shown that the selectivity for CO2 formation depended on the ratio of 

oxygen/hydrocarbon in the reaction stream. Unsurprisingly, it was found that 

increasing the oxygen content resulted in a higher selectivity for CO2 formation, with 

fewer partial oxidation products in the exhaust gas. 73 

There are many more reports in the literature investigating the photocatalytic 

oxidation of alkanes and alkenes and most of the more recent reports focus on the 

oxidation of previously studied compounds with varying reaction conditions or 

looking at the mechanisms in more detail. 7,53,60,75 77 Examples of the types of 

reaction parameters investigated include; oxygen/organic ratios, contact times, 

concentration of reactants, effect of water vapour, type of illumination source (i. e. 

wavelength, intensities) and the effect of Ti02 preparation method used. Although 

there are conflicting arguments as to the actual mechanisms of the oxidation and 

partial oxidation pathways (i. e. the roles of the active oxygen species, 0' 02 and 03 , 

and OH radicals (see below)), it is accepted that the complete oxidation of alkanes to 

CO2 and H2O occurs via the formation of intermediate species (namely ketones, 

aldehydes, alcohols and alkenes). For this reason mechanistic studies of the 

photocatalytic oxidation of alkanes are usually broken down into the individual steps 

of alcohol oxidation to ketones and aldehydes, and then the oxidation of ketones and 

aldehydes to CO2 and H2O. It is apparent from the reports that sustained high 

conversions coupled with complete oxidation are favoured by: 

1. presence of excess of oxygen 

2. long gas-catalyst contact times 

3. presence of some H2O in the gas phase 

4. low concentration of organic being mineralised. 
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For example, Alberici and Jardim 53 have reported that it is possible to oxidise 

isooctane completely, forming only CO2 and H2O when appropriate reaction 

conditions are used. The conditions for complete oxidation and > 95 % conversion 

involved a contact time of 6s (decreasing this resulted in the formation of 

intermediates) for a reaction gas of synthetic air ( 21 % oxygen (ca. 210,000 ppm) 

and 23 % relative humidity) containing 400 ppm of isooctane. The authors do not 

report the results from experiments with varying isooctane and humidity levels, 

however it has been shown by Teichner et al. that the oxidation of isooctane over a 

Ti02 photocatalyst with a reaction gas composition of 37.5 % 02,37.5 % isooctane 

and 25 % helium results in the formation of a mixture of aldehyde and ketone 

intermediates with only a low selectivity for CO2 formation. 73 These results show that 

intermediate formation is dependant on the experimental conditions used. It was also 

demonstrated by Alberici and Jardim that the type of UV (e. g. black light vs. 

germicidal lamp) source used had no effect on the reaction pathway. 

2.6.1.3 Oxidation of alcohols 

As it has been proposed that alcohols are intermediates formed in the 

production of aldehydes and ketones from alkanes (see above), most of the studies 

involving the gas-phase photocatalytic oxidation of alcohols focus on the possible 

reaction mechanisms rather than studies into the different types of alcohols. Two 

mechanisms have been reported for the photocatalytic oxidation of alcohols over Ti02 

(and ZnO) photocatalysts. Oxidation can occur via dehydrogenation reactions (-H2) 

forming ketones directly or via dehydration reactions (-H20) forming alkenes. 

Among the alcohols investigated the photocatalytic oxidation of 2-propanol 

(IPA) over illuminated Ti02 photocatalysts has been the most extensively studied, and 
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it is accepted that acetone is the major product formed. This finding adds evidence to 

substantiate that the oxidation of alkanes to ketones (and aldehydes) occurs via the 

formation of an alcohol intermediate as the major partial oxidation product in propane 

oxidations was acetone. Hence it seems reasonable that this should occur via the 

formation of IPA as an intermediate compound. 

One of the first mechanistic studies of IPA photooxidation was conducted by 

Bickley et al., using a unique photoreactor consisting of a rotating tubular reaction 

chamber containing powdered Ti02 (rutile) along with the reaction gases (IPA and 

02). ßg Illumination along the whole length of the chamber was achieved using a 

500 W mercury arc lamp. Two different reaction conditions were studied, one with a 

preadsorbed IPA layer and no IPA in the gas phase, the other with both a preadsorbed 

layer and IPA in the gas phase. Oxygen was present in at least tenfold excess. The 

results showed that IPA was quickly oxidised to acetone and H2O. Acetone appeared 

in the gas phase as it was displaced from the surface by H2O. Oxidation of adsorbed 

acetone to CO2 and H2O was only observed on samples that had been outgassed at 

high temperatures prior to IPA adsorption. When lower pretreatment temperatures 

were used, it was suggested that acetone was oxidised to a strongly adsorbed 

intermediate. The same authors also investigated 02 photoadsorption, as a function of 

IPA surface coverage and pretreatment outgassing temperature. It was shown that 02 

photoadsorption increased as the IPA surface coverage increased, and that adsorption 

was greater for Ti02 samples that had been outgassed at lower temperatures. It was 

suggested that the greater density of surface OH was responsible for the increase in 02 

photoadsorption rates. In another study by the same author TPD was used to detect 

the products that remained on the Ti02 surfaces after the photocatalytic oxidation 
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reactions. 79 The results showed the presence of acetone, water, formic acid and trace 

amounts of acetic acid. 

Larson and Widegren8° conducted experiments of IPA photooxidation that 

were similar to those discussed above, but they used a more conventional annular 

reactor and a Degussa P25 photocatalyst. The results of the experiments were in 

agreement to those reported by Bickley, 78 however, in addition it was proposed that 

activated oxygen species (i. e. O", 02-9 03) were involved in the production of acetone 

as its rate of formation was independent of 02 concentration. In contrast, the 

complete mineralisation of acetone to CO2 and H2O followed first order kinetics at 

low 02 concentrations and zero order at high concentrations. These results can be 

explained by considering the amount of oxygen required for each reaction. Oxidation 

of acetone to CO2 and H2O requires much more 02 than oxidation of IPA to acetone. 

Thus, as the 02 concentration decreases, the rate of acetone formation does not 

change, but the rate of acetone oxidation decreases, so acetone accumulates on the 

photocatalyst surface. Temperature programme desorption studies confirmed 

increasing amounts of acetone on the surface of used photocatalysts that had been 

tested with decreasing concentrations of 02. These results clearly indicate that 

acetone is an intermediate in photocatalytic mineralisation of IPA. 

Hager81 performed the photocatalytic oxidation of IPA with excess oxygen 

and varying humidity levels. The results showed that percentage IPA conversion 

decreased with increasing H2O levels, but the percentage of IPA converted to acetone 

increased. It was suggested that competitive adsorption between acetone and H2O 

molecules for active sites was the cause of decreased mineralisation of acetone. This 

is in good agreement with the ideas put forward by Bickley. 78 
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Investigation of the conversion of secondary alcohols in the presence of excess 

02 again resulted in the formation of a mixture of aldehydes and ketones. 82 It was 

shown that a photoassisted dehydrogenation reaction produced aldehydes, whilst 

ketones were formed by photoassisted Ca, -Cß bond cleavages. Trace levels of alkenes, 

produced by photoassisted dehydration reactions, were also detected. 

Walker et a1.83 studied the oxidation of primary (3-methyl-l-butanol), 

secondary (3-methyl-2-butanol) and tertiary (3-methyl-2-butanol) methylbutanols 

using a similar differential photoreactor to that used by Teichner for his studies of the 

oxidation of alkanes. 73 The reactions carried out in the presence of excess oxygen 

gave similar results to other reported alcohol oxidation reactions. The order of 

reactivity of the three different alcohols followed the sequence Csec > Ctert > Cprim, 

which is different from that obtained for the oxidation of alkanes (see above). The 

oxidation of alkanes involves the extra step of oxygen insertion to form an alcohol. 

The ease of insertion for different types of carbon atoms may be different from the 

ease of oxidation of alcohols. The main product for the primary alcohol was 

3-methyl-l-butanal, which was formed via direct oxidation of the initial molecule, 

whilst for secondary and tertiary alcohols a mixture of aldehydes and ketones were 

produced. The presence of water vapour did not effect the photoreactions. 

2.6.2 Photocatalytic elimination of nitric oxide 

2.6.2.1 Introduction 

The potential to utilise heterogeneous photocatalysts for the elimination of NO 

was first realised in 1981, and initial studies conducted by Yoneyama84 showed that it 

was possible to simultaneously photoreduce and photooxidise NO. In the experiment, 
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NO was bubbled through a1M HC1O4 solution containing either rutile Ti02 or 

Pt/TiO2 (ca. 2 wt. % Pt) particles. Over both unmodified titania and Pt modified 

titania, the reactions were unselective and the products of both NO oxidation (N03 

and NO2) and reduction reactions (NH3, N2 and N2H4) were detected (table 2.3), 

although the major products were nitrates and ammonia. However, the presence of Pt 

suppressed the formation of nitrate species (i. e. the oxidative reaction) and enhanced 

the production of NH3 (i. e. increased the rate of the reduction reaction). As a solution 

is involved in the reaction (as a source of hydrogen atoms) the system is not self 

sufficient, which would be preferred for a catalyst system that is to eliminate NO from 

ambient air. 

Catalyst Specific surface area Rate of formation / pmol h"1 g'1 
/ m2 g -I N03 NH3 

Ti02 (rutile) 14.2 14.6 2.1 
2 wt. % Pt-Ti02 16.0 2.7 3.1 

Table 2.3. Results of the photocatalytic reaction of NO over TiO2 and Pt/TiO2 
suspended in a1 molar HC1O4 solution. 

It was in 1982 that the first report of gas-phase photocatalytic elimination of 

NO waspublished, 85 however it was not until the mid-1990s that a significant number 

of laboratories started publishing their findings of gas-phase NO elimination 

reactions. It should be noted that there are significantly fewer reports concerning NO,, 

elimination compared to those investigating the removal of organic pollutants. It is 

apparent from the literature (and the initial studies by Yoneyama) that there are two 

possible pathways for the elimination of NO. Firstly, it can be oxidised in the 

presence of 02, in which case there is agreement that the main reaction products are 

NO2 and N03.86"88 Secondly it can be decomposed or reduced (normally in the 
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absence of 02) to N2 and N20.11'89'9° Examples of common reducing agents are CO, 

NH3 and small chain alkenes. 

2.6.2.2 NO photooxidation reactions. 

A number of studies have reported the photocatalytic oxidation of NO to NO2 

and N03 in the presence of 02 over Ti02 photocatalysts. 86"87,91"94 The rapid oxidation 

of sub-ppm levels of NO to NO2 was shown to readily occur over Ti02 (anatase) 

powders in the presence of excess 02.95 Desorption of NO2 into the gas phase has to 

be suppressed as it is also a regulated pollutant. As a result, the effects of 

modifications to Ti02 have been investigated for NO oxidation reactions. Suppressing 

NO2 desorption results in the formation of HNO3 on the surface of the catalyst. 

Transient studies have shown that a complex equilibrium is formed, and that 

formation of HNO3 involves a series of oxidation steps by photogenerated surface 

OH' radicals: 96 

NO + OH"* 
Mir- 

HN02 + OH' 
-qqrý 

NO2 + H2O (2.5) 

NO2 + OH'' - HN03 (2.6) 

The density of surface hydroxyls and the amount of adsorbed water play a key role in 

these reactions, hence the catalyst preparation method is a crucial factor in 

determining the photocatalytic behaviour. 

Hashimoto et a1.86 investigated the NO photooxidation properties of Ti02 

photocatalysts prepared by high temperature hydrolysis of titanium butoxide in 

toluene followed by heat treatment in air. The reactions were analysed in a fixed bed 

continuous flow photoreactor, using air containing 10 ppm NO at a flow of 110 sccm 
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as the reaction gas. It was found that titania calcined at 300°C (Hycom type) was 

highly active for the oxidation of NO, compared to Degussa P25, although the 

production of NO2 was still observed. The increased activity was attributed to the 

larger surface area of Hycom titania. ESR measurements revealed that the number of 

02 radicals produced during illumination was proportional to the photocatalytic 

activity and the authors concluded that 02 radicals react easily with NO, forming 

N03 and NO2 species. No deactivation studies were conducted in these experiments. 

Negishi et a1.92,93 have also studied the activity of sol-gel prepared Ti02 for the 

photocatalytic oxidation of NO using a flow type photoreactor. The Ti02 was 

prepared by hydrolysis of titanium isopropoxide in ethanol with the addition of 

polyethylene glycol (PEG) of varying average molecular weights. The resulting sols 

were coated on to glass slides and heat treated at 450°C in air, to remove the polymer 

particles, forming modified photocatalyst coatings (up to 1 pm thick). The role of the 

polymer additive was in altering the surface structure of the Ti02 coating by changing 

the size of the Ti02 aggregates formed. Increasing the PEG molecular weight resulted 

in larger more separated Ti02 polycrystals. Percentage NO conversions over the 

modified films were higher than those achieved over Degussa P25 Ti02 (the same 

weight of catalyst was used) and increased from 65 % to 81 % when the average 

molecular weight of the PEG used was increased from 600 to 1000 amu respectively. 

The increase in activity was attributed to the increase in the specific surface area of 

the TiO2 with increasing average molecular weight of the PEG. It was also shown 

that the film thickness had a dramatic effect on photocatalytic properties. Activity for 

NO conversion increased with increasing film thickness, which was most probably 

due to more efficient photon adsorption. 30 More importantly, the amount of NO2 

formed by the most active film (1 µm) was lower than that for the thinner coatings. 
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The larger surface area of the 1 µm film would lead to more adsorbed water which 

forms additional surface OH groups during illumination (discussed in section 

2.5.1.1. ). Therefore the NO2 could easily be oxidised to HN03, according to equation 

2.6, before desorption occurred. 

Prolonged experiments (over 20 h) by the same authors showed that the 

activity of the photocatalysts for NO conversion decreased linearly during the first 5h 

of illumination, after which time NO conversion reached a steady state. It was 

proposed that the HN03 formed and retained on the catalyst surface blocked the active 

sites and thus deactivated the photocatalyst. 

The problem of NO2 desorption from titania surfaces has also been tackled by 

preparing titania based composite catalysts. The effects of activated carbon94 and 

zeolite97 additions to titania have been reported. In both cases it was shown that 

desorption of NO2 into the gas phase was suppressed whilst the yield of HN03 

increased. It was reported that the additives have high adsorptive activities for NO2 

and thus act as NO2 traps. This then allows the Ti02 enough time to re-photooxidise 

NO2 to NO-3. Figure 2.10 shows a simple schematic of the surface reaction over an 

activated carbon-TiO2 catalyst. In both cases, the additives were inert towards the 

photocatalytic oxidation reactions. As with the studies conducted by Negishi, it was 

reported that the activity of the activated carbon-Ti02 catalyst decreased during the 

course of the reaction. However, it was also noted that the original activity was 

regenerated after washing the catalysts in purified water. Analysis of the spent water 

revealed the presence of nitrate groups, thus confirming deactivation by residual nitric 

acid on the catalyst surface. 
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Figure 2.10. Reaction scheme of NO., (NO and NO2) removal by an activated 
carbon-Ti02 catalyst. (Adapted from Ibusuki94) 

A novel preparation method for TiO2, which was active for NO oxidation under 

visible light irradiation, has been reported by Nakamura and colleagues. 98'99 It was 

shown that a commercial Ti02 photocatalyst (ST-01) treated in a hydrogen plasma 

(13.56 MHz, 500 W) was active in the visible light region up to 600 nm and was more 

active than unmodified Ti02 for NO decomposition in the UV region. Consistent with 

the other reports of NO elimination in an oxidative atmosphere, the NO was removed 

as nitrate species which accumulated on the catalysts surface. XRD and BET analysis 

revealed neither the crystal structure nor specific surface area changed after the 

plasma treatment. ESR of the plasma Ti02 showed the appearance of visible light 

activity was due to a new photoexcitation process that involved the formation of an 

oxygen vacancy state located between the valence and conduction bands 

(figure 2.11). 
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Figure 2.11. A proposed band structure model for the anatase Ti02 with oxygen 
vacancies, formed during a hydrogen plasma treatment. (Adapted from Nakamura 98). 

Current commercial photocatalytic technologies for removal of NO over 

titania based photocatalysts utilise oxidation reactions, of the type discussed above, 

where NO is oxidised to nitrate species which are bonded to the catalyst surface. 

Many researchers have also reported the ability of titania to photocatalytically oxidise 

other atmospheric pollutants including hydrocarbons and CO 53 to CO2 and water. 

Therefore, at present Ti02 could be used for air pollution control, by oxidising all 

pollutants according to the following reaction: 

Ti02,02 
NO + zCO + CXH2y 

by 
HNO3 + (x + Y)C02 + YH2O (2.7) 

It would clearly be more desirable to have a catalyst system that, whilst 

oxidising CO and hydrocarbons, selectively reduced NO to N2 gas, thus avoiding the 

deactivation of the catalyst by HNO3, which can take place when reaction 2.7 occurs. 
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2.6.2.3 NO decomposition reactions 

Along with titanium dioxide based photocatalysts, metals ions supported on 

zeolites and silver species supported on alumina have also proved to be effective for 

the photocatalytic decomposition NO in N2 and N20. 

Courbon and Pichat" reported the decomposition of NO, in an oxygen free 

environment, over Ti02 (Degussa P25) samples, which had been pre-oxidised or 

pre-reduced The reactions were carried out in a batch style reactor in which the 

catalyst was spread in a thin layer a horizontal optical window, using a 125 W UV 

lamp to irradiate the catalyst. The significant role of surface bound O' species was 

highlighted by the use of isotopically substituted N180 molecules. Mass spectroscopic 

analysis of gas inside the reactor after a period of illumination, revealed that oxygen 

isotopic exchange between the oxygen of NO molecules and surface oxygens had 

occurred as both NI8O and N160 were detected. Further mass spectra recorded with 

several ionisation energies, indicated the formation of N2, N2180 and N2160, with N2 

formation favourable only on the pre-reduced catalysts during the early stages of 

reaction. No NO2 formation was detected. The authors suggested that the production 

of N2 from NO, which yields two oxygen atoms, is more favourable for the oxygen 

deficient reduced surface than N20 production, which produces only one oxygen 

atom. 

It was hypothesised that photo-generated 0" species are directly involved in the 

decomposition of NO according to the reaction equation: 

NO-( 
,, &) aas) +0 (lat) No --- N(ads) + O(ads) +O (lat) (2.8) 

Where NO'S and O- species are formed by the reaction of electron-hole pairs 

generated in the Ti02 during illumination. The products N(ads) and O(a&) are then able 
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to react with other surface species to yield the products described earlier. Although 

these results show a decomposition route for NO, the N20 formed is also an air 

pollutant which would need to be eliminated. 

Zhang et a1.10° carried out a systematic study of the NO decomposition 

reaction over a series of commercially available TiO2 samples that had been 

pretreated in an 02/Ar mixture at different temperatures. The 5 types of Ti02 used 

were supplied by Catalysis Society of Japan and contained samples with various 

phase compositions, surface areas and degree of surface hydroxylation. For all the 

catalysts and pretreatment temperatures used only N2 and N20 were detected as 

products. The most efficient photocatalyst had an anatase structure, relatively large 

surface area and a high density of surface hydroxyl groups and the optimal 

pretreatment temperature was 300 T. Higher temperatures resulted in a decrease in 

activity, which was attributed to the removal of surface OH groups, thus it was 

confirmed that they play an important role in the decomposition of NO in a flow style 

system. It was found that the activity was not proportional to the intensity of UV 

photons when relatively high intensities were used. As a result, the FQEs were higher 

with lower intensities of UV photons. Similar findings have also been reported by 

Lim-9 

Although it is agreed that the products of NO decomposition over photoactivated 

Ti02 are N2 and N20, none of the above reports gave the selectivities for formation of 

the two products. This is most probably due to limitations with the analysis methods 

employed, making quantification difficult. One group that has published values for 

the selectivity of the reaction products for NO decomposition reactions over TiO2 is 

that of Anpo and Yamashita, 1°' with selectivities of 25 % and 75 % for N2 and N20, 

respectively. 
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Significant work on copper ions, silver ions and Ti02 species anchored with 

ZSM-5 zeolite frameworks for' photocatalytic decomposition of NO has been carried 

out by a number of researchers 45,102-109 The zeolite framework, with its shape 

selective porous structure provides a unique environment for photocatalytic reactions 

that cannot be achieved with normal bulk catalysts. Incorporation of transition metal 

ions within zeolite pores can induce photocatalytic capabilities due to ion-exchange 

between the zeolite and the metal ion. Whilst incorporation of Ti02 particles into the 

zeolite framework results in electronic modification of the photocatalyst due to the 

size quantization effect. 11° The reported preparation method used to produce highly 

dispersed metal ions within a zeolite framework is that of ion-exchange using aqueous 

solutions of an appropriate metal salt. For the preparation of Ag+/ZSM-5 and 

Cue+/ZSM-5 photocatalysts aqueous solutions of Ag(NH3)2+ and Cu(NH3)42+ were 

used, respectively. '04"07 Prior to photocatalytic activity testing, the samples were 

degassed at 20°C, heated in 02 at 400°C for 1 h, followed by evacuation at 200°C. 

Ag°-ZSM-5 catalysts were prepared by reducing the Ag+/ZSM-5 in an H2/H20 

atmosphere. Cu /ZSM-5 catalysts were prepared following the same procedures. All 

of the reported NO decomposition experiments by Anpo et al., over zeolite supported 

photocatalysts, were carried out in a batch reactor using a 100 W high pressure 

mercury UV light source. 

From the photocatalytic reactor studies using Ag and Cu modified ZSM-5 

catalysts it was found that systems in which the metal ions were highly dispersed 

exhibited a high activity for NO photo-decomposition. Whereas, systems with 

aggregated metallic components showed very little photocatalytic activity towards 

NO decomposition. Silver(I) catalysts showed a high activity towards NO 

decomposition, however, some N20 and NO2 was also formed. 107 Copper(I) 
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ion-exchanged zeolites fully reduced NO to N2 and 02, without the formation of 

by-products, but a problem that would be faced with these catalysts is that in the 

presence of oxygen the active copper(I) species would be photooxidised to inactive 

copper(II) species. Hence these copper(I) ion exchanged zeolites are not a viable 

option for the photocatalytic elimination of NO from air. 

It was proposed by Anpo et al. 104 that the main mechanism of reduction over 

both types of catalyst was via electron transfer from the photo-induced electronic 

excited states (3d94s' and 4d95s' states for Cu(I) and Ag(I) respectively) to the 

n-antibonding orbital of NO, and the simultaneous electron transfer from the 

it-bonding orbital of another NO, to the vacant electron state of the metal ion centre 

(3d94s° and 4d95s° states for Cu(I) and Ag(I) respectively) resulting in the selective 

formation of N2 and 02. However, the mechanism involving two relatively close 

metal centres is also a possibility. 104 A further drawback for both the copper(I) and 

silver(I) exchange catalysts is that they require short wavelength UV radiation for 

excitation, due to the large band gap between the ground and excited states thus 

prohibiting the use of solar energy. 

Courbon and Pichat's early work on TiO2 powders was combined with the 

ZSM-5 research, leading to studies involving NO photodecomposition on Ti02 

anchored within zeolite cavities. 101, "0°"' These investigations highlight the 

importance of the catalyst preparation method and the state of the Ti02 species on the 

final photocatalytic properties of the materials produced. In these studies, the same 

style of photoreactor as used for the Ag/ZSM-5 work was employed using similar 

reaction conditions. 

Ti02/ZSM-5 catalysts prepared by an ion-exchange method yielded highly 

dispersed isolated tetrahedral titanium dioxide species which were highly selective for 
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the formation of N2 from the photocatalytic decomposition of NO. Whilst those 

prepared by impregnation of the zeolite produced aggregated octahedrally coordinated 

titanium dioxide species which led to the formation of N20 from NO. Table 2.4 

shows the product yields and selectivities for NO decomposition reactions over 

TiO2/ ZSM-5. On the isolated titanium dioxide species, under UV irradiation, it was 

proposed that excited complexes, (Ti3+-O) were formed. Electron transfer from the 

electron trapped centre (Ti3) into the n-antibonding orbital of NO takes place and 

simultaneously the electron transfer from the 7t-bonding of another NO into the hole 

trapped centre (0) occurs. These electron transfer reactions lead to the direct 

decomposition of two molecules of NO to form N2 and 02. For the aggregated 

catalysts, the photo-formed electron-hole pairs separate rapidly from each other. 

These large separations prevent the simultaneous activation of two NO molecules on 

the same active site and result instead in the formation of N(ads) and O(ads) which can 

then react with other NO(ads) molecules, forming N2O and NO2 rather than N2 and 02. 

Although the highly dispersed tetrahedral Ti02 species appear to be good 

photocatalysts for the reduction of NO into N2, they were only partially successful as 

they do not fully reduce all the NO, but some N20 was also produced. '°' 

Catalyst Yields / µmol h" g"' (Ti02) Selectivity /% 
N2 N20 Total N2 N20 

Ion-exchange 14 1 15 91 9 
Impregnated 7 10 17 41 59 
P25 26 8 25 75 

Table 2.4. Comparison of yields of N2 and N20 and their selectivities in the 

photocatalytic decomposition over various TiO2 photocatalysts. 101 
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2.6.2.4 NO reduction reactions 

The third option for the elimination of nitric oxide is through photocatalytic 

reduction, which, like the decomposition reaction, has been attempted with a variety 

of catalysts and reducing agents. Cole and Cant89 investigated the photocatalytic 

reduction of nitric oxide with ammonia over Ti02 wafers using a static reactor system. 

The wafers were prepared by pressing a commercial Ti02 powder that had a phase 

composition of 85 % anatase and 15 % rutile. The reaction gas used consisted of 

10 Torr of NH3 and 10 Torr of NO. For comparison, a decomposition experiment 

with only NO present was run. It was found that in the presence of ammonia, the NO 

conversion rate was approximately five times greater and the ratio of the products 

(N2/N20) also increased compared to the corresponding decomposition reaction 

(table 2.5). When isotopically labelled reactants were used (14NO and 15NH3), 14N15N 

and 14N20 were almost exclusively formed. From these observations, the following 

scheme was proposed for the NO + NH3 reaction: 

14N0-(ads) + O-(Iat) 10 14N(ads) + O(ads) + 02 (lat) (2.9) 

14N(ads) +1 NO(ads) 1 14N20(ads) 0 14N20(gas) (2.10) 

O(ads) +1 NH3(ads) º 
15NH2(ads) + OH(ads) (2.11) 

OH(ads) + 15NH3(ads) º 15NH2(ads) + H20(ads) (2.12) 

1 2(ads) + 
14NO(ads) 

1 14N15N(ads) + H20(ads) (2.13) 

Initial pressures N2 produced N20 produced N2/N20 Rate of NO 
/ Torr / µmol h' / µmol h'1 conversion / µmol h"1 

NH3 NO 
0 10.3 0.5 1.20 0.4 1.7 

10.2 9.8 5.95 2.68 2.2 8.63 

Table 2.5. Comparison of NO decomposition and NO + NH3 reactions over TiO2 

wafers. Illumination time was 2h for each experiment. Data from Cole et al. 99 
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Recently very similar results have been report by Teramura et aL 112'113 over 

powdered Ti02 photocatalysts (JRC-TIO-4, Japan Catalysis Society). In addition 

they also studied the photocatalytic reduction of NO with NH3 in the presence of 02 

and found that the reaction was 100 % selective for N2 formation, i. e. no N20 was 

produced. The stoichiometric reaction is: 

4NO + 4NH3 + 02 º 4N2 +6H20 (2.14) 

From IR data collected during the experiments it was proposed that the active 

site on the Ti02 surface was a Ti4+ Lewis acid site to which NH3 could be easily 

adsorbed. Gas phase NO then attacks adsorbed NH3 species and N2 and H2O are 

generated via a nitrosamide intermediate. The reduced Ti3+ site that is consequently 

formed is then reoxidised to the Ti4+ species by oxygen. In the absence of 02, NO 

reoxidises the Ti3+ species and N20 is produced. 

More recently, the use of hollandite type (KZGa2Sn6O16, KGSO) catalysts for 

the photocatalytic reductive decomposition of NO in the presence of ethane (C2H6) as 

a reducing agent have been reported! 4"5 The reactions were carried out using a 

batch style reactor containing 4000 ppm NO and 2000 ppm C2H6 in an oxygen free 

environment. When the gases were brought into contact with the photocatalyst during 

irradiation NO was fully reduced to N2 gas, but the ethane was only partially oxidised 

to CH3CHO according to the reaction: 

2NO + C2H6 
KGSO 

hº N2 + CH3CHO + H2O (2.15) 

IR studies of the catalyst surface during the course of the reactions revealed 

the formation of isocyanate (-NCO) intermediates on surface KK sites, although no 
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explanation was put forward as to the role of isocyanate groups in the formation of 

N2. 

The aldehyde partial oxidation product is a very important industrial reagent 

but to utilise this by-product it would need extracting from the other gas phase 

products which would be expensive and add further complications to any potential 

system. It would clearly be more desirable to have a system which, whilst selectively 

reduced NO to N2, fully oxidised hydrocarbons to CO2 and water. A further 

drawback to this system is the position of the absorption edge of KGSO 

(ca. 280 nm, "5 cf. 380 nm for Ti02,59 which requires short wavelength UV for 

excitation). 

Silver and silver chloride catalysts supported on alumina have also shown high 

activity for NO reduction in the presence of 02 and ethane. 116 A flow-type 

photoreactor was used with a gas composition of 10 ppm NO, 10 % (or zero) 02, 

5 ppm (or zero) C2H6, and N2 as the balance. The total flow rate of the system was 

620 stem. The wavelength of photons required for photoexcitation to occur was 

around 250 nm, but depended on the specific catalyst used. It was found that NO 

conversion was higher over the AgCI catalysts for all the reaction conditions used. 

The presence of both 02 and C2Hg in the reaction gas enhanced the NO conversion 

rates. The authors report that the main product was N20 for all the reactions, but do 

not include any data showing the selectivity values of the reactions. It was suggested 

that the increased activity of the AgCI catalysts in the presence of 02 was due to 

stabilisation of AgCI particles, thus suppressing the formation of less active Ag° 

atoms and clusters. The proposed role of hydrocarbon species was to react with the 

photogenerated holes, suppressing recombination reactions with the excited electrons 
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which are then involved in charge transfer to the n-antibonding molecular orbital of 

adsorbed NO molecules. 

Current technologies for the removal of atmospheric NO operate via selective 

catalytic reduction (SCR) of NO with CO at elevated temperatures. 34 Most of the 

catalysts used consist of noble metals dispersed on an oxide support of high specific 

surface area. Noble metals show good adsorption properties for both NO and CO, thus 

making them an ideal choice as catalysts for the removal of NO and CO 

pollutants. 117,1"8 It is apparent from the literature that there are similarities in the 

mechanisms of NO decomposition over thermal and photo-activated catalysts. 

For example it has been found that NO adsorbed on rhodium, a well known 

NO SCR catalyst, is susceptible to reduction because the rhodium pushes electron 

density into the t-antibonding orbital of adsorbed NO species. 119 It has also been 

shown that highly dispersed supported rhodium particles have high selectivity for N2 

production from NO, but when it becomes aggregated on the surface the main 

reduction product was N20.4 These observations are remarkably similar to those 

observed for the zeolite supported photocatalysts. 104,107"111 In light of these 

similarities, it is surprising to find that there has been only one laboratory that has 

studied the photocatalytic properties of TiO2 supported noble metals for the 

elimination of NO in the presence of CO. 120 

Ru, Rh/Ru and Cu/Ru modified Ti02 (Degussa P25 type) were prepared using 

standard impregnation and reduction techniques and their photocatalytic behaviour for 

NO reduction in the presence of CO was investigated using a batch type 

photoreactor. 120 Over Ru/TiO2 catalysts NO was reduced to N2O, producing only a 

small amount of N2 during the first 5 hours of illumination. Continued illumination 

resulted in the reduction of N20 to N2 and after 25 h all of the N20 was consumed. 
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Whilst, over co-modified Cu/Ru and Rh/Ru modified TiO2, the N20 concentration 

increased during the first 1h of illumination and was then slowly consumed. After 8h 

all of the N20 produced was converted to N2, indicating the increased activity in the 

presence of Rh and Cu. It should be noted that Rh additions were more effective than 

Cu for accelerating the N20 reduction reaction. 

It was proposed that the mechanism for the decomposition of N20 was via the 

formation of an isocyanate species on the metal particles by reaction of adsorbed an 

N atom with a CO molecule. From the observed results, it was thought that formation 

of isocyanate species occurred more readily on Rh particles than on Ru and Cu 

particles, hence explaining the increased N20 reduction rate in the presence of Rh. 

Figure 2.12 shows a schematic of the proposed mechanism. The formation of 

isocyanate species over illuminated Rh/Ti02 in the presence of NO and CO has been 

confirmed by FTIR studies conducted by Rasko. '21 

CO 
M-N - M-NCO 

®Rh CO2 + N2 + N(a) 

NZO 
NCO 

NO 
by 

CO2 + N2 

Figure 2.12. Proposed reaction mechanism for the removal of N20 over supported 
120 noble metal particles. (Adapted from Thampi) 

A novel silica-supported molybdenum oxide catalyst containing 2.5 wt. % of 

Mob has also been reported to be an active catalyst for the reduction of NO in the 
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presence of CO. 122-124 The catalyst was prepared by impregnation of a silica gel with 

an aqueous solution of (NH4)6Mo7O24 which was then dried in air at 80°C. The 

catalyst was pretreated in 02 at 800°C in the photoreactor which was then evacuated 

and cooled before the introduction of the reactant gas. The photoreactor was a 

circulating batch type reactor in which the catalyst (1 g) was placed on an optically 

transparent window. Figure 2.13 shows the partial pressures of the reactants and 

products during the course of the reaction. As soon as the lamp was turned on both 

NO and CO were consumed whilst CO2 and N20 were produced. Initially no N2 

formation was detected and only after N20 formation reached a maximum (ca. 320 s) 

that N2 formation occurred. These results indicated that the complete reduction 

of NO to N2 took place in two stages, which is similar to the mechanism reported by 

Thampi et a1.12° In the first stage NO was reduced to N20 (equation 2.16) and in the 

second stage N20 was further reduced to N2 (equation 2.17). Although it was 

suggested that this system was similar to those reported by Thampi it should be 

pointed out that the induction period before N2 formation was much shorter over the 

M003/SiO2 catalysts (ca. 6 min for the Mo03/SiO2 system compared to ca. 60 min. 

for the Ti02 supported noble metal catalysts). 

2N0+CO º 

N20 + CO º 

CO2 + N20 (2.16) 

N2 + CO2 (2.17) 
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Figure 2.13. Kinetics of NO + CO reaction on MoO.? /SiO2 upon UV irradiation at 
20°C. The vertical dashed line marks the position of the N20 maximum. (Adapted 
from Shelimov'23). 

2.7 Summary 

It is evident that the photooxidation of NO, in the presence of 02, will occur 

readily over Ti02 photocatalysts. Consistent in all the reports, is the formation of 

nitrate groups which result in deactivation of the Ti02 surface. Although, the activity 

can be restored by washing that catalyst with water, this adds an extra undesirable 

complication to the NO elimination process. 

From the studies of NO decomposition over Ti02 photocatalysts, it is apparent 

that the reaction pathway is unselective, resulting in the formation of N2 and N20, 

which is also a regulated pollutant. NO photodecompositions over isolated silver 

species incorporated into a zeolite framework are highly selective for N2 formation. 

The high selectivity was attributed to the active sites present on the isolated silver 

species. A problem though, with these photocatalysts is that they require the use of 
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biohazardous short wavelength UV irradiation for photoexcitation. Hence, they are 

not a viable system for the removal of NO from the atmosphere. 

The selective photocatalytic reduction of NO has been investigated over a 

variety of photocatalysts including, KGSO, Ag-A1202, AgCI-A1203, Ru-Ti02, 

Rh/Ru-Ti02 and Cu/Ru-TiO2 systems. The photoreactions over the Ti02 supported 

noble metal photocatalysts are the only photocatalytic reactions reported that utilise 

CO as a reducing agent. It was found that the presence of rhodium on Ru/TiO2 

photocatalysts increased the rate of N2 formation. There are no reports of the NO-CO 

photoreaction over unmodified TiO2 photocatalysts. 

Although previous studies have shown that silver species are highly selective 

NO decomposition photocatalysts, there have been no reports of Ag-Ti02 

photocatalysts used for NO decomposition and reduction reactions. Such a system 

should be able to utilise UV wavelengths and offer the high selectivity of silver active 

sites. Through the work of Thampi it was shown that the presence of rhodium aided 

the complete reduction of NO to N2, however, no one has yet reported the properties 

of Rh/Ti02 photocatalysts for the selective photocatalytic reduction of NO, nor for 

NO decomposition reactions. 

It is evident that further research is still required in order to develop efficient 

and practical photocatalysts for the elimination of NO from the atmosphere. The 

work presented in this thesis is furthering the studies previously reported for the 

photocatalytic elimination of NO. 
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3 Experimental 

3.1 Introduction 

This chapter describes the methods used to prepare the photocatalyst materials 

studied in this thesis, and the experimental set-up that was utilised to determine the 

photocatalytic behaviour of the prepared materials. There is also a short discussion of 

the sample handling and methods of data collection and processing with respect to the 

characterisation techniques used to gain an understanding of the nature of the 

prepared photocatalysts. 

3.2 Preparation of Ti02 and modified Ti02 photocatalysts 

For all the experiments discussed in this thesis a commercial Ti02 photocatalyst 

(Degussa P25) was used and was kindly supplied by Degussa AG. Initially triply 

deionised water (TDW, 500 cm3) was acidified by 0.05 M HNO3 (6 cm3, prepared 

from a 70 % HNO3 solution, Aldrich). A partially stabilised dispersion of P25 was 

prepared by addition of P25 (0.19975 g, 0.0025 mol. ) to the acidified TDW 

(500 cm3). The dispersion was then stirred overnight to yield a partially stabilised 

P25 dispersion that was white and opaque. 

Precursors for rhodium or silver modified P25 photocatalysts were prepared 

following the same procedure except that appropriate amounts of Rh(N03)3.2H20 

(99.9 % purity, Aldrich) or AgNO3 (99.9 % purity, Aldrich) were dissolved in the 

acidified TDW prior to addition of P25. Table 3.1 gives the amounts required to 

produce 0.1,1, and 5 wt. % modified Ti02 dispersions. The 5Rh-P25 and lRh-P25 

systems yielded pale yellow coloured opaque dispersions. Whilst the 0.1 Rh-P25 and 

Ag-P25 systems yielded white coloured opaque dispersions. The dispersions were 
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used as precursors for the photocatalyst powders to be used for characterisation, and 

for the preparation of the photocatalyst coatings to be tested in the photoreactor. 

Table 3.1 shows the nomenclature used to identify the photocatalyst samples. 

Photocatalyst powders, used in the characterisation methods, were prepared by 

drying the dispersions at 70°C for 48 h. The colour of the powders depended on the 

nature and loading of the modifying element. The condition for calcination of the 

powders was a heating rate of 5°C min. "I and a dwell time of 2h once the required 

temperature was attained. The cooling rate used was 10°C min. -'. The P25, 

O. lAg-P25 and 0.1Rh-P25 powders remained white irrespective of the calcination 

temperature used. However, the samples with higher silver loadings became a 

greyish/white colour after calcination, and darkened further with increasing 

calcination temperature. The Rh-modified samples with loadings of 1 wt. % and 

above remained a yellowish/white colour even after calcination at 200°C, the highest 

calcination temperature used for those samples. 

The glass used as substrates for the photocatalyst were cut from Borosilicate 

glass (Fisher Scientific) with dimensions of 80 mm x 35 mm x5 mm to fit in the 

sample holder of the purpose built photoreactor. Prior to photocatalyst deposition 

they were cleaned and degreased by sonicating in a5% Decon90° solution for 5 min. 

They were then rinsed with TDW and sonicated again in industrial methylated spirits 

for a further 5 min., after which they were dried at 70°C for at least 12 h. The cleaned 

slides were kept for a maximum of 24 h before photocatalyst deposition. 

The photocatalysts were deposited onto the glass slides by evaporation of 

25 cm3 of dispersion at 70°C in a glass petri dish. The mass of P25 deposited was 

ca. 1 mg. Calcination of the films was carried out in an identical manner as the 

powdered samples using the same final temperatures. 
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UV and hydrogen reduction of the metal salts deposited onto the P25 was 

carried out on the coated glass slides. To UV reduce the metal salts, the coated glass 

slides were suspended in propan-2-ol, in a quartz beaker, and irradiated for 30 min. 

using a 400 W medium pressure mercury lamp (Photochemical Reactors Ltd. ). The 

slides were then dried at 70°C for 12 h. Hydrogen reduction of the photocatalyst films 

was carried out in a tube furnace at 450°C. The furnace was heated to 450°C at a rate 

of 5°C min. -' under argon, then the gas was switched to hydrogen and the temperature 

maintained for 1 h. The slides were cooled to room temperature under an argon 

atmosphere. 

After the various pretreatments were carried out the photocatalysts were 

wrapped in foil, so that no photoreactions could occur, and stored in a vacuum 

desiccator until required. 

3.3 Estimation of film thickness 

The upper and lower limits of the film thickness have been calculated using the 

density of solid Ti02 assuming a 0.3 void fraction (2.9 g cm-3) and the measured 

density of bulk Ti02 powder (0.09 g cm-3) respectively. The values used were those 

reported by Jacoby et al. ' 

Using the above values, and a mass of 1 mg of Ti02 deposited, the upper and 

lower limits for the film thickness were calculated to be 3.9 and 0.12 pm, 

respectively. The estimations of upper and lower limits for the film thickness of the 

photocatalysts prepared for this work were less than the critical thickness reported by 

Jacoby et al. ' Hence, in accordance with the observations of Jacoby the rates of 

reactions reported in this thesis will be shown in units of µmol h'1 g'1. 
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3.4 Photoreactor 

3.4.1 Photoreactor design 

A continuous flow style photoreactor was built to enable photocatalytic 

reactions to be studied using a variety of gases and gas mixtures. A schematic 

representation of the custom built photoreactor used is shown in figure 3.1. The basic 

layout of the photoreactor consists of a bank of gases piped into a1 µm gas filter to 

ensure effective mixing of the gases, the flow rate of the individual gases being 

independently regulated by a series of mass flow controllers (MFCs, MKS 

Instruments). 

On leaving the filter the gas flow was passed through the reaction chamber 

containing the photocatalyst films and then into the exhaust system. The composition 

of the exhaust gas was measured using a quadruple mass spectrometer (HAL 201 

system, Hiden Analytical Ltd. ) fitted with a heated rapid capillary inlet system. The 

reactants and possible products were constantly monitored before, during and after 

illumination and their corresponding changes in measured partial pressure were used 

to measure photocatalytic activity. UV illumination of the photocatalyst was through 

a quartz window using a 400 W medium pressure mercury lamp. A water filter was 

used to remove the infrared radiation emitted. The relative intensity of the different 

wavelengths emitted by the UV lamp in the range 185 nm to 900 nm were measured 

through the quartz window of the reactor using a spectrograph (Verity Instruments) 

and the intensity of 365 nm radiation at the sample surface was recorded using a 

RX003 Radiometer with Microprocessor (UVItec). Both the lamp and the reaction 

chamber were situated in a black polycarbonate box. The temperature inside the 

reaction chamber was measured during illumination and reached a maximum of 40°C. 
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3.4.2 Reaction chamber 

The reaction chamber comprised a circular aluminium back plate that had a 

100 mm x 40 mm x3 mm section milled from the centre. Coated glass slides were 

fitted into the milled section and held in place using push fitting aluminium pins. The 

gas inlet and outlet was via two 3 mm diameter channels through the back of the base 

plate into the top and bottom of the milled section. A quartz window was placed on a 

nitrile O-ring and was secured in position by an aluminium ring which had another 

O-ring on the underside to avoid a metal-quartz contact, which could cause the 

window to crack. The top section was affixed to the base plate using 6 bolts. The 

reactor volume (i. e. the volume between the milled section and the window) was 

12 cm3. 

75 



ýýý; t, ... _, . _.. t,............ 

I IL 

JI 
ýý 

ro ? 
(0 + ' 

ü 
. ; 

ý Q 
x i,,. 

_.. 
... , 

... 
Z3 

D m 
ä U 

-zz 

N3 

o v 

- CS 

c> b4 
0 

io 

QLL "ý. 

QQL 

OO 
ZUO 

Mi 

x 
LZ 

76 



Chapter 3- Experimental 

3.4.3 Photoreactions 

For each photocatalyst studied, a standard pre-oxidation to remove surface 

hydrocarbons, was first carried out. The photocatalyst was put into the reaction 

chamber, sealed and argon (BOC gases, 99.999 % purity) at 50 sccm was passed 

through the system until no air could be detected in the exhaust gas using the mass 

spectrometer (ca. 30 min. ). The gas inlet was then switched to 20 % oxygen 

(20,000 ppm in argon (BOC gases 99.999 % purity) with a flow rate of 10 sccm. Once 

the oxygen concentration was constant (ca. 30 min. ) the UV lamp was turned on and 

the photocatalyst was illuminated for 15 min. The mass spectrometer data showed a 

decrease in the oxygen concentration and the formation of CO2 upon illumination, 

once the lamp was switched off the concentrations of 02 and CO2 returned to their 

original values. This procedure was repeated once more after 15 min. Repeating the 

oxidative treatment a third time resulted in no detectable formation of CO2. After the 

oxidative pre-treatment, argon was passed through the system at 50 scem for 2 h, after 

which time no oxygen could be detected in the exhaust. 

Two types of reactions were studied, photodecomposition of NO in an inert 

atmosphere and photoreduction of NO in the presence of CO. For all the reactions 

studied isotopically substituted 15NO was used, instead of the more abundant 14NO. 

The purity of 15NO in argon was 99.9995 % (CK Gas Products Ltd. ) and the level of 

isotopic substitution of 15N for 14N and calibrated volume of 15NO were determined 

by the manufacturers to be > 99.5 %, and 1.00 % respectively. Possible reaction 

products are N2, N20, CO and CO2 which have the parent ion peaks of 28,44,28 and 

44 amu, respectively, therefore making it difficult to discriminate between N2 and CO 

species and N20 and CO2 species by mass spectrometry. Using 15NO gives the parent 

ion peaks of '5N2 and 15N20 of 30 and 46 amu, respectively, thus making 
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quantification of the reactions possible by mass spectrometry. From now on in this 

thesis when referring to nitric oxide (NO) the reader should bear in mind that what is 

actually being discussed is the isotope 15NO. 

The first reaction type is the photodecomposition of NO in Ar. After the 

pre-treatment, NO was introduced into the system and the total flow rate was reduced 

to 5.5 sccm, with an NO concentration of 909 ppm. The gases were allowed to flow 

over the photocatalyst in the dark. Once a steady state concentration of NO was 

attained (ca. 30 min. ) the photocatalyst was irradiated for 30 min. The gases were left 

flowing for a further 15 min. after the lamp was switched off to ensure the reactant 

concentrations returned to their original levels. During the reaction period the mass 

spectrometer continuously monitored the levels of the reactants and products in the 

exhaust gas mixture. Typical m/z traces for a reactant and product are shown in 

figure 3.2 (a) and (b) respectively and the m/z values used to detect the reactants and 

products are shown in table 3.2. 
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Figure 3.2. Typical m/z traces for (a) NO (m/z 31) and (b) N20 (m/z 46) for a 
reduction reaction. 
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Variations on the general decomposition reaction were investigated for 

selected photocatalysts, by varying the concentration of NO in the feed gas. For all the 

experiments the total flow rate and illumination period were kept constant at 5.5 sccm 

and 30 min. respectively. The reaction gas compositions for all the decomposition 

reactions are given in table 3.3. 

Parent ion Mass / charge ratio 
(m/z) 

12co+ 28 
'SN2+ 30 
15NO+ 31 
12CO2+ 44 
15N2O+ 46 

Table 3.2. Table showing the m/z values for various parent ions. 

Total flow rate Photocatalytic reaction Reactant gas composition / sccm 

General decomposition 

Effect of NO 
concentration 1 

Effect of NO 
concentration 2 

Effect of NO 
concentration 3 

909 ppm NO + Ar balance 5.5 

455 ppm NO + Ar balance 5.5 

909 ppm NO + Ar balance 5.5 

1818 ppm NO + Ar balance 5.5 

Table 3.3. Table of reaction conditions for the NO photodecomposition reactions 
investigated 

The second reaction type was the photoreduction of NO by CO with Ar as the 

balance gas. The concentration of both NO and CO were 919 ppm and 1818 ppm, 

respectively, and the total flow rate was 5.5 sccm. The m/z values monitored during 

the reaction are shown in table 3.2. 
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Variations in the general reduction reaction were investigated over a selection 

of the photocatalysts. These variations included changing the NO or CO feedstock 

concentrations. For all the experiments the total flow rate and illumination period 

were kept constant at 5.5 sccm and 30 min., respectively. The reaction gas 

compositions for all the reduction reactions are given in table 3.4. 

Photocatalytic Reactant gas composition Total flow 
reaction rate / sccm 

General reduction 909 ppm NO + 1818 ppm CO + Ar balance 5.5 

Effect of NO 455 ppm NO + 1818 ppm CO + Ar balance 5.5 
concentration 1 

Effect of NO 909 ppm NO + 1818 ppm CO + Ar balance 5.5 
concentration 2 

Effect of NO 1818 ppm NO + 1818 ppm CO + Ar 5.5 
concentration 3 balance 

Effect of CO 909 ppm NO +0 ppm CO + Ar balance 5.5 
concentration 1 

Effect of CO 909 ppm NO + 364 ppm CO + Ar balance 5.5 
concentration 2 

Effect of CO 909 ppm NO + 909 ppm CO + Ar balance 5.5 
concentration 3 

Effect of CO 909 ppm NO + 1818 ppm CO + Ar balance 5.5 
concentration 4 

Table 3.4. Table of reaction conditions for the NO photoreduction reactions 
investigated 
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3.4.4 Quantification of the reaction data 

To quantify the changes in concentration of reactants and products seen in the 

data collected during the reactions it was first necessary to calibrate the mass 

spectrometer in order to convert the partial pressures recorded into more meaningful 

units, such as moles or ppm of the reactants or products. In calibrating the 

spectrometer the relative sensitivities for detection of the different species monitored 

were calculated. 

Fragmentation patterns were determined for all species being monitored so that 

contributions from different species at the same m/z value could be accounted for. 

This was carried out using calibrated gas mixtures containing ca. 1% of the 

individual 14N containing species in argon as the same fragmentation could be 

expected for 15N containing species. The gases were purchased from BOC gases with 

purities of 99.999 %. Table 3.5 shows the fragmentation patterns for all the species 

monitored. Due to slight day-to-day variations in the results, the values shown are 

averages of 30 fragmentation patterns collected for each species over the period of 

one month. Once determined the fragmentation patterns were checked weekly to 

ensure there were no significant changes as the mass spectrometer detector aged. 

N20 
Ion RI. 

NO 
Ion R. I. 

N2 
Ion R. I. 

CO2 
Ion R. I. 

CO 
Ion R. I. 

N2O 100 NO 100 N2 100 C02 100 CO 100 (44) (30) (28) (44) (28) 
(30) 27.9 (116) 1.3 (14) 7.8 (288) 9.0 (16) 1.7 

(28) 
18.0 (14 2.4 -- (16) 

9.2 
(12) 4.7 

O+ C+ 
(16) 

7.1 - - -- (12) 8.7 - - 

(14 
11.6 - - -- - - - - 

Table 3.5. Table of fragmentation patterns for the different species monitored Values 
inside () are the m/z values for the corresponding fragment. R. 1. = relative intensity. 
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Background levels were subtracted from the corresponding readings to give 

partial pressure values for the different m/z species. Calibrated gas containing 

1% '5NO in argon was used to calibrate the mass spectrometer before each 

experiment. It should be noted here that the integrated areas for the m/z species were 

first corrected for contributions from other species. 

The integrated area for the NO signal collected over time, t, is proportional to 

the number of moles of NO passed in the time, t. Therefore, 

0 
J[NOsignal ] 

r= CFNO (3.1) 
moles of NO in time, t 

Where CFNO is the NO conversion factor. The percentage conversion of NO 

during a reaction was then calculated using the equation below. 

%NO conversion = 
moles of NO used 

X100% (3.2) 
Total number of moles of NO 

The conversion factors for the products N2 and N20 were calculated by solving 

equation 3.3 simultaneously using data from two photoreactions with very different 

selectivities. 

Y2 x moles of NO used = moles of N20 produced + moles of N2 produced (3.3) 

where, moles of N2O produced 
[N20 integrated area] 

= (3.4) 
CFN0 

and, 

moles of N2 produced = 
[N2 integrated area (3.5) 

CFN2 
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where 

CFN2 = N2 conversion factor 

CFN2 0= N20 conversion factor 

Due to slight day-to-day variations in the mass spectrometer signal, the 

calculated values of all the conversion factors also varied daily. However, it was not 

practical to calculate CFN2 and CFNo daily and therefore sensitivity factors for N20 

(SFNZ0) and N2 (SFNN) relative to CFNO were calculated according to equations 3.6 

and 3.7. 

SFN20 = 
N2O (3.6) 

CFNO 

SFNN = 
CF, N2 (3.7) 

NO 

Equations 3.3 - 3.7 were solved five times, using different sets of data each 

time, and the average values were used when quantifying the data recorded in the 

photoreaction experiments. The average relative sensitivity factors for N20 and N2 

were 0.3985 and 2.0897, respectively. These sensitivity factors were then used to 

calculate CFNZ and CFN o using the measured CFNO for each experiment. 

Once the daily conversion factors were calculated, the moles of N2 and N20 

produced could be calculated simply by dividing the corrected integrated areas by the 

corresponding conversion factor. The conversion factors for CO2 and CO were 

calculated following similar procedures. 
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The selectivities for N2 and N20 formation were calculated using equations 3.8 

and 3.9, respectively, and their corresponding rates of formation using equations 3.10 

and 3.11, respectively. 

S N, 
Moles of N2 produced x 100% (3.8) 

N2 total moles of N2 + N20 produced 

= 
Moles of N20 produced o SN'O 

total moles of N2 + N20 produced 
x 100% (3.9) 

SN2 = Selectivity for N2 formation 

SN2 0= Selectivity for N20 formation 

Rate of N2 formation = SN2 X 
Moles of NO used (3.10) 

2x time x mass of photocatalyst 

Rate of N20 formation = SN2 pX 
Moles of NO used (3.11) 

2x time x mass of photocatalyst 

3.5 Characterisation techniques and sample handling 

3.5.1 X-ray diffraction (XRD) 

XRD diffraction patterns were recorded using a Philips PW 3710 XPERT 

diffractometer, operated at 40 kV and 40 mA utilising a CuK radiation source 

(X = 0.154 nm). The Philips automatic powder diffraction (PC-APD) software 

program was used to control the scan. Data was collected in step mode with intervals 
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of 0.02°, over a 20 range 20-80° for both powders and the films. A relatively long 

dwell time of 16 s was used so that a good signal-to-noise ratio was achieved. 

Powder samples were mounted on a hollowed glass stage and flattened using a 

microscope slide. The samples coated onto glass slides were mounted directly into 

the instruments sample holder. For the powdered samples, data was collected using a 

moving 0-20 scan whereas for the films, data collection used a fixed 0 glancing angle 

of 30 and a 20 scan of 20-80°. The diffraction patterns were analysed using Philips 

PC based software packages. Due to the small amount of sample available, XRD for 

the rhodium containing photocatalysts were collected using a capillary set-up on a 

Bruker D8 advance diffractometer. 

The Bragg conditions for diffraction become less defined if the sample has a 

very small particle size (< 500 A), which causes the diffraction pattern to broaden. By 

measuring broadening the average particle size can be calculated utilising the Schemer 

Equation. 

D_0.9A. (3.12) 
Bcos9 

D= average particle size 
x= wavelength of radiation 
A= the Bragg angle 
B= width at half peak height 

where B= Bb- BS (3.13) 

Bb ,= observed half width 
Bs = instrument associated half width 
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Equation 3.14 was utilised to determine the volume percentages of both the 

anatase and rutile phases: - 

I=(F)2X px LP xAx expý2M) (3.14) 

I= Area under diffraction reflection 
F= Structure Factor 
p= multiplicity Factor 

1+cos2 29 
LP__ 

(Sifl2OCOSOJ 
(3.15) 

LP = Lorentz-Polarisation Factor 

A=2 (3.16) 

A= Absorption Factor 

it = Linear absorption coefficient 
expt"2 = Temperature Factor 

The equation takes into account a variety of factors which contribute to the 

area under one reflection with that of another and allows a ratio of phase volume 

percentage to be determined. Within the equation, certain factors were discarded due 

to the nature and physical state of the materials studied in this work. The area under 

the reflection (1) was calculated by using the computer package WinFit 

(Version 1.2.1). The Structure Factor (F) was not taken into account since it 

considers both the lattice type (anatase and rutile are both tetragonal) and the peak 

position difference which was negligible (ca. 2 °/20). The multiplicity factor (p) takes 

into account the fact that crystals will be orientated so that reflection can occur for 

example from the (100) planes. Other crystals of different orientation may be in such 

a position that reflection can occur from their (010) or (001) planes. The relative 

proportion of planes contributing to the same reflection enters the intensity equation 

as a quantity p, the multiplicity factor, which is defined as the number of different 
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planes in a form having the same spacing. Multiplicity factors for various lattice 

types are tabulated in Cullity. 3 The Lorentz-Polarisation (LP) factor physically 

describes the time it takes a point in the reciprocal lattice to move through the Ewald 

sphere. The numbers for the anatase (101) and rutile (110) reflections were calculated 

by combining numbers from Lorentz-Polarisation tables, 3 with the 20 positions of the 

observed reflections. The absorption factor (A) does not depend on theta and hence 

was omitted from the equation. Finally the temperature factor (exp('2M)) was not 

included in the calculation as the data was not available for titania. However, the 

temperature factor has a negligible effect on the overall result for anatase (101) and 

rutile (110) reflections are as they are close together (ca. 2 0/20). 

3.5.2 Transmission electron microscopy (TEM) 

The TEM analysis was carried out using a JEOL FX III microscope. The samples 

used were prepared by sonicating a suspension of the bulk material (5-10 mg) in 

propan-2-ol (10 cm3) for 5 min. to aid dispersion of the powder on the TEM grid. 

Two or three drops of the solution were then transferred to a3 mm diameter holey 

carbon coated copper grid (300 mesh). The solvent was then evaporated off at room 

temperature. 

The same apparatus was also used to attain selected area electron diffraction 

patterns of the photocatalysts. Figure 3.5 shows the diffraction of the electron beam 

by a crystalline material. If the sample is amorphous in nature then there will be no 

distinct maxima in the pattern; a diffuse region of rings around the central spot will be 

observed. However, with crystalline materials it is possible to extract the lattice 

spacing parameter d from the electron diffraction pattern by applying the Bragg 

Equation. 

nA, =2dsinO 3.17 
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Figure 3.5. TEM viewed as a diffraction camera. 

The electrons are diffracted through very small angles (1-2°) in TEM, 

therefore, the distance between the camera and the specimen (L) can be approximated, 

because 0 it; tang at small angles (Equation 3.18. - rearrangement of the Bragg 

equation) 

L%=rd (3.18) 

Since the radius (r) can be measured from the photographic image and both 

the camera length (L) and incident electrons wavelength (?, ) are known the interplanar 

spacing d can be calculated and compared to known phases. 

3.5.3 X-ray photoelectron spectroscopy (XPS) 

XPS analysis of the P25 and rhodium modified photocatalysts was carried out 

using a VG Scientific ESCALab X-ray photoelectron spectrometer fitted with a 

non-monochromated twin Mg/Al X-ray source, and a hemispherical sector analyser 

that was operated in the constant analyser mode at electron pass energies of 10-50 eV. 

The electron signal from the spectrometer was amplified by a single channel electron 
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multiplier. An Al Ka X-ray source was used (5 A and 10 kV). The samples used for 

the rhodium XPS were coated onto glass slides as the UV reduction pretreatment 

could not be carried out on the corresponding powders. The slides were adhered to 

steel stubs using carbon tabs. Entry into the analysis chamber was via a fast entry air 

lock and a preparation chamber. 

A wide scan was run for all the samples from 0-1000 eV using a stepsize of 

1 eV and a pass energy of 50 eV to determine the elements were present and which 

regions high resolution scans were required for. High resolution scans were then run 

over the appropriate regions using a stepsize of 0.2 eV and a pass energy of 10 eV. 

XPS analysis of the P25 photocatalysts containing silver were carried out 

using a Kratos AXIS ULTRA XPS system fitted with a monochromated Al Ka X-ray 

source and a hemispherical analyser with eight channeltrons. The source was 

operated at 10 mA and 15 kV. The powdered samples used were attached to the 

sample stage using carbon tabs. 

A wide scan was run for all the samples from 0-1000 eV using a stepsize of 

1 eV and a pass energy of 80 eV to determine the elements present and which regions 

high resolution scans were required for. High resolution scans were then run over the 

appropriate regions using a stepsize of 0.1 eV and a pass energy of 40 eV. 

Data from both instruments was processed using the CASA XPS data analysis 

software. The C Is photoelectron peak was not used for charge correction as the peak 

shape varied from sample to sample. However, the data from the XPS experiments 

conducted with the P25 photocatalysts revealed that the Ti 2p3/2 peak position was the 

same for all the samples. Therefore the spectra were charge corrected using the 

Ti 2p3n photoelectron peak at 459.0 eV. A Shirley background type was used to 

correct the background and the peaks were fitted. Gaussain / Lorentzian contributions 
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of 30 / 70 were used for the fitted peaks. The relative surface compositions of the 

photocatalysts samples were calculated semi-quantitatively from the relative 

intensities of the Ag 3d5rz, (or Rh 3d52), Ti 2p3R and 0 is peaks by taking the 

integrated intensities of the high resolution peaks with standard library Scofield 

sensitivity factors applied. It should be noted that the sensitivity factors were not 

corrected for either the VG ESCALab or Kratos instruments. For a more detailed 

discussion of analysis of XPS data the reader is directed to the publication by Briggs 

and Seah. 4 

3.5.4 Differential scanning calorimetry (DSC) 

DSC analysis was carried out using a Perkin-Elmer DSC-7 instrument. Data 

acquisition and processing was done using Perkin-Elmer's Pyris software. A known 

mass of sample (typically 15-20 mg) was placed in an aluminium pan and heated from 

60-500°C at a rate of 20°C min. -' under an argon atmosphere. The samples were then 

reweighed after the experiment to measure sample weight loss. 
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4 Characterisation 

4.1 Introduction 

The activity and selectivity of a photocatalyst are determined by factors such 

as the crystalline nature and surface properties of the photocatalytically active 

material as well as the type and chemical nature of any modifying elements along 

with their corresponding particle sizes and dispersion. This chapter looks in detail at 

the characterisation of the photocatalysts prepared in order to gain an understanding 

of the effect different pretreatments had upon both the physical and chemical nature 

of the materials. 

In order to gain a clear understanding of the nature of the photocatalysts 

studied in chapters 5-7, a number of complementary analytical techniques were used 

to characterise the three photocatalyst systems that were prepared (unmodified P25, 

Ag-P25 and Rh-P25). The preparation and pretreatment procedures are detailed in 

chapter 3. The data reported in this chapter includes results from X-ray diffraction 

(XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy 

(XPS) and differential scanning calorimetry (DSC). Each method of analysis yielded 

vital information which when combined together gave a more complete picture of the 

photocatalyst structure. 

Although there have already been reports in the literature describing the 

characterisation results of potential and actual photocatalyst materials of the type 

TiO21-3, Ag-TiO2" and Rh-Ti025"7'8, it has also been shown that even subtle changes 

in their preparation methodologies can result in materials with very different natures, 

and ultimately different catalytic properties. °10 As the procedures undertaken in 
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preparing the photocatalytically active materials discussed here have not been 

reported elsewhere it is important that the materials produced are characterised. 

The results from the characterisation of unmodified P25, Ag-P25 and Rh-P25 

are presented in sections 4.2,4.3 and 4.4, respectively with each section presenting 

the results from XRD, TEM and XPS analysis in order. Also included in section 4.2 

are the DSC results from unmodified P25. Section 4.5 includes a discussion of the 

results presented previously in the chapter and conclusions are drawn in section 4.6. 

4.2 Results 

4.2.1 Characterisation of unmodified P25 

4.2.1.1 XRD 

X-ray diffractograms for the powdered P25 photocatalysts calcined for 2h at 

increasing calcination temperatures (70 to 600°C) are shown in figure 4.1. For all the 

calcination temperatures used, the P25 crystal structure consisted of a mixture of 

anatase and rutile phases of Ti02 and the reflections attributed to each phase are 

shown in figure 4.1. The relative intensity of the most intense Bragg reflections for 

anatase (101) and rutile (110) remained unaltered up to 450°C, indicating that there 

was no change in the composition of the crystalline phases present and the original 

composition of 77 vol. % anatase and 23 vol. % rutile was maintained. Increasing the 

calcination temperature further to 600°C resulted in an increase in the intensity of the 

rutile reflections relative to anatase reflections therefore indicating an increase in the 

amount of rutile phase present. Assignment of the reflections observed for P25 dried 

at 70°C to lattice planes are given in table 4.1. Calculations using the areas of the most 
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intense reflections showed the composition to be 72 vol. % anatase and 

28 vol. % rutile. 

The slight broadness of the reflections seen in the diffractograms indicates 

that P25 was nanocrystalline in nature. Calculation of the crystallite sizes confirmed 

no change in crystallite size when unmodified P25 was calcined at temperatures up to 

450°C; the crystallite sizes for anatase and rutile remained unaltered at 

ca. 28 nm and ca. 65 nm respectively. After calcination at 600°C there was a slight 

increase in both the anatase and rutile crystallite sizes to 30.5 nm and 70 nm, 

respectively (Table 4.2). Increasing the calcination time at 600°C resulted in the 

growth of both anatase and rutile crystallites along with further transformation of 

anatase into rutile. 

7 

!O 

c 
a) 
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20 30 40 50 60 70 80 

20/° 

Figure 4.1. XRD diffractograms for unmodified P25 photocatalysis calcined at 
temperatures of 70°C (A), 120°C (B), 200°C (C), 450°C (D) and 600°C (E). 
Reflections due to anatase and rutile are indicated by the symbols * and t 

respectively. 
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Glancing angle XRD diffractograms of P25 coated glass slides, calcined at 

70°C and 600°C are shown in figure 4.2. The hump that can be seen over the lower 

20 values was assigned to the amorphous nature of the glass substrate. Assignment of 

the reflections that were detected, revealed that for both calcination temperatures 

investigated (70°C and 600°C), the P25 crystal structure consisted of a mixture of 

anatase and rutile phases. After calcination at 600°C the relative intensity of rutile to 

anatase reflections appear to be very close to that for the as dried coated slide 

although actual values could not be used due to the varying background levels. 

These results showed similar trends for both the powdered P25 photocatalysts 

and the coated slides and that there were no significant differences in the XRD pattern 

for P25 after 2h calcinations at 600°C. Therefore, characterisation results from 

investigations of powdered P25 photocatalysts were interpreted as being the same as 

the photocatalysts deposited onto a glass slide. 
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Peak position 
/ 20 

d/A Relative Intensity Assignment 

25.31 3.5161 100 Anatase (101) 
27.44 3.2478 25.1 Rutile (110) 
36.09 2.4867 10.8 Rutile (200) 
36.98 2.4289 5.1 Anatase (103) 
37.84 2.3757 18.8 Rutile (004) 
38.57 2.3324 5.9 Anatase (112) 
39.20 2.2963 1.6 Rutile (200) 
41.26 2.1863 5.6 Rutile (111) 
44.05 2.0541 1.8 Rutile (211) 
48.04 1.8924 26.6 Anatase (200) 
53.94 1.6985 15.6 Anatase (105) 
54.35 1.6866 14.3 Rutile (211) 
55.06 1.6665 15.4 Anatase (213) 
56.63 1.6240 3.9 Rutile (220) 
62.09 1.4937 2.5 Anatase (213) 
62.73 1.4800 12.6 Rutile (002) 
64.06 1.4524 1.6 Rutile (310) 
68.91 1.3615 7.1 Rutile (301) 
70.07 1.3418 3.0 Anatase (220) 
70.36 1.3370 3.3 Rutile (311) 
75.09 1.2641 7.3 Anatase (215) 
76.10 1.2498 2.0 Anatase (301) 

Table 4.1. Table of peak positions and assignment of the Bragg reflections for 

unmodified P25 photocatalyst powder dried at 70°C. 

Calcination temperature 
/ °C 

Percentage of Rutile 
/ vol. % 

Crystallite size / mit 
Anatase Rutile 

70 23.0 28.0 66.3 
120 23.2 28.8 64.8 
200 23.0 28.2 62.7 
450 23.0 28.3 59.6 

600 (2 h) 28.0 30.5 69.6 
600 (18 h) 65.0 37.2 88.9 

Table 4.2. Effect of calcination temperature on the composition and crystallite sizes 
of unmodified P25 photocatalysts. 
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Figure 4.2. Glancing angle XRD diffractograms of unmodified P25 coated glass 
slides calcined at 70°C (A) and 600°C (B). Reflections due to anatase and rutile are 
indicated by the symbols * and t respectively. 

4.2.1.2 TEM 

TEM analysis of the unmodified P25 photocatalyst powders calcined in the 

temperature range of 70°C to 450°C confirmed the results observed in the XRD 

analysis. Measurement of the crystallite sizes from the TEM micrographs showed the 

average particle size to be ca. 20 nm for all the calcination temperatures, which is 

consistent to the anatase crystallite sizes calculated from the X-ray data. A typical 

micrograph is shown in figure 4.3 (A). No significant particle growth was observed in 

the TEM micrograph of P25 sample calcined at 600°C for 2h (figure 4.3 (B)). 

The selected area electron diffraction patterns observed for all the unmodified 

P25 photocatalysts were diffuse ring patterns, indicating the materials were all 

nanocrystalline in nature. Calculations of the d-spacings from the diffraction patterns 

confirmed only the presence of anatase and rutile in each sample (Table 4.3). 
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Figure 4.3. TEM micrographs and their corresponding selected area electron 
diffraction patterns for unmodified P25 photocatalysts calcined at 450°C (A) and 
600°C (B). 

Ring d/A Assignment 
1 3.55 Anatase (101) 
2 3.26 Rutile (110) 
3 2.50 Rutile (101) 
4 2.35 Anatase (004) 
5 2.16 Rutile (111) 

Table 4.3. Typical assignment of the d-spacing for unmodified P25 calculated from 
electron diffraction patterns. 

4.2.1.3 XPS 

For survey scans of the unmodified P25 photocatalysts calcined at 

temperatures up to 600°C, the same peaks with similar intensities were observed, a 

typical XPS wide scan from 0-1000 eV is shown in figure 4.4. All of the XPS 

photoelectron peaks observed were assigned to either Ti02 or adventitious carbon. 

Calculations of the weight percentage of oxygen relative to titanium gave a value of 

ca. 41 wt. % oxygen for all of the calcination temperatures used. 
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Figure 4.4. Typical XPS wide scan for an unmodified P25 photocatalyst. 

High resolution scans of the Ti 2p photoelectron peaks from unmodified P25 

photocatalysts calcined at temperatures in the range 70°C to 600°C (figure 4.5. ) were 

charge corrected using the carbon 1s photoelectron peak at 285.0 eV. It can be seen 

that there were no significant changes in either the peak position (459 eV) or peak 

shape (FWHM was ca. 1.0 eV), even after calcination at 600°C where there was a 

higher percentage of rutile present. One component peak fitted the Ti 2p data well for 

each of the calcination temperatures used. Typical fitted curve and the peak positions 

and widths of the Ti 2p3n peaks are presented in figure 4.6 and table 4.4 respectively. 

The binding energy of the 01s photoelectron peaks, determined from high resolution 

scans, was 530.2 eV for all the calcination temperatures investigated. 
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Figure 4.5. High resolution XPS spectra of the Ti 2p photoelectron peaks for 

unmodified P25 photocatalysts calcined at temperatures of 70°C (A), 120°C (B), 
200°C (C), 450°C (D) and 600°C (E). 
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Figure 4.6. Typical fitted curve for the Ti 2p312 photoelectron peak. 
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Calcination Temperature Ti 2p32 peak position Ti 2Q32 FWHM 
/ °C / eV / eV 
70 458.97 1.07 
120 459.00 1.01 
200 458.98 1.02 
450 458.96 1.01 
600 459.02 1.02 

Table 4.4. Effect of calcination temperature on the Ti 2p3l2peak positions and FWHM 
for unmodified P25 photocatalysts. 

4.2.1.4 DSC 

DSC analysis was carried out on P25 photocatalysts that had been dispersed in 

either TDW or acidified TDW (using HN03) and then dried at 70°C. The resulting 

DSC traces are shown in figure 4.7. The sharp rise at the start of each trace was not 

due to the samples but rather the electronics of the equipment. The DSC trace for the 

P25 that had been dispersed in acidified TDW (A) showed an endothermic reaction in 

the temperature range of ca. 65-125°C and sharp exotherm at 214°C. There also 

appeared to be an endothermic reaction occurring from 214°C to 410°C. After the 

sample had been heated to 500°C, it was cooled to room temperature under an argon 

atmosphere in the sample holder, and the experiment was repeated. 

The DSC trace for the re-run sample (B) showed a shallow, broad, endotherm 

starting at ca. 214 °C and ending at 410 T. The same sample was then redispersed in 

acidified TDW, dried at 70°C and the experiment repeated, yielding a similar DSC 

trace (D) as to the original sample (A). This repeatability after redispersion indicated 

that the changes that occurred were due to reactions of water and / or HN03 and not 

any phase change of P25. 
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Figure 4.7. DSC traces for P25 dispersed in acidified TDW (A), rerun of sample 
(A) after cooling to room temperature (B), P25 dispersed in TDW (C) and sample 
(A) redispersed in acidified TDW (D). 

To clarify the nature of the endothermic and exothermic reactions, another P25 

sample that had been dispersed in TDW with no acid present and dried at 70°C was 

run (C). The results showed the same endothermic reactions in the temperature 

ranges 65-125°C and 200-410°C; however, the exothermic reaction at 214°C was 

absent. 

To confirm the removal of the different species from the surface of P25, 

experiments A and B were repeated using a known mass of sample, but the scan was 

interrupted when the temperature reached 130°C, 220°C and 500°C and the sample 

mass was recorded at each interval. At the end of the second run (B) the sample 
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weight was measured again. Table 4.5 shows that there was a reduction in the mass 

of the sample with increasing temperature. 

Temperature Total percentage weight loss 
/ °C /wt. % 
130 0.80 
220 1.10 

500 (1 run) 1.85 
500 (2°d run) 2.25 

Table 4.5. Table of weight loss for P25 dispersed in acidified TDW then heated in a 
DSC experiment. 

4.2.2 Characterisation of silver modified P25 photocatalysts 

4.2.2.1 Introduction 

Silver modified P25 photocatalysts were prepared by impregnation of P25 

with silver nitrate. The experimental procedures are given in chapter 3. The silver 

loadings investigated were 0.1 wt. %, 1 wt. % and 5 wt. % of silver with respect to 

Ti02. Powders dried at 70°C were calcined for 2h at 120°C, 200°C, 450°C, and 

600°C. The resulting powders were then used for characterisation of both the P25 

support and the silver species present. 

P25 coatings with the same silver loadings were prepared and calcined in an 

identical manner to the powdered samples. The coated slides were used for 

determining the photocatalytic behaviour of the photocatalyst prepared. 

4.2.2.2 XRD 

The X-ray diffractograms for powdered 0.1Ag-P25 photocatalysts calcined for 

2h at increasing temperatures (70 to 600°C) were comparable to those observed for 

the unmodified P25 photocatalysts calcined at those temperatures. No reflections due 
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to any silver containing phases were observed. The composition and crystallite sizes 

of the P25 phases (anatase and rutile) were similar to the corresponding values for 

unmodified P25 photocatalysts (table 4.6. ). 

Calcination temperature 
/ °C 

Percentage of Rutile 
/ vol. % 

Crystallite size / nm 
Anatase Rutile 

70 23.3 28.1 65.1 
120 23.0 28.2 66.1 
200 23.2 27.8 61.7 
450 22.9 28.8 64.8 
600 27.8 30.4 70.2 

Table 4.6. Effect of calcination temperature on the composition and crystallite sizes 
of 0. lAg-P25 photocatalysts. 

The X-ray diffractograms for 1 Ag-P25 photocatalysts calcined at temperatures 

up to 450°C were very similar to those observed for the unmodified P25 

photocatalysts calcined at the same temperatures. Again no reflections due to any 

silver containing species were observed. Calculation of the composition and 

crystallite sizes were consistent with those for the unmodified P25 system (table 4.7). 

Calcination temperature 
/ °C 

Percentage of Rutile 
/ vol. % 

Crystallite size / nm 
Anatase Rutile 

70 23.7 28.0 62.6 
120 23.2 28.8 59.7 
200 22.4 28.2 65.8 
450 23.5 28.3 65.0 
600 31.5 32.8 79.3 

Table 4.7. Effect of calcination temperature on the composition and crystallite sizes 
of IAg-P25 photocatalysts. 

After calcination at NOT for 2 h, the relative intensity of rutile to anatase 

reflections increased more than was observed for the unmodified P25 photocatalyst 

calcined using identical conditions (figure 4.8). Calculation of the composition of the 
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P25 support confirmed that there was 31.5 vol. % of rutile phase present compared to 

only 28 vol. % for the unmodified P25 calcined at 600°C for 2 h. 
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Figure 4.8. Powder XRD diffractograms for lAg-P25 photocatalysts calcined at 
450°C (A) and 600°C (B). Reflections due to anatase and rutile are indicated by the 
symbols * and t, respectively. 

In the X-ray diffractograms for 5Ag-P25 calcined at low temperatures 

(70-200°C), reflections due to silver nitrate were observed along with the reflections 

for anatase and rutile (figure 4.9). Assignment of the reflections observed for 

5Ag-P25 dried at 70°C to a given lattice plane are shown in table 4.8. As the 

calcination temperature was increased from 70°C to 200°C the relative intensity of the 

silver nitrate reflections, with respect to the Ti02 reflections, decreased. After 

calcination at 450°C no reflections due to any silver containing species were 

observed, but after calcination at 600°C, reflections assigned to metallic silver were 

detected (figure 4.9 (b)). 

105 



(a) 

(E) 

(ý) 
,ý _ý 

ýýý 

ýA)- 
s 

20 30 40 50 

20/° 

sts t 

60 70 80 

(b) 

4 

600 OC 

450 °C 

35 36 37 38 39 40 
20 /° 

Figure 4.9. (a) Powder XRD diffractograms for 5 wt. %- P25 photocatalysts calcined 
at 70°C (A), 120°C (B), 200°C (C), 450°C (D) and 600°C (E). (b) Enlarged section of 
(a) showing metallic silver diffractions. Reflections due to anatase, rutile, silver 
nitrate and silver are indicated by the symbols * and f, f, and a4, respectively. 
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From the diffractograms it can be seen that the phase transformation behaviour 

of the P25 substrate was altered when a silver loading of 5 wt. % was used. At 

temperatures up to 200°C, the structure and composition of the P25 support remained 

unaltered with ca. 23 vol. % rutile present, with a particle size of ca. 29 nm, and an 

anatase particle size of ca. 28 nm. However, after calcination at 450°C for 2 h, an 

increase was measured in both the anatase (31 nm) and rutile (67 nm) crystallite sizes 

along with an increase in the percentage rutile phase to 25.9 vol. %. For all the other 

systems investigated no change in the P25 crystallinity was observed after calcination 

at 450°C for 2h Further evidence for an increase in the rate of the anatase-to-rutile 

phase transformation kinetics came from the sample calcined at 600°C, which showed 

an increase in the percentage of rutile present up to 47 vol. %, compared to the 

unmodified P25 system at 600°C which consisted of only 28 vol. % rutile. The 

crystallite sizes of both anatase and rutile were larger for the sample containing 

5 wt. % silver (table 4.9). 
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Peak position 
/ 20 

d/ 
Relative intensity Assignment 

21.67 4.0977 9.96 Silver nitrate (102) 
24.28 3.6628 6.55 Silver nitrate (020) 
25.32 3.5147 100.00 Anatase (101) 
27.45 3.2466 24.06 Rutile (110) 
29.62 3.0135 9.71 Silver nitrate (211) 
31.88 2.8049 6.68 Silver nitrate (113) 
32.77 2.7307 5.42 Silver nitrate (122) 
35.47 2.5288 10.42 Silver nitrate (220) 
36.09 2.4867 10.96 Rutile (200) 
36.98 2.4289 5.42 Anatase (103) 
37.83 2.3763 19.61 Anatase (004) 
38.56 2.3329 5.80 Anatase (112) 
39.10 2.3019 4.74 Rutile (200) 
40.08 2.2479 2.64 Silver nitrate (131) 
41.26 2.1863 5.68 Rutile (111) 
41.60 2.1692 1.93 Silver nitrate (311) 
42.67 2.1173 0.84 Silver nitrate (302) 
43.46 2.0806 5.55 Silver nitrate (024) 
44.06 2.0536 1.87 Rutile (211) 
46.20 1.9634 2.16 Silver nitrate (231) 
48.06 1.8916 27.35 Anatase (200) 
49.06 1.8554 1.71 Silver nitrate (313) 
49.71 1.8326 1.77 Silver nitrate (322) 
53.94 1.6985 17.48 Anatase (105) 
54.36 1.6863 14.83 Rutile (211) 
55.06 1.6665 16.22 Anatase (213) 
56.63 1.6240 3.81 Rutile (220) 
62.09 1.4937 3.68 Anatase (213) 
62.74 1.4797 13.35 Rutile (002) 
64.08 1.4520 1.61 Rutile (310) 
65.54 1.4231 0.42 Silver nitrate (235) 
67.42 1.3880 0.61 Silver nitrate (342) 
68.91 1.3615 7.67 Rutile (301) 
69.80 1.3463 2.35 Anatase (220) 
70.30 1.3380 6.03 Rutile (311) 
75.09 1.2641 8.55 Anatase (215) 
76.08 1.2501 1.93 Anatase (301) 

Table 4.8. Table of peak positions and assignment of the Bragg reflections for 
5Ag-P25 photocatalyst powder dried at 70°C. 
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Calcination temperature 
/ °C 

Percentage of Rutile 
/ vol. % 

Crystallite size / nm 
Anatase Rutile 

70 22.7 28.4 64.3 
120 22.9 28.9 63.2 
200 23.1 28.6 58.4 
450 25.9 31.0 67.4 
600 47.0 40.3 75.2 

Table 4.9. Effect of calcination temperature on the composition and crystallite sizes 
for 5Ag-P25 photocatalysts. 

4.2.2.3 TEM 

TEM micrographs of both lAg-P25 and 5Ag-P25 photocatalysts calcined in 

the temperature range 70°C to 450°C were very similar to the corresponding 

micrographs for unmodified P25 calcined at the same temperatures. No silver 

containing particles could be resolved, although EDX analysis confirmed the 

existence of silver over all the P25 support. Calculation of the d-spacings, from the 

selected area diffraction patterns, confirmed only the presence of anatase and rutile. 

In the micrographs of both lAg-P25 and 5Ag-P25 calcined at 600°C 

(figure 4.10 (A) and (B) respectively), small spherical particles were observed. EDX 

analysis of the particles confirmed that they were silver particles. It was also apparent 

from the micrograph of the 5Ag-P25 sample that the titania particles (the support 

material) were larger than were observed for the unmodified P25 calcined at 600°C. 

Further evidence of crystal growth was found from the corresponding electron 

diffraction pattern which showed obvious speckling, which is indicative of a 

polycrystalline phase. This result is consistent with the findings from XRD analysis, 

which showed that the presence of silver increased the rate of the anatase-to-rutile 

phase transformation. 
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Figure 4.10. TEM micrographs and their corresponding selected area electron 
diffraction patterns for lAg-P25 (A) and 5Ag-P25 (B) calcined at 600°C. 

4.2.2.4 XPS 

As the chemical shifts between Ago and Ag+ species are less than I eV and 

due to the range of Ag 3d peak position values reported in the literature, XPS analysis 

of standard silver compounds, AgNO3, Ag2O and Ag foil, was undertaken. High 

resolution scans of the Ag 3d512 peaks are presented in figure 4.11. The trend observed 

was a decrease in the binding energies of the Ag 3d512 photoelectrons from AgNO3 

(368.9 eV) to Ag2O (368.4 eV) and finally to Ago (368.1 eV). 

For both silver oxide and silver nitrate one peak fitted the data well. The 

positions and FWHM of the fitted peaks are presented in table 4.10. However, the 

Ag 3d512 peak for the Ag foil was determined to be the sum of multiple peaks 

(figure 4.12. ), the second being due to a silver oxide layer that had formed on the 

metal surface. 
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Figure 4.11. Ag 3d5/2 spectra for standard silver compounds ofAgNO3 (A), Ag2O (B) 
and Agfoil (C). 

Compound 
Ag 3dsi2 

BE / eV FWHM / eV 
Silver Nitrate 368.9 1.12 
Silver Oxide 368.4 1.15 

Silver foil 368.1 0.65 
(368.2)* (1.48)* 

Table 4.10. Ag 3d5; ß photoelectron peak positions and FWHM for standard silver 
compounds. * Values for the oxide layer detected on the silver foil. 
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Figure 4.12. Peak fitting for the Ag 3d5,2XPS spectrum for silver f il. 

XPS analysis of the powdered 0.1 Ag-P25 photocatalysts did not reveal any 

peaks arising from silver species as the silver loading was below the detection limits 

for the spectrometer used. Therefore, the nature of the silver species in these 

photocatalysts was inferred from the data obtained for the lAg-P25 and 5Ag-P25 

systems. 

Survey scans from 1 Ag-P25 photocatalysts calcined at increasing temperatures 

(70°C to 600°C) all showed identical features that confirmed the presence of silver, 

titanium, oxygen and adventitious carbon. No nitrogen peak was detected in the 

survey scan (figure 4.13). 

The high resolution scans of the Ag 3d512 peaks (figure 4.14. ) were slightly 

broadened for all of the calcination temperatures, indicating that they were the sum of 

multiple peaks. Using the data obtained from the silver standards the fitted peaks (A) 

and (B) (figure 4.12. ) were assigned to Ag+ and Ago species, respectively. 
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Figure 4.13. Representative XPS survey scan of a ]Ag-P25 photocatalysi. 

As the calcination temperature was increased from 70°C to 600°C the relative 

intensity of the Ag+ to Ago decreased. Calculation of the relative atomic percentages 

of Ag+ to Ag° confirmed that increasing amounts of Ag° were present as the 

calcination temperature increased (table 4.11). 

Quantification of the atomic percentage of silver species relative to titanium 

and oxygen ions was preformed using standard library Scofield sensitivity factors and 

the results are shown in table 4.12. For all the calcination temperatures investigated, 

the atomic percentage of silver with respect to Ti02 was ca. I at. %. However, no real 

trend was observed with increasing calcination temperature as the signal-to-noise ratio 

was poor due to the low silver loading, resulting in larger errors when calculating 

peak areas. Hence, no indication of the dispersion of the silver species on the P25 

could be inferred from this data. 
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Figure 4.14. Fitted high resolution XPS spectra of the Ag 3d512 peaks for 1Ag-P25 

photocatalysts calcined at 70°C (A), 120°C (B), 200°C (C), 450°C (D) and 600°C (E). 
The annotation shown in (A) is the same as for the other spectra shown. 
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Calcination BE / eV FWHM / eV Silver species ratio 
temperature /% 

oC Ago Ag+ Ago Ag+ Ago Ag+ 
70 368.0 368.3 0.64 1.38 4.2 95.8 
120 368.0 368.4 0.61 1.30 5.7 94.3 
200 368.0 368.3 0.61 1.30 9.5 90.5 
450 367.9 368.3 0.61 1.29 15.8 84.2 
600 367.9 368.3 0.67 1.30 33.6 66.4 

Table 4.11. Table of Ag 3dsn peak positions, FWHM and atomic percent of 
components for IAg-P25 photocatalysts calcined at increasing calcination 
temperatures. 

Calcination temperature 
/ °C 

Atomic percent of Ag 
/ at. % 

Weight percentage of Ag 
/ wt. % 

70 1.01 2.50 
120 0.84 2.08 
200 0.82 2.03 
450 0.70 1.73 
600 1.00 2.48 

Table 4.12. Table of XPS derived atomic and weight percentages of Ag species for 
IAg-P25 photocatalysts calcined at increasing calcination temperatures. 

The survey spectra for 5Ag-P25 photocatalysts contained the same peaks as 

the corresponding spectra from the lAg-P25 system, but the relative intensity of the 

silver 3d peaks was higher due to the higher loading of silver. From the high 

resolution scans (figure 4.15 and table 4.13) it can be seen that, as with the lAg-P25 

photocatalysts, the relative abundance of Ag° species with respect to Ag+ species 

increased with increasing calcination temperature. It should be noted that the 

percentage of Ag° species was greater for all the calcination temperatures for the 

5Ag-P25 system, compared to the lAg-P25 system. 
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Figure 4.15. Fitted high resolution XPS spectra of the Ag 3d5/2 peaks for 5Ag-P25 

photocatalysts calcined at 70°C (A), 120°C (B), 200°C (C), 450°C (D) and 600°C (E). 
The annotation shown in (A) is the same as for the other spectra shown. 
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Calcination BE / eV FWHM / eV Silver species ratio 
temperature /% 

/ oC Ago Ag+ Ago Ag+ Ago Ag+ 
70 368.0 368.3 0.64 1.20 7.8 92.2 
120 368.1 368.2 0.57 1.08 10.8 89.2 
200 368.0 368.3 0.61 1.06 25.9 74.1 
450 368.0 368.3 0.60 1.08 29.6 70.4 
600 368.0 368.2 0.65 1.18 63.8 36.2 

Table 4.13. Table of Ag 3ds12 peak positions, FWHM and atomic percentage of the 
silver components for 5Ag-P25 photocatalysts calcined at increasing calcination 
temperatures. 

The weight percentage of Ag for the 5Ag-P25 photocatalyst dried at 70°C was 

9.5 wt. %, (Table 4.14) which is significantly higher than the theoretical silver loading 

of 5 wt. % that was used. With increasing calcination temperatures (up to 200°C) 

there was an increase in the weight percentage of silver (as detected by XPS analysis), 

indicating that there was an increase in the dispersion of the silver species. At 

calcination temperatures of 450°C and 600°C a reduction in the percentage of silver 

was observed, indicating decreased levels of dispersion. 

Calcination temperature 
/ °C 

Atomic percentage of Ag 
/ at. % 

Weight percentage of Ag 
/ wt. % 

70 3.8 9.5 
120 5.0 12.3 
200 8.3 20.5 
450 7.8 19.4 
600 7.2 17.8 

Table 4.14. Table of atomic and weight percentages of Ag with respect to TiO2 for 
5,4g-P25 photocatalysts calcined at increasing calcination temperatures. 
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4.2.3 Characterisation of rhodium modified P25 photocatalysts 

4.2.3.1 Introduction 

Rhodium modified P25 photocatalysts were prepared by impregnation of P25 

with rhodium nitrate as described in chapter 3. The rhodium loadings investigated 

were 0.1 wt. %, 1 wt. % and 5 wt. % of rhodium metal with respect to Ti02. Unlike 

the unmodified P25 and silver modified photocatalysts the rhodium containing 

photocatalysts were not simply calcined at increasing temperatures. The preparation 

treatments used for the rhodium containing systems were mainly reduction processes 

in the hope of producing metallic rhodium species on the surface of the P25, although 

one sample calcined at 200 °C was investigated. Both UV and thermal reductions 

were investigated, which in practice could only be implemented to the photocatalyst 

coatings and not the powdered samples. Therefore all of the characterisation of the 

rhodium containing systems was performed either using the coated slides directly or 

using the small amount of sample which could be removed from the glass slides. 

4.2.3.2 XRD 

Due to the small amount of powdered sample available, a standard powder 

XRD configuration was not possible for the rhodium containing photocatalysts, 

therefore a capillary XRD set-up was used to characterise the crystalline nature of the 

samples. As shown by the X-ray diffractogram of the unmodified P25 coating 

glancing angle XRD was not a feasible option due to the low intensities recorded (see 

Figure 4.2. ). 

For comparison purposes a diffractogram from unmodified P25 dried at 70°C 

was collected using the capillary configuration (figure 4.16. (A)). Although the signal 
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to noise ratio from this data was noticeably worse than for the bulk powder X-ray 

diffractograms, quantification of the data yielded comparable values of crystallite size 

and phase composition to those calculated using the bulk powder X-ray diffraction 

data (table 4.15. ). 
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Figure 4.16. Capillary X-ray diffractograms for P25 (A) and 5Rh-P25 dried at 70°C' 
(B), calcined at 200°C (C), UV reduced (D) and hydrogen reduced(E). Reflections 
due to anatase and rutile are indicated by the symbols * and t respectively. 

Photocatalyst Percentage of Rutile 
/ vol. % 

Crystallite size / nm 
Anatase Rutile 

P25 dried at 70°C 23.1 27.9 57.2 
5Rh-P25 dried at 70°C 22.5 26.8 62.8 

5Rh-P25 calcined at NOT 20.5 24.2 61.2 
5Rh-P25 / UV reduced 22.4 27.6 57.4 

5Rh-P25 / hydrogen reduced 21.4 29.2 57.9 

Table 4.15. Phase compositions and crystallite sizes for P25 and 5Rh-P25 samples, 
calculated from capillary XRD data. 

No reflections arising from any rhodium containing species were observed for 

any of the 5Rh-P25 photocatalysts (figure 4.16. (B-E)). The reflections observed 

were attributable to either anatase or rutile. However, the two reflections observed at 
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43.2° and 50.2° in the rhodium modified photocatalysts could not be assigned to any 

Ti02 phases or any Rh containing species. Standard powder XRD of 5Rh-P25 

photocatalyst dried at 70°C did not contain these two peaks observed in the X-ray 

diffractogram collected using the capillary set-up, it was therefore assumed these two 

peaks were due to experimental error. 

4.2.3.3 TEM 

TEM micrographs of both 1Rh-P25 and 5Rh-P25 photocatalysts that had been 

calcined at 70°C and 200°C were similar to the corresponding micrographs for 

unmodified P25 calcined at the same temperatures. No rhodium containing particles 

could be resolved, although EDX analysis confirmed the presence of rhodium species 

distributed evenly over the P25 support. As with the XRD analysis, no rhodium 

species could be detected for any of the 0.1Rh-P25 photocatalysts. 

Figure 4.17 (A) shows a TEM micrograph of 1Rh-P25 that had been subjected 

to hydrogen reduction, and although no individual Rh particles were resolved, EDX 

analysis confirmed the presence of rhodium. The micrographs obtained from 

5Rh-P25 that had been subjected to UV and hydrogen reductions showed small 

spherical particles (figure 4.17 (B) and (C) respectively). The particles formed from 

the UV reduction treatment were smaller than those formed during the hydrogen 

reduction at 450°C. Indexing selected area diffraction patterns indicated only the 

presence of anatase and rutile for all the Rh-P25 systems. This is as expected due to 

the low volume concentration of rhodium species. 
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Figure 4.17. TEM micrographs and their corresponding selected area electron 
diffraction patterns for I Rh-P25 hydrogen reduced (A), 5Rh-P25 UV reduced (B) and 
5Rh-P25 hydrogen reduced (C). 

4.2.3.4 XPS 

XPS analysis of the 0.1 Rh-P25 coatings did not show any peaks arising from 

rhodium species, as the rhodium loading was below the detection limits for the 

spectrometer used. Therefore the nature of the rhodium species in these 

photocatalysts was inferred from the data obtained for the l Rh-P25 and 5Rh-P25 

systems. 
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Survey scans from the l Rh-P25 systems all showed the same features 

(regardless of the pretreatments), that confirmed the presence of rhodium, titanium, 

oxygen and adventitious carbon. However, many other peaks were observed 

compared to the XPS analysis of the Ag-P25 powders. XPS analysis of the glass 

substrate confirmed the origin of the extra peaks to be from the glass. A typical 

survey scan is shown in figure 4.18. 
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Figure 4.18. A typical XPS wide scan for a Rh-P25 photocatalyst supported on a 
glass slide. 

Peak fitted high resolution scans for the Rh 3d peaks from the l Rh-P25 

samples are shown in figure 4.19. The binding energies of the Rh 3d512 photoelectron 

peaks for I Rh-P25 photocatalysts that had been calcined at 70°C (A) and 200°C (B) 

were 309.5 eV and 309.6 eV respectively. Whilst, the binding energies of the Rh 

3d513 photoelectrons for the 1 Rh-P25 photocatalysts that had been subjected to UV (C) 

and hydrogen (D) reductions were shifted to 307.3 eV and 307.3 eV respectively, 

indicating a change in their chemical state. Table 4.16 presents the binding energies of 
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the Rh 3d512 photoelectrons and the FWHM of the fitted peaks for all of the 1 Rh-P25 

photocatalysts. 
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Figure 4.19. Fitted high resolution XPS spectra of Rh 3d peaks for J Rh-P25 

photocatalysts that had been calcined at 70°C (A), calcined at 200°C (B), UV reduced 
(C) and hydrogen reduced (D). 
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Pretreatment Rh 3d5R peak position Rh 3d5R FWHM 
/eV /eV 

1Rh-P25 dried at 70°C 309.48 2.38 
1Rh-P25 calcined at 200°C 309.59 2.15 

1Rh-P25 / UV reduced 307.25 2.44 
1Rh-P25 / hydrogen reduced 307.34 2.08 

Table 4.16. Table of Rh 3ds12 peak positions and FWHMfor I Rh-P25 photocatalysts. 

Figure 4.20 shows the peak fitted Rh 3d high resolution scans for 5Rh-P25 

photocatalysts, which had been prepared using the same procedures used to pre-treat 

the 1 Rh-P25 photocatalysts. It can clearly be seen that the same trend of a decrease in 

the binding energy of the Rh 3d photoelectrons for the samples that had been 

subjected to reducing environments, indicating that the rhodium species were reduced. 

The peak positions (table 4.17) after calcination at 70°C and 200°C correspond to 

Rh 3+ species, and after hydrogen and UV treatments the rhodium correspond to Rh°. 
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Figure 4.20. Fitted high resolution XPS spectra of Rh 3d peaks for 5Rh-P25 

photocatalysts that had been calcined at 70°C (A), calcined at 200°C (B), UV reduced 
(C), and hydrogen reduced (D). 

Pretreatment Rh 3d512 peak position Rh 3d5,2 FWHM 
/eV /eV 

5Rh-P25 dried at 70°C 309.48 2.73 
5Rh-P25 calcined at 200°C 309.62 2.77 

5Rh-P25 / UV reduced 307.28 2.96 
5Rh-P25 / hydrogen reduced 307.29 2.58 

Table 4.17. Table of Rh 3d5/2 peak positions and FWHMfor 5Rh-P25 photocatalysts. 
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4.3 Discussion 

4.3.1 Unmodified P25 photocatalysts 

The phase transformation behaviour observed from the XRD analysis of 

unmodified P25 photocatalysts calcined at temperatures of up to 600°C are in 

agreement with results published by Zegaoui, " in that there was no anatase-to-rutile 

phase transformation at temperatures up to 600°C. The phase transformation 

observed at 600°C for P25 in the work reported in this thesis has not been reported 

elsewhere, however, very similar trends have been reported for P25 calcined at NOT 

for increasing time periods. 12 It was shown that as the calcination time increased the 

percentage rutile present increased from 31 wt. % (29 vol. %) to 51 wt. % 

(48.8 vol. %) after 3h and 6h respectively. After 96 h only a rutile phase was 

detected. 

A conclusion that can be drawn by combining the results presented here and 

those reported in the literature" is that the temperature range for the phase 

transformation of anatase-to-rutile for P25 was at least over the range 450-700°C. 

Similar temperature ranges for the anatase-to-rutile phase transformation have been 

reported for sol-gel prepared titanias. 13"4 Further work investigating the precise 

values for the phase transformation temperature range is beyond the scope of this 

thesis as increasing the amount of rutile phase present is not beneficial for 

photocatalysts. 

TEM analysis of the same unmodified P25 samples confirmed the results 

obtained from XRD analysis, in that the only Ti02 phases detected were anatase and 

rutile. However, in contradiction to the results from XRD analysis, measurements of 

the particle sizes from the TEM micrographs did not reveal any significant particle 

growth for the sample that had been calcined at 600°C for 2 h. This can be explained 
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by the differing natures of the two techniques, for XRD analysis the calculated 

crystallite sizes are an average from a relatively large volume of material, whilst TEM 

analysis utilises a limited amount of sample and may not always give a representative 

portrayal of the sample. 

From the XPS wide scans of the unmodified P25 photocatalysts calcined in 

the temperature range of 70°C-600°C, the value of the weight percentage of oxygen 

relative to titanium (41 wt. %) was very close to the theoretical value for 

stoichiometric Ti02 (40.5 wt. % oxygen), indicating the XPS peaks observed for Ti 

and 0 originated entirely from TiO2 and not from other sources. 

The stability of the Ti 2p3rz peak position after varying calcination 

temperatures can be explained as the crystal structures of anatase and rutile phases of 

Ti02 are chemically very similar, therefore it can be expected that no shift in the 

Ti 2p3r2 peak position would be detected irrespective of the phase composition. 

Confirmation of this is found from the XPS studies conducted by Noda et al. 15. It was 

shown that the Ti 2p3R binding energy was identical in anatase and rutile titanias. Due 

to the reproducibility of the Ti photoelectron peak positions for P25, the XPS data for 

the transition metal modified P25 systems were charge corrected using the Ti 2p3/2 

peak at 459.0 eV. For these systems charge correction in this manner was more 

reliable than using the broad C Is peaks, as the C Is peak shape varied from sample to 

sample. 

From the DSC experiments of P25 dispersed in TDW and acidified (HNO3) 

TDW, it was proposed that the endotherms observed at 65-125°C and 200-410°C were 

due to the removal of molecular water from the surface of P25 and the removal of 

surface bound hydroxyl groups respectively, as these features were apparent for both 

the sample that was dispersed in TDW and the one dispersed in acidified TDW. The 
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exothermic reaction at 214°C was only observed for the sample that had been 

dispersed in acidified P25, therefore the reaction involved nitrate groups on the 

surface of P25 and was most probably due to their decomposition. As could be 

expected, all of the above processes resulted in a weight loss of the samples 

(Table 4.5). 

During the second DSC cycle of sample (A) (Figure 4.7(B)) the weight loss 

was attributed to removal of more hydroxyl groups from the surface. It could, 

therefore, be expected that the surface density of molecular water and hydroxyl 

groups on the P25 surfaces decreased as the pretreatment temperature was increased. 

The assignment of the weight loss in the DSC experiments to the removal of 

water and hydroxyl groups from the P25 surface was in agreement with FTIR studies 

conducted by Suda and Morimoto16 on rutile phase Ti02 that had been exposed to 

saturated water vapour at room temperature and then degassed insitu at various 

temperatures. After degassing at 25°C, four absorption bands were observed at 3660, 

3520, -3400, and 1625 cm', and the bands were assigned to the OH stretching 

vibrations of free OH groups, hydrogen-bonded OH groups, surface adsorbed 

molecular water and to the bending vibration of the molecular water, respectively. 

After treatment at 100°C the bands due to molecular water were still present, but 

somewhat reduced in intensity. Whilst at 150°C the band at 1625 cm 1 disappeared 

completely indicating the complete removal of molecular water from the rutile 

surface. With increasing temperature the intensity of the band at 3400 cm 1 decreased 

at the same rate as the band at 1625 cm-1, although a weak absorption band at 

3370 cm' was seen after degassing at temperatures above 150°C. This band was 

assigned to the presence of the hydrogen bonded OH groups. The intensity of the 

band at 3660 cm' did not decrease until degassing at temperatures above 150°C. 
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Increasing the treatment temperature caused a further reduction in the intensity of the 

band, until reaching 600°C, where no absorption bands were seen for any surface 

bound hydroxyls or molecular water species. Similar studies by Tanaka et a1.2 on 

anatase phase Ti02 showed the same trend of decreasing surface density of free 

hydroxyl groups as the degassing temperature was increased. However, OH groups 

bound to anatase surfaces were more stable as weak adsorption bands were still 

detected even after pretreatment temperatures as high as 800°C. An explanation of 

the similar trends for both anatase and rutile phases is that the two polymorphs have 

similar local surface structures. '7 

4.3.2 Silver modified P25 photocatalysts. 

As shown in figure 4.21, the anatase-to-rutile phase transformation behaviour 

of P25 was altered when modified with silver loadings of greater than 0.1 wt. %. 

When a silver loading of 1 wt. % was used there were no significant phase changes 

below 600°C, but when it was calcined at 600°C for 2h the percentage of rutile 

present increased to 31.5 %, compared to 28 % for unmodified P25 calcined at 600°C. 

This effect became more pronounced when the silver loading was increased to 

5 wt. % and the percentage rutile was 47 % at 600°C. The higher silver loading also 

had the effect of reducing the onset temperature of the anatase-to-rutile phase 

transformation and an increased rutile percentage (26 %) was observed at 450°C. 

This showed that the presence of silver at loadings of 1 wt. % or higher increased the 

rate of the anatase-to-rutile transformation at 600°C, whereas loadings of 

0.1 wt. % Ag did not alter the kinetics of the phase transformation at temperatures up 

to 600°C. 
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The effect of transition metal dopants on the anatase-to-rutile phase 

transformation kinetics has been reported in the literature and it is accepted that 

different dopants have varying effects on the phase transformation. For example it 

has been reported that additions of Nb'8, Cr'8, Si'8, Fe'8, Ago, Cu' and Ni' accelerate 

the anatase-to-rutile transformation, whilst additions of La', Mo19, Co19 and W1° 

4 inhibit the transformation. Chao et al. reported that addition of silver promoted the 

anatase-to-rutile transformation and the higher the concentration of silver, the lower 

the onset temperature of the phase transformation. This trend is similar to those 

observed for the Ag-P25 systems studied in this thesis. Chao et al. proposed the 

reason for the promotion of the anatase-to-rutile transformation in the presence of 

silver was due to the increased number of oxygen vacancies present. The presence of 

oxygen vacancies aids lattice diffusions, thus lowering the kinetic barrier for phase 

transformations. 
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Figure 4.21. Effect of silver loading on the percentage rutile present. for Ag-P25 

samples calcined at 450°C (A) and 600°C (B). 
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Also apparent from the XRD patterns of the 0.1 Ag-P25 and 1 Ag-P25 systems 

was the absence of any reflections from silver containing phases. This was not 

unexpected as the silver concentration was below the limit for detection in XRD 

analysis. However a loading of 5 wt. % was sufficiently high so that the silver phases 

could be analysed using XRD. At low calcination temperature the predominate silver 

phase was silver nitrate, although the decreasing relative intensity of the reflections 

indicated that the crystalline silver nitrate decomposed with increasing calcination 

temperature, until at 450°C no reflections due to any silver phases were detected. 

Silver was not removed from the P25 as metallic silver reflections were present in the 

X-ray diffractogram for the sample calcined at 600°C. Therefore, at 450°C, the silver 

was present as either Ag°, Ag+ species (or both) but the particle sizes were too small 

to be detected using X-ray diffraction. Increasing the calcination temperature to 600°C 

would induce the growth of the silver particles and hence they became visible in the 

X-ray diffraction pattern. 

TEM analysis confirmed the P25 grain growth observed in the XRD data for 

the 5Ag-P25 photocatalyst calcined at 600°C, Figure 4.3 showed larger Ti02 particles 

and the corresponding selected area diffraction pattern being less diffuse, indicated a 

more crystalline structure. EDX analysis of the 5Ag-P25 photocatalyst calcined at 

450°C confined the presence of silver species all over the Ti02 surface, but no silver 

containing particles were resolved, adding further evidence to the above hypothesis 

that after calcination at 450°C the silver species present (either Ago or Ag) were very 

much nanocrystalline (i. e. <1 nm in diameter). It is thought that the small spherical 

particles observed in the micrographs of lAg-P25 and 5Ag-P25 systems calcined at 

600°C were metallic silver (n. b. metallic silver diffractions were observed in the XRD 

of 5Ag-P25 calcined at 600°C). However, the corresponding selected area diffraction 
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patterns did not contain any diffractions from silver species, and therefore it cannot be 

conclusively said that the particles were metallic silver. The absence of any 

diffractions from silver species was expected due to the low volume concentration of 

silver. 

The XPS analysis of the standard silver compounds showed that binding 

energies of the Ag 3d5rz photoelectrons in AgNO3, Ag2O and Ag metal were 

368.9 eV, 368.4 eV and 368.1 eV, respectively. The increased broadness of the Ag 

3d52 photoelectrons peaks for Ag2O and AgNO3 compared to the metallic Ag sample 

could be due to a number of factors including the degree of crystallinity, the number 

of different silver sites in the structure and charging effects which are inherent for all 

non-metallic materials studied using XPS. It is thought that the charging effect 

contributes the most to the peak broadening in the A920 and AgNO3 samples. For a 

more detailed discussion on peak broadening effects the reader is referred to the 

literature by Briggs and Seah. 20 

The two fitted components for the metallic silver standard at 368.1 eV and 

368.2 eV were assigned to photoelectrons from metallic silver and a silver oxide over 

layer, respectively. The reason for the variation of the peak position and FWHM of 

the peak arising from the oxide layer compared to standard Ag2O studied was most 

probably because it was a less well ordered oxide that formed on the metal surface. 

The absence of a nitrogen photoelectron peak from any of the silver containing 

samples dried at 70°C (XRD analysis showed that silver nitrate was present for the 

5Ag-P25 samples) was most probably due to the low sensitivity of N atoms to XPS 

analysis. 20 Therefore, using the data from the XRD analysis, the Ag 3d52 peak at 

368.3 eV, observed for both lAg-P25 and 5Ag-P25 samples calcined at temperatures 

up to 200°C, was tentatively assigned to the photoelectrons emitted from AgNO3 
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species, even though the binding energy was slightly lower than that for the silver 

nitrate standard (368.9 eV). The reason for the shift observed was not due to the silver 

species not existing as silver nitrate, but due to the nature of the Ag-P25 system. 

When two materials are in contact, equalisation of their Fermi level occurs, '7 which 

would effect the energy of the photoelectrons emitted. Another possible reason for 

the shift could be particle size effects. The silver nitrate standard was analysed as 

bulk material with a large crystallite size, whereas the silver nitrate on the surface of 

P25 was present as much smaller particles (as shown by TEM imaging), and hence 

there would be a higher percentage of surface atoms, which have a slightly different 

chemical environment to the bulk atoms, resulting in a shift in the energy of the 

photoelectrons emitted. 

At the higher calcination temperatures of 450°C and 600°C, there were 

significant amounts of Ag° present in both the lAg-P25 and 5Ag-P25 systems. It can 

be expected that Ag2O was present on the metal surface (as with the metallic silver 

standard), and this would contribute to Ag peaks. Due to the small difference in 

chemical shift observed for both types of Ag+ species (AgNO3 and Ag20) it was 

impossible to resolve the two peaks for the silver modified P25 samples. After 

calcination of the 5Ag-P25 system at 600°C the silver species present was 

predominantly metallic, so the Ag+ peak was assigned to be due to a surface oxide 

layer on the metal clusters, with the possibility of only a minor contribution from 

silver nitrate species. It should also be noted that no change was observed in the 

shape of the 01s peak as the concentration of silver oxide present was insignificant 

relative to the levels of oxygen detected from Ti02. 

The percentage of Ag° species present relative to Ag+ species was greater for 

the 5Ag-P25 photocatalysts (compared to the lAg-P25 photocatalysts) at all the 
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calcination temperatures investigated (figure 4.22). An explanation of this effect is 

based on the mechanism of supported metal particle growth. Ag+ species are more 

likely to be reduced at Ago sites than they are on a titania surface (i. e. grain growth 

verses cluster nucleation). 5 Therefore, when P25 was modified with higher loadings 

of silver nitrate, more Ag+ species are available to be reduced at the Ago sites, 

resulting in larger metallic silver particles. 
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Figure 4.22. Effect of calcination temperature on the relative percentage of Ago 

species present for IAg-P25 photocatalysts (A) and for 5Ag-P25 photocatalysts (B). 

Quantification of the atomic percentage of surface silver species with respect 

to the amount of Ti02 detected gives an indication of the dispersion of silver species 

over the P25 support. 20 The weight percent of Ag (as calculated from the XPS data) 

for the 5Ag-P25 photocatalyst dried at 70°C was 9.5 %, which is significantly higher 

than the theoretical silver loading of 5 wt. % that was used, indicating that the silver 

species were situated on the surface of the Ti02 with a high dispersion. This effect is 

in agreement with the TEM results where no individual silver containing particles 
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were resolved, but EDX analysis showed silver to be present and evenly distributed 

over the photocatalyst. 

With increasing calcination temperatures (up to 200°C) there was an increase 

in the weight percentage of silver (as detected by XPS analysis), indicating that there 

was an increase in the dispersion of the silver species. As shown by the peak fitting 

of the Ag 3d52 peaks, the amount of Ag° species increased with increasing calcination 

temperature due of the thermal reduction of AgNO3. Combining this effect with the 

increase in percentage silver detected, indicates that the dispersion of the silver 

species increased upon thermal decomposition of AgNO3, and that small islands of 

Ag° were formed with higher dispersions than the original Ag+ species, as the 

calcination temperature was increased. At calcination temperatures of 450°C and 

600°C a reduction in the XPS measured percentage silver was observed, indicating a 

decreased level of dispersion. This effect was due to sintering/agglomeration of the 

Ag° islands, resulting in lower coverage of the P25 surface by silver particles. This 

result is in agreement with those obtained by TEM analysis. After calcination at 

600°C, individual silver containing particles were observed, and EDX analysis 

showed that silver was no longer present all over the P25 but was only detected from 

the small spherical particles. 

Although XPS analysis of the silver species on the O. lAg-P25 photocatalysts 

could not be undertaken due to the low concentration of silver, the chemical nature of 

the silver species was inferred from the data obtained from the systems modified with 

greater amounts of silver. Similar behaviour to that for the lAg-P25 and 5Ag-P25 

systems was expected to have occurred for the O. lAg-P25 photocatalysts, i. e. the 

thermal reduction of silver nitrate species forming metallic silver particles and 

clusters, although the level of reduction of silver nitrate would be less than was 
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observed for the lAg-P25 photocatalysts. For example the amount of thermal 

reduction of AgNO3 would have decreased with decreasing silver loading, as shown 

in figure 4.22. 

4.3.3 Rhodium modified P25 photocatalysts 

The capillary XRD experiments of the 5Rh-P25 photocatalysts revealed that 

the addition of rhodium to P25 had no effect of the phase transformation behaviour of 

the P25 as the composition remained at ca. 20 % rutile / 80 % anatase after all of the 

pretreatments used. However the maximum pretreatment temperature used was only 

450°C, and therefore it cannot be said that addition of Rh could not change the phase 

transformation kinetics of Ti02 as higher pretreatment temperatures would need to be 

investigated. 

The absence of any reflections from rhodium containing phases suggests that 

they were either amorphous, or the particle sizes were below the detection limit for 

XRD analysis. XRD of bulk rhodium nitrate showed it to be amorphous, which 

would explain the absence of any reflections due to Rh phases in the diffractograms 

from the samples which had been pretreated at 70°C and 200°C in air. It could be 

expected that rhodium nitrate did not decompose at these temperatures as the samples 

remained yellow, which is the colour of hydrated rhodium nitrate. 

In samples that had been subjected to reduction pretreatments it was expected 

that the rhodium nitrate would have been reduced, forming metallic rhodium. 5'7 

After the reduction pretreatments the colour of the samples became grey, providing 

evidence for the reduction process. As no reflections due to metallic rhodium particles 

were observed in the X-ray diffractograms of these samples it was hypothesised that 
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the crystallite size for the rhodium particles was too small or their concentration was 

too low to be detected by XRD analysis. 

It was concluded that the two un-assigned peaks, apparent in the X-ray 

diffractograms for all the 5Rh-P25 photocatalysts, were due to instrument 

contamination as they were absent in the XRD pattern of a 5Rh-P25 photocatalyst 

dried at 70°C, which was recorded using a standard powder XRD configuration. This 

conclusion is further substantiated by the regularity of the peaks. Their intensities 

remained unaltered even though the intensity of the anatase and rutile reflections 

varied from sample to sample, suggesting the instrument was contaminated. 

As no reflections due to rhodium containing species, nor any change to the 

P25 phases, were observed for the 5Rh-P25 photocatalysts after any of the 

pretreatments, no differences in the XRD patterns were expected for the P25 

photocatalysts modified with only 0.1 and 1 wt. % Rh. Hence X-ray diffraction was 

not used to characterise them. 

TEM analysis of the rhodium containing photocatalysts confirmed the results 

obtained from XRD analysis, in that no Ti02 particle growth was apparent in any of 

the micrographs. The presence of small Rh particles (confirmed by EDX) on the 

surface of the Ti02 particles for the 5Rh-P25 photocatalysts that had been subjected to 

reducing pretreatments supports the theory that rhodium nitrate was reduced to 

metallic rhodium. It was thought that the particles formed after hydrogen reduction 

were larger than those formed during UV reduction because during the hydrogen 

reduction the temperature was increased to 450°C, resulting in a higher mobility of Rh 

atoms on the TiO2 surface than for the UV reductions where the temperature was 

ca. 50°C. Therefore, more sintering of the Rh particles could occur during the 

hydrogen reduction and hence larger particles resulted than for the UV reduction. As 
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for the Ag-P25 systems, no diffractions were observed from the modifying element 

(Rh) in the selected area diffraction patterns for any of the Rh-P25 systems. Again, 

this was due to their low volume concentration. 

High resolution XPS spectra of the Rh 3d photoelectron peaks from 1Rh-P25 

and 5Rh-P25 systems showed that the peak shapes of the Rh 3d peaks were not 

symmetrical like the Ag 3d peaks. They were asymmetrically broadened towards 

higher binding energies. This effect, known as valence band shake-up, is caused by 

the different arrangement of the electron bands for the elements studied. It is most 

pronounced for transition metals which have an unpaired electron in the 3d shell. 

Hence, silver (a 3d1° system) does not exhibit shake-up losses whilst rhodium (a 3d9 

system) does. 3 

Also apparent from the high resolution scan was that the Rh 3d peaks were 

broader than those of the silver Ag 3d peaks (table 4.17). There are two reasons for 

this effect. Firstly the X-ray source used for XPS analysis of the silver containing 

compounds was monochromatic, whist a non-monochromatic source was used in the 

analysis of the Rh-P25 photocatalysts. Secondly, the rhodium XPS was carried out on 

the coated glass slides, resulting in more charging of the sample than was observed 

for the powdered samples used for the Ag-P25 systems. These two differences 

combined to give a lower resolution and reduced signal-to-noise ratio. However, the 

lower energy resolution is not as much of a problem for the Rh-P25 systems as the 

chemical shift for different rhodium oxidation states is larger than for silver. The 

binding energies of Rh 3d52 photoelectrons for the different oxidation states of Rh3+, 

W and Rh° are 309.1 eV, 308.0 eV and 307.0 eV respectively. 5 

One component fitted the Rh 3d52 peak well for all of the Rh-P25 

photocatalysts investigated, and the peak positions suggested that the rhodium existed 
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as Rh3+ in the samples that had been pretreated at 70°C and 200°C, whilst metallic 

rhodium was present on the samples which had been subjected to reduction 

pretreatments (both UV and hydrogen reduction). Due to the poor signal-to-noise 

ratio, no indication of the amount of dispersion could be attained. However, the TEM 

results suggest that Rh was present on the surface of Ti02 particles with a fairly high 

dispersion. 

As the XPS analysis showed that the rhodium species present were the same 

both for the lRh-P25 and 5Rh-P25 systems it was expected that the rhodium species 

would be similar for the O. lRh-P25 photocatalysts, although the particle size of the 

metallic rhodium particle would be smaller than those formed in the 1Rh-P25 system. 

4.4 Conclusions 

XRD and TEM analysis of unmodified P25 showed that 2h calcinations at 

temperatures up to 600°C did not result in a significant change in the composition of 

the Ti02 phases and the original composition of ca. 20 % anatase / 80 % rutile was 

maintained. DSC analysis of P25 powders led to the conclusion that as the 

calcination temperature was increased, the density of surface bound hydroxyl groups 

decreased. 

XRD and TEM analysis of the Ag-P25 systems showed that the presence of 

silver reduced the onset temperature and increased the rate of the 

anatase-to-rutile phase transformation. For the 5Ag-P25 photocatalyst, the percentage 

of rutile present after calcination at 600°C for 2h was 47 %. XRD analysis also 

showed that crystalline silver nitrate was present on the 5Ag-P25 photocatalyst after 

pretreatment at temperatures of up to 200°C, although the amount decreased with 

increasing calcination temperature. After calcination at 600°C, reflections were 
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observed that confirmed the presence of metallic silver, therefore it was concluded 

that silver nitrate was thermally reduced, forming metallic silver. 

XPS analysis of the lAg-P25 and 5Ag-P25 photocatalysts showed that for 

each of the calcination temperatures used both Ag+ and Ag° were present and that the 

amount of Ago (relative to the amount of Ago) increased with increasing calcination 

temperature adding further evidence that silver nitrate was thermally reduced to 

metallic silver. It was also found that increasing the silver loading resulted in a higher 

percentage of Ago species for each of the calcination temperatures used. Comparison 

of these results to those obtained from silver standards (Ag, Ag2O and AgNO3) led to 

the conclusion that the Ag+ component of the Ag 3d photoelectron peak was actually 

the sum of contributions from Ag2O and AgNO3, however, due to the small difference 

in chemical shift for these compounds deconvolution of the separate components was 

not possible. 

XRD analysis of the 5Rh-P25 photocatalysts did not reveal any reflections due 

to rhodium containing phases and therefore no information concerning these phases 

could be obtained from the data. However, it was shown that the presence of rhodium 

had no effect on the P25 phase transformation kinetics at temperatures up to 450°C. 

The XPS peak positions of Rh 3d52 indicated that the rhodium existed as Rh 3+ in the 

samples that were pretreated at 70°C and 200°C, whilst metallic rhodium was present 

for the samples which had been subjected to reduction pretreatments (both UV and 

hydrogen reduction). 
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5 Photocatalytic reactions over Degussa P25 

photocatalysts 

5.1 Introduction 

It has been shown that photocatalysis has the potential to provide an effective 

method for removal of pollutants such as NO. from the atmosphere, and its 

application to environmental problems is attracting much interest. 1'2 Investigations 

into the photocatalytic activity of various semiconductors (e. g. ZnO2, TiO2, ) have 

shown that the anatase phase of titanium dioxide exhibits the highest activity, 3 

although the commercial Ti02 photocatalyst (Degussa P25) with an 80 % anatase 

20 % rutile structure also shows high activities. The band-gap of anatase phase Ti02 

is 3.2 eV and the oxidation and reduction potentials of the valance and conduction 

bands are +2.95 V and -0.25 V respectively. The reduction potential of NO to N2 is 

+3.36 V and the oxidation potential of NO to N03 is -0.934 V, 5 indicating that both 

photooxidation and photoreduction of NO are feasible reactions over TiO2. 

The photocatalytic decomposition of NO over TiO2 has been reported in the 

literature with the formation of N20 as the main reaction product. 6"9 Minor reaction 

products reported are N2, NO2 and 02. The only research group to have reported the 

selectivity of the NO photodecomposition reaction over TiO2 (JRC-TIO-4 type) is that 

of Anpo et al. 1° In their papers they reported the formation of N2O and N2 with no 

other products. Therefore, currently Ti02 is not an ideal catalyst for the removal of 

NO from the atmosphere as N20 itself is a regulated pollutant. Tanaka et al. have 

reported that photoassisted selective catalytic reduction (photo-SCR) of NO with 

ammonia over TiO2 was very selective towards N2 formation, with only relatively 

142 



Chapter 5- P25 reactions 

small amounts of N20 being produced. " A problem though with this system is that 

ammonia is a pollutant, and therefore unused ammonia would need to be eliminated 

from the exhaust gas, thus increasing the overall costs of a system. 

In the area of thermal catalysis for NO reduction, CO has regularly been used as 

a reducing agent yielding reactions with very high selectivity for N2 formation. 12,13 

During the reaction CO is oxidised to CO2. The use of CO as a reducing agent for 

NO reduction is a logical one as the two gases are both formed during combustion 

processes and hence are present in polluted atmospheres. The oxidation potential of 

CO to CO2 is -0.106 V and is therefore a feasible photoreaction over TiO2 as has been 

reported in the literature. 14 There are no reports in the literature as to the effect of CO 

on the selectivity of NO photoreductions over unmodified Ti02. 

The aim of the work reported in this chapter was to investigate the 

photocatalytic decomposition and reduction of NO over Degussa P25. The results 

from the photodecomposition of NO in Ar experiments are compared with those 

reported by Anpo et al. to contrast the activity and selectivity of the two types of 

Ti02. The effect of photocatalyst pretreatment is also reported. The effect of CO on 

the activity and selectivity for NO photoreductions over P25 was investigated. 

Presented in 5.2.1 and 5.2.2 are the results from UV lamp emission and 

reproducibility experiments, respectively. The reproducible data was used in 

calculating errors associated with the photocatalytic activity measurements. The 

effect of the catalyst processing parameters for both the general decomposition and 

reduction reactions are reported in subsection 5.2.3. The effect of varying the gas 

compositions is reported in sections 5.2.4 to 5.2.6. Section 5.3 presents a detailed 

discussion of all the results presented in 5.2, and conclusions from these results are 

drawn in section 5.4. The results presented are also referred to in Chapters 6 and 7 
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where the effects of modifying element(s) are compared to the intrinsic photocatalytic 

behaviour of P25. 

5.2 Results 

5.2.1 UV lamp emissions 

The relative intensities of the different wavelengths emitted by the UV lamp in 

the range 185 nm to 900 nm are shown in figure 5.1. The most intense wavelengths 

were produced in the visible region whilst the most intense UV wavelength was 

around 365 nm. It is the wavelengths of 365 nm and below that are energetic enough 

for band-gap excitation of TiO2 4 No wavelengths in the infrared region were 

detected. The intensity of 365 nm radiation at the sample surface was measured 

to be 9.942 mW cm 2. Combining the measured intensity of 365 nm radiation and the 

relative intensities of the other wavelengths it was possible to calculate the total 

photon intensity at the catalyst surface (137.47 mW cm 2) and the intensity for 

radiation at wavelengths less than or equal to 365 nm (22.23 mW cm 2). 
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Figure 5.1. Logarithmic plot of the measured spectral emission from a 400 W 

medium pressure mercury lamp. 

5.2.2 Reproducibility experiments 

Unmodified Degussa P25 coatings were prepared and their photocatalytic 

behaviour was tested according to the procedures described in Chapter 3. Five 

unmodified P25 photocatalysts were calcined at 200°C for 2h and their photocatalytic 

behaviour analysed when irradiated in a continuous gas stream containing both NO 

and CO. The total flow rate for the reactions was 5.5 sccm and the reactant 

concentration was 909 ppm and 1818 ppm for NO and CO, respectively. 

Test NO Rate of NO Selectivity for Rate of N2 Rate of N20 
Number Conversion conversion N2 formation formation / formation / 

/% / µmol h-1 g"I /% µmol h-I gI µmol h"1 g'1 
1 16.0 657 46 150 177 
2 15.8 647 38 123 200 
3 20.1 823 39 160 250 
4 17.1 700 36 127 223 
5 18.6 760 34 130 250 

Table 5.1. Table of results for reproducibility experiments over P25 photocatalysts. 
Reaction conditions were NO: 909 ppm, CO: 1818 ppm with an Ar balance. The total 
flow rate was 5.5 sccm. 
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The only reaction products detected using the mass spectrometer were that of 

N2 and N20. Gaseous oxidation products of NO2 were not detected in the exhaust gas, 

nor was any production of oxygen measured. Table 5.1 presents the results from 

these repeated reactions. It should be noted here that only the selectivity for N2 

formation is shown as the selectivity for N20 formation can be calculated simply by 

using the equation 100-[selectivity for N2]. In the table both the percentage NO 

conversion and rate of use of NO are shown, as both these values will be used when 

discussing the results presented later in this thesis. All of the values depicted in table 

5.1 show a good degree of reproducibility, indicating that it is possible to compare the 

results from different reactions. The errors associated with each value reported in this 

thesis were calculated based on these experiments and the error bars shown represent 

percentage error of the standard deviation for each set of results shown in table 5.1. 

Table 5.2 shows the magnitude of the associated errors. 

Parameter Standard Deviation Percentage Error /% 
NO Conversion / 

Rate of NO conversion / µmol h-' g"' 
1.8 
74 

t 10.4 

t 10.3 
Selectivity for N2 formation /%4.6 ± 11.8 

Rate of N2 formation / µmol h"1 g"1 16 ± 11.7 
Rate of N20 formation / µmol h71 g"1 32 ± 14.5 

Table 5.2. Table of errors associated with each measurement in the photocatalytic 
activity experiments. 
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5.2.3 Effect of thermal processing 

Unmodified Degussa P25 photocatalysts were calcined in the temperature 

range of 70°C to 600°C for 2h and their photocatalytic behaviour was measured under 

both general decomposition and reduction conditions. The decomposition reactions 

were carried out under a gas stream at 5.5 sccm containing 909 ppm of NO. The 

reduction reactions were done under the same conditions but with the addition of CO 

at 1818 ppm. For both decomposition and reduction conditions the activity of the 

Degussa P25 photocatalysts decreased significantly with increasing calcination 

temperature (from 29.6 % to 10.5 % for decomposition reactions and from 16.0 % to 

5.8 % for reduction reactions, as the calcination temperature was increased from 70°C 

to 600°C, table 5.3), with the catalysts showing more activity for NO conversion in 

the absence of CO at all calcination temperatures. 

Calcination Conversion of NO Rate of NO conversion 
Temperature / /% / pmol h' g"1 

°C Decomposition Reduction Decomposition Reduction 
70 29.6 16.0 1210 657 
120 27.1 13.7 1107 560 
200 24.0 11.4 983 467 
450 13.4 6.0 550 243 
600 10.5 5.8 430 240 

Table 5.3. Table of NO conversions for the NO decomposition and reduction 
reactions over P25 photocatalysts calcined at various temperatures. Decomposition 
conditions: NO: 909 ppm with Ar balance and a total flow rate of 5.5 sccm. 
Reduction conditions: As for decomposition reactions with the addition of CO at 
1818 ppm. 

The selectivities for both the decomposition and reduction reactions are given 

in table 5.4. The selectivity for N2 formation for the decomposition reactions was 

approximately the same at 23 % for all the catalysts calcined at temperatures up to 

450°C. Increasing the calcination temperature further to 600°C resulted in a slightly 
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higher selectivity for N2 formation of 30 %. When CO was present, the selectivity for 

N2 formation increased, e. g. from 21 % (no CO) to 46 % for P25 dried at 70°C. As 

the pre-treatment temperature increased the selectivity for N2 formation decreased 

until 450°C, where it gave comparable selectivities to those seen when no CO was 

present. 

Due to the higher activity shown for NO conversion in the absence of CO the 

rate of formation of both N2 and N20 was higher at all calcination temperatures for 

decomposition reactions compared to those performed in the presence of CO. An 

exception was when the photocatalysts were calcined at 70°C, where the rate of 

formation of N2 was slightly higher under reduction conditions due to the higher 

selectivity shown for N2 formation (Table 5.5). For example, for catalysts calcined at 

200°C under decomposition conditions the rates of formation of N2 and N20 were 

103 µmol h"' g"' and 387 µmol h" g"', respectively, compared to 70 pmol h" g" and 

163 pmol li' g"' when under reduction conditions with a CO level of 1818 ppm. 

Calcination Selectivity for decomposition Selectivity for reduction 
temperature reactions /% reactions /% 

/°C N2 N20 N2 N20 
70 21 79 46 54 
120 25 75 49 51 
200 21 79 30 70 
450 26 74 26 74 
600 30 70 25 75 

Table 5.4. Table of selectivities for NO decomposition and reduction reactions over 
P25 photocatalysts calcined at various temperatures. Decomposition conditions: 
NO: 909 ppm with Ar balance and a total flow rate of 5.5 sccm. Reduction 
conditions: As for decomposition reactions with the addition of CO at 1818 ppm. 
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Calcination Rate of N2 formation Rate of N20 formation 
Temperature / pmol h"1 g'1 / µmol h"1 g"1 

/ OC Decomposition Reduction Decomposition Reduction 
70 127 150 477 177 
120 140 137 413 143 
200 103 70 387 163 
450 73 30 203 90 
600 63 30 150 90 

Table 5.5. Rates of formation for the products of the photocatalytic reactions over 
unmodified P25 photocatalysts calcined at various temperatures. Decomposition 
conditions: NO: 909 ppm with Ar balance and a total flow rate of 5.5 sccm. 
Reduction conditions: Same as for decomposition reactions with the addition of CO at 
1818 ppm. 

5.2.4 Effect of Varying NO concentration 

To investigate the effect of NO concentration over Degussa P25, unmodified 

photocatalysts calcined at 200°C were used. The concentration of NO was varied from 

455 ppm to 1818 ppm whilst maintaining the same total flow rate of 

5.5 sccm. When present, the concentration of CO was kept constant at 1818 ppm. 

Table 5.6 shows that as the concentration of NO increased the percentage NO 

conversion decreased from 28.1 % to 21.1 % for the decomposition reactions and 

from 13.8 % to 7.6 % for the reduction reactions. This trend does not give an accurate 

portrayal of the catalytic activities when the initial NO concentration is varied 

(discussed in more detail below). If instead of percentage NO conversion, the rate of 

NO conversion was used as the measure catalyst activity, then we see a trend that 

increases with NO concentration for both reaction types (Table 5.6), indicating that 

more surface reactions occurred as the NO levels increased. 

The reason why rate of NO conversion gives a good representation of catalyst 

activity is that it is a direct measurement of the number of surface reactions per unit 

mass of catalyst per unit time, and hence can used to compare the number of surface 
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reactions (i. e. catalytic activity) regardless of reaction conditions. Percentage NO 

conversion cannot be so readily used as a measure of activity for these reactions as it 

is dependant on the intial NO concentration. Hence percentage NO conversion can 

only be used as a measure of photocatalytic activity when comparing catalysts tested 

under identical reaction conditions as for the other photocatalytic reactions reported in 

the thesis. 

NO NO conversion Rate of NO conversion 
concentration //%/ pmol h"' g'1 

ppm Decomposition Reduction Decomposition Reduction 
455 28.1 13.8 573 280 
909 24.0 11.4 983 467 
1818 21.1 7.6 1723 620 

Table 5.6. NO conversion results for decomposition and reduction reactions with 
varying NO levels over P25 photocatalysts calcined at 200°C. Decomposition 
reaction conditions: Total f ow rate of 5.5 sccm. Reduction reaction conditions: Same 
as for decomposition reactions with a constant concentration of CO (1818 ppm). 

Within the errors associated with these results the selectivity for N2 formation 

under decomposition conditions remained unchanged at all three NO concentrations 

(Table 5.7). For the reduction reactions, as the NO concentration increased from 

455 ppm to 1818 ppm the selectivity to N2 formation decreased from 49 % to 22 %. 

Under decomposition conditions the rate of N2 formation increased from 

83 pmol h'' g-1 to 230 pmol h"I g"1 as the NO concentration was increased from 

455 ppm to 1818 ppm. When CO was present in the reaction gas stream, the rate of 

formation of N2 remained nearly constant (ca. 70 pmol If1 g 1) irrespective of the NO 

concentration (Table 5.8). For both reaction types the rate of formation of N20 

increases with NO concentration, with the decomposition conditions being the most 

favourable for N20 production at all NO levels. 
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NO concentration Selectivity for decomposition Selectivity for reduction 
/ ppm reactions /% reactions /% 

N2 N20 N2 N20 
455 29 71 49 51 
909 21 79 30 70 
1818 27 73 22 78 

Table 5.7. Table of selectivities for NO decomposition and reduction reactions with 
varying NO concentrations over P25 photocatalysts calcined at 200°C. 
Decomposition reaction conditions: Total flow rate of 5.5 sccm. Reduction reaction 
conditions: Same as for decomposition reactions with a constant concentration of CO 
(1818 ppm). 

NO Rate of N2 formation Rate of N20 formation 

concentration / pmol h'1 g"' / pmol h'I g"1 
/ppm 

Decomposition Reduction Decomposition Reduction 
455 83 70 203 73 
909 177 70 317 163 
1818 230 67 630 243 

Table 5.8. Effect of NO concentration on the rates of formation of N2 and N20 over 
P25 photocatalysts calcined at 200°C. Decomposition reaction conditions: Total f ow 
rate of 5.5 sccm. Reduction reaction conditions: Same as for decomposition reactions 
with a constant concentration of CO (1818 ppm). 

5.2.5 Effect of varying CO concentration 

The effect of CO concentration was investigated by maintaining a constant 

concentration of NO of 909 ppm whilst varying the CO levels from zero to 1818 ppm. 

The total flow rate was kept at 5.5 sccm for each experiment. The catalysts used for 

these experiments were films of Degussa P25 calcined at 200°C. Table 5.9 illustrates 

how the percentage conversion of NO decreased from 29.6 % to 8.3 % as the CO 

concentration increased from 0 to 1818 ppm, whilst table 5.10 shows how the 

selectivity for N2 formation increased from 21 % when no CO was present to 55 % 

when the CO concentration was 909 ppm. Any further increase in CO concentration 

did not significantly affect N2 selectivity. 
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CO concentration / NO conversion Rate of NO conversion 
ppm /%/ pmol h'1 g'1 

0 29.6 1210 
364 24.3 993 
909 15.0 613 
1818 8.3 340 

Table 5.9. NO conversion results for reduction reactions with varying CO levels over 
P25 photocatalysts calcined at 200°C. Reaction conditions: NO concentration and 
total flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 

CO concentration Selectivity /% 
/ ppm N2 N20 

0 21 79 
364 30 70 
909 55 45 
1818 48 52 

Table 5.10. Selectivity results for reduction reactions with varying CO levels over 
P25 photocatalysts calcined at 200°C. Reaction conditions: NO concentration and 
total, flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 

The rate of formation of N2 increased with CO concentration until it reached a 

maximum of 170 µmol h71 g"1 at 909 ppm. Doubling the CO concentration up to 

1818 ppm had the effect of reducing the rate of formation of N2 by more than half to 

80 µmol If 1 g71. The rate of formation of N20 decreased from 477 µmol h71 g"1 at zero 

CO concentration to 90 pmol h71 g' at 1818 ppm CO concentration (table 5.11) 

CO concentration / ppm Rate of N2 formation Rate of N20 formation 
/ µmol h1 g" / µmol h' g71 

0 127 477 
364 150 347 
909 170 137 
1818 80 90 

Table 5.11. Effect of CO concentration on the rates of formation of N2 and N20 over 
P25 photocatalysts calcined at 200°C. Reaction conditions: NO concentration and 
total flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 
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5.3 Discussion 

5.3.1 Effect of thermal processing 

Figure 5.2 clearly shows how the activities of NO conversion under both 

decomposition and reduction reactions follow the same trend, in that the NO 

conversion decreased almost linearly as the calcination temperature was increased 

from 70°C up to 600°C, with the percentage NO conversion being higher at all 

pretreatment temperatures for the decomposition reactions. Unfortunately the values 

for the percentage NO conversion cannot readily be compared to those reported in the 

relevant literature due to differences in experimental configurations and procedures. 

Differences in the amount of sample irradiated and the area irradiated within 

the photoreactor could be accounted for and the results normalised with respect to 

these parameters by reporting the values in standard units of either pmol h' g' or 

µmol h"' m-2. Other differences, however, are more difficult to rationalise. These 

include parameters such as; type of photoreactor (batch or continuous flow styles), the 

UV light intensity at the photocatalyst surface and the type of UV source used to 

initiate the photoreactions, i. e. the wavelengths used for band-gap illumination and 

also the thickness of the photocatalysts used as it can affect the efficiency of UV 

absorption. ls It has been reported that TiO2 particles absorb short wavelength UV 

(<300 nm) more strongly than longer wavelength UV (300-450 nm), 16 which results 

in a lower penetration depth for the photons and the photogenerated electron-hole 

pairs are formed closer to the particle surface. The migration time to the surface of 

the particle is therefore less when using shorter wavelength UV, resulting in fewer 

energy wasting recombination reactions before electron transfer takes place. 
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Quantification of such processes is extremely complex, making a comparison of 

results obtained in different laboratories difficult. 

XRD and TEM characterisation of the P25 photocatalysts prepared using the 

same pretreatments as the P25 coating used in the photoreactor (Chapter 4) showed 

that there was only a small change in the crystalline nature of the Ti02 even after 

calcination at 600°C for 2 hours. The original phase composition of ca. 23 vol. % 

rutile and 77 vol. % anatase remained largely unchanged with only small amounts of 

crystallite growth. These results indicate that the change in activity with calcination 

temperature must be due to surface structure of the photocatalysts as the bulk 

properties of the materials were largely unaltered by calcination up to 600°C. 
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Figure 5.2. Effect of calcination temperature on percentage conversion of NO over 
unmodified P25 photocatalysts. Decomposition conditions: NO: 909 ppm with Ar 
balance and a total flow rate of 5.5 sccm. Reduction conditions: As for 
decomposition reactions with the addition of CO at 1818 ppm. 

Although molecularly adsorbed water on Ti02 surfaces can cause a decrease 

in the upwards bending of the conduction band, resulting in more efficient 

recombination of the photogenerated electron-hole pairs, it can also result in the 

formation of surface bound OH groups by reaction of H2O with the bridging oxygen 
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atoms. 17 It is well documented in the literature that surface bound OH groups play a 

vital role in a variety of photocatalytic reactions over titanium dioxide 18,19 as they act 

as efficient trapping sites for the photogenerated holes, thereby suppressing the energy 

wasting electron-hole recombination process, and yielding an increased lifetime for 

the photogenerated electron (the mobile charge carrier). The electron is then able to 

migrate to the surface of the photocatalyst particle and undergo a redox reaction with 

an adsorbed electron acceptor molecule. The hydroxyl radicals formed under 

band-gap illumination are powerful oxidants for the mineralisation of organic species 

in water, 19 and can themselves act as active sites for photocatalysis. 

The DSC results reported in chapter 4 showed that molecular water was 

removed from the Degussa P25 surface in the temperature range of 80°C to 100°C. 

This was accompanied by a reduction in weight of the sample. On heating the sample 

further up to 500°C there was a further reduction in the sample mass, which was 

attributed to the removal of surface bound hydroxyl groups from Ti02 sample. The 

assignment of the weight loss to the removal of molecularly bound water and surface 

OH groups is substantiated by FTIR studies of Ti02 surfaces conducted by 

Suda et al. 20 and Tanaka. 21 From these results it was concluded that the surface 

density of molecular water and hydroxyl groups on the Ti02 photocatalyst surfaces 

decreased as the pretreatment temperature was increased. 

Using the results discussed above it is possible to say that the reason for the 

decrease in NO conversion rate seen over the Degussa P25 photocatalysts as the 

calcination increased was due to the decrease in the surface density of molecular 

water and hydroxyl groups. The decrease in the number of surface hydroxyl groups 

would have two effects. Firstly, more efficient electron-hole recombination would 

occur resulting in a decrease in the number of photogenerated electrons available for 
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reactions with adsorbed NO species. Secondly, OH groups can act as adsorption 

and/or active sites for NO molecules (although it has also been reported that NO 

molecules adsorb on reduced Ti3+ surface sites22), thereby decreasing the number of 

surface OH groups would result in fewer NO molecules being adsorbed and hence 

fewer photoreactions. Both of these phenomena have the effect of reducing the NO 

conversion rate as the calcination temperature is increased. The same arguments are 

used to explain the decrease in NO conversion rate with increasing calcination 

temperature for the reactions carried out in the presence of CO. See figure 5.2 for the 

results of both the decomposition and reduction reactions. 

The decrease in the conversion rate when CO was present can be explained in 

terms of the photoadsorption processes occurring on Degussa P25 during UV 

illumination. In the reduction experiments, CO was passed over the photocatalyst in 

the dark before the introduction of NO. Therefore, it might be that there was high 

levels of CO adsorption on the Ti02 surface, which would inhibit the adsorption of 

the NO molecules. However, when the reverse experiment was carried out (i. e. NO 

passed over the catalysts before the introduction of CO), the NO conversion was the 

same at ca 16 % over the as-dried P25 photocatalyst. Hence, the order in which NO 

and CO were exposed to the photocatalyst surface did not affect the outcome of the 

photoreaction. Therefore, it was concluded that the decrease in NO conversion in the 

presence of CO was due to competitive photoadsorption of CO. As a result, fewer 

NO molecules would be adsorbed on the Ti02 surface, decreasing the total NO 

conversion rate. 

Figure 5.3 shows that the major reaction product for the NO decomposition 

reactions at all the tested calcination temperatures was N20 (-75 %), with N2 (-25 %) 

being a minor reaction product. Photocatalytic NO decompositions, in the absence of 
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oxygen, forming N20 as the major reaction product have been reported in the 

literature for various commercial TiO2 photocatalysts. 6,16"23 However, the actual 

selectivities for the reaction products are rarely reported, usually due to limitations of 

the analysis method, making quantification difficult. One group that has published 

selectivity values for NO photodecomposition over TiO2 is that of Anpo and 

Yamashita24, with selectivities of 25 % and 75 % for N2 and N20 respectively. These 

results are in close agreement to the results reported in this thesis, even though a 

different commercial Ti02 photocatalyst with a different phase composition (100 % 

anatase) was used (JRC-TIO-4, produced by the Catalysis Society of Japan) and the 

experiments were conducted in a batch style reactor with a different initial NO 

concentration. It would, therefore, appear that the selectivity of NO decomposition 

over predominantly anatase phase Ti02 surfaces will remain constant, as the same 

type of active sites are still available for decomposition to proceed. The effect of 

increasing the calcination temperature is not in altering the chemistry of the active 

sites available, but to reduce the surface density of them, resulting in the similar 

selectivities but with decreasing activity. 
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Figure 5.3. Effect of calcination temperature on the selectivityfor N2_formation over 
unmodified P25 photocatalysts calcined at various temperatures. Decomposition 
conditions: NO: 909 ppm with Ar balance and a total flow rate of 5.5 sccm. 
Reduction conditions: As for decomposition reactions with the addition of CO at 
1818 ppm. 

Reaction equations 5.1 - 5.9 represent the possible surface processes occurring 

during the photocatalytic decomposition and reduction of NO on TiO2 surfaces. The 

first step for any of the reaction steps is the adsorption of NO onto the TiO2 surface 

(5.1). 

NO(Q) NO(a) (5.1) 

NO(a) N(a) + O(a) (5.2) 

NO(a) + N(a) . N-)O(, ) (5.3) 

NOw + O(a) -º N02(a) (5.4) 

N2O(w N-)O(g) (5.5) 
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N02(a) -º N02(g) (5.6) 

2N(a) -º N2(g) (5.7) 

2NO(a) 1 N2(g) + 02(S) (5.8) 

N20(a) -10 N2(g) + O(a) (5.9) 

Anpo et al. have proposed a mechanism for the photocatalytic decomposition 

of NO on isolated tetrahedral Ti02 species (formed within zeolites) and bulk Ti02 

powders. 5 On isolated tetrahedral TiO2 species, two NO molecules can be adsorbed 

as weak ligands, which then act as reaction precursors. Absorption of a UV photon 

induces the formation of charge transfer excited complexes of the type (Ti3+-O)*. 

Within the lifetime of the excited state, simultaneous electron transfer from the 

electron trapped centre (Ti3+) into the n-antibonding orbital of NO and from the 

7T-bonding orbital of another NO into the hole trapped centre (O") occurs. These rapid 

processes lead to the direct decomposition of two NO molecules on one active site, 

resulting in the formation of N2 and 02. In bulk TiO2 powders, the photogenerated 

electron-hole pairs are able to migrate away from each other and towards the particle 

surface, resulting in a relatively large separation between the holes and electrons. 

This prevents the simultaneous activation of two NO molecules at the same active 

site, which in turn results in the formation of N20 and NO2. The adsorbed 

decomposition products of N(a) and O(a) (5.2) migrate across the surface and react with 

other NO molecules on different active sites forming N20 and NO2, respectively (5.3 

and 5.4). The N20(a) and N02(a) formed can then desorb from the surface and are 

released as gas phase products (5.5 and 5.6) 

Using ideas developed considering the two mechanisms proposed above it is 

possible to understand the chemistry that occurs during NO decomposition on 

159 



Chapter 5- P25 reactions 

Degussa P25 photocatalysts calcined at various temperatures. However, the 

mechanism proposed by Anpo et al. for the bulk powder Ti02 only considers the 

possibility of N20 and NO2 products, whilst clearly the results presented above 

showed only the formation of N2 and N20 over P25. As the mechanism suggests that 

N(a) and O(a) react with NO(a) to form N20 or NO2, then clearly it would also be 

possible that N(a) could migrate and react with another N(a) forming N2 (5.7), although 

this reaction is less likely to occur due to lower concentration of N(a) species, hence 

N2 is only a minor product of NO decomposition on Degussa P25. 

Another possible method of N2 production on powdered TiO2 is via the 

formation of very shallow electron-hole pairs through the absorption of short 

wavelength UV photons, as discussed above. This could lead to the formation of 

localised surface charge transfer excited states, similar to those described for the 

mechanism on isolated Ti02 species, resulting in the direct decomposition of two NO 

molecules at one active site, thus yielding N2 and 02 as reaction products (5.8). The 

latter mechanism described for N2 formation is less likely to occur as the majority of 

the Ti02 surface would be hydrated, or contain oxygen vacancies formed during the 

photocatalyst pretreatment. Another possible reaction pathway for the formation of 

N2 is from the decomposition of N2O(a) into N2 and O(a) (5.9). 12 

When CO is present on the photocatalyst surface other reactions are possible 

between the adsorbed CO and NO molecules along with reactions of CO with N(a) and 

Oýaý atoms. 
O(a) + CO(a) w C02(g) (5.10) 

2N0(a) + CO(a) º N20(a) + C02(a) (5.11) 

N2O(a) º N20(g) (5.12) 

N20(a) + CO(a) º N2(g) + C02(a) (5.13) 

N(a) + CO > NCO(a) (5.14) 
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The presence of CO in the reaction stream can help with the formation of N20 

(5.11 and 5.12). It can also act as a scavenger for N20, producing N2 and CO2 (5.13). 

As discussed earlier, in the presence of CO, NO photoadsorption is reduced and 

therefore the concentration of N(a) can be assumed to be relativity low. Hence 

reactions 5.7 and 5.14 would be less likely and reaction 5.13 would be the most likely 

N2 forming reaction. 

FTTR studies of UV illuminated Ti02 powders in the presence of NO and CO 

have showed that the formation of isocyanate species (NCO(a), 5.14) was negligible at 

23°C, but at -70°C the intensity of their IR band increased. 26 This was attributed to 

increasing amounts of NO adsorption at lower temperatures. This report gives 

evidence to suggest that the concentration of N(a) was low on illuminated Ti02 

surfaces at room temperature, because if the concentration was higher, substantial 

amounts of NCO(. ) would be expected according to reaction 5.14. 

It is most likely that all of the reactions shown in 5.1-5.14 occur on the Ti02 

surface when both NO and CO are present in the reaction mixture. However, the rate 

of each reaction may vary with different catalyst pretreatment temperatures, leading to 

a change in selectivity. For Degussa P25 TiO2 photocatalysts pretreated at low 

calcination temperatures (70-120°C) the selectivity for N2 formation was higher than 

for those calcined at the higher temperatures (200-600°C) when CO was present (see 

figure 5.2 for values). Thus it can be concluded that the rate of reaction 5.13 (the N2 

forming reaction) must be faster for P25 calcined at lower temperatures. Hence, 

decreasing the density of surface hydroxyl groups (i. e. increasing the pretreatment 

temperature) decreased the rate of N2 forming reactions. 

Figure 5.4 shows that the rate of N20 formation was faster than the rate of N2 

formation under both decomposition and reduction conditions, for the calcination 
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temperatures investigated. However, it is important to note that for both reaction 

conditions (decomposition and reduction) the rates of N2 formation were similar. 

However, the rate of N20 formation was considerably lower when CO was present in 

the reaction gas. For example, P25 dried at 70°C, the rate of N20 formation was 

ca. 500 µmol h-1 g-1 and ca. 200 pmol h-1 g' in the absence and presence of CO, 

respectively. Therefore the presence of CO either hinders the formation of N20 or 

accelerates its reduction according to reactions 5.3 and 5.11, respectively. 
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Figure 5.4. The rates of formation of N2 and N2O for NO decomposition and 
reduction reactions over P25 photocatalyst calcined at various temperatures. 
Decomposition conditions: NO: 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 
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5.3.2 Effect of varying NO concentration 

Figures 5.5 and 5.6 present the percentage NO conversion and the rate of NO 

conversion, respectively, for both decomposition and reduction reactions with 

varying NO concentration over P25 photocatalysts calcined at 200°C. 

From the values for the percentage NO conversion it appears that the activity 

of the P25 photocatalysts decreased as the NO concentration increased for both 

decomposition and reduction conditions. However, this measure of activity does not 

give a very good representation of catalytic activity when the initial NO concentration 

is varied. If instead the rate of NO conversion is used, it can be seen that a nearly 

linear increase in rate with increasing NO concentration was observed for both 

reaction types as depicted in figure 5.6. It would be expected that the number of NO 

molecules adsorbed on the catalyst surface would be proportional to the initial 

concentration of NO in the gas stream until the capacity of the surface for NO 

adsorption was reached. 

Comparison of the activity of P25 photocatalysts under decomposition and 

reduction conditions with varying NO levels revealed that in the presence of CO the 

rate of NO conversion was considerably lower than for the direct NO 

photodecomposition reactions, for all the NO concentration investigated. This is the 

same result as was observed for the effect of calcination temperature experiments, 

hence this further supports the argument that the photoadsorption of CO occurs at the 

expense of NO adsorption. The amount by which the NO conversion rate increased 

with initial NO concentration in the presence of CO is less than for the decomposition 

reaction reactions, as the increase in adsorbed NO would be dependant on the NO/CO 

ratio rather than just the number of NO molecules in the gas stream, as would be the 

case for the decomposition reactions. 
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Under decomposition conditions, the selectivity of the photoreaction products 

remained unaltered irrespective of the NO concentration (figure 5.7). As the P25 

photocatalysts used for these experiments were subjected to the same pretreatment 

temperature, the same number and type of active sites were available for 

photoreactions to proceed. As a result the same reactions would occur on the surface 

irrespective of the number of NO molecules adsorbed. The possible reaction 

mechanisms for the production of N20 and N2 have been discussed earlier in this 

chapter (see reaction equations 5.1-5.9). 
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Figure 5.5. Effect of NO concentration on percentage conversion of NO over P25 
photocatalysts calcined at 200°C. Decomposition conditions: Total flow rate of 
5.5 sccm. Reduction conditions: Same as for decomposition reactions with a constant 
concentration of CO (1818 ppm). 
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Figure 5.6. Effect of NO concentration on the moles of NO used over P25 
photocatalysts calcined at 200°C. Decomposition conditions: Total flow rate of 
5.5 sccm. Reduction conditions: Same as for decomposition reactions with a constant 
concentration of CO (1818 ppm). 
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Figure 5.7. Effect of NO concentration on the selectivityfor N2 formation over P25 
photocatalysts calcined at 200°C. Decomposition conditions: Total flow rate of 
5.5 sccm. Reduction conditions: Same as for decomposition reactions with a constant 
concentration of CO (1818 ppm). 
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Under reduction conditions the selectivity for N2 formation decreased with an 

increase in the NO/CO ratio, i. e. with increasing NO concentration (figure 5.7). As 

discussed above, in the presence of CO all 14 of the proposed reaction mechanisms 

are likely to occur on the photocatalyst, although with varying reaction rates. For this 

part of the discussion it is more appropriate to refer to absolute reaction rates for the 

formation of a particular product rather than the relative rates of all the individual 

reactions (reactions 5.1-5.14). At low NO/CO ratios it could be expected that a large 

number of the NO molecules will be adsorbed relatively near to CO molecules. 

Therefore, more NO molecules are likely to react with CO molecules according to 

reactions 5.10-5.14 and a higher selectivity for N2 production would be seen. As the 

NO/CO ratio increases fewer NO molecules will adsorb close to CO molecules 

resulting in fewer NO-CO reactions. As a result more of the NO molecules would 

react via the reaction schemes shown in equations 5.1-5.9, and it has already been 

shown that N20 formation reactions dominate these processes. Hence, as the NO/CO 

ratio increased, the selectivity for N2 formation decreased as revealed in the results 

depicted in figure 5.7. 

As shown in figure 5.8, under decomposition conditions the rate of formation 

of both N2 and N20 increased in a near linear manner with increasing NO 

concentration. Calculation of the magnitude of the increase of both N2 and N20 

formation rates as the NO concentration was increased from 455 ppm to 1818 ppm 

showed that both increased by the same factor, ca. 3 times the initial rate. This shows 

that the relative rates of the individual surface reactions did not vary with increasing 

NO levels, only the total net rate of all the reactions increased. In the presence of a 

constant concentration of CO (1818 ppm), the rate of N20 formation increased with 

increasing NO concentration, whilst the rate of N2 formation remained largely 
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unchanged. This indicates the net rate of the N20 forming reactions (5.3,5.4 and 

5.11) increased and the N2 formation was proportional to the concentration of CO. 
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Figure 5.8. Rates of formation of N2 and N20 for decomposition and reduction 
reactions with varying NO levels over P25 photocatalysts calcined at 200°C. 
Decomposition conditions: Total flow rate of 5.5 sccm. Reduction conditions: Same 
as for decomposition reactions with a constant concentration of CO (1818 ppm). 

5.3.3 Effect of varying CO concentration 

The decrease in the NO conversion rates as the CO concentration was 

increased from 0 to 1818 ppm at constant NO levels (figure 5.9) provides further 

evidence for CO being adsorbed more strongly than NO, thereby blocking the active 

sites for NO adsorption. The same theory must apply to CO molecules as that 

discussed above with respect to the number of NO molecules adsorbed on the P25 

surface being proportional to the initial concentration of NO. Therefore, with 

increasing initial CO levels, a higher number of CO molecules would be adsorbed 

onto the surface, resulting in fewer adsorption sites for NO and ultimately a lower NO 
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conversion rate with increasing CO levels. The almost linear relationship between 

NO conversion and CO concentration provides further evidence to substantiate the 

above statements. 
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Figure 5.9. Effect of CO concentration on percentage conversion of NO over P25 

photocatalysts calcined at 200°C. Reaction conditions: NO concentration and total 
flow rate were kept constant at 909 ppm and 5.5 sccm, respectively. 

The increase in selectivity for N2 formation observed with increasing CO 

concentration at constant NO levels (figure 5.10. ) can be explained when you consider 

the ratio of adsorbed NO and CO molecules together with the possible surface 

reactions (equations 5.1-5.14). As the concentration of CO is increased, the 

probability of an NO molecule adsorbing close to a CO molecule increases, resulting 

in an increase in the number of NO-CO reactions (equations 5.10-5.14) at the expense 

of NO-NO reactions (equations 5.1-5.9). It has already been shown that N20 

formation reactions dominate NO-NO processes and that N2 is the major product of 

NO-CO reactions. Hence, decreasing the NO/CO ratio results in a higher selectivity 

for N2 formation. However, when the CO concentration was increased above 

909 ppm, there was no further increase in selectivity for N2 formation. 
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Figure 5.10. Effect of CO concentration on the selectivity for N2 formation over P25 
photocatalysts calcined at 200°C. Reaction conditions: NO concentration and total 
flow rate were kept constant at 909 ppm and 5.5 sccm, respectively. 

The trends shown in figure 5.11, showing that the rates of N20 and N2 

formation decrease and increase, respectively, help confirm as discussed earlier, that 

the presence of CO either hinders the formation of N20 or accelerates its reduction to 

N2 according to reactions 5.3 and 5.11, respectively. Although as the CO 

concentration was increased from 909 ppm to 1818 ppm, the effect was much less 

pronounced compared to the initial change in rates of formation when the CO levels 

were increased from zero to 909 ppm. 
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Figure 5.11. Rates of formation for N2 and N20 for reduction reactions with varying 
CO levels over P25 photocatalysts calcined at 200°C. Reaction conditions: NO 
concentration and total flow rate were kept constant at 909 ppm and 5.5 sccm, 
respectively. 

5.4 Conclusions 

The characteristics of photocatalytic decomposition and reduction of NO in the 

presence of CO have been determined for Degussa P25 Ti02 photocatalysts and it has 

been shown that over UV irradiated Degussa P25, NO will react to form N2 and N20 

with the selectivity being dependant on the reaction conditions. 

Increasing the pretreatment temperature resulted in a decrease in the 

photocatalytic activity of P25 for both decomposition and reduction reactions even 

though the crystalline structure remained unchanged for the temperature range used. 

Therefore, the decrease in activity was due to modifications to the surface chemistry, 

e. g. removal of molecular water and hydroxyl groups from the surface upon 

calcination. The activity for NO conversion was less for the reduction reactions 
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compared to the decomposition reactions for all the conditions tested due to the 

blocking of NO adsorption sites by the adsorbed CO molecules. 

The linear increase in reaction rate with NO concentration indicates that the 

reaction rate was directly proportional to the number of adsorbed NO molecules as it 

could be expected the number of NO molecules adsorbed was proportional to the 

partial pressure of NO and hence the NO concentration. 

Under decomposition conditions, the major reaction product was N20 (-75 %) 

with N2 being the minor product (-25 %). This selectivity was maintained 

irrespective of the photocatalyst pretreatment temperature or the initial NO 

concentration, indicating that the removal of hydroxyl groups from the surface did not 

affect the nature of the active sites available for photodecompositions. Under 

reduction conditions, the selectivity for N2 (-P48 %) formation increased when 

pretreatment temperatures of 70°C and 120°C were used. However, when higher 

pretreatment temperatures were used the selectivity became similar to that achieved in 

the absence of CO. This indicates that the surface NO-CO N2 forming reaction was 

more favourable in the presence of many surface hydroxyls and therefore the number 

of reactions decreased with increasing calcination temperature. 
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6 Photocatalytic reactions over silver modified 

Degussa P25 photocatalysts 

6.1 Introduction 

It is widely accepted that the addition of transition metal dopants to 

photocatalytic materials can have a dramatic effect on the activity and/or selectivity of 

certain photo-induced reactions, and there have been many examples to this effect 

reported in the literature 1-5 (and references therein). In most cases the role of the 

dopant is thought to increase the efficiency of the photoreactions via enhanced charge 

separation properties of the modified photocatalyst, 6 although the dopants themselves 

may have catalytic properties. 7 

To the best of my knowledge there have been no reports in the literature 

concerning the photocatalytic decomposition and/or reduction of NO over silver 

modified TiO2 photocatalysts. However, work by Matsuoka et al. 8 showed that UV 

irradiation of a Ag+/ZSM-5 catalyst in the presence of NO results in the photocatalytic 

formation of N2, N20 and NO2, with N2 being the major product. Ag/A1203 and 

AgCUAI2O3 photocatalysts have been reported to be efficient for the photocatalytic 

decomposition and reduction of NO with propane .9 In the absence of a reducing 

agent the main reaction product was N20. Therefore, this system is not an ideal one 

for the removal of NO from the atmosphere as N20 itself is a regulated pollutant. 

However, these studies show that silver species can offer adsorption sites that are 

active for NO conversion. 

For both the A1203 and ZSM-5 based systems excitation was via direct UV 

adsorption by the silver species, as the support materials were not semiconductor 

photocatalysts and therefore required the use of short wavelength UV sources. 
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However, if silver is supported on a photocatalytically active support such as TiO2, 

then excitation of the active silver sites via charge transfer from the support would be 

possible, thereby making use of near UV light sources possible. 

In the area of thermal catalysis for NO reduction, it was reported that 

supported silver catalysts are highly selective for the formation of N2. For example, 

Bera1° has reported that Ag/CeO2 catalysts are good SCR for the reduction of NO 

with Co. 

The aim of the work reported in this chapter was to investigate the effects of 

silver species on Degussa P25 on the photocatalytic activity and the selectivity of NO 

decomposition reactions, as well as NO reduction reactions in the presence of CO. 

The results are compared to those obtained for unmodified P25 photocatalysts that are 

reported in Chapter 5. The effects of photocatalyst processing parameters along with 

their photocatalytic behaviour under varying reactions conditions were also studied. 

This chapter presents the results from the photocatalytic activity tests carried 

out on Ag-P25 films. The effect of thermal processing parameters for both general 

decomposition and reduction reactions over O. lAg-P25, lAg-P25 and 5Ag-P25 are 

reported in subsections 6.2.1 to 6.2.3. The effect of various gas compositions on the 

activity and selectivity of the Ag-P25 photocatalysts is reported in sections 6.2.4 and 

6.2.5. Section 6.3 presents a detailed discussion of all the results presents in 6.2, and 

conclusions from these discussions are drawn in section 6.4. 
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6.2 Results 

6.2.1 0.1Ag-P25 photocatalysts - Effect of calcination temperature 

The O. lAg-P25 photocatalysts were calcined for 2h at temperatures in the 

range of 70°C to 600°C and their photocatalytic behaviour was measured for both NO 

decomposition and reduction reactions. The decomposition reactions were carried out 

under a total gas flow of 5.5 sccm containing 909 ppm of NO and the reduction 

reactions were investigated using the same conditions but with the addition of CO at 

1818 ppm. Argon was used as the balance for both reactions. 

For both decomposition and reduction conditions the activity of the 0.1Ag-P25 

photocatalysts decreased significantly with increasing calcination temperature (from 

29.2 % to 0.4 % NO conversion for decomposition reactions and from 18.3 % to 

0.1 % NO conversion for reduction reactions as the calcination temperature was 

increased from 70°C to 600°C, table 6.1), with the catalysts showing more activity for 

NO conversion in the absence of CO at all the calcination temperatures. The trend 

observed was similar to that for the unmodified P25 photocatalysts tested under the 

same reaction conditions, although the activity of the O. lAg-P25 was more greatly 

reduced compared to that of the P25 photocatalysts when the calcination temperature 

was raised above 200°C. 
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Calcination Conversion of NO Rate of NO conversion 
Temperature / /% / pmol h"1 g"1 

°C Decomposition Reduction Decomposition Reduction 
70 29.2 18.3 1193 750 
120 26.9 13.6 1100 557 
200 17.0 11.9 697 487 
450 4.4 3.3 180 137 
600 0.4 0.1 17 3 

Table 6.1. Table of NO conversions for the NO decomposition and reduction 
reactions over 0. IAg-P25 photocatalysts calcined at various temperatures. 
Decomposition conditions: NO: 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 

The selectivities for both the decomposition and reduction reactions are 

presented in table 6.2. The selectivity for N2 formation in the decomposition 

reactions remained nearly constant at ca. 20 % as the calcination temperature was 

increased from 70°C to 200°C (which was similar to the values observed for the P25 

photocatalysts), but when calcined at 450°C and 600°C the selectivity for N2 

formation increased to 36 % and 40 % respectively, which was higher than that 

observed for P25 at the same calcination temperatures. Under reduction conditions the 

selectivity for N2 formation was higher than for decomposition reactions for all the 

calcination temperatures investigated, and the trend observed was increasing N2 

selectivity with increasing calcination temperature. After calcination at temperatures 

of 450°C and above, the selectivity for N2 formation reached ca. 85 % for the 

reduction reactions. This is the reverse of the trend observed for the P25 

photocatalysts under reduction conditions, in which the selectivity for N2 formation 

decreased with increased calcination temperature. 

176 



Chapter 6- Ag-P25 reactions 

Calcination Selectivity for decomposition Selectivity for reduction 
temperature / °C reactions /% reactions /% 

N2 N20 N2 N20 
70 21 79 30 70 
120 18 82 55 45 
200 25 75 57 43 
450 36 64 88 12 
600 40 60 85 15 

Table 62 Table of selectivities for NO decomposition and reduction reactions over 
0. IAg-P25 photocatalysts calcined at various temperatures. Decomposition 
conditions: NO. 909 ppm with Ar balance and a total flow rate of 5.5 sccm. 
Reduction conditions: As for decomposition reactions with the addition of CO at 
1818 ppm. 

From the results for the rates of formation of N2 and N20 (table 6.3) it can be 

seen that the overall trend observed for both products, under both decomposition and 

reduction conditions, was a decrease in their rates of formation with increasing 

calcination temperature. These decreases in rates of formation are a result of the 

significant decreases in NO conversion with increasing calcination temperatures. One 

result that was an exception to the trend was found as the calcination temperature was 

increased from 70°C to 120°C, where in the presence of CO, the rate of formation of 

N2 increased from 113 µmol h" g"' to 151 pmol h7l 9". This resulted in a significant 

increase in selectivity for N2 formation for this sample. 

Calcination Rate of N2 formation Rate of N20 formation 
Temperature / / pmol h"1 g'1 / pmol h"1 g"1 

0C Decomposition Reduction Decomposition Reduction 
70 126 113 471 263 
120 99 151 451 123 
200 88 138 260 103 
450 33 60 57 7 
600 31 5 0.2 

Table 6.3. Rates of formation for the products of the photocatalytic reactions over 
0. IAg-P25 photocatalysts calcined at various temperatures. Decomposition 
conditions: NO: 909 ppm with Ar balance and a total flow rate of 5.5 sccm. 
Reduction conditions: Same as for decomposition reactions with the addition of CO at 
1818 ppm. 
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6.2.2 lAg-P25 photocatalysts - Effect of calcination temperature 

The lAg-P25 photocatalysts were pretreated in the temperature range of 70°C 

to 600°C for 2h and their photocatalytic activity for NO decomposition and reduction 

was measured using identical procedures as for the 0.1 Ag-P25 photocatalysts. 

For both decomposition and reduction reactions the activity of the lAg-P25 

photocatalysts decreased with increasing calcination temperature (from 14.3 % to 

0.2 % NO conversion for decomposition reactions and from 12 % to 1.2 % NO 

conversion for reduction reactions as the calcination temperature was increased from 

70°C to 600°C, table 6.4). Higher activities were observed under decomposition 

conditions for the photocatalysts calcined in the temperature range of 70°C to 200°C, 

whilst for the catalysts that had been subjected to pretreatments of 450°C and above 

the activity for NO conversion was essentially the same for both decomposition and 

reductions conditions. For both reaction types, the NO conversion was considerably 

less than that for the corresponding reactions over unmodified P25 photocatalysts. 

Calcination 
Temperature / 

Conversion of NO 
/% 

Rate of NO conversion 
/ µmol h'1 g"1 

°C Decomposition Reduction Decomposition Reduction 
70 14.3 11.8 583 483 
120 15.0 8.6 613 353 
200 12.0 8.8 489 359 
450 0.4 1.7 15 68 
600 0.2 1.2 7 49 

Table 6.4. Table of NO conversions for the NO decomposition and reduction 
reactions over lAg-P25 photocatalysts calcined at various temperatures. 
Decomposition conditions: NO: 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 

The selectivities for both the decomposition and reduction reactions are 

presented in table 6.5. The selectivity for N2 formation in the decomposition reactions 

remained nearly constant at 28 % as the calcination temperature was increased from 
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70°C to 200°C, but when calcined at 450°C and 600°C the selectivity for N2 formation 

increased to 45 % and 53 % respectively. Under reduction conditions the selectivity 

for N2 formation was higher than for decomposition reactions for all the calcination 

temperatures investigated, and the trend observed was increasing N2 selectivity with 

increasing calcination temperature. After calcination at temperatures of 450°C and 

above, no N20 formation was detected and the reduction reaction became 100 % 

selective towards N2 formation. The trends observed were similar to those for the 

O. lAg-P25 photocatalysts, but with a higher selectivity for N2 formation at all of the 

calcination temperatures used. 

Calcination Selectivity for decomposition Selectivity for reduction 
temperature / °C reactions /% reactions /% 

N2 N20 N2 N20 
70 29 71 59 41 
120 26 74 88 12 
200 29 71 90 10 
450 45 65 100 0 
600 53 47 100 0 

Table 6.5. Table of selectivities for NO decomposition and reduction reactions over 
lAg-P25 photocatalysts calcined at various temperatures. Decomposition conditions: 
NO: 909 ppm with Ar balance and a total flow rate of 5.5 sccm. Reduction 
conditions: As for decomposition reactions with the addition of CO at 1818 ppm. 

From the results for the rates of formation of N2 and N20 (table 6.6) it can be 

seen that the overall trend observed for both products under decomposition and 

reduction conditions was a decrease in their rates of formation with increasing 

calcination temperature. For example, under reduction conditions the rate of N2 

formation decreased from 142 µmol h-1 g"1 at 70°C to 25 µmol h"1 g" at 600°C, even 

though the selectivity for N2 formation increased. 
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Calcination Rate of N2 formation Rate of N20 formation 
Temperature / / pmol h-1 g"' / pmol h"1 g'1 

°C Decomposition Reduction Decomposition Reduction 
70 84 142 208 100 
120 78 156 228 20 
200 70 162 174 18 
450 3 34 4 0 
600 2 25 2 0 

Table 6.6. Rates of formation for the products of the photocatalytic reactions over 
lAg-P25 photocatalysts calcined at various temperatures. Decomposition conditions: 
NO: 909 ppm with Ar balance and a total flow rate of 5.5 sccm. Reduction 
conditions: Same as for decomposition reactions with the addition of CO at 
1818 ppm. 

6.2.3 5Ag-P25 photocatalysts - Effect of calcination temperature 

The 5Ag-P25 photocatalysts were pretreated in the temperature range of 70°C 

to 600°C for 2h and their photocatalytic activity for NO decomposition and reduction 

was measured using identical procedures as for the other silver modified 

photocatalysts. 

Under decomposition conditions the percentage NO conversion remained 

nearly constant at ca. 3% for the photocatalysts that had been pretreated in the 

temperature range of 70°C to NOT and then decreased to 0.4 % when the higher 

calcination temperatures of 450°C and 600°C were used (table 6.7). For the reduction 

reactions the percentage NO conversion decreased with every increase in pretreatment 

temperature. It should also be noted that under reduction conditions the NO 

conversion rate was higher than for the decomposition reactions for the photocatalysts 

that had been calcined at low temperature. For all the other systems investigated 

(P25,0.1Ag-P25 and IAg-P25) the activity of the photocatalyst was always greatest 

in the absence of CO. 
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Calcination Conversion of NO Rate of NO conversion 
Temperature / /% / pmol h'1 g-1 

°C Decomposition Reduction Decomposition Reduction 
70 2.0 7.0 83 287 
120 3.1 5.9 125 243 
200 4.0 2.6 164 108 
450 0.4 0.3 15 13 
600 0.4 0.5 16 20 

Table 6.7. Table of NO conversions for the NO decomposition and reduction 
reactions over 5Ag-P25 photocatalysts calcined at various temperatures. 
Decomposition conditions: NO., 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 

The selectivities for both the decomposition and reduction reactions are 

presented in table 6.8. The selectivity for N2 formation in the decomposition 

reactions remained nearly constant at 75 % for all of the calcination temperatures 

investigated, whilst for the reduction reactions the selectivity for N2 formation 

increased from 76 % at 70°C to 100 % at 200°C. When the pretreatment temperature 

was increased further to 600°C the reduction of NO remained 100 % selective towards 

N2 formation (within the errors associated with the experiment). 

Calcination 
temperature / °C 

Selectivity for decomposition Selectivity for reduction 
reactions /% reactions /% 

N2 N20 N2 N20 
70 71 29 76 24 
120 75 25 83 17 
200 75 25 100 0 
450 79 21 100 0 
600 77 23 95 5 

Table 6.8. Table of selectivities for NO decomposition and reduction reactions over 
5Ag-P25 photocatalysts calcined at various temperatures. Decomposition conditions: 
NO. 909 ppm with Ar balance and a total, flow rate of 5.5 sccm. Reduction conditions: 
As for decomposition reactions with the addition of CO 1818 ppm. 

Due to the higher selectivities of the 5Ag-P25 photocatalysts towards N2 

formation under both decomposition and reductions conditions the corresponding 
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rates of formation of the N20 product were very low (< 35 pmol h"' g") at all the 

calcination temperatures investigated for both reactions types (table 6.9). The rates of 

formation of N2 were also fairly low due to the low NO conversion levels observed 

for the 5Ag-P25 photocatalysts. The maximum N2 formation rate was 109 pmol h71 g"' 

and was observed for the photocatalyst that had been pretreated at 70°C and tested 

under a reducing atmosphere. 

Calcination Rate of N2 formation Rate of N20 formation 
Temperature // µmo1 h"' g"' / µmol h"' g' 

°C Decomposition Reduction Decomposition Reduction 
70 29 109 12 34 
120 47 100 16 21 
200 62 54 21 0 
450 6620 
600 6921 

Table 6.9. Rates of formation for the products of the photocatalytic reactions over 
5Ag-P25 photocatalysts calcined at various temperatures. Decomposition conditions: 
NO. 909 ppm with Ar balance and a total flow rate of 5.5 sccm. Reduction 
conditions: Same as for decomposition reactions with the addition of CO at 
1818 ppm. 

6.2.4 Effect of varying NO concentration 

To investigate the effect of NO concentration over Ag-P25, a lAg-P25 

photocatalyst that had been calcined at 200°C was used. The concentration of NO 

was varied from 455 ppm to 1818 ppm whilst maintaining a constant total flow rate of 

5.5 sccm. When present, the concentration of CO was kept constant at 1818 ppm. 

Table 6.10 shows that as the concentration of NO increased from 455 ppm to 

1818 ppm the percentage NO conversion decreased from 19.1 % to 8.3 % for the 

decomposition reactions and from 12.2 % to 7.0 % for the reduction reactions. 

However, if instead of percentage NO conversion, the rate of NO conversion was 

used as a measure of photocatalytic activity, then we see a trend that increases for 
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both reaction types (table 6.10), thus indicating that more surface NO reactions 

occurred as the NO concentration increased. 

NO Conversion of NO Rate of NO conversion 
concentration /% / µmol h" g"' 

/ ppm Decomposition Reduction Decomposition Reduction 
455 19.1 12.2 390 249 
909 12.0 8.8 489 359 
1818 8.3 7.0 680 567 

Table 6.10. NO conversion results for decomposition and reduction reactions with 
varying NO levels over IAg-P2S photocatalysts calcined at 200°C. Decomposition 
reaction conditions: Total f ow rate of 5.5 sccm. Reduction reaction conditions: Same 
as for decomposition reactions with a constant concentration of CO (1818 ppm). 

Within the errors associated with these results the selectivity of the 

decomposition reactions was very similar (ca. 30 % selectivity for N2 formation) for 

all three NO concentrations (table 6.11). At low NO concentration (455 ppm) in the 

presence of CO, the selectivity of the reaction for N2 formation was as high as 95 %, 

but as the concentration of NO was increased the selectivity for N2 formation 

decreased. When the NO level was 1818 ppm the selectivity for N2 formation had 

decreased to 65 %. For both decomposition and reduction conditions the rate of N2 

formation increased by ca. 161 % when the NO concentration was increased from 

455 ppm to 1818 ppm (table 6.12). However, it should be noted that a higher rate of 

N2 formation was observed in the presence of CO for the NO concentrations 

investigated. For both reaction types the rate of formation of N20 increased with NO 

concentration, with the decomposition conditions being the most favourable for N20 

production at all the NO levels investigated. 
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NO concentration 
/ ppm 

Selectivity for decomposition 
reactions /% 

Selectivity for reduction 
reactions /% 

N2 N20 N2 N20 
455 36 64 95 5 
909 29 71 90 10 
1818 34 66 65 35 

Table 6.11. Table of selectivities for NO decomposition and reduction reactions with 
varying NO concentrations over lAg-P25 photocatalysts calcined at 200°C. 
Decomposition reaction conditions: Total. flow rate of 5.5 sccm. Reduction reaction 
conditions: Same as for decomposition reactions with a constant concentration of CO 
(1818 ppm). 

NO Rate of N2 formation Rate of N20 formation 
concentration / µmol If' g1/ µmol If' g"1 

/ ppm Decomposition Reduction Decomposition Reduction 
455 70 118 123 6 
909 71 163 173 17 
1818 113 187 227 97 

Table 6.12. Rates of formation for the products for NO decomposition and reduction 
reactions with varying NO concentrations over lAg-P25 photocatalysts calcined at 
200°C. Decomposition reaction conditions: Total flow rate of 5.5 sccm. Reduction 
reaction conditions: Same as for decomposition reactions with a constant 
concentration of CO (1818 ppm). 

6.2.5 Effect of varying CO concentration 

The effect of CO concentration was investigated by maintaining a constant 

concentration of NO of 909 ppm whilst varying the CO concentration from zero to 

1818 ppm. The total flow rate was kept constant at 5.5 sccm for each experiment. The 

photocatalysts used for these experiments were films of 1 Ag-P25 calcined at 200°C. 

Table 6.13 illustrates how the percentage NO conversion decreased from 12 % to 

8.1 % as the CO concentration was increased from 0 to 1242 ppm. Further increasing 

the CO concentration did not significantly effect the percentage NO conversion. 

From the results for the selectivity of the reactions (table 6.14) it can be seen 

that the addition of even low concentrations of CO (364 ppm) resulted in a dramatic 
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increase in the selectivity of the reaction towards N2 formation. When no CO was 

present the selectivity for N2 formation was 29 %, but with 364 ppm of CO in the 

reaction gases the selectivity for N2 formation nearly doubled to 58 %. 

CO concentration / NO conversion NO conversion rate 
PPM /% / µmol h-' g"' 

0 12.0 490 
364 10.6 431 
909 9.7 394 
1242 8.1 333 
1818 8.8 359 

Table 6.13. NO conversion results for reduction reactions with varying CO levels 
over lAg-P25 photocatalysts calcined at 200°C. Reaction conditions: NO 
concentration and total flow rate were kept constant at 909 ppm and 5.5 sccm 
respectively. 

CO concentration 
ppm N2 

Selectivity /% 

N20 
0 29 71 

364 58 42 
909 86 14 
1242 82 18 
1818 90 10 

Table 6.14 Selectivity results for reduction reactions with varying CO levels over 
IAg-P25 photocatalysts calcined at 200°C. Reaction conditions: NO concentration 
and total flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 

The rate of formation of N2 increased with CO concentration until it reached a 

maximum of 169 pmol h' g' at 909 ppm (table 6.15). Further increases in the CO 

concentration resulted in a decrease in the rate of N2 formation. The rate of formation 

of N20 decreased from 173 µmol h' g'1 at zero CO concentration to 18 µmol h"1 g"1 at 

1818 ppm of CO. 
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CO concentration Rate of N2 formation Rate of N20 formation 
/ ppm / pmol h-l g"1 / µmol h"1 g"1 

0 71 173 
364 125 91 
909 169 28 
1242 137 30 
1818 162 18 

Table 6.15. Effect of CO concentration on the rates of formation of N2 and N20 over 
IAg-P25 photocatalysts calcined at 200°C. Reaction conditions: NO concentration 
and total flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 

6.3 Discussion 

6.3.1 Effect of silver species on photocatalytic behaviour 

Figures 6.1 and 6.2 show the effect of silver loading for each of the calcination 

temperatures used on the percentage conversion of NO for decomposition and 

reduction reactions, respectively. For each of the silver loadings used the rate of NO 

conversion decreased with increasing calcination temperature, which is the same trend 

that was observed for the unmodified P25 photocatalysts. As discussed in chapter 5 

of this thesis, the reason for the decrease in NO conversion rate as the P25 

pretreatment temperature increased was the removal of molecular water and hydroxyl 

groups from the surface of TiO2. Surface bound OH groups act as both efficient 

trapping sites for photogenerated holes4 as well as good adsorption or active sites for 

NO molecules, " thus reducing the surface density of OH groups (by increasing 

calcination temperatures) has the effect of reducing the NO conversion rate over P25 

photocatalysts. 
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Figure 6.1. Effect of silver content on the percentage NO conversion for 
photocatalysts calcined at various temperatures for 2 h. Decomposition conditions: 
NO concentration was 909 ppm. Total flow rate 5.5 sccm. 

The same rationalisation of decreasing density of surface bound OH groups 

with increasing calcination temperature can be used to partly explain the decrease in 

NO conversion observed for all the silver containing photocatalysts under both 

decomposition and reduction conditions with increasing pretreatment temperature. 

However, it was also observed that additions of silver to P25 had a detrimental effect 

on the NO conversion rate, as shown by the decrease in NO conversion observed as 

the silver loading increased. The trends observed for the percentage NO conversion as 

the calcination temperature and silver loading vary can be explained by referring to 

the nature and amount of silver species present on the P25 surface. This result is in 

agreement with reports in the literature that state that the effect of modifying species 

on the activity of a photocatalyst are sensitive to their concentration. 4 

The interface that is formed when a photocatalyst and a metal (or metal ion) 

are in electrical contact can serve as an efficient trap for the photogenerated electrons, 
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preventing the energy wasting electron-hole recombination reactions. It is also 

possible for a charge transfer process to occur, in which the photogenerated electron 

migrates to the supported species. The electron is then able to initiate a redox reaction 

with adsorbed molecules. Both of these processes can lead to enhanced activity of a 

photocatalyst. However, it is possible that if the extent of charge transfer from the 

photocatalysts to the supported species becomes excessive, then the excess negative 

charge can attract the positively formed photogenerated hole, and the interface acts as 

a recombination centre, thus reducing the photocatalyst efficiency. The reader is 

referred back to chapter 2 for a more detailed discussion of the processes occurring. 

In characterising the Ag-P25 photocatalysts used for the experiments 

described in this chapter it was shown that for each of the silver loadings used, the 

relative amount of metallic silver to silver ions present increased with increasing 

calcination temperature, with the highest silver loading (5 wt. %) showing the greatest 

relative percentage of Ag° at all calcination temperatures (See tables 4.11 and 4.13, 

Chapter 4). It was also observed that increasing the silver loading resulted in 

enhanced growth of the anatase particles at lower temperatures and increased the rate 

of the anatase-to-rutile phase transformation. For example, the phase composition of 

the O. IAg-P25 and 5Ag-P25 photocatalysts calcined at 450°C consisted of ca. 22 % 

and ca. 26 % rutile, respectively and the average anatase particle sizes were ca. 28 run 

and ca. 31 nm, respectively. The Ti02 particle sizes and phase composition of all the 

Ag-P25 photocatalysts were similar after calcination at lower temperatures, but 

calcination at 600°C resulted in further particle growth and phase changes especially 

for the systems with higher silver content. As a result of this it would be expected 

that the surface area of the silver modified P25 catalysts calcined at temperatures 

above NOT would decrease with increased silver concentration. 
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From these observations, it is proposed that the reduction in activity of the 

Ag-P25 photocatalysts as the silver concentration and pretreatment temperature 

increase was probably due to two separate effects. Firstly, increasing amounts of 

metallic silver could result in the metal-Ti02 interface acting as a recombination 

centre for the photogenerated electrons and holes, rather than helping suppress 

recombination, thus the number of photoreactions that were able to proceed would 

decrease as the magnitude of the effect increased. Secondly, the decreasing TiO2 

surface area would result in less Ti02 being able to participate in the reactions and 

also in fewer active adsorption sites, thus reducing the number of possible surface 

photoreactions. 

Similar effects have been observed in the studies by Chao et al. 12,13 on the 

photocatalytic degradation of methylene blue over sol-gel prepared Ti02 modified 

with varying amounts of silver. It was found that when a suitable amount of Ag was 

used, the activity of the Ti02 photocatalysts was effectively enhanced. For example, 

when a 2-4 mol. % (2.7- 5.4 wt. %) Ag was used the photocatalytic activity was 

increased to more than that of unmodified Ti02. However, increasing the silver 

content to 6 mol. % (8.1 wt. %) yielded a photocatalyst with an activity similar to that 

of Ti02. Further increases in the amount of silver used resulted in a further reduction 

of the photocatalytic activity. XRD, XPS and BET surface area analysis of the 

photocatalysts also showed similar trends in the composition and particle sizes of the 

Ti02 support as the silver loading increased as was observed for the silver containing 

catalysts used for the work presented in this thesis. The authors proposed, in 

agreement with many other reports in the literature, that the increase in activity at low 

silver loadings was due to the enhanced electron-hole separation caused by the 

Schottky barrier formed at the metal-Ti02 interface and that at high silver loadings the 
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interface served as a recombination centre, thereby reducing the efficiency of the 

photoreactions. 
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Figure 6.2. Effect of silver content on the percentage NO conversion . /or 
photocatalysts calcined at various temperatures for 2 h. Reduction conditions: NO 
and CO concentrations were 909 ppm and 1818 ppm respectively. Total flow rate 
5.5 sccm. 

As discussed above, the studies by Chao et al. ""' reported that addition of 

4 mol. % (5.4 wt. %) Ag to Ti02 resulted in a higher activity for methylene blue 

degradation than unmodified Ti02. However, in the results presented in this thesis, 

the 5Ag-P25 photocatalyst systems were significantly less active for both NO 

decomposition and reduction than the unmodified P25 photocatalysts (ca. 30 % and 

2% NO conversion for unmodified P25 and 5Ag-P25 dried at 70°C, respectively). 

This indicates that changes in photocatalytic activity observed when silver was 

present on Ti02 surfaces are not the same for every reaction type, (although similar 

overall trends are observed) but instead are specific to each reaction and the reaction 

type (e. g. gas-solid or liquid-solid reaction interfaces). Similar trends have been 
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reported when other transition metals have been used. For example Cr3+ ion dopants 

are detrimental for the photoreduction of N2 to NH314 (a gas-solid system), whilst they 

have no effect on phenol degradation (a liquid-solid system). 15 However, when 

Cr3+ ions were present on Ti02 the sustainability for the photocleavage of water was 

improved when compared to unmodified TiO2 (a liquid-solid system). 16 These 

differences in the photocatalytic reactivities of the above reactions have been 

attributed to the inherent differences in the gas-liquid and liquid-solid interfaces, 

rather than to differences induced by the metal doping. '5 

Comparison of figures 6.1 and 6.2 shows that the presence of CO in the 

reaction gas results in lower NO conversion rates, and the effect is more evident in 

Ag-P25 photocatalysts with low silver loadings and those that have been calcined at 

temperatures below 450°C. As discussed in chapter 5, CO is competitively 

photoadsorbed onto TiO2 surfaces thereby reducing the number of NO molecules 

adsorbed and ultimately decreasing the NO conversion rate. It is proposed that this is 

the reason for the reduced activity of the Ag-P25 photocatalysts with low silver 

concentrations. Also apparent from comparison of figures 6.1 and 6.2 is that, over the 

5Ag-P25 photocatalysts, the NO conversion in the presence of CO was greater than or 

equal to the conversion for the NO decomposition reactions. For higher calcination 

temperatures it is impossible to say which reaction has the higher NO conversion, due 

to the low NO conversion rates for both. As discussed above, the 5Ag-P25 

photocatalysts contained larger amounts of metallic silver species (relative to 

Ag+ species, see chapter 4) compared to the IAg-P25 and 0. IAg-P25 photocatalysts. 

It is possible that the presence of metallic silver particles increase the amount of NO 

that was adsorbed when CO was also present in the reaction gas. Alternatively it is 

possible that the Ag+ species present in the form of silver nitrate are active for 
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NO-CO photoreactions, and the effect is enhanced for the lower temperature 5Ag-P25 

photocatalysts as more Ag+ species were present. There are reports in the literature 

that show that both metallic silver and Ag+ compounds are active for the adsorption of 

NO and CO10,1-19 (with and without the presence of UV illumination), however there 

are no reports on the coadsorption properties of silver compounds and hence it is not 

possible to interpret the data in terms of the competitive adsorption processes 

occurring during the NO-CO reactions over Ag-P25 photocatalysts reported in this 

thesis. 

Figure 6.3 shows that under decomposition conditions, as the silver loading 

increased the selectivity for N2 formation also increased for all the calcination 

temperatures and that, within the errors associated with the measurements, the 

presence of silver improved the N2 selectivity. As discussed above the calcination 

temperature and silver loading affects the nature of the silver species present. It could, 

therefore, be expected that it was the presence of the particular silver species that gave 

rise to the higher selectivity observed in the presence of silver. From figure 6.3 it can 

be seen that the selectivity for N2 formation was only slightly increased (compared to 

unmodified P25) for the decomposition reactions over O. lAg-P25 and lAg-P25 

photocatalysts that had been calcined at temperatures of up to 200°C. In these 

systems the silver was shown to be present predominantly as silver nitrate, with only 

small amounts of Ag°. Therefore, silver nitrate had little or no effect on the 

selectivity of the NO decomposition reaction and the relative rates of the NO surface 

reactions were comparable to those on unmodified P25 photocatalysts. When the 

same photocatalysts were calcined at higher temperatures the selectivity for N2 

increased, with the highest values (53 % selectivity for N2 formation) observed over 

the catalyst with the largest relative amount of metallic silver present. From these 
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observations it can be deduced that metallic silver particles and clusters enhance the 

number of N2 forming NO-NO reactions relative to the N2O forming NO-NO 

reactions. For details of the possible NO surface reactions the reader is referred to 

reaction equations 5.1-5.9 in the discussion in chapter 5. Further evidence for this 

hypothesis is seen in the decomposition reactions on 5Ag-P25 catalysts, as much 

higher selectivity for N2 formation (ca. 75 %) was obtained due to the increased 

number of metallic silver particles and clusters. However, it was shown by XPS 

analysis of the Ag-P25 photocatalyst systems that the surface of the silver particles 

and clusters were partially oxidised to Ag+ and it has been reported several times that 

oxidised silver species are highly selective for N2 formation. ' 7,20'21 
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Figure 6.3. Effect of silver content on the selectivity for N, formation for 

photocatalysts calcined at various temperatures for 2 h. Decomposition conditions: 
NO concentration was 909 ppm. Total flow rate 5.5 sccm. 
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Theoretical calculations based on Ag+ monomers and oligomers (figure 6.4 (a) 

and (b) respectively) have shown that UV initiated NO decomposition reactions 

forming N2 and 02 via metal-to-ligand charge transfer (MLCT) transitions are feasible 

reactions as such transitions are favoured due to the symmetry for electric dipole 

transitions and require low energies which are accessible by UV light sources. '8 It 

was also suggested that the likelihood for the photoreaction is increased for 

oligomeric Ag species, which is a more realistic model of the surface for the silver 

clusters present on the photocatalysts used for this thesis. 

When CO was present in the reaction gas, the selectivity for N2 formation 

increased with both increasing temperature and silver loading and the reaction became 

100 % selective, again suggesting that the presence of metallic silver particles 

promotes the rate of the N2 forming reactions at the expense of reactions that yield 

N20 (figure 6.5). 
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Figure 6.4. Theoretical models used to calculate the likelihood of NO decompositions 
reactions occurring on silver species. '8 
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Figure 6.5. Effect of silver content on the selectivity for N2 formation for 
photocatalysts calcined at various temperatures for 2 h. Reduction conditions: NO 
and CO concentrations were 909 ppm and 1818 ppm respectively. Total flow rate 
5.5 sccm. 

Comparing the rates of N2 and N20 formation under decomposition and 

reduction conditions for the 1 Ag-P25 photocatalyst (figure 6.6), it can be seen that 

both decrease with increasing catalyst pretreatment temperatures. The major factor 

for the decrease was the reduction in activity of the photocatalyst. More importantly, 

the rate of N2 formation was higher in the presence of CO, whilst the opposite was 

observed for the rate of N20 formation. In fact, in the presence of CO, the rate of 

N20 formation was low for all the calcination temperatures (typically 

< 30 µmol h-1 g-1) and the rate of N2 formation was significantly higher at typically 

ca. 150 µmol h-1 g-1 (although the rate did drop after calcination at temperatures of 

450°C and above). From these observations it is proposed that the decrease in the rate 

of N20 formation in the presence of CO was either because of an increase in the rate 
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of N20 conversion to N2 (equation 5.13) or a decrease in the rate of formation of N20 

(equation 5.3) or a combination of both. 
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Figure 6.6. The rates of formation of N2 and N20 for NO decomposition and 
reduction reactions over IAg-P25 photocatalysts calcined at various temperatures. 
Decomposition conditions: NO 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 

6.3.2 Effect of varying NO concentration 

As shown in chapter 5, percentage NO conversion is not a good indication of 

the activity of photocatalysts when comparing reactions with varying NO 

concentration and therefore figure 6.7 depicts the trends in NO conversion rate for 

both decomposition and reductions reactions over I Ag-P25 photocatalysts calcined at 

200°C, with varying NO levels. It is clear that NO conversion rate increased linearly 

with increasing NO concentration for both reaction types. As shown in figure 6.7, at 
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constant CO levels the rate of NO conversion was only affected by the initial 

concentration of NO and not the NO/CO ratio (i. e. as for the decomposition 

experiments, activity was proportional to NO concentration). Consistent with the 

results presented above for the corresponding photocatalyst, the presence of CO 

inhibits the rate of NO conversion via competitive adsorption, as discussed 

previously. 
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Figure 6.7. Effect of NO concentration on the moles of NO used over IAg-P25 
photocatalysts calcined at 200°C. Decomposition reaction conditions: Total flow rate 
of 5.5 sccm. Reduction reaction conditions: Same as for decomposition reactions with 
a constant concentration of CO (1818 ppm). 

Under decomposition conditions, the selectivity of the photoreaction products 

remained unaltered irrespective of the NO concentration (figure 6.8). This is as 

expected because the relative rate of N2 and N20 forming reactions would be the same 

as the same active sites would have been present in each experiment. The overall rate 

of reactions increased (as indicated by the increase in conversion) due to mass 
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transport of more NO to the surface of the photocatalyst as the NO concentration 

increased. 

Under reduction conditions the selectivity for N2 formation decreased with an 

increase in the NO/CO ratio, i. e. with increasing NO concentration (figure 6.8). As 

discussed above, surface NO-CO reactions over Ag-P25 photocatalysts were very 

selective for N2 formation, whilst NO-NO reactions were less selective and yielded 

both N2 and N20 as products. Obviously as the NO/CO ratio increased the relative 

number of NO-CO reactions decreased and overall the reaction became less selective 

for N2 formation. 

Figure 6.9 illustrates that the rates of N2 and N20 formation increased slightly 

for both decomposition and reduction conditions as the initial NO concentration 

increased. From comparison of the formation rates it is apparent that the rate of N2 

formation in the presence of CO (ca. 75 µmol h71 g4 - 100 pmol h'1 g") was higher 

than the rate of N20 formation under the same conditions and higher than the rate of 

N2 formation under decomposition conditions, for all the NO concentrations 

investigated. Hence, under reduction conditions the lAg-P25 photocatalyst was a 

good catalyst for the production of N2 with minimal N20 formation for all the NO/CO 

ratios studied. 
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Figure 6.8. Effect of NO concentration on the selectivity for N2. formation over 
lAg-P25 photocatalysts calcined at 200°C. Decomposition reaction conditions: Total 

flow rate of 5.5 sccm. Reduction reaction conditions: Same as for decomposition 
reactions with a constant concentration of CO (1818 ppm). 
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Figure 6.9. Rates of formation of N2 and N20 for decomposition and reduction 
reactions with varying NO levels over lAg-P25 photocatalysts calcined at 200°C. 
Decomposition reaction conditions: Total flow rate of 5.5 sccm. Reduction reaction 
conditions: Same as for decomposition reactions with a constant concentration of CO 
(1818 ppm). 
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6.3.3 Effect of varying CO concentration 

As shown in figure 6.10 the NO conversion decreased fairly linearly with 

increasing CO levels, which was the same trend as observed for the unmodified P25 

photocatalysts, although the reduction in activity was much lower for the l Ag-P25 

photocatalysts (30 % conversion at zero CO to 10 % conversion at 1818 ppm CO for 

the unmodified P25 photocatalyst, and 12 % conversion at zero CO to 8% conversion 

at 1818 ppm for the lAg-P25 photocatalyst calcined at 200°C). Over unmodified P25 

surfaces, the adsorption of CO blocked the active sites for NO adsorption, thus as the 

CO levels were increased, the NO conversion decreased, as less NO would be 

adsorbed. Although similar processes would have an effect on the reactions over 

Ag-P25 photocatalysts, the presence of silver species may offer alternative adsorption 

and/or additional reaction sites on which NO conversion can proceed even in the 

presence of CO. 
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Figure 6.10. Effect of CO concentration on percentage conversion of NO over 
]Ag-P25 photocatalysts calcined at 200°C. Reaction conditions: NO concentration 
and total f ow rate were kept constant at 909 ppm and 5.5 sccm respectively. 
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The increase in selectivity for N2 formation observed with increasing CO 

concentration at constant NO levels (figure 6.11. ) can be explained by considering the 

ratio of adsorbed NO and CO molecules and the possible surface reactions. As the 

CO concentration was increased, the probability that CO was adsorbed in close 

proximity to an NO molecule increased, resulting in an increase of the highly 

selective NO-CO reactions at the expense of the less selective NO-NO reactions. 

Hence decreasing the NO/CO ratio results in a higher selectivity for N2 formation. 
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Figure 6.11. Effect of CO concentration on the selectivity for N2 formation over 
lAg-P25 photocatalysts calcined at 200°C. Reaction conditions: NO concentration 
and total flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 

The trends shown in figure 6.12 for the rates of formation of N2 and N20 

reflect the fact that although there was a slight decrease in NO conversion with 

increased CO concentrations, the higher selectivities towards N2 formation resulted in 

a greater than double increase of the N2 formation rate. The graph also illustrates that 
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there was little improvement in the rate of N2 formation for CO concentrations greater 

than 909 ppm. 
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Figure 6.12. Rates of formation for N2 and N20 for reduction reactions with varying 
CO levels over lAg-P25 photocatalysts calcined at 200°C. Reaction conditions: NO 
concentration and total flow rate were kept constant at 909 ppm and 5.5 sccm 
respectively. 

6.4 Conclusions 

The characteristics of the photocatalytic decomposition and reduction of NO 

in the presence of CO have been determined for silver modified Degussa P25 Ti02 

photocatalysts, and it has been shown that both activity and selectivity of the NO 

photoreactions were strongly dependant on the nature of the deposited silver species. 

It was found that both increasing the silver loading and increasing the 

pretreatment temperature had a detrimental effect on the photocatalytic activity of the 

photocatalysts under both decomposition and reduction conditions. It is believed this 

was due to the removal of molecular water and hydroxyl groups from the P25 surface 
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at higher calcination temperatures, thus reducing the number of active sites available. 

Also, silver nitrate was thermally reduced to form silver particles and clusters which 

when present in sufficiently high concentration acted as efficient electron-hole pair 

recombination centres, thus reducing the efficiency of the photocatalytic reactions. 

Generally, the activity for NO conversion was less for the reduction reactions 

compared to the decomposition reactions for all the reaction conditions tested due to 

the blocking of TiO2 adsorption sites by the adsorbed CO molecules. However, these 

conditions produced more selective reactions and the rate of N2 formation was much 

higher in the presence of CO. Increasing the initial concentration of NO resulted in a 

linear increase in the rate of NO conversion. 

Although the activity of the silver modified photocatalysts was less than 

unmodified P25, the reactions were more selective for N2 formation for all the 

photocatalysts tested. The NO reduction reactions over lAg-P25 and 5Ag-P25 that 

had been calcined at temperatures above NOT were essentially 100 % selective for 

N2 formation. Thus, it is concluded that these catalysts were efficient SCR catalysts 

for the reduction of NO with CO. 

6.5 References 

(1) Yoneyama, H.; Shiota, H.; Tamura, H. Bull. Chem. Soc. Jpn. 1981,54,1308. 
(2) Lim, T. H.; Jeong, S. M.; Kim, S. D.; Gyenis, J. React. Kinet. Catal. Lett. 

2000,71,223. 
(3) Herrmann, J. M.; Tahiri, H.; Aitlchou, Y.; Lassaletta, G.; GonzalezElipe, A. 

R.; Fernandez, A. Appl. Catal. B Environ. 1997,13,219. 
(4) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993,93,341. 
(5) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Chem. Rev. 

1995,95,69. 
(6) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. Rev. 1995,95,735. 
(7) Disdier, J.; Herrmann, J. M.; Pichat, P. J. Chem. Soc. Faraday Trans. 11983, 

79,651. 
(8) Matsuoka, M.; Matsuda, E.; Tsuji, K.; Yamashita, H.; Anpo, M. J. Mol. Catal. 

A Chem. 1996,107,399. 

203 



Chapter 6- Ag-P25 reactions 

(9) Yamashita, Y.; Aoyama, N.; Takezawa, N.; Yoshida, K. J. Mol. Catal. A 
Chem. 1999,150,233. 

(10) Bera, P.; Patil, K. C.; Hegde, M. S. Phys. Chem. Chem. Phys. 2000,2,3715. 
(11) Ding, Z.; Lu, G. Q.; Greenfield, P. F. J. Phys. Chem. B 2000,104,4815. 
(12) Chao, H. E.; Yu, Y.; Hu, X. F.; Larbot, A. App!. Surf Sci. 2002,200,239. 
(13) Chao, H. E.; Yuri, Y. U.; Ringfang, H. U.; Larbot, A. J. European Ceram. 

Soc. 2003,23,1457. 
(14) Palmisano, L.; Augugliaro, V.; Sclafani, A.; Schiavello, M. J. Phys. Chem. 

1988,92,6710. 
(15) Peral, J.; Casado, J.; Domenech, J. J. Photochem. Photobiol. A Chem. 1988, 

44,209. 
(16) Borgarello, E.; Kiwi, J.; Gratzel, M.; Pelizzetti, E.; Visca, M. J. Am. Chem. 

Soc. 1982,104,2996. 
(17) Bogdanchikova, N.; Meunier, F. C.; Avalos-Borja, M.; Breen, J. P.; 

Pestryakov, A. App!. Catal. B Environ. 2002,36,287. 
(18) Kanan, S. M.; Omary, M. A.; Patterson, H. H.; Matsuoka, M.; Anpo, M. J. 

Phys. Chem. B 2000,104,3507. 
(19) Akolekar, D. B.; Bhargava, S. K. J. Mol. Catal. A Chem. 2000,157,199. 
(20) Haneda, M.; Kintaichi, Y.; Inaba, M.; Hamada, H. Bull. Chem. Soc. Jpn. 1997, 

70,499. 
(21) Furusawa, T.; Seshan, K.; Lercher, J. A.; Lefferts, L.; Aika, K. App!. Catal. B 

Environ. 2002,37,205. 

204 



Chapter 7- Rh-P25 reactions 

7 Photocatalytic reactions over rhodium modified 

Degussa P25 photocatalysts. 

7.1 Introduction 

In the area of thermal catalysis, the reduction of NO with CO (and other 

reductants) is a rigorously studied topic, ' '° and supported metals of the type Pt, Pd, 

Rh, Ru, Cu, etc., have been found to be some of the most active (especially in the 

realm of three-way automobile exhaust catalysts) when supported on SiO2, A1203, 

Zr02, La203 and Ce02 6 Supported rhodium based catalysts have been intensively 

studied and in most cases it was reported that NO was selectively reduced to N2 when 

relatively high reaction temperatures were employed, 7-9 although there have been 

some reports showing the formation of both N2 and N20.5"° 

Although most of the studies of supported rhodium catalysts involved 

thermally activated processes, it has also been reported that rhodium can be activated 

by UV photons when a photoactive support such as Ti02 is used. ' 1,12 For example, 

Kohno12 reported that when metallic rhodium particles were supported on Ti02 the 

rate of conversion and selectivity for benzene mineralisation were enhanced compared 

to a bare Ti02 photocatalyst. It has been proposed that the activation of Rh sites was 

via photo-excited electron transfer from the UV irradiated Ti02, to the metallic 

rhodium centres. Although it has been shown that Rh3+ carbonyl complexes are 

highly active homogeneous photocatalysts, to the best of the author's knowledge there 

have been no reports in the literature reporting the use of supported Rh3+ species for 

photocatalysed heterogeneous reactions. 

The aim of the work presented in this chapter was to investigate the effects of 

rhodium species supported on Degussa P25, on the photocatalytic activity and the 
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selectivity of NO decomposition reactions, as well as NO reduction reactions in the 

presence of CO. Also investigated was the effect of different rhodium loadings along 

with the effect of different photocatalyst pretreatments, including calcinations in air 

and both the UV and H2 reduction of the photocatalysts. The results are compared to 

those obtained for unmodified P25 photocatalysts that were reported in Chapter 5. 

This chapter presents the results from the photocatalytic activity tests carried 

out on rhodium modified Degussa P25 films. The effects of the four different 

photocatalyst pretreatments used on the NO decomposition and reduction (in the 

presence of CO) reactions are reported in subsections 7.2.1 to 7.2.4. The effects of 

varying the concentrations of NO and CO in the reaction gas stream are presented in 

sections 7.2.5 and 7.2.6. Section 7.3 presents a detailed discussion of all the results 

presented in 7.2, and conclusions from these discussions are drawn in section 7.4. 

7.2 Results 

7.2.1 Rh-P25 photocatalysts - Dried at 70°C 

Rh-P25 photocatalysts with Rh loadings of 0.1,1 and 5 wt. % were prepared 

by impregnation. Further details of the preparation methodology are described in 

chapter 3. The resulting dispersions were then dried onto glass slides at 70°C and their 

photocatalytic behaviour was measured for both NO decomposition and reduction 

reactions. The decomposition reactions were carried out under a gas stream containing 

909 ppm of NO and the reduction reactions were investigated using the same 

conditions but with the addition of CO at 1818 ppm. The total flow rate was kept 

constant at 5.5 sccm for all of the reactions. 

The activity of the P25 photocatalysts for NO conversion under decomposition 

conditions, decreased from 30 % to 18 % with the addition of 0.1 wt. % rhodium. 
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However, increasing the concentration of rhodium had little effect on the conversion 

rate (table 7.1). The opposite trend was observed when CO was present in the 

reaction gas, and the NO conversion increased dramatically from 16 % for the as 

dried P25 photocatalyst to 87 % for all the Rh-P25 photocatalysts. This percentage 

conversion of NO corresponds to a conversion rate of 3500 µmol h"I g"1. 

Rh loading Conversion of NO Rate of NO conversion 
/wt. % /% /pmolh'' g"' 

Decomposition Reduction Decomposition Reduction 
0 29.6 16.0 1211 655 

0.1 18.0 87.4 736 3576 
1.0 17.9 87.7 731 3585 
5.0 15.0 87.0 614 3556 

Table 7.1. Table of NO conversions for the NO decomposition and reduction 
reactions for as dried P25 photocatalysts loaded with varying amounts of rhodium. 
Decomposition conditions: NO 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 

The selectivities for both the decomposition and reduction reactions are 

presented in table 7.2. Under decomposition conditions the selectivity for N2 

formation over the rhodium modified photocatalysts was very similar to the 

selectivity of an unmodified P25 photocatalyst at 25 % selectivity for N2 formation. 

The level of rhodium doping had no effect on the selectivity of the decomposition 

reaction. In the presence of CO, the selectivity for N2 formation was considerably less 

over the photocatalysts containing rhodium (12 % selectivity for N2 formation) when 

compared to NO reduction reactions over unmodified P25 photocatalysts (46 % 

selectivity for N2 formation). Again the level of rhodium doping had no effect on the 

selectivity of the reaction. For the other photocatalyst systems described in this thesis 

(P25 and Ag-P25 systems), the selectivity of the reactions for N2 formation was 
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always greater in the presence of CO when compared to the corresponding NO 

decomposition reaction. 

Rh loading Selectivity for decomposition Selectivity for reduction 
/ wt. % reactions /% reactions /% 

N2 N20 N2 N20 
0 21 79 46 54 

0.1 26 74 12 88 
1.0 24 76 12 88 
5.0 25 75 10 90 

Table 7.2. Table of selectivities for NO decomposition and reduction reactions over 
as dried P25 photocatalysts loaded with varying amounts of rhodium. Decomposition 
conditions: NO 909 ppm with Ar balance and a total f ow rate of 5.5 sccm. Reduction 
conditions: As for decomposition reactions with the addition of CO at 1818 ppm. 

From the results shown in table 7.3 it can be seen that the rates of formation of 

N2 and N20 are not affected by the concentration of Rh, but vary depending on the 

composition of the reaction gas. For decomposition, the rates of formation of N2 and 

N20 were ca. 90 pmol h"1 g71 and ca. 270 pmol h"1 g"1 respectively. When CO was 

present, both rate of formation of N2 and N20 were higher at ca. 200 µmol h71 g'1 and 

ca. 1600 µmol h'' g'1, respectively. 

Rh loading Rate of N2 formation Rate of N20 formation 
/wt. % /µmolh'g-' /µmolh'lg1 

Decomposition Reduction Decomposition Reduction 
0 127 151 478 177 

0.1 96 215 272 1574 
1.0 88 215 278 1577 
5.0 77 178 230 1600 

Table 7.3. Rates of formation for the products of the photocatalytic reactions over as 
dried P25 photocatalysts loaded with varying amounts of rhodium. Decomposition 
conditions: NO 909 ppm with Ar balance and a total flow rate of 5.5 sccm. Reduction 
conditions: As for decomposition reactions with the addition of CO at 1818 ppm. 
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7.2.2 Rh-P25 photocatalysts - Calcined at 200°C 

Rh-P25 photocatalysts with Rh loadings of 0.1,1 and 5 wt. % were prepared 

by impregnation. The resulting dispersions were then dried onto glass slides at 70°C 

and further calcined for 2h at 200°C. After calcination their photocatalytic behaviour 

was measured for both NO decomposition and reduction reactions. The 

decomposition reactions were carried out under a gas stream containing 909 ppm of 

NO and the reduction reactions were investigated using the same conditions but with 

the addition of CO at 1818 ppm. The total flow rate was kept constant at 5.5 sccm for 

all of the reactions. 

The activity of the P25 based photocatalysts for NO decomposition decreased 

from 24 % to 13 % with the addition of 0.1 wt. % Rh, however increasing the 

concentration of rhodium had little effect on the conversion rate (ca. 10 % NO 

conversion for 5Rh-P25, table 7.4). As with the Rh-P25 photocatalysts tested after 

drying at 70°C, the rate of NO conversion was higher when CO was present in the 

reaction stream (ca. 25 % conversion for 0.1,1.0, and 5.0 wt. Rh-P25 photocatalysts). 

It should be noted that the increase in activity observed over Rh-P25 photocatalysts 

calcined at 200°C under reduction conditions was significantly less than observed 

over the Rh-P25 photocatalyst dried at 70°C, where the NO conversion was as high as 

88%. 
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Rh loading Conversion of NO Rate of NO conversion 
/ wt % /% / µmol h'1 g'' 

Decomposition Reduction Decomposition Reduction 
0 24.0 11.4 982 466 

0.1 13.0 24.3 531 993 
1.0 11.9 25.0 487 1023 
5.0 9.7 26.1 397 1067 

Table 7.4. Table of NO conversions for the NO decomposition and reduction 
reactions over P25 photocatalysts loaded with varying amounts of rhodium and 
calcined at 200°C for 2 h. Decomposition conditions: NO 909 ppm with Ar balance 
and a total flow rate of 5.5 sccm. Reduction conditions: As for decomposition 
reactions with the addition of CO at 1818 ppm. 

The selectivities for both the decomposition and reduction reactions are 

presented in table 7.5. For both reaction types, the selectivity for N2 formation was 

not affected by the rhodium concentration and remained at 29 % and 15 % for the 

decomposition and reduction reactions respectively. In the absence of CO the 

selectivity for N2 formation of the Rh-P25 photocatalysts was slightly higher than the 

corresponding unmodified P25 photocatalysts, whilst in the presence of CO the 

selectivity for N2 formation was lower than for the Rh-P25 photocatalysts. 

Rh loading Selectivity for decomposition Selectivity for reduction 
/ wt. % reactions /% reactions /% 

N2 N20 N2 N20 
0 21 79 30 70 

0.1 29 71 18 82 
1.0 28 72 13 87 
5.0 29 71 14 84 

Table 7.5. Table of selectivities for NO decomposition and reduction reactions over 
P25 photocatalysts loaded with varying amounts of rhodium and calcined at 200'°C 
for 2 h. Decomposition conditions: NO 909 ppm with Ar balance and a total flow rate 
of 5.5 sccm. Reduction conditions: As for decomposition reactions with the addition 
of CO at 1818 ppm. 

As was observed with the Rh-P25 photocatalysts dried at 70°C, the rates of 

formation of N2 and N20 were not affected by the Rh concentration but varied for the 

decomposition and reduction reactions (table 7.6). For the decomposition reactions 
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the rate of formation of N2 and N20 were ca. 70 µmol h"1 g'1 and ca. 80 µmol h71 g'1 

respectively. In the presence of CO, the rates of formation of both the products were 

higher at ca. 175 pmol h'1 g'1 and ca. 440 pmol h"1 g"1 for N2 and N20 respectively. 

Rh loading Rate of N2 formation Rate of N20 formation 
/ vvt. %/ µmol h-1 g-1 / µmol h"1 g"1 

Decomposition Reduction Decomposition Reduction 
0 103 70 388 163 

0.1 77 89 188 407 
1.0 68 67 177 455 
5.0 58 75 141 459 

Table 7.6. Rates of formation for the products of the photocatalytic reactions over 
P25 photocatalysts loaded with varying amounts of rhodium and calcined at 200°C 
for 2 h. Decomposition conditions: NO 909 ppm with Ar balance and a total flow rate 
of 5.5 sccm. Reduction conditions: As for decomposition reactions with the addition 
of CO at 1818 ppm. 

7.2.3 Rh-P25 photocatalysts - UV reduced 

Rh-P25 photocatalysts with Rh loadings of 0.1,1 and 5 wt. % were prepared 

by impregnation. The resulting dispersions were then dried onto glass slides at 70°C 

and then UV reduced in an IPA solution. After UV reduction their photocatalytic 

behaviour was measured for both NO decomposition and reduction reactions. The 

decomposition reactions were carried out under a gas stream containing 909 ppm of 

NO and the reduction reactions were investigated using the same conditions but with 

the addition of CO at 1818 ppm. The total flow rate was kept constant at 5.5 sccm for 

all of the reactions. 

The activity of the UV reduced Rh-P25 photocatalysts for NO decomposition 

was virtually the same, regardless of the Rh concentration, at ca. 12 % NO 

conversion, which was also similar to an unmodified P25 photocatalysts that had also 

been subjected to UV reduction (table 7.7). However, in the presence of CO the 
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percentage NO conversion increased from 6.3 % for the UV reduced P25 to 

28.4 % for the 0.1 Rh-P25. Increasing the rhodium concentration resulted in further 

increases in NO conversion and at a loading of 5 wt. % Rh the NO conversion was as 

high as 62.2 %. When Rh was present, the NO conversion was higher for the 

reduction reactions, however over UV reduced P25 the reverse was observed. 

Rh loading Conversion of NO Rate of NO conversion 
/ wt. % /% / µm ol h'l g'1 

Decomposition Reduction Decomposition Reduction 
0 10.2 6.3 416 256 

0.1 11.3 28.4 463 1160 
1.0 11.9 58.3 487 2384 
5.0 14.7 62.2 603 2544 

Table 7.7. Table of NO conversions for the NO decomposition and reduction 
reactions over UV reduced P25 photocatalysts loaded with varying amounts of 
rhodium. Decomposition conditions: NO 909 ppm with Ar balance and a total flow 
rate of 5.5 sccm. Reduction conditions: As for decomposition reactions with the 
addition of CO at 1818 ppm. 

The selectivities for both the decomposition and reduction reactions are 

presented in table 7.8. Under decomposition conditions, the same trend was observed 

as for the NO conversion rate in that the Rh concentration had little effect on the 

selectivity of the reaction. For both the UV reduced P25 and UV reduced Rh 

containing systems the selectivity for N2 formation was 35 %, which was higher than 

the selectivities observed for the as-dried systems and for those that were calcined at 

200°C. However, in the presence of CO, the selectivity for N2 formation decreased 

with increasing Rh concentration. Over UV reduced P25 the selectivity of the reaction 

for N2 formation was as high as 56 %, but dropped to 21 % for the 

0.1 Rh-P25 system. Increasing the rhodium concentration resulted in a further decrease 

in the selectivity for N2 formation, to as low as 10 % for the 5Rh-P25 photocatalyst. 
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Rh loading Selectivity for decomposition Selectivity for reduction 
/ wt. % reactions /% reactions /% 

N2 N20 N2 N20 
0 37 90 56 44 

0.1 34 89 21 79 
1.0 38 88 15 85 
5.0 36 85 10 90 

Table 7.8 Table of selectivities for NO decomposition and reduction reactions over 
UV reduced P25 photocatalysts loaded with varying amounts of rhodium. 
Decomposition conditions: NO 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 

As shown in table 7.9 under decomposition conditions the rate of formation of 

both N2 and N20 increased only slightly with increasing Rh loading (77 µmol h" g'1 

for zero Rh to 109 µmol h"1 g-1 for 5 wt. % Rh). In the presence of CO the rate of 

formation of N20 increased significantly from 56 µmol h' g'1 over the UV reduced 

P25 to 1145 pmol h" g1 over the 5Rh-P25 photocatalyst, whilst the rate of N2 

formation varied only slightly. 

Rh loading Rate of N2 formation 
/wt. % /µmo1h"' gl 

Decomposition Reduction 
0 77 72 

0.1 79 122 
1.0 92 179 
5.0 109 127 

Rate of N20 formation 
/ µmol IfI g" 

Decomposition Reduction 
131 56 
153 458 
151 1013 
193 1145 

Table 7.9. Rates of formation for the products of the photocatalytic reactions over 
UV reduced P25 photocatalysts loaded with varying amounts of rhodium. 
Decomposition conditions: NO 909 ppm with Ar balance with a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with CO at 
1818 ppm. 

7.2.4 Rh-P25 photocatalysts - Hydrogen reduced 

Rh-P25 photocatalysts with Rh loadings of 0.1,1 and 5 wt. % were prepared 

by impregnation. The resulting dispersions were then dried onto glass slides at 70°C 
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and then reduced under H2 at 450°C for 1 h. After hydrogen reduction their 

photocatalytic behaviour was measured for both NO decomposition and reduction 

reactions. The decomposition reactions were carried out under a gas stream containing 

909 ppm of NO and the reduction reactions were investigated using the same 

conditions but with the addition of CO at 1818 ppm. The total flow rate was kept 

constant at 5.5 sccm for all of the reactions. 

As shown in table 7.10 the activity of the hydrogen reduced Rh-P25 

photocatalysts for NO conversion followed the same trends as was observed for the 

UV reduced Rh-P25 photocatalysts. For example under decomposition conditions the 

percentage NO conversion was nearly constant at ca. 10 % regardless of the Rh 

concentration and in the presence of CO the activity increased with Rh concentration 

(e. g. from ca. 6% conversion for the hydrogen reduced P25 to ca. 26 % for hydrogen 

reduced 5Rh-P25 photocatalyst). 

Rh loading Conversion of NO Rate of NO conversion 
/ wt. % /% / µm ol h'i g'1 

Decomposition Reduction Decomposition Reduction 
0 16.6 5.8 677 237 

0.1 10.6 6.2 435 252 
1.0 9.7 16.4 395 672 
5.0 11.0 25.9 449 1058 

Table 7.10. Table of NO conversions for the NO decomposition and reduction 
reactions over hydrogen reduced P25 photocatalysts loaded with varying amounts of 
rhodium. Decomposition conditions: NO 909 ppm with Ar balance and a total flow 
rate of 5.5 sccm. Reduction conditions: As for decomposition reactions with the 
addition of CO at 1818 ppm. 

The selectivities for both the decomposition and reduction reactions are 

presented in table 7.11. As was observed for the activity of the hydrogen reduced 

Rh-P25 photocatalysts, the selectivity for N2 formation was not affected by the Rh 

concentration and remained at ca. 30 % for all three of the Rh loadings used. In the 

214 



Chapter 7- Rh-P25 reactions 

presence of CO the selectivity for N2 formation again decreased with increasing Rh 

concentration, although for this system the values were higher than that observed for 

the corresponding decomposition reactions. 

Rh loading Selectivity for decomposition Selectivity for reduction 
/ wt. % reactions /% reactions /% 

N2 N20 N2 N20 
0 19 81 42 58 

0.1 26 74 44 56 
1.0 29 71 39 61 
5.0 31 69 29 71 

Table 7.11. Table of selectivities for NO decomposition and reduction reactions over 
hydrogen reduced P25 photocatalysts loaded with varying amounts of rhodium. 
Decomposition conditions: NO 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 

As the rate of NO conversion and selectivity for the decomposition reactions 

remained similar for all three rhodium loading used, the rate of formation of both N2 

and N20 also remained similar at ca. 60 µmol h71 g'I and ca. 150 µmol h"t g"', 

respectively (table 7.12). In the presence of CO the rate for formation of both products 

increased with increasing Rh concentration. 

Rh loading Rate of N2 formation Rate of N20 formation 
/wt. % /µmolh''g'' /µmolh''g"' 

Decomposition Reduction Decomposition Reduction 
0 64 50 274 69 

0.1 57 55 161 70 
1.0 57 131 140 205 
5.0 70 153 155 376 

Table 7.12. Rates of formation for the products of the photocatalytic reactions over 
hydrogen reduced P25 photocatalysts loaded with varying amounts of rhodium. 
Decomposition conditions: NO 909 ppm with Ar balance and a total flow rate of 
5.5 sccm. Reduction conditions: As for decomposition reactions with the addition of 
CO at 1818 ppm. 
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7.2.5 Effect of varying NO concentration 

To investigate the effect of NO concentration over rhodium modified P25, an 

as-dried (70°C) 0.1 Rh-P25 photocatalyst was used. The concentration of NO was 

varied from 455 ppm to 1818 ppm whilst maintaining a constant total flow rate of 

5.5 sccm. When present, the concentration of CO was kept constant at 1818 ppm. 

Table 7.13 shows that as the concentration of NO increased from 455 ppm to 

1818 ppm the percentage NO conversion decreased from 24.2 % to 17.5 % for the 

decomposition reactions and from as high as 95.5 % to 57.3 % for the reduction 

reactions. However, if instead of percentage NO conversion, the rate of NO 

conversion was used as a measure of photocatalyst activity, then we see a trend that 

increased for both reaction types. Under reduction conditions, with an NO 

concentration of 1818 ppm the rate of NO conversion was as high as 4689 µmol h71 g'1 

NO Conversion of NO Rate of NO conversion 
concentration /% / pmol h"1 g"1 

/ ppm Decomposition Reduction Decomposition Reduction 
455 24.2 94.5 495 1933 
909 18.0 87.4 736 3577 
1818 17.5 57.3 1430 4689 

Table 7.13. NO conversion results for decomposition and reduction reactions with 
varying NO levels over 0.1 Rh-P25 photocatalysts dried at 70°C. Decomposition 
reaction conditions: Total flow rate of 5.5 sccm. Reduction reaction conditions: Same 
as for decomposition reactions with a constant concentration of CO (1818 ppm). 

Within the errors associated with these experiments the selectivity of the 

decomposition reactions was very similar (ca. 27 % selectivity for N2 formation) for 

all three NO concentrations investigated (table 7.14). In the presence of CO the 

selectivity for N2 formation was lower than that observed for the corresponding 

decomposition reactions and decreased with increasing NO concentration. When the 
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highest concentration of NO was used (1818 ppm) the selectivity for N2 formation 

was as low at5%. 

Under decomposition conditions the rates of formation of N2 and N20 were 

69 µmol h"1 g"' and 178 µmol h-1 g'' respectively when the concentration of NO was 

455 ppm, and increased to 197 pmol h"' g'1 and 517 pmol h"i g"1 when the maximum 

concentration of NO was used (table 7.15). When CO was present in the reaction gas, 

the rate of formation of N2 decreased with increasing NO concentration, whilst N20 

was produced at a higher rate. At 1818 ppm NO, the rate of formation of N20 was 

2227 µmol h-' g"'. 

NO concentration Selectivity for decomposition Selectivity for reduction 
/ ppm reactions /% reactions /% 

N2 N20 N2 N20 
455 28 72 23 77 
909 26 74 12 88 
1818 28 72 5 95 

Table 7.14. Table of selectivities for NO decomposition and reduction reactions with 
varying NO levels over 0.1Rh-P25 photocatalysts dried at 70°C. Decomposition 
reaction conditions: Total flow rate of 5.5 sccm. Reduction reaction conditions: Same 
as for decomposition reactions with a constant concentration of CO (1818 ppm). 

NO Rate of N2 formation Rate of N20 formation 
concentration // pmol h'I g-1 / pmol h"1 g'1 

pPm Decomposition Reduction Decomposition Reduction 
455 69 227 178 740 
909 97 213 270 1573 
1818 197 117 517 2227 

Table 7.15. Rates of formation of the products for the photocatalytic reactions with 
varying NO levels over 0.1 Rh-P25 photocatalysts dried at 70°C. Decomposition 
reaction conditions: Total flow rate of 5.5 sccm. Reduction reaction conditions: Same 
as for decomposition reactions with a constant concentration of CO (1818 ppm). 
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7.2.6 Effect of varying CO concentration 

The effect of CO concentration was investigated by maintaining a constant 

concentration of NO (909 ppm) whilst varying the CO concentration from zero to 

1818 ppm. The total flow rate was kept constant at 5.5 sccm for each experiment. 

The photocatalysts used for these experiments were films of 0.1 Rh-P25 photocatalysts 

that had been dried at 70°C. No further pretreatment was used. 

Table 7.16 illustrates that as the CO concentration was increased from zero to 

909 ppm the activity of 0.1Rh-P25 photocatalysts for conversion of NO increased 

from 18 % to 87.4 % respectively. Any further increases in CO concentration had no 

effect on conversion rate. From the results of the selectivity of the reactions (table 

7.17) it can be seen that the addition of CO to the reaction gas resulted in a decrease 

in the selectivity for N2 formation (26 % selectivity for N2 formation with zero CO 

and 10 % in the presence of CO). 

CO concentration NO conversion NO conversion rate 
/ppm /% /µmolh' g'1 

0 18.0 737 
364 54.5 2230 
909 88.7 3627 
1818 87.4 3577 

Table 7.16. NO conversion results for reduction reactions with varying CO levels 
over 0.1 Rh-P25 photocatalysts dried at 70°C. Reaction conditions: NO concentration 
and total flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 

CO concentration Selectivity /% 
I ppm N2 N20 

0 26 74 
364 13 87 
909 8 92 
1818 9 91 

Table 7.17. Selectivity results for reduction reactions with varying CO levels over 
0.1 Rh-P25 photocatalysts dried at 70°C. Reaction conditions: NO concentration and 
total flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 
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From table 7.18 it can be seen that the rate of N2 formation was similar for all 

the CO concentrations used, whilst the rate of formation of N20 increased from 

270 µmol h-1 g' to 1628 µmol h' g' as the CO concentration was increased from 

zero to 1818 ppm. 

CO concentration Rate of N2 formation Rate of N20 formation 
/ ppm / pmol h71 g' / µmol h71 g"' 

0 97 270 
364 147 967 
909 145 1668 
1818 161 1628 

Table 7.18. Effect of CO concentration on the rates of formation of N2 and N20 over 
0. IRh-P2S photocatalysts dried at 70°C. Reaction conditions: NO concentration and 
total flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 

7.3 Discussion 

7.3.1 Effect of Rhodium 

Figures 7.1 and 7.2 show the effect of rhodium loading for each of the 

pretreatments undertaken (calcination at 70°C, calcination at 200°C, UV reduction and 

H2 reduction) on the percentage conversion of NO for decomposition and reduction 

reactions, respectively. Under decomposition conditions it can clearly be seen that 

increasing the Rh loading from 0.1 wt. % to 5 wt. % had little effect on the percentage 

NO conversion for any of the photocatalysts prepared, which is in contradiction to 

reports in the literature. 13 However, it was observed that addition of Rh to P25 

generally resulted in less active NO decomposition catalysts than the unmodified P25 

photocatalyst pretreated under the same conditions. This result is surprising since Rh 

has very good adsorption properties for NO, and so it would be expected that for the 

same concentrations of NO in the gas stream, more NO would be adsorbed onto the 
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surfaces of the Rh containing photocatalysts, and hence a greater NO conversion 

would be expected. It is possible that this reduction in NO conversion rate over the 

Rh-P25 photocatalysts is due to the inability to form the reactive intermediate Rh-N 

species in the absence of CO (as proposed in the reaction mechanisms reported by 

Thampi et al. 14 A more detailed discussion of the possible reaction intermediates is 

given later). 

The order of the activity for NO decomposition over the O. lRh-P25 

photocatalysts was 70°C > NOT > UV reduced H2 reduced. In chapter 4 it was 

shown that the rhodium was present as Rh3+ on both the as-dried and calcined at 

200°C photocatalysts, therefore, as discussed in chapter 5, the reason for the decrease 

in NO conversion rate as the calcination temperature increased from 70°C to 200°C 

for the Rh-P25 photocatalysts was most probably due to the removal of water and 

hydroxyl groups from the surface of TiO2. It could be expected that the density of 

molecular water and hydroxyl groups on the catalyst surface would be lower for the 

reduced samples compared to the Rh-P25 photocatalyst calcined at 70°C, due to the 

reduction of the Ti02 surface. 15 When TiO2 is heated under H2, the surface is 

dehydrated and dehydroxylated resulting in the reduction of Ti4+ sites to Ti3+ sites. 

Similarly when TiO2 is subjected to band-gap illumination in the presence of an 

electron donor such as IPA, surface hydroxyl groups (the main trapping sites for 

photogenerated holes) are involved in the oxidation of IPA, 16 thus during illumination 

the density of hydroxyl groups decreases, resulting in the formation of Ti3+ sites. 

Also during illumination, adsorbed water molecules are dissociated by reaction with 

bridging oxygen atoms, leading to more surface hydroxyl groups, '7 which may then 

be involved in oxidation reactions. A more detailed discussion of this process is given 

220 



Chapter 7- Rh-P25 reactions 

in chapter 4. Hence the activity for NO conversion was decreased for the two reduced 

Rh-P25 systems. 

Another factor that may also contribute to the decrease in NO conversion for 

the reduced catalysts is that the Rh-Ti02 interface formed could act as a 

recombination centre for the photogenerated electron-hole pairs, thus reducing the 

number of active species available to participate in surface reactions. However, as 

shown in the studies of Ag-P25 photocatalysts (reported in chapter 6) and in the 

studies of Chao, 18 the magnitude of this effect on the photocatalytic activity would be 

expected to change with the metal loading. As there was no significant change in the 

NO conversion with increasing Rh loadings, it is proposed that the major reason for 

the decreased activity of the reduced catalysts was the lower density of surface 

hydroxyl groups compared to the catalysts pretreated in air. 
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Figure 7.1. Effect of Rh loadings on percentage NO conversion for a series of 
differently pretreated Rh-P25 photocatalysts. Decomposition conditions: 
NO 909 ppm with Ar balance with a total flow rate of 5.5 sccm. 
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The same rationale may be used to partially explain the trend in activity for 

NO conversion observed for the same series of Rh-P25 photocatalysts tested in the 

presence of NO-CO mixtures (figure 7.2). However, in the presence of CO, the 

rhodium loading had an effect on the NO conversion for the two reduced 

photocatalysts, where the rate of NO conversion increased with increasing Rh 

loading. As the results from the decomposition reactions showed little variation in 

activity with increasing rhodium concentrations and considering the possible 

mechanisms for the NO-CO reaction (discussed later) it was thought that the effect 

was most likely due to the varying Rh particle sizes and dispersion (as shown in 

chapter 4), rather than alterations in charge transfer properties as the Rh concentration 

was increased. For Rh concentrations of 0.1 wt. % and 1 wt. % the Rh particle size (as 

determined by TEM analysis) was <1 run for both the thermally and UV reduced 

catalysts. Increasing the rhodium concentration to 5 wt. % resulted in an increase in 

the particle size to 1-2 nm for the UV reduced catalyst and ca. 8 nm for the thermally 

reduced catalyst. For Rh-P25 systems pretreated in air (70°C and 200°C) the level of 

Rh doping had little effect on the NO conversion rate. 

It was also observed that in the presence of CO, the percentage NO conversion 

was higher for all the Rh-P25 systems studied compared to the unmodified P25 

photocatalysts and also that the conversion rate was higher than that observed for the 

NO decomposition reactions over the same photocatalysts. For the other photocatalyst 

systems reported in this thesis (unmodified P25 and silver modified P25 

photocatalysts) the presence of CO in the reaction gas resulted in a decrease in the NO 

conversion rate due to blocking of active sites by CO molecules. 19 
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Figure 7.2. Effect of Rh loadings on percentage NO conversion for a series of 
differently pretreated Rh-P25 photocatalysts. Reduction conditions: NO and CO 
concentrations were 909 ppm and 1818 ppm, respectively. Total flow rate of 

. 
5.5 sccm 

The increased activity of the Rh-P25 photocatalysts for NO conversion in the 

presence of CO may be explained by considering the exceptional charge transfer 

properties (both from the Ti02 support to Rh centres and from Rh centres to species 

adsorbed on those centres) of the system. 20 Increased charge transfer from the metal 

centre to adsorbed NO would result in more of the adsorbed NO becoming dissociated 

due to the transfer of electrons into the t*-antibonding molecular orbital of the NO 

molecules. Another. and probably more important, factor is that NO is more strongly 

adsorbed onto rhodium surfaces than Co. 14 Therefore, in comparison to unmodified 

P25 catalysts (in which CO is preferentially adsorbed over NO) more NO would be 

available to undergo surface reactions. 

Before discussing the possible surface mechanisms and reaction it should be 

noted that although the XPS results reported in chapter 4, showed that rhodium 
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existed as Rh3+ on the photocatalysts that had been pretreated at 70°C and NOT in 

air, UV illumination of the surface could result in the reduction of the Rh3+ species by 

the photo-excited electrons, thus producing Rho species on the Ti02 surface during the 

course of the photocatalysed reactions. It has been widely demonstrated that 

band-gap illumination of semiconductor supported metal salts results in their 

reduction to metallic species with a zero oxidation state. 21-23 Therefore, it was 

expected that Rh° metal sites would be available on the surfaces of two photocatalysts 

calcined in air, as a result of photoreduction of the Rh3+ species during the reactions. 

For this reason, the discussion below concerning the species responsible for the 

enhanced activity of the Rh-P25 photocatalysts in the presence of CO is applicable to 

the materials that were pretreated in air. 

One possible explanation for the trend observed for the NO conversion rates of 

NO-CO reactions over the different Rh-P25 photocatalysts is the formation of UV 

sensitive gem-dicarbonyl species 24 FTIR studies of CO adsorption, without UV 

irradiation, on highly dispersed Rh-TiO2 systems (e. g. systems with Rh particles sizes 

of <4 nm) has shown that the main surface species formed are gem-dicarbonyl 

species, according to the reaction below: I5 

Rh° + OH(a) + 2CO(g) Rh+(CO)2 +1/2H2 7.1 

where the OH(. ) is present as isolated OH groups on the surface of the photocatalyst. 

As discussed earlier (with respect to the activity for NO decomposition) a decreasing 

density of surface bound OH groups could be expected for the Rh-P25 photocatalysts 

in the order 70°C > 200°C > UV reduced sze H2 reduced, and hence the number of 

possible gem-dicarbonyl species formed would follow the same trend. EXAFS 
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studies by Van't Blik et al. 7 have shown that the formation of gem-dicarbonyl 

species was the result of the oxidative disruption of a Rb" cluster induced by CO 

adsorption, and more recent STM work has provided direct evidence for the 

CO-induced disintegration of Rh nano-particles of size <4 nm. 26,27 Larger particles, 

however, remained intact or disintegrated only very slowly. Upon UV irradiation of 

the gem-dicarbonyl complexes, FTIR studies showed the formation of a species in 

which CO was linearly bonded to Rh°, and hence it was suggested the reduction of the 

Rh+ (formed via the oxidative disruption of Rh° clusters as discussed above) to Rho 

atoms occurred 24 The process of gem-dicarbonyl formation and the subsequent 

reduction of Rh+ centres, therefore, results in an increase in the dispersion (and hence 

surface area) of Rh° species on the Ti02 surface, which could then act as active sites 

for NO adsorption and dissociation. 28,29 Hence, this offers a possible explanation for 

the high activity for NO conversion observed, in the presence of CO, over the Rh-P25 

photocatalysts reported here. However, if this was occurring during the course of the 

NO-CO reactions the NO conversion rate would be expected to increase with 

illumination time as a result of the increasing number of active sites available. 

Increasing conversion rates were, however, not observed during the 30 min. period of 

illumination used in the experiments reported in this thesis, so it could be that 

gem-dicarbonyl formation is negligible in the presence of NO, or that the oxidative 

disruption process occurs at a slower rate and any change to the NO conversion rate 

could not be observed within the 30 min. period. 

Due to the good electron transfer properties of Rh, the adsorption of NO in the 

presence of UV irradiation results in the formation of partially negatively charged NO 

species (Rh-NOs"), which are prone to undergo dissociation according to 

equation 7.2. 
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NOS' º N(a) + O5-(a) 7.2 

The adsorbed N atom may then react further with another NO or CO molecule 

producing N20(a) and NCO species, respectively, whilst the adsorbed 0 atom could 

react with a CO molecule producing C02(a). 14 Adsorbed N20 and CO2 could be 

desorbed from the surface forming gas phase products. Hecker has shown by use of 

IR spectroscopy that -NCO species formed on metal sites readily migrate onto the 

support30, and under UV illumination, the Ti02 support can activate -NCO (according 

to the mechanisms shown in scheme 7.1) and replenish that site for further -NCO 

migration, hence leading to faster NO conversion rates. Scheme 7.1 presents the 

possible reaction mechanisms for NO conversion, in the presence of CO, on Rh active 

sites. 

/ NO 

M NO M-NO CO M -CO2 >M-N \ 
CO NO CO 

M-N20 N-NCO 

NCO N 

0 migration 
to support 

Rh 
N L- 

O , /v 
N, (1 

NCO 

CO2 + N2 + N(a) 

C02 + N2 

Scheme 7.1. Possible reaction mechanisms for NO-CO reacting on Rh surfaces. The 
by indicates that the reaction is facilitated by UV light. These reaction schemes are 
those that have been proposed by Thampi, Ruterana and Grätzel. 14 
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As the main product observed in the NO-CO photoreaction over all the 

Rh-P25 photocatalysts was N20, it is proposed that formation of isocyanate species 

(which would result in the formation of N2, see scheme 7.1) is a relatively slow 

reaction compared to the formation of N20 by reaction of N(a) with gas phase NO. 

The increased rate of reaction in the presence of CO could be due to the CO 

molecules acting as scavengers of O(a) atoms, resulting in the desorption of CO2 and 

leaving another active site available for NO adsorption and dissociation. 

Figure 7.3 shows that under decomposition conditions, the selectivity for N2 

formation varied only slightly for all the rhodium loadings and pretreatments 

investigated. The selectivity for N2 formation over the Rh-P25 photocatalysts was 

slightly higher than that observed for unmodified P25 photocatalysts and the highest 

selectivity for N2 formation was observed for the UV reduced Rh-P25 photocatalysts, 

which contained more metallic rhodium than the other Rh containing photocatalysts. 

As discussed above, it could be expected that more N(a) would be present on the 

Rh-P25 photocatalysts (due to the formation and subsequent dissociation Rh-NO8" 

species), hence the probability of two N(a) species reacting together to form N2 would 

be higher. However, it should be noted that the same reaction pathways would be 

available, as on the unmodified P25 surfaces, only the relative reaction rates vary in 

the presence of Rh. The reader is referred to chapter 5 for a list of the possible 

NO-NO type surface reactions. 
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Figure 7.3. Effect of rhodium content on the selectivity for N2 formation for Rh-P25 

photocatalysts that had been subjected to various pretreatment. Decomposition 

conditions: 909 ppm NO, Total flow rate of 5.5 sccm. 

When both NO and CO were present in the reaction stream, the selectivity for 

N2 formation varied significantly depending on the pretreatment used (figure 7.4. ). 

For the P25 and Rh-P25 photocatalysts that had been reduced using H2 at 450°C, the 

selectivity for N2 formation was greater than for unmodified P25 photocatalysts 

(40 % for H2 reduced samples, compared to 25 % for unmodified P25). It could, 

therefore, be expected that both the migration of -NCO species to the Ti02 support 

and the subsequent formation of N2 (as described above) along with the formation of 

N20 via the Rh-N(a) intermediate, occur with nearly equal rates on the surfaces of 

these photocatalysts. Increased selectivity for N2 formation over pre-reduced TiO2 

surfaces has been reported by Courbon and Pichat. 3 

The two Rh-P25 systems which had been pretreated in air (70°C and 200°C) 

and the UV reduced Rh-P25 system all showed similar lower selectivities for N2 

formation (10 %) compared to unmodified P25 photocatalysts (25 %). It is therefore 
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proposed that the dominate reaction pathway for these photocatalysts is the formation 

of N20 via reaction of NO with N(a) species (Scheme 7.1), and not via isocyanate 

species (NCO) which favour the formation of N2. In these three Rh-P25 systems the 

rhodium particles were smaller than those present on the H2 reduced 

Rh-P25 photocatalyst (as shown by the characterisation results presented in chapter 

4). From these observations it is proposed that NO-CO reduction reactions were more 

likely to proceed via support photo-activation of NCO species when larger Rh 

particles are present on Ti02 supports. This is supported by the higher selectivity for 

N2 formation over catalysts with larger Rh particles sizes. 
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Figure 7.4. Effect of rhodium content on the selectivity for N2 formation. for Rh-P25 

photocalalysts that had been subjected to various pretreatment. Reduction 

conditions: NO and CO concentrations were 909 ppm and 1818 ppm, respectively. 
Total flow rate of 5.5 sccm. 

Comparing the rates of formation of N2 and N20 over as-dried Rh-P25 under 

decomposition and reduction conditions (figure 7.5), it can be seen that both are 
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unaffected by the rhodium loading and that the rate of formation of N20 was very 

high at ca. 1600 µmol h-' g' when CO was present in the reaction stream. 
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Figure 7.5. The rates of formation of N2 and N2O for NO decomposition and 
reduction reactions over as dried (70°C) Rh-P25 photocatalysts. Decomposition 
conditions: NO 909 ppm with Ar balance and total flow rate of 5.5 sccm. Reduction 
conditions: As for decomposition reactions plus CO at 1818 ppm. 

7.3.2 Effect of varying NO concentration 

The effect of varying the NO concentration was investigated using the as-dried 

(70°C) 0.1 Rh-P25 photocatalyst system and the NO conversion rate is plotted against 

NO concentration (figure 7.6). From the figure it is clear that the NO conversion rate 

increased nearly linearly with increasing NO concentration which was the same as 

observed for the unmodified and silver modified P25 photocatalysts. 

6 
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Under decomposition conditions, the selectivity of the photoreaction products 

remained unaltered irrespective of the NO concentration (figure 7.7). This is as 

expected, because the relative rates of N2 and N20 forming reactions would be the 

same as the same active sites would have been present in each experiment. The 

overall rate of the reactions increased due to mass transport of more NO to the surface 

of the photocatalyst. 
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Figure 7.6. Effect of NO concentration on the moles of NO used over as dried 
0.1 Rh-P25 photocatalysts. Decomposition reaction conditions: Total flow rate of 
5.5 sccm. Reduction reaction conditions: Same as for decomposition reactions with a 
constant concentration of CO (1818 ppm). 

Under reduction conditions, the selectivity for N2 formation decreased with an 

increase in the NO/CO ratio, i. e. with increasing NO concentration (figure 7.7). As 

CO was present in excess or equal concentration to the number of moles of NO, 

increasing the concentration of NO would result in the formation of more Rh-N(a) 

species via the route shown in scheme 7.1, and, as discussed above, this results in 

more prominent formation of N20 on as dried Rh-P25 photocatalysts. 
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The trends shown in figure 7.8 for the rates of formation of N2 and N20 reflect 

that under decomposition conditions the rate of NO conversion increased slightly with 

increasing NO concentrations, whilst the selectivity of the reactions remained similar, 

hence the rate of formation of N2 and N20 increased slightly and by comparable 

amounts. The substantial increase observed in the rate of formation of N20 with 

increasing NO concentration in the presence of CO, exemplifies the fact that the rate 

of NO conversion increased, whilst the selectivity for N2 formation decreased. 
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Figure 7.7. Effect of NO concentration on the selectivity for N2 formation over as 
dried 0.1 Rh-P25 photocatalysts. Decomposition reaction conditions: Total flow rate 
of 5.5 sccm. Reduction reaction conditions: Same as for decomposition reactions with 
a constant concentration of CO (1818 ppm). 
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Figure 7.8. The rates of formation of N2 and N20 for decomposition and reduction 
reactions with varying NO levels over as dried 0.1 Rh-P25 photocatalysts. 
Decomposition reaction conditions: Total flow rate of 5.5 sccm. Reduction reaction 
conditions: Same as for decomposition reactions with a constant concentration of CO 
(1818 ppm). 

7.3.3 Effect of varying CO concentration 

The effect of CO concentration was investigated using as-dried (70°C) 

0.1 Rh-P25 photocatalyst and as shown in figure 7.9, the percentage NO conversion 

increased with increasing CO concentrations, up to 909 ppm. Further increasing the 

CO concentration to 1818 ppm (i. e. so that CO was present in excess compared to 

NO, which was at 909 ppm) resulted in a similar NO conversion as for reaction when 

NO and CO were present in a 1: 1 ratio. As discussed above, the formation of Rh-N(a) 

species in the presence of CO results in enhanced NO conversion rates. When the 

concentration of NO is greater than the concentration of CO in the gas stream, it could 
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be expected that the surface concentration of NO would also be greater, and hence all 

of the CO which can be transported to the Rh-NO active sites (scheme 7.1) can be 

reacted, and the rate of NO conversion increases with increasing CO concentrations. 

However, when the ratio of NO: CO becomes greater than 1: 1 (i. e. a higher percentage 

of CO in the gas stream) even though more CO could be transported to the 

photocatalyst surface, the number of CO molecules able to react is limited by the 

number of Rh NO sites, and therefore the rate of NO conversion cannot be increased 

further. 

The trend in selectivity for N2 formation observed with increasing CO 

concentrations at constant NO levels (figure 7.10) can be explained by considering the 

number of Rh-N species that can be formed on the surface of the photocatalyst. As 

discussed above, the result of the formation of Rh-N species for the photocatalyst 

system tested here is the formation of N2O, and hence if the number of Rh-N species 

formed increases, the selectivity for the reaction towards N2 formation would 

decrease. When NO was present in excess (compared to CO), all of the CO 

molecules transported were able to react and Rh-N species can be formed. Therefore, 

increasing the CO concentration results in a decrease in the selectivity of the reaction 

for N2 formation, and more N20 is formed (figure 7.11). As discussed above, when 

the CO concentration is greater than the NO concentration, the number of CO 

molecules able to react would be limited by the number of Rh-NO active sites 

available, and therefore further increasing the CO concentration above that of NO has 

no effect on the selectivity of the reactions, nor on the rates of formation of the 

products (figure 7.11). 
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Figure 7.9. Effect of CO concentration on the percentage NO conversion used over 
as dried 0.1 Rh-P25 photocatalysts. Reaction conditions: NO concentration and total 
flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 
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Figure 7.10. Effect of CO concentration on the selectivity for N,. formation over as 
dried 0.1 Rh-P25 photocatalysts. Reaction conditions: NO concentration and total 
flow rate were kept constant at 909 ppm and 5.5 sccm respectively. 
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Figure 7.11. Rates of formation for N2 and N20 for reduction reactions with varying 
CO levels over as dried 0.1 Rh-P25 photocatalyst.. Reaction conditions: NO 

concentration and total flow rate were kept constant at 909 ppm and 5.5 sccm 
respectively. 

7.4 Conclusions 

The characteristics of the photocatalytic decomposition and reduction of NO 

in the presence of CO have been determined for rhodium modified Degussa P25 Ti02 

photocatalysts, and it has been shown that both the activity and selectivity of the NO 

photoreactions were dependant on the photocatalyst pretreatment conditions, hence on 

the nature of the deposited rhodium species. 

For all of the different pretreatments undertaken in the preparation of Rh-P25 

photocatalysts systems, the level of rhodium doping and the pretreatments used had 

little effect either on the selectivity or activity of the NO decomposition reactions, 
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however, the selectivity of the photocatalysts in the presence of CO was shown to be 

strongly dependant on the pretreatment used. Hydrogen reduction at 450°C resulted 

in photocatalysts with the best selectivity for N2 formation with values of 40 %. The 

two Rh-P25 systems which were calcined in air (70°C and 200°C) and the UV 

reduced systems all showed similar selectivities for N2 formation of ca. 10 %, hence 

the major species produced was N20. 

In the presence of CO, all of the Rh-P25 photocatalysts exhibited higher NO 

conversion rates than for the corresponding decomposition reactions. In fact, the 

as-dried 0.1 Rh-P25 photocatalyst showed a percentage NO conversion of 87 % which 

corresponds to a conversion rate of 3500 µmol h'1 g4. For comparison, the highest 

NO conversion rate observed over an unmodified P25 photocatalyst tested under the 

same conditions was only 650 µmol h'1 g"1. Hence it can be said that Rh-P25 based 

photocatalysts are extremely active for NO-CO reduction reactions. It is believed that 

this is due to formation of reactive intermediates on the rhodium active sites, that are 

negligible in number on the unmodified P25 (as well as Ag-P25 ) surfaces. From the 

results presented here, it is proposed that the intermediate mostly likely to be 

responsible for the high activity is Rh -N(,, ), although other intermediates such as gem- 

dicarbonyls and -NCO groups could also play a part. 
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8 Conclusions 

8.1 Overview of results 

From the results and discussion (Chapters 4-7) presented in this work, a 

number of key points have been observed which add to the further development of the 

photocatalytic elimination of NOR. The characterisation and photocatalytic behaviour 

experiments of the transition metal modified P25 photocatalysts (Chapters 4,6-7) 

compared to the results obtained from the unmodified P25 (Chapter 4-5) have 

illustrated that addition of modifying elements has a dramatic effect on the chemical, 

physical and photocatalytic properties of the prepared materials. Parallels have also 

been drawn between the chemical and physical nature of the materials and their 

corresponding photocatalytic behaviour for both NO photocatalytic decomposition 

and reduction reactions conducted in the presence of CO. 

It is demonstrated that the addition of silver and rhodium to P25 results in 

more highly selective photocatalysts compared to the unmodified P25. There were 

significant differences though in the photocatalytic behaviour of the P25, Ag-P25 and 

Rh-P25 systems. NO decomposition reactions over Ag-P25 photocatalysts were 

generally more selective than the corresponding reactions over P25 photocatalysts. 

However, the activity for NO conversion was lower for the silver containing 

photocatalysts. In the presence of CO, the same Ag-P25 systems became highly 

selective for N2 formation, with only small amounts of N2O produced. 

In contrast to the Ag-P25 photocatalysts, rhodium modified systems were 

much more selective for N20 formation, for both decomposition and reduction 

reactions, compared to P25 photocatalysts. In the presence of CO, the Rh-P25 
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photocatalysts showed remarkable activities, with NO conversions of nearly 90 % 

being detected. 

8.2 Conclusions from unmodified P25 photocatalysts 

" XRD and TEM analysis showed that calcination at temperatures up to 600°C for 

2h did not result in a significant change in the composition of the TiO2 phases 

and the original composition of ca. 20 % anatase / 80 % rutile was maintained. 

9 DSC analysis of as dried P25 powders led to the conclusion that as the calcination 

temperature increased, the density of surface bound molecular water and hydroxyl 

groups decreased. 

" The rate of NO conversion for both photocatalytic decomposition and reduction 

reactions decreased as the photocatalyst pretreatment temperature was increased 

from 70°C to 600°C. As no phase changes occurred in the temperature range 

used, this was attributed to the removal of surface bound hydroxyl groups which 

may act as active sites for NO adsorption. 

" The activity for NO conversion was less for the experiments conducted in the 

presence of CO, due to the preferential adsorption of CO molecules on the active 

NO adsorption sites. 

9 For decomposition reactions the major reaction product was N20 (ca. 75 %) with 

the only other product being N2 (ca. 25 %). This product selectivity was 

maintained irrespective of the photocatalyst pretreatment temperature and initial 

NO concentration, indicating that the removal of hydroxyl groups did not effect 

the nature of the active sites available for NO photodecomposition. 
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" In the presence of CO, the selectivity for N2 formation increased to ca. 48 % when 

photocatalyst pretreatment temperatures of 70°C and 120°C were used. 

8.3 Conclusions from silver modified P25 photocatalysts 

" XRD and TEM analysis of the silver modified P25 systems showed that the 

presence of silver reduced the onset temperature and increased the rate of the 

anatase-to-rutile phase transformation. For the 5Ag-P25 photocatalyst, the 

percentage of rutile present after calcination at 600°C for 2h was 47 %. 

" XRD analysis also showed that crystalline silver nitrate was present on the 

5Ag-P25 photocatalyst after pretreatment at temperatures of up to 200°C, although 

the amount decreased with increasing calcination temperature. After calcination at 

600°C, reflections were observed that confirmed the presence of metallic silver. It 

was concluded that silver nitrate was thermally reduced, forming metallic silver. 

" XPS analysis of the IAg-P25 and 5Ag-P25 photocatalysts showed that for each of 

the calcination temperatures used both Ag+ and Ag° were present and that the 

amount of Ag° (relative to the amount of Ag+) increased with increasing 

calcination temperature. 

" Increasing the silver loading and increasing the pretreatment temperature had 

detrimental effects on the photocatalytic activity of the photocatalysts for both NO 

photodecomposition and reduction reactions. 

" The activity for NO conversion was less for the reduction reactions compared to 

the decomposition reactions for all the reaction conditions tested due to the 

blocking of Ti02 adsorption sites by the adsorbed CO molecules. 
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" Although the activity of the silver modified photocatalysts was less than 

unmodified P25, the reactions were more selective for N2 formation for all the 

photocatalysts tested. The NO reduction reactions over lAg-P25 and 5Ag-P25 

that had been calcined at temperatures above 200°C were essentially 100 % 

selective for N2 formation. Therefore these photocatalysts were efficient SCR 

photocatalysts for the reduction of NO with CO. 

8.4 Conclusions from rhodium modified P25 photocatalysts 

" XRD analysis of the 5Rh-P25 photocatalysts did not reveal any reflections due to 

rhodium containing phases and therefore no information concerning these phases 

could be obtained from the data. However, it was shown that the presence of 

rhodium had no effect on the P25 phase transformation kinetics at temperatures of 

450°C. 

" XPS peak positions of Rh 3d5R indicated that rhodium existed as Rh3+ in the 

samples that were pretreated at 70°C and 200°C, whilst metallic rhodium was 

present for the samples which had been subjected to reduction pretreatments (both 

UV and hydrogen reduction). 

9 For all of the different pretreatments undertaken in the preparation of Rh-P25 

photocatalyst systems, the level of rhodium doping and the pretreatments used had 

little effect either on the selectivity or activity of the NO decomposition reactions. 

" In the presence of CO, all of the Rh-P25 photocatalysts exhibited higher NO 

conversion rates than for the corresponding decomposition reactions. In fact, the 

as-dried O. lRh-P25 photocatalyst showed a percentage NO conversion of 

ca. 87 % which corresponds to a conversion rate of ca. 3500 pmol h"1 g-1. For 
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comparison, the highest NO conversion rate observed over an unmodified P25 

photocatalyst tested under the same conditions was only ca. 650 µmol h71 g''. 

Hence, Rh-P25 based photocatalysts are the extremely active for NO-CO 

reduction reactions. It is believed that this is due to formation of reactive 

intermediates on the rhodium active sites, that are negligible in number on the 

unmodified P25 (as well as Ag-P25 ) surfaces. 

" Hydrogen reduction at 450°C resulted in Rh-P25 photocatalysts with the best 

selectivity for N2 formation with values of ca. 40 %. The two Rh-P25 systems 

which were calcined in air (70°C and 200°C) and the UV reduced systems all 

showed similar selectivities for N2 formation of ca. 10 %, hence the major species 

produced was N20. 
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9 Future Work 

This is the first study concerning the use of transition metal modified Ti02 

photocatalysts for environmental applications that has been conducted at the 

University of Nottingham, and valuable results can be taken from these studies, giving 

the basis for future research 

The work presented in this thesis has provided a substantial amount of new 

information towards the effects of preparation methodology on the nature and 

photocatalytic properties of P25, Ag-P25 and Rh-P25 photocatalysts for the 

elimination of NO. Although the silver containing photocatalysts showed very high 

selectivity for the desired product of N2, and the rhodium containing photocatalysts 

exhibited exceptional activities for NO conversion, there are many questions that still 

remain unanswered. These are mainly associated with the unambiguous 

identifications of the nature of the supported transition metals and the role of the 

available active sites in the NO decomposition and reduction surface photoreactions. 

A number of further analytical techniques could be used to elucidate the nature 

of the transition metal dopants, where in most cases their particle sizes and/or 

concentration was below the detection limits for XRD and XPS analysis. Such 

analysis would include extended X-ray absorption fine structure (EXAFS) and 

time-of-flight secondary ion mass spectrometry (TOF-SIMS). EXAFS is an 

averaging technique that can reveal the local structure (e. g. co-ordination number, 

bond type and distances) in materials that do not have long range order 

(non-crystalline), and could therefore be used to determine the local structures of the 

transition metal species present after the various pre-treatments. By reference to 

materials of known particle sizes, EXAFS can also yield particle size information for 
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the species studied. Studies of the photocatalyst powders and films using TOF-SIMS 

could be undertaken to gain a better understanding of the chemical environment of the 

transition metal species. 

The structural evolution with the varying pre-treatments could be further 

studied using in-situ pretreatment experiments. This approach could readily be 

applied to techniques such as XRD and EXAFS, where a temperature variable sample 

holder, within which the atmosphere could be varied, could be used. This would give 

a more accurate understanding of the structural evolution of the transition metal 

species and the TiO2 phase changes observed in the doped P25 systems. 

To identify the active sites and their role in the NO decomposition and 

reduction reactions a series of mechanistic studies needs to be undertaken. These 

could include further, more detailed studies of the relationship between photocatalytic 

activity and the photocatalyst structure. For this it would be essential to establish the 

nature of the surface species formed during the photo-adsorption of gases such as NO, 

N20, N2, CO and CO2. Infrared spectroscopy could readily be applied to such 

investigative experiments. The photocatalysts could be exposed to gases and 

illuminated with UV photons in an IR cell, before being evacuated and analysed using 

the IR source. It would yield information regarding active adsorption sites on the 

photocatalyst surfaces on which the various gases are adsorbed, thus elucidating 

potential reactions mechanisms. Similar studies could also be performed in the 

preparation chamber of either TOF-SIMS or XPS instruments, which would not only 

yield information about the preferred active sites but also reveal any structural 

changes that the surface of the photocatalyst may undergo during the photoreactions. 

By using TOF-SIMS the mechanistic studies could be investigated further by 

monitoring the isotopic exchange between original surface species and isotopically 
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labelled gases such as 13CO and 1SNO. Only after the mechanistic details of NO 

decomposition and reductions reactions over the photocatalyst described here are 

understood, can attempts be made at producing photocatalysts that are designed to 

give improved photocatalytic activities for NO conversion and selectivities for N2 

formation. 

The high selectivity for N2 formation of the NO photoreactions over the 

predominantly Ag° silver doped-P25 photocatalysts and the high NO conversions of 

the Rh3+ doped photocatalysts are encouraging. A logical step would be to investigate 

the synergistic effects of co-doped Ag/Rh-P25 photocatalysts. Firstly Rh would be 

deposited onto P25 surfaces followed by the selective reduction of Ag+ to form Ag° 

islands at the Rh sites and rather than on the surface of the P25, thus retaining the 

highly selective active sites of the silver doped photocatalysts and the good adsorption 

properties of the rhodium (and hence the high activity) without the reduction in 

activity due to more efficient electron-hole pair recombination at the Ag-Ti02 

interface. 

The potential commercial application of the photocatalyst materials described 

here is the photo-SCR of NO in air. For this to be fulfilled, further photocatalytic 

evaluation is required using gas streams composed of 02, NO, CO, CO2, H2O vapour 

and a range of small hydrocarbons. Deactivation of the photocatalysts over extended 

periods of use should also be investigated. 
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