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Abstract 

Verticillium chlamydosporium is a fungal pathogen of eggs and females of plant- 

parasitic nematodes. The fungus produced an alkaline serine protease in submerged 

culture. This enzyme, VCPI, was characterized as a class II subtilisin, based on 

amino acid sequence homology. Several of its characteristics, e. g. molecular mass (33 

kDa), pI (ca 10) and broad substrate utilisation, are typical of fungal subtilisins. 

Although some immunological cross-reactivity existed with other enzymes of this 

class, an antigenic fingerprint was obtained that was distinct, even from the subtilisin 

that was its closest homologue based on amino acid sequence, Prl from the 

entomogenous fungus Metarhizium anisopliae. 

There was circumstantial evidence, suggesting that this fungal protease was 

involved in the infection of nematode eggs, which have a largely proteinaceous 

eggshell. First of all, the enzyme was able to remove the outer protein layer from 

eggs of the susceptible root-knot nematode, Meloidogyne incognita, exposing the 

underlying chitin layer. Scanning electron microscopy revealed that fungal hyphae 

on the egg surface left an imprint, presumably through enzymatic action. There was 

also evidence of the protease weakening the eggshell, as enzyme-treated nematode 

eggs were more easily lysed and infected by the fungus than those not pre-incubated 

in the enzyme. A polyclonal antibody against VCPI demonstrated protease 

production by the fungus, prior to, or concurrent with, penetration. The enzyme was 

associated with appressoria, i. e. fungal infection structures. In contrast to the 

susceptible root-knot nematode, VCPI had little impact on the egg shell of the potato 

cyst nematode Globodera rostochiensis. It is suggested that the limited in situ 
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hydrolysis of G. rostochiensis egg shell proteins is a factor contributing to its relative 

resistance to the fungus. 

Regulation studies in batch culture showed that production of the protease 

VCPI was repressed by high carbon and nitrogen levels. Its basic regulatory 

mechanism was that of repression/derepression. However, the highest protease titre 

was obtained when M incognita eggs were present in the medium, suggesting 

induction by the host. Collagen and chitin were possibly responsible for this 

inductive effect. 

In conclusion, it is believed that VCPI is a protease with a dual role for V 

chlamydosporium. During saprotrophic growth, VCP1 would allow the fungus to 

scavenge nutrients from a wide range of protein sources. However, the enzyme also 

has a designated function in penetration of the host, which makes it a versatile tool 

for a fungus that can switch trophic modes during its life-cycle. 

The achievements of this research include the first demonstration in a 

nematode-attacking fungus of- 

-a well-characterized protease, including data on stability, kinetics and 

isoforms; 

-a subtilisin-like protease in an egg-parasitic nematophagous fungus; 

-a pathogenicity-related enzyme in V chlamydosporium; 

-a determinant of host specificity; 

- enzyme regulation in general, and induction by the host, in particular. 
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1 General introduction 

1.1 BIOLOGICAL CONTROL OF NEMATODE PESTS 

Biological control is a broad subject and various workers, dealing with very diverse 

systems, hold different views on the terminology. A current definition of biological 

control of plant-parasitic nematodes is "a reduction of nematode populations which 

is accomplished through the action of living organisms other than nematode-resistant 

host plants, which occurs naturally or through the manipulation of the environment 

or the introduction of antagonists" (Stirling, 1991). 

A considerable number of antagonists (natural enemies) of nematodes have 

been identified and new ones are continuously being found. They include viruses, 

rickettsia, bacteria, a range of invertebrate animals, mycorrhizae and other fungi. 

These organisms have been the subject of several recent reviews (Barron, 1977; 

Mankau, 1981; Jatala, 1986; Kerry, 1987; Gray, 1988; Morgan-Jones & 

Rodriguez-Kdbana, 1988; Small, 1988; Nordbring-Hertz, 1988; Saxena & Mukerji, 

1988; Saxena et al., 1991; Stirling, 1991; Dijksterhuis et al., 1994), and only fungi 

will be dealt with from here on. 

Biological control is either natural or induced. In natural control the 

nematode population is kept below a certain threshold by an increase in density of 

indigenous antagonists. The establishment of an equilibrium between the populations 

of nematodes and antagonists may take place over several years in perennial crops 

or monocultures. Natural control below the economic threshold has been 
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demonstrated only for the cereal cyst nematode, Heterodera avenae, under 

continuous cereals in England. The hyphomycete Verticillium chlamydosporium was 

one of the responsible agents for this best documented case of natural biological 

control (Kerry et al., 1982a, b). Data from Germany indicate increased abundance of 

V. chlamydosporium, parasitising the beet cyst nematode, H. schachtii, in fields 

where beet monoculture had been practiced (Tribe, 1977). However, in this case, the 

equilibrium population is above the economic threshold (Kerry, 1989). Other fungi 

that have been considered the causes of nematode suppressiveness include the egg- 

parasite Dactylella oviparasitica in a peach orchard in California where Meloidogyne 

infestation was unexpectedly low (Stirling & Mankau, 1978), and a sterile 

Ascomycete, Arkansas Fungus 18, that was isolated from eggs and second-stage 

juveniles in a continuously cropped soybean field where a natural decline in the 

Heterodera glycines population occurred (Kim & Riggs, 1992). In induced 

biological control the fungal parasites are introduced once or repeatedly. Natural 

biological control agents may be used in a scheme of induced biological control. 

Verticillium chlamydosporium has been found effective if introduced to soil, e. g. 

against H. avenae (Kerry et al., 1984) and against Meloidogyne spp. (Godoy et al., 

1983; Rodriguez-Käbana et al., 1984; de Leij & Kerry, 1991; de Leij et al., 1993b). 

However, some effective natural control agents lack characteristics essential for a 

strategy of introduction to soil, e. g. Nematophthora gynophila, which cannot be 

grown in vitro (Kerry, 1987; Crump & Moore, 1990). 

The main asset of V. chlamydosporium as a potential biological control agent, 

is probably the fact that it attacks nematode eggs and females (Morgan-Jones et al., 
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1981b). This makes it potentially very suitable for the control of root-knot and cyst 

nematodes, as the females of these nematodes are sedentary, and their eggs remain 

aggregated. 

1.2 ROOT KNOT (MELOIDOGYNE SPP. ) AND CYST (HETERODERA 

AND GLOBODERA SPP. ) NEMATODES 

Nematodes are currently placed in a separate phylum, Nematoda (previously 

Aschelminthes) (Maggenti, 1976). They are vermiform, unsegmented, bilaterally 

symmetrical pseudocoelomates with a circumenteric nerve ring and no circulatory or 

respiratory organs. The plant-parasitic nematodes that are economically most 

important belong to the order of the Tylenchidae: apart from free-living species, they 

include root knot nematodes in the genus Meloidogyne and cyst nematodes in the 

genera Heterodera and Globodera. 

Meloidogyne species have a worldwide distribution, extensive host ranges, 

and are involved with fungi and bacteria in disease complexes, which makes them of 

major economic importance in a wide range of crops. The most important species, 

largely because of their wide distribution and broad host range, are M incognita, M 

javanica, M. arenaria, and M. hapla (Jepson, 1987). They get their popular name 

"root knot nematodes" from the galls they produce on the roots of infected plants, 

mainly by inducing hypertrophy of cortical cells. These galls may coalesce, and in 

the species named above, several females may be present in a single gall. 

Infective 2nd stage juveniles hatch from eggs that are embedded in a 

gelatinous matrix that often still adheres to the root tissue of the previous host plant. 

After migration through the soil towards a suitable host plant, the root epidermis is 
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penetrated near the root tip. The juveniles migrate between cells, until they establish 

themselves with the anterior end in contact with the vascular cylinder, where giant 

cells are induced. These cells are multinucleate with dense cytoplasm and highly 

invaginated cell walls. The giant cell is induced and maintained by a continuous 

stimulus from the nematode (Bird, 1979). A gall develops, inside which the juveniles 

gradually assume a flask shape. Three moults occur, the last of which is a true 

metamorphosis for the occasionally occuring male, which appears as a long 

vermiform nematode folded inside the cuticle of the fourth juvenile stage. The adult 

female at first retains the same shape of the last larval stage, but, as it matures, it 

enlarges and becomes pyriform (De Guirian & Ritter, 1979). Reproduction is often 

by mitotic parthenogenesis. Insemination only rarely takes place as the females are 

virtually inaccessible to the males, and maturation of the oocytes of inseminated 

females has been found to be similar to that of non-inseminated females 

(Triantaphyllou, 1963). Female rectal gland cells produce the gelatinous matrix in 

which the eggs, usually 500-1000, are deposited. Cellulolytic activity from the 

gelatinous matrix allows the eggmass to protrude on the gall surface (Orion et al., 

1987). Depending on the environmental conditions, the nematode life-cycle can be 

completed in less than one month (De Guirian & Ritter, 1979). 

The life-cycle of cyst nematodes (Heterodera spp. and Globodera spp. ) is 

roughly similar to that of root knot nematodes, but no gall is produced. As the 

swelling female ruptures the root cortex, permanent exposure on the root surface 

allows fertilisation. The body of the female fills with eggs, although some are 

extruded from the female body in a gelatinous matrix. Females appear as white 
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nodules on the root surface, but as soon as egg production ceases, the cuticle 

sclerotizes, the female dies and its remains form the mature cyst. In cyst nematode 

species that depend on root diffusates for induction of hatching, such as the potato 

cyst nematodes, G. pallida and G. rostochiensis, eggs can remain viable for many 

years (Shepherd & Clarke, 1971). The cyst may protect the eggs against desiccation 

and parasites. 

Because of their confinement inside host roots or the cyst, their large 

reproductive rates, and the wide array of host plants, these plant-parasitic nematodes 

are difficult to control. Nematicides have been generally used to reduce soil 

populations to below damage threshold levels during the early and most susceptible 

stage of plant growth. If they are to be used as sole control agents for nematodes that 

have several generations during a crop cycle, they will have to be applied repetitively 

because of the nematode's reproductive capacity. A major disadvantage is the cost 

involved (Rodriguez-KAbana, 1992), but the main reason why they have been largely 

abandoned is their inherent toxicity coupled with their potential to be 

environmentally hazardous. The persistence of the dichloropropane component of D- 

D, DBCP, EDB and the water solubility of others such as aldicarb are particularly 

troublesome (Thomason & Caswell, 1987). 

There are many non-chemical methods which can contribute to nematode 

control. They include the use of resistant cultivars, hot water treatment of planting 

material, flooding, cultivating the soil during a dry period, solarization. Rotation 

involves growing a sequence of susceptible and resistant, non-host or poor host crops. 

Fallow can be very effective in rotation. While crop rotation programmes have 
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become less attractive to growers where economics demand specialisation and 

intensification, and virulent nematode pathotypes have developed to overcome 

resistant cultivars, interest has shifted towards biological control. In particular, 

research on the natural enemies of plant-parasitic nematodes has focused on fungi 

that attack nematodes (Kerry, 1987). 

1.3 NEMATOPHAGOUS FUNGI 

1.3.1 Different modes of action 

Nematophagous fungi comprise those fungi that produce traps or adhesive spores to 

infect active vermiform nematodes, and those which colonize sedentary stages such 

as females and their eggs. Irrespective of the type of nematophagous fungus, the 

ultimate fate of the nematode will be the same, with fungal hyphae developing within 

the nematode and the body or egg contents used by the fungus. The biomass of soil 

nematodes is often considerable, and nematophagous fungi help to recycle carbon, 

nitrogen, and other important elements from this trophic stratum. For man however, 

the ability of these fungi to destroy nematodes has presented an interesting possibility 

of employing them as a biological control agents for these agricultural pests. Most 

workers have focused on plant-parasitic nematodes, but there are also good prospects 

for the development of biological control agents for animal parasitic nematodes 

(Waller, 1993). 

Despite the diversity in the fungal adaptations involved, three main strategies 

are commonly recognized. These fungal adaptations are briefly reviewed here. The 

purpose is not to acquaint the reader with the subject as a whole, but rather to provide 
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the framework in which it will be possible to interpret the degree of specialization of 

the fungus of interest, V. chlamydosporium. 

1.3.2 Nematode-trapping fungi 

In general, trapping fungi produce extensive but rather sparse mycelia in the soil 

environment, with trapping devices at intervals along the hyphae. Nematodes are 

captured either mechanically or by adhesion, followed by rapid penetration by a 

narrow infection peg, formation of an infection bulb, from which mycelium develops 

to digest the prey (Shepherd, 1955). Nematodes are usually fairly quickly 

immobilized when captured, which suggests the production of a fungal nematotoxin 

by these fungi (Gray, 1988). Despite their ubiquity in nematode-infested soil, a 

correlation between the presence of nematode-trapping fungi and the suppression of 

nematode populations has not yet been clearly demonstrated (Nordbring-Hertz, 

1988). 

There is an amazing diversity in the trapping mechanisms, and these fungi can 

be found in quite diverse taxa. However, the taxonomy of some of these, e. g. 

Arthrobotrys Corda, Dactylaria Sacc., Dactylella Grove, Monacrosporium Oudem. 

is confused, and new characters are urgently required (Gray, 1988; Liou et al., 1995). 

Simple adhesive hyphae. This feature is largely confined to the 

Zygomycetes, such as Cystopage spp. and Stylopage spp., fungi which are unable to 

form intricate capturing structures as they are unseptate and do not anastomose 

(Barron, 1977). 
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Adhesive branches are produced by anastomosis of a limited number of cells 

and covered by a thin adhesive film. Apposition of several branches prevents the 

escape of the prey. An example of a fungus producing adhesive branches is 

Monacrosporium cionopagum (Drechsler) Subram. (Dowsett et al., 1984). 

Adhesive knobs are morphologically distinct cells, covered with a thin layer 

of adhesive. They are either sessile, as in Monacrosporium phymatopagum 

(Drechsler) Subram., or borne on a non-adhesive stalk, as in M ellipsosporum 

(Grove) Cooke & Dick. Adhesive knobs can sometimes be formed directly from the 

conidium (Liou et al., 1995), conferring ecological advantage on the fungus as it will 

not encounter fungistatic effects that might thwart vegetative growth. Moreover, if 

the knob is detached from the stalk or hyphae by the struggling nematode, it often 

breaks while remaining attached to the nematode and forming an infection hypha 

anyway (Gray, 1988). 

Non-constricting rings. In this infrequently encountered trapping mechanism 

nematodes are passively captured as they wedge themselves in the 3 or 4-celled rings, 

borne on lateral hyphal branches. As the prey struggles, the ring often breaks off the 

hypha, but nevertheless remains wedged around the nematode body, resulting in 

subsequent infection. The most frequently isolated species with this form of trap is 

Dactylaria candida, which forms not only non-constricting rings, but also adhesive 

knobs (Barron, 1977). 

Constricting rings develop similarly to non-constricting rings but are 

ultrastructurally much more complex. Nematodes that enter the ring stimulate the 

inner surface, causing the ring to close abruptly after 2 to 3 seconds. The best-studied 
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species forming these traps is Dacrylaria brochopaga (Drechsler, 1937; Barron, 

1977). 

Adhesive trapping networks. Arthrobotrys oligospora Fres. is probably the 

best known trapping fungus. It is a ubiquitous species that forms a three-dimensional 

complex of anastomosed loops which are thinly coated with a fibrillar adhesive 

material. The host recognition process involves the binding of a lectin, present on the 

A. oligospora trap, to N-acetyl-galactosamine on the nematode cuticle (Nordbring- 

Hertz & Mattiasson, 1979; Borrebaeck et al., 1984). Despite the design of the 

network, which ensures that the struggling nematode becomes entangled in other 

parts of the network, they are not very efficient at trapping nematodes, as the prey 

tends to escape (Gray, 1988). 

Arthrobotrys oligospora conidia may germinate to produce directly adhesive 

traps when applied close to cow faeces on a water ager plate (Dackman & Nordbring- 

Hertz, 1992). These conidial traps are considered a survival structure: the fungus is 

enabled to overcome fungistasis by adhering to the passing nematode before 

penetration takes place. The conidial trap is interesting as it is functionally similar to 

the adhesive conidia of endoparasitic fungi, and thus constitutes an intermediate form 

between the endoparasitic and nematode-trapping fungi (Dackman & Nordbring- 

Hertz, 1992). 

Commercial products, based on nematode-trapping fungi, have been 

developed (Cayrol et al., 1978; Cayrol & Frankowski, 1979), but control with this 

type of fungus has been erratic (Morgan-Jones & Rodriguez-Käbana, 1987). 

Nematode-trappers, as a whole, are only capable of killing second-stage juveniles or 
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males that migrate through soil. Juveniles are short-lived and often abundant, and it 

is difficult to make the periods of nematode migration and fungal trap formation 

coincide (Kerry, 1980). In a critical review, Stirling (1991) points out that the 

complex three-dimensional networks, formed on agar, fill a volume much greater 

than the small and irregular pore spaces in most soils. There have been few studies 

on trap formation in situ, and results from trap formation in vitro cannot necessarily 

be extrapolated to soil. 

1.3.3 Endoparasites with infective spores 

Although all nematophagous fungi could be considered "endoparasitic", this term 

traditionally refers to fungi whose infective unit is a spore. Most endoparasitic 

nematophagous fungi are obligate parasites. They exist mainly as conidia in the soil, 

and do not form extensive hyphal systems outside the nematode. Conidia are usually 

either i) flagellate zoospores, in lower fungi, that encyst on the cuticle; ii) adhesive 

and attach to the nematode surface, which they penetrate after germination; iii) 

ingested, after which they germinate in the digestive tract. 

Encysting spores. Endoparasitic Chytridiomycetes or Oomycetes form 

flagellate zoospores that are attracted by nematode exudates. Upon reaching the 

target, encystment of Catenaria anguillulae spores is triggered by specific 

carbohydrate/lectin interactions (Jansson & Thiman, 1992) and infection occurs 

either through natural openings or by penetration through the cuticle. 

Adhesive conidia are produced by a number of endoparasitic hyphomycetes. 

Verticillium coronatum forms conidia with a cluster of small, apical appendages, with 
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which they attach to the cuticle of the host nematode (Barron, 1989). A well studied 

species is the obligate parasite Drechmeria coniospora (Drechs. ) Gams & Jansson, 

the conidia of which have an adhesive knob, which in turn forms an appressorium 

(Dijksterhuis et al., 1990). This attachment is required, but not sufficient for 

infection, as Drechmeria can attach to nematodes that are non-hosts (Jansson et al., 

1987); a lectin-carbohydrate recognition event involving sialic acids has been 

demonstrated (Jansson & Nordbring-Hertz, 1983). 

Ingested conidia. Harposporium spp. are remarkably adapted to parasitism 

of free-living nematodes. Their morphologically adapted conidia are eaten by the host 

and attach to an area of the digestive tract that is species dependent. Plant parasitic 

nematodes are stylet-bearing and cannot be infected by this type of fungus (Gray, 

1988). 

"Explosive" conidia. Haptoglossa heterospora has one of the most unusual 

and spectacular methods of infection of a nematode by spores. The shape of its spore 

is such that, on mechano-stimulation by a passing nematode, the spore's protoplasm 

is shot through the nematode's cuticle, anchoring itself between cuticle and 

epidermis. The whole process only takes a fraction of a second (Barron, 1977). 

Nematoctonus leiosporus is a remarkable example of overlap between 

endoparasitic and trapping fungi. Its conidia are not adhesive as long as they remain 

attached to the parent hypha. When a spore is detached, a short extension grows from 

it, carrying a terminal adhesive bud. Barron (1977) believes that the endoparasitic 

species of Nematoctonus are basically trapping fungi that have developed adhesive 

knobs on conidia rather than on hyphae. 
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1.3.4 Parasites of eggs and females 

Parasites of eggs and females have been the focus of work on nematophagous fungi 

during the last few years. By killing the female or reducing fecundity they are 

potentially more effective at controlling population growth than species that 

parasitise juvenile stages (Kerry, 1980). 

Cysts and eggs of a wide range of plant-parasitic nematodes have been found 

to be infected by a number of fungal genera. They include obligate parasites such as 

Nematophthora gynophila Kerry & Crump, Catenaria auxiliaris (Kühn) Tribe and 

a range of facultative parasitic members of the genera Cylindrocarpon, Exophiala, 

Fusarium, Gliocladium, Paecilomyces, Phoma and Verticillium (which will be dealt 

with separately in this review). 

The relatively consistent association between cysts and/or eggs and certain 

fungal genera does, however, not always imply a clear-cut parasite-host relationship. 

Fusarium species, for example, have been frequently found as colonizers of 

nematode cysts. There are conflicting results as to their nematophagous potential 

(Nigh et al., 1980; Dackman et al., 1989). Egg penetration by these "opportunistic 

fungi" may or may not require a predisposing factor, weakening the eggs. A possible 

ecological role for these fungi may be the long term degradation of cyst exocuticle 

in soil (Morgan-Jones et al., 198la; Gray, 1988; Cams et al., 1989). Several authors 

erroneously consider the opportunistic/parasitic fungi found in cysts as "cyst 

parasites". This term has to be rejected, as Jatala (1986) correctly points out, because 

it is a contradiction in terms: the cyst is not a living nematode stage. Morgan-Jones 

et al. (1981a) try to clarify the confusion by dividing the fungi found in cysts and 
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eggs in three categories. Firstly, fungi that are able to enter the cysts early, grow 

saprophytically on its contents, including the embedding mucilage. Secondly, bona 

fide pathogens that are able to penetrate the egg shell. Thirdly, a succession of fungi 

involved in long-term degradation of resistant structures. 

Nematophthora gynophila Kerry & Crump is an obligate endoparasitic 

Oomycete that infects female Heterodera but not Globodera nematodes. It has also 

been isolated from root-knot nematodes that form small galls, when females are 

exposed on the root surface (Kerry, 1989). Motile zoospores are released from the 

infected female, the cuticle of which becomes soft and breaks down. The survival 

stage is represented by thick walled resting spores which are formed inside the female 

(Kerry & Crump, 1980). Attempts to culture N. gynophila in vitro have failed (Crump 

& Moore, 1990). Dactylella oviparasitica Stirling & Mankau has successfully 

decreased parasitism of M. incognita on peach, but the success was mainly dependent 

on the small egg numbers produced on this crop (Stirling & Mankau, 1978,1979; 

Stirling et al., 1979). The hyphomycete Paecilomyces lilacinus (Thom) Samson is 

considered to have strong potential as a biological control agent in subtropical and 

tropical regions, due to its temperature optimum (26-30°C), intrinsic virulence and 

antibiotic activity against bacteria and other fungi (Morgan-Jones et al., 1984). 

Although a commercial product has been developed (Timm, 1987), a serious 

drawback is the potential of this species to cause mycoses in man (Gordon & Norton, 

1985). 
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1.4 VERTICILLIUM SPP. 

1.4.1 Taxonomic status 

The separation of the genus Verticillium (subdivision Deuteromycotina, form-class 

hyphomycetes) was based on its characteristic conidiophore morphology (Isaac, 

1967). The conidiophores are erect, septate, and branched, with the short branches 

forming typical whorls. The terminal branches of the conidiophores are usually flask- 

shaped and pointed at the tips. Conidia are borne terminally, either singly or in small 

clusters. 

Recently, the genus was divided into four sections (Gams & van Zaayen, 

1982). Section Nigrescentia contains V. albo-atrum Reinke & Berth. and V. dahliae 

Kleb., plant-parasites with a host range including herbaceous as well as woody plants, 

many of which are of economic importance (Melouk, 1992). Section Albo-erecta 

contains several parasites of mushrooms (Gams & van Zaayen, 1982). Section 

Prostrata is characterized by white or whitish cottony colonies and a strong tendency 

to form prostrate conidiophores, little differentiated from vegetative hyphae. The 

resting structures of some species are very characteristic hyaline, thick-walled, 

multicellular, stalked chlamydospores (Campbell & Griffiths, 1975). The most 

common species of section Prostrata is V. lecanii (Zimm. ) Viegas, and 

nematophagous Verticillium species are also classified in this section (Gams & van 

Zaayen, 1982). 

Verticillium chlamydosporium was originally isolated from garden soil in 

Michigan, U. S. A. (Goddard, 1913). Its teleomorph is Cordyceps sp., provisionally 

named as Cordyceps ovoparasitica, which occurs on egg massses of molluscs in 
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tropical forest soils of South America (H. Evans, Silwood Park, personal 

communication). Whereas Isaac (1967) conjectured that V. chlamydosporium may 

not be a true Verticillium because it only rarely forms verticillately branched 

conidiophores, its taxonomic position was consolidated by Gams (1988). Based on 

differences in morphology and physiology, V. chlamydosporium is regarded as a 

species complex by several authors (Bursnall & Tribe, 1974; Irving & Kerry, 1986). 

However, Gams (1988) distinguishes V. suchlasporium var. suchlasporium, which 

he believes often to have been confused with it. According to Gams (1988), V. 

suchlasporium is distinct from V. chlamydosporium because of its taller, mostly erect 

and more densely verticillate conidiophores and its chlamydospores mostly buried 

in the agar (the new name is an abbreviation of V. subchlamydospozium). Verticillium 

suchlasporium has a lower temperature optimum compared to V. chlamydosporium 

(Dackman & Baath, 1989). The newly erected species could, however, not be 

confirmed by enzymatic and genetic analyses (Carder et al., 1993). 

1.4.2 Biological control potential and ecological aspects of V. 

chiamydosporium 
Verticillium chlamydosporium is a worldwide soil-inhabiting fungus, isolates of 

which have been found to be associated with various species of cyst and root knot 

nematodes (see Table 1.1). Verticillium chlamydosporium has been isolated, not only 

from nematodes, but has also been reported to parasitise the oospores of Oomycetes 

(Sneh et al., 1977), to be a slow but effective mycoparasite of the plant-parasitic 

fungus Rhizoctonia solani Kühn (Turhan, 1990), and to destroy eggs of snails 
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(Barron & Onions, 1966). The significance of these observations is not always clear, 

e. g. Tribe (1977) considered the latter to be an exceptional record. 

Table 1.1 Field isolations of Verticillium spp. from nematode eggs, females or cysts. 

Verticillium Nematode host Reference 

V. chlamydosporium Clobodera sp. Crump (1989) 

C. rostochiensis Roessner (1987); Morgan Jones & Rodriguez-K3bana (1986) 

H. avenae Graham & Stone (1975); Kerry (1975); Kerry & Crump (1977); Tribe 

(1979); Cayrol et al. (1982); Juhl (1982); Dackman & Nordbring- 

Hertz (1985); Lopez-Llorca & Duncan (1988,1990) 

H. carotae Kerry & Crump (1977) 

H. cruciferae Kerry & Crump (1977) 

H. glycines Gintis et at. (1983) 

H. schachtii Bursnall & Tribe (1974); Willcox & Tribe (1974); Kerry& Crump 

(1977); Tribe (1979); Muller (1982); Crump & Kerry (1983); Crump 

(1987); Dackman et al. (1989); Saleh & Quadri (1989) 

H. trifolii Kerry & Crump (1977) 

M. arenaria Morgan Jones et at. (1981b, 1983); Rodriguez-Kabana et al. (1984) 

M. incognita Gaspard et a1. (1990) 

T. semipenetrans Walter & Kaplan (1990) 

V. lamellicola H. glycines Morgan-Jones et al. (1981a); Godoy et al. (1982b) 

M. arenaria Rodriguez-Kabana et al. (1984) 

V. lecanii H. glycines Gintis et al. (1983) 

V. leptobactrum H. glycines Godoy et al. (1982b) 

V. suchlasporium G. rostochiensis Dackman (1990) 

H. avenae Dackman & Baath (1989) 

G.: Globodera; H.: Heterodera; T.: Tylenchulus; V.: Verticillium 

Although some introductions of V chlamydosporium isolates to soil have 

been relatively successful (Godoy et al., 1983; Kerry et al., 1984; Rodriguez-Käbana 

et al., 1984; de Leij & Kerry, 1991; de Leij et al., 1993b), significant failures (see 

Stirling, 1991) indicate that further development of the system is required. An 
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obvious question for the field worker is how to formulate the fungus. Verticillium 

chlamydosporium hyphae and conidia do not survive well when introduced to soil, 

unless a food base is included, which results in unwieldy inocula in the range of 2.5 

tons ha' (Kerry, 1988). However, when chlamydospores are introduced into soil 

without an added food base, the fungus survived and established (de Leij & Kerry, 

1991). As yet, chlamydospores in large numbers can only be produced on solid media 

(Kerry et al., 1993), but development of a submerged culture system might entice 

industrial participation in the development of V. chlamydosporium as a biological 

control agent. 

Soil survival is an essential attribute of any nematophagous fungus, and it has 

been a limiting factor also for other systems. For example, P. lilacinus has been 

reported to have good potential against Meloidogyne species (Jatala, 1985), but later 

proved to be inadequate as it failed to survive after inoculation (Gomes Cameiro & 

Cayrol, 1991). The survival of V. chlamydosporium (de Leij & Kerry, 1991; de Leij 

et al., 1993b) may be partly determined by its ability to form resting structures, 

chlamydospores (Campbell & Griffiths, 1975). 

An important feature of successful isolates of V. chlamydosporium is their 

rhizosphere competence, i. e. the extensive colonization of the rhizosphere of the 

nematode's host plant. De Leij & Kerry (1991) found that the only isolate in their test 

that was effective against M arenaria was the rhizosphere competent one. Rapid and 

abundant growth over the root surface may enhance the chances of nematode 

infection, and therefore provide a competitive advantage for the fungus. The fungus 

is more abundant on roots infected with root-knot nematodes, presumably because 
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of enhanced root exudation (de Leij et al., 1992b). The isolates used by Clyde (1993), 

when given the choice, did not select for H. schachtii infected roots, but they were 

more prevalent near the root tip, which again may be exudation-related. Rhizosphere 

colonization never implies invasion of the root cortex and no detrimental effects on 

the plants have ever been observed (Kerry et al., 1986, de Leij & Kerry, 1991). The 

plant species seems to have a significant effect on rhizosphere colonization, but better 

techniques to study colonization are called for (Bourne et al., 1994). Many factors 

may contribute to rhizosphere competence (Ahmad & Baker, 1987; Weller, 1988; 

Weller & Tomashow, 1994), but the actual determinants for V. chlamydosporium are 

unknown. 

There is little information on the competitiveness of V. chlamydosporium, 

apart from indirect observations, such as the fungus being much more abundant on 

the surface of sterile roots than on those grown in soil (Bourne et al., 1994). 

Mycostasis by rhizosphere bacteria, a profound regulatory factor of fungal 

populations in soil (Garrett, 1956), has been observed in the case of the closely 

related species V. suchlasporium (Lopez-Llorca & Boag, 1990). This egg-parasitic 

fungus is, however, never completely inhibited by bacteria, which may be explained 

by the antibacterial activity of the fungus (Filipello-Marchisio, cited in Lopez-Llorca 

& Boag, 1990). 

1.4.3 Ultrastructure of infection by V. chlamydosporium 

Many pathogenic fungi form specialized infection structures, called appressoria, on 

germ tubes or hyphae, prior to penetration (Emmett & Parbery, 1975). Appressoria 
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are produced by fungi infecting widely different hosts, including other fungi (Jeffries 

& Young, 1994), plants (Nicholson & Epstein, 1991), arthropods (Boucias & 

Pendland, 1991), and nematodes (Barron, 1973; Stirling & Mankau, 1979; Nigh et 

al., 1980; Dunn eta!., 1982; Lysek & Krajei, 1987; Lopez-Llorca & Claugher, 1990; 

Sjollema et al., 1993). Some model systems, e. g. the plant pathogens Magnaporthe 

grisea and Uromyces apendiculatus, and the insect pathogen Metarhizium anisopliae, 

are very well studied and much of the signalling and differentiation events leading 

to appressorium formation has been elucidated (Hoch & Staples, 1991; St. Leger et 

al., 1991b; Read et al., 1992; Talbot, 1995). The study of appressorium formation by 

egg-parasitic Verticillium species is comparatively poorly developed, with few 

observations (Lysek & Krajei, 1987; Lopez-Llorca & Claugher, 1990; Chapter 5). 

It has been very difficult to obtain information about the early stages of 

infection, as the intact egg shell is extremely impermeable to embedding mixtures for 

transmission electron microscopy (Bird & McClure, 1976; Wharton, 1980; Morgan- 

Jones et al., 1983). However, penetration pegs from appressoria breach the chitin and 

lipid layers of the egg shell, after which the mycelium branches. The juvenile cuticle 

is also disrupted, and after a proliferation stage, the fungus penetrates the egg inside- 

out, leaving the juvenile necrotic and disintegrated (Lysek & Krajdi, 1987; Morgan- 

Jones et al., 1983; Lopez-Llorca & Robertson, 1992b). Each author suggests the 

involvement of hydrolytic enzymes to explain areas of low-electron density around 

the penetration hyphae. 
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1.4.4 Factors influencing nematode susceptibility to fungal attack 

Nematode genus. The vitelline and chitin layers of M. incognita eggs are relatively 

thin when compared to those of G. pallida and Nacobbus aberrans. This simplicity 

may account for the vulnerability of M incognita eggs to fungal penetration, or to the 

action of their exopathic compounds (O'Hara & Jatala, 1985). 

There is a correlation between relative dityrosine content of egg shells and 

cyst walls, and resistance to fungal attack, as Heterodera avenae and H. schachtii 

have lower dityrosine: tyrosine ratios compared to Globodera rostochiensis and G. 

pallida (Lopez-Llorca & Fry, 1989), and the former are more susceptible to fungal 

attack (Kerry, 1982). 

Developmental stage of nematode. Cayrol et al. (1982) reported that H. 

avenae eggs were not susceptible to parasitism by V. chlamydosporium after they had 

developed beyond the three-cell stage. Although infection of mature eggs has been 

observed (Lopez-Llorca & Duncan, 1990; see Chapter 5), immature eggs are 

generally considered to be more susceptible to attack by V. chlamydosporium than 

are those containing second-stage juveniles (Morgan-Jones & Rodriguez-Käbana, 

1985; Irving & Kerry, 1986; Roessner, 1987). The same held for Dactylella 

oviparasitica (Stirling & Mankau, 1979). The reason for this decreasing susceptibility 

with age may be the dityrosine polypeptide cross-linking which increases during 

maturation (Lopez-Llorca & Fry, 1989). On the other hand, no apparent differences 

in level of invasion among various developmental stages have been observed in the 

infection of M arenaria eggs by Paecilomyces lilacinus (Morgan-Jones et al., 1984). 
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Effect of aggregation of eggs in gelatinous matrix or cyst. More M 

incognita eggs are infected by D. oviparasitica if the eggs are retained within the 

mucilage of the egg masses than if the eggs are dispersed on the fungal culture. It was 

concluded that, although this fungus derives little nutrition from the mucilage, it 

spreads more rapidly and killed more eggs when they remain aggregated (Stirling & 

Mankau, 1979). Whereas, similarly, V chlamydosporium infected more H. schachtii 

eggs in females compared to dispersed eggs, the reverse was true with H. avenae eggs 

(Irving & Kerry, 1986). The authors were unable to explain the difference between 

the egg infection rates in females of H. schachtii and H. avenae, but maybe the 

background microflora in females of both species, that were obviously reared on 

different host-plants, presented different levels of competition. 

1.5 ENZYMES AND OTHER METABOLITES PRODUCED BY 

NEMATOPHAGOUS FUNGI 

1.5.1 Lipases 

When comparing the eggshell ultrastructure of H. schachtii from the field (heavily 

contaminated with fungus) and from the greenhouse (virtually fungus-free), Perry & 

Trett (1986) were unable to detect an inner lipid layer in the former. This was 

attributed to fungal lipolytic activity, although no direct evidence was obtained. 

Verticillium chlamydosporium is claimed to produce lipases (Kunert & Lysek, 1987), 

but these authors used Tween as substrate in their lipase assays, which are known to 

be also degraded by a range of proteolytic enzymes (Brokerhoff & Jensen, 1974). 

Apparently, there are no conclusive reports on lipolytic activity in V. 

chlamydosporium. 
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1.5.2 Chitinases 
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Chitinolytic activity appears to be widespread in nematophagous fungi (Table 1.2). 

Table 1.2 Nematophagous fungi that are chitinolytic by virtue of their ability to clear colloidal chitin in agar plates. 

Fungal species 

Dactylella oviparasitica 

Paecilomyces lilacinus 

V. chlamydosporium 

V. lamellicola 

V. leptobactrum 

V. suchlasporium 

Reference 

Stirling & Mankau (1979) 

Gintis et al. (1983) 

Gintis et a!. (1983); Kunertet al. (1985); Dackman et al. (1989); Carder et al. (1993)' 

Godoy et al. (1 982a) 

Godoy et al. (1982a) 

Dackman et al. (1989); Dackman (1990); Carder et al. (1993)' 

These authors established chitinase activity colorimetrically as N-acetyl-ß-D-glucosaminidase 

Many authors have observed the clearing of colloidal chitin on agar plates, and most 

of them immediately implicated chitinase activity in the infection process, since 

nematode egg shells contain chitin (Clarke et al., 1967; Bird & McClure, 1976). 

However, no one has studied the enzymes involved in any great detail, and no 

chitinase from any nematophagous fungus has been purified and/or cloned. 

1.5.3 Proteases 

Proteases are probably the best studied enzymes from nematophagous fungi. A 

collagenase (M, 28,000) has been isolated and purified from a culture filtrate of 

Arthrobotrys amerospora. The enzyme was more active against Pratylenchus 

scribneri than against bovine collagen (Thomas et al., 1988), suggesting adaptation 

to the host. True collagenases are capable of hydrolizing peptide bonds of the poly- 

proline type in the helical region of undenatured collagen. This restrictive definition 
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excludes a wide array of enzymes that readily cleave denatured collagen or slice it in 

its non-helical peripheral parts (Keil, 1979). Fungal collagenases usually have broad 

proteolytic activity, and the limited data provided by Thomas et al. (1988) provide 

insufficient evidence for a collagenase sensu stricto. More convincing data are 

provided on a collagenase from the same fungus by Schenk et al. (1980), but it is 

unclear whether both enzymes are the same. 

Tunlid and co-workers recently purified and characterised an acidic subtilisin 

(M, 35,000, pI 4.6) from A. oligospora, which they believed was involved in the 

infection process because it immobilized the free-living nematode Panagrellus 

redivivus (Tunlid et al., 1994). Furthermore, trap-bearing mycelium that was 

incubated with a broad-spectrum serine protease inhibitor decreased the 

immobilisation of captured nematodes (Tunlid & Jansson, 1991). 

An alkaline subtilisin (Mr 33,500, pI 10.2) from the egg-parasitic fungus 

Paecilomyces lilacinus was characterized recently (Bonants et al., 1995). The 

molecular age is dawning on nematophagous fungi, as this is the first report of a 

cloned gene (see Appendix). 

Elastin, an insoluble protein of unusual structure, was digested by the V 

chlamydosporium isolates tested by Kunert et al. (1987). The same authors observed 

gelatinolytic and caseinolytic activity. A positive correlation between proteolytic 

activity and ovicidity against Ascaris lumbricoides L. has been demonstrated (Kunert 

et al., 1987). Mutants of V. chlamydosporium in which proteolytic activity (measured 

on chocolate agar) was altered, were characterized by a similar correlation 

(Chapulovä & Lenhart, 1984). 
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Verticillium suchlasporium is the source of a 32 kDa serine protease, purified 

by Lopez-Llorca (1990). The enzyme is thought to be involved in the infection 

process as it is able to degrade G. pallida cyst wall proteins in vitro, and also because 

it was detected immunologically during infection of H. schachtii eggs (Lopez-Llorca 

& Robertson, 1992a). 

1.5.4 Other enzymes 

There are a few studies on enzyme activities in the filtrates of submerged cultures, 

other than the ones already reported. Cellulase activity of V chlamydosporium 

(Kunert et al., 1982) may contribute to its rhizosphere competence (Weller, 1988). 

The quantitation of no less than 20 glycosidases, 10 esterases, one transferase and 56 

different peptidases allowed Carder et al. (1993) to cast doubt on the newly erected 

species V suchlasporium, as it could not be separated from V chlamydosporium. 

1.5.5 Inhibitory and stimulatory metabolites 

There are reports suggesting toxic effects of nematophagous fungi, e. g. nematode 

immobilization and death by Nematoctonus sp. (Giuma & Cooke, 1971; Giuma et al., 

1973) and Arthrobotrys oligospora (Anke et al., 1995). Potent nematotoxic activity 

has also been observed in the oyster mushroom, Pleurotus ostreatus, and other 

species in the genus (Thom & Barron, 1987). However, reports are inconsistent, e. g. 

the results with V chlamydosporium from Irving & Kerry (1986) and Morgan-Jones 

et al. (1984). Some of the inconsistencies may be caused by the apparent dependence 

of toxin production on the medium (Cayrol et al., 1989). Unfortunately, little work 
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has been done on the characterisation of toxins from nematophagous fungi (Anke et 

al., 1995). No biotechnologist has been enticed to take up their study. 

1.6 TROPHIC MODES 

There are three basic nutritional modes recognised amongst fungi, according to the 

way in which they exploit external resources (Thrower, 1966). These are: 

saprotrophy, in which non-living substrata, other than those that have been killed 

by the fungus itself, are utilised; necrotrophy, where host tissues are first killed then 

utilised saprotrophically; and biotrophy, where nutrients can be obtained from living 

cells only, death of the latter will terminate biotrophic activity. 

Whereas the categories saprotrophy, necrotrophy and biotrophy refer to host- 

parasite physiology, the terminology parasite - saprophyte traditionally refers to the 

ability to grow in axenic culture. A parasite is an organism existing in intimate 

association with another living organism from which it derives an essential part of 

the material for its existence. Whereas a facultative parasite and a saprophyte can 

grow on artificial media in axenic culture, an obligate parasite cannot. However, as 

physiology progresses, more and more unculturable organisms are likely to be grown 

in vitro, and therefore culturability may have to be abandoned as a basis for 

classification (Lewis, 1973). 

Trophic modes have often been used to classify fungi in ecological groups 

based on the fact whether they are obligately confined to a particular mode or 

whether they can facultatively acquire external resources via other modes. This type 
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of classification reveals enormous nutritional plasticity in fungi as nine main 

categories may be recognized (see Table 1.3). 

Table 1.3 Econutritional groups of fungi according to trophic mode and ecological behaviour (after Cooke & 

Whipps, 1993). 

Econutritional group 

Obligate biotrophs 

Hemibiotrophs 

Facultatively saprotrophic hemibiotrophs 

Obligate necrotrophs 

Facultatively saprotrophic necrotrophs 

Facultatively necrotrophic saprotrophs 

Obligate saprotrophs 

Facultatively biotrophic saprotrophs 

Facultatively saprotrophic biotrophs 

Characteristics 

No capacity for saprotrophy or necrotrophy 

Initially biotrophic but then becoming necrotrophic, saprotrophic 
potential as for obligate necrotrophs 

Initially biotrophic but later becoming necrotrophic; a final 
saprotrophic phase then occurs 

Normally necrotrophic; any saprotrophic ability severely limited or 
restricted to survival in dead tissues 

Normally necrotrophic but with some ability to become 
saprotrophic 

Normally saprotrophic but with some ability to become 
necrotrophic 

No capacity for necrotrophy or biotrophy 

Normally saprotrophic but with some ability to become biotrophic 

Normally biotrophic but with some ability to become saprotrophic 

It is tempting to evaluate the trophic modes saprotrophy, necrotrophy and 

biotrophy in an evolutionary context in terms of which is primitive and which is more 

evolved. Saprotrophy has often been considered as the most primitive state from 

which necrotrophy was derived, in turn giving rise to biotrophy. This complies with 

the long-standing view that parasites evolved from free-living ancestors, at the same 

time becoming increasingly specialized physiologically (Garrett, 1970; Lewis, 1973; 

Cooke & Whipps, 1993). Although there is consensus about this being the general 

rule, evolution has occasionally been found to be accompanied by the opposite trend, 

from biotrophy towards saprotrophy (Cooke & Whipps, 1980; Jeffries & Young, 

1994). Based on the observed frequency of facultative behaviour, there is a far greater 
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extent of overlap between saprotrophy and necrotrophy than with biotrophy and any 

other mode (Cooke & Whipps, 1993). In general, the nutritional requirements of most 

necrotrophic and saprotrophic fungi are quite similar (Jeffries & Young, 1994). The 

strong connection between necrotrophy and saprotrophy is taken for granted, but it 

is the direction of evolutionary movement that is in doubt. Fungi are often not fixed 

within a single trophic mode but show flexibility during their life cycle. Cooke & 

Whipps (1993) conclude that the three trophic modes have arisen on many occasions 

throughout a range of systems as a response to changing environmental conditions, 

and therefore that the direction of nutritional evolution taking place at any time is 

determined by the nature of the environmentally imposed options presented to fungi, 

including, where appropriate, narrowing specialism within a single mode. 

The ruling hypothesis as to "why" nematophagous fungi occupy their 

particular niche, is based on the ideas of Cooke (1962a, b). Although he worked only 

with nematode-trapping fungi, the concepts are equally valid for egg-parasites (see 

General Discussion). Trapping may be an adaptive mechanism for dealing with 

nutritional stress, imposed by competition with other microorganisms (Cooke, 

1962a, b). Utilization of nematodes as an additional food source would give the 

fungus a competitive edge. Whereas the competition according to Cooke mainly 

revolved around carbon energy sources, Barron (1991) suggests nitrogen, and not 

carbon, as the limiting nutrient. In his view, the ability to trap nematodes might allow 

the fungus to utilize the carbon sources available more efficiently. There is 

experimental evidence that nematode-trapping species, grown with saprophytic 
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competitors in an artificial soil substrate, increase their trapping activity compared 

to control cultures, confirming Cooke's hypothesis (Quinn, 1987). 

Building on the concept of trapping because of competition, Cooke (1964) 

went on to discuss specialization within nematophagous fungi. He found that net 

forming fungi are able to grow saprotrophically, even in conditions of competition, 

while constricting ring species and others, such as Dactylaria candida and 

Monacrosporium cionopagum (Tunlid et al., 1992), adopt a nematode trapping habit 

especially when competition is severe. These stronger trappers only revert to a 

saprotrophic existence when ephemeral carbohydrates such as hexoses are available 

as energy sources (Satchuthananthavale & Cooke, 1967a, b). They are considered to 

be more advanced towards an obligately nematode-trapping mode than the net 

formers, particularly because constricting ring species have lost some requirements 

for successful saprophytism, such as a rapid growth rate and competitive saprophytic 

ability (Cooke, 1964). These findings were confirmed by Jansson & Nordbring-Hertz 

(1979) who concluded that the attraction of trapping fungi to their hosts increases 

with increasing parasitic behaviour and dependence on the nematode. 

These principles have important consequences for biological control. For 

example, the facultative parasite A. oligospora was thought to be a most valuable 

regulator of nematode populations, as traps are induced by the presence of nematodes 

(Nordbring-Hertz, 1977). However, trapping activity is often more related to nutrient 

levels than to the presence of nematodes, as a low nutrient medium is essential 

(Cooke, 1962a; Nordbring-Hertz, 1973; see Chapter 6). An incomplete understanding 
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of the ecology involved may well in part explain why biological control attempts 

have often failed. 

The previous scenarios have been contested very little, although Jaffee et al. 

(1992) recently contended that parasitism may be much more important in nematode- 

trapping fungi. On the other hand, Dijksterhuis (1994) studied the interaction between 

A. oligospora and the endoparasite Drechmeria coniospora and found that, when A. 

oligospora was added during later stages of infection with D. coniospora, it could 

still enter the host but its trophic hyphae collapsed upon contacting hyphae of D. 

coniospora. The latter may therefore have antagonistic capacities, suggesting that 

endoparasitic fungi may have a certain advantage over less specialized organisms 

with respect to their interaction with nematodes in the natural environment. 

A final, remarkable, illustration of the nematophagous habit being a survival 

strategy, is Macrobiotophthora vermicola (McCulloch) Tucker. This fungus is a 

special case among the entomophthoralean fungi (Zygomycetes), being not an insect 

pathogen, but nematophagous, and also because the secondary spore, which is formed 

in unfavourable environmental conditions, is not forcibly discharged, but is passively 

detached and adhesive (Tucker, 1984). Primary spores are not adhesive, and they will 

germinate to form a saprotrophic mycelium in nutritive media, but in nutrient-poor 

media secondary spores are formed. The fungus switches to an endoparasitic mode, 

with these adhesive, secondary spores being the infective stage (Tucker, 1984). 
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1.7 PATHOGENICITY 

Pathogenicity, or virulence, is a complex phenotype, in which a qualitative and a 

quantitative component can be distinguished (Caten et al., 1984). The qualitative 

component is basic compatibility, or infectivity (the ability to grow in/on host tissue). 

The quantitative component, disease severity, has been called aggressiveness 

(Vanderplank, 1968). 

What features make an organism pathogenic? It is generally assumed that 

virulence is based on the presence of certain genes, which have been called virulence- 

determining, pathogenicity-related, or simply pathogenicity genes. These genes are, 

by definition, not necessary for completion of the life cycle and are directly and 

intrinsically involved in pathogenicity under natural conditions (Schäfer, 1994). 

Putative pathogenicity-determinants have been identified in a number of host- 

pathogen interactions. Many infection processes require breaching of the host 

integument, e. g. the cuticle of plant and insect, by specialized structures. It is at these 

levels that several pathogenicity-determinants have been found, e. g. cutinase of 

Fusarium solani (Lin & Kolattukudy, 1978); subtilisin-like protease of Metarhizium 

anisopliae (St. Leger et al., 1988a); hydrophobin in appressoria of M. anisopliae (St. 

Leger et al., 1992b) and Magnaporthe grisea (Talbot et al., 1993). Other 

pathogenicity-determinants come into play at later stages of infection, such as toxin 

production, as in Fusarium sporotrichioides (Desjardins et al., 1989), or the 

inactivation of host responses, as in Nectria haematococca, the teleomorph of 

Fusarium solani f. sp. pisi (Van Etten et al., 1989). 



Chapter 1 31 

If pathogenicity genes are required for pathogenesis, disruption of these genes 

can be expected to knock out pathogenicity. It is an important test for their 

involvement. Positive results have been obtained for several of the pathogenicity- 

determinants mentioned (e. g. Desjardins et al., 1992; Talbot et al., 1993). However, 

in some cases, gene disruption of putative pathogenicity genes did not decrease 

pathogenicity to the extent expected, e. g. cutinase (Stahl & Schäfer, 1992; Sweigard 

et al., 1992), and endopolygalacturonidase (Scott-Craig et al., 1990), suggesting that 

pathogenicity, at least in these cases, is more complex than originally anticipated. 

Moreover, many workers have had great difficulty in correlating the virulence of 

fungal pathogens of plants, nematodes, insects or humans with any molecular marker 

(Kistler et al., 1987; McDermott et al., 1989; Nygaard et al., 1989; Tedford et al., 

1994). A possible reason for this failure is that virulence may often be under 

polygenic control. This has been demonstrated in a number of cases (Emara & Sidhu, 

1974; Caten et al., 1984; Paris et al., 1985; Calderone, 1994; Hawthorne et al., 1994). 

Some genetic analyses even allowed an estimation of the number of pathogenicity- 

determining factors, e. g. between 3 and 15 in the pathogenicity of Fusarium solani 

on Cucurbita sp. (Hawthorne et al., 1994). 

1.8 AIMS OF THIS RESEARCH 

Results of biological control trials with V. chlamydosporium have not been 

unequivocally positive. The basic lack of knowledge of the epidemiology, mode of 

action, and fungal gene products are some of the main problems (Kerry, 1990; 

Stirling, 1991). The molecular basis of pathogenicity in V chlamydosporium has not 
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been investigated. Not a single compound has been purified from this fungus. 

Knowledge of pathogenicity-determinants may help in the selection of fungal 

isolates, and in the long term, may allow genetic manipulation of the respective traits, 

resulting in transformants with enhanced biological control potential. 

The focus of this study is on extracellular proteases. These enzymes have 

been implicated in the pathogenicity of various other systems, e. g. Metarhizium 

anisopliae (St. Leger et al., 1988a); Candida albicans (Ross et al., 1990); 

Pyrenopeziza brassicae (Ball et al., 1991) and Arthrobotrys oligospora (Tunlid et al., 

1994). Although proteolytic activity in V. chlamydosporium has been observed 

(Kunert et al., 1987), no enzyme has been characterized. More specifically, this study 

aims to: 

- purify and biochemically characterize the major protease produced by V. 

chlamydosporium; 

- obtain its amino acid and nucleotide sequence; 

- study the distribution of the enzyme among nematophagous, plant- and 

insect pathogenic, and saprotrophic fungi; 

- examine the basic regulatory mechanism(s) of the protease; 

- assess whether, and how, the enzyme is involved in the infection process. 

This body of information will be interpreted in terms of the econutritional 

characteristics of the fungus: how pathogenic is V chlamydosporium, and what, if 

any, is the contribution of proteases to its trophic modes. 



2 
Purification and biochemical 
characterization of the extracellular 
protease VCPI 

2.1 INTRODUCTION 

Despite some confusion in terminology, proteases or peptidases, i. e. the enzymes that 

hydrolyse peptide bonds, are commonly divided into two different groups, depending 

on whether they act on proteins (proteinases or endopeptidases), or on oligopeptide 

substrates (exopeptidases) (Barrett, 1986). In contrast to most other enzymes, their 

substrate specificities are invariably difficult to define, and do not provide an 

adequate basis for classification. For this reason, proteases are grouped according to 

their catalytic mechanism, into serine, cysteine, aspartic and metalloproteases 

(Barrett, 1986; 1994). Among these, serine proteases are the most numerous group; 

they are extremely widespread and diverse (Barrett, 1986). Over 20 families of serine 

proteases are currently recognized, but these can be classified in only a few 

structurally distinct clans (Rawlings & Barrett, 1994). The most important of these 

are the chymotrypsin- and subtilisin-like enzymes, named after the first well- 

characterized member of each group. These proteases are often extracellular 

(Rawlings & Barrett, 1994), and, in fungi, they typically serve nutritional purposes. 

Fungi feed through extracellular digestion, and the production of extracellular 

hydrolytic enzymes is crucial to the resource capture for many of them (Cooke & 

Whipps, 1993). Fungal pathogens need to establish a nutritional relationship with 

their hosts, and hydrolases of various sorts have been identified as playing a role in 

fungal infection processes. Lipases (Paris & Ferron, 1979), chitinases (Jackson et al., 
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1985) and proteases are considered to be virulence determinants of entomogenous 

fungi. The protease Prl, a major protein secreted by Metarhizium anisopliae and 

other hyphomycete fungi (St. Leger et al., 1987a, b), has been shown to be a key 

enzyme in the infection process (St. Leger et al., 1988a). Proteases are also virulence 

determinants of the human pathogenic fungi Candida albicans (Ghannoum & Abu 

Elteen, 1986; Ross et al., 1990; Calderone, 1994) and Aspergillus fumigatus 

(Markaryan et al., 1994; Rhodes, 1995). The primary role of proteases in the 

infection process of some plant-pathogenic fungi has also been established (Ball et 

al., 1991; Movahedi et al., 1991; Rauscher et al., 1995). 

Little is known about the enzymes secreted by nematophagous fungi, in 

general, and the egg parasites in particular (see General Introduction, Section 1.5.3). 

Proteases are likely to be important in host infection because a large part of the host 

egg shell and cuticle is composed of protein (Clarke et al., 1967; Bird & McClure, 

1976; Perry & Trett, 1986). Proteolytic activity has been demonstrated for V. 

chlamydosporium (Kunert et al., 1987; Carder et al., 1993) and V. suchlasporium 

(Dackman et al., 1989; Dackman, 1990; Lopez-Llorca, 1990), a closely related 

species with disputed taxonomic status (Carder et al., 1993). This Chapter describes 

the properties of a major protease secreted by an isolate of V. chlamydosporium with 

promising biological control potential. It is a first step towards the biochemical and 

molecular dissection of pathogenicity in this fungus. 
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2.2 MATERIALS AND METHODS 

2.2.1 Organisms and growth conditions 

Isolate 10 of the nematophagous fungus Verticillium chlamydosporium Goddard was 

selected from the IACR-Rothamsted culture collection, based on its virulence against 

Meloidogyne spp. in assays done in pot and semi-field conditions, and its efficiency 

as a rhizosphere coloniser (de Leij & Kerry, 1991; de Leij et at., 1992a, b, 1993a, b; 

Bourne et al., 1994). Isolate 10 was stored on silica gel at 4°C, but for the purpose of 

experimentation, it was maintained on potato dextrose agar at 23°C in the dark. The 

fungus was never subcultured more than three times before returning to the original 

inoculum. 

Conidia and chlamydospores, harvested in sterile distilled water from 3 week 

old cultures, were used to inoculate soya peptone medium (SPM), containing 10 g 

soya peptone, 0.3 g K2HPO4,0.3 g MgSO4.7H2O, 0.15 g NaCl, 0.3 g CaC12 6H20,0.8 

mg MnSO4 6H2O, 0.2 mg CuSO4.5H2O, and 2 mg FeSO4.7H2O made up to 11. The 

final concentration of spores in the medium was 105 conidia ml'' and 3x103 

chlamydospores mV. 

For purification purposes, isolate 10 was grown in four 21 Erlenmeyer flasks 

each containing 11 of SPM. The flasks were incubated at 23°C in a Gallenkamp 

Orbital Shaker (90 rpm), in the dark, for seven days. Large-scale cultivation was also 

done in a 10 1 fermenter, containing 81 of the same medium. Aeration was provided 

by bubbling air through the culture with an electric pump (air capacity, 900 in3 min''). 

There appeared to be no qualitative difference in the proteases obtained by both 

cultivation methods. 
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Comparative studies were done using the entomogenous fungus Metarhizium 

anisopliae (isolate V245), originally isolated from Finnish soil and maintained on 

Sabouraud dextrose agar at 23°C, in darkness. Conidia from two week old cultures 

were harvested in an aqueous solution of Tween 80 and 1 ml of suspension 

containing 10' conidia ml'' was added to a medium containing the same salts as SPM, 

supplemented with beetle (Phaedon cochleariae) homogenate (10 mg ml') (St. Leger 

et al., 1986b). Incubation was as with Y. chlamydosporium. 

2.2.2 Preparation of crude enzyme concentrates 

Cultures were harvested after 7 days by vacuum filtration through Whatman No. 1 

filter paper on a Buchner funnel. Proteins were precipitated by adding solid 

ammonium sulphate to the culture filtrates (80% saturation), and collected by 

centrifugation (10,000 g for 30 min). The pellet was resuspended in 0.05 M Tris pH 

7.9 and dialysed overnight at 4°C against 300 volumes of the same buffer. This crude 

enzyme concentrate was used for further purification. Protein concentrations were 

determined by the method of Bradford (1976) using bovine serum albumin as a 

standard. 

2.2.3 Preparative and analytical isoelectric focusing (IEF) 

Preparative IEF was done with a Bio-Rad Rotofor® electrofocusing cell (Egen et al., 

1984; Garfin, 1990). A mixture of 52 ml enzyme concentrate, 2 ml glycerol and 1.1 

ml Pharmalyte 3-10 was injected in every other compartment of the focusing 

chamber. Ion exchange membranes were equilibrated and electrolyte solutions 
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prepared according to the manufacturer's instructions. A ceramic cooling finger kept 

the sample at 4°C during the whole run, which lasted 5 h. During this time the voltage 

gradually increased from 400 V to 960 V. Twenty fractions were collected 

simultaneously under vacuum. The protein content, pI and proteolytic activity of each 

sample was determined. Maximum protease activity was recorded in the first five 

fractions (p18-10) which were pooled and refractionated using 2% (v/v) ampholytes, 

pH 8-10.5. 

Analytical IEF (Garfin, 1990) was done using a Pharmacia Multiphor II 

apparatus at 5°C for 30 min according to the manufacturer's instructions. Samples (20 

µl) of culture filtrates and purified enzyme (i. e. fraction with highest activity) were 

applied alongside pI-markers, using paper strips, to an ultrathin 5.4% polyacrylamide 

gel containing 10% (v/v) Pharmalyte 3-10. 

2.2.4 Enzymoblotting 

Enzymoblotting was done, essentially according to the method of Ohlsson et al. 

(1986). Briefly, proteins from IEF gels were transferred to nitrocellulose by semi-dry 

electroblotting using the Novablot system (Pharmacia). The transfer buffer system 

contained 48 mM Tris, 39 mM glycine, 1.3 mM SDS in 20% (v/v) methanol/water 

(Bjerrum & Schafer-Nielsen, 1986). After blotting, the nitrocellulose membrane was 

bathed in a solution of 1 mM of suc-(Ala)2-Pro-Phe-pNA, prepared in 0.1 M Tris- 

HCI, pH 7.9. Immediately when the yellow colour of released p-nitroaniline became 

visible (ca 10-20 sec), the membrane was transferred to a solution of 0.1% (w/v) 

sodium nitrite in 1M HC1 for 5 min. After another 5 min in 0.5% (w/v) ammonium 
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sulfamate in 1M HCI, the membrane was developed in a 0.05% (w/v) N-(1- 

naphtyl)ethylenediamine solution (Sigma) made up in 47.5% (v/v) ethanol (Ohlsson 

et al., 1986). Pink-coloured bands became visible within 1 min, after which the 

membrane was washed in distilled water, and stored at -18°C. 

2.2.5 SDS-Polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was done 

according to the method of Laemmli (1970) using a1 mm thick gel (12% resolving 

and 3.9% stacking gel). Following electrophoresis, proteins were visualized with 

Coomassie stain (0.2% [w/v] Coomassie Brilliant Blue R250 in 47.5%[v/v] ethanol 

and 10% [v/v] acetic acid) and gels were destained using an aqueous mixture of 26% 

(v/v) ethanol and 10% (v/v) acetic acid. 

The glycoprotein staining method of Zacharius et al. (1969) was used to 

detect carbohydrate moieties in the V. chlamydosporium protease. Briefly, after 

running a near-pure enzyme preparation on an SDS-PAGE gel, the gel was immersed 

in 12.5% (w/v) TCA for 30 min, rinsed in distilled water, and immersed in 1% (v/v) 

periodic acid, in 3% (v/v) acetic acid. After washing thoroughly in water overnight, 

the gel was transferred to fuchsin-sulphite stain (Raymond A. Lamb, London) in the 

dark for I h, and washed three times in 0.5% (w/v) sodium metabisulphite. Overnight 

washing in water ensured removal of excess stain. 
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2.2.6 Enzyme Assays 

Proteolytic activity of crude and purified enzymes was determined using a range of 

chromogenic substrates, including Azocoll, hide powder azure, elastin-Congo red, 

elastin-orcein, azocasein and azoalbumin. Each assay consisted of 500 µl substrate 

(10 mg ml''), 490 µl 0.1 M Tris pH 7.9, and 10 pl enzyme. Azocoll was prewashed 

according to the precautions outlined by Chavira et al. (1984). The mixture was 

incubated for 1h on a rotary shaker at 37°C, after which the protein was pelleted at 

12,000 g in an Eppendorf micro-centrifuge for 5 min. Undigested azocasein and 

azoalbumin were precipitated by adding 200 pl 20% (w/v) trichloroacetic acid 

(TCA), left to stand for 30 min, then centrifuged in an Eppendorf microcentrifuge at 

12,000 g for 5 min. The optical density of the supernatants was read using an Hewlett 

Packard Diode Array Spectrophotometer 8452A fitted with a temperature controlled 

multicell unit at the following wavelengths (A, m8. ) : 520 nm (Azocoll), 595 nm (hide 

protein azure), 495 nm (elastin-Congo red), 592 nm (elastin-orcein), 336 nm 

(azocasein), and 326 nm (azoalbumin). Reference enzymes included final 

concentrations of 0.01 mg porcine pancreatic trypsin ml'', 0.01 mg bovine pancreatic 

chymotrypsin ml'' and 0.05 or 0.2 mg porcine pancreatic elastase ml''. For elastolytic 

activity, standard curves were prepared by measuring the absorbence of dilutions of 

elastin-Congo red that had been completely hydrolysed with porcine pancreatic 

elastase. One unit of elastase activity is defined as the amount of enzyme that 

hydrolysed 1 mg of elastin in 3h at 37°C. 

Spectrophotometric assays for specific enzymes were done using p- 

nitroanilide oligopeptides as substrates. Crude and purified enzyme samples (10 
. 
1, 
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unless specified otherwise) were added to 0.1 M Tris-HC1 buffer, pH 7.9, to make 

500 µl, and the reaction, which was started by adding 500 µl substrate (stock solution 

of 2 mM in the same buffer), was followed by continuous recording of the increase 

in absorbence at 410 nm, at 37°C. Chymotrypsin-like activity was assayed using suc- 

(Ala)2-Pro-Phe-pNA (Del Mar et al., 1979), suc-Phe-pNA (Nagel et a!., 1965) and 

Bz-Tyr-pNA (Bundy, 1962). Trypsin-like activity was assayed using Bz-Arg-pNA 

(Erlanger et al., 1961) and Bz-Phe-Val-Arg-pNA (Svendsen et al., 1972) while suc- 

(Ala)i-pNA (Bieth et al., 1974) and MeOsuc-(Ala)2-Pro-Val-pNA (Nakajima et al., 

1979) were used to detect elastase-like activity. Non-chymotrypsin-like subtilisin 

activity was tested with CBZ-(Ala)2-Leu-pNA (Stepanov et al., 1977). One unit of 

activity is defined as the amount of enzyme releasing 1 µmol p-nitroaniline min- 

ml-'. 

The dependence of proteolytic activity in the culture filtrate on pH was 

determined by an Azocoll assay as before, except that the Tris buffer was replaced 

with Britton-Robinson universal buffer (Dawson et al., 1986), and assays were done 

between pH 3 and 10. 

2.2.7 Determination of kinetic constants 

The calculation of enzyme activity requires knowledge of e, the absorption 

coefficient of the substrate. A review of the literature revealed that the value of a for 

p-nitroaniline ranges between 8,800 (Erlanger et al., 1961) and 10,800 M-' cm' 

(Tuppy et al., 1962), in the wavelength range 400-410 nm. This variability 

necessitated the determination of a in the local experimental conditions. A range of 
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concentrations of p-nitroaniline were established by assuring total hydrolysis of 

known concentrations of suc-(Ala)2-Pro-Phe-pNA, bearing in mind a stoichiometry 

of 1: 1 for the reagent and the hydrolysed product. The absorption coefficient is 

calculated as the slope of the change of absorbence with increasing p-nitroaniline 

concentrations. 

K. and V,,, values for suc-(Ala)2-Pro-Phe-pNA were determined using an 

iterative least-squares fit to the Michaelis-Menten equation, as calculated by the 

software package Enzfitter (Leatherbarrow, 1990). Catalytic constant (k,, ) and 

specificity constant (kjKm) were calculated assuming that there was one active site 

per enzyme unit, and that V.,, = kc,, [E], where [E] is the concentration of active sites. 

Duplicate measurements were made at eight substrate levels between 0.06 and 12 

times Km. 

2.2.8 Inhibition studies 

Apart from substrates indicating particular specificities, inhibitors can be used to 

characterize the nature of a protease. Samples of the purified enzyme or the culture 

filtrate (10 µl) were preincubated with inhibitor (see Table 2.4) at room temperature 

for 1h before addition of 500 . tl 2 mM suc-(Ala)2-Pro-Phe-pNA and buffer to make 

a final volume of 1 ml. Appropriate solvent controls were included for those 

inhibitors that were prepared in ethanol or isopropanol. 
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2.2.9 Enzyme stability 

Sets of three replicates (10 µl each) of the Rotofor fraction that contained pure 

enzyme were stored, unbuffered, at -20,4,23 or 37°C. The activity, remaining after 

different amounts of time, was measured with a standard suc-(Ala)2-Pro-Phe-pNA 

assay (Section 2.2.6) and compared with the value obtained with the freshly 

harvested enzyme. 

Attempts were made to find treatments that enhanced the stability of the 

enzyme. Aliquots of freshly harvested protease were incubated at 37°C with final 

concentrations of the following: CaC12i 20 mM; glycerol, 2 M; Tween 20,15% (v/v); 

Triton X-100,15% (v/v); and Tris pH 7.0,0.1 M. After 4 h, the samples were placed 

on ice and immediately assayed, as above. 

2.3 RESULTS 

2.3.1 Electrophoretic analyses 

Protease activities present in enzyme concentrates, prepared from batch cultures of 

V chlamydosporium, isolate 10, were analysed using preparative isoelectric focusing 

in the Rotofor system. All the IEF fractions contained chymotrypsin-like and non- 

specific protease activity, against suc-(Ala)2-Pro-Phe-pNA and Azocoll respectively, 

but these were greatest in the alkaline fractions with pH 9.5-10.3 (Figs. 2.1 and 2.2). 

The substrate suc-(Ala)2-Pro-Phe-pNA was designed as a substrate for 

chymotrypsin (Del Mar et al., 1979). The parallel between the activity pattern with 

this substrate (Fig. 2.1) and that with Azocoll (Fig. 2.2), suggests that chymotrypsin- 
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Fig. 2.1. Protease activity measured using suc-(Ala), -Pro-Phe-pNA, and pH of fractions of crude enzyme concentrate, 

separated by IEF using the Rotofor system (pH 3-10). One unit of activity is defined as the amount of enzyme releasing l 

µmol p-nitroaniline min' ml'. 
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Fig. 2.2 Non-specific protease activity measured with Azocoll, at pH 6 and pH 9, of fractions of crude enzyme 

concentrate, separated by IEF using the Rotofor system (pH 3-10). One unit of activity for hydrolysis of Azocoll is 

defined as increase in A,,, of 1AW. 
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like activity accounted for most of the non-specific protease activity in the alkaline 

fractions. However, the presence of non-chymotrypsin-like enzymes with 

intermediate pI values in the culture filtrate cannot entirely be excluded. 

Greater activity was measured at pH 9, rather than at pH 6, in every fraction 

(Fig. 2.2). The prevalence of proteolytic activity with alkaline pH optimum was 

confirmed by extending the pH range of an Azocoll assay with the enzyme 

concentrate, to pH 3- 10. The pH optimum was relatively broad, between pH 7 and 

pH 9 (Fig. 2.3). 
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Fig. 2.3 Proteolytic activity in the V. chlamydosporium enzyme concentrate, measured with the substrate Azocoll at 

pH 3-10. One unit of activity for hydrolysis of Azocoll is defined as the increase in Asp of 1AW. All data points are 

the means of duplicate assays. Error bars represent S. D. 

Table 2.1. Scheme for the purification of VCP1 from V. chlamydosporium. One unit (U) of protease activity is the 

amount of enzyme required to catalyse the production of 1 umol of p-nitroaniline from suc-(Ala)2-Pro-Phe-pNA min" 

MMI-1. 

Procedure Total activity Yield Total protein Specific activity Purification 
(units) % (mg) (U mg') factor 

Crude filtrate 4889.5 100.0 285.1 17.2 1.0 

(NH4)2SO4 precipitation 2053.6 42.0 70.3 29.2 1.7 

IEF 286.7 5.9 2.2 130.3 7.6 

IEF, refractionation 126.9 2.6 0.5 233.2 13.6 
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Fig. 2.4. Analytical IEF (pH 3-10) of purified chymotrypsin-like enzyme from V. chlamydosporium (isolate 10) and Pr) 

from Metarhizium anisopliae. p1 marker proteins (lane 1), V. chlamydosporium culture filtrate (lane 2), purified VCPI 

(lane 3), M. anisopliae culture filtrate (lane 4) and purified Pr) (lane 5). Enzymoblot of V. chlamydosporium culture 

filtrate (lane 6) and purified VCP1 (lane 7), M. anisopliae culture filtrate (lane 8) and purified Pr) (lane 9). 

Fig. 2.5. SIDS-PAGE of culture filtrates and purified VCP1 from V. chiamydosporium (isolate 10) and Prl from M. 

anisopliae. Lane 1 shows V. chlamydosporium culture filtrate; lane 2, VCP1; lane 3, M. anisopliae culture filtrate; and 

lane 4, Pr1 from M. anisopliae. 
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The alkaline fractions were refocused using narrow-range ampholytes (pH 8- 

10.5) which resulted in a final 14-fold enrichment of the chymotrypsin-like enzyme 

(Table 2.1). Both IEF and SDS-PAGE showed that it corresponded to a major protein 

in the culture filtrate (Figs. 2.4 and 2.5). Analytical IEF and SDS-PAGE of the 

alkaline Rotofor fractions revealed a single band, suggesting the protein had been 

purified to homogeneity (Figs. 2.4 and 2.5). The enzyme was given the acronym, 

VCPI. The molecular mass of VCP1 was 33.3 ± 0.5 kDa (S. E., n=3), which 

corresponded with that of the extracellular protease Prl, purified in parallel from 

Metarhizium anisopliae. 

Enzymoblotting was the method of choice to localize proteolytic activity after 

electrophoretic separation. The method involves transfer to nitrocellulose, and 

incubation with a specific substrate. Enzymoblotting of culture filtrates and purified 

VCPI and Prl, with suc-(Ala)2-Pro-Phe-pNA, showed that protease activity was 

greatest at pI 10, but weaker activity was detected in culture filtrates at lower pI 

values (Fig. 2.4). Metarhizium anisopliae had at least three clearly distinct enzymes 

in the enzyme concentrate, with affinity for the substrate. The most alkaline were 

difficult to separate, and were still present after purification (Fig. 2.4, lanes 8-9). 

Enzymoblotting confirmed that the single band, obtained in IEF, was indeed a 

protease (Fig. 2.4, compare lanes 3 and 7). 

No glycosylation was apparent in VCPI when the protein was 

electrophoresed on an SDS-polyacrylamide gel, followed by PAS-staining (Fig. 2.6). 

The lack of glycosylation of VCPI was confirmed (J. F. Peberdy, personal 

communication) with a DIG glycosylation kit and a lectin-glycan differentiation kit 



Chapter 2 47 

Fig. 2.6 Glycoprotein staining of VCP1 after running ca 10 pg of near-pure VCP1 on an SDS-PAGE gel, by the 

periodic acid - Schiff reagent (PAS) method (Zacharius et al., 1969), with a) VCP1, Coomassie-stained; and b) VCP1, 

separated on the same gel, but PAS-stained. 
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(both from Boehringer-Mannheim). The lectin used in the latter assay was GNA, 

which binds to terminal mannose, and has proved effective with all other fungal 

glycans (J. F. Peberdy, personal communication). 

2.3.2 Substrate specificity 

Of the three chymotrypsin substrates assayed, VCP I preferred suc-(Ala)2-Pro-Phe- 

pNA as opposed to suc-Phe-pNA or Bz-Tyr-pNA. Compared to the first substrate, 

suc-Phe-pNA resulted in a specific activity that was 1,000 times lower than the first 

substrate, while Bz-Tyr-pNA was not measurably hydrolysed (Table 2.2). This 

suggests that an aromatic residue in the P1 position (Schechter & Berger, 1967) was 

insufficient for hydrolysis by this enzyme, and that a longer peptide was required. 

Table Z. Z. Substrate specificity of purified VCP1, culture filtrate from V. chlamydosporium, and reference proteases. 
Activities are expressed as percentage of maximum specific activity for each enzyme preparation. All data are means 

of duplicate assays. 

Substrate Isolate 10 Isolate 10 Trypsin Chymo- Elastase 
VCP1 Filtrate trypsin 

Suc-(Ala)i-Pro-Phe-pNA 100 100 15.8 100 100 

Suc-Phe-pNA 0.1 0000 

Bz-Tyr-pNA 00000 

Bz-Arg-pNA 0 0.1 1.0 00 

Bz-Phe-Val-Arg-pNA 8.3 5.5 100 0.2 0.5 

Suc-(Ala)3-pNA 0.2 0.6 00 21.3 

McOSuc-(Ala)j-Pro-Val-pNA 0 0.1 0.1 0 8.5 

CBZ-(AIa)2-Leu-pNA 0.4 0.2 000 

Maximum specific activity (100%) (19.2) (13.2) (7.1) (53.6) (0.3) 
expressed in U mg' 

VCP1 also exhibited weak trypsin-like activity, since it was able to hydrolyse Bz- 

Phe-Val-Arg-pNA. However, the specific activity with this substrate was only 8.3% 

of that with the nitroanalide hydrolysed with the greatest efficiency, and the trypsin 
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substrate Bz-Arg-pNA was not degraded (Table 2.2). No elastase activity of any 

significance was measured with the substrates suc-(Ala)3-pNA and CBZ-(Ala)2-Leu- 

pNA (Table 2.2). The substrate specificity of VCP1 and proteases in the culture 

filtrate was similar, confirming that VCP1 probably accounted for most of the non- 

specific protease activity (Table 2.2). 

The specific activity of VCP1 for 1 mM suc-(Ala)2-Pro-Phe-pNA (19.2 U 

mg'') was approximately a third of that of bovine chymotrypsin (53.6 U mg''), but 

more than 60 times greater than that of porcine elastase for this substrate (Table 2.2). 

Porcine elastase hydrolysed both elastase (suc-(Ala)3-pNA, MeOsuc-(Ala)2-Pro-Val- 

pNA) and chymotrypsin (suc-(Ala)2-Pro-Phe-pNA) substrates (Table 2.2). The 

specific activity of both VCP1 and porcine elastase for suc-(Ala)3-pNA was low. 

VCP 1, in contrast to the commercial proteases tested, was able to weakly hydrolyse 

the non-chymotrypsin-like subtilisin substrate CBZ-(Ala)2-Leu-pNA (Table 2.2). 

Table 2.3. Substrate utilisation of purified VCP1 and culture filtrates of V. chiamydosporium. Specific activities are 

expressed as percentage per substrate. One unit of specific activity for hydrolysis of the following substrates is 

defined as: Azocoll hydrolysis, increase in Asp of 1A mg' min-'; hide protein azure hydrolysis, increase in A595 of 1 

A mg' min'; elastin-Congo red hydrolysis: one unit of elastolytic activity solubilizes 1 mg of elastin in 3 hat 37°C; 

elastin-orcein hydrolysis: increase in A592 of 1A mg' h'; azocasein hydrolysis, increase in A336 of 1A mg' min''; 

azoalbumin hydrolysis, increase in A326 of 1A mg' min". All data are means of duplicate assays. 

Enzyme tested Azocoll Hide Elastin- Elastin- Azo- Azo- 
Protein Congo orcein casein albumin 
Azure red 

VCP1 100 100 36.3 80.2 88.8 53.3 

Culture Filtrate 29.3 18.4 27.2 24.3 100 100 

Trypsin 0.01 mg ml-' 30.9 14.8 2.6 3.8 55.9 26.6 

Chymotrypsin 0.01 mg ml'' 18.4 14.2 1.7 10.3 67.2 34.9 

Elastase 0.05 mg ml-' 16.4 11.3 5.3 12.9 27.5 13.1 

Elastase 0.2 mg ml-' 31.3 10.2 100 100 88.7 81,2 

Max. specific activity (100%) (5.0) (16.6) (6.2) (5.6) (4.2) (5.3) 
expressed in U mg' 
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Fig. 2.7 Standard curve for the quantification of elastolytic activity against elastin-Congo red. The A494 values of a 

range of elastin-Congo red dilutions, completely solubilized with 20 mg porcine pancreatic elastase ml'', are 

indicated. Error bars represent S. D. 

Both VCP1 and commercial-grade trypsin, chymotrypsin and elastase 

degraded a wide range of protein substrates, to varying degrees (Table 2.3). Whereas 

in Table 2.2 the hydrolysis of a range of nitroanilides could be compared per enzyme, 

the proteins listed in Table 2.3 are so diverse in their chromogenic leaving groups, 

that the unit of proteolytic activity depended on the substrate, and as a result, the 

effect of the different proteases was ranked per substrate. The unit of activity against 

elastin-Congo red was notably different from the others, as the elastase activity of 

VCP 1 was expected to be an important feature in the comparison with data from 

other proteases in the literature. Rather than the fairly arbitrary change in absorbence 

over a given time, the hydrolysis of elastin-Congo red was quantified as the amount 

of elastin degraded, using a standard curve (R2 = 0.984) that related concentration of 

elastin-Congo red to its absorbence at 494 nm (Fig. 2.7). Compared to trypsin, 

chymotrypsin and elastase, VCPI was highly active against Azocoll and hide azure, 

and moderately active against casein, albumin and elastin. Activity of proteases from 
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the original culture filtrate on azocasein and azoalbumin was greater than that of the 

purified VCP1, suggesting that enzymes present in the composite culture filtrate, 

other than VCP1, were also acting on these substrates (Table 2.3). 

2.3.3 Kinetic properties 

Some kinetic aspects of the reaction of VCP 1 with the substrate for which it had the 

highest activity, suc-(Ala)2-Pro-Phe-pNA, were investigated. Firstly, quantification 

of enzyme activity in spectrophotometry can only be done if the machine-dependent 

absorbence units sec' can be converted to actual concentration units. This conversion 

required the establishment under experimental conditions of e, the absorption 

coefficient, of the chromogenic species, p-nitroaniline. The standard curve (R2 = 

0.998) that gives the relation between A410 and the concentration ofp-nitroaniline had 

a slope of e= 10,700 M'' cm'' (Fig. 2.8). 

The reaction rate, v (gmol ml'' min''), of the hydrolysis of suc-(Ala)2-Pro-Phe- 

pNA by VCP1, depended on the substrate concentration, [S] (M), as described by the 

Michaelis-Menten equation, v= VV. [S](Km + [S])'' (Fig. 2.9). In this equation Vmax 

is the maximum velocity (pmol ml-' min') at saturating substrate concentrations, and 

K. is a reaction constant, known as the Michaelis-Menten constant, which is 

numerically equal to the substrate concentration (M) where the reaction velocity, v, 

is one-half of the maximum velocity VmaX (Fersht, 1985). The non-linear Michaelis 

Menten equation is often rearranged as a function of v' and [S]'', which is linear (Fig. 

2.10). This is the Lineweaver-Burk plot, which is popular because of its linearity and 

because the intercepts indicate Km and Vm, directly. However, using the Lineweaver- 
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Concentration p-nitroaniline (mM) 

Fig. 2.8 Determination of the absorption coefficient, c, of p-nitroaniline, which is the slope of the line between a 

range of concentrations ofp-nitroaniline, obtained by complete hydrolysis of suc-(AIa)2-Pro-Phe-pNA, and their A410. 
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Fig. 2.9 Michaelis-Menten kinetics of the reaction between VCP1 and suc-(Ala)2-Pro-Phe-pNA. The Michaelis-Menten 

constant K. would be numerically equal to the substrate concentration [S] where the reaction rate is one-half of the 

maximum rate Vmm. 
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Burk plot to determine these values is statistically unsound (Henderson, 1992), and 

it is only provided here as a graphical representation of the data. Rather, K. and Vmax 

were determined using non-linear regression (Leatherbarrow, 1990), which indicated 

that the reaction between VCP1 and suc-(Ala)2-Pro-Phe-pNA had a Michaelis- 

Menten constant K. = 4.26 x 10-1 M, which coincides exactly with the Km value for 

bovine chymotrypsin and this substrate (Del Mar, 1979). The catalytic constant was 

determined as kit = 5.76 s' and the specificity constant was k, 
.,, 
VK,,, =1.35x101 M''s''. 
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Fig. 2.10 Lineweaver-Burk plot of the reaction between VCP1 and suc-(Ala)2-Pro-Phe-ANA. The intercepts with x- and 

y-axis would indicate reciprocal values of -K. and V- respectively. 

2.3.4 Inhibitors 

Thirteen different protease inhibitors were tested for their effect on the activity of 

VCP1 and the culture filtrate (Table 2.4). 
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Table 2.4. Effect of protease inhibitors on purified VCP1 and culture filtrates of V. chlamydosporium. Residual 

activities were measured against suc-(Ala)2-Pro-Phe-pNA as the substrate and calculated using appropriate ethanol (t) 

or isopropanol (#) containing controls, when required. Activity in the absence of inhibitor was 0.16 U (VCP1) and 

0.12 U (culture filtrate). All values are means of duplicate assays and are expressed as percentage of the activities in 

the absence of inhibitor. 

Inhibitor Concentration VCP1 Culture Filtrate 

Bowman-Birk' 0.4 mg ml'' 104.0 117.6 

TEW' 0.4 mg mI' 77.0 84.3 

1 mg ml'' 80.5 77.7 

CEW' 0.4 mg ml' 56.2 73.2 

1 mg ml'' 67.5 84.4 

STI' 0.4 mg ml'' 68.3 86.0 

1 mg mI'' 52.6 85.0 

TPCK t' 10 pM 104.9 101.6 

100 pM 25.5 91.5 

TLCK ' 10 pM 93.0 102.7 

100 pM 89.7 81.1 

PMSF #' 1 mm 0.01 0 

Elastatinal 250pM 82.3 82.4 

Leupeptin 0.1 mm 71.9 85.8 

0.5 mm 67.0 81.1 

Pepstatin At1 pM 85.8 80.6 

E-64' 10pM 79.7 84.5 

Phenanthroline t lo mm 114.2 99.7 

EDTA' 1 mm 68.7 76.2 

a Bowman-Birk: trypsinlchymotrypsin inhibitor; CEW: chicken egg-white inhibitor, containing ovoinhibitor; E-64: 

trans-epoxysuccinyl-L-Ieucylamido-(4-guanidine) butane; EDTA: ethylenediaminetetraacetic acid; PMSF: 

phenylmethylsulfonyl fluoride; STI: soybean trypsin inhibitor; TEW: turkey egg-white inhibitor; TLCK: tosyl-lys- 

chloromethyl ketone; TPCK: tosyl-Phe-chloromethyl ketone. 

The serine protease inhibitor PMSF completely inhibited VCP1. Tosyl-Phe- 

chloromethyl ketone (TPCK; chymotrypsin inhibitor), which has affinity for the 

histidyl group of the active site (Shaw et al., 1965), was effective at 100 PM, causing 

75% inhibition of VCP1 and 8.5% inhibition of culture filtrates. Similarly, the 

residual activity of VCP1 was less than that of the culture filtrates in the presence of 
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leupeptin, chicken egg white inhibitor containing ovoinhibitor (CEW) and soybean 

trypsin inhibitor (STI) (Table 2.4). 

2.3.5 Stability of VCPI 

Freshly harvested IEF fractions, containing pure and unbuffered VCP1, were 

incubated at temperatures ranging from -20°C to 37°C, which had a marked effect on 

enzyme activity. Whereas VCP 1, stored at -20°C for one month, retained 80% of the 

original activity, increasing the temperature significantly reduced its half-life. 

Approximately 80% of the activity was lost when the enzyme was stored at 23°C for 

72 h, or at 37°C for only 1h (Table 2.5). 

Table 2.5 Stability of VCP1 as measured by residual protease activity after storage of pure enzyme at the 

temperatures, for the amounts of time indicated. Activity is expressed as units ± S. E. (n- 3, independent samples). 

One unit (U) of activity is the amount of VCP1 that hydrolyses 1 pmol of suc-(Ala), -Pro-Phe-pNA ml-' min-. 

Temp. - -20°C 4°C 23°C 37°C 

Time 01 week 1 day 12 h1h 

(U tS. E. ) 20.3 ± 0.3 17.0 ± 0.6 13.0 ± 0.7 6.0 ± 0.1 4.4 ± 0.1 
(%) 100.0 81.6 64.3 29.6 21.8 

Time 1 month 3 days 24 h4h 
(U ± S. E. ) 16.0 ± 0.4 11.9 ± 0.2 4.3 ± 0.1 2.8 ± 0.1 

(°6) 79.6 58.9 21.1 13.8 

Time 7 days 72 h8h 
(U ± S. E. ) 10.3±0.1 3.5 ± 0.1 2.8 ± 0.03 

(%) 51.0 17.3 13.7 

Time 24 h 
(U ± S. E. ) 3.3 ± 0.1 

(%) 16.4 

The stability of the enzyme at 37°C could not be improved by storage in 20 

mM Ca2+ (P>0.05, t-test) and was reduced by storage in 15% (v/v) Triton X-100 

(Table 2.6). On the other hand, 2M glycerol (P<0.01) and 15% (v/v) Tween 20 
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(P<0.05) resulted in slightly prolonged activity of VCP1. The most significant 

improvement in stability (P<0.001) came from buffering the enzyme in 0.1 M Tris 

pH 7.0, which resulted in 68% of the pre-storage activity after 4h at 37°C, while 

unbuffered VCP1 retained only 21% of the activity in these conditions (Table 2.6). 

Table 2.6 Improvement of the stability of VCP1 by storing the enzyme in CaCI2 (20mM), glycerol (2 M), Tween 20 

(15% [v/v]), Triton X-1 00 (15% [A]), and 0.1 M Tris pH 7.0. Prior to storage at 37°C for 4 h, all samples (20 ill), 

including the controls, were diluted with 20 pl of one of the adjuvants or distilled water, respectively. All data are 

the means of three independent replicates. 

Activity 

(U ± S. E. ) M of control) 

Time: 0 (control) 10.38 t 0.17 100.0 
Time: 4h2.18 t 0.11 21.0 

+ CaCI2 2.24 t 0.17 21.6 

+ Glycerol 2.98 t 0.10 28.7 

+ Tween 20 2.58 t 0.07 24.9 

+ Triton X-100 1.36 t 0.09 13.1 

+ Tris pH 7.0 7.11 t 0.64 68.4 

2.4 DISCUSSION 

VCP1, a major alkaline protease secreted by V chlamydosporium in soya peptone 

medium, was purified to homogeneity from culture filtrates, using preparative IEF. 

The enzyme was a serine protease, by virtue of its inhibition by PMSF. The data 

presented in this Chapter are insufficient to classify VCP1 in the chymotrypsin or 

subtilisin clan of serine proteases (Rawlings & Barrett, 1994). Inhibitor studies do not 

allow to make that distinction easily, and although suc-(Ala)2-Pro-Phe-pNA was 

originally developed as a chymotrypsin substrate (Del Mar et al., 1979), this 

nitroanalide is also degraded with great efficiency by numerous subtilisins (St. Leger 

et al., 1987a; Burton et al., 1993). The efficiency of the reaction between VCPI and 
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suc-(Ala)2-Pro-Phe-pNA was not due to its speed, as the catalytic constant k., was 

5.76 s-', which is low (Cornish-Bowden & Wharton, 1988). However, the Michaelis- 

Menten constant Km was only 0.043 mM, which suggests a low energy required for 

binding, or a low dissociation constant for the enzyme-substrate complex (Fersht, 

1985). As a result, the reaction was efficient because the "slow" enzyme VCP 1 had 

a high affinity for the substrate, suc-(Ala)2-Pro-Phe-pNA. 

VCP1 degraded elastin, but the two oligopeptide substrates for elastase that 

were tested, were not hydrolysed to any great extent. That is not exceptional. Suc- 

(Ala)i-pNA is traditionally an elastase substrate, hydrolysed by porcine pancreatic 

elastase I (Bieth et al., 1974; Kasafirek et al., 1976), which is the enzyme that is used 

as the model for elastase type proteases. However, the elastolytic enzymes are very 

heterogeneous, and many of them have been reclassified in the chymotrypsin family 

(Rawlings & Barrett, 1994). Often, so-called elastases are functionally similar to 

chymotrypsin type enzymes, e. g. human pancreatic elastase II degrades suc-(Ala)2- 

Pro-Phe-pNA (Del Mar et al., 1980); porcine pancreatic elastase II is highly active on 

chymotrypsin substrates, but it does not degrade suc-(Ala)3-pNA (Gertler et al., 1977). 

The characteristics of the latter enzyme are similar to those of VCP1. Elastin- 

degrading enzymes with chymotrypsin-like activity have clearly been described 

before. They were invariably called elastase, presumably because of their important 

physiological implications in (mainly human) pathology. However, modem 

classification of proteases (Rawlings & Barrett, 1994) has downgraded the epithet 

elastase and, as a result, VCP1 was not given the trivial name elastase. 
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The enzyme, VCP1, shared several characteristics with Prl, a major protease 

secreted by the insect pathogen Metarhizium anisopliae (St. Leger et al., 1987a). 

These included: similar charge (pI ca 10), molecular mass (ca 33 kDa), sensitivity to 

PMSF and the ability to hydrolyse chymotrypsin substrates and elastin. However, 

VCP1 was less sensitive to CEW and TEW inhibitors (St. Leger et al., 1987a), but 

more sensitive to TPCK. Furthermore, VCP 1 had a greater affinity for suc-(Ala)2-Pro- 

Phe-pNA than Prl, but a smaller catalytic constant, although the specificity constant 

for this substrate was similar. These observations suggest that VCP 1 is similar but not 

identical to Prl. By coining the trivial name, chymoelastase, for the M anisopliae Prl 

enzyme, St. Leger et al. (1987a) made a compromise between chymotrypsin and 

elastase. However, Prl was later found to be a subtilisin-like enzyme (St. Leger et al., 

1992a), and the chymoelastase epithet is unlikely to be very persistent. 

No glycosylation was detected in VCP 1 by several biochemical methods. 

Potential glycosylation sites have often been detected in the genes encoding VCP1- 

like enzymes (see Chapter 3) (e. g. Moehle et al., 1987; Jaton-Ogay et al., 1992; St. 

Leger et al., 1992a). Exceptionally, the related enzyme from Beauveria bassiana lacks 

these sites (Joshi et al., 1995). There is however, little information on the actual 

glycosylation of most of these enzymes. Some of the related proteases that have 

potential glycosylation sites, e. g. those from Fusarium sp. (Morita et al., 1994), and 

Aspergillus oryzae (Tatsumi et al., 1989) are not glycosylated. In the latter example 

it was found that the potential N-linked glycosylation site is embedded in the 

molecule and can therefore not be glycosylated. 
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Unbuffered VCP1 was unstable at 37°C, as only ca 20% of the original 

activity could be recovered after 1 h. This lability could partly be attributed to the pH 

effect of the medium. Samples were stored unbuffered after harvesting from IEF, 

therefore the pH of the fraction containing VCP 1 was ca 10 (Fig. 2.1). Lowering the 

pH during storage to pH 7 resulted in significant stabilisation (68% residual activity 

after 4h at 37°C; P<0.001). Under these conditions, VCP1 could be considered very 

stable. The protease is possibly autoproteolytic at pH 10, which is close to its pH 

optimum (Fig. 2.3), although conformational or chemical inactivation at this high pH 

is also possible (Abraham & Breuil, 1995). The physiological function of VCP1 is 

unlikely to be adversely affected by its thermolability, since 37°C is not a 

physiological temperature for V. chlamydosporium (Kerry et al., 1986). However, 

thermostability is an important parameter for the industrial exploitation of proteases 

(Wells & Estell, 1988; Siezen et al., 1991). Not all proteases that are related to VCP1 

(see Chapter 3) have the same thermostability. Whereas proteinase K from 

Tritirachium album (Betzel et al., 1990), and PrI from M anisopliae (St. Leger et al., 

1987a) are heat-stable, even at pH 10, the related enzyme from Ophiostoma piceae 

(Abraham & Breuil, 1995) is very susceptible to autoproteolysis under conditions of 

elevated temperature or altered pH. Calcium and glycerol were also found to act as 

thermoprotectants in the latter case (Abraham & Breuil, 1995). Among the many 

possible measures that can be taken to protect enzyme activity (Price, 1992), buffering 

with Tris and/or the addition of glycerol or Ca2+ are relatively simple ways to retain 

the activity of VCP1. 



3 
Comparison of the subtilisin-like 
proteases VCPI and Pr1 

3.1 INTRODUCTION 

The major serine proteases of Verticillium chlamydosporium and Metarhizium 

anisopliae are VCP1 and Prl, respectively. These enzymes share several attributes 

(e. g. similar molecular mass and charge) but differ slightly in their kinetics and 

sensitivity to some inhibitors (see Chapter 2). 

Examination of the primary structure of Prl showed this enzyme to be related 

to the subtilisin proteinase K (St. Leger et al., 1992a), but no structural data exist for 

VCP1. The aim of the work described in this Chapter is to determine the similarities 

between VCP1 and Prl based on surface characteristics determined by ion exchange 

and hydrophobic interaction chromatography, and serology. The partial amino acid 

sequence of VCPI provides direct structural data, while more detailed substrate 

utilization data compare the functionality of both enzymes. 

If VCP1 is a virulence-determinant, as is the case with Prl, then detailed 

knowledge of the properties of the enzyme could help in the understanding of 

specificity and virulence in invertebrate mycopathogens. 
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3.2 MATERIALS AND METHODS 

The proteases VCPI and Prl were purified from the respective culture filtrates of V. 

chlamydosporium, isolate 10, and M. anisopliae, isolate V245, using preparative 

isoelectric focusing, as described previously (see Chapter 2). 

3.2.1 Polyclonal antisera against VCPI and Pri 

Rabbits were immunised either with VCP1 (150 µg) or Prl (200 µg) in Freund's 

complete adjuvant. Injections were repeated with antigen prepared in Freund's 

incomplete adjuvant after 4 and 15 weeks. Approximately 30 ml of blood was 

collected from a lateral ear vein and left to stand at room temperature for 1 hour to 

allow clotting. The serum was separated by spinning the blood at 3,600 rpm for 15 

min and frozen until needed. 

In order to estimate the antibody concentration required for a positive signal, 

the polyclonals were titrated. After coating round-bottomed ELISA plates (Sigma) 

with a dilution of VCP1, anti-VCPI antibody dilutions ranging from 1/8 down to 

1/256 were applied. The secondary antibody used was goat anti-rabbit, conjugated 

to alkaline phosphatase. The plates were developed with Tris-buffered p-nitrophenyl 

phosphate (Sigma), and the absorbence of the released chromogen recorded as A405. 

3.2.2 Western blotting 

Western blots were done, not only with the antibodies against VCPI and Pr1, but also 

with an antiserum to a 32 kDa protease from V. suchlasporium, obtained from Drs 

W. Robertson (SCRI, Invergowrie, Scotland) and L. V. Lopez-Llorca (Universidad 
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de Alicante, Spain), and an antiserum against an isoform of Prl specific to M 

anisopliae isolate ME1, obtained from Dr. R. J. St. Leger (Boyce Thompson Institute, 

Ithaca, U. S. A. ). The antibodies against VCP1 and Prl were also tested against 

commercial proteases (Sigma), including proteinase K, bovine elastase and 

chymotrypsin, and bacterial subtilisins from Bacillus subtilis KZ (Sigma, no. P8038) 

and Bacillus sp. (Sigma, no. P4789). 

After SDS-PAGE (see Section 2.2.5), gels were soaked in transfer buffer 

(Bjerrum & Schafer-Nielsen, 1986) for 10 minutes and semi-dry electroblotted onto 

nitrocellulose using the NovaBlot system (Pharmacia), according to the 

manufacturer's instructions. Non-specific binding sites on the membrane were 

blocked with PBSTM (0.01 M phosphate buffer pH 7.4, containing 0.14 M NaCl, 

0.1% [v/v] Tween 20 and 4% [w/v] skimmed milk powder). VCP 1 pre-immune 

serum and VCP1-antiserum were diluted 1/20, Prl pre-immune serum, Prl- 

antiserum, and V.. suchlasporium-antiserum were diluted 1/200, while lyophilised 

ME1-antiserum was diluted 0.2% (w/v) in PBSTM and incubated with the antigens 

overnight at room temperature. The membranes were washed with PBSTM prior to 

incubation with goat anti-rabbit peroxidase or alkaline phosphatase conjugate (1/500 

dilution) for two hours at room temperature. The excess secondary antibody was 

removed by washing the membranes with PBST before adding buffered 3,3'- 

diaminobenzidine tetrahydrochloride (DAB) or 5-bromo-4-chloro-3-indolyl 

phosphate / nitro blue tetrazolium (BCIP/NBT, Sigma), substrates for peroxidase and 

alkaline phosphatase, respectively. 
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3.2.3 Elution patterns in HPLC 

Surface properties of VCP1 and Prl were investigated by comparing their elution on 

a cation exchange and a hydrophobic interaction column in an HPLC-apparatus 

(Gilson). The equipment included a Rheodyne injection valve fitted with a 20 . tl 

injection loop, dual model 306 pumps, an 811B dynamic mixer, an 805 manometric 

module, and a model 759A dual beam detector (Applied BioSystems). The system 

was controlled, and detector output monitored, with version 712 software (Gilson). 

Columns were either a HydroporeTM strong cation exchange column (Rainin 

Instrument Co.; internal diameter, 4.6 mm; length 10 cm), with a mobile phase of 20 

mM sodium acetate and the eluent 1M NaCl (flow rate 1 ml min''), or a 

HydroporeTM hydrophobic interaction column (Rainin Instrument Co.; internal 

diameter, 4.6 mm; length 10 cm), in which case the mobile phase was 3M (NH4)2SO4 

in 10 mM phosphate buffer, pH 7.0 (flow rate 0.5 ml min- '). 

The protease assay with suc-(Ala)2-Pro-Phe-pNA was modified to 

accomodate large numbers of fractions. Ten µl of each fraction was added to an 

ELISA plate well, containing 40 pl of 0.1 M Tris pH 7.9, and the reaction started 

with 50 pl of 2 mM suc-(Ala)2-Pro-Phe-pNA, prepared in the same buffer. An ELISA 

plate reader recorded A405 after 1 min incubation at room temperature. 

3.2.4 Amino acid sequencing 

Proteins were separated by SDS-PAGE (15% acrylamide) and semi-dry 

electroblotted onto Fluorotrans membrane (Pall) in 10 mM CAPS pH 11.0, 

containing 10% (v/v) methanol. Following staining with 0.005% (w/v) 
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Sulphorhodamine B in 30% (v/v) aqueous methanol, containing 0.02% acetic acid, 

protein bands were excised, placed in the B1ottTM reaction cartridge, and analysed on 

an Applied Biosystems 477A liquid-pulse sequencer, with an on line 120A PTH- 

analyzer and 610A data analysis system. 

The following peptide sequence databases were searched for related 

sequences with BLASTP (Altschul et al., 1990): the Brookhaven Protein Data Bank 

(Jan. 1994 release), Swiss-Prot (release 28.0), PIR (release 40.0), GenPept (release 

82.0). The OWL database was searched using the SWEEP program (Akrigg et al., 

1988). 

3.2.5 Enzyme assays 

Although some information on the substrate utilization of VCPI was obtained in 

Chapter 2, the similarities between VCPI and Prl warranted a more extensive 

comparison. Culture filtrates and pure proteases from V chlamydosporium and M 

anisopliae were tested using the API ZYM system (API BioMerieux UK, 

Hampshire). The kit consisted of assays for 59 arylamidases (series AP 1-6, 

p-naphthylamide derivatives of amino acids and peptides), 20 glycosidases (series 

OS, p-nitrophenyl derivatives of carbohydrates), 10 esterases (ES, p-naphthyl esters 

of fatty acids) and one transferase (p-naphthylamide). Culture filtrates and pure 

enzymes were diluted in 50 mM Tris-HCI, pH 7.0, and 60 µl added to each well in 

the test galleries. The strips were incubated in humid chambers at 37°C, in darkness, 

for 4 hours. After incubation, one drop each of API ZYM reagent A (Tris, 25% f w/v]; 

HCI, 4% [v/v]; lauryl sulphate, 10% [w/v]), and reagent B (Fast Blue BB, 0.35% 
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[w/v] in 2-methoxy-ethanol) were added to each well in the AP and ES series. After 

10 minutes, these strips were briefly placed under a bright light to bleach unbound 

Fast Blue dye, leaving the control colourless. In the OS series, one drop of 0.1 M 

NaOH was added to each well. Scoring was 1-5 according to the colour scale 

provided by the manufacturer. 

3.2.6 Esterase activity in IEF gels 

Isoelectric focusing (IEF) of VCP 1 and Prl was as described previously (see Section 

2.2.3). For visualisation of esterases, 4% (w/v) a- or p-naphthyl acetate, or a- 

naphthyl butyrate (Sigma) were dissolved in anhydrous acetone, and made to a final 

concentration of 0.04% (w/v) in 0.1 M Tris-HC1 pH 7.9, in which 0.2 % (w/v) Fast 

Blue RR salt (Sigma) was dissolved. The gels were developed with these substrates 

at room temperature. 

3.3 RESULTS 

3.3.1 Western blotting 

Titration of the anti-VCP 1 polyclonal antibody, collected in the third bleed, revealed 

a relatively low titre, with ca 30 µg VCP1 ml'' and a 1/64 dilution of the antibody 

required to result in anA405 equal to 1 (Fig. 3.1). Consequently, Western blots that 

were developed with a 1/20 dilution of the VCP1 antibody gave an adequate signal 

strength. 
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Fig. 3.2 Western blots of V. chlamydosporium culture filtrate and VCP1. After separation by SDS-PAGE (a), the V. 

chlamydosporium antigens were blotted onto nitrocellulose and probed with VCP1 antiserum (b), antiserum against 

V. suchlasporium protease (c), Prl antiserum (d), and M. anisopliae ME1 antiserum (e). Molecular weight markers 

wereBSA (M, 66,200), ovalbumin (M, 45,000), carbonic anhydrase (M, 31,000) and soybean trypsin inhibitor (M, 

21,500). Each panel has two lanes, V. chiamydosporium culture filtrate Pane 1) and purified VCP1 (lane 2). 

Fig. 3.3 Western blots of M. anisopliae culture filtrate and Prl. After separation by SDS-PAGE (a), the M. anisopliae 

antigens were blotted onto nitrocellulose and probed with Pri antiserum (b), antiserum against V. suchlasporium 

protease (c), VCP1 antiserum (d) and M. anisopliae ME1 antiserum (f). Molecular mass markers were as in Fig. 3.2. 

Each panel has two lanes, M. anisopliae culture filtrate (lane 1) and purified Prl (lane 2). 
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Fig. 3.1 Titration of anti-VCP1 antiserum by ELISA. A serial dilution of a polyclonal against VCP1 was allowed to 

bind to a dilution of antigen. A secondary anti-rabbit antibody, conjugated to alkaline phosphatase was applied, and 

the antibody was detected by reading the absorbence of released chromogen from p-nitrophenyl phosphate. 

The antiserum to VCP1 bound to VCP1 (33 kDa), and cross-reacted with Pr1 

(33 kDa) and elastase (31 kDa) (Figs. 3.2 and 3.4, panels b), whereas the Prl- 

antiserum bound to Prl, and cross-reacted with VCP1, and proteinase K (33 kDa) 

(Figs. 3.3, panel b; and 3.4, panel c). The polyclonal antiserum to a major serine 

protease from V suchlasporium (Lopez-Llorca, 1990) also cross-reacted with VCP1 

and Prl, confirming the relatedness of all three enzymes (Figs. 3.2 and 3.3, panels c). 

However, the antiserum to the Prl isoform specific to isolate ME1 of M anisopliae, 

failed to label VCP1, and also Prl from isolate V245 of M anisopliae (Figs. 3.2 and 

3.3, panels e). However, this polyclonal did bind to a protein in the culture filtrate 

from M. anisopliae, isolate V245 (Fig. 3.3, lane e). Apart from the fact that its 

molecular mass was just over 100 kDa, the nature of this protein is unknown. Neither 

of the antisera to VCP1 or Prl cross-reacted with bacterial subtilisins (Fig. 3.4, panels 

b-c). 
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Fig. 3.4 Western blots of commercial proteases with antibodies against VCP1 and Prt. Bacterial subtilisins P4789 

(lane 1) and P8038 (lane 2), proteinase K (lane 3), chymotrypsin (lane 4) and elastase (lane 5) were separated by 

SDS-PAGE (panel a), blotted onto nitrocellulose and probed with VCP1 antiserum (panel b), or with Prt antiserum 

(panel c). Molecular mass markers were as in Fig. 3.2. 
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3.3.2 Elution from HPLC columns 

VCP1 and Prl were separated from the culture filtrates of V chlamydosporium and 

M anisopliae using ion exchange, and hydrophobic interaction HPLC. Both enzymes 

had the same retention time in a strong cation exchange column, i. e. they eluted when 

the concentration of NaCl reached ca 0.35 M (Figs. 3.5a-b). In both cases the 

proteases eluted as a single peak, fairly well separated from other proteins. The 

separation of both enzymes from background protein on a hydrophobic interaction 

column was not as clear. The main protease activity in the V. chlamydosporium 

sample was associated with the first peak, which was eluted when the concentration 

of the mobile phase, (NH4)2S04, had reduced from 3M to ca 0.45 M (Figs. 3.6a-b). 

The elution of protease activity in the M anisopliae sample from this column was 

slightly different. Not only did the main activity elute earlier, when the concentration 

of (NH4)2SO4 was still ca 0.66 M, but there was a much more pronounced tailing of 

the enzyme activity (Fig. 3.6a-b). 

3.3.3 Amino acid sequence 

N-terminal amino acid sequencing of the first 20 residues of VCPI revealed 

considerable homology with regions in other fungal subtilisins (Table 3.1). The 

closest resemblance was with Prl; there was 63% identity between VCPI and Prl. A 

highly conserved sequence GAPXGL in VCPI (residues 7-12) corresponds to a 

helical structure in all known fungal subtilisins (Siezen et al., 1991). The unknown 

residue X in VCP 1 corresponds to tryptophan in all other subtilisins and the same is 

predicted for VCPI. Similarly, isoleucine in position 16 was a tentative assignment 
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Fig. 3.5 Retention characteristics of a) VCP1 and b) Prl on a strong cation exchange HPLC column. Injection volume 

was 20, ul of enzyme concentrate from V. chlamydosporium (1.0 mg ml-'), and M. anisopliae (1.3 mg ml-1), 

respectively. Elution was in a concentration gradient of NaCl. Bars represent protease activity against suc-(Ala)2-Pro- 

Phe-pNA in collected fractions. Straight line indicates increasing concentration of NaCl (as % of 1M NaCI). Trace is 

total protein, recorded by the detector as A280, in arbitrary units. 
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Fig. 3.6 Retention characteristics of a) VCP1 and b) Prl on a hydrophobic interaction HPLC column. Injection 

volume was 20 pl of enzyme concentrate from V. chlamydosporium (1.0 mg ml-'), and M. anisopliae (1.3 mg ml'), 

respectively. Elution was in a concentration gradient of (NH4)1S04. Bars represent protease activity against suc-(Ala); 

Pro-Phe-pNA in collected fractions. Straight line indicates decreasing salt concentration (as % of 3M (NH4)2SO� in 

10 mm phosphate buffer, pH 7.0). Trace is total protein, recorded by the detector as A280, in arbitrary units. 
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but is possibly serine because most related enzymes have serine in that position 

(Table 3.1). 

Table 3.1 N-terminal amino acid sequence of VCP1 and related proteases. The sequence of VCP1 (residues 1-20) 

was aligned with overlapping regions of related proteases from the source fungi indicated. Sequences are crudely 

ordered according to decreasing homology with VCP1, as determined by the combination of overlap length and 

percentage identity within. Residues identical with the VCP1 sequence are shaded. 

Protease Amino acid sequence Accession 
no. 

V. chlamydosporium VCP1 AIVEQQGAPXGLGRIINKXK P80406 

M. anisopliae Prl ITEQSGAPWGLGRISHRSK P29138 

Paecilomyces lilacinus AYTQQPGAPWGLGRISHRSK 129262 

Beauveria bassiana AVVRQAGAPWGLGRIU 16305 

Fusarium sp. AITQQQGATWGLTRI (a) 

Aspergillus fumigatus ALTTQKGAPWGLGSISHK P28296 

Acremonium chrysogenum ALVTQNGAPWGLGTI PN0129 

Tritirachium album prot. KQTNAPWGLARI P06873 

Saccharomyces cerevisiae QNSAPWGLARI P09232 

Trichoderma harzianum ALTTQSGAPWGLG 532905 

Aspergillus flavus QSDAPWGLGSISHK P35211 

EMBUGenbank accession number not available at the time of databank searches. The sequence can be found in 

Morita et al. (1994). 

Different degrees of variability were observed in the less conserved regions 

of the 20 amino acid sequence. The least variable was replacement of alanine for the 

closely related glycine (VCPI residue 1), or valine for the polar threonine (VCP1 

residue 3). More variable was asparagine (uncharged polar; VCPI residue 17) which 

could be replaced in related sequences by either histidine (basic) or serine in the case 

of proteinase R and T (not shown). The most variable in this sequence was glutamine 

(VCP 1 residue 6) which was replaced by various other amino acids (Table 3.1). 
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3.3.4 Substrate utilisation 

Neither VCP1 nor Prl hydrolysed monoaminoacyl substrates. However, peptidases 

were present in culture filtrates which could utilize such substrates, e. g. Ala-DNA, 

p-Ala-pNA, Arg-DNA, Gln-pNA, Lys-PNA, Met-DNA, Phe-pNA, and Trp-DNA 

(Table 3.2). Certain aminopeptidases were produced in large amounts (score z 2) 

only in culture filtrates of V. chlamydosporium (e. g. utilizing Orn-DNA, Ser-pNA) 

while others were highly active only in culture filtrates of M. anisopliae (e. g. utilizing 

Pro-pNA, hydroxy-Pro-pNA, His-pNA) (Table 3.2). N-terminally blocked 

monoaminoacyl p-naphthylamides (Bz-Leu-pNA, CBZ-Arg-MNA, Bz-Ala-pNA) 

were never degraded by either fungus indicating that, at least the corresponding non- 

blocked substrates, Arg-pNA and Ala-pNA were hydrolysed by true 

aminopeptidases, requiring free N-terminal residues. 

Table 3.2 API ZYM scores for peptidase, esterase, glycosidase and transferase activity in V. chlamydosporium VCPI 

and culture filtrate, and M. anisopliae Prl and culture filtrate. Scoring was 1-5 according to manufacturer's 

instructions. Means of two replicates. 

V. chlamydosporium 
isolate 10 

Peptidases (arylamidases) 
AP1.1 Tyr'-ENAb 
AP1.2 pyroGlu-PNA 
AP1.3 Phe-ONA 
AP1.4 Lys-DNA 
AP1.5 hydroxyPro-ONA 
AP1.6 His-DNA 
AP1.7 Gly-DNA 
AP1.8 Asp-DNA 
API. 9 Arg-DNA 
AP1.10 Ala-DNA 
AP2.2 Bzc-Leu-pNA 
AP2.3 S-Bz-Cys-pNA 
AP2.4 DL-Met-DNA 
AP2.5 Gly-Gly-pNA 
AP2.6 Gly-Phe-DNA 
AP2.7 Gly-Pro-DNA 
AP2.8 Leu-Gly-pNA 
AP2.9 Ser-Tyr-pNA 
AP2.10 Control 
AP3.1 CBZ°-Arg-MNA° 
AP3.2 Gin-pNA 

VCP1 Filtrate 

M. anisopliae 
isolate 245 

Prt Filtrate 

0101 
o000 
0 3.5 05 
0 4.5 03 
0104 
0103 
0000 
0000 
0 4.5 03 
0 4.5 03 
0000 
0 1.5 01 
0 2.5 02 
0 1.5 00 
0505 

1.5 205 
0100 
0 4.5 04 
0000 
0000 
0 4.5 02 
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V. chiamydosporium M. anisopliae 
isolate 10 isolate 245 

VCP1 Filtrate Prt Filtrate 
AP3.3 a-GIu-DNA 0 0.5 00 
AP3.4 Ile-DNA 0 1.5 00 
AP3.5 Orn'-DNA 0301 
AP3.6 Pro-DNA 0002 
AP3.7 Ser-DNA 0200 
AP3.8 Thr-DNA 0 1.5 00 
AP3.9 Trp-DNA 0203 
AP3.10 CBZ-GIy-GIy-Arg-DNA 0043 
AP4.1 D-Ala-DNA 0 3.5 03 
AP4.2 Ala-Arg-DNA 0001 
AP4.3 Ala-Phe-Pro-DNA 0203 
AP4.4 Ala-Phe-Pro-Ala-DNA 4.5 4.5 53 
AP4.5 Arg-Arg-DNA 0101 
AP4.6 a -Asp-Ala-DNA 0301 
AP4.7 a-Asp Arg-DNA 0000 
AP4.8 a-Glu-a-Glu-DNA 0000 
AP4.9 a-Glu-His-DNA 0 0.5 01 
AP4.10 GIy-Ala-DNA 0502 
AP5.1 GIy-Arg-DNA 0000 
AP5.2 GIy-Trp-DNA 0000 
AP5.3 His-Leu-His-DNA 1.5 1.5 41 
AP5.4 His-Ser-DNA 0100 
AP5.5 Leu-Ala-DNA 0 4.5 32 
AP5.6 Leu-Leu-Val-Tyr-Ser-DNA 0.5 311 
AP5.7 Lys-Ala-DNA 0 4.5 03 
AP5.8 Lys-Lys-DNA 0200 
AP5.9 Phe-Arg-DNA 0201 
AP5.10 Phe-Pro-DNA 1215 
AP6.1 Phe-Pro-Ala-DNA 0110 
AP6.2 Pro-Arg-DNA 0000 
AP6.3 Ser-Met-DNA 0502 
AP6.4 Val-Tyr-Ser-DNA 0100 
AP6.5 BzAla-MNA 0000 
AP6.6 CBZ-Arg-MNA 0000 
AP6.7 CBZ-GIy-GIy-Arg-DNA 0033 
AP6.8 Ac'L. Gly-Lys-DNA 0000 
AP6.9 His-Phe-DNA 0 2.5 01 
AP6.10 Lys-Ser-MNA 0100 

Esterases 
ES1 2-naphthyl-butyrate (C4) 2.5 555 
ES2 2-naphthyl-valerate (C5) 2555 
ES3 2-naphthykaproate (C6) 2555 
ES4 2-naphthyl-caprylate (C8) 2515 
ES5 2-naphthyl-nonanoate (C9) 2515 
ES6 2-naphthyl-caprate (C10) 2515 
ES7 2-naphthyl-laurate (C12) 0100 
ES8 2-naphthyl-myristate (C14) 0100 
ES9 2-naphthyl-palmitate (C16) 0100 
ES10 2-naphthyl-stearate (C18) 0100 

Transferases 
AP2.1 y-glutamic acid-DNA 0100 

' All amino acids and derivatives were L-configuration, unless indicated otherwise; b p-naphthylamide; ' benzoyl; d 

N-carboxybenzoxy; ° 4-methoxy-p-naphthylamide; r ornithine; s N-acetyl 
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The pure enzymes exhibited restricted dipeptidyl peptidase activity with 

VCP1 and Prl being active against Gly-Pro-pNA and Leu-Ala-pNA, respectively 

(Table 3.2). Numerous dipeptidyl peptidases were, however, present in culture 

filtrates. These enzymes efficiently hydrolysed dipeptides with apolar penultimate 

groups, with the exception of Ser-Tyr-pNA, which has a polar penultimate residue, 

and Lys-Lys-pNA and Phe-Arg-pNA which have alkaline residues in the penultimate 

position. The dipeptidyl peptidases in the culture filtrates did not have a preference 

for the N-terminal residue (Table 3.2). Several dipeptidyl peptidases secreted in large 

amounts (score z 2) by V. chlamydosporium were either absent or present in small 

amounts (score < 2) in M anisopliae culture filtrates (Table 3.2). 

Purified VCP1 and Prl readily hydrolysed the tetrapeptide Ala-Phe-Pro-Ala- 

pNA but not the tripeptide Ala-Phe-Pro-pNA. However, enzymes present in culture 

filtrates were able to hydrolyse the latter substrate as well (Table 3.2). The N- 

terminally blocked CBZ-Gly-Gly-Arg-pNA was degraded by Prl but not by VCP1, 

nor was activity detected in the culture filtrate of V. chlamydosporium (Table 3.2). 

The tripeptide His-Leu-His-pNA was hydrolysed by both pure proteases. The 

pentapeptide, (Leu)2-Val-Tyr-Ser-pNA, was hydrolysed by enzymes in culture 

filtrates of V. chlamydosporium but not those of M anisopliae (Table 3.2). 

VCP1 and Prl hydrolysed short (C4-C6) and medium (C7-C10) chain esters 

to a different extent. VCP1 was highly active on all these substrates while Prl was 

highly active against the short chain esters only (Table 3.2). Esterase activity was 

high in culture filtrates of both V. chlamydosporium and M anisopliae (Table 3.2). 
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Fig. 3.7 Esterase electrophoresis. Analytical IEF-gel, stained for general protein using Coomassie blue (panel a), and 

esterase activity against a-acetate (panel b), (i-acetate (panel c) and a-butyrate (panel d). Each gel was loaded with M. 

anisopliae Prt (lane 1) or culture filtrate (lane 2), V. chlamydosporium VCP1 pane 3) or culture filtrate (lane 4). 

Marker proteins with corresponding pl values are indicated on panel a. 
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Esterase activity was also visualised after electrophoretic separation of culture 

filtrates, providing more information on the enzymes involved. Activity was detected 

in IEF gels at pI 10, corresponding with Prl and VCP1, while several bands were also 

detected within the pI range of 4.5 -6 (Fig. 3.7). The alkaline (including VCP 1 and 

Prl) and acidic esterases of V. chlamydosporium hydrolysed all three substrates 

tested. However, the acidic esterases of M anisopliae hydrolysed a- and p -acetate 

but not a-butyrate (Fig. 3.7). Verticillium chlamydosporium had a prominent acidic 

enzyme (pI ca 4.5) that degraded all three substrates but also several other enzymes 

of higher pI, which were particularly active against a-acetate (Fig. 3.7). In culture 

filtrates of M anisopliae, one minor band was discerned just above the major esterase 

(pI 4.5). 

3.4 DISCUSSION 

The proteases VCP1 and Pri are structurally and functionally related, as revealed by 

N-terminal amino acid sequencing, Western blotting, HPLC analysis and substrate 

specificity. These data corroborated the results from Chapter 2, that VCP1 and Prl 

are related but not identical enzymes. The amino acid sequence allowed VCP1 to be 

classified unambiguously as a subtilisin-like serine protease. Similar to all subtilisins 

isolated from fungi to date, VCP1 was a class II subtilisin, which are enzymes with 

a high degree of sequence homology, even in most of the variable regions, and a low 

incidence of insertions/deletions relative to the benchmark enzyme of this class, 

proteinase K (Siezen et al., 1991). Although model structures can be derived directly 

from proteinase K, deviant structural features, e. g. disulphide bridging and 
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glycosylation patterns have been described (Joshi et al., 1995). Recently, St. Leger 

et al. (1992a) showed that Prl was closely related to proteinase K, a fact confirmed 

in this study by Western blotting. In contrast, VCP1-antisera labelled Prl but not 

proteinase K, suggesting greater structural differences between VCP1 and proteinase 

K, than between Prl and proteinase K. 

The limited data provided by Lopez-Llorca (1990) on the major protease 

secreted by V. suchlasporium, did not allow a comparison with VCP1 on the basis 

of the biochemical properties discussed in Chapter 2, but the serological results in 

this Section suggest that the two enzymes were immunologically related. Moreover, 

the V. suchlasporium-antiserum also reacted with Prl, confirming the relatedness of 

all three enzymes. The antibody to an isoform of Prl specific to isolate ME1 of M. 

anisopliae (St. Leger et al., 1994), failed to label Prl from isolate 245 of the same 

species, which suggests intraspecific variation in M. anisopliae. This could be due 

to the absence of epitopes, or the absence alltogether of this particular isoform in 

isolate V245. Although no detailed comparison of host specificities in the case of 

these two isolates exists, differences in the proteolytic complex, as observed here, 

could theoretically contribute to variation in host specificity between isolates of M 

anisopliae. 

Due to their very alkaline pI, both VCP1 and Prl could be separated from 

contaminating proteins in the culture filtrate by cation exchange at pH 7.0. The 

elution patterns in these conditions were identical, suggesting similar electrostatic 

interactions between the bonded sulfonyl groups of the column, and positively 

charged areas of the protein surface. The excellent separation on this column 
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paralleled the ease with which these enzymes could be purified by preparative IEF. 

The success of both methods relied on the presence in the culture filtrates of 

apparently few protein species with a similar highly charged nature. The hydrophobic 

interaction column separates proteins according to their degree of hydrophobic 

interaction with the polyethylene glycol matrix. The fact that VCPI eluted later than 

Prl suggests a higher degree of hydrophobicity of the surface of the V. 

chlamydosporium enzyme. In the culture filtrates of both V chlamydosporium and 

M. anisopliae, minor enzyme activity eluted after the main peak, but this tailing off 

of activity was much more pronounced in the case of M. anisopliae. The tailing 

phenomenon might indicate the presence of more than one active enzyme species, 

possibly isoforms, with the minor activities due to more hydrophobic forms. The fact 

that the tailing in M. anisopliae was more extended than in V chlamydosporium 

suggests that in the former case, the putative isoforms were either more concentrated, 

or they were more efficient at hydrolysing the substrate suc-(Ala)2-Pro-Phe-pNA than 

those in V. chlamydosporium. 

Subtilisins are generally regarded as being relatively non-specific, but 

individual enzymes can differ in their activity on selected substrates (Wells & Estell, 

1988). This was also true for VCP1 and Prl, which showed both qualitative and 

quantitative differences in the substrates they could hydrolyse in the API ZYM kit. 

This may be partially explained by point mutations, which can have a profound effect 

on substrate specificity and kinetic parameters (Wells & Estell, 1988). Such 

mutations have probably occurred, as witnessed by the amino acid sequence reported 

here, and they may explain some of the differences between Pr1 and VCP1. 
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A noted difference between VCP1 and Prl was that the former exhibited 

dipeptidyl peptidase activity against Gly-Pro-ßNA, whereas the latter did not. 

However, M anisopliae secretes dipeptidyl peptidases, one of which has been 

partially purified and found to have activity against this substrate (St. Leger et al., 

1993). 

Staining IEF gels for esterase activity confirmed the esterolytic nature of 

VCP1 and Prl that was also observed with the API ZYM system. The esterase 

systems in both V chlamydosporium and M. anisopliae consisted of enzymes of 

extreme charges, both alkaline and acidic ones. The esterases produced by V. 

chlamydosporium, in particular, appeared to be a rather complex group, as seen after 

their electrophoretic separation (Fig. 3.7). One or more of these enzymes must have 

been responsible for the activity against the esters of long-chain fatty acids (C12- 

C 18), as that was not due to VCP 1(Table 3.2). The esterases that are produced by M. 

anisopliae (isolate ME 1) appressoria during infection of Manduca sexta cuticle are 

all p-esterases (St. Leger et al., 1991 a). The current study, using the filtrate of batch 

cultures, indicated that M anisopliae, isolate 245, had esterases that could also 

degrade the a isomer of acetate. This leaves the question whether a and p-esterases 

would have different physiological roles. 

Speculating on the exact physiological role of the enzyme complexity seen 

here, would be premature. However, the diversity of enzyme activities seen in the 

API ZYM kit and the esterase electrophoresis presumably reflected the nutritional 

versatility of these fungi. It is tempting to speculate that mycopathogens secrete other 

enzymes which are able to degrade substrates that the major endoproteases, like 
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VCP1 and Prl, cannot. This would enable the pathogens to exploit diverse nutrient 

sources and may also influence virulence and host range. Alternatively, the 

proteolytic complex may consist of a number of enzymes that act in concert to break 

substrates down in a progressive manner, as has been suggested for M. anisopliae (St. 

Leger, 1995). The further hydrolysis by exopeptidases, of peptides that are generated 

by endopeptidases, and their subsequent consumption, would also prevent the build- 

up of catabolic products that might otherwise repress the production of VCP I (see 

Chapter 6) and Prl (St. Leger et al., 1988b). 

The aminopeptidase activity recorded in a range of isolates from the V 

chlamydosporium/V. suchlasporium complex (Carder et al., 1993) was similar to the 

one reported here for isolate 10. Exceptions were the high activities against Pro- pNA 

and hydroxy-Pro-PNA, which were absent in the current isolate, and the low 

activities against Gln-pNA and Trp-INA, which were high this time. 

Verticillium chlamydosporium, isolate 10, can now be fitted in the set of 

Verticillium species and varieties tested by Carder et al. (1993). When the five-level 

scoring system, used in the current experiments, was converted to three-level scoring 

(0 or 1 becomes 0; 2 or 3 becomes 1; and 4 or 5 becomes 2), and the number of 

matches between the transformed scores of isolate 10, and those of Carder et al. 

(1993) was enumerated, then the closest relative of isolate 10 was V 

chlamydosporium var. chlamydosporium, isolate CBS 103.65 (27 matches). It 

remains to be seen whether Dr W. Gams, who proposed some of the species and 

varieties concerned here (Gams, 1988), would agree with this diagnosis. 



4 
Distribution and relatedness of 
subtilisin-like proteases of 
invertebrate mycopathogens 

4.1 INTRODUCTION 

Subtilisin-like serine proteases, once thought to be confined to prokaryotes, are 

increasingly being isolated from a much wider range of sources, including archae, 

bacteria, yeasts, fungi, and higher eukaryotes (Markland & Smith, 1971; Siezen et al., 

1991). In a comprehensive review, Siezen et al. (1991) divided these enzymes in 

classes I and II, based on characteristic amino acid sequence patterns. All fungal 

subtilisins characterized to date, are homologous with proteinase K, from 

Tritirachium album Limber, and are grouped in class II. Various physiological roles 

have been suggested, or demonstrated, for subtilisin-like proteases. Class I subtilisins 

are extracellular in many bacteria (Markland & Smith, 1971), while eukaryotic 

proteases of this class typically carry out compartmentalized proteolysis within cells, 

processing prohormones and/or other protein precursors (Tanguy-Rougeau et al., 

1988; Roebroek et al., 1991; Smeekens et al., 1991). Typically, class II subtilisins are 

extracellular and have a nutritional role (Gunkel & Gassen, 1989; Monod et al., 1991; 

Burton et al., 1993), although exceptionally, a vacuolar class II subtilisin is present 

in baker's yeast (Moehle et al., 1987). 

Subtilisins are major proteins secreted by some invertebrate mycopathogens, 

fungi that breach the proteinaceous integument of hosts, such as nematodes and 

insects. In some of these fungi there is evidence of a significant contribution of these 

enzymes to penetration of the host (St. Leger et al., 1988a; Tunlid et al., 1994). 
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The subtilisin-ancestral gene must be old in evolutionary terms, as it probably 

appeared before prokaryotes and eukaryotes diverged. However, the extent of 

variation in subtilisin quantity and quality in current mycopathogens of invertebrates 

is unclear. The subtilisin secreted by the nematode and insect-pathogens1 

Verticillium chlamydosporium and Metarhizium anisopliae, are VCPI and Prl, 

respectively. As established in this study, these were immunologically related 

proteins with a similar charge (pI ca 10) and molecular mass (ca 33 kDa). However, 

they differed in their sensitivity to certain inhibitors, substrate utilization and N- 

terminal amino-acid sequence (see Chapters 2 and 3). Variability of this kind has not 

been established between isolates of V. chlamydosporium, but may hold a clue to 

differences in virulence, and also has the potential to affect host specificity. 

Furthermore, subtilisins from species that are taxonomically closely related, but 

occupy different niches, have not been compared. Verticillium is a particularly 

interesting genus in this respect, as it contains nematophagous, entomogenous, 

phytopathogenic and saprotrophic species. 

4.2 MATERIALS AND METHODS 

4.2.1 Organisms and growth conditions 

Five isolates of the nematophagous fungus Verticillium chlamydosporium were 

selected from the Rothamsted culture collection, based on their rhizosphere 

colonization of barley, virulence against three test nematodes in an in vitro bioassay 
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(Irving & Kerry, 1986), and chlamydospore formation. All isolates differed in their 

combination of these properties (Table 4.1). 

A range of additional nematophagous, entomogenous, phytopathogenic and 

saprotrophic isolates, of several species, were also studied, and their origins are 

summarized in Table 4.2. 

Table 4.1 Origin, virulence, root colonization and chlamydospore formation of selected V. chlamydosporium 

isolates. Virulence is expressed as percentage of eggs infected in an in vitro bioassay according to Irving & Kerry 

(1986), using eggs of the following test nematodes: Globodera rostochiensis; Heterodera avenae, and Meloidogyne 

incognita. Rhizosphere colonization was recorded on barley roots (% of root length colonized), and chlamydospore 
formation on corn meal agar (after Kerry, unpublished). 

Isolate Original host Virulence against Rhizosphere Chlamydo. 

H. avenae G. rostochiensis M. incognita colonization spores 

8 H. avenae eggs 36 30 53 0 unclear 

10 M. incognita eggs 23 29 41 83 good 

11 H. schachtii eggs 24 15 25 0 no 

26 H. cruciferae soil 21 27 63 100 no 

65 H. avenae eggs 31 19 14 100 no 

4.2.2 Protein electrophoresis and blotting 

All isolates were grown in liquid medium, containing soya peptone and beetle 

(Phaedon cochleariae) homogenate (4 mg nit'), as described in Chapter 2. Culture 

filtrates were assayed for VCP1-like activity using suc-(Ala)2-Pro-Phe-pNA as the 

substrate, and the enzymes involved characterized by isoelectric focusing (IEF), 

SDS-PAGE, enzymoblotting and Western blotting by the methods described in 

Chapters 2 and 3. The antibody unit at IACR-Rothamsted generated polyclonal 

antibodies against the subtilisin-like proteases from V.. chlamydosporium, isolate 10 
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(VCP1); M anisopliae, isolate 245 (Prl); Paecilomycesfumoso-roseus, isolate 80; 

and Beauveria bassiana, isolate 77. Prior to injection in rabbits, all antigens were 

purified to apparent homogeneity by preparative IEF, as described in Section 2.2.3. 

4.2.3 Amino acid sequencing of V. chlamydosporium subtilisins 

Proteins were cut out from IEF gels and electro-eluted in a Biotrap BT1000 elution 

unit (Schleicher & Schuell) in a buffer containing 0.05 M Tris and 0.025% (w/v) SDS 

at pH 8.0. Their N-terminal sequence was determined with an Applied Biosystems 

477A liquid-pulse sequencer, by Dr J. N. Keen in the Department of Biochemistry and 

Molecular Biology at the University of Leeds, using the procedure described in 

Section 3.2.4. 

4.2.4 RFLP studies 

Mycelium for DNA extraction was grown in liquid shake cultures using a modified 

Czapek-Dox basal medium, consisting of 0.01 g 1-' FeSO4.7H20,0.5 g 1'' 

MgS04 7H2O, 0.05 g 1'' KCI, 2g 1'' NaNO3,3 g 1' KH2PO4,40 pg 1'' ZnSO4.7H2O, 

8 µg 1'' CuSO4.5H2O, 4 pg 1'' MnSO4.4H2O, 4 jig 1-' NaB4O7"10H2O, 2 µg V 

(NH4)6Mo7024 4H20,375 pg 1'' vitamin BI, with 15 g 1'' sucrose as the carbon 

source, and adjusted to pH 5.9 with NaOH (Carder et al., 1987). Mycelium was 

harvested after 7 days growth at 22°C on an orbital shaker, washed with distilled 

water, blotted gently to remove excess liquid, lyophilised and stored at -20°C until 

required. DNA was extracted from lyophilised mycelium, ground in a mortar and 

pestle together with a small amount of acid-washed sand, using procedures described 
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by Murray &Thompson (1980), as modified by Manicom et al. (1987). Yields of 

DNA varied between 30 and 100 pg g'' mycelium, as estimated by visual comparison 

between the ethidium bromide fluorescence of fungal samples and DNA standards 

on agarose gels. 

Fungal DNAs (ca 2 pg each) were digested for 16 h at 37°C with 10 units of 

EcoRI following the supplier's (BRL Ltd. ) protocol. Digested samples were 

separated by electrophoresis in agarose (0.7% [w/v]) gels and transferred overnight 

by alkaline capillary blotting onto nylon membranes (Hybond-N, Amersham) 

(Sambrook et al., 1989). Membranes were rinsed briefly in 2x SSC (SSC is 0.15 M 

sodium chloride and 0.015 M sodium citrate) and baked at 80°C in a vacuum oven 

for two hours to fix DNA onto the membrane. Membranes were pre-hybridized in 

pre-hybridization buffer (6 x SSC, 5 mM EDTA and 0.25% skimmed milk powder) 

at 65°C in an hybridisation oven for two hours. 

Two probes were used on Southern blots: (i) pVARNA12, which contains a 

ca 8 kb complete ribosomal RNA gene repeat from V. albo-atrum isolate 1974 

(Morton et al., 1995); and (ii) 1.2 kb PCR products produced by amplifying genomic 

DNA from Metarhizium anisopliae, isolates 245 and 47, using PCR with primers 

based on the published sequence of the Prl gene from M anisopliae, isolate ME1 

(St. Leger et al., 1992a). Primers were as follows: METPR2,5 ' AGG TAG GCA 

GCC AGA CCG GC3 ' and METPRS, 5' TGC CAC TAT TGG CCG GCG CG3 1. 

These PCR products, kindly provided by Miss S. C. M. Leal (IACR-Rothamsted), 

were purified using the Prep-A-Gene DNA purification system (Bio-Rad) and 

verified on a 0.7% (w/v) agarose gel. Approximately 70 ng of purified PCR product 
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was labelled by nick-translation (Gibco-BRL) with a -"P dCTP (3000 Ci mmol4, 

Amersham). The labelled DNA was separated from unincorporated nucleotides with 

a spun-column procedure, on 2 ml Sephadex G50 gel permeation columns (Carder 

& Barbara, 1991). Labelled, denatured probes were added to fresh pre-hybridization. 

solutions to give at least 106 cpm ml''. Following hybridization at 65°C (at least 

overnight), membranes were washed in 2x SSC and 0.1% (w/v) SDS at the same 

temperature, gently blotted dry, wrapped in Saran® wrap (Dow Chemical Co. ), and 

exposed to Kodak X-OMAT XAR-5 film, between intensifying screens, at -80°C for 

an appropriate amount of time, depending on the intensity of labelling. 

Occasionally, radiolabelled probe was removed from the nylon membranes 

to allow rehybridization with a different probe. To this end, blots were incubated in 

0.4 M NaOH at 45°C for 30 min, drained, and transferred to 0.1 x SSC, 0.1 % (w/v) 

SDS in 0.2 M Tris-HCI, pH 7.5 at the same temperature for 30 min. Stripped blots 

were dried under an infrared lamp and stored at 4°C, until hybridized with a new 

probe. 

4.3 RESULTS 

4.3.1 Gene expression: quantitative enzyme assay 

Significant inter- and intraspecific variation was observed in the protease activity, 

against suc-(Ala)2-Pro-Phe-pNA, of a range of nematophagous, entomogenous and 

phytopathogenic fungi (Table 4.3). Within Y. chlamydosporium, isolate 10 produced 

the most (147.2 units), and isolate 11 the least (0.2 units). Isolate 10 produced a larger 
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biomass than 11 (5.1 g versus 1.3 g oven dry weight), but this difference was not 

commensurate with the respective proteolytic activities. There was no apparent 

correlation between VCP1-like activity of the five V. chlamydosporium isolates 

(Table 4.3) and their virulence against three test nematodes, or their rhizosphere 

colonization of barley in an in vitro assay (Table 4.1; Kerry, unpublished). 

Whereas the three entomogenous V lecanii isolates produced relatively small 

amounts of VCP1-like activity (3.7 - 9.8 units), all isolates of the plant pathogens V. 

albo-atrum and V. dahliae produced no, or virtually no, protease with VCP1-like 

specificity in this soya peptone / beetle homogenate medium (Table 4.3). Verticillium 

nigrescens and V. tricorpus were as V. albo-atrum and V. dahliae, but a large amount 

of protease (98.3 units) was present in the culture filtrate of V. nubilum. 

An undescribed Acremonium, possibly a new species, isolated from females 

of the potato cyst nematode, Globodera rostochiensis, by Dr D. H. Crump (IACR- 

Rothamsted), produced no detectable VCP1-like activity. An isolate of Paecilomyces 

lilacinus, recovered in Malaysia from a female of the root-knot nematode, 

Meloidogyne incognita (Dr. D. H. Crump, IACR-Rothamsted), produced an amount 

of protease that was twice as large as that of the most productive V chlamydosporium 

isolate (i. e. 287.3 units). In comparison, the amount of enzyme detected in the culture 

filtrate of the entomogenous hyphomycete P. fumoso-roseus, was moderate (12.6 

units). While the VCP1-like activity in Beauveria bassiana isolates varied between 

7.1 and 40.4 units, some isolates of Metarhizium were exceptionally productive, e. g. 

M anisopliae, isolates ME1 and 245, produced 591.0 and 256.7 units, respectively 

(Table 4.3). 
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Table 4.3 Protease activity in culture filtrates, assayed with suc-(Ala)2-Pro-Phe-pNA at pH 7.9. All values are means of 
two replicates. One unit (U) of activity is defined as the amount of enzyme releasing 1 pmol p-nitroaniline miry'. 
Summary of Western blot analysis of culture filtrates, using polyclonal antibodies against purified subtilisins from V. 

chlamydosporium, isolate 10 (VCP1); M. anisopliae, isolate 245 (Prl); Paecilomyces fumoso-roseus; and Beauveria 
bassiana, isolate 77. Hybridisation with a protein of ca 32 kDa is indicated as '+, weak hybridisation as '(+)', and 
lack of hybridisation as '-'. 

Fungal species and isolate Biomass Protease activity Antigenicity with antibody against 
(Pý (U ± S. D. ) 

V. chlamydosporium 8 
V. chlamydosporium 10 
V. chlamydosporium 11 
V. chlamydosporium 26 
V. chlamydosporium 65 

V. lecanii 4 
V. lecanii G 

V. lecanii My 
V. albo-atrum luc 

V. albo-atrum 1974 
V. dahliae 327 
V. dahliae 1764 
V. nigrescens 
V. nubilum 
V. tricorpus 
Acremonium sp. 
Paecilomyces lilacinus 

P. fumoso-roseus 
Beauveria bassiana 77 

B. bassiana 86 
M. anisopliae ME 1 

M. anisopliae 208 
M. anisopliae 245 

M. anisopliae majus 319 

M. flavoviride 260 

Proteinase K 

Porcine elastase 

Vc10' Ma245 b P. fumoso- B. bassiana 
(VCPi) (Pr1) roseus 77 

1.9 86.2 t 8.2 ++ 
5.1 147.2 t 0.1 ++ 
1.3 0.2 t 0.2 + 
1.9 12.5 t 1.5 + 
2.0 7.6t1.5 (+) 
2.3 9.8 t 0.1 - 
1.5 6.0 t 0.1 (+) 
1.4 3.7 ± 0.5 
2.0 0.1 ± 0.1 
1.8 0 
1.8 1.2 ± 0.1 
1.7 0 

0.6 1.3 ± 0.3 (+) (+) 
1.7 98.3 t 4.9 
1.9 0.3 t 0.1 
1.0 0 
1.7 287.3 t 5.2 
2.7 12.6 t 0.2 
1.7 40.4 t 3.9 
1.4 7.1 t 0.6 

(+) 

1.7 591.0t8.3 ++ 
2.1 67.5 t 6.4 ++ 
2.0 256.7 t 23.2 -+ 
2.3 161.8 t 10.5 -+ 
1.9 219.9 t 41.4 -+ 

NA. ' N. D. ° -- 
NA. N. D. (+3 - 

a Vc10. V. chlamydosporium, isolate 10 
b Ma245: M. anisopliae, isolate 245 

N. A.: not applicable 
° N. D.: not determined. 

(+) 
(+) 
+ 

(+) 
(+) 
(+) 

(+) + 
++ 
++ 

(+) + 
-+ 
++ 

(+) + 

+ 

4.3.2 Gene expression: qualitative assessment with protein blotting 

techniques 

The qualitative differences between the VCP1-like proteases of the same series of 

fungi was assessed by electrophoretic separation of the culture filtrates, using IEF, 



Chapter 4 2 

Fig. 4.1 IEF gel (pH 3-10) of the culture filtrates of 25 fungi, (a) stained with Coomassie blue; and (b) enzymoblotted 

onto nitrocellulose and developed with the substrate suc-(Ala) -Pro-Phe-pNA, using the procedure of Ohlsson (1986). 

(c) Similar enzymoblot, with V. chiamydosporium isolates only. Both outer lanes in (a) were marker proteins; 
corresponding pl values are indicated alongside (b) and (U. Lane numbers in each panel refer to fungal species and 

isolates, listed in Table 4.2. These were: V. chlamydosporium, isolate 8 Pane 1); isolate 10 (lane 2); isolate 11 (lane 

3); isolate 26 (lane 4); isolate 65 (lane 5); V. lecanii, isolate 4 Pane 6); isolate G (lane 7); isolate my (lane 8); V. 

nigrescens (lane 9); V. nubilum (lane 10); V. tricorpus (lane 11); V. albo-atrurn, isolate luc. SW Pane 12); isolate 1974 

(lane 13); V. dahliae, isolate 327 Pane 14); isolate 1764 (lane 15); P. lilacinus (lane 16); P. fumoso-roseus (lane 17); 

Acremonium sp. (lane 18); B. bassiana, isolate 77 (lane 19); isolate 86 (lane 20); M. anisopliae, isolate 208 (lane 21); 

isolate 245 (lane 22); isolate ME1 (lane 23); M. anisopliae var majus (lane 24); M. flavoviride (lane 25). 
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followed by enzymoblotting with suc-(Ala)2-Pro-Phe-pNA as the substrate (Fig. 4.1). 

Despite concentrating (Amicon Centriprep) the more dilute samples in order to 

balance protein loadings on the gel, large differences in the intensity of the alkaline 

proteins were obtained after staining for total protein with Coomassie blue (Fig. 

4.1a). This reflected the quantitative differences in protease production revealed by 

the enzyme assay in the previous Section. 

Corresponding enzymoblots indicated differences in charge between the 

proteases of the different species, but also between isolates of the same species (Fig. 

4. lb-c). A pattern, distinct for each isolate, was seen in V.. chlamydosporium. 

Whereas VCP 1 from V. chlamydosporium, isolate 10, was present as a single band 

with pI 10.0, the enzyme(s) of isolate 8 appeared as a diffuse zone with pl 10.0-10.4, 

possibly as a result of multiple bands with similar pI values. Whereas the pI of the 

enzyme in isolate 65 was in the same range (pI 10.2), that of isolate 11 was lower (PI 

9.24). At least four enzyme forms were seen in isolate 26, ranging from very alkaline 

(pI 10.50,10.15 and 9.15) to almost neutral (diffuse band with pI 7.80-7.35) (Fig. 

4.1b-c). Near-neutral subtilisin isoforms were also seen in isolates of V. lecanii and 

V nubilum (Fig. 4.1b). The plant pathogens V. albo-atrum and V dahliae apparently 

secreted very little protein in the medium, as few bands could be stained with 

Coomassie (Fig. 4.1 a), and no protease was visualized on the enzymoblot (Fig. 4.1 b). 

All Metarhizium isolates had dominant alkaline proteases with small, but detectable, 

differences in charge (Fig. 4.1b), while B. bassiana, isolate 77, had the most alkaline 

subtilisin-like protease of all entomogenous isolates tested (pI ca 10.5). 
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Additionally, polyclonal antisera were generated against purified subtilisins 

from four fungal species, viz VCP1 from V. chlamydosporium, isolate 10; Prl from 

M. anisopliae, isolate 245; and the alkaline subtilisins from Paecilomycesfumoso- 

roseus, and Beauveria bassiana, isolate 77 (Table 4.3). The hybridization pattern on. 

Western blots of SDS-PAGE gels with culture filtrates of these fungi, indicated that 

seemingly similar enzymes did not necessarily share the same epitopes. Whereas the 

VCP1-antiserum hybridized to all V chlamydosporium isolates, the Pri-antiserum 

from M. anisopliae bound only to isolates 8 and 10 of V. chlamydosporium (Table 

4.3). The response of the latter antibody could, theoretically, be related to the 

concentration of antigen, as isolates 8 and 10 produced the largest amounts of 

protease in V. chlamydosporium. However, the antiserum to the protease from B. 

bassiana recognized only V. chlamydosporium isolates 26 and 65, which produced 

approximately one tenth of the amount of isolates 8 and 10 (Table 4.3). As reported 

in Section 3.3.1, there was reciprocal cross-reactivity between antisera and proteases 

from V chlamydosporium and M anisopliae. However, extending the range of 

isolates indicated the isolate-dependence of this similarity, i. e. the VCP1-antiserum 

did not recognize the subtilisins of all Metarhizium isolates, and vice versa. It is 

notewörty that the antisera to VCP1 and Prl were not the same ones used in the 

previous Chapter, and the two sets reacted slightly differently. According to the data 

presented in the previous Chapter, the VCP1- and Prl-antisera hybridized only to 

elastase and proteinase K, respectively, but the antisera generated for the purpose of 

the current experiments never bound to either antigen (Table 4.3). 
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4.3.3 Gene expression: N-terminal amino acid sequencing 

Proteins from culture filtrates of five V chlamydosporium isolates were separated on 

an analytical IEF gel. The bands corresponding to proteins with pI Z9 were excised, 

electro-eluted and sequenced. Whereas limited amounts of protein, and machine, 

related problems, precluded sequencing of proteins from isolate 11, between 9 and 

20 N-terminal residues were determined for all proteins of the other isolates (Table 

4.4). Surprisingly, in the case of isolates 8 and 10, two distinct sequences could be 

extracted from what appeared as a single band in IEF, suggesting that different 

proteins had co-migrated. Every protein, with marginal variation in pI and/or 

molecular mass (32 - 34 kDa), had a unique sequence (Table 4.4). Proteins were 

given code names, based on the isolate number, followed by a second digit reflecting 

the relative pI (protein with highest pI in each isolate was given "1 "). 

Table 4.4 Aligned N-terminal amino acid sequence of alkaline proteins (pi > 9) from V. chiamydosporium isolates. 

Within each isolate the proteins are listed according to decreasing pl. The letter 'x' indicates an unidentified residue, 

while lowercase letters signify tentative assignments. 

Isolate Protein 
no. Code 

Sequence PI Mol. wt. Presumed 
(kDa) function 

8 8_1 ALTTQTPSTGGLAvs 

82 AYVEQPGAP 

83 AYVEQPGAPWGLARVSA 

8_4 AIVEQPGAPWGLARI 

10 101 AYVEQPGAPWGLARV 

102 AIVEQQGAPxGLgRIiNkxk 

103 AIVEQQGAPWGLARISNRQK 

104 ALTTQTPsTWGLARV 

26 - sYTTQQNAVwGLArIs 

65 - GIVEQSGAPWGLgRII 

9.6 34 unknown 

9.4 34 subtilisin 

9.3 33 subtilisin 

9.3 32 subtilisin 

9.35 33 subtilisin 

9.35 32 subtilisin 

9.3 32 subtilisin 

9.3 32 unknown 

9.0 32 subtilisin 

9.45 33 subtilisin 
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Fig. 4.2 Sequence similarity dendrogram of putative subtilisin-isoforms in isolates of V. chlamydosporium, according 
to the GCG program PILEUP. 

The sequences obtained from these isolates appeared to be variants of two 

basic motifs (Fig. 4.2). Eight out of ten had Q. GIN. AP/VWGLA/GRV/ I, in which 

". " represents a variable residue, and "/" one of two residues (Table 4.4). This 

particular motif is typical of fungal subtilisins (Siezen et al., 1991), and databank 

searches with any of these N-terminal sequences resulted in more or less the same list 

of homologous enzymes. The other sequence motif was ALTTQTPSTG/WGLA, which 

occurred in proteins 8_1 and 104 (Table 4.4). In this case, the homology was less 

obvious. The pattern ALTTQ does occur in some subtilisins (e. g. Trichoderma 

harzianum, EMBL/Genbank accession no. Q03420; and Aspergillus fumigatus, 

P28296), but the BLASTP program (Altschul et al., 1990), from the GCG software 

package, did not consider this homology as significant. Irrespective of the true nature 

of proteins 8_i and 10_4, the presence of multiple subtilisin-isoforms in at least two 

isolates of V chlamydosporium, and sequence variability between all isolates, was 

established by this sequencing experiment. 



Chapter 4 97 

4.3.4 Detection of subtilisin-like genes: hybridisation studies 

The quality of the DNA isolated from a range of nematophagous, entomogenous and 

phytopathogenic fungi (Table 4.1), and its digestion by EcoRI, appeared to be 

adequate as seen after agarose electrophoresis and staining with ethidium bromide. 

(Fig. 4.3). These digests were blotted, and hybridized to a ribosomal RNA gene 

repeat unit, pVARNA12, that was cloned from V. albo-atrum, isolate 1974 (Morton 

et al., 1995). This isolate was included in the study, and the restriction fragment 

length polymorphisms (RFLPs) obtained, not only provided comparative information 

on the fungi in question, but also served as an additional quality control of the blot. 

Apart from B. bassiana, all species had a DNA fragment of ca 3.2 kb that hybridized 

to the ribosomal probe from V albo-atrum (Fig. 4.4). This 3.2 kb band has been seen 

before in Verticillium (Carder & Barbara, 1991; Typas et al., 1992), and probably 

relates to fairly conserved EcoRI sites in the 5.8S and 25S ribosomal subunits 

(Garber et al., 1988). The pattern seen here in B. bassiana could be due to incomplete 

digestion, but it seems more likely that these isolates did not have an EcoRI site in 

their ribosomal repeat unit. Among the isolates of V chlamydosporium, isolate 26 

differed in that it missed the second band of ca 4.7 kb. The third band seen in isolate 

8 may be due to incomplete digestion of its DNA, the largest band being a fragment 

equal in size to the two smaller ones combined. The DNA from V lecanii, isolate 

My, was possibly also not digested to completion, for the same reason (Fig. 4.4). The 

plant pathogens V. albo-atrum and V. dahliae had a distinct pattern in common, and 

shared only one (V. nigrescens and V nubilum), or two bands (V. tricorpus) with the 

other plant pathogenic species of the genus. The double banding pattern of V. 
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Fig. 4.3 Genomic DNA, restricted with EcoRl and stained with ethidium bromide following separation on a 0.7% 

agarose gel, from the following fungi: V. chlamydosporium, isolate 8 pane 1); isolate 10 (lane 2); isolate 11 (lane 3); 

isolate 26 (lane 4); isolate 65 pane 5); V. lecanii, isolate 4 pane 6); isolate G (lane 7); isolate My (lane 8); V. albo- 

atrum, isolate 1974 (lane 9); V. dahliae, isolate 1764 pane 10); V. nigrescens pane 11); V. nubilum pane 12); V. 

tricorpus (lane 13); P. lilacinus (lane 14); P. fumoso roseus Cane 15); Acremonium sp. (lane 16); B. bassiana, isolate 

77 (lane 17); isolate 86 (lane 18); M. anisopliae, isolate 208 (lane 19); isolate 245 Cane 20); isolate ME I (lane 21); M. 

anisopliae var majus (lane 22); M. flavoviride (lane 23). 

Fig. 4.4 Southern blot of the gel seen in Fig. 4.3, hybridized with 3'P4abelled pVARNAI2, a full length ribosomal 

repeat unit from V. afbo-atrum (Morton et af., 1995). Numbering of lanes as in Fig. 4.3. 
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chlamydosporium reoccured in both species of Paecilomyces and in most isolates of 

Metarhizium (Fig. 4.4). 

Using as a probe a fragment of the Prl gene from M anisopliae, isolates 245 

or 47, RFLPs were observed that suggested qualitative differences in the subtilisin, 

genes within and between species. After moderately stringent washes (2 x SSC and 

0.1 % SDS, at 65°C) following hybridisation with the Prl probe from M anisopliae, 

isolate 245, a large number of bands appeared in the EcoRI-restricted DNA of V. 

chlamydosporium and V lecanii (Fig. 4.5). Apparently, most of these were weak 

homologies with the probe, as few bands remained after more stringent washing (0.2 

x SSC) of this blot (Fig. 4.6). Under these conditions, V chlamydosporium isolates 

11 and 65 had the same pattern, with hybridizing fragments of ca 6.0 and 1.4 kb. 

While in isolate 26 a single band was still clearly visible under the stringent washing 

conditions, very weak hybridisation of DNA from isolates 8 and 10 suggested weaker 

homology with the Prl-probe; isolate 10 had bands of ca 8 and 1.2 kb (Fig. 4.6). 

Interestingly, none of the phytopathogenic Verticillium species had DNA fragments 

with sufficient homology to the subtilisin, Prl, to withstand higher stringency 

washing (Fig. 4.6). Positives were obtained for P. lilacinus (fragment larger than 12 

kb), B. bassiana, and all Metarhizium isolates. Considerable variation was seen in the 

banding patterns of Metarhizium spp., with the homologous isolate 245 resulting in 

a single hybridizing fragment of ca 3 kb (Fig. 4.6). 

When a PCR-generated fragment of Prl from M anisopliae, isolate 47 was 

radiolabelled and used as a probe, banding patterns were obtained, essentially similar 
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Fig. 4. S Southern blot of the gel seen in Fig. 4.3, hybridized with a PCR product generated from genomic DNA from 

M. anisopliae, isolate 245, using primers based on the published sequence (St. Leger et al., 1992a) of Pr) from M. 

anisopliae, isolate ME1. Lanes as in Figs. 4.3-4.4: V. chlamydosporium, isolate 8 (lane 1); isolate 10 (lane 2); Isolate 

11 (lane 3); isolate 26 (lane 4); isolate 65 (lane 5); V. lecanii, isolate 4 (lane 6); Isolate G (lane 7); isolate My (lane 8); 

V. albo-atrum, isolate 1974 (lane 9); V. dahliae, isolate 1764 (lane 10); V. nigrescens (lane 11); V. nubilum (lane 12) 

V. tricorpus (lane 13); P. lilacinus (lane 14); P. fumoso-roseus (lane 15); Acremonium sp. (lane 16); B. bassiana, 

isolate 77 (lane 17); isolate 86 (lane 18); M. anisopliae, isolate 208 (lane 19); isolate 245 (lane 20); isolate ME 1 (lane 

21); M. anisopliae var majus (lane 22); M. flavoviride (lane 23). 

Fig. 4.6 Southern blot as in Fig. 4.5, but washed at higher stringency (0.2 x SSC). 

fig. 4.7 Southern blot of EcoRl-restricted DNA, hybridized with a PCR product generated from genomic DNA of M 

anisopliai, Isolate 47, using primers based on the published sequence (St. Leger et al., 1992a) of Pri from M 

anisopliac, Isolate ME1. Lanes as in fig. 4.5. 
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to those with Prl from isolate 245 (compare Figs. 4.7 and 4.5). The similarity in 

banding complexities with two related probes increased the reliability of the results. 

4.4 DISCUSSION 

The choice of V. chlamydosporium, isolate 10, as the source of the extracellular 

subtilisin-like protease VCP1, characterized in the previous Chapters, was based on 

the biological control potential of this particular isolate, and a growing body of 

available ecological data. In terms of total activity, isolate 10 had the highest yield 

of VCP1-like activity, in a soya peptone based medium, among the five V. 

chlamydosporium isolates tested. On the other hand, isolates 11 and 65 of V. 

chlamydosporium produced very little VCPI. However, genes, or gene fragments, 

with homology to the subtilisin Pr] from M. anisopliae were detected by Southern 

hybridisation, indicating that a similar gene, or genes, must be present in these 

isolates. These data can only be reconciled by assuming that (a) a poorly functioning 

gene product was secreted in isolates 11 and 65, (b) the enzyme had a different 

substrate specificity, that was not detected with the substrate suc-(Ala)2-Pro-Phe- 

pNA, or that (c) regulatory controls limited its secretion in the medium in which 

these fungi were grown. Four polyclonal antibodies against fungal subtilisins also 

reacted differently within the set of V. chlamydosporium isolates, indicating that 

epitopes were not as conserved among the enzymes of different isolates as might 

have been expected. 
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The immunological data suggested intraspecific structural differences 

between proteases, which are likely to be determined at the level of their primary 

structure. In this respect, results from Southern analysis provided corroborative data. 

Using two different subtilisin-derived DNA probes, three different groups of Y.. 

chlamydosporium isolates could be discerned. Firstly, isolates 8 and 10 had a similar 

pattern that, above all, was characterized by the faintness of the signal, suggesting 

weak homology with the subtilisin gene from the two M anisopliae isolates that had 

provided the probe. Secondly, a two-band pattern identical in isolates 11 and 65, and 

thirdly, a single band in isolate 26, distinct from all the others. A certain correlation 

existed between this grouping, based on EcoRl-generated DNA fragments, and the 

protease activity of these fungi, isolates 8 and 10 producing the most, or having the 

most active enzyme forms, isolates 11 and 65 the least, and 26 being intermediate. 

Most subtilisins share conserved regions, e. g. around the catalytic triad, but the 

connections between these segments can differ considerably, both in length and in 

sequence. These variable regions almost always are located on the external surface 

of the protein (Siezen et al., 1991) and can confer different properties, such as 

hydrophilicity (Coleman & Whitby, 1993) and ionic interactions (Betzel et al, 1992). 

There are reports of intraspecific structural differences between proteases, e. g. 

isolate-specific proteolytic activities have been described in Candida albicans 

(Riichel et al., 1982) and Tritirachium album (Samal et al., 1990). There is also 

apparent variability between the Pr]-like genes from various M anisopliae isolates. 

Digestion of genomic DNA with appropriate restriction enzymes and hybridisation 

to Pr1-cDNA revealed a single band, suggesting the presence of only one form of the 
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gene. However, European and Australian isolates had different sized fragments to 

those of American isolates (including MEl) (St. Leger et al., 1992a). Further kinetic 

and sequence data on the subtilisins of the different isolates clearly are required to 

elaborate on the structure-function relationship in the VCP1-like enzymes. Such, 

studies can lead to a profound understanding of enzyme properties, and are 

achievable, as illustrated by the comparative study of the alkaline proteases from 

Aspergillusfumigatus and A. oryzae. Their proteases are homologous (17% amino 

acid substitutions) (Jaton-Ogay et al., 1992), and differences in pI, optimum pH for 

collagen and elastin digestion, and specific activity for both substrates have been 

mapped to these substitutions (Monod et al., 1991). Another example is 

Dichelobacter nodosus, the causative bacterium of ovine footrot, virulent and benign 

isolates of which are immunologically distinguishable by their proteases, which 

apparently only differ in a single amino-acid (Riffkin et al., 1995). 

It has to be borne in mind that a variable number of bands on Southern blots 

from different isolates need not necessarily indicate the presence or absence of 

restriction sites in a single gene. The presence of more than one gene, homologous 

with the probe, could equally result in multiple bands. Moreover, the comparison of 

hybridisation data, published for M anisopliae (St. Leger et al., 1992a) and B. 

bassiana (Joshi et al., 1995) and Southern blots from the current study provides 

additional evidence for the presence of multiple forms of subtilisin-like genes. In the 

first report (St. Leger et al., 1992a), a Metarhizium Prl cDNA plasmid insert 

hybridized to a single EcoRI fragment of ca 6 kb in M. anisopliae, isolate ME 1, and 

to three fragments smaller than 2 kb in V lecanii, isolate 313. The Beauveria cDNA 
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probe, derived from isolate ARSEF252, on the other hand, hybridized to a single 

EcoRI fragment of 3.5 kb in ME 1 and a single fragment of ca 1.4 kb in V. lecanii, 

isolate 313 (Joshi et al., 1995). The amino acid sequences of the two cDNA 

translation products are 54% identical, and the nucleotide sequences 58%. It is, 

impossible to predict what sequence similarity is needed to permit hybridisation at 

the relatively high stringencies used in the two experiments, but most of the base 

similarity is in short stretches of less than 10 bp, which will reduce rather than 

increase the likelihood of hybridisation. Joshi et al. (1995) did not compare the two 

sets of data, but these reports seem to suggest that the two cDNA probes are each 

hybridising to different fragments in both M anisopliae, isolate ME1, and V. lecanii, 

isolate 313. In the current study, it was found that EcoRI-cut DNA from B. bassiana, 

isolate 86 (which is identical to ARSEF252, used by Joshi et al., 1995), fragment size 

6-9 kb hybridized to Prl probes, derived from M anisopliae. This fragment size was 

clearly different from the reported single band of 4.5 kb with the B. bassiana Prl 

cDNA (Joshi et al., 1995). In conclusion, the combination of data from two literature 

reports and Southern blots from this Chapter, suggest the presence of at least two 

forms of subtilisin-like genes in both M anisopliae, V lecanii and B. bassiana. 

Whereas the presence of multiple protease genes in the genome of V lecanii has been 

acknowledged, based on Southern analysis (St. Leger et al., 1992a), it is the recent 

discovery of isoforms that has suggested the presence of at least two distinct genes 

in M. anisopliae (St. Leger et al., 1994). A second subtilisin-like gene has recently 

been cloned from M anisopliae (R. J. St. Leger, Ithaca, personal communication), 

confirming this analysis. 
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When analytical IEF gels were blotted onto nitrocellulose, following the 

electrophoretic separation of the extracellular proteins of five V chlamydosporium 

isolates, and incubated with the substrate suc-(Ala)i-Pro-Phe-pNA, between one and 

four enzymes with different pI values became visible. To find out which enzymes. 

were responsible for these activities, alkaline proteins were rescued from analytical 

IEF gels and the N-terminal regions were sequenced. Surprisingly, a range of 

sequences with subtilisin homology were found, each isolate being characterized by 

a unique set. One protein, with little homology to subtilisins, had a variant in isolates 

8 and 10. Based on the current data, it cannot be concluded that these were subtilisin- 

isoforms. However, four distinct, but related, isoforms were seen in isolate 10, 

suggesting four related genes. Isolate 8 was characterized by two different subtilisin- 

like sequences, a third protein having an identical N-terminal sequence, but a slightly 

greater pI and molecular weight. At least two forms of the gene may be present in this 

isolate. St. Leger et al. (1994) only studied one isolate of M. anisopliae, and found 

three alkaline isoforms of Prl, with an identical N-terminal sequence GITEQSGAPW, 

and one less alkaline isoform, with the sequence DLTTQESAPWGLAAI. Therefore, 

the PrI-like enzymes in M. anisopliae, isolate ME1, are probably coded for by two 

distinct genes (St. Leger et al., 1994). The recent isolation of a Prl-like gene, 

encoding a protein different from the reported isoforms (R. J. St. Leger, Ithaca, 

personal communication), brings this number to three. 

The subtilisins, of at least isolate 10, of V chlamydosporium were remarkably 

polymorphic. The potential physiological implications of this enzyme complexity are 

considerable. Facultative pathogens and saprotrophs, exposed to diverse substrates 
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and environments, usually express much greater genetic variation than obligate 

parasites and highly specialized pathogens, which have uniform substrate and 

environment (adaptive polymorphism; Micales et al., 1992; Wildman, 1995). The 

apparent plethora of subtilisins in V. chlamydosporium could enhance the. 

saprotrophic abilities of the fungus, but also virulence and/or host specificity. 

Although additional characteristics of the isoforms await further investigation, there 

could be differences in substrate utilisation and regulation of enzymes from different 

isolates, while the presence of multiple isoforms in a single isolate potentially 

provides the fungus with the tools to hydrolyse additional substrates. 

Although the main focus of this study was on V. chlamydosporium, other 

species were included for comparison, and to study the distribution of VCP1-like 

activity. St. Leger et al. (1987b) studied the alkaline proteases from V. lecanii, B. 

bassiana and M anisopliae, and found their inhibitor sensitivity and substrate 

specificity very similar, apart from the secondary subsite specificities. The same 

authors showed that a polyclonal antiserum against Prl from M anisopliae cross- 

reacted only with enzymes from two M anisopliae isolates; the proteases from two 

other isolates, and those from V. lecanii and B. bassiana did not cross-react in 

Ouchterlony diffusion tests. However, more sensitive ELISA assays do suggest the 

presence of common antigens among the basic proteases from B. bassiana, P. 

fumoso-roseus, and M anisopliae (Shimizu et al., 1993), a conclusion which was 

confirmed by the Western blot analysis of the current study. 

There is little information on protease production by Verticillium species 

other than V chlamydosporium and V. lecanii. Verticillium suchlasporium, closely 
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related to V. chlamydosporium (Gams, 1988; Carder et al., 1993), secretes a 32 kDa 

serine protease in semi-liquid gelatin medium (Lopez-Llorca, 1990). Although no 

sequence data exist for this enzyme, considerable similarity with VCP 1 is anticipated 

based on the Western blot analysis in Section 3.3.1 of this study. Verticillium. 

fungicola, not included in the current study, is a pathogen of the cultivated mushroom 

Agaricus bisporus, and also secretes an alkaline serine protease, of unidentified 

nature (Kalberer, 1984). 

The genus Verticillium contains a number of plant pathogens, including V. 

albo-atrum, V. dahliae, V nigrescens, V. nubilum and V. tricorpus (Domsch et al., 

1980). This is an interesting series of fungi, because it represents a gradient in 

pathogenicity and saprotrophic ability (Table 4.5). 

Table 4.5 Pathogenicity and ecological characteristics of five phytopathogenic Verticillium species used in this study. 

Data were compiled from Isaac (1953,1967), Garrett (1956) and Domsch et al. (1980). 

Species Virulence Ecological category 

V. albo-atrum 

V. dahliae 

V. tricorpus 

V. nigrescens 

V. nubilum 

High 

High 

Between V. dahliae and V. nubilum 

Between V. dahliae and V. nubilum 

Weak 

Root inhabitator 

Root inhabitator 

Intermediate 

Soil inhabitator" 

Soil inhabitator 

(') Root inhabitators have an 'expanding parasitic phase on the living host tissue and a declining saprophytic phase 

after its death', while (°) Soil inhabitators can 'survive indefinitely as soil saprophytes and parasitism is incidental to 

their saprophytic existence in soil' (Garrett, 1956). 

While virtually no VCPI-like activity was recorded in V. albo-atrum, V. dahliae, V. 

nigrescens and V tricorpus, a relatively large amount was produced by V. nubilum. 

There was no immunological cross-reactivity of the V nubilum protease with antisera 
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against subtilisins from four source fungi, nor did its EcoRI-restricted DNA hybridize 

with probes derived from Pr) of two M anisopliae isolates, suggesting limited 

homology with the V nubilum enzyme, and its coding gene, respectively. 

Interestingly, V. nubilum is probably the species with the highest degree of 

saprotrophy, being a limited pathogen and surviving well in soil. These data suggest 

that VCPI is redundant in the phytopathogenic habit, but contributes to the 

saprotrophic mode of Yerticillium species. 

Globally, proteases of plant pathogenic fungi have received much less 

attention than other hydrolases, e. g. cutinases and endopolygalacturonidases. 

Although proteases have been detected during infection of plant tissue by several 

types of fungi (Wijesundera et al., 1989; Rauscher et al., 1995), in few cases is there 

significant evidence for a primary role in infection (Ball et al., 1991; Movahedi et al., 

1991). In a taxonomic study of the genus Verticillium, plant pathogenic isolates (V. 

albo-atrum only) could be separated from seventy other Verticillium isolates, partly 

because of their lack of protease activity (Jun et al., 1991). However, there are 

anecdotal records of proteolytic activity by a serine-type enzyme in V. albo-atrum 

and V. dahliae (Mussell & Strouse, 1971; Lambert & Pujarniscle, 1984). An isolate 

of V. dahliae, grown on skimmed milk medium, produces a trypsin-like protease, 

molecular mass ca 30 kDa (K. Dobinson, London, Ontario, Canada, personal 

communication). 

An unidentified Acremonium sp., used in this study, did not produce VCPI- 

like activity, which is remarkable for several reasons. Firstly, one of the enzymes 

most homologous with VCP I is from a species of the same family, A. chrysogenum 
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(see Section 3.3.3). Secondly, the taxonomically revised genus Acremonium Link ex 

Fr. currently includes most former Cephalosporium Corda species. Remaining 

species from Cephalosporium were moved to Verticillium Nees ex Link section 

Prostrata. Furthermore, Paecilomyces Bain. "is very similar to Acremonium", 

(Domsch et al., 1980), suggesting close relationships with some positive protease- 

producers included in this study. Thirdly, the current Acremonium sp. was isolated 

from G. rostochiensis, and appears to have some biological control potential for this 

nematode (D. H. Crump, IACR-Rothamsted, personal communication). Similarly, A. 

strictum (Nigh et al., 1980) and A. sordidulum (Schuster & Sikora, 1992) infect cyst 

nematode eggs. Unfortunately, the mode of action of the Acremonium spp. that are 

pathogens of cyst nematodes has not been established, nor have their proteolytic 

activities, if any, been studied. In view of the proposed role of VCP 1 produced by V. 

chlamydosporium in the infection process of nematode eggs (see Chapter 5), such 

data are eagerly awaited. 



5 
Infection process and involvement 
of VCPI 

5.1 INTRODUCTION 

The nematophagous fungus Verticillium chlamydosporium is one of the main causes 

of the natural decline of the cereal cyst nematode, Heterodera avenae Wollenw., in 

monocultures of susceptible crops (Kerry et al., 1982). One particular isolate of V 

chlamydosporium, number 10, is considered a potential agent for the biological 

control of root-knot nematodes (de Leij & Kerry, 1991; de Leij et al., 1993b). The 

infection process of nematode eggs and females by this fungus has been outlined in 

Section 1.4.3. 

Verticillium chlamydosporium, isolate 10, however, is a poor parasite of 

Globodera species (Kerry & Crump, unpublished), and there are few reports of 

isolates infecting the economically important potato cyst nematodes Globodera 

pallida (Stone) Behr. and G. rostochiensis (Wollenw. ) Behr. (Roessner, 1987; 

Hiemer & Sikora, 1988; Crump, 1989; Crump & Irving, 1992). Furthermore, few 

other fungi show promise as biological control agents against eggs and/or females of 

these particular nematodes (Willcox & Tribe, 1974; Clovis & Nolan, 1983; Morgan- 

Jones & Rodriguez-Käbana, 1986; Roessner, 1987). The underlying mechanisms for 

this apparent resistance of potato cyst nematode eggs to fungal infection are not 

understood. It has been proposed that the size and structure of the vulval aperture in 

the cyst wall in Globodera spp. would make them less susceptible, as many fungi 

probably use the natural orifices for penetration (Tribe, 1980). It is also possible that 

no compatible fungal biotypes are yet present in areas where Globodera is not native 
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(Morgan-Jones & Rodriguez-Käbana, 1988). Still, the question remains as to why V. 

chlamydosporium, isolate 10, is inefficient at infecting Globodera spp. 

Verticillium suchlasporium Gams & Dackman, a member of the V. 

chlamydosporium/V suchlasporium species complex (Carder et al., 1993), produces 

appressoria and a VCP1-like protease (see Chapter 3) when infecting eggs of the beet 

cyst nematode Heterodera schachtii Schmidt (Lopez-Llorca & Claugher, 1990). 

Appressoria are also produced by other fungi parasitic on eggs of Meloidogyne spp. 

(Stirling & Mankau, 1979; Dunn et al., 1982). Little, however, is known about the 

growth of V chlamydosporium, isolate 10, on the surfaces of eggs of Meloidogyne 

incognita (Kof. & White) Chitw. and G. rostochiensis. The mycelium/egg interface 

is relevant, as V. chlamydosporium infects nematode eggs by hyphal penetration 

(Morgan-Jones et al., 1983; Lysek & Kraj6i, 1987; Lopez-Llorca & Duncan, 1991; 

Lopez-Llorca & Robertson, 1992b). In saprotrophic mode, V. chlamydosporium, 

isolate 10, produced a subtilisin, VCP1. Its relative abundance and broad substrate 

utilization (see Chapter 2) makes this protease a candidate-enzyme assisting fungal 

penetration by hydrolysing the proteinaceous nematode egg shell, i. e. during 

pathogenic mode. 

Elucidation of the underlying mechanisms for specificity could help identify 

the attributes of successful pathogens and determine the barriers to infection. 

Ultimately this knowledge could help in the selection of compatible, virulent strains 

for use in biological control programmes. The aim of the experiments described in 

this Chapter was to determine, using microscopy techniques and bioassays, whether 

the subtilisin, VCPI, could be involved in the infection of M. incognita and G. 
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rostochiensis eggs by V chlamydosporium, isolate 10, and to investigate whether 

VCP 1 was implicated in the relative host specificity of the fungus. 

5.2 MATERIALS & METHODS 

5.2.1 Nematodes and growth conditions 

The potato cyst nematode, Globodera rostochiensis, pathotype Ro 1, was cultured on 

Solanum tuberosum L. cv. Desiree, while the root-knot nematode, Meloidogyne 

incognita, was grown on Solanum melongena L. cv. Black Bell, both in the 

glasshouse. Mature G. rostochiensis cysts were extracted from the soil after the plants 

had died, using a fluidising column (Trudgill et al., 1972). Subsequently, the cysts 

were crushed with forceps to release their egg contents. All G. rostochiensis eggs 

contained dormant, fully developed second stage juveniles. Eggs were surface- 

sterilized in 0.1 % (w/v) HgC12 (Sijmons et al., 1991). Eggs of M incognita, which 

contained embryos and juveniles in various stages of development, were collected by 

brief but vigorous washing of infected roots with 20% (v/v) domestic bleach (4% 

[w/v] available chlorine) to release eggs from the egg masses on the root surface. 

They were immediately rinsed on a 30 µm aperture sieve, separated from plant and 

soil debris by sugar centrifugation (47% [w/v] sucrose, 600 g for 30 sec), rinsed, and 

sterilized as above. 
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5.2.2 Proteolysis of egg shell proteins in situ 

Surface-sterilised eggs of M incognita and G. rostochiensis (ca 1,200) were 

incubated with 20 pg ml'' of the following proteases: VCP1, purified from V. 

chiamydosporium, isolate 10; PrI from M anisopliae, isolate 245; or proteinase K 

(Sigma). Each enzyme, denatured by boiling for 10 min, served as a control, and all 

eggs were incubated at 23°C for 48 h. Eggs were pelleted in an Eppendorf micro- 

centrifuge at 12,000 g for 1 min and solubilised protein was determined, using bovine 

serum albumin as a standard (Bradford, 1976). There were four replicates per assay. 

In order to visualize proteolysis, M. incognita eggs, similarly treated with 

VCP1, were stained for ß-glucans with Calcofluor white M2R (Butt et al., 1989) 

after 18 hours incubation and examined with an Olympus BH-2 microscope fitted 

with epifluorescence attachments, including a 405 nm excitation filter and a 455 Mn 

barrier filter. 

5.2.3 Bioassays 

Water agar (WA, 1% [w/v], Fisons, UK) plates were inoculated with V. 
4 

chlamydosporium using a suspension of 9x10' conidia and 4x104 chlamydospores in 

0.2 ml sterile distilled water per plate. In all experiments, the fungus was allowed to 

grow for 6 days before nematode eggs were added; all assays were undertaken at 

20°C. In preliminary experiments, fluorescence microscopy verified that exposing 

eggs of G. rostochiensis and M. incognita to bleach did not remove their vitelline 

layer, or increase the susceptibility of this layer to proteolysis by VCP1 (data not 
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shown). Meloidogyne incognita or G. rostochiensis eggs (ca 1,000) were added to the 

fungal cultures or to WA without the fungus (control). 

To investigate the role of VCP1 in fungal pathogenesis, similar numbers of 

eggs were pretreated with 20 Vg ml-' purified enzyme at 23°C for 24 h. To remove 

the enzyme, the eggs were washed three times with intervening centrifugation using 

an Eppendorf microcentrifuge at 2,000 g for 2 min. In order to denature proteins 

and/or make the egg shell more permeable, eggs were also boiled for 3 min, before 

adding them to the fungus. A final treatment consisted of eggs, killed using 0.1% 

(w/v) sodium azide. This treatment arrests metabolic processes without gross 

destruction of surface proteins. The azide was removed by washing as before. All 

treatments consisted of two replicate plates. The washing and pelleting procedures 

did not influence host susceptibility, as demonstrated by preliminary bioassays. 

Infection and fungal growth on the egg surface were recorded after 6 and 14 

days. A1 cm2 agar block of each treatment was cut out aseptically, stained with 

Calcofluor white M2R (Sigma) and examined with an Olympus BH-2 microscope as 

described in the previous Section. Fifty eggs per replicate, i. e. 100 per treatment, 
A 

were examined at x500 and x1250 magnification, using a combination of bright field 

illumination and fluorescence. An egg was considered to be infected when either (a) 

penetrating hyphae were visible, (b) when there was abundant hyphal growth inside, 

or (c) when hyphae emerged from the egg. Fungal growth on the egg surface was 

quantified, and the number and types of appressoria recorded. Infection frequencies, 

were analysed using Fisher's exact tests, while mean surface growth per egg was 
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compared between treated and untreated eggs using Wilcoxon rank sum tests (SAS 

Institute, 1985). 

5.2.4 Indirect immunofluorescence 

Protease production by the fungus during the early stages of infection was 

demonstrated by indirect immunofluorescence. Verticillium chlamydosporium, isolate 

10, was grown on WA and surface-sterilized M. incognita eggs were added as 

described for the bioassays. Six days after adding eggs to the fungus, eggs were 

collected from these plates and fixed in 2% (v/v) formaldehyde for 1h at 23°C. After 

washing with PBS, eggs were incubated with 2% (v/v) anti-VCP 1 serum (see Chapter 

3) for 2 h. After removing excess primary antibody, a goat anti-rabbit antibody, 

conjugated with tetramethyl rhodamine isothiocyanate (TRITC, Sigma), was applied 

at 2.5% (v/v). Samples were examined with a fluorescence microscope as described 

before, using a filter set appropriate for TRITC. 

5.2.5 Low Temperature Scanning Electron Microscopy (LTSEM) 

Samples from each treatment were examined by LTSEM to visualise the fine 

structure of the pathogen, eggs and host-pathogen interactions. Specimens were 

mounted on copper stubs, plunged in liquid nitrogen, and sputter-coated with gold 

in an EMscope SP2000 Sputter-Cryo Cryogenic-Preparation System using the 

procedures described by Beckett & Read (1986) and examined in the partially freeze- 

dried state, with a Philips 501B scanning electron microscope. 



Chapter 5 116 

5.3 RESULTS 

5.3.1 Proteolysis of egg shell proteins in situ 

Intact eggs of the root-knot nematode, M. incognita, and the potato cyst nematode, 

G. rostochiensis, were incubated with homogeneous VCP 1. Protein assays indicated 

that VCP1 released significantly more peptides from eggs of M incognita (38.8 µg 

ml-1) than from those of G. rostochiensis (13.7 µg ml-', S. E. M. = 6.5 µg ml-') (Fig. 

5.1). However, the homologous proteases Prl and proteinase K were significantly 

less effective on M incognita eggs (26.6 µg m1' and 21.1 µg ml-', respectively), but 

slightly more effective on those of G. rostochiensis (20.0 . tg ml' and 20.3 µg ml-1, 

respectively), compared with VCP I. 

VCP1 Pr1 

Protease 

Proteinase K 

Fig. 5.1 Amount of protein hydrolysed from intact M. incognita and G. rostochiensis eggs by 20pg ml-' of 

homogeneous VCP1 from V. chlamydosporium, isolate 10; Pr1 from M. anisopliae; or proteinase K. Hydrolysis 

products were quantified using a protein assay according to Bradford (1976), using BSA as a standard. Means of 

three replicates, corrected for background protein. Error bar represents S. E. D. - 6.5 pg ml''. 
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Fig. 5.2 Photomicrographs of M. incognita eggs, stained with Calcofluor white M2R, following treatment with 0.2 

units of VCP1 for 18 hours, recorded in bright field (a) and violet light (b), and eggs treated with the same amount of 

heat-denatured VCP1 in bright field (c) and violet light (d). Bar, 20 /gym. Small arrow points at immature egg, large 

arrow at mature egg. 

Fig. 5.3 Photomicrograph of C. rostochiensis eggs, stained with Calcofluor white M2R, following similar treatment 

with VCP1, recorded in violet light. Bar, 20 pm. 
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The removal of the outer protein layer from the M incognita egg-shells was 

further evidenced by staining similarly treated eggs for chitin with Calcofluor, 

resulting in very low background fluorescence in the eggs incubated in denatured 

protease (Fig. 5.2d), but bright blue fluorescence in VCP I -treated eggs (Fig. 5.2b). 

Since protein and chitin are main structural components of nematode egg-shells, 

chitin being covered by protein (Clarke et at, 1967, Bird & McClure, 1976), this 

result suggests that the underlying chitin fibrils had been exposed. Eggs contained 

embryos in various developmental stages (Fig 5.2a, c), but the fluorescence intensity 

of the egg shells was similar for all eggs (Fig. 5.2b, d). However, enzyme-treated G. 

rostochiensis eggs did not stain. Although all G. rostochiensis eggs had some degree 

of yellow background fluorescence with the filter set required for Calcofluor, the 

fluorescent dye did not stain the eggs of this species (Fig. 5.3) 

5.3.2 Infection rates 

Verticillium chlamydosporium, isolate 10, was highly pathogenic for eggs of M. 

incognita but weakly pathogenic for those of G. rostochiensis, irrespective of whether 

observations were made 6 or 14 days post-inoculation. After 14 days, 79.7% of M. 

incognita eggs were infected (Table 5.1). Infection of G. rostochiensis eggs by this 

fungus (6.7 and 9.0% after 6 and 14 days, respectively) was not significantly greater 

than in the treatment with no fungus added reflecting background infection in G. 

rostochiensis eggs (2.8 and 5.6% after 6 and 14 days, respectively). When M. 

incognita eggs were pretreated with VCP1, sodium azide or boiled, infection was 

accelerated, reaching 100% 14 days post-inoculation and with most eggs colonised 
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after 6 days (Table 5.1). Although more eggs of G. rostochiensis also became 

infected following these treatments, the increases were comparatively small, with 

only VCP 1 significantly enhancing infection (from 9.0 - 29.2%, p<0.01). 

Table 5.1 Infection frequencies (96 eggs infected) of M. incognita and G. rostochiensis, 6 and 14 days after adding 

eggs to V. chlamydosporium, isolate 10. Eggs were either untreated (control) or were pretreated by suspending in 

protease (VCP1), by heat-denaturing, or by suspending in sodium azide. Infection of uninoculated eggs never 

exceeded 5% (not shown). Treatments were compared to untreated eggs (control) using 2-tailed Fisher's exact tests. 

Time 

(davi 

M. incognita G. rostochiensis 

Control Protease Control Protease Heat Azide Heat Azide 

6 23.7 92.9 -' 94.6 """ 77.8 """ 6.7 11.0 NS 10.2 NS 16.4 NS 

14 79.7 100.0 --- 100.0 """ 100.0 """ 9.0 29.2 "" 20.3 NS 7.5 NS 

" NS, ", **or*"* :p>0.05, p< 0.05; p<0.01, or p<0.001, respectively. These significance levels relate to 

comparison between treated and untreated (control) eggs within each species and time. 

Table S. 2 Surface growth (mean length of hypha [in pm], visible on egg surface) on M. incognita and G. 

rostochiensis eggs inoculated with V. chlamydosporium, isolate 10. Eggs were either untreated (control) or were 

pretreated by suspending in protease (VCP1), by heat-denaturing, or by suspending in sodium azide. Eggs with 

surface growth exceeding 400 pm were excluded since those measurements were increasingly inaccurate. 

Time M. incognita 

(day) 
G. rostochiensis 

Control Protease Heat Azide Control Protease Heat Azide 

6 44.4 172.6 """" 141.4 """ 52.6 NS 25.8 39.0 NS 34.6 NS 30.2 NS 

14 110.0 112.8NS 105.8NS 150.0NS 18.8 153.6""" 71.4""" 48.6" 

' Significance levels indicated (see Table 5.1) relate to comparison between treated and untreated eggs within each 

nematode species and number of days post-inoculation. 

5.3.3 Morphological aspects of the infection process 

Healthy eggs of M incognita and G. rostochiensis were similar in size but the former 

had thinner and more translucent egg shells. The shell of the M incognita eggs often 

collapsed over the juveniles inside, while eggs of G. rostochiensis at a similar stage 

of development remained rigid. 
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Infection rates appeared to be correlated with the amount of surface growth 

(see Tables 5.1 and 5.2). In all treatments, V. chlamydosporium colonized the egg 

surface, to different degrees, but the external colonisation of M. incognita eggs was 

faster and more extensive than that of G. rostochiensis (compare growth at 6 and 14 

days post-inoculation). Hyphal growth over egg surfaces 6 days post-inoculation was 

particularly extensive in heat- or VCP1-treated M incognita eggs. In contrast, sodium 

azide, a metabolic poison, had no apparent effect (Table 5.2). After 14 days, there 

was no significant difference between surface growth on untreated and treated eggs 

of M incognita. While the fungal growth on the surface of G. rostochiensis control 

eggs did not increase between 6 and 14 days post-inoculation, eggs killed by heat, or 

pretreated with protease, had significantly more external growth after 14 days (p < 

0.001; Table 5.2). 

Appressoria of different shapes and sizes were produced by V 

chlamydosporium either at the ends of long hyphae, or from lateral branches. These 

consisted of prominently swollen or little differentiated structures which developed 

on eggs of both M. incognita and G. rostochiensis (Figs. 5.4-5.7). In general, few 

appressoria were formed (Table 5.3). When examining infected eggs, the penetration 

site could often not be identified, although the presence of the fungus in the egg was 

clear (Figs. 5.8 and 5.9). This suggests that appressoria may not always be produced, 

or overlooked because they were inconspicuous or present against a highly 

fluorescent background. Although strong fluorescence of heavily infected eggs 

prevented quantification of at least some appressoria, there was a difference in the 

number and type produced on the two species. More swollen appressoria developed 
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FigS. 4 Fluorescence micrograph of a terminal appressoriurn Urrvwf of V. chlamydosporium, isolate 10, attached to 

the surface of an egg of Metor logyne incognita. Note the colonization hyphae lsmafl arrwrl. Stained with Calcofluor 

White M2R. Bar - 10 pm. 

Fig. SS Scanning electron micrograph of lateral appressoriurn of V. chlamydaspwium. isolate 10, formed on the 

surface of the egg of M. incognita. Bar -2 /gym. 

Figs. 5.6a-c Fluorescence micrographs of three optical sections of s single hypha which has produced two 

appressoria on the surface of an egg of M. incognita. A penetration hypha has been produced by each appressorium. 

A circular bore hole denotes the site of penetration (arrows). 

Fig. S. 7 Fluorescence micrograph of the relatively little developed appressoria on the surface of aG rostochiensis 

egg. At this stage, there were no signs of actual infection of the egg Bar - 104xn. 
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on eggs of M. incognita than on eggs of G. rostochiensis, e. g. 6 days post- 

inoculation, there were on average 1.53 lateral, swollen appressoria on each VCP1- 

pretreated M incognita egg, but none on G. rostochiensis eggs (p < 0.01) (Table 5.3). 

These differences corresponded to the relative amounts of fungal growth on the egg 

surfaces of both nematode species (Table 5.2). More than one appressorium could be 

produced by the parent hypha on either nematode species (Figs. 5.5-5.8). Appressoria 

were produced on any part of the egg. 

Table 5.3 Appressoria (mean number per egg) on M. incognita and G. rostochiensis eggs. Eggs were either untreated 

(control) or were pretreated by suspending in protease (VCP1), by heat-denaturing, or by suspending in sodium 

azide. Appressoria (App. ) were either prominent, swollen, occurring terminally (T) or laterally (U on hyphae, or 

inconspicuous, non-differentiated terminal (NDT) or lateral (NDU structures. Excluded were eggs with surface 

growth exceeding 400 pm. 

Time App. M. incognita C. rostochiensis 

(day) type Cont. Protease Heat Azide Cont. Protease Heat Azide 

6T0.04 0N5' 0.14NS 0.10N5 0.01 0N5 0N5 ONS 

L 0.31 1.53 """ 0.95 "" 0.68 NS 0.02 0 NS 0 NS 0.02 NS 

NDT 0.01 0NS 0NS 0N5 0 0.02N5 00 

NDL 0.10 0.47 "" 0.14 NS 0.15 " 0.01 0.22 " 0.02 NS 0.20 " 

14 T00000000 

L 0.56 0.78 NS 1.56 " 1.00 NS 0.03 0.13 " 0.01 NS 0.02 N5 

NDT 0.12 0 N5 0 NS 0 NS 0 0.05 N5 00 

NDL 0.08 0NS 0NS 0 N5 0.06 1.59 ... 0.37""" 0.14NS 

' Significance levels indicated (see Table 5.1) relate to comparison between treated and untreated eggs within each 

nematode species and number of days post-inoculation. 

Eggs were penetrated by short, narrow penetration pegs which became 

swollen immediately after breaching the egg shell. The first indication of peg 

formation was the appearance of a bright, circular ring beneath the appressorium. 

These circles were seen on both If incognita and G. rostochiensis eggs suggesting 
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F'rg. 5.8 Intemal colonization of a M. incognita egg by V. chlamydosporium. Note the appearance of the fungus as 

hyphae with short, bulbous fragments. Bar, i0 /wn. 

Fig. 5.9 Intenul colonization of a M. incognita egg by V. chlan, ydosporium. The fungus, colonizing the pseudocoel, 
follows the outline of the juvenile. Bar, 10 km. 

Fig. 5.10 Late stage of infection of M. incognita eggs by V. dJamydosporium, `breakout' hyphae are visible. Bar, 40 

pm. 

Fig. 5.11 Late stage of infection of M. incognita eggs by V chlamydosporwm; morphological transition from 

bulbous, internal mycelium to slender, post emergence hyphae with larger inter egmental distance. Bar, 5 1m+- 
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similar mechanisms of entry. Occasionally, the penetration pegs failed to enter the 

egg of either species, in which case they either grew on the surface of the egg (Fig. 

5.6) or aborted after limited growth. 

Verticillium chlamydosporium not only penetrated the egg shell, but the 

juvenile cuticle as well, as it often developed in the nematode's pseudocoel (Fig. 5.9). 

At this stage, the hyphal morphology was typically altered, from narrow pre- 

penetration hyphae with large inter-septal distances, to a post-penetration mycelial 

system with short, bulbous segments. There was no evidence of fragmentation of the 

mycelium into the yeast-like hyphal bodies (blastospores) that are formed by some 

entomopathogenic fungi to disperse through the insect haemocoel (Hall & Papierok, 

1982; Charnley, 1984). In a rare event, a juvenile was seen escaping a penetrated egg 

shell before becoming infected (Figs. 5.12). The pressure of the coverslip may have 

caused it to "hatch". These observations indicate that V chlamydosporium was able 

to initiate the infection process of nematode eggs that were still vital, confirming its 

pathogenic nature. The attempted infection of this fully-fledged second-stage juvenile 

also suggests that V chlamydosporium was not confined to eggs containing embryos 

in the early developmental stages, which was confirmed by numerous other instances 

where the fungus had clearly colonised juveniles in eggs. 

While a single hypha could infect an egg, numerous "break-out" hyphae 

ususally emerged in the late stages of infection (Fig. 5.10). A typical "break-out" 

event is shown in Fig. 5.11. The sudden morphological transition from bulbous, 

internal mycelium to post-emergence hyphae resembled that at the beginning of the 

infection process. The bulbous segment that often developed on the inside of the egg 
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Fig. 5.12 (a) Second-stage juvenile of M. incognita, moving inside its egg and ready to hatch. (b), (c) Juvenile has 

broken through the egg shell. (d) Juvenile migrating away, leaving empty shelf with appressorium on the outside 

(large arrow), and penetration hypha on the inside (small arrow). (a), (b) Bright field, and (c), (d) combined bright 

field and fluorescence (Calcofluor staining). Bar, 20 , um. 
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shell was somewhat homologous with an appressorium. However, no infection peg 

was observed during the outwards penetration of the egg shell, which may indicate 

that the egg shell had lost some integrity at that stage (Fig. 5.11). In the conditions 

of the assay, there was very limited sporulation post-emergence, and the fungus 

continued to grow as mycelium. 

5.3.4 Enzymes in the early stages of infection 

Extracellular fungal enzymes appeared to play a role in the infection processes of V. 

chlamydosporium, isolate 10, as indicated by imprints of hyphae on the M. incognita 

egg surface (Fig. 5.14). The localization of VCPI, by immunofluorescence, around 

appressoria suggested that the protease was produced by infection structures prior to, 

or concurrent with, penetration (Fig. 5.13a, b). Pitting and/or lesions in eggs treated 

with VCP1 were more extensive in the presence of the fungus than in its absence, 

suggesting that the protease treatment had weakened the egg shell of M incognita 

(Fig. 5.15). In contrast, no lesions were detected on G. rostochiensis eggs treated with 

the enzyme, with or without the pathogen (Fig. 5.16). 

5.4 DISCUSSION 

The experiments in this Chapter confirmed that V chlamydosporium, isolate 10, was 

highly pathogenic for the root-knot nematode, M incognita, as reflected by rapid egg 

penetration and colonization of a large proportion of eggs exposed to the fungus in 

an in vitro bioassay. Not only was the purified fungal protease, VCP 1, able to 
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Figs. S. 13 Fluorescence (a) and combined bright field and fluorescence (b) images of a single egg of M. incognita, 

not yet penetrated, containing a second-stage juvenile of M. incognita. (a) Calcofluor staining of a fragment of a 

hypha with terminal appressorium (black arrow) and fluorescent lesion (white arrow). (b) Immunolocalization of 

VCP1 on the same egg using anti-VCPI antibody and rhodamine-conjugated secondary antibody. The fluorescence 

corresponds with the site of the lesion (white arrow). Bar - 10 pm. 
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hydrolyse proteins from the outer layer of M incognita eggs, but eggs that had been 

exposed to the protease were also quickly lysed and degraded by the fungus, 

suggesting that removing, or damaging, the vitelline layer physically weakened the 

egg shell. A bioassay confirmed the higher susceptibility of these protease-treated 

eggs. Immunofluorescence microscopy detected the protease on the surface of egg 

shells, where it was produced by appressoria. Together, these data suggest a role for 

VCP 1 in pathogenesis. The protease may also work in concert with other secreted 

enzymes, as lesions in VCP1-treated eggs were far more extensive in the presence of 

the fungus than in its absence. Some of these enzymes have already been reported 

(Carder et al., 1993), and they may facilitate infection and utilization of the egg 

contents as a source of nutrients for growth. 

On the other hand, V chlamydosporium, isolate 10, was much less pathogenic 

for the potato cyst nematode, G. rostochiensis. The prime difference in fungal growth 

on M incognita and G. rostochiensis eggshells was the limited surface growth on the 

latter, combined with a higher proportion of little-differentiated appressoria. The 

factors governing these growth and differentiation patterns must be determined by the 

respective eggshells. 

Clearly, the egg shell of M incognita is thinner than that of G. rostochiensis 

(O'Hara & Jatala, 1985; Jatala, 1986), which was also evident in this study. Although 

egg shell thickness may be a resistance factor, it does not explain the differences in 

fungal growth and differentiation seen on eggs of the two species. Rather, these 

differences could be based on nutritional availability on the egg surface, intrinsic 

recognition patterns, or fungistatic compounds. The nutritional status on the egg shell 
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Fig. 5.14 Scanning electron micrograph of hypha of V. chlamydosporium, isolate 10, growing on the surface of an 

egg of M. incognita. Part of the hypha was broken off (arrow) during preparation exposing the underlying imprint on 

the egg surface presumably due to enzyme action. Bar -2 /en. 

Fig. 5.15 Scanning electron micrograph of an egg of M. incognita pretreated with VCPI and colonized by V. 

chlamydosporium, isolate 10. Note the numerous large holes and extensive colonization of the egg surface by the 

pathogen. Bar - 20/en. 

Fig. 5.16 A similarly treated C. rostochiensis egg is intact and there is little growth on the egg surface. Bar - 20 Jim. 
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of M incognita may be determined by the apparent ability of the fungal protease to 

inflict damage on the outer layer(s), making hydrolysis products available for growth. 

Eggs of both M. incognita and G. rostochiensis have an outer vitelline layer (Bird & 

McClure, 1976; Perry et al., 1982) but the lack of hydrolysis of the latter suggests a 

different composition. A potential resistance mechanism, proposed by Lopez-Llorca 

& Fry (1989) is tyrosine cross-linking of proteins, which occurs in G. rostochiensis 

egg shells. However, it is unclear whether this protein tanning occurs in M incognita. 

Specific recognition phenomena, as yet undocumented, may account for the advanced 

differentiation of many appressoria on eggs of M incognita, while, equally 

hypothetical, fungistasis by components of the G. rostochiensis eggshell may be 

responsible for the limited surface growth on these eggs. 

It is conceivable that the heat treatment of eggs resulted in modified host 

surface properties by denaturation of surface proteins, but increased infection rates 

did not suggest that impeded host recognition was the main effect of heating. It is 

plausible that the overriding effect was increased permeability of the eggshell, as 

observed with M. javanica after exposure to 60°C (Bird & McClure, 1976). Heating 

may cause more nutrients to leak from the egg, explaining the enhanced surface 

growth of the fungus in this treatment. The rather limited effect of the heat treatment 

on the susceptibility of G. rostochiensis suggests a very rigid eggshell in this 

nematode. 

VCP 1 hydrolysed only a small amount of protein from G. rostochiensis eggs. 

Enzyme-treated G. rostochiensis supported a larger fungal biomass on the egg 

surface, and more ensuing infections, compared to control eggs, suggesting that the 
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pretreatment with the protease must have inflicted some damage on the egg shell 

surface. Although less active than VCPI on M incognita eggs, the fungal subtilisins, 

PrI and proteinase K, released more protein from G. rostochiensis eggs than VCP 1. 

Both Prl and proteinase K are related to VCPI and, if G. rostochiensis eggs could 

be demonstrated to be more susceptible to infection after treatment with these 

enzymes, it may be a worthwhile exercise to transform V. chlamydosporium, isolate 

10, with the gene for either Pri or proteinase K; this could increase the pathogenicity 

towards G. rostochiensis. 

Verticillium chlamydosporium infects nematode eggs by hyphal penetration. 

A feature of this mode of infection was that several appressoria could be produced 

by the same hypha, theoretically increasing the chances of infection. This appears not 

to have been reported for any other nematophagous fungus. It is unclear whether V 

chlamydosporium isolates differ in their ability to form multiple appressoria per 

hypha, what influences this branching pattern and how it could be manipulated. 

Appressoria differentiated on dead as well as live eggs, suggesting that their 

formation was not limited to the parasitic state of the fungus. Dead root-knot 

nematode eggs were more susceptible to infection than eggs that were added to the 

fungus when they were still alive, suggesting that the saprotrophic mode of V 

chlamydosporium was at least as successful as the necrotrophic mode at colonizing 

eggs. However, the infection rate of dead potato cyst nematode eggs was not 

significantly greater than that of vital eggs for the duration of the bioassay, 

corroborating the resilience of the egg shell structure in this nematode. 
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In conclusion, the subtilisin-like protease VCP1 was produced by appressoria 

of V chlamydosporium, isolate 10, during infection of M. incognita eggs, which are 

susceptible to the fungus. The protease removed part or the whole of the vitelline 

layer of the M. incognita eggs, which physically weakened the egg shell. It is 

suggested that the fungus derived nutrients from the surface of these eggs, allowing 

it to build up biomass, and to differentiate well-developed appressoria. On the other 

hand, little protein was removed from the egg shells of G. rostochiensis, which is a 

poor host to the fungus. These eggs have a thicker egg shell, but limited growth and 

differentiation of the fungus on these surfaces may be linked to the inability of the 

fungal protease to hydrolyse its proteins in situ. As such, VCP 1 may have contributed 

to the relative host specificity of V. chlamydosporium, isolate 10. 



0 
Enzyme regulation and 
pathogenicity 

6.1 INTRODUCTION 

Enzymes that are produced at the same rate, irrespective of the presence of substrate 

in the environment, are described as constitutive. Some industrially important 

bacterial amylases and proteases are produced constitutively, but it is more common 

that hydrolytic enzymes are regulated. Inducible enzymes are synthesized at a low, 

basal rate in the absence of substrate. When the substrate, or a derivative thereof, is 

present in the medium, there is a dramatic increase in the rate of synthesis of the 

corresponding catabolic enzyme(s). Synthesis continues at this amplified rate until 

the inducer is removed whereupon it returns to the basal rate (Priest, 1984). The 

product of an enzyme's activity may repress its synthesis. It is energetically 

favourable for the fungus to repress the utilisation of complex carbon or nitrogen 

sources when more convenient sources are available, such as glucose and ammonium, 

respectively. Catabolic genes of a certain pathway are often coordinately repressed, 

although, at the molecular level, mechanisms involved in carbon and nitrogen 

catabolite repression by various components can be radically different (Marzluf, 

1981; Hueck & Hillen, 1995; Scazzocchio et al., 1995). The effects of excess glucose 

or other simple carbon sources can reach much further than the repression of 

proteases only; profound physiological changes are brought about, by modifying the 

fluxes in many pathways that generate energy and metabolic intermediates. In fungi, 

sporulation can also be repressed (Skromne et al., 1995) and hyphal formation 

disrupted (Paigen & Williams, 1970). 
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In the regulation of proteases in filamentous fungi, two "classical" type cases 

are commonly discerned. The first one is represented by Aspergillus nidulans and A. 

niger, in which starvation for any nutrient derived from protein (C, N or S) results in 

biosynthesis and secretion of extracellular protease. No protein inducer is required, 

and thus "relaxation of repression", or derepression, is involved (Cohen, 1981; Jarai 

& Buxton, 1994). The second type case is represented by Neurospora crassa, which 

unlike these Aspergillus spp., requires a protein inducer to effect synthesis of 

extracellular proteases under conditions where cells are starved for either C, N or S. 

In this case, induction (a positive form of control) is balanced by repression (a 

negative form of control) (Cohen & Drucker, 1977). Considerable progress has been 

made in understanding catabolite repression in A. nidulans and N. crassa at the level 

of its transcriptional control, i. e. several activator and repressor proteins, together 

with their DNA target sites, have been identified (MacKenzie et al., 1993). However, 

the way in which a signal is generated from external nutrient concentrations and 

transduced, is largely unknown (Ronne, 1995; Scazzocchio et al., 1995). 

The study of the regulation of extracellular enzymes is relevant for 

understanding in vitro production systems as it is an economic imperative to have an 

enzyme system inducible at low cost and resistant to high levels of catabolic end- 

products (Priest, 1984; Rao et al., 1988). The sensitivity of hydrolytic enzymes to 

catabolite repression can be important in the infection process. Catabolite repression 

is responsible for disease resistance in some plant-pathogen interactions (Holz & 

Knox-Davies, 1986a, b), and treatments that result in increased soluble carbohydrates 

in the plant, decrease enzyme production and alleviate disease symptoms (Horton & 
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Keen, 1966; Patil & Dimond, 1968). Appressoria of the entomogenous fungus M. 

anisopliae synthesize the cuticle-degrading protease Prl during infection, unless 

exogenous nutrients repress its production (St. Leger et al., 1989a). As yet, there are 

no studies of enzyme regulation in any nematophagous fungus. It is an intriguing 

question how an extracellular protease, likely to be involved in the infection process 

(see Chapter 5), would be regulated in a fungus that is a rhizosphere colonizer. 

6.2 MATERIALS AND METHODS 

6.2.1 Relation between fungal growth and protease production 

The time-course of protease production of V. chlamydosporium isolate 10 in soya 

peptone medium was recorded by taking 1.2 ml samples from triplicate 200 ml 

cultures in 1% soya peptone and mineral salts (see Section 2.2.1) at regular intervals. 

The cells were removed by centrifugation in a microfuge at 10,000 g for 5 min and 

100 p1 aliquots of the supernatant were assayed for protease activity using 400 µ1O. 1 

M Tris-HC1 buffer (pH 7.9) and 500 µl Azocoll (10 mg ml'' in the same buffer). 

Protein concentrations were determined by the method of Bradford (1976), using 

bovine serum albumin as a standard. 

Mycelia of similar cultures were collected after 4 days on Whatman no. 1 

filter paper in sterile conditions, washed with one volume of sterile distilled water, 

and transferred to 600 ml of fresh soya peptone medium. Samples (30 ml each) were 

taken from these cultures during the next 7 days, the mycelia collected, dried and 
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weighed, and the supernatants assayed for subtilisin-like activity after concentration 

by dialysis on solid sucrose at 4°C overnight. 

6.2.2 Regulatory response to medium amendments 

Verticillium chlamydosporium, isolate 10, was grown in a liquid medium containing 

1% soya peptone and 0.5% D-glucose on a rotary shaker at 23°C for 4 d. The 

mycelium was collected by vacuum filtration and transferred aseptically, after 

washing with one volume of distilled water, to an equal volume of distilled water 

with mineral salts (see Section 2.2.1), in which incubation continued under the same 

conditions for 12 h. Aliquots of this starved mycelium were transferred to duplicate 

50 ml erlenmeyer flasks with 10 ml distilled water and mineral salts (see Section 

2.2.1), amended with one of the following: (a) freeze-dried eggs of Meloidogyne 

incognita, or (b) cysts of Globodera rostochiensis, collected and surface-sterilized 

as described in Section 5.2.1; (c) washed, finely comminuted roots from uninfested 

Solanum melongena plants were freeze-dried and also used as a medium amendment; 

(d) third-stage juveniles of the entomopathogenic nematode Steinernema feltiae were 

obtained from infested Galleria melonella larvae (kindly donated by Miss H. Menti, 

IACR-Rothamsted). These vermiform nematodes were freeze-dried and applied in 

the medium at 0.1% (w/v). (e) The effect of insects in the medium was studied using 

adult, freeze-dried and homogenized Phaedon cochleariae (0.1 % [w/v]). (t) Cellulose 

was insoluble, medium fibrous (Sigma), and (g) chitin was practical grade from crab 

shells (Sigma). The chitin fraction that passed through a 30 mesh sieve was used in 
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the medium. (h) Collagen was insoluble, type I from bovine Achilles tendon (Sigma), 

whereas (i) gelatin was a soluble powder (Hopkin & Williams). 

Eight hours after transfer to these and other media (see tables 6.1-6.3), the 

mycelium of all cultures was removed by centrifugation (10,000 g for 5 min), and the 

supernatant assayed for subtilisin-like activity using suc-(Ala)2, -Pro-Phe-pNA as the 

substrate, essentially as described in Section 2.2.8, except that 500 pl culture 

supernatant was added to the substrate, which was prepared in 0.2 M Tris-HCI, pH 

7.9. Cellulase activity in selected samples was measured as the hydrolysis of 

cellulose azure (Sigma), using a procedure similar to that of Azocoll described in 

Section 2.2.8 Briefly, a cellulose azure suspension (10 mg ml'') in 0.2 M phosphate 

buffer, pH 5.8 (Dawson et al., 1986) was stirred for 1h to release unbound dye. The 

substrate was spun at 8,000 g for 5 min and then resuspended in the final volume of 

the same buffer, after decanting the unbound dye. All samples consisted of 500 µl 

substrate (final concentration, 10 mg ml-') and 500 µl culture filtrate from transfer 

experiments. Incubation was on a rotary shaker at 37°C until the substrate had visibly 

been hydrolyzed (ca 4 h). Absorbence of the released dye was measured at 570 nm. 

One unit of cellulase activity is the amount of enzyme that gave gave an increase in 

A570 of 0.1 absorbance unit h'' under the conditions of the assay. 

6.2.3 Effect of C/N ratio on growth and protease production 

The impact of the GN ratio of the medium on growth of V. chlamydosporium was 

studied in liquid media amended with various amounts of glucose and/or NH4Cl. 

Triplicate Erlenmeyer flasks containing 100 ml of mineral salts solution (see Section 
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2.2.1) were amended with D-glucose and NH4C1, in all combinations of 1,10 and 100 

mM of each. Inoculation and incubation were as described in Section 2.2.1. After 6 

days of incubation, the cultures were filtered by vacuum filtration through Whatman 

filter paper no. I on a Buchner funnel. The mycelial mat was oven-dried at 60°C for 

12 h and weighed, while the filtrate was concentrated overnight by dialysis on 

crystalline sucrose at 4°C. Protease activity was measured using a standard assay 

using suc-(Ala)2-Pro-Phe-pNA as the substrate. 

6.2.4 Effect of CIN ratio on pathogenicity 

Water agar (WA, 1% [w/v], Fisons, Loughborough, England) plates were inoculated 

with V chlamydosporium (isolate 10) using a suspension of 1x105 conidia and 3x103 

chlamydospores in 0.2 ml sterile distilled water per 30 mm plate. The basic medium 

was amended with the same amounts of glucose and NH4C1 as described in the 

previous Section, except that an additional treatment consisted of 1 mM glucose and 

100 mM KNO3. The fungus was allowed to grow for 3 days before M incognita eggs 

were added; incubation was at 18°C, in the dark. The nematode eggs (ca 300 per 

plate) were added fresh to the growing fungal culture, i. e. the day after collecting and 

surface-sterilizing as described in Section 5.2.1. The proportion of eggs infected by 

V chlamydosporium was calculated after examining 50 eggs each on three replicate 

plates per treatment, using the fluorescence microscopy method described in Section 

5.2.3. These assessments were made 8,12 and 16 days after adding nematode eggs 

to the fungus lawn. 
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6.2.5 Detection of VCPI during growth in the rhizosphere 

Attempts were made to develop an immunological detection system to verify whether 

the protease VCP1 was produced by V. chlamydosporium during growth in the 

rhizosphere. Tomato seeds were surface sterilized by shaking them in 7% (w/v) 

CaOCI for 45 min, followed by four washes in distilled water. The seeds were 

germinated on a medium containing 10 g 1'' glucose, 0.1 g 1'' yeast extract, 0.1 g 1'' 

peptone and 12 g 1'' agar, and then transferred to sterile vermiculite. All but controls 

were inoculated with M incognita eggs and/or a plug from a growing colony of V. 

chlamydosporium. Plants, nematodes and fungus developed for ca four weeks, when 

the vermiculite was carefully removed from the root system with forceps. A replica 

of the root system was made on nitrocellulose, sandwiched between filterpaper 

wetted with PBS. Gentle pressure was applied for 1 h. The nitrocellulose membranes 

were blocked with PBSTM for 2 h, washed 6 times with PBST, and incubated with 

the primary anti-VCPI polyclonal antibody (1/25 in PBST) for 1.5 h. Unbound 

antibody was removed by 6 washes with PBST, followed by incubation with the 

secondary antibody (goat anti-rabbit - alkaline phosphatase conjugate 11500) for 2 h. 

After final washes in PBST, the membranes were developed in BCIP/NBT. 

6.3 RESULTS 

6.3.1 In vitro response to C and N: growth and protease production 

The time-curves of the secretion by V. chlamydosporium of total protein and protease 

in soya peptone medium did not follow the same pattern. Whereas the amount of 
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protein increased exponentially from time zero onwards, presumably reflecting 

growth, there was a significant lag phase in the secretion of protease (Fig. 6.1). No 

protease activity was observed during the first 2 days of the culture, followed by a 

very sharp rise over the next 2 days, after which a gradual decline in the protease titre 

was seen. The declining phase was characterised by relatively large variations 

between the replicates (Fig. 6.1). 

Time (hours post-Inoculation) 

Fig. 6.1 Time-course of protease production by V. chlamydosporium isolate 10 in soya peptone medium. Enzyme 

production was measured as Azocoll-degrading activity, as described in Section 2.2.8. Each data point is the means 

of two replicate cultures ± S. D. 

Mycelium that was near the end of its exponental growth stage in soya 

peptone medium secreted proteases, but when it was transferred to fresh medium of 

the same type, no VCPI was observed for another 24 h (Fig. 6.2). Although enzyme 

production was apparently repressed by the fresh nutrients, growth immediately 

resumed, and a similar pattern as before was seen, i. e. rapid VCPI production when 

the rate of increase in biomass slowed down (Fig. 6.2). 
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Fig. 6.2 The effect of mycelial transfer from 1% soya peptone broth to fresh medium on production of VCP1. Enzyme 

activity was measured as Ermol nitroaniline released ml'' min' from suc-(Ala)rPro-Phe-pNA. Each data point is the means 

of two replicate cultures ± S. D. 
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Fig. 6.3 The rate of derepression of VCP1 after transfer from soya peptone medium to nutrient-deprived conditions, 

or to 50 mM glucose. Enzyme activity was measured as Nmol nitroaniline released ml'' min-' from suc-(Ala)rPro-Phe- 

pNA. Time is h post-transfer. Each data point is the means of two replicate cultures t S. D. 

To ascertain the link between nutrient content of the medium and VCPI 

production, mycelium was also washed and transferred from I% soya peptone plus 

0.5% D-glucose to nutrient-deprived conditions (-C-N) and to 50 mM glucose after 
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4 days. In the medium devoid of carbon and nitrogen, the protease was detected as 

soon as 10 min after transfer, and its titre continued to increase for the duration of the 

sampling period, i. e. 27 h post-transfer (Fig. 6.3). On the other hand, no VCP1 was 

measured during the first few hours after mycelial transfer to glucose broth. At the 

end of the experiment, the amount of enzyme in the glucose medium was only 

approximately one tenth of that in nutrient-deprived conditions (Fig. 6.3). 

6.3.2 Regulatory response to medium amendments 

The question of which nutrients would result in repression, and whether there was 

also induction, i. e. protease production at a rate significantly higher than under 

derepressed conditions, was further investigated by transferring aliquots of pre- 

starved mycelium to liquid media amended with a wide range of carbon and/or 

nitrogen sources. The size of the experimental setup precluded recording a time- 

course as before, therefore all observations were made 8h post-transfer. 

The production of VCP 1 was repressed by all simple carbon sources tested. 

Glucose (C6), arabinose (C5, abundant in plants) and lactose (dimer, normally absent 

in soil) were repressive to the same extent (43-44% of the control activity), but the 

strongly repressive effect of trehalose (dimer of D-glucose) was possibly the result 

of glucose, generated by trehalase activity (Table 6.1). The effect of inorganic 

nitrogen depended on the source. Whereas VCP1 was almost completely repressed 

by ammonium-nitrogen (7.9 and 0.9% of the activity of the control, in the case of 50 

and 200 mM NH4CI, respectively), it was remarkable that the same molarities of 

nitrate-nitrogen did not repress, but rather enhanced the amount of VCP1, in 

comparison with basal, derepressed activity. 
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Table 6.1 Protease production by V. chlamydosporium isolate 10,8 h after transfer of mycelium to media with or 

without C and N source. Activities are expressed as nmol nitroaniline released ml-' min-' from suc-(Ala)i-Pro-Phe- 

pNA and are the means of two replicate cultures t S. O. 

Protease activity Percentage of control 
Control (-C -N) 109.0 ± 10.2 100.0 
Meloidogyne incognita eggs 0.125% 415.6 ± 52.8 381.5 
Globodera rostochiensis cysts 0.1 % 108.6 ± 67.9 99.7 
G. rostochiensis cysts 0.5% 202.5 ± 6.8 185.9 
Steinernema feltiae 0.1 % 213.8 ± 14.0 196.2 
Beetle 0.1 % 91.4 ± 3.0 83.9 
Roots 0.1 % 147.3 ± 18.5 135.1 
Glucose 50 mM 48.1 ± 1.7 44.1 
Arabinose 50 mM 47.4 ± 5.4 43.5 
Lactose 50 mM 47.0 ± 1.1 43.1 
Trehalose 50 mM 13.3 ± 18.1 12.2 
NH4CI 50 mM 8.6 ± 8.7 7.9 
NH4CI 200 mM 1.0 ± 0.5 0.9 
KNO3 50 mM 200.5 ± 19.3 184.0 
KNO3 200 mM 213.2 ± 10.2 195.7 
KNO3 + Glucose 25.8 ± 1.8 23.7 
Glycine 50 mM 36.9 ± 4.7 33.9 
Cellulose 1% 106.9 ± 33.0 98.1 
Chitin 1% 338.1 ± 8.9 310.3 
Soya peptone 0.1 % 91.6 ± 40.3 84.1 
Soya peptone 1%7.9 ± 1.7 7.3 
Albumin 1% 103.7 ± 18.7 95.2 
Gelatin 1% 4.3 ± 2.6 3.9 
Collagen 1% 239.8 ± 47.4 220.1 
Collagen 0.5% + chitin 0.5% 333.1 ± 48.2 305.8 

The combination of nitrate and glucose, however, repressed VCP 1, more than 

glucose alone. Glycine (50 mM) was applied both as carbon and nitrogen sources, 

and found to repress the enzyme to about a third of its basal level (Table 6.1). 

Whereas 0.1% soya peptone had little effect on the protease production, 1% strongly 

repressed it after 8 h. Soya peptone presumably contains high levels of small 

peptides, amino acids and other readily utilisable carbon and/or nitrogen sources, 

resulting in repression of the protease. Cellulose is a carbon source that the fungus 

is likely to encounter in the rhizosphere, but its effect on VCP 1 production, even at 

a concentration as high as 1%, was neutral. High VCP1 titres were obtained in liquid 
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media containing chitin and collagen (3.1 and 2.2 times the amount produced by the 

derepressed fungus, respectively). The combined effect of these inducers was slightly 

more than additive (Table 6.1), possibly suggesting different signalling pathways for 

the inductive components as any repressive effect is avoided by using each of them 

at only 0.5% (w/v). Remarkably, insoluble, fibrous collagen enhanced protease 

production, while the same concentration of soluble gelatin strongly repressed it. The 

inductive effect of proteins was clearly not a generic response, as albumin was 

another protein amendment that did not induce VCPI (Table 6.1). The clearest 

induction, however, was seen when V. chlamydosporium was exposed to M. 

incognita eggs (0.125% [w/v]), resulting in almost four times the amount of VCP1 

that was produced by derepression only. Similar concentrations of G. rostochiensis 

cysts had no effect, while a small but measurable increase in the amount of VCP I 

was recorded with much higher concentrations of cysts, i. e. 0.5% (w/v). Another 

collagen-containing amendment was the vermiform nematode Steinernema feltiae, 

which also resulted in increased protease activity in the medium. On the other hand, 

the complex nutrient source provided by homogenized beetles had no effect on 

VCP I. If the protease is induced by a chitinous elicitor, then this result suggests that 

the particular organisation of the chitin fibrils, or the complex matrix in which it is 

embedded in insect cuticle (St. Leger, 1991) may have precluded induction of the V 

chlamydosporium protease. 

Derepression and induction are the two distinct types of enzyme regulation 

that were observed with VCP 1. Attempts were made to identify some components 

of the regulatory pathways involved. Looking at the cascade of events, from the 
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protease gene down to secretion of active enzyme, several stages could be the 

regulatory bottleneck. 

Table 6.2 Protease production by V. chlamydosporium isolate 10,8 h after transfer of mycelium to media without C 

and N source, but including a metabolic inihitor or stimulant. Activities are expressed as nmol nitroaniline released 

ml-' min-' from suc-(Ala)2-Pro-Phe-pNA and are the means of two replicate cultures ± S. D. 

Effector 

None (control) 
Ethidium bromide (S0 jig/ml) 
Actinomycin D (50 pg/ml) 
Cycloheximide (10 pg/ml) 

cAMP 5 mM 

cAMP 5 mM + Glucose 50 mM 
Cyclosporin 5 pM 
Cyclosporin 5 pM + Glucose 50 mM 
Cyclosporin 5 pM +N H4CI 200 pM 
lysocellin 5 pM 

Lysocellin 5 pM + Glucose 50 mM 
Lysocellin 5 pM + NH. CI 200pM 

Mode of action Protease activity Percentage of 
control 

109.0 t 10.2 100.0 
Inhibits DNA synthesis' 111.4 ± 14.9 102.2 
Inhibits DNA-primed RNA polymerase' 25.4 ± 4.4 21.5 
Inhibits initiation, elongation and 10.7 ± 0.7 9.8 
termination of proteins' 

variousb 65.4 t 2.0 60.0 
60.6 t 14.9 55.6 

Inhibits calmodulin-binding kinasesc 17.0 t 2.6 15.6 
21.9 t 6.0 20.1 

00 
Inhibits IP3-dependent kinasesd 27.3 f 15.5 25.1 

33.8 16.6 31.0 
00 

-Dawson et al. (19860 Pall (1981); 1 Borel et al. (1994) ;' imoto et al. (1990) 

Table 63 Protease production by V. chlamydosporium isolate 10,8 h after transfer of mycelium to inductive media, 

with 1% (w/v) collagen, and a metabolic inihitor or stimulant. Activities are expressed as nmol nitroaniline released 

ml' min" from suc-(Ala); Pro-Phe-pNA and are the means of two replicate cultures ± S. D. 

Effector 

None (collagen 196) 

Hydroxyurea (100pg/ml) 

Actinomycin D (50pg/ml) 

Cycloheximide (10 pg/mq 

Adenosine 5' O-thin-rnonophosphate 
(100 pg/ml) 
Glucose 5 mM 
Glucose 50 mM 
NH. CI 50 mM 

Dawson et at. (1986) 

Mode of action Protease activity Percentage of 
control 

239.8 f 47.4 100.0 
Inhibits DNA synthesis' 249.2 f 24.7 103.9 
Inhibits DNA-primed RNA polymerase 56.1 t 7.4 23.4 
Inhibits initiation, elongation and 20.0 t 4.2 8.3 
termination of proteins' 
Inhibits cAMP dependent kinasee 155.0 f 41.8 64.6 

216.8t32.7 90.4 
74.2f 15.0 30.9 

110.7 t 15.6 46.2 

The protease that was secreted as the result of derepression or induction, was not the 

product of newly formed DNA, as the DNA synthesis inhibitors ethidium bromide 
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or hydroxyurea did not have any effect (Tables 6.2 and 6.3). Actinomycin D, an 

inhibitor of DNA-primed RNA polymerase (Dawson et al., 1986), significantly 

reduced the protease titre, suggesting that regulation was controlled at the level of 

transcription. It was no surprise that inhibitory events, downstream of transcription, 

also interfered with protease production. Inhibition of translation by cycloheximide 

reduced the amount of VCP 1 produced in conditions of derepression or induction. In 

some systems, notably enteric bacteria, catabolite repression is relieved by cAMP 

(Pall, 1981). That was apparently not the case in V. chlamydosporium, because the 

addition of 5mM of cAMP to 50 mM glucose (Table 6.2) had approximately the 

same effect on VCP1 as glucose by itself (Table 6.1). On its own, cAMP had some 

inhibitory effect as it reduced the VCP1 activity to 60% of that of the control. The 

indirect involvement of the second messenger calcium in protein phosphorylation 

events was verified by using cyclosporin, an inhibitor of calmodulin-binding protein 

kinases (Borel et al., 1994). Cyclosporin reduced the protease activity to 15.6% of 

that of the control, and including the inhibitor with glucose or NH4C1 reduced the 

remaining amount of protease, normally produced in those conditions, even further. 

This suggests that calmodulin-binding kinases are required for expression of VCP 1, 

in both repressed and derepressed conditions. Lysocellin, an inhibitor of inositol 

1,4,5-triphosphate (1P3) (Imoto et al., 1990) had similar effects as cyclosporin, also 

suggesting the importance of phosphorylation events that are linked to IP3, in the 

production of VCP 1. A third type of phosphorylation was detected in inductive 

conditions (i. e. transfer to collagen). Adenosine 5' O-thiomonophosphate, which 
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inhibits cAMP-dependent kinases (Dawson et al., 1986), reduced VCP1 activity to 

64.6% of that of the control. 

Cellulose is a polymer that is not found in the nematode host, but it is 

abundant in the rhizosphere habitat. Therefore, cellulose hydrolysis would occur 

when the fungus grows saprotrophically. Some degree of adaptation was suggested 

by the significant induction of cellulolytic activity (P<O. 001, ANOVA) after transfer 

to cellulose-containing medium (Table 6.4). The V. chlamydosporium cellulase(s) did 

not respond to chitin, collagen or nematode eggs, as approximately the same basal 

activity as in the -C-N medium was observed. 

Table 6.4 Cellulase production by V. chtamydosporium isolate 10 after transfer from nutrient-rich medium to the 

media indicated. Enzyme activity was measured as the hydrolysis of cellulose azure (10 mg ml'') at pH 5.8. One unit 

of cellulase activity is the amount of enzyme that gave an increase in As, o of 0.1 absorbance unit h'' under the 

conditions of the assay. Values were corrected for autolysis of the substrate and are the means of two separate 

cultures t S. D. 

Transfer medium Cellulase activity 

Control (-C -N) 1.50 t 0.16 

Meloidogyne incognita eggs 0.125% 1.49 t 0.01 

Cellulose 1% 4.23 t 0.04 

Chitin 1% 1.54 t 0.06 

Collagen 1% 1.30 ± 0.01 

6.3.3 Effect of C and N proportions on growth and pathogenicity in 

vitro 
Before the impact of the amount and proportion of carbon and nitrogen in the 

medium on fungal infectivity was assessed, some aspects of the C and N dependence 

of the growth of Y. chlamydosporium were determined. The submerged culture 

system was used because biomass and VCP1 production could easily be measured. 
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In the following, "C/N ratio" is expressed as mM glucose/mM NH4C1. Not 

unexpectedly, there was a dependence of biomass generated, on the C/N ratio of the 

medium. Whereas the absence of C and N resulted in 5.8 mg dry biomass, supplying 

as little as 1 mM glucose and 1 mM NH4C1, doubled that amount (P<0.05, one-tailed 

t-test), and a ON ratio of 100/100 gave a biomass that was almost twenty times 

higher (P<0.001) (Table 6.5). 

Table 6S Characteristics of submerged cultures of V. chlamydosporium isolate 10 grown in media with varying 

'C/N ratios', expressed as mM glucose/mM NH. CI. The culture supernatants were concentrated by dialysis on 

crystalline sucrose, and subtilisin-like activity expressed as nmol nitroaniline released ml'' min-' from sucd/Ua), -Pro- 
Phe-pNA. All values are means of three replicate cultures ± S. D. Concentrate colour 'Y' indicates yellow and 

viscous culture concentrate. 

Supematant 

'UN ratio' Biomass Colour Protein Protease activity Specific activity 
(mg) (pg/ml) (nmol ml'' min'') (nmol pg' min-') 

0/0 5.8 t 1.7 4.7 t 1.5 00 

1/1 11 t 0.4 25.7 t 5.9 444.9 ± 76.5 17.9 ± 4.3 
1/10 15.2 t 1.6 42.3 t7 392.5 ± 74.2 9.3 ± 1.3 

1/100 15.6 t 1.2 55.3 t 9.9 505.0 ± 67.4 8.3 ± 7.1 

10/1 55.1 t 5.5 Y 47.7 t 9.1 00 

10/10 59.2 t 18 57.3 t 2.1 217.8 ± 44.0 3.8 ± 0.9 

10/100 66.9 t 15 63.7 t 9.7 00 

100/1 76.6 t 18 Y 38.3 t 1.5 9.3 ± 16.2 0.2 ± 0.4 
100/10 96.6 t 7.6 Y 72 t 11 36.4 ± 53.7 0.4 ± 0.6 

100/100 104.2 f 7.9 Y 58 t 9.2 00 

The main determinant of growth was the amount of carbon in the medium 

(p<0.0001, ANOVA), rather than nitrogen (P<0.05), with relatively small increases 

when more ammonium was added (P>0.05) (Table 6.5). The amount of protein 

secreted in the medium followed a similar pattern, as it increased with the carbon 

concentration (P<0.01), but increasing the nitrogen content of the medium enhanced 

protein secretion significantly (P<0.0001). The enzyme activity, however, depended 

on the C/N ratio in a different way. There was no protease detected in the control, in 
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the samples with a C/N ratio of 10/1, presumably through carbon repression, and in 

those with C/N ratio of 10/100, possibly through repression by ammonium. Little or 

no protease was secreted in all media with 100 mM glucose, and on the whole, the 

carbon content of the medium was the main determinant of protease production 

(P<0.000 1). Expressing the enzyme production as specific activity (nmol nitroaniline 

µg'' min'), however, revealed a significant interaction between the carbon and 

nitrogen content of the media (P<0.01). A yellow, very viscous concentrate was 

obtained in those media where the molarity of glucose numerically exceeded that of 

ammonium (Table 6.5). The fungus may have secreted mucilage and a pigment as a 

way of excreting excess carbon. 

The bioassay system, as described in Chapter 5, was modified to examine the 

effect of carbon and nitrogen in the medium on pathogenicity of V. 

chlamydosporium. The results (Table 6.6) revealed that almost no M. incognita eggs 

were infected in the media that contained 10 mM glucose or more, independent of the 

nitrogen status. There was some similarity with the dependence of VCP I activity on 

the C/N ratio of the medium, since the carbon content of the medium was the main 

effect, although the impact of ammonium concentration was also important. As in the 

case of the specific activity of VCP1, the interaction between carbon and ammonium 

was significant (P<0.01 after 8, and P<0.001 after 16 days post-inoculation). The 

medium that resulted in the greatest number of eggs infected, was the one amended 

with 1 mM glucose and 1 mM NH4". Although the infection rate on that medium 

appeared much greater than that on the control medium where no carbon or nitrogen 

had been added, a significant difference (P<0.05, one-tailed t-test) between C/N 0/0 
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and 1/1 was seen only 12 days post-inoculation. Remarkably, when nitrate was used 

as a nitrogen source, rather than ammonium, very low infection rates were seen, at 

all carbon concentrations tested (Table 6.6). This effect on pathogenicity did not 

relate to the effect of nitrate on the regulation of VCP 1 (Table 6.1). 

Table 6.6 Pathogenicity of V. chfamydosporium isolate 10 against M. incognita eggs on water agar media with 
varying'C1N ratios'. Pathogenicity is expressed as the percentage of eggs infected by the fungus, 8,12 or 16 days 

after placing nematode eggs on growing fungal colonies. The nutrient status of the medium is expressed as mM 
glucose/mM NH4CI added, except in 4, where it is mM glucose/mM KNO3. 

Infection rate (% eggs infected) 

'UN ratio' 8 days 12 days 16 days 

No fungus 0.7 0.7 0.7 
0/0 13.3 14.0 34.0 
1/1 26.0 17.3 50.6 

1/10 16.7 24.0 47.4 
1/100 5.3 27.3 24.0 

1/100 NO; ' 4.7 6.7 4.7 
10/1 0.7 0.7 2.7 

10/10 0.7 0.7 0.7 
101100 000 

10l100 N037' 0 0.7 2.0 
10011 0 0.7 0.7 

100/10 000 
100/100 000 

100/100 N03-' 2 3.3 2.7 

6.3.4 In situ detection of VCP1 in the rhizosphere of tomato 

At the initial antibody titre of 1/25, the "Western" type of detection of VCP1 

production by V chlamydosporium on the surface of tomato roots, was prone to false 

positives. All root systems, including those of the control, gave a positive result (not 

shown). An additional blocking step with pre-immune serum (1/10 in PBST) was to 

no avail. To verify that the plant roots did not secrete subtilisin-like proteases, that 

could be antigenically similar to the fungal enzyme, a protease assay was done on 

homogenized roots. No enzyme was detected with the common VCP1 substrate suc- 
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Fig. 6.4 'Western' detection of VCP1 on root replica's of tomato. Titration of the preimmune serum to eliminate 

non-specific binding of the anti-VCPI poiyclonai antibody to the root surface, using tomato Plants not inoculated 

with nematodes or fungus. Antiserum dilutions were a) 1/20. b) 1/50, c)1/100. d) 1/150. e) 1/200, f) 1/300, g) 1/500, 

h) 1/800, and 1) 1/1000. 





Chapter 6 152 

(Ala)2-Pro-Phe-pNA. A titration was made by developing blots of root fragments 

with dilutions of the polyclonal, from 1/20 to 1/1000. A trace of the whole root 

system was visible at all dilutions, although stronger at the lower dilutions (Fig. 6.4). 

Subsequent blots were developed with the antibody at a dilution of 1/1000. A faint 

outline of all root systems was visible in the control and in all treatments. There 

appeared to be little difference between control plants and those with nematodes 

and/or fungus (Fig. 6.5). Switching to a different secondary antibody, conjugated 

with horseradish peroxidase, gave no improvement. Since the antibody concentration, 

required to get a positive signal in Western blots (see Chapter 3) was much greater 

than the concentration used here, it seems likely that all positives obtained with root 

replica's were the result of non-specific binding of IgG's to a component on tomato 

roots. Similar results (not shown) were obtained with kale (Brassica oleracea), that 

also supports growth of V chlamydosporium in its rhizosphere (Bourne et al., 1994). 

6.4 DISCUSSION 

Without the presence of inducing molecules, or in those systems that are not prone 

to induction, the production of extracellular protease is often observed at the end of 

active growth and during the stationary phase in batch cultures. This occurs widely 

in bacteria (Allison & MacFarlane, 1990; Bascarän et al., 1990) and also in fungi 

(Ebeling et al., 1974; St. Leger et al., 1991c; Micales, 1992). Proteases whose 

production is concurrent with exponential growth usually appear not to be prone to 

catabolite repression (Hellmich & Schauz, 1988; Zhu et al., 1994; Hoffert et al., 
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Fig. 6. S 'Westem' detection of VCPI on root replica's of tomato. Treatments were a) control Punt. b) tomato plant 

with M. incognita galls, c) tomato plant with V. chiamydosporium, and d) combination treatment with nematodes 

and fungus. 
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1995). In V.. chlamydosporium, in the absence of inducer, protease production was 

also incompatible with high growth rates. The cue for protease production seemed to 

be the suboptimal growth conditions at the end of exponential growth in batch 

culture, or after transfer to nutrient-poor medium. It is likely that the actual cue for 

enhanced protease production is nutrient deprivation. However, it cannot be ruled out 

from this experiment that protease was possibly only secreted when the initial 

repressive effect of simple nitrogen and carbon sources in the complex soya peptone 

medium was alleviated, followed by induction by the protein component of soya 

peptone. This scenario may not be very likely as the induction of VCP 1 seemed not 

to be a general response to protein. 

The lower the growth rate supported by the transfer medium, the higher the 

protease titre that is generally obtained (Sessoms & Lilly, 1986; Bascarän et al., 

1990). Although the only growth measurements that were made in the transfer 

experiments with V. chlamydosporium were those in soya peptone medium, this 

appears a plausible correlation in case of this fungus, too. The absence of a 

measurable lag phase in fungal growth after transfer to 1% soya peptone is in accord 

with data from V albo-atrum which has a growth lag that becomes significant only 

when the medium contains more than I% (w/v) carbon (Malca et al., 1966). 

Transfer experiments are increasingly being used to study basic enzyme 

regulation, as many early reports that claimed enzyme induction are methodologically 

flawed in the sense that no distinction can be made between the effects of 

derepression and induction (Cohen, 1980). According to this type of experiment, the 

protease VCPI was regulated by derepression, as transfer of young mycelium from 
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nutrient-rich to nutrient-deprived conditions resulted in a rapid increase in protease 

titre, but transfer to 50 mM glucose caused long-term repression (Fig. 6.3). Such a 

speed of fungal response is not without precedent. Messenger RNA from the 

subtilisin Prl from M anisopliae was absent in rapidly growing cells in nutrient-rich 

cultures, but was produced rapidly (<2 h) when cells were deprived of nutrients (St. 

Leger et al., 1992a). Moreover, it only takes 7 min to process amino acids into 

secreted active enzyme, during inductive conditions (St. Leger et al., 1991c). 

Cutinase gene transcripts could be detected within 15 minutes after addition of 

inducers to Fusarium solani f. sp. pisi (Woloshuk & Kolattukudy, 1986). 

The physiological status of the mycelium determined the impact that carbon 

sources had on repression of VCP1. When transfer experiments included a starvation 

step between the initial "inoculation medium" and the ultimate "treatment medium" 

with a nutrient source under investigation, then repression by glucose resulted in 

protease activity that was 44.1% of the control (Table 6.1). However, when that 

intermediate starvation step was omitted, then the activity after transfer was only ca 

6% (5.6-6.7% in three experiments). The reason for stronger repression in non- 

starved mycelium is not clear. However, it is feasible that mycelium that was 

transferred from 1% soya peptone plus 0.5% glucose without a starvation step may 

have contained more intracellular carbon, and possibly residual carbon sources from 

the medium in the cell wall. The 50 mM glucose in the transfer medium would have 

amounted to such a carbon load for the fungus in those conditions that strong 

repression was the result. 
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VCP1 was also regulated by induction. Small amounts of M. incognita eggs 

(0.125% [w/v]) resulted in the largest single increase in protease production. 

Although it would be spurious at this stage to pinpoint the actual inducer, the media 

with collagen or chitin had a similar effect to that of the nematode eggs. Chitin is a 

component of nematode eggshells, it is assembled in microfibrils consisting of a 

chitin core embedded in a protein core which is proline-rich (Clarke et al., 1967; Bird 

& McClure, 1976; Bird & Bird, 1991). However, since the chitin in this experiment 

was a relatively impure preparation, it cannot be ruled out that the actual effector may 

have been of a proteinaceous nature. Collagen-type proteins include about 80% of the 

proteins present in the nematode cuticle (Kingston, 1991). Although collagen as such 

has not been reported in nematode eggshells, its presence in this structure, too, is 

suggested by the amino acid composition of eggshell proteins (Clarke et al., 1967). 

It is feasible that a protease inducer is a repeated sequence motif (Paterson et al., 

1994a), which is provided by collagen, since it has a highly repetitive peptide motif 

(GIy-X-Y),,, in which X and Y can be any amino acid but they are frequently proline 

and hydroxyproline (Eyre, 1980). The proposal of a collagenous inducer is supported 

by the enhancing effect of small concentrations of the vermiform nematode, 

Steinernemafeltiae, which introduced cuticular collagen in the medium. 

It is interesting to note that G. rostochiensis cysts have much less effect on 

VCPI than the eggs of the susceptible host M. incognita. It has to be borne in mind 

that the G. rostochiensis eggs were not artificially released from the cysts prior to 

medium preparation. Therefore, it could be argued that these eggs, in contrast to 

those of M incognita, were less available to the fungus. This cannot entirely be 
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refuted. If that was the case, then the current data reflect the regulatory response of 

the V. chlamydosporium protease to the cyst surface only. However, mature cysts are 

not sealed, and the fungus can be expected to gain access relatively easily through 

natural openings (mouth, anus, vulva) in the cyst wall. 

Extracellular proteases that are regulated by repression/derepression only and 

not by induction are those of the saprotrophs Aspergillus nidulans (Cohen, 1981) and 

Rhizopus oligosporus (Farley & Ikasari, 1992). Other proteases are induced as a non- 

specific response to protein, e. g. that of Mucor miehei (Lasure, 1980), Hebeloma 

crustuliniforme (Zhu et al., 1994) and the trypsin Pr2 from M. anisopliae (Paterson 

et al., 1993). It is tempting to interpret specific induction by components of the host 

as an adaptation to a pathogenic lifestyle. However, the actual inducer of VCP1 has 

not yet been identified, and testing more carbon and/or nitrogen sources may reveal 

a response less specific than apparent at this stage. Moreover, all media were heat- 

sterilized, and therefore destruction of the higher-level structure of proteinaceous 

components can be expected. However, the differences in primary protein structure 

should not be ignored, as gelatin strongly repressed VCP1 production, while type I 

collagen, despite being heat-treated, was inductive. There is only one other case of 

specific induction of a microbial protease, and that is the example of the subtilisin 

Prl from the entomogenous fungus M anisopliae (Paterson et al., 1994a, b). The 

same authors demonstrated that hydrolytic products, generated from insect cuticle by 

Prl, are able to induce it, which fits in the established hypothesis that Prl has a role 

in the infection of insects by Af anisopliae (St. Leger, 1995). Several dimeric 
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peptides and single amino acids that are probably abundant in insect cuticle were 

pinpointed as putative inducers (Paterson et al., 1994a). 

Repression overrides induction of VCP 1. There are few reports of inducible 

proteases that are not repressed, e. g. protease production by the basidiomycetes 

Agaricus bisporus, Coprinus cinereus, Hebeloma crustuliniforma and Volvariella 

volvacea is not repressed by glucose or ammonium (Kalisz et al., 1987; Zhu et al., 

1994). This is thought to be important to these litter-degraders as proteins or peptides 

are expected to be the nitrogen source with the greatest availability in their natural 

habitats, and simple carbon sources may be abundant. These fungi probably cannot 

afford to have a repressed proteolytic system. Other protein-inducible enzymes that 

are not prone to repression by glucose, are the serine protease from the plant 

pathogen Ustilago maydis (but repressed by ammonium, Hellmich & Schauz, 1988) 

and the aspartyl protease from Mucor miehei (not repressed by ammonium, Lasure, 

1980). 

The repressive effect of glucose is better documented than that of any other 

metabolite. Other simple carbon sources may also cause repression, but in general, 

carbon sources which support a rapid growth rate are most effective in producing 

catabolite repression. The main control appears to be at the level of glycolysis, as 

those substrates that feed rapidly into the early reactions of glycolysis are usually the 

strongest repressors (Paigen & Williams, 1970). However, the way in which an 

increased glycolytic flux triggers repression is unclear (Ronne, 1995). 

When exposed to high ammonium concentrations, S. cerevisiae limits 

metabolism of ammonia by partly shutting down the main aminating pathway. The 
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synthesis of glutamate dehydrogenase, which forms glutamate from a-ketoglutarate, 

is repressed (Bogonez et al., 1985). However, the effects of high nitrogen 

concentrations can stretch beyond that, as the expression of a wide range of genes can 

be affected (reviewed by Marzluf, 1981). VCP1 provides another example, as its 

production by starved mycelium was very sensitive to NH4. Ammonium nitrogen 

has been found to repress extracellular proteases in numerous other fungal systems 

(e. g. Cohen & Drucker, 1977; Hellmich & Schauz, 1988; St. Leger et al., 1988b). 

It is unclear why nitrate was not repressive in V chlamydosporium. The 

fungus is likely to be able to absorb nitrate (at least in the absence of ammonium) and 

subsequently convert it to ammonium, since these capabilities are very common 

among fungi (Pateman & Kinghorn, 1976). Although all regulation studies cited so 

far use ammonium as the nitrogen source of choice, it is known for both Neurospora 

and Aspergillus that there are regulatory genes (called nit-2 and areA in the two 

fungi, respectively), the expression of which is controlled by nitrate. The products of 

these genes govern nitrate and nitrite reductase, but also mediate nitrogen catabolite 

repression (reviews by Marzluf, 1981,1993). If a similar circuit exists in V. 

chlamydosporium, then nitrate should theoretically be able to cause repression. The 

reason why it did not, is unclear. 

VCP1 was regulated at the level of transcription. That appears to be usually 

the case with hydrolytic enzymes, e. g. the subtilisin Prl from M anisopliae (St. 

Leger et al., 1988b), and cutinase from Fusarium solani (Podila et al., 1988). This 

is indeed the most common level of gene regulation in eukaryotes, probably because 

it is a very flexible and economical system, avoiding stores of mRNA or other 
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intermediates that need to be sufficiently stable for storage. It is, however, not the 

only possible level at which control over gene expression can be exerted. For 

example, several proteins have been identified in yeast that are enhanced after 

starvation, achieved entirely through stimulation of mRNA translation (Altman & 

Trachsel, 1993). Still further down transcription and translation pathways, secretion 

of proteins can also be regulated (Burgess & Kelly, 1987). One of the characteristics 

of regulated, as opposed to constitutive, secretion is the storage of product-filled 

secretory granules in the cytoplasm for long periods of time. This allows rapid 

discharge of the respective protein following the relevant stimulus, without de novo 

protein synthesis (Burgess & Kelly, 1987). Although no intracellular localization of 

VCP1 was carried out in this study, regulation of this protease at the level of 

secretion may not be very likely, in view of the results obtained with the inhibitors 

of transcription and translation. 

Much early work on catabolite repression, mainly in enteric bacteria, gave 

cAMP a central role in this regulatory process (reviewed by Pall, 1981). Increasing 

glucose concentrations cause a drop in the amount of cAMP in the cell, which 

disables the cAMP receptor protein that is the activator of catabolite-repressed genes. 

In this scenario, exogenous cAMP could reverse catabolite repression. Where that 

indeed is possible in enteric bacteria (Pall, 1981; Hueck & Hillen, 1995), V. 

chiamydosporium reacted as most eukaryotes, in that cAMP does not appear to have 

that central role in repression (Ronne, 1995). Despite claims by Klapper et al. (1973) 

and Zonneveld (1980), fungal catabolite repression is generally not associated with 

a drop in cAMP levels, but it involves direct negative control of target promoters by 
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a DNA-binding repressor protein (Ronne, 1995). In this study, cAMP did not relieve 

glucose repression, but cAMP on its own inhibited the production of VCP1. Similar 

observations have been made in other systems (Long et al., 1981; Priest, 1984). It is 

unclear why cAMP should be repressive, but a similar effect has been reported in 

fission yeast (Ronne, 1995). Clearly, few generalisations can be made about the role 

of cAMP. It would be imprudent to say that cAMP plays no part in the regulation of 

protease production of V. chlamydosporium, as there appeared to be kinase activity 

dependent on cAMP in the induction response to collagen. St. Leger et al. (1989b), 

using another inhibitor, did not find any involvement of cAMP-dependent kinase in 

Prl production by M anisopliae. 

The production of VCP 1 in derepressed conditions seemed to depend to some 

extent on IP3- and calmodulin-binding kinases. These inhibitors, however, did not 

completely inhibit protease production. This could be the result of a concentration- 

dependent effect of the inhibitor, or alternatively, this could suggest the involvement 

of more than one signal transduction pathway in derepression. This hypothesis awaits 

further investigation. Despite the many elements of the IP3 pathway that have been 

identified in fungi, there is apparently no record of it actually functioning in response 

to any stimulus (Prior et al., 1994). If the observations of this study genuinely reflect 

the utilisation of the pathway, then V. chlamydosporium has provided the first 

example of effective IP3-mediated signal transduction in fungi, the stimulus being 

derepression. 

The pathogenicity of V. chlamydosporium, in an in vitro bioassay system, 

depended significantly on the carbon and nitrogen content of the medium. On water 



Chapter 6 162 

agar with 10 mM glucose or more, the fungus grew profusely over the agar surface, 

but stopped interacting with M. incognita eggs. Verticillium chlamydosporium 

became effectively a saprotroph in nutrient-rich conditions (see General Discussion). 

This result can hardly be reconciled with earlier data from Irving & Kerry (1986), 

who found that nutrient concentration is a negligible factor in their in vitro virulence 

assay. The virulence of V. chlamydosporium was not affected by diluting corn meal 

agar medium (Irving & Kerry, 1986). That study did not use isolate 10, but it is not 

clear to what extent that explains the difference. A possible factor is the physiological 

state of the mycelium, as in the study by Irving & Kerry (1986) the fungus had 

colonized the agar plates from a central plug for several weeks before nematode eggs 

were added. 

There was a correlation between the decline of virulence on media with high 

C and N concentrations, and the repression of the protease VCP 1 in those conditions. 

This correlation, however, has to be interpreted with caution. It has been indicated 

before that carbon and nitrogen repression can have a pleiotropic physiological 

impact on micro-organisms, and suggesting a direct causal link between repression 

of VCP1 and of pathogenicity, might be an oversimplification. Nevertheless, these 

observations are commensurate with the suggested role of VCP1 in the infection of 

nematodes. 

The morphology of fungal colonies on agar media was altered significantly 

by varying the proportions of carbon and nitrogen in the medium. Colonies grown on 

media with small amounts of nutrients produced a less dense mycelium, but resulted 

in greater radial growth rates. Radial growth rate was deemed an unsuitable estimate 
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of fungal biomass produced under these nutritional conditions, and its measurement 

was abandoned. However, it may be ecologically significant that the fungus would 

cover a greater area in nutrient-poor conditions. 

It is difficult to make general statements about carbon or nitrogen 

concentrations in the rhizosphere, since the quality and quantity of root exudates and 

nutrients from microbial sources are variable and dependent on a complex array of 

factors (Bowen & Rovira, 1976; Stirling, 1991; Shepherd, 1994). It is unfortunate 

that the attempts to demonstrate VCP 1 production, during growth in a simplified 

rhizosphere situation, have failed. As yet, it remains a vexed question which of the 

regulatory patterns, observed in the in vitro context of the regulation experiments 

reported here, would occur in a more realistic plant-nematode-fungus-soil interaction. 



7 General discussion 

7.1 What does the protease reveal about the fungus ? 

Verticillium chlamydosporium, a fungal pathogen of nematode eggs and females, 

produced a subtilisin-like protease in liquid culture and, during infection, on the 

surface of nematode eggs. The fungus has no morphological adaptations, such as 

traps or adhesive spores, that would pre-adapt it to a pathogenic lifestyle. Several 

aspects of the enzyme, viz its regulation, substrate utilization, isoforms and coding 

genes, are reviewed here in an attempted assessment of the degree of specialization 

of the fungus. What information that sheds light on the life-history of V. 

chlamydosporium can be derived from VCP1 ? 

VCP1 was induced by host components, associated with collagen and chitin 

(Chapter 6). The nature of the inducer appeared important, as no induction was 

observed with other protein sources, such as albumin, suggesting that the induction 

may be a rather specific response. Specific induction may be an indication of a 

specialized host-pathogen interaction, as protease induction in most fungi is 

insensitive to the type of protein provided, e. g. Neurospora crassa (Cohen & 

Drucker, 1977). Protein-inducible activities have been demonstrated for a number of 

pathogenic species, including the clinically important opportunistic pathogens 

Trichophyton rubrum Castellani (Meevootisom & Niederpruem, 1979) and Candida 

albicans (Lerner & Goldman, 1993), and the entomogenous fungus M. anisopliae (St. 

Leger et al., 1988b; Paterson et al., 1994b). Are proteases, for which there is 

reasonable evidence of involvement in the infection process, always induced by a 
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small set of host-derived molecules? Such a scenario would suggest a high degree of 

specialization in a pathogenic lifestyle. There are only a few fungi that have 

proteases, considered determinants of pathogenicity, for which there is also sufficient 

knowledge of regulatory mechanisms. Metarhizium anisopliae (St. Leger et al., 

1988b; St. Leger, 1995) has to breach the insect cuticle, and its subtilisin, Prl, is 

induced by cuticular components (St. Leger et al., 1988b; Paterson et al., 1994a). 

Candida albicans (Calderone, 1994; Hensel et al., 1995) is a human commensal that 

occasionally causes systemic mycosis (Ghannoum & Abu Elteen, 1986; Hostetter, 

1994). Its aspartyl proteases are induced by a wide range of proteins and peptides 

(Lerner & Goldman, 1993). Clearly, it is difficult to make a case with such a limited 

range of examples. Axiomatically linking specific protease induction with a 

pathogenic lifestyle may be an unwarranted simplification of the complexity of, and 

variety in, pathogenic life-histories. As yet, the only examples of specifically host- 

induced proteases appear to be Prl from M. anisopliae (St. Leger et al., 1988b, 

Paterson et al., 1994a, b) and the subtilisin VCP 1 from the nematophagous fungus V. 

chlamydosporium (this study). 

Repression overrode induction of VCP1. This is the most frequently observed 

pattern; a rare exception is the protease production by some higher basidiomycetes, 

not repressed by glucose or ammonium (Kalisz et al., 1987; Zhu et al., 1994). This 

could be of importance to these litter-degraders as proteins or peptides are probably 

the most abundant nitrogen sources available to these organisms in their natural 

habitats. Repression of proteases by simple carbon sources, of which there may be 

a plentiful supply, might result in nitrogen deficits in the fungus. If this type of 
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regulation is a general pattern, then V chlamydosporium clearly falls in an ecological 

category different from these obligately saprotrophic basidiomycetes. 

Lewis (1973) proposed that biotrophy arose from necrotrophy by tighter 

regulation of hydrolytic enzymes. Opportunistic necrotrophs, such as Botrytis 

cinerea, often produce large amounts of derepressible pectolytic enzymes, causing 

extended tissue destruction. Hemibiotrophs, such as Magnaporthe grisea, produce 

these enzymes in smaller amounts, and more localized. Mechanical pressure becomes 

more important in penetration (Deising & Mendgen, 1992; Oliver & Osbourn, 1995; 

Talbot, 1995). Unfortunately, there are insufficient data on infection processes to 

validate these ideas in pathogens of nematodes. However, while enzyme induction 

by components of the host can be considered a fairly specialized, "tight" form of 

control, a regulatory system consisting only of repression/derepression would be a 

less specific, "looser" type of control. In Lewis' (1973) view, V chlamydosporium 

would probably be considered more specialized than B. cinerea, by virtue of its 

infection structures, secreting a host-induced protease, but it would be considered less 

specialized than the hemibiotroph M grisea. Care has to be taken when using the 

epithet "more specialized", as that is not synonymous with "more specialized 

pathogen". The presence of a protease, inducible by nematode eggs, does not make 

V. chlamydosporium a specialized pathogen; such an inducible system could serve 

in the saprotrophic degradation of nematode cadavers in soil. Similarly, several 

obligate saprotrophs with cutin-inducible cutinases allow these fungi to degrade cutin 

in plant debris (Köller, 1991; Stahl & Schäfer, 1992), rather than innately conferring 
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phytopathogenicity. The nematode-inducible proteolytic system in V. 

chlamydosporium could indicate that the fungus is merely a specialized saprotroph. 

Confusingly, several saprotrophs produce "pathogenicity-related enzymes" 

similar to pathogens. The saprotroph, Aspergillus nidulans, produces a set of cell 

wall-degrading enzymes similar to that of some phytopathogens but that, apparently, 

is insufficient to make it a pathogen. Dean & Timberlake (1989) postulated that the 

pathogen's enzyme systems, unlike those from the saprotroph, would not be 

repressed by the ample nutrient supply in wound tissue. One example of such a 

protease system of a pathogen, not prone to catabolite repression, is that of Ustilago 

maydis (Hellmich & Schauz, 1988). Dean & Timberlake (1989) tried to make A. 

nidulans plant pathogenic by creating a mutant strain that is not prone to catabolite 

repression. However, A. nidulans was not non-pathogenic because of its sensitivity 

to catabolite repression, as the pathogenicity of the mutant was not enhanced. Similar 

to A. nidulans, V chlamydosporium has proteolytic activity prone to carbon and 

nitrogen catabolite repression. There was evidence for the involvement, at least in the 

early stages of infection, of this enzyme in the infection of nematodes. It would be 

interesting to investigate whether the broad-spectrum protease, VCP 1, is involved in 

later stages of infection as well, since the necrotrophic maceration of the egg content, 

most likely, requires proteases of some kind. It is unclear whether the nematode egg, 

during degradation, would provide concentrations of catabolites, repressive to the 

protease. 

A second example of a saprotroph, producing "pathogenicity-related 

enzymes" is Paecilomycesfarinosus (Holm ex S. F. Grey) Brown and Smith, some 
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isolates of which are insect-pathogenic, whereas others are saprotrophic. Harney & 

Widden (1991) demonstrate that, although there is no evidence for distinct 

populations in leaf litter and insects, the proteolytic activity of insect-attacking 

isolates was generally greater, while cellulolytic activity was generally greater in 

saprotrophic isolates. The authors conclude that P. farinosus is a versatile saprotroph 

that can attack insects opportunistically. Isolates parasitizing insects would be 

selected from a pool of isolates that essentially have all enzymatic abilities for 

saprophytic survival, as well as pathogenicity. In many ways, V. chlamydosporium 

appears to be similar to P. farinosus. Its subtilisin, VCP 1, was not a useful marker for 

the change in trophic phase in vitro, as it was produced when the fungus was 

cultivated saprotrophically, as well as during infection. However, it is possible that 

the isoforms that were detected in several isolates of V. chlamydosporium have 

different roles, which could be reflected by differences in substrate utilization and 

regulatory patterns. The expression of different cutinase isozymes during the 

saprotrophic and parasitic stages of Alternaria brassicicola has been demonstrated 

(Köller et al., 1995), and there is also some evidence for differential regulation of 

Pr1-isoforms of M. anisopliae (St. Leger et al., 1994). Clearly, the role of isoforms 

is potentially an important issue that needs investigation in V chlamydosporium. 

All pathogenicity-related alkaline subtilisins from mycopathogens of 

nematodes, insects, and fungi, reported to date, are related (St. Leger et al., 1992b; 

Geremia et al., 1993; Bonants et al., 1995; Joshi et al., 1995; this study). It has been 

proposed that these enzymes would be more similar to each other than to other 

subtilisins because they play a conserved role, with perhaps a conserved substrate, 
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in pathogenesis (J. M. Clarkson, Bath, personal communication). The sequence 

comparison presented in Table 3.1 did indeed indicate that the majority of fungi that 

produce proteases homologous with VCP1 have strains, pathogenic to nematodes 

(Acremonium sp., Fusarium sp., P. lilacinus, V. chlamydosporium), insects (A. flavus, 

B. bassiana, M anisopliae, P. lilacinus), humans (A. fumigatus) or fungi (T. 

harzianum). Tritirachium album, which produces proteinases K (Swiss-Prot 

accession no. P06873), R (P23653) and T (P20015), appeared not to be in accord 

with this hypothesis, as the fungus is an obligate saprotroph. However, T. album is 

synonymous with B. alba (de Hoog, 1972), which suggests close entomopathogenic 

affiliations. Moreover, Limber (1940) separated the genus Tritirachium from 

Verticillium, which has a number of subtilisin producing nematode-, insect-, and 

fungus-pathogenic taxa. However, not all homologous subtilisins are, even remotely, 

produced by pathogens (Table 3.1). Examples are the enzymes of Saccharomyces 

cerevisiae (Accession no. P09232) and Agaricus bisporus (Burton et al., 1993). The 

"conserved-subtilisin theory" may be based on a false premise, in that fungal 

subtilisins may have been looked for mainly in pathogenic fungi. Furthermore, the 

homology of the subtilisins of fungal pathogens need not be a surprise, since all 

subtilisin-like proteases from fungi are related, irrespective of their life-history 

(Siezen et al., 1991). This widespread homology might reflect the fact that relatively 

little time has elapsed for the ancestral subtilisin gene of higher fungi to diverge 

(Ragan & Chapman, 1978). Alternatively, it could illustrate the versatility of these 

proteases, similar enzymes being functional in saprotrophy and pathogenesis. Several 

of the "pathogens" mentioned, are econutritionally close to saprotrophy, e. g. the 
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nematophagous Fusarium and Acremonium sp., the entomogenous A. flavus, and the 

human pathogen A. fumigatus are all opportunistic necrotrophs. It is tempting to 

speculate that saprotrophic species have either slightly modified their proteolytic 

activity, or acquired other pathogenicity-related traits that allowed them to become 

infectious in certain conditions. There are insufficient sequence data to confirm the 

conserved nature of these enzymes in invertebrate and fungicolous mycopathogens. 

Econutritionally, the soil-borne fungus V. chlamydosporium has several 

attributes of a saprotroph, including a derepressible, broad-spectrum protease, and 

inducible cellulolytic activity. Although live M. incognita eggs were infected, dead 

eggs were colonized to a greater extent, suggesting that a pathogenic lifestyle may 

be optional. The pathogenic mode of V. chlamydosporium could not be identified by 

any of the enzymatic or morphological events associated with the colonization of 

nematode eggs. Both VCP1 production, and the differentiation of appressoria and the 

typically bulbous mycelium inside eggs, could be seen during the infection and 

colonisation of live and dead eggs. The environment could ultimately determine the 

trophic mode of the fungus, as in high-nutrient conditions V. chlamydosporium 

effectively became a saprotroph, ignoring the presence of nematode eggs. 

Competition in the rhizosphere is an environmental interaction, the effects of which 

on growth and pathogenicity of V. chlamydosporium are largely undocumented. The 

fungus is probably not highly competitive as there is often poor recovery of V. 

chiamydosporium following soil inoculation with nutrient-rich formulations (Godoy 

et al., 1983; de Leij et al., 1993b). Presumably, the fungus is outcompeted in these 

conditions. Competition for nutrients, particularly nitrogen, is usually thought to be 
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fierce in the rhizosphere, making it unlikely that conditions repressive for the 

protease would generally prevail. The utilization of nematodes as an additional food 

source is thought to give nematophagous fungi a competitive advantage (Cooke, 

1962a, b; Barron, 1991). If VCP 1 is genuinely a pathogenicity-related enzyme, 

required for infection, then its repressibility by carbon, but particularly nitrogen, is 

revealing. It would, once more, indicate that the fungus is not dependent on 

nematodes as a nitrogen source and that a supply of inorganic nitrogen would be a 

suitable, possibly energetically more favourable, alternative. The hypothesis was 

confirmed in a bioassay with increased availability of ammonium-nitrogen, which 

reduced pathogenicity. 

If nematophagous fungi have a competitive advantage in soil by attacking 

nematodes, it is likely that they will enjoy the greatest advantage when nematode 

populations are dense, and other nutrients are sparse. That is most likely the case 

when there are heavy infestations of plant-parasitic nematodes on crops growing on 

sandy soils (Schenk & Pramer, 1976). However, those are not necessarily the 

conditions under which V chlamydosporium performs best. Heavy root-knot 

infestations give relatively poor control, presumably because many egg-masses 

remain unexposed in the galls (de Leij et al., 1992b). Although the bioassay in 

Chapter 6 confirmed the relation between nutrient sparsity and infectivity, there was 

no absolute linearity. Greatest infectivity was not achieved on pure water agar, but 

on water agar amended with 1 mM each of glucose and ammonium, while higher 

concentrations of either nutrient reduced the infection rate. Presumably, a limited 

amount of carbon and nitrogen enhanced fungal growth, and therefore the chance of 
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encountering nematode eggs, whilst not impeding infection by repressing the 

protease. 

The question what makes V. chlamydosporium a nematophagous fungus 

cannot conclusively be answered on the basis of the current data. The biochemistry 

and molecular biology of virulence-determinants in this pathogen are too immature. 

However, it is possible that i) its protease(s) and other hydrolytic enzymes are 

particularly well suited for degradation of the nematode substrate. ii) Although there 

is little or no evidence of host defense responses from the part of the nematode, 

protease inhibitors of various kinds have been identified in a number of nematodes 

(Hawley et al., 1994), although there are no reports of protease inhibitors in plant- 

parasitic nematodes. Although purely speculative, the enzyme systems of successful 

fungal isolates may be less prone to inhibition by components of the nematode. iii) 

Whereas other proteases, e. g. Prl from M. anisopliae, may be nearly as efficient at 

damaging, or removing, the vitelline layer of M incognita, the delivery system may 

make all the difference. While V chlamydosporium grows in the rhizosphere, 

potentially near nematode females and egg masses, M. anisopliae does not (Peixoto 

de Oliveira et al., 1980; Glare & Milner, 1991). All results suggest that V. 

chlamydosporium is intrinsically poorly specialized towards infection of nematodes, 

but it may be its rhizosphere competence that makes the system work. In this view, 

the rhizosphere competence traits of V. chlamydosporium urgently deserve an 

increased research effort. 

Adamson & Caira (1994) reviewed the nature of specificity in animal and 

human parasites and conclude that "parasite specificities are, in part, a legacy of the 
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habits of their free-living progenitors". If extrapolation to fungal pathogens would be 

warranted, then V. chlamydosporium would be foremost a rhizosphere fungus, its 

pathogenicity against sedentary stages of nematodes having developed as a secondary 

trait. This scenario is not unlikely, in view of the soil-borne nature of some of the 

other Verticillium species, e. g. V. tricorpus and V. nubilum. In the same, speculative 

scheme, V albo-atrum and V dahliae may have developed from a rhizosphere- 

competent ancestor towards becoming increasingly specialized plant-pathogens, 

losing their rhizosphere competence along the way. However tempting such simple, 

theoretical scheme may be, it has to be emphasized that there are currently no data 

to support, or refute it. In this context, the attempts at developing V. lecanii as a 

nematophagous fungus are also interesting (Uziel & Sikora, 1992; Meyer, 1994). 

This fungus has subtilisin-like activity, coded by a gene that is homologous with that 

of V chlamydosporium (Chapter 4). That is, apparently, insufficient to make it 

promising as a biological control agent against nematode pests, as witnessed by the 

poor success obtained in soil trials (Meyer, 1994). Recovery of the fungus after 

application was negligible (Meyer & Meyer, 1995), suggesting that the problem with 

the nematophagous fungus V lecanii may not be its proteolytic system, but rather its 

poor adaptation to the soil and/or rhizosphere environment. 

It has been suggested by workers on plant disease that certain criteria, with 

obvious parallels to Koch's postulates, should be satisfied before assigning a role in 

plant disease to a putative pathogenicity determinant. These are: the determinant, at 

physiological concentrations, should induce symptoms in the plant, the presence of 

the determinant in planta, a correlation between determinant production and 
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virulence, and breakdown products of the host, should all be demonstrated (Yoder, 

1980; Cooper, 1984). As yet, VCP I has not satisfied all criteria of this restrictive 

definition. The presence of VCP1 during infection was demonstrated by 

immunofluorescence, while egg shell breakdown was shown by protein assays and 

fluorescence microscopy. However, the relation between the enzyme production of 

different isolates and virulence was not straightforward (Section 4.3.1). It has to be 

borne in mind that such correlation is not necessarily meaningful. The proposed dual 

role of VCP1 in pathogenesis and in saprotrophy may well confound the attempted 

correlation, in that enzyme yields after saprotrophic cultivation need not reflect the 

productivity of the fungus during pathogenesis. The literature of entomogenous fungi, 

in particular, abounds with reports that endeavour to correlate the virulence of a set 

of isolates with their production, in vitro, of proteolytic enzymes. The association 

was confirmed in some cases (Bidochka & Khachatourians, 1990; Gupta et al., 

1994), but refuted in at least as many other (Champlin et al., 1981; Sosa Gomez & 

Alves, 1983; Latge et al., 1984; Jackson et al., 1985; Samuels et al., 1989), 

suggesting that simplistic generalizations concerning the role of proteases in 

pathogenesis should be avoided. Furthermore, the infection process is likely to 

involve more than merely a blast of protease. It may well consist of a sequential 

production of lytic enzymes and other fungal products, making it difficult to 

quantitatively correlate virulence with any one individual component, and impossible 

in vitro. Verifying such correlation in realistic conditions, if possible, would certainly 

be a technically demanding task. 
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However, within a single isolate, it may be possible to demonstrate a valid 

correlation between determinant production and virulence. Targeted disruption of the 

gene encoding a putative pathogenicity-determinant can be expected to abolish 

pathogenicity. This is currently the best method of investigating the possible 

involvement of a gene in pathogenesis (Schäfer, 1994), and results have often been 

revealing, although not conforming with preconceived ideas. Disruption of those 

hydrolase genes, anticipated to encode pathogenicity-determinants, has not always 

decreased pathogenicity to the expected extent, discounting the involvement of the 

enzyme in question. Aspergillus fumigatus produces a subtilisin-like protease that 

was thought to be involved in animal and human aspergillosis (Monod et al., 1991). 

Although its disruption leads to a large reduction in protease activity, the mutant was 

equally pathogenic as the wild-type parent (Monod et at., 1993b). The residual 

protease activity was subsequently identified as a metalloprotease with a substrate 

specificity similar to that of the subtilisin (Monod et at., 1993a). Even a double 

mutant with its subtilisin and metalloprotease disrupted, remains pathogenic (Jaton- 

Ogay et al., 1994). Markaryan et al. (1994) recently reported yet another similar 

metalloprotease from A. fumigatus, further illustrating that seemingly parallel enzyme 

systems can exist, and invalidating the simplistic notion of "one" pathogenicity- 

determinant. Remarkably, a nearly identical scenario can be seen in M. anisopliae, 

in that a Prl- mutant, produced by targeted gene disruption, demonstrates only a 

partial loss of virulence. It was demonstrated that another Prl isoform, and a 

metalloprotease with similar substrate specificity are secreted at unusually high levels 

by the mutant (St. Leger, 1995), suggesting the presence of "backup systems" in 
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these fungi. Disruption of the VCPI gene will not necessarily provide evidence for 

its involvement in the pathogenesis of V. chlamydosporium, since in most isolates 

tested, several isozymes have been identified and it seems unlikely that these relate 

to the same gene. If a gene family is confirmed for V. chlamydosporium, then it is 

certainly a moot question whether stepwise inactivation of all secreted proteases is 

a worthwhile or even practicable objective. Gene disruption remains valuable, if only 

to demonstrate the presence and importance of such "backup systems" in V. 

chlamydosporium. 

In an enlightening review, Groisman & Ochman (1994) suggest several 

scenarios to explain the pathogenicity of Salmonella spp., which also share many of 

their virulence-determinants with closely related, non-pathogenic, Gram-negative 

bacteria. Three scenarios may be relevant for fungi. 

i) Virulence may be attributable to specific genes, that are absent altogether in non- 

pathogens. This is unlikely to explain the nematophagous character of V. 

chlamydosporium, as the presence of genes, highly homologous with the putative 

pathogenicity-related enzyme VCPI, was demonstrated, by Southern analysis, in a 

range of fungi occupying different niches. 

ii) Virulence results from mutational differences between essentially homologous 

genes. The presence of isolate-dependent isoforms in V chlamydosporium and the 

Southern analysis of subtilisin-homologous genes suggested that there was 

considerable molecular variation in these enzymes. The exact way in which such 

molecular variation would result in pathogenic variation is unclear, but one 

mechanism is suggested by Bidochka & Khachatourians (1994), who showed that the 
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protease from B. bassiana differed in its adsorption to the host surface from those of 

V lecanii and M. anisopliae. The enzymes adsorb electrostatically onto host cuticle 

(St. Leger et al., 1986a). It is possible that homologous genes, with products that 

differ in charge, as the isozymes seen in V. chlamydosporium, differ in their 

adsorption onto nematode egg shells, with consequences for pathogenicity. 

iii) In a third scenario (Groisman & Ochman, 1994), virulence results from the 

differential regulation of the same complement of genes. Although theoretically 

possible (Lewis, 1973), this scenario could not be verified experimentally (Dean & 

Timberlake, 1989), as discussed before. 

The understanding of VCP1 may help in the selection of fungal isolates, as 

the protease has some potential as a molecular marker. The five isolates tested in 

Chapter 4 all showed distinct isozyme patterns after isoelectric focusing and 

enzymoblotting, using suc-(Ala)2-Pro-Phe-pNA as the substrate (Section 4.3.2), 

indicating the potential value of these isozymes in distinguishing isolates. It may also 

be possible to generate antibodies, specific for a particular, unique isoform. These 

should preferably be monoclonal antibodies, as the supply of polyclonal antibodies 

is never infinite, and subsequent versions may have different epitope affinities, as 

exemplified in the polyclonals generated for Chapters 3 and 4. Evidently, many 

isolates need to be tested to validate the assumption that they can be identified by 

such isozyme or immunological techniques. The identification of virulent isolates 

based on protease isozymes has proven to be a viable technology in the case of the 

ovine footrot pathogen Bacteriodes nodosus, as current laboratory diagnostic tests for 

ovine footrot are based on protease zymogram patterns, distinctive for virulent 
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isolates (Every, 1982). The problem with secreted enzyme markers is that cultural 

conditions may have great impact on their production, and therefore, standardization 

is a likely obstacle in their development and use. This is, in general, a disadvantage 

of isozymes (Micales et al., 1992). Genomic markers do not suffer from this 

drawback. Recently, fungal protease genes, have been selected as target DNA for 

PCR-based detection of Candida albicans, using the sequence of its aspartyl protease 

(Sugita et al., 1993), and Aspergillus fumigatus and A. flavus, using their alkaline 

protease genes (Tang et al., 1993). DNA markers, in a PCR-based approach, are often 

based on repetitive sequences (Mitchell et al., 1994), but in the cited cases the 

selected sequences, which are low copy number, successfully recognized only the 

species indicated. This may also be within reach for V. chlamydosporium, as each 

isolate tested had isoforms with a unique sequence. Interestingly, isolate-specific 

RFLPs could be obtained in M anisopliae by digestion with restriction enzymes of 

PCR products generated with primers based on the sequence of Prl (S. C. M. Leal, 

IACR-Rothamsted, personal communication). Also in this species there is apparently 

sufficient intraspecific variation in the subtilisin-coding genes to make them a 

potentially useful marker. 

7.2 Future prospects: towards a molecular dissection of 

pathogenicity 
Some more poorly explored areas in the pathogenicity of nematophagous fungi, not 

yet mentioned, are indicated here as suggestions for further research. 

The identification of the genes encoding pathogenicity determinants is an 

essential step towards a better understanding of fungal pathogenicity. The increasing 
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availability of, and improvements in the technology involved, has resulted in a surge 

in interest, witnessed by a lengthening series of reviews discussing techniques and 

results (Garber, 1991; Oliver et al., 1991; Clarkson, 1992; Goldman et al., 1994; 

Schäfer, 1994; Tudzynski et al., 1994; Bouchara et al., 1995; Oliver & Osbourn, 

1995). Essentially, two methods can be used to identify the genes for pathogenicity 

determinants. They are either based on prior, biochemical knowledge of a 

pathogenicity-determining gene product (cloning by heterologous hybridization, 

cloning with oligonucleotide probes, cDNA cloning by antibody screening), or are 

based on a black-box approach (cloning by transformation, cDNA cloning by 

differential hybridization, differential display). Although the first group of techniques 

has proved to be extremely useful in the study of pathogenicity of many fungi, a 

comprehensive understanding of pathogenicity in any one system is likely to be 

achieved only with those methods that do not require a priori knowledge of the 

pathogenicity-determinants that are being looked for. 

Irrespective of the methodology used, a gene cloning programme will allow 

targeted gene disruption studies, confirming or refuting the involvement of the gene 

of interest. Site-directed mutagenesis can deliver an understanding, and possibly 

manipulation, of substrate utilization and regulation. It may be possible to tailor 

proteases, making them more effective against a nematode pest of interest, e. g. 

Globodera spp. Constitutive expression, which has been achieved with Prl in M 

anisopliae (R. J. St. Leger, Ithaca, USA, personal communication), may result in 

faster pathogenesis. Control of the regulatory circuits governing carbon and nitrogen 
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metabolism may lead to a better understanding of rhizosphere competence, and 

ultimately its control. 

Following the identification ofpathogenicity-determining genes, their genetic 

manipulation can lead to strain improvement, with specific aims speed of 

pathogenesis, or altered host range. Introduction of multiple copies of a gene can be 

expected to lead to an increase in the amount of corresponding protein. However, 

successful manipulation requires a thorough understanding of the regulatory systems 

involved. If the genes coding for regulatory proteins are not concomitantly amplified, 

then shortage of the regulatory products could result, resulting in amounts of gene 

product that differ from the expectations (Punt & van den Hondel, 1992). The 

manipulation of gene copy number will stand a good chance of being successful if 

and when the transcriptional regulation of the gene involved is understood. 

Current technology allows not only to manipulate the copy number of 

homologous genes, but the introduction of heterologous genes as well. Several 

remarkable studies have attempted to genetically alter the trophic mode, effectively 

"making" a pathogen from a saprotroph, or changing the host range of a fungal 

pathogen by inserting heterologous genes encoding pathogenicity-related enzymes. 

Cutinase from the hemibiotroph Nectria haematococca (Fusarium solani fsp. pisi) 

was inserted in the opportunistic necrotroph Mycosphaerella sp., enabling the 

transformant to infect intact papaya fruit (Dickman et al., 1989). Pisatin demethylase, 

a detoxifying enzyme required by Nectria haematococca to be pathogenic on peas, 

was inserted in Cochliobolus heterostrophus (a fungal pathogen of maize, but not of 

pea), which then became pathogenic on pea. The saprotroph Aspergillus nidulans, 
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however, did not infect peas after this transformation (Schäfer et al., 1989), 

suggesting that this enzyme contributes to host specificity, but by itself is insufficient 

to make a saprotroph pathogenic. The third example is the subtilisin-like protease 

gene, Prl, from M anisopliae, that was introduced in another entomogenous 

deuteromycete, Ascherschonia aleyrodis, which consequently became a pathogen of 

late instar whitefly (R. J. St. Leger, Ithaca, personal communication). These 

transformations not only provide evidence for the involvement of the respective 

enzymes in pathogenesis, but also indicate that they can be involved in host 

specificity, as suggested for VCP 1 from V. chlamydosporium. 

Any transformation-based method requires a transformation system. Needed 

are a selectable marker and a method to make fungal cells take up foreign DNA. 

Uptake of DNA can be stimulated by PEG/CaC12 treatment of protoplasts, 

electroporation, or by bombardment of DNA-coated micro-particles by gene gun 

(Fincham, 1989; Goldman et al., 1995). Verticillium chlamydosporium, isolate 10, 

was resistant to a wide range of potential dominant markers, including ampicillin, 

hygromycin, kanamycin, tetracyclin, phleomycin, with limited susceptibility to 

benomyl (R. Segers, unpublished observations). Preliminary attempts at transforming 

V chlamydosporium with the benomyl resistance gene have failed, because 

insufficient sensitivity of the wild-type fungus to benomyl impeded the detection of 

transformants. Alternatively, an auxotrophic selection system can be used, but this 

method relies on the availability of auxotrophic mutants. In the case of V. 

chlamydosporium, these are not yet available. 
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Whereas manipulation of the fungus could, to a certain extent, lead to 

improved performance, fungal pathogens can be considered as largely unexplored 

pools of potentially interesting genes. These could be isolated and either formulated 

as a product, or used in a plant transformation programme. While VCP1 is probably 

too non-specific to be useful in such a scheme, toxins may be better candidates for 

this approach (Thom & Barron, 1984; Anke et al., 1995). 

Two morphological events were associated with the infection of nematode 

eggs by V.. chlamydosporium, and are worth investigating further. The first is 

appressorium formation. An understanding of its regulation could provide the means 

for an improved biological control agent, as it may lead to enhanced infection. Since 

slightly different appressorium populations were observed on the susceptible host, 

M. incognita, compared to the poor host, G. rostochiensis, fungal virulence against 

the latter might be increased through the manipulation of appressorium formation. 

The second morphological event was the typical post-penetration, absorptive 

mycelium. The increased surface offered by these hyphae potentially enhances 

nutrient uptake. It would be interesting to see whether this morphology is merely the 

result of the osmolarity of the egg content, or a specific adaptation by the fungus, that 

causes enhanced nutrient-uptake during infection. The modified nature of the post- 

penetration hyphae, being pathogenicity-related, could be studied by immunological 

methods. Monoclonal antibodies raised against biotrophic, intracellular hyphae 

formed in the Colletotrichum lindemuthianum-bean interaction allowed the 

identification of glycoproteins, specific for the pathogenic phase of this fungus (Pain 
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et al., 1994). The pathogenic mode of V. chlamydosporium is so poorly characterized 

that such an approach is likely to be informative. 

There is obviously a long way to go towards understanding pathogenicity in 

V. chlamydosporium, but it is hoped that the experimental work on the fungal 

protease, VCP1, reported here, provides a useful stepping stone. 



APPENDIX 
Characterization of a cDNA- 
clone from Verticillium 
chiamydosporium 

A. 1 INTRODUCTION 

Numerous protease genes have been cloned, from a wide range of organisms. Some 

of these enzymes are economically very important, e. g. some bacterial subtilisins, and 

have been extensively engineered (Wells & Estell, 1988; Siezen et al., 1991). In other 

cases, cloning has been the stepping stone to a better understanding of pathogenicity. 

Gene cloning can be used as a prelude to gene disruption, allowing the assessment 

of the involvement of the gene product in pathogenesis. Furthermore, it can take the 

study of regulation to the molecular level, while transformation with isolated genes 

could yield improved strains. The importance of gene cloning, and some current 

techniques have been illustrated in the General Discussion. 

No genes have been cloned from V. chlamydosporium, and there is only one 

report of a cloned protease from a nematophagous fungus, Paecilomyces lilacinus 

(Bonants et al., 1995). However, that is an interesting record, as P. lilacinus and V. 

chlamydosporium have similar modes of action, being parasites of nematode eggs 

and females. The N-terminal amino acid sequence of VCP 1 is homologous with the 

P. lilacinus protease (Section 3.3.3). Comparing the nucleotide sequences of the 

proteases of these two fungi is likely to generate interesting information. 

Unfortunately, no subtilisin-like clone was identified in this experiment. Since 

the result obtained did not seem to have any bearing on the thrust of the thesis, it is 

presented here, briefly, as an appendix. 
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A. 2 MATERIALS AND, METHODS 

A. 2.1 Fungal growth conditions and mRNA isolation 

Verticillium chlamydosporium, isolate 10, was grown in modified Sabouraud 

dextrose broth (tryptone, 10 g 1-1; glucose, 40 g 1-1) on a rotary shaker at 23°C for 4 

days. The fungus was collected under vacuum on Whatman No. 1 filter paper on a 

Buchner funnel, washed extensively with sterile distilled water, transferred to 

minimal medium (mineral salt solution, see Section 2.2.1), in which incubation 

continued for 9 h. During that period VCP1-like activity increased significantly from 

1.0:: h 0.5 nmol nitroaniline released ml-' min' in the Sabouraud dextrose broth to 

21.1 ± 0.6 nmol nitroaniline released ml'' min-' (f S. E., n= 3) after transfer to 

nutrient-poor conditions. The mycelium was washed with sterile distilled water, and 

finely ground in liquid nitrogen. Poly (A); RNA was extracted and affinity-purified 

on biotinylated oligo(dT) probe using the PolyATtract® System 1000 (Promega). 

Streptavidin-conjugated paramagnetic particles allowed quick purification of mRNA. 

A. 2.2 cDNA Synthesi$ and transformation of E. co/i 

Five gg of mRNA was used in the ZAP ExpressTM cDNA synthesis kit (Stratagene). 

The resulting cDNA was size-fractionated on Sephacryl S-500 spin columns 

according to the manufacturer's instructions and ligated into the ZAP ExpressTM 

vector (Stratagene). Lambda phage was packaged with Gigapack® II Gold packaging 

extract (Stratagene). Petri dishes containing NZY agar (5 g 1' NaCl, 2g 1-' 

MgSO4-7H2O, 5g 1'' yeast extract, 10 g 1'' Select peptone 140 [Gibco BRL], 15 g 1' 

agar, pH 7.50) were overlaid with a thin layer of NZY top agar (as NZY agar, but 
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agar replaced with 0.7% agarose) that was mixed with the Escherichia coli strain 

XL 1-Blue MRF and 1 µl, or a serial dilution, of phage library. 

A. 2.3 Titration and amplification of the library 

The library was titered, i. e. the concentration of clones with and without cDNA insert 

determined, by including 15 pl of 0.5 M isopropyl-l-thio-p-D-galactopyranoside 

(IPTG) and 50 pl of 250 mg ml' of 5-bromo-4-chloro-3-indolyl-p-D- 

galactopyranoside (X-gal) in 3 ml of NZY top agar and plating several hundred 

plaques per plate. Background plaques, without insert, were blue, while recombinant 

plaques were white. The library was amplified by mixing aliquots of ca. 50,000 

plaque-forming bacteriophage with XL 1-Blue MRF cells and plating on 150-mm 

plates of NZY agar. These plates were incubates at 37°C until plaques with a 

diameter of 1 mm appeared, when the plates were overlaid with 8 ml of SM buffer 

(50 mM Tris-HC1 pH 7.5,5.8 g 1'' NaCl, 2.0 g 1-' MgSO4 7H2O, 0.01% gelatin) and 

placed on a rotary shaker at 4°C overnight. The next morning, cell debris was 

removed by adding 5% (v/v) chloroform to the bacteriophage suspension, mixing and 

centrifuging for 10 min at 500 g. The amplified library was titered as above. 

A. 2.4 Replica blotting of DNA from plaques 

Library aliquots containing ca. 10,000 plaque-forming units were incubated with 

XL1-Blue MRF cells and grown overnight on 150 mm NZY agar plates at 37°C. In 

the morning, plates were cooled at 4°C for 1h and overlaid with a Magnagraph nylon 

membrane (Genetic Research Instrumentation, Dunmow, Essex) for 1 min. Bacterial 
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and phage DNA on filters was denatured (1.5 M NaCl, 0.5 M NaOH) on a sheet of 

Whatman 3MM paper for 5 min. Filters were neutralized in 1.5 M NaCI and 0.2 M 

Tris-HCI, pH 8.0, and rinsed briefly in 0.2 M Tris-HCI, pH 7.5 and 2x SSC solution 

(20 x SSC is 175.3 gi NaCI, 88.2 g 1.1 sodium citrate, pH 7.0). After air-drying, the 

DNA was cross-linked on a UV trans-illuminator for 3 min. Filters were rewetted in 

2x SSC, rolled in nylon mesh and placed in hybridisation bottles with 10 ml of 

freshly prepared pre-hybridisation solution (6 x SSC, 1% SDS, 5x Denhardt's 

solution', and 100 pg ml'' denatured salmon sperm DNA) at 65°C for 4 h. 

A. 2.5 Probing of library and recovery of cloned insert 

Two probes were used to identify VCP1 from V chlamydosporium. The first one was 

the cDNA of Prl from M. anisopliae (St. Leger et al., 1992a). This choice was based 

on the homology of the N-terminal amino acid sequences of these two subtilisins (see 

Section 3.3.3). Escherichia coli containing the Bluescript vector with this insert 

(kindly donated by Dr. R. J. St. Leger, Ithaca, USA) was grown overnight in Luria- 

Bertoni medium (LB medium: 10 g 1'' tryptone, 5g 1'' yeast extract, 10 g 1' NaCl, pH 

7.5) with 50 µg ml-' ampicillin. Plasmid DNA was purified from the cells using 

standard procedures (Sambrook et al., 1989). The Pr1-cDNA was excised by 

digestion of the plasmid with EcoRI, and recovered by cutting the 1.2 kbp band from 

low-melting point agarose with a clean scalpel blade. The second probe (kindly 

donated by Miss S. C. M. Leal, IACR-Rothamsted) was a nested-PCR product, 

generated from total DNA of V. chlamydosporium, isolate 10, using primer sets 

100 x Denhardt's solution contains bovine serum albumin, polyvinyl-pyrrolidone and 
FicoIITM, each present at 2% (w/v). 
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METPR1(5' CAC TCT TCT CCC AGC CGT TC 3') plus METPR4 (51 GTA 

GCT CAA CTT CTG CAC TC 3' ), and subsequently METPR2 (5' AGG TAG 

GCA GCC AGA CCG GC 3') plus METPR5 (5' TGC CAC TAT TGG CCG 

GCG CG 3'), which were based on the sequence of Prl of M. anisopliae (St. Leger 

et al., 1992a). Both probes were radio-labelled with « 32P dATP (3000 . tCi mmol'') 

using the MegaprimeTM DNA labelling system (Amersham), denatured by boiling for 

5 min and added to the hybridisation solution. Hybridisation continued at 65°C 

overnight. 

In the morning, membranes were washed at 65°C in 6x SSC and 0.1% SDS, 2 

x SSC and 0.1% SDS, and twice in 0.2 x SSC and 0.1% SDS. They were placed on 

Fuji X-ray film between intensifying screens and stored at -70°C. After developing 

the film (usually the next morning), positive plaques were identified and picked from 

the corresponding agar plate with sterile Pasteur pipettes. These plaques were 

suspended in 1 ml of SM buffer, vortexed and used as phage stock for the second 

round of screening, which used only the PCR product as probe. 

Cloned inserts that reacted positively were in vivo excised from the ZAP Express 

vector and recircularized as phagemids containing the insert, according to the 

manufacturer's instructions. Single colonies containing the pBK-CMV double- 

stranded phagemid vector with the cloned insert were maintained on LB-kanamycin 

agar, while glycerol stocks were stored at -80°C. Insert size was determined on a 

0.8% (w/v) agarose gel, following digestion of the positive clones with EcoRI and 

XhoI. 
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A. 2.6 Sequencing 

Single colonies of positive clones were grown overnight in LB-kanamycin broth at 

37°C. The plasmid was purified using the SpinBind® Mini-Prep System (FMC 

BioProducts, Rockland, USA) and used, as double-stranded template, in a cycle- 

sequencing reaction with dye-labelled terminators (ABI PrismTM, Perkin-Elmer, 

Warrington). The initial primers, used with all positive clones, were pUC/M13 

forward and reverse primers (Promega), while subsequent primers were custom- 

synthesized (Cruachem, Glasgow). Sequencing data were collected in an ABI 373 

automated sequencer, and analyzed using the GCG software package, version 8 

(Genetics Computer Group, 1991). 

A. 3 RESULTS AND DISCUSSION 

A cDNA library was constructed that originally consisted of 3.4x10' recombinants, 

and 6.7x 103 clones without insert (background). Amplification increased the titre ca 

1,000-fold, resulting in an amplified library of 2,800 plaque forming units µl''. 

Heavy background on the autoradiographs of the filters hybridised with the Prl 

cDNA precluded the identification of positive clones with this probe. Hybridisation 

with fewer filters in plastic bags, rather than in hybridisation bottles, gave the same 

result. Since a positive result was obtained with the parallel hybridisation to the 

homologous PCR product, probing with the Prl-cDNA probe was abandoned. 

After the first round of screening, four putative positive clones were identified 

with the PCR-derived homologous probe. Three of those were retained after the 
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Fig. A. 1 Size and restriction pattern, with EcoRl and Xhol, of cDNA inserts from ZAP Express clones, identified with a 

PCR-derived homologous probe in a V. chlamydosporium cDNA library. Plasmid was isolated from 2 separate 

colonies, from each of 3 positive clones. Markers were A DNA, digested with Hindlll and EcoRl (lanes 1 and 14), or 

with Hindlll only (lane 15). Plasmid cut with EcoRl and Xhol (lanes 2 and 4; 6 and 8; 10 and 12), or uncut (lanes 3 

and 5; 7 and 9; 11 and 13) from clones 1,2 and 3, respectively. 



1 2 3ý56789 10 11 12 13 14 15 



Appendix 191 

second screening round, and excised as phagemid from the ZAP Express vector. All 

three contained the same insert, indicated by identical size, and restriction pattern of 

the insert (Fig. A. 1). Two restriction fragments (560 and 1,200 bp) were obtained 

after reaction of the inserts with EcoRI and XhoI, suggesting a total insert size of ca 

1.7 kbp, and the presence of either an EcoRl orXhol site, at the same position in each 

insert. 

1 TTCGGCACGA GCGGCACGAG CGGCACGAGC AAACATTACA TTGCTCTACT 
51 CGCTATTCAC ATTACAATCA CAAACACATC AGTCATCACA AACATCATGA 

101 TGGGTTCCTC ACAGTCCACC ACCAAATCCG ACCAGGAGCC CAACAAGTCC 
151 AAGTCCCTAT 
201 CGACGAAGAC 
251 ACTGGGCAGA 
301 ATCTCCATCG 

351 ATTTGGAGGT 

401 TGAAGTTTCC 
451 TAGATTGGAT 
501 GGGATATTGA 
551 AAAAAAAAAC 
601 GCAAATATCC 

651 GATGAACTTG 

701 CGAGTACGCC 

751 TCGAAGGATT 
801 GCAGTGGTTA 
851 GCAAAAGGTA 
901 GGGACAGAGC 
951 GCGAAGAATA 

1001 CAGCTTGCCG 

1051 TAGCTTCAGT 

1101 TTCGGAGCGG 

1151 CGCCGCCGAC 

1201 GTACTGGCTC 

1251 GACTTTGATG 

1301 AACGCCCGAC 

1351 TGGCAGATAT 

1401 AACGGGGCTG 

1451 GAGCGGGTTT 

1501 TGCCAGCGGC 

1551 ACGCAGCAGA 

1601 TGGTTTCTAT 

1651 CACCGTTTAT 

1701 GGAAGCAGAA 

ATCAGAAATA 
ATCCTCAAGT 
CACCCAGCCC 
GCAACGCCAG 

TGGGGACCGA 
GCCAAAGGAT 
ATGAAGGGAG 
GCGTGTGAGA 
TGACTAGTTC 
TGGCTACGAG 
ATGAGCCTGA 
GAGAAGATTA 
TATGGAAGAG 
AGCTCTTCCT 
TTGCAGGCTG 
CTATGTCTAC 
TTGTCCTTTC 
CCTTCACTAC 
GTACCACAAA 
ACGAAATTCA 
AACCCCATCG 
TGGCGCTTCG 
GCGCCGCTCC 
CGAGTGGCCA 
GATGAGCATG 
CAGCAGGACC 
GACGGGTTGA 
AATGCAGCTT 
AGGACAGTGA 
CTACAAAAAG 
AGACCAGGCA 
AAAAAAAAAA 

CCAAGAGAAA AAGGGCCCCA 
ACACCGGCAA AACGAGGGCC 
GGCGTGGGCA AGAACCAGCT 
CGGCCTGGGA GGAGCAGCTG 
GTGCTGAGCC TCAGGGCCCG 
CTGGAGGGGA AGCCTAAGCT 
GGTGCCTTTA TGGAGCAGTT 
GCGGATTATT TTTGGTCTTG 
TCGTGCCGAA TTCGGCACGA 
GGTGTGATTC CTACCTTGTG 
AGCACGGGGG 
GCAACGCCGA 
TTTACTCAAA 
GAAGAAGCCC 
CGACTGCGGA 
TGGCGTTTGC 
CCAAAAGCCT 
TGGAGCAGCT 
CCTCCGGAGT 
ACGAGCAGCC 
CTGCGTCCGT 

CAAAACAACA 
CGCATCTCAC 
GCCCGGCCGG 
TTCGATGCCC 
TAGCTCTGGC 
ACTTTGGCAA 
AATAGTGCGC 
TGACTTGTTG 
AGGTCTGGCT 
GTGTCAATGG 
AAAAAAAAAA 

TCTCTCATTT 
TGAAATATTG 
CGCAATTGCA 
GGCAACACTC 
GAATGACAAC 
TATCTGGTGA 
ACCATCTCCA 
GCTTTCAGAG 
CATTTGTTGG 
ATCCAGGAGC 
GGCAGCAGCG 

TTGAAAACTT 
GAGCAACAGA 
TGGCGCCGCA 
CTCCAATGGA 
AGTGGTATGA 
TACCAATTCG 
AGGGCGGAAG 
GGTTTGCTGT 
GAATAGGAAA 
AATAAGAAGC 
AAACTCGAG 

AGCCCATCAG 
GAGATCGACG 
CGCTGGCAAA 
TCGCAGGAGG 
AATCGGGGCA 
TGTGGACGAG 
GCAGATGGAC 
AAAAAAAAAA 
GACATTTTGC 
TGAGCATATC 
GGATCGTTGG 
GAGAGCTTTG 
AATATTAACG 
AAGGACTTGT 
CCGGACATCC 
TTTAGATGTT 
CCACTATGAC 
CTGTCGACCC 
TAAGGGACGT 
AAAGACAAAA 
GCCGCCAATG 
GCTTGACATC 
GCGCGACAGC 
TCTGGCGGTA 
GTCAAACAAC 
ATGATTTGAT 
GGCCAGCCCC 
TACCACACAG 
AAGGGGGTAG 
ATAGTAGGCG 
ATGTCGATTT 

Fig. A. 2 Nucleotide sequence of VC cDNA, a cDNA clone from V. chlamydosporium. The insert is shown without 

flanking ZAP Express vector sequences. The EcoRl site in the insert is in bold. 
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Preliminary sequencing reactions confirmed that the three positive clones related to 

the same cDNA. Although the second strand was not completely sequenced, reactions 

were repeated until all ambiguities were resolved. Since 3 positive recombinants were 

identified from ca 50,000 clones, the corresponding mRNA was rare, as it constituted 

ca 0.006% of total mRNA (Bertioli et al., 1995). Further sequencing confirmed the 

insert size as 1,739 bp (Fig. A. 2). The restriction site was identified as an EcoRI site, 

splitting the insert in two fragments, sized 578 and 1161 bp, respectively, which 

confirmed the restriction pattern observed. 
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Fig. A. 3 Open reading frames in VC cDNA, and the probability of being transcribed, calculated by the GCG 

program TESTCODE (Genetics Computer Group, 1991). The probability is plotted in three zones; upper, 
intermediate and lower, corresponding to high, intermediate and low probabilities, respectively. The window size 

used in the calculation was 200 bp. Potential start and stop codons in the three forward frames are indicated above 

the diagram as bars (start) or diamonds (stop codons). 

Open reading frames (ORFs) were identified with the program TESTCODE from 
I 

the GCG package. This program calculates the probability that a region of a 

nucleotide sequence is transcribed, based on the codon bias that is typical of 

transcribed sequences (Genetics Computer Group, 1991). The region from 1 up to 
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VC CDNA -58 --------------------- RDILRKYPG-YEGVIPTLCEHIDELDEPE------- ARG -28 
CLAP MAMMAL TLLDLIQTKVNYVVQEAIVVIRDIFRKYPNKYESIIATLCENLDSLDEPD------- ARA 
CLAP YEASTI ILLELLE-RQDTIKDDCCISLCDLLRHCPGN-DKMAKQVCAVFNTWSNPEVLLQSDIAKC 
CLAP-YEAST2 VLLDLLEFGVDYVVQEIISVFRNILRKYPNNFXANSTfELVKHTEVVQEPE------- SKN 

.. + +.. . ". .. 

VC cDNA -27 SLIWIVGEYAEKISNADEILESFVEGFLIEEFTQTQLQILTAVVKLFLKKPG-NTQGLVQK 32 
CLAP MAMMAL AMIWIVGEYAERIDNADELLESFLEGFHDESTQVQLTLLTAIVKLFLKKPS-ETQELVQQ 
CLAP YEASTI NYVWLLGQHPNNFSDLESKINIFIENFVQEEALTQMSLLMTIVRL---HAT-LTGSMLQS 
CLAP YEAST2 AMIWIITQYSDVIPNYLELFRVFSSNMFSETLEVQFSILNSAIKFFIRSPTKETEELCMD 

-""t"r+ 
. ..... ........ .. 

VC cDNA 33 VLQAATAENDNPDIRDRAYVYWRLLS--GDLDVA-------- KNIVLSQKPTISTTMTSL 82 

CLAP MAMMAL VLSLATQDSDNPDLRDRGYIYWRLLS--TDPVTA-------- KEVVLSEKPLISEETDLI 

CLAP YEASTI VLELATQQTHELDVRDMANIIMYWRCLSMPNNESLV-------- NDLCQNKLPMISNTLEKF 

CLAP-YEAST2 LLKGCIDHENNPDLRDKTLMYWRLLSLTKTSRISNAITFESLKSVLDGELPLI-EMNTKL 
"" ý" "rt ra ýW 

VC CDNA 83 PPSLLEQLLSELSTLASVYHKPPESFVGKGRFGADEIQRA--AIQEQRQNAADNPIAASV 140 
CLp, PMAMMAL EPTLLDELICHIGSLASVYHKPPNAFVE---- GSHGIHRKHLPIHHGSTDAGDSPVGTTT 
CLAP YEAST1 SPEVLEKLLMELGTISSIYFKPDSNRRKGKKYVQNIVKGKHI---EELESMAKNEISSKA 

CLAP-YEAST2 DPTVLEELELNIGTIVSIYLKPVS---------------- HIFRLNKTKLLPQSPILNPN 

++rra "" 

VC cDNA 141 AAAAMGTGSGASQNNIENLLDIDFDGAAPASHEQQSATATPDRVA -------------- 186 
CLAP MAMMAL ATNLEQPCVIPSOGDLLGDLLN=LGPPVNVPQVSSMQMGAVDLLGGGLI)SLVGQSFIPS 
CLAP YEASTI N---------------- DDVL-LDFDERDDVTNTNAGMLNTLTTL-GDLDDLFD------ 

CLAP YEAST2 K----------------- DLLPV----------------------------- VGNSFPPT 
_t 

VC cDNA 187 -------- SPAGGAASGGMADMMSMFDAPPMESNNNGAAAG---- PSSGSG--------- 225 

CLAP MAMMAL SVPATPAPSPTPAVVSSGLNDLFELSTOIGMAPGGYVAPKAVWLPAVKAKGLEISGTFTH 

CLAP ==1 ----- FGPSEDATQINTN ------------------------------------------ 
CLAP7YEAST2 GANRDRQNSESQSSTKSRKTAMMD------------------------------------ 

_ý 

VC cDNA 226 ------------------ t+IIdDLMSGFDGLNFGNTNSG----------- QPLPAAMQLNS- 2S5 
CLipMAMMAL RQGHIYMEMNFTNKALQHMTDFAIQFNKNSFGVIPSTPLAIHTPLMPNQSIDVSLPLNTL 

CLAPYEAST1 ----------- DTKAVQGLKELKLGGDSNGISS--------------------------- 

CLAP YEAST2 ---------DYDK----------------------------------------------- 

VC cDNA 256 ----------------------------------- AQGGS-------------------- 260 
CLAP MAMMAL GPVMKMEPLNNLQVAVKNNIDVFYFSCLIPLNVLFVEDGKMERQVFLATWKDIPNENELQ 

CLAP YEASTI -------------- GGKNNPDV-------------- SGGNIVSQDLLD------------ 
CLAP YEAST2 -PAEKINQLKGKRKSSSNNP---------------------------------------- 

VC_-cDNA 
CLAP MAMMAL 
CLAP YEASTI 
CLAP YFAST2 

261 ----------------------- TTQTQQKDSDDLL ------------------------ 273 
FQIKECHLNADTVSSKLQNNNVYTIAKRNVEGQDMLYQSLKLTNGIWILAELRIQPGNPN 

----------------------------------- LF----------------------- 

-------------- SKLSRK------------ PSTLLRKLSMKRPF-------------- 
" 

VC cDNA 274 ---------------------GLL-- 276 

CLAP MAMMAL YTLSLKCRAPEVSQYIYQVYDSILKN 

CLAPYEASTI -------------------------- 
CLAP YEAST2 -------------------------5 

Fig. A. 4 Translated open reading frame (ORF) of VC cDNA, aligned with homologous amino acid sequences. 

CLAP MAMMAL: Accession no. P2 1851 (Beta adaptin; clathrin assembly protein complex 2, beta large chain, from 

rat, human and bovine); CLAP_YEASTI and CLAP YEAST2: Accession nos. P36000 and P27351, respectively 

(probable beta adaptin; clathrin assembly protein complex 2, beta large chain, from Saccharomyces cerevisiae). 

Numbering corresponds to the ORF of VC_cDNA. Residues, identical in all three sequences are marked with ''', 

while conserved substitutions are'. '. The first methionine of the ORF is marked as %'. Alignment by GCLUSTALV, 

integrated in the GCG package (Genetics Computer Group, 1991). 
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400 bp was a possible, incomplete, ORF (Fig. A. 3), but no significant homologies 

were found in nucleotide and protein databases. A second ORF, with high probability 

of being transcribed, was identified between 762 and 1590 bp, corresponding to a 

peptide of 276 amino acids. This region was homologous, both at nucleotide and 

peptide level, with several clathrin-associated proteins. With the first methionine 

residue of the ORF given number 1, there was considerable homology in the region 

from amino acid residue number -58 to 104. This homology was particularly clear 

with the mammalian clathrin-associated protein, beta-adaptin, and less so with 

Saccharomyces cerevisiae beta-adaptin (Fig. A. 4). 

Clathrin is an evolutionary highly conserved protein complex, that occurs at 

specialized regions of the inner surface of the plasma membrane, called coated pits, 

where endocytotic vesicles are formed. The plasma membrane at these sites can 

invaginate into the cell and pinch off to form coated vesicles. The invagination of a 

coated pit is believed to be driven by forces generated by the assembly of clathrin and 

other coat proteins associated with it (Alberts et al., 1989). Clathrin-coated pits and 

coated vesicles are associated at the plasma membrane with the early stages of 

endocytosis, and in the Golgi region with exocytotic vesicles (Kirchhausen et al., 

1989). The clathrin-associated proteins are complexes made up of several kinds of 

polypeptide chains, small (17-20 kDa), medium (45-50 kDa), and large (100-115 

kDa). The mammalian and yeast clathrin-associated proteins with which the V. 

chlamydosporium clone was homologous, belong to the group of the large 

polypeptides. They have a complex role both in the assembly of the clathrin coat and 

collection of cargo into nascent vesicles (Kirchhausen et al., 1989). 
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Despite the high degree of homology, in particular with the mammalian protein, 

the true identity of the clone identified remained uncertain. The clathrin-associated 

proteins in question are all in the range of 100-115 kDa, while the V 

chlamydosporium ORF in question was only 276 amino acid residues long. 

Moreover, the homology stretched from residue -26, upstream of the start of the 

ORF, and not beyond residue 104, which is less than halfway in the ORF. Over the 

whole of the translated ORF, VC_cDNA had 57.4% similarity with the mammalian 

clathrin-associated protein, while the identity. of the corresponding nucleotide 

sequences was 45.6%. 

The sequence was also remarkable because of the presence of a poly-A region 

(541-559 bp, see Fig. A. 2), closely followed by an EcoRl site (at 578 bp). As cDNA 

is cloned into the ZAP Express vector with a 5' EcoRI end, its presence in this 

position raised the suspicion of the clone actually consisting of two different cDNA's 

that artefactually merged during the cloning procedure. Although not impossible in 

a single cDNA, the combination of the poly-A stretch, at the 3' end of a cDNA, and 

the neighbouring restriction site, possibly indicating the 5' start of the second cDNA, 

would be most coincidental. However, no vector sequence was recognized in this 

area. 

This experiment failed to correctly identify a subtilisin-like gene in V 

chlamydosporium with a PCR-derived homologous probe. At the point where the true 

nature of the identified clone was realized, time constraints precluded reprobing the 

library. Although the reason for the failure could not exactly be pinpointed, it is likely 

that the problem was probe-related. Despite the nested procedure in the PCR to 
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generate the probe, using two sets of Prl-derived primers (S. C. M. Leal, IACR- 

Rothamsted, personal communication), the reaction may have inadvertently amplified 

a non-target sequence from V chlamydosporium. It was unfortunate that the initial 

screening with the heterologous Prl-cDNA, the identity of which was certain, 

resulted in too strong a signal and background to identify genuine positives. This 

problem may have been as simple as overloading the plaque lifts with an excess of 

heavily labelled probe, but could also not be corrected, due to time constraints. 

The ZAP Express cDNA library that was constructed, from starvation-induced 

V chlamydosporium, is believed to remain a valuable resource, that could still 

harbour VCP1 and other co-regulated cDNAs. 
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